Oracle® Database
Database Upgrade Guide

19c
E96252-60
March 2024

ORACLE"



Oracle Database Database Upgrade Guide, 19¢
E96252-60

Copyright © 1996, 2024, Oracle and/or its affiliates.
Primary Author: Douglas Williams

Contributors: Drew Adams, Pablo Sainz Albanez, Frederick Alvarez, Yasin Baskan, Subhransu Basu, Rae
Burns, Rhonda Day, Mike Dietrich, Joseph Errede, Daniel Overby Hansen, Yuan Hao, Subrahmanyam
Kodavaluru, Jai Krisnani, Cindy Lim, Valarie Moore, Byron Motta, Satish Panchumarthy, Geetha Ravi, Carol
Tagliaferri, Hector Vieyra

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software," "commercial computer software documentation," or "limited rights
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation
of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications of such
programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and
limitations specified in the license contained in the applicable contract. The terms governing the U.S.
Government's use of Oracle cloud services are defined by the applicable contract for such services. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names
may be trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=accé&id=docacc.


http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc

Contents

Preface
Audience XXXiii
Documentation Accessibility XXXiii
Diversity and Inclusion XXXIV
Set Up Java Access Bridge to Implement Java Accessibility XXXV
Related Documentation XXXIV
Conventions XXXV

1 Introduction to Upgrading Oracle Database

Overview of Oracle Database Upgrade Tools and Processes 1-1
Definition of Terms Upgrading and Migrating 1-1
Upgrade and Data Migration Methods and Processes 1-2
Oracle Database Releases That Support Direct Upgrade 1-3
Where to Find the Latest Information About Upgrading Oracle Database 1-5
Major Steps in the Upgrade Process for Oracle Database 1-6
Compatibility and Interoperability Between Oracle Database Releases 1-10
About Oracle Database Release Numbers 1-11
Convention for Referring to Release Numbers in Oracle Database Upgrade Guide 1-13
What Is Oracle Database Compatibility? 1-13
Understanding Oracle Database Compatibility 1-13
When to Set the COMPATIBLE Initialization Parameter in Oracle Database 1-14
The COMPATIBLE Initialization Parameter in Oracle Database 1-14
Values for the COMPATIBLE Initialization Parameter in Oracle Database 1-16
About Downgrading and Compatibility for Upgrading Oracle Database 1-16
How the COMPATIBLE Initialization Parameter Operates in Oracle Database 1-16
Checking the Compatibility Level of Oracle Database 1-17
What Is Interoperability for Oracle Database Upgrades? 1-17
About Invalid Schema Objects and Database Upgrades 1-18
About Upgrading Oracle OLAP Data Security Policies 1-19
About Running Multiple Oracle Releases 1-19
Interoperability of Oracle Database Client Releases with Oracle Database 1-20
About the Optimal Flexible Architecture Standard 1-20

ORACLE



About Multiple Oracle Homes Support 1-21
About Converting Databases During Upgrades 1-22
Overview of Steps for Upgrading Oracle Database Using Oracle GoldenGate 1-22
Overview of Converting Databases During Upgrades 1-23
About Upgrading Using Standby Databases 1-25
Migrating From Standard Edition to Enterprise Edition of Oracle Database 1-25
Migrating from Enterprise Edition to Standard Edition of Oracle Database 1-27
Migrating from Oracle Database Express Edition (Oracle Database XE) to Oracle
Database 1-27
About Upgrading Platforms for a New Oracle Database Release 1-27
About Upgrading Your Operating System 1-28
Options for Transporting Data to a Different Operating System 1-28
About Image-Based Oracle Database Installation 1-29
2 Preparing to Upgrade Oracle Database
Tasks to Prepare for Oracle Database Upgrades 2-2
Become Familiar with New Oracle Database Features 2-2
Pre-Upgrade Information Check with AutoUpgrade 2-3
Review Deprecated and Desupported Features 2-3
Choose an Upgrade Method for Oracle Database 2-4
The AutoUpgrade Utility Method for Upgrading Oracle Database 2-4
The Graphical User Interface Method for Upgrading Oracle Database 2-5
The Manual, Command-Line Method for Upgrading Oracle Database 2-5
The Export/Import Method for Migrating Data When Upgrading Oracle Database 2-6
The Graphical User Interface Method for Upgrading Oracle Database 2-7
Choose a New Location for Oracle Home when Upgrading 2-7
Develop a Test Plan for Upgrading Oracle Database 2-8
Upgrade Testing 2-9
Minimal Testing 2-9
Functional Testing After Upgrades 2-9
High Availability Testing 2-9
Integration Testing to Ensure Applications are Compatible 2-10
Performance Testing an Upgraded Oracle Database 2-10
Volume and Load Stress Testing for Oracle Database Upgrades 2-16
Test Plan Guidelines for Oracle Database Upgrade Planning 2-16
Schema-Only Accounts and Upgrading EXPIRED Password Accounts 2-17
Back Up Files to Preserve Downgrade and Recovery Options 2-17
Prepare a Backup Strategy Before Upgrading Oracle Database 2-18
Oracle Data Guard Broker Configuration File and Downgrades 2-18
Exporting a Broker Configuration 2-19
Pre-Upgrade Information Check with AutoUpgrade 2-19

ORACLE



Installing the New Oracle Database Software for Single Instance 2-20

Installing the New Oracle Database Software for Oracle RAC 2-20
Database Preparation Tasks to Complete Before Starting Oracle Database Upgrades 2-21
Release Updates and Requirements for Upgrading Oracle Database 2-22
Upgrades and Transparent Data Encryption 2-23
Recommendations for Oracle Net Services When Upgrading Oracle Database 2-25
Create or Migrate Your Password File with ORAPWD 2-26
Understanding Password Case Sensitivity and Upgrades 2-26
Checking for Accounts Using Case-Insensitive Password Version 2-27
Resource and Password Parameter Updates for STIG and CIS Profiles 2-31
Check for Profile Scripts (glogin.sqgl and login.sql) 2-31
Running Upgrades with Read-Only Tablespaces 2-32
High Availability Options for Oracle Database 2-33
Audit Table Preupgrade and Archive Requirements 2-34
Options for High Availability with Oracle Database Standard Edition 2-35
Preparing to Upgrade Standard Edition Oracle RAC or Oracle RAC One Node 2-35
Requirements for Using Standard Edition High Availability With Oracle Databases 2-35
Moving Operating System Audit Records into the Unified Audit Trall 2-36
Non-CDB Upgrades and Oracle GoldenGate 2-36
Back Up Very Large Databases Before Using AutoUpgrade 2-37
Preparing for Database Rolling Upgrades Using Oracle Data Guard 2-39
Preparing the New Oracle Home for Upgrading 2-40
Prerequisites for Preparing Oracle Home on Windows 2-42
Performing Preupgrade Checks Using AutoUpgrade 2-43
About AutoUpgrade Utility System Checks 2-43
Example of Running AutoUpgrade Prechecks Using Analyze Mode 2-44
Checking the Upgrade Checks Overview File 2-46
Creating a Configuration File to Run AutoUpgrade Prechecks On a CDB 2-47
Running AutoUpgrade Fixups on the Earlier Release Oracle Database 2-48
Testing the Upgrade Process for Oracle Database 2-48
Example of Testing Upgrades Using Priority List Emulation 2-49
Upgrade Oracle Call Interface (OCI) and Precompiler Applications 2-51
Requirements for Upgrading Databases That Use Oracle Label Security and Oracle
Database Vault 2-51
Audit Table Preupgrade and Archive Requirements 2-52
Preparing for Upgrades of Databases with Oracle Database Vault 2-52
Oracle Database Vault and Upgrades of Oracle Database Release 11.2 2-53
Back Up Oracle Database Before Upgrading 2-54

3 Using AutoUpgrade for Oracle Database Upgrades

About Oracle Database AutoUpgrade 3-2

ORACLE Y



Examples of How to Use AutoUpgrade 3-3

AutoUpgrade with Source and Target Database Homes on Same Server (Typical) 3-4
AutoUpgrade with Source and Target Database Homes on Different Servers 3-4
AutoUpgrade Messages and Process Description Terms 3-5
Overview of AutoUpgrade Job IDs 3-5
Overview of AutoUpgrade Stages 3-5
Overview of AutoUpgrade Stage Operations and States 3-6
About AutoUpgrade Processing Modes 3-7
Preparations for Running AutoUpgrade Processing Modes 3-7
About the AutoUpgrade Analyze Processing Mode 3-8
About the AutoUpgrade Fixups Processing Mode 3-9
About the AutoUpgrade Deploy Processing Mode 3-10
About the AutoUpgrade Upgrade Processing Mode 3-11
Understanding AutoUpgrade Workflows and Stages 3-13
Understanding Non-CDB to PDB Upgrades with AutoUpgrade 3-15
Understanding Unplug-Plug Upgrades with AutoUpgrade 3-17
AutoUpgrade Command-Line Parameters and Options 3-19
AutoUpgrade Command-Line Syntax 3-21
debug 3-23
clear_recovery data 3-24
config 3-25
config_values 3-26
console 3-29
create_sample_file 3-32
error_code 3-33
listchecks 3-34
load_password 3-36
load_win_credential 3-40
mode 3-41
noconsole 3-42
preupgrade 3-43
settings 3-46
version 3-46
restore 3-47
restore_on_fail 3-47

zip 3-48
AutoUpgrade Utility Configuration Files 3-49
Locally Modifiable Global Parameters for AutoUpgrade Configuration File 3-49
defer_standby_log_shipping 3-51
dictionary_stats_after 3-51
dictionary_stats_before 3-52

ORACLE vi



Local Parameters for the AutoUpgrade Configuration File

ORACLE

drop_grp_after_upgrade
enable_local_undo
fixed_stats_before
manage_network_files
patch_in_upgrade_mode
remove_underscore_parameters
restoration

target_base

target_home

target_version

add_after_upgrade_pfile
add_during_upgrade_pfile
after_action

before_action
catctl_options

checklist

close_source
del_after_upgrade_pfile
del_during_upgrade_pfile
drop_win_src_service

env

exclusion_list
ignore_errors
keep_source_pdb

log_dir
manage_standbys_clause
parallel_pdb_creation_clause
patch_in_upgrade_mode
pdbs

raise_compatible
remove_rac_config
remove_underscore_parameters
replay

restoration
revert_after_action
revert_before_action
run_dictionary_health
run_utlrp

sid

skip_tde_key import

3-52
3-53
3-53
3-54
3-54
3-55
3-55
3-55
3-56
3-56
3-57
3-61
3-61
3-61
3-62
3-63
3-64
3-64
3-65
3-65
3-65
3-66
3-66
3-67
3-67
3-68
3-68
3-70
3-70
3-71
3-71
3-72
3-73
3-73
3-73
3-74
3-75
3-75
3-76
3-77
3-77

Vii



source_bhase
source_dblink
source_home
source_ldap_admin_dir
source_tns_admin_dir
start_time

target_base

target_cdb
target_pdb_copy_option=file_name_convert
target_pdb_name
target_Idap_admin_dir
target_tns_admin_dir
timezone_upg
tune_setting
upgrade_node
wincredential

Global Parameters for the AutoUpgrade User Configuration File

add_after_upgrade_pfile
add_during_upgrade_pfile
after_action
autoupg_log_dir
before_action
catctl_options
del_after_upgrade_pfile
del_during_upgrade_pfile
drop_grp_after_upgrade
json_progress_writing_interval
keystore

raise_compatible

replay

target_base

target_home
target_version
upgradexml

AutoUpgrade and Oracle Database Configuration Options

Non-CDB to PDB Upgrade Guidelines and Examples

AutoUpgrade Process Flow for Oracle Grid Infrastructure Managed Configurations

Oracle RAC Requirements for Upgrade with AutoUpgrade

Preparing for Oracle RAC Upgrades Using AutoUpgrade

AutoUpgrade Patching

ORACLE

How AutoUpgrade Performs AutoUpgrade Patching

viii

3-77
3-78
3-79
3-80
3-80
3-80
3-81
3-81
3-81
3-83
3-84
3-84
3-84
3-85
3-87
3-88
3-89
3-90
3-90
3-91
3-91
3-92
3-93
3-94
3-94
3-94
3-95
3-95
3-96
3-97
3-97
3-97
3-98
3-98
3-99
3-99
3-100
3-102
3-102
3-103
3-103



AutoUpgrade Patching Configuration Files and Log Files 3-107

AutoUpgrade and Oracle Data Guard 3-111
How AutoUpgrade Performs Oracle Data Guard Upgrades 3-111

Steps AutoUpgrade Completes for Oracle Data Guard Upgrades 3-111

Steps After the Primary Database is Upgraded 3-112

How to Run AutoUpgrade Using the Fast Deploy Option 3-113
How to Perform an Unplug-Plug Upgrade of an Encrypted PDB 3-114
How to Perform a Non-CDB to PDB Conversion of an Encrypted PDB 3-118
AutoUpgrade Configuration File Examples 3-121
Create Configuration File for AutoUpgrade 3-122
Updating the TDE Wallet Store Location During Upgrade Using AutoUpgrade 3-123
AutoUpgrade Configuration File with Two Database Entries 3-124
Standardizing Upgrades With AutoUpgrade Configuration File Entries 3-125
AutoUpgrade Configuration File for Incremental Upgrade of a Set of PDBs 3-127
AutoUpgrade Configuration File For Upgrading PDBs Already in the Target CDB 3-128
How to Run AutoUpgrade in a Script or Batch job 3-129
Unplug-Plug Relocate Upgrades With AutoUpgrade 3-129
Ignore Fixups and Checks Using the AutoUpgrade Configuration File 3-134
Run Custom Scripts Using AutoUpgrade 3-134
AutoUpgrade Internal Settings Configuration File 3-136
AutoUpgrade Log File Structure 3-137
Enabling Full Deployments for AutoUpgrade 3-140
Examples of How to Use the AutoUpgrade Console 3-142
Known Restrictions for AutoUpgrade 3-143
AutoUpgrade and Disk Space Issues 3-143
Oracle Enterprise Manager (EM) Cloud Control Registration 3-144
Proper Management of AutoUpgrade Database Changes 3-144
How to Override Default Fixups 3-145
Local Configuration File Parameter Fixups Checklist Example 3-149
AutoUpgrade and Microsoft Windows ACLs and CLIs 3-150

4 Upgrading Oracle Database Manually Using Parallel Upgrade Utility

Upgrading Manually with Parallel Upgrade Utility 4-1
About the Parallel Upgrade Utility for Oracle Database (CATCTL.PL and
DBUPGRADE) 4-2
General Steps for Running the Parallel Upgrade Utility 4-3
Parallel Upgrade Utility (catctl.pl) Parameters 4-5
Example of Using the Parallel Upgrade Utility 4-7

Manual Upgrade Scenarios for Multitenant Architecture Oracle Databases 4-9
About Oracle Multitenant Oracle Database Upgrades 4-10
Coordinate Upgrades of Proxy PDBs with Multitenant Upgrades 4-11

ORACLE iX



Manually Upgrading a Multitenant Container Oracle Database (CDB) 4-11
About Upgrading PDBs Using the Parallel Upgrade Utility with Priority Lists 4-17
About PDB Upgrades Using Priority Lists, Inclusion Lists, and Exclusion Lists 4-18
Upgrading Multitenant Architecture In Parallel 4-24
About Upgrading Pluggable Databases (PDBSs) In Parallel 4-24
Upgrading Multitenant Container Databases In Parallel 4-27
Upgrading Multitenant Architecture Sequentially Using Unplug-Plug 4-31
About Upgrading Pluggable Databases (PDBs) Sequentially 4-31
Unplugging the Earlier Release PDB from the Earlier Release CDB 4-32
Plugging in the Earlier Release PDB to the Later Release CDB 4-33
Upgrading the Earlier Release PDB to the Later Release 4-34

Use Inclusion or Exclusion Lists for PDB Upgrades 4-35
Example of Manual Upgrade of Windows Non-CDB Oracle Database 4-35
Preparing to Upgrade Windows Non-CDB Using Command-Line Utilities 4-36
Manually Upgrading Windows Non-CDB Using Command-Line Utilities 4-42
About Dbupgrade Scripts and catupgrd.sql in Earlier Releases of Oracle Database 4-49
About Transporting and Upgrading a Database (Full Transportable Export/Import) 4-49
Upgrade Scenarios for Non-CDB Oracle Databases 4-50
Download the Latest AutoUpgrade Utility 4-51
About Adopting a Non-CDB as a PDB Using a PDB Plugin 4-51
Adopting a Non-CDB as a PDB 4-52
Oracle Label Security Integration in a Multitenant Environment 4-55
Manually Upgrading Non-CDB Architecture Oracle Databases 4-55
Upgrading Oracle Database Using Fleet Patching and Provisioning 4-60
Rerunning Upgrades for Oracle Database 4-61
About Rerunning Upgrades for Oracle Database 4-62
Rerunning Upgrades with the Upgrade (catctl.pl) Script 4-62
Options for Rerunning the Upgrade for Multitenant Databases (CDBs) 4-65
Rerun the Entire Upgrade for the CDB 4-65

Rerun the Upgrade Only on Specified PDBs 4-66

Rerun the Upgrade While Other PDBs Are Online 4-68

Rerun the Upgrade Using an Inclusion List to Specify a CDB or PDBs 4-70
Restarting the Upgrade from a Specific Phase that Failed Using -p 4-71
Reviewing CDB Log Files for Failed Phases 4-71
Procedure for Finding and Restarting Multitenant Upgrades from a Failed Phase 4-72

5 Troubleshooting the Upgrade for Oracle Database

About Starting Oracle Database in Upgrade Mode 5-2
Running DBUA with Different ORACLE_HOME Owner 5-3
Invalid Object Warnings and DBA Registry Errors 5-3

ORACLE



Invalid Objects and Premature Use of Postupgrade Tool 5-4

Resolving Oracle Database Upgrade Script Termination Errors 5-4
Troubleshooting Causes of Resource Limits Errors while Upgrading Oracle Database 5-4
Resolving SQL*Plus Edition Session Startup Error for Oracle Database 5-6
Error ORA-00020 Maximum Number of Processes Exceeded When Running utlrp.sql 5-6
Fixing ORA-28365: Wallet Is Not Open Error 5-7
Resolving issues with view CDB_JAVA_ POLICY 5-7
Continuing Upgrades After Server Restarts (ADVM/ACFS Driver Error) 5-7
Component Status and Upgrades 5-8

Understanding Component Status With the Post-Upgrade Status Tool 5-9

Component OPTION OFF Status and Upgrades 5-10

Example of an Upgrade Summary Report 5-10
Standard Edition Starter Database and Components with Status OPTION OFF 5-12
Adjusting Oracle ASM Password File Location After Upgrade 5-12
Fixing "Warning XDB Now Invalid" Errors with Pluggable Database Upgrades 5-12
Fixing ORA-27248: sys.dra_reevaluate_open_failures is running 5-13
Fixing Failed Upgrades Where Only Datapatch Fails 5-13

6 Post-Upgrade Tasks for Oracle Database

Release Updates and Requirements for Upgrading Oracle Database 6-1
Check the Upgrade With Post-Upgrade Status Tool 6-2
How to Show the Current State of the Oracle Data Dictionary 6-2
Required Tasks to Complete After Upgrading Oracle Database 6-4
Setting Environment Variables on Linux and Unix Systems After Manual Upgrades 6-5
Recompile Invalid Objects in the Database 6-6
Track Invalid Object Recompilation Progress 6-7
Update Listener Files Location on Oracle RAC Cluster Member Upgrades 6-8
Running OPatch Commands After Upgrading Oracle Database 6-9
Setting oratab and Scripts to Point to the New Oracle Location After Upgrading Oracle
Database 6-10
Check PL/SQL Packages and Dependent Procedures 6-10
Upgrading Tables Dependent on Oracle-Maintained Types 6-11
Enabling the New Extended Data Type Capability 6-12
Adjusting Minimum and Maximum for Parallel Execution Servers 6-12
About Recovery Catalog Upgrade After Upgrading Oracle Database 6-13
Upgrading the Time Zone File Version After Upgrading Oracle Database 6-13
Upgrading Statistics Tables Created by the DBMS_STATS Package After Upgrading
Oracle Database 6-14
Configuring the FTP and HTTP Ports and HTTP Authentication for Oracle XML DB 6-14
Install Oracle Text Supplied Knowledge Bases After Upgrading Oracle Database 6-15
Drop Earlier Release Oracle APEX 6-15

ORACLE Xi



Replace the DEMO Directory in Read-Only Oracle Homes 6-16

Configure Access Control Lists (ACLs) to External Network Services 6-17
Enabling Oracle Database Vault After Upgrading Oracle Database 6-18
Upgrading Oracle Database Without Disabling Oracle Database Vault 6-18
Common Upgrade Scenarios with Oracle Database Vault 6-19

Check for the SQLNET.ALLOWED_LOGON_VERSION Parameter Behavior 6-19
Recommended and Best Practices to Complete After Upgrading Oracle Database 6-20
Back Up the Database 6-21
Running Postupgrade Fixup Scripts 6-22
Gathering Dictionary Statistics After Upgrading 6-24
Regathering Fixed Objects Statistics with DBMS_STATS 6-25
Reset Passwords to Enforce Case-Sensitivity 6-25
Finding and Resetting User Passwords That Use the 10G Password Version 6-26
Understand Oracle Grid Infrastructure, Oracle ASM, and Oracle Clusterware 6-28
Oracle Grid Infrastructure Installation and Upgrade and Oracle ASM 6-29
Add New Features as Appropriate 6-29
Develop New Administrative Procedures as Needed 6-30
Set Threshold Values for Tablespace Alerts 6-30
Migrating From Rollback Segments To Automatic Undo Mode 6-30
Migrating Tables from the LONG Data Type to the LOB Data Type 6-31
Turn off Traditional Auditing in Upgraded Oracle Databases 6-31
Understanding Auditing for Oracle Database 6-32
Turning Off Traditional Auditing and Using Unified Auditing for Oracle Database 6-33

About Managing Earlier Audit Records After You Move to Unified Auditing 6-35

Moving From Pure Unified Auditing to Mixed-Mode Auditing 6-36
Obtaining Documentation References if You Choose Not to Use Unified Auditing 6-37

Identify Oracle Text Indexes for Rebuilds 6-37
Dropping and Recreating DBMS_SCHEDULER Jobs 6-38
Transfer Unified Audit Records After the Upgrade 6-38
About Transferring Unified Audit Records After an Upgrade 6-38
Transferring Unified Audit Records After an Upgrade 6-39

About Testing the Upgraded Production Oracle Database 6-40
Recommended Tasks After Upgrading an Oracle RAC Database 6-40
Recommended Tasks After Upgrading Oracle ASM 6-41
Create a Shared Password File In the ASM Diskgroup 6-41
Reset Oracle ASM Passwords to Enforce Case-Sensitivity 6-42
Advancing the Oracle ASM and Oracle Database Disk Group Compatibility 6-42
Set Up Oracle ASM Preferred Read Failure Groups 6-43
Recommended Tasks After Upgrading Oracle Database Express Edition 6-43
Tasks to Complete Only After Manually Upgrading Oracle Database 6-43
Changing Passwords for Oracle Supplied Accounts 6-44

ORACLE Xii



Migrating Your Initialization Parameter File to a Server Parameter File 6-44
Identifying and Copying Oracle Text Files to a New Oracle Home 6-45
Upgrading the Oracle Clusterware Configuration 6-46
Adjust the Initialization Parameter File for the New Release 6-46
Setting the COMPATIBLE Initialization Parameter After Upgrade 6-46
Adjust TNSNAMES.ORA and LISTENER Parameters After Upgrade 6-47
Set CLUSTER_DATABASE Initialization Parameter For Oracle RAC After Upgrade 6-48
7 Upgrading Applications After Upgrading Oracle Database
Schema-Only Accounts and Upgrading EXPIRED Password Accounts 7-2
Overview of Upgrading Applications on a New Oracle Database Release 7-2
Compatibility Issues for Applications on Different Releases of Oracle Database 7-3
Software Upgrades and Client and Server Configurations for Oracle Database 7-3
Possible Client and Server Configurations for Oracle Database 7-3
Types of Software Upgrades for Oracle Database Client and Server Software 7-4
Compatibility Rules for Applications When Upgrading Oracle Database Client or Server
Software 7-4
Rules for Upgrading Oracle Database Server Software 7-5
If You Do Not Change the Client Environment, Then You Are Not Required to
Relink 7-5
Applications Can Run Against Newer or Older Oracle Database Server Releases 7-6
Upgrading the Oracle Database Client Software 7-6
About Image-Based Oracle Database Client Installation 7-6
About Linking Applications with Newer Libraries 7-7
Statically Linked Applications Must Always Be Relinked 7-7
About Relinking Dynamically Linked Applications 7-7
About Upgrading Precompiler and OCI Applications in Oracle Database 7-8
About Upgrading Options for Oracle Precompiler and OCI Applications 7-8
Option 1: Leave the Application Unchanged 7-9
Option 2: Precompile or Compile the Application Using the New Software 7-9
Option 3: Change the Application Code to Use New Oracle Database Features 7-9
Changing Oracle Precompiler and OCI Application Development Environments 7-10
Changing Precompiler Applications 7-10
Changing OCI Applications 7-10
Upgrading SQL*Plus Scripts and PL/SQL after Upgrading Oracle Database 7-11
About Upgrading Oracle Forms or Oracle Developer Applications 7-11
8 Downgrading Oracle Database to an Earlier Release
Supported Releases for Downgrading Oracle Database 8-2
Prepare to Downgrade a Standby Database with the Primary 8-3

ORACLE

Xiii



Check COMPATIBLE Parameter when Downgrading Oracle Database 8-4

Perform a Full Backup Before Downgrading Oracle Database 8-4
Performing Required Predowngrade Steps for Oracle Database 8-5
Using Scripts to Downgrade a CDB or Non-CDB Oracle Database 8-6
Using Dbdowngrade to Downgrade CDB and Non-CDB Oracle Databases 8-7
Downgrading a CDB or Non-CDB Oracle Database Manually with catdwgrd.sql 8-10
Downgrading a Single Pluggable Oracle Database (PDB) 8-17
Downgrading PDBs That Contain Oracle Application Express 8-19
Post-Downgrade Tasks for Oracle Database Downgrades 8-19
Reapply Release Update and Other Patches After Downgrade 8-20
Reenabling Oracle RAC After Downgrading Oracle Database 8-20
Reenabling Oracle Database Vault after Downgrading Oracle Database 8-21
Restoring the Configuration for Oracle Clusterware 8-21
Restoring Oracle Enterprise Manager after Downgrading Oracle Database 8-21
Requirements for Restoring Oracle Enterprise Manager After Downgrading 8-21
Running EMCA to Restore Oracle Enterprise Manager After Downgrading 8-22
Running the emdwgrd utility to restore Enterprise Manager Database Control 8-24
Restoring Oracle APEX to the Earlier Release 8-25
Gathering Dictionary Statistics After Downgrading 8-26
Regathering Fixed Object Statistics After Downgrading 8-27
Regathering Stale CBO Statistics After Downgrade 8-27
Checking Validity of Registry Components After Downgrade 8-28
Troubleshooting the Downgrade of Oracle Database 8-29
Errors Downgrading Oracle Database Components with catdwgrd.sql Script 8-29
Downgrading Oracle Grid Infrastructure (Oracle Restart) After Successful or Failed
Upgrade 8-32
Errors Downgrading Databases with Oracle Messaging Gateway 8-32

9 Migrating Data Using Oracle Data Pump

Overview of Data Pump and Export/Import For Migrating Data 9-1
Migrating Data With Oracle Data Pump Before Upgrades 9-2
Importing a Full Oracle Database Using a Network Link 9-4
Oracle Data Pump Requirements When Downgrading Oracle Database 9-5

10 Oracle Database Changes, Desupports, and Deprecations

About Deprecated and Desupported Status 10-2
Desupported and Deprecated Release Notice Dates 10-2
Using the ORAD:Iff Tool to Find Release Changes 10-2
Oracle Database 23c Behavior Changes, Desupports, and Deprecations 10-3

Behavior Changes for Oracle Database 23c Upgrade Planning 10-3

ORACLE Xiv



Oracle Database Release Number Changes 10-4

Oracle Spatial and Obsolete Objects 10-5
REST APIs for AutoUpgrade 10-6
XML JSON Search Index Enhancements 10-6
SQL/JSON Function JSON_VALUE With a Boolean JSON Value 10-6
Migrate from Non-AES Algorithms in FIPS Before Upgrade 10-7
About Read-Only Oracle Homes 10-7
SYSDATE and SYSTIMESTAMP Reflect PDB Time Zone 10-8
Oracle Spatial GeoRaster JPEG Compression on 4-band Raster Blocks 10-8
Document-ldentifier Field Names for Duality Views Requirements 10-8
BIGFILE Is the Default for SYSAUX, SYSTEM, and USER Tablespaces 10-9
Terminal Release of Stored Outlines 10-9
Desupported Features in Oracle Database 23c 10-9
ODP.NET OracleConfiguration.DirectoryType Property and .NET Configuration File
DIRECTORY_TYPE Setting Desupported 10-11
Original Export Utility (EXP) Desupported 10-12
MySQL Client Library Driver for Oracle Desupported 10-12
ACFSUTIL REPL REVERSE Desupported 10-12
Cluster Domain - Domain Services Cluster Desupported 10-12
DBSNMP Packages for Adaptive Thresholds Feature Desupported 10-12
Policy-Managed Database Deployment Desupported 10-13
Enterprise User Security User Migration Utility Desupport 10-13
Oracle Enterprise Manager Database Express Desupported 10-13
Oracle Wallet Manager (OWM) Desupported 10-13
RASADM Desupported 10-14
Oracle Label Security Parameters and Functions Desupported 10-14
Oracle Internet Directory with Oracle Label Security Desupported 10-14
Granting Administrative Privilege to RADIUS Users Desupported 10-15
Transparent Data Encryption PKI Keys Desupported 10-15
GOST and SEED TDE Cryptographic Encryption Algorithms Desupported 10-15
Oracle Database 10G Password Verifier Desupported 10-15
Transport Layer Security versions 1.0 and 1.1 Desupported 10-16
Unix Crypt (MD5crypt) Password Verifier Desupported 10-16
FIPS Strength 80 Encryption Desupported 10-17
Diffie-Hellman Anonymous Ciphers Desupported 10-17
Oracle Database Extensions for .NET Desupported 10-17
Quality of Service Management Desupported 10-18
Traditional Auditing Desupported 10-18
Desupport of config.sh 10-18
OLS Table LABELS Column Desupport 10-19
Desupport of 32-Bit Oracle Database Clients 10-19

ORACLE

XV



Desupport of Oracle GoldenGate Replication for Oracle Sharding High Availability
Grid Infrastructure Management Repository (GIMR) Desupported

Data Recovery Advisor (DRA) Desupport

DBUA and Manual Upgrade Methods Desupported

Oracle OLAP Desupported

Desupport of Oracle Data Masking and Subsetting with Oracle Real Application
Testing

Desupport of Shared Grid Naming Service Option for Addresses
DBMS_AUDIT_MGMT.FLUSH_UNIFIED_AUDIT_TRAIL Procedure Desupported

AUDIT_TRAIL_WRITE Mode of the AUDIT_TRAIL_PROPERTY Parameter
Desupported

Cluster Time Synchronization Service Desupported

Desupported Parameters in Oracle Database 23c

EXTERNAL_NAME Parameter in SYS_CONTEXT USERENYV Desupported
Service Attribute Value SESSION_STATE_CONSISTENCY = STATIC Desupported
Oracle Label Security Parameters and Functions Desupported
ENCRYPTION_WALLET_LOCATION Parameter Desupported

ADD_SSLV3 TO_DEFAULT SQLNET.ORA Parameter (and SSLv3) Desupported

Deprecated Features in Oracle Database 23c

ORACLE

PROXY_ONLY_CONNECT Deprecation

Oracle Database 11g SHA-1 Verifier Deprecated

RADIUS API Based on RFC-2138 is Deprecated

Enterprise User Security (EUS) Deprecated

Auto-Login Wallet Version 6 Deprecated

WALLET_LOCATION Parameter Deprecated

RAS Mid-Tier Session Support for Fusion Middleware Deprecated
Oracle Data Provider for .NET, Unmanaged Driver Deprecation
GOST and SEED Algorithms Deprecation

