Oracle® Database
Database Concepts

21c
F31733-04
August 2021

ORACLE"

Oracle Database Database Concepts, 21c

F31733-04

Copyright © 1993, 2021, Oracle and/or its affiliates.

Primary Authors: Lance Ashdown, Donna Keesling, Tom Kyte

Contributors: Drew Adams, Ashish Agrawal, Troy Anthony, Vikas Arora, Jagan Athraya, David Austin,
Thomas Baby, Vladimir Barriere, Hermann Baer, Srinagesh Battula, Nigel Bayliss, Tammy Bednar, Virginia
Beecher, Bjorn Bolltoft, Ashmita Bose, David Brower, Larry Carpenter, Lakshminaray Chidambaran, Deba
Chatterjee, Shasank Chavan, Tim Chien, Gregg Christman, Bernard Clouse, Maria Colgan, Carol Colrain,
Nelson Corcoran, Michael Coulter, Jonathan Creighton, Judith D'Addieco, Mark Dilman, Kurt Engeleiter,
Bjgrn Engsig, Marcus Fallon, Steve Fogel, Jonathan Giloni, Naveen Gopal, Bill Habeck , Min-Hank Ho, Lijie
Heng, Bill Hodak, Yong Hu, Pat Huey, Praveen Kumar Tupati Jaganath, Sanket Jain, Prakash Jashnani,
Caroline Johnston, Shantanu Joshi, Jesse Kamp, Vikram Kapoor, Feroz Khan, Jonathan Klein, Andre
Kruglikov, Sachin Kulkarni, Surinder Kumar, Paul Lane, Adam Lee, Allison Lee, Jaebock Lee, Sue Lee, Teck
Hua Lee, Yunrui Li, llya Listvinski, Bryn Llewellyn, Rich Long, Barb Lundhild, Neil Macnaughton, Vineet
Marwah, Susan Mavris, Bob McGuirk, Joseph Meeks, Mughees Minhas, Sheila Moore, Valarie Moore, Gopal
Mulagund, Charles Murray, Kevin Neel, Sue Pelski, Raymond Pfau, Gregory Pongracz, Vivek Raja, Ashish
Ray, Bert Rich, Kathy Rich, Andy Rivenes, Scott Rotondo, Vivian Schupmann, Venkat Senaptai, Shrikanth
Shankar, Prashanth Shanthaveerappa, Cathy Shea, Susan Shepard, Kam Shergill, Mike Skarpelos, Sachin
Sonawane, James Spiller, Suresh Sridharan, Jim Stenoish, Janet Stern, Rich Strohm, Roy Swonger, Kamal
Tbeileh, Juan Tellez, Ravi Thammaiah, Lawrence To, Tomohiro Ueda, Randy Urbano, Badhri Varanasi, Nick
Wagner, Steve Wertheimer, Patrick Wheeler, Doug Williams, James Williams, Andrew Witkowski, Daniel
Wong, Hailing Yu

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and maodifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software" or "commercial computer software documentation” pursuant to the
applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use,
reproduction, duplication, release, display, disclosure, modification, preparation of derivative works, and/or
adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and madifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government's use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface
Audience XX
Documentation Accessibility XX
Related Documentation XXi
Conventions XXi

1 Introduction to Oracle Database

About Relational Databases 1-1
Database Management System (DBMS) 1-1
Relational Model 1-2
Relational Database Management System (RDBMS) 1-2
Brief History of Oracle Database 1-3
Schema Obijects 1-4
Tables 1-5
Indexes 1-5
Data Access 1-6
Structured Query Language (SQL) 1-6
PL/SQL and Java 1-6
Transaction Management 1-7
Transactions 1-7
Data Concurrency 1-8
Data Consistency 1-8
Oracle Database Architecture 1-9
Database and Instance 1-9
Multitenant Architecture 1-9
Sharding Architecture 1-12
Database Storage Structures 1-14
Physical Storage Structures 1-14
Logical Storage Structures 1-15
Database Instance Structures 1-15
Oracle Database Processes 1-15
Instance Memory Structures 1-16

ORACLE

Application and Networking Architecture 1-16
Application Architecture 1-17
Oracle Net Services Architecture 1-17
Oracle Database Documentation Roadmap 1-18
Oracle Database Documentation: Basic Group 1-18
Oracle Database Documentation: Intermediate Group 1-19
Oracle Database Documentation: Advanced Group 1-19
Part | Multitenant Architecture
2 CDBs and PDBs
About Containers in a CDB 2-1
The CDB Root and System Container 2-4
PDBs 2-5
Types of PDBs 2-5
Purpose of PDBs 2-6
Proxy PDBs 2-7
Names for PDBs 2-8
Database Links Between PDBs 2-9
3 Application Containers
About Application Containers 3-1
Purpose of Application Containers 3-2
Key Benefits of Application Containers 3-2
Application Container Use Case: SaaS 3-2
Application Containers Use Case: Logical Data Warehouse 3-3
Application Root 3-4
Application PDBs 3-5
Application Seed 3-5
Application Common Objects 3-5
About Commonality in a CDB 3-6
Principles of Commonality 3-6
Namespaces in a CDB 3-6
Creation of Application Common Objects 3-7
Metadata-Linked Application Common Objects 3-8
Metadata Links 3-10
Data-Linked Application Common Objects 3-10
Extended Data-Linked Application Objects 3-11
Container Maps 3-12

ORACLE

Cross-Container Operations 3-15

Part || Oracle Relational Data Structures

4 Tables and Table Clusters

Introduction to Schema Objects 4-1
About Common and Local User Accounts 4-1
Common User Accounts 4-3
Local User Accounts 4-7
Common and Local Objects 4-9
Schema Object Types 4-9
Schema Object Storage 4-10
Schema Object Dependencies 4-11
Sample Schemas 4-13
Overview of Tables 4-14
Columns 4-15
Virtual Columns 4-15
Invisible Columns 4-16
Rows 4-16
Example: CREATE TABLE and ALTER TABLE Statements 4-16
Oracle Data Types 4-18
Character Data Types 4-19
Numeric Data Types 4-21
Datetime Data Types 4-22
Rowid Data Types 4-23
Format Models and Data Types 4-24
Integrity Constraints 4-25
Table Storage 4-26
Table Organization 4-26
Row Storage 4-27
Rowids of Row Pieces 4-27
Storage of Null Values 4-28
Table Compression 4-28
Basic Table Compression and Advanced Row Compression 4-28
Hybrid Columnar Compression 4-29
Overview of Table Clusters 4-33
Overview of Indexed Clusters 4-34
Overview of Hash Clusters 4-36
Hash Cluster Creation 4-36
Hash Cluster Queries 4-37

ORACLE Y

Hash Cluster Variations 4-38

Hash Cluster Storage 4-39
Overview of Attribute-Clustered Tables 4-40
Advantages of Attribute-Clustered Tables 4-41
Join Attribute Clustered Tables 4-42

I/0O Reduction Using Zones 4-42
Purpose of Zones 4-42

Zone Maps 4-43

Zone Map Creation 4-43

How a Zone Map Works: Example 4-44
Attribute-Clustered Tables with Linear Ordering 4-45
Attribute-Clustered Tables with Interleaved Ordering 4-46
Overview of Temporary Tables 4-48
Purpose of Temporary Tables 4-49
Segment Allocation in Temporary Tables 4-49
Temporary Table Creation 4-49
Overview of External Tables 4-50
Purpose of External Tables 4-50
Data in Object Stores 4-51
External Table Access Drivers 4-51
External Table Creation 4-52
Overview of Blockchain Tables 4-53
Row Chains 4-53
Row Content 4-53
User Interface for Blockchain Tables 4-54
Overview of Immutable Tables 4-55
Overview of Object Tables 4-55

5 Indexes and Index-Organized Tables

Introduction to Indexes 5-1
Advantages and Disadvantages of Indexes 5-2
Index Usability and Visibility 5-3
Keys and Columns 5-3
Composite Indexes 5-4
Unique and Nonunique Indexes 5-5
Types of Indexes 5-6
How the Database Maintains Indexes 5-7
Index Storage 5-7
Overview of B-Tree Indexes 5-8
Branch Blocks and Leaf Blocks 5-9

ORACLE vi

Index Scans 5-10
Full Index Scan 5-10
Fast Full Index Scan 5-11
Index Range Scan 5-12
Index Unique Scan 5-12
Index Skip Scan 5-13
Index Clustering Factor 5-14
Reverse Key Indexes 5-16
Ascending and Descending Indexes 5-17
Index Compression 5-17
Prefix Compression 5-18
Advanced Index Compression 5-19
Overview of Bitmap Indexes 5-21
Example: Bitmap Indexes on a Single Table 5-22
Bitmap Join Indexes 5-23
Bitmap Storage Structure 5-25
Overview of Function-Based Indexes 5-26
Uses of Function-Based Indexes 5-27
Optimization with Function-Based Indexes 5-28
Overview of Application Domain Indexes 5-28
Overview of Index-Organized Tables 5-29
Index-Organized Table Characteristics 5-30
Index-Organized Tables with Row Overflow Area 5-32
Secondary Indexes on Index-Organized Tables 5-33
Logical Rowids and Physical Guesses 5-34
Bitmap Indexes on Index-Organized Tables 5-34
Partitions, Views, and Other Schema Objects
Overview of Partitions 6-1
Partition Characteristics 6-2
Partition Key 6-2
Partitioning Strategies 6-2
Partitioned Tables 6-9
Segments for Partitioned Tables 6-10
Compression for Partitioned Tables 6-10
Partitioned Indexes 6-10
Local Partitioned Indexes 6-11
Global Partitioned Indexes 6-13
Partial Indexes for Partitioned Tables 6-16
Overview of Sharded Tables 6-17

ORACLE

Vii

Sharded Tables 6-19

Overview of Views 6-20
Characteristics of Views 6-21
Data Manipulation in Views 6-22

How Data Is Accessed in Views 6-22
Updatable Join Views 6-23
Object Views 6-24
Overview of Materialized Views 6-25
Characteristics of Materialized Views 6-26
Refresh Methods for Materialized Views 6-27
Complete Refresh 6-27
Incremental Refresh 6-28
In-Place and Out-of-Place Refresh 6-28
Automatic Materialized Views 6-29
Query Rewrite 6-29
Overview of Sequences 6-30
Sequence Characteristics 6-30
Concurrent Access to Sequences 6-31
Overview of Dimensions 6-32
Hierarchical Structure of a Dimension 6-32
Creation of Dimensions 6-33
Overview of Synonyms 6-34

7 Data Integrity

Introduction to Data Integrity 7-1
Techniques for Guaranteeing Data Integrity 7-1
Advantages of Integrity Constraints 7-2

Types of Integrity Constraints 7-2
NOT NULL Integrity Constraints 7-3
Unique Constraints 7-4
Primary Key Constraints 7-6
Foreign Key Constraints 7-7

Self-Referential Integrity Constraints 7-9
Nulls and Foreign Keys 7-10
Parent Key Modifications and Foreign Keys 7-10
Indexes and Foreign Keys 7-11
Check Constraints 7-12

States of Integrity Constraints 7-13
Checks for Modified and Existing Data 7-13
When the Database Checks Constraints for Validity 7-14

ORACLE viii

Nondeferrable Constraints 7-14
Deferrable Constraints 7-15
Examples of Constraint Checking 7-15
Example: Insertion of a Value in a Foreign Key Column When No Parent Key Value
Exists 7-16
Example: Update of All Foreign Key and Parent Key Values 7-16
8 Data Dictionary and Dynamic Performance Views
Overview of the Data Dictionary 8-1
Purpose of the Data Dictionary 8-1
Data Management 8-1
Data Dictionary Separation in a CDB 8-2
Data Dictionary Components 8-3
Container Data Objects in a CDB 8-5
Views with the Prefix DBA_ 8-7
Views with the Prefix ALL__ 8-7
Views with the Prefix USER _ 8-8
The DUAL Table 8-8
How the Data Dictionary Works 8-9
Metadata and Data Links 8-9
Public Synonyms for Data Dictionary Views 8-11
Data Dictionary Cache 8-11
Other Programs and the Data Dictionary 8-11
Data Dictionary Storage 8-11
Overview of the Dynamic Performance Views 8-12
Contents of the Dynamic Performance Views 8-12
Storage of the Dynamic Performance Views 8-13
Database Object Metadata 8-13
Part Ill Oracle Data Access
9 SQL
Introduction to SQL 9-1
SQL Data Access 9-2
SQL Standards 9-2
Overview of SQL Statements 9-3
Data Definition Language (DDL) Statements 9-3
Data Manipulation Language (DML) Statements 9-5
SELECT Statements 9-6

ORACLE

Joins 9-7
Subqueries 9-8
Transaction Control Statements 9-9
Session Control Statements 9-10
System Control Statement 9-11
Embedded SQL Statements 9-11
Overview of the Optimizer 9-12
Use of the Optimizer 9-12
Optimizer Components 9-13
Query Transformer 9-15
Estimator 9-15

Plan Generator 9-15

Access Paths 9-16
Optimizer Statistics 9-17
Optimizer Hints 9-18
Overview of SQL Processing 9-19
Stages of SQL Processing 9-19
SQL Parsing 9-20

SQL Optimization 9-21

SQL Row Source Generation 9-21

SQL Execution 9-21
Differences Between DML and DDL Processing 9-22

10 Server-Side Programming: PL/SQL and Java

Introduction to Server-Side Programming 10-1
Overview of PL/SQL 10-2
PL/SQL Subprograms 10-3
Advantages of PL/SQL Subprograms 10-3
Creation of PL/SQL Subprograms 10-5
Execution of PL/SQL Subprograms 10-5
PL/SQL Packages 10-7
Advantages of PL/SQL Packages 10-7
Creation of PL/SQL Packages 10-8
Execution of PL/SQL Package Subprograms 10-8
PL/SQL Anonymous Blocks 10-9
PL/SQL Language Constructs 10-10
PL/SQL Collections and Records 10-11
Collections 10-11
Records 10-11

How PL/SQL Runs 10-12

ORACLE

Overview of Java in Oracle Database 10-13
Overview of the Java Virtual Machine (JVM) 10-15
Overview of Oracle JVM 10-15

Main Components of Oracle JVM 10-16

Java Programming Environment 10-17
Java Stored Procedures 10-18

Java and PL/SQL Integration 10-18
Overview of Triggers 10-20
Advantages of Triggers 10-20
Types of Triggers 10-21
Timing for Triggers 10-22
Creation of Triggers 10-22
Example: CREATE TRIGGER Statement 10-23
Example: Invoking a Row-Level Trigger 10-24
Execution of Triggers 10-26
Storage of Triggers 10-27

Part I\VV Oracle Transaction Management
11 Data Concurrency and Consistency

Introduction to Data Concurrency and Consistency 11-1
Multiversion Read Consistency 11-2
Statement-Level Read Consistency 11-2
Transaction-Level Read Consistency 11-3

Read Consistency and Undo Segments 11-3

Read Consistency and Deferred Inserts 11-5
Locking Mechanisms 11-6
ANSI/ISO Transaction Isolation Levels 11-6
Overview of Oracle Database Transaction Isolation Levels 11-7
Read Committed Isolation Level 11-8
Read Consistency in the Read Committed Isolation Level 11-8
Conflicting Writes in Read Committed Transactions 11-8
Serializable Isolation Level 11-11
Read-Only Isolation Level 11-15
Overview of the Oracle Database Locking Mechanism 11-16
Summary of Locking Behavior 11-16
Use of Locks 11-17
Lock Modes 11-20
Lock Conversion and Escalation 11-21
Lock Duration 11-21

ORACLE

Xi

Locks and Deadlocks 11-22
Overview of Automatic Locks 11-23
DML Locks 11-24
Row Locks (TX) 11-24

Table Locks (TM) 11-28

Locks and Foreign Keys 11-29

DDL Locks 11-32
Exclusive DDL Locks 11-32

Share DDL Locks 11-32
Breakable Parse Locks 11-33
System Locks 11-33
Latches 11-33
Mutexes 11-34

Internal Locks 11-34
Overview of Manual Data Locks 11-35
Overview of User-Defined Locks 11-36

12 Transactions

Introduction to Transactions 12-1
Sample Transaction: Account Debit and Credit 12-2
Structure of a Transaction 12-2
Beginning of a Transaction 12-3

End of a Transaction 12-3
Statement-Level Atomicity 12-5
System Change Numbers (SCNSs) 12-6
Overview of Transaction Control 12-6
Transaction Names 12-8
Active Transactions 12-9
Savepoints 12-9
Rollback to Savepoint 12-10
Enqueued Transactions 12-10
Rollback of Transactions 12-12
Commits of Transactions 12-12
Overview of Transaction Guard 12-14
Benefits of Transaction Guard 12-14
How Transaction Guard Works 12-15
Lost Commit Messages 12-15

Logical Transaction ID 12-16
Transaction Guard: Example 12-17
Overview of Application Continuity 12-17

ORACLE

Xii

Benefits of Application Continuity 12-18
Use Case for Application Continuity 12-18
Application Continuity for Planned Maintenance 12-18
Application Continuity Architecture 12-19
Overview of Autonomous Transactions 12-20
Overview of Distributed Transactions 12-21
Two-Phase Commit 12-22

In-Doubt Transactions 12-22

Part \VV Oracle Database Storage Structures
13 Physical Storage Structures
Introduction to Physical Storage Structures 13-1

Mechanisms for Storing Database Files 13-2

Oracle Managed Files and User-Managed Files 13-3

Oracle Automatic Storage Management (Oracle ASM) 13-4
Oracle ASM Storage Components 13-4
Oracle ASM Instances 13-6

Oracle Persistent Memory Filestore (PMEM Filestore) 13-7
Directly Mapped Buffer Cache 13-8
File System Interface for PMEM Filestore 13-8
User Interface for PMEM Filestore 13-9

Overview of Data Files 13-9

Use of Data Files 13-9

Permanent and Temporary Data Files 13-11

Online and Offline Data Files 13-11

Data File Structure 13-12

Overview of Control Files 13-13

Use of Control Files 13-13

Multiple Control Files 13-14

Control File Structure 13-15

Overview of the Online Redo Log 13-15

Use of the Online Redo Log 13-16

How Oracle Database Writes to the Online Redo Log 13-16
Online Redo Log Switches 13-17
Multiple Copies of Online Redo Log Files 13-18
Archived Redo Log Files 13-19

Structure of the Online Redo Log 13-20

ORACLE

Xiii

Logical Storage Structures

Introduction to Logical Storage Structures
Logical Storage Hierarchy
Logical Space Management
Locally Managed Tablespaces
Dictionary-Managed Tablespaces
Overview of Data Blocks
Data Blocks and Operating System Blocks
Database Block Size
Tablespace Block Size
Data Block Format
Data Block Overhead
Row Format
Data Block Compression
Space Management in Data Blocks
Percentage of Free Space in Data Blocks
Optimization of Free Space in Data Blocks
Chained and Migrated Rows
Overview of Index Blocks
Types of Index Blocks
Storage of Index Entries
Reuse of Slots in an Index Block
Coalescing an Index Block
Overview of Extents
Allocation of Extents
Deallocation of Extents
Storage Parameters for Extents
Overview of Segments
User Segments
User Segment Creation
Temporary Segments
Allocation of Temporary Segments for Queries

Allocation of Segments for Temporary Tables and Indexes

Undo Segments
Undo Segments and Transactions
Transaction Rollback
Temporary Undo Segments
Segment Space and the High Water Mark
Overview of Tablespaces
Tablespaces in a Multitenant Environment

ORACLE

Xiv

14-1

14-2

14-3

14-4

14-7

14-7

14-7

14-8

14-8

14-9

14-9
14-10
14-13
14-14
14-15
14-16
14-18
14-20
14-20
14-20
14-21
14-21
14-23
14-23
14-25
14-26
14-27
14-27
14-28
14-29
14-30
14-30
14-31
14-32
14-34
14-34
14-35
14-38
14-38

Permanent Tablespaces 14-40

The SYSTEM Tablespace 14-41
The SYSAUX Tablespace 14-42
Undo Tablespaces 14-42
Shadow Tablespaces 14-44
Temporary Tablespaces 14-47
Shared and Local Temporary Tablespaces 14-47
Default Temporary Tablespaces 14-48
Tablespace Modes 14-50
Read/Write and Read-Only Tablespaces 14-50
Online and Offline Tablespaces 14-51
Tablespace File Size 14-52

Part VI Oracle Instance Architecture

15 Oracle Database Instance

Introduction to the Oracle Database Instance 15-1
Database Instance Structure 15-1
Database Instance Configurations 15-2
Read/Write and Read-Only Instances 15-4
Duration of a Database Instance 15-4
Identification of a Database Instance 15-6

Oracle Base Directory 15-6
Oracle Home Directory 15-6
Oracle System Identifier (SID) 15-7

Overview of Database Instance Startup and Shutdown 15-8

Overview of Instance and Database Startup 15-8
Connection with Administrator Privileges 15-9
How an Instance Is Started 15-10
How a Database Is Mounted 15-10
How a Database Is Opened 15-11

Overview of Database and Instance Shutdown 15-12
Shutdown Modes 15-13
How a Database Is Closed 15-15
How a Database Is Unmounted 15-15
How an Instance Is Shut Down 15-15

Overview of Checkpoints 15-16
Purpose of Checkpoints 15-16
When Oracle Database Initiates Checkpoints 15-17

Overview of Instance Recovery 15-17

ORACLE XV

Purpose of Instance Recovery 15-18
When Oracle Database Performs Instance Recovery 15-18
Importance of Checkpoints for Instance Recovery 15-19
Instance Recovery Phases 15-20
Overview of Parameter Files 15-21
Initialization Parameters 15-21
Functional Groups of Initialization Parameters 15-21

Basic and Advanced Initialization Parameters 15-21

Server Parameter Files 15-22
Text Initialization Parameter Files 15-22
Modification of Initialization Parameter Values 15-24
Overview of Diagnostic Files 15-25
Automatic Diagnostic Repository 15-25
Problems and Incidents 15-26

ADR Structure 15-26

Alert Log 15-28
Attention Log 15-28
DDL Log 15-29
Trace Files 15-29
Types of Trace Files 15-29
Locations of Trace Files 15-30
Segmentation of Trace Files 15-30
Diagnostic Dumps 15-31
Trace Dumps and Incidents 15-31

16 Memory Architecture

Introduction to Oracle Database Memory Structures 16-1
Basic Memory Structures 16-1
Oracle Database Memory Management 16-3
Overview of the User Global Area 16-4
Overview of the Program Global Area (PGA) 16-5
Contents of the PGA 16-6
Private SQL Area 16-6

SQL Work Areas 16-7

PGA Usage in Dedicated and Shared Server Modes 16-9
Overview of the System Global Area (SGA) 16-9
Database Buffer Cache 16-10
Purpose of the Database Buffer Cache 16-11

Buffer States 16-11

Buffer Modes 16-12

ORACLE

XVi

Buffer 1/O 16-12

Buffer Pools 16-16
Buffers and Full Table Scans 16-18
DRAM and PMEM Buffers 16-20
Redo Log Buffer 16-21
Shared Pool 16-22
Library Cache 16-23
Data Dictionary Cache 16-26
Server Result Cache 16-27
Reserved Pool 16-30
Large Pool 16-30
Large Pool Memory Management 16-31
Large Pool Buffers for Deferred Inserts 16-31
Java Pool 16-33
Fixed SGA 16-33
Optional Performance-Related SGA Subareas 16-34
In-Memory Area 16-34
Memoptimize Pool 16-34
Overview of Software Code Areas 16-36

17 Process Architecture

Introduction to Processes 17-1
Types of Processes 17-1
Multiprocess and Multithreaded Oracle Database Systems 17-3

Overview of Client Processes 17-5
Client and Server Processes 17-5
Connections and Sessions 17-6
Current Container 17-6
Database Operations 17-8

Overview of Server Processes 17-9
Dedicated Server Processes 17-9
Shared Server Processes 17-10
How Oracle Database Creates Server Processes 17-10

Overview of Background Processes 17-11
Mandatory Background Processes 17-12

Process Monitor Process (PMON) Group 17-12
Process Manager (PMAN) 17-14
Listener Registration Process (LREG) 17-14
System Monitor Process (SMON) 17-14
Database Writer Process (DBW) 17-15

ORACLE XVii

Log Writer Process (LGWR) 17-15

Checkpoint Process (CKPT) 17-17
Manageability Monitor Processes (MMON and MMNL) 17-18
Recoverer Process (RECO) 17-18
Optional Background Processes 17-18
Archiver Processes (ARCh) 17-19
Job Queue Processes (CJQO and Jnnn) 17-19
Flashback Data Archive Process (FBDA) 17-20
Space Management Coordinator Process (SMCO) 17-20
Slave Processes 17-21
I/O Slave Processes 17-21
Parallel Execution (PX) Server Processes 17-22

18 Application and Oracle Net Services Architecture

Overview of Oracle Application Architecture 18-1
Overview of Client/Server Architecture 18-1
Distributed Processing 18-1
Advantages of a Client/Server Architecture 18-3
Overview of Multitier Architecture 18-3
Clients 18-4
Application Servers 18-4
Database Servers 18-5
Service-Oriented Architecture (SOA) 18-5
Overview of Grid Architecture 18-6
Overview of Oracle Net Services Architecture 18-6
How Oracle Net Services Works 18-7
The Oracle Net Listener 18-7
Service Names 18-9
Services in a Multitenant Environment 18-10
Service Registration 18-13
Dedicated Server Architecture 18-13
Shared Server Architecture 18-15
Dispatcher Request and Response Queues 18-16
Restricted Operations of the Shared Server 18-18
Database Resident Connection Pooling 18-19
Overview of the Program Interface 18-20
Program Interface Structure 18-21
Program Interface Drivers 18-21
Communications Software for the Operating System 18-21

ORACLE Xviii

Glossary

Index

ORACLE" XiX

Preface

Preface

This manual provides an architectural and conceptual overview of the Oracle database
server, which is an object-relational database management system.

The book describes how the Oracle database server functions, and it lays a
conceptual foundation for much of the practical information contained in other
manuals. Information in this manual applies to the Oracle database server running on
all operating systems.

This preface contains these topics:
* Audience

* Documentation Accessibility

* Related Documentation

 Conventions

Audience

Oracle Database Concepts is intended for technical users, primarily database
administrators and database application developers, who are new to Oracle Database.
Typically, the reader of this manual has had experience managing or developing
applications for other relational databases.

To use this manual, you must know the following:

e Relational database concepts in general
e Concepts and terminology in Introduction to Oracle Database

e The operating system environment under which you are running Oracle
Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

ORACLE XX

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Preface

Related Documentation

For related documentation, see "Oracle Database Documentation Roadmap".

Many publications in the Oracle Database documentation set use the sample schemas of the
database that is installed by default when you install Oracle Database. Refer to Oracle
Database Sample Schemas for information on how these schemas were created and how
you can use them.

Conventions

The following text conventions are used in this manual:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates manual titles, emphasis, or placeholder variables for
which you supply particular values.

nonospace Monospace type indicates commands within a paragraph, URLSs, code in
examples, text that appears on the screen, or text that you enter.

ORACLE i

Introduction to Oracle Database

This chapter provides an overview of Oracle Database.
This chapter contains the following topics:

e About Relational Databases
e Schema Objects

» Data Access

e Transaction Management

* Oracle Database Architecture

e Oracle Database Documentation Roadmap

About Relational Databases

Every organization has information that it must store and manage to meet its requirements.
For example, a corporation must collect and maintain human resources records for its
employees. This information must be available to those who need it.

An information system is a formal system for storing and processing information. An
information system could be a set of cardboard boxes containing manila folders along with
rules for how to store and retrieve the folders. However, most companies today use a
database to automate their information systems. A database is an organized collection of
information treated as a unit. The purpose of a database is to collect, store, and retrieve
related information for use by database applications.

Database Management System (DBMS)

ORACLE

A database management system (DBMS) is software that controls the storage,
organization, and retrieval of data.

Typically, a DBMS has the following elements:
* Kernel code
This code manages memory and storage for the DBMS.
* Repository of metadata
This repository is usually called a data dictionary.
* Query language
This language enables applications to access the data.

A database application is a software program that interacts with a database to access and
manipulate data.

The first generation of database management systems included the following types:

e Hierarchical

1-1

Chapter 1
About Relational Databases

A hierarchical database organizes data in a tree structure. Each parent record has
one or more child records, similar to the structure of a file system.

* Network

A network database is similar to a hierarchical database, except records have a
many-to-many rather than a one-to-many relationship.

The preceding database management systems stored data in rigid, predetermined
relationships. Because no data definition language existed, changing the structure of
the data was difficult. Also, these systems lacked a simple query language, which
hindered application development.

Relational Model

In his seminal 1970 paper "A Relational Model of Data for Large Shared Data Banks,"
E. F. Codd defined a relational model based on mathematical set theory. Today, the
most widely accepted database model is the relational model.

A relational database is a database that conforms to the relational model. The
relational model has the following major aspects:

e Structures
Well-defined objects store or access the data of a database.
e Operations

Clearly defined actions enable applications to manipulate the data and structures
of a database.

e Integrity rules
Integrity rules govern operations on the data and structures of a database.

A relational database stores data in a set of simple relations. A relation is a set of
tuples. A tuple is an unordered set of attribute values.

A table is a two-dimensional representation of a relation in the form of rows (tuples)
and columns (attributes). Each row in a table has the same set of columns. A relational
database is a database that stores data in relations (tables). For example, a relational
database could store information about company employees in an employee table, a
department table, and a salary table.

See Also:

“A Relational Model of Data for Large Shared Data Banks” for an abstract
and link to Codd's paper

Relational Database Management System (RDBMS)

ORACLE

The relational model is the basis for a relational database management system
(RDBMS). An RDBMS moves data into a database, stores the data, and retrieves it so
that applications can manipulate it.

An RDBMS distinguishes between the following types of operations:

* Logical operations

1-2

Chapter 1
About Relational Databases

In this case, an application specifies what content is required. For example, an
application requests an employee name or adds an employee record to a table.

Physical operations

In this case, the RDBMS determines how things should be done and carries out the
operation. For example, after an application queries a table, the database may use an
index to find the requested rows, read the data into memory, and perform many other
steps before returning a result to the user. The RDBMS stores and retrieves data so that
physical operations are transparent to database applications.

Oracle Database is an RDBMS. An RDBMS that implements object-oriented features such as
user-defined types, inheritance, and polymorphism is called an object-relational database
management system (ORDBMS). Oracle Database has extended the relational model to an
object-relational model, making it possible to store complex business models in a relational
database.

Brief History of Oracle Database

The current version of Oracle Database is the result of over 40 years of innovative
development.

ORACLE

Highlights in the evolution of Oracle Database include the following:

Founding of Oracle Corporation

In 1977, Larry Ellison, Bob Miner, and Ed Oates started the consultancy Software
Development Laboratories, which became Relational Software, Inc. (RSI). In 1983, RSI
became Oracle Systems Corporation and then later Oracle Corporation.

First commercially available RDBMS

In 1979, RSl introduced Oracle V2 (Version 2) as the first commercially available SQL-
based RDBMS, a landmark event in the history of relational databases.

Portable version of Oracle Database

Oracle Version 3, released in 1983, was the first relational database to run on
mainframes, minicomputers, and personal computers. The database was written in C,
enabling the database to be ported to multiple platforms.

Enhancements to concurrency control, data distribution, and scalability

Version 4 introduced multiversion read consistency. Version 5, released in 1985,
supported client/server computing and distributed database systems. Version 6 brought
enhancements to disk I/O, row locking, scalability, and backup and recovery. Also,
Version 6 introduced the first version of the PL/SQL language, a proprietary procedural
extension to SQL.

PL/SQL stored program units
Oracle7, released in 1992, introduced PL/SQL stored procedures and triggers.
Objects and partitioning

Oracle8 was released in 1997 as the object-relational database, supporting many new
data types. Additionally, Oracle8 supported partitioning of large tables.

Internet computing

Oracle8i Database, released in 1999, provided native support for internet protocols and
server-side support for Java. Oracle8i was designed for internet computing, enabling the
database to be deployed in a multitier environment.

1-3

Chapter 1
Schema Objects

Oracle Real Application Clusters (Oracle RAC)

Oracle9i Database introduced Oracle RAC in 2001, enabling multiple instances to
access a single database simultaneously. Additionally, Oracle XML Database
(Oracle XML DB) introduced the ability to store and query XML.

Grid computing

Oracle Database 10g introduced grid computing in 2003. This release enabled
organizations to virtualize computing resources by building a grid infrastructure
based on low-cost commodity servers. A key goal was to make the database self-
managing and self-tuning. Oracle Automatic Storage Management (Oracle ASM)
helped achieve this goal by virtualizing and simplifying database storage
management.

Manageability, diagnosability, and availability

Oracle Database 11g, released in 2007, introduced a host of new features that
enabled administrators and developers to adapt quickly to changing business
requirements. The key to adaptability is simplifying the information infrastructure
by consolidating information and using automation wherever possible.

Plugging In to the Cloud

Oracle Database 12c, released in 2013, was designed for the Cloud, featuring a
new Multitenant architecture, In-Memory Column Store (IM column store), and
support for JISON documents. Oracle Database 12c helped DBAs make more
efficient use of their IT resources, while continuing to reduce costs and improve
service levels for end users.

Integration and memory performance

Oracle Database 18c simplified integration with directory services such as
Microsoft Active Directory. It also introduced functionality to exploit memory for
columnar data models and high-speed row access.

Enhanced stability

Oracle Database 19c was the long-support version of the Oracle Database 12c
(Release 12.2) family of products. A major focus of this release was stability.
Oracle Database 19c also introduced several small but significant improvements
to features such as JSON and Active Data Guard.

Improved developer experience

Oracle Database 21c improves the developer experience with features such as
Oracle Blockchain Tables and native JSON data types. Enhancements to
Automatic In-Memory make the IM column store largely self-managing.

Schema Objects

ORACLE

One characteristic of an RDBMS is the independence of physical data storage from
logical data structures.

In Oracle Database, a database schema is a collection of logical data structures, or
schema objects. A database user owns a database schema, which has the same
name as the user name.

Schema objects are user-created structures that directly refer to the data in the
database. The database supports many types of schema objects, the most important
of which are tables and indexes.

1-4

Tables

Indexes

ORACLE

Chapter 1
Schema Objects

A schema object is one type of database object. Some database objects, such as profiles
and roles, do not reside in schemas.

See Also:

"Introduction to Schema Objects" to learn more about schema object types,
storage, and dependencies

A table describes an entity such as employees.

You define a table with a table name, such as enpl oyees, and set of columns. In general, you
give each column a name, a data type, and a width when you create the table.

A table is a set of rows. A column identifies an attribute of the entity described by the table,
whereas a row identifies an instance of the entity. For example, attributes of the employees
entity correspond to columns for employee ID and last name. A row identifies a specific
employee.

You can optionally specify a rule, called an integrity constraint, for a column. One example is
a NOT NULL integrity constraint. This constraint forces the column to contain a value in every
row.

¢ See Also:

e "Overview of Tables" to learn about columns and rows, data types, table
storage, and table compression

« "Data Integrity” to learn about the possible types and states of constraints

An index is an optional data structure that you can create on one or more columns of a table.
Indexes can increase the performance of data retrieval.

When processing a request, the database can use available indexes to locate the requested
rows efficiently. Indexes are useful when applications often query a specific row or range of
rows.

Indexes are logically and physically independent of the data. Thus, you can drop and create
indexes with no effect on the tables or other indexes. All applications continue to function
after you drop an index.

¢ See Also:

"Introduction to Indexes" to learn about the purpose and types of indexes

1-5

Chapter 1
Data Access

Data Access

A general requirement for a DBMS is to adhere to accepted industry standards for a
data access language.

Structured Query Language (SQL)

SQL is a set-based declarative language that provides an interface to an RDBMS such
as Oracle Database.

Procedural languages such as C describe how things should be done. SQL is
nonprocedural and describes what should be done.

SQL is the ANSI standard language for relational databases. All operations on the
data in an Oracle database are performed using SQL statements. For example, you
use SQL to create tables and query and modify data in tables.

A SQL statement can be thought of as a very simple, but powerful, computer program
or instruction. Users specify the result that they want (for example, the names of
employees), not how to derive it. A SQL statement is a string of SQL text such as the
following:

SELECT first_name, |ast_nane FROM enpl oyees;

SQL statements enable you to perform the following tasks:

¢ Query data

e Insert, update, and delete rows in a table

e Create, replace, alter, and drop objects

e Control access to the database and its objects
e Guarantee database consistency and integrity

SQL unifies the preceding tasks in one consistent language. Oracle SQL is an
implementation of the ANSI standard. Oracle SQL supports numerous features that
extend beyond standard SQL.

¢ See Also:

"SQL" to learn more about SQL standards and the main types of SQL
statements

PL/SQL and Java

ORACLE

PL/SQL is a procedural extension to Oracle SQL.

PL/SQL is integrated with Oracle Database, enabling you to use all of the Oracle
Database SQL statements, functions, and data types. You can use PL/SQL to control
the flow of a SQL program, use variables, and write error-handling procedures.

1-6

Chapter 1
Transaction Management

A primary benefit of PL/SQL is the ability to store application logic in the database itself. A
PL/SQL procedure or function is a schema object that consists of a set of SQL statements
and other PL/SQL constructs, grouped together, stored in the database, and run as a unit to
solve a specific problem or to perform a set of related tasks. The principal benefit of server-
side programming is that built-in functionality can be deployed anywhere.

Oracle Database can also store program units written in Java. A Java stored procedure is a
Java method published to SQL and stored in the database for general use. You can call
existing PL/SQL programs from Java and Java programs from PL/SQL.

¢ See Also:

e "Server-Side Programming: PL/SQL and Java"

e Oracle Database Development Guide to learn more about choosing a
programming environment

Transaction Management

Oracle Database is designed as a multiuser database. The database must ensure that
multiple users can work concurrently without corrupting one another's data.

Transactions

A transaction is a logical, atomic unit of work that contains one or more SQL statements.

An RDBMS must be able to group SQL statements so that they are either all committed,
which means they are applied to the database, or all rolled back, which means they are
undone.

An illustration of the need for transactions is a funds transfer from a savings account to a
checking account. The transfer consists of the following separate operations:

1. Decrease the savings account.
2. Increase the checking account.
3. Record the transaction in the transaction journal.

Oracle Database guarantees that all three operations succeed or fail as a unit. For example,
if a hardware failure prevents a statement in the transaction from executing, then the other
statements must be rolled back.

Transactions are one feature that set Oracle Database apart from a file system. If you
perform an atomic operation that updates several files, and if the system fails halfway
through, then the files will not be consistent. In contrast, a transaction moves an Oracle
database from one consistent state to another. The basic principle of a transaction is "all or
nothing": an atomic operation succeeds or fails as a whole.

ORACLE e

Chapter 1
Transaction Management

¢ See Also:

"Transactions " to learn about the definition of a transaction, statement-level
atomicity, and transaction control

Data Concurrency

A requirement of a multiuser RDBMS is the control of data concurrency, which is the
simultaneous access of the same data by multiple users.

Without concurrency controls, users could change data improperly, compromising data
integrity. For example, one user could update a row while a different user
simultaneously updates it.

If multiple users access the same data, then one way of managing concurrency is to
make users wait. However, the goal of a DBMS is to reduce wait time so it is either
nonexistent or negligible. All SQL statements that modify data must proceed with as
little interference as possible. Destructive interactions, which are interactions that
incorrectly update data or alter underlying data structures, must be avoided.

Oracle Database uses locks to control concurrent access to data. A lock is a
mechanism that prevents destructive interaction between transactions accessing a
shared resource. Locks help ensure data integrity while allowing maximum concurrent
access to data.

See Also:

"Overview of the Oracle Database Locking Mechanism"

Data Consistency

ORACLE

In Oracle Database, each user must see a consistent view of the data, including visible
changes made by a user's own transactions and committed transactions of other
users.

For example, the database must prevent the dirty read problem, which occurs when
one transaction sees uncommitted changes made by another concurrent transaction.

Oracle Database always enforces statement-level read consistency, which guarantees
that the data that a single query returns is committed and consistent for a single point
in time. Depending on the transaction isolation level, this point is the time at which the
statement was opened or the time the transaction began. The Oracle Flashback Query
feature enables you to specify this point in time explicitly.

The database can also provide read consistency to all queries in a transaction, known
as transaction-level read consistency. In this case, each statement in a transaction
sees data from the same point in time, which is the time at which the transaction
began.

1-8

Chapter 1
Oracle Database Architecture

¢ See Also:

e "Data Concurrency and Consistency " to learn more about dirty reads

e Oracle Database Development Guide to learn about Oracle Flashback Query

Oracle Database Architecture

A database server is the key to information management.

In general, a server reliably manages a large amount of data in a multiuser environment so
that users can concurrently access the same data. A database server also prevents
unauthorized access and provides efficient solutions for failure recovery.

Database and Instance

An Oracle database server consists of a database and at least one database instance,
commonly referred to as simply an instance.

Because an instance and a database are so closely connected, the term Oracle database
sometimes refers to both instance and database. In the strictest sense, the terms have the
following meanings:

« Database

A database is a set of files, located on disk, that store user data. These data files can
exist independently of a database instance. Starting in Oracle Database 21c, "database”
refers specifically to the data files of a multitenant container database (CDB),
pluggable database (PDB), or application container.

» Database instance

An instance is a named set of memory structures that manage database files. A database
instance consists of a shared memory area, called the system global area (SGA), and a
set of background processes. An instance can exist independently of database files.

Multitenant Architecture

CDBs

ORACLE

The multitenant architecture enables an Oracle database to be a CDB.

Every Oracle database must contain or be able to be contained by another database. For
example, a CDB contains PDBs, and an application container contains application PDBs. A
PDB is contained by a CDB or application container, and an application container is
contained by a CDB.

Starting in Oracle Database 21c, a multitenant container database is the only supported
architecture. In previous releases, Oracle supported non-container databases (non-CDBSs).

A CDB contains one or more user-created PDBs and application containers.

At the physical level, a CDB is a set of files: control file, online redo log files, and data files.
The database instance manages the files that make up the CDB.

1-9

Chapter 1
Oracle Database Architecture

The following figure shows a CDB and an associated database instance.

Figure 1-1 Database Instance and CDB

PDBs

ORACLE

Instance
System Global Area (SGA) Fres Memory
Shared Pool Large Pool I/O Buffer Area
Library Cache L
Shared SQL Area | |Private O _— [] y
------ SQL Area O
SELECT * FROM | [| O
(Shared S O <_>-
I _ _er_npi.o_ye_es_ i Server Only) - | O O m m
<+ swon]
Data Server | [Other | |Reserved Response| | Request
Dictionary | |Result Pool Queue Queue
Cache Cache <4—)>| RECO
<4 | MMON
Database Fixed Java Streams
Buffer Cache SGA Pool Pool
<4 | MMNL
@ 4= | Others
4 Background
Processes
PGA ,I Y y
T T
SQL Work Areas Server DBWn CKPT LGWR| | ARCn RVWR
- ' S by Process
Session Memory FPrlvate %kQL Area
NN
T A

Database
| Data V¥ 'V Control

1 Files Files
! 10101 10101}

—_

Flashback
Log

Client
Process

A PDB is a portable collection of schemas, schema objects, and nonschema objects
that appears to an application as a separate database.

At the physical level, each PDB has its own set of data files that store the data for the
PDB. The CDB includes all the data files for the PDBs contained within it, and a set of
system data files that store metadata for the CDB itself.

To move or archive a PDB, you can unplug it. An unplugged PDB consists of the PDB
data files and a metadata file. An unplugged PDB is not usable until it is plugged in to
a CDB.

The following figure shows a CDB named MYCDB.

1-10

Chapter 1
Oracle Database Architecture

Figure 1-2 PDBs in a CDB

[r \\ T~ -
§ o o o) A
> - MYCDB
|
[|
(N J
Root
m (CDB$ROOT)
-
] T
T
q) e

Physically, MYCDB is an Oracle database, in the sense of a set of data files associated with an
instance. MYCDB has one database instance, although multiple instances are possible in
Oracle Real Application Clusters, and one set of database files.

MYCDB contains two PDBs: hr pdb and sal espdb. As shown in Figure 1-2, these PDBs appear

to their respective applications as separate, independent databases. An application has no
knowledge of whether it is connecting to a CDB or PDB.

To administer the CDB itself or any PDB within it, you can connect to the CDB root. The root
is a collection of schemas, schema objects, and nonschema objects to which all PDBs and
application containers belong.

Application Containers

ORACLE

An application container is an optional, user-created container within a CDB that stores
data and metadata for one or more applications.

In this context, an application (also called the master application definition) is a named,
versioned set of common data and metadata stored in the application root. For example, the
application might include definitions of tables, views, user accounts, and PL/SQL packages
that are common to a set of PDBs.

In some ways, an application container functions as an application-specific CDB within a
CDB. An application container, like the CDB itself, can include multiple application PDBs, and
enables these PDBs to share metadata and data. At the physical level, an application
container has its own set of data files, just like a PDB.

For example, a SaaS deployment can use multiple application PDBs, each for a separate
customer, which share application metadata and data. For example, in the following figure,
sal es_app is the application model in the application root. The application PDB named
cust 1 _pdb contains sales data only for customer 1, whereas the application PDB named

1-11

Chapter 1
Oracle Database Architecture

cust 2_pdb contains sales data only for customer 2. Plugging, unplugging, cloning, and
other PDB-level operations are available for individual customer PDBs.

Figure 1-3 SaaS Use Case

cDB

Application
Container

Root (CDB$ROOT)

M

O
[
Application Root

Seed o] D @
(PDB$SEED) @ T @
Application cust2_pdb
Seed cust1_pdb
AppIi(l:ation
PDBs
Sharding Architecture

ORACLE

Oracle Sharding is a database scaling technique based on horizontal partitioning of
data across multiple PDBs. Applications perceive the pool of PDBs as a single logical
database.

Key benefits of sharding for OLTP applications include linear scalability, fault
containment, and geographical data distribution. Sharding is well suited to deployment
in the Oracle Cloud. Unlike NoSQL data stores that implement sharding, Oracle
Sharding provides the benefits of sharding without sacrificing the capabilities of an
enterprise RDBMS.

In a sharding architecture, each CDB is hosted on a dedicated server with its own local
resources: CPU, memory, flash, or disk. You can designate a PDB as a shard. PDB
shards from different CDBs make up a single logical database, which is referred to as
a sharded database. Two shards in the same CDB cannot be members of the same
sharded database. However, within the same CDB, one PDB could be in one sharded
database, and another PDB could be in a separate sharded database.

Horizontal partitioning involves splitting a database table across shards so that each
shard contains the table with the same columns but a different subset of rows. A table
split up in this manner is also known as a sharded table. The following figure shows a

1-12

ORACLE

Chapter 1
Oracle Database Architecture

sharded table horizontally partitioned across three shards, each of which is a PDB in a

separate CDB.

Figure 1-4 Horizontal Partitioning of a Table Across Shards

Unsharded Table in
One Database

Server

Sharded Table in Three Databases

Server A Server B Server C

A use case is distributing customer account data across multiple CDBs. For example, a
customer with ID 28459361 may look up his records. The following figure shows a possible
architecture. The customer request is routed through a connection pool, where sharding
directors (network listeners) direct the request to the appropriate PDB shard, which contains

all the customer rows.

Figure 1-5 Oracle Sharding Architecture

Shard
Directors

Sharding Key
CustomerlD=28459361

Connection
Pools
Shard
‘ Catalog

~— Sharded
Database

1-13

Chapter 1
Oracle Database Architecture

¢ See Also:

Using Oracle Sharding for an overview of Oracle Sharding

Database Storage Structures

A database can be considered from both a physical and logical perspective.

Physical data is data viewable at the operating system level. For example, operating
system utilities such as the Linux | s and ps can list database files and processes.
Logical data such as a table is meaningful only for the database. A SQL statement can
list the tables in an Oracle database, but an operating system utility cannot.

The database has physical structures and logical structures. Because the physical and
logical structures are separate, you can manage the physical storage of data without
affecting access to logical storage structures. For example, renaming a physical
database file does not rename the tables whose data is stored in this file.

Physical Storage Structures

The physical database structures are the files that store the data.

When you execute a CREATE DATABASE command, you create a CDB. The following
files are created:

e Datafiles

Every CDB has one or more physical data files, which contain all the database
data. The data of logical database structures, such as tables and indexes, is
physically stored in the data files.

e Control files

Every CDB has a control file. A control file contains metadata specifying the
physical structure of the database, including the database name and the names
and locations of the database files.

e Online redo log files

Every CDB has an online redo log, which is a set of two or more online redo log
files. An online redo log is made up of redo entries (also called redo log records),
which record all changes made to data.

When you execute a CREATE PLUGGABLE DATABASE command within a CDB, you create
a PDB. The PDB contains a dedicated set of data files within the CDB. A PDB does
not have a separate, dedicated control file and online redo log: these files are shared
by the PDBs.

Many other files are important for the functioning of a CDB. These include parameter
files and networking files. Backup files and archived redo log files are offline files
important for backup and recovery.

ORACLE 1-14

Chapter 1
Oracle Database Architecture

¢ See Also:

"Physical Storage Structures”

Logical Storage Structures

Logical storage structures enable Oracle Database to have fine-grained control of disk space
use.

This topic discusses logical storage structures:

« Data blocks

At the finest level of granularity, Oracle Database data is stored in data blocks. One data
block corresponds to a specific number of bytes on disk.

e Extents

An extent is a specific number of logically contiguous data blocks, obtained in a single
allocation, used to store a specific type of information.

e Segments

A segment is a set of extents allocated for a user object (for example, a table or index),
undo data, or temporary data.

e Tablespaces

A database is divided into logical storage units called tablespaces. A tablespace is the
logical container for segments. Each tablespace consists of at least one data file.

¢ See Also:

"Logical Storage Structures”

Database Instance Structures

An Oracle database uses memory structures and processes to manage and access the CDB.
All memory structures exist in the main memory of the computers that constitute the RDBMS.

When applications connect to a CDB or PDB, they connect to a database instance. The
instance services applications by allocating other memory areas in addition to the SGA, and
starting other processes in addition to background processes.

Oracle Database Processes

ORACLE

A process is a mechanism in an operating system that can run a series of steps. Some
operating systems use the terms job, task, or thread.

For the purposes of this topic, a thread is equivalent to a process. An Oracle database
instance has the following types of processes:

* Client processes

1-15

Chapter 1
Oracle Database Architecture

These processes are created and maintained to run the software code of an
application program or an Oracle tool. Most environments have separate
computers for client processes.

* Background processes

These processes consolidate functions that would otherwise be handled by
multiple Oracle Database programs running for each client process. Background
processes asynchronously perform I/O and monitor other Oracle Database
processes to provide increased parallelism for better performance and reliability.

e Server processes

These processes communicate with client processes and interact with Oracle
Database to fulfill requests.

Oracle processes include server processes and background processes. In most
environments, Oracle processes and client processes run on separate computers.

¢ See Also:

"Process Architecture"

Instance Memory Structures

Oracle Database creates and uses memory structures for program code, data shared
among users, and private data areas for each connected user.

The following memory structures are associated with a database instance:

e System Global Area (SGA)

The SGA is a group of shared memory structures that contain data and control
information for one database instance. Examples of SGA components include the
database buffer cache and shared SQL areas. The SGA can contain an optional
In-Memory Column Store (IM column store), which enables data to be populated in
memory in a columnar format.

* Program Global Areas (PGA)

A PGA is a memory region that contains data and control information for a server
or background process. Access to the PGA is exclusive to the process. Each
server process and background process has its own PGA.

See Also:

"Memory Architecture"

Application and Networking Architecture

ORACLE

To take full advantage of a given computer system or network, Oracle Database
enables processing to be split between the database server and the client programs.
The computer running the RDBMS handles the database server responsibilities while
the computers running the applications handle the interpretation and display of data.

1-16

Chapter 1
Oracle Database Architecture

Application Architecture

The application architecture is the computing environment in which a database application
connects to an Oracle database. The two most common database architectures are client/
server and multitier.

Client-Server Architecture

In a client/server architecture, the client application initiates a request for an operation to be
performed on the database server. The server runs Oracle Database software and handles
the functions required for concurrent, shared data access. The server receives and
processes requests that originate from clients.

Multitier Architecture

In a multitier architecture, one or more application servers perform parts of the operation. An
application server contains a large part of the application logic, provides access to the data
for the client, and performs some query processing. In this way, the load on the database
decreases. The application server can serve as an interface between clients and multiple
databases and provide an additional level of security.

A service-oriented architecture (SOA) is a multitier architecture in which application
functionality is encapsulated in services. SOA services are usually implemented as Web
services. Web services are accessible through HTTP and are based on XML-based
standards such as Web Services Description Language (WSDL) and SOAP. Oracle Database
can act as a Web service provider in a traditional multitier or SOA environment.

Simple Oracle Document Access (SODA) is an adaption of SOA that enables you to
access to data stored in the database. SODA is designed for schemaless application
development without knowledge of relational database features or languages such as SQL
and PL/SQL. You can create and store collections of documents in Oracle Database, retrieve
them, and query them, without needing to know how the documents are stored. SODA for
REST uses the representational state transfer (REST) architectural style to implement SODA.

" See Also:

* "Overview of Multitier Architecture"

e Oracle XML DB Developer’s Guide for more information about using Web
services with the database

Oracle Net Services Architecture

ORACLE

Oracle Net Services is the interface between the database and the network communication
protocols that facilitate distributed processing and distributed databases.

Communication protocols define the way that data is transmitted and received on a network.
Oracle Net Services supports communications on all major network protocols, including
TCP/IP, HTTP, FTP, and WebDAV.

Oracle Net, a component of Oracle Net Services, establishes and maintains a network
session from a client application to a database server. After a network session is established,
Oracle Net acts as the data courier for both the client application and the database server,

1-17

Chapter 1
Oracle Database Documentation Roadmap

exchanging messages between them. Oracle Net can perform these jobs because it is
located on each computer in the network.

An important component of Net Services is the Oracle Net Listener (called the
listener), which is a process that runs on the database or elsewhere in the network.
Client applications send connection requests to the listener, which manages the traffic
of these requests to the database. When a connection is established, the client and
database communicate directly.

The most common ways to configure an Oracle database to service client requests
are:

« Dedicated server architecture

Each client process connects to a dedicated server process. The server process is
not shared by any other client for the duration of the client's session. Each new
session is assigned a dedicated server process.

e Shared server architecture

The database uses a pool of shared server processes for multiple sessions. A
client process communicates with a dispatcher, which is a process that enables
many clients to connect to the same database instance without the need for a
dedicated server process for each client.

See Also:

* "Overview of Oracle Net Services Architecture"

e Oracle Database Net Services Administrator's Guide to learn more about
Oracle Net architecture

e Oracle XML DB Developer’s Guide for information about using WebDAV
with the database

Oracle Database Documentation Roadmap

The documentation set is designed with specific access paths to ensure that users are
able to find the information they need as efficiently as possible.

The documentation set is divided into three layers or groups: basic, intermediate, and
advanced. Users begin with the manuals in the basic group, proceed to the manuals in
the intermediate group (the 2 Day + series), and finally to the advanced manuals,
which include the remainder of the documentation.

You can find the documentation for supported releases of Oracle Database at https://
docs.oracle.com/en/database/oracle/oracle-database/.

Oracle Database Documentation: Basic Group

Technical users who are new to Oracle Database begin by reading one or more
manuals in the basic group from cover to cover. Each manual in this group is designed
to be read in two days.

ORACLE 1-18

https://docs.oracle.com/en/database/oracle/oracle-database/
https://docs.oracle.com/en/database/oracle/oracle-database/

Chapter 1
Oracle Database Documentation Roadmap

In addition to this manual, the basic group includes the manuals shown in the following table.

Table 1-1 Basic Group
]

Manual Description
Oracle Database 2 Day This task-based quick start guide explains how to use the basic
Developer's Guide features of Oracle Database through SQL and PL/SQL.

The manuals in the basic group are closely related, which is reflected in the number of cross-
references. For example, Oracle Database Concepts frequently sends users to a 2 Day
manual to learn how to perform a task based on a concept. The 2 Day manuals frequently
reference Oracle Database Concepts for conceptual background about a task.

Oracle Database Documentation: Intermediate Group

The next step up from the basic group is the intermediate group.

Manuals in the intermediate group are prefixed with the word 2 Day + because they expand
on and assume information contained in the 2 Day manuals. The 2 Day + manuals cover
topics in more depth than is possible in the basic manuals, or cover topics of special interest.
The manuals are intended for different audiences:

e Database administrators

Oracle Database 2 Day + Performance Tuning Guide is a quick start guide that describes
how to perform day-to-day database performance tuning tasks using features provided by
Oracle Diagnostics Pack, Oracle Tuning Pack, and Oracle Enterprise Manager Cloud
Control (Cloud Control).

» Database developers

Oracle Database 2 Day + Java Developer's Guide helps you understand all Java
products used to build a Java application. The manual explains how to use Oracle JDBC
Thin driver, Universal Connection Pool (UCP), and Java in the Database (OJVM) in a
sample Web application.

Oracle Database Documentation: Advanced Group

ORACLE

The advanced group manuals are intended for expert users who require more detailed
information about a particular topic than can be provided by the 2 Day + manuals.

The following table lists essential reference manuals in the advanced group.

Table 1-2 Essential Reference Manuals

|
Manual Description

Oracle Database SQL Language Reference Provides a complete description of the Structured
Query Language (SQL) used to manage information
in an Oracle Database.

Oracle Database Reference Describes database initialization parameters, data
dictionary views, dynamic performance views, wait
events, and background processes.

1-19

Chapter 1
Oracle Database Documentation Roadmap

Table 1-2 (Cont.) Essential Reference Manuals

- __|
Manual Description

Oracle Database PL/SQL Packages and Types Describes the PL/SQL packages provided with the

Reference Oracle database server. You can use the supplied
packages when creating your applications or for
ideas in creating your own stored procedures.

The advanced guides are too numerous to list in this section. The following table lists
guides that the majority of expert Oracle DBAs use.

Table 1-3 Advanced Group for DBAs

|
Manual Description

Oracle Database Administrator's Guide Explains how to perform tasks such as creating
and configuring databases, maintaining and
monitoring databases, creating schema objects,
scheduling jobs, and diagnosing problems.

Oracle Database Security Guide Describes how to configure security for Oracle
Database by using the default database
features.

Oracle Database Performance Tuning Guide Describes how to use Oracle Database tools to
optimize database performance. This guide
also describes performance best practices for
creating a database and includes performance-
related reference information.

Oracle Database SQL Tuning Guide Describes SQL processing, the optimizer,
execution plans, SQL operators, optimizer
statistics, application tracing, and SQL

advisors.
Oracle Database Backup and Recovery Explains how to back up, restore, and recover
User’s Guide Oracle databases, perform maintenance on

backups of database files, and transfer data
between storage systems.

Oracle Real Application Clusters Explains how to install, configure, manage, and
Administration and Deployment Guide troubleshoot an Oracle RAC database.

The following table lists guides that the majority of expert Oracle developers use.

Table 1-4 Advanced Group for Developers

|
Manual Description

Oracle Database Development Guide Explains how to develop applications or
convert existing applications to run in the
Oracle Database environment. The manual
explains fundamentals of application design,
and describes essential concepts for
developing in SQL and PL/SQL.

ORACLE 1-20

Chapter 1
Oracle Database Documentation Roadmap

Table 1-4 (Cont.) Advanced Group for Developers

Manual Description

Oracle Database PL/SQL Language Describes all aspects of the PL/SQL language,

Reference including data types, control statements,
collections, triggers, packages, and error
handling.

Oracle Database Java Developer’'s Guide Describes how to develop, load, and run Java
applications in Oracle Database.

Oracle Database SecureFiles and Large Explains how to develop new applications

Objects Developer's Guide using Large Objects (LOBs), SecureFiles

LOBs, and Database File System (DBFS).

Other advanced guides required by a particular user depend on the area of responsibility of
this user.

ORACLE 1-21

Multitenant Architecture

The multitenant architecture enables an Oracle database to function as a multitenant
container database (CDB).

This part contains the following chapters:

e CDBs and PDBs

e Application Containers

ORACLE

CDBs and PDBs

The multitenant architecture enables an Oracle database to function as a multitenant
container database (CDB).

Starting in Oracle Database 21c, a multitenant container database is the only supported
architecture. In previous releases, Oracle supported non-container databases (non-CDBSs).

This chapter contains the following topics:
e About Containers in a CDB

» The CDB Root and System Container
 PDBs

About Containers in a CDB

ORACLE

A container is a collection of schemas, objects, and related structures in a multitenant
container database (CDB). Within a CDB, each container has a unique ID and name.

A CDB includes zero, one, or many customer-created pluggable databases (PDBs) and
application containers. A PDB is a portable collection of schemas, schema objects, and
nonschema objects that appears to an Oracle Net client as a separate database. An
application container is an optional, user-created CDB component that stores data and
metadata for one or more application back ends. A CDB includes zero or more application
containers.

Note:

"Application Containers" explains application containers in detail.

The following figure represents possible containers in a CDB.

2-1

Chapter 2
About Containers in a CDB

Figure 2-1 Containers in a CDB

cDB
Application Application
Container Container
Root (CDB$ROOT)
—]] -]
& -
L
Application Root Application Root

Seed gjgmgl

(PDB$SEED) — =) £ —
Application @ @ @ @ @
Seed | |
T T

Application Application
PDBs PDBs

|
PDBs and Application Containers

Every CDB has the following containers:

ORACLE

Exactly one CDB root container (also called simply the root)

The CDB root is a collection of schemas, schema objects, and nonschema objects
to which all PDBs belong (see "CDBs and PDBs"). The root stores Oracle-supplied
metadata and common users. An example of metadata is the source code for
Oracle-supplied PL/SQL packages. A common user is a database user known in
every container (see "Common User Accounts"). The root container is named
CDB$ROOT.

Exactly one system container

The system container includes the root CDB and all PDBs in the CDB. Thus, the
system container is the logical container for the CDB itself.

Zero or more application containers

An application container consists of exactly one application root, and the PDBs
plugged in to this root. Whereas the system container contains the CDB root and
all the PDBs within the CDB, an application container includes only the PDBs
plugged into the application root. An application root belongs to the CDB root and
no other container.

Zero or more user-created PDBs

A PDB contains the data and code required for a specific set of features (see
"PDBs"). For example, a PDB can support a specific application, such as a human
resources or sales application. No PDBs exist at creation of the CDB. You add
PDBs based on your business requirements.

A PDB belongs to exactly zero or one application container. If a PDB belongs to an
application container, then it is an application PDB. For example, the cust 1_pdb
and cust 2_pdb application PDBs might belong to the saas_sal es_ac application
container, in which case they belong to no other application containers. An

2-2

ORACLE

Chapter 2
About Containers in a CDB

application seed is an optional application PDB that acts as a user-created PDB
template, enabling you to create new application PDBs rapidly.

» Exactly one seed PDB

The seed PDB is a system-supplied template that the CDB can use to create new PDBs.
The seed PDB is named PDB$SEED. You cannot add or modify objects in PDB$SEED.

Example 2-1 CDB with No Application Containers

This example shows a simple CDB with five containers: the system container (the entire
CDB), the CDB root, the PDB seed (PDB$SEED), and two PDBs. Each PDB has its own
dedicated application. A different PDB administrator manages each PDB. A common user
exists across a CDB with a single identity. In this example, common user SYS can manage the
root and every PDB. At the physical level, this CDB is managed by one or more database
instances, and contains a set of data files for each PDB and for the CDB itself.

Figure 2-2 CDB with No Application Containers

cDB i
PDB

Administrator Root CcDB
for hrpdb (CDB$ROOT) Administrator
=i
@ —| Sales Application
/ Seed
PDB \ (PDB$SEED)

HR Application

Administrator N
for salespdb

Logical
Physical
' Database
Data Control
Files Files

Example 2-2 CDB with an Application Container

In this variation, the CDB contains an application container named saas_sal es_ac. Within the
application container, the application PDB cust 1_pdb supports an application for one
customer, and the application PDB cust 2_pdb supports an application for a different
customer. The CDB also contains a PDB named hr pdb, which supports an HR application,
but does not belong to an application container.

2-3

Chapter 2

The CDB Root and System Container

Figure 2-3 CDB with an Application Container

CDB Application
Container
saas_sales_ac
Root (CDB$ROOT)
= [~
" | |
(4
A" N 1
w Application Root

©

(PDB$SEED)

PDB
Administrator
for hrpdb

Application ‘custLpdb cust2_pdb ‘

Seed

I
Application
PDBs

©

CcDB
Administrator

©

Application
Container
Administrator

©

B S E—

Application
PDB

PDBs and Application Containers

In this example, multiple DBAs manage the CDB environment:

* A CDB administrator manages the CDB itself.

Administrator

» An application container administrator manages the saas_sal es_ac container,
including application installation and upgrades.

* An application PDB administrator manages the two PDBs in the saas_sal es_ac

container: cust1_pdb and cust 2_pdb.

* A PDB administrator manages hr pdb.

The CDB Root and System Container

The CDB root, also called simply the root, is a collection of schemas, schema objects,
and nonschema objects to which all PDBs belong.

ORACLE

Every CDB has one and only one root container named CDB$ROOT. The root stores the
system metadata required to manage PDBs. All PDBs belong to the root. The system
container is the CDB root and all PDBs that belong to this root.

The CDB root does not store user data. Oracle recommends that you do not add

common objects to the root or modify Oracle-supplied schemas in the root. However,
you can create common users and roles for database administration. A common user
with the necessary privileges can switch between containers.

Oracle recommends AL32UTFS8 for the root character set. PDBs with different
character sets can reside in the same CDB without requiring character set conversion.

2-4

PDBs

Chapter 2
PDBs

Example 2-3 All Containers in a CDB

The following query, issued by an administrative user connected to the CDB root, lists alll
containers in the CDB (including the seed and CDB root), ordered by CON_| D.

COL NAME FORMAT Al5
SELECT NAME, CON_ID, DBID, CON.UD, GUD
FROM V$CONTAI NERS ORDER BY CON_I D

NANVE CON_ ID DBl D CON.UD GUD

CDB$ROCT 1 1895287725 1 2003321EDDAF60DGEO0534E40E40A41C5

PDB$SEED 2 2795386505 2795386505 200AC90679F07B55E05396COE40A23FE

SAAS SALES AC 3 1239646423 1239646423 200B4CEQOASDC1D24E05396COEA0AFSEE

SALESPDB 4 3692549634 3692549634 200B4928319C1LBCCE05396C0E40A2432

HRPDB 5 3784483090 3784483090 200B4928319D1BCCE05396C0E40A2432
¢ See Also:

"Common User Accounts"

A PDB is a user-created set of schemas, objects, and related structures that appears
logically to a client application as a separate database.

Every PDB is owned by SYS, regardless of which user created the PDB. SYS is a common
user in the CDB, which means that this user that has the same identity in the root and in
every existing and future PDB within the CDB.

Types of PDBs

ORACLE

All PDBs are user-created with the CREATE PLUGGABLE DATABASE statement except for
PDB$SEED, which is Oracle-supplied.

You can create the following types of PDBs.

Standard PDB

This type of PDB results from running CREATE PLUGGABLE DATABASE without specifying the
PDB as a seed, proxy PDB, or application root. Its capabilities depend on the container in
which you create it:

* PDB plugged in to the CDB root

This PDB belongs to the CDB root container and not an application container. This type
of PDB cannot use application common objects. See "Application Common Objects".

e Application PDB

An application PDB belongs to exactly one application container. Unlike PDBs plugged in
to the CDB root, application PDBs can share a master application definition within an
application container. For example, a usa_zi pcodes table in an application root might be

2-5

Chapter 2
PDBs

a data-linked common object, which means it contains data accessible by all
application PDBs plugged in to this root. PDBs that do not reside within the
application container cannot access its application common objects.

Application Root

Consider an application root as an application-specific root container. It serves as a
repository for a master definition of an application back end, including common data
and metadata. To create an application root, connect to the CDB root and specify the
AS APPLI CATI ON CONTAI NER clause in a CREATE PLUGGABLE DATABASE statement. See
"Application Root".

Seed PDBs

Unlike a standard PDB, a seed PDB is not intended to support an application. Rather,
the seed is a template for the creation of PDBs that support applications. A seed can
be either of the following:

e Seed PDB plugged in the CDB root (PDB$SEED)

You can use this system-supplied template to create new PDBs either in an
application container or the system container. The system container contains
exactly one PDB seed. You cannot drop PDB$SEED, or add objects to or modify
objects within it.

e Application seed PDB

To accelerate creation of application PDBs within an application container, you can
create an optional application seed. An application container contains either zero
or one application seed.

You create an application seed by connecting to the application container and
executing the CREATE PLUGGABLE DATABASE ... AS SEED statement. See
"Application Seed".

Proxy PDBs

A proxy PDB is a PDB that uses a database link to reference a PDB in a remote CDB.
When you issue a statement in a proxy PDB while the PDB is open, the statement
executes in the referenced PDB.

You must create a proxy PDB while connected to the CDB root or application root. You
can alter or drop a proxy PDB just as you can a standard PDB.

Purpose of PDBs

ORACLE

For an application, a PDB is a self-contained, fully functional Oracle database. You can
consolidate PDBs into a single CDB to achieve economies of scale, while maintaining
isolation between PDBs.

You can use PDBs to achieve the following specific goals:

e Store data specific to an application

For example, a sales application can have its own dedicated PDB, and a human
resources application can have its own dedicated PDB. Alternatively, you can
create an application container, which is a named collection of PDBs, to store an
application back end containing common data and metadata.

Move data into a different CDB

2-6

Chapter 2
PDBs

A database is "pluggable” because you can package it as a self-contained unit, called an
unplugged PDB, and then move it into another CDB.

» Perform rapid upgrades

You can unplug a PDB from CDB at a lower Oracle Database release, and then plug it in
to a CDB at a higher release.

* Copy data quickly without loss of availability

For testing and development, you can clone a PDB while it remains open, storing the
clone in the same or a different CDB. Optionally, you can specify the PDB as a
refreshable clone PDB. Alternatively, you use the Oracle-supplied seed PDB or a user-
created application seed to copy new PDBs.

 Reference data in a different CDB

You can create a proxy PDB that refers to a different PDB, either in the same CDB or in a
separate CDB. When you issue statements in the proxy PDB, they execute in the
referenced PDB.

* Isolate grants within PDBs

A local or common user with appropriate privileges can grant EXECUTE privileges on a
schema object to PUBLI C within an individual PDB.

¢ See Also:

e "About Application Containers"

e Oracle Database Security Guide to learn how to grant roles and privileges in a
CDB

Proxy PDBs

ORACLE

A proxy PDB refers to a remote PDB, called the referenced PDB.

Although you issue SQL statements in the proxy (referring) PDB, the statements execute in
the referenced PDB. In this respect, a proxy PDB is loosely analogous to a symbolic link file
in Linux.

Proxy PDBs provide the following benefits:

» Aggregate data from multiple application models

Proxy PDBs enable you to build location-transparent applications that can aggregate data
from multiple sources. These sources can be in the same data center or distributed
across data centers.

» Enable an application root in one CDB to propagate application changes to a different
application root

Assume that CDBs cdb_prod and cdb_t est have the same application model. You create
a proxy PDB in an application container in cdb_pr od that refers to an application root in
cdb_t est. When you run installation and upgrade scripts in the application root in
cdb_prod, Oracle Database propagates these statements to the proxy PDB, which in turn
sends them remotely to the application root in cdb_t est . In this way, the application root
in cdb_t est becomes a replica of the application root in cdb_pr od.

2-7

Chapter 2
PDBs

To create a proxy PDB, execute CREATE PLUGGABLE DATABASE with the AS PROXY FROM
clause, where FROMspecifies the referenced PDB name and a database link. The
creation statement copies only the data files belonging to the SYSTEMand SYSAUX
tablespaces.

Example 2-4 Creating a Proxy PDB

This example connects to the container saas_sal es_ac in a local production CDB. The
sal es_adni n common user creates a proxy PDB named sal es_sync_pdb. This
application PDB references an application root named saas_sal es_test_ac ina
remote development CDB, which it accesses using the cdb_dev_r emdatabase link.
When an application upgrade occurs in saas_sal es_ac in the production CDB, the
upgrade automatically propagates to the application root saas_sal es_t est _ac in the
remote development CDB.

CONNECT sal es_adm n@aas_sal es_ac
PaSS\I\DI’d EE R R R R SR EE R

CREATE PLUGGABLE DATABASE sal es_sync_pdb AS PROXY FROM
saas_sal es_test _ac@db_dev_rem

Names for PDBs

ORACLE

Containers in a CDB share the same namespace, which means that they must have
unigue names within this namespace.

Names for the following containers must not conflict within the same CDB:

e The CDB root

* PDBs plugged in to the CDB root
* Application roots

* Application PDBs

For example, if the same CDB contains the application containers saas_sal es_ac and
saas_sal es_test _ac, then two application PDBs that are both named cust 1 cannot
simultaneously reside in both containers. The namespace rules also prevent creation
of a PDB named cust 1pdb in the CDB root and a PDB named cust 1pdb in an
application root.

Names for PDBs and application root containers must follow the same rules as net
service names. Moreover, because a PDB or application root has a service with its
own name, the container name must be unique across all CDBs whose services are
exposed through a specific listener. The first character of a user-created container
name must be alphanumeric, with remaining characters either alphanumeric or an
underscore (). Because service nhames are case-insensitive, container names are
case-insensitive, and are in upper case even if specified using delimited identifiers.

" See Also:

Oracle Database Net Services Reference for the rules for service names

2-8

Chapter 2
PDBs

Database Links Between PDBs

ORACLE

By default, a user connected to one PDB must use database links to access objects in a
different PDB.

Figure 2-4 Database Link Between PDBs

In this illustration, a PDB administrator is connected to the PDB named hr pdbl. By default,

during this user session, c##dba cannot query the enp2 table in hr pdb2 without specifying a
database link.

(/ CDB

Administrator
for hrpdb

Root
(CDB$ROOT)

PDB

Seed
\w

Exceptions to the rule include:

* A data-linked common object, which is accessible by all application PDBs that contain a
data link that points to this object. For example, the application container saas_sal es_ac
might contain the data-linked table usa_zi pcodes within its application. In this case,
common CDB user c##dba can connect to an application PDB in this container, and then
guery usa_zi pcodes even though the actual table resides in the application root. In this
case, no database link is required.

e The CONTAI NERS() clause in SQL issued from the CDB root or application root. Using this
clause, you can query data across all PDBs plugged in to the container root.

When creating a proxy PDB, you must specify a database link name in the FROMclause of the
CREATE PLUGGABLE DATABASE ... AS PROXY statement. If the proxy PDB and referenced
PDB reside in separate CDBs, then the database link must be defined in the root of the CDB
that will contain the proxy PDB. The database link must connect either to the remote
referenced PDB or to the CDB root of the remote CDB.

¢ See Also:

"Common and Local Objects"

2-9

Application Containers

Within a CDB, you can create a container for application data and metadata that can be
shared by PDBs.

This chapter contains the following topics:

* About Application Containers
* Application Common Objects
e Container Maps

* Cross-Container Operations

" See Also:

"Common and Local Objects" to learn about application common objects

About Application Containers

ORACLE

An application container is an optional, user-created CDB component that stores data and
metadata for one or more application back ends. A CDB includes zero or more application
containers.

Within an application container, an application is the named, versioned set of common
data and metadata stored in the application root. In this context of an application container,
the term “application” means “master application definition.” For example, the application
might include definitions of tables, views, and packages.

For example, you might create multiple sales-related PDBs within one application container,
with these PDBs sharing an application that consists of a set of common tables and table
definitions. You might store multiple HR-related PDBs within a separate application container,
with their own common tables and table definitions.

The CREATE PLUGGABLE DATABASE statement with the AS APPLI CATI ON CONTAI NER clause
creates the application root of the application container, and thus implicitly creates the
application container itself. When you first create the application container, it contains no
PDBs. To create application PDBs, you must connect to the application root, and then
execute the CREATE PLUGGABLE DATABASE statement.

In the CREATE PLUGGABLE DATABASE statement, you must specify a container name (which is
the same as the application root name), for example, saas_sal es_ac. The application
container name must be unique within the CDB, and within the scope of all the CDBs whose
instances are reached through a specific listener. Every application container has a default
service with the same name as the application container.

3-1

Chapter 3
About Application Containers

Purpose of Application Containers

In some ways, an application container functions as an application-specific CDB within
a CDB. An application container, like the CDB itself, can include multiple PDBs, and
enables these PDBs to share metadata and data.

The application root enables application PDBs to share an application, which in this
context means a named, versioned set of common metadata and data. A typical
application installs application common users, metadata-linked common objects, and
data-linked common objects.

Key Benefits of Application Containers

Application containers provide several benefits over storing each application in a
separate PDB.

e The application root stores metadata and data that all application PDBs can share.

For example, all application PDBs can share data in a central table, such as a
table listed default application roles. Also, all PDBs can share a table definition to
which they add PDB-specific rows.

e You maintain your master application definition in the application root, instead of
maintaining a separate copy in each PDB.

If you upgrade the application in the application root, then the changes are
automatically propagated to all application PDBs. The application back end might
contain the data-linked common object app_r ol es, which is a table that list
default roles: admi n, manager, sal es_r ep, and so on. A user connected to any
application PDB can query this table.

* An application container can include an application seed, application PDBs, and
proxy PDBs (which refer to PDBs in other CDBS).

* You can rapidly create new application PDBs from the application seed.
* You can query views that report on all PDBs in the application container.

* While connected to the application root, you can use the CONTAI NERS function to
perform DML on objects in multiple PDBs.

For example, if the product s table exists in every application PDB, then you can
connect to the application root and query the products in all application PDBs
using a single SELECT statement.

e You can unplug a PDB from an application root, and then plug it in to an
application root in a higher Oracle database release. Thus, PDBs are useful in an
Oracle database upgrade.

Application Container Use Case: SaaS

ORACLE

A SaaS deployment can use multiple application PDBs, each for a separate customer,
that share metadata and data.

In a pure SaaS environment, the master application definition resides in the application
root, but the customer-specific data resides in its own application PDB. For example,
sal es_app is the application model in the application root. The application PDB named
cust 1_pdb contains sales data only for customer 1, whereas the application PDB

3-2

Chapter 3
About Application Containers

named cust 2_pdb contains sales data only for customer 2. Plugging, unplugging, cloning,
and other PDB-level operations are available for individual customer PDBs.

Figure 3-1 SaaS Use Case

cDB
Application
Container
Root (CDB$ROOT)
j m
"]
|
Appllcatlon Root
Seed j E
(PDB$SEED) !

Application cust2_pdb
Seed cust1_pdb
Appli(ltation
PDBs

A pure SaaS configuration provides the following benefits:
e Performance

e Security

e Support for multiple customers

The data for each customer resides in its own container, but is consolidated so that you
can manage many customers collectively. This model extends the economies of scale of
managing many as one to the application administrator, not only the DBA.

Application Containers Use Case: Logical Data Warehouse

ORACLE

A customer can use multiple application PDBs to address data sovereignty issues.

In a sample use case, a company puts data specific to each financial quarter in a separate
PDB. For example, the application container named sal es_ac includes q1_2016_pdb,
g2_2016_pdb, g3_2016_pdb, and g4_2016_pdb. You define each transaction in the PDB
corresponding to the associated quarter. To generate a report that aggregates performance
across a year, you aggregate across the four PDBs using the CONTAI NERS() clause.

Benefits of this logical warehouse design include:

3-3

Chapter 3
About Application Containers

» ETL for data specific to a single PDB does not affect the other PDBs.

» Execution plans are more efficient because they are based on actual data
distribution.

Application Root

ORACLE

An application container has exactly one application root, which is the parent of the
application PDBs in the container.

The property of being an application root is established at creation time, and cannot be
changed. The only container to which an application root belongs is the CDB root. An
application root is like the CDB root in some ways, and like a PDB in other ways:

« Like the CDB root, an application root serves as parent container to the PDBs
plugged into it. When connected to the application root, you can manage common
users and privileges, create application PDBs, switch containers, and issue DDL
that applies to all PDBs in the application container.

e Like a PDB, you create an application root with
the CREATE PLUGGABLE DATABASE statement, alter it with ALTER PLUGGABLE
DATABASE, and change its availability with STARTUP and SHUTDOM. You can use
DDL to plug, unplug, and drop application roots. The application root has its own
service name, and users can connect to the application root in the same way that
they connect to a PDB.

An application root differs from both the CDB root and standard PDB because it can
store user-created common objects, which are called application common objects.
Application common objects are accessible to the application PDBs plugged in to the
application root. Application common objects are not visible to the CDB root, other
application roots, or PDBs that do not belong to the application root.

Example 3-1 Creating an Application Root

In this example, you log in to the CDB root as administrative common user c##syst em
You create an application container named saas_sal es_ac, and then open the
application root, which has the same name as the container.

-- Create the application container called saas_sal es_ac
CREATE PLUGGABLE DATABASE saas_sal es_ac AS APPLI CATI ON CONTAI NER
ADM N USER saas_sal es_ac_adm | DENTI FI ED BY manager ;

-- Open the application root
ALTER PLUGGABLE DATABASE saas_sal es_ac OPEN

You set the current container to saas_sal es_ac, and then verify that this container is
the application root:

-- Set the current container to saas_sal es_ac
ALTER SESSI ON SET CONTAI NER = saas_sal es_ac;

COL NAME FORMAT als

COL ROOT FORMAT a4

SELECT CON_I D, NAME, APPLI CATI ON_ROOT AS ROCOT,
APPLI CATI ON_PDB AS PDB,

FROM VSCONTAI NERS;

3-4

Chapter 3
Application Common Objects

3 SAAS_SALES AC YES NO

Application PDBs

An application PDB is a PDB that resides in an application container. Every PDB in a CDB
resides in either zero or one application containers.

For example, the saas_sal es_ac application container might support multiple customers, with
each customer application storing its data in a separate PDB. The application PDBs

cust1l sal es_pdb and cust 2_sal es_pdb might reside in saas_sal es_ac, in which case they
belong to no other application container (although as PDBs they necessarily belong also to
the CDB root).

Create an application PDB by executing CREATE PLUGGABLE DATABASE while connected to the
application root. You can either create the application PDB from a seed, or clone a PDB or
plug in an unplugged PDB. Like a PDB that is plugged in to CDB root, you can clone, unplug,
or drop an application PDB. However, an application PDB must always belong to an
application root.

Application Seed

An application seed is an optional, user-created PDB within an application container. An
application container has either zero or one application seed.

An application seed enables you to create application PDBs quickly. It serves the same role
within the application container as PDB$SEED serves within the CDB itself.

The application seed name is always appl i cati on_cont ai ner _nane$SEED, where

appl i cation_container _nane is the name of the application container. For example, use the
CREATE PDB ... AS SEED statement to create saas_sal es_ac$SEEDin the saas_sal es_ac
application container.

Application Common Objects

An application common object is a common object created within an application in an
application root. Common objects are either data-linked or metadata-linked.

For a data-linked common object, application PDBs share a single set of data. For example,
an application for the saas_sal es_ac application container is named saas_sal es_app, has
version 1. 0, and includes a data-linked usa_zi pcodes table. In this case, the rows are stored
once in the table in the application root, but are visible in all application PDBs.

For a metadata-linked common object, application PDBs share only the metadata, but
contain different sets of data. For example, a metadata-linked pr oduct s table has the same
definition in every application PDB, but the rows themselves are specific to the PDB. The
application PDB named cust 1pdb might have a pr oduct s table that contains books, whereas
the application PDB named cust 2pdb might have a pr oduct s table that contains auto parts.

ORACLE 3-5

Chapter 3
Application Common Objects

¢ See Also:

"Common and Local Objects" to learn about common objects

About Commonality in a CDB

A common phenomenon defined in a CDB or application root is the same in all
containers plugged in to this root.

Principles of Commonality

In a CDB, a phenomenon can be common within either the system container (the CDB
itself), or within a specific application container.

For example, if you create a common user account while connected to CDB$ROOT, then
this user account is common to all PDBs and application roots in the CDB. If you
create an application common user account while connected to an application root,
however, then this user account is common only to the PDBs in this application
container.

Within the context of CDB$ROOT or an application root, the principles of commonality are
as follows:

A common phenomenon is the same in every existing and future container.

Therefore, a common user defined in the CDB root has the same identity in every
PDB plugged in to the CDB root; a common user defined in an application root has
the same identity in every application PDB plugged in to this application root. In
contrast, a local phenomenon is scoped to exactly one existing container.

* Only a common user can alter the existence of common phenomena.

More precisely, only a common user logged in to either the CDB root or an
application root can create, destroy, or modify attributes of a user, role, or object
that is common to the current container.

Namespaces in a CDB

ORACLE

In a CDB, the namespace for every object is scoped to its container.
The following principles summarize the scoping rules:

* From an application perspective, a PDB is a separate database that is distinct
from any other PDBs.

* Local phenomena are created within and restricted to a single container.

< Note:

In this topic, the word “phenomenon” means “user account, role, or
database object.”

3-6

Chapter 3
Application Common Objects

» Common phenomena are defined in a CDB root or application root, and exist in all PDBs
that are or will be plugged into this root.

The preceding principles have implications for local and common phenomena.

Local Phenomena

A local phenomenon must be uniquely named within a container, but not across all containers
in the CDB. Identically named local phenomena in different containers are distinct. For
example, local user sh in one PDB does not conflict with local user sh in another PDB.

CDB$ROOT Common Phenomena

Common phenomena defined in CDB$ROOT exist in multiple containers and must be unique
within each of these nhamespaces. For example, the CDB root includes predefined common
users such as SYSTEMand SYS. To ensure namespace separation, Oracle Database prevents
creation of a SYSTEMuser within another container.

To ensure namespace separation, the name of user-created common phenomena in the CDB
root must begin with the value specified by the COWON_USER_PREFI X initialization parameter.
The default prefix is c## or C##. The names of all other user-created phenomena must not
begin with c## or C##. For example, you cannot create a local user in hr pdb named c##hr,
nor can you create a common user in the CDB root named hr.

Application Common Phenomena

Within an application container, names for local and application common phenomena must
not conflict.

e Application common users and roles

The same principles apply to application common users as to CDB common users. The
difference is that for CDB common users, the default value for the common user prefix is
c## or Ci##, whereas in application root the default value for the common user prefix is the
empty string.

The multitenant architecture assumes that you create application PDBs from an
application root, or convert a single-tenant application to a multitenant application.

* Application common objects

The multitenant architecture assumes that you create application common objects in the
application root. Later, you add data locally within the application PDBs. However, Oracle
Database supports creation of local tables within an application PDB. In this case, the
local tables reside in the same namespace as application common objects within the
application PDB.

See Also:

Oracle Database Security Guide to learn more about common users and roles

Creation of Application Common Obijects

To create common objects, connect to an application root, and then execute a CREATE
statement that specifies a sharing attribute.

ORACLE .

Chapter 3
Application Common Objects

You can only create or change application common objects as part of an application
installation, upgrade, or patch. You can specify sharing in the following ways:

e DEFAULT_SHARI NGinitialization parameter

The setting is the default sharing attribute for all database objects of a supported
type created in the root.

e SHARI NGclause

You specify this clause in the CREATE statement itself. When a SHARI NG clause is
included in a SQL statement, it takes precedence over the value specified in the
DEFAULT_SHARI NG initialization parameter. Possible values are METADATA, DATA,
EXTENDED DATA, and NONE.

The following table shows the types of application common objects, and where the
data and metadata is stored.

Table 3-1 Application Common Objects
|

Object Type SHARING Value Metadata Storage Data Storage
Data-Linked DATA Application root Application root
Extended Data- EXTENDED DATA Application root Application root and
Linked application PDB
Metadata-Linked METADATA Application root Application PDB

See Also:

Oracle Database Security Guide to learn how to manage privileges for
common objects

Metadata-Linked Application Common Objects

ORACLE

A metadata link is a dictionary object that supports referring to, and granting
privileges on, common metadata shared by all PDBs in the application container.

Specifying the METADATA value in either the SHARI NG clause or the DEFAULT _SHARI NG
initialization parameter specifies a link to an object’'s metadata, called a metadata-
linked common object. The metadata for the object is stored once in the application
root.

Tables, views, and code objects (such as PL/SQL procedures) can share metadata. In
this context, “metadata” includes column definitions, constraints, triggers, and code.
For example, if sal es_ni t is a metadata-linked common table, then all application
PDBs access the same definition of this table, which is stored in the application root,
by means of a metadata link. The rows in sal es_m t are different in every application
PDB, but the column definitions are the same.

Typically, most objects in an application will be metadata-linked. Thus, you need only
maintain one master application definition. This approach centralizes management of
the application in multiple application PDBs.

3-8

Chapter 3
Application Common Objects

Example 3-2 Creating a Metadata-Linked Common Object

In this example, the SYSTEMuser logs in to the saas_sal es_ac application container. SYSTEM
installs an application named saas_sal es_app at version 1.0. This application creates a
common user account named saas_sal es_adm The schema contains a metadata-linked
common table named sal es_nit.

-- Begin the install of saas_sal es_app
ALTER PLUGGABLE DATABASE APPLI| CATI ON saas_sal es_app BEG N I NSTALL '1.0';

-- Create the tabl espace for the app
CREATE TABLESPACE saas_sal es_t bs DATAFI LE SI ZE 100M AUTCEXTEND ON NEXT 10M
MAXSI ZE 200M

-- Create the user account saas_sales_adm which will own the app
CREATE USER saas_sal es_adm | DENTI FI ED BY ****** CONTAI NER=ALL;

-- Grant necessary privileges to this user account
GRANT CREATE SESSI ON, DBA TO saas_sal es_adm

-- Makes the tablespace that you just created the default for saas_sal es_adm
ALTER USER saas_sal es_adm DEFAULT TABLESPACE saas_sal es_t bs;

-- Now connect as the application owner
CONNECT saas_sal es_adm ****** @aas_sal es_ac

-- Oreate a nmetadata-linked table
CREATE TABLE saas_sal es_adm sal es_nlt SHARI NG=METADATA
(YEAR NUMBER(4) ,

REG ON VARCHAR2(10) ,

QUARTER VARCHAR2(4) ,

REVENUE NUMBER) ;

-- End the application installation
ALTER PLUGGABLE DATABASE APPLI| CATI ON saas_sal es_app END I NSTALL '1.0';

You can use the ALTER PLUGGABLE DATABASE APPLI CATION ... SYNC statement to
synchronize the application PDBs to use the same master application definition. In this way,
every application PDB has a metadata link to the saas_sal es_adm sal es_nm t common table.
The middle-tier code that updates sal es_m t within the PDB named cust 1_pdb adds rows to
this table in cust 1_pdb, whereas the middle-tier code that updates sal es_nlt in cust2_pdb
adds rows to the copy of this table in cust 2_pdb. Only the table metadata, which is stored in
the application root, is shared.

¢ Note:

Oracle Database Security Guide to learn more about how commonly granted object
privileges work

ORACLE 3-9

Chapter 3
Application Common Objects

Metadata Links

For metadata-linked application common objects, the metadata for the object is stored
once in the application root. A metadata link is a dictionary object whose object type is
the same as the metadata it is sharing.

The description of a metadata link is stored in the data dictionary of the PDB in which it
is created. A metadata link must be owned by an application common user. You can
only use metadata links to share metadata of common objects owned by their creator
in the CDB root or an application root.

Unlike a data link, a metadata link depends only on common data. For example, if an
application contains the local tables dow cl ose_|t and nasdaqg_cl ose_It inthe
application root, then a common user cannot create metadata links to these objects.
However, an application common table named sal es_ni t may be metadata-linked.

If a privileged common user changes the metadata for sal es_m t, for example, adds a
column to the table, then this change propagates to the metadata links. Application
PDB users may not change the metadata in the metadata link. For example, a DBA
who manages the application PDB named cust 1_pdb cannot add a column to

sal es_nit in this PDB only: such metadata changes can be made only in the
application root.

Data-Linked Application Common Objects

ORACLE

A data-linked object is an object whose metadata and data reside in an application
root, and are accessible from all application PDBs in this application container.

Specifying the DATA value in either the SHARI NG clause or the DEFAULT _SHARI NG
initialization parameter specifies a link to a common object, called a data-linked
common object. Dimension tables in a data warehouse are often good candidates for
data-linked common tables.

A data link is a dictionary object that functions much like a synonym. For example, if
count ries is an application common table, then all application PDBs access the same
copy of this table by means of a data link. If a row is added to this table, then this row
is visible in all application PDBs.

A data link must be owned by an application common user. The link inherits the object
type from the object to which it is pointing. The description of a data link is stored in
the dictionary of the PDB in which it is created. For example, if an application container
contains 10 application PDBs, and if every PDB contains a link to the countri es
application common table, then all 10 PDBs contain dictionary definitions for this link.

Example 3-3 Creating a Data-Linked Object

In this example, SYSTEMconnects to the saas_sal es_ac application container. SYSTEM
upgrades the application named saas_sal es_app from version 1. 0 to 2. 0. This
application upgrade logs in to the container as common user saas_sal es_adm creates
a data-linked table named countri es_dl t, and then inserts rows into it.

-- Begin an upgrade of the application
ALTER PLUGGABLE DATABASE APPLI CATI ON saas_sal es_app BEG N UPGRADE ' 1.0'
to '2.0";

3-10

Chapter 3
Application Common Objects

-- Connect as application owner to application root
CONNECT saas_sal es_adm manager @aas_sal es_ac

-- COreate data-linked table named countries_dlt
CREATE TABLE countries_dlt SHARI NG=DATA
(country_id NUMBER

country_nanme VARCHAR2(20));

-- Insert records into countries dlt

I NSERT I NTO countries_dlt VALUES(1, 'USA');

I NSERT I NTO countries_dlt VALUES(44, 'WK');

I NSERT I NTO countries_dlt VALUES(86, 'China');
I NSERT I NTO countries_dlt VALUES(91, 'India');

-- End application upgrade
ALTER PLUGGABLE DATABASE APPLI CATI ON saas_sal es_app END UPGRADE TO '2.0';

Use the ALTER PLUGGABLE DATABASE APPLI CATION ... SYNC statement to synchronize
application PDBs with the application root. In this way, every synchronized application PDB
has a data link to the saas_sal es_adm countries_dlt data-linked table.

Extended Data-Linked Application Objects

ORACLE

An extended data-linked object is a hybrid of a data-linked object and metadata-linked
object.

In an extended data-linked object, the data stored in the application root is common to all
application PDBs, and all PDBs can access this data. However, each application PDB can
create its own, PDB-specific data while sharing the common data in application root. Thus,
the PDBs supplement the common data with their own data.

For example, a sales application might support several application PDBs. All application
PDBs need the postal codes for the United States. In this case, you might create a

zi pcodes_edt extended data-linked table in the application root. The application root stores
the United States postal codes, so all application PDBs can access them. However, one
application PDB requires the postal codes for the United States and Canada. This application
PDB can store the postal codes for Canada in the extended data-linked object in the
application PDB instead of in the application root.

Create an extended data-linked object by connecting to the application root and specifying
the SHARI NG=EXTENDED DATA keyword in the CREATE statement.

Example 3-4 Creating an Extended-Data Object

In this example, SYSTEMconnects to the saas_sal es_ac application container, and then
upgrades the application named saas_sal es_app (created in "Example 3-2") from version 2. 0
to 3. 0. This application logs in to the container as common user saas_sal es_adm creates an
extended data-linked table named zi pcodes_edt, and then inserts rows into it.

-- Begin an upgrade of the app
ALTER PLUGGABLE DATABASE APPLI CATI ON saas_sal es_app BEG N UPGRADE '2.0' to
"3.0°;

-- Connect as app owner to app root
CONNECT saas_sal es_adm manager @aas_sal es_ac

3-11

Chapter 3
Container Maps

-- Create a conmon-data table named zi pcodes_edt
CREATE TABLE zi pcodes_edt SHARI NG=EXTENDED DATA
(code VARCHAR2(5) ,

country_id NUMBER,

regi on VARCHAR2(10)) ;

-- Load rows into zipcodes_edt

I NSERT | NTO zi pcodes_edt VALUES ('08820','1','East');
I NSERT | NTO zi pcodes_edt VALUES (' 10005','1"','East');
I NSERT | NTO zi pcodes_edt VALUES ('44332','1",'North');
I NSERT | NTO zi pcodes_edt VALUES ('94065','1',' West');
I NSERT | NTO zi pcodes_edt VALUES ('73301','1"','South');
COW T;

-- End app upgrade
ALTER PLUGGABLE DATABASE APPLI CATI ON saas_sal es_app END UPGRADE TO
'3.0';

Use the ALTER PLUGGABLE DATABASE APPLI CATION ... SYNC statement to synchronize
application PDBs with the application. In this way, every synchronized application PDB
has a data link to the saas_sal es_adm zi pcodes_edt data-linked table. Applications
that connect to these PDBs can see the postal codes that were inserted into

zi pcodes_edt during the application upgrade, but can also insert their own postal
codes into this table.

Container Maps

ORACLE

A container map enables a session connected to application root to issue SQL
statements that are routed to the appropriate PDB, depending on the value of a
predicate used in the SQL statement.

A map table specifies a column in a metadata-linked common table, and uses
partitions to associate different application PDBs with different column values. In this
way, container maps enable the partitioning of data at the PDB level when the data is
not physically partitioned at the table level.

The key components for using container maps are:

* Metadata-linked table

This table is intended to be queried using the container map. For example, you
might create a metadata-linked table named countries_nit that stores different
data in each application PDB. In armer _pdb, the countries_mi t. cnane column
stores North American country names; in eur o_pdb, the countries_nit. cname
column stores European country names; and in asi a_pdb, the

countries_m t. cname column stores Asian country names.

e Map table

In the application root, you create a single-column map table partitioned by list,
hash, or range. The map table enables the metadata-linked table to be queried
using the partitioning strategy that is enabled by the container map. The names of
the partitions in the map object table must match the names of the application
PDBs in the application container.

3-12

ORACLE

Chapter 3
Container Maps

For example, the map table named pdb_map_t bl may partition by list on the cname
column. The partitions named aner _pdb, eur o_pdb, and asi a_pdb correspond to the
names of the application PDBs. The values in each partition are the names of the
countries, for example, PARTI TI ON aner _pdb VALUES (' US' ,' MEXI CO , ' CANADA').

Starting in Oracle Database 18c, for a CONTAI NERS() query to use a map, the partitioning
column in the map table does not need to match a column in the metadata-linked table.
Assume that the table sh. sal es is enabled for the container map pdb_map_t bl , and
cnane is the partitioning column for the map table. Even though sh. sal es does not
include a cname column, the map table routes the following query to the appropriate PDB:
SELECT * FROM CONTAI NERS(sh. sal es) WHERE cnane = 'US' ORDER BY tine_id.

e Container map

A container map is a database property that specifies a map table. To set the property,
you connect to the application root and execute the ALTER PLUGGABLE DATABASE SET
CONTAI NER_MAP=map_t abl e statement, where nap_t abl e is the name of the map table.

Example 3-5 Creating a Metadata-Linked Table, Map Table, and Container Map: Part 1

In this example, you log in as an application administrator to the application root. Assume that
an application container has three application PDBs: aner _pdb, euro_pdb, and asi a_pdb.
Each application PDB stores country names for a different region. A metadata-linked table
named oe. countries_mt has a cnane column that stores the country name. For this
partitioning strategy, you use partition by list to create a map object named

sal esadm pdb_map_t bl that creates a partition for each region. The country name determines
the region.

ALTER PLUGGABLE DATABASE APPLI| CATI ON saas_sal es_app BEG N I NSTALL '1.0';

-- Create the netadata-Iinked table.

CREATE TABLE oe. countries_mt SHARI NG=METADATA (
region VARCHAR2(30) ,
chame VARCHAR2(30)) ;

-- Create the partitioned nmap table, which is list partitioned on the
-- cnanme colum. The nanmes of the partitions are the nanes of the
-- application PDBs.
CREATE TABLE sal esadm pdb_nmap_tbl (cname VARCHAR2(30) NOT NULL)
PARTI TION BY LI ST (cname) (
PARTI TI ON amer _pdb VALUES (' US',' MEXI CO , ' CANADA'),
PARTI TI ON euro_pdb VALUES (' UK ,' FRANCE' , ' GERVANY'),
PARTI TI ON asi a_pdb VALUES (' INDIA',' CHINA', ' JAPAN));
-- Set the CONTAINER MAP dat abase property to the map object.
ALTER PLUGGABLE DATABASE SET CONTAI NER_MAP='sal esadm pdb_nmap_tbl";

-- Enable the container map for the netadata-linked table to be queried.
ALTER TABLE oe. countries_nlt ENABLE CONTAI NER_MAP;

-- Ensure that the table to be queried is enabled for the
-- CONTAI NERS cl ause.
ALTER TABLE oe. countries_mt ENABLE CONTAI NERS DEFAULT;

-- End the application installation.
ALTER PLUGGABLE DATABASE APPLI| CATI ON saas_sal es_app END I NSTALL '1.0';

3-13

ORACLE

Chapter 3
Container Maps

< Note:

Although you create container maps using partitioning syntax, the database
does not use partitioning functionality. Defining a container map does not
require Oracle Partitioning.

In the preceding script, the ALTER TABLE oe. countries _nit ENABLE

CONTAI NERS_DEFAULT statement specifies that queries and DML statements issued in
the application root must use the CONTAI NERS() clause by default for the database
object.

Example 3-6 Synchronizing the Application, and Adding Data: Part 2

This example continues from the previous example. While connected to the application
root, you switch the current container to each PDB in turn, synchronize the

saas_sal es_app application, and then add PDB-specific data to the oe. countries_nlt
table.

ALTER SESSI ON SET CONTAI NER=aner _pdb;

ALTER PLUGGABLE DATABASE APPLI CATI ON saas_sal es_app SYNC,
I NSERT | NTO oe. countries_mt VALUES (' AMER ,'US');

I NSERT I NTO oe.countries_mt VALUES (' AVER ,' MEXICO);

I NSERT I NTO oe.countries_mt VALUES (' AVER ,' CANADA');
COW T;

ALTER SESSI ON SET CONTAI NER=eur o_pdb;

ALTER PLUGGABLE DATABASE APPLI CATI ON saas_sal es_app SYNC,
I NSERT I NTO oe. countries_mt VALUES (' EURO ,' WK);

I NSERT I NTO oe. countries_mt VALUES (' EURO ,' FRANCE);

I NSERT I NTO oe.countries_mt VALUES (' EURO ,' GERMANY');
COW T;

ALTER SESSI ON SET CONTAI NER=asi a_pdb;

ALTER PLUGGABLE DATABASE APPLI CATI ON saas_sal es_app SYNC,
I NSERT I NTO oe.countries_mt VALUES ('ASIA ,'INDA");

I NSERT I NTO oe.countries_mt VALUES ('ASIA ,'CH NA");

I NSERT I NTO oe.countries_mt VALUES ('ASIA ,'JAPAN);
COW T;

Example 3-7 Querying the Metadata-Linked Table: Part 3

This example continues from the previous example. You connect to the application
root, and then query oe. countri es_mt multiple times, specifying different countries in
the WHERE clause. The query returns the correct value from the
oe.countries_mt.regi on column.

ALTER SESSI ON SET CONTAI NER=saas_sal es_ac;

SELECT region FROM oe. countries_nit WHERE cnanme=' MEXI CO ;

3-14

Chapter 3
Cross-Container Operations

AMER

SELECT regi on FROM oe. countries_mt WHERE cnanme=" GERVANY' ;

Cross-Container Operations

ORACLE

A cross-container operation is a DDL or DML statement that affects multiple containers at
once.

Only a common user connected to either the CDB root or an application root can perform
cross-container operations. A cross-container operation can affect:

* The CDB itself
e Multiple containers within a CDB

* Multiple phenomena such as common users or common roles that are represented in
multiple containers

* A container to which the user issuing the DDL or DML statement is currently not
connected

Examples of cross-container DDL operations include user SYSTEMgranting a privilege
commonly to another common user, and an ALTER DATABASE . . . RECOVER statement that
applies to the entire CDB.

When you are connected to either the CDB root or an application root, you can execute a
single DML statement to modify tables or views in multiple PDBs within the container. The
database infers the target PDBs from the value of the CON_I D column specified in the DML
statement. If no CON_I Dis specified, then the database uses the CONTAI NERS_DEFAULT_TARGET
property specified by the ALTER PLUGGABLE DATABASE CONTAI NERS DEFAULT TARGET
statement.

Example 3-8 Updating Multiple PDBs in a Single DML Statement

In this example, your goal is to set the count ry_name column to the value USA in the sh. sal es
table. This table exists in two separate PDBs, with container IDs of 7 and 8. Both PDBs are in
the application container named saas_sal es_ac. You can connect to the application root as
an administrator, and make the update as follows:

CONNECT sal es_adm n@aas_sal es_ac
Passwor d: ***x***

UPDATE CONTAI NERS(sh. sal es) sal

SET sal . country_name = ' USA
WHERE sal .CONLID IN (7,8);

3-15

Chapter 3
Cross-Container Operations

In the preceding UPDATE statement, sal is an alias for CONTAI NERS(sh. sal es) .

¢ See Also:

"Common User Accounts"

ORACLE 3-16

Oracle Relational Data Structures

This part describes the basic data structures of a database, including data integrity rules, and
the structures that store metadata.

This part contains the following chapters:

* Tables and Table Clusters

* Indexes and Index-Organized Tables

* Partitions, Views, and Other Schema Objects
« Data Integrity

» Data Dictionary and Dynamic Performance Views

ORACLE

Tables and Table Clusters

This chapter provides an introduction to schema objects and discusses tables, which are the
most common types of schema objects.

This chapter contains the following sections:

e Introduction to Schema Objects

* Overview of Tables

* Overview of Table Clusters

* Overview of Attribute-Clustered Tables
e Overview of Temporary Tables

* Overview of External Tables

* Overview of Blockchain Tables

* Overview of Object Tables

Introduction to Schema Objects

A database schema is a logical container for data structures, called schema objects.
Examples of schema objects are tables and indexes. You create and manipulate schema
objects with SQL.

This section contains the following topics:

* About Common and Local User Accounts
* Schema Object Types

e Schema Object Storage

e Schema Object Dependencies

e Sample Schemas

¢ See Also:

Oracle Database Security Guide to learn more about users and privileges

About Common and Local User Accounts

ORACLE

A database user account has a password and specific database privileges.

User Accounts and Schemas

Each user account owns a single schema, which has the same name as the user. The
schema contains the data for the user owning the schema. For example, the hr user account

4-1

ORACLE

Chapter 4
Introduction to Schema Objects

owns the hr schema, which contains schema objects such as the enpl oyees table. In
a production database, the schema owner usually represents a database application
rather than a person.

Within a schema, each schema object of a particular type has a unique name. For
example, hr. enpl oyees refers to the table enpl oyees in the hr schema. The following
figure depicts a schema owner named hr and schema objects within the hr schema.

Figure 4-1 HR Schema

HR Schema
Tables Indexes
Fanl L =

Tahlg

Table

Smy
e B ..
81T =

Schema
Objects

HR User

i

Common and Local User Accounts

If a user account owns objects that define the database, then this user account is
common. User accounts that are not Oracle-supplied are either local or common. A
CDB common user is a common user that is created in the CDB root. An application
common user is a user that is created in an application root, and is common only
within this application container.

The following graphic shows the possible user account types in a CDB.

Figure 4-2 User Accounts in a CDB

Oracle-Supplied

SYS, SYSTEM

CDB Common User

User-Created

Name must begin with
Common User C## or c#

Same Identity in
Every Container

Application Common User

Local User

Identity Restricted
to One PDB

4-2

Chapter 4
Introduction to Schema Objects

A CDB common user can connect to any container in the CDB to which it has sufficient
privileges. In contrast, an application common user can only connect to the application root in
which it was created, or a PDB that is plugged in to this application root, depending on its
privileges.