Oracle Persistent Memory Deprecation

PMEM Support in Oracle Memory Speed File System Deprecation

Service Name with Partial DN Matching and Server-only Certificate Check
Deprecation

Deprecation of the mkstore Command-Line Utility
Network Data Model (NDM) XML API Deprecation
Two Subprograms in SDO_GEOR_ADMIN Package Deprecation

SDO_GEOR.importFrom and SDO_GEOR.exportTo subprograms in SDO_GEOR
Package Deprecations

WAIT Option of Oracle Data Guard SWITCHOVER Command
DBMS_RESULT_CACHE Function Name Deprecations

Oracle ACFS Snapshot Remastering Deprecation

Oracle ACFS Compression Deprecation

Oracle Virtual Directory with Real Application Security Deprecation

XVi

10-19
10-19
10-19
10-20
10-20

10-20
10-21
10-21

10-21
10-21
10-21
10-22
10-22
10-23
10-23
10-24
10-24
10-26
10-27
10-27
10-27
10-27
10-27
10-28
10-28
10-28
10-29
10-29

10-29
10-29
10-30
10-30

10-30
10-30
10-31
10-31
10-31
10-32



BIG_10 Attribute in Oracle Text Deprecation 10-32

ASYNCHRONOUS Attribute in Oracle Text Deprecation 10-32
Oracle Text CTXCAT Indextype Deprecation 10-32
Oracle XML DB Repository Deprecation 10-33
DBMS_XMLGEN Deprecation 10-33
DBMS_XMLSTORE Deprecation 10-33
Deprecation of Unstructured XML Indexes 10-33
DBMS_HANG_MANAGER Package Deprecation 10-33
Zero Downtime Upgrade (ZDU) Deprecation 10-34
Highly Available Grid Naming Service (GNS) Deprecation 10-34
Traditional Auditing Packages and Functions Deprecated 10-34
MDSYS-Owned RDF Graph Networks Deprecated 10-34
TREAT (expr AS JSON) Deprecated 10-35
Deprecation of Out-of-Place Patching with Opatch and OPatchAuto 10-35
RCONFIG Command-Line Interface Deprecation 10-35
UPDATE_SDATA API Deprecation 10-35
Deprecated Views in Oracle Database 23c 10-35
V$DATABASE.FS_ FAILOVER Columns in VSDATABASE View Deprecated 10-36
V$PQ_SLAVE View Deprecation 10-36
V$FS_FAILOVER_STATS View Deprecation 10-37
DBA_HANG_MANAGER_PARAMETERS Data Dictionary View Deprecation 10-37
VSRECOVERY_SLAVE View Deprecation 10-37
Deprecated Parameters in Oracle Database 23c 10-37
ENCRYPT_NEW_TABLESPACES Deprecation 10-38
ALLOW_MD5_ CERTS and ALLOW_SHA1 CERTS sqlnet.ora Parameter
Deprecation 10-38
MY_WALLET_DIRECTORY Connect String Deprecated 10-38
FIPS Parameters Deprecated 10-39
ONE_STEP_PLUGIN_FOR_PDB_WITH_TDE Initialization Parameter Deprecated 10-39
Traditional Audit Initialization Parameters Deprecated 10-39
PRE_PAGE_SGA Initialization Parameter Deprecated 10-39
Oracle Database 21c Behavior Changes, Desupports, and Deprecations 10-40
Behavior Changes for Oracle Database 21¢ Upgrade Planning 10-40
About Read-Only Oracle Homes in Oracle Database 21c 10-41
Multitenant Upgrades Only in Oracle Database 21c 10-42
Logical Standby and New Data Types 10-42
Relocation of HR Sample Schema 10-42
Manage DRCP on PDBs 10-42
Oracle Advanced Cluster File System (Oracle ACFS) Name Change 10-43
Windows Authentication No Longer Uses NTLM by Default 10-43
Desupported Features in Oracle Database 21c 10-44

ORACLE XVii



Desupport of DBMS_OBFUSCATION_TOOLKIT Package

Desupport of Several XML Database (XDB) features

Desupport of DBMS_LOB.LOADFROMFILE and LOB Buffering
Desupport of Oracle Data Guard Broker Properties and Logical Standby
Desupport of DBMS_CRYPTO_TOOLKIT_TYPES and DBMS_CRYPTO_TOOLKIT
Desupport of Non-CDB Oracle Databases

Desupport of Cluster Domain Member Clusters

Desupport of Unicode Collation Algorithm (UCA) 6.1 Collations
Desupport of ACFS on Microsoft Windows

Desupport of Oracle ACFS Security (Vault) and ACFS Auditing
Desupport of Oracle ACFS on Member Clusters (ACFS Remote)
Desupport of ACFS Encryption on Solaris and Windows

Desupport of ACFS Replication REPV1

Desupport of Vendor Clusterware Integration with Oracle Clusterware
Desupport of VERIFY_FUNCTION and VERIFY_FUNCTION_11G
Desupport of Deprecated Oracle Database Vault Roles

Desupport of Anonymous RC4 Cipher Suite

Desupport of Adobe Flash-Based Oracle Enterprise Manager Express
Desupport of Intelligent Data Placement (IDP)

Desupport of XML DB Content Connector

Desupport of DBMS_XMLSAVE

Desupport of DBMS_XMLQUERY

Desupport of FIPS Protect and Process Strength 0

Desupport of PDB Flat File Dictionary Dumps

Desupport of Oracle Fail Safe

Desupported Views in Oracle Database 21c

Desupport of VSOBJECT _USAGE View

Desupported Initialization Parameters in Oracle Database 21c

Desupport of UNIFIED_AUDIT_SGA_QUEUE_SIZE
Desupport of IGNORECASE Parameter for Passwords
Desupport of DISABLE_DIRECTORY_LINK_CHECK
Desupport of REMOTE_OS_AUTHENT Parameter

Desupport of SEC_CASE_SENSITIVE_LOGON

Desupport of CLUSTER_DATABASE_INSTANCES Parameter

Deprecated Features in Oracle Database 21c

ORACLE

Deprecation of AUTO OPTIMIZE Framework

Deprecation of CTXFILTERCACHE Query Operator
Deprecation of Policy-Managed Databases

Deprecation of Traditional Auditing

Deprecation of Older Encryption Algorithms

Deprecation of Cluster Domain - Domain Services Cluster

XViii

10-45
10-46
10-46
10-46
10-47
10-47
10-48
10-48
10-48
10-48
10-49
10-49
10-49
10-50
10-50
10-50
10-50
10-51
10-51
10-51
10-51
10-51
10-51
10-52
10-52
10-52
10-52
10-53
10-53
10-53
10-54
10-54
10-54
10-54
10-54
10-56
10-57
10-57
10-57
10-58
10-58



Deprecation of Enterprise User Security (EUS) User Migration Utility
Logical Standby and New Data Types

Deprecation of Sharded Queues

Deprecation of MySQL Client Library Driver for Oracle

Deprecation of TLS 1.0 and 1.1 Transport Layer Security

Deprecation of Unix Crypt (or MD5crypt) Password Verifier
Deprecation of ODP.NET OracleConfiguration.DirectoryType Property
Deprecation of Weaker Encryption Key Strengths

Deprecation of DBSNMP Packages for Adaptive Thresholds Feature

Deprecation of Oracle GoldenGate Replication for Oracle Sharding High
Availability

Deprecation of Anonymous Cipher Suites with Outbound TLS Connections
Deprecation of the KERBEROS5PRE Adapter

Deprecation of Oracle Wallet Manager

Deprecation of Oracle Enterprise Manager Database Express

Deprecation of Service Attribute Value SESSION_STATE_CONSISTENCY =
STATIC

Deprecation of SHA-1 use for SQLNET and DBMS_CRYPTO
Deprecation of ACFSUTIL REPL REVERSE

Deprecation of Oracle OLAP

Deprecation of Oracle Database Extensions for .NET
Deprecation of Repository Events

Deprecation of Quality of Service Management

Grid Infrastructure Management Repository Deprecation

Deprecated Views in Oracle Database 21c

Deprecation of Traditional Auditing Views

Deprecated Parameters in Oracle Database 21c

Deprecation of Traditional Auditing Initialization Parameters

Oracle Database 19c Behavior Changes, Desupports, and Deprecations

Behavior Changes for Oracle Database 19c¢ Upgrade Planning

All Time Zone Files (DST) Included in Release Updates (RUs)
Changes to Oracle Data Guard Properties Management

Rapid Home Provisioning (RHP) Name Change

Resupport of Direct File Placement for OCR and Voting Disks
Optional Install for the Grid Infrastructure Management Repository
Support for DBMS_JOB

About Standard Edition High Availability

Manage "Installed but Disabled" Module Bug Fixes with DBMS_OPTIM_BUNDLE

Windows Authentication No Longer Uses NTLM by Default

Desupported Features in Oracle Database 19c

ORACLE

Desupport of Oracle Data Provider for .NET Promotable Transaction Setting
Desupport of Oracle Multimedia

10-58
10-59
10-59
10-59
10-59
10-60
10-60
10-60
10-61

10-61
10-61
10-61
10-62
10-62

10-62
10-62
10-63
10-63
10-63
10-64
10-64
10-64
10-65
10-65
10-66
10-66
10-66
10-67
10-68
10-68
10-69
10-69
10-70
10-70
10-71
10-71
10-72
10-72
10-73
10-73

XiX



Desupport of the CONTINUOUS_MINE feature of LogMiner
Desupport of Extended Datatype Support (EDS)

Data Guard Broker MaxConnections Property Desupported
Desupport of Leaf Nodes in Flex Cluster Architecture
Desupport of Oracle Streams

Desupport of PRODUCT_USER_PROFILE Table

Desupport of Oracle Real Application Clusters for Standard Edition 2 (SE2)
Database Edition

Desupported Parameters in Oracle Database 19¢

EXAFUSION_ENABLED Initialization Parameter Desupported
MAX_CONNECTIONS attribute of LOG_ARCHIVE_DEST_n Desupported
Desupport of O7_DICTIONARY_ACCESS

Desupport of OPTIMIZE_PROGRESS_TABLE Parameter

Deprecated Features in Oracle Database 19c

Deprecation of URL_DATASTORE Text Type

Deprecation of FILE_DATASTORE Type

Oracle Data Guard Broker Deprecated Properties

Oracle Data Guard Logical Standby Properties Deprecated
Deprecation of ASMCMD PWCREATE On Command Line

Deprecation of Addnode Script

Deprecation of clone.pl Script

Deprecation of Oracle Fail Safe

Deprecation of GDSCTL Operating System Command-Line Password Resets
Deprecation of Oracle Enterprise Manager Express

Deprecation of DV_REALM_OWNER Role

Deprecation of DV_REALM_RESOURCE Role

Deprecation of DV_PUBLIC Role

Deprecation of Oracle ACFS Replication Protocol REPV1

Deprecation of Oracle OLAP

Deprecation of Oracle ACFS Encryption on Solaris and Windows
Deprecation of Oracle ACFS on Windows

Deprecation of Oracle ACFS Security (Vault) and ACFS Auditing
Deprecation of Oracle ACFS on Member Clusters (ACFS Remote)
Deprecation of Cluster Domain - Member Clusters

Deprecation of Vendor Clusterware Integration with Oracle Clusterware
Deprecation of Black Box Virtual Machine Management Using Oracle Clusterware
Deprecation of OPatch and OPatchAuto for Out-of-Place Patching
Data Recovery Advisor (DRA) Deprecation

DBUA and Manual Upgrade Deprecated

Cluster Time Synchronization Service Deprecation

Deprecated Initialization Parameters in Oracle Database 19c

ORACLE

XX

10-74
10-74
10-74
10-74
10-75
10-75

10-75
10-75
10-76
10-76
10-76
10-77
10-77
10-79
10-79
10-79
10-80
10-80
10-81
10-81
10-81
10-81
10-82
10-82
10-82
10-83
10-83
10-83
10-83
10-84
10-84
10-84
10-84
10-85
10-85
10-85
10-85
10-86
10-86
10-86



CLUSTER_DATABASE_INSTANCES Initialization Parameter Deprecated 10-86

Deprecation of SQLNET.ENCRYPTION_WALLET_LOCATION Parameter 10-87
Deprecation of the SERVICE_NAMES Initialization Parameter 10-87
Oracle Database 18c Behavior Changes, Desupports, and Deprecations 10-87
Behavior Changes for Oracle Database 18c Upgrade Planning 10-88
Simplified Image-Based Oracle Database Installation 10-88
Support Indexing of JSON Key Names Longer Than 64 Characters 10-89
Upgrading Existing Databases is Replaced With Image Installations 10-89
About RPM-Based Oracle Database Installation 10-89
Token Limitations for Oracle Text Indexes 10-90
Changes to /ALL/USER/DBA User View and PL/SQL External Libraries 10-90
Symbolic Links and UTL_FILE 10-93
Deprecation of Direct Registration of Listeners with DBCA 10-94
UNIFORM_LOG_TIMESTAMP_FORMAT Changes in INIT.ORA 10-94
Desupported Features in Oracle Database 18c 10-95
Oracle Administration Assistant for Windows is Desupported 10-95
Oracle Multimedia DICOM Desupported Features 10-96
Oracle Multimedia Java Client Classes Desupported 10-96
Oracle XML DB Desupported Features 10-96
ODP.NET, Managed Driver - Distributed Transaction DLL Desupported 10-98
Data Guard Broker DGMGRL ALTER Syntax is Desupported 10-98
Desupport of CRSUSER on Microsoft Windows Systems 10-98
Desupported Initialization Parameters in Oracle Database 18c 10-99
Desupport of STANDBY_ARCHIVE_DEST Initialization Parameter 10-99
Desupport of UTL_FILE_DIR Initialization Parameter 10-99
Terminal Release of Oracle Streams 10-100
Deprecated Features in Oracle Database 18c 10-100
Data Guard MAX_CONNECTIONS Attribute is Deprecated 10-101
Extended Datatype Support (EDS) is Deprecated 10-101
GET_* Functions Deprecated in the DBMS_DATA MINING Package 10-101
Package DBMS_XMLQUERY is deprecated 10-102
Package DBMS_XMLSAVE is Deprecated 10-102
Deprecated Columns in Oracle Label Security Views 10-102
Returning JSON True or False Values using NUMBER is Deprecated 10-103
Deprecation of MAIL_FILTER in Oracle Text 10-103
Deprecation of asmecmd showversion Option 10-103
Deprecation of NEWS_SECTION_GROUP in Oracle Text 10-103
Oracle Net Services Support for SDP is Deprecated 10-104
Deprecation of Flex Cluster (Hub/Leaf) Architecture 10-104
Deprecation of PRODUCT_USER_PROFILE Table 10-104
Deprecation of Oracle Multimedia 10-104

ORACLE XXi



Oracle Database 12c Release 2 (12.2) Behavior Changes, Desupports, and Deprecations

Behavior Changes in Oracle Database 12c¢ Release 2 (12.2)

Initialization Parameter Default Changes in Oracle Database 12c Release 2 (12.2)

Database Upgrade Assistant (DBUA) Enhancements and Changes
Enhancements to Oracle Data Guard Broker and Rolling Upgrades

About Changes in Default SGA Permissions for Oracle Database

Network Access Control Lists and Upgrade to Oracle Database 12c
Parallel Upgrade Utility Batch Scripts

Unified Auditing AUDIT_ADMIN and AUDIT_VIEWER Roles Changes
Oracle Update Batching Batch Size Settings Disabled

About Upgrading Tables Dependent on Oracle-Maintained Types
Case-Insensitive Passwords and ORA-1017 Invalid Username or Password

About Deploying Oracle Grid Infrastructure Using Oracle Fleet Patching and
Provisioning

Restrictions Using Zero Data Loss Recovery Appliance Release 12.1 Backups

Client and Foreground Server Process Memory Changes

Desupported Features in Oracle Database 12c Release 2 (12.2)

Desupport of Advanced Replication

Desupport of Direct File System Placement for OCR and Voting Files
Desupport of JPublisher

Desupport of preupgrd.sql and utluppkg.sq|l

Desupported Oracle Data Provider for .NET APIs for Transaction Guard
Desupported Views in Oracle Database 12c Release 2 (12.2)

SQLJ Support Inside Oracle Database

Desupport of Some XML DB Features

Desupported Initialization Parameters in Oracle Database 12c Release 2 (12.2)

Deprecated Features in Oracle Database 12c Release 2 (12.2)

ORACLE

Deprecation of ALTER TYPE REPLACE

Deprecation of configToolAllCommands Script

Deprecation of DBMS_DEBUG Package

Deprecation of Intelligent Data Placement (IDC)

Deprecation of CONTINUOUS_MINE Option

Deprecation of Non-CDB Architecture

Deprecation of Oracle Administration Assistant for Windows
Deprecation of Oracle Data Provider for .NET PromotableTransaction Setting
Deprecation of oracle.jdbc.OracleConnection.unwrap()
Deprecation of oracle.jdbc.rowset Package

Deprecation of oracle.sqgl.DatumWithConnection Classes
Deprecation of Oracle Multimedia Java APls

Deprecation of Oracle Multimedia Support for DICOM
Deprecation of Multimedia SQL/MM Still Image Standard Support

XXii

10-104
10-105
10-106
10-106
10-108
10-108
10-109
10-109
10-110
10-111
10-111
10-112

10-113
10-115
10-115
10-115
10-116
10-116
10-116
10-117
10-117
10-118
10-118
10-118
10-119
10-120
10-121
10-122
10-122
10-122
10-122
10-123
10-123
10-123
10-123
10-124
10-124
10-124
10-125
10-125



Deprecation of Unicode Collation Algorithm (UCA) 6.1 Collations
Deprecation of UNIFIED_AUDIT_SGA_QUEUE_SIZE

Deprecation of VERIFY_FUNCTION and VERIFY_FUNCTION_11G
Deprecation of VSMANAGED_STANDBY

Deprecation of Some XML DB Functions

Deprecated Features for Oracle XML Database

Deprecated Initialization Parameters in Oracle Database 12¢ Release 2 (12.2)

Oracle Database 12c Release 1 (12.1) Behavior Changes, Desupports, and Deprecations

Behavior Changes for Oracle Database 12c Release 1 (12.1)

Error Associated with catupgrd.sqgl Run Without PARALLEL=NO
Change for Standalone Deinstallation Tool
Changes to Security Auditing Features

Upgrading a System that Did Not Have SQLNET.ALLOWED_LOGON_VERSION
Parameter Setting

Oracle Warehouse Builder (OWB) Not Installed with Oracle Database

About Upgrading Oracle Database Release 10.2 or 11.1 and OCFS and RAW
Devices

Change to VARCHAR2, NVARCHARZ2, and RAW Datatypes
Changed Default for RESOURCE_LIMIT Parameter

Oracle XML DB is Mandatory and Cannot Be Uninstalled
Direct NFS Enabled By Default for Oracle RAC

Desupported Features in Oracle Database 12c Release 1 (12.1)

ORACLE

Desupport for Raw Storage Devices

Desupport of ALTER INDEX OPTIMIZE for Text Indexes
Desupport of CLEANUP_ORACLE_BASE Property

Desupport of Oracle Enterprise Manager Database Control
Desupported Cipher Suites for Secure Sockets Layer (SSL)
Desupport of Database Rules Manager (RUL) and Expression Filter (EXF)
Desupport of cluvfy comp cfs for OCFS

Desupport of Change Data Capture

Desupported Features in Oracle Data Mining

Desupported Implicit Connection Caching

Desupport of ABN Models for Oracle Data Mining Upgrades
Desupport of OLAP Catalog (AMD)

Desupport of CSSCAN and CSALTER for Oracle Globalization
Desupport of Oracle Net Connection Pooling

Desupport of Oracle Net Listener Password

Desupport of Oracle Names

Desupport of Oracle Names Control Utility for Oracle Net Services
Desupport of CTXXPATH in Oracle Text and Oracle XML DB

Desupport of SQLNET.KERBEROS5_CONF_MIT Parameter for Oracle Net
Services

10-125
10-125
10-125
10-126
10-126
10-126
10-129
10-130
10-130
10-131
10-131
10-132

10-132
10-133

10-133
10-134
10-134
10-134
10-134
10-135
10-136
10-137
10-137
10-137
10-138
10-138
10-139
10-139
10-139
10-140
10-140
10-140
10-141
10-141
10-142
10-142
10-142
10-142

10-143

XXiii



Desupport of ALTER INDEX OPTIMIZE for Text Indexes
Desupport of SYNC [MEMORY memsize] for Text Indexes
Desupported Features on Microsoft Windows Platforms

Deprecated Features in Oracle Database 12c Release 2 (12.2)

ORACLE

Deprecation of Non-CDB Architecture

Deprecation of catupgrd.sql Script and Introduction of Parallel Upgrade Utility
DELETE_CATALOG_ROLE Deprecated

Deprecated Functions and Parameters in Oracle Label Security
Deprecated API for Oracle Database Vault

Deprecated Default Realms for Oracle Database Vault

Deprecated Default Rule Sets for Oracle Database Vault

Deprecation of Windows NTS Authentication Using the NTLM Protocol
Deprecation of Public Key Infrastructure for Transparent Data Encryption
Oracle Data Guard Broker Deprecated Features

Deprecated EndToEndMetrics-related APIs

Deprecation of Oracle Restart

Deprecation of -checkpasswd for QOSCTL Quiality of Service (QoS) Command

Deprecated NT LAN Manager (NTLM) Protocol for Oracle Net Services
Deprecated Features for Oracle Call Interface

Deprecation of Oracle Streams

Oracle Data Provider for .NET Deprecated Programming Interfaces

VPD Support in Oracle Database Semantic Technologies is Deprecated
Version-Enabled Models Support In Oracle Database Semantic Technologies
Deprecation of Advanced Replication

Deprecation of Single-Character SRVCTL CLI Options

Deprecation of Stored List of Administrative Users for Cluster Administration
Deprecation of SQLJ Inside the Server

Deprecated Oracle Update Batching

Deprecated EndToEndMetrics-related APIs

Deprecated Stored Outlines

Deprecated Concrete Classes in oracle.sql Package

Deprecated defineColumnType Method

Deprecated CONNECTION_PROPERTY_STREAM_CHUNK_SIZE Property
Oracle Data Pump Export Utility Features

Version-Enabled Models Support In Oracle Database Semantic Technologies
Deprecated defineColumnType Method

Deprecated NT LAN Manager (NTLM) Protocol for Oracle Net Services
Deprecated Features for Oracle Call Interface

Deprecation of Stored List of Administrative Users for Cluster Administration
Deprecation of -cleanupOBase

Deprecated Features for Oracle XML Database

10-143
10-143
10-143
10-145
10-148
10-148
10-148
10-148
10-149
10-149
10-150
10-150
10-150
10-151
10-151
10-152
10-152
10-152
10-153
10-153
10-153
10-153
10-154
10-154
10-154
10-155
10-155
10-155
10-155
10-156
10-156
10-156
10-157
10-157
10-157
10-157
10-157
10-158
10-158
10-158
10-158

XXIV



Deprecation of Advanced Replication 10-161

DICOM in Oracle Multimedia Deprecated in Oracle Database 12c Release 1 (12.1) 10-161
Deprecation of JPublisher 10-161
Deprecated Initialization Parameters in Oracle Database 12c¢ Release 1 (12.1) 10-162
FILE_MAPPING Initialization Parameter Deprecated 10-162
RDBMS_SERVER_DN Initialization Parameter Deprecated 10-162
Deprecation of IGNORECASE and SEC_CASE_SENSITIVE_LOGON 10-163
Deprecation of SQLNET.ALLOWED_LOGON_VERSION Parameter 10-163
LOG_ARCHIVE_LOCAL_FIRST Initialization Parameter Desupported 10-164
Deprecated Views in Oracle Database 12c Release 1 (12.1) 10-164

A AutoUpgrade REST APIs

Introduction to AutoUpgrade REST APIs A-1
About AutoUpgrade REST APIs A-1
Get Started A-1
Install cURL A-2
How to Set Up and Use AutoUpgrade REST APIs A-2
How to Use AutoUpgrade REST API Authentication Privileges A-4
REST APIs for AutoUpgrade A-5
Create a New AutoUpgrade Task A-6
Progress Report Request for an AutoUpgrade Task A-10
Console Request for an AutoUpgrade Task A-14
Task Details Request for AutoUpgrade A-16
Task List Request for AutoUpgrade Tasks A-19
Log or Log List for an AutoUpgrade Task A-20
Status Report of Task Request for AutoUpgrade A-27

B Oracle Database Upgrade Utilities

Scripts for Upgrading Oracle Database B-1
Pre-Upgrade Information Tool and AutoUpgrade Preupgrade B-4
About the Pre-Upgrade Information Tool B-4
Preupgrade Scripts Generated By the Pre-Upgrade Information Tool B-5
Postupgrade Scripts Generated By the Pre-Upgrade Information Tool B-6
Setting Up Environment Variables for the Pre-Upgrade Information Tool B-7
Pre-Upgrade Information Tool (preupgrade.jar) Command B-8
Output of the Pre-Upgrade Information Tool B-11
Pre-Upgrade Information Tool Output Example B-12
Pre-Upgrade Information Tool Warnings and Recommendations for Oracle Database B-20
Updating Access Control Lists and Network Utility Packages B-21

ORACLE' v



Evaluate Dependencies and Add ACLs for Network Utility Packages B-21
About Database Links with Passwords from Earlier Oracle Database Releases B-22
About Oracle Database Warnings for TIMESTAMP WITH TIME ZONE Data Type B-23

C Upgrading with Oracle Database Upgrade Assistant (DBUA)

Requirements for Using DBUA C-1
About Stopping DBUA When Upgrading C-3
How DBUA Processes the Upgrade for Oracle Database C-3
Upgrade Scripts Started by DBUA C-3
Moving a Database from an Existing Oracle Home C-4
Using DBUA to Upgrade the Database on Linux, Unix, and Windows Systems C-7
Using DBUA in Silent Mode to Upgrade Oracle Database C-20

Running DBUA in Silent Mode C-20

DBUA Command-Line Syntax for Active and Silent Mode C-20

D Running DBUA with Different ORACLE_HOME Owner

Index

ORACLE XXVi



List of Examples

2-1 Finding User Accounts That Use Case-Insensitive (10G) Version

2-2 Fixing Accounts with Case-Insensitive Passwords

2-3 Checking for the Presence of SEC_CASE_SENSITIVE_LOGON Set to FALSE

2-4 Using AutoUpgrade in Analyze Mode to Check an Oracle Database 12¢c Non-CDB System

2-5 AutoUpgrade Configuration File for a CDB and PDBs

2-6 Example of Running the Parallel Upgrade Utility using Priority List Emulation

2-7 AutoUpgrade Procedure for Databases Using Oracle Database Vault

3-1 Running AutoUpgrade in the Target Home After Moving the Database to a New Location

3-2 AutoUpgrade Configuration File for Non-CDB to PDB Conversion

3-3 AutoUpgrade Configuration File for Unplug-Plug Upgrades

3-4 Upgrading and Converting a Non-CDB to Oracle Database 19¢c Using Multitenant Architecture

3-5 AutoUpgrade Configuration Files for Different Patching Scenarios

3-6 A Summary Log File for AutoUpgrade Patching

3-7 Checking Redo Transport Service Status

3-8 Checking Apply Lag and Transport Lag

3-9 Upgrading an Encrypted PDB with an Unplug Plug Upgrade Using AutoUpgrade

3-10  Upgrading a Database Using TDE and Converting from Non-CDB to PDB

3-11

3-12  Configuration File for Unplug-Plug Relocate of Non-CDB and PDB with No Refresh Rate for
Data Files

3-13  Configuration File for Unplug-Plug Relocate of Non-CDB and PDB with Deployment Delay
and Refresh Rate for Data Files

3-14  Simple Configuration File for Unplug-Plug Relocate of a PDB

3-15 Using before_action and after_action in the Configuration File

3-16  Using revert_before_action and revert_after_action in the Configuration File

3-17  Setting up Archive Logging and Fast Recovery Area (FRA) Before Using AutoUpgrade

3-18 Password Files and Security Password File Updates

3-19  Transparent Data Encryption and AutoUpgrade

3-20 Example of How to Enable and Disable the AutoUpgrade Console

3-21  Disk Space Errors While Upgrade is Running

3-22  Disk Space Errors After Upgrade has Completed

3-23  Starting Up the AutoUpgrade Utility in Analyze Mode

3-24  Creating a New Checklist for a Configuration File

3-25  Find and Edit checklist.cfg

4-1 Running Parallel Upgrade Utility with Parameters for CDB and Non-CDB Databases

ORACLE

2-28
2-28
2-30
2-45
2-47
2-50
2-53
3-12
3-17
3-19
3-100
3-107
3-109
3-112
3-113
3-115
3-118
3-129

3-132

3-133
3-133
3-135
3-135
3-141
3-141
3-141
3-142
3-143
3-143
3-146
3-146
3-148

4-8

XXVii



4-2 Running Parallel Upgrades on Multiple Pluggable Databases (PDBs) Using Parallel
Upgrade Utility

4-3 Specifying Complete PDB Upgrade Priority

4-4 Specifying a Priority Subset of PDBs, and Upgrading Other PDBs with Default Processing

4-5 Specifying a Priority Subset of PDBs, and Upgrading Other PDBs with an Inclusion List

4-6 Specifying a Priority Subset of PDBs, and Excluding CDB$SROOT with an Exclusion List

4-7 Specifying an Exclusion List using CATCTL_LISTONLY

4-8 Specifying a Priority List using CON_ID Values

4-9 Example of Multitenant Architecture Upgrade Using Defaults (No Parameters Set)

4-10  Example of Multitenant Architecture Upgrade Using 64 In Parallel PDB Upgrade
Processors and 4 Parallel SQL Processes

4-11  Example of Multitenant Architecture Upgrade Using 20 In Parallel PDB Upgrade
Processors and 2 Parallel SQL Processes

4-12  Example of Multitenant Architecture Upgrade Using 10 In Parallel PDB Upgrade
Processors and 4 Parallel SQL Processes

4-13  Resetting the User Environment Variables

4-14  Testing the Connection to the Database

4-15  Manually Removing Oracle Enterprise Manager (em_present)

4-16  Manually Removing the OLAP Catalog (amd_exists)

4-17  Granting the ADMINISTER DATABASE TRIGGER privilege (trgowner_no_admndbtrg)

4-18  Refreshing Materialized Views (mv_refresh)

4-19  Upgrading Oracle Application Express (apex_upgrade _msg)

4-20  Stopping the Database Service Using Command-Line Commands

4-21  Stopping the Database Service Using Microsoft Windows PowerShell Scripting

4-22  Deleting the Database Service from the Earlier Release Oracle Home

4-23  Stopping the Listener for the Earlier Release Oracle Home

4-24  Setting the environment variables to the new Oracle home

4-25  Copying the PFILE to the New Oracle home, and Creating a New Service Using the
New Oracle Database binary

4-26  Starting the Database Upgrade

4-27  Completing the Post-Upgrade Checks

4-28  Rerunning Upgrades With the Resume Option

4-29  Rerunning Upgrades With an Exclusion List

4-30  Rerunning Upgrades on PDBs Using the Resume Option

4-31  Rerunning Upgrades on PDBs Using Exclusion Lists

4-32  Rerunning Upgrades on PDBs Using an Inclusion List

5-1 Upgrade Summary Report for the Post-Upgrade Status Tool

ORACLE

4-8
4-20
4-21
4-21
4-22
4-23
4-23
4-26

4-26

4-26

4-27
4-37
4-37
4-37
4-39
4-39
4-40
4-40
4-42
4-43
4-44
4-44
4-45

4-45
4-46
4-48
4-66
4-67
4-68
4-69
4-70
5-11

XXVIIi



6-1 Run the dbupgdiag.sql Script

6-2 Run a SQL Query on DBA_REGISTRY

6-3 Run SQL Queries to Check for Invalid Objects

6-4 Number of Invalid Objects Remaining

6-5 Number of Objects Recompiled

6-6 Number of Objects Recompiled with Errors

6-7 Copy TNSNAMES.ORA and SQLNET.ORA to New Default Network Administration Directory

6-8 Set the TNS_ADMIN Environment Variable

6-9 Copying the Earlier Release Demo Directory and Refreshing the Demonstrations in the
Read-Only Oracle Home

6-10 Example of Spooling Postupgrade Fixup Results for a Non-CDB Oracle Database

6-11  Examples of Running Postupgrade Fixups Using catcon.pl On Linux, UNIX and Windows
Systems

8-1 Check Registry on a CDB with CDB_REGISTRY View

8-2 Check Registry on a Non-CDB or PDB with DBA_REGISTRY View

8-3 ORA-20001 Error Due To ORA-06512

10-1  Example of Error Messages with UTL_FILE And Symbolic Links

A-1 Submit an AutoUpgrade Task Request

A-2 Response for an AutoUpgrade Job After a Faulty Request

A-3 Rerunning an AutoUpgrade Job Using a taskid

A-4 Submit Task Progress Report GET Request

A-5 Task Progress Report Request With an Invalid Task ID

A-6 Submit Task Console GET Request

A-7 Response Header for a Console Request With an Invalid Task ID

A-8 Submit Task Details GET Request

A-9 Task Details Request with an Invalid taskid

A-10  Submit Task List GET Request

A-11  Submit Task Log GET Request

A-12  Response Header for a Log Request With an Invalid Task ID

A-13 Response Body for a Task ID Log List

A-14  Request a Specific Log with name Parameter

A-15  Submit Task Status GET Request

A-16  Submit Task Status GET Request with an invalid taskid

B-1 Non-CDB In the Source Oracle Home Example

B-2 CDB in a Source Oracle Home

C-1 Selecting a Database for Upgrade with DBUA

C-2 Selecting a Database for Upgrade with DBUA Using Noninteractive ("Silent") Option

ORACLE

6-2
6-3
6-3
6-8
6-8
6-8
6-9
6-9

6-17
6-23

XXiX



C-3 Use Cases for Running DBUA in Noninteractive ("Silent") Mode C-23

ORACLE XXX



List of Figures

1-1 Upgrade Steps Workflow for Oracle Database

1-2 Example of an Oracle Database Release Number

2-1 Example of the Upgrade Checks Overview File

3-1 Converting and Upgrading a Non-CDB Using AutoUpgrade

3-2 Unplug-Plug Upgrades from Source to Target

4-1 Plug In a Non-CDB Using the DBMS_PDB.DESCRIBE Procedure
ORACLE

1-7
1-12
2-47
3-15
3-18
4-52

XXXI



List of Tables

1-1
1-2
1-3
3-1
4-1
6-1
8-1
10-1
10-2
B-1
B-2

Examples of Upgrade Paths for Oracle Database 19c¢

The COMPATIBLE Initialization Parameter

Technology Methods for Migrating and Upgrading Databases During Upgrades
Internal Settings Configuration File Parameters for AutoUpgrade

Parallel Upgrade Utility (catctl.pl) Parameters

Common Oracle Database Vault Upgrade Scenarios and Upgrade Preparation Tasks
Supported Releases and Editions for Downgrading

Oracle Data Guard Property Name Changes

Deprecated columns in Oracle Label Security Views

Upgrade, Post-Upgrade, and Downgrade Scripts

Choices for Fixing the Time Zone File Version

ORACLE

1-4
1-16
1-23

3-136
4-5
6-19
8-2
10-69
10-103
B-1
B-24

XXX



Preface

Audience

These topics provide information about the scope of these contents for upgrading plans and
procedures.