Common User Accounts

ORACLE

Within the context of either the system container (CDB) or an application container, a
common user is a database user that has the same identity in the root and in every existing
and future PDB within this container.

Every common user can connect to and perform operations within the root of its container,
and within any PDB in which it has sufficient privileges. Some administrative tasks must be
performed by a common user. Examples include creating a PDB and unplugging a PDB.

For example, SYSTEMis a CDB common user with DBA privileges. Thus, SYSTEMcan connect
to the CDB root and any PDB in the database. You might create a common user

saas_sal es_adm n in the saas_sal es application container. In this case, the

saas_sal es_adm n user could only connect to the saas_sal es application root or to an
application PDB within the saas_sal es application container.

Every common user is either Oracle-supplied or user-created. Examples of Oracle-supplied
common users are SYS and SYSTEM Every user-created common user is either a CDB
common user, or an application common user.

The following figure shows sample users and schemas in two PDBs: hr pdb and sal espdb.
SYS and c##dba are CDB common users who have schemas in CDB$ROOT, hr pdb, and

sal espdb. Local users hr and r ep exist in hr pdb. Local users hr and r ep also exist in

sal espdb.

4-3

ORACLE

Chapter 4
Introduction to Schema Objects

Figure 4-3 Users and Schemas in a CDB

Local
Users

Common hrin
Users hrpdb
-PUBLIC
Root (CDB$ROOT)
hrin
SYS salespdb

cititdba

T AN

~frpdb__} [salespdb 4 repin
salespdb
[svs |[br ||| [svs | |
[c##dbal[rep || | [c##dbal[rep |

repin
hrpdb

«Do Do aDowDo

Common users have the following characteristics:

A common user can log in to any container (including CDB$ROOT) in which it has the
CREATE SESSI ON privilege.

A common user need not have the same privileges in every container. For
example, the c##dba user may have the privilege to create a session in hr pdb and
in the root, but not to create a session in sal espdb. Because a common user with
the appropriate privileges can switch between containers, a common user in the
root can administer PDBs

An application common user does not have the CREATE SESSI ON privilege in any
container outside its own application container.

Thus, an application common user is restricted to its own application container.
For example, the application common user created in the saas_sal es application
can connect only to the application root and the PDBs in the saas_sal es
application container.

The names of user-created CDB common users must follow the naming rules for
other database users. Additionally, the names must begin with the characters
specified by the COMON_USER_PREFI X initialization parameter, which are c## or Ci##
by default. Oracle-supplied common user names and user-created application
common user names do not have this restriction.

No local user name may begin with the characters c## or C##.

4-4

Chapter 4
Introduction to Schema Objects

Every common user is uniquely named across all PDBs within the container (either the
system container or a specific application container) in which it was created.

A CDB common user is defined in the CDB root, but must be able to connect to every
PDB with the same identity. An application common user resides in the application root,
and may connect to every application PDB in its container with the same identity.

Characteristics of Common Users

ORACLE

Every common user is either Oracle-supplied or user-created.

Common user accounts have the following characteristics:

A common user can log in to any container (including CDB$ROOT) in which it has the
CREATE SESSI ON privilege.

A common user need not have the same privileges in every container. For example, the
c##dba user may have the privilege to create a session in hr pdb and in the root, but not to
create a session in sal espdbh. Because a common user with the appropriate privileges
can switch between containers, a common user in the root can administer PDBs.

An application common user does not have the CREATE SESSI ON privilege in any
container outside its own application container.

Thus, an application common user is restricted to its own application container. For
example, the application common user created in the saas_sal es application can
connect only to the application root and the PDBs in the saas_sal es application
container.

The names of user-created CDB common users must follow the naming rules for other
database users. Additionally, the names must begin with the characters specified by the
COVMON_USER_PREFI X initialization parameter, which are c## or C## by default. Oracle-
supplied common user names and user-created application common user names do not
have this restriction.

No local user name may begin with the characters c## or C##.

Every common user is uniquely named across all PDBs within the container (either the
system container or a specific application container) in which it was created.

A CDB common user is defined in the CDB root, but must be able to connect to every
PDB with the same identity. An application common user resides in the application root,
and may connect to every application PDB in its container with the same identity.

The following figure shows sample users and schemas in two PDBs: hr pdb and sal espdb.
SYS and c##dba are CDB common users who have schemas in CDB$ROOT, hr pdb, and

sal espdb. Local users hr and r ep exist in hr pdb. Local users hr and r ep also exist in

sal espdb.

4-5

Chapter 4
Introduction to Schema Objects

Figure 4-4 Users and Schemas in a CDB

Local
Users
Common hrin
Users hrpdb
SYS PUBLIC
ST Root (CDB$ROOT)
/ hrin
SYS salespdb
4 Seed ' '
(PDBS$SEED)
. o5 ,
[sys [rr JI | [SYS [[hr]
[c#itdbal[rep || | [cH#tdbal[rep |4
A
rep in
hrpdb
¢ See Also:
e Oracle Database Security Guide to learn about common user accounts
e Oracle Database Reference to learn about COWON_USER_PREFI X
SYS and SYSTEM Accounts
All Oracle databases include default common user accounts with administrative
privileges.
Administrative accounts are highly privileged and are intended only for DBAs
authorized to perform tasks such as starting and stopping the database, managing
memory and storage, creating and managing database users, and so on.
The SYS common user account is automatically created when a database is created.
This account can perform all database administrative functions. The SYS schema
ORACLE 4-6

Chapter 4
Introduction to Schema Objects

stores the base tables and views for the data dictionary. These base tables and views are
critical for the operation of Oracle Database. Tables in the SYS schema are manipulated only
by the database and must never be modified by any user.

The SYSTEMadministrative account is also automatically created when a database is created.
The SYSTEMschema stores additional tables and views that display administrative information,
and internal tables and views used by various Oracle Database options and tools. Never use
the SYSTEMschema to store tables of interest to nonadministrative users.

¢ See Also:

e Oracle Database Security Guide to learn about user accounts

e Oracle Database Administrator’s Guide to learn about SYS, SYSTEM and other
administrative accounts

Local User Accounts

A local user is a database user that is not common and can operate only within a single
PDB.

Local users have the following characteristics:

* Alocal user is specific to a PDB and may own a schema in this PDB.

In the example shown in "Characteristics of Common Users", local user hr on hr pdb
owns the hr schema. On sal espdb, local user r ep owns the r ep schema, and local user
hr owns the hr schema.

e Alocal user can administer a PDB, including opening and closing it.

A common user with SYSDBA privileges can grant SYSDBA privileges to a local user. In this
case, the privileged user remains local.

* Alocal user in one PDB cannot log in to another PDB or to the CDB root.

For example, when local user hr connects to hr pdb, hr cannot access objects in the sh
schema that reside in the sal espdb database without using a database link. In the same
way, when local user sh connects to the sal espdb PDB, sh cannot access objects in the
hr schema that resides in hr pdb without using a database link.

e The name of a local user must not begin with the characters c## or C##.
e The name of a local user must only be unique within its PDB.

The user name and the PDB in which that user schema is contained determine a unique
local user. "Characteristics of Common Users" shows that a local user and schema
named r ep exist on hr pdb. A completely independent local user and schema named r ep
exist on the sal espdb PDB.

The following table describes a scenario involving the CDB in "Characteristics of Common
Users". Each row describes an action that occurs after the action in the preceding row.
Common user SYSTEMcreates local users in two PDBs.

ORACLE 47

Table 4-1 Local Usersin a CDB

Chapter 4
Introduction to Schema Objects

Operation

Description

SQL> CONNECT SYSTEM@r pdb
Ent er passmord: Kok ok ok ok ok ok K
Connect ed.

SYSTEMconnects to the hr pdb container
using the service name hr pdb.

SQ.> CREATE USER rep | DENTI FI ED BY password;
User created.
SQ.> GRANT CREATE SESSI ON TO rep;

Grant succeeded.

SYSTEMnow creates a local user r ep and
grants the CREATE SESSI ON privilege in this
PDB to this user. The user is local because
common users can only be created by a
common user connected to the root.

SQ.> CONNECT rep@al espdb

Enter password: ******x

ERROR:

ORA-01017: invalid username/ password; |ogon
deni ed

The r ep user, which is local to hr pdb,
attempts to connect to sal espdb. The
attempt fails because r ep does not exist in
PDB sal espdb.

SQL> CONNECT SYSTEM@al espdb
Ent er paSSWDrd: *kkkokk kK
Connect ed.

SYSTEMconnects to the sal espdb container
using the service name sal espdb.

SQL> CREATE USER rep | DENTI FI ED BY passwor d;
User created.
SQL> GRANT CREATE SESSI ON TO rep;

G ant succeeded.

SYSTEMcreates a local user rep in sal espdb
and grants the CREATE SESSI ON privilege in

this PDB to this user. Because the name of a

local user must only be unique within its PDB,
a user named r ep can exist in both

sal espdb and hr pdb.

SQ.> CONNECT rep@al espdb
Enter password:; ******x
Connect ed.

The r ep user successfully logs in to
sal espdb.

ORACLE

4-8

Chapter 4
Introduction to Schema Objects

¢ See Also:

Oracle Database Security Guide to learn about local user accounts

Common and Local Objects

A common object is defined in either the CDB root or an application root, and can be
referenced using metadata links or object links. A local object is every object that is not a
common object.

Database-supplied common objects are defined in CDB$ROOT and cannot be changed. Oracle
Database does not support creation of common objects in CDB$ROOT.

You can create most schema objects—such as tables, views, PL/SQL and Java program
units, sequences, and so on—as common objects in an application root. If the object exists in
an application root, then it is called an application common object.

A local user can own a common object. Also, a common user can own a local object, but only
when the object is not data-linked or metadata-linked, and is also neither a metadata link nor
a data link.

See Also:

Oracle Database Security Guide to learn more about privilege management for
common objects

Schema Object Types

ORACLE

Oracle SQL enables you to create and manipulate many other types of schema objects.

The principal types of schema objects are shown in the following table.

Table 4-2 Schema Objects

Object Description To Learn More

Table A table stores data in rows. Tables are the "Overview of Tables"
most important schema objects in a relational
database.

Indexes Indexes are schema objects that contain an "Indexes and Index-Organized
entry for each indexed row of the table or Tables"

table cluster and provide direct, fast access to
rows. Oracle Database supports several
types of index. An index-organized table is a
table in which the data is stored in an index
structure.

Partitions Partitions are pieces of large tables and "Overview of Partitions"
indexes. Each partition has its own name and
may optionally have its own storage
characteristics.

4-9

Chapter 4
Introduction to Schema Objects

Table 4-2 (Cont.) Schema Objects

___|
Object Description To Learn More

Views Views are customized presentations of data "Overview of Views"
in one or more tables or other views. You can
think of them as stored queries. Views do not
actually contain data.

Sequences A sequence is a user-created object that can "Overview of Sequences"
be shared by multiple users to generate
integers. Typically, you use sequences to
generate primary key values.

Dimensions A dimension defines a parent-child "Overview of Dimensions"
relationship between pairs of column sets,
where all the columns of a column set must
come from the same table. Dimensions are
commonly used to categorize data such as
customers, products, and time.

Synonyms A synonym is an alias for another schema "Overview of Synonyms"
object. Because a synonym is simply an alias,
it requires no storage other than its definition
in the data dictionary.

PL/SQL PL/SQL is the Oracle procedural extension of "PL/SQL Subprograms "
subprograms and SQL. A PL/SQL subprogram is a hamed
packages PL/SQL block that can be invoked with a set

of parameters. A PL/SQL package groups
logically related PL/SQL types, variables, and
subprograms.

Other types of objects are also stored in the database and can be created and
manipulated with SQL statements but are not contained in a schema. These objects
include database user account, roles, contexts, and dictionary objects.

See Also:

e Oracle Database Administrator’s Guide to learn how to manage schema
objects

e Oracle Database SQL Language Reference for more about schema
objects and database objects

Schema Object Storage

Some schema objects store data in a type of logical storage structure called a
segment. For example, a nonpartitioned heap-organized table or an index creates a
segment.

Other schema objects, such as views and sequences, consist of metadata only. This
topic describes only schema objects that have segments.

Oracle Database stores a schema object logically within a tablespace. There is no
relationship between schemas and tablespaces: a tablespace can contain objects from

ORACLE 4-10

Chapter 4
Introduction to Schema Objects

different schemas, and the objects for a schema can be contained in different tablespaces.
The data of each object is physically contained in one or more data files.

The following figure shows a possible configuration of table and index segments,
tablespaces, and data files. The data segment for one table spans two data files, which are
both part of the same tablespace. A segment cannot span multiple tablespaces.

Figure 4-5 Segments, Tablespaces, and Data Files

Table Table '“dggi
|

Index Index Index |:| |:| |:| I:l

el sl HEs= pen

U O U U U O %
Index Index Index I:lu uI:”:l

=R :
TTeTal | (MR LTI T
v i) o) f v i v U (o) »
_/

Data Files ——— Segments

(physical structures associated (stored in tablespaces-

with only one tablespace) may span several data files)

See Also:

e "Logical Storage Structures" to learn about tablespaces and segments

e Oracle Database Administrator’s Guide to learn how to manage storage for
schema objects

Schema Object Dependencies

Some schema objects refer to other objects, creating a schema object dependency.

ORACLE 4-11

ORACLE

Chapter 4
Introduction to Schema Objects

For example, a view contains a query that references tables or views, while a PL/SQL
subprogram invokes other subprograms. If the definition of object A references object
B, then A is a dependent object on B, and B is a referenced object for A.

Oracle Database provides an automatic mechanism to ensure that a dependent object
is always up to date with respect to its referenced objects. When you create a
dependent object, the database tracks dependencies between the dependent object
and its referenced objects. When a referenced object changes in a way that might
affect a dependent object, the database marks the dependent object invalid. For
example, if a user drops a table, no view based on the dropped table is usable.

An invalid dependent object must be recompiled against the new definition of a
referenced object before the dependent object is usable. Recompilation occurs
automatically when the invalid dependent object is referenced.

As an illustration of how schema objects can create dependencies, the following
sample script creates a table t est _t abl e and then a procedure that queries this table:

CREATE TABLE test_table (col1 INTEGER col 2 I NTEGER);

CREATE OR REPLACE PROCEDURE test_proc
AS
BEG N
FOR x IN (SELECT coll, col2 FROMtest table)
LooP
-- process data
NULL;
END LOCP;
END;
/

The following query of the status of procedure t est _proc shows that it is valid:

SQ> SELECT OBJECT_NAME, STATUS FROM USER _OBJECTS WHERE OBJECT_NAME =
" TEST_PRCC' ;

OBJECT_NAME STATUS

TEST_PROC VALID

After adding the col 3 column to t est _t abl e, the procedure is still valid because the
procedure has no dependencies on this column:

SQL> ALTER TABLE test table ADD col 3 NUMBER;
Tabl e al tered.

SQL> SELECT OBJECT_NAME, STATUS FROM USER OBJECTS WHERE OBJECT_NAME =
" TEST_PRCC' ;

OBJECT_NAME STATUS

TEST_PROC VALID

4-12

Chapter 4
Introduction to Schema Objects

However, changing the data type of the col 1 column, which the t est _proc procedure
depends on, invalidates the procedure:

SQ.> ALTER TABLE test_table MODIFY col 1 VARCHAR2(20);
Tabl e altered.

SQ> SELECT OBJECT_NAME, STATUS FROM USER _OBJECTS WHERE OBJECT_NAME =
" TEST_PRCC ;

OBJECT_NAME STATUS

TEST_PROC | NVALID

Running or recompiling the procedure makes it valid again, as shown in the following
example:

SQL> EXECUTE test_proc
PL/ SQL procedure successfully conpl et ed.

SQL> SELECT OBJECT NAME, STATUS FROM USER OBJECTS WHERE OBJECT NAME =
' TEST_PROC ;

OBJECT_NAME STATUS

TEST_PROC VALID

¢ See Also:

Oracle Database Administrator’s Guide and Oracle Database Development Guide
to learn how to manage schema object dependencies

Sample Schemas

An Oracle database may include sample schemas, which are a set of interlinked schemas
that enable Oracle documentation and Oracle instructional materials to illustrate common
database tasks.

The hr sample schema contains information about employees, departments and locations,
work histories, and so on. The following illustration depicts an entity-relationship diagram of
the tables in hr. Most examples in this manual use objects from this schema.

ORACLE 4-13

Figure 4-6 HR Schema

DEPARTMENTS LOCATIONS
H R ___________________________________ department_id location_id
department_name street_address
manager_id postal_code
AN location_id city
state_province
JOB_H|STORY country_id
employee_id g
S;:;‘-;';? > | EMPLOYEES =
job_id employee_id - COUNTRIES
. first_name ; R
department_id | i . last name |- country_id
o country_name
email region_id
< phone_number gron_
hire_date
JOBS job_id \1/
X . salary
'i)ct’)b#t?e _____ commission_pct REGIONS
mJin ;alary manager_id re_gion_id
max_salary department_id region_name
See Also:

Chapter 4
Overview of Tables

Oracle Database Sample Schemas to learn how to install the sample

schemas

Overview of Tables

ORACLE

A table is the basic unit of data organization in an Oracle database.

A table describes an entity, which is something of significance about which
information must be recorded. For example, an employee could be an entity.

Oracle Database tables fall into the following basic categories:

Relational tables

Relational tables have simple columns and are the most common table type.
Example 4-1 shows a CREATE TABLE statement for a relational table.

Object tables

The columns correspond to the top-level attributes of an object type. See
"Overview of Object Tables".

You can create a relational table with the following organizational characteristics:

A heap-organized table does not store rows in any particular order. The CREATE
TABLE statement creates a heap-organized table by default.

An index-organized table orders rows according to the primary key values. For
some applications, index-organized tables enhance performance and use disk
space more efficiently. See "Overview of Index-Organized Tables".

4-14

Columns

Chapter 4
Overview of Tables

* An external table is a read-only table whose metadata is stored in the database but
whose data is stored outside the database. See "Overview of External Tables".

A table is either permanent or temporary. A permanent table definition and data persist
across sessions. A temporary table definition persists in the same way as a permanent table
definition, but the data exists only for the duration of a transaction or session. Temporary
tables are useful in applications where a result set must be held temporarily, perhaps
because the result is constructed by running multiple operations.

This topic contains the following topics:

* Columns

* Rows

e Example: CREATE TABLE and ALTER TABLE Statements
e Oracle Data Types

e Integrity Constraints

e Table Storage

e Table Compression

¢ See Also:

Oracle Database Administrator’s Guide to learn how to manage tables

A table definition includes a table name and set of columns.

A column identifies an attribute of the entity described by the table. For example, the column
enpl oyee_i d in the enpl oyees table refers to the employee ID attribute of an employee entity.

In general, you give each column a column name, a data type, and a width when you create
a table. For example, the data type for enpl oyee_i d is NUMBER(6) , indicating that this column
can only contain numeric data up to 6 digits in width. The width can be predetermined by the
data type, as with DATE.

Virtual Columns

ORACLE

A table can contain a virtual column, which unlike a nonvirtual column does not consume
disk space.

The database derives the values in a virtual column on demand by computing a set of user-
specified expressions or functions. For example, the virtual column i ncone could be a
function of the sal ary and commi ssi on_pct columns.

See Also:

Oracle Database Administrator’s Guide to learn how to manage virtual columns

4-15

Chapter 4
Overview of Tables

Invisible Columns

Rows

An invisible column is a user-specified column whose values are only visible when
the column is explicitly specified by name. You can add an invisible column to a table
without affecting existing applications, and make the column visible if necessary.

In general, invisible columns help migrate and evolve online applications. A use case
might be an application that queries a three-column table with a SELECT * statement.
Adding a fourth column to the table would break the application, which expects three
columns of data. Adding a fourth invisible column makes the application function
normally. A developer can then alter the application to handle a fourth column, and
make the column visible when the application goes live.

The following example creates a table product s with an invisible column count , and
then makes the invisible column visible:

CREATE TABLE products (prod_id INT, count INT INVISIBLE);
ALTER TABLE products MODIFY (count VISIBLE);

¢ See Also:

e Oracle Database Administrator’s Guide to learn how to manage invisible
columns

e Oracle Database SQL Language Reference for more information about
invisible columns

A row is a collection of column information corresponding to a record in a table.

For example, a row in the enpl oyees table describes the attributes of a specific
employee: employee ID, last name, first name, and so on. After you create a table, you
can insert, query, delete, and update rows using SQL.

Example: CREATE TABLE and ALTER TABLE Statements

ORACLE

The Oracle SQL statement to create a table is CREATE TABLE.
Example 4-1 CREATE TABLE employees

The following example shows the CREATE TABLE statement for the enpl oyees table in
the hr sample schema. The statement specifies columns such as enpl oyee i d,
first_nane, and so on, specifying a data type such as NUMBER or DATE for each
column.

CREATE TABLE enpl oyees
(enpl oyee_id NUVBER(6)
, first_name VARCHAR2(20)
, last_name VARCHAR2(25)

4-16

ORACLE

CONSTRAI NT emp_l ast_name_nn NOT NULL

, emil VARCHAR2(25)

CONSTRAI NT emp_emai | _nn NOT NULL
, phone_nunber VARCHAR2(20)
, hire_date DATE

CONSTRAI NT emp_hire_date_nn NOT NULL
, job_id VARCHAR2(10)

CONSTRAI NT emp_job_nn NOT NULL
, salary NUMBER(8, 2)
, comm ssion_pct NUMBER(2, 2)
, manager _id NUVBER(6)
, departnment _id NUMBER(4)
, CONSTRAI NT enp_salary _mn

CHECK (salary > 0)

, CONSTRAI NT emp_emai | _uk

UNI QUE (enail)

Example 4-2 ALTER TABLE employees

Chapter 4
Overview of Tables

The following example shows an ALTER TABLE statement that adds integrity constraints to the
enpl oyees table. Integrity constraints enforce business rules and prevent the entry of invalid

information into tables.

ALTER TABLE enpl oyees

ADD (CONSTRAI NT enmp_enp_i d_pk
PRI MARY KEY (enpl oyee_i d)
, CONSTRAI NT enmp_dept _fk
FOREI GN KEY (department _id)
REFERENCES depart ment s
, CONSTRAI NT enmp_job_fk
FOREI GN KEY (j ob_id)
REFERENCES j obs (job_id)
, CONSTRAI NT enmp_manager _fk

FOREI GN KEY (nmanager _i d)
REFERENCES enpl oyees

)

Example 4-3 Rows in the employees Table

The following sample output shows 8 rows and 6 columns of the hr. enpl oyees table.

EMPLOYEE_I D FI RST_NAME LAST_NAME

100 Steven Ki ng 24000
101 Neena Kochhar 17000
102 Lex De Haan 17000
103 Al exander Hunol d 9000
107 Di ana Lorentz 4200
149 E eni Zl ot key 10500
174 Ellen Abel 11000
178 Kinberely Gant 7000

SALARY COWM SSI ON_PCT DEPARTMENT_I D

4-17

Chapter 4
Overview of Tables

The preceding output illustrates some of the following important characteristics of
tables, columns, and rows:

* Arow of the table describes the attributes of one employee: name, salary,
department, and so on. For example, the first row in the output shows the record
for the employee named Steven King.

* A column describes an attribute of the employee. In the example, the enpl oyee i d
column is the primary key, which means that every employee is uniguely identified
by employee ID. Any two employees are guaranteed not to have the same
employee ID.

* A non-key column can contain rows with identical values. In the example, the
salary value for employees 101 and 102 is the same: 17000.

« Aforeign key column refers to a primary or unique key in the same table or a
different table. In this example, the value of 90 in department i d corresponds to
the depart ment _i d column of the depart nent s table.

e Afield is the intersection of a row and column. It can contain only one value. For
example, the field for the department ID of employee 103 contains the value 60.

» Afield can lack a value. In this case, the field is said to contain a null value. The
value of the commi ssi on_pct column for employee 100 is null, whereas the value
in the field for employee 149 is . 2. A column allows nulls unless a NOT NULL or
primary key integrity constraint has been defined on this column, in which case no
row can be inserted without a value for this column.

¢ See Also:

Oracle Database SQL Language Reference for CREATE TABLE syntax and
semantics

Oracle Data Types

ORACLE

Each column has a data type, which is associated with a specific storage format,
constraints, and valid range of values. The data type of a value associates a fixed set
of properties with the value.

These properties cause Oracle Database to treat values of one data type differently
from values of another. For example, you can multiply values of the NUMBER data type,
but not values of the RAWdata type.

When you create a table, you must specify a data type for each of its columns. Each
value subsequently inserted in a column assumes the column data type.

Oracle Database provides several built-in data types. The most commonly used data
types fall into the following categories:

e Character Data Types
* Numeric Data Types

* Datetime Data Types
* Rowid Data Types

* Format Models and Data Types

4-18

Chapter 4
Overview of Tables

Other important categories of built-in types include raw, large objects (LOBs), and collections.
PL/SQL has data types for constants and variables, which include BOOLEAN, reference types,
composite types (records), and user-defined types.

¢ See Also:

e Oracle Database SecureFiles and Large Objects Developer's Guide

e Oracle Database SQL Language Reference to learn about built-in SQL data
types

e Oracle Database PL/SQL Packages and Types Reference to learn about
PL/SQL data types

e Oracle Database Development Guide to learn how to use the built-in data types

Character Data Types

Character data types store alphanumeric data in strings. The most common character data
type is VARCHAR2, which is the most efficient option for storing character data.

The byte values correspond to the character encoding scheme, generally called a character
set. The database character set is established at database creation. Examples of character
sets are 7-bit ASCII, EBCDIC, and Unicode UTF-8.

The length semantics of character data types are measurable in bytes or characters. The
treatment of strings as a sequence of bytes is called byte semantics. This is the default for
character data types. The treatment of strings as a sequence of characters is called character
semantics. A character is a code point of the database character set.

" See Also:

e Oracle Database Globalization Support Guide to learn more about character
sets

e Oracle Database 2 Day Developer's Guide for a brief introduction to data types

e Oracle Database Development Guide to learn how to choose a character data
type

VARCHAR?Z and CHAR Data Types

The VARCHAR? data type stores variable-length character literals. A literal is a fixed data
value.

For example, ' LILA ," St. George Island' ,and' 101" are all character literals; 5001 is a
numeric literal. Character literals are enclosed in single quotation marks so that the database
can distinguish them from schema object names.

ORACLE 4-19

Chapter 4
Overview of Tables

< Note:

This manual uses the terms text literal, character literal, and string
interchangeably.

When you create a table with a VARCHAR2 column, you specify a maximum string
length. In Example 4-1, the | ast _name column has a data type of VARCHAR2(25) , which
means that any name stored in the column has a maximum of 25 bytes.

For each row, Oracle Database stores each value in the column as a variable-length
field unless a value exceeds the maximum length, in which case the database returns
an error. For example, in a single-byte character set, if you enter 10 characters for the
| ast _nane column value in a row, then the column in the row piece stores only 10
characters (10 bytes), not 25. Using VARCHAR2 reduces space consumption.

In contrast to VARCHAR2, CHAR stores fixed-length character strings. When you create a
table with a CHAR column, the column requires a string length. The default is 1 byte.
The database uses blanks to pad the value to the specified length.

Oracle Database compares VARCHAR? values using nonpadded comparison semantics
and compares CHAR values using blank-padded comparison semantics.

¢ See Also:

Oracle Database SQL Language Reference for details about blank-padded
and nonpadded comparison semantics

NCHAR and NVARCHAR?2 Data Types

The NCHAR and NVARCHAR2 data types store Unicode character data.

Unicode is a universal encoded character set that can store information in any
language using a single character set. NCHAR stores fixed-length character strings that
correspond to the national character set, whereas NVARCHAR? stores variable length
character strings.

You specify a national character set when creating a database. The character set of
NCHAR and NVARCHAR2 data types must be either AL16UTF16 or UTF8. Both character
sets use Unicode encoding.

When you create a table with an NCHAR or NVARCHAR2 column, the maximum size is
always in character length semantics. Character length semantics is the default and
only length semantics for NCHAR or NVARCHAR2.

See Also:

Oracle Database Globalization Support Guide for information about Oracle's
globalization support feature

ORACLE 4-20

Chapter 4
Overview of Tables

Numeric Data Types

The Oracle Database numeric data types store fixed and floating-point numbers, zero, and
infinity. Some numeric types also store values that are the undefined result of an operation,
which is known as "not a number" or NaN.

Oracle Database stores numeric data in variable-length format. Each value is stored in
scientific notation, with 1 byte used to store the exponent. The database uses up to 20 bytes
to store the mantissa, which is the part of a floating-point number that contains its significant
digits. Oracle Database does not store leading and trailing zeros.

NUMBER Data Type

The NUMBER data type stores fixed and floating-point numbers. The database can store
numbers of virtually any magnitude. This data is guaranteed to be portable among different
operating systems running Oracle Database. The NUVBER data type is recommended for most
cases in which you must store numeric data.

You specify a fixed-point number in the form NUMBER(p, s) , where p and s refer to the
following characteristics:

* Precision

The precision specifies the total number of digits. If a precision is not specified, then the
column stores the values exactly as provided by the application without any rounding.

e Scale

The scale specifies the number of digits from the decimal point to the least significant
digit. Positive scale counts digits to the right of the decimal point up to and including the
least significant digit. Negative scale counts digits to the left of the decimal point up to but
not including the least significant digit. If you specify a precision without a scale, as in
NUMBER(6) , then the scale is 0.

In Example 4-1, the sal ary column is type NUMBER(8, 2) , so the precision is 8 and the scale is
2. Thus, the database stores a salary of 100,000 as 100000. 00.

Floating-Point Numbers

Oracle Database provides two numeric data types exclusively for floating-point numbers:
Bl NARY_FLOAT and BI NARY_DOUBLE.

These types support all of the basic functionality provided by the NUVBER data type. However,
whereas NUMBER uses decimal precision, Bl NARY_FLOAT and Bl NARY _DOUBLE use binary
precision, which enables faster arithmetic calculations and usually reduces storage
requirements.

Bl NARY_FLQAT and BI NARY_DOUBLE are approximate numeric data types. They store
approximate representations of decimal values, rather than exact representations. For
example, the value 0.1 cannot be exactly represented by either Bl NARY_DOUBLE or

Bl NARY_FLQAT. They are frequently used for scientific computations. Their behavior is similar
to the data types FLOAT and DOUBLE in Java and XMLSchema.

ORACLE 4-21

Chapter 4
Overview of Tables

¢ See Also:

Oracle Database SQL Language Reference to learn about precision, scale,
and other characteristics of numeric types

Datetime Data Types

The datetime data types are DATE and TI MESTAMP. Oracle Database provides
comprehensive time zone support for time stamps.

DATE Data Type

ORACLE

The DATE data type stores date and time. Although datetimes can be represented in
character or number data types, DATE has special associated properties.

The database stores dates internally as numbers. Dates are stored in fixed-length
fields of 7 bytes each, corresponding to century, year, month, day, hour, minute, and
second.

" Note:

Dates fully support arithmetic operations, so you add to and subtract from
dates just as you can with numbers.

The database displays dates according to the specified format model. A format model
is a character literal that describes the format of a datetime in a character string. The
standard date format is DD- MON- RR, which displays dates in the form 01- JAN- 11.

RRis similar to YY (the last two digits of the year), but the century of the return value
varies according to the specified two-digit year and the last two digits of the current
year. Assume that in 1999 the database displays 01- JAN- 11. If the date format uses
RR, then 11 specifies 2011, whereas if the format uses YY, then 11 specifies 1911. You
can change the default date format at both the database instance and session level.

Oracle Database stores time in 24-hour format—HH: M : SS. If no time portion is
entered, then by default the time in a date field is 00: 00: 00 A. M In a time-only entry,
the date portion defaults to the first day of the current month.

¢ See Also:

e Oracle Database Development Guide for more information about
centuries and date format masks

e Oracle Database SQL Language Reference for information about
datetime format codes

e Oracle Database Development Guide to learn how to perform arithmetic
operations with datetime data types

4-22

Chapter 4
Overview of Tables

TIMESTAMP Data Type

The TI MESTAMP data type is an extension of the DATE data type.

TI MESTAMP stores fractional seconds in addition to the information stored in the DATE data
type. The TI MESTAMP data type is useful for storing precise time values, such as in
applications that must track event order.

The DATETI ME data types TI MESTAMP W TH TI ME ZONE and TI MESTAVP W TH LOCAL TI ME ZONE
are time-zone aware. When a user selects the data, the value is adjusted to the time zone of
the user session. This data type is useful for collecting and evaluating date information

across geographic regions.

¢ See Also:

Oracle Database SQL Language Reference for details about the syntax of creating
and entering data in time stamp columns

Rowid Data Types

Use of Rowids

ORACLE

Every row stored in the database has an address. Oracle Database uses a RON D data type to
store the address (rowid) of every row in the database.

Rowids fall into the following categories:

e Physical rowids store the addresses of rows in heap-organized tables, table clusters, and
table and index partitions.

e Logical rowids store the addresses of rows in index-organized tables.

» Foreign rowids are identifiers in foreign tables, such as DB2 tables accessed through a
gateway. They are not standard Oracle Database rowids.

A data type called the universal rowid, or urowid, supports all types of rowids.

Oracle Database uses rowids internally for the construction of indexes.

A B-tree index, which is the most common type, contains an ordered list of keys divided into
ranges. Each key is associated with a rowid that points to the associated row's address for
fast access.

End users and application developers can also use rowids for several important functions:

* Rowids are the fastest means of accessing particular rows.
* Rowids provide the ability to see how a table is organized.
* Rowids are unique identifiers for rows in a given table.

You can also create tables with columns defined using the ROW D data type. For example, you
can define an exception table with a column of data type ROW D to store the rowids of rows
that violate integrity constraints. Columns defined using the RON D data type behave like other
table columns: values can be updated, and so on.

4-23

Chapter 4
Overview of Tables

ROWID Pseudocolumn

Every table in an Oracle database has a pseudocolumn named ROW D.

A pseudocolumn behaves like a table column, but is not actually stored in the table.
You can select from pseudocolumns, but you cannot insert, update, or delete their
values. A pseudocolumn is also similar to a SQL function without arguments.
Functions without arguments typically return the same value for every row in the result
set, whereas pseudocolumns typically return a different value for each row.

Values of the ROA D pseudocolumn are strings representing the address of each row.
These strings have the data type ROA D. This pseudocolumn is not evident when listing
the structure of a table by executing SELECT or DESCRI BE, nor does the pseudocolumn
consume space. However, the rowid of each row can be retrieved with a SQL query
using the reserved word RON D as a column name.

The following example queries the ROA D pseudocolumn to show the rowid of the row
in the enpl oyees table for employee 100:

SQ.> SELECT ROW D FROM enpl oyees WHERE enpl oyee id = 100;

AAAPec AAFAAAABSAAA

¢ See Also:

* "Rowid Format"

e Oracle Database Development Guide to learn how to identify rows by
address

e Oracle Database SQL Language Reference to learn about rowid types

Format Models and Data Types

ORACLE

A format model is a character literal that describes the format of datetime or numeric
data stored in a character string. A format model does not change the internal
representation of the value in the database.

When you convert a character string into a date or number, a format model determines
how the database interprets the string. In SQL, you can use a format model as an
argument of the TO CHAR and TO _DATE functions to format a value to be returned from
the database or to format a value to be stored in the database.

The following statement selects the salaries of the employees in Department 80 and
uses the TO_CHAR function to convert these salaries into character values with the
format specified by the number format model ' $99, 990. 99' :

SQL> SELECT | ast_name enpl oyee, TO CHAR(sal ary, '$99,990.99') AS
" SALARY"
2 FROM enpl oyees

4-24

Chapter 4
Overview of Tables

3 WHERE department_id = 80 AND | ast_name = 'Russell';

EMPLOYEE SALARY

Russel | $14, 000. 00

The following example updates a hire date using the TO_DATE function with the format mask
"YYYY MM DD to convert the string ' 1998 05 20' to a DATE value:

SQ.> UPDATE enpl oyees
2 SET hire_date = TO DATE(' 1998 05 20',' YYYY MM DD)
3 WHERE | ast_name = 'Hunol d';

¢ See Also:

Oracle Database SQL Language Reference to learn more about format models

Integrity Constraints

An integrity constraint is a named rule that restrict the values for one or more columns in a
table.

Data integrity rules prevent invalid data entry into tables. Also, constraints can prevent the
deletion of a table when certain dependencies exist.

If a constraint is enabled, then the database checks data as it is entered or updated. Oracle
Database prevents data that does not conform to the constraint from being entered. If a
constraint is disabled, then Oracle Database allows data that does not conform to the
constraint to enter the database.

In Example 4-1, the CREATE TABLE statement specifies NOT NULL constraints for the

| ast _nane, emai |, hire_date, andjob_i d columns. The constraint clauses identify the
columns and the conditions of the constraint. These constraints ensure that the specified
columns contain no null values. For example, an attempt to insert a new employee without a
job ID generates an error.

You can create a constraint when or after you create a table. You can temporarily disable
constraints if needed. The database stores constraints in the data dictionary.

¢ See Also:

e "Data Integrity" to learn about integrity constraints
e "Overview of the Data Dictionary" to learn about the data dictionary

e Oracle Database SQL Language Reference to learn about SQL constraint
clauses

ORACLE 4-25

Chapter 4
Overview of Tables

Table Storage

Oracle Database uses a data segment in a tablespace to hold table data.

A segment contains extents made up of data blocks. The data segment for a table (or
cluster data segment, for a table cluster) is located in either the default tablespace of
the table owner or in a tablespace named in the CREATE TABLE statement.

See Also:

"User Segments" to learn about the types of segments and how they are
created

Table Organization

ORACLE

By default, a table is organized as a heap, which means that the database places rows
where they fit best rather than in a user-specified order. Thus, a heap-organized table
is an unordered collection of rows.

" Note:

Index-organized tables use a different principle of organization.

As users add rows, the database places the rows in the first available free space in the
data segment. Rows are not guaranteed to be retrieved in the order in which they were
inserted.

The hr. depar t ment s table is a heap-organized table. It has columns for department
ID, name, manager ID, and location ID. As rows are inserted, the database stores
them wherever they fit. A data block in the table segment might contain the unordered
rows shown in the following example:

50, Shi ppi ng, 121, 1500

120, Treasury,, 1700

70, Publ ic Rel ations, 204, 2700
30, Pur chasi ng, 114, 1700

130, Corporate Tax,, 1700

10, Adni ni stration, 200, 1700
110, Accounti ng, 205, 1700

The column order is the same for all rows in a table. The database usually stores
columns in the order in which they were listed in the CREATE TABLE statement, but this
order is not guaranteed. For example, if a table has a column of type LONG, then Oracle
Database always stores this column last in the row. Also, if you add a new column to a
table, then the new column becomes the last column stored.

A table can contain a virtual column, which unlike normal columns does not consume
space on disk. The database derives the values in a virtual column on demand by

4-26

Row Storage

Chapter 4
Overview of Tables

computing a set of user-specified expressions or functions. You can index virtual columns,
collect statistics on them, and create integrity constraints. Thus, virtual columns are much like
nonvirtual columns.

¢ See Also:

e "Overview of Index-Organized Tables"

e Oracle Database SQL Language Reference to learn about virtual columns

The database stores rows in data blocks. Each row of a table containing data for less than
256 columns is contained in one or more row pieces.

If possible, Oracle Database stores each row as one row piece. However, if all of the row
data cannot be inserted into a single data block, or if an update to an existing row causes the
row to outgrow its data block, then the database stores the row using multiple row pieces.

Rows in a table cluster contain the same information as rows in nonclustered tables.
Additionally, rows in a table cluster contain information that references the cluster key to
which they belong.

¢ See Also:

"Data Block Format" to learn about the components of a data block

Rowids of Row Pieces

ORACLE

A rowid is effectively a 10-byte physical address of a row.

Every row in a heap-organized table has a rowid unique to this table that corresponds to the
physical address of a row piece. For table clusters, rows in different tables that are in the
same data block can have the same rowid.

Oracle Database uses rowids internally for the construction of indexes. For example, each
key in a B-tree index is associated with a rowid that points to the address of the associated
row for fast access. Physical rowids provide the fastest possible access to a table row,
enabling the database to retrieve a row in as little as a single /0.

¢ See Also:

* "Rowid Format" to learn about the structure of a rowid

e "Overview of B-Tree Indexes" to learn about the types and structure of B-tree
indexes

4-27

Chapter 4
Overview of Tables

Storage of Null Values

A null is the absence of a value in a column. Nulls indicate missing, unknown, or
inapplicable data.

Nulls are stored in the database if they fall between columns with data values. In these
cases, they require 1 byte to store the length of the column (zero). Trailing nulls in a
row require no storage because a new row header signals that the remaining columns
in the previous row are null. For example, if the last three columns of a table are null,
then no data is stored for these columns.

¢ See Also:

Oracle Database SQL Language Reference to learn more about null values

Table Compression

The database can use table compression to reduce the amount of storage required
for the table.

Compression saves disk space, reduces memory use in the database buffer cache,
and in some cases speeds query execution. Table compression is transparent to
database applications.

Basic Table Compression and Advanced Row Compression

ORACLE

Dictionary-based table compression provides good compression ratios for heap-
organized tables.

Oracle Database supports the following types of dictionary-based table compression:
e Basic table compression

This type of compression is intended for bulk load operations. The database does
not compress data modified using conventional DML. You must use direct path
INSERT operations, ALTER TABLE . . . MOVE operations, or online table
redefinition to achieve basic table compression.

* Advanced row compression

This type of compression is intended for OLTP applications and compresses data
manipulated by any SQL operation. The database achieves a competitive
compression ratio while enabling the application to perform DML in approximately
the same amount of time as DML on an uncompressed table.

For the preceding types of compression, the database stores compressed rows in row
major format. All columns of one row are stored together, followed by all columns of
the next row, and so on. The database replaces duplicate values with a short
reference to a symbol table stored at the beginning of the block. Thus, information that
the database needs to re-create the uncompressed data is stored in the data block
itself.

Compressed data blocks look much like normal data blocks. Most database features
and functions that work on regular data blocks also work on compressed blocks.

4-28

Chapter 4
Overview of Tables

You can declare compression at the tablespace, table, partition, or subpartition level. If
specified at the tablespace level, then all tables created in the tablespace are compressed by
default.

Example 4-4 Table-Level Compression

The following statement applies advanced row compression to the or der s table:

ALTER TABLE oe. orders ROW STORE COVPRESS ADVANCED,

Example 4-5 Partition-Level Compression

The following example of a partial CREATE TABLE statement specifies advanced row
compression for one partition and basic table compression for the other partition:

CREATE TABLE sal es (
prod_id NUMBER NOT NULL,
cust _id NUMBER NOT NULL, ...)

PCTFREE 5 NOLOGA NG NOCOMPRESS

PARTI TI ON BY RANCGE (tine_id)

(partition sales_2013 VALUES LESS THAN(TO DATE(...)) ROW STORE COVPRESS
BASI C,

partition sal es_2014 VALUES LESS THAN (MAXVALUE) ROW STORE COVPRESS

ADVANCED) ;

" See Also:

* "Row Format" to learn how values are stored in a row
* "Data Block Compression" to learn about the format of compressed data blocks
e Oracle Database Ultilities to learn about using SQL*Loader for direct path loads

e Oracle Database Administrator’s Guide and Oracle Database Performance
Tuning Guide to learn about table compression

Hybrid Columnar Compression

With Hybrid Columnar Compression, the database stores the same column for a group of
rows together. The data block does not store data in row-major format, but uses a
combination of both row and columnar methods.

Storing column data together, with the same data type and similar characteristics,
dramatically increases the storage savings achieved from compression. The database
compresses data manipulated by any SQL operation, although compression levels are higher
for direct path loads. Database operations work transparently against compressed objects, so
no application changes are required.

ORACLE 4-29

Chapter 4
Overview of Tables

< Note:

Hybrid Column Compression and In-Memory Column Store (IM column
store) are closely related. The primary difference is that Hybrid Column
Compression optimizes disk storage, whereas the IM column store optimizes
memory storage.

¢ See Also:

"In-Memory Area" to learn more about the IM column store

Types of Hybrid Columnar Compression

If your underlying storage supports Hybrid Columnar Compression, then you can
specify different types of compression, depending on your requirements.

The compression options are:

* Warehouse compression

This type of compression is optimized to save storage space, and is intended for
data warehouse applications.

* Archive compression

This type of compression is optimized for maximum compression levels, and is
intended for historical data and data that does not change.

Hybrid Columnar Compression is optimized for data warehousing and decision support
applications on Oracle Exadata storage. Oracle Exadata maximizes the performance
of queries on tables that are compressed using Hybrid Columnar Compression, taking
advantage of the processing power, memory, and Infiniband network bandwidth that
are integral to the Oracle Exadata storage server.

Other Oracle storage systems support Hybrid Columnar Compression, and deliver the
same space savings as on Oracle Exadata storage, but do not deliver the same level
of query performance. For these storage systems, Hybrid Columnar Compression is
ideal for in-database archiving of older data that is infrequently accessed.

Compression Units

ORACLE

Hybrid Columnar Compression uses a logical construct called a compression unit to
store a set of rows.

When you load data into a table, the database stores groups of rows in columnar
format, with the values for each column stored and compressed together. After the
database has compressed the column data for a set of rows, the database fits the data
into the compression unit.

For example, you apply Hybrid Columnar Compression to a dai | y_sal es table. At the
end of every day, you populate the table with items and the number sold, with the item
ID and date forming a composite primary key. The following table shows a subset of
the rows in dai | y_sal es.

4-30

Chapter 4
Overview of Tables

Table 4-3 Sample Table daily_sales

Item_ID Date Num_Sold Shipped_From Restock
1000 01-JUN-18 2 WAREHOUSE1 Y
1001 01-JUN-18 0 WAREHOUSE3 N
1002 01-JUN-18 1 WAREHOUSE3 N
1003 01-JUN-14 0 WAREHOUSE?2 N
1004 01-JUN-18 2 WAREHOUSE1 N
1005 01-JUN-18 1 WAREHOUSE?2 N

Assume that this subset of rows is stored in one compression unit. Hybrid Columnar
Compression stores the values for each column together, and then uses multiple algorithms
to compress each column. The database chooses the algorithms based on a variety of
factors, including the data type of the column, the cardinality of the actual values in the
column, and the compression level chosen by the user.

As shown in the following graphic, each compression unit can span multiple data blocks. The
values for a particular column may or may not span multiple blocks.

Figure 4-7 Compression Unit

Column 1 Column 2 Column 3 Column 4 Column 5

Data Block 1 Data Block 2 Data Block 3 Data Block 4

If Hybrid Columnar Compression does not lead to space savings, then the database stores
the data in the DBM5_COMPRESSI ON. COMP_BLOCK format. In this case, the database applies
OLTP compression to the blocks, which reside in a Hybrid Columnar Compression segment.

ORACLE 4-31

Chapter 4
Overview of Tables

¢ See Also:

* "Row Locks (TX)"

e Oracle Database Licensing Information User Manual to learn about
licensing requirements for Hybrid Columnar Compression

e Oracle Database Administrator’s Guide to learn how to use Hybrid
Columnar Compression

e Oracle Database SQL Language Reference for CREATE TABLE syntax
and semantics

e Oracle Database PL/SQL Packages and Types Reference to learn about
the DBMS_COVPRESSI ON package

DML and Hybrid Columnar Compression

ORACLE

Hybrid Columnar Compression has implications for row locking in different types of
DML operations.

Direct Path Loads and Conventional Inserts

When loading data into a table that uses Hybrid Columnar Compression, you can use
either conventional inserts or direct path loads. Direct path loads lock the entire table,
which reduces concurrency.

Starting with Oracle Database 12¢ Release 2 (12.2), support is added for conventional
array inserts into the Hybrid Columnar Compression format. The advantages of
conventional array inserts are:

e Inserted rows use row-level locks, which increases concurrency.

e Automatic Data Optimization (ADO) and Heat Map support Hybrid Columnar
Compression for row-level policies. Thus, the database can use Hybrid Columnar
Compression for eligible blocks even when DML activity occurs on other parts of
the segment.

When the application uses conventional array inserts, Oracle Database stores the
rows in compression units when the following conditions are met:

* The table is stored in an ASSM tablespace.
e The compatibility level is 12.2.0.1 or later.

* The table definition satisfies the existing Hybrid Columnar Compression table
constraints, including no columns of type LONG, and no row dependencies.

Conventional inserts generate redo and undo. Thus, compression units created by
conventional DML statement are rolled back or committed along with the DML. The
database automatically performs index maintenance, just as for rows that are stored in
conventional data blocks.

Updates and Deletes

By default, the database locks all rows in the compression unit if an update or delete is
applied to any row in the unit. To avoid this issue, you can choose to enable row-level

4-32

Chapter 4
Overview of Table Clusters

locking for a table. In this case, the database only locks rows that are affected by the update
or delete operation.

¢ See Also:

e "Automatic Segment Space Management"
* "Row Locks (TX)"

e Oracle Database Administrator’s Guide to learn how to perform conventional
inserts

e Oracle Database SQL Language Reference to learn about the | NSERT
statement

Overview of Table Clusters

ORACLE

A table cluster is a group of tables that share common columns and store related data in the
same blocks.

When tables are clustered, a single data block can contain rows from multiple tables. For
example, a block can store rows from both the enpl oyees and depart ment s tables rather than
from only a single table.

The cluster key is the column or columns that the clustered tables have in common. For
example, the enpl oyees and depart ment s tables share the depart ment _i d column. You
specify the cluster key when creating the table cluster and when creating every table added
to the table cluster.

The cluster key value is the value of the cluster key columns for a particular set of rows. All
data that contains the same cluster key value, such as depart nent _i d=20, is physically
stored together. Each cluster key value is stored only once in the cluster and the cluster
index, no matter how many rows of different tables contain the value.

For an analogy, suppose an HR manager has two book cases: one with boxes of employee
folders and the other with boxes of department folders. Users often ask for the folders for all
employees in a particular department. To make retrieval easier, the manager rearranges all
the boxes in a single book case. She divides the boxes by department ID. Thus, all folders for
employees in department 20 and the folder for department 20 itself are in one box; the folders
for employees in department 100 and the folder for department 100 are in another box, and
so on.

Consider clustering tables when they are primarily queried (but not modified) and records
from the tables are frequently queried together or joined. Because table clusters store related
rows of different tables in the same data blocks, properly used table clusters offer the
following benefits over nonclustered tables:

» Disk I/O is reduced for joins of clustered tables.
* Access time improves for joins of clustered tables.

» Less storage is required to store related table and index data because the cluster key
value is not stored repeatedly for each row.

Typically, clustering tables is not appropriate in the following situations:

4-33

Chapter 4
Overview of Table Clusters

* The tables are frequently updated.
* The tables frequently require a full table scan.

* The tables require truncating.

Overview of Indexed Clusters

An index cluster is a table cluster that uses an index to locate data. The cluster
index is a B-tree index on the cluster key. A cluster index must be created before any
rows can be inserted into clustered tables.

Example 4-6 Creating a Table Cluster and Associated Index

Assume that you create the cluster enpl oyees_depart nents_cl ust er with the cluster
key depart nent _i d, as shown in the following example:

CREATE CLUSTER enpl oyees_departnents_cl uster
(department _id NUMBER(4))
SI ZE 512;

CREATE | NDEX i dx_enp_dept _cl uster
ON CLUSTER enpl oyees_departnents_cl uster;

Because the HASHKEYS clause is not specified, enpl oyees_departments_cl uster is an
indexed cluster. The preceding example creates an index named
i dx_enp_dept _cl uster on the cluster key departnent _id.

Example 4-7 Creating Tables in an Indexed Cluster

You create the enpl oyees and depart nent s tables in the cluster, specifying the
depart nent _i d column as the cluster key, as follows (the ellipses mark the place
where the column specification goes):

CREATE TABLE enpl oyees (...)
CLUSTER enpl oyees_departnents_cluster (departnent _id);

CREATE TABLE departments (...)
CLUSTER enpl oyees_departnents_cluster (departnent _id);

Assume that you add rows to the enpl oyees and depart nent s tables. The database
physically stores all rows for each department from the enpl oyees and depart ment s
tables in the same data blocks. The database stores the rows in a heap and locates
them with the index.

Figure 4-8 shows the enpl oyees_depart ments_cl ust er table cluster, which contains
enpl oyees and depart nent s. The database stores rows for employees in department
20 together, department 110 together, and so on. If the tables are not clustered, then
the database does not ensure that the related rows are stored together.

ORACLE 4-34

Figure 4-8 Clustered Table Data

Chapter 4
Overview of Table Clusters

employees_departments_cluster employees
employee_id last_name | department_id
20 department_name | location_id 201 Hartstein 20
. 202 Fay 20
marketing 1800 203 Mavris 40
204 Baer 70
. 205 Higgins 110
Cluster Key is employee_id last_name | . 206 Gig?z 110
department id 201 Hartstein R
\ departments
110 | department_name | location_id .
accounting 1700 | department_id | department_name | location_id
\ 20 Marketing 1800
| 110 Accounting 1700
employee_id last_name L \
205 Higgins S N 7 ,
206 Gietz .. . S S
The B-tree cluster index associates the cluster key value with the database block address
(DBA) of the block containing the data. For example, the index entry for key 20 shows the
address of the block that contains data for employees in department 20:
20, AADAAAAQd
The cluster index is separately managed, just like an index on a nonclustered table, and can
exist in a separate tablespace from the table cluster.
ORACLE

4-35

Chapter 4
Overview of Table Clusters

¢ See Also:

* "Introduction to Indexes"

e Oracle Database Administrator’s Guide to learn how to create and
manage indexed clusters

e Oracle Database SQL Language Reference for CREATE CLUSTER syntax
and semantics

Overview of Hash Clusters

A hash cluster is like an indexed cluster, except the index key is replaced with a hash
function. No separate cluster index exists. In a hash cluster, the data is the index.