This book guides you through the process of planning and executing Oracle Database
upgrades. In addition, this manual provides information about compatibility, upgrading
applications, and important changes in the new Oracle Database release, such as
initialization parameter changes and data dictionary changes.

Oracle Database Upgrade Guide contains information that describes the features and
functions of Oracle Database (also known as the standard edition) and Oracle Database
Enterprise Edition products. Oracle Database and Oracle Database Enterprise Edition have
the same basic features. However, several advanced features are available only with Oracle
Database Enterprise Edition. Some of these are optional. For example, to use application
failover, you must have the Enterprise Edition with the Oracle Real Application Clusters
option.

* Audience
*  Documentation Accessibility
» Diversity and Inclusion

*  Set Up Java Access Bridge to Implement Java Accessibility
Install Java Access Bridge so that assistive technologies on Microsoft Windows systems
can use the Java Accessibility API.

 Related Documentation

 Conventions

Oracle Database Upgrade Guide is intended for database administrators (DBAS), application
developers, security administrators, system operators, and anyone who plans or performs
Oracle Database upgrades.

To use this document, you must be familiar with the following information:

e Relational database concepts
* Your current Oracle Database release

e Your operating system environment

Documentation Accessibility

ORACLE

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

XXXiii


http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc

Preface

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Diversity and Inclusion

Oracle is fully committed to diversity and inclusion. Oracle respects and values having
a diverse workforce that increases thought leadership and innovation. As part of our
initiative to build a more inclusive culture that positively impacts our employees,
customers, and partners, we are working to remove insensitive terms from our
products and documentation. We are also mindful of the necessity to maintain
compatibility with our customers' existing technologies and the need to ensure
continuity of service as Oracle's offerings and industry standards evolve. Because of
these technical constraints, our effort to remove insensitive terms is ongoing and will
take time and external cooperation.

Set Up Java Access Bridge to Implement Java Accessibility

Install Java Access Bridge so that assistive technologies on Microsoft Windows
systems can use the Java Accessibility API.

Java Access Bridge is a technology that enables Java applications and applets that
implement the Java Accessibility API to be visible to assistive technologies on
Microsoft Windows systems.

Refer to Java Platform, Standard Edition Accessibility Guide for information about the
minimum supported versions of assistive technologies required to use Java Access
Bridge. Also refer to this guide to obtain installation and testing instructions, and
instructions for how to use Java Access Bridge.

Related Topics

e Java Platform, Standard Edition Java Accessibility Guide

Related Documentation

ORACLE

Review this documentation list for additional information.

e Oracle Database Concepts for a comprehensive introduction to the concepts and
terminology used in this manual

*  Oracle Database Administrator’s Guide for information about administering Oracle
Database

e Oracle Database New Features Guide for information about new features in this
relaese

e Oracle Database SQL Language Reference for information on Oracle Database
SQL commands and functions

* Oracle Database Utilities for information about utilities bundled with Oracle
Database

XXXIV


http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Preface

*  Oracle Database Net Services Administrator's Guide for information about Oracle Net
Services

Many of the examples in this guide use the sample schemas, installed by default when you
select the Basic Installation option with an Oracle Database installation. For information on
how these schemas are created and how you can use them, refer to the following guide:

Oracle Database Sample Schemas

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

ORACLE S



Introduction to Upgrading Oracle Database

Oracle provides upgrade options and strategies that are designed for your database
environment, and an array of tools that automate the Oracle Database upgrade process.

*  Overview of Oracle Database Upgrade Tools and Processes
Review these topics to understand Oracle Database terms, tools and processes.

* Major Steps in the Upgrade Process for Oracle Database
Oracle Database upgrades consist of six major steps.

e Compatibility and Interoperability Between Oracle Database Releases
Learn how to understand and avoid compatibility and interoperability issues that can
occur because of differences in Oracle Database releases.

e About Running Multiple Oracle Releases
Run multiple releases using Optimal Flexible Architecture (OFA).

e About Converting Databases During Upgrades
Review these topics to determine which is the best path for you to select to upgrade
Oracle Databases.

* About Upgrading Platforms for a New Oracle Database Release
Review these topics if you upgrade your operating system or hardware for a new Oracle
Database release.

* About Image-Based Oracle Database Installation
Understand image-based installation to simplify installation and configuration of Oracle
Database software.

Overview of Oracle Database Upgrade Tools and Processes

Review these topics to understand Oracle Database terms, tools and processes.

o Definition of Terms Upgrading and Migrating
Upgrading and migrating are different types of database changes.

» Upgrade and Data Migration Methods and Processes
Oracle provides features and products to automate the upgrade process, and to assist
you with completing upgrades efficiently.

* Oracle Database Releases That Support Direct Upgrade
Review the supported options for direct upgrades to the latest Oracle Database release.

*  Where to Find the Latest Information About Upgrading Oracle Database
In addition to this document, Oracle provides information about upgrades on its support
site, and through the AutoUpgrade utility using the preupgrade parameter.

Definition of Terms Upgrading and Migrating

ORACLE

Upgrading and migrating are different types of database changes.

1-1



Chapter 1
Overview of Oracle Database Upgrade Tools and Processes

Upgrading transforms an existing Oracle Database environment (including installed
components and associated applications) into a new release Oracle Database
environment. The data dictionary for the database is upgraded to the new release.
Upgrading does not directly affect user data; no data is touched, changed, or moved
during an upgrade.

Migrating data refers to moving data from one Oracle Database into another database
previously created for migrating or moving the data. You migrate data when you need
to move your database environment to a new hardware or operating system platform,
or to a new character set. Migrating does not include upgrading to the latest release.
The upgrade process is handled separately after you migrate the data.

The upgrade steps in Oracle Database Upgrade Guide apply to all operating systems,
unless otherwise specified. Some operating systems can require additional upgrade
steps.

Related Topics
e Oracle Database Installation Guide

e Oracle Database Utilities

Upgrade and Data Migration Methods and Processes

ORACLE

Oracle provides features and products to automate the upgrade process, and to assist
you with completing upgrades efficiently.

Oracle Database supports the following methods for upgrading or migrating a
database to the new release:

e AutoUpgrade Utility

Identifies issues before upgrades, deploys upgrades, performs postupgrade
actions, and starts the upgraded Oracle Database.

e Database Upgrade Assistant (DBUA)

Provides a graphical user interface that guides you through the upgrade of a
database. DBUA can be launched during installation with the Oracle Universal
Installer, or you can launch DBUA as a standalone tool at any time in the future.

e Manual upgrade using the Parallel Upgrade Utility, and other command-line
utilities
Enables upgrades to be performed using shell scripts.

e Migrating data using Oracle Data Pump

Provides export and import utilities. Oracle Data Pump can perform a full or partial
export from your database, followed by a full, or partial import into the new release
of Oracle Database. Export/Import in Oracle Data Pump can copy a subset of the
data, leaving the database unchanged.

e CREATE TABLE AS SQL statement

Migrates data from a database into a new Oracle Database release. By using this
method, you can copy a subset of the data, leaving the database unchanged.

e Upgrading CDBs and PDBs using a priority list to group and upgrade PDBs
according to their priority.

Run the Parallel Upgrade Utility (dbupgrade, or catctl.pl) using the -L option
to run the upgrade using a priority list, and to call that list as the upgrade runs.

1-2



Chapter 1
Overview of Oracle Database Upgrade Tools and Processes

Synchronizing a standby database, upgrading, and using Oracle GoldenGate to
synchronize the upgraded database (a zero downtime option)

Using Fleet Patching and Provisioning (FPP) to upgrade databases.

In a Fleet Patching and Provisioning (FPP) upgrade (formerly known as Rapid Home
Provisioning), you complete a new Oracle Database installation. After testing the
database, and modifying it in accordance with the standard operating environment (SOE)
that you want to use for your databases, you create an FPP gold image. A DBA deploys
instances of that gold image to servers that have earlier release databases that you want
to upgrade. After deployment of these gold images, a DBA can run a single rhpctl
command to move files, perform configuration changes, and perform other steps required
to use the new binaries. Refer to Oracle Clusterware Administration and Deployment
Guide for more information about Rapid Home Provisioning.

Related Topics

Oracle Clusterware Administration and Deployment Guide

Oracle Database Releases That Support Direct Upgrade

Review the supported options for direct upgrades to the latest Oracle Database release.

ORACLE

You can perform a direct upgrade to the new release from the following releases:

11.2.0.4
12.1.0.2
12.2.0.1
18

The path that you must take to upgrade to the latest Oracle Database release depends on
the release number of your current database.

If your current Oracle Database is a release earlier than 11.2.0.4, then you cannot directly
upgrade your Oracle Database to the latest release. In this case, you are required to upgrade
to an intermediate release before upgrading to Oracle Database 19c.

If you cannot carry out a direct upgrade, then carry out an upgrade to the most recent release
where direct upgrades are supported.

1-3



Chapter 1
Overview of Oracle Database Upgrade Tools and Processes

< Note:

For any multi-step upgrade, if you must carry out two upgrades to upgrade to
the current release, then you must run the preupgrade script twice: First,
complete an upgrade to an intermediate upgrade release that is supported
for direct upgrade to the target upgrade release. Second, complete the
upgrade for the target upgrade release.

For example, if the database from which you are upgrading is running Oracle
Database 10g, then to upgrade to Oracle Database 19c, follow these steps:

1. Upgrade release 10.2.0.5 to release 12.1.0.2 (the terminal patch set
release), using the instructions in Oracle Database Upgrade Guide 12c
Release 1 (12.1), including running the preupgrade script for 12.1.0.2.

2. Upgrade Oracle Database 12c release 1 (12.1.0.2) directly to Oracle
Database 19c. Use the instructions in this book, Oracle Database
Upgrade Guide, including running the preupgrade script for Oracle
Database 19c.

The following table shows the required upgrade path for each release of Oracle
Database. Use the upgrade path and the specified documentation to perform an
intermediate upgrade of your database before fully upgrading to Oracle Database 18c.

Table 1-1 Examples of Upgrade Paths for Oracle Database 19c

. _________________________________________________________|
Current Release | Upgrade Options

18 (all releases), | Direct upgrade is supported. Perform the upgrade using the current
12.2.0.1, Oracle Database Upgrade Guide, which is this guide.
12.1.0.2,11.2.04

ORACLE 1-4



Chapter 1
Overview of Oracle Database Upgrade Tools and Processes

Table 1-1 (Cont.) Examples of Upgrade Paths for Oracle Database 19¢

. _________________________________________________________|
Current Release | Upgrade Options

12.1.0.1 Direct upgrade to Oracle Database 19c is not supported.

11.2.0.1, Solution: Upgrade to an intermediate Oracle Database release that can be
11.2.0.2, 11.2.0.3 | directly upgraded to the current release. Upgrade Oracle Database
11.1.0.6. 11.1.0.7 | releases that are not supported for direct upgrade in this release to an

. intermediate Oracle Database release that is supported for direct upgrade.
10.2 or earlier

releases When upgrading to an intermediate Oracle Database release, follow the

instructions in the intermediate release documentation, including running
the preupgrade scripts for that intermediate release. After you complete an
upgrade to the intermediate release Oracle Database, you can upgrade the
intermediate release database to the current Oracle Database release.

This restriction does not apply if you use Oracle Data Pump export/import
to migrate data to the new release.

For example:

e If you are upgrading from release 11.2.0.2 or 11.1.0.7, then you must
first upgrade to the terminal patch set release for Oracle Database 11g
release 2 (11.2.0.4), which is supported for direct upgrade to Oracle
Database 19c.

e If you are upgrading from release 10.2.0.2, 10.2.0.3, 10.2.0.4,10.2.0.5
or 10.1.0.5, then you must first upgrade to release 11.2. or 12.1

e If you are upgrading from release 9.2.0.8, then you must first upgrade
to a sequence of intermediate Oracle Database releases:

Upgrade from release 9.2.0.8 to release 11.2.0.4. Then upgrade from
release 11.2 to 19c

Note: Always update to the most recent intermediate release to which
you can upgrade directly. Your case can be different from that of the
examples provided here.

Where to Find the Latest Information About Upgrading Oracle Database

ORACLE

In addition to this document, Oracle provides information about upgrades on its support site,
and through the AutoUpgrade utility using the preupgrade parameter.

Through its support website, My Oracle Support, Oracle provides late-breaking updates,
discussions, and best practices about preupgrade requirements, upgrade processes,
postupgrade tasks, compatibility, and interoperability.

Before you begin upgrades, Oracle strongly recommends that you download the latest
version of the AutoUpgrade utility, which is available on My Oracle Support. The latest
version contains the most recent checks and tests that Oracle can provide to assist you to
prepare your system for upgrades, and to complete upgrades successfully. You can perform
your upgrades directly using AutoUpgrade. If you do not use AutoUpgrade to perform the
upgrade, then to identify potential upgrade issues, you must run AutoUpgrade using the
preupgrade parameter in analyze mode. This AutoUpgrade option replaces the Pre-Upgrade
Information Tool that you may have used in earlier releases.

Mike Dietrich's blog site, "Upgrade Your Database Now," Daniel Overby Hansen's site,
"Databases Are Fun," can offer you the most current insights from the upgrade and migration
product managers for Oracle. Their opinions and recommendations are based on their
experiences and interactions with Oracle customers, and can save you time and effort. They
are highly recommended.

1-5



Chapter 1
Major Steps in the Upgrade Process for Oracle Database

We strive to provide you with the latest information available to us in this publication. If
you have any suggestions for how we can improve, or comments on where we
succeeded or failed, please feel free to comment directly on the Was this page
helpful? links that you find at the bottom of each HTML page. Our mission at Oracle is
to help you to succeed. The authors of this publication care what you think. If you think
we can do something to make your work easier, and your upgrades successful, then
please let us know.

Related Topics

» AutoUpgrade Tool (Doc ID 2485457.1)

*  Oracle Database 19c Important Recommended One-off Patches (Doc ID 555.1)
» Upgrade Your Database Now

« Databases Are Fun

Major Steps in the Upgrade Process for Oracle Database

Oracle Database upgrades consist of six major steps.

Upgrade Steps Workflow

The following figure summarizes the major procedures performed during the upgrade
process:

ORACLE 1-6


https://support.oracle.com/rs?type=doc&id=2485457.1
https://support.oracle.com/rs?type=doc&id=555.1
https://mikedietrichde.com/
https://dohdatabase.com/

ORACLE

Chapter 1
Major Steps in the Upgrade Process for Oracle Database

Figure 1-1 Upgrade Steps Workflow for Oracle Database

Step 1:
Frepare to Upgrade

!

Step 2:
Test the Upgrade Process

'

Step 3:
Test the Upgraded
Test Database

Step 4:
Prepare and Preserve the
Production Database

!

Step 5:
Upgrade the
Production Database

Step 6:
Tune and Adjust the New
Production Database

Step 1: Prepare to Upgrade Oracle Database

Become familiar with the features of the new release of Oracle Database.

Determine the upgrade path to the new release.

1-7



ORACLE

Chapter 1
Major Steps in the Upgrade Process for Oracle Database

Select an upgrade method.

Select an Oracle home directory for the new release.
Develop a testing plan.

Prepare a backup strategy.

Follow preupgrade recommendations.

Run preupgrade fixup scripts, or carry out manual preupgrade system updates.

¢ Note:

During the upgrade, consider running multiple releases of the database
software, so that you can use the existing release as your production
environment while you test the new release.

Consider completing a software-only installation to the new Oracle Database
release. In a software-only installation, you install the Oracle Database
software but do not create a database as part of the installation process.

Step 2: Test the Upgrade Process for Oracle Database

Perform a test upgrade using a test database. Conduct the test upgrade in an
environment created for testing that does not interfere with the production
database. Oracle recommends that your test environment is on a server that is, as
much as possible, a replica of your production environment. For example: Oracle
recommends that the server not only uses the same operating system, but that
runs the same patch level, with the same packages, and matches other details of
your production system configuration.

Step 3: Test the Upgraded Test Oracle Database

Perform the tests that you planned in Step 1 on the test database that you
upgraded to the new release of Oracle Database.

Review the results, noting anomalies in the tests.

Investigate ways to correct any anomalies that you find and then implement the
corrections.

Repeat Step 1, Step 2, and the first parts of Step 3, as necessary, until the test
upgrade is successful and works with any required applications.

To test for anomalies and determine potential support questions, carry out SQL
plan management. SQL plan management includes the following steps:

1. Before the upgrade, capture baselines and plans on the earlier release Oracle
Database, and store those plans.

Oracle recommends that you store the plans on staging tables, and then run
the Data Pump Export utility expdp for those tables.

2. Atfter the upgrade, in the event of a regression or a performance issue, apply
(load/accept/evolve) an old plan that you know is good, based on the plans
you captured from the previous release Oracle Database.

1-8



4

Chapter 1
Major Steps in the Upgrade Process for Oracle Database

See Also:

e Oracle Database SQL Tuning Guide for more information about SQL plan
management

 Document 1948958.1 Patches to Consider for 11.2.0.3 to Avoid Problems with
SQL Plan Management (SPM)

Document 2034706.1 Patches to Consider for 11.2.0.4 to Avoid Problems with
SQL Plan Management (SPM)

e Document 2035897.1 Patches to Consider When Upgrading From 12.1.0.1 to
Avoid Problems with SQL Plan Management (SPM)

Step 4: Prepare and Preserve the Production Oracle Database

Complete these tasks before you upgrade your existing production database:

»  Prepare the current production database as appropriate to ensure that the upgrade to the
new release of Oracle Database is successful.

*  Schedule the downtime required for backing up and upgrading the production database.

*  Back up the current production database.

Before you carry out a major change to a system, Oracle recommends that you make
sure that you have a fallback strategy implemented. Oracle recommends that your
fallback strategy includes the following preparations:

ORACLE

4

Test your backup strategy, and ensure that it works.

If you need a backup strategy, then plan for the time required to apply it during your
maintenance window.

To perform plan stability checks in preparation for upgrade, carry out SQL plan
management. Raise a service request if you need assistance.

Note:

A database upgrade that installs a new optimizer version usually results in plan
changes for a small percentage of SQL statements.

Most plan changes result in either improvement or no performance change.
However, some plan changes may cause performance regressions. SQL plan
baselines significantly minimize potential regressions resulting from an upgrade.

When you upgrade, the database only uses plans from the plan baseline. The
database puts new plans that are not in the current baseline into a holding area,
and later evaluates them to determine whether they use fewer resources than the
current plan in the baseline. If the plans perform better, then the database promotes
them into the baseline; otherwise, the database does not promote them.

1-9



Chapter 1
Compatibility and Interoperability Between Oracle Database Releases

¢ See Also:
Oracle Database SQL Tuning Guide

Step 5: Upgrade the Production Oracle Database

* Upgrade the production database to the new release of Oracle Database.
» After the upgrade, perform a full backup of the production database and perform
other post-upgrade tasks.

Step 6: Tune and Adjust the New Production Oracle Database

*  Tune the new production database for the new release. Typically, the new
production Oracle Database performs to the same standards, or better, than the
database before the upgrade.

» Determine which features of the new Oracle Database release that you want to
use, and update your applications accordingly.

* Develop new database administration procedures as needed.

* Do not upgrade your production Oracle Database release to the new release until
all applications you must use in the upgraded database have been tested and
operate properly.

Related Topics

e https://support.oracle.com/epmos/faces/DocumentDisplay?
cmd=show&type=NOT&id=1948958.1

e https://support.oracle.com/epmos/faces/DocumentDisplay?
cmd=show&type=NOT&id=2034706.1

e https://support.oracle.com/epmos/faces/DocumentDisplay?
cmd=show&type=NOT&id=2035897.1

Compatibility and Interoperability Between Oracle Database

Releases

ORACLE

Learn how to understand and avoid compatibility and interoperability issues that can
occur because of differences in Oracle Database releases.

Oracle Database releases can have differences that can result in compatibility and
interoperability issues. These differences can affect both general database
administration and existing applications.

* About Oracle Database Release Numbers
Oracle Database releases are categorized by five numeric segments that indicate
release information.

e Convention for Referring to Release Numbers in Oracle Database Upgrade Guide
Review to understand how statements apply to releases.

*  What Is Oracle Database Compatibility?
Before you upgrade, review compatibility between your earlier release Oracle
Database and the new Oracle Database release as part of your upgrade plan.

1-10


https://support.oracle.com/epmos/faces/DocumentDisplay?cmd=show&type=NOT&id=1948958.1
https://support.oracle.com/epmos/faces/DocumentDisplay?cmd=show&type=NOT&id=1948958.1
https://support.oracle.com/epmos/faces/DocumentDisplay?cmd=show&type=NOT&id=2034706.1
https://support.oracle.com/epmos/faces/DocumentDisplay?cmd=show&type=NOT&id=2034706.1
https://support.oracle.com/epmos/faces/DocumentDisplay?cmd=show&type=NOT&id=2035897.1
https://support.oracle.com/epmos/faces/DocumentDisplay?cmd=show&type=NOT&id=2035897.1

Chapter 1
Compatibility and Interoperability Between Oracle Database Releases

* What Is Interoperability for Oracle Database Upgrades?
In the context of upgrading Oracle Database, interoperability is the ability of different
releases of Oracle Database to communicate and work in a distributed environment.

* About Invalid Schema Objects and Database Upgrades
Run utlrp.sql to validate invalid objects as part of your upgrade test plan.

e About Upgrading Oracle OLAP Data Security Policies
Security policies are stored differently starting with Oracle Database 12c. If your existing
Oracle Database is 11g Release 11.2, then delete security roles.

About Oracle Database Release Numbers

ORACLE

Oracle Database releases are categorized by five numeric segments that indicate release
information.

" Note:

Oracle provides quarterly updates in the form of Release Updates (Updates, or RU)
and Release Update Revisions (Revisions, or RUR). Oracle no longer releases
patch sets or bundle patch sets. For more information, see My Oracle Support Note
2285040.1.

Oracle Database releases are released in version and version full releases.

The version release is designated in the form major release version.0.0.0.0. The major
release version is based on the last two digits of the year in which an Oracle Database
version is released for the first time. For example, the Oracle Database version released for
the first time in the year 2018 has the major release version of 18, and thus its version
release is 18.0.0.0.0.

The version full release is an update of a version release and is designated based on the
major release version, the quarterly release update version (Update), and the quarterly
release update revision version (Revision). The version full releases are categorized by
five numeric segments separated by periods as shown in the following example:

1-11



ORACLE

Chapter 1
Compatibility and Interoperability Between Oracle Database Releases

Figure 1-2 Example of an Oracle Database Release Number

19.1.0.0.0

Database Reserved/
Release Release
Number date of RU

Release Update — —Reserved for
Version future use

— Release Update
Revision Version

»  First numeral: This numeral indicates the major release version. It also denotes
the last two digits of the year in which the Oracle Database version was released
for the first time.

e Second numeral: This numeral indicates the release update version (Update, or
RU).

»  Third numeral: This numeral indicates the release update revision version
(Revision, or RUR).

e Fourth numeral: This numeral is reserved for future use. Currently it is always set
to 0.

»  Fifth numeral: Although only the first three fields are commonly used, the fifth field
can show a numerical value that redundantly clarifies the release date of a release
update (RU), such as 19.7.0.0.200414.

" Note:

The first three numerals mainly identify an Oracle Database release.

Caution:

Oracle strongly recommends that you apply the most recent Release Update
to your target databases before starting an upgrade, and before starting a
downgrade. If possible, also ensure that your source environment is patched.
Release updates are cumulative. If you are also updating an Oracle Grid
Infrastructure environment, then always apply the latest Release Update to
the Grid environment first before updating Oracle Database Oracle homes.
For more information about updates, refer to My Oracle Support note
2118136.2.

1-12



Chapter 1
Compatibility and Interoperability Between Oracle Database Releases

Related Topics
* My Oracle Support note 2285040.1
e My Oracle Support note 2118136.2

Convention for Referring to Release Numbers in Oracle Database Upgrade
Guide

Review to understand how statements apply to releases.

When a statement is made in Oracle Database Upgrade Guide about a major database
release number, the statement applies to all releases within that major database release.

Similarly, when a statement is made in Oracle Database Upgrade Guide about a
maintenance release, the statement applies to all component-specific and platform-specific
releases within that maintenance release. A statement about Oracle Database 12c applies to
all component-specific and platform-specific releases within this release. A statement about
Oracle Database 11g Release 2 (11.2) applies to release 11.2.0.2, release 11.2.0.3, and all
other platform-specific releases within Oracle Database 11g Release 2 (11.2).

What Is Oracle Database Compatibility?

Before you upgrade, review compatibility between your earlier release Oracle Database and
the new Oracle Database release as part of your upgrade plan.

* Understanding Oracle Database Compatibility
If new features are incompatible with your earlier release, then Database compatibility
can cause issues.

*  When to Set the COMPATIBLE Initialization Parameter in Oracle Database
Oracle recommends increasing the COMPATIBLE parameter only after you have completed
testing the upgraded database.

«  The COMPATIBLE Initialization Parameter in Oracle Database
Review to understand how to set the COMPATIBLE initialization parameter for non-CDB
and multitenant architecture containers.

*  Values for the COMPATIBLE Initialization Parameter in Oracle Database
Review to find the default, minimum, and maximum values for the COMPATIBLE
initialization parameter for Oracle Database 19c.

» About Downgrading and Compatibility for Upgrading Oracle Database
Before upgrading to Oracle Database 19c, you must set the COMPATIBLE initialization
parameter to at least 11.2.0.

e How the COMPATIBLE Initialization Parameter Operates in Oracle Database
The COMPATIBLE initialization parameter enables or disables Oracle Database features
based on release compatibility

»  Checking the Compatibility Level of Oracle Database
Use this SQL query to find the COMPATIBLE initialization parameter value set for your
database.

Understanding Oracle Database Compatibility

If new features are incompatible with your earlier release, then Database compatibility can
cause issues.

ORACLE 1-13


https://support.oracle.com/rs?type=doc&id=2285040.1
https://support.oracle.com/rs?type=doc&amp;id=2285040.1

Chapter 1
Compatibility and Interoperability Between Oracle Database Releases

Databases from different releases of Oracle Database software are compatible if they
support the same features, and if those features perform the same way. When you
upgrade to a new release of Oracle Database, certain new features can make your
database incompatible with your earlier release.

Your upgraded database becomes incompatible with your earlier release under the
following conditions:

e A new feature stores any data on disk (including data dictionary changes) that
cannot be processed with your earlier release.

e An existing feature behaves differently in the new environment as compared to the
old environment.

When to Set the COMPATIBLE Initialization Parameter in Oracle Database

Oracle recommends increasing the COMPATIBLE parameter only after you have
completed testing the upgraded database.

After the upgrade is complete, you can increase the setting of the COMPATIBLE
initialization parameter to the maximum level for the new Oracle Database release.
However, after you increase the COMPATIBLE parameter, you cannot subsequently
downgrade the database.

The COMPATIBLE Initialization Parameter in Oracle Database

Review to understand how to set the COMPATIBLE initialization parameter for non-
CDB and multitenant architecture containers.

Oracle Database enables you to control the compatibility of your database with the
COMPATIBLE initialization parameter.

Understanding the COMPATIBLE Initialization Parameter

In Oracle Database 19c, when the COMPATIBLE initialization parameter is not set in
your parameter file, the COMPATIBLE parameter value defaults to 19.0.0 If you do not
set the COMPATIBLE initialization parameter to 19.0.0, then you cannot use the new
Oracle Database 19c features, because your upgraded database is not running in the
required COMPATIBILITY setting for Oracle Database 19c features.

Due to changes in internal SQL identifier and schema object name restrictions, you
can experience an initial delay for any process where the database runs a Java stored
procedure directly or indirectly in the database server after you increase the
COMPATIBLE parameter setting. When you increase the Oracle Database COMPATIBLE
parameter to 12.2.0 or later from a COMPATIBLE setting earlier than 12.2.0, and the
database runs a Java stored procedure, the database performs a "name translation"
operation. This operation can require a few minutes to complete. You should expect
this delay the first time the database runs a Java stored procedure after you increase
the compatibility parameter. This delay for the database to perform the name
translation occurs only during the first Java process call.

ORACLE 1-14



ORACLE

Chapter 1
Compatibility and Interoperability Between Oracle Database Releases

< Note:

- Before upgrading to Oracle Database 19c, you must set the COMPATIBLE
initialization parameter to at least 11.2.0, which is the minimum setting for
Oracle Database 19c.

e The compatible parameter must be at least 3 decimal numbers, separated by
periods. For example:
SQL> ALTER SYSTEM SET COMPATIBLE = '19.0.0' SCOPE=SPFILE;

e Oracle recommends that you only raise the COMPATIBLE parameter after you
have thoroughly tested the upgraded database.

e After you increase the COMPATIBLE parameter, you cannot downgrade the
database, and you cannot flash back to restore points.

Caution:

If you are upgrading from Oracle Database release 11.2, then you must set the
compatible value to at least 11.2.0. You must do this at the time of the upgrade. Do
not make this change until you are ready to upgrade, because a downgrade back to
an earlier compatibility level is not possible after you raise the COMPATIBLE
initialization parameter value.