With an indexed table or indexed cluster, Oracle Database locates table rows using
key values stored in a separate index. To find or store a row in an indexed table or
table cluster, the database must perform at least two 1/Os:

* One or more I/Os to find or store the key value in the index
e Another I/O to read or write the row in the table or table cluster

To find or store a row in a hash cluster, Oracle Database applies the hash function to
the cluster key value of the row. The resulting hash value corresponds to a data block
in the cluster, which the database reads or writes on behalf of the issued statement.

Hashing is an optional way of storing table data to improve the performance of data
retrieval. Hash clusters may be beneficial when the following conditions are met:

e Atable is queried much more often than modified.

e The hash key column is queried frequently with equality conditions, for example,
WHERE depart nent _i d=20. For such queries, the cluster key value is hashed. The
hash key value points directly to the disk area that stores the rows.

* You can reasonably guess the number of hash keys and the size of the data
stored with each key value.

Hash Cluster Creation

ORACLE

To create a hash cluster, you use the same CREATE CLUSTER statement as for an
indexed cluster, with the addition of a hash key. The number of hash values for the
cluster depends on the hash key.

The cluster key, like the key of an indexed cluster, is a single column or composite key
shared by the tables in the cluster. A hash key value is an actual or possible value
inserted into the cluster key column. For example, if the cluster key is depart ment _i d,
then hash key values could be 10, 20, 30, and so on.

Oracle Database uses a hash function that accepts an infinite number of hash key
values as input and sorts them into a finite number of buckets. Each bucket has a
unigue numeric ID known as a hash value. Each hash value maps to the database
block address for the block that stores the rows corresponding to the hash key value
(department 10, 20, 30, and so on).

4-36

Chapter 4
Overview of Table Clusters

In the following example, the number of departments that are likely to exist is 100, so
HASHKEYS is set to 100:

CREATE CLUSTER enpl oyees_departnents_cl uster
(department _i d NUVBER(4))
SI ZE 8192 HASHKEYS 100;

After you create enpl oyees_depart nment s_cl ust er, you can create the enpl oyees and
depart nent s tables in the cluster. You can then load data into the hash cluster just as in the
indexed cluster.

See Also:

e "Overview of Indexed Clusters"

e Oracle Database Administrator’s Guide to learn how to create and manage
hash clusters

Hash Cluster Queries

In queries of a hash cluster, the database determines how to hash the key values input by the
user.

For example, users frequently execute queries such as the following, entering different
department ID numbers for p_i d:

SELECT *
FROM enpl oyees

WHERE departnent _id = :p_id;
SELECT *

FROM departnents

WHERE departnent _id = :p_id;

SELECT *

FROM enpl oyees e, departnents d

WHERE e.departnent_id = d.department _id
AND d.department _id = :p_id;

If a user queries employees in depar t nent _i d=20, then the database might hash this value to
bucket 77. If a user queries employees in depart ment _i d=10, then the database might hash
this value to bucket 15. The database uses the internally generated hash value to locate the
block that contains the employee rows for the requested department.

The following illustration depicts a hash cluster segment as a horizontal row of blocks. As
shown in the graphic, a query can retrieve data in a single I/O.

ORACLE 4-37

Chapter 4
Overview of Table Clusters

Figure 4-9 Retrieving Data from a Hash Cluster

SELECT * FROM employees
WHERE department_id = 20

!

Hash (20) —> Hash Value 77

!

. Block
Data Blocks in Cluster Segment 100

A limitation of hash clusters is the unavailability of range scans on nonindexed cluster
keys. Assume no separate index exists for the hash cluster created in Hash Cluster
Creation. A query for departments with IDs between 20 and 100 cannot use the
hashing algorithm because it cannot hash every possible value between 20 and 100.
Because no index exists, the database must perform a full scan.

¢ See Also:

"Index Range Scan"

Hash Cluster Variations

A single-table hash cluster is an optimized version of a hash cluster that supports only
one table at a time. A one-to-one mapping exists between hash keys and rows.

A single-table hash cluster can be beneficial when users require rapid access to a
table by primary key. For example, users often look up an employee record in the
enpl oyees table by enpl oyee_i d.

A sorted hash cluster stores the rows corresponding to each value of the hash function
in such a way that the database can efficiently return them in sorted order. The
database performs the optimized sort internally. For applications that always consume
data in sorted order, this technique can mean faster retrieval of data. For example, an
application might always sort on the or der _dat e column of the or der s table.

¢ See Also:

Oracle Database Administrator’s Guide to learn how to create single-table
and sorted hash clusters

ORACLE" 4-38

Chapter 4
Overview of Table Clusters

Hash Cluster Storage

ORACLE

Oracle Database allocates space for a hash cluster differently from an indexed cluster.

In the example in Hash Cluster Creation, HASHKEYS specifies the number of departments likely
to exist, whereas S| ZE specifies the size of the data associated with each department. The
database computes a storage space value based on the following formula:

HASHKEYS * S| ZE / dat abase_bl ock_si ze

Thus, if the block size is 4096 bytes in the example shown in Hash Cluster Creation, then the
database allocates at least 200 blocks to the hash cluster.

Oracle Database does not limit the number of hash key values that you can insert into the
cluster. For example, even though HASHKEYS is 100, nothing prevents you from inserting 200
unigue departments in the depart ment s table. However, the efficiency of the hash cluster
retrieval diminishes when the number of hash values exceeds the number of hash keys.

To illustrate the retrieval issues, assume that block 100 in Figure 4-9 is completely full with
rows for department 20. A user inserts a new department with depart nent _i d 43 into the
depart nent s table. The number of departments exceeds the HASHKEYS value, so the
database hashes depart ment _i d 43 to hash value 77, which is the same hash value used for
depart nent _i d 20. Hashing multiple input values to the same output value is called a hash
collision.

When users insert rows into the cluster for department 43, the database cannot store these
rows in block 100, which is full. The database links block 100 to a new overflow block, say
block 200, and stores the inserted rows in the new block. Both block 100 and 200 are now
eligible to store data for either department. As shown in Figure 4-10, a query of either
department 20 or 43 now requires two 1/Os to retrieve the data: block 100 and its associated
block 200. You can solve this problem by re-creating the cluster with a different HASHKEYS
value.

4-39

Chapter 4
Overview of Attribute-Clustered Tables

Figure 4-10 Retrieving Data from a Hash Cluster When a Hash Collision Occurs

SELECT * FROM employees SELECT * FROM employees
WHERE department_id = 20 WHERE department_id = 43

Y '

Hash (20) —> Hash Value 77 <—— Hash (43)

|

. Block
Data Blocks in Cluster Segment 100

Block
200

See Also:

Oracle Database Administrator’s Guide to learn how to manage space in
hash clusters

Overview of Attribute-Clustered Tables

An attribute-clustered table is a heap-organized table that stores data in close
proximity on disk based on user-specified clustering directives. The directives specify
columns in single or multiple tables.

The directives are as follows:

e The CLUSTERING ... BY LI NEAR ORDER directive orders data in a table according
to specified columns.

Consider using BY LI NEAR ORDER clustering, which is the default, when queries
qualify the prefix of columns specified in the clustering clause. For example, if
gueries of sh. sal es often specify either a customer ID or both customer ID and
product ID, then you could cluster data in the table using the linear column order
cust _id, prod_id.

e The CLUSTERING ... BY | NTERLEAVED ORDER directive orders data in one or more
tables using a special algorithm, similar to a Z-order function, that permits
multicolumn 1/O reduction.

ORACLE" 4-40

Chapter 4
Overview of Attribute-Clustered Tables

Consider using BY | NTERLEAVED ORDER clustering when queries specify a variety of
column combinations. For example, if queries of sh. sal es specify different dimensions in
different orders, then you can cluster data in the sal es table according to columns in
these dimensions.

Attribute clustering is only available for direct path INSERT operations. It is ignored for
conventional DML.

This section contains the following topics:

Advantages of Attribute-Clustered Tables

Join Attribute Clustered Tables

I/O Reduction Using Zones

Attribute-Clustered Tables with Linear Ordering

Attribute-Clustered Tables with Interleaved Ordering

Advantages of Attribute-Clustered Tables

The primary benefit of attribute-clustered tables is 1/O reduction, which can significantly
reduce the 1/O cost and CPU cost of table scans. I/O reduction occurs either with zones or by
reducing physical I/0 through closer physical proximity on disk for the clustered values.

An attribute-clustered table has the following advantages:

ORACLE

You can cluster fact tables based on dimension columns in star schemas.

In star schemas, most queries qualify dimension tables and not fact tables, so clustering
by fact table columns is not effective. Oracle Database supports clustering on columns in
dimension tables.

I/0O reduction can occur in several different scenarios:

— When used with Oracle Exadata Storage Indexes, Oracle In-Memory min/max
pruning, or zone maps

— In OLTP applications for queries that qualify a prefix and use attribute clustering with
linear order

— On a subset of the clustering columns for BY | NTERLEAVED ORDER clustering

Attribute clustering can improve data compression, and in this way indirectly improve
table scan costs.

When the same values are close to each other on disk, the database can more easily
compress them.

Oracle Database does not incur the storage and maintenance cost of an index.

¢ See Also:

Oracle Database Data Warehousing Guide for more advantages of attribute-
clustered tables

4-41

Chapter 4
Overview of Attribute-Clustered Tables

Join Attribute Clustered Tables

Attribute clustering that is based on joined columns is called join attribute clustering.
In contrast with table clusters, join attribute clustered tables do not store data from a
group of tables in the same database blocks.

For example, consider an attribute-clustered table, sal es, joined with a dimension
table, product s. The sal es table contains only rows from the sal es table, but the
ordering of the rows is based on the values of columns joined from pr oduct s table.
The appropriate join is executed during data movement, direct path insert, and CREATE
TABLE AS SELECT operations. In contrast, if sal es and product s were in a standard
table cluster, the data blocks would contain rows from both tables.

¢ See Also:

Oracle Database Data Warehousing Guide to learn more about join attribute
clustering

/0 Reduction Using Zones

A zone is a set of contiguous data blocks that stores the minimum and maximum
values of relevant columns.

When a SQL statement contains predicates on columns stored in a zone, the
database compares the predicate values to the minimum and maximum stored in the
zone. In this way, the database determines which zones to read during SQL execution.

I/0 reduction is the ability to skip table or index blocks that do not contain data that the
database needs to satisfy a query. This reduction can significantly reduce the I/O and
CPU cost of table scans.

Purpose of Zones

For a loose analogy of zones, consider a sales manager who uses a bookcase of
pigeonholes, which are analogous to data blocks.

Each pigeonhole has receipts (rows) describing shirts sold to a customer, ordered by
ship date. In this analogy, a zone map is like a stack of index cards. Each card
corresponds to a "zone" (contiguous range) of pigeonholes, such as pigeonholes 1-10.
For each zone, the card lists the minimum and maximum ship dates for the receipts
stored in the zone.

When someone wants to know which shirts shipped on a certain date, the manager
flips the cards until she comes to the date range that contains the requested date,
notes the pigeonhole zone, and then searches only pigeonholes in this zone for the
requested receipts. In this way, the manager avoids searching every pigeonhole in the
bookcase for the receipts.

ORACLE 4-42

Chapter 4
Overview of Attribute-Clustered Tables

Zone Maps

A zone map is an independent access structure that divides data blocks into zones. Oracle
Database implements each zone map as a type of materialized view.

Like indexes, zone maps can reduce the 1/0O and CPU costs of table scans. When a SQL
statement contains predicates on columns in a zone map, the database compares the
predicate values to the minimum and maximum table column values stored in each zone to
determine which zones to read during SQL execution.

A basic zone map is defined on a single table and maintains the minimum and maximum
values of some columns of this table. A join zone map is defined on a table that has an outer
join to one or more other tables and maintains the minimum and maximum values of some
columns in the other tables. Oracle Database maintains both types of zone map
automatically.

At most one zone map can exist on a table. In the case of a partitioned table, one zone map
exists for all partitions and subpartitions. A zone map of a partitioned table also keeps track of
the minimum and maximum values per zone, per partition, and per subpartition. Zone map
definitions can include minimum and maximum values of dimension columns provided the
table has an outer join with the dimension tables.

See Also:

Oracle Database Data Warehousing Guide for an overview of zone maps

Zone Map Creation

Basic zone maps are created either manually or automatically.

Manual Zone Maps

You can create, drop, and maintain zone maps using DDL statements.

Whenever you specify the CLUSTERI NG clause in a CREATE TABLE or ALTER TABLE statement,
the database automatically creates a zone map on the specified clustering columns. The
zone map correlates minimum and maximum values of columns with consecutive data blocks
in the attribute-clustered table. Attribute-clustered tables use zone maps to perform 1/0O
reduction.

You can also create zone maps explicitly by using the CREATE MATERI ALI ZED ZONEVAP
statement. In this case, you can create zone maps for use with or without attribute clustering.
For example, you can create a zone map on a table whose rows are naturally ordered on a
set of columns, such as a stock trade table whose trades are ordered by time.

ORACLE 4-43

Chapter 4
Overview of Attribute-Clustered Tables

¢ See Also:

* "Overview of Materialized Views"

e Oracle Database Data Warehousing Guide to learn more how to create
zone maps

Automatic Zone Maps

Oracle Database can create basic zone maps automatically. These are known as
automatic zone maps.

Oracle Database can create basic zone maps automatically for both partitioned and
nonpartitioned tables. A background process automatically maintains zone maps
created in this way.

Use the DBMS_AUTO _ZONEMAP procedure to enable automatic zone maps:

EXEC DBMS_AUTO_ZONENMAP. CONFI GURE(" AUTO_ZONEMAP_MODE' , ' ON')

¢ See Also:

e Oracle Database Data Warehousing Guide to learn more about
managing automatic zone maps using the DBVS_AUTO ZONEMAP package

e Oracle Database PL/SQL Packages and Types Reference to learn more
about the DBMS_AUTO_ZONEMAP package

e Oracle Database Licensing Information User Manual for details on which
features are supported for different editions and services

How a Zone Map Works: Example

ORACLE

This example illustrates how a zone map can prune data in a query whose predicate
contains a constant.

Assume you create the following | i nei t emtable:

CREATE TABLE |ineitem
(orderkey NUMBER ,
shi pdate DATE ,
recei ptdate DATE ,
destination VARCHAR2(50)
quantity NUMBER);

The table | i nei t emcontains 4 data blocks with 2 rows per block. Table 4-4 shows the
8 rows of the table.

4-44

Chapter 4
Overview of Attribute-Clustered Tables

Table 4-4 Data Blocks for lineitem Table
|

Block orderkey shipdate receiptdate destination quantity
1 1 1-1-2014 1-10-2014 San_Fran 100
1 2 1-2-2014 1-10-2014 San_Fran 200
2 3 1-3-2014 1-9-2014 San_Fran 100
2 4 1-5-2014 1-10-2014 San_Diego 100
3 5 1-10-2014 1-15-2014 San_Fran 100
3 6 1-12-2014 1-16-2014 San_Fran 200
4 7 1-13-2014 1-20-2014 San_Fran 100
4 8 1-15-2014 1-30-2014 San_Jose 100

You can use the CREATE MATERI ALI ZED ZONEMAP statement to create a zone map on the
I'i nei t emtable. Each zone contains 2 blocks and stores the minimum and maximum of the
order key, shi pdat e, and r ecei pt dat e columns. Table 4-5 shows the zone map.

Table 4-5 Zone Map for lineitem Table
]

Block min max min shipdate max min max
Range orderkey orderkey shipdate receiptdate receiptdate
1-2 1 4 1-1-2014 1-5-2014 1-9-2014 1-10-2014
3-4 5 8 1-10-2014 1-15-2014 1-15-2014 1-30-2014

When you execute the following query, the database can read the zone map and then scan
only blocks 1 and 2, and therefore skip blocks 3 and 4, because the date 1- 3- 2014 falls
between the minimum and maximum dates:

SELECT * FROM | ineitem WHERE shi pdate = '1-3-2014";

¢ See Also:

e Oracle Database Data Warehousing Guide to learn how to use zone maps

e Oracle Database SQL Language Reference for syntax and semantics of the
CREATE MATERI ALl ZED ZONEMAP statement

Attribute-Clustered Tables with Linear Ordering

ORACLE

A linear ordering scheme for a table divides rows into ranges based on user-specified
attributes in a specific order. Oracle Database supports linear ordering on single or multiple
tables that are connected through a primary-foreign key relationship.

For example, the sal es table divides the cust i d and prod_i d columns into ranges, and then
clusters these ranges together on disk. When you specify the BY LI NEAR ORDER directive for a
table, significant I/O reduction can occur when a predicate specifies either the prefix column
or all columns in the directive.

4-45

Chapter 4
Overview of Attribute-Clustered Tables

Assume that queries of sal es often specify either a customer ID or a combination of a
customer ID and product ID. You can create an attribute-clustered table so that such
queries benefit from 1/O reduction:

CREATE TABLE sal es

(

prod_id NOT NULL NUMBER
, cust_id NOT NULL NUMBER
, anmount _sol d NUMBER(10,2) ...

)
CLUSTERI NG

BY LI NEAR ORDER (cust_id, prod_id)
YES ON LOAD YES ON DATA MOVEMENT
W TH MATERI ALI ZED ZONEMAP;

Queries that qualify both columns cust _i d and prod_i d, or the prefix cust _i d
experience 1/O reduction. Queries that qualify prod_i d only do not experience
significant I/O reduction because prod_i d is the suffix of the BY LI NEAR ORDER clause.
The following examples show how the database can reduce 1/O during table scans.

Example 4-8 Specifying Only cust_id

An application issues the following query:

SELECT * FROM sal es WHERE cust _id = 100;

Because the sal es table is a BY LI NEAR ORDER cluster, the database must only read
the zones that include the cust _i d value of 100.

Example 4-9 Specifying prod_id and cust_id

An application issues the following query:

SELECT * FROM sal es WHERE cust _id = 100 AND prod_id = 2300;

Because the sal es table is a BY LI NEAR ORDER cluster, the database must only read
the zones that include the cust _i d value of 100 and prod_i d value of 2300.

See Also:

e Oracle Database Data Warehousing Guide to learn how to cluster tables
using linear ordering

e Oracle Database SQL Language Reference for syntax and semantics of
the BY LI NEAR ORDER clause

Attribute-Clustered Tables with Interleaved Ordering

Interleaved ordering uses a technique that is similar to a Z-order.

ORACLE 4-46

Chapter 4
Overview of Attribute-Clustered Tables

Interleaved ordering enables the database to prune 1/O based on any subset of predicates in
the clustering columns. Interleaved ordering is useful for dimensional hierarchies in a data
warehouse.

As with attribute-clustered tables with linear ordering, Oracle Database supports interleaved
ordering on single or multiple tables that are connected through a primary-foreign key
relationship. Columns in tables other than the attribute-clustered table must be linked by
foreign key and joined to the attribute-clustered table.

Large data warehouses frequently organize data in a star schema. A dimension table uses a
parent-child hierarchy and is connected to a fact table by a foreign key. Clustering a fact table
by interleaved order enables the database to use a special function to skip values in
dimension columns during table scans.

Example 4-10 Interleaved Ordering Example

Suppose your data warehouse contains a sal es fact table and its two dimension tables:
cust oners and product s. Most queries have predicates on the cust oner s table hierarchy
(cust _state province, cust_city) and the products hierarchy (prod_cat egory,
prod_subcat egory) . You can use interleaved ordering for the sal es table as shown in the
partial statement in the following example:

CREATE TABLE sal es

(
prod_i d NUMBER NOT NULL

, cust_id NUMBER NOT NULL

, anmount _sol d NUMBER(10, 2)

)

CLUSTERI NG sal es
JO N products ON (sales.prod_id = products. prod_id)
JO N custoners ON (sales.cust_id = custoners. cust_id)
BY | NTERLEAVED ORDER
(

product s. prod_cat egory

products. prod_subcat egory

cust omers. cust _state_province
customers.cust_city

(
)
(
)

)
W TH MATERI ALI ZED ZONEMAP;

¢ Note:

The columns specified in the BY | NTERLEAVED ORDER clause need not be in actual
dimension tables, but they must be connected through a primary-foreign key
relationship.

ORACLE 4-47

Overview

ORACLE

Chapter 4
Overview of Temporary Tables

Suppose an application queries the sal es, product s, and cust oner s tables in a join.
The query specifies the cust oner s. prod_cat egory and
customers_cust _state_provi nce columns in the predicate as follows:

SELECT cust_city, prod_sub_category, SUM amount_sol d)
FROM sal es, products, customers

WHERE sal es.prod_id = products.prod_id

AND sal es.cust _id = custoners.cust _id

AND cust oners. prod_cat egory = ' Boys'

AND custoners. cust_state_province = 'England - Norfol k'
GROUP BY cust _city, prod_sub_category;

In the preceding query, the pr od_cat egory and cust _st at e_provi nce columns are
part of the clustering definition shown in the CREATE TABLE example. During the scan
of the sal es table, the database can consult the zone map and access only the rowids
in this zone.

See Also:

e "Overview of Dimensions"

e Oracle Database Data Warehousing Guide to learn how to cluster tables
using interleaved ordering

e Oracle Database SQL Language Reference for syntax and semantics of
the BY | NTERLEAVED ORDER clause

of Temporary Tables

A temporary table holds data that exists only for the duration of a transaction or
session.

Data in a temporary table is private to the session. Each session can only see and
modify its own data.

You can create either a global temporary table or a private temporary table. The
following table shows the essential differences between them.

Table 4-6 Temporary Table Characteristics
|

Characteristic Global Private

Naming rules Same as for permanent tables Must be prefixed with
ORASPTT_

Visibility of table definition All sessions Only the session that created
the table

Storage of table definition Disk Memory only

Types Transaction-specific (ON Transaction-specific (ON

COMW T DELETE ROWE) or COMM T DROP DEFI NI TI ON)
session-specific (ON COM T or session-specific (ON
PRESERVE RO\S) COW T PRESERVE

DEFI NI TI ON)

4-48

Chapter 4
Overview of Temporary Tables

A third type of temporary table, known as a cursor-duration temporary table, is created by
the database automatically for certain types of queries.

¢ See Also:

Oracle Database SQL Tuning Guide to learn more about cursor-duration temporary
tables

Purpose of Temporary Tables

Temporary tables are useful in applications where a result set must be buffered.

For example, a scheduling application enables college students to create optional semester
course schedules. A row in a global temporary table represents each schedule. During the
session, the schedule data is private. When the student chooses a schedule, the application
moves the row for the chosen schedule to a permanent table. At the end of the session, the
database automatically drops the schedule data that was in the global temporary table.

Private temporary tables are useful for dynamic reporting applications. For example, a
customer resource management (CRM) application might connect as the same user
indefinitely, with multiple sessions active at the same time. Each session creates a private
temporary table named ORASPTT_cr mfor each new transaction. The application can use the
same table name for every session, but change the definition. The data and definition are
visible only to the session. The table definition persists until the transaction ends or the table
is manually dropped.

Segment Allocation in Temporary Tables

Like permanent tables, global temporary tables are persistent objects that are statically
defined in the data dictionary. For private temporary tables, metadata exists only in memory,
but can reside in the temporary tablespace on disk.

For global and private temporary tables, the database allocates temporary segments when a
session first inserts data. Until data is loaded in a session, the table appears empty. For
transaction-specific temporary tables, the database deallocates temporary segments at the
end of the transaction. For session-specific temporary tables, the database deallocates
temporary segments at the end of the session.

" See Also:

"Temporary Segments"

Temporary Table Creation

ORACLE

The CREATE ... TEMPORARY TABLE statement creates a temporary table.

Specify either GLOBAL TEMPORARY TABLE or PRI VATE TEMPORARY TABLE. In both cases, the ON
COW T clause specifies whether the table data is transaction-specific (default) or session-
specific. You create a temporary table for the database itself, not for every PL/SQL stored
procedure.

4-49

Chapter 4
Overview of External Tables

You can create indexes for global (not private) temporary tables with the CREATE | NDEX
statement. These indexes are also temporary. The data in the index has the same
session or transaction scope as the data in the temporary table. You can also create a
view or trigger on a global temporary table.

¢ See Also:

e "Overview of Views"
e "Overview of Triggers"

e Oracle Database Administrator’s Guide to learn how to create and
manage temporary tables

e Oracle Database SQL Language Reference for CREATE ... TEMPORARY
TABLE syntax and semantics

Overview of External Tables

An external table accesses data in external sources as if this data were in a table in
the database.

The data can be in any format for which an access driver is provided. You can use
SQL (serial or parallel), PL/SQL, and Java to query external tables.

Purpose of External Tables

ORACLE

External tables are useful when an Oracle database application must access non-
relational data.

For example, a SQL-based application may need to access a text file whose records
are in the following form:

100, St even, Ki ng, SKI NG, 515. 123. 4567, 17- JUN- 03, AD_PRES, 31944, 150, 90
101, Neena, Kochhar, NKOCHHAR, 515. 123. 4568, 21- SEP- 05, AD_VP, 17000, 100, 90
102, Lex, De Haan, LDEHAAN, 515. 123. 4569, 13- JAN- 01, AD_VP, 17000, 100, 90

You could create an external table, copy the text file to the location specified in the
external table definition, and then use SQL to query the records in the text file.
Similarly, you could use external tables to give read-only access to JSON documents
or LOBs.

In data warehouse environments, external tables are valuable for performing
extraction, transformation, and loading (ETL) tasks. For example, external tables
enable you to pipeline the data loading phase with the transformation phase. This
technique eliminates the need to stage data inside the database in preparation for
further processing inside the database.

You can partition external tables on virtual or non-virtual columns. Also, you can create
a hybrid partitioned table, where some partitions are internal and some external. Like
internal partitions, external benefit from performance enhancements such as partition
pruning and partition-wise joins. For example, you could use partitioned external tables

4-50

Chapter 4
Overview of External Tables

to analyze large volumes of non-relational data stored on Hadoop Distributed File System
(HDFS) or a NoSQL database.

See Also:

"Partitioned Tables"

Data in Object Stores

External tables can be used to access data in object stores.

In addition to supporting access to external data residing in operating system files and Big
Data sources, Oracle supports access to external data in object stores. Object storage is
common in the Cloud and provides a flat architecture to manage individual objects, any type
of unstructured data with metadata, by grouping them in simple containers. Although object
storage is predominantly a data storage architecture in the Cloud, it is also available as on-
premises storage hardware.

You can access data in object stores by using the DBM5_CLOUD package or by manually
defining external tables. Oracle strongly recommends using the DBMS_CLOUD package
because it provides additional functionality and is fully compatible with Oracle Autonomous
Database.

External Table Access Drivers

An access driver is an API that interprets the external data for the database. The access
driver runs inside the database, which uses the driver to read the data in the external table.
The access driver and the external table layer are responsible for performing the
transformations required on the data in the data file so that it matches the external table
definition.

The following figure represents SQL access of external data.

Figure 4-11 External Tables

AN

Database

N

External Table
Metadata
External
Files \ /
/ Queries of
— = \\ / External 4 .
o [4 Table < w—
- - | < > Data —
a0 Access Dictionary \r
— Driver p —

~—

ORACLE 4-51

Chapter 4
Overview of External Tables

Oracle provides the following access drivers for external tables:

¢ ORACLE_LQADER (default)

Enables access to external files using most of the formats supported by
SQL*Loader. You cannot create, update, or append to an external file using the
ORACLE_LOADER driver.

* ORACLE_DATAPUMP

Enables you to unload or load external data. An unload operation reads data from
the database and inserts the data into an external table, represented by one or
more external files. After external files are created, the database cannot update or
append data to them. A load operation reads an external table and loads its data
into a database.

e ORACLE HDFS
Enables the extraction of data stored in a Hadoop Distributed File System (HDFS).
e ORACLE_HI VE

Enables access to data stored in an Apache Hive database. The source data can
be stored in HDFS, HBase, Cassandra, or other systems. Unlike the other access
drivers, you cannot specify a location because ORACLE_HI VE obtains location
information from an external metadata store.

* ORACLE_BI GDATA

Enables read-only access to data stored in both structured and unstructured
formats, including Apache Parquet, Apache Avro, Apache ORC, and text formats.
You can also use this driver to query local data, which is useful for testing and
smaller data sets.

External Table Creation

Internally, creating an external table means creating metadata in the data dictionary.
Unlike an ordinary table, an external table does not describe data stored in the
database, nor does it describe how data is stored externally. Rather, external table
metadata describes how the external table layer must present data to the database.

A CREATE TABLE ... ORGAN ZATI ON EXTERNAL statement has two parts. The external
table definition describes the column types. This definition is like a view that enables
SQL to query external data without loading it into the database. The second part of the
statement maps the external data to the columns.

External tables are read-only unless created with CREATE TABLE AS SELECT with the
ORACLE_DATAPUMP access driver. Restrictions for external tables include no support for
indexed columns and column objects.

ORACLE 4-52

Chapter 4
Overview of Blockchain Tables

¢ See Also:

e Oracle Database Ultilities to learn about external tables

e Oracle Database Administrator's Guide to learn about managing external
tables, external connections, and directory objects

e Oracle Database SQL Language Reference for information about creating and
querying external tables

Overview of Blockchain Tables

A blockchain table is an append-only table designed for centralized blockchain applications.

In Oracle Blockchain Table, peers are database users who trust the database to maintain a
tamper-resistant ledger. The ledger is implemented as a blockchain table, which is defined
and managed by the application. Existing applications can protect against fraud without
requiring a new infrastructure or programming model. Although transaction throughput is
lower than for a standard table, performance for a blockchain table is better than for a
decentralized blockchain.

A blockchain table is append-only because the only permitted DML are | NSERT commands.
The table disallows UPDATE, DELETE, MERGE, TRUNCATE, and direct-path loads. Database
transactions can span blockchain tables and standard tables. For example, a single
transaction can insert rows into a standard table and two different blockchain tables.

Row Chains

In a blockchain table, a row chain is a series of rows linked together with a hashing scheme.

A row chain is identified by unique combination of database instance ID and chain ID. A row
in a blockchain table belongs to exactly one row chain. A single table supports multiple row
chains.

< Note:

A chained row in a standard table is orthogonal to a row chain in a blockchain table.
Only the word "chain" is the same.

Every row in a chain has a unique sequence number. The database sequences the rows
using an SHA2-512 hash computation on the rows of each chain. The hash for every inserted
row is derived from the hash value of the previously inserted row in the chain and the row
content of the inserted row.

Row Content

The row content is a contiguous sequence of bytes containing the column data of the row
and the hash value of the previous row in the chain.

ORACLE 4-53

Chapter 4
Overview of Blockchain Tables

When you create a blockchain table, the database creates several hidden columns.
For example, you might create the blockchain table bank_| edger with the columns
bank and deposi t:

CREATE BLOCKCHAI N TABLE bank_| edger (bank VARCHAR2 (128), deposit
NUVBER)

NO DROP UNTIL 31 DAYS IDLE

NO DELETE UNTIL 31 DAYS AFTER | NSERT

HASHI NG USI NG " SHA2_512" VERSION "v1";

The database automatically creates hidden columns with the prefix ORABCTAB:
ORABCTAB | NST | D$, ORABCTAB_CHAI N_| D$, ORABCTAB_SEQ NUMB, and others. These
hidden columns, which you cannot alter or manage, implement the anti-tampering
algorithm. This algorithm avoids deadlocks by acquiring unique, table-level locks in a
specific order at commit time.

< Note:

Row content for blockchain tables is stored in standard data blocks. In
Oracle Database 21c, blockchain tables do not support table clusters.

The instance ID, chain ID, and sequence number uniquely identify a row. Each row
has a platform-independent SHA2-512 hash that is stored in hidden column
ORABCTAB_HASH$. The hash is based on the content of the inserted row and the hash of
the previous row in the chain.

The data format for the column value of a row consists of bytes from the column
metadata and content. The column metadata is a 20-byte structure that describes
characteristics such as position in the table, data type, null status, and byte length.
The column content is the set of bytes representing the value in a row. For example,
the ASCII representation of the value Chase is 43 68 61 73 65. You can use the DUMP
function in SQL to obtain both column metadata and content.

The row content for a hash computation includes the column data formats from
multiple columns: the hash value in the previous row in the chain, the user-defined
columns, and a fixed number of hidden columns.

User Interface for Blockchain Tables

ORACLE

Like a standard table, a blockchain table is created by SQL and supports scalar data
types, LOBs, and patrtitions. You can also create indexes and triggers for blockchain
tables.

To create a blockchain table, use a CREATE BLOCKCHAI N TABLE statement. A
blockchain table has a retention period specified by the NO DROP UNTIL n DAYS | DLE
clause. You can remove the table by using DROP TABLE.

Oracle Blockchain Table supports the following interfaces:

* The DBMS_BLOCKCHAI N_TABLE package enables you to perform various operations
on table rows. For example, to apply a signature to the content of a previously
inserted row, use the S| GN_ROWprocedure. To verify that the rows have not been

4-54

Chapter 4
Overview of Immutable Tables

tampered with, use VERI FY_ROAS. To remove rows after the retention period (specified by
the NO DELETE clause) has passed, use DELETE_ROAS.

* The DBVMS_TABLE_DATA package provides procedures to retrieve the byte value of a
column. You can retrieve the row content for row data on which the hash or user
signature is computed.

e The DBA BLOCKCHAI N_TABLES view shows table metadata such as the row retention
period, inactivity period before a table drop is permitted, and hash algorithm.

" Note:
e Oracle Database Administrator’s Guide to learn how to manage blockchain
tables

e Oracle Database PL/SQL Packages and Types Referenceto learn about the
DBMS_BLOCKCHAI N_TABLE package

e Oracle Database PL/SQL Packages and Types Reference to learn about the
DBMS_TABLE_DATA package

e Oracle Database Reference to learn about the DBA BLOCKCHAI N TABLES view

Overview of Immutable Tables

Immutable tables are read-only tables that prevent unauthorized data modifications by
insiders and accidental data modifications resulting from human errors.

Unauthorized modifications can be attempted by compromised or rogue employees who have
access to insider credentials.

New rows can be added to an immutable table, but existing rows cannot be modified. You
must specify a retention period both for the immutable table and for rows within the
immutable table. Rows become obsolete after the specified row retention period. Only
obsolete rows can be deleted from the immutable table.

Immutable tables contain system-generated hidden columns. The columns are the same as
those for blockchain tables. When a row is inserted, a non-NULL value is set for the
ORABCTAB_CREATI ON_TI ME$ and ORABCTAB_USER NUMBER$ columns. The value of remaining
system-generated hidden columns is set to NULL.

Using immutable tables requires no changes to existing applications.

Overview of Object Tables

ORACLE

An object table is a special kind of table in which each row represents an object.

An Oracle object type is a user-defined type with a name, attributes, and methods. Object
types make it possible to model real-world entities such as customers and purchase orders
as objects in the database.

4-55

ORACLE

Chapter 4
Overview of Object Tables

An object type defines a logical structure, but does not create storage. The following
example creates an object type named depart ment _typ:

CREATE TYPE department _typ AS OBJECT
(d_name VARCHAR2(100) ,
d_address VARCHAR2(200));

The following example creates an object table named depart nent s_obj _t of the
object type depart nent _typ, and then inserts a row into the table. The attributes
(columns) of the depart ment s_obj _t table are derived from the definition of the object
type.

CREATE TABLE departnents_obj _t OF departnent _typ;
I NSERT I NTO departnents_obj t VALUES ('hr', '10 Main St, Sonmetown, CA');

Like a relational column, an object table can contain rows of just one kind of thing,
namely, object instances of the same declared type as the table. By default, every row
object in an object table has an associated logical object identifier (OID) that uniquely
identifies it in an object table. The OID column of an object table is a hidden column.

See Also:

e Oracle Database Object-Relational Developer's Guide to learn about
object-relational features in Oracle Database

e Oracle Database SQL Language Reference for CREATE TYPE syntax and
semantics

4-56

Indexes and Index-Organized Tables

Indexes are schema objects that can speed access to table rows. Index-organized tables are
tables stored in an index structure.

This chapter contains the following sections:
* Introduction to Indexes

e Overview of B-Tree Indexes

e Overview of Bitmap Indexes

* Overview of Function-Based Indexes

e Overview of Application Domain Indexes

e Overview of Index-Organized Tables

Introduction to Indexes

ORACLE

An index is an optional structure, associated with a table or table cluster, that can
sometimes speed data access.

Indexes are schema objects that are logically and physically independent of the data in the
objects with which they are associated. Thus, you can drop or create an index without
physically affecting the indexed table.

" Note:

If you drop an index, then applications still work. However, access of previously
indexed data can be slower.

For an analogy, suppose an HR manager has a shelf of cardboard boxes. Folders containing
employee information are inserted randomly in the boxes. The folder for employee Whalen
(ID 200) is 10 folders up from the bottom of box 1, whereas the folder for King (ID 100) is at
the bottom of box 3. To locate a folder, the manager looks at every folder in box 1 from
bottom to top, and then moves from box to box until the folder is found. To speed access, the
manager could create an index that sequentially lists every employee ID with its folder
location:

I D 100: Box 3, position 1 (bottomn

ID 101: Box 7, position 8
I D 200: Box 1, position 10

5-1

Chapter 5
Introduction to Indexes

Similarly, the manager could create separate indexes for employee last names,
department IDs, and so on.

This section contains the following topics:

e Advantages and Disadvantages of Indexes
e Index Usability and Visibility

e Keys and Columns

e Composite Indexes

e Unique and Nonunique Indexes

e Types of Indexes

* How the Database Maintains Indexes

e Index Storage

Advantages and Disadvantages of Indexes

The absence or presence of an index does not require a change in the wording of any
SQL statement.

An index is a fast access path to a single row of data. It affects only the speed of
execution. Given a data value that has been indexed, the index points directly to the
location of the rows containing that value.

When an index exists on one or more columns of a table, the database can in some
cases retrieve a small set of randomly distributed rows from the table. Indexes are one
of many means of reducing disk I/O. If a heap-organized table has no indexes, then
the database must perform a full table scan to find a value. For example, a query of
location 2700 in the unindexed hr. depart ment s table requires the database to search
every row in every block. This approach does not scale well as data volumes increase.

Disadvantages of indexes include the following:

e Creating indexes manually often requires deep knowledge of the data model,
application, and data distribution.

« As the data changes, you must revisit previous decisions about indexes. An index
might stop being useful, or new indexes might be required.

» Indexes occupy disk space.

e The database must update the index when DML occurs on the indexed data,
which creates performance overhead.

Note:

Starting in Oracle Database 19c, Oracle Database can constantly monitor
the application workload, creating and managing indexes automatically.
Automated indexing is implemented as a database task that runs at a fixed
interval.

Consider creating an index in the following situations:

ORACLE 5-2

Chapter 5
Introduction to Indexes

The indexed columns are queried frequently and return a small percentage of the total
number of rows in the table.

A referential integrity constraint exists on the indexed column or columns. The index is a
means to avoid a full table lock that would otherwise be required if you update the parent
table primary key, merge into the parent table, or delete from the parent table.

A unique key constraint will be placed on the table and you want to manually specify the
index and all index options.

See Also:

e Oracle Database Administrator’s Guide to learn more about automated indexing

e Oracle Database Licensing Information User Manual for details on which
features are supported for different editions and services

Index Usability and Visibility

Indexes are usable (default) or unusable, visible (default) or invisible.

These properties are defined as follows:

Usability

An unusable index, which is ignored by the optimizer, is not maintained by DML
operations. An unusable index can improve the performance of bulk loads. Instead of
dropping an index and later re-creating it, you can make the index unusable and then
rebuild it. Unusable indexes and index partitions do not consume space. When you make
a usable index unusable, the database drops its index segment.

Visibility
An invisible index is maintained by DML operations, but is not used by default by the
optimizer. Making an index invisible is an alternative to making it unusable or dropping it.

Invisible indexes are especially useful for testing the removal of an index before dropping
it or using indexes temporarily without affecting the overall application.

¢ See Also:

"Overview of the Optimizer" to learn about how the optimizer select execution plans

Keys and Columns

A key is a set of columns or expressions on which you can build an index.

ORACLE

Although the terms are often used interchangeably, indexes and keys are different. Indexes
are structures stored in the database that users manage using SQL statements. Keys are
strictly a logical concept.

5-3

Chapter 5
Introduction to Indexes

The following statement creates an index on the cust oner _i d column of the sample
table oe. orders:

CREATE | NDEX ord_customer i x ON orders (custoner_id);

In the preceding statement, the cust oner _i d column is the index key. The index itself
is named or d_cust oner _i x.

< Note:

Primary and unique keys automatically have indexes, but you might want to
create an index on a foreign key.

¢ See Also:

* "Data Integrity"

e Oracle Database SQL Language Reference CREATE | NDEX syntax and
semantics

Composite Indexes

A composite index, also called a concatenated index, is an index on multiple
columns in a table.

Place columns in a composite index in the order that makes the most sense for the
queries that will retrieve data. The columns need not be adjacent in the table.

Composite indexes can speed retrieval of data for SELECT statements in which the
VWHERE clause references all or the leading portion of the columns in the composite
index. Therefore, the order of the columns used in the definition is important. In
general, the most commonly accessed columns go first.

For example, suppose an application frequently queries the | ast _nane, j ob_i d, and
sal ary columns in the enpl oyees table. Also assume that | ast _name has high
cardinality, which means that the number of distinct values is large compared to the
number of table rows. You create an index with the following column order:

CREATE | NDEX enpl oyees_i x
ON enpl oyees (last_name, job_id, salary);

Queries that access all three columns, only the | ast _nane column, or only the
| ast _name and j ob_i d columns use this index. In this example, queries that do not
access the | ast _nane column do not use the index.

ORACLE 5-4

Chapter 5
Introduction to Indexes

< Note:

In some cases, such as when the leading column has very low cardinality, the
database may use a skip scan of this index (see "Index Skip Scan").

Multiple indexes can exist on the same table with the same column order when they meet
any of the following conditions:

* The indexes are of different types.
For example, you can create bitmap and B-tree indexes on the same columns.
* The indexes use different partitioning schemes.

For example, you can create indexes that are locally partitioned and indexes that are
globally partitioned.

* The indexes have different uniqueness properties.

For example, you can create both a unique and a non-unigue index on the same set of
columns.

For example, a nonpartitioned index, global partitioned index, and locally partitioned index
can exist for the same table columns in the same order. Only one index with the same
number of columns in the same order can be visible at any one time.

This capability enables you to migrate applications without the need to drop an existing index
and re-create it with different attributes. Also, this capability is useful in an OLTP database
when an index key keeps increasing, causing the database to insert new entries into the
same set of index blocks. To alleviate such "hot spots," you could evolve the index from a
nonpartitioned index into a global partitioned index.

If indexes on the same set of columns do not differ in type or partitioning scheme, then these
indexes must use different column permutations. For example, the following SQL statements
specify valid column permutations:

CREATE | NDEX enpl oyee_i dx1 ON enpl oyees (last_nane, job_id);
CREATE | NDEX enpl oyee_i dx2 ON enpl oyees (job_id, |ast_name);

See Also:

Oracle Database SQL Tuning Guide to learn more about creating multiple indexes
on the same set of columns

Unique and Nonunigue Indexes

ORACLE

Indexes can be unique or nonunique. Unique indexes guarantee that no two rows of a table
have duplicate values in the key column or columns.

For example, your application may require that no two employees have the same employee
ID. In a unique index, one rowid exists for each data value. The data in the leaf blocks is
sorted only by key.

5-5

Chapter 5
Introduction to Indexes

Nonunique indexes permit duplicates values in the indexed column or columns. For
example, the first_name column of the enpl oyees table may contain multiple M ke
values. For a nonunique index, the rowid is included in the key in sorted order, so
nonunique indexes are sorted by the index key and rowid (ascending).

Oracle Database does not index table rows in which all key columns are null, except
for bitmap indexes or when the cluster key column value is null.

Types of Indexes

Oracle Database provides several indexing schemes, which provide complementary
performance functionality.

B-tree indexes are the standard index type. They are excellent for highly selective
indexes (few rows correspond to each index entry) and primary key indexes. Used as
concatenated indexes, a B-tree index can retrieve data sorted by the indexed columns.
B-tree indexes have the subtypes shown in the following table.

Table 5-1 B-Tree Index Subtypes

___|
B-Tree Index Subtype Description To Learn More

Index-organized tables An index-organized table differs "Overview of Index-Organized
from a heap-organized because Tables"
the data is itself the index.

Reverse key indexes In this type of index, the bytes of "Reverse Key Indexes"
the index key are reversed, for
example, 103 is stored as 301.
The reversal of bytes spreads
out inserts into the index over
many blocks.

Descending indexes This type of index stores data on "Ascending and Descending
a particular column or columns Indexes"
in descending order.

B-tree cluster indexes This type of index stores data on "Ascending and Descending
a particular column or columns Indexes"
in descending order.

The following table shows types of indexes that do not use a B-tree structure.

Table 5-2 Indexes Not Using a B-Tree Structure

Type Description To Learn More
Bitmap and bitmap join In a bitmap index, an index "Overview of Bitmap Indexes"
indexes entry uses a bitmap to point to

multiple rows. In contrast, a B-
tree index entry points to a
single row. A bitmap join index
is a bitmap index for the join of
two or more tables.

ORACLE 5-6

Chapter 5
Introduction to Indexes

Table 5-2 (Cont.) Indexes Not Using a B-Tree Structure
|

Type Description To Learn More
Function-based indexes This type of index includes "Overview of Function-Based
columns that are either Indexes"

transformed by a function,
such as the UPPER function, or
included in an expression. B-
tree or bitmap indexes can be
function-based.

Application domain indexes A user creates this type of "Overview of Application
index for data in an Domain Indexes”
application-specific domain.

The physical index need not
use a traditional index
structure and can be stored
either in the Oracle database
as tables or externally as a
file.

¢ See Also:

e Oracle Database Administrator’s Guide to learn how to manage indexes

e Oracle Database SQL Tuning Guide to learn about different index access paths

How the Database Maintains Indexes

The database automatically maintains and uses indexes after they are created.

Indexes automatically reflect data changes to their underlying tables. Examples of changes
include adding, updating, and deleting rows. No user actions are required.

Retrieval performance of indexed data remains almost constant, even as rows are inserted.
However, the presence of many indexes on a table degrades DML performance because the
database must also update the indexes.

" See Also:

e Oracle Database Administrator’s Guide to learn more about automated indexing

e Oracle Database Licensing Information User Manual for details on which
features are supported for different editions and services

Index Storage

ORACLE

Oracle Database stores index data in an index segment.

5-7

Chapter 5
Overview of B-Tree Indexes

Space available for index data in a data block is the data block size minus block
overhead, entry overhead, rowid, and one length byte for each value indexed.

The tablespace of an index segment is either the default tablespace of the owner or a
tablespace specifically named in the CREATE | NDEX statement. For ease of
administration you can store an index in a separate tablespace from its table. For
example, you may choose not to back up tablespaces containing only indexes, which
can be rebuilt, and so decrease the time and storage required for backups.

See Also:

"Overview of Index Blocks" to learn about types of index block (root, branch,
and leaf), and how index entries are stored within a block

Overview of B-Tree Indexes

ORACLE

B-trees, short for balanced trees, are the most common type of database index. A B-
tree index is an ordered list of values divided into ranges. By associating a key with a
row or range of rows, B-trees provide excellent retrieval performance for a wide range
of queries, including exact match and range searches.

The following figure illustrates the structure of a B-tree index. The example shows an
index on the depart ment _i d column, which is a foreign key column in the enpl oyees
table.

5-8

Chapter 5
Overview of B-Tree Indexes

Figure 5-1 Internal Structure of a B-tree Index

Branch Blocks

0..40
41..80
81..120
200..250
v
=1 0..10 41..48 200..209
11..19 = 49..53 210..220
20..25 54..65 221..228
32..40 78..80 246..250
Leaf Blocks
A4 v
0,rowid 11,rowid 221,rowid 246,rowid
0,rowid 11,rowid 222 rowid 248, rowid
12,rowid 223,rowid 248,rowid
10,rowid
19,rowid . 228,rowid . 250,rowid

A U U U

This section contains the following topics:
* Branch Blocks and Leaf Blocks

* Index Scans

* Reverse Key Indexes

* Ascending and Descending Indexes

* Index Compression

Branch Blocks and Leaf Blocks

ORACLE

A B-tree index has two types of blocks: the branch block for searching, and the leaf block
for storing key values. The upper-level branch blocks of a B-tree index contain index data that
points to lower-level index blocks.

In Figure 5-1, the root branch block has an entry 0- 40, which points to the leftmost block in
the next branch level. This branch block contains entries such as 0- 10 and 11- 19. Each of
these entries points to a leaf block that contains key values that fall in the range.

A B-tree index is balanced because all leaf blocks automatically stay at the same depth.
Thus, retrieval of any record from anywhere in the index takes approximately the same
amount of time. The height of the index is the number of blocks required to go from the root
block to a leaf block. The branch level is the height minus 1. In Figure 5-1, the index has a
height of 3 and a branch level of 2.

5-9

Chapter 5
Overview of B-Tree Indexes

Branch blocks store the minimum key prefix needed to make a branching decision
between two keys. This technique enables the database to fit as much data as
possible on each branch block. The branch blocks contain a pointer to the child block
containing the key. The number of keys and pointers is limited by the block size.

The leaf blocks contain every indexed data value and a corresponding rowid used to
locate the actual row. Each entry is sorted by (key, rowid). Within a leaf block, a key

and rowid is linked to its left and right sibling entries. The leaf blocks themselves are
also doubly linked. In Figure 5-1 the leftmost leaf block (0- 10) is linked to the second
leaf block (11-19).

Note:

Indexes in columns with character data are based on the binary values of the
characters in the database character set.

Index Scans

In an index scan, the database retrieves a row by traversing the index, using the
indexed column values specified by the statement. If the database scans the index for
a value, then it will find this value in n 1/Os where n is the height of the B-tree index.
This is the basic principle behind Oracle Database indexes.

If a SQL statement accesses only indexed columns, then the database reads values
directly from the index rather than from the table. If the statement accesses
nonindexed columns in addition to the indexed columns, then the database uses
rowids to find the rows in the table. Typically, the database retrieves table data by
alternately reading an index block and then a table block.

¢ See Also:

Oracle Database SQL Tuning Guide for detailed information about index
scans

Full Index Scan

ORACLE

In a full index scan, the database reads the entire index in order. A full index scan is
available if a predicate (WHERE clause) in the SQL statement references a column in
the index, and in some circumstances when no predicate is specified. A full scan can
eliminate sorting because the data is ordered by index key.

Example 5-1 Full Index Scan
Suppose that an application runs the following query:

SELECT departnent _id, |ast_nanme, salary
FROM enpl oyees

WHERE sal ary > 5000

ORDER BY departnent _id, |ast_name;

5-10

Chapter 5
Overview of B-Tree Indexes

In this example, the depart ment _i d, | ast _nane, and sal ary are a composite key in an index.
Oracle Database performs a full scan of the index, reading it in sorted order (ordered by
department ID and last name) and filtering on the salary attribute. In this way, the database
scans a set of data smaller than the enpl oyees table, which contains more columns than are
included in the query, and avoids sorting the data.

The full scan could read the index entries as follows:

50, At ki nson, 2800, rowi d
60, Austi n, 4800, rowi d
70, Baer, 10000, rowi d
80, Abel , 11000, rowi d
80, Ande, 6400, row d
110, Austin, 7200, row d

Fast Full Index Scan

A fast full index scan is a full index scan in which the database accesses the data in the
index itself without accessing the table, and the database reads the index blocks in no
particular order.

Fast full index scans are an alternative to a full table scan when both of the following
conditions are met:

e The index must contain all columns needed for the query.

A row containing all nulls must not appear in the query result set. For this result to be
guaranteed, at least one column in the index must have either:

— A NOT NULL constraint

— A predicate applied to the column that prevents nulls from being considered in the
query result set

Example 5-2 Fast Full Index Scan

Assume that an application issues the following query, which does not include an ORDER BY
clause:

SELECT | ast _nane, salary
FROM enpl oyees;

The | ast _name column has a not null constraint. If the last name and salary are a composite
key in an index, then a fast full index scan can read the index entries to obtain the requested
information:

Bai da, 2900, rowi d

At ki nson, 2800, row d
Zl ot key, 10500, r owi d
Austin, 7200, row d
Baer, 10000, rowi d
Austin, 4800, row d

ORACLE 5-11

Chapter 5
Overview of B-Tree Indexes

Index Range Scan

An index range scan is an ordered scan of an index in which one or more leading
columns of an index are specified in conditions, and 0, 1, or more values are possible
for an index key.

A condition specifies a combination of one or more expressions and logical (Boolean)
operators. It returns a value of TRUE, FALSE, or UNKNO/N.

The database commonly uses an index range scan to access selective data. The
selectivity is the percentage of rows in the table that the query selects, with 0 meaning
no rows and 1 meaning all rows. Selectivity is tied to a query predicate, such as WHERE
| ast _nanme LIKE ' A%, or a combination of predicates. A predicate becomes more
selective as the value approaches 0 and less selective (or more unselective) as the
value approaches 1.

For example, a user queries employees whose last names begin with A. Assume that
the | ast _nane column is indexed, with entries as follows:

Abel , row d
Ande, rowi d

At ki nson, row d
Austin, row d
Austin, row d
Baer,row d

The database could use a range scan because the | ast _name column is specified in
the predicate and multiples rowids are possible for each index key. For example, two
employees are named Austin, so two rowids are associated with the key Austi n.

An index range scan can be bounded on both sides, as in a query for departments
with IDs between 10 and 40, or bounded on only one side, as in a query for IDs over
40. To scan the index, the database moves backward or forward through the leaf
blocks. For example, a scan for IDs between 10 and 40 locates the first index leaf
block that contains the lowest key value that is 10 or greater. The scan then proceeds
horizontally through the linked list of leaf nodes until it locates a value greater than 40.

Index Unique Scan

ORACLE

In contrast to an index range scan, an index unique scan must have either 0 or 1
rowid associated with an index key.

The database performs a unique scan when a predicate references all of the columns
in the key of a UNI QUE index using an equality operator. An index unique scan stops
processing as soon as it finds the first record because no second record is possible.