# See Also:

Oracle Database Administrator’s Guide for information about managing initialization
parameters

Rules for COMPATIBLE Parameter Settings in Multitenant Architecture

The COMPATIBLE parameter of the container database (CDB) affects the COMPATIBLE
parameter settings of pluggable databases (PDBs) plugged into that container database.
Review the following scenarios that occur when you plug in a PDB to a CDB:

 PDB COMPATIBLE equal to CDBSROOT COMPATIBLE parameter setting.
Result: No change to the PDB COMPATIBLE parameter setting.
* PDB COMPATIBLE is lower than CDBSROOT COMPATIBLE parameter setting.

Result: The PDB COMPATIBLE parameter is increased automatically to the same
COMPATIBLE parameter setting as CDBSROOT. After you plug in the PDB, you cannot
downgrade the PDB to an earlier release.

 PDB COMPATIBLE is higher than CDBSROOT COMPATIBLE parameter setting.

Result: The PDB cannot be plugged in. Only PDBs with a COMPATIBLE parameter
setting equal to or lower than CDBSROOT can be plugged in to the CDB.

1-15



Chapter 1
Compatibility and Interoperability Between Oracle Database Releases

Values for the COMPATIBLE Initialization Parameter in Oracle Database

Review to find the default, minimum, and maximum values for the COMPATIBLE
initialization parameter for Oracle Database 19c.

Default and Minimum COMPATIBLE Parameter Values

The COMPATIBLE parameter should not be changed for an RU or an RUR, either for
CDB or Non-CDB instances. The following table lists the default and minimum values
for the COMPATIBLE parameter in Oracle Database 19c, compared to earlier releases
supported for direct upgrade:

Table 1-2 The COMPATIBLE Initialization Parameter
]

Oracle Database Release Default Value Minimum Value
Oracle Database 19c 19.0.0 11.2.0
Oracle Database 12c Release 2 (12.2) 12.2.0 11.2.0
Oracle Database 12c¢ Release 1 (12.1) 12.0.0 11.0.0
Oracle Database 119 Release 2 (11.2) 11.2.0 10.0.0

About Downgrading and Compatibility for Upgrading Oracle Database

Before upgrading to Oracle Database 19c, you must set the COMPATIBLE initialization
parameter to at least 11.2.0.

After upgrading to Oracle Database 18c, you can set the COMPATIBLE initialization
parameter to match the release number of the new release. Doing so enables you to
use all features of the new release, but prevents you from downgrading to your earlier
release. Only a subset of Oracle Database 18c features are available while the
COMPATIBLE initialization parameter is set to a lower value.

Caution:

After you increase the COMPATIBLE parameter, the database cannot be
downgraded.

Related Topics

e Downgrading Oracle Database to an Earlier Release

How the COMPATIBLE Initialization Parameter Operates in Oracle Database

ORACLE

The COMPATIBLE initialization parameter enables or disables Oracle Database features
based on release compatibility

The COMPATIBLE initialization parameter operates in the following way:

e The COMPATIBLE initialization parameter enables or disables the use of features, to
help protect your existing application use of data.

1-16



Chapter 1
Compatibility and Interoperability Between Oracle Database Releases

If you run an Oracle Database 12¢ database with the COMPATIBLE initialization parameter
setto 11.2.0, then the database software generates database structures on disk that are
compatible with Oracle Database Release 11g release 2 (11.2). If you try to use features
that are part of a later release of Oracle Database, and make the database incompatible
with the COMPATIBLE initialization parameter, then an error occurs. However, new features
are enabled that do not create changes on disk that are incompatible with Oracle
Database Release 11g release 2.

* If you make changes to the database that make the database incompatible with the
COMPATIBLE initialization parameter setting you want to use, then the database does not
start, and initialization terminates in an error. If this happens, then you must set the
COMPATIBLE initialization parameter to an appropriate value for the database.

# See Also:

Oracle Database Concepts for more information about database structures

Checking the Compatibility Level of Oracle Database

Use this SQL query to find the COMPATIBLE initialization parameter value set for your
database.

SQL> SELECT name, value FROM vS$parameter
WHERE name = 'compatible';

What Is Interoperability for Oracle Database Upgrades?

In the context of upgrading Oracle Database, interoperability is the ability of different releases
of Oracle Database to communicate and work in a distributed environment.

A distributed database system can comprise different releases of Oracle Database, and all
supported releases of Oracle Database can participate in the distributed database system.
However, the applications that work with a distributed database must also be able to
interoperate with the features and functions that are available at each node in the system.

Interoperability across disparate operating systems and operating system versions can cause
problems (especially during rolling upgrades) because the minimum requirements for the new
Oracle Database release may require you to upgrade the operating systems on some or all of
your hosts. For this reason, before you start an Oracle Database upgrade, you must check to
ensure that drivers, network, and storage are compatible for all the interim upgrade states of
the system during the rolling upgrade.

ORACLE 1-17



Chapter 1
Compatibility and Interoperability Between Oracle Database Releases

< Note:

Because Oracle Database Upgrade Guide discusses upgrading and
downgrading between different releases of Oracle Database, the definition of
interoperability is for Oracle Database releases. Other Oracle documentation
may use a broader definition of the term interoperability. For example,
interoperability in some cases can describe communication between different
hardware platforms and operating systems.

My Oracle Support note 207303.1 "Client / Server / Interoperability Support
Between Different Oracle Versions" provides additional information.

Related Topics
» https://support.oracle.com/rs?type=doc&id=207303.1

About Invalid Schema Objects and Database Upgrades

ORACLE

Run utlrp.sql to validate invalid objects as part of your upgrade test plan.

After database upgrades, release changes can result in invalid schema objects in the
upgraded database. Typically, invalid objects fix themselves as they are accessed or
run. However, Oracle recommends that you recompile invalid objects in the database
as part of your patching and upgrade procedure, so that you resolve issues with invalid
objects, and any required dependencies, before users encounter these invalid objects.

Object validation is an operation that checks the Oracle Database Data Definition
Language (DDL) statements. These statements are used to define the database
structure or schema. Validating DDL statements can take time to complete. The
following is a list of some common factors that can affect object validation time:

*  Number of invalid objects
* CPU types

*  Processor speeds

e System loads

* Available physical memory

The utlrp.sqgl command recompiles all objects in an invalid state, including
packages, procedures, and types. It is located in the SORACLE HOME/rdbms/admin
directory. The ut1lrp.sqgl script automatically runs in serial or in parallel
recompilation, based on the number of CPUs available (identified by the parameter
cpu_count), multiplied by the number of threads for each CPU ( identified by the
parameter parallel threads per cpu). On Oracle Real Application Clusters
systems (Oracle RAC), the number of parallel threads is added across all Oracle RAC
nodes.

Run the command either as the SYS user, or as another user account that is granted
the SYSDBA system privileges.

Oracle recommends that you run the ut1rp.sgl command in the earlier release
Oracle Database to recompile any existing invalid objects in your database.
Particularly ensure that SYS and SYSTEM user schema invalid objects are updated.
During upgrade tests, run ut1rp.sqgl in the upgraded Oracle Database as part of

1-18


https://support.oracle.com/rs?type=doc&id=207303.1

Chapter 1
About Running Multiple Oracle Releases

your upgrade test plan, so that you can include planning for recompilation time as part of your
upgrade. Recompilation time is proportional to the number of invalid objects in the database.
If the upgrade results in a large number of invalid objects, then ut1lrp.sqgl can take a
significant amount of time to run.

About Upgrading Oracle OLAP Data Security Policies

Security policies are stored differently starting with Oracle Database 12c. If your existing
Oracle Database is 11g Release 11.2, then delete security roles.

In Oracle Database 12¢, Oracle OLAP uses Oracle Real Application Security (ORAS) to store
OLAP data security policies instead of Extensible Data Security (XDS), which it used in
Oracle Database 11g releases.

When you upgrade Oracle Database from release 11g to new Oracle Database releases, any
XDS data security policies are automatically converted to ORAS.

< Note:

Data security roles defined in a release 11g Oracle Database instance are not
automatically converted to ORAS. Before you upgrade Oracle Database Release
11g to a current Oracle Database release, you must delete any data security roles
that are defined in the 11g database. After the upgrade, you can use the new
release Oracle Database Analytic Workspace Manager to define the data security
roles again.

If you upgrade an 11g database without deleting the 11g data security roles, then
any data security policies that include a data security role are invalid in the later
Oracle Database releases.

Related Topics
e QOracle OLAP User’s Guide

About Running Multiple Oracle Releases

ORACLE

Run multiple releases using Optimal Flexible Architecture (OFA).

Optimal Flexible Architecture (OFA) is a set of configuration guidelines for efficient and
reliable Oracle Database and Oracle Grid Infrastructure deployments. Oracle recommends
that you deploy all Oracle software installations in accordance with the OFA architecture
standard for Oracle Database installations. Following the OFA standard helps to ensure that
your installations are easier for you to maintain, and easier for you to obtain rapid assistance
from Oracle Support.

OFA provides the following benefits:

» Organizes large amounts of complicated software and data on disk, which can help to
avoid device bottlenecks and poor performance

* Facilitates routine administrative tasks, such as software and data backup functions,
which are often vulnerable to data corruption

*  Simplifies the administration of multiple Oracle databases

1-19



Chapter 1
About Running Multiple Oracle Releases

* Helps eliminate fragmentation of free space in the data dictionary, isolates other
fragmentation, and helps to minimize resource contention

» Assists database administrators to deploy an effective enterprise data
management strategy

If you are not currently using the OFA standard, then switching to the OFA standard
involves modifying your directory structure and relocating your database files.

For more information about OFA, refer to your operating system-specific Oracle
documentation. For more information about managing data files and temp files, refer to
Oracle Database Administrator’s Guide.

* Interoperability of Oracle Database Client Releases with Oracle Database
Review to understand which Oracle Database client versions are supported to
work with different Oracle Database releases.

e About the Optimal Flexible Architecture Standard
Oracle Optimal Flexible Architecture (OFA) rules help you to organize database
software and configure databases to allow multiple databases, of different
versions, owned by different users to coexist.

e About Multiple Oracle Homes Support
Oracle Database supports multiple Oracle homes. You can install this release or
earlier releases of the software more than once on the same system, in different
Oracle home directories.

Related Topics

*  Oracle Database Administrator’s Guide

Interoperability of Oracle Database Client Releases with Oracle

Database

Review to understand which Oracle Database client versions are supported to work
with different Oracle Database releases.

For information about client support with Oracle Database releases, see "Client /
Server Interoperability Support Matrix for Different Oracle Versions (Doc ID 207303.1)"

Related Topics

» Client/ Server Interoperability Support Matrix for Different Oracle Versions (Doc ID
207303.1)

About the Optimal Flexible Architecture Standard

ORACLE

Oracle Optimal Flexible Architecture (OFA) rules help you to organize database
software and configure databases to allow multiple databases, of different versions,
owned by different users to coexist.

In earlier Oracle Database releases, the OFA rules provided optimal system
performance by isolating fragmentation and minimizing contention. In current releases,
OFA rules provide consistency in database management and support, and simplifies
expanding or adding databases, or adding additional hardware.

By default, Oracle Universal Installer places Oracle Database components in directory
locations and with permissions in compliance with OFA rules. Oracle recommends that
you configure all Oracle components in accordance with OFA guidelines.

1-20


https://support.oracle.com/rs?type=doc&id=207303.1
https://support.oracle.com/rs?type=doc&id=207303.1

Chapter 1
About Running Multiple Oracle Releases

Oracle recommends that you accept the OFA default. Following OFA rules is especially of
value if the database is large, or if you plan to have multiple databases.

# Note:

OFA assists in identification of an ORACLE_BASE with its Automatic Diagnostic
Repository (ADR) diagnostic data to properly collect incidents.

About Multiple Oracle Homes Support

Oracle Database supports multiple Oracle homes. You can install this release or earlier
releases of the software more than once on the same system, in different Oracle home
directories.

ORACLE

Careful selection of mount point names can make Oracle software easier to administer.
Configuring multiple Oracle homes in compliance with Optimal Flexible Architecture (OFA)
rules provides the following advantages:

You can install this release, or earlier releases of the software, more than once on the
same system, in different Oracle home directories. However, you cannot install products
from one release of Oracle Database into an Oracle home directory of a different release.

Multiple databases, of different versions, owned by different users can coexist
concurrently.

To install Oracle Database software in multiple Oracle homes, you must extract the image
file in each Oracle home, and then run the setup wizard from the respective Oracle home.

You must install a new Oracle Database release in a new Oracle home that is separate
from earlier releases of Oracle Database.

You cannot install multiple releases in one Oracle home. Oracle recommends that you
create a separate Oracle Database Oracle home for each release, in accordance with the
Optimal Flexible Architecture (OFA) guidelines.

In production, the Oracle Database server software release is the release number in the
format of major and RU release number. For example, with the release number
19.3.0.0.0, the major release is 19 and the RU release number is 3.

Later Oracle Database releases can access earlier Oracle Database releases. However,
this access is only for upgrades. For example, Oracle Database 19c can access an
Oracle Database 18c if the 18c database is started up in upgrade mode.

Structured organization of directories and files, and consistent naming for database files
simplify database administration.

Login home directories are not at risk when database administrators add, move, or delete
Oracle home directories.

For information about release support timelines, refer to My Oracle Support Doc ID
742060.1

Related Topics

My Oracle Support Note 742060.1

1-21


https://support.oracle.com/rs?type=doc&id=742060.1

Chapter 1
About Converting Databases During Upgrades

About Converting Databases During Upgrades

Review these topics to determine which is the best path for you to select to upgrade
Oracle Databases.

e Overview of Converting Databases During Upgrades
There are two methods to convert non-CDBs to multitenant architecture Oracle
Databases during upgrades, and several different technologies you can use.

e About Upgrading Using Standby Databases
You can perform rolling upgrades of databases by using Active Oracle Data
Guard, or by using Oracle Enterprise Manager Cloud Control.

e Overview of Steps for Upgrading Oracle Database Using Oracle GoldenGate
Review these steps to obtain a high-level overview of how to upgrade Oracle
Database using Oracle GoldenGate.

e Migrating From Standard Edition to Enterprise Edition of Oracle Database
Review these options to migrate to Oracle Database Enterprise Edition from
Oracle Database Standard Edition

e Migrating from Enterprise Edition to Standard Edition of Oracle Database
Converting from Enterprise Edition to Standard Edition requires exporting and
importing data, using the Export utility.

e Migrating from Oracle Database Express Edition (Oracle Database XE) to Oracle
Database
You must upgrade from Oracle Database Express Edition to Oracle Database
Enterprise Edition, and then upgrade to the current Oracle Database release.

Overview of Steps for Upgrading Oracle Database Using Oracle
GoldenGate

ORACLE

Review these steps to obtain a high-level overview of how to upgrade Oracle
Database using Oracle GoldenGate.

Upgrading to the new Oracle Database release using Oracle GoldenGate consists of
the following steps.

1. Set up a target database running the earlier Oracle Database software release,
using an existing database backup.

Upgrade the target database to the new Oracle Database release.
Synchronize the target database with the production database.
Test your environment in active/live mode.

Switch over the application to the target database.

o o p W N

Perform comprehensive testing of the new release on the target database,
including enabling any features that were installed disabled by default that you
plan to use in the new Oracle Database release.

7. Upgrade the production database to the new Oracle Database release.

1-22



Chapter 1
About Converting Databases During Upgrades

< Note:

For complete details of this procedure, refer to the Oracle GoldenGate
documentation.

Related Topics
e Oracle GoldenGate documentation

e Testing a Database Upgrade

Overview of Converting Databases During Upgrades

There are two methods to convert non-CDBs to multitenant architecture Oracle Databases
during upgrades, and several different technologies you can use.

Oracle Database 19c is the terminal release for non-CDB Oracle Database upgrades to non-
CDB architecture. Review the upgrade options for migration and upgrade from non-CDB
Oracle Database architecture to Oracle Database deployed using the multitenant
architecture.

Options for Manual Migration and Upgrades of Oracle Database Non-CDB Architecture
to the Multitenant Architecture

There are two ways you can perform manual migrations and upgrades of non-CDBs to
Oracle Database container databases (CDBs) and pluggable databases (PDBs), which use
the multitenant architecture:

e Convert the non-CDB to a PDB before upgrade.

With this option, you plug in the non-CDB Oracle Database release to the same release
CDB. (For example, plug in a non-CDB Oracle Database Release 18c into an Oracle
Database 18c release CDB). Finish converting the non-CDB Oracle Database to a PDB.
Then, upgrade the entire CDB, with its PDBs, to Oracle Database 19c.

*  Plug in the non-CDB, upgrade, and finish converting the non-CDB to a PDB after
upgrade.

With this option, you plug in a non-CDB Oracle Database release to an Oracle Database
19c CDB. Upgrade the plugged-in non-CDB Oracle Database to Oracle Database 19c.
Then, finish converting the non-CDB Oracle Database to a PDB.

Upgrade Technology Methods for Options

The following table lists methods that you can use to convert upgrades, including references
to availability issues. It also provides references to the documentation that describes how to
carry out each upgrade method.

Table 1-3 Technology Methods for Migrating and Upgrading Databases During Upgrades

Method Description Reference
AutoUpgrade for Oracle Use the AutoUpgrade tool to automate the Refer to the topic "Using
Database upgrade of your database. AutoUpgrade for Oracle Database
Upgrades"
ORACLE 1-23


unilink:ogg

Chapter 1
About Converting Databases During Upgrades

Table 1-3 (Cont.) Technology Methods for Migrating and Upgrading Databases During Upgrades

________________________________________________________________________________________________|]
Method Description Reference

Oracle Data Guard Transient Use an existing physical standby database to  Refer to the topic “About
Standby (Physical Standby) perform a database upgrade by temporarily Upgrading Using Standby
database converting it to a logical standby database, and Databases”

then converting it back to a physical standby.

Parallel Upgrade Utility Use the Parallel Upgrade Utility to perform a Refer to the topics under
manual upgrade of Oracle Database. If the "Upgrading Oracle Database with
Oracle Database is a non-CDB, then you must DBUA or Parallel Upgrade Utility"
convert the database to a PDB

Oracle GoldenGate Use Oracle GoldenGate with software Refer to Oracle GoldenGate
synchronization of upgrades and with Oracle Database data documentation, and relevant
production and standby migration procedures to carry out a Oracle Database documentation
databases for zero downtime synchronization approach to maintaining for your use case.

upgrades availability during an upgrade.

*  Use RMAN restore and upgrade to set up
a standby database running the earlier
release software using an existing backup

e Upgrade the standby database to the new
Oracle Database release

*  Move the entire database and synchronize
the standby database with the production
database using the following tools:

—  Oracle Data Pump

—  Transportable Tablespaces (TTS)

— CREATE TABLE AS SELECT (CTIS) to
create new tables and populate them
with rows from specified queries.

— INSERT AS SELECT (IAS) to create
nonpartitioned tables

*  Use Data Load/Unload to load data into
the new database release, and unload
data from the old database release

Oracle Enterprise Manager Oracle provides Cloud Control support for Refer to Online help in Oracle
Cloud Control performing database upgrades with Oracle Enterprise Manager Cloud Control
Database 12c and later releases. This option
requires that you purchase the Enterprise
Manager Lifecycle Management Pack.

" Note:

Upgrades of Oracle Grid Infrastructure (Oracle Clusterware and Oracle
Automatic Storage Management) are carried out separately, before Oracle
Database upgrades. You must complete Oracle Grid Infrastructure upgrades
before you upgrade Oracle Database installations. Other features installed
with Oracle Database can have additional upgrade requirements.

Related Topics

*  Oracle Grid Infrastructure Installation Guide for your platform

ORACLE 1-24



Chapter 1
About Converting Databases During Upgrades

e Oracle GoldenGate documentation

About Upgrading Using Standby Databases

You can perform rolling upgrades of databases by using Active Oracle Data Guard, or by
using Oracle Enterprise Manager Cloud Control.

The DBMS_ROLLING PL/SQL package enables you to upgrade the database software in an
Oracle Data Guard configuration in a rolling fashion. Rolling upgrades using Active Data
Guard uses an Oracle Data Guard physical standby database and the SQL Apply process.
Using Data Guard for rolling upgrades is supported for Oracle Database 12c release 1 (12.1)
and later Oracle Database releases.

With Oracle Database 12c release 2 (12.2) and later releases, when you perform a rolling
upgrade using the DBMS_ROLLING PL/SQL package, you no longer need to disable the
broker. In addition, the broker now reports when a rolling upgrade is in place, and tracks its
status. The status information is displayed in the output of the DGMGRL commands SHOW
CONFIGURATION and SHOW DATABASE.

Oracle Enterprise Manager Cloud Control provides options to perform a rolling upgrade of
databases in a Data Guard configuration. The procedures are described in online help within
Cloud Control.

¢ See Also:

e Oracle Data Guard Broker for information about upgrading and downgrading in
an Oracle Data Guard broker configuration

e Oracle Data Guard Concepts and Administration for information about using
DBMS ROLLING to perform a rolling upgrade.

Migrating From Standard Edition to Enterprise Edition of Oracle Database

ORACLE

Review these options to migrate to Oracle Database Enterprise Edition from Oracle Database
Standard Edition

If you have Oracle Database Standard Edition at a release earlier than the new Oracle
Database release, then you can change it from a Standard Edition release to Oracle
Database Enterprise Edition by selecting one of the following options:

e Perform a normal upgrade procedure.

Install Oracle Enterprise Edition software in a new Oracle home, and follow the normal
upgrade procedures as described in the "Upgrading Oracle Database" chapter. The Data
Dictionary for Standard Edition and Enterprise Edition configurations are the same. The
difference between Standard Edition and Enterprise Edition is in the options that are
available in the server executable.

e Perform an In-Place Upgrade using the same Oracle home.

If you have a Standard Edition database at a release earlier than the new release of
Oracle Database, and you want to perform an in-place upgrade using the same Oracle
home, then you must first upgrade the Standard Edition Database. After you complete

1-25


http://www.oracle.com/technetwork/middleware/goldengate/documentation/index.html

ORACLE

Chapter 1
About Converting Databases During Upgrades

the upgrade, use the procedure described here to install Oracle Database
Enterprise Edition software and to move to Oracle Database Enterprise Edition.

Caution:

Performing this procedure deinstalls the Oracle Standard Edition software. It
results in deleting database files that exist under the Oracle home, and under
the Fast Recovery Area (FRA). Back up database files under the current
Oracle home before you begin this procedure.

Ensure that the release number of your Oracle Standard Edition server software is
the same release as your Oracle Enterprise Edition server software.

Shut down your database.

If your operating system is Windows, then stop all Oracle services, including the
OracleServiceSID Oracle service, where SIDis the instance name.

Back up all database files under the current Oracle home that you must keep.

Deinstall the Standard Edition server software.

Caution:

This step deletes all existing database files that reside under the Oracle
home.

Run the deinstallation tool from the Oracle home. The deinstallation tool is
available as a separate command (deinstall) under the Oracle home directory
after installation. It is located under ORACLE HOME/deinstall.

To deinstall an Oracle home on Microsoft Windows, use the following syntax:

setup.exe -deinstall -home path of Oracle home to be deinstalled

To deinstall an Oracle home on Linux and Unix, use the following syntax:

$ ./runInstaller -deinstall -home
path of Oracle home to be deinstalled

# Note:

The deinstallation tool is integrated with the database installation media.
You can run the deinstallation tool using runInstaller on Linux and
Unix, or by using setup.exe on Windows with the -deinstall and -
home options from the base directory of the Oracle Database, Oracle
Database Client, or Oracle Grid Infrastructure installation media.

1-26



Chapter 1
About Upgrading Platforms for a New Oracle Database Release

6. Install Oracle Enterprise Edition server software.

Select the same Oracle home that was used for the Standard Edition that you uninstalled,
or select a new Oracle home. During the installation, be sure to select Enterprise Edition.
When prompted, choose Software Only.

7. If you have an existing database, then set your ORACLE SID to this preexisting database.

If your existing database is on Microsoft Windows, then you must recreate the database
service by using the ORADIM utility.

8. Start up your database.
Related Topics

* Upgrading Oracle Database
You can upgrade manually by using the Parallel Upgrade Utility command-line option.

Migrating from Enterprise Edition to Standard Edition of Oracle Database

Converting from Enterprise Edition to Standard Edition requires exporting and importing data,
using the Export utility.

To properly convert from an Enterprise Edition database to a Standard Edition database, you
must perform an Export/Import operation. If you only install Standard Edition software, then
some data dictionary objects become invalid. These invalid objects create problems when
maintaining the database.

The Export/Import operation does not introduce data dictionary objects specific to the
Enterprise Edition, because the sys schema objects are not exported. After the Import in the
Standard Edition database, you are only required to drop user schemas related to Enterprise
Edition features.

Migrating from Oracle Database Express Edition (Oracle Database XE) to
Oracle Database

You must upgrade from Oracle Database Express Edition to Oracle Database Enterprise
Edition, and then upgrade to the current Oracle Database release.

Oracle Database Express Edition (Oracle Database XE) is an entry-level edition of Oracle
Database.

To upgrade Oracle Database 119 release 2 (11.2) Express Edition (Oracle Database XE) to
Oracle Database 12c Release 2 or later releases, you must first upgrade from Oracle
Database XE to Oracle Database 12c Release 1 (12.1.0.2) Enterprise Edition, and then
upgrade to a later Oracle Database Enterprise Edition release.

For more information, see the "Oracle Database Express Edition (XE)" Oracle online forum;

http://forums.oracle.com

About Upgrading Platforms for a New Oracle Database Release

Review these topics if you upgrade your operating system or hardware for a new Oracle
Database release.

ORACLE 1-27


http://forums.oracle.com

Chapter 1
About Upgrading Platforms for a New Oracle Database Release

e About Upgrading Your Operating System
Check operating system requirements for new releases, and if necessary, upgrade
your operating system before upgrading Oracle Database.

»  Options for Transporting Data to a Different Operating System
Review these restrictions and guidelines if you want to perform a cross-platform
upgrade.

About Upgrading Your Operating System

Check operating system requirements for new releases, and if necessary, upgrade
your operating system before upgrading Oracle Database.

When you upgrade to a new release of Oracle software, the operating system
requirements may have changed. If required, upgrade the operating system before
upgrading Oracle Database.

¢ See Also:

e Oracle Database Installation Guide for your platform to obtain a list of
supported operating systems

e Your operating system-specific documentation for information about how
to perform an operating system upgrade

Options for Transporting Data to a Different Operating System

ORACLE

Review these restrictions and guidelines if you want to perform a cross-platform
upgrade.

When using DBUA or when performing a manual upgrade for Oracle Database, you
cannot directly migrate or transport data in a database on one operating system to a
database on another operating system. For example, you cannot migrate data in an
Oracle database on Solaris to an Oracle 12c database on Windows using DBUA. You
must follow procedures specific to your operating system platforms.

To see the platforms that support cross-platform data transport, run the following query
using SQL*Plus:

SELECT * FROM VSTRANSPORTABLE PLATFORM ORDER BY PLATFORM NAME;

< Note:

If the source platform and the target platform are of different endianness,
then you cannot use the RMAN CONVERT DATABASE command. This process
requires both the source and target platform to be the same endian value.
Your available options are Data Pump replication, Data Pump export/import,
or Transportable Tablespace, with an RMAN CONVERT TABLESPACE. If the
platforms are of the same endianness, then no conversion is necessary and
data can be transported as if on the same platform.

1-28



Chapter 1
About Image-Based Oracle Database Installation

# See Also:

e Oracle Database Administrator's Guide for a discussion of transporting data
across platforms

e Oracle Database Backup and Recovery User's Guide for information on using
the RMAN CONVERT DATABASE and RMAN CONVERT TABLESPACE commands

About Image-Based Oracle Database Installation

ORACLE

Understand image-based installation to simplify installation and configuration of Oracle
Database software.

To install Oracle Database, create the new Oracle home, extract the image file into the newly-
created Oracle home, and run the setup wizard to register the Oracle Database product.

Using image-based installation, you can install and upgrade Oracle Database for single-
instance and cluster configurations.

This installation feature streamlines the installation process and supports automation of large-
scale custom deployments. You can also use this installation method for deployment of
customized images, after you patch the base-release software with the necessary Release
Updates (Updates) or Release Update Revisions (Revisions).

" Note:

You must extract the image software (db_home . zip) into the directory where you
want your Oracle Database home to be located, and then run the Oracle Database
Setup Wizard to start the Oracle Database installation and configuration. Oracle
recommends that the Oracle home directory path you create is in compliance with
the Oracle Optimal Flexible Architecture recommendations.

1-29



Preparing to Upgrade Oracle Database

ORACLE

Complete preupgrade tasks and checks to assist you with completing a successful upgrade.

This chapter provides information and procedures for the pre-upgrade tasks, including
planning your upgrades, data-gathering, testing, installing the new Oracle software for the
upgrade, using the Parallel Upgrade Utility to carry out your upgrade, and performing other
checks and tasks.

Tasks to Prepare for Oracle Database Upgrades
Carry out these tasks to prepare your upgrade.

Pre-Upgrade Information Check with AutoUpgrade
To obtain a checklist of tasks you must complete before upgrading an Oracle Database,
run the AutoUpgrade utility (autoupgrade.jar) in analyze mode.

Installing the New Oracle Database Software for Single Instance
Use this procedure overview to assist you to install the software for the new Oracle
Database release for a single instance deployment.

Installing the New Oracle Database Software for Oracle RAC
Use this procedure overview to assist you to install the software for the new Oracle
Database release for an Oracle RAC deployment.

Database Preparation Tasks to Complete Before Starting Oracle Database Upgrades
Ensure that you have completed these database preparation tasks before starting an
Oracle Database upgrade.

Preparing for Database Rolling Upgrades Using Oracle Data Guard
If you perform your upgrade using Oracle Data Guard to carry out a rolling upgrade, then
you must move the Data Guard broker configuration files before starting your upgrade.

Preparing the New Oracle Home for Upgrading
To prepare the new Oracle home in a new location, check to see if you must move
configuration files, or complete other tasks.

Prerequisites for Preparing Oracle Home on Windows
Your system must meet these requirements before you can upgrade Oracle Database on
Microsoft Windows platforms.

Performing Preupgrade Checks Using AutoUpgrade
The AutoUpgrade Utility is a Java JAR file provided by Oracle that helps to ensure that
your upgrade completes successfully.

Testing the Upgrade Process for Oracle Database
Your test plan for Oracle Database upgrades should include these test procedures.

Requirements for Upgrading Databases That Use Oracle Label Security and Oracle
Database Vault

You must complete these tasks before starting an upgrade with a database using Oracle
Label Security or Oracle Database Vault.

Back Up Oracle Database Before Upgrading
Use this procedure to back up your existing Oracle Database before you attempt an
upgrade.

2-1



Chapter 2
Tasks to Prepare for Oracle Database Upgrades

Tasks to Prepare for Oracle Database Upgrades

Carry out these tasks to prepare your upgrade.

Before you upgrade your database, Oracle recommends that you review the new
features and determine the best upgrade path and method to use, and carry out
procedures to prepare your database for upgrade. Oracle strongly recommends that
you test the upgrade process and prepare a backup strategy.

e Become Familiar with New Oracle Database Features
Before you plan the upgrade process, become familiar with the features of the new
Oracle Database release.

e Pre-Upgrade Information Check with AutoUpgrade
To obtain a checklist of tasks you must complete before upgrading an Oracle
Database, run the AutoUpgrade utility (autoupgrade.jar) in analyze mode.

* Review Deprecated and Desupported Features
Before you upgrade, check to see if deprecated or desupported features require
attention in your upgrade plan.

* Choose an Upgrade Method for Oracle Database
Oracle offers several methods to upgrade your database, which support the
complexities of your enterprise.

* Choose a New Location for Oracle Home when Upgrading
When you upgrade or patch the database, you must install the new Oracle home
in a new location (an out-of-place upgrade or patch).

» Develop a Test Plan for Upgrading Oracle Database
Review these topics to understand how to create a series of carefully designed
tests to validate all stages of the upgrade process.

*  Schema-Only Accounts and Upgrading EXPIRED Password Accounts
Before starting your upgrade, determine if you want to use password
authentication to default Oracle Database accounts where their passwords are in
EXPIRED status, and their account is in LOCKED status

* Back Up Files to Preserve Downgrade and Recovery Options
To ensure that you can recover from upgrade issues, and downgrade to an earlier
release if necessary, Oracle recommends that you implement a backup strategy
for your database, and for some specific files.

Become Familiar with New Oracle Database Features

ORACLE

Before you plan the upgrade process, become familiar with the features of the new
Oracle Database release.

Oracle Database New Features Guide is a good starting point for learning the
differences between Oracle Database releases. Also, check specific guides in the
Oracle Database documentation library to find information about new features for a
certain component. For example, see Oracle Real Application Clusters Administration
and Deployment Guide for changes in Oracle Real Application Clusters.

2-2



Chapter 2
Tasks to Prepare for Oracle Database Upgrades

< Note:

Oracle Database training classes are an excellent way to learn how to take full
advantage of the features and functions available with Oracle Database. You can
find more information here:

http://education.oracle.com/

Related Topics

*  QOracle Database New Features Guide

Pre-Upgrade Information Check with AutoUpgrade

To obtain a checklist of tasks you must complete before upgrading an Oracle Database, run
the AutoUpgrade utility (autoupgrade.jar) in analyze mode.

Oracle recommends that you download and run the most recent release of AutoUpgrade in -
analyze mode before you upgrade Oracle Database. AutoUpgrade can identify issues for you
to address before you start your upgrade. In certain cases, AutoUpgrade can also generate
scripts that can resolve some issues.

Tip:

Consider reviewing Mike Dietrich's upgrade blog for tips and suggestions that can
assist you with your upgrade preparations. For Oracle Database 19c, review the My
Oracle Support note "Oracle Database 19c Important Recommended One-off
Patches (Doc ID 555.1)" to obtain information about the most important patch
bundles for Oracle Database 19c.

Related Topics
My Oracle Support AutoUpgrade Tool (Doc ID 2485457.1)

* My Oracle Support Oracle Database 19c¢ Important Recommended One-Off Patches
(Doc ID 555.1)

*  Upgrade your Database — NOW! Mike Dietrich's Oracle Database Upgrade Blog

Review Deprecated and Desupported Features

ORACLE

Before you upgrade, check to see if deprecated or desupported features require attention in
your upgrade plan.

Every release, Oracle modifies or removes support for features, views, and parameters, so
that Oracle can focus on improving core manageability and functionality of other features in
the database. For that reason, as part of your upgrade planning, Oracle recommends that
you review the list of features listed as deprecated or desupported in a new release, and
determine if these changes are of concern for your applications.

There are two categories of features scheduled for removal:

2-3


http://education.oracle.com/
https://support.oracle.com/rs?type=doc&id=2485457.1
https://support.oracle.com/rs?type=doc&amp;id=555.1
https://support.oracle.com/rs?type=doc&amp;id=555.1
https://mikedietrichde.com/

Chapter 2
Tasks to Prepare for Oracle Database Upgrades

» Deprecated features are features that are no longer being enhanced, but are still
supported for the full life of this release of Oracle Database.

- Desupported features are features that are no longer supported by fixing bugs
related to that feature. Often, Oracle can choose to remove the code required to
use the feature. A deprecated feature can be desupported in the next Oracle
Database release.

If you see that a feature is deprecated, then Oracle strongly recommends that you stop
using that feature as soon as it is practicable for you to do so. Start planning your
migration away from deprecated features at the time that they are deprecated.

Choose an Upgrade Method for Oracle Database

Oracle offers several methods to upgrade your database, which support the
complexities of your enterprise.

* The AutoUpgrade Utility Method for Upgrading Oracle Database
The AutoUpgrade utility identifies issues before upgrades, performs pre- and
postupgrade actions, deploys upgrades, performs postupgrade actions, and starts
the upgraded Oracle Database.

* The Graphical User Interface Method for Upgrading Oracle Database
Database Upgrade Assistant (DBUA) interactively steps you through the upgrade
process and configures the database for the new Oracle Database release.

e The Manual, Command-Line Method for Upgrading Oracle Database
Manual upgrades give you finer control over the upgrade process.

*  The Export/Import Method for Migrating Data When Upgrading Oracle Database
You can use Oracle Data Pump to carry out data exports and imports.

*  The Graphical User Interface Method for Upgrading Oracle Database
Database Upgrade Assistant (DBUA) interactively steps you through the upgrade
process and configures the database for the new Oracle Database release.

The AutoUpgrade Utility Method for Upgrading Oracle Database

The AutoUpgrade utility identifies issues before upgrades, performs pre- and
postupgrade actions, deploys upgrades, performs postupgrade actions, and starts the
upgraded Oracle Database.

Oracle recommends that you download the most recent version of the AutoUpgrade
Utility from My Oracle Support Document 2485457.1, and use autoupgrade.jar to
prepare for and to deploy your upgrade. The AutoUpgrade utility is designed to
automate the upgrade process, both before starting upgrades, during upgrade
deployments, and during postupgrade checks and configuration migration. You use
AutoUpgrade after you have downloaded binaries for the new Oracle Database
release, and set up new release Oracle homes. When you use AutoUpgrade, you can
upgrade multiple Oracle Database deployments at the same time, using a single
configuration file, customized as needed for each database deployment. Starting with
Oracle Database 21c, when you have an existing target release CDB, you can use
AutoUpgrade to convert a non-CDB Oracle Database to a PDB on the target release
CDB during the upgrade.

With AutoUpgrade, when you have an existing target release CDB, you can use
AutoUpgrade to convert a non-CDB Oracle Database to a PDB on the target release
CDB during the upgrade.

ORACLE 2.4



Chapter 2
Tasks to Prepare for Oracle Database Upgrades

Starting with AutoUpgrade version 22.1, Oracle provides REST APIs that enable you to
perform upgrades remotely over SSH using Oracle REST Data Services (ORDS) or Oracle
Cloud Infrastructure (OCI) REST API. The ORDS database API is a database management
and monitoring REST APl embedded into Oracle REST Data Services. The OCI REST API is
enabled by configuring the REST Adapter connection to use the OCI Signhature Version 1
security policy. You can now use these features to run AutoUpgrade upgrades remotely over
HTTPS or HTTP.

The minimum COMPATIBLE parameter setting for the source database must be at least 12.2.0.
If the COMPATIBLE setting is a lower version, then during the conversion and upgrade process,
COMPATIBLE is set to 12.2.0. During the conversion, the original datafiles are retained. They
are not copied to create the new PDB. To enable AutoUpgrade to perform the upgrade, edit
the AutoUpgrade configuration file to set the AutoUpgrade parameters target version to
the target CDB release, and identify the CDB to which the upgraded database is placed using
target cdb. During the conversion and upgrade process, AutoUpgrade uses that information
to complete the upgrade to the target CDB.

Caution:

Before you run AutoUpgrade to complete the conversion and upgrade. Oracle
strongly recommends that you create a full backup of your source database, and
complete thorough testing of the upgrade. There is no option to roll back to the non-
CDB Oracle Database state after AutoUpgrade starts this procedure.

The Graphical User Interface Method for Upgrading Oracle Database

Database Upgrade Assistant (DBUA) interactively steps you through the upgrade process
and configures the database for the new Oracle Database release.

The preferred option for upgrading Oracle Database is to use the AutoUpgrade utility.
However, in Oracle Database 19c, you can still use DBUA to upgrade multitenant architecture
container databases (CDB), and pluggable databases (PDBSs).

DBUA starts AutoUpgrrade using the preupgrade parameter (autoupgrade.jar -preupgrade -
mode), which fixes some configuration settings to the values required for the upgrade. For
example, the tool can change initialization parameters to values required for the upgrade.
The tool also provides you with a list of items that you can fix manually before you continue
with the upgrade.

The Manual, Command-Line Method for Upgrading Oracle Database

ORACLE

Manual upgrades give you finer control over the upgrade process.

A manual upgrade consists of running SQL scripts and utilities from a command line to
upgrade a database to the new Oracle Database release.

Before the Upgrade

e Analyze the database using AutoUpgrade (autoupgrade.jar -mode analyze)

The AutoUpgrade Analyze (analyze) processing mode checks your database to see if it is
ready for upgrade. When you run AutoUpgrade in Analyze mode, AutoUpgrade only
reads data from the database, and does not perform any updates to the database. You
can run AutoUpgrade using the Analyze mode during normal business hours. You can

2-5



Chapter 2
Tasks to Prepare for Oracle Database Upgrades

run AutoUpgrade in Analyze mode on your source Oracle Database home before
you have set up your target release Oracle Database home.

*  Prepare the new Oracle home.

» Perform a backup of the database.

The Export/Import Method for Migrating Data When Upgrading Oracle

Database

You can use Oracle Data Pump to carry out data exports and imports.
Topics:

e The Effects of Export/Import on Upgraded Oracle Databases
Review this topic to understand the benefits of Export/Import data migration.

*  Export/Import Benefits for Migrating Data for Oracle Database
Migrating data when upgrading Oracle Database using Export/Import provides
benefits that can increase performance.

*  Time Requirements for Migrating Data with Export/Import
Understand the time it takes for data migration using Oracle Data Pump.

The Effects of Export/Import on Upgraded Oracle Databases

Review this topic to understand the benefits of Export/Import data migration.

The Export/Import data migration method does not change the current database,
which enables the database to remain available throughout the upgrade process.
However, if a consistent snapshot of the database is required (for data integrity or
other purposes), then the database must run in restricted mode or must otherwise be
protected from changes during the export procedure. Because the current database
can remain available, you can, for example, keep an existing production database
running while the newly upgraded Oracle Database database is being built at the
same time by Export/Import. During the upgrade, to maintain complete database
consistency, changes to the data in the database cannot be permitted without the
same changes to the data in the newly upgraded Oracle database.

Most importantly, the Export/Import operation results in a completely new database.
Although the current target database ultimately contains a copy of the specified data
that you migrated, the upgraded database can perform differently from the original
source database. Although Export/Import creates an identical copy of the database,
other factors can cause unexpected performance issues. (For example: disk
placement of data, and unset tuning parameters).

Export/Import Benefits for Migrating Data for Oracle Database

ORACLE

Migrating data when upgrading Oracle Database using Export/Import provides benefits
that can increase performance.

Using Export/Import to migrate data provides the following benefits:

» Defragments the data. You can compress the imported data to improve
performance.

* Restructures the database. You can create new tablespaces or modify existing
tables, tablespaces, or partitions that you want to populate with imported data.

2-6



Chapter 2
Tasks to Prepare for Oracle Database Upgrades

» Facilitates side-by-side testing of the old and new releases of Oracle Database because
an entirely new database is created.

» Enables the copying of specified database objects or users. Importing only the objects,
users, and other items you need is useful for establishing a test environment for the new
software on only a subset of the production data. Data Pump Export/Import provides
flexible data-subsetting capabilities.

» Serves as a backup archive. You can use a full database export as an archive of the
current database.

* Enables you to establish the upgraded database on a different operating system or
hardware platform than the platform on which your earlier release database is placed.

* Network-based Data Pump Import enables you to load the new release Oracle Database
directly across the network for your earlier release Oracle Database. By using network-
based Data Pump import, you are not required to use intervening dump files.

Time Requirements for Migrating Data with Export/Import

Understand the time it takes for data migration using Oracle Data Pump.

Migrating an entire Oracle Database by using Oracle Data Pump using Export/Import can
take a long time, especially compared to using DBUA or performing a manual upgrade. If you
use Oracle Data Pump to migrate data, then schedule the migration during non-peak hours or
make provisions for propagating to the new database any changes that are made to the
current database during the upgrade.

The Graphical User Interface Method for Upgrading Oracle Database

Database Upgrade Assistant (DBUA) interactively steps you through the upgrade process
and configures the database for the new Oracle Database release.

The preferred option for upgrading Oracle Database is to use the AutoUpgrade utility.
However, in Oracle Database 19c, you can still use DBUA to upgrade multitenant architecture
container databases (CDB), and pluggable databases (PDBSs).

DBUA starts AutoUpgrrade using the preupgrade parameter (autoupgrade.jar -preupgrade -
mode), which fixes some configuration settings to the values required for the upgrade. For
example, the tool can change initialization parameters to values required for the upgrade.
The tool also provides you with a list of items that you can fix manually before you continue
with the upgrade.

Choose a New Location for Oracle Home when Upgrading

ORACLE

When you upgrade or patch the database, you must install the new Oracle home in a new
location (an out-of-place upgrade or patch).

AutoUpgrade performs out-of-place upgrades and patches: This means that the upgrade or
the patched Oracle home is in a new Oracle home. Previously, with an in-place upgrade or
patch, the upgrade or patch was applied to the existing Oracle home. Using separate
installation locations enables you to keep your existing Oracle software installed along with
the new Oracle software. By using separate installation locations, you can test the upgrade or
patch process in the out-of-place Oracle home database before replacing your production
environment entirely.

2-7



Chapter 2
Tasks to Prepare for Oracle Database Upgrades

When you upgrade a database, whether the database is a non-CDB or a CDB, the
upgrade must be an out-of-place upgrade, which means that a new location is needed
to install the new Oracle home.

Related Topics

» How to speed up your database and Gl patching

Develop a Test Plan for Upgrading Oracle Database

ORACLE

Review these topics to understand how to create a series of carefully designed tests to
validate all stages of the upgrade process.

Oracle recommends that you perform rigorous tests of your database and applications.
When you run and complete tests successfully, you help to ensure that you understand
the process of upgrading the production database, so that the upgrade process is
predictable and successful. Oracle strongly recommends that you perform as much
testing as possible before upgrading a production database. Do not underestimate the
importance of a complete and repeatable testing process.

You can choose to perform tests manually, or you can use utilities to assist your tests,
such as Oracle Real Application Testing features like Database Replay or SQL
Performance Analyzer. In either case, the types of tests that you perform are the
same.

Your test plan must include these types of tests:

e Upgrade Testing
When you upgrade Oracle Database to a new release, Oracle strongly
recommends that you create, test, and validate an upgrade plan.

e Minimal Testing
You can find application startup or invocation problems when you perform minimal
testing of applications on a test new release environment.

e Functional Testing After Upgrades
Perform functional testing of the upgraded Oracle Database after the upgrade is
complete.

e High Availability Testing
To ensure that you can continue to meet your service level agreements, plan to
perform High Availability testing on your upgraded Oracle Database system.

e Integration Testing to Ensure Applications are Compatible
Integration testing for Oracle Database examines the interactions among
components of the system.

» Performance Testing an Upgraded Oracle Database
Plan performance testing comparisons between your earlier release and upgraded
Oracle Database.

e Volume and Load Stress Testing for Oracle Database Upgrades
To perform volume and load stress testing of the entire upgraded Oracle Database
under high volume and loads, use Database Replay.

e Test Plan Guidelines for Oracle Database Upgrade Planning
Perform planned tests on your current database and on the test database that you
upgraded to the new Oracle Database release.

2-8


https://mikedietrichde.com/2022/05/09/how-to-speed-up-your-database-and-gi-patching/

Chapter 2
Tasks to Prepare for Oracle Database Upgrades

Upgrade Testing

When you upgrade Oracle Database to a new release, Oracle strongly recommends that you
create, test, and validate an upgrade plan.

Upgrade testing for Oracle Database entails planning and testing the upgrade path from your
current Oracle Database software to the new Oracle Database release. Oracle strongly
recommends that you plan and test your upgrade, whether you use Oracle Database
Upgrade Assistant (DBUA), perform a manual upgrade, or use the AutoUpgrade utility.
Planning and testing also applies if you use data migration methods, such as Oracle Data
Pump Export/Import, or other data-copying methods. Regardless of the upgrade or data
migration method you choose, you must plan, test, and validate changes.

Minimal Testing

You can find application startup or invocation problems when you perform minimal testing of
applications on a test new release environment.

Minimal testing for Oracle Database entails moving all or part of an application from the
current database to the new database, and running the application without enabling any new
database features. It is possible that minimal testing does not reveal problems that appear in
an actual production environment. However, minimal testing immediately reveals any
application startup or invocation problems.

Functional Testing After Upgrades

Perform functional testing of the upgraded Oracle Database after the upgrade is complete.

Functional testing for Oracle Database is a set of tests in which new and existing features
and functions of the system are tested after the upgrade. Functional testing includes all
database, networking, and application components. The objective of functional testing is to
verify that each component of the system functions as it did before upgrading and to verify
that new functions are working properly.

High Availability Testing

ORACLE

To ensure that you can continue to meet your service level agreements, plan to perform High
Availability testing on your upgraded Oracle Database system.

High Availability testing for Oracle Database ensures that the upgraded database system
meets these recovery business requirements:

e Recovery Time Objective (RTO)
e Recovery Point Objective (RPO)
Oracle recommends the following test procedures for high availability testing:

» Create node or instance failures during stress testing. Node or instance failures help to
evaluate the Oracle RAC recovery capability.

» Test fallback plans and procedures to ensure that you can minimize downtime on
upgraded databases.

» Check database performance and stability, and resolve performance problems. Resolving
performance problems helps to ensure that the upgrade process runs within the time that
you have allocated.

2-9



Chapter 2
Tasks to Prepare for Oracle Database Upgrades

Integration Testing to Ensure Applications are Compatible

Integration testing for Oracle Database examines the interactions among components
of the system.

Oracle recommends that you carry out the following tests as part of your integration
testing:

e To ensure that Pro*C/C++ applications are compatible with the upgraded
database, test Pro*C/C++ application clients with the upgraded Oracle Database

e Test graphical user interfaces.

e Test all applications that interact directly or indirectly with the database. Subtle
changes in an upgraded Oracle Database, such as data types, data in the data
dictionary (additional rows in the data dictionary, object type changes, and so on)
can affect front-end applications, even if those applications are not directly
connected to the upgraded Oracle Database instance.

e Test and stress-test any Oracle Net or Oracle Net Services connections between
components.

Related Topics
e C++ Applications

* Upgrade Considerations for Oracle Net Services

Performance Testing an Upgraded Oracle Database

Plan performance testing comparisons between your earlier release and upgraded
Oracle Database.

Performance testing of the upgraded Oracle Database compares the performance of
various SQL statements in the new database with the performance of those same
statements in the current database. Before upgrading, analyze the performance profile
of applications under your current Oracle Database release. Specifically, analyze and
understand the calls that applications make to the database server.

Oracle strongly recommends that you set up a testing system with the same storage,
data, and other characteristics as your production system.

» Database Replay and Performance Testing
Use the Database Replay feature to perform real-world testing of a database
upgrade on your production workload before actually upgrading the production
database.

e SQL Performance Analyzer
Use the SQL Performance Analyzer to forecast the impact of system changes on a
SQL workload.

*  SQL Plan Management
Review this topic to understand how to carry out SQL plan managements after
upgrades to avoid performance regressions.

Database Replay and Performance Testing

Use the Database Replay feature to perform real-world testing of a database upgrade
on your production workload before actually upgrading the production database.

ORACLE 2-10



Chapter 2
Tasks to Prepare for Oracle Database Upgrades

The Database Replay feature captures the actual database workload on the production
system, and replays it on the test system. Database Replay also provides analysis and
reporting to highlight potential problems; for example, errors encountered, divergence in
performance, and so forth. In addition, all the regular Enterprise Manager performance
monitoring and reporting tools such as Automatic Database Diagnostic Monitor, Automatic
Workload Repository (AWR), and Active Session History are available to address any
problems.

# Note:

You can change the stored procedure logic in the database. However, the stored
PL/SQL procedures that implement the application logic must maintain the same
interfaces as before the upgrade. If an upgrade affects the stored procedures of an
application, replaying the workload may not be possible. Using Database Replay
tool with the same interfaces provides you with good diagnostics to see if the new
application logic in the server is performing as expected after the upgrade.

¢ See Also:

e Oracle Database Testing Guide for information about how to capture and replay
workloads

e Oracle Database Performance Tuning Guide for more information on the
Automatic Workload Repository

SQL Performance Analyzer

Use the SQL Performance Analyzer to forecast the impact of system changes on a SQL
workload.

SQL Performance Analyzer enables you to evaluate the effect of an upgrade on your SQL
workloads. SQL Performance Analyzer finds possible issues by identifying the SQL
statements affected by the upgrade. It then measures the performance divergence of SQL
workloads before the upgrade, and after the upgrade. The analysis enables you to assess the
overall effect of the upgrade on SQL performance. You can then take measures to avoid any
negative outcome from SQL workload changes before they can affect users.

# See Also:

Oracle Database Testing Guide for further information, and examples of using the
SQL Performance Analyzer to perform analysis on potential database changes

SQL Plan Management

Review this topic to understand how to carry out SQL plan managements after upgrades to
avoid performance regressions.

ORACLE 2-11



ORACLE

Chapter 2
Tasks to Prepare for Oracle Database Upgrades

A database upgrade that installs a new optimizer version usually results in plan
changes for a small percentage of SQL statements. Most plan changes result in no
performance change or improvement. However, certain plan changes may cause
performance regressions. SQL plan management prevents performance regressions
resulting from sudden changes to the execution plan of a SQL statement by providing
components for capturing, selecting, and evolving SQL plan information. SQL plan
management is a preventative mechanism that records and evaluates the execution
plans of SQL statements over time, and builds SQL plan baselines composed of a set
of existing plans that are proven efficient after repeated use. SQL plan management
uses the SQL plan baselines to preserve the performance of corresponding SQL
statements, regardless of changes occurring in the system.

With SQL plan management, the optimizer automatically manages execution plans
and ensures that only known or verified plans are used. When SQL Plan management
finds a new plan for a SQL statement, it does not use this plan until the database
verifies that the new plan has comparable or better performance than the current plan.
If you seed SQL plan management with your current execution plans, then those plans
becomes the SQL plan baseline for each statement. The optimizer uses these plans
after the upgrade. If the Oracle Database 12¢ optimizer determines that a different
plan can result in better performance, then the new plan is queued for verification and
is not used until it has been confirmed to have comparable or better performance than
the current plan.

There are several ways to seed or populate a SQL Management Base (SMB) with
execution plans:

Bulk Load a SQL Management Base from the Cursor Cache

Bulk loading of execution plans or SQL plan baselines from the cursor cache is useful
when upgrading a database from Oracle Database 11g to the latest release of Oracle
Database. The cursor cache is a shared SQL area, and SQL plans that are bulk
loaded are automatically accepted and added to existing or new plan histories as SQL
plan baselines.

1. Inthe source release of Oracle Database, use the
DBMS SPM.LOAD PLAN FROM CURSOR CACHE procedure or Oracle Enterprise
Manager to load all of the execution plans in the cursor cache into the SQL
Management Base.

2. Upgrade the database.

¢ See Also:

Oracle Database SQL Tuning Guide for more information on how to load
plans from the shared SQL area using PL/SQL or Oracle Enterprise Manager

Bulk Load a SQL Management Base with a SQL Tuning Set (STS)

Bulk loading of execution plans or SQL plan baselines may be done with a SQL
Tuning Set. This is useful when upgrading from Oracle Database 10g, where no SQL
Management Base (SMB) exists to directly load from the cursor cache, or to load
historic plans from the Automatic Workload Repository.

1. Inthe source release of Oracle Database, create an STS that includes the
execution plan for each of the SQL statements.

2-12



ORACLE

Chapter 2
Tasks to Prepare for Oracle Database Upgrades

Load the STS into a staging table and export the staging table into a dump file.

Import the staging table from a dump file into the new release of Oracle and unload the
STS.

Use Oracle Enterprise Manager or DBMS SPM.LOAD PLANS FROM SQLSET to load the
execution plans into the SQL Management Base.

¢ See Also:

Oracle Database SQL Tuning Guide for the complete procedure for bulk loading
execution plans or SQL plan baselines

Unpack Existing SQL Plan Baselines from a Staging Table

You can test and tune all of your critical SQL queries on an Oracle Database test
environment and then move those SQL execution plans to your Oracle Database production
environment. Alternatively, you can take plans for SQL queries from your pre-upgrade Oracle
Database production environment and move them to your post-upgrade production
environment.

1.

w

N o g bk

On the Oracle Database 12c test system, after completing all testing and tuning, use the
DBMS SPM.LOAD PLAN FROM CURSOR_CACHE procedure or Enterprise Manager to load all of
the execution plans in the cursor cache into the SQL Management Base.

Create a staging table using the DBMS SPM.CREATE STGTAB BASELINE procedure.

Pack the SQL plan baselines you created in step 1 into the staging table using the
DBMS_SPM.PACK STGTAB BASELINE function.

Export the staging table into a flat file using Data Pump.
Transfer this flat file to the target system.
Import the staging table from the flat file using Data Pump.

Unpack the SQL plan baselines from the staging table into the SQL Management Base
on the target system using the DBMS_SPM.UNPACK STGTAB BASELINE function.

Why Perform SQL Plan Management?
To prevent users from encountering performance regressions after an Oracle Database
upgrade, carry out SQL plan management.

Bulk Load a SQL Management Base from the Cursor Cache
Bulk loading of execution plans or SQL plan baselines from the cursor cache is useful
when upgrading an earlier release to the latest release of Oracle Database.

Bulk Load a SQL Management Base with a SQL Tuning Set (STS)
Bulk loading of execution plans or SQL plan baselines is useful to load historic plans from
the Automatic Workload Repository.

Unpack Existing SQL Plan Baselines from a Staging Table
Test your critical SQL queries and execution plans by using
DBMS SPM.LOAD PLAN FROM CURSOR_CACHE to create a staging table that you can migrate

for testing.

2-13



Chapter 2
Tasks to Prepare for Oracle Database Upgrades

¢ See Also:

e Oracle Database SQL Tuning Guide for more information about loading
plans from a staging table

e Oracle Database Utilities for information about using Data Pump

Why Perform SQL Plan Management?

To prevent users from encountering performance regressions after an Oracle
Database upgrade, carry out SQL plan management.

An Oracle Database upgrade that installs a new optimizer version usually results in
plan changes for a small percentage of SQL statements. Most plan changes result in
no performance change or improvement. However, certain plan changes can cause
performance regressions. SQL plan management prevents performance regressions
resulting from sudden changes to the execution plan of a SQL statement by providing
components for capturing, selecting, and evolving SQL plan information. SQL plan
management is a preventative mechanism that records and evaluates the execution
plans of SQL statements over time, and builds SQL plan baselines composed of a set
of existing plans that are proven efficient after repeated use. SQL plan management
uses the SQL plan baselines to preserve the performance of corresponding SQL
statements, regardless of changes occurring in the system.

With SQL plan management, the optimizer automatically manages execution plans
and ensures that only known or verified plans are used. When SQL Plan management
finds a new plan for a SQL statement, it does not use this plan until the database
verifies that the new plan has comparable or better performance than the current plan.
If you seed SQL plan management with your current execution plans, then those plans
becomes the SQL plan baseline for each statement. The optimizer uses these plans
after the upgrade. If the upgraded Oracle Database optimizer determines that a
different plan can result in better performance, then the new plan is queued for
verification. The new plan is not used until it has been confirmed to have comparable
or better performance than the current plan.

Bulk Load a SQL Management Base from the Cursor Cache

ORACLE

Bulk loading of execution plans or SQL plan baselines from the cursor cache is useful
when upgrading an earlier release to the latest release of Oracle Database.

The cursor cache is a shared SQL area. SQL plans that are bulk-loaded are
automatically accepted and added to existing or new plan histories as SQL plan
baselines.

1. Inthe source release of Oracle Database, use the
DBMS SPM.LOAD PLAN FROM CURSOR_CACHE procedure or Oracle Enterprise
Manager to load all of the execution plans in the cursor cache into the SQL
Management Base.

2. Upgrade the database.

Related Topics
e Loading Plans from the Shared SQL Area

2-14



Chapter 2
Tasks to Prepare for Oracle Database Upgrades

Bulk Load a SQL Management Base with a SQL Tuning Set (STS)

Bulk loading of execution plans or SQL plan baselines is useful to load historic plans from the
Automatic Workload Repository.

Bulk loading of execution plans or SQL plan baselines may be done with a SQL Tuning Set.
This is useful when you want to load historic plans from your earlier Oracle Database
Automatic Workload Repository.

1. Inthe source release of Oracle Database, create an STS that includes the execution plan
for each of the SQL statements.

2. Loadthe STS into a staging table and export the staging table into a dump file.

3. Import the staging table from a dump file into the new release of Oracle and unload the
STS.

4. Use Oracle Enterprise Manager or DBMS_SPM.LOAD PLANS FROM SQLSET to load the
execution plans into the SQL Management Base.

Related Topics
* Loading Plans from a SQL Tuning Set

Unpack Existing SQL Plan Baselines from a Staging Table

ORACLE

Test your critical SQL queries and execution plans by using
DBMS SPM.LOAD PLAN FROM CURSOR CACHE to create a staging table that you can migrate for
testing.

You can test and tune all of your critical SQL queries on an Oracle Database test
environment and then move those SQL execution plans to your Oracle Database production
environment. Alternatively, you can take plans for SQL queries from your pre-upgrade Oracle
Database production environment and move them to your post-upgrade production
environment.

1. Onthe new Oracle Database release test system, after completing all testing and tuning,
use the DBMS SPM.LOAD PLAN FROM CURSOR CACHE procedure or Enterprise Manager to
load all of the execution plans in the cursor cache into the SQL Management Base.

2. Create a staging table using the DBMS SPM.CREATE STGTAB BASELINE procedure.

w

Pack the SQL plan baselines you created in step 1 into the staging table using the
DBMS SPM.PACK STGTAB BASELINE function.

Export the staging table into a flat file, using Oracle Data Pump.
Transfer this flat file to the target system.

Import the staging table from the flat file using Oracle Data Pump.

N o a bk

Unpack the SQL plan baselines from the staging table into the SQL Management Base
on the target system using the DBMS SPM.UNPACK STGTAB BASELINE function.

Related Topics
e Loading Plans from a Staging Table

e Overview of Oracle Data Pump

2-15



Chapter 2
Tasks to Prepare for Oracle Database Upgrades

Volume and Load Stress Testing for Oracle Database Upgrades

To perform volume and load stress testing of the entire upgraded Oracle Database
under high volume and loads, use Database Replay.

Oracle Replay can assist you to uncover load issues before you move an upgraded
Oracle Database release to production. Volume describes the amount of data being
manipulated. Load describes the level of concurrent demand on the system. So when
you capture and replay a real production system volume and load, you can emulate
that load on your upgraded Oracle Database, and observe how it performs under
various volumes and loads.

Volume and load stress testing is crucial. However, it is commonly overlooked. After
upgrades, Oracle has found that some customers do not conduct any kind of volume
or load stress testing. Instead, customers often rely on benchmarks that do not
characterize business applications. Benchmarks are valuable: Oracle recommends
that you conduct benchmarks of your applications. Benchmarking can help you to
uncover problems relating to functions, performance, and integration. However, using
benchmarks cannot replace volume and load stress testing.

Load testing involves running an application load against the new Oracle Database
release, using an environment with the same data and infrastructure. When you run a
load test, you are ensuring that your applications do not encounter problems, such as
new errors, or performance issues under the load conditions that you think are likely to
occur during production. Many times, problems manifest only under certain load
conditions, and are normally not seen in functional testing. The Database Replay
feature is ideal for such load testing. Database Replay enables you to capture the
system workload from a production environment, and replay it in identical fashion on
the test system.

Related Topics

* Introduction to Database Replay

Test Plan Guidelines for Oracle Database Upgrade Planning

Perform planned tests on your current database and on the test database that you
upgraded to the new Oracle Database release.

e Compare the test results, noting anomalies.
» Repeat the test upgrade as many times as necessary until issues are resolved.

Test the newly upgraded test database with existing applications to verify that they
operate properly with a new Oracle database.

» Test enhanced functions and new capabilities by adding available Oracle
Database features.

» Ensure that the applications operate in the same manner as they did in the current
database.

ORACLE 2-16



Chapter 2
Tasks to Prepare for Oracle Database Upgrades

¢ See Also:

Oracle Database Testing Guide for information on testing a database upgrade

Schema-Only Accounts and Upgrading EXPIRED Password Accounts

Before starting your upgrade, determine if you want to use password authentication to default
Oracle Database accounts where their passwords are in EXPIRED status, and their account is
in LOCKED status

During upgrades to Oracle Database 19c and later releases, default Oracle accounts that
have not had their passwords reset before upgrade (and are set to EXPIRED status), and that
are also set to LOCKED status, are set to NO AUTHENTICATION after the upgrade is complete.

Because of this new feature, default accounts that are changed to schema-only accounts
become unavailable for password authentication. The benefit of this feature is that
administrators no longer have to periodically rotate the passwords for these Oracle
Database-provided schemas. This feature also reduces the security risk of attackers using
default passwords to hack into these accounts.