As an illustration, suppose that a user runs the following query:
SELECT *

FROM enpl oyees
WHERE enpl oyee id = 5;

5-12

Chapter 5
Overview of B-Tree Indexes

Assume that the enpl oyee_i d column is the primary key and is indexed with entries as
follows:

1,rowid
2,rowd
4, rowid
5 rowd
6,rowd

In this case, the database can use an index unique scan to locate the rowid for the employee
whose ID is 5.

Index Skip Scan

ORACLE

An index skip scan uses logical subindexes of a composite index. The database "skips"
through a single index as if it were searching separate indexes.

Skip scanning is beneficial if there are few distinct values in the leading column of a
composite index and many distinct values in the nonleading key of the index. The database
may choose an index skip scan when the leading column of the composite index is not
specified in a query predicate.

Example 5-3 Skip Scan of a Composite Index

Assume that you run the following query for a customer in the sh. cust oner s table:

SELECT * FROM sh. customers WHERE cust_emai| = ' Abbey@onpany. exanpl e. con ;

The cust oner s table has a column cust _gender whose values are either Mor F. Assume that
a composite index exists on the columns (cust _gender, cust _emai |). The following example
shows a portion of the index entries:

F, W! f @onpany. exanpl e. com row d

F, WI sey@onpany. exanpl e. com r ow d

F, Wbod@onpany. exanpl e. com row d

F, Wodnman@onpany. exanpl e. com rowi d
F, Yang@onpany. exanpl e. com rowi d

F, Zi mrer man@onpany. exanpl e. com row d
M Abbassi @onpany. exanpl e. com rowi d
M Abbey@onpany. exanpl e. com rowi d

The database can use a skip scan of this index even though cust _gender is not specified in
the WHERE clause.

In a skip scan, the number of logical subindexes is determined by the number of distinct
values in the leading column. In the preceding example, the leading column has two possible
values. The database logically splits the index into one subindex with the key F and a second
subindex with the key M

5-13

Chapter 5
Overview of B-Tree Indexes

When searching for the record for the customer whose email is

Abbey @onpany. exanpl e. com the database searches the subindex with the value F
first and then searches the subindex with the value M Conceptually, the database
processes the query as follows:

SELECT * FROM sh. cust oners WHERE cust _gender = 'F

AND cust _enmi|l = ' Abbey@onpany. exanpl e. con

UNI ON ALL

SELECT * FROM sh. cust omers WHERE cust _gender = 'M
AND cust _enmi|l = ' Abbey@onpany. exanpl e. con ;
¢ See Also:

Oracle Database SQL Tuning Guide to learn more about skip scans

Index Clustering Factor

The index clustering factor measures row order in relation to an indexed value such
as employee last name. As the degree of order increases, the clustering factor
decreases.

The clustering factor is useful as a rough measure of the number of I/Os required to
read an entire table using an index:

« If the clustering factor is high, then Oracle Database performs a relatively high
number of I/Os during a large index range scan. The index entries point to random
table blocks, so the database may have to read and reread the same blocks over
and over again to retrieve the data pointed to by the index.

e If the clustering factor is low, then Oracle Database performs a relatively low
number of I/Os during a large index range scan. The index keys in a range tend to
point to the same data block, so the database does not have to read and reread
the same blocks over and over.

The clustering factor is relevant for index scans because it can show:

* Whether the database will use an index for large range scans
* The degree of table organization in relation to the index key

* Whether you should consider using an index-organized table, partitioning, or table
cluster if rows must be ordered by the index key

Example 5-4 Clustering Factor

Assume that the enpl oyees table fits into two data blocks. Table 5-3 depicts the rows
in the two data blocks (the ellipses indicate data that is not shown).

ORACLE 5-14

Chapter 5
Overview of B-Tree Indexes

Table 5-3 Contents of Two Data Blocks in the Employees Table

e
Data Block 1 Data Block 2

100 Steven Ki ng SKI NG
156 Janette King JKI NG
115 Al exander Khoo AKHOO

149 El eni Zl ot key EZLOTKEY ...
. 200 Jenni fer Whalen JWHALEN
116 Shelli Baida SBAI DA

204 Her mann Baer HBAER

105 David Austin DAUSTI N .

130 Mozhe Atkinson MATKINSO ... 137 Renske Ladwig RLADWG

166 Sundar Ande SANDE o 173 Sundita Kumar SKUVAR

174 Ellen Abel EABEL . 101 Neena Kochar NKOCHHAR ...

Rows are stored in the blocks in order of last name (shown in bold). For example, the bottom
row in data block 1 describes Abel, the next row up describes Ande, and so on alphabetically
until the top row in block 1 for Steven King. The bottom row in block 2 describes Kochar, the
next row up describes Kumar, and so on alphabetically until the last row in the block for
Zlotkey.

Assume that an index exists on the last name column. Each name entry corresponds to a
rowid. Conceptually, the index entries would look as follows:

Abel , bl ocklr owl
Ande, bl ock1r ow2

At ki nson, bl ock1lrow3
Austin, bl ocklr ow4
Baer, bl ocklr ows

Assume that a separate index exists on the employee ID column. Conceptually, the index
entries might look as follows, with employee IDs distributed in almost random locations
throughout the two blocks:

100, bl ock1r ows0
101, bl ock2r owl
102, bl ock1r owd
103, bl ock2rowl9
104, bl ock2r ow39
105, bl ock1row4

ORACLE 5-15

Chapter 5
Overview of B-Tree Indexes

The following statement queries the ALL_| NDEXES view for the clustering factor for
these two indexes:

SQL> SELECT | NDEX_NAME, CLUSTERI NG _FACTOR
2 FROM ALL_| NDEXES
3 VHERE | NDEX_NAME I N (' EMP_NAME_| X' ,' EMP_EMP_I D PK'):

| NDEX_NANE CLUSTERI NG_FACTOR
EMP_EMP_I D_PK 19
EMP_NAME | X 2

The clustering factor for EMP_NAME_| X is low, which means that adjacent index entries
in a single leaf block tend to point to rows in the same data blocks. The clustering
factor for EMP_EMP_| D _PKis high, which means that adjacent index entries in the same
leaf block are much less likely to point to rows in the same data blocks.

¢ See Also:

Oracle Database Reference to learn about ALL_| NDEXES

Reverse Key Indexes

A reverse key index is a type of B-tree index that physically reverses the bytes of
each index key while keeping the column order.

For example, if the index key is 20, and if the two bytes stored for this key in
hexadecimal are C1, 15 in a standard B-tree index, then a reverse key index stores the
bytes as 15, C1.

Reversing the key solves the problem of contention for leaf blocks in the right side of a
B-tree index. This problem can be especially acute in an Oracle Real Application
Clusters (Oracle RAC) database in which multiple instances repeatedly modify the
same block. For example, in an or der s table the primary keys for orders are
sequential. One instance in the cluster adds order 20, while another adds 21, with
each instance writing its key to the same leaf block on the right-hand side of the index.

In a reverse key index, the reversal of the byte order distributes inserts across all leaf
keys in the index. For example, keys such as 20 and 21 that would have been
adjacent in a standard key index are now stored far apart in separate blocks. Thus, I/O
for insertions of sequential keys is more evenly distributed.

Because the data in the index is not sorted by column key when it is stored, the
reverse key arrangement eliminates the ability to run an index range scanning query in
some cases. For example, if a user issues a query for order IDs greater than 20, then
the database cannot start with the block containing this ID and proceed horizontally
through the leaf blocks.

ORACLE 5-16

Chapter 5
Overview of B-Tree Indexes

Ascending and Descending Indexes

In an ascending index, Oracle Database stores data in ascending order. By default,
character data is ordered by the binary values contained in each byte of the value, numeric
data from smallest to largest number, and date from earliest to latest value.

For an example of an ascending index, consider the following SQL statement:

CREATE | NDEX enp_deptid_ix ON hr.enpl oyees(departnent id);

Oracle Database sorts the hr. enpl oyees table on the depart ment _i d column. It loads the
ascending index with the depart ment _i d and corresponding rowid values in ascending order,
starting with 0. When it uses the index, Oracle Database searches the sorted depart ment _i d
values and uses the associated rowids to locate rows having the requested depart nent _id
value.

By specifying the DESC keyword in the CREATE | NDEX statement, you can create a descending
index. In this case, the index stores data on a specified column or columns in descending
order. If the index in Table 5-3 on the enpl oyees. depart nent _i d column were descending,
then the leaf blocking containing 250 would be on the left side of the tree and block with 0 on
the right. The default search through a descending index is from highest to lowest value.

Descending indexes are useful when a query sorts some columns ascending and others
descending. For an example, assume that you create a composite index on the | ast _nane
and depart ment _i d columns as follows:

CREATE | NDEX enp_nane_dpt _i x ON hr.enpl oyees(| ast_name ASC, department _id
DESC) ;

If a user queries hr. enpl oyees for last names in ascending order (A to Z) and department IDs
in descending order (high to low), then the database can use this index to retrieve the data
and avoid the extra step of sorting it.

¢ See Also:

e Oracle Database SQL Tuning Guide to learn more about ascending and
descending index searches

e Oracle Database SQL Language Reference for descriptions of the ASC and
DESC options of CREATE | NDEX

Index Compression

To reduce space in indexes, Oracle Database can employ different compression algorithms.

ORACLE 5-17

Chapter 5
Overview of B-Tree Indexes

Prefix Compression

ORACLE

Oracle Database can use prefix compression, also known as key compression, to
compress portions of the primary key column values in a B-tree index or an index-
organized table. Prefix compression can greatly reduce the space consumed by the
index.

An uncompressed index entry has one piece. An index entry using prefix compression
has two pieces: a prefix entry, which is the grouping piece, and a suffix entry, which is
the unique or nearly unique piece. The database achieves compression by sharing the
prefix entries among the suffix entries in an index block.

" Note:

If a key is not defined to have a unique piece, then the database provides
one by appending a rowid to the grouping piece.

By default, the prefix of a unique index consists of all key columns excluding the last
one, whereas the prefix of a nonunique index consists of all key columns. Suppose
you create a composite, unique index on two columns of the oe. or der s table as
follows:

CREATE UNI QUE | NDEX orders_mod_stat_ix ON orders (order_node, order_status);

In the preceding example, an index key might be onl i ne, 0. The rowid is stored in the
key data portion of the entry, and is not part of the key itself.

¢ Note:

If you create a unique index on a single column, then Oracle Database
cannot use prefix key compression because no common prefixes exist.

Alternatively, suppose you create a nonunique index on the same columns:

CREATE | NDEX orders_mpd_stat_ix ON orders (order_node, order_status);

Also assume that repeated values occur in the or der _mode and order _st atus
columns. An index block could have entries as shown in the follow example:

onl i ne, 0, AAAPv CAAFAAAAFaAAa
onl i ne, 0, AAAPvCAAFAAAAFaAAg
onl i ne, 0, AAAPv CAAFAAAAFaAAl
onl i ne, 2, AAAPv CAAFAAAAFaAAM
onl i ne, 3, AAAPvCAAFAAAAFaAAq
onl i ne, 3, AAAPv CAAFAAAAFaAAL

In the preceding example, the key prefix would consist of a concatenation of the

order _node and or der _st at us values, as in onl i ne, 0. The suffix consists in the rowid,
as in AAAPvCAAFAAAAFaAAa. The rowid makes the whole index entry unique because a
rowid is itself unique in the database.

5-18

Chapter 5
Overview of B-Tree Indexes

If the index in the preceding example were created with default prefix compression (specified
by the COVPRESS keyword), then duplicate key prefixes such as onl i ne,0 and onl i ne,3 would
be compressed. Conceptually, the database achieves compression as follows:

online, 0

AAAPy CAAFAAAAFaAAa
AAAPY CAAFAAAAFaAAg
AAAPy CAAFAAAAFaAAI

online, 2

AAAPy CAAFAAAAFaAAM
online, 3

AAAPY CAAFAAAAFaAAq
AAAPy CAAFAAAAFaAAL

Suffix entries (the rowids) form the compressed version of index rows. Each suffix entry
references a prefix entry, which is stored in the same index block as the suffix.

Alternatively, you could specify a prefix length when creating an index that uses prefix
compression. For example, if you specified COWRESS 1, then the prefix would be or der _node
and the suffix would be or der _st at us, r owi d. For the values in the index block example, the
index would factor out duplicate occurrences of the prefix onl i ne, which can be represented
conceptually as follows:

online

0, AAAPv CAAFAAAAFaAAa
0, AAAPv CAAFAAAAFaAAg
0, AAAPy CAAFAAAAFaAAl
2, AAAPv CAAFAAAAFaAAM
3, AAAPv CAAFAAAAFaAAq
3, AAAPv CAAFAAAAFaAAL

The index stores a specific prefix once per leaf block at most. Only keys in the leaf blocks of
a B-tree index are compressed. In the branch blocks the key suffix can be truncated, but the
key is not compressed.

¢ See Also:

e Oracle Database Administrator's Guide to learn how to use compressed
indexes

e Oracle Database VLDB and Partitioning Guide to learn how to use prefix
compression for partitioned indexes

e Oracle Database SQL Language Reference for descriptions of the
key conpressi on clause of CREATE | NDEX

Advanced Index Compression

ORACLE

Starting with Oracle Database 12c Release 1 (12.1.0.2), advanced index compression
improves on traditional prefix compression for supported indexes on heap-organized tables.

Benefits of Advanced Index Compression

Prefix compression has limitations for types of indexes supported, compression ratio, and
ease of use. Unlike prefix compression, which uses fixed duplicate key elimination for every

5-19

Chapter 5
Overview of B-Tree Indexes

block, advanced index compression uses adaptive duplicate key elimination on a per-
block basis. The main advantages of advanced index compression are:

* The database automatically chooses the best compression for each block, using a
number of internal algorithms such as intra-column level prefixes, duplicate key
elimination, and rowid compression. Unlike in prefix compression, advanced index
compression does not require the user to know data characteristics.

* Advanced compression works on both non-unique and unique indexes. Prefix
compression works well on some non-unique indexes, but the ratios are lower on
indexes whose leading columns do not have many repeats.

* The compressed index is usable in the same way as an uncompressed index. The
index supports the same access paths: unique key lookups, range scans, and fast
full scans.

* Indexes can inherit advanced compression from a parent table or containing
tablespace.

How Advanced Index Compression Works

Advanced index compression works at the block level to provide the best compression
for each block. The database uses the following technique:

e During index creation, as a leaf block becomes full, the database automatically
compresses the block to the optimal level.

e When reorganizing an index block as a result of DML, if the database can create
sufficient space for the incoming index entry, then a block split does not occur.
During DML without advanced index compression, however, an index block split
always occurs when the block becomes full.

Advanced Index Compression HIGH

In releases previous to Oracle Database 12c¢ Release 2 (12.2), the only form of
advanced index compression was low compression (COVPRESS ADVANCED LOW. Now
you can also specify high compression (COMPRESS ADVANCED H GH), which is the
default. Advanced index compression with the H GH option offers the following
advantages:

* Gives higher compression ratios in most cases, while also improving performance
for queries that access the index

* Employs more complex compression algorithms than advanced low

e Stores data in a compression unit, which is a special on-disk format

< Note:

When you apply H GH compression, all blocks have compression. When you
apply LOWcompression, the database may leave some blocks
uncompressed. You can use statistics to determine how many blocks were
left uncompressed.

ORACLE 5-20

Chapter 5
Overview of Bitmap Indexes

Example 5-5 Creating an Index with Advanced High Compression
This example enables advanced index compression for an index on the hr. enpl oyees table:
CREATE | NDEX hr. enp_mdp_i X

ON hr. enpl oyees(manager i d, departnent _id)
COVPRESS ADVANCED;

The following query shows the type of compression:
SELECT COVPRESSI ON FROM DBA_| NDEXES WHERE | NDEX_NAME =' EMP_MN\DP_I X' ;

COVPRESSI ON

ADVANCED H GH

¢ See Also:

e Oracle Database Administrator’s Guide to learn how to enable advanced index
compression

e Oracle Database SQL Language Referencefor descriptions of the
key_conpressi on clause of CREATE | NDEX

e Oracle Database Reference to learn about ALL_| NDEXES

Overview of Bitmap Indexes

ORACLE

In a bitmap index, the database stores a bitmap for each index key. In a conventional B-tree
index, one index entry points to a single row. In a bitmap index, each index key stores
pointers to multiple rows.

Bitmap indexes are primarily designed for data warehousing or environments in which
queries reference many columns in an ad hoc fashion. Situations that may call for a bitmap
index include:

* The indexed columns have low cardinality, that is, the number of distinct values is small
compared to the number of table rows.

* The indexed table is either read-only or not subject to significant modification by DML
statements.

For a data warehouse example, the sh. cust oner s table has a cust _gender column with only
two possible values: Mand F. Suppose that queries for the number of customers of a
particular gender are common. In this case, the cust omer s. cust _gender column would be a
candidate for a bitmap index.

Each bit in the bitmap corresponds to a possible rowid. If the bit is set, then the row with the
corresponding rowid contains the key value. A mapping function converts the bit position to
an actual rowid, so the bitmap index provides the same functionality as a B-tree index
although it uses a different internal representation.

5-21

Chapter 5
Overview of Bitmap Indexes

If the indexed column in a single row is updated, then the database locks the index key
entry (for example, Mor F) and not the individual bit mapped to the updated row.
Because a key points to many rows, DML on indexed data typically locks all of these
rows. For this reason, bitmap indexes are not appropriate for many OLTP applications.

¢ See Also:

e Oracle Database SQL Tuning Guide to learn more about bitmap indexes

e Oracle Database Data Warehousing Guide to learn how to use bitmap
indexes in a data warehouse

Example: Bitmap Indexes on a Single Table

In this example, some columns of sh. cust oner s table are candidates for a bitmap
index.

Consider the following query:

SQ.> SELECT cust_id, cust_last_nane, cust_marital status, cust_gender
2 FROM sh.custoners
3 WHERE ROWNUM < 8 ORDER BY cust i d;

CUST I D CUST_LAST_ CUST_MAR C

1 Kessel M

2 Koch F

3 Emmer son M

4 Hardy M
M

F

F

5 Gowen
6 Charles single
7 I ngram single

7 rows sel ected.

The cust _marital _status and cust _gender columns have low cardinality, whereas
cust _idandcust_| ast_nane do not. Thus, bitmap indexes may be appropriate on
cust_marital _status and cust_gender. A bitmap index is probably not useful for the
other columns. Instead, a unique B-tree index on these columns would likely provide
the most efficient representation and retrieval.

Table 5-4 illustrates the bitmap index for the cust _gender column output shown in the
preceding example. It consists of two separate bitmaps, one for each gender.

Table 5-4 Sample Bitmap for One Column
|

Value Row 1 Row 2 Row 3 Row 4 Row 5 Row 6 Row 7
M 1 0 1 1 1 0 0
F 0 1 0 0 0 1 1

ORACLE 5-22

Chapter 5
Overview of Bitmap Indexes

A mapping function converts each bit in the bitmap to a rowid of the cust onrer s table. Each bit
value depends on the values of the corresponding row in the table. For example, the bitmap
for the Mvalue contains a 1 as its first bit because the gender is Min the first row of the

cust omer s table. The bitmap cust _gender ="M has a 0 for the bits in rows 2, 6, and 7
because these rows do not contain Mas their value.

" Note:

Bitmap indexes can include keys that consist entirely of null values, unlike B-tree
indexes. Indexing nulls can be useful for some SQL statements, such as queries
with the aggregate function COUNT.

An analyst investigating demographic trends of the customers may ask, "How many of our
female customers are single or divorced?" This question corresponds to the following SQL

query:

SELECT COUNT(*)

FROM custoners

WHERE cust _gender = 'F

AND cust_marital _status IN ('single', "divorced);

Bitmap indexes can process this query efficiently by counting the number of 1 values in the
resulting bitmap, as illustrated in Table 5-5. To identify the customers who satisfy the criteria,
Oracle Database can use the resulting bitmap to access the table.

Table 5-5 Sample Bitmap for Two Columns
|

Value Row 1 Row 2 Row 3 Row 4 Row 5 Row 6 Row 7
M 1 0 1 1 1 0 0

F 0 1 0 0 0 1 1
single 0 0 0 0 0 1 1

di vorced 0 0 0 0 0 0 0
singleor O 0 0 0 0 1 1

di vor ced,

and F

Bitmap indexing efficiently merges indexes that correspond to several conditions in a WHERE
clause. Rows that satisfy some, but not all, conditions are filtered out before the table itself is
accessed. This technique improves response time, often dramatically.

Bitmap Join Indexes

ORACLE

A bitmap join index is a bitmap index for the join of two or more tables.

For each value in a table column, the index stores the rowid of the corresponding row in the
indexed table. In contrast, a standard bitmap index is created on a single table.

A bitmap join index is an efficient means of reducing the volume of data that must be joined
by performing restrictions in advance. For an example of when a bitmap join index would be

5-23

Chapter 5
Overview of Bitmap Indexes

useful, assume that users often query the number of employees with a particular job
type. A typical query might look as follows:

SELECT COUNT(*)

FROM enpl oyees, jobs

WHERE enpl oyees.job id = jobs.job id
AND jobs.job title = '"Accountant';

The preceding query would typically use an index on j obs.job_titl e to retrieve the
rows for Account ant and then the job ID, and an index on enpl oyees. j ob_i d to find
the matching rows. To retrieve the data from the index itself rather than from a scan of
the tables, you could create a bitmap join index as follows:

CREATE BI TMAP | NDEX enpl oyees_bm i dx
ON enpl oyees (jobs.job title)
FROM enpl oyees, jobs

WHERE enpl oyees.job_id = jobs.job_id,;

As illustrated in the following figure, the index key is j obs.job_titl e and the indexed
table is enpl oyees.

Figure 5-2 Bitmap Join Index

| last_name | job_id | manager_id | hire_date | salary | department_id
marvis hr_rep 101 07—Jun-94 6500 40
baer pr_rep 101 07-Jun—-94 10000 70
higgins ac_rep 101 07-Jun—-94 12000 110
gietz ac_account | 205 07-Jun-94 8300 110
| job_title | min_salary | max_salary
Marketing Representative 4000 9000
Human Resources Representative | 4000 9000
Public Relations Representative 4500 10500
Sales Representative 6000 12008

Indexed table is employees

ORACLE

Index key is jobs. job_title

CREATE BITMAP INDEX employees_bm_idx
ON »>employees (jobs.job_title)«——
FROM employees, jobs

WHERE | employees. job_id = jobs. job_id

Conceptually, enpl oyees_bm i dx is an index of the j obs. tit| e column in the SQL
guery shown in the following query (sample output included). The job_title key in the
index points to rows in the enpl oyees table. A query of the number of accountants can

5-24

Chapter 5
Overview of Bitmap Indexes

use the index to avoid accessing the enpl oyees and j obs tables because the index itself
contains the requested information.

SELECT jobs.job_title AS "jobs.job_title", enployees.rowid AS
"enpl oyees. row d"

FROM enpl oyees, jobs

WHERE enpl oyees.job_id = jobs.job_id

ORDER BY job_title;

jobs.job title enpl oyees. rowi d

Account ant AAAQNKAAFAAAABSAAL
Account ant AAAQNKAAFAAAABSAAN
Account ant AAAQNKAAFAAAABSAAM
Account ant AAAQNKAAFAAAABSAA]
Account ant AAAQNKAAFAAAABSAAK
Accounting Manager AAAQNKAAFAAAABTAAH
Adnmi ni stration Assistant AAAQNKAAFAAAABTAAC
Admi ni stration Vice President AAAQNKAAFAAAABSAAC
Admi ni stration Vice President AAAQNKAAFAAAABSAAB

In a data warehouse, the join condition is an equijoin (it uses the equality operator) between
the primary key columns of the dimension tables and the foreign key columns in the fact
table. Bitmap join indexes are sometimes much more efficient in storage than materialized
join views, an alternative for materializing joins in advance.

See Also:

Oracle Database Data Warehousing Guide for more information on bitmap join
indexes

Bitmap Storage Structure

ORACLE

Oracle Database uses a B-tree index structure to store bitmaps for each indexed key.

For example, if j obs. job_titl e is the key column of a bitmap index, then one B-tree stores
the index data. The leaf blocks store the individual bitmaps.

Example 5-6 Bitmap Storage Example

Assume that the j obs. job_titl e column has unique values Shi ppi ng d erk, Stock C erk,
and several others. A bitmap index entry for this index has the following components:

e The job title as the index key
e Alow rowid and high rowid for a range of rowids

e A bitmap for specific rowids in the range

5-25

Chapter 5
Overview of Function-Based Indexes

Conceptually, an index leaf block in this index could contain entries as follows:

Shi ppi ng O er k, AAAPzZ RAAFAAAABSABQ, AAAPz RAAFAAAABSABZ, 0010000100
Shi ppi ng d er k, AAAPzZ RAAFAAAABSABa, AAAPz RAAFAAAABSABh, 010010
Stock O erk, AAAPz RAAFAAAABSAAa, AAAPz RAAFAAAABSAAC, 1001001100
Stock O erk, AAAPz RAAFAAAABSAAd, AAAPz RAAFAAAABSAAL , 0101001001
Stock O erk, AAAPz RAAFAAAABSAAU, AAAPz RAAFAAAABSABz, 100001

The same job title appears in multiple entries because the rowid range differs.

A session updates the job ID of one employee from Shi ppi ng O erk to Stock O erk.
In this case, the session requires exclusive access to the index key entry for the old
value (Shi ppi ng d erk) and the new value (St ock d erk). Oracle Database locks the
rows pointed to by these two entries—but not the rows pointed to by Account ant or
any other key—until the UPDATE commiits.

The data for a bitmap index is stored in one segment. Oracle Database stores each
bitmap in one or more pieces. Each piece occupies part of a single data block.

¢ See Also:

"User Segments" explains the different types of segments, and how
segments are created

Overview of Function-Based Indexes

ORACLE

A function-based index computes the value of a function or expression involving one
or more columns and stores it in an index. A function-based index can be either a B-
tree or a bitmap index.

The indexed function can be an arithmetic expression or an expression that contains a
SQL function, user-defined PL/SQL function, package function, or C callout. For
example, a function could add the values in two columns.

" See Also:

e Oracle Database Administrator’s Guide to learn how to create function-
based indexes

e Oracle Database Development Guide for more information about using
function-based indexes

e Oracle Database SQL Language Referencefor restrictions and usage
notes for function-based indexes

5-26

Chapter 5
Overview of Function-Based Indexes

Uses of Function-Based Indexes

ORACLE

Function-based indexes are efficient for evaluating statements that contain functions in their
VHERE clauses. The database only uses the function-based index when the function is
included in a query. When the database processes | NSERT and UPDATE statements, however,
it must still evaluate the function to process the statement.

Example 5-7 Index Based on Arithmetic Expression
For example, suppose you create the following function-based index:

CREATE | NDEX enp_total _sal _idx
ON enpl oyees (12 * salary * comm ssion_pct, salary, commission_pct);

The database can use the preceding index when processing queries such as the following
(partial sample output included):

SELECT enpl oyee_id, |ast_nane, first_nane,
12*sal ary*commi ssi on_pct AS "ANNUAL SAL"

FROM enpl oyees

VWHERE (12 * salary * commission_pct) < 30000

ORDER BY "ANNUAL SAL" DESC;

EMPLOYEE_| D LAST_NAME FI RST_NAME ANNUAL SAL
159 Smith Li ndsey 28800
151 Bernstein Davi d 28500
152 Hall Pet er 27000
160 Doran Loui se 27000
175 Hutton Al 'yssa 26400
149 Zl ot key El eni 25200
169 Bl oom Harrison 24000

Example 5-8 Index Based on an UPPER Function

Function-based indexes defined on the SQL functions UPPER(col unm_nane) or

LOMER(col umm_nane) facilitate case-insensitive searches. For example, suppose that the
first_nanme column in enpl oyees contains mixed-case characters. You create the following
function-based index on the hr. enpl oyees table:

CREATE | NDEX enp_f name_upper case_i dx
ON enpl oyees (UPPER(first_nane));

The enp_f name_upper case_i dx index can facilitate queries such as the following:

SELECT *
FROM enpl oyees
WHERE UPPER(first_name) = ' AUDREY ;

Example 5-9 Indexing Specific Rows in a Table

A function-based index is also useful for indexing only specific rows in a table. For example,
the cust _val i d column in the sh. cust orer s table has either | or A as a value. To index only
the A rows, you could write a function that returns a null value for any rows other than the A
rows. You could create the index as follows:

CREATE | NDEX cust _valid_idx
ON custonmers (CASE cust_valid WHEN ' A" THEN 'A" END);

5-27

Chapter 5
Overview of Application Domain Indexes

¢ See Also:

e Oracle Database Globalization Support Guide for information about
linguistic indexes

e Oracle Database SQL Language Reference to learn more about SQL
functions

Optimization with Function-Based Indexes

For queries with expressions in a WHERE clause, the optimizer can use an index range
scan on a function-based index.

The range scan access path is especially beneficial when the predicate is highly
selective, that is, when it chooses relatively few rows. In Example 5-7, if an index is
built on the expression 12*sal ar y*conmi ssi on_pct, then the optimizer can use an
index range scan.

A virtual column is also useful for speeding access to data derived from expressions.
For example, you could define virtual column annual _sal as
12*sal ary*conmmi ssi on_pct and create a function-based index on annual _sal .

The optimizer performs expression matching by parsing the expression in a SQL
statement and then comparing the expression trees of the statement and the function-
based index. This comparison is case-insensitive and ignores blank spaces.

¢ See Also:

e "Overview of the Optimizer"

e Oracle Database SQL Tuning Guide to learn more about gathering
statistics

e Oracle Database Administrator’s Guide to learn how to add virtual
columns to a table

Overview of Application Domain Indexes

ORACLE

An application domain index is a customized index specific to an application.
Extensive indexing can:

e Accommodate indexes on customized, complex data types such as documents,
spatial data, images, and video clips (see)

e Make use of specialized indexing techniques

You can encapsulate application-specific index management routines as an indextype
schema object, and then define a domain index on table columns or attributes of an
object type. Extensible indexing can efficiently process application-specific operators.

5-28

Chapter 5
Overview of Index-Organized Tables

The application software, called the cartridge, controls the structure and content of a domain
index. The database interacts with the application to build, maintain, and search the domain
index. The index structure itself can be stored in the database as an index-organized table or
externally as a file.

" See Also:

e Oracle Database Development Guide to learn more about complex data types

e Oracle Database Data Cartridge Developer's Guide for information about using
data cartridges within the Oracle Database extensibility architecture

Overview of Index-Organized Tables

An index-organized table is a table stored in a variation of a B-tree index structure. In
contrast, a heap-organized table inserts rows where they fit.

In an index-organized table, rows are stored in an index defined on the primary key for the
table. Each index entry in the B-tree also stores the non-key column values. Thus, the index
is the data, and the data is the index. Applications manipulate index-organized tables just like
heap-organized tables, using SQL statements.

For an analogy of an index-organized table, suppose a human resources manager has a
book case of cardboard boxes. Each box is labeled with a number—1, 2, 3, 4, and so on—
but the boxes do not sit on the shelves in sequential order. Instead, each box contains a
pointer to the shelf location of the next box in the sequence.

Folders containing employee records are stored in each box. The folders are sorted by
employee ID. Employee King has ID 100, which is the lowest ID, so his folder is at the bottom
of box 1. The folder for employee 101 is on top of 100, 102 is on top of 101, and so on until
box 1 is full. The next folder in the sequence is at the bottom of box 2.

In this analogy, ordering folders by employee ID makes it possible to search efficiently for
folders without having to maintain a separate index. Suppose a user requests the records for
employees 107, 120, and 122. Instead of searching an index in one step and retrieving the
folders in a separate step, the manager can search the folders in sequential order and
retrieve each folder as found.

Index-organized tables provide faster access to table rows by primary key or a valid prefix of
the key. The presence of non-key columns of a row in the leaf block avoids an additional data
block I/O. For example, the salary of employee 100 is stored in the index row itself. Also,
because rows are stored in primary key order, range access by the primary key or prefix
involves minimal block I/Os. Another benefit is the avoidance of the space overhead of a
separate primary key index.

Index-organized tables are useful when related pieces of data must be stored together or
data must be physically stored in a specific order. A typical use of this type of table is for
information retrieval, spatial data, and OLAP applications.

ORACLE 5-29

ORACLE

¢ See Also:

Spatial and Graph
Oracle Database

organized tables

Index-Organized Table Characteristics

Chapter 5
Overview of Index-Organized Tables

e Oracle Spatial and Graph Developer's Guide for an overview of Oracle

e Oracle OLAP User’s Guide to learn about OLAP Technology in the

e Oracle Database Administrator’s Guide to learn how to manage index-

e Oracle Database SQL Language Reference for CREATE TABLE . ..
ORGANI ZATI ON | NDEX syntax and semantics

The database system performs all operations on index-organized tables by

manipulating the B-tree index structure.

The following table summarizes the differences between index-organized tables and

heap-organized tables.

Table 5-6 Comparison of Heap-Organized Tables with Index-Organized Tables

Heap-Organized Table

Index-Organized Table

The rowid uniquely identifies a row. Primary
key constraint may optionally be defined.

Physical rowid in RON D pseudocolumn allows
building secondary indexes.

Individual rows may be accessed directly by
rowid.

Sequential full table scan returns all rows in
some order.

Can be stored in a table cluster with other
tables.

Can contain a column of the LONG data type
and columns of LOB data types.

Can contain virtual columns (only relational
heap tables are supported).

Primary key uniquely identifies a row. Primary
key constraint must be defined.

Logical rowid in RON D pseudocolumn allows
building secondary indexes.

Access to individual rows may be achieved
indirectly by primary key.

A full index scan or fast full index scan returns
all rows in some order.

Cannot be stored in a table cluster.

Can contain LOB columns but not LONG
columns.

Cannot contain virtual columns.

Figure 5-3 illustrates the structure of an index-organized depart nent s table. The leaf
blocks contain the rows of the table, ordered sequentially by primary key. For example,
the first value in the first leaf block shows a department ID of 20, department name of
Mar ket i ng, manager ID of 201, and location ID of 1800.

5-30

Figure 5-3 Index-Organized Table

Branch Blocks

=1 0..30
31..60

Leaf Blocks

A4

61..68
69..73
74..85

98..100

Chapter 5

Overview of Index-Organized Tables

A4

20,Marketing,201,1800
30,Purchasing,114,1700

50,Shipping,121,1500
60,IT,103,1400

0..60

61.100

101..160

200..270
200..220
221..230
260..270

v

200,0perations,, 1700
210,IT Support,,1700
220,NOC,,1700

U U U U

Example 5-10 Scan of Index-Organized Table

260,Recruiting,,1700
270,Payroll,, 1700

An index-organized table stores all data in the same structure and does not need to store the
rowid. As shown in Figure 5-3, leaf block 1 in an index-organized table might contain entries

as follows, ordered by primary key:

20, Mar ket i ng, 201, 1800
30, Pur chasi ng, 114, 1700

Leaf block 2 in an index-organized table might contain entries as follows:

50, Shi ppi ng, 121, 1500
60, 1 T, 103, 1400

A scan of the index-organized table rows in primary key order reads the blocks in the

following sequence:

1. Block 1
2. Block 2

ORACLE

5-31

Chapter 5
Overview of Index-Organized Tables

Example 5-11 Scan of Heap-Organized Table

To contrast data access in a heap-organized table to an index-organized table,
suppose block 1 of a heap-organized depart ment s table segment contains rows as
follows:

50, Shi ppi ng, 121, 1500
20, Mar ket i ng, 201, 1800

Block 2 contains rows for the same table as follows:

30, Pur chasi ng, 114, 1700
60, 1T, 103, 1400

A B-tree index leaf block for this heap-organized table contains the following entries,
where the first value is the primary key and the second is the rowid:

20, AAAPeXAAFAAAAAY AAD
30, AAAPeXAAFAAAAAY AAA
50, AAAPeXAAFAAAAAY AAC
60, AAAPeXAAFAAAAAy AAB

A scan of the table rows in primary key order reads the table segment blocks in the
following sequence:

1. Block1
2. Block 2
3. Block1
4. Block 2

Thus, the number of block I/Os in this example is double the number in the index-
organized example.

¢ See Also:

e "Table Organization"
to learn more about heap-organized tables
e "Introduction to Logical Storage Structures"

to learn more about the relationship between segments and data blocks

Index-Organized Tables with Row Overflow Area

ORACLE

When creating an index-organized table, you can specify a separate segment as a row
overflow area.

In index-organized tables, B-tree index entries can be large because they contain an
entire row, so a separate segment to contain the entries is useful. In contrast, B-tree
entries are usually small because they consist of the key and rowid.

5-32

Chapter 5
Overview of Index-Organized Tables

If a row overflow area is specified, then the database can divide a row in an index-organized
table into the following parts:

* The index entry

This part contains column values for all the primary key columns, a physical rowid that
points to the overflow part of the row, and optionally a few of the non-key columns. This
part is stored in the index segment.

e The overflow part

This part contains column values for the remaining non-key columns. This part is stored
in the overflow storage area segment.

¢ See Also:

e Oracle Database Administrator’s Guide to learn how to use the OVERFLOWclause
of CREATE TABLE to set a row overflow area

e Oracle Database SQL Language Referencefor CREATE TABLE ... OVERFLOW
syntax and semantics

Secondary Indexes on Index-Organized Tables

A secondary index is an index on an index-organized table.

In a sense, a secondary index is an index on an index. It is an independent schema object
and is stored separately from the index-organized table.

Oracle Database uses row identifiers called logical rowids for index-organized tables. A
logical rowid is a base64-encoded representation of the table primary key. The logical rowid
length depends on the primary key length.

Rows in index leaf blocks can move within or between blocks because of insertions. Rows in
index-organized tables do not migrate as heap-organized rows do. Because rows in index-
organized tables do not have permanent physical addresses, the database uses logical
rowids based on primary key.

For example, assume that the depart nent s table is index-organized. The | ocation_id
column stores the ID of each department. The table stores rows as follows, with the last value
as the location ID:

10, Admi ni stration, 200, 1700
20, Mar ket i ng, 201, 1800

30, Pur chasi ng, 114, 1700

40, Human Resour ces, 203, 2400

A secondary index on the | ocati on_i d column might have index entries as follows, where
the value following the comma is the logical rowid:

1700, * BAFAJqOOWR/ +
1700, * BAFAJqoOnQv+
1800, * BAFAJqOOWRX+
2400, * BAFAJqoOwSn+

ORACLE 5-33

Chapter 5
Overview of Index-Organized Tables

Secondary indexes provide fast and efficient access to index-organized tables using
columns that are neither the primary key nor a prefix of the primary key. For example,
a query of the names of departments whose ID is greater than 1700 could use the
secondary index to speed data access.

" See Also:

* "Rowid Data Types" to learn more about the use of rowids, and the
ROW D pseudocolumn

e "Chained and Migrated Rows "

to learn why rows migrate, and why migration increases the number of
I/Os

e Oracle Database Administrator’s Guide to learn how to create secondary
indexes on an index-organized table

e Oracle Database VLDB and Partitioning Guide to learn about creating
secondary indexes on indexed-organized table partitions

Logical Rowids and Physical Guesses

Secondary indexes use logical rowids to locate table rows.

A logical rowid includes a physical guess, which is the physical rowid of the index
entry when it was first made. Oracle Database can use physical guesses to probe
directly into the leaf block of the index-organized table, bypassing the primary key
search. When the physical location of a row changes, the logical rowid remains valid
even if it contains a physical guess that is stale.

For a heap-organized table, access by a secondary index involves a scan of the
secondary index and an additional I/O to fetch the data block containing the row. For
index-organized tables, access by a secondary index varies, depending on the use
and accuracy of physical guesses:

e Without physical guesses, access involves two index scans: a scan of the
secondary index followed by a scan of the primary key index.

e With physical guesses, access depends on their accuracy:

— With accurate physical guesses, access involves a secondary index scan and
an additional I/O to fetch the data block containing the row.

— With inaccurate physical guesses, access involves a secondary index scan
and an I/O to fetch the wrong data block (as indicated by the guess), followed
by an index unique scan of the index organized table by primary key value.

Bitmap Indexes on Index-Organized Tables

A secondary index on an index-organized table can be a bitmap index. A bitmap
index stores a bitmap for each index key.

When bitmap indexes exist on an index-organized table, all the bitmap indexes use a
heap-organized mapping table. The mapping table stores the logical rowids of the

ORACLE 5-34

ORACLE

Chapter 5
Overview of Index-Organized Tables

index-organized table. Each mapping table row stores one logical rowid for the corresponding

index-organized table row.

The database accesses a bitmap index using a search key. If the database finds the key, then
the bitmap entry is converted to a physical rowid. With heap-organized tables, the database
uses the physical rowid to access the base table. With index-organized tables, the database
uses the physical rowid to access the mapping table, which in turn yields a logical rowid that
the database uses to access the index-organized table. The following figure illustrates index
access for a query of the depart nent s_i ot table.

Figure 5-4 Bitmap Index on Index-Organized Table

Select * from departments_iot
where location_id = 1800

Index of Mapping Table

Mapping Table

location id, physical rowid in mapping table

logical rowid in 10T

1800, AAAPeXAAFAAAAAYAAD
1900, AABPeXAAFAAAAAYAAE

*BAFAJQOCWRX+
*BAGAJQOCWRX+

Index-Organized Table

%%J:;oi Marketing, 201, 1800 /

< Note:

¢ See Also:

rowids

Movement of rows in an index-organized table does not leave the bitmap indexes
built on that index-organized table unusable.

"Rowids of Row Pieces" to learn about the differences between physical and logical

5-35

Partitions, Views, and Other Schema Obijects

Although tables and indexes are the most important and commonly used schema objects, the
database supports many other types of schema objects, the most common of which are
discussed in this chapter.

This chapter contains the following sections:
e Overview of Partitions

e Overview of Sharded Tables

e Overview of Views

e Overview of Materialized Views

* Overview of Sequences

* Overview of Dimensions

e Overview of Synonyms

Overview of Partitions

ORACLE

In an Oracle database, partitioning enables you to decompose very large tables and
indexes into smaller and more manageable pieces called partitions. Each partition is an
independent object with its own name and optionally its own storage characteristics.

For an analogy that illustrates partitioning, suppose an HR manager has one big box that
contains employee folders. Each folder lists the employee hire date. Queries are often made
for employees hired in a particular month. One approach to satisfying such requests is to
create an index on employee hire date that specifies the locations of the folders scattered
throughout the box. In contrast, a partitioning strategy uses many smaller boxes, with each
box containing folders for employees hired in a given month.

Using smaller boxes has several advantages. When asked to retrieve the folders for
employees hired in June, the HR manager can retrieve the June box. Furthermore, if any
small box is temporarily damaged, the other small boxes remain available. Moving offices
also becomes easier because instead of moving a single heavy box, the manager can move
several small boxes.

From the perspective of an application, only one schema object exists. SQL statements
require no modification to access partitioned tables. Partitioning is useful for many different
types of database applications, particularly those that manage large volumes of data.
Benefits include:

* Increased availability

The unavailability of a partition does not entail the unavailability of the object. The query
optimizer automatically removes unreferenced partitions from the query plan so queries
are not affected when the partitions are unavailable.

» Easier administration of schema objects

6-1

Chapter 6
Overview of Partitions

A partitioned object has pieces that can be managed either collectively or
individually. DDL statements can manipulate partitions rather than entire tables or
indexes. Thus, you can break up resource-intensive tasks such as rebuilding an
index or table. For example, you can move one table partition at a time. If a
problem occurs, then only the partition move must be redone, not the table move.
Also, dropping a partition avoids executing numerous DELETE statements.

e Reduced contention for shared resources in OLTP systems

In some OLTP systems, partitions can decrease contention for a shared resource.
For example, DML is distributed over many segments rather than one segment.

e Enhanced query performance in data warehouses

In a data warehouse, partitioning can speed processing of ad hoc queries. For
example, a sales table containing a million rows can be partitioned by quarter.

¢ See Also:

Oracle Database VLDB and Partitioning Guide for an introduction to
partitioning

Partition Characteristics

Partition Key

Each partition of a table or index must have the same logical attributes, such as
column names, data types, and constraints.

For example, all partitions in a table share the same column and constraint definitions.
However, each partition can have separate physical attributes, such as the tablespace
to which it belongs.

The partition key is a set of one or more columns that determines the partition in
which each row in a partitioned table should go. Each row is unambiguously assigned
to a single partition.

In the sal es table, you could specify the ti me_i d column as the key of a range
partition. The database assigns rows to partitions based on whether the date in this
column falls in a specified range. Oracle Database automatically directs insert, update,
and delete operations to the appropriate partition by using the partition key.

Partitioning Strategies

ORACLE

Oracle Partitioning offers several partitioning strategies that control how the database
places data into partitions. The basic strategies are range, list, and hash partitioning.

A single-level partitioning uses only one method of data distribution, for example, only
list partitioning or only range partitioning. In composite partitioning, a table is
partitioned by one data distribution method and then each partition is further divided
into subpartitions using a second data distribution method. For example, you could use
a list partition for channel _i d and a range subpartition for time_i d.

6-2

Chapter 6
Overview of Partitions

Example 6-1 Sample Row Set for Partitioned Table

This partitioning example assumes that you want to populate a partitioned table sal es with
the following rows:

PROD_I D CUST_ID TIMELID CHANNEL_ID PROMO_I D QUANTI TY_SOLD
AMOUNT_SCLD

116 11393 05-JUN-99 2 999 1
12.18
40 100530 30- NOv-98 9 33 1
44.99
118 133 06-JUN-01 2 999 1
17.12
133 9450 01-DEC-00 2 999 1
31.28
36 4523 27-JAN-99 3 999 1
53. 89
125 9417 04- FEB-98 3 999 1
16. 86
30 170 23-FEB-01 2 999 1
8.8
24 11899 26- JUN-99 4 999 1
43. 04
35 2606 17-FEB-00 3 999 1
54.94
45 9491 28- AUG 98 4 350 1
47. 45

Range Partitioning

ORACLE

In range partitioning, the database maps rows to partitions based on ranges of values of the
partitioning key. Range partitioning is the most common type of partitioning and is often used
with dates.

Suppose that you create ti ne_range_sal es as a partitioned table using the following SQL
statement, with the ti ne_i d column as the partition key:

CREATE TABLE tine_range_sal es

(prod_id NUMVBER(6)
cust _id NUMBER
time_id DATE
channel _id CHAR(1)

, prono_id NUMVBER(6)
, quantity_sold NUMBER(3)
, anount_sol d NUMBER(10, 2)

)
PARTI TI ON BY RANGE (tinme_id)

(PARTI TI ON SALES 1998 VALUES LESS THAN (TO DATE(' 01- JAN-1999',' DD- MON- YYYY')),
PARTI TI ON SALES 1999 VALUES LESS THAN (TO DATE(' 01- JAN- 2000', ' DD- MON- YYYY')),
PARTI TI ON SALES 2000 VALUES LESS THAN (TO DATE(' 01- JAN-2001',' DD- MON- YYYY')),

PARTI TI ON SALES 2001 VALUES LESS THAN (MAXVALUE)

)

Afterward, you load ti me_r ange_sal es with the rows from Example 6-1. The code shows the
row distributions in the four partitions. The database chooses the partition for each row based

6-3

Chapter 6
Overview of Partitions

on the ti me_i d value according to the rules specified in the PARTI TI ON BY RANGE
clause. The range partition key value determines the non-inclusive high bound for a
specified partition.

Interval Partitioning
Interval partitioning is an extension of range partitioning.

If you insert data that exceeds existing range partitions, then Oracle Database
automatically creates partitions of a specified interval. For example, you could create a
sales history table that stores data for each month in a separate partition.

Interval partitions enable you to avoid creating range partitions explicitly. You can use
interval partitioning for almost every table that is range partitioned and uses fixed

intervals for new partitions. Unless you create range partitions with different intervals,
or unless you always set specific partition attributes, consider using interval partitions.

When partitioning by interval, you must specify at least one range partition. The range
partitioning key value determines the high value of the range partitions, which is called
the transition point. The database automatically creates interval partitions for data with
values that are beyond the transition point. The lower boundary of every interval
partition is the inclusive upper boundary of the previous range or interval partition.
Thus, in Example 6-2, value 01- JAN- 2011 is in partition p2.

The database creates interval partitions for data beyond the transition point. An
interval partition extends range partitioning by instructing the database to create
partitions of the specified range or interval. The database automatically creates the
partitions when data inserted into the table exceeds all existing range partitions. In
Example 6-2, the p3 partition contains rows with partitioning key ti ne_i d values
greater than or equal to 01- JAN- 2013.

Example 6-2 Interval Partitioning

Assume that you create a sales table with four partitions of varying widths. You specify
that above the transition point of January 1, 2013, the database should create
partitions in one month intervals. The high bound of partition p3 represents the
transition point. Partition p3 and all partitions below it are in the range section, whereas
all partitions above it fall into the interval section.

CREATE TABLE interval _sal es

(prod_id NUVBER(6)
, cust_id NUMBER

, time_id DATE

, channel _id CHAR(1)

, prono_id NUVBER(6)

, quantity sold NUMBER(3)
, anmount_sol d NUMBER(10, 2)

PARTI TI ON BY RANGE (tine_id)
| NTERVAL(NUMIOYM NTERVAL(1, ' MONTH))
(PARTI TI ON pO VALUES LESS THAN (TO DATE
, PARTITI ON pl VALUES LESS THAN (TO DATE
, PARTI TI ON p2 VALUES LESS THAN (TO DATE
, PARTI TI ON p3 VALUES LESS THAN (TO DATE
YYYY'))),

-1-2010", ' DD- MM YYYY'))
-1-2011", ' DD- MM YYYY'))
-7-2012', ' DD- MM YYYY'))
-1-2013', ' DD-Mv

AAAA
el e

ORACLE 6-4

Chapter 6
Overview of Partitions

You insert a sale made on date October 10, 2014:

SQ.> | NSERT INTO interval _sal es VALUES (39, 7602, ' 10-OCT-14',9,nul |, 1,11.79);

1 row creat ed.

A query of USER_TAB_PARTI TI ONS shows that the database created a new partition for the
October 10 sale because the sale date was later than the transition point:

SQL> COL PNAME FORMAT a9
SQ.> COL H GH VALUE FORMAT a40
SQ.> SELECT PARTI TI ON_NAME AS PNAME, H GH VALUE
2 FROM USER TAB PARTI TI ONS WHERE TABLE _NAME = ' | NTERVAL_SALES';

PNAVE H GH_VALUE

PO TO DATE(' 2007-01-01 00: 00: 00', ' SYYYY-M
M DD HH24: M :SS', ' NLS_CALENDAR=GREGORI A
P1 TO DATE(' 2008-01-01 00: 00: 00', ' SYYYY-M
M DD HH24: M :SS', ' NLS_CALENDAR=GREGORI A
P2 TO DATE(' 2009-07-01 00: 00: 00', ' SYYYY-M
M DD HH24: M :SS', 'NLS_CALENDAR=GREGORI A
P3 TO DATE(' 2010-01-01 00: 00: 00', ' SYYYY-M

M DD HH24: M : SS', ' NLS_CALENDAR=GREGORI A
SYS_P1598 TO DATE(' 2014-11-01 00:00:00', ' SYYYY-M
M DD HH24: M : SS', ' NLS_CALENDAR=GREGORI A

¢ See Also:

Oracle Database VLDB and Partitioning Guide to learn more about interval
partitions

List Partitioning

ORACLE

In list partitioning, the database uses a list of discrete values as the partition key for each
partition. The partitioning key consists of one or more columns.

You can use list partitioning to control how individual rows map to specific partitions. By using
lists, you can group and organize related sets of data when the key used to identify them is
not conveniently ordered.

Example 6-3 List Partitioning

Assume that you create | i st _sal es as a list-partitioned table using the following statement,
where the channel _i d column is the partition key:

CREATE TABLE list_sales

(prod_id NUMBER(6)
, cust id NUVBER

, time_id DATE

, channel _id CHAR(1)

, promo_id NUMBER(6)

6-5

Chapter 6
Overview of Partitions

, quantity_sold NUMBER(3)
, amount_sol d NUMBER(10, 2)
)
PARTI TI ON BY LI ST (channel _i d)
(PARTITION even_channel s VALUES ('2','4"),
PARTI TI ON odd_channel s VALUES ('3','9")

)i

Afterward, you load the table with the rows from Example 6-1. The code shows the
row distribution in the two partitions. The database chooses the partition for each row
based on the channel _i d value according to the rules specified in the PARTI TI ON BY

LI ST clause. Rows with a channel _i d value of 2 or 4 are stored in the EVEN_CHANNELS
partitions, while rows with a channel _i d value of 3 or 9 are stored in the CDD_CHANNELS
partition.

Hash Partitioning

ORACLE

In hash partitioning, the database maps rows to partitions based on a hashing
algorithm that the database applies to the user-specified partitioning key.

The destination of a row is determined by the internal hash function applied to the row
by the database. When the number of partitions is a power of 2, the hashing algorithm
creates a roughly even distribution of rows across all partitions.

Hash partitioning is useful for dividing large tables to increase manageability. Instead
of one large table to manage, you have several smaller pieces. The loss of a single
hash partition does not affect the remaining partitions and can be recovered
independently. Hash partitioning is also useful in OLTP systems with high update
contention. For example, a segment is divided into several pieces, each of which is
updated, instead of a single segment that experiences contention.

Assume that you create the partitioned hash_sal es table using the following
statement, with the prod_i d column as the partition key:

CREATE TABLE hash_sal es

(prod_id NUMBER(6)
, cust_id NUMBER

, time_id DATE

, channel _id CHAR(1)

, promo_id NUMBER(6)

, quantity sold NUMBER(3)
, amount _sold NUMBER(10, 2)

PART| TI ON BY HASH (prod_i d)
PART| TI ONS 2;

Afterward, you load the table with the rows from Example 6-1. The code shows a
possible row distribution in the two partitions. The names of these partitions are
system-generated.

As you insert rows, the database attempts to randomly and evenly distribute them
across partitions. You cannot specify the partition into which a row is placed. The
database applies the hash function, whose outcome determines which partition
contains the row.

6-6

Chapter 6
Overview of Partitions

¢ See Also:

e Oracle Database VLDB and Partitioning Guide to learn how to create partitions

e Oracle Database SQL Language Reference for CREATE TABLE ... PARTI TI ON
BY examples

Reference Partitioning

ORACLE

In reference partitioning, the partitioning strategy of a child table is solely defined through
the foreign key relationship with a parent table. For every partition in the parent table, exactly
one corresponding partition exists in the child table. The parent table stores the parent
records in a specific partition, and the child table stores the child records in the corresponding
partition.

For example, an or der s table is the parent of the | i ne_i t ens table, with a primary key and
foreign key defined on or der _i d. The tables are partitioned by reference. For example, if the
database stores order 233 in partition @B_2015 of or der s, then the database stores all line
items for order 233 in partition @B_2015 of | i ne_i t ens. If partition 4_2015 is added to or der s,
then the database automatically adds 4 _2015toline_itens.

The advantages of reference partitioning are:

e By using the same partitioning strategy for both the parent and child tables, you avoid
duplicating all partitioning key columns. This strategy reduces the manual overhead of
denormalization, and saves space.

e Maintenance operations on a parent table occur on the child table automatically. For
example, when you add a partition to the master table, the database automatically
propagates this addition to its descendents.

e The database automatically uses partition-wise joins of the partitions in the parent and
child table, improving performance.

You can use reference partitioning with all basic partitioning strategies, including interval
partitioning. You can also create reference partitioned tables as composite partitioned tables.

Example 6-4 Creating Reference-Partitioned Tables

This example creates a parent table orders which is range-partitioned on or der _dat e. The
reference-partitioned child table or der _i t ens is created with four partitions, QL_2015,
@_2015, @B_2015, and &4_2015, where each partition contains the or der _i t ens rows
corresponding to orders in the respective parent partition.

CREATE TABLE orders

(order_id NUVBER(12) ,

order _date DATE,

order _node VARCHAR2(8) ,
custoner_id NUMVBER(6) ,
order_status NUMBER(2) ,
order_total NUMBER(8, 2) ,
sales rep_id NUMBER(6) ,
pronotion_id NUMVBER(6) ,

CONSTRAI NT orders_pk PRI MARY KEY(order_id)

6-7

Chapter 6
Overview of Partitions

PARTI TI ON BY RANGE(order _date)

(PARTITION QL_2015 VALUES LESS THAN (TO_DATE(' 01- APR-2015' ,"' DD- MON-
m))P:ARTI TION Q2_2015 VALUES LESS THAN (TO_DATE(' 01-JUL-2015',"' DD- MON-
m))P:ARTI TION B_2015 VALUES LESS THAN (TO_DATE(' 01- OCT-2015', ' DD- MON-
m))P:ARTI TION Q4_2015 VALUES LESS THAN (TO_DATE(' 01- JAN-2006' , ' DD- MON-

YYYY')?)

CREATE TABLE order itens

(order_id NUMBER(12) NOT NULL,
line_itemid NUMBER(3) NOT NULL,
product _id NUMBER(6) NOT NULL,
unit_price NUMBER(8, 2) ,
quantity NUMBER(8) ,

CONSTRAINT order _itenms fk
FOREI GN KEY(order _id) REFERENCES orders(order _id)

)
PARTI TI ON BY REFERENCE(order _itens_fk);

See Also:

Oracle Database VLDB and Partitioning Guide for an overview of reference
partitioning

Composite Partitioning

ORACLE

In composite partitioning, a table is partitioned by one data distribution method and
then each patrtition is further subdivided into subpartitions using a second data
distribution method. Thus, composite partitioning combines the basic data distribution
methods. All subpartitions for a given partition represent a logical subset of the data.

Composite partitioning provides several advantages:

* Depending on the SQL statement, partition pruning on one or two dimensions may
improve performance.

* Queries may be able to use full or partial partition-wise joins on either dimension.
* You can perform parallel backup and recovery of a single table.

* The number of partitions is greater than in single-level partitioning, which may be
beneficial for parallel execution.

* You can implement a rolling window to support historical data and still partition on
another dimension if many statements can benefit from partition pruning or
partition-wise joins.

* You can store data differently based on identification by a partitioning key. For
example, you may decide to store data for a specific product type in a read-only,
compressed format, and keep other product type data uncompressed.

6-8

Chapter 6
Overview of Partitions

Range, list, and hash partitioning are eligible as subpartitioning strategies for composite
partitioned tables. The following figure offers a graphical view of range-hash and range-list
composite partitioning.

Figure 6-1 Composite Range-List Partitioning

Composite Partitioning Composite Partitioning

Range-Hash Range - List
January and March and May and
February April June
East $alﬁﬁ Heginn'-___..--"‘ ____..--"‘]
ew Yor »

Virginia |_ >

Florida o — Ol
West Sales Region

California glor_——=1 — o | —
Oregon | - —

Hawaii _____.-"'-- ..--"-.'---. ._______..--'--
Central Sales Regi

|||ﬁ-.rul::. isa es Region ._______..--* T
Texas L —l

Missouri /_‘_/' -_-_______..-- -.-._.______.-

The database stores every subpartition in a composite partitioned table as a separate
segment. Thus, subpartition properties may differ from the properties of the table or from the
partition to which the subpartitions belong.

¢ See Also:

Oracle Database VLDB and Partitioning Guide to learn more about composite
partitioning

Partitioned Tables

A partitioned table consists of one or more partitions, which are managed individually and
can operate independently of the other partitions.

A table is either partitioned or nonpartitioned. Even if a partitioned table consists of only one
partition, this table is different from a nonpartitioned table, which cannot have partitions added
to it.

See Also:
"Partition Characteristics" for examples of partitioned tables

"Overview of Index-Organized Tables" to learn about the purpose and
characteristics of Index-Organized Tables, which can also benefit from partitioning
that provides improved manageability, availability, and performance.

ORACLE 6-9

Chapter 6
Overview of Partitions

Segments for Partitioned Tables

A partitioned table is made up of one or more table partition segments.

If you create a partitioned table named hash_pr oduct s, then no table segment is
allocated for this table. Instead, the database stores data for each table partition in its
own partition segment. Each table partition segment contains a portion of the table
data.

When an external table is partitioned, all partitions reside outside the database. In a
hybrid partitioned table, some partitions are stored in segments, whereas others are
stored externally. For example, some partitions of the sal es table might be stored in
data files and others in spreadsheets.

" See Also:

¢ "Overview of External Tables"
e "Overview of Segments"

to learn about the relationship between objects and segments

Compression for Partitioned Tables

Some or all partitions of a heap-organized table can be stored in a compressed format.

Compression saves space and can speed query execution. For this reason,
compression can be useful in environments such as data warehouses, where the
amount of insert and update operations is small, and in OLTP environments.

You can declare the attributes for table compression for a tablespace, table, or table
partition. If declared at the tablespace level, then tables created in the tablespace are
compressed by default. You can alter the compression attribute for a table, in which
case the change only applies to new data going into that table. Consequently, a single
table or partition may contain compressed and uncompressed blocks, which
guarantees that data size will not increase because of compression. If compression
could increase the size of a block, then the database does not apply it to the block.

¢ See Also:

e "Table Compression" to learn about types of table compression, including
basic, advanced row, and Hybrid Columnar Compression

e Oracle Database Data Warehousing Guide to learn about table
compression in a data warehouse

Partitioned Indexes

A partitioned index is an index that, like a partitioned table, has been divided into
smaller and more manageable pieces.

ORACLE 6-10

Chapter 6
Overview of Partitions

Global indexes are partitioned independently of the table on which they are created, whereas
local indexes are automatically linked to the partitioning method for a table. Like partitioned
tables, partitioned indexes improve manageability, availability, performance, and scalability.

The following graphic shows index partitioning options.

Figure 6-2 Index Partitioning Options

Local Prefixed Index

Local Partitioned Index

Partitioned Index Local Nonprefixed Index

Global Partitioned Index

Nonpartitioned Index

" See Also:

e "Introduction to Indexes" to learn about the difference between unique and
nonunique indexes, and the different index types

e Oracle Database VLDB and Partitioning Guide for more information about
partitioned indexes and how to decide which type to use

Local Partitioned Indexes

ORACLE

In a local partitioned index, the index is partitioned on the same columns, with the same
number of partitions and the same partition bounds as its table.

Each index partition is associated with exactly one partition of the underlying table, so that all
keys in an index partition refer only to rows stored in a single table partition. In this way, the
database automatically synchronizes index partitions with their associated table partitions,
making each table-index pair independent.

Local partitioned indexes are common in data warehousing environments. Local indexes offer
the following advantages:

« Avalilability is increased because actions that make data invalid or unavailable in a
partition affect this partition only.

« Partition maintenance is simplified. When moving a table partition, or when data ages out
of a partition, only the associated local index partition must be rebuilt or maintained. In a
global index, all index partitions must be rebuilt or maintained.

e If point-in-time recovery of a partition occurs, then the indexes can be recovered to the
recovery time (see Oracle Database Backup and Recovery User’s Guide). The entire
index does not need to be rebuilt.

6-11

Chapter 6
Overview of Partitions

The example in Hash Partitioning shows the creation statement for the partitioned
hash_sal es table, using the prod_i d column as partition key. The following example
creates a local partitioned index on the ti ne_i d column of the hash_sal es table:

CREATE | NDEX hash_sal es_i dx ON hash_sal es(time_id) LOCAL;

In Figure 6-3, the hash_product s table has two partitions, so hash_sal es_i dx has two
partitions. Each index partition is associated with a different table partition. Index
partition SYS_P38 indexes rows in table partition SYS_P33, whereas index partition

SYS P39 indexes rows in table partition SYS_P34.

Figure 6-3 Local Index Partitions

Index hash_sales_idx L]
R
Local Index Partition SYS_P38 Local Index Partition SYS_P39
Index I;l Index I;l
UD%UD UTU u|:|
Table Partition SYS_P33
v
PROD_ID | CUST_ID | TIME_ID | CHANNEL_ID | PROMO_ID | QUANTITY_SOLD | AMOUNT_SOLD
40 100530 30-NOV-98 9 33 1 44.99
118 133 06-JUN-01 2 999 1 17.12
36 4523 27-JAN-99 3 999 1 53.89
30 170 23-FEB-01 2 999 1 8.8
35 2606 17-FEB-00 3 999 1 54.94

Table Partition SYS_P34

v
PROD_ID | CUST_ID | TIME_ID | CHANNEL ID | PROMO_ID | QUANTITY_SOLD | AMOUNT_SOLD
116 11393 05-JUN-99 2 999 1 12.18
133 9450 01-DEC-00 2 999 1 31.28
125 9417 04-FEB-98 3 999 1 16.86
24 11899 26-JUN-99 4 999 1 43.04
45 9491 28-AUG-98 4 350 1 47.45

You cannot explicitly add a partition to a local index. Instead, new partitions are added
to local indexes only when you add a partition to the underlying table. Likewise, you
cannot explicitly drop a partition from a local index. Instead, local index partitions are
dropped only when you drop a partition from the underlying table.

ORACLE 6-12

Chapter 6
Overview of Partitions

Like other indexes, you can create a bitmap index on partitioned tables. The only restriction is
that bitmap indexes must be local to the partitioned table—they cannot be global indexes.
Global bitmap indexes are supported only on nonpatrtitioned tables.

Local Prefixed and Nonprefixed Indexes

Local partitioned indexes are either prefixed or nonprefixed.
The index subtypes are defined as follows:

e Local prefixed indexes

In this case, the partition keys are on the leading edge of the index definition. In the

ti me_range_sal es example in Range Partitioning, the table is partitioned by range on
time_i d. A local prefixed index on this table would have ti me_i d as the first column in its
list.

* Local nonprefixed indexes

In this case, the partition keys are not on the leading edge of the indexed column list and
need not be in the list at all. In the hash_sal es_i dx example in Local Partitioned Indexes,
the index is local nonprefixed because the partition key product _i d is not on the leading
edge.

Both types of indexes can take advantage of partition elimination (also called partition
pruning), which occurs when the optimizer speeds data access by excluding partitions from
consideration. Whether a query can eliminate partitions depends on the query predicate. A
query that uses a local prefixed index always allows for index partition elimination, whereas a
guery that uses a local nonprefixed index might not.

" See Also:

Oracle Database VLDB and Partitioning Guide to learn how to use prefixed and
nonprefixed indexes

Local Partitioned Index Storage

Like a table partition, a local index partition is stored in its own segment. Each segment
contains a portion of the total index data. Thus, a local index made up of four partitions is not
stored in a single index segment, but in four separate segments.

¢ See Also:
Oracle Database SQL Language Reference for CREATE | NDEX ... LOCAL examples

Global Partitioned Indexes

ORACLE

A global partitioned index is a B-tree index that is partitioned independently of the
underlying table on which it is created. A single index partition can point to any or all table
partitions, whereas in a locally partitioned index, a one-to-one parity exists between index
partitions and table patrtitions.

6-13

ORACLE

Chapter 6
Overview of Partitions

In general, global indexes are useful for OLTP applications, where rapid access, data
integrity, and availability are important. In an OLTP system, a table may be partitioned
by one key, for example, the enpl oyees. depart nent _i d column, but an application
may need to access the data with many different keys, for example, by enpl oyee i d or
j ob_i d. Global indexes can be useful in this scenario.

As an illustration, suppose that you create a global partitioned index on the

ti me_range_sal es table from "Range Partitioning". In this table, rows for sales from
1998 are stored in one partition, rows for sales from 1999 are in another, and so on.
The following example creates a global index partitioned by range on the channel _i d
column:

CREATE | NDEX time_channel sales_idx ON tine_range_sal es (channel _id)
GLOBAL PARTI TI ON BY RANGE (channel _id)

(PARTI TION pl VALUES LESS THAN (3),

PARTI TI ON p2 VALUES LESS THAN (4),

PARTI TI ON p3 VALUES LESS THAN (MAXVALUE));

As shown in Figure 6-4, a global index partition can contain entries that point to
multiple table partitions. Index partition p1 points to the rows with a channel _i d of 2,
index partition p2 points to the rows with a channel _i d of 3, and index partition p3
points to the rows with a channel _id of 4 or 9.

6-14

Figure 6-4 Global Partitioned Index

Index Global Index
[% Partition p3

Global Index [
Partition p2 @
O

Chapter 6
Overview of Partitions

Table Partition SALES 1998

PROD_ID | CUST_ID | TIME_ID

| CHANNEL_ID | PROMO_ID | QUANTITY_SOLD | AMOUNT_SOLD

» 40 100530 | 30-NOV-98
125 9417 | 04-FEB-98
» 45 9491 | 28-AUG-98

9
3
4

33 1 44.99
999 1 16.86 =
350 1 47.45

/_/\

Table Partition SALES_1999

PROD_ID | CUST_ID | TIME_ID | CHANNEL_ID | PROMO_ID | QUANTITY_SOLD | AMOUNT_SOLD

»116 11393 | 05-JUN-99
36 4523 | 27-JAN-99
> 24 11899 | 26-JUN-99

2
3
4

999 1 12.18
999 1 53.89
999 1 43.04

/\/\

Table Partition SALES_2000

PROD_ID | CUST_ID | TIME_ID

| CHANNEL ID | PROMO_ID | QUANTITY_SOLD | AMOUNT_SOLD

»133 9450
35 2606

01-DEC-00
17-FEB-00

2
3

999 1 31.28
999 1 54.94

/_/\

Table Partition SALES 2001

PROD_ID | CUST_ID | TIME_ID | CHANNEL_ID | PROMO_ID | QUANTITY_SOLD | AMOUNT_SOLD

118 133

1 06-JUN-01
30 170

23-FEB-01

Yy

ndex Global Index
% Partition p1

ORACLE

2
2

999 1 17.12
999 1 8.8

/_/\

6-15

Chapter 6
Overview of Partitions

¢ See Also:

e Oracle Database VLDB and Partitioning Guide to learn how to manage
global partitioned indexes

e Oracle Database SQL Language Reference to learn about the GLOBAL
PARTI Tl ON clause of CREATE | NDEX

Partial Indexes for Partitioned Tables

ORACLE

A partial index is an index that is correlated with the indexing properties of an
associated partitioned table.

The correlation enables you to specify which table partitions are indexed. Partial
indexes provide the following advantages:

e Table partitions that are not indexed avoid consuming unnecessary index storage
space.

e Performance of loads and queries can improve.

Before Oracle Database 12c, an exchange partition operation required a physical
update of an associated global index to retain it as usable. Starting with Oracle
Database 12c, if the partitions involved in a partition maintenance operation are
not part of a partial global index, then the index remains usable without requiring
any global index maintenance.

e If you index only some table partitions at index creation, and if you later index
other partitions, then you can reduce the sort space required by index creation.

You can turn indexing on or off for the individual partitions of a table. A partial local
index does not have usable index partitions for all table partitions that have indexing
turned off. A global index, whether partitioned or not, excludes the data from all
partitions that have indexing turned off. The database does not support partial indexes
for indexes that enforce unique constraints.

Figure 6-5 shows the same global index as in Figure 6-4, except that the global index
is partial. Table partitions SALES 1998 and SALES_ 2000 have the indexing property set
to OFF, so the partial global index does not index them.

6-16

Figure 6-5 Partial Global Partitioned Index

Index Global Index
[% Partition p3

Chapter 6
Overview of Sharded Tables

Global Index [
Partition p2 @
O

Table Partition SALES 1998

PROD_ID | CUST_ID | TIME_ID

INDEXING OFF

| CHANNEL_ID | PROMO_ID | QUANTITY_SOLD | AMOUNT_SOLD

40 100530 | 30-NOV-98 9 33 1 44.99
125 9417 | 04-FEB-98 3 999 1 16.86
45 9491 | 28-AUG-98 4 350 1 47.45

/_/_\

Table Partition SALES_1999

INDEXING ON
PROD_ID | CUST_ID | TIME_ID | CHANNEL_ID | PROMO_ID | QUANTITY_SOLD | AMOUNT_SOLD

»116 11393 | 05-JUN-99 2 999 1 12.18
36 4523 | 27-JAN-99 3 999 1 53.89 =
> 24 11899 | 26-JUN-99 4 999 1 43.04

/\/_\

Table Partition SALES_2000 INDEXING OFF

PROD_ID | CUST_ID | TIME_ID | CHANNEL_ID | PROMO_ID | QUANTITY_SOLD | AMOUNT_SOLD
133 9450 | 01-DEC-00 2 999 1 31.28
35 2606 | 17-FEB-00 3 999 1 54.94

/_/_\

Table Partition SALES 2001

INDEXING ON
PROD_ID | CUST_ID | TIME_ID | CHANNEL ID | PROMO_ID | QUANTITY_SOLD | AMOUNT_SOLD

118 133 | 06-JUN-01 2 999 1 17.12

Yy

Index.

1
30 170 | 23-FEB-01 2 999 1 8.8

/_/_\

Global Index
Partition p1

S

Overview of Sharded Tables

In an Oracle database, sharding enables you to break up a large table into more manageable

pieces called shards that can be stored in multiple databases.

ORACLE

6-17

ORACLE

Chapter 6
Overview of Sharded Tables

Each database is hosted on a dedicated server with its own local resources - CPU,
memory, flash, or disk. Each database in such configuration is called a shard. All of
the shards together make up a single logical database, which is referred to as a
sharded database.

Horizontal partitioning involves splitting a database table across shards so that each
shard contains the table with the same columns but a different subset of rows. A table
split up in this manner is also known as a sharded table.

The following figure shows a table horizontally partitioned across three shards.

Figure 6-6 Horizontal Partitioning of a Table Across Shards

Unsharded Table in Sharded Table in Three Databases
One Database

Server

Server A Server B Server C

Sharding is based on shared-nothing hardware infrastructure and it eliminates single
points of failure because shards do not share physical resources such as CPU,
memory, or storage devices. Shards are also loosely coupled in terms of software;
they do not run clusterware.

Shards are typically hosted on dedicated servers. These servers can be commodity
hardware or engineered systems. The shards can run on single instance or Oracle
RAC databases. They can be placed on-premises, in a cloud, or in a hybrid on-
premises and cloud configuration.

From the perspective of a database administrator, an SDB consists of multiple
databases that can be managed either collectively or individually. However, from the
perspective of the application, an SDB looks like a single database: the number of
shards and distribution of data across those shards are completely transparent to
database applications.

Sharding is intended for custom OLTP applications that are suitable for a sharded
database architecture. Applications that use sharding must have a well-defined data
model and data distribution strategy (consistent hash, range, list, or composite) that
primarily accesses data using a sharding key. Examples of a sharding key include
customer _i d, account _no, or country_id.

See Also:

Using Oracle Sharding

6-18

Chapter 6
Overview of Sharded Tables

Sharded Tables

ORACLE

A sharded table is a table that is partitioned into smaller and more manageable pieces among
multiple databases, called shards.

Partitions are distributed across shards at the tablespace level, based on a sharding key.
Examples of keys include customer ID, account number, and country ID. The following data
types are supported for the sharding key.

« NUMBER
« INTEGER

« SMALLINT

- RAW

« (N) VARCHAR
(N VARCHAR?
* (NCAR

. DATE

« TIMESTAWP

Each partition of a sharded table resides in a separate tablespace, and each tablespace is
associated with a specific shard. Depending on the sharding method, the association can be
established automatically or defined by the administrator.

Even though the partitions of a sharded table reside in multiple shards, to the application, the
table looks and behaves exactly the same as a partitioned table in a single database. SQL
statements issued by an application never have to refer to shards or depend on the number
of shards and their configuration.

The familiar SQL syntax for table partitioning specifies how rows should be partitioned across
shards. For example, the following SQL statement creates a sharded table, horizontally
partitioning the table across shards based on the sharding key cust _i d.

CREATE SHARDED TABLE custoners
(cust_id NUVBER NOT NULL

, hane VARCHAR2(50)
, address VARCHAR2(250)
, region VARCHAR2(20)
, class VARCHAR2(3)

, signup DATE

CONSTRAI NT cust _pk PRI MARY KEY(cust id)
)

PARTI TI ON BY CONSI STENT HASH (cust i d)
PARTI TI ONS AUTO

TABLESPACE SET tsi

The sharded table is partitioned by consistent hash, a special type of hash partitioning
commonly used in scalable distributed systems. This technique automatically spreads
tablespaces across shards to provide an even distribution of data and workload.

6-19

Chapter 6
Overview of Views

< Note:

Global indexes on sharded tables are not supported, but local indexes are
supported.

Related Topics

* Sharding Architecture
Oracle Sharding is a database scaling technique based on horizontal partitioning
of data across multiple PDBs. Applications perceive the pool of PDBs as a single
logical database.

* Using Oracle Sharding

Overview of Views

ORACLE

A view is a logical representation of one or more tables. In essence, a view is a stored
query.

A view derives its data from the tables on which it is based, called base tables. Base
tables can be tables or other views. All operations performed on a view actually affect
the base tables. You can use views in most places where tables are used.

¢ Note:

Materialized views use a different data structure from standard views.

Views enable you to tailor the presentation of data to different types of users. Views
are often used to:

» Provide an additional level of table security by restricting access to a
predetermined set of rows or columns of a table

For example, Figure 6-7 shows how the st af f view does not show the sal ary or
conmi ssi on_pct columns of the base table enpl oyees.

* Hide data complexity

For example, a single view can be defined with a join, which is a collection of
related columns or rows in multiple tables. However, the view hides the fact that
this information actually originates from several tables. A query might also perform
extensive calculations with table information. Thus, users can query a view without
knowing how to perform a join or calculations.

» Present the data in a different perspective from that of the base table

For example, the columns of a view can be renamed without affecting the tables
on which the view is based.

* Isolate applications from changes in definitions of base tables

For example, if the defining query of a view references three columns of a four
column table, and a fifth column is added to the table, then the definition of the
view is not affected, and all applications using the view are not affected.

6-20

Chapter 6
Overview of Views

For an example of the use of views, consider the hr. enpl oyees table, which has several
columns and numerous rows. To allow users to see only five of these columns or only specific
rows, you could create a view as follows:

CREATE VI EWstaff AS
SELECT enpl oyee_i d,
FROM enpl oyees;

| ast _name, job_id, manager _id, departnent_id

As with all subqueries, the query that defines a view cannot contain the FOR UPDATE clause.
The following graphic illustrates the view named st af f . Notice that the view shows only five
of the columns in the base table.

Figure 6-7 View

Base
Table employees
employee_id ||ast7name |job7id | manager_id | hire_date |salary | department_id
203 marvis hr_rep 101 07-Jun-94 6500 40
204 baer pr_rep 101 07—Jun—-94 10000 70
205 higgins ac_rep 101 07—Jun—-94 12000 110
206 gietz ac_account | 205 07-Jun-94 8300 110
—/—\
View staff ‘
employee_id | last_name |job_id | manager_id | department_id
203 marvis hr_rep 101 40
204 baer pr_rep 101 70
205 higgins ac_rep 101 110
206 gietz ac_account | 205 110

¢ See Also:

e "Overview of Materialized Views"
e Oracle Database Administrator’s Guide to learn how to manage views

e Oracle Database SQL Language Reference for CREATE VI EWsyntax and
semantics

Characteristics of Views

ORACLE

Unlike a table, a view is not allocated storage space, nor does a view contain data. Rather, a
view is defined by a query that extracts or derives data from the base tables referenced by
the view. Because a view is based on other objects, it requires no storage other than storage
for the query that defines the view in the data dictionary.

6-21

Chapter 6
Overview of Views

A view has dependencies on its referenced objects, which are automatically handled
by the database. For example, if you drop and re-create a base table of a view, then
the database determines whether the new base table is acceptable to the view
definition.

Data Manipulation in Views

Because views are derived from tables, they have many similarities. Users can query
views, and with some restrictions they can perform DML on views. Operations
performed on a view affect data in some base table of the view and are subject to the
integrity constraints and triggers of the base tables.

The following example creates a view of the hr. enpl oyees table:

CREATE VIEW st aff _dept _10 AS
SELECT enpl oyee_id, last_nane, job_id,
manager _i d, departnent _id
FROM enpl oyees
WHERE departnent _id = 10
W TH CHECK OPTI ON CONSTRAI NT staff_dept 10 cnst;

The defining query references only rows for department 10. The CHECK OPTI ON creates
the view with a constraint so that | NSERT and UPDATE statements issued against the
view cannot result in rows that the view cannot select. Thus, rows for employees in
department 10 can be inserted, but not rows for department 30.

¢ See Also:

Oracle Database SQL Language Reference to learn about subquery
restrictions in CREATE VI EWstatements

How Data Is Accessed in Views

ORACLE

Oracle Database stores a view definition in the data dictionary as the text of the query
that defines the view.

When you reference a view in a SQL statement, Oracle Database performs the
following tasks:

1. Merges a query (whenever possible) against a view with the queries that define
the view and any underlying views

Oracle Database optimizes the merged query as if you issued the query without
referencing the views. Therefore, Oracle Database can use indexes on any
referenced base table columns, whether the columns are referenced in the view
definition or in the user query against the view.

Sometimes Oracle Database cannot merge the view definition with the user query.
In such cases, Oracle Database may not use all indexes on referenced columns.

2. Parses the merged statement in a shared SQL area

Oracle Database parses a statement that references a view in a new shared SQL
area only if no existing shared SQL area contains a similar statement. Thus, views
provide the benefit of reduced memory use associated with shared SQL.

6-22

Chapter 6
Overview of Views

3. Executes the SQL statement

The following example illustrates data access when a view is queried. Assume that you
create enpl oyees_vi ewbased on the enpl oyees and depart ment s tables:

CREATE VI EW enpl oyees_vi ew AS
SELECT enpl oyee_id, last_name, salary, location_id
FROM enpl oyees JO N departnents USING (departnent _id)
WHERE departnent _id = 10;

A user executes the following query of enpl oyees_vi ew:

SELECT | ast _nane
FROM enpl oyees_vi ew
WHERE enpl oyee_id = 200;

Oracle Database merges the view and the user query to construct the following query, which
it then executes to retrieve the data:

SELECT | ast_nane

FROM enpl oyees, departments

WHERE enpl oyees. departnent _id = departnents. departnent _id
AND departments. department _id = 10

AND enpl oyees. enpl oyee_i d = 200;

¢ See Also:

e "Shared SQL Areas"
e "Overview of the Optimizer"

e Oracle Database SQL Tuning Guide to learn about query optimization

Updatable Join Views

ORACLE

A join view has multiple tables or views in its FROMclause.

In the following example, the st af f _dept _10_30 view joins the enpl oyees and depart ment s
tables, including only employees in departments 10 or 30:

CREATE VI EW st af f _dept _10_30 AS

SELECT enpl oyee_id, last_name, job_id, e.department _id
FROM enpl oyees e, departnents d

WHERE e.departnent _id IN (10, 30)

AND e.department _id = d. departnent _id;

An updatable join view, also called a modifiable join view, involves two or more base tables or
views and permits DML operations. An updatable view contains multiple tables in the top-
level FROMclause of the SELECT statement and is not restricted by the W TH READ ONLY clause.

6-23

Chapter 6
Overview of Views

To be inherently updatable, a view must meet several criteria. For example, a general
rule is that an | NSERT, UPDATE, or DELETE operation on a join view can modify only one
base table at a time. The following query of the USER_UPDATABLE CCOLUMN\S data
dictionary view shows that the st af f _dept 10 30 view is updatable:

SQL> SELECT TABLE NAME, COLUMN_NAME, UPDATABLE
2 FROM USER _UPDATABLE COLUWNS
3 WHERE TABLE NAME = ' STAFF_DEPT_10_30';

TABLE_NAME COLUMN_NAME UPD
STAFF_DEPT_10_30 EMPLOYEE_| D YES
STAFF_DEPT_10_30 LAST_NAME YES
STAFF_DEPT_10_30 JOBID YES
STAFF_DEPT_10_30 DEPARTMENT | D YES

All updatable columns of a join view must map to columns of a key-preserved table,
which is a table in which each row of the underlying table appears at most one time in
the query output. In the staff _dept _10 30 view, depart ment _i d is the primary key of
the depar t ment s table, so each row from the enpl oyees table appears at most once in
the result set, making the enpl oyees table key-preserved. The depart nent s table is
not key-preserved because each of its rows may appear many times in the result set.

" See Also:

Oracle Database Administrator’s Guide to learn how to update join views

Object Views

ORACLE

Just as a view is a virtual table, an object view is a virtual object table. Each row in
the view is an object, which is an instance of an object type. An object type is a user-
defined data type.

You can retrieve, update, insert, and delete relational data as if it were stored as an
object type. You can also define views with columns that are object data types, such
as objects, REFs, and collections (nested tables and VARRAYS).

Like relational views, object views can present only the data that database
administrators want users to see. For example, an object view could present data
about IT programmers but omit sensitive data about salaries. The following example
creates an enpl oyee_t ype object and then the view it prog_vi ewbased on this
object:

CREATE TYPE enpl oyee_type AS OBJECT
(

enpl oyee_id NUMBER (6),

| ast _nane VARCHAR2 (25),
job_id VARCHAR2 (10)

);
/

CREATE VIEWit_prog_view OF enpl oyee_type
W TH OBJECT | DENTI FI ER (enpl oyee_id) AS

6-24

Chapter 6
Overview of Materialized Views

SELECT e.enployee_id, e.last_name, e.job_id
FROM enpl oyees e
WHERE job_id = 'IT_PROG ;

Object views are useful in prototyping or transitioning to object-oriented applications because
the data in the view can be taken from relational tables and accessed as if the table were
defined as an object table. You can run object-oriented applications without converting
existing tables to a different physical structure.

" See Also:

e Oracle Database Object-Relational Developer's Guide to learn about object
types and object views

e Oracle Database SQL Language Reference to learn about the CREATE TYPE
statement

Overview of Materialized Views

A materialized view is a query result that has been stored or "materialized" in advance as a
schema object. The FROMclause of the query can name tables, views, or materialized views.

A materialized view often serves as a master table in replication and a fact table in data
warehousing. Materialized views summarize, compute, replicate, and distribute data. They
are suitable in various computing environments, such as the following:

* In data warehouses, materialized views can compute and store data generated from
aggregate functions such as sums and averages.

A summary is an aggregate view that reduces query time by precalculating joins and
aggregation operations and storing the results in a table. Materialized views are
equivalent to summaries. You can also use materialized views to compute joins with or
without aggregations.

* In materialized view replication, which is achieved using XStream and Oracle
GoldenGate, the view contains a complete or partial copy of a table from a single point in
time. Materialized views replicate data at distributed sites and synchronize updates
performed at several sites. This form of replication is suitable for environments such as
field sales when databases are not always connected to the network.

* In mobile computing environments, materialized views can download a data subset from
central servers to mobile clients, with periodic refreshes from the central servers and
propagation of updates by clients to the central servers.

In a replication environment, a materialized view shares data with a table in a different
database, called a master database. The table associated with the materialized view at the
master site is the master table. Figure 6-8 illustrates a materialized view in one database
based on a master table in another database. Updates to the master table replicate to the
materialized view database.

ORACLE 6-25

Chapter 6
Overview of Materialized Views

Figure 6-8 Materialized View

Client Applications

[:l Remote Update

Local
Query

Materialized View Master Table

Materialized Replicate Table Data
View
Refresh

Master
Database

Database

¢ See Also:

e Oracle Database Data Warehousing Guide to learn more about
summaries

e Oracle Database XStream Guide for an introduction to XStream

e http://ww.oracl e.con technetwork/ m ddl ewar e/ gol dengat e/
docunent ati on/i ndex. ht Ml to learn more about Oracle GoldenGate

e Oracle Database SQL Language Reference to learn about the CREATE
MATERI ALI ZED VI EWstatement

Characteristics of Materialized Views

ORACLE

Materialized views share some characteristics of indexes and nonmaterialized views.
Materialized views are similar to indexes in the following ways:

e They contain actual data and consume storage space.
e They can be refreshed when the data in their master tables changes.

e They can improve performance of SQL execution when used for query rewrite
operations.

e Their existence is transparent to SQL applications and users.

A materialized view is similar to a nonmaterialized view because it represents data in
other tables and views. Unlike indexes, users can query materialized views directly

6-26

http://www.oracle.com/technetwork/middleware/goldengate/documentation/index.html
http://www.oracle.com/technetwork/middleware/goldengate/documentation/index.html

Chapter 6
Overview of Materialized Views

using SELECT statements. Depending on the types of refresh that are required, the views can
also be updated with DML statements.

The following example creates and populates a materialized aggregate view based on three
master tables in the sh sample schema:

CREATE MATERI ALI ZED VI EW sal es_mv AS
SELECT t.cal endar _year, p.prod_id, SUMs.amunt_sold) AS sum sales
FROM tinmes t, products p, sales s
WHERE t.tinme_id = s.time_id
AND p.prod_id = s.prod_id
GROUP BY t.cal endar _year, p.prod_id;

The following example drops table sal es, which is a master table for sal es_nv, and then
gueries sal es_nv. The query selects data because the rows are stored (materialized)
separately from the data in the master tables.

SQ.> DROP TABLE sal es;
Tabl e dropped.
SQ.> SELECT * FROM sal es_nmv VWHERE ROMUM < 4;

CALENDAR YEAR ~ PROD ID SUM SALES

1998 13 936197. 53
1998 26 567533. 83
1998 27 107968. 24

A materialized view can be partitioned. You can define a materialized view on a partitioned
table and one or more indexes on the materialized view.

¢ See Also:

Oracle Database Data Warehousing Guide to learn how to use materialized views
in a data warehouse

Refresh Methods for Materialized Views

The database maintains data in materialized views by refreshing them after changes to the
base tables. The refresh method can be incremental or a complete refresh.

Complete Refresh

ORACLE

A complete refresh executes the query that defines the materialized view. A complete
refresh occurs when you initially create the materialized view, unless the materialized view
references a prebuilt table, or you define the table as BUI LD DEFERRED.

A complete refresh can be slow, especially if the database must read and process huge
amounts of data. You can perform a complete refresh at any time after creation of the
materialized view.

6-27

Chapter 6
Overview of Materialized Views

Incremental Refresh

An incremental refresh, also called a fast refresh, processes only the changes to the
existing data. This method eliminates the need to rebuild materialized views from the
beginning. Processing only the changes can result in a very fast refresh time.

You can refresh materialized views either on demand or at regular time intervals.
Alternatively, you can configure materialized views in the same database as their base
tables to refresh whenever a transaction commits changes to the base tables.

Fast refresh comes in either of the following forms:

* Log-Based refresh

In this type of refresh, a materialized view log or a direct loader log keeps a record
of changes to the base tables. A materialized view log is a schema object that
records changes to a base table so that a materialized view defined on the base
table can be refreshed incrementally. Each materialized view log is associated with
a single base table.

* Partition change tracking (PCT) refresh

PCT refresh is valid only when the base tables are partitioned. PCT refresh
removes all data in the affected materialized view partitions or affected portions of
data, and then recomputes them. The database uses the modified base table
partitions to identify the affected partitions or portions of data in the view. When
partition maintenance operations have occurred on the base tables, PCT refresh is
the only usable incremental refresh method.

In-Place and Out-of-Place Refresh

For the complete and incremental methods, the database can refresh the materialized
view in place, which refreshes statements directly on the view, or out of place.

An out-of-place refresh creates one or more outside tables, executes the refresh
statements on them, and then switches the materialized view or affected partitions with
the outside tables. This technique achieves high availability during refresh, especially
when refresh statements take a long time to finish.

Synchronous refresh is a type of out-of-place refresh. A synchronous refresh does not
modify the contents of the base tables, but instead uses the APIs in the synchronous
refresh package, which ensures consistency by applying these changes to the base
tables and materialized views at the same time. This approach enables a set of tables
and the materialized views defined on them to be always synchronized. In a data
warehouse, synchronous refresh method is well-suited for the following reasons:

* The loading of incremental data is tightly controlled and occurs at periodic
intervals.

* Tables and their materialized views are often partitioned in the same way, or their
partitions are related by a functional dependency.

ORACLE 6-28

Chapter 6
Overview of Materialized Views

¢ See Also:

Oracle Database Data Warehousing Guide to learn how to refresh materialized
views

Automatic Materialized Views

Starting with Oracle Database Release 21c, materialized views can be created and
maintained automatically.

Oracle Database can automatically create and manage materialized views in order to
optimize query performance. With very little or no interaction with the DBA, background tasks
monitor and analyze workload characteristics and identifies where materialized views will
improve SQL performance. The performance benefit of candidate materialized views is
measured in the background (using workload queries) before they are made visible to the
workload.

¢ See Also:

e Oracle Database Data Warehousing Guide for additional information

e Oracle Database PL/SQL Packages and Types Reference to learn how to use
the DBMS_AUTO MW package to implement automatic materialized views

Query Rewrite

Query rewrite transforms a user request written in terms of master tables into a semantically
equivalent request that includes materialized views.

When base tables contain large amounts of data, computing an aggregate or join is
expensive and time-consuming. Because materialized views contain precomputed
aggregates and joins, query rewrite can quickly answer queries using materialized views.

The query transformer transparently rewrites the request to use the materialized view,
requiring no user intervention and no reference to the materialized view in the SQL
statement. Because query rewrite is transparent, materialized views can be added or
dropped without invalidating the SQL in the application code.

In general, rewriting queries to use materialized views rather than detail tables improves
response time. The following figure shows the database generating an execution plan for the
original and rewritten query and choosing the lowest-cost plan.

ORACLE 6-29

Chapter 6
Overview of Sequences

Figure 6-9 Query Rewrite

Oracle Database

Query is Generate Plan

rewritten j
e B 4 TR
\.quE— (Y Oy Query Results
User enters Compare plan cost
query v and pick the best
Generate Plan T
See Also:

e "Overview of the Optimizer" to learn more about query transformation

e Oracle Database Data Warehousing Guide to learn how to use query
rewrite

Overview of Sequences

A sequence is a schema object from which multiple users can generate unique
integers. A sequence generator provides a highly scalable and well-performing method
to generate surrogate keys for a number data type.

Sequence Characteristics

A sequence definition indicates general information about the sequence, including its
name and whether the sequence ascends or descends.

A sequence definition also indicates:

* The interval between numbers

* Whether the database should cache sets of generated sequence numbers in
memory

* Whether the sequence should cycle when a limit is reached

ORACLE 6-30

Chapter 6
Overview of Sequences

The following example creates the sequence cust oners_seq in the sample schema oe. An
application could use this sequence to provide customer ID numbers when rows are added to
the cust oner s table.

CREATE SEQUENCE custoners_seq

START WTH 1000
| NCREMENT BY 1
NOCACHE

NOCYCLE;

The first reference to cust omer s_seq. next val returns 1000. The second returns 1001. Each
subsequent reference returns a value 1 greater than the previous reference.

See Also:

e Oracle Database 2 Day Developer's Guide for a tutorial that shows you how to
create a sequence

e Oracle Database Administrator’s Guide to learn how to reference a sequence in
a SQL statement

e Oracle Database SQL Language Reference for CREATE SEQUENCE syntax and
semantics

Concurrent Access to Sequences

The same sequence generator can generate numbers for multiple tables.

The generator can create primary keys automatically and coordinate keys across multiple
rows or tables. For example, a sequence can generate primary keys for an or der s table and
a cust oner s table.

The sequence generator is useful in multiuser environments for generating unique numbers
without the overhead of disk 1/O or transaction locking. For example, two users
simultaneously insert new rows into the or der s table. By using a sequence to generate
unigue numbers for the or der _i d column, neither user has to wait for the other to enter the
next available order number. The sequence automatically generates the correct values for
each user.

Each user that references a sequence has access to his or her current sequence number,
which is the last sequence generated in the session. A user can issue a statement to
generate a new sequence number or use the current number last generated by the session.
After a statement in a session generates a sequence number, it is available only to this
session. Individual sequence numbers can be skipped if they were generated and used in a
transaction that was ultimately rolled back.

ORACLE 6-31

Chapter 6
Overview of Dimensions

WARNING:

If your application requires a gap-free set of numbers, then you cannot use
Oracle sequences. You must serialize activities in the database using your
own developed code.

See Also:

"Data Concurrency and Consistency " to learn how sessions access data at
the same time

Overview of Dimensions

A typical data warehouse has two important components: dimensions and facts.

A dimension is any category used in specifying business questions, for example,
time, geography, product, department, and distribution channel. A fact is an event or
entity associated with a particular set of dimension values, for example, units sold or
profits.

Examples of multidimensional requests include the following:

e Show total sales across all products at increasing aggregation levels for a
geography dimension, from state to country to region, for 2013 and 2014.

e Create a cross-tabular analysis of our operations showing expenses by territory in
South America for 2013 and 2014. Include all possible subtotals.

e List the top 10 sales representatives in Asia according to 2014 sales revenue for
automotive products, and rank their commissions.

Many multidimensional questions require aggregated data and comparisons of data
sets, often across time, geography or budgets.

Creating a dimension permits the broader use of the query rewrite feature. By
transparently rewriting queries to use materialized views, the database can improve
query performance.

See Also:

Oracle Database Data Warehousing Guide to learn more about dimensions

Hierarchical Structure of a Dimension

A dimension table is a logical structure that defines hierarchical (parent/child)
relationships between pairs of columns or column sets.

ORACLE 6-32

Chapter 6
Overview of Dimensions

For example, a dimension can indicate that within a row the ci ty column implies the value of
the st at e column, and the st at e column implies the value of the count ry column.

Within a customer dimension, customers could roll up to city, state, country, subregion, and
region. Data analysis typically starts at higher levels in the dimensional hierarchy and
gradually drills down if the situation warrants such analysis.

Each value at the child level is associated with one and only one value at the parent level. A
hierarchical relationship is a functional dependency from one level of a hierarchy to the next
level in the hierarchy.

A dimension has no data storage assigned to it. Dimensional information is stored in
dimension tables, whereas fact information is stored in a fact table.

See Also:

e Oracle Database Data Warehousing Guide to learn about dimensions

e Oracle OLAP User’s Guide to learn how to create dimensions

Creation of Dimensions

ORACLE

You create dimensions with the CREATE DI MENSI ON SQL statement.
This statement specifies:

* Multiple LEVEL clauses, each of which identifies a column or column set in the dimension

* One or more H ERARCHY clauses that specify the parent/child relationships between
adjacent levels

e Optional ATTRI BUTE clauses, each of which identifies an additional column or column set
associated with an individual level

The following statement was used to create the cust oner s_di mdimension in the sample
schema sh:

CREATE DI MENSI ON cust oners_di m

LEVEL custoner I'S (custoners. cust _id)
LEVEL city 'S (custoners.cust _city)
LEVEL state I'S (custoners. cust_state_province)
LEVEL country I'S (countries.country id)
LEVEL subregion IS (countries.country subregion)
LEVEL region I'S (countries.country_region)
H ERARCHY geog rol lup (
cust oner CH LD OF
city CH LD OF
state CH LD OF
country CHI LD OF
subregi on CH LD OF
regi on

JO N KEY (custoners.country id) REFERENCES country)

ATTRI BUTE cust oner DETERM NES

(cust _first_nane, cust_last_name, cust_gender,
cust_nmarital status, cust_year of bhirth,

6-33

Chapter 6
Overview of Synonyms

cust _income_level, cust_credit_limt)
ATTRI BUTE country DETERM NES (countries. country_name);

The columns in a dimension can come either from the same table (denormalized) or
from multiple tables (fully or partially normalized). For example, a normalized time
dimension can include a date table, a month table, and a year table, with join
conditions that connect each date row to a month row, and each month row to a year
row. In a fully denormalized time dimension, the date, month, and year columns are in
the same table. Whether normalized or denormalized, the hierarchical relationships
among the columns must be specified in the CREATE DI MENSI ON statement.

¢ See Also:

Oracle Database SQL Language Reference for CREATE DI MENSI ON syntax
and semantics

Overview of Synonyms

ORACLE

A synonym is an alias for a schema object. For example, you can create a synonym
for a table or view, sequence, PL/SQL program unit, user-defined object type, or
another synonym. Because a synonym is simply an alias, it requires no storage other
than its definition in the data dictionary.

Synonyms can simplify SQL statements for database users. Synonyms are also useful
for hiding the identity and location of an underlying schema object. If the underlying
object must be renamed or moved, then only the synonym must be redefined.
Applications based on the synonym continue to work without modification.

You can create both private and public synonyms. A private synonym is in the schema
of a specific user who has control over its availability to others. A public synonym is
owned by the user group named PUBLI C and is accessible by every database user.

Example 6-5 Public Synonym

Suppose that a database administrator creates a public synonym named peopl e for
the hr. enpl oyees table. The user then connects to the oe schema and counts the
number of rows in the table referenced by the synonym.

SQ.> CREATE PUBLI C SYNONYM peopl e FOR hr. enpl oyees;
Synonym cr eat ed.

SQL> CONNECT oe

Enter password: password

Connect ed.

SQ.> SELECT COUNT(*) FROM peopl €;

Use public synonyms sparingly because they make database consolidation more
difficult. As shown in the following example, if another administrator attempts to create

6-34

ORACLE

Chapter 6
Overview of Synonyms

the public synonym peopl e, then the creation fails because only one public synonym peopl e
can exist in the database. Overuse of public synonyms causes namespace conflicts between
applications.

SQ.> CREATE PUBLI C SYNONYM peopl e FOR oe. cust orers;
CREATE PUBLI C SYNONYM peopl e FOR oe. cust oners
*

ERROR at line 1:
ORA-00955: nane is already used by an existing object

SQL> SELECT OMNER, SYNONYM NAME, TABLE OANER, TABLE_NAME
2 FROV DBA_SYNONYMS
3 VHERE SYNONYM NAME = ' PECPLE' ;

OMER SYNONYM_NAME TABLE_OWNER TABLE_NAME

PUBLI C PECPLE HR EMPLOYEES

Synonyms themselves are not securable. When you grant object privileges on a synonym,
you are really granting privileges on the underlying object. The synonym is acting only as an
alias for the object in the GRANT statement.

¢ See Also:

e Oracle Database Administrator's Guide to learn how to manage synonyms

e Oracle Database SQL Language Reference for CREATE SYNONYMsyntax and
semantics

6-35

Data Integrity

This chapter explains how integrity constraints enforce the business rules associated with a
database and prevent the entry of invalid information into tables.

This chapter contains the following sections:

e Introduction to Data Integrity
* Types of Integrity Constraints

e States of Integrity Constraints

See Also:

"Overview of Tables" for background on columns and the need for integrity
constraints

Introduction to Data Integrity

It is important that data maintain data integrity, which is adherence to business rules
determined by the database administrator or application developer.

Business rules specify conditions and relationships that must always be true or must always
be false. For example, each company defines its own policies about salaries, employee
numbers, inventory tracking, and so on.

Techniques for Guaranteeing Data Integrity

When designing a database application, developers have several options for guaranteeing
the integrity of data stored in the database.

These options include:

» Enforcing business rules with triggered stored database procedures
» Using stored procedures to completely control access to data

» Enforcing business rules in the code of a database application

» Using Oracle Database integrity constraints, which are rules defined at the column or
object level that restrict values in the database

ORACLE 7-1

Chapter 7
Types of Integrity Constraints

¢ See Also:

e "Overview of Triggers" explains the purpose and types of triggers

e "Introduction to Server-Side Programming" explains the purpose and
characteristics of stored procedures

Advantages of Integrity Constraints

An integrity constraint is a schema object that is created and dropped using SQL. To
enforce data integrity, use integrity constraints whenever possible.

Advantages of integrity constraints over alternatives for enforcing data integrity
include:

» Declarative ease

Because you define integrity constraints using SQL statements, no additional
programming is required when you define or alter a table. The SQL statements are
easy to write and eliminate programming errors.

» Centralized rules

Integrity constraints are defined for tables and are stored in the data dictionary.
Thus, data entered by all applications must adhere to the same integrity
constraints. If the rules change at the table level, then applications need not
change. Also, applications can use metadata in the data dictionary to immediately
inform users of violations, even before the database checks the SQL statement.

* Flexibility when loading data

You can disable integrity constraints temporarily to avoid performance overhead
when loading large amounts of data. When the data load is complete, you can re-
enable the integrity constraints.

¢ See Also:

e "Overview of the Data Dictionary"

e Oracle Database 2 Day Developer's Guide and Oracle Database
Development Guide to learn how to maintain data integrity

e Oracle Database Administrator’s Guide to learn how to manage integrity
constraints

Types of Integrity Constraints

ORACLE

Oracle Database enables you to apply constraints both at the table and column level.

A constraint specified as part of the definition of a column or attribute is an inline
specification. A constraint specified as part of the table definition is an out-of-line
specification.

7-2

Chapter 7
Types of Integrity Constraints

A key is the column or set of columns included in the definition of certain types of integrity
constraints. Keys describe the relationships between the tables and columns of a relational
database. Individual values in a key are called key values.

The following table describes the types of constraints. Each can be specified either inline or
out-of-line, except for NOT NULL, which must be inline.

Table 7-1 Types of Integrity Constraints

. ___|
Constraint Type Description See Also

NOT NULL Allows or disallows inserts or updates of "NOT NULL Integrity Constraints"
rows containing a null in a specified column.

Unique key Prohibits multiple rows from having the "Unique Constraints"
same value in the same column or
combination of columns but allows some
values to be null.

Primary key Combines a NOT' NULL constraint and a "Primary Key Constraints"
unique constraint. It prohibits multiple rows
from having the same value in the same
column or combination of columns and
prohibits values from being null.

Foreign key Designates a column as the foreign key and "Foreign Key Constraints"
establishes a relationship between the
foreign key and a primary or unique key,
called the referenced key.

Check Requires a database value to obey a "Check Constraints"
specified condition.

REF Dictates types of data manipulation allowed Oracle Database Object-Relational
on values in a REF column and how these ~ Developer's Guide to learn about
actions affect dependent values. In an REF constraints

object-relational database, a built-in data
type called a REF encapsulates a reference
to a row object of a specified object type.
Referential integrity constraints on REF
columns ensure that there is a row object
for the REF.

See Also:

* "Overview of Tables"

e Oracle Database SQL Language Reference to learn more about the types of
constraints

NOT NULL Integrity Constraints

A NOT NULL constraint requires that a column of a table contain no null values. A null is the
absence of a value. By default, all columns in a table allow nulls.

ORACLE 7-3

Chapter 7
Types of Integrity Constraints

NOT NULL constraints are intended for columns that must not lack values. For example,
the hr. enpl oyees table requires a value in the emai | column. An attempt to insert an
employee row without an email address generates an error:

SQ.> | NSERT I NTO hr. enpl oyees (enpl oyee_id, |ast _name) values (999,
"Smith');

ERROR at line 1:
ORA- 01400: cannot insert NULL into ("HR'."EWMPLOYEES"."EMAIL")

You can only add a column with a NOT NULL constraint if the table does not contain any
rows or if you specify a default value.

¢ See Also:

e Oracle Database 2 Day Developer's Guide for examples of adding NOT
NULL constraints to a table

e Oracle Database SQL Language Reference for restrictions on using NOT
NULL constraints

e Oracle Database Development Guide to learn when to use the NOT NULL
constraint

Unique Constraints

ORACLE

A unique key constraint requires that every value in a column or set of columns be
unique. No rows of a table may have duplicate values in a single column (the unique
key) or set of columns (the composite unique key) with a unique key constraint.

" Note:

The term key refers only to the columns defined in the integrity constraint.
Because the database enforces a unique constraint by implicitly creating or
reusing an index on the key columns, the term unique key is sometimes
incorrectly used as a synonym for unique key constraint or unique index.

Unique key constraints are appropriate for any column where duplicate values are not
allowed. Unigque constraints differ from primary key constraints, whose purpose is to
identify each table row uniquely, and typically contain values that have no significance
other than being unique. Examples of unique keys include:

e A customer phone number, where the primary key is the customer number
* A department name, where the primary key is the department number

As shown in Example 4-1, a unique key constraint exists on the emai | column of the
hr. enpl oyees table. The relevant part of the statement is as follows:

7-4

Chapter 7
Types of Integrity Constraints

CREATE TABLE enpl oyees (...