If you want to prevent these Oracle accounts from being set to schema-only accounts during
the upgrade, then you must either set a valid strong password for the account before you
start the upgrade, or set a valid strong password for these accounts after upgrade, or unlock
the accounts before you log in to the upgraded Oracle Database.

After the upgrade, an administrator can also enable password authentication for schema-only
accounts. However, for better security, Oracle recommends that you keep these accounts as
schema only accounts.

Related Topics

e Oracle Database Security Guide

Back Up Files to Preserve Downgrade and Recovery Options

ORACLE

To ensure that you can recover from upgrade issues, and downgrade to an earlier release if
necessary, Oracle recommends that you implement a backup strategy for your database, and
for some specific files.

* Prepare a Backup Strategy Before Upgrading Oracle Database
You must design and carry out an appropriate backup strategy to ensure a successful
upgrade.

*  Oracle Data Guard Broker Configuration File and Downgrades
With upgrades to Oracle Database 19c and later releases, you must back up the Data
Guard broker configuration file to preserve the capability to downgrade to an earlier
release.

»  Exporting a Broker Configuration
Use the EXPORT CONFIGURATION command to export the metadata contained in the broker

configuration file to a text file.

2-17



Chapter 2
Tasks to Prepare for Oracle Database Upgrades

Prepare a Backup Strategy Before Upgrading Oracle Database

You must design and carry out an appropriate backup strategy to ensure a successful
upgrade.

For Oracle Database Enterprise Edition, the primary fallback mechanism is Flashback
Database. However, Flashback Database can't be used to revert an unplug-plug
upgrade. For unplug-plug upgrades, rely on other fallback strategies, such as an
RMAN backup.

If you use AutoUpgrade, then Oracle recommends that you specify

target pdb_copy option=file name convert, in the AutoUpgrade configuration file,
where file name convert is a convert pattern prefixed to the data files. When you do
that, AutoUpgrade directs the database to create copies of the data files before
plugging in the database. Choosing to use this method enables you to use the original
database as a fallback. However, be aware that when you create data file copies, the
upgrade requires additional disk space and extra time.

To develop a backup strategy, consider the following questions:

e How long can the production database remain inoperable before business
consequences become intolerable?

e What backup strategy is necessary to meet your availability requirements?

e Are backups archived in a safe, offsite location?

e Are backups tested to ensure that they are done properly?

e How quickly can backups be restored (including backups in offsite storage)?
e Have disaster recovery procedures been tested successfully?

Your backup strategy should answer all of these questions, and include procedures for
successfully backing up and recovering your database. For information about
implementing backup strategies using RMAN, review Oracle Database Backup and
Recovery User’s Guide.

In addition, to ensure that you are prepared for a downgrade, review the downgrade
chapter and complete any preparation steps you may need to prepare for your
release.

Related Topics
* Backing Up the Database

» Using Flashback Database and Restore Points

Oracle Data Guard Broker Configuration File and Downgrades

ORACLE

With upgrades to Oracle Database 19c and later releases, you must back up the Data
Guard broker configuration file to preserve the capability to downgrade to an earlier
release.

In releases before Oracle Database 19c¢, Oracle Database settings that are mapped to
Oracle Data Guard broker properties are maintained in the Oracle Data Guard broker
configuration file, and can be modified using the DGMGRL command-line interface.
However, starting with Oracle Database 19c, these database settings are no longer
stored in the broker configuration file. As a result of this change, although you can
continue to modify these properties using DGMGRL, the values that you modify are no

2-18



Chapter 2
Pre-Upgrade Information Check with AutoUpgrade

longer stored in the Oracle Data Guard broker configuration file. Instead, the DGMGRL
commands directly modify the Oracle Database initialization parameters or database settings
to which these Oracle Data Guard Broker properties are mapped.

Because of this change to the way that property settings are managed, if you use Oracle
Data Guard broker, then Oracle recommends that you export your earlier release Oracle Data
Guard broker configuration file to a secure backup location before you start the upgrade. If
you do not back up the Oracle Data Guard broker configuration file before the upgrade, then
after the upgrade, you cannot downgrade to an earlier release and retain the property options
you previously selected for Oracle Data Guard.

Exporting a Broker Configuration

Use the EXPORT CONFIGURATION command to export the metadata contained in the broker
configuration file to a text file.

The directory in which the broker configuration file is stored must be accessible to the Oracle
server process.

1. Connect to the primary database.

DGMGRL> CONNECT sysdg@North Sales.example.com;
Password: password

Connected to "North Sales"

Connected as SYSDG.

2. Export the broker configuration.

The following command exports the broker configuration and stores it in a file named
myconfig.txt in the trace directory.

DGMGRL> EXPORT CONFIGURATION TO 'myconfig.txt';
Succeeded.

Pre-Upgrade Information Check with AutoUpgrade

ORACLE

To obtain a checklist of tasks you must complete before upgrading an Oracle Database, run
the AutoUpgrade utility (autoupgrade.jar) in analyze mode.

Oracle recommends that you download and run the most recent release of AutoUpgrade in -
analyze mode before you upgrade Oracle Database. AutoUpgrade can identify issues for you
to address before you start your upgrade. In certain cases, AutoUpgrade can also generate
scripts that can resolve some issues.

Tip:

Consider reviewing Mike Dietrich's upgrade blog for tips and suggestions that can
assist you with your upgrade preparations. For Oracle Database 19c, review the My
Oracle Support note "Oracle Database 19c Important Recommended One-off
Patches (Doc ID 555.1)" to obtain information about the most important patch
bundles for Oracle Database 19c.

2-19



Chapter 2
Installing the New Oracle Database Software for Single Instance

Related Topics

My Oracle Support AutoUpgrade Tool (Doc ID 2485457.1)

My Oracle Support Oracle Database 19c Important Recommended One-Off
Patches (Doc ID 555.1)

Upgrade your Database — NOW! Mike Dietrich's Oracle Database Upgrade Blog

Installing the New Oracle Database Software for Single

Instance

Use this procedure overview to assist you to install the software for the new Oracle
Database release for a single instance deployment.

To install the new Oracle Database software for this release:

1.

Follow the instructions in your Oracle operating system-specific documentation to
prepare for installation of Oracle Database software.

Start Oracle Universal Installer, and select a software-only installation.

When installation of Oracle Database software has completed successfully, click
Exit to close Oracle Universal Installer.

If you use Oracle Label Security, Oracle Database Vault, or both, then select
Enterprise Edition on the Select Database Edition page, click Select Options,
and enable one or both components from the components list.

Installing the New Oracle Database Software for Oracle

RAC

ORACLE

Use this procedure overview to assist you to install the software for the new Oracle
Database release for an Oracle RAC deployment.

< Note:

You cannot upgrade a database using Database Upgrade Assistant (DBUA)
when the source and target Oracle homes are owned by different users.
Attempting to do so returns error PRKH-1014. Either ensure that the source
and target databases have the same owner, or perform a manual upgrade.

If you are upgrading an Oracle RAC database, then you must perform the following
steps in the order shown:

1.

Upgrade Oracle Clusterware:

a. Upgrade Oracle Clusterware first as described in the Oracle Grid Infrastructure
installation guide for your operating system.

b. When prompted, open a separate terminal session, log in as root, and run
root.sh.

2-20


https://support.oracle.com/rs?type=doc&id=2485457.1
https://support.oracle.com/rs?type=doc&amp;id=555.1
https://support.oracle.com/rs?type=doc&amp;id=555.1
https://mikedietrichde.com/

5.

Chapter 2
Database Preparation Tasks to Complete Before Starting Oracle Database Upgrades

After upgrading Oracle Clusterware, follow the instructions in your Oracle operating
system-specific documentation to prepare for Oracle Database software installation.

Start Oracle Universal Installer, and install the software.

When installation of Oracle Database software has completed successfully, click Exit to
close Oracle Universal Installer.

Run AutoUpgrade with the preupgrade parameter, run in analyze mode. AutoUpgrade
can automatically fix many issues, and list other issues in the prefixups file it generates,
which you can fix manually before the upgrade.

Run AutoUpgrade in Deploy mode.

Related Topics

Oracle Clusterware Installation Guide for your platform

Database Preparation Tasks to Complete Before Starting Oracle
Database Upgrades

Ensure that you have completed these database preparation tasks before starting an Oracle
Database upgrade.

ORACLE

Release Updates and Requirements for Upgrading Oracle Database
Before starting upgrades, update your new release Oracle home to the latest Release
Update (Update).

Upgrades and Transparent Data Encryption

To upgrade databases using TDE, provide AutoUpgrade with TDE passwords either by
using the -load password command line option, or by specifying an external password
store.

Recommendations for Oracle Net Services When Upgrading Oracle Database
You must ensure that the listener is running in your new release Oracle home.

Create or Migrate Your Password File with ORAPWD
Review if you have REMOTE LOGIN PASSWORDFILE set.

Understanding Password Case Sensitivity and Upgrades

By default, Oracle Database 12c Release 2 (12.2) and later releases use Exclusive Mode
authentication protocols. Exclusive Modes do not support case-insensitive password-
based authentication.

Checking for Accounts Using Case-Insensitive Password Version
Use these procedures to identify if the Oracle Database that you want to upgrade has
accounts or configuration parameters that are using a case-insensitive password version.

Resource and Password Parameter Updates for STIG and CIS Profiles

Starting with Oracle Database 21c, the upgrade configures Oracle Recommended
Profiles, which includes updating an already existing STIG profile, and installing a CIS
profile as part of the upgrade.

Check for Profile Scripts (glogin.sqgl and login.sq|l)
For all upgrade methods, Oracle recommends that you run upgrades without the use of
profile scripts.

2-21



Chapter 2
Database Preparation Tasks to Complete Before Starting Oracle Database Upgrades

Running Upgrades with Read-Only Tablespaces
Use the Parallel Upgrade Utility with the -T option to take schema-based
tablespaces offline during upgrade.

High Availability Options for Oracle Database

Review the high availability options available to you for Oracle Database using
Standard Edition High Availability, Oracle Restart, Oracle Real Application Clusters
(Oracle RAC), and Oracle RAC One Node.

Options for High Availability with Oracle Database Standard Edition
To enable high availability for Oracle Database Standard Edition in releases after
Oracle Database 19c, learn how you can use Standard Edition High Availability.

Moving Operating System Audit Records into the Unified Audit Trail
Audit records that have been written to the spillover audit files can be moved to the
unified audit trail database table.

Non-CDB Upgrades and Oracle GoldenGate

If you are upgrading a Non-CDB Oracle Database where Oracle GoldenGate is
deployed, then you must shut down Oracle GoldenGate, and reconfigure it after
conversion and upgrade for the multitenant architecture.

Back Up Very Large Databases Before Using AutoUpgrade

If you use partial offline backups with very large databases, then to minimize
downtime in the event you need to downgrade your database, check your
tablespaces and ensure that all tablespaces required for recovery are backed up.

Release Updates and Requirements for Upgrading Oracle Database

Before starting upgrades, update your new release Oracle home to the latest Release
Update (Update).

ORACLE

The software for new Oracle Database releases contains a full release that includes all
the latest updates for Oracle Database at the time of the release.

Before you start an upgrade, Oracle strongly recommends that you update your new
release Oracle home to the latest quarterly Release Update (Update).

My Oracle Support provides detailed notes about how you can obtain the updates, as
well as tools for lifecycle management.. For example:

My Oracle Support note 555.1 Oracle Database 19c¢ Important Recommended
One-off Patches contains a list of patches of particular importance for Oracle
Database 19c.

My Oracle Support note 2118136.2 contains a download assistant to help you
select the updates, revisions, Patch Set Updates (PSU), SPU (CPU), Bundle
Patches, Patchsets, and Base Releases that you need for your environment.
Oracle highly recommends that you start here.

My Oracle Support note 1227443.1 contains a list of Oracle Database PSU/BP/
Update/Revision known issues. This note provides information about all known
issues notes for Oracle Database, Oracle Grid Infrastructure, and the Oracle
JavaVM Component (OJVM).

Related Topics

Oracle Database 19c Important Recommended One-off Patches (Doc ID 555.1)
My Oracle Support Note 2118136.2

2-22


https://support.oracle.com/rs?type=doc&id=555.1
https://support.oracle.com/rs?type=doc&amp;id=2118136.2

Chapter 2
Database Preparation Tasks to Complete Before Starting Oracle Database Upgrades

* My Oracle Support Note 1227443.1

Upgrades and Transparent Data Encryption

ORACLE

To upgrade databases using TDE, provide AutoUpgrade with TDE passwords either by using
the -load password command line option, or by specifying an external password store.

Starting with AutoUpgrade version 22.1, you can choose either to provide Transparent Data
Encryption (TDE) passwords at the command line during the upgrade to access the source
keystores, and have AutoUpgrade create new external keystore on the target system in a
location that you choose, or you can specify that AutoUpgrade should access an existing
secure external password store (SEPS) that contains the TDE passwords.

Provide TDE Passwords At the Command Line Using Password Initialization and
Storage

If you have the TDE passwords for the databases that you want to upgrade, then you can
provide those passwords to AutoUpgrade at the command line. AutoUpgrade creates an
external key manager generated and maintained by AutoUpgrade. With this configuration,
AutoUpgrade supports unmanned or automated operations of TDE-enabled databases. As
the upgrade runs, AutoUpgrade can open each source database keystore without prompting
for the keystore password, and enroll the target database into the TDE external keystore for
key management, so that the target database can start automatically.

1. Before running AutoUpgrade, you add the global parameter global.keystore to the
configuration file that you use with a database that uses TDE, and specify a secure path
to the location of the keystore that you want created for the upgraded database. This path
should be different from any other file path you specify in AutoUpgrade, so that the
keystore is not in any log file location.

2. When you run AutoUpgrade in Deploy mode, you must run it using the -config
command line parameter, and with the -load password parameter.

3. Before AutoUpgrade starts the database upgrades, AutoUpgrade prompts you to provide
the TDE passwords for each database specified in the configuration file that uses TDE.
These passwords are used only to access the source release TDE keystores, and to
write the TDE passwords to the new target external keystore. No passwords are written
to SQL*Plus execution plans during the upgrade. After AutoUpgrade no longer requires
the TDE passwords, these passwords are purged from memory. No log records are kept
of the passwords.

Note the following security features of the password initialization and storage option:

*  You specify the TDE passwords as AutoUpgrade starts to deploy; they are not included in
the configuration file.

* AutoUpgrade prompts you to provide the TDE password for each source database
specified in your configuration file that contains a TDE keystore.

» AutoUpgrade performs no password logging in any files written by AutoUpgrade during
the upgrade. Instead, AutoUpgrade records that the load password command line option
was used during the Deploy.

e As AutoUpgrade runs, it places TDE passwords entered at the command line into secure
Java KeyStore objects.

» After the TDE password for an Oracle Database keystore is used for access, and the
target database is enrolled into the TDE external keystore for key management,

2-23


https://support.oracle.com/rs?type=doc&id=1227443.1

ORACLE

Chapter 2
Database Preparation Tasks to Complete Before Starting Oracle Database Upgrades

AutoUpgrade clears the Java KeyStore objects containing the password, so that
these passwords are no longer in memory.

* AutoUpgrade does not include the keystore file in the zip file that AutoUpgrade
generates during the upgrade.

* If the upgrade is a non-CDB or an Unplug-Plug PDB upgrade, then the XML
manifest file created by AutoUpgrade for databases undergoing a Non-CDB to
PDB or Unplug/Plug upgrade contains TDE encryption keys. This file is also
excluded in the zip file generated by AutoUpgrade.

Provide TDE Passwords Using an AUTO LOGIN keystore

If you choose to use an existing external keystore to provide AutoUpgrade with
passwords for TDE, then you must perform a one-time setup of an AUTO LOGIN
keystore, so that the database can be shut down and restarted without requiring DBA
intervention.

To review your existing have an Oracle Wallet value specified, enter the following
command:

SQL> show parameter WALLET ROOT;

With AutoUpgrade 22.1 and later, copying the sqlnet.ora file to the new Oracle
release is no longer required. If you choose to use a secure external password
keystore, then Oracle recommends that you use the WALLET ROOT static initialization
parameter and TDE CONFIGURATION dynamic initialization parameter.

You can specify in your AutoUpgrade configuration file to have the keystore location
changed during the upgrade. Alternatively, you can complete this task manually after
the upgrade. In either case, ensure that a recent backup has been made of the
keystore before you start the upgrade.

If you complete this task manually, then after the upgrade, before you can configure
keystores and begin to encrypt data, you must perform a one-time configuration using
the WALLET ROOT and TDE_CONFIGURATION parameters to designate the location and
type of keystores that you plan to create.

The WALLET ROOT parameter specifies the keystore directory location. Before you set
WALLET ROOT, ensure that you have an existing directory that you can use to store
keystores. (Typically, this directory is called wallet.)

The TDE_CONFIGURATION parameter specifies the type of keystore (software keystore,
hardware keystore, or Oracle Key Vault keystore). If you omit the TDE CONFIGURATION
parameter, then Oracle Database uses the sglnet.ora file settings. After you set the
type of keystore using TDE_CONFIGURATION, when you create the keystore, Oracle
Database creates a directory within the WALLET ROOT location for the keystore type. For
example, if you set TDE CONFIGURATION to FILE, for Transparent Data Encryption
keystores, then Oracle Database creates a directory named tde (lower case) within
the wallet directory. If you want to migrate from one keystore type to another, then you
must first set TDE_CONFIGURATION parameter to the keystore type that you want to use,
and then use the ADMINISTER KEY MANAGEMENT statement to perform the migration. For
example, you can migrate from a hardware security module (HSM) keystore to a TDE
keystore.

The KEYSTORE MODE column of the VSENCRYPTION WALLET dynamic view shows whether
united mode or isolated mode has been configured.

2-24



Chapter 2
Database Preparation Tasks to Complete Before Starting Oracle Database Upgrades

< Note:

In previous releases, the SQLNET .ENCRYPTION WALLET LOCATION parameter was
used to define the keystore directory location. This parameter has been deprecated.
Oracle recommends that you use the WALLET ROOT static initialization parameter
and TDE_CONFIGURATION dynamic initialization parameter instead. You can use the
AutoUpgrade utility to perform this update for you during the upgrade.

Related Topics
» Databases are Fun: AutoUpgrade and Transparent Data Encryption (TDE)
* Managing the Keystore and the Primary Encryption Key

» Updating the TDE Wallet Store Location During Upgrade Using AutoUpgrade
See how you can use AutoUpgrade configuration file parameters to update your
Transparent Data Encryption (TDE) wallet store during upgrade.

Recommendations for Oracle Net Services When Upgrading Oracle

Database

ORACLE

You must ensure that the listener is running in your new release Oracle home.

If the Oracle Database that you are upgrading does not have a listener configured, then
before you start the upgrade, you must run Oracle Net Configuration Assistant (NETC2) to
configure the listening protocol address and service information for the new release of Oracle
Database, including a 1istener.ora file. The current listener is backward-compatible with
earlier Oracle Database releases.

If you are upgrading Oracle Real Application Clusters Oracle Database, or a release older
than Oracle Database 12c, then review the following additional information.

When you upgrade an Oracle RAC database with DBUA, it automatically migrates the
listener from your old Oracle home to the new Oracle Grid Infrastructure home. You must
administer the listener by using the 1snrctl command in the Oracle Grid Infrastructure home.
Do not attempt to use the 1snrctl commands from Oracle home locations for earlier
releases.

In Oracle Database, underlying net services parameters enable data compression, which
reduces the size of the session data unit that is transmitted over a SQL TCP connection.

The following new parameters for the sqlnet.ora file specify compression, and the preferred
compression scheme:

°* SQLNET.COMPRESSION
° SQLNET.COMPRESSION LEVELS
°* SQLNET.COMPRESSION THRESHOLD

These parameters, which were introduced with Oracle Database 12c, are not supported in
earlier releases.

Related Topics

e QOracle Database Net Services Reference

2-25


https://dohdatabase.com/2022/03/29/autoupgrade-tde/

Chapter 2
Database Preparation Tasks to Complete Before Starting Oracle Database Upgrades

Create or Migrate Your Password File with ORAPWD

Review if you have REMOTE LOGIN PASSWORDFILE set.

If the REMOTE LOGIN PASSWORDFILE initialization parameter is set to EXCLUSIVE,
then create or migrate the password file with ORAPWD. Oracle Database 12¢ and later
releases provide a new option to ORAPWD for migrating the password file from your
existing database.

With Oracle Database 12c release 2 (12.2) and later releases, if

REMOTE LOGIN PASSWORDFILE iS setto SHARED, then you receive a pre-upgrade
check validation warning. You can choose one of the following options to correct this
issue:

» Disable the password file-based authentication entirely by setting
REMOTE LOGIN PASSWORDFILE = NONE

* Limit the password file-based authentication by setting
REMOTE LOGIN PASSWORDFILE = EXCLUSIVE

" See Also:

Oracle Database Administrator’s Guide for more information about creating
or migrating password files

Understanding Password Case Sensitivity and Upgrades

ORACLE

By default, Oracle Database 12c Release 2 (12.2) and later releases use Exclusive
Mode authentication protocols. Exclusive Modes do not support case-insensitive
password-based authentication.

Accounts that have only the 106 password version become inaccessible when the
server runs in an Exclusive Mode.

In previous Oracle Database releases, you can configure the authentication protocol
so that it allows case-insensitive password-based authentication by setting

SEC_CASE SENSITIVE LOGON=FALSE. Starting with Oracle Database 12c release 2
(12.2), the default password-based authentication protocol configuration excludes the
use of the case-insensitive 10G password version. By default, the SQLNET . ORA
parameter SQLNET . ALLOWED LOGON VERSION SERVER is setto 12, which is an Exclusive
Mode. When the database is configured in Exclusive Mode, the password-based
authentication protocol requires that one of the case-sensitive password versions (11G
or 12C) is present for the account being authenticated. This mode excludes the use of
the 10G password version used in earlier releases. After upgrading to Oracle Database
12c release 2 and later releases, accounts that have only the case-insensitive 10G
password version become inaccessible. This change occurs because the server runs
in an Exclusive Mode by default. When Oracle Database is configured in Exclusive
Mode, it cannot use the old 10G password version to authenticate the client. The server
is left with no password version with which to authenticate the client.

For greater security, Oracle recommends that you leave case-sensitive password-
based authentication enabled. This setting is the default. However, you can

2-26



Chapter 2
Database Preparation Tasks to Complete Before Starting Oracle Database Upgrades

temporarily disable case-sensitive authentication during the upgrade to new Oracle Database
releases. After the upgrade, you can then decide if you want to enable the case-sensitive
password-based authentication feature as part of your implementation plan to manage your
password versions.

Before upgrading, Oracle recommends that you determine if this change to the default
password-based authentication protocol configuration affects you. Perform the following
checks:

e ldentify if you have accounts that use only 10G case-insensitive password authentication
versions.

* Identify if you have Oracle Database 11g release 2 (11.2.0.3) database or earlier clients
that have not applied critical patch update CPuOct2012, or a later patch update, and have
any account that does not have the case-insensitive 10G password version.

» Ensure that you do not have the deprecated parameter
SEC_CASE_SENSITIVE_LOGON set to FALSE. Setting this parameter to FALSE
prevents the use of the case-sensitive password versions (the 116 and 12C password
versions) for authentication.

Options for Accounts Using Case-Insensitive Versions

If you have user accounts that have only the case-insensitive 106G password version, then you
must choose one of the following alternatives:

» Before upgrade, update the password versions for each account that has only the 106
password version. You can update the password versions by expiring user passwords
using the 10G password version, and requesting that these users log in to their account.
When they attempt to log in, the server automatically updates the list of password
versions, which includes the case-sensitive password versions.

*  Change the setting of the SQLNET.ORA parameter
SQLNET.ALLOWED LOGON VERSION SERVER to any of the settings that are not Exclusive
Mode. For example: SQLNET .ALLOWED LOGON VERSION SERVER=11

Related Topics
e Oracle Database 2 Day DBA
e Oracle Database Net Services Reference

*  Oracle Database Security Guide

Checking for Accounts Using Case-Insensitive Password Version

ORACLE

Use these procedures to identify if the Oracle Database that you want to upgrade has
accounts or configuration parameters that are using a case-insensitive password version.

By default, in Oracle Database 12c release 2 (12.2) and later releases, the 106G password
version is not generated or allowed.

If you do not set SOLNET.ALLOWED LOGON VERSION SERVER to a permissive authentication
protocol that permits case-insensitive versions, and you do not want user accounts
authenticated with case-insensitive password versions to be locked out of the database, then
you must identify affected accounts, and ensure that they are using case-sensitive password
versions.

2-27



ORACLE

Chapter 2
Database Preparation Tasks to Complete Before Starting Oracle Database Upgrades

Example 2-1 Finding User Accounts That Use Case-Insensitive (10G) Version

Log in to SQL*Plus as an administrative user, and enter the following SQL query:

SELECT USERNAME, PASSWORD VERSIONS FROM DBA USERS;

The following result shows password versions for the accounts:

USERNAME PASSWORD VERSIONS
JONES 10G 11G 12C

ADAMS 10G 11G

CLARK 10G 11G

PRESTON 11G

BLAKE 10G

In this example, the backgrounds for each user account password verification version
in use are different:

e JONES was created in Oracle Database 106G, and the password for JONES was reset
in Oracle Database 12C when the setting for the
SQLNET.ALLOWED LOGON VERSION SERVER parameter was set to 8. As a result, this
password reset created all three versions. 116 and 12C use case-sensitive
passwords.

*  ADAMS and CLARK were originally created with the 10G version, and then 11G, after
they were imported from an earlier release. These account passwords were then
reset in 116G, with the deprecated parameter SEC_CASE_SENSITIVE_LOGON set
to TRUE.

*  The password for BLAKE was created with the 10G version, and the password has
not been reset. As a result, user BLAKE continues to use the 106G password
version, which uses a case-insensitive password.

The user BLAKE has only the 10G password version before upgrade:

SQL> SELECT USERNAME, PASSWORD VERSIONS FROM DBA USERS;

USERNAME PASSWORD VERSIONS

BLAKE 10G

If you upgrade to a new Oracle Database release without taking any further action,
then this account becomes inaccessible. Ensure that the system is not configured in
Exclusive Mode (by setting the SQLNET.ORA parameter

SQLNET.ALLOWED LOGON VERSION SERVER t0o a more permissive authentication mode)
before the upgrade.

Example 2-2 Fixing Accounts with Case-Insensitive Passwords
Complete the following procedure:

1. Use the following SQL query to find the accounts that only have the 10G password
version:

2-28



ORACLE

Chapter 2
Database Preparation Tasks to Complete Before Starting Oracle Database Upgrades

select USERNAME
from DBA USERS
where ( PASSWORD VERSIONS = '10G !
or PASSWORD VERSIONS = '10G HTTP ')
and USERNAME <> 'ANONYMOUS';

Configure the system so that it is not running in Exclusive Mode by editing the setting of
the SQLNET.ORA parameter SQLNET .ALLOWED LOGON VERSION SERVER to a level
appropriate for affected accounts. For example:

SQLNET.ALLOWED LOGON VERSION SERVER=11

After you make this change, proceed with the upgrade.

After the upgrade completes, use the following command syntax to expire the accounts
you found in step 1, where username is the name of a user returned from the query in
step 1:

ALTER USER username PASSWORD EXPIRE;
Ask the users for whom you have expired the passwords to log in.

When these users log in, they are prompted to reset their passwords. The system
internally generates the missing 116 and 12C password versions for their account, in
addition to the 10G password version. The 10G password version is still present, because
the system is running in the permissive mode.

Ensure that the client software with which users are connecting has the 05L_NP capability
flag.

< Note:

All Oracle Database release 11.2.0.4 and later clients, and all Oracle Database
release 12.1 and later clients have the 051 NP capability. Other clients require
the CPUOCct2012 patch to acquire the 05L_NP capability.

The 05L_NP capability flag is documented in Oracle Database Net Services
Reference, in the section on the parameter
SQLNET.ALLOWED LOGON VERSION SERVER.

After all clients have the 05L_NP capability, raise the server security back to Exclusive
Mode by using the following procedure:

a. Remove the SEC_CASE SENSITIVE LOGON setting from the instance initialization file, or
set the SEC_CASE SENSITIVE LOGON instance initialization parameter to TRUE. For
example:

SEC_CASE SENSITIVE LOGON = TRUE

b. Remove the SQLNET.ALLOWED LOGON VERSION SERVER parameter from the server
SQLNET.ORA file, or set it back to Exclusive Mode by changing the value of
SQLNET.ALLOWED LOGON VERSION SERVER in the server SQLNET.ORA file back to 12. For
example:

SQLNET.ALLOWED LOGON VERSION SERVER = 12
Use the following SQL query to find the accounts that still have the 10G password version:

select USERNAME
from DBA_ USERS

2-29



Chapter 2
Database Preparation Tasks to Complete Before Starting Oracle Database Upgrades

where PASSWORD VERSIONS like '%10G%'
and USERNAME <> 'ANONYMOUS';

9. Use the list of accounts returned from the query in step 8 to expire all the accounts
that still have the 10G password version. Expire the accounts using the following
syntax, where username is a name on the list returned by the query:

ALTER USER username PASSWORD EXPIRE;
10. Request the users whose accounts you expired to log in to their accounts.

When the users log in, they are prompted to reset their password. The system
internally generates only the 116 and 12¢ password versions for their account.
Because the system is running in Exclusive Mode, the 10G password version is no
longer generated.

11. Check that the system is running in a secure mode by rerunning the query from
step 1. Ensure that no users are found. When the query finds no users, this result
means that no 10G password version remains present in the system.

Example 2-3 Checking for the Presence of SEC_CASE_SENSITIVE_LOGON Set
to FALSE

Oracle Database does not prevent the use of the FALSE setting for

SEC_CASE SENSITIVE LOGON when the SQLNET.ALLOWED LOGON VERSION SERVER
parameter is set to 12 or 12a. This setting can result in all accounts in the upgraded
database becoming inaccessible.

SQL> SHOW PARAMETER SEC CASE SENSITIVE LOGON

sec_case sensitive logon boolean FALSE

You can change this parameter by using the following command:
SQL> ALTER SYSTEM SET SEC CASE SENSITIVE LOGON = TRUE;

System altered.

" Note:

Unless the value for the parameter SQLNET . ALLOWED LOGON VERSION SERVER
is changed to a version that is more permissive than 12, such as 11, do not
set the SEC_CASE SENSITIVE LOGON parameter to FALSE.

Related Topics
e Oracle Database Net Services Reference

*  Oracle Database Security Guide

ORACLE 2-30



Chapter 2
Database Preparation Tasks to Complete Before Starting Oracle Database Upgrades

Resource and Password Parameter Updates for STIG and CIS Profiles

Starting with Oracle Database 21c, the upgrade configures Oracle Recommended Profiles,
which includes updating an already existing STIG profile, and installing a CIS profile as part
of the upgrade.

A profile is a collection of attributes that apply to a user. It enables a single point of reference
for any of multiple users that share those exact attributes.

During Oracle Database upgrades, the Oracle Supplied Profile ORA STIG PROFILE user profile
is updated in accordance with the most recent system configuration baselines specified by
the US Department of Defense Systems Agency (DISA) Security Technical Implementation
Guides (STIG) baselines. This update overwrites any password and resource limits that you
may have set previously in the ORA_STIG PROFILE user profile. In addition, a new profile is
added, ORA CIS PROFILE, which complies with the most recent Center of Internet Security
(CIS) baseline updates available to Oracle at the time of the software release. These two
profiles are designated Oracle Recommended Profiles. These profiles differ from a
standard DEFAULT profile, because they are based on the STIG and CIS baselines.

The profiles ORA_STIG PROFILE and ORA CIS PROFILE are created as LOCAL profiles, and the
clause CONTAINER=CURRENT clause is used. However, to enhance the security of the profiles
that Oracle provides, only the SYsS user has permissions to modify these files.

If there are users associated to ORA STIG PROFILE, then the following parameters for these
users are made stricter after the upgrade:

e PASSWORD LIFE TIME, which is changed to 35.
e PASSWORD REUSE TIME, which is changed to 175.
*  PASSWORD GRACE TIME, which is changed to 0.

For more information about using Oracle Recommended Profiles, refer to Oracle Database
Security Guide.

Related Topics

e Managing Resources with Profiles

Check for Profile Scripts (glogin.sgl and login.sql)

ORACLE

For all upgrade methods, Oracle recommends that you run upgrades without the use of
profile scripts.