, email VARCHAR2(25)
CONSTRAINT ~ enp_enmi|l _nn NOT NULL ...
, CONSTRAI NT enp_emai | _uk UNIQUE (email) ...);

The enp_emai | _uk constraint ensures that no two employees have the same email address,
as shown in the following example:

SQ.> SELECT enpl oyee_id, |ast_name, enail FROM enpl oyees WHERE emai| = ' PFAY';
EMPLOYEE_| D LAST_NAME EMAI L
202 Fay PFAY

SQ.> I NSERT | NTO enpl oyees (enployee_id, |last_name, enail, hire_date, job_id)
1 VALUES (999,' Fay',' PFAY', SYSDATE, ' ST_CLERK');

ERROR at line 1:
ORA-00001: unique constraint (HR EMP_EMAIL_UK) viol ated

Unless a NOT NULL constraint is also defined, a null always satisfies a unique key constraint.
Thus, columns with both unique key constraints and NOT NULL constraints are typical. This
combination forces the user to enter values in the unique key and eliminates the possibility
that new row data conflicts with existing row data.

Note:

Because of the search mechanism for unique key constraints on multiple columns,
you cannot have identical values in the non-null columns of a partially null
composite unique key constraint.

Example 7-1 Unique Constraint

SQL> SELECT enpl oyee_id, |ast_name, enail FROM enpl oyees WHERE emmi|l = 'PFAY';
EMPLOYEE_| D LAST_NAME EMAI L
202 Fay PFAY

SQ.> I NSERT | NTO enpl oyees (enployee_id, |ast_name, email, hire_date, job_id)
1 VALUES (999, ' Fay',' PFAY', SYSDATE, ' ST_CLERK');

ERROR at line 1:
ORA-00001: unique constraint (HR EMP_EMAIL_UK) viol ated

ORACLE 7-5

Chapter 7
Types of Integrity Constraints

¢ See Also:

e "Unigue and Nonunique Indexes"

* Oracle Database 2 Day Developer's Guide for examples of adding
UNI QUE constraints to a table

Primary Key Constraints

ORACLE

In a primary key constraint, the values in the group of one or more columns subject
to the constraint uniquely identify the row. Each table can have one primary key,
which in effect names the row and ensures that no duplicate rows exist.

A primary key can be natural or a surrogate. A natural key is a meaningful identifier
made of existing attributes in a table. For example, a natural key could be a postal
code in a lookup table. In contrast, a surrogate key is a system-generated
incrementing identifier that ensures uniqueness within a table. Typically, a sequence
generates surrogate keys.

The Oracle Database implementation of the primary key constraint guarantees that the
following statements are true:

* No two rows have duplicate values in the specified column or set of columns.
e The primary key columns do not allow nulls.

A typical situation calling for a primary key is the numeric identifier for an employee.
Each employee must have a unique ID. An employee must be described by one and
only one row in the enpl oyees table.

The example in Unique Constraints indicates that an existing employee has the
employee ID of 202, where the employee ID is the primary key. The following example
shows an attempt to add an employee with the same employee ID and an employee
with no ID:

SQ.> | NSERT | NTO enpl oyees (enployee id, last_nane, enmil, hire_date,
job_id)
1 VALUES (202,' Chan','JCHAN , SYSDATE, "' ST CLERK');

ERROR at line 1:
ORA-00001: unique constraint (HR EMP_EMP_ID PK) violated

SQ.> | NSERT | NTO enpl oyees (Il ast_name) VALUES (' Chan');

ERRCR at |ine 1:
ORA- 01400: cannot insert NULL into ("HR'."EMPLOYEES"."EMPLOYEE | D")

The database enforces primary key constraints with an index. Usually, a primary key
constraint created for a column implicitly creates a unique index and a NOT NULL
constraint. Note the following exceptions to this rule:

7-6

Chapter 7
Types of Integrity Constraints

* In some cases, as when you create a primary key with a deferrable constraint, the
generated index is not unique.

Note:

You can explicitly create a unique index with the CREATE UNI QUE | NDEX
statement.

» If ausable index exists when a primary key constraint is created, then the constraint
reuses this index and does not implicitly create one.

By default the name of the implicitly created index is the name of the primary key constraint.
You can also specify a user-defined name for an index. You can specify storage options for
the index by including the ENABLE clause in the CREATE TABLE or ALTER TABLE statement used
to create the constraint.

¢ See Also:

Oracle Database 2 Day Developer's Guide and Oracle Database Development
Guide to learn how to add primary key constraints to a table

Foreign Key Constraints

ORACLE

Whenever two tables contain one or more common columns, Oracle Database can enforce
the relationship between the two tables through a foreign key constraint, also called a
referential integrity constraint.

A foreign key constraint requires that for each value in the column on which the constraint is
defined, the value in the other specified other table and column must match. An example of a
referential integrity rule is an employee can work for only an existing department.

The following table lists terms associated with referential integrity constraints.

Table 7-2 Referential Integrity Constraint Terms

|
Term Definition

Foreign key The column or set of columns included in the definition of the
constraint that reference a referenced key. For example, the
departnent _i d column in enpl oyees is a foreign key that
references the depart nent _i d column in depar t nent s.

Foreign keys may be defined as multiple columns. However, a
composite foreign key must reference a composite primary or
unique key with the same number of columns and the same data
types.

The value of foreign keys can match either the referenced primary
or unique key value, or be null. If any column of a composite
foreign key is null, then the non-null portions of the key do not
have to match any corresponding portion of a parent key.

7-7

ORACLE

Chapter 7
Types of Integrity Constraints

Table 7-2 (Cont.) Referential Integrity Constraint Terms

|
Term Definition

Referenced key The unique key or primary key of the table referenced by a foreign
key. For example, the depart nent _i d column in depart nent s is
the referenced key for the depart nent _i d column in enpl oyees.

Dependent or child table The table that includes the foreign key. This table depends on the
values present in the referenced unique or primary key. For
example, the enpl oyees table is a child of depar t ment s.

Referenced or parent table The table that is referenced by the foreign key of the child table. It
is this table's referenced key that determines whether specific
inserts or updates are allowed in the child table. For example, the
depart ment s table is a parent of enpl oyees.

Figure 7-1 shows a foreign key on the enpl oyees. depart nent _i d column. It
guarantees that every value in this column must match a value in the

depart nents. departnent _i d column. Thus, no erroneous department numbers can
exist in the enpl oyees. department _i d column.

7-8

Chapter 7
Types of Integrity Constraints

Figure 7-1 Referential Integrity Constraints

Parent Key
Primary key of
referenced table

Referenced or Parent Table

Table DEPARTMENTS
DEPARTMENT_ID | DEPARTMENT_NAME | MANAGER_ID| LOCATION_ID

60 | IT 103 1400
100 1700

90 | Executive

Foreign Key
(values in dependent
table must match a
value in unique key
or primary key of

| referenced table)
1
Dependent or Child Table 1
|
Table EMPLOYEES : ‘
EMPLOYEE_ID | LAST_NAME | EMAIL | HIRE_DATE | JOB_ID | MANAGER_ID | DEPARTMENT_ID
100 King SKING 17-JUN-87 AD_PRES 90
101 Kochhar NKOCHHAR | 21-SEP-89 AD_VP 100 90
102 De Hann LDEHANN 13-JAN-93 AD_VP 100 90
103 Hunold AHUNOLD 03-JAN-90 IT_PROG 102 60
This row violates the referential
constraint because "99" is not
present in the referenced table's
primary key; therefore, the row
:N-SI-ERT is not allowed in the table.
207 Ashdown AASHDOWN 17-DEC-07 MK_MAN 100 99 ——,
208 Green BGREEN 17-DEC-07 AC_MGR 101 |
This row is allowed in the table
because a null value is entered
in the DEPARTMENT _ID column;
however, if a not null constraint
is also defined for this column,
this row is not allowed.
See Also:

Oracle Database 2 Day Developer's Guide and Oracle Database Development
Guide to learn how to add foreign key constraints to a table

Self-Referential Integrity Constraints

A self-referential integrity constraint is a foreign key that references a parent key in the
same table.

ORACLE .

Chapter 7
Types of Integrity Constraints

In the following figure, a self-referential constraint ensures that every value in the
enpl oyees. manager _i d column corresponds to an existing value in the

enpl oyees. enpl oyee_i d column. For example, the manager for employee 102 must
exist in the enpl oyees table. This constraint eliminates the possibility of erroneous
employee numbers in the manager _i d column.

Figure 7-2 Single Table Referential Constraints

Primary Key
of referenced table

Referenced or Parent Table -~

Foreign Key

(values in dependent table must match
a value in unique key or primary key of
referenced table)

Table EMPLOYEES

Dependent or Child Table

—EMPLOYEE_ID LAST_NAME | EMAIL | HIRE_DATE | JOB_ID | WANAGER_ID | DEPARTMENT_ID
100 King SKING 17-JUN-87 AD_PRES 90
101 Kochhar NKOCHHAR | 21-SEP-89 AD_VP 100 90
102 De Hann LDEHANN 13-JAN-93 AD_VP 100 90
103 Hunold AHUNOLD 03-JAN-90 IT_PROG | 102 60
—— This row violates the referential
constraint, because "400" is
not present in the referenced
INSERT table's primary key; therefore,
INTO it is not allowed in the table.
207 Ashdown AASHDOWN 01-DEC-07 IT_PROG 400 60

Nulls and Foreign Keys

The relational model permits the value of foreign keys to match either the referenced
primary or unique key value, or be null. For example, a row in hr. enpl oyees might not
specify a department ID.

If any column of a composite foreign key is null, then the non-null portions of the key
do not have to match any corresponding portion of a parent key. For example, a
reservations table might contain a composite foreign key on thetabl e_i d and dat e
columns, buttabl e_i d is null.

Parent Key Modifications and Foreign Keys

ORACLE

The relationship between foreign key and parent key has implications for deletion of
parent keys. For example, if a user attempts to delete the record for this department,
then what happens to the records for employees in this department?

When a parent key is modified, referential integrity constraints can specify the
following actions to be performed on dependent rows in a child table:

* No action on deletion or update

In the normal case, users cannot modify referenced key values if the results would
violate referential integrity. For example, if enpl oyees. depart nent _i d is a foreign

7-10

Chapter 7
Types of Integrity Constraints

key to depar t nent s, and if employees belong to a particular department, then an attempt
to delete the row for this department violates the constraint.

Cascading deletions

A deletion cascades (DELETE CASCADE) when rows containing referenced key values are

deleted, causing all rows in child tables with dependent foreign key values to also be
deleted. For example, the deletion of a row in depar t ment s causes rows for all
employees in this department to be deleted.

e Deletions that set null

A deletion sets null (DELETE SET NULL) when rows containing referenced key values are
deleted, causing all rows in child tables with dependent foreign key values to set those
values to null. For example, the deletion of a department row sets the depart nent i d

column value to null for employees in this department.

Table 7-3 outlines the DML statements allowed by the different referential actions on the key
values in the parent table, and the foreign key values in the child table.

Table 7-3 DML Statements Allowed by Update and Delete No Action
]

DML Statement

Issued Against Parent Table

Issued Against Child Table

| NSERT

UPDATE NOACTI ON

DELETE NOACTI ON

DELETE CASCADE
DELETE SET NULL

Always OK if the parent key value is
unique

Allowed if the statement does not
leave any rows in the child table
without a referenced parent key
value

Allowed if no rows in the child table
reference the parent key value

Always OK
Always OK

OK only if the foreign key value
exists in the parent key or is partially
or all null

Allowed if the new foreign key value
still references a referenced key
value

Always OK

Always OK
Always OK

Note:

Triggers".

¢ See Also:

Indexes and Foreign Keys

Other referential actions not supported by FOREI GN KEY integrity constraints of
Oracle Database can be enforced using database triggers. See "Overview of

Oracle Database SQL Language Reference to learn about the ON DELETE clause

As a rule, foreign keys should be indexed. The only exception is when the matching unique or
primary key is never updated or deleted.

ORACLE

7-11

Chapter 7
Types of Integrity Constraints

Indexing the foreign keys in child tables provides the following benefits:

» Prevents a full table lock on the child table. Instead, the database acquires a row
lock on the index.

* Removes the need for a full table scan of the child table. As an illustration, assume
that a user removes the record for department 10 from the depart nent s table. If
enpl oyees. depart nent _i d is not indexed, then the database must scan
enpl oyees to see if any employees exist in department 10.

¢ See Also:

e "Locks and Foreign Keys" explains the locking behavior for indexed and
unindexed foreign key columns

e "Introduction to Indexes" explains the purpose and characteristics of
indexes

Check Constraints

ORACLE

A check constraint on a column or set of columns requires that a specified condition
be true or unknown for every row.

If DML results in the condition of the constraint evaluating to false, then the SQL
statement is rolled back. The chief benefit of check constraints is the ability to enforce
very specific integrity rules. For example, you could use check constraints to enforce
the following rules in the hr. enpl oyees table:

* The sal ary column must not have a value greater than 10000.
* The commi ssi on column must have a value that is not greater than the salary.

The following example creates a maximum salary constraint on enpl oyees and
demonstrates what happens when a statement attempts to insert a row containing a
salary that exceeds the maximum:

SQ.> ALTER TABLE enpl oyees ADD CONSTRAI NT max_enp_sal CHECK (salary <
10001);
SQ.> | NSERT | NTO enpl oyees
(enpl oyee_id, | ast_name, enail,hire date,job_id, salary)
1 VALUES (999,' Geen',' BGREEN , SYSDATE, ' ST CLERK', 20000);

ERROR at line 1:
ORA- 02290: check constraint (HR MAX EMP_SAL) viol ated

A single column can have multiple check constraints that reference the column in its
definition. For example, the sal ary column could have one constraint that prevents
values over 10000 and a separate constraint that prevents values less than 500.

If multiple check constraints exist for a column, then they must be designed so their
purposes do not conflict. No order of evaluation of the conditions can be assumed.
The database does not verify that check conditions are not mutually exclusive.

7-12

Chapter 7
States of Integrity Constraints

¢ See Also:

Oracle Database SQL Language Reference to learn about restrictions for check
constraints

States of Integrity Constraints

As part of constraint definition, you can specify how and when Oracle Database should
enforce the constraint, thereby determining the constraint state.

Checks for Modified and Existing Data

ORACLE

The database enables you to specify whether a constraint applies to existing data or future
data. If a constraint is enabled, then the database checks new data as it is entered or
updated. Data that does not conform to the constraint cannot enter the database.

For example, enabling a NOT NULL constraint on enpl oyees. depart nent _i d guarantees that
every future row has a department ID. If a constraint is disabled, then the table can contain
rows that violate the constraint.

You can set constraints to either of the following validation modes:

e VALI DATE

Existing data must conform to the constraint. For example, enabling a NOT NULL
constraint on enpl oyees. departnent i d and setting it to VALI DATE checks that every
existing row has a department ID.

* NOVALI DATE

Existing data need not conform to the constraint. In effect, this is a “trust me” mode. For
example, if you are certain that every sale that you loaded into a table has a date, then
you can create a NOT NULL constraint on the date column and set the constraint to
NOVALI DATE. Unenforced constraints are typically useful only with materialized views and
query rewrite.

For a constraint in NOVALI DATE mode, the RELY parameter indicates that the optimizer can
use the constraint to determine join information. Even though the constraint is not used
for validating data, it enables more sophisticated query rewrites for materialized views,
and enables data warehousing tools to retrieve constraint information from the data
dictionary. The default is NORELY, which means that the optimizer is effectively unaware of
the constraint.

The behavior of VALI DATE and NOVALI DATE always depends on whether the constraint is
enabled or disabled. The following table summarizes the relationships.

Table 7-4 Checks on Modified and Existing Data

|
Modified Data Existing Data Summary
ENABLE VALI DATE Existing and future data must obey the constraint. An

attempt to apply a new constraint to a populated table results
in an error if existing rows violate the constraint.

7-13

Chapter 7
States of Integrity Constraints

Table 7-4 (Cont.) Checks on Modified and Existing Data

__|
Modified Data Existing Data Summary

ENABLE NOVALI| DATE The database checks the constraint, but it need not be true
for all rows. Therefore, existing rows can violate the
constraint, but new or modified rows must conform to the
rules. This mode is often used in data warehouses that
contain existing data whose integrity has already been

verified.

DI SABLE VALI DATE The database disables the constraint, drops its index, and
prevents modification of the constrained columns.

DI SABLE NOVAL| DATE The constraint is not checked and is not necessarily true.

See Also:

Oracle Database SQL Language Reference to learn about constraint states

When the Database Checks Constraints for Validity

Every constraint is either in a not deferrable (default) or deferrable state. This state
determines when Oracle Database checks the constraint for validity.

The following graphic shows the options for deferrable constraints.

Figure 7-3 Options for Deferrable Constraints

Initially Immediate

Deferrable

Initially Deferred

Nondeferrable and Initially Immediate

Nondeferrable Constraints

ORACLE

In a nondeferrable constraint, Oracle Database never defers the validity check of the
constraint to the end of the transaction. Instead, the database checks the constraint at
the end of each statement. If the constraint is violated, then the statement rolls back.

For example, a nondeferrable NOT NULL constraint exists for the enpl oyees. | ast _name
column. If a session attempts to insert a row with no last name, then the database
immediately rolls back the statement because the NOT NULL constraint is violated. No
row is inserted.

7-14

Chapter 7
States of Integrity Constraints

Deferrable Constraints

A deferrable constraint permits a transaction to use the SET CONSTRAI NT clause to defer
checking of this constraint until a COW T statement is issued. If you make changes to the
database that might violate the constraint, then this setting effectively enables you to disable
the constraint until all changes are complete.

You can set the default behavior for when the database checks the deferrable constraint. You
can specify either of the following attributes:

e INITIALLY | MVEDI ATE

The database checks the constraint immediately after each statement executes. If the
constraint is violated, then the database rolls back the statement.

e INITIALLY DEFERRED

The database checks the constraint when a COW T is issued. If the constraint is violated,
then the database rolls back the transaction.

Assume that a deferrable NOT NULL constraint on enpl oyees. | ast_nane is setto | NI TI ALLY
DEFERRED. A user creates a transaction with 100 | NSERT statements, some of which have null
values for | ast _name. When the user attempts to commit, the database rolls back all 100
statements. However, if this constraint were set to | Nl TI ALLY | MVEDI ATE, then the database
would not roll back the transaction.

If a constraint causes an action, then the database considers this action as part of the
statement that caused it, whether the constraint is deferred or immediate. For example,
deleting a row in depar t ment s causes the deletion of all rows in enpl oyees that reference the
deleted department row. In this case, the deletion from enpl oyees is considered part of the
DELETE statement executed against depart ment s.

" See Also:

Oracle Database SQL Language Reference for information about constraint
attributes and their default values

Examples of Constraint Checking

The following examples help illustrate when Oracle Database performs the checking of
constraints.

Assume the following:

* The enpl oyees table has the structure shown in "Self-Referential Integrity Constraints".

e The self-referential constraint makes entries in the manager _i d column dependent on the
values of the enpl oyee_i d column.

ORACLE 7-15

Chapter 7
States of Integrity Constraints

Example: Insertion of a Value in a Foreign Key Column When No Parent Key

Value Exists

This example concerns the insertion of the first row into the enpl oyees table. No rows
currently exist, so how can a row be entered if the value in the manager _i d column
cannot reference an existing value in the enpl oyee_i d column?

Some possibilities are:

e If the manager _i d column does not have a NOT NULL constraint defined on it, then
you can enter a null for the manager _i d column of the first row.

Because nulls are allowed in foreign keys, Oracle Database inserts this row into
the table.

e You can enter the same value in the enpl oyee_i d and manager _i d columns,
specifying that the employee is his or her own manager.

This case reveals that Oracle Database performs its constraint checking after the
statement executes. To allow a row to be entered with the same values in the
parent key and the foreign key, the database must first insert the new row, and
then determine whether any row in the table has an enpl oyee_i d that corresponds
to the manager _i d of the new row.

* A multiple row | NSERT statement, such as an | NSERT statement with nested SELECT
statements, can insert rows that reference one another.

For example, the first row might have 200 for employee ID and 300 for manager
ID, while the second row has 300 for employee ID and 200 for manager.
Constraint checking is deferred until the complete execution of the | NSERT
statement. The database inserts all rows, and then checks all rows for constraint
violations.

Default values are included as part of an | NSERT statement before the statement is
parsed. Thus, default column values are subject to all integrity constraint checking.

Example: Update of All Foreign Key and Parent Key Values

ORACLE

In this example, a self-referential constraint makes entries in the manager _i d column of
enpl oyees dependent on the values of the enpl oyee_i d column.

The company has been sold. Because of this sale, all employee numbers must be
updated to be the current value plus 5000 to coordinate with the employee numbers of
the new company. As shown in the following graphic, some employees are also
managers:

Figure 7-4 The employees Table Before Updates

EMPLOYEE_ID | MANAGER_ID

210
211 210
212 211

7-16

Chapter 7
States of Integrity Constraints

Because manager numbers are also employee numbers, the manager numbers must also
increase by 5000. You could execute the following SQL statement to update the values:

UPDATE enpl oyees SET enpl oyee id = enpl oyee id + 5000,
manager _id = manager i d + 5000;

Although a constraint is defined to verify that each manager i d value matches an

enpl oyee_i d value, the preceding statement is valid because the database effectively checks
constraints after the statement completes. Figure 7-5 shows that the database performs the
actions of the entire SQL statement before checking constraints.

Figure 7-5 Constraint Checking

EMPLOYEE_ID

| MANAGER_ID

EMPLOYEE_ID | MANAGER_ID

EMPLOYEE_ID MANAGER_ID

5210
211
212

Update to
first row

ORACLE

5210
5211 5210
212 211

5210
5211 5210
5212 5211

Update to Update to Constraints
second row third row checked

The examples in this section illustrate the constraint checking mechanism during | NSERT and
UPDATE statements, but the database uses the same mechanism for all types of DML

statements. The database uses the same mechanism for all types of constraints, not just self-
referential constraints.

Note:

Operations on a view or synonym are subject to the integrity constraints defined on
the base tables.

7-17

Data Dictionary and Dynamic Performance

Views

The central set of read-only reference tables and views of each Oracle database is known
collectively as the data dictionary. The dynamic performance views are special views that
are continuously updated while a database is open and in use.

This chapter contains the following sections:

e Overview of the Data Dictionary
e Overview of the Dynamic Performance Views

» Database Object Metadata

Overview of the Data Dictionary

An important part of an Oracle database is its data dictionary, which is a read-only set of
tables that provides administrative metadata about the database.

Purpose of the Data Dictionary

The data dictionary contains metadata describing the contents of the database.
For example, the data dictionary contains information such as the following:

e The definitions of every schema object in the database, including default values for
columns and integrity constraint information

e The amount of space allocated for and currently used by the schema objects

* The names of Oracle Database users, privileges and roles granted to users, and auditing
information related to users

Data Management

ORACLE

The data dictionary is a central part of data management for every Oracle database.
For example, the database performs the following actions:

* Accesses the data dictionary to find information about users, schema objects, and
storage structures

* Modifies the data dictionary every time that a DDL statement is issued

Because Oracle Database stores data dictionary data in tables, just like other data, users can
query the data with SQL. For example, users can run SELECT statements to determine their
privileges, which tables exist in their schema, which columns are in these tables, whether
indexes are built on these columns, and so on.

8-1

Chapter 8
Overview of the Data Dictionary

¢ See Also:

e "Introduction to Schema Objects"
e Oracle Database Security Guide to learn about user accounts

e "Data Definition Language (DDL) Statements”

Data Dictionary Separation in a CDB

ORACLE

In a CDB, the data dictionary metadata is split between the CDB root and the PDBs.
From the user and application perspective, the data dictionary in each container in a
CDB is separate.

In a newly created CDB that does not yet contain user data, the data dictionary in the
CDB root contains only system metadata. For example, the TAB$ table contains rows
that describe only Oracle-supplied tables, for example, TRI GGER$ and SERVI CE$. The
following graphic depicts three underlying data dictionary tables, with the red bars
indicating rows describing the system.

Figure 8-1 Data Dictionary Metadata in the CDB Root

OBJ$ TAB$ SOURCE$

Assume that you create a PDB, and then create an hr schema containing the

enpl oyees and depart nent s tables in this PDB. The data dictionary in the PDB
contains some rows that describe Oracle-supplied entities, and other rows that
describe user-created entities. For example, the TAB$ table in the PDB dictionary has a
row of metadata for the enpl oyees table and a row for the depart nent s table.

8-2

Chapter 8
Overview of the Data Dictionary

Figure 8-2 Data Dictionary Architecture in a CDB

root

Database Metadata Only

OBJ$ TAB$ SOURCES$
PDB
User Metadata Only User Data
OBJ$ TAB$ SOURCE$ employees departments

M
Il
|

The preceding graphic shows that the data dictionary in the PDB contains pointers to the data
dictionary in the CDB root. Internally, Oracle-supplied objects such as data dictionary table
definitions and PL/SQL packages are represented only once in the CDB root. This
architecture achieves two main goals within the CDB:

Reduction of duplication

For example, instead of storing the source code for the DBMS_ADVI SOR PL/SQL package in
every PDB, the CDB stores the code only once in CDB$ROOT, which saves disk space.

Ease of database upgrade

If the definition of a data dictionary table existed in every PDB, and if the definition were
to change in a new release, then each PDB would need to be upgraded separately to
capture the change. Storing the table definition only once in the CDB root eliminates this
problem.

Data Dictionary Components

The data dictionary consists of base tables and views.

ORACLE

These objects are defined as follows:

Base tables

These store information about the database. Only Oracle Database should write to and
read these tables. Users rarely access the base tables directly because they are
normalized and most data is stored in a cryptic format.

Views

These decode the base table data into useful information, such as user or table names,
using joins and WHERE clauses to simplify the information. The views contain the names
and description of all objects in the data dictionary. Some views are accessible to all
database users, whereas others are intended for administrators only.

8-3

Chapter 8
Overview of the Data Dictionary

Typically, data dictionary views are grouped in sets. In many cases, a set consists of
three views containing similar information and distinguished from each other by their
prefixes, as shown in the following table. By querying the appropriate views, you can
access only the information relevant for you.

Table 8-1 Data Dictionary View Sets
|

Prefix User Access Contents Notes
DBA Database All objects Some DBA _ views have additional
administrators columns containing information
useful to the administrator.
ALL All users Objects to which user Includes objects owned by user.
has privileges These views obey the current set of
enabled roles.
USER_ All users Objects owned by Views with the prefix USER_ usually
user exclude the column OANER. This

column is implied in the USER _ views
to be the user issuing the query.

Not all views sets have three members. For example, the data dictionary contains a
DBA LOCK view but no ALL_LOCK view.

The system-supplied DI CTI ONARY view contains the names and abbreviated
descriptions of all data dictionary views. The following query of this view includes
partial sample output:

SQ> SELECT * FROM DI CTI ONARY
2 ORDER BY TABLE_NAME;

TABLE_NAME COMMENTS

ALL_ALL TABLES Description of all object and rel ational
tabl es accessible to the user

ALL_APPLY Detai | s about each apply process that
dequeues fromthe queue visible to the
current user

¢ See Also:

¢ "Overview of Views"

e Oracle Database Reference for a complete list of data dictionary views
and their columns

ORACLE 8-4

Chapter 8
Overview of the Data Dictionary

Container Data Objects in a CDB

ORACLE

A container data object is a table or view containing data pertaining to multiple containers or
the whole CDB.

Container data privileges support a general requirement in which multiple PDBs reside in a
single CDB, but with different local administration requirements. For example, if application
DBAs do not want to administer locally, then they can grant container data privileges on
appropriate views to the common users. In this case, the CDB administrator can access the
data for these PDBs. In contrast, PDB administrators who do not want the CDB administrator
accessing their data do not grant container data privileges.

Examples of container data objects are Oracle-supplied views whose names begin with V$
and CDB_. All container data objects have a CON_I D column. The following table shows the
meaning of the values for this column.

Table 8-2 Container ID Values
|

Container ID Rows pertain to

0 Whole CDB

1 CDB$ROOT

2 PDB$SEED

All Other IDs User-created PDBs, application roots, or application seeds

In a CDB, for every DBA_ view, a corresponding CDB_ view exists. The owner of a CDB_ view is
the owner of the corresponding DBA view. The following graphic shows the relationship
among the different categories of dictionary views:

Figure 8-3 Dictionary Views in a CDB

CDB__ All of the objects in the CDB across all PDBs
DBA__ All of the objects in a container or PDB
ALL__ Objects accessible by the current user

USER__Objects owned by the current user

When the current container is a PDB, a user can view data dictionary information for the
current PDB only. When the current container is the CDB root, however, a common user can
qguery CDB_ views to see metadata for the CDB root and for PDBs for which this user is

privileged.

8-5

< Note:

possible.

Chapter 8
Overview of the Data Dictionary

When queried from the CDB root, CDB_ and V$ views implicitly convert data
to the AL32UTF8 character set. If a character set needs more bytes to
represent a character when converted to AL32UTF8, and if the view column
width cannot accommodate data from a specific PDB, then data truncation is

The following table describes queries of CDB_ views. Each row describes an action that
occurs after the action in the preceding row.

Table 8-3 Querying CDB_ Views

Operation

Description

SQL> CONNECT SYSTEM
Enter password: ***xxxxx
Connect ed.

SQL> SELECT COUNT(*) FROM CDB_USERS
WHERE CON_| D=1;

SQL> SELECT COUNT(DI STI NCT(CON_| D))
FROM CDB_USERS;

COUNT(DI STI NCT(CON_I D))

SQL> CONNECT SYSTEM@r db
Ent er paSSV\DI’d: K okok koK ok ok ok
Connect ed.

SQL> SELECT COUNT(*) FROM CDB_USERS;

ORACLE

The SYSTEMuser, which is common to all containers in the
CDB, connects to the CDB root (see "Common User
Accounts").

SYSTEMqueries CDB_USERS to obtain the number of
common users in the CDB root. The output indicates that 38
common users exist in CDB root.

SYSTEMqueries CDB_USERS to determine the number of
distinct containers in the CDB.

The SYSTEMuser now connects to the PDB named hr pdb.

SYSTEMqueries CDB_USERS. The output indicates that 48
common and local users exist in the current container,
which is hr pdb.

8-6

Chapter 8
Overview of the Data Dictionary

Table 8-3 (Cont.) Querying CDB_ Views

Operation

Description

SYSTEMqueries DBA_USERS. The output is the same as the

SQL> SELECT COUNT(*) FROM DBA USERS; previous query. Because SYSTEMis not connected to the

CDB root, the DBA_USERS view shows the same output as
CDB_USERS. Because DBA_USERS only shows the users in
the current container, it shows 48.

Views with the Prefix DBA _

Views with the prefix DBA_show all relevant information in the entire database. DBA views
are intended only for administrators.

The following sample query shows information about all objects in the database:

SELECT OMNER, OBJECT_NAME, OBJECT_TYPE
FROM DBA_OBJECTS
CRDER BY OMNER, OBJECT_NAME;

¢ See Also:

Oracle Database Administrator’s Guide for detailed information on administrative
privileges

Views with the Prefix ALL

ORACLE

Views with the prefix ALL_ refer to the user's overall perspective of the database.

These views return information about schema objects to which the user has access through
public or explicit grants of privileges and roles, in addition to schema objects that the user
owns.

For example, the following query returns information about all the objects to which you have
access:

SELECT OMNER, OBJECT_NAME, OBJECT_TYPE

FROM ALL_OBJECTS
ORDER BY OANER OBJECT NAME;

Because the ALL_ views obey the current set of enabled roles, query results depend on which
roles are enabled, as shown in the following example:

SQ.> SET ROLE ALL;

Rol e set.

8-7

Chapter 8
Overview of the Data Dictionary

SQL> SELECT COUNT(*) FROM ALL_OBJECTS;

SQ.> SET ROLE NONE;
Rol e set.

SQL> SELECT COUNT(*) FROM ALL_OBJECTS;

Application developers should be cognizant of the effect of roles when using ALL _
views in a stored procedure, where roles are not enabled by default.

Views with the Prefix USER _

The views most likely to be of interest to typical database users are those with the
prefix USER .

These views:

» Refer to the user's private environment in the database, including metadata about
schema objects created by the user, grants made by the user, and so on

* Display only rows pertinent to the user, returning a subset of the information in the
ALL views

» Has columns identical to the other views, except that the column OMER is implied
» Can have abbreviated PUBLI C synonyms for convenience

For example, the following query returns all the objects contained in your schema:
SELECT OBJECT_NAME, OBJECT _TYPE

FROM USER OBJECTS
CRDER BY OBJECT_NAME;

The DUAL Table

ORACLE

DUAL is a small table in the data dictionary that Oracle Database and user-written
programs can reference to guarantee a known result.

The dual table is useful when a value must be returned only once, for example, the
current date and time. All database users have access to DUAL.

The DUAL table has one column called DUMW and one row containing the value X. The
following example queries DUAL to perform an arithmetical operation;

SQL> SELECT ((3*4)+5)/3 FROM DUAL:

((3*4)+5)/3

8-8

Chapter 8
Overview of the Data Dictionary

5. 66666667

See Also:

Oracle Database SQL Language Reference for more information about the DUAL
table

How the Data Dictionary Works

The Oracle Database user account SYS owns all base tables and user-accessible views of the
data dictionary.

During database operation, Oracle Database reads the data dictionary to ascertain that
schema objects exist and that users have proper access to them. Oracle Database updates
the data dictionary continuously to reflect changes in database structures, auditing, grants,
and data.

For example, if user hr creates a table named i nt er ns, then the database adds new rows to
the data dictionary that reflect the new table, columns, segment, extents, and the privileges
that hr has on the table. This new information is visible the next time the dictionary views are
queried.

Data in the base tables of the data dictionary is necessary for Oracle Database to function.
Only Oracle Database should write or change data dictionary information. No Oracle
Database user should ever alter rows or schema objects contained in the SYS schema
because such activity can compromise data integrity. The security administrator must keep
strict control of this central account.

WARNING:

Altering or manipulating the data in data dictionary tables can permanently and
detrimentally affect database operation.

See Also:

"SYS and SYSTEM Accounts”

Metadata and Data Links

The CDB uses an internal linking mechanism to separate data dictionary information.
Specifically, Oracle Database uses the following automatically managed pointers:

¢ Metadata links

Oracle Database stores metadata about dictionary objects only in the CDB root. For
example, the column definitions for the OBJ$ dictionary table, which underlies the

ORACLE 8-9

Chapter 8
Overview of the Data Dictionary

DBA_OBJECTS data dictionary view, exist only in the CDB root. As depicted in
Figure 8-2, the OBJ$ table in each PDB uses an internal mechanism called a
metadata link to point to the definition of OBJ$ stored in the CDB root.

The data corresponding to a metadata link resides in its PDB, not in the CDB root.
For example, if you create table nyt abl e in hr pdb and add rows to it, then the rows
are stored in the PDB data files, not in the CDB root data files.

The data dictionary views in the PDB and in the CDB root contain different rows.
For example, a new row describing nyt abl e exists in the OBJ$ table in hr pdb, but
not in the OBJ$ table in the CDB root. Thus, a query of DBA OBJECTS in the CDB
root and DBA OBJECTS in hr dpb shows different results.

e Data links

" Note:

Data links were called object links in Oracle Database 12c¢ Release 1
(12.1.0.2).

In some cases, Oracle Database stores the data (not only metadata) for an object
only once in the application root of an application container. Consider an e-
commerce company that has different PDBs for different regions. The application
root might store a table named post al _codes, which lists all U.S. zip codes. Every
application PDB in this container requires access to the common post al _codes
table.

An application PDB uses an internal mechanism called a data link to refer to the
object in the application root. The application PDB in which the data link was
created also stores the data link description. A data link inherits the data type of
the object to which it refers.

 Extended data link

An extended data link is a hybrid of a data link and a metadata link. Like a data
link, an extended data link refers to an object in an application root. However, the
extended data link also refers to a corresponding object in the application PDB.
For example, an application PDB might have an extended data link table that
stores both U.S. zip codes and Canadian postal codes. Like a metadata link, the
object in the application PDB inherits metadata from the corresponding object in
the application root.

When queried in the application root, an extended data-linked table fetches rows
only from the application root, for example, just U.S. zip codes. However, when
gueried in an application PDB, an extended data-linked table fetches rows from
both the application root and application PDB, for example, U.S. zip codes and
Canadian postal codes.

Oracle Database automatically creates and manages metadata and data links to
CDB$ROOT. Users cannot add, modify, or remove these links.

ORACLE 8-10

Chapter 8
Overview of the Data Dictionary

¢ See Also:

e "Application Common Objects"

e Oracle Database Concepts for an overview of the data dictionary

Public Synonyms for Data Dictionary Views

Oracle Database creates public synonyms for many data dictionary views so users can
access them conveniently.

The security administrator can also create additional public synonyms for schema objects
that are used systemwide. Oracle recommends against using the same name for a private
schema object and a public synonym.

See Also:

"Overview of Synonyms"

Data Dictionary Cache

Much of the data dictionary information is in the data dictionary cache because the
database constantly requires the information to validate user access and verify the state of
schema objects.

The caches typically contain the parsing information. The COWENTS columns describing the
tables and their columns are not cached in the dictionary cache, but may be cached in the
database buffer cache.

¢ See Also:

"Data Dictionary Cache"

Other Programs and the Data Dictionary

Other Oracle Database products can reference existing views and create additional data
dictionary tables or views of their own.

Oracle recommends that application developers who write programs referring to the data
dictionary use the public synonyms rather than the underlying tables. Synonyms are less
likely to change between releases.

Data Dictionary Storage

The data dictionary that stores the metadata for the CDB as a whole is stored only in the
system tablespaces.

ORACLE 8-11

Chapter 8
Overview of the Dynamic Performance Views

The data dictionary that stores the metadata for a specific PDB is stored in the self-
contained tablespaces dedicated to this PDB. The PDB tablespaces contain both the
data and metadata for an application back end. Thus, each set of data dictionary
tables is stored in its own dedicated set of tablespaces.

¢ See Also:

"The SYSTEM Tablespace" for more information about the SYSTEM
tablespace

Overview of the Dynamic Performance Views

Throughout its operation, Oracle Database maintains a set of virtual tables that record
current database activity.

These views are dynamic because they are continuously updated while a database is
open and in use. The views are sometimes called V$ views because their names
begin with V$.

Dynamic performance views contain information such as the following:
e System and session parameters

 Memory usage and allocation

* File states (including RMAN backup files)

* Progress of jobs and tasks

e SQL execution

e Statistics and metrics

The dynamic performance views have the following primary uses:

e Oracle Enterprise Manager uses the views to obtain information about the
database.

e Administrators can use the views for performance monitoring and debugging.

See Also:

Oracle Database Reference for a complete list of the dynamic performance
views

Contents of the Dynamic Performance Views

ORACLE

Dynamic performance views are called fixed views because they cannot be altered or
removed by a database administrator. However, database administrators can query
and create views on the tables and grant access to these views to other users.

SYS owns the dynamic performance tables, whose names begin with V_$. Views are
created on these tables, and then public synonyms prefixed with V$. For example, the

8-12

Chapter 8
Database Object Metadata

V$DATAFI LE view contains information about data files. The V$FI XED TABLE view contains
information about all of the dynamic performance tables and views.

For almost every V$ view, a corresponding GV$ view exists. In Oracle Real Application
Clusters (Oracle RAC), querying a GV$ view retrieves the V$ view information from all
gualified database instances.

When you use the Database Configuration Assistant (DBCA) to create a database, Oracle
automatically creates the data dictionary. Oracle Database automatically runs the

cat al og. sql script, which contains definitions of the views and public synonyms for the
dynamic performance views. You must run cat al og. sql to create these views and
synonyms.

¢ See Also:

e Oracle Database Administrator’s Guide to learn how to run cat al og. sql
manually

e Oracle Real Application Clusters Administration and Deployment Guide to learn
about using performance views in Oracle RAC

Storage of the Dynamic Performance Views

Dynamic performance views are based on virtual tables built from database memory
structures.

The views are not conventional tables stored in the database. Read consistency is not
guaranteed for the views because the data is updated dynamically.

Because the dynamic performance views are not true tables, the data depends on the state
of the database and database instance. For example, you can query V$I NSTANCE and
V$BGPROCESS when the database is started but not mounted. However, you cannot query
V$DATAFI LE until the database has been mounted.

¢ See Also:

"Data Concurrency and Consistency "

Database Object Metadata

ORACLE

The DBM5_METADATA package provides interfaces for extracting complete definitions of
database objects.

The definitions can be expressed either as XML or as SQL DDL. Oracle Database provides
two styles of interface: a flexible, sophisticated interface for programmatic control, and a
simplified interface for ad hoc querying.

8-13

Chapter 8
Database Object Metadata

¢ See Also:

Oracle Database PL/SQL Packages and Types Reference for more
information about DBVS_METADATA

ORACLE 8-14

Oracle Data Access

Structured Query Language (SQL) is the high-level declarative computer language with
which all programs and users access data in an Oracle database. PLISQL and Java, which
are server-side procedural languages, enable you to store data logic in the database itself.

This part contains the following chapters:
e SQL
* Server-Side Programming: PL/SQL and Java

ORACLE

SQL

This chapter provides an overview of the Structured Query Language (SQL) and how
Oracle Database processes SQL statements.

This chapter includes the following topics:

e Introduction to SQL
e Overview of SQL Statements
e Overview of the Optimizer

e Overview of SQL Processing

Introduction to SQL

SQL (pronounced sequel) is the set-based, high-level declarative computer language with
which all programs and users access data in an Oracle database.

Although some Oracle tools and applications mask SQL use, all database tasks are
performed using SQL. Any other data access method circumvents the security built into
Oracle Database and potentially compromises data security and integrity.

SQL provides an interface to a relational database such as Oracle Database. SQL unifies
tasks such as the following in one consistent language:

e Creating, replacing, altering, and dropping objects
e Inserting, updating, and deleting table rows

e Querying data

e Controlling access to the database and its objects
e Guaranteeing database consistency and integrity

SQL can be used interactively, which means that statements are entered manually into a
program. SQL statements can also be embedded within a program written in a different
language such as C or Java.

" See Also:

e "Introduction to Server-Side Programming"

e Oracle Database Development Guide to learn how to choose a programming
environment

e Oracle Database SQL Language Reference for an introduction to SQL

ORACLE 9-1

Chapter 9
Introduction to SQL

SQL Data Access

There are two broad families of computer languages: declarative languages that are
nonprocedural and describe what should be done, and procedural languages such
as C++ and Java that describe how things should be done.

SQL is declarative in the sense that users specify the result that they want, not how to
derive it. For example, the following statement queries records for employees whose
last name begins with K:

The database performs the work of generating a procedure to navigate the data and
retrieve the requested results. The declarative nature of SQL enables you to work with
data at the logical level. You need be concerned with implementation details only when
you manipulate the data.

SELECT last_nane, first_name
FROV hr. enpl oyees

VHERE | ast_nane LIKE ' K%
ORDER BY | ast_nane, first_nang;

The database retrieves all rows satisfying the WHERE condition, also called the
predicate, in a single step. The database can pass these rows as a unit to the user, to
another SQL statement, or to an application. The application does not need to process
the rows one by one, nor does the developer need to know how the rows are
physically stored or retrieved.

All SQL statements use the optimizer, a component of the database that determines
the most efficient means of accessing the requested data. Oracle Database also
supports techniques that you can use to make the optimizer perform its job better.

¢ See Also:

Oracle Database SQL Language Reference for detailed information about
SQL statements and other parts of SQL (such as operators, functions, and
format models)

SQL Standards

ORACLE

Oracle strives to follow industry-accepted standards and participates actively in SQL
standards committees.

Industry-accepted committees are the American National Standards Institute (ANSI)
and the International Organization for Standardization (ISO). Both ANSI and the
ISO/IEC have accepted SQL as the standard language for relational databases.

The SQL standard consists of ten parts. One part (SQL/RPR:2012) is new in 2102.
Five other parts were revised in 2011. For the other four parts, the 2008 version
remains in place.

Oracle SQL includes many extensions to the ANSI/ISO standard SQL language, and
Oracle Database tools and applications provide additional statements. The tools
SQL*Plus, SQL Developer, and Oracle Enterprise Manager enable you to run any

9-2

Chapter 9
Overview of SQL Statements

ANSI/ISO standard SQL statement against an Oracle database and any additional
statements or functions available for those tools.

See Also:

e Oracle Database 2 Day Developer's Guide

e Oracle Database SQL Language Reference for an explanation of the

differences between Oracle SQL and standard SQL

e SQL*Plus User's Guide and Reference for SQL*Plus commands, including their

distinction from SQL statements

Overview of SQL Statements

All operations performed on the information in an Oracle database are run using SQL
statements. A SQL statement is a computer program or instruction that consists of
identifiers, parameters, variables, names, data types, and SQL reserved words.

Note:

SQL reserved words have special meaning in SQL and should not be used for any
other purpose. For example, SELECT and UPDATE are reserved words and should not

be used as table names.

A SQL statement must be the equivalent of a complete SQL sentence, such as:

SELECT | ast _name, department i d FROM enpl oyees

Oracle Database only runs complete SQL statements. A fragment such as the following
generates an error indicating that more text is required:

SELECT | ast _nane;

Oracle SQL statements are divided into the following categories:

Data Definition Language (DDL) Statements
Data Manipulation Language (DML) Statements
Transaction Control Statements

Session Control Statements

System Control Statement

Embedded SQL Statements

Data Definition Language (DDL) Statements

Data definition language (DLL) statements define, structurally change, and drop schema
objects.

ORACLE

9-3

ORACLE

Chapter 9
Overview of SQL Statements

DDL enables you to alter attributes of an object without altering the applications that
access the object. For example, you can add a column to a table accessed by a
human resources application without rewriting the application. You can also use DDL
to alter the structure of objects while database users are performing work in the
database.

More specifically, DDL statements enable you to:

e Create, alter, and drop schema objects and other database structures, including
the database itself and database users. Most DDL statements start with the
keywords CREATE, ALTER, or DRCP.

» Delete all the data in schema objects without removing the structure of these
objects (TRUNCATE).

¢ Note:

Unlike DELETE, TRUNCATE generates no undo data, which makes it faster
than DELETE. Also, TRUNCATE does not invoke delete triggers

* Grant and revoke privileges and roles (GRANT, REVCOKE).
e Turn auditing options on and off (AUDI T, NOAUDI T).

e Add a comment to the data dictionary (COVMENT).
Example 9-1 DDL Statements

The following example uses DDL statements to create the pl ant s table and then uses
DML to insert two rows in the table. The example then uses DDL to alter the table
structure, grant and revoke read privileges on this table to a user, and then drop the
table.

CREATE TABLE pl ants
(plant_id NUMBER PRI MARY KEY,
comon_nanme VARCHAR2(15));
I NSERT | NTO pl ants VALUES (1, 'African Violet'); # DM statement
I NSERT | NTO pl ants VALUES (2, 'Amaryllis'); # DML statenent

ALTER TABLE pl ants ADD
(latin_name VARCHAR2(40));

GRANT READ ON pl ants TO scott;
REVOKE READ ON pl ants FROM scott;
DROP TABLE pl ants;

An implicit COM T occurs immediately before the database executes a DDL statement
and a COW T or ROLLBACK occurs immediately afterward. In the preceding example,
two | NSERT statements are followed by an ALTER TABLE statement, so the database
commits the two | NSERT statements. If the ALTER TABLE statement succeeds, then the
database commits this statement; otherwise, the database rolls back this statement. In
either case, the two | NSERT statements have already been committed.

9-4

Chapter 9
Overview of SQL Statements

¢ See Also:

e Oracle Database Security Guide to learn about privileges and roles

e Oracle Database 2 Day Developer's Guide and Oracle Database
Administrator’s Guide to learn how to create schema objects

e Oracle Database Development Guide to learn about the difference between
blocking and nonblocking DDL

e Oracle Database SQL Language Reference for a list of DDL statements

Data Manipulation Language (DML) Statements

ORACLE

Data manipulation language (DML) statements query or manipulate data in existing schema
objects.

Whereas DDL statements change the structure of the database, DML statements query or
change the contents. For example, ALTER TABLE changes the structure of a table, whereas
| NSERT adds one or more rows to the table.

DML statements are the most frequently used SQL statements and enable you to:

* Retrieve or fetch data from one or more tables or views (SELECT).

* Add new rows of data into a table or view (I NSERT) by specifying a list of column values
or using a subquery to select and manipulate existing data.

* Change column values in existing rows of a table or view (UPDATE).

e Update or insert rows conditionally into a table or view (MERGE).

* Remove rows from tables or views (DELETE).

e View the execution plan for a SQL statement (EXPLAI N PLAN).

* Lock a table or view, temporarily limiting access by other users (LOCK TABLE).

The following example uses DML to query the enpl oyees table. The example uses DML to
insert a row into enpl oyees, update this row, and then delete it:

SELECT * FROM enpl oyees;

I NSERT | NTO enpl oyees (enpl oyee id, last _nane, email, job_id, hire_date,
sal ary)
VALUES (1234, 'Mascis', "JMASCIS', 'IT_PROG, '14-FEB-2008', 9000);

UPDATE enpl oyees SET sal ary=9100 WHERE enpl oyee i d=1234;

DELETE FROM enpl oyees WHERE enpl oyee i d=1234;

A collection of DML statements that forms a logical unit of work is called a transaction. For
example, a transaction to transfer money could involve three discrete operations: decreasing
the savings account balance, increasing the checking account balance, and recording the
transfer in an account history table. Unlike DDL statements, DML statements do not implicitly
commit the current transaction.

9-5

Chapter 9
Overview of SQL Statements

¢ See Also:

» "Differences Between DML and DDL Processing"
e "Introduction to Transactions "

e Oracle Database 2 Day Developer's Guide to learn how to query and
manipulate data

e Oracle Database SQL Language Reference for a list of DML statements

SELECT Statements

A query is an operation that retrieves data from a table or view.

SELECT is the only SQL statement that you can use to query data. The set of data
retrieved from execution of a SELECT statement is known as a result set.

The following table shows two required keywords and two keywords that are
commonly found in a SELECT statement. The table also associates capabilities of a
SELECT statement with the keywords.

Table 9-1 Keywords in a SQL Statement
|

Keyword Required? Description Capability
SELECT Yes Specifies which columns should be shown in the Projection
result. Projection produces a subset of the columns in
the table.

An expression is a combination of one or more
values, operators, and SQL functions that resolves to
a value. The list of expressions that appears after the
SELECT keyword and before the FROMclause is called
the select list.

FROM Yes Specifies the tables or views from which the data Joining
should be retrieved.

VWHERE No Specifies a condition to filter rows, producing a subset Selection
of the rows in the table. A condition specifies a
combination of one or more expressions and logical
(Boolean) operators and returns a value of TRUE,
FALSE, or UNKNO/MN.

ORDER BY No Specifies the order in which the rows should be
shown.

See Also:

Oracle Database SQL Language Reference for SELECT syntax and semantics

ORACLE 9-6

Joins

Chapter 9
Overview of SQL Statements

A join is a query that combines rows from two or more tables, views, or materialized views.

The following example joins the enpl oyees and depart nent s tables (FROMclause), selects
only rows that meet specified criteria (WHERE clause), and uses projection to retrieve data from
two columns (SELECT). Sample output follows the SQL statement.

SELECT ermi |, departnment _narme

FROM enpl oyees

JON departments

ON enpl oyees. departnent _id = departments. department id
WHERE enpl oyee id IN (100, 103)

ORDER BY eni | ;

EMAI L DEPARTMENT _NAME

AHUNOLD IT

SKI NG Executive

The following graphic represents the operations of projection and selection in the join shown
in the preceding query.

Figure 9-1 Projection and Selection

Table DEPARTMENTS
DEPARTMENT_ID | DEPARTMENT_NAME | MANAGER_ID| LOCATION_ID

Projection
Selection

60 | IT

90

1400

103
1700

100 SELECT email, department_name
FROM employees JOIN
departments

ON employees.department_id =
departments.department_id
WHERE employee_id IN (100,103)
ORDER BY email

Executive

Table EMPLOYEES

EMPLOYEE ID | LAST_NAME | EMAIL HIRE_DATE | JOB_ID MANAGER_ID | DEPARTMENT_ID

100 King SKING AD_PRES 90

101 Kochhar NKOCHHAR | 21-SEP-89 AD_VP 100 90

102 De Hann LDEHANN 13-JAN-93 AD_VP 100 90

103 Hunold AHUNOLD IT_PROG | 102 60
Most joins have at least one join condition, either in the FROMclause or in the WHERE clause,
that compares two columns, each from a different table. The database combines pairs of
rows, each containing one row from each table, for which the join condition evaluates to TRUE.
The optimizer determines the order in which the database joins tables based on the join
conditions, indexes, and any available statistics for the tables.
Join types include the following:

ORACLE 9-7

Subqueries

ORACLE

Chapter 9
Overview of SQL Statements

e Inner joins

An inner join is a join of two or more tables that returns only rows that satisfy the
join condition. For example, if the join condition is

enpl oyees. depart ment _i d=depart ment s. department _i d, then rows that do not
satisfy this condition are not returned.

e OQuter joins

An outer join returns all rows that satisfy the join condition and also returns rows
from one table for which no rows from the other table satisfy the condition.

The result of a left outer join for table A and B always contains all records of the
left table A, even if the join condition does not match a record in the right table B. If
no matching row from B exists, then B columns contain nulls for rows that have no
match in B. For example, if not all employees are in departments, then a left outer
join of enpl oyees (left table) and depart nent s (right table) retrieves all rows in

enpl oyees even if no rows in depart nent s satisfy the join condition

(enpl oyees. depart nent _i d is null).

The result of a right outer join for table A and B contains all records of the right
table B, even if the join condition does not match a row in the left table A. If no
matching row from A exists, then A columns contain nulls for rows that have no
match in A. For example, if not all departments have employees, a right outer join
of enpl oyees (left table) and depart nent s (right table) retrieves all rows in

depart ment s even if no rows in enpl oyees satisfy the join condition.

A full outer join is the combination of a left outer join and a right outer join.
e Cartesian products

If two tables in a join query have no join condition, then the database performs a
Cartesian join. Each row of one table combines with each row of the other. For
example, if enpl oyees has 107 rows and depart ment s has 27, then the Cartesian
product contains 107*27 rows. A Cartesian product is rarely useful.

See Also:

e Oracle Database SQL Tuning Guide to learn about joins

e Oracle Database SQL Language Reference for detailed descriptions and
examples of joins

A subquery is a SELECT statement nested within another SQL statement. Subqueries
are useful when you must execute multiple queries to solve a single problem.

Each query portion of a statement is called a query block. In the following query, the
subquery in parentheses is the inner query block:

SELECT first_name, |ast_nane
FROM enpl oyees

WHERE departnent id

I'N (SELECT departrment _id

9-8

Chapter 9
Overview of SQL Statements

FROM depart nent s
WHERE | ocation_id = 1800);

The inner SELECT statement retrieves the IDs of departments with location ID 1800. These
department IDs are needed by the outer query block, which retrieves names of employees in
the departments whose IDs were supplied by the subquery.

The structure of the SQL statement does not force the database to execute the inner query
first. For example, the database could rewrite the entire query as a join of enpl oyees and
depart nent s, so that the subquery never executes by itself. As another example, the Virtual
Private Database (VPD) feature could restrict the query of employees using a WHERE clause,
so that the database queries the employees first and then obtains the department IDs. The
optimizer determines the best sequence of steps to retrieve the requested rows.

¢ See Also:

Oracle Database Security Guide to learn more about VPD

Transaction Control Statements

ORACLE

Transaction control statements manage the changes made by DML statements and group
DML statements into transactions.

These statements enable you to:

e Make changes to a transaction permanent (COWM T).

* Undo the changes in a transaction, since the transaction started (ROLLBACK) or since a
savepoint (ROLLBACK TO SAVEPQ NT). A savepoint is a user-declared intermediate marker
within the context of a transaction.

" Note:

The ROLLBACK statement ends a transaction, but ROLLBACK TO SAVEPQO NT does
not.

* Set a point to which you can roll back (SAVEPQO NT).
» Establish properties for a transaction (SET TRANSACTI ON).

» Specify whether a deferrable integrity constraint is checked following each DML
statement or when the transaction is committed (SET CONSTRAI NT).

The following example starts a transaction named Updat e sal ari es. The example creates a
savepoint, updates an employee salary, and then rolls back the transaction to the savepoint.
The example updates the salary to a different value and commits.

SET TRANSACTI ON NAME ' Update sal aries';
SAVEPO NT before_sal ary_updat e;

UPDATE enpl oyees SET sal ary=9100 WHERE enpl oyee_i d=1234 # DML

9-9

Chapter 9
Overview of SQL Statements

ROLLBACK TO SAVEPQ NT bef ore_sal ary_updat e;
UPDATE enpl oyees SET sal ary=9200 WHERE enpl oyee i d=1234 # DML

COW T COWMENT ' Updat ed sal aries';

See Also:

e "Introduction to Transactions "
e "When the Database Checks Constraints for Validity"

e Oracle Database SQL Language Reference to learn about transaction
control statements

Session Control Statements

Session control statements dynamically manage the properties of a user session.

A session is a logical entity in the database instance memory that represents the state
of a current user login to a database. A session lasts from the time the user is
authenticated by the database until the user disconnects or exits the database
application.

Session control statements enable you to:

» Alter the current session by performing a specialized function, such as setting the
default date format (ALTER SESSI ON).

» Enable and disable roles, which are groups of privileges, for the current session
(SET ROLE).

The following statement dynamically changes the default date format for your session
to' YYYY MM DD- HH24: M : SS' :

ALTER SESSI ON
SET NLS_DATE_FORMAT = ' YYYY MM DD HH24: M : SS';

Session control statements do not implicitly commit the current transaction.

¢ See Also:

e "Connections and Sessions"

e Oracle Database SQL Language Reference for ALTER SESSI ON syntax
and semantics

ORACLE 9-10

Chapter 9
Overview of SQL Statements

System Control Statement

A system control statement changes the properties of the database instance.

The only system control statement is ALTER SYSTEM It enables you to change settings such
as the minimum number of shared servers, terminate a session, and perform other system-
level tasks.

Examples of the system control statement include:

ALTER SYSTEM SW TCH LOGFI LE;

ALTER SYSTEM KILL SESSION '39, 23';
The ALTER SYSTEMstatement does not implicitly commit the current transaction.

¢ See Also:

Oracle Database SQL Language Reference for ALTER SYSTEMsyntax and
semantics

Embedded SQL Statements

ORACLE

Embedded SQL statements incorporate DDL, DML, and transaction control statements within
a procedural language program.

Embedded statements are used with the Oracle precompilers. Embedded SQL is one
approach to incorporating SQL in your procedural language applications. Another approach is
to use a procedural API such as Open Database Connectivity (ODBC) or Java Database
Connectivity (JDBC).

Embedded SQL statements enable you to:

» Define, allocate, and release a cursor (DECLARE CURSOR, OPEN, CLCSE).

e Specify a database and connect to it (DECLARE DATABASE, CONNECT).

* Assign variable names (DECLARE STATEMENT).

* Initialize descriptors (DESCRI BE).

» Specify how error and warning conditions are handled (WHENEVER).

e Parse and run SQL statements (PREPARE, EXECUTE, EXECUTE | MVEDI ATE).
* Retrieve data from the database (FETCH).

See Also:

e "Introduction to Server-Side Programming"

e Oracle Database Development Guide

9-11

Chapter 9
Overview of the Optimizer

Overview of the Optimizer

To understand how Oracle Database processes SQL statements, it is necessary to
understand the part of the database called the optimizer (also known as the query
optimizer or cost-based optimizer). All SQL statements use the optimizer to determine
the most efficient means of accessing the specified data.

Use of the Optimizer

ORACLE

The optimizer generates execution plans describing possible methods of execution.

The optimizer determines which execution plan is most efficient by considering several
sources of information. For example, the optimizer considers query conditions,
available access paths, statistics gathered for the system, and hints.

To execute a DML statement, Oracle Database may have to perform many steps.
Each step either retrieves rows of data physically from the database or prepares them
for the user issuing the statement. The steps that the database uses to execute a
statement greatly affect how quickly the statement runs. Many different ways of
processing a DML statement are often possible. For example, the order in which
tables or indexes are accessed can vary.

When determining the best execution plan for a SQL statement, the optimizer
performs the following operations:

* Evaluation of expressions and conditions

* Inspection of integrity constraints to learn more about the data and optimize based
on this metadata

e Statement transformation
e Choice of optimizer goals
* Choice of access paths

» Choice of join orders

The optimizer generates most of the possible ways of processing a query and assigns
a cost to each step in the generated execution plan. The plan with the lowest cost is
chosen as the query plan to be executed.

Note:

You can obtain an execution plan for a SQL statement without executing the
plan. Only an execution plan that the database actually uses to execute a
query is correctly termed a query plan.

You can influence optimizer choices by setting the optimizer goal and by gathering
representative statistics for the optimizer. For example, you may set the optimizer goal
to either of the following:

e Total throughput

9-12

Chapter 9
Overview of the Optimizer

The ALL_ROAS hint instructs the optimizer to get the last row of the result to the client
application as fast as possible.

e Initial response time

The FI RST_ROAS hint instructs the optimizer to get the first row to the client as fast as
possible.

A typical end-user, interactive application would benefit from initial response time
optimization, whereas a batch-mode, non-interactive application would benefit from total
throughput optimization.

¢ See Also:
e Oracle Database PL/SQL Packages and Types Reference for information about
using DBMS_STATS

e Oracle Database SQL Tuning Guide for more information about the optimizer
and using hints

Optimizer Components

The optimizer contains three main components: the transformer, estimator, and plan
generator.

The following diagram depicts the components:

ORACLE 9-13

ORACLE

Figure 9-2 Optimizer Components

Chapter 9

Overview of the Optimizer

Table Table
T | |
Index Index Index

Index

Data Files

(physical structures associated

with only one tablespace)

Index

s

o

Index

Index

L]
m[m]w]m

Table

Segments
(stored in tablespaces-

may span several data files)

The input to the optimizer is a parsed query. The optimizer performs the following

operations:

=

N

o

The optimizer receives the parsed query and generates a set of potential plans for

the SQL statement based on available access paths and hints.

The optimizer estimates the cost of each plan based on statistics in the data
dictionary. The cost is an estimated value proportional to the expected resource
use needed to execute the statement with a particular plan.

The optimizer compares the costs of plans and chooses the lowest-cost plan,

known as the query plan, to pass to the row source generator.

¢ See Also:

"SQL Parsing"

"SQL Row Source Generation"

Chapter 9
Overview of the Optimizer

Query Transformer

The query transformer determines whether it is helpful to change the form of the query so
that the optimizer can generate a better execution plan. The input to the query transformer is
a parsed query, which the optimizer represents as a set of query blocks.

¢ See Also:

"Query Rewrite"

Estimator

The estimator determines the overall cost of a given execution plan.
The estimator generates three different types of measures to achieve this goal:

e Selectivity

This measure represents a fraction of rows from a row set. The selectivity is tied to a
guery predicate, such as | ast _nane=' Smi th', or a combination of predicates.

e Cardinality
This measure represents the number of rows in a row set.
* Cost

This measure represents units of work or resource used. The query optimizer uses disk
I/O, CPU usage, and memory usage as units of work.

If statistics are available, then the estimator uses them to compute the measures. The
statistics improve the degree of accuracy of the measures.

Plan Generator

The plan generator tries out different plans for a submitted query. The optimizer chooses the
plan with the lowest cost.

For each nested subquery and unmerged view, the optimizer generates a subplan. The
optimizer represents each subplan as a separate query block. The plan generator explores
various plans for a query block by trying out different access paths, join methods, and join
orders.

The adaptive query optimization capability changes plans based on statistics collected during
statement execution. All adaptive mechanisms can execute a final plan for a statement that
differs from the default plan. Adaptive optimization uses either dynamic plans, which choose
among subplans during statement execution, or reoptimization, which changes a plan on
executions after the current execution.

ORACLE 9-15

Chapter 9
Overview of the Optimizer

¢ See Also:

e Oracle Database 2 Day + Performance Tuning Guide for an introduction
to SQL tuning

e Oracle Database SQL Tuning Guide to learn about the optimizer
components and adaptive optimization

Access Paths

ORACLE

An access path is the technique that a query uses to retrieve rows.

For example, a query that uses an index has a different access path from a query that
does not. In general, index access paths are best for statements that retrieve a small
subset of table rows. Full scans are more efficient for accessing a large portion of a
table.

The database can use several different access paths to retrieve data from a table. The
following is a representative list:

e Full table scans

This type of scan reads all rows from a table and filters out those that do not meet
the selection criteria. The database sequentially scans all data blocks in the
segment, including those under the high water mark (HWM) that separates used
from unused space (see "Segment Space and the High Water Mark").

* Rowid scans

The rowid of a row specifies the data file and data block containing the row and

the location of the row in that block. The database first obtains the rowids of the
selected rows, either from the statement WHERE clause or through an index scan,
and then locates each selected row based on its rowid.

* Index scans

This scan searches an index for the indexed column values accessed by the SQL
statement (see "Index Scans"). If the statement accesses only columns of the
index, then Oracle Database reads the indexed column values directly from the
index.

e Cluster scans

A cluster scan retrieves data from a table stored in an indexed table cluster, where
all rows with the same cluster key value are stored in the same data block (see
"Overview of Indexed Clusters"). The database first obtains the rowid of a selected
row by scanning the cluster index. Oracle Database locates the rows based on this
rowid.

» Hash scans

A hash scan locates rows in a hash cluster, where all rows with the same hash
value are stored in the same data block (see "Overview of Hash Clusters"). The
database first obtains the hash value by applying a hash function to a cluster key
value specified by the statement. Oracle Database then scans the data blocks
containing rows with this hash value.

9-16

Chapter 9
Overview of the Optimizer

The optimizer chooses an access path based on the available access paths for the statement
and the estimated cost of using each access path or combination of paths.

See Also:

Oracle Database 2 Day + Performance Tuning Guide and Oracle Database SQL
Tuning Guide to learn about access paths

Optimizer Statistics

The optimizer statistics are a collection of data that describe details about the database and
the objects in the database. The statistics provide a statistically correct picture of data
storage and distribution usable by the optimizer when evaluating access paths.

Optimizer statistics include the following:

* Table statistics
These include the number of rows, number of blocks, and average row length.
e Column statistics

These include the number of distinct values and nulls in a column and the distribution of
data.

* Index statistics

These include the number of leaf blocks and index levels.
e System statistics

These include CPU and I/O performance and utilization.

Oracle Database gathers optimizer statistics on all database objects automatically and
maintains these statistics as an automated maintenance task. You can also gather statistics
manually using the DBM5_STATS package. This PL/SQL package can modify, view, export,
import, and delete statistics.

Note:

Optimizer statistics are created for the purposes of query optimization and are
stored in the data dictionary. Do not confuse these statistics with performance
statistics visible through dynamic performance views.

Optimizer Statistics Advisor is built-in diagnostic software that analyzes how you are currently
gathering statistics, the effectiveness of existing statistics gathering jobs, and the quality of
the gathered statistics. Optimizer Statistics Advisor maintains rules, which embody Oracle
best practices based on the current feature set. In this way, the advisor always provides the
most up-to-date recommendations for statistics gathering.

ORACLE 9-17

Chapter 9
Overview of the Optimizer

¢ See Also:

e Oracle Database 2 Day + Performance Tuning Guide and Oracle
Database SQL Tuning Guide to learn how to gather and manage
statistics

e Oracle Database PL/SQL Packages and Types Reference to learn about
DBMS_STATS

Optimizer Hints

ORACLE

A hint is a comment in a SQL statement that acts as an instruction to the optimizer.

Sometimes the application designer, who has more information about a particular
application's data than is available to the optimizer, can choose a more effective way
to run a SQL statement. The application designer can use hints in SQL statements to
specify how the statement should be run. The following examples illustrate the use of
hints.

Example 9-2 Execution Plan for SELECT with FIRST_ROWS Hint

Suppose that your interactive application runs a query that returns 50 rows. This
application initially fetches only the first 25 rows of the query to present to the end
user. You want the optimizer to generate a plan that gets the first 25 records as quickly
as possible so that the user is not forced to wait. You can use a hint to pass this
instruction to the optimizer as shown in the SELECT statement and AUTOTRACE output in
the following example:

SELECT /*+ FI RST_ROAS(25) */ enpl oyee_id, department_id
FROM hr.enpl oyees
WHERE departnent _id > 50;

| Id | Operation | Name | Rows | Bytes
| 0| SELECT STATEMENT | | 26 | 182
| 1| TABLE ACCESS BY | NDEX ROND | EMPLOYEES | 26 | 182
[* 2] | NDEX RANGE SCAN | EMP_DEPARTMENT | X | |

In this example, the execution plan shows that the optimizer chooses an index on the
enpl oyees. depart ment _i d column to find the first 25 rows of enpl oyees whose
department ID is over 50. The optimizer uses the rowid retrieved from the index to
retrieve the record from the enpl oyees table and return it to the client. Retrieval of the
first record is typically almost instantaneous.

Example 9-3 Execution Plan for SELECT with No Hint
Assume that you execute the same statement, but without the optimizer hint:
SELECT enpl oyee_id, department _id

FROM hr.enpl oyees
WHERE departnent _id > 50;

| I'd | Operation | Nanme | Rows | Bytes | Cos

9-18

Chapter 9
Overview of SQL Processing

| 0| SELECT STATENENT | | 50 | 350 |
[* 1] VIEW | index$_join$_ 001 | 50 | 350 |
[* 2| HASH JON | | | |
[* 3| | NDEX RANGE SCAN | EMP_DEPARTMENT IX | 50 | 350 |
| 4] | NDEX FAST FULL SCAN| EMP_EMP_I D PK | 50 | 350 |

In this case, the execution plan joins two indexes to return the requested records as fast as
possible. Rather than repeatedly going from index to table as in Example 9-2, the optimizer
chooses a range scan of EMP_DEPARTMENT _| X to find all rows where the department ID is over
50 and place these rows in a hash table. The optimizer then chooses to read the

EMP_EMP_I D _PK index. For each row in this index, it probes the hash table to find the
department ID.

In this case, the database cannot return the first row to the client until the index range scan of
EMP_DEPARTMENT | X completes. Thus, this generated plan would take longer to return the first
record. Unlike the plan in Example 9-2, which accesses the table by index rowid, the plan
uses multiblock I/O, resulting in large reads. The reads enable the last row of the entire result
set to be returned more rapidly.

¢ See Also:

Oracle Database SQL Tuning Guide to learn how to use optimizer hints

Overview of SQL Processing

This section explains how Oracle Database processes SQL statements. Specifically, the
section explains the way in which the database processes DDL statements to create objects,
DML to modify data, and queries to retrieve data.

Stages of SQL Processing

ORACLE

The general stages of SQL processing are parsing, optimization, row source generation, and
execution. Depending on the statement, the database may omit some of these steps.

The following figure depicts the general stages:

9-19

SQL Parsing

ORACLE

Figure 9-3 Stages of SQL Processing

Generation of

SQL Statement

-—— -

| Parsing

Syntax
Check

v

Semantic
Check

v

Shared Pool
Check

Soft Parse

Hard Parse

L

multiple
execution plans

Generation of

Optimization

v

query plan

Row Source
Generation

v

Execution

Chapter 9
Overview of SQL Processing

The first stage of SQL processing is SQL parsing. This stage involves separating the
pieces of a SQL statement into a data structure that can be processed by other

routines.

When an application issues a SQL statement, the application makes a parse call to the
database to prepare the statement for execution. The parse call opens or creates a

cursor, which is a handle for the session-specific private SQL area that holds a parsed
SQL statement and other processing information. The cursor and private SQL area are

in the PGA.

During the parse call, the database performs the following checks:

e Syntax check
e Semantic check

* Shared pool check

9-20

Chapter 9
Overview of SQL Processing

The preceding checks identify the errors that can be found before statement execution. Some
errors cannot be caught by parsing. For example, the database can encounter a deadlock or
errors in data conversion only during statement execution.

" See Also:

"Locks and Deadlocks"

SQL Optimization

Query optimization is the process of choosing the most efficient means of executing a SQL
statement.

The database optimizes queries based on statistics collected about the actual data being
accessed. The optimizer uses the number of rows, the size of the data set, and other factors
to generate possible execution plans, assigning a numeric cost to each plan. The database
uses the plan with the lowest cost.

The database must perform a hard parse at least once for every unique DML statement and
performs optimization during this parse. DDL is never optimized unless it includes a DML
component such as a subquery that requires optimization.

See Also:

e "Overview of the Optimizer"

e Oracle Database SQL Tuning Guide for detailed information about the query
optimizer

SQL Row Source Generation

The row source generator is software that receives the optimal execution plan from the
optimizer and produces an iterative plan, called the query plan, that is usable by the rest of
the database.

The query plan takes the form of a combination of steps. Each step returns a row set. The
rows in this set are either used by the next step or, in the last step, are returned to the
application issuing the SQL statement.

A row source is a row set returned by a step in the execution plan along with a control
structure that can iteratively process the rows. The row source can be a table, view, or result
of a join or grouping operation.

SQL Execution

ORACLE

During execution, the SQL engine executes each row source in the tree produced by the row
source generator. This is the only mandatory step in DML processing.

During execution, if the data is not in memory, then the database reads the data from disk
into memory. The database also takes out any locks and latches necessary to ensure data

9-21

Chapter 9
Overview of SQL Processing

integrity and logs any changes made during the SQL execution. The final stage of
processing a SQL statement is closing the cursor.

If the database is configured to use In-Memory Column Store (IM column store), then
the database transparently routes queries to the IM column store when possible, and
to disk and the database buffer cache otherwise. A single query can also use the IM
column store, disk, and the buffer cache. For example, a query might join two tables,
only one of which is cached in the IM column store.

¢ See Also:

e "In-Memory Area"

e Oracle Database SQL Tuning Guide for detailed information about
execution plans and the EXPLAI N PLAN statement

Differences Between DML and DDL Processing

ORACLE

Oracle Database processes DDL differently from DML.

For example, when you create a table, the database does not optimize the CREATE
TABLE statement. Instead, Oracle Database parses the DDL statement and carries out
the command.

In contrast to DDL, most DML statements have a query component. In a query,
execution of a cursor places the row generated by the query into the result set.

The database can fetch result set rows either one row at a time or in groups. In the
fetch, the database selects rows and, if requested by the query, sorts the rows. Each
successive fetch retrieves another row of the result until the last row has been fetched.

¢ See Also:

Oracle Database Development Guide to learn about processing DDL,
transaction control, and other types of statements

9-22

Server-Side Programming: PL/SQL and Java

SQL explains the Structured Query Language (SQL) language and how the database
processes SQL statements. This chapter explains how Procedural Language/SQL (PL/SQL)
or Java programs stored in the database can use SQL.

This chapter includes the following topics:

e Introduction to Server-Side Programming
e Overview of PL/SQL
* Overview of Java in Oracle Database

e Overview of Triggers

" See Also:

"SQL" for an overview of the SQL language

Introduction to Server-Side Programming

ORACLE

In a nonprocedural language such as SQL, the set of data to be operated on is specified, but
not the operations to be performed or the manner in which they are to be carried out.

In a procedural language program, most statement execution depends on previous or
subsequent statements and on control structures, such as loops or conditional branches, that
are not available in SQL. For an illustration of the difference between procedural and
nonprocedural languages, suppose that the following SQL statement queries the enpl oyees
table:

SELECT enpl oyee_id, departnent id, |ast _name, salary FROM enpl oyees;

The preceding statement requests data, but does not apply logic to the data. However,
suppose you want an application to determine whether each employee in the data set
deserves a raise based on salary and department performance. A necessary condition of a
raise is that the employee did not receive more than three raises in the last five years. If a
raise is called for, then the application must adjust the salary and email the manager;
otherwise, the application must update a report.

The problem is how procedural database applications requiring conditional logic and program
flow control can use SQL. The basic development approaches are as follows:

* Use client-side programming to embed SQL statements in applications written in
procedural languages such as C, C++, or Java

You can place SQL statements in source code and submit it to a precompiler or Java
translator before compilation. Alternatively, you can eliminate the precompilation step and

10-1

Chapter 10
Overview of PL/SQL

use an API such as Java Database Connectivity (JDBC) or Oracle Call Interface
(OCI) to enable the application to interact with the database.

» Use server-side programming to develop data logic that resides in the database

An application can explicitly invoke stored subprograms (procedures and
functions), written in PL/SQL (pronounced P L sequel) or Java. You can also
create a trigger, which is named program unit that is stored in the database and
invoked in response to a specified event.

This chapter explains the second approach. The principal benefit of server-side
programming is that functionality built into the database can be deployed anywhere.
The database and not the application determines the best way to perform tasks on a
given operating system. Also, subprograms increase scalability by centralizing
application processing on the server, enabling clients to reuse code. Because
subprogram calls are quick and efficient, a single call can start a compute-intensive
stored subprogram, reducing network traffic.

You can use the following languages to store data logic in Oracle Database:

- PL/SQL

PL/SQL is the Oracle Database procedural extension to SQL. PL/SQL is
integrated with the database, supporting all Oracle SQL statements, functions, and
data types. Applications written in database APIs can invoke PL/SQL stored
subprograms and send PL/SQL code blocks to the database for execution.

e Java

Oracle Database also provides support for developing, storing, and deploying Java
applications. Java stored subprograms run in the database and are independent of
programs that run in the middle tier. Java stored subprograms interface with SQL
using a similar execution model to PL/SQL.

¢ See Also:

e Oracle Database Development Guide to learn about embedding SQL
with precompilers and APIs

e Oracle Database 2 Day Developer's Guide for an introduction to Oracle
Database application development

e Oracle Database Development Guide to learn how to choose a
programming environment

Overview of PL/SQL

ORACLE

PL/SQL provides a server-side, stored procedural language that is easy-to-use,
seamless with SQL, robust, portable, and secure. You can access and manipulate
database data using procedural objects called PLISQL units.

PL/SQL units generally are categorized as follows:

* A PL/SQL subprogram is a PL/SQL block that is stored in the database and can
be called by name from an application. When you create a subprogram, the
database parses the subprogram and stores its parsed representation in the
database. You can declare a subprogram as a procedure or a function.

10-2

Chapter 10
Overview of PL/SQL

A PL/SQL anonymous block is a PL/SQL block that appears in your application and is not
named or stored in the database. In many applications, PL/SQL blocks can appear
wherever SQL statements can appear.

The PL/SQL compiler and interpreter are embedded in Oracle SQL Developer, giving
developers a consistent and leveraged development model on both client and server. Also,
PL/SQL stored procedures can be called from several database clients, such as Pro*C,
JDBC, ODBC, or OCI, and from Oracle Reports and Oracle Forms.

¢ See Also:

e Oracle Database 2 Day Developer's Guide

e Oracle Database PL/SQL Language Reference for complete information about
PL/SQL, including packages

PL/SQL Subprograms

A PL/SQL subprogram is a named PL/SQL block that permits the caller to supply parameters
that can be input only, output only, or input and output values.

A subprogram solves a specific problem or performs related tasks and serves as a building
block for modular, maintainable database applications. A subprogram is either a PL/SQL
procedure or a PL/SQL function. Procedures and functions are identical except that functions
always return a single value to the caller, whereas procedures do not. The term PL/SQL
procedure in this chapter refers to either a procedure or a function.

¢ See Also:

e Pro*C/C++ Programmer's Guide and Pro*COBOL Programmer's Guide to learn
about stored procedures in these languages

e Oracle Database PL/SQL Language Reference

Advantages of PL/SQL Subprograms

ORACLE

Server-side programming has many advantages over client-side programming.
Advantages include:

* Improved performance

— The amount of information that an application must send over a network is small
compared with issuing individual SQL statements or sending the text of an entire
PL/SQL block to Oracle Database, because the information is sent only once and
thereafter invoked when it is used.

— The compiled form of a procedure is readily available in the database, so no
compilation is required at execution time.

— If the procedure is present in the shared pool of the SGA, then the database need not
retrieve it from disk and can begin execution immediately.

10-3

Chapter 10
Overview of PL/SQL

* Memory allocation

Because stored procedures take advantage of the shared memory capabilities of
Oracle Database, it must load only a single copy of the procedure into memaory for
execution by multiple users. Sharing code among users results in a substantial
reduction in database memory requirements for applications.

* Improved productivity

Stored procedures increase development productivity. By designing applications
around a common set of procedures, you can avoid redundant coding. For
example, you can write procedures to manipulate rows in the enpl oyees table. Any
application can call these procedures without requiring SQL statements to be
rewritten. If the methods of data management change, then only the procedures
must be modified, not the applications that use the procedures.

Stored procedures are perhaps the best way to achieve code reuse. Because any
client application written in any language that connects to the database can invoke
stored procedures, they provide maximum code reuse in all environments.

e Integrity

Stored procedures improve the integrity and consistency of your applications. By
developing applications around a common group of procedures, you reduce the
likelihood of coding errors.

For example, you can test a subprogram to guarantee that it returns an accurate
result and, after it is verified, reuse it in any number of applications without
retesting. If the data structures referenced by the procedure are altered, then you
must only recompile the procedure. Applications that call the procedure do not
necessarily require modifications.

e Security with definer's rights procedures

Stored procedures can help enforce data security. A definer's rights PL/SQL
procedure executes with the privilege of its owner, not its current user. Thus, you
can restrict the database tasks that users perform by allowing them to access data
only through procedures and functions that run with the definer's privileges.

For example, you can grant users access to a procedure that updates a table but
not grant access to the table itself. When a user invokes the procedure, it runs with
the privileges of its owner. Users who have only the privilege to run the procedure
(but not privileges to query, update, or delete from the underlying tables) can
invoke the procedure but not manipulate table data in any other way.

e Inherited privileges and schema context with invoker's rights procedures

An invoker's rights PL/SQL procedure executes in the current user's schema with
the current user's privileges. In other words, an invoker's rights procedure is not
tied to a particular user or schema. Invoker's rights procedures make it easy for
application developers to centralize application logic, even when the underlying
data is divided among user schemas.

For example, an hr _manager user who runs an update procedure on the
hr. enpl oyees table can update salaries, whereas an hr _cl er k who runs the same
procedure is restricted to updating address data.

ORACLE 10-4

Chapter 10
Overview of PL/SQL

¢ See Also:

e Oracle Database PL/SQL Language Reference for an overview of PL/SQL
subprograms

e Oracle Database Security Guide to learn more about definer's and invoker's
rights

Creation of PL/SQL Subprograms

A standalone stored subprogram is a subprogram created at the schema level with the
CREATE PROCEDURE or CREATE FUNCTI ON statement. Subprograms defined in a package are
called package subprograms and are considered a part of the package.

The database stores subprograms in the data dictionary as schema objects. A subprogram
has a specification, which includes descriptions of any parameters, and a body.

Example 10-1 PL/SQL Procedure

hi re_enpl oyeesenpl oyees

CREATE PROCEDURE hi re_enpl oyees
(p_l ast _name VARCHAR2, p_job_id VARCHAR2, p_manager _id NUMBER,
p_hire_date DATE, p_salary NUMBER, p_conmi ssion_pct NUVBER,
p_department _id NUVBER)

I'S

BEG N

I NSERT | NTO enpl oyees (enpl oyee_id, |ast_name, job_id, manager _id,
hire_date,
sal ary, conmission_pct, department _id)
VALUES (enp_sequence. NEXTVAL, p_last_nane, p_job_id, p_manager _id,
p_hire_date, p_salary, p_conm ssion_pct, p_department _id);

END;

See Also:

e Oracle Database 2 Day Developer's Guide to learn how to create subprograms

e Oracle Database PL/SQL Language Reference to learn about the CREATE
PROCEDURE statement

Execution of PL/SQL Subprograms

Users can execute a subprogram interactively in multiple ways.

ORACLE 10-5

ORACLE

Chapter 10
Overview of PL/SQL

The options are:

» Using an Oracle tool, such as SQL*Plus or SQL Developer

e Calling it explicitly in the code of a database application, such as an Oracle Forms
or precompiler application

» Calling it explicitly in the code of another procedure or trigger

The following graphic shows different database applications calling hi re_enpl oyees.

Figure 10-1 Multiple Executions of a Stored Procedure

Database Applications Stored Procedure

Program code p—
p—gp hire_employeesy...)
—

Program code

N BEGIN
hire_employees(...); j

Program code oND -
He END;

Program code . 4

hire_employees(...

) ; —

Prograi Program code \ /

. \ .
Progralr-coae .

hire_employees(...);

. Database
Program code

Alternatively, a privileged user can use Oracle Enterprise Manager or SQL*Plus to run
the hi re_enpl oyees procedure using a statement such as the following:

EXECUTE hire_enpl oyees (' TSMTH, 'CLERK', 1037, SYSDATE, 500, NULL,
20) ;

The preceding statement inserts a new record for TSM TH in the enpl oyees table.

A stored procedure depends on the objects referenced in its body. The database
automatically tracks and manages these dependencies. For example, if you alter the
definition of the enpl oyees table referenced by the hi re_enpl oyees procedure in a
manner that would affect this procedure, then the procedure must be recompiled to
validate that it still works as designed. Usually, the database automatically administers
such dependency management.

10-6

Chapter 10
Overview of PL/SQL

¢ See Also:

e Oracle Database 2 Day Developer's Guide to learn more about SQL*Plus and
SQL Developer

e Oracle Database Development Guide to learn more about precompilers

e Oracle Database PL/SQL Language Reference to learn how to use PL/SQL
subprograms

e SQL*Plus User's Guide and Reference to learn about the EXECUTE command

PL/SQL Packages

A PLISQL package is a group of related subprograms, along with the cursors and variables
they use, stored together in the database for continued use as a unit. Packaged subprograms
can be called explicitly by applications or users.

ORACLE

Oracle Database includes many supplied packages that extend database functionality and
provide PL/SQL access to SQL features. For example, the UTL_HTTP package enables HTTP
callouts from PL/SQL and SQL to access data on the Internet or to call Oracle Web Server
Cartridges. You can use the supplied packages when creating applications or as a source of
ideas when creating your own stored procedures.

Advantages of PL/SQL Packages

PL/SQL packages provide a number of advantages to the application developer.

Advantages include:

Encapsulation

Packages enable you to encapsulate or group stored procedures, variables, data types,
and so on in a named, stored unit. Encapsulation provides better organization during
development and also more flexibility. You can create specifications and reference public
procedures without actually creating the package body. Encapsulation simplifies privilege
management. Granting the privilege for a package makes package constructs accessible
to the grantee.

Data security

The methods of package definition enable you to specify which variables, cursors, and
procedures are public and private. Public means that it is directly accessible to the user
of a package. Private means that it is hidden from the user of a package.

For example, a package can contain 10 procedures. You can define the package so that
only three procedures are public and therefore available for execution by a user of the
package. The remaining procedures are private and can only be accessed by the
procedures within the package. Do not confuse public and private package variables with
grants to PUBLI C.

Better performance

An entire package is loaded into memory in small chunks when a procedure in the
package is called for the first time. This load is completed in one operation, as opposed
to the separate loads required for standalone procedures. When calls to related
packaged procedures occur, no disk 1/0 is needed to run the compiled code in memory.

10-7

Chapter 10
Overview of PL/SQL

A package body can be replaced and recompiled without affecting the
specification. Consequently, schema objects that reference a package's constructs
(always through the specification) need not be recompiled unless the package
specification is also replaced. By using packages, unnecessary recompilations can
be minimized, resulting in less impact on overall database performance.

Creation of PL/SQL Packages

You create a package in two parts: the specification and the body. The package
specification declares all public constructs of the package, whereas the package body
defines all constructs (public and private) of the package.

The following example shows part of a statement that creates the package
specification for enpl oyees_managenent , which encapsulates several subprograms
used to manage an employee database. Each part of the package is created with a
different statement.

CREATE PACKACE enpl oyees_managenent AS
FUNCTI ON hi re_enpl oyees (last_name VARCHAR2, job_id VARCHARZ,
manager _i d NUVBER
sal ary NUMBER, conmi ssion_pct NUMBER, department _id NUMBER) RETURN
NUVBER;
PROCEDURE fire_enpl oyees(enpl oyee_id NUVBER);
PROCEDURE sal ary_rai se(enpl oyee_id NUMBER, salary_incr NUMBER);

no_sal EXCEPTI ON;
END enpl oyees_managenent ;

The specification declares the function hi re_enpl oyees, the procedures
fire_enpl oyees and sal ary_rai se, and the exception no_sal . All of these public
program objects are available to users who have access to the package.

The CREATE PACKAGE BODY statement defines objects declared in the specification. The
package body must be created in the same schema as the package. After creating the
package, you can develop applications that call any of these public procedures or
functions or raise any of the public exceptions of the package.

¢ See Also:

Oracle Database PL/SQL Language Reference to learn about the CREATE
PACKACE statement

Execution of PL/SQL Package Subprograms

ORACLE

Database triggers, stored subprograms, 3GL application programs, and Oracle tools
can reference package contents.

The following graphic shows database applications invoking procedures and functions
in the enpl oyees_managenent package.

10-8

Figure 10-2

Database Applications

Program code

employees_management . fire_employees (

Program code

Program code

employees_management .hire_employees (

Program code

Program code

employees_management .hire_employees (.

Program code

Program code

employees_management.salary_raise(...); _I_

Program code

Chapter 10
Overview of PL/SQL

Calling Subprograms in a PLISQL Package

h
employees_management |

e I——Pfire_employees(...)

BEGIN

END;

>hire_employees(...) -
>
BEGIN Database
ﬁND;

——p salary_raise(...)

BEGIN

END;

Database applications explicitly call packaged procedures as necessary. After being granted
the privileges for the enpl oyees_managenent package, a user can explicitly run any of the

procedures contained in it. For example, SQL*Plus can issue the following statement to run
the hi re_enpl oyees package procedure:

EXECUTE enpl oyees_nmnagerent. hire_enpl oyees (' TSMTH , ' CLERK',
SYSDATE, 500, NULL, 20);

1037,

¢ See Also:

Oracle Database PL/SQL Language Reference for an introduction to PL/SQL
packages

Oracle Database Development Guide to learn how to code PL/SQL packages

PL/SQL Anonymous Blocks

Typ

ORACLE

A PL/SQL anonymous block is an unnamed, nonpersistent PL/SQL unit.

ical uses for anonymous blocks include:

Initiating calls to subprograms and package constructs
Isolating exception handling

10-9

Chapter 10
Overview of PL/SQL

* Managing control by nesting code within other PL/SQL blocks

Anonymous blocks do not have the code reuse advantages of stored subprograms.
Table 10-1 summarizes the differences between the two types of PL/SQL units.

Table 10-1 Differences Between Anonymous Blocks and Subprograms
|

Is the PL/SQL Unit ... Anonymous Blocks Subprograms
Specified with a name? No Yes

Compiled with every reuse? No No

Stored in the database? No Yes

Invocable by other applications? No Yes

Capable of returning bind variable Yes Yes

values?

Capable of returning function No Yes

values?

Capable of accepting parameters? No Yes

An anonymous block consists of an optional declarative part, an executable part, and
one or more optional exception handlers. The following sample anonymous block
selects an employee last name into a variable and prints the name:

DECLARE

v_| name VARCHAR?2(25);
BEG N

SELECT | ast_nane

I NTO v_I name

FROM enpl oyees

VWHERE enpl oyee_id = 101,

DBMS_QUTPUT. PUT_LI NE(" Enpl oyee | ast nane is '||v_|l nane);
END;

Oracle Database compiles the PL/SQL block and places it in the shared pool of the
SGA, but it does not store the source code or compiled version in the database for
reuse beyond the current instance. Unlike triggers, an anonymous block is compiled
each time it is loaded into memory. Shared SQL allows anonymous PL/SQL blocks in
the shared pool to be reused and shared until they are flushed out of the shared pool.

See Also:

Oracle Database Development Guide to learn more about anonymous
PL/SQL blocks

PL/SQL Language Constructs

PL/SQL blocks can include a variety of different PL/SQL language constructs.
These constructs including the following:

e Variables and constants

ORACLE 10-10

Chapter 10
Overview of PL/SQL

You can declare these constructs within a procedure, function, or package. You can use a
variable or constant in a SQL or PL/SQL statement to capture or provide a value when
one is needed.

e Cursors

You can declare a cursor explicitly within a procedure, function, or package to facilitate
record-oriented processing of Oracle Database data. The PL/SQL engine can also
declare cursors implicitly.

* Exceptions

PL/SQL lets you explicitly handle internal and user-defined error conditions, called
exceptions, that arise during processing of PL/SQL code.

PL/SQL can run dynamic SQL statements whose complete text is not known until run time.
Dynamic SQL statements are stored in character strings that are entered into, or built by, the
program at run time. This technique enables you to create general purpose procedures. For
example, you can create a procedure that operates on a table whose name is not known until
run time.

¢ See Also:
e Oracle Database PL/SQL Packages and Types Reference for details about
dynamic SQL

e Oracle Database PL/SQL Packages and Types Reference to learn how to use
dynamic SQL in the DBM5_SQL package

PL/SQL Collections and Records

Collections

Records

ORACLE

Many programming techniques use collection types such as arrays, bags, lists, nested tables,
sets, and trees.

To support collection techniques in database applications, PL/SQL provides the data types
TABLE and VARRAY. These types enable you to declare associative arrays, nested tables, and
variable-size arrays.

A PLISQL collection is an ordered group of elements, all of the same type.

Each element has a unique subscript that determines its position in the collection. To create a
collection, you first define a collection type, and then declare a variable of that type.

Collections work like the arrays found in most third-generation programming languages. Also,
collections can be passed as parameters. So, you can use them to move columns of data
into and out of database tables or between client-side applications and stored subprograms.

A PLISQL record is a composite variable that can store data values of different types, similar
to a struct type in C, C++, or Java. Records are useful for holding data from table rows, or
certain columns from table rows.

10-11

Chapter 10
Overview of PL/SQL

Suppose you have data about an employee such as name, salary, and hire date.
These items are dissimilar in type but logically related. A record containing a field for
each item lets you treat the data as a logical unit.

You can use the ¥ROMYPE attribute to declare a record that represents a table row or
row fetched from a cursor. With user-defined records, you can declare your own fields.

" See Also:

Oracle Database PL/SQL Language Reference to learn how to use PL/SQL
records

How PL/SQL Runs

ORACLE

PL/SQL supports both interpreted execution and native execution.

In interpreted execution, PL/SQL source code is compiled into a so-called bytecode
representation. A portable virtual computer implemented as part of Oracle Database
runs this bytecode.

Native execution offers the best performance on computationally intensive units. In this
case, the source code of PL/SQL units is compiled directly to object code for the given
platform. This object code is linked into Oracle Database.

The PL/SQL engine defines, compiles, and runs PL/SQL units. This engine is a special
component of many Oracle products, including Oracle Database. While many Oracle
products have PL/SQL components, this topic specifically covers the PL/SQL units
that can be stored in Oracle Database and processed using Oracle Database PL/SQL
engine. The documentation for each Oracle tool describes its PL/SQL capabilities.

The following graphic illustrates the PL/SQL engine contained in Oracle Database.

10-12

Chapter 10
Overview of Java in Oracle Database

Figure 10-3 The PL/ISQL Engine and Oracle Database

Instance
H 1
System Global Area | PL/SQL Engine |
Database Application (SGA) |
1
Procedural |
Program code Statement |
i Procedure Executor !
f’rogram code -> BEGIN i :
. Procedural SQL .
hire_employees(...); Procedural SQL -S(-)L- -
. Procedural SQL
Program code END;
SQL
Statement
s] Executor

Database

The PL/SQL unit is stored in a database. When an application calls a stored procedure, the
database loads the compiled PL/SQL unit into the shared pool in the system global area
(SGA). The PL/SQL and SQL statement executors work together to process the statements
in the procedure.

You can call a stored procedure from another PL/SQL block, which can be either an
anonymous block or another stored procedure. For example, you can call a stored procedure
from Oracle Forms.

A PL/SQL procedure executing on Oracle Database can call an external procedure or
function written in the C programming language and stored in a shared library. The C routine
runs in a separate address space from that of Oracle Database.

¢ See Also:

e "Shared Pool " to learn more about the purpose and contents of the shared pool

e Oracle Database PL/SQL Language Reference to learn about PL/SQL
architecture

e Oracle Database Development Guide to learn more about external procedures

Overview of Java in Oracle Database

ORACLE

Java has emerged as the object-oriented programming language of choice.

Java includes the following features:

10-13

ORACLE

Chapter 10
Overview of Java in Oracle Database

e A Java Virtual Machine (JVM), which provides the basis for platform independence
» Automated storage management techniques, such as garbage collection

* Language syntax that borrows from C and enforces strong typing

Note:

This chapter assumes that you have some familiarity with the Java language.

The database provides Java programs with a dynamic data-processing engine that
supports complex queries and multiple views of data. Client requests are assembled
as data queries for immediate processing. Query results are generated dynamically.

The combination of Java and Oracle Database helps you create component-based,
network-centric applications that can be easily updated as business needs change. In
addition, you can move applications and data stores off the desktop and onto
intelligent networks and network-centric servers. More importantly, you can access
these applications and data stores from any client device.

The following figure shows a traditional two-tier, client/server configuration in which
clients call Java stored procedures in the same way that they call PL/SQL
subprograms.

Figure 10-4 Two-Tier Client/Server Configuration

Oracle Net \ /
Client
Relational Data
|
[]
Oracle Net
Client
Java Stored
Procedures
Oracle Net
Client
PL/SQL Stored
Procedures
See Also:

Oracle Database 2 Day + Java Developer's Guide for an introduction to
using Java with Oracle Database

10-14

Chapter 10
Overview of Java in Oracle Database

Overview of the Java Virtual Machine (JVM)

A JVM is a virtual processor that runs compiled Java code.

Java source code compiles to low-level machine instructions, known as bytecodes, that are
platform independent. The Java bytecodes are interpreted through the JVM into platform-
dependent actions.

Overview of Oracle JVM

ORACLE

The Oracle JVM is a standard, Java-compatible environment that runs any pure Java
application. It is compatible with the JLS and the JVM specifications.

The Oracle JVM supports the standard Java binary format and APIs. In addition, Oracle
Database adheres to standard Java language semantics, including dynamic class loading at
run time.

The following figure illustrates how Oracle Java applications reside on top of the Java core
class libraries, which reside on top of the Oracle JVM. Because the Oracle Java support
system is located within the database, the JVM interacts with database libraries, instead of
directly interacting with the operating system.

Figure 10-5 Java Component Structure

Data / Persistence Logic

JDBC

Java Core Class Libraries

Oracle Database JVM

Oracle Database Libraries

Operating System

Unlike other Java environments, Oracle JVM is embedded within Oracle Database. Some
important differences exist between Oracle JVM and typical client JVMs. For example, in a
standard Java environment, you run a Java application through the interpreter by issuing the

10-15

Chapter 10
Overview of Java in Oracle Database

following command on the command line, where cl assnane is the name of the class
that the JVM interprets first:

java cl assname

The preceding command causes the application to run within a process on your
operating system. However, if you are not using the command-line interface, then you
must load the application into the database, publish the interface, and then run the
application within a database data dictionary.

See Also:

See Oracle Database Java Developer’s Guide for a description of other
differences between the Oracle JVM and typical client JVMs

Main Components of Oracle JVM

ORACLE

Oracle JVM runs in the same process space and address space as the database
kernel by sharing its memory heaps and directly accessing its relational data. This
design optimizes memory use and increases throughput.

Oracle JVM provides a run-time environment for Java objects. It fully supports Java
data structures, method dispatch, exception handling, and language-level threads. It
also supports all the core Java class libraries, including j ava. | ang, j ava. i 0, j ava. net,
java.math, andjava.util.

The following illustration shows the main components of Oracle JVM.

10-16

Chapter 10
Overview of Java in Oracle Database

Figure 10-6 Main Components of Oracle JVM

Editor

Host With embedded SQL
Program statements

Oracle
Precompiler

Source With all SQL statements
Program replaced by library calls

Compiler

Object
Program

Oracle
T | I Runtime
. o resolve calls Library
Linker | < (SQLLIB)

Executable
Program

Oracle JVM embeds the standard Java namespace in the database schemas. This feature
lets Java programs access Java objects stored in Oracle Database and application servers
across the enterprise.

In addition, Oracle JVM is tightly integrated with the scalable, shared memory architecture of
the database. Java programs use call, session, and object lifetimes efficiently without user
intervention. Consequently, Oracle JVM and middle-tier Java business objects can be scaled,
even when they have session-long state.

¢ See Also:

Oracle Database Java Developer’s Guide for a description of the main components
of Oracle JVM

Java Programming Environment

ORACLE

Oracle furnishes enterprise application developers with an end-to-end Java solution for
creating, deploying, and managing Java applications.

10-17

Chapter 10
Overview of Java in Oracle Database

The solution consists of client-side and server-side programmatic interfaces, tools to
support Java development, and a Java Virtual Machine integrated with Oracle
Database. All these products are compatible with Java standards.

The Java programming environment consists of the following additional features:

e Java stored procedures as the Java equivalent and companion for PL/SQL. Java
stored procedures are tightly integrated with PL/SQL. You can call Java stored
procedures from PL/SQL packages and procedures from Java stored procedures.

e The JDBC and SQLJ programming interfaces for accessing SQL data.

e Tools and scripts that assist in developing, loading, and managing classes.

Java Stored Procedures

A Java stored procedure is a Java method published to SQL and stored in the
database.

Like a PL/SQL subprogram, a Java procedure can be invoked directly with products
like SQL*Plus or indirectly with a trigger. You can access it from any Oracle Net client
—OCl, precompiler, or JDBC.

To publish Java methods, you write call specifications, which map Java method
names, parameter types, and return types to their SQL counterparts. When called by
client applications, a Java stored procedure can accept arguments, reference Java
classes, and return Java result values.

Applications calling the Java method by referencing the name of the call specification.
The run-time system looks up the call specification definition in the Oracle data
dictionary and runs the corresponding Java method.

In addition, you can use Java to develop powerful programs independently of PL/SQL.
Oracle Database provides a fully compliant implementation of the Java programming
language and JVM.

" See Also:

Oracle Database Java Developer’s Guide explains how to write stored
procedures in Java, how to access them from PL/SQL, and how to access
PL/SQL functionality from Java

Java and PL/SQL Integration

JDBC Drivers

ORACLE

You can call existing PL/SQL programs from Java and Java programs from PL/SQL.
This solution protects and leverages your PL/SQL and Java code.

Oracle Database offers two different approaches for accessing SQL data from Java:
JDBC and SQLJ. JDBC is available on both client and server, whereas SQLJ is
available only on the client.

JDBC is a database access protocol that enables you to connect to a database and
run SQL statements and queries to the database.

10-18

SQLJ

ORACLE

Chapter 10
Overview of Java in Oracle Database

The core Java class libraries provide only one JDBC API, j ava. sql . However, JDBC is
designed to enable vendors to supply drivers that offer the necessary specialization for a
particular database. Oracle provides the distinct JDBC drivers shown in the following table.

Table 10-2 JDBC Drivers

|
Driver Description

JDBC Thin driver You can use the JDBC Thin driver to write pure Java applications and
applets that access Oracle SQL data. The JDBC Thin driver is especially
well-suited for Web-based applications and applets, because you can
dynamically download it from a Web page, similar to any other Java applet.

JDBC OCI driver The JDBC OCI driver accesses Oracle-specific native code, that is, non-Java
code, and libraries on the client or middle tier, providing a performance boost
compared to the JIDBC Thin driver, at the cost of significantly larger size and
client-side installation.

JDBC server-side Oracle Database uses the server-side internal driver when the Java code

internal driver runs on the server. It allows Java applications running in Oracle JVM on the
server to access locally defined data, that is, data on the same system and
in the same process, with JDBC. It provides a performance boost, because
of its ability to use the underlying Oracle RDBMS libraries directly, without
the overhead of an intervening network connection between the Java code
and SQL data. By supporting the same Java-SQL interface on the server,
Oracle Database does not require you to rework code when deploying it.

¢ See Also:

e Oracle Database Development Guide for an overview of JDBC

e Oracle Database 2 Day + Java Developer's Guide and Oracle Database JDBC
Developer’s Guide

SQLJ is an ANSI standard for embedding SQL statements in Java programs. You can use
client-side SQLJ programs. In addition, you can combine SQLJ programs with JDBC.

Note:

Starting with Oracle Database 12c release 2 (12.2), Oracle Database does not
support running server-side SQLJ code, including running stored procedures,
functions, and triggers in the database environment.

SQLJ provides a simple, but powerful, way to develop client-side and middle-tier applications
that access databases from Java. A developer writes a program using SQLJ and then uses
the SQLJ translator to translate embedded SQL to pure JDBC-based Java code. At run time,
the program can communicate with multi-vendor databases using standard JDBC drivers.

10-19

Chapter 10

Overview of Triggers

The following example shows a simple SQLJ executable statement:
String nane;
#sql { SELECT first_nanme INTO :name FROM enpl oyees WHERE
empl oyee id=112 };
Systemout.printIn("Name is " + nane + ", enployee nunber =" +
enmpl oyee_id);

¢ See Also:

Oracle Database SQLJ Developer’s Guide

Overview of Triggers

A database trigger is a compiled stored program unit, written in either PL/SQL or
Java, that Oracle Database invokes (“fires") automatically in certain situations.

A trigger fires whenever one of the following operations occurs:

1. DML statements on a particular table or view, issued by any user

DML statements modify data in schema objects. For example, inserting and
deleting rows are DML operations.

2. DDL statements issued either by a particular user or any user

DDL statements define schema objects. For example, creating a table and adding
a column are DDL operations.

3. Database events

User login or logoff, errors, and database startup or shutdown are events that can
invoke triggers.

Triggers are schema objects that are similar to subprograms but differ in the way they
are invoked. A subprogram is explicitly run by a user, application, or trigger. Triggers
are implicitly invoked by the database when a triggering event occurs.

¢ See Also:

e "Overview of SQL Statements" to learn about DML and DDL

e "Overview of Database Instance Startup and Shutdown"

Advantages of Triggers

ORACLE

The correct use of triggers enables you to build and deploy applications that are more
robust and that use the database more effectively.

You can use triggers to:

* Automatically generate derived column values

10-20

Chapter 10
Overview of Triggers

* Prevent invalid transactions
* Provide auditing and event logging
 Record information about table access

You can use triggers to enforce low-level business rules common for all client applications.
For example, several applications may access the enpl oyees table. If a trigger on this table
ensures the format of inserted data, then this business logic does not need to be reproduced
in every client. Because the trigger cannot be circumvented by the application, the business
logic in the trigger is used automatically.

You can use both triggers and integrity constraints to define and enforce any type of integrity
rule. However, Oracle strongly recommends that you only use triggers to enforce complex
business rules not definable using an integrity constraint.

Excessive use of triggers can result in complex interdependencies that can be difficult to
maintain in a large application. For example, when a trigger is invoked, a SQL statement
within its trigger action potentially can fire other triggers, resulting in cascading triggers that
can produce unintended effects.

¢ See Also:

e "Introduction to Data Integrity"
e Oracle Database 2 Day Developer's Guide

e Oracle Database PL/SQL Language Reference for guidelines and restrictions
when planning triggers for your application

Types of Triggers

ORACLE

Triggers can be categorized according to their means of invocation and the type of actions
they perform.

Oracle Database supports the following types of triggers:

* Row triggers

A row trigger fires each time the table is affected by the triggering statement. For
example, if a statement updates multiple rows, then a row trigger fires once for each row
affected by the UPDATE. If a triggering statement affects no rows, then a row trigger is not
run. Row triggers are useful if the code in the trigg