Depending on the content of profile scripts (glogin.sql and login.sql), there is a risk that
these scripts can interfere with the upgrade of Oracle Database, and that you can encounter
an UPG-1400 UPGRADE FAILED error, or Unexpected error encountered in catcon, Or
ORA-04023: Object SYS.STANDARD could not be validated or authorized. Oracle
recommends that you remove the site profile script (glogin.sqgl) from the target Oracle home
(located in the Oracle home under /sqlplus/admin ) before starting the upgrade. Also ensure
that no user profile script is defined, either in the current directory, or specified using the
environment variable SQLPATH.

Related Topics
e Upgrade and Profile Scripts

2-31


https://dohdatabase.com/2020/08/04/upgrade-and-profile-scripts/

Chapter 2
Database Preparation Tasks to Complete Before Starting Oracle Database Upgrades

Running Upgrades with Read-Only Tablespaces

Use the Parallel Upgrade Utility with the -T option to take schema-based tablespaces
offline during upgrade.

Oracle Database can read file headers created in earlier releases, so you are not
required to do anything to them during the upgrade. The file headers of READ ONLY
tablespaces are updated when they are changed to READ WRITE.

If the upgrade suffers a catastrophic error, so that the upgrade is unable to bring the
tablespaces back online, then review the upgrade log files. The log files contain the
actual SQL statements required to make the tablespaces available. To bring the
tablespaces back online, you must run the SQL statements in the log files for the
database, or run the log files for each PDB.

Viewing Tablespace Commands in Upgrade Log Files

If a catastrophic upgrade failure occurs, then you can navigate to the log directory
(Oracle base/cfgtoologs/dbua), and run commands in the log files manually to bring
up tablespaces. You can view tablespace commands in the following log files:

* Non-CDB Upgrades: catupgrd0.log

* PDB databases: catupgrdpdbname0.log, where pdbname is the name of the PDB
that you are upgrading.

At the beginning of each log file, you find SQL statements such as the following, which
sets tables to READ ONLY:

SQL> ALTER TABLESPACE ARGROTBLSPA6 READ ONLY;
Tablespace altered.
SQL> ALTER TABLESPACE ARGROTBLSPB6 READ ONLY;

Tablespace altered.

Near the end of each log file, you find SQL statements to reset tables to READ WRITE:

SQL> ALTER TABLESPACE ARGROTBLSPA6 READ WRITE;
Tablespace altered.
SQL> ALTER TABLESPACE ARGROTBLSPB6 READ WRITE;

Tablespace altered.

ORACLE 2-32



Chapter 2
Database Preparation Tasks to Complete Before Starting Oracle Database Upgrades

¢ See Also:

Oracle Database Administrator’s Guide for information about transporting
tablespaces between databases

High Availability Options for Oracle Database

ORACLE

Review the high availability options available to you for Oracle Database using Standard
Edition High Availability, Oracle Restart, Oracle Real Application Clusters (Oracle RAC), and
Oracle RAC One Node.

The following is an overview of the high availability options available to you for Oracle
Database.

Standard Edition High Availability

e Cluster-based active/passive Oracle Database failover solution

» Designed for single instance Standard Edition Oracle Databases

» Available with Oracle Database 19c release update (RU) 19.7 and later

* Requires Oracle Grid Infrastructure 19¢c RU 19.7 and later, installed as a Standalone
Cluster

Oracle Restart

» Oracle Database instance restart only feature and basis for Oracle Automatic Storage
Management (Oracle ASM) for standalone server deployments

» For single instance Oracle Databases

* Requires Oracle Grid Infrastructure for a standalone server (no cluster)

Oracle Real Application Clusters (Oracle RAC) One Node

* Provides a cluster-based active/passive Oracle Database failover and online database
relocation solution

e Available for Oracle RAC-enabled Oracle Databases

e Only one instance of an Oracle RAC-enabled Oracle Database is running under normal
operations

* Enables relocation of the active instance to another server in the cluster in an online
fashion. To relocate the active instance, you can temporarily start a second instance on
the destination server, and relocate the workload

e Supports Rolling Upgrades - patch set, database, and operating system
e Supports Application Continuity

* Requires Oracle Grid Infrastructure to be installed as a Standalone Cluster

Oracle Real Application Clusters (Oracle RAC)

e Provides active / active Oracle Database high availability and scalability solution

« Enables multiple servers to perform concurrent transactions on the same Oracle
Database

2-33



Chapter 2
Database Preparation Tasks to Complete Before Starting Oracle Database Upgrades

» Provides high availability: a failure of a database instance or server does not
interrupt the database service as a whole, because other instances and their
servers remain operational

*  Supports Rolling Upgrades - patch set, database, and operating system
e Supports Application Continuity

* Requires Oracle Grid Infrastructure to be installed as a Standalone Cluster

* Audit Table Preupgrade and Archive Requirements
For Oracle Database releases earlier than 12.1 using Oracle Label Security and
Oracle Database Vault, you must run the OLS preprocess script before you
upgrade.

Audit Table Preupgrade and Archive Requirements

For Oracle Database releases earlier than 12.1 using Oracle Label Security and
Oracle Database Vault, you must run the OLS preprocess script before you upgrade.

If you are upgrading from a database earlier than Oracle Database release 12.1 that
uses Oracle Label Security (OLS) and Oracle Database Vault, then you must first run
the OLS preprocess script, olspreupgrade.sql, to process the aud$ table contents.
The OLS upgrade moves the aud$ table from the SYSTEM schema to the sYS schema.
The olspreupgrade.sgl script is a preprocessing script required for this move.

Caution:

Running the olspreupgrade.sql script before upgrading is mandatory for
upgrading databases earlier than Oracle Database release 12.1 that use
Oracle Label Security and Oracle Database Vault. Once you have upgraded
to Oracle Database release 12.1, you do not have to perform the OLS
preprocessing procedure going forward to patch or upgrade the database.

The olspreupgrade.sql Script creates a temporary table PREUPG_AUDS in the SYS
schema and moves the SYSTEM. aud$ records to SYS.PREUPG_AUDS$. As a safety
measure, Oracle recommends that you archive your audit trail before running the
olspreupgrade.sql script. If Oracle Label Security is installed on your database, and
you are upgrading from an earlier release, then you must run the OLS preprocess
script before upgrading.

¢ See Also:
Oracle Database Security Guide for information about archiving audit trails

Oracle Label Security Administrator's Guide for information about the OLS
preprocess script

ORACLE 2-34



Chapter 2
Database Preparation Tasks to Complete Before Starting Oracle Database Upgrades

Options for High Availability with Oracle Database Standard Edition

To enable high availability for Oracle Database Standard Edition in releases after Oracle
Database 19c, learn how you can use Standard Edition High Availability.

*  Preparing to Upgrade Standard Edition Oracle RAC or Oracle RAC One Node
To maintain high availability after migrating from Standard Edition Oracle Real Application
Clusters (Oracle RAC), you can use Standard Edition High Availability.

* Requirements for Using Standard Edition High Availability With Oracle Databases
To use Standard Edition High Availability, deploy Oracle Database Standard Edition 2 in
accordance with these configuration requirements.

Preparing to Upgrade Standard Edition Oracle RAC or Oracle RAC One Node

To maintain high availability after migrating from Standard Edition Oracle Real Application
Clusters (Oracle RAC), you can use Standard Edition High Availability.

Starting with the Oracle Database 19c release, Oracle Database Standard Edition 2 does not
support Oracle RAC. To continue to meet high availability needs for Oracle Database
Standard Edition, Oracle is introducing Standard Edition High Availability.

Requirements for Using Standard Edition High Availability With Oracle Databases

To use Standard Edition High Availability, deploy Oracle Database Standard Edition 2 in
accordance with these configuration requirements.

* The database is created in a cluster running Oracle Grid Infrastructure for a Standalone
Cluster, with its database files placed in Oracle Automatic Storage Management (Oracle
ASM) or Oracle Automatic Storage Management Cluster File System (Oracle ACFS).

* When using the Database Configuration Assistant, do not create a listener when creating
an Oracle Database Standard Edition 2 database that you want to configure for Standard
Edition High Availability.

* Register the database with Single Client Access Name (SCAN) listeners as remote
listeners, and node listeners as the local listener.

» Create a database service. Use this service, instead of the default database service,
when you connect applications or database clients to the database.

» Ensure that the server parameter file (spfile) and password file are on Oracle ASM or
Oracle ACFS. If the spfile and password file were placed on a local file system when
the database was created or configured, then move these files to Oracle ASM or Oracle
ACFS.

Refer to the database installation documentation for additional requirements that must be
met.

Related Topics

*  Oracle Database Installation Guide for Linux

ORACLE 2-35



Chapter 2
Database Preparation Tasks to Complete Before Starting Oracle Database Upgrades

Moving Operating System Audit Records into the Unified Audit Trail

Audit records that have been written to the spillover audit files can be moved to the
unified audit trail database table.

When the database is not writable (such as during database mounts), if the database
is closed, or if it is read-only, then Oracle Database writes the audit records to these
external files. The default location for these external files is the SORACLE BASE/
audit/$ORACLE SID directory.

You can load the files into the database by running the

DBMS AUDIT MGMT.LOAD UNIFIED AUDIT FILES procedure. Be aware that if you are
moving a large number of operating system audit records in the external files,
performance may be affected.

To move the audit records in these files to the AUDSYS schema audit table when the
database is writable:

1. Log into the CDB root as a user who has been granted the AUDIT ADMIN role.

Before you can upgrade to the current release or Oracle Database, you must
execute the DBMS AUDIT MGMT.LOAD UNIFIED AUDIT FILES procedure from the
CDB root to avoid losing operating system spillover files during the upgrade
process.

For example:

CONNECT c##aud_admin
Enter password: password
Connected.

2. Ensure that the database is open and writable.
To find if the database is open and writable, query the VSDATABASE view.

SELECT NAME, OPEN MODE FROM VS$DATABASE;

NAME OPEN_MODE

HRPDB READ WRITE
You can run the show pdbs command to find information about PDBs associated
with the current instance.

3. Runthe DBMS AUDIT MGMT.LOAD UNIFIED AUDIT FILES procedure.

EXEC DBMS AUDIT MGMT.LOAD UNIFIED AUDIT FILES;

4. If you want to load individual PDB audit records, then log in to each PDB and run
the DBMS AUDIT MGMT.LOAD UNIFIED AUDIT FILES procedure again.

The audit records are loaded into the AUDSYS schema audit table immediately, and then
deleted from the SORACLE BASE/audit/$ORACLE SID directory.

Non-CDB Upgrades and Oracle GoldenGate

If you are upgrading a Non-CDB Oracle Database where Oracle GoldenGate is
deployed, then you must shut down Oracle GoldenGate, and reconfigure it after
conversion and upgrade for the multitenant architecture.

ORACLE 2-36



Chapter 2
Database Preparation Tasks to Complete Before Starting Oracle Database Upgrades

If you are using Oracle GoldenGate with the non-CDB Oracle Database that you want to
upgrade, then before you convert and upgrade the source non-CDB Oracle Database to the
multitenant architecture, you must shut down and remove the Oracle GoldenGate processes,
and then reconfigure them after conversion and upgrade for the multitenant architecture. The
following is a high level overview of the processes required:

1. Drop Oracle GoldenGate users on the source Oracle Database.

2. Wait until the Oracle GoldenGate processes finish processing all current DML and DDL
data in the Oracle GoldenGate trails, and processes are at End of File (EOF).

3. Stop all Oracle GoldenGate processes on the source database.

4. Complete the conversion and upgrade of the source non-CDB Oracle Database to the
target Oracle Database on the target release CDB.

5. Restart the database.

6. If you are also upgrading the database from an earlier release to a later major release
family (for example, from Oracle Database 12.1 to Oracle Database 19c, which is the
terminal patch set of the Oracle Database 12.2 family), then you must install a new
version of Oracle GoldenGate that is supported for Oracle Database 19c. If you are
upgrading both Oracle Database and Oracle GoldenGate simultaneously, then you must
upgrade the database first.

After the database conversion and upgrade is complete, you can create new credentials for
the Oracle GoldenGate extract user. With the new credentials you can then create a new
Extract process and Extract pump and distribution service for the upgraded Oracle Database
PDB on the target CDB, and start up the newly created processes. For more information
about completing those procedures after the upgrade, refer to the Oracle GoldenGate
documentation.

Related Topics
» Establishing Oracle GoldenGate Credentials

e Configuring Oracle GoldenGate in a Multitenant Container Database

Back Up Very Large Databases Before Using AutoUpgrade

ORACLE

If you use partial offline backups with very large databases, then to minimize downtime in the
event you need to downgrade your database, check your tablespaces and ensure that all
tablespaces required for recovery are backed up.

If you are using the AutoUpgrade utility for upgrading databases where you have selected
partial offline backups as your backup option, then check that all tablespaces that are
required for upgrade are in READ WRITE mode, and only after you are sure you have identified
all required tablespaces for backup, change the status of all required tables before you take
an OFFLINE backup of the tablespaces you require for recovery before you run AutoUpgrade.

The reasons for this guideline are as follows:

During an AutoUpgrade operation, other tablespaces besides SYSTEM, SYSAUX and UNDO may
need to be maintained in READ WRITE status for the upgrade. Some of the reasons for this
requirement during an upgrade can include:

» Tablespaces that contain dictionary objects
» Tablespaces that are the default tablespace for Oracle-maintained users

» Tablespaces that are the default tablespace for the database

2-37


https://docs.oracle.com/en/middleware/goldengate/core/19.1/oracle-db/establishing-oracle-goldengate-credentials.html#GUID-E40B375A-5042-4195-B563-BE7EDC251880
https://docs.oracle.com/en/middleware/goldengate/core/19.1/oracle-db/configuring-oracle-goldengate-multitenant-container-database-1.html#GUID-0B0CEB35-51C6-4319-BEE1-FA208FF4DE05

ORACLE

Chapter 2
Database Preparation Tasks to Complete Before Starting Oracle Database Upgrades

AutoUpgrade detects if all tablespaces needed for the upgrade are in READ WRITE
status.

When there are tablespaces that must be changed to READ WRITE mode for the
upgrade, then:

* During the PRECHECKS processing mode, AutoUpgrade detects tables in READ ONLY
status as an issue.

* During the FIxUP processing mode, AutoUpgrade performs an automatic fixup to
update to READ WRITE mode any tablespaces that it detects in READ ONLY mode
that must be in READ WRITE mode.

If there are any tablespaces required for upgrade that AutoUpgrade changes from
READ ONLY mode to READ WRITE mode, and these tablespaces were not included in
your backup before starting AutoUpgrade, then your recovery strategy is at risk. To
ensure that your backup is valid for recovery, you must take your OFFLINE backup only
after you are sure which tablespaces must be backed up.

To ensure that your partial offline backup contains backups for all tablespaces modified
during the upgrade, complete this procedure:

1. Putall tablespaces in READ ONLY mode, except for SYSTEM, SYSUX and UNDO and
those tablespaces that you know must be in READ WRITE.

2. Run the this query for pivot users:

(SELECT username
FROM dba users
WHERE user id in (
SELECT schema# FROM sys.registry$
WHERE namespace = 'SERVER'
UNION
SELECT schema# FROM sys.registry$schemas
WHERE namespace = 'SERVER'
UNION
SELECT user# FROM sys.user$
WHERE type#=1 AND bitand(sparel,256)=256))
SELECT tablespace name
FROM dba_ tablespaces
WHERE status <>'ONLINE' and tablespace name IN
(
SELECT property value
FROM database properties
WHERE property name = 'DEFAULT PERMANENT TABLESPACE'
UNION
SELECT default tablespace
FROM dba users
WHERE username IN (SELECT username FROM pivot users)
UNION
SELECT tablespace name
FROM dba_ segments
WHERE owner IN (SELECT username FROM pivot users)
UNION
SELECT t.name
FROM modeltab$ m, ts$ t, sys objects s

2-38



Chapter 2
Preparing for Database Rolling Upgrades Using Oracle Data Guard

WHERE m.obj#=s.object id and s.ts number=t.ts#
) |l

The next step you take depends on the result of the query:

» If the query returns no rows, then it means that backing up SYSTEM, SYSAUX and UNDO,
as well as those tables you specifically know must be in READ WRITE, is sufficient to
complete a partial offline backup.

» If the query return rows in tablespaces, then to complete a partial offline backup, you
must place these additional tablespaces in READ WRITE mode.

3. When you have completed identifying and placing all required tablespaces in READ WRITE
mode, take your partial offline backup of those tablespaces. Also back up SYSTEM, SYSAUX
and UNDO.redo logs, control files and any other files that you consider relevant for the
restore/recovery procedure in case they are needed.

4. Run AutoUpgrade in ANALYZE mode. Review the output, and ensure that AutoUpgrade
identifies no additional tablespaces reported as READ ONLY that must be put in READ
WRITE.

(Optional) Enter the result of the procedure here.

Preparing for Database Rolling Upgrades Using Oracle Data

Guard

ORACLE

If you perform your upgrade using Oracle Data Guard to carry out a rolling upgrade, then you
must move the Data Guard broker configuration files before starting your upgrade.

The default location for the DB BROKER CONFIG files is in the dbs directory in the earlier
release Oracle Database Oracle home. When you perform a rolling upgrade of database
instances using Oracle Data Guard, you must move the DG_BROKER _CONFIG files to a mount
point location outside of the earlier release Oracle home. Also ensure that the

DG_BROKER CONFIG FILEN parameters specify that location, instead of a location in the earlier
release Oracle home. During database upgrade, don't migrate the listener. After the upgrade
is complete, stop the listener, shut down the database, copy over the 1istener.ora and
tnsnames.ora from the earlier source Oracle Database release environment to the new
Oracle Database release environment, and start the listener and database

Tasks Before Starting Your Upgrade

To enable access to the DB BROKER CONFIG files during a rolling upgrade, you must complete
the following tasks before starting the upgrade

1. Before you start the upgrade, if you are not using Oracle Automatic Storage Management
(Oracle ASM) for storage, then set the Oracle Data Guard files DG_BROKER CONFIG FILEL
and DG_BROKER CONFIG FILE2 to a separate mount point on your server that is outside of
the Oracle home path for either the source or target Oracle Database Oracle homes.

2-39



Chapter 2
Preparing the New Oracle Home for Upgrading

< Note:

Prior to Oracle Database 21c, the default ORACLE_HOME layout
combined ORACLE_HOME, ORACLE_BASE_HOME and
ORACLE_BASE_CONFIG into a single location. Starting with Oracle
Database 21c, the only available configuration is a read-only
ORACLE_HOME where ORACLE_BASE_HOME and
ORACLE_BASE_CONFIG are located separately from
ORACLE_HOME. Files such as the Oracle Data Guard Files, which
were previously located in the folder dbs, are now located in
ORACLE BASE CONFIG/dbs.

2. Complete a successful upgrade of your earlier release Oracle home to the new
Oracle Database release.

Tasks During the Upgrade
Do not migrate the listener during the upgrade.
Oracle recommends that you use AutoUpgrade to complete the upgrade. See:

AutoUpgrade and Oracle Data Guard

Tasks After Completing Your Upgrade

1. Stop the listener for the new release Oracle Database.
2. Shut down the new release Oracle Database.

3. Copy over the listener.ora and tnsnames.ora files from the earlier release
Oracle Database to the new release Oracle Database.

4. Start the listener and new release Oracle Database

Refer to Oracle Data Guard Broker for information about moving your Data Guard
broker configuration files.

Related Topics

* Renaming the Broker Configuration Files

Preparing the New Oracle Home for Upgrading

ORACLE

To prepare the new Oracle home in a new location, check to see if you must move
configuration files, or complete other tasks.

After backing up the database that you want to upgrade, if you are not using a Read-
Only Oracle home, then prepare the new Oracle home in a new location, and install
the software for the new Oracle Database release into the new location.

1. (Manual upgrades only) Copy configuration files from the Oracle home of the
database being upgraded (source) to the new release Oracle Database Oracle
home (target). If you are using the AutoUpgrade utility, or DBUA, or a Read-Only
Oracle home, then you can ignore this step, because the configuration files are
copied for you automatically.

Use the following procedure to copy configuration files to the new Oracle home:

2-40



ORACLE

Chapter 2
Preparing the New Oracle Home for Upgrading

If your parameter file resides within the old environment Oracle home, then copy it to
the new Oracle home. By default, Oracle looks for the parameter file in the

ORACLE HOME/dbs directory on Linux or Unix platforms and in the

ORACLE HOME\database directory on Windows operating systems. After upgrade, the
parameter file can reside anywhere else, but it cannot reside in the Oracle home of
the old environment.

" Note:

If necessary, create a text initialization parameter file (PFILE) from the
server parameter file (SPFILE) so that you can edit the initialization
parameters.

If your parameter file resides within an Oracle ASM instance, then back up the
parameter file using one of the following commands:

CREATE pfile FROM spfile;

You can also create the parameter file by using the following command, where /
path/to/pfile/is the path to the new Oracle home, and pfile name is the name of
the parameter file:

create pfile[='/path/to/pfile/pfile name.ora/

If you must downgrade the database and your SPFILE resided within Oracle ASM,
then you must restore the parameter file before the downgrade.

If your parameter file is a text-based initialization parameter file with either an IFILE
(include file) or a SPFILE (server parameter file) entry, and the file specified in the
IFILE or SPFILE entry resides within the earlier release environment Oracle home,
then copy the file specified by the IFILE or SPFILE entry to the new Oracle home.
The file specified in the IFILE or SPFILE entry contains additional initialization
parameters.

If you have a password file that resides within the old environment Oracle home, then
move or copy the password file to the new Oracle home.

The name and location of the password file are operating system-specific. Where S1D
is your Oracle instance ID, you can find the password file in the following locations:

e Linux or Unix platforms: The default password file is orapw SID. Itis located in
the directory ORACLE HOME/dbs.

e Microsoft Windows operating systems: The default password file is pwdSID.ora.
It is located in the directory ORACLE HOME\database.

2. Adjust your parameter file in the new Oracle Database release by completing the
following steps:

a.

Remove desupported initialization parameters and adjust deprecated initialization
parameters. In new releases, some parameters are desupported, and other
parameters are deprecated. Remove all desupported parameters from any parameter
file that starts the new Oracle Database instance. Desupported parameters can
cause errors in new Oracle Database releases. Also, alter any parameter whose
syntax has changed in the new release.

2-41



Chapter 2
Prerequisites for Preparing Oracle Home on Windows

AutoUpgrade run with the -preupgrade parameter in analyze mode displays
any deprecated parameters and desupported parameters it finds in the
upgrade.xml file that it generates.

Adjust the values of the initialization parameters to at least the minimum
values indicated in upgrade. xml

Ensure all path names in the parameter file are fully specified. You should not
have relative path names in the parameter file.

b. If the parameter file contains an IFILE entry, then change the IFILE entry in
the parameter file. The IFILE entry should point to the new location text
initialization parameter file that you specified in step 1. Also edit the file
specified in the IFILE entry in the same way that you edited the parameter file
in step 1.

c. If you are upgrading a cluster database, then if necessary, you can modify the
SPFILE Or initORACLE SID.ora files.

After making these parameter file adjustments, make sure that you save all of the
files that you modified.

(Manual upgrades only) If you are upgrading a cluster database, and you are not
using AutoUpgrade or Replay Upgrade, then you must manually separate the
database instance from the cluster. Set the CLUSTER DATABASE initialization
parameter to false. After the upgrade, you must set this initialization parameter
back to true. If you are using DBUA, then the assistant takes care of this task for
you.

Prerequisites for Preparing Oracle Home on Windows

Your system must meet these requirements before you can upgrade Oracle Database
on Microsoft Windows platforms.

ORACLE

For security reasons, different Microsoft Windows user accounts configured as Oracle
home users for different Oracle homes are not allowed to share the same Oracle
Base.

Database upgrade is supported when the same Windows user account is used as
the Oracle home user in both the source and destination Oracle homes.

Database upgrade is supported when the Oracle home from which the database is
being upgraded uses the Windows Built-in Account. Releases earlier than Oracle
Database 12c (release 11.2 and earlier) only supported the built-in account option
for the Oracle home user on Windows.

The Oracle home user may not have access to files outside its own Oracle Base
and Oracle home. If that is the case, then if you choose a different Oracle Base
during upgrade, it is possible that Oracle Database services cannot access files in
the older Oracle Base. Using DBUA for database upgrade ensures that the Oracle
home user has access to files outside of its own Oracle Base and its own Oracle
home.

Before upgrading manually, or before using the custom files from the older Oracle
Base (for example, wallets, configuration files and other custom files ), you must
grant access to the Oracle home user for these outside files, or copy these files to
the new Oracle Base.

2-42



Chapter 2
Performing Preupgrade Checks Using AutoUpgrade

¢ See Also:

Oracle Database Platform Guide for Microsoft Windows for information about
database administration on Windows

Performing Preupgrade Checks Using AutoUpgrade

The AutoUpgrade Utility is a Java JAR file provided by Oracle that helps to ensure that your
upgrade completes successfully.

About AutoUpgrade Utility System Checks
To help ensure that your upgrade is successful, Oracle strongly recommends that you
check your system using the AutoUpgrade Utility in Analyze mode.

Example of Running AutoUpgrade Prechecks Using Analyze Mode
To see how you can use AutoUpgrade to check a non-CDB Oracle Database before an
upgrade, use this example to understand the procedure.

Checking the Upgrade Checks Overview File
Learn how to use the AutoUpgrade Upgrade Checks Overview file to prepare for your
upgrade.

Creating a Configuration File to Run AutoUpgrade Prechecks On a CDB
See how you can control how AutoUpgrade performs upgrade prechecks to include or
exclude PDBs on a multitenant architecture Oracle Database.

Running AutoUpgrade Fixups on the Earlier Release Oracle Database
Use this example to see how to run the AutoUpgrade Fixups that the Analyze mode
generates for your system.

About AutoUpgrade Utility System Checks

To help ensure that your upgrade is successful, Oracle strongly recommends that you check
your system using the AutoUpgrade Utility in Analyze mode.

ORACLE

To use the AutoUpgrade Utility for your upgrade, you must first run AutoUpgrade in Analyze
Mode.

2-43



Chapter 2
Performing Preupgrade Checks Using AutoUpgrade

< Note:

The AutoUpgrade Utility requires Java 8. To ensure that the correct Java
version is available, Oracle recommends that you run AutoUpgrade using the
Java version in the target Oracle Database Oracle home. The path to the
Java version in the Oracle home is Oracle-home/jdk/bin/java, where
Oracle-home is the target Oracle Database Oracle home. To check the
Oracle home has Java 8, you can run the following command:

SORACLE HOME/jdk/bin/java -version

java version "1.8.0 211"

Java (TM) SE Runtime Environment (build 1.8.0 211-bl2)

Java HotSpot (TM) 64-Bit Server VM (build 25.211-b12, mixed
mode)

AutoUpgrade and the Analyze Mode

The AutoUpgrade Utility includes extensive system checks that can help to prevent
many issues that can arise during an upgrade. The utility is located in the new Oracle
Database binary home. However, to obtain the latest updates, Oracle strongly
recommends that you download the most recent version of the tool from My Oracle
Support Document 2485457.1. You can place the downloaded file in any directory. To
run Analyze to check readiness of the database for upgrade to the new release while
your database is running on your earlier release you must specify the target version
manually in your configuration file, using the target version parameter. For example:
upgl.target version=19.

When you run AutoUpgrade in Analyze mode, AutoUpgrade only reads data from the
database, and does not perform any updates to the database. You can run
AutoUpgrade using the Analyze mode during normal business hours. You can run
AutoUpgrade in Analyze mode on your source Oracle Database home before you
have set up your target release Oracle Database home.

Related Topics
* My Oracle Support Note 2485457.1

Example of Running AutoUpgrade Prechecks Using Analyze Mode

ORACLE

To see how you can use AutoUpgrade to check a hon-CDB Oracle Database before
an upgrade, use this example to understand the procedure.

To use AutoUpgrade, you must have Java 8 installed. Oracle Database Release 12.1
(12.1.0.2) or newer Oracle homes have a valid java version by default. Start
AutoUpgrade in Analyze mode using the following syntax, where Oracle home is the
Oracle home directory, or the environment variable set for the Oracle home, and
yourconfig.txt is your configuration file:

java -jar autoupgrade.jar -config yourconfig.txt -mode analyze

While AutoUpgrade is running, if you want to obtain an overview of the progress, you
can enter the command 1sj on Linux and Unix systems. When all checks are

2-44


https://support.oracle.com/rs?type=doc&id=2485457.1

ORACLE

Chapter 2
Performing Preupgrade Checks Using AutoUpgrade

completed the tool will write the and write the Preupgrade Fixup HTML File, which provides a
report on system readiness, display the status of jobs run to the screen, and exit. If all jobs
are listed as "finished successfully,” then it means that you can go ahead and upgrade the
database. However, to see if there are recommendations that you want to follow before
starting the upgrade, Oracle still recommends that you look at the Preupgrade Fixup HTML
File. If any job is listed as "failed," then it means that there is an error that prevents the
upgrade from starting.

Example 2-4 Using AutoUpgrade in Analyze Mode to Check an Oracle Database 12c
Non-CDB System

This example shows running AutoUpgrade using a configuration file for upgrading from a
Non-CDB Oracle Database 12c Release 2 (12.2) system to a new Oracle Database release,
with AutoUpgrade downloaded to the folder /tmp:

java -jar /tmp/autoupgrade.jar -config 122-to-new.txt -mode analyze

The configuration file called for this check (122-to.new.txt) is as follows:

#12.2-to-19c config file

#

global.autoupg log dir=/home/oracle/autoupgrade
upgl.source home=/ull/app.oracle/product/12.2.0.1
upgl.target home=/ull/app/oracle/product/19
upgl.sid=dbsales

upgl.start time=now

upgl.log dir=/home/oracle/autoupgrade/dbsales
upgl.upgrade node=localhost

Note that the pdbs parameter is not specified. You only need to specify the pdbs parameter
when you want to indicate specific PDBs that you want to check, and exclude other PDBs on
the CDB. The value you specify for 1log_dir is the location where AutoUpgrade places the
Preupgrade Fixup HTML File. The file is written using the following format, where log-path is
the path you specify for log files, sid is the Oracle Database system identifier, and job-
number is the AutoUpgrade job number:

/log-path/sid/job-number/prechecks

When you run AutoUpgrade, the output appears as follows:

AutoUpgrade tool launched with default options

1 databases will be analyzed
Type 'help' to list console commands
upg>

Job 100 completed

2-45



Chapter 2
Performing Preupgrade Checks Using AutoUpgrade

——————————————————— Final Summary ------------———----—-
Number of databases [1]

Jobs finished successfuly [1]
Jobs failed [0]
Jobs pending [0]
————————————— JOBS FINISHED SUCCESSFULLY ---------=----

Job 100 FOR DB12

In this case, the configuration file specifies that you want the log file placed in the
path /home/oracle/autoupgrade. Because the Oracle Database system identifier
(SID) is cDR1, and the AutoUpgrade Job is 100, the Upgrade Checks Overview file for
this job is placed in the path /home/oracle/autoupgrade/dbsales/100/prechecks

Review the Upgrade Checks Overview file, and correct any errors that are reported
before proceeding with the upgrade. You can run AutoUpgrade in Fixup mode to
correct many errors.

With CDBs, you can use the same procedure and the same configuration file.

# Note:

When you run AutoUpgrade in Analyze or Fixup mode on a CDB,
AutoUpgrade opens all PDBs in the CDB to complete the action. If a PDB is
closed, then AutoUpgrade opens the PDB, and leaves it in an OPEN state
after the analysis or fixup is completed. If you want to leave PDBs closed,
and not perform checks or fixups, then you can specify that only particular
PDBs are checked or fixed by using the configuration file parameter pdb to
list the PDBs that you want AutoUpgrade to check.

Checking the Upgrade Checks Overview File

ORACLE

Learn how to use the AutoUpgrade Upgrade Checks Overview file to prepare for your
upgrade.

When the AutoUpgrade Analyze mode is complete, it places files in the directory that
you specify with the configuration file 1og_dir parameter. The file is written using the
following format, where 1og-path is the path you specify for log files, sid is the Oracle
Database system identifier (SID), and job-number is the AutoUpgrade job number:

/log-path/sid/job-number/prechecks

For example, with the log directory specified as /home/oracle/autoupgrade/DB12, with
the database SID DB12, and with the job number 100:

/home/oracle/autoupgrade/DB12/DB12/100/prechecks

Review the Upgrade Checks Overview file, and correct any errors that are reported
before proceeding with the upgrade. You can also run AutoUpgrade in Fixup mode to
correct many errors.

2-46



Chapter 2
Performing Preupgrade Checks Using AutoUpgrade

Figure 2-1 Example of the Upgrade Checks Overview File

ORACLE’

Date: Wed Apr 08 14:20:56 CEST 2020 | DB Compatible: 12.2.0 | DB Version: 12.2.0.1.0 | Operating System: Linux

Containers CDB$ROOT

CDB$ROOT CheckName: ARCHIVE_MODE_ON  FixUp Available: NO  Severity: ERROR  Stage: PRECHECKS
PreChecks Error(1)
PreChecks Warning(1) Turn on the archive mode of the database prior the AutoUpgrade execution

The database to be upgraded must have the archive mode on before execute the AutoUpgrade for a fast restoration in case of error

The database does not have the archive mode enabled

CheckName: UNIAUD_RECORDS_IN_FILE FixUp Available: YES Severity: WARNING  Stage: PRECHECKS

Load the Unified Audit records from OS spillover audit files to database audit table using DBMS_AUDIT MGMT.LOAD_UNIFIED_AUDIT FILES api before

PreChecks Info(1)
| upgrade.
PostChecks Warning(2)
PostChecks Recommend(2) Oracle Unified Audit records present in the OS spillover audit files must be loaded to the database audit table before database upgrade to ensure they can
Denver-Sales2 be read after upgrade. For more information, refer to "LOAD_UNIFIED_AUDIT_FILES Procedure" in Database PL/SQL Packages and Types Reference.
PreChecks Recommendi(3)
There are Unified Audit records present in the 0S spillever audit files.

In the topic area of the file the results file example shows two report messages for CDBSROOT,
which show the name of the check, whether or not a fixup is available that can be run using
AutoUpgrade in Fixup mode, the severity of the issue, and the stage of AutoUpgrade that is
being run.

Creating a Configuration File to Run AutoUpgrade Prechecks On a CDB

ORACLE"

See how you can control how AutoUpgrade performs upgrade prechecks to include or
exclude PDBs on a multitenant architecture Oracle Database.

To check Oracle Database servers configured with multitenant container databases (CDBSs)
and pluggable databases (PDBs), you can use the same procedure and configuration file that
you use with a non-CDB Oracle Database. As AutoUpgrade runs checks during an Analyze
or Fixup mode run, all of the PDBs in the CDB are opened. If you run AutoUpgrade on a
CDB, and a PDB is closed, then AutoUpgrade opens the PDB, and AutoUpgrade leaves it
open after Analyze checks or Fixup actions.

If you want to manage which PDBs are opened for checks, so that you can keep some PDBs
closed, then you can use the configuration file option pdbs to provide a list that includes only
the PDBs that you want to be checked. When you provide a list of PDBs to check,
AutoUpgrade checks CDBSROOT, PDBSSEED, and all of the PDBs that you specify in the list. In
this example, the PDB named denver-sales? is specified.

Example 2-5 AutoUpgrade Configuration File for a CDB and PDBs

The following example specifies that only the PDB named denver-sales?2 is opened and
analyzed.

global.autoupg log dir=/home/oracle/autoupgrade
upgl.source home=/ull/app/oracle/product/12.2.0
upgl.target home=/ull/app/oracle/product/19
upgl.sid=CDB1

upgl.start time=now



Chapter 2
Testing the Upgrade Process for Oracle Database

upgl.log dir=/home/oracle/autoupgrade/CDB1l
upgl.pdbs=denver-sales2

Running AutoUpgrade Fixups on the Earlier Release Oracle Database

Use this example to see how to run the AutoUpgrade Fixups that the Analyze mode
generates for your system.

When you run AutoUpgrade in Fixup mode, AutoUpgrade performs the checks that it
also performs in Analyze mode. After completing these checks, AutoUpgrade then
performs all automated fixups that are required for the new release before you start an
upgrade. When you plan to move your database to a new release, using the Fixup
mode prepares the database for upgrade.

Caution:

Oracle recommends that you run AutoUpgrade in Analyze mode separately
before running AutoUpgrade in Fixup mode. Fixup mode can make changes
to the source database.

As part of upgrade preparation, if the source database requires corrections for
conditions that would cause errors during an upgrade, then AutoUpgrade run in Fixup
mode performs automated fixes to the source database. Because running
AutoUpgrade in Fixup mode is a step that you perform as you are moving to another
system, it does not create a guaranteed restore point. Oracle recommends that you
run this mode outside of normal business hours.

If Java 8 is in your source Oracle home, then start AutoUpgrade in Fixup mode using
the following syntax, where Oracle home is the Oracle home directory, or the
environment variable set for the Oracle home, and yourconfig.txt is your
configuration file:

$ java -jar autoupgrade.jar -config yourconfig.txt -mode fixup

Testing the Upgrade Process for Oracle Database

ORACLE

Your test plan for Oracle Database upgrades should include these test procedures.

Oracle recommends that you create a full working copy of your database environment
in which to test all the pre-upgrade, upgrade, and post-upgrade processes.

You can create a test environment that does not interfere with the current production
Oracle database. Oracle Data Guard, for example, enables you to create physical and
shapshot standby databases.

Your test environment depends on the upgrade method you choose:

* If you plan to use DBUA or perform a manual upgrade, then create a test version
of the current production database.

* If you plan to use Data Pump Export/Import, then export and import in stages,
using subsets of the current production database.

2-48



Chapter 2
Testing the Upgrade Process for Oracle Database

Practice upgrading the database using the test environment. The best practice is to perform
testing of the upgrade process on an exact copy of the database that you want to upgrade,
rather than on a downsized copy or test data. If an exact copy is impractical, then carefully
chose a representative subset of your data to move over to your test environment and test
the upgrade on that data.

*  Example of Testing Upgrades Using Priority List Emulation
You can use the Parallel Upgrade Utility on multitenant architecture Oracle Databases to
run upgrade emulations to test your priority list or other parameter settings before you run
your upgrade.

e Upgrade Oracle Call Interface (OCI) and Precompiler Applications
Upgrade any Oracle Call Interface (OCI) and precompiler applications that you plan to
use with the new release of Oracle Database.

¢ See Also:

e Oracle Database Testing Guide for information about testing a database
upgrade

e Oracle Database Ultilities for information on Data Pump Export and Import
utilities

e Oracle Data Guard Concepts and Administration for information on physical
and snapshot standby databases

Example of Testing Upgrades Using Priority List Emulation

You can use the Parallel Upgrade Utility on multitenant architecture Oracle Databases to run
upgrade emulations to test your priority list or other parameter settings before you run your
upgrade.

On multitenant architecture Oracle Database systems, starting with Oracle Database 12¢
release 2 (12.2), you can use priority lists to upgrade or exclude specific PDBs, or to set a
specific upgrade priority order. Running the Parallel Upgrade Utility using priority emulation is
a way to test your priority list without actually running the upgrade. Use the Parallel Upgrade
Utility emulation feature to test your upgrade plan using priority lists.

Preparing for Upgrade Emulation Tests

Before you run the emulation, you must set up your source and target upgrade locations, and
prepare your database in the same way you prepare for an actual upgrade. No upgrade
actually occurs, but the Parallel Upgrade Utility generates log files that show how an actual
upgrade is carried out.

ORACLE 2-49



ORACLE

Chapter 2
Testing the Upgrade Process for Oracle Database

< Note:

You can use the -E parameter to run the Parallel Upgrade Utility in emulation
mode to test how priority lists run, or to test how other upgrade parameter
selections are carried out during an upgrade. For example, you can run an
upgrade emulation to obtain more information about how the resource
allocation choices you make using the -n and -N parameters are carried out.

Syntax for Running Priority List Emulation

You can use any of the parameter settings that you normally use with the Parallel
Upgrade Utility, However, you must create a priority list, and you must use the -L
parameter to call the list when you run the Parallel Upgrade Utility with the -E
parameter to set it to perform an upgrade emulation.

The following is an example of the minimum required syntax for running the Parallel
Upgrade Utility using priority list emulation, where priority list name is the name of
your priority list file:

catctl -E -L priority list name catupgrd.sql

Example 2-6 Example of Running the Parallel Upgrade Utility using Priority List
Emulation

The following example uses this priority list, which is named plist.txt:

1,CDBSROOT
2, PDBSSEED
3,CDB1_PDB2
4,CDB1_PDB4
4,CDB1_PDB3
5,CDB1_PDB5
5,CDB1_PDB1

The following command runs a parallel emulation, calling this priority list:

$SORACLE HOME/perl/bin/perl catctl.pl -L plist.txt -E -n 4 -N 2
catupgrd.sqgl

This command uses the following parameter settings:

* -E specifies that Parallel Upgrade Utility runs the upgrade procedures in
emulation mode.

* -n 4 specifies that the upgrade allocates four processes to perform parallel
upgrade operations.

* -N 2 specifies that the upgrade runs two SQL processors to upgrade the PDBs.
The maximum PDB upgrades running concurrently is the value of -n divided by
the value of -N, so the upgrade runs no more than two concurrent PDB upgrades.

e -L specifies the priority list that the command reads to set upgrade priority.

2-50



Chapter 2
Requirements for Upgrading Databases That Use Oracle Label Security and Oracle Database Vault

As the Parallel Upgrade Utility carries out the emulated upgrade, it displays on screen the
same output that you see during an actual upgrade.

When the upgrade emulation completes, it generates a log file, catctl prority run.list,
which is stored either in the default logging directory, or in a logging directory location that
you specify with the -1 parameter. Because in this example we did not specify a different log
directory, and we are running the upgrade on the container database named CDB1, the output
is place in the path Oracle base/cfgtoollogs/CDB1/run, where Oracle base is the Oracle
base of the user running the upgrade, and CDB1 is the name of the container database (CDB)
on which you are running the upgrade.

The log file catctl priority run.lst displays the list of how the upgrade priority was
carried out during the upgrade emulation. It shows how the Parallel Upgrade Utility grouped
PDB upgrades. You can see a priority run that contains the groupings and priorities before
you actually carry out the upgrade. The log file generated by the upgrade is also displayed on
the screen after the upgrade completes.

At the conclusion of the upgrade log, the log will show that CDBSROOT is upgraded first. After
the CDB$ROOT upgrade is completed, the Parallel Upgrade Utility carries out the following
concurrent upgrades of PDBs, in accordance with the priority settings in the priority list:

1. PDBSSEED and CDB1 PDB2. Output logs are generated with log Identifiers (Log IDs)
specified as pdb_seed for PDBSSEED, and log ID mayapdb2 for CDB_1PDB2)

2. DBl PDB3 and CDB1 PDB4. Log IDs are specified mayapdb3 and mayapdb4

3. CDB1 PDBS and CDB1 PDB6. Log IDs are specified mayapdb5 and mayapdb6

4. cDB1 PDBI. The log ID is specified as mayapdbl.

Related Topics

*  About the Parallel Upgrade Utility for Oracle Database (CATCTL.PL and DBUPGRADE)
« Parallel Upgrade Utility (catctl.pl) Parameters

Upgrade Oracle Call Interface (OCI) and Precompiler Applications

Upgrade any Oracle Call Interface (OCI) and precompiler applications that you plan to use
with the new release of Oracle Database.

Oracle recommends that you test these applications on a test database before you upgrade
your current production database.

Related Topics
*  About Upgrading Precompiler and OCI Applications in Oracle Database

Requirements for Upgrading Databases That Use Oracle Label
Security and Oracle Database Vault

ORACLE

You must complete these tasks before starting an upgrade with a database using Oracle
Label Security or Oracle Database Vault.

e Audit Table Preupgrade and Archive Requirements
For Oracle Database releases earlier than 12.1 using Oracle Label Security and Oracle
Database Vault, you must run the OLS preprocess script before you upgrade.

2-51



Chapter 2
Requirements for Upgrading Databases That Use Oracle Label Security and Oracle Database Vault

*  Preparing for Upgrades of Databases with Oracle Database Vault

If the Oracle Database you plan to upgrade uses Oracle Database Vault, then you
must disable Oracle Database Vault before starting the upgrade.

»  Oracle Database Vault and Upgrades of Oracle Database Release 11.2
If Oracle Label Security is installed in the earlier release that you are upgrading,
then grant the DV_PATCH_ADMIN role to SYS.

Audit Table Preupgrade and Archive Requirements

For Oracle Database releases earlier than 12.1 using Oracle Label Security and
Oracle Database Vault, you must run the OLS preprocess script before you upgrade.

If you are upgrading from a database earlier than Oracle Database release 12.1 that
uses Oracle Label Security (OLS) and Oracle Database Vault, then you must first run
the OLS preprocess script, olspreupgrade.sql, to process the aud$ table contents.
The OLS upgrade moves the auds$ table from the SYSTEM schema to the SYs schema.
The olspreupgrade.sql Script is a preprocessing script required for this move.

Caution:

Running the olspreupgrade.sql script before upgrading is mandatory for
upgrading databases earlier than Oracle Database release 12.1 that use
Oracle Label Security and Oracle Database Vault. Once you have upgraded
to Oracle Database release 12.1, you do not have to perform the OLS
preprocessing procedure going forward to patch or upgrade the database.

The olspreupgrade.sql script creates a temporary table PREUPG_AUDS in the SYS
schema and moves the SYSTEM.aud$ records to SYS.PREUPG_AUDS. As a safety
measure, Oracle recommends that you archive your audit trail before running the
olspreupgrade.sql script. If Oracle Label Security is installed on your database, and
you are upgrading from an earlier release, then you must run the OLS preprocess
script before upgrading.

# See Also:
Oracle Database Security Guide for information about archiving audit trails

Oracle Label Security Administrator's Guide for information about the OLS
preprocess script

Preparing for Upgrades of Databases with Oracle Database Vault

ORACLE

If the Oracle Database you plan to upgrade uses Oracle Database Vault, then you
must disable Oracle Database Vault before starting the upgrade.

During the upgrade process, if your source Oracle Database uses Oracle Database
Vault, then you must first disable Oracle Database Vault before you start the upgrade.

You have two options you can use:

2-52



Chapter 2
Requirements for Upgrading Databases That Use Oracle Label Security and Oracle Database Vault

1. Use a manual procedure: Log on as the common Database Vault (DV) administrator in
the CDBSROOT and grant the DV_PATCH ADMIN role to SYS, or log in and disable Oracle
Database Vault on every container. Procedures vary slightly, depending on your upgrade
scenario. This procedure is described in My Oracle Support, "Requirement for Upgrading
Database with Database Vault (Doc ID 2757126.1)".

2. Download the latest AutoUpgrade Jar file, and perform the procedure described here.

With either option, when you run AutoUpgrade in Analyze mode, it detects that Oracle
Database Vault is enabled, and indicates in its report that you must ensure the prerequisites
for Oracle Database Vault and upgrade are met.

Example 2-7 AutoUpgrade Procedure for Databases Using Oracle Database Vault

When you use AutoUpgrade, and your database is configured with Oracle Database Vault,
the upgrade procedure is as follows:

1. Disable Oracle Database Vault.
2. Install the new Oracle Database release.

3. Download the latest AutoUpgrade JAR file from My Oracle Support note 2485457.1, and
replace the AutoUpgrade JAR file in the new Oracle Database release, in the path
Oracle home/rdbms/admin

4. Run the AutoUpgrade utility (or Database Upgrade Assistant), and complete the upgrade.
5. Enable Oracle Database Vault in the upgraded Oracle Database.

Related Topics

» Disabling and Enabling Oracle Database Vault

* Requirement for Upgrading Database with Database Vault (Doc ID 2757126.1)

e AutoUpgrade Tool (Doc ID 2485457.1)

Oracle Database Vault and Upgrades of Oracle Database Release 11.2

ORACLE

If Oracle Label Security is installed in the earlier release that you are upgrading, then grant
the DV_PATCH_ADMIN role to SYS.

If Oracle Database Vault is not installed with your release 11.2 database, then you can skip
steps 2, 3, 6, and 7 in this section.

To run the OLS preprocess script on a release 11.2 database before upgrading:

1. Copy the following scripts script from the newly installed Oracle home to the Oracle home
of the database that yOu want to upgrade:

* ORACLE HOME/rdbms/admin/olspreupgrade.sql
* ORACLE HOME/rdbms/admin/emremove.sql
* ORACLE HOME/rdbms/admin/catnoamd.sqgl
2. Start SQL*Plus and connect as DVOWNER to the database that you want to upgrade.

3. Run the following statement:

SQL> GRANT DV_PATCH ADMIN to SYS;

2-53


https://support.oracle.com/rs?type=doc&amp;id=2757126.1
https://support.oracle.com/rs?type=doc&id=2485457.1

Chapter 2
Back Up Oracle Database Before Upgrading

4. At the system prompt, connect SYS as SYSDBA:
CONNECT SYS AS SYSDBA

5. Run the preprocess scripts for Data Vault
ORACLE HOME/rdbms/admin/olspreupgrade.sql

ORACLE HOME/rdbms/admin/emremove.sql
ORACLE HOME/rdbms/admin/catnoamd.sql

You may continue to run your applications on the database while the preprocess
scripts are running.

6. After the olspreupgrade.sql completes its run successfully, start SQL*Plus
and connect to the database as DVOWNER.

7. Run the following SQL statement:

SQL> REVOKE DV_PATCH ADMIN from SYS;

Back Up Oracle Database Before Upgrading

ORACLE

Use this procedure to back up your existing Oracle Database before you attempt an
upgrade.

Caution:

Before you make any changes to the Oracle software, Oracle strongly
recommends that you create a backup of the Oracle software and
databases. For Oracle software running on Microsoft Windows operating
systems, you must also take a backup of the Windows registry. On Microsoft
Windows, without a registry backup, you cannot restore the Oracle software
to a working state if the upgrade fails, and you want to revert to the previous
software installation.

Before you cleanly shut down the database, you must run AutoUpgrade using the
preupgrade parameter. To minimize downtime, you can perform an online backup, or
create a guaranteed restore point.

1. Sign on to Oracle RMAN:
rman "target / nocatalog"
2. Run the following RMAN commands:

RUN
{
ALLOCATE CHANNEL chan name TYPE DISK;
sql 'ALTER SYSTEM ARCHIVE LOG CURRENT';
BACKUP DATABASE FORMAT '/tmp/db%U' TAG before upgrade
PLUS ARCHIVELOG FORMAT '/tmp/arch%U' TAG before upgrade;

2-54



Chapter 2
Back Up Oracle Database Before Upgrading

BACKUP CURRENT CONTROLFILE FORMAT '/tmp/ctl%U' TAG before upgrade;

Caution:

You must ensure that no other RMAN backup runs during this backup. If
another RMAN command backs up and removes archive log, then this backup
could be unrecoverable, because the other RMAN command has removed the
archive logs.

Related Topics
e About Online Backups and Backup Mode
e Using Flashback Database and Restore Points

e Backing Up the Database

ORACLE 2-55



Using AutoUpgrade for Oracle Database
Upgrades

Learn how to use AutoUpgrade to simplify your upgrade tasks.

e About Oracle Database AutoUpgrade
The AutoUpgrade utility is designed to automate the upgrade process, both before
starting upgrades, during upgrade deployments, and during postupgrade checks and
configuration migration

e Examples of How to Use AutoUpgrade
To guide your upgrade, use the AutoUpgrade workflow example that matches your
upgrade use case.

e AutoUpgrade Messages and Process Description Terms
To understand how your upgrade checks and operations are proceeding, learn about the
AutoUpgrade utility messages that are generated as the utility runs.

e About AutoUpgrade Processing Modes
The four AutoUpgrade processing modes (Analyze, Fixup, Deploy, and Upgrade)
characterize the actions that AutoUpgrade performs as it runs.

» Understanding AutoUpgrade Workflows and Stages
The AutoUpgrade workflow automates each step of a typical upgrade process. The
stages that run depend on the processing mode that you select.

e Understanding Non-CDB to PDB Upgrades with AutoUpgrade
You can upgrade and convert a non-CDB to a PDB in a new CDB in a single operation, or
upgrade and then convert a Non-CDB database to a PDB in a pre-existing CDB.

e Understanding Unplug-Plug Upgrades with AutoUpgrade
AutoUpgrade can perform an unplug of a pluggable database (PDB) from an earlier
release source container database (CDB), plug it into a later release target CDB, and
then complete all the steps required to upgrade the PDB to the target CDB release.

e AutoUpgrade Command-Line Parameters and Options
Review the AutoUpgrade parameters and select the parameters and options for your
Oracle Database upgrade use case.

e AutoUpgrade Utility Configuration Files
AutoUpgrade configuration files contain all the information required to perform Oracle
Database upgrades.

* AutoUpgrade and Oracle Database Configuration Options
When you run AutoUpgrade, it determines the type of database (Oracle Database,
Oracle Database Standalone with Oracle ASM, or Oracle RAC), and performs an
upgrade for that type of database

* AutoUpgrade Configuration File Examples
Use these examples to understand how you can modify your own AutoUpgrade
configuration files to perform a variety of configuration actions during the upgrade.

* AutoUpgrade Internal Settings Configuration File
Internal configuration settings control how AutoUpgrade runs.

ORACLE 3-1



Chapter 3
About Oracle Database AutoUpgrade

AutoUpgrade Log File Structure
The AutoUpgrade utility produces a log file structure that includes job status and
configuration files.

Enabling Full Deployments for AutoUpgrade

To enable a guaranteed restore point (GRP) so that you can flashback an
upgrade, you must set up archive logging, and you should complete other tasks to
enable AutoUpgrade to complete the upgrade.

Examples of How to Use the AutoUpgrade Console

The AutoUpgrade console provides a set of commands to monitor the progress of
AutoUpgrade jobs. The console starts by default when you run the AutoUpgrade
utility, and is enabled or disabled by the parameters console and noconsole.

Known Restrictions for AutoUpgrade
If you encounter issues with your upgrade, review the known restrictions to find
solutions.

Proper Management of AutoUpgrade Database Changes
AutoUpgrade is a powerful utility, which requires that you use it responsibly.
Review and avoid using AutoUpgrade in ways that put the database at risk.

How to Override Default Fixups
You can use the RUNFIX column entry to disable automated fixups, except in cases
where disabling the fixup violates security or Oracle policy.

Local Configuration File Parameter Fixups Checklist Example
To include or exclude specific fixups for individual databases during upgrades, use
the local configuration file checklist.

AutoUpgrade and Microsoft Windows ACLs and CLIs

When running AutoUpgrade on Microsoft Windows systems, Oracle recommends
additional best practices with access control lists (ACLs) and command-line
interfaces (CLIs).

About Oracle Database AutoUpgrade

ORACLE

The AutoUpgrade utility is designed to automate the upgrade process, both before
starting upgrades, during upgrade deployments, and during postupgrade checks and
configuration migration

When you perform upgrades, Oracle recommends that you download the most recent
version of the AutoUpgrade Utility from My Oracle Support Document 2485457.1, and
use autoupgrade.jar to prepare for and to deploy your upgrade. You use
AutoUpgrade after you have downloaded binaries for the new Oracle Database
release, and set up new release Oracle homes. When you use AutoUpgrade, you can
upgrade multiple Oracle Database deployments at the same time, using a single
configuration file, customized as needed for each database deployment.

The autoupgrade. jar file exists by default in the Oracle home (Oracle home/rdbms/
admin). However, before you use AutoUpgrade, Oracle strongly recommends that you
download the latest AutoUpgrade version. AutoUpgrade is included with each release
update (RU), but the most recent AutoUpgrade version is always available from My
Oracle Support Document 2485457.1.

3-2



Chapter 3
Examples of How to Use AutoUpgrade

< Note:

AutoUpgrade is available for Oracle Database Enterprise Edition, and Oracle
Database Standard Edition. It is not available for other Oracle Database editions.

Preventing Issues: Analyze and Fixup Modes

Before the upgrade, in Analyze mode, the AutoUpgrade utility performs read-only analysis of
databases before upgrade, so that it can identify issues that require fixing. You can run the
utility during normal database operations. In Fixup Mode, the AutoUpgrade utility detects and
identifies both fixes that require manual intervention, and fixes that the AutoUpgrade utility
can perform during the upgrade deployment phase.

Simplifying Upgrades: Deploy and Upgrade Modes

In Deploy phase, the AutoUpgrade utility modifies the databases you indicate in your
configuration file. It enables you to call your own custom scripts during the upgrade to
configure databases. In many cases, the AutoUpgrade utility can perform automatic fixes to
databases during the upgrade process without requiring manual intervention.

Deploy and Upgrade Postupgrade Checks and Fixes

After an upgrade completes with either Deploy or Upgrade modes, AutoUpgrade performs
postupgrade checks. It provides a process where you can enable your custom scripts to be
run on each of the upgraded databases, in accordance with the configuration instructions you
provide in the AutoUpgrade configuration file, and also can run automatic postupgrade fixups
as part of the postupgrade process. In Deploy mode, AutoUpgrade also confirms that the
upgrade has succeeded, and copies database files such as sqlnet.ora, tnsname.ora, and
listener.ora from the source home to the target home. After these actions are complete,
the upgraded Oracle Database release is started in the new Oracle home.

Try AutoUpgrade using our Hands-On Lab on Oracle LiveLabs

Oracle LiveLabs provides you with an environment in which you can try out Oracle
technology in a free lab environment. Daniel Overby Hansen provides you with a
demonstration of how you can use Oracle LivelLabs to set up your own demonstration lab
environment in an Oracle Cloud environment. Check it out!

Try AutoUpgrade using our Hands-On Lab on Oracle LiveLabs

Related Topics
* My Oracle Support Document 2485457.1

e Oracle LiveLabs

Examples of How to Use AutoUpgrade

ORACLE

To guide your upgrade, use the AutoUpgrade workflow example that matches your upgrade
use case.

These examples are presented in a typical workflow sequence. To see how you can use the
configuration file to run scripts with the noconsole parameter, see examples under "How to
Use the AutoUpgrade Console."

3-3


https://www.youtube.com/watch?v=KeaWiqCRnTg
https://support.oracle.com/rs?type=doc&id=2485457.1
https://apexapps.oracle.com/pls/apex/f?p=133:1

Chapter 3
Examples of How to Use AutoUpgrade

* AutoUpgrade with Source and Target Database Homes on Same Server (Typical)
When your Oracle Database Source and Target Oracle homes are installed on the
same physical server, use this example.

* AutoUpgrade with Source and Target Database Homes on Different Servers
When your Oracle Database Source and Target Oracle homes are located on
different physical servers, you must complete tasks on both servers.

Related Topics

» Examples of How to Use the AutoUpgrade Console
The AutoUpgrade console provides a set of commands to monitor the progress of
AutoUpgrade jobs. The console starts by default when you run the AutoUpgrade
utility, and is enabled or disabled by the parameters console and noconsole.

AutoUpgrade with Source and Target Database Homes on Same
Server (Typical)

When your Oracle Database Source and Target Oracle homes are installed on the
same physical server, use this example.

Context: Source and Target homes are on the same server.

To start the analysis, enter the following command.

java -jar autoupgrade.jar -config config.txt -mode analyze

The command produces a report that indicates any error conditions that the command
finds. Review the error conditions.

To start the deployment of the upgrade, enter the following command:

java -jar autoupgrade.jar -config config.txt -mode deploy

AutoUpgrade with Source and Target Database Homes on Different

Servers

ORACLE

When your Oracle Database Source and Target Oracle homes are located on different
physical servers, you must complete tasks on both servers.

Context: Source and Target Oracle homes are on different physical servers.

To start the analysis, enter the following command.

java -jar autoupgrade.jar -config config.txt -mode analyze

The command produces a report that indicates any error conditions that the command
finds. Review the error conditions.

Because the source and target Oracle Database Oracle homes are on different
servers, you run fixups on the source server, and the upgrade on the target server.

3-4



Chapter 3
AutoUpgrade Messages and Process Description Terms

1. Run fixups on the source server:

java -jar autoupgrade.jar -config config.txt -mode fixups

2. Complete the tasks to move the source Oracle Database from the source server to the
target server.

3. On the target server, start up the database in upgrade mode, and then run AutoUpgrade
in upgrade mode:

java -jar autoupgrade.jar -config config.txt -mode upgrade

AutoUpgrade Messages and Process Description Terms

To understand how your upgrade checks and operations are proceeding, learn about the
AutoUpgrade utility messages that are generated as the utility runs.

e Overview of AutoUpgrade Job IDs
An AutoUpgrade Job is a unit of work associated with an upgrade, which is identified by
a job identifier (5obid).

e Overview of AutoUpgrade Stages
AutoUpgrade utility jobs pass through a series of phases, called stages, during which
specific actions are performed.

e Overview of AutoUpgrade Stage Operations and States
In AutoUpgrade, operation describes actions performed during stages, and state
indicates the status of a stage operation.

Overview of AutoUpgrade Job IDs

An AutoUpgrade Job is a unit of work associated with an upgrade, which is identified by a job
identifier (obid).

A job represents a set of actions that AutoUpgrade performs. Each job goes through a set of
stages to accomplish its purpose. The job is identified by a unique positive integer, which is
called a jobid. Each new AutoUpgrade job produces a new job ID (jobid) for each database
found in the configuration file for the AutoUpgrade utility. If AutoUpgrade detects that a
database with a jobid that you previously started exists on your system is incomplete, then
AutoUpgrade identifies this existing jobid as a resume operation. In a resume operation,
stages of a job identified by a jobid that did not complete during the previous AutoUpgrade
run are continued from the point where they were stopped.

Overview of AutoUpgrade Stages

ORACLE

AutoUpgrade utility jobs pass through a series of phases, called stages, during which
specific actions are performed.

The actions that occur during a stage are defined by the processing mode that you select
for AutoUpgrade: Analyze, Fixups, Deploy, and Upgrade.

AutoUpgrade has the following stages:

* SETUP: The initial stage that the AutoUpgrade utility job manager creates as part of the
preparation for starting a job.

3-5



Chapter 3
AutoUpgrade Messages and Process Description Terms

PREUPGRADE: The stage in which AutoUpgrade performs checks of your
system, based on your current system configuration to determine its readiness for
upgrade, such as checking to determine if you have sufficient available disk space.

«  PRECHECKS: The stage in which AutoUpgrade analyzes your source Oracle
home to determine if the database meets the requirements for upgrade.

* GRP: The guaranteed restore point (GRP), which AutoUpgrade creates before
starting the upgrade process. This option is only available for Oracle Database
Enterprise Edition releases. It is not available for Oracle Database Standard
Edition. Even though AutoUpgrade creates a GRP by default, Oracle highly
recommends that you perform a backup before starting your upgrade.

*  PREFIXUPS: The stage in which AutoUpgrade performs preupgrade fixups before
starting the upgrade. For example, this is the stage in which AutoUpgrade gathers
dictionary statistics on the source Oracle home.

* DRAIN: The stage during which AutoUpgrade shuts down the database.

« DBUPGRADE: The stage in which AutoUpgrade performs the upgrade, and
compiles any invalid objects that are found after the upgrade completes.

 POSTCHECKS: The stage in which AutoUpgrade performs checks on the target
Oracle home (the upgraded Oracle Database) before starting postupgrade fixups.

*  POSTFIXUPS: The stage in which AutoUpgrade performs processing of
postupgrade fixups, such as upgrading the time zone.

«  POSTUPGRADE: The stage in which AutoUpgrade copies or merges the source
Oracle home configuration files (tnsnames.ora, sglnet.ora, and other files) to the
target Oracle home.

* SYSUPDATES: The stage in which AutoUpgrade will bring up the Oracle RAC or
an individual database for patching or upgrade.

Overview of AutoUpgrade Stage Operations and States

ORACLE

In AutoUpgrade, operation describes actions performed during stages, and state
indicates the status of a stage operation.

Understanding Operation Messages

An operation message is an internal phase message that describes what is happening
during an AutoUpgrade state. There are two types of operation messages.

PREPARING: An AutoUpgrade instance is being created, initialized, or called, in
preparation for completing an AutoUpgrade stage. This is an information message.
When you see this message, there is no action for you to perform.

EXECUTING: AutoUpgrade is in the process of performing the main workflow of a
stage. This is an information message. There is no action for you to perform.

Understanding State Messages

State messages indicate the status of the current workflow of the stage for which the
message is displayed. There are four state messages:

*  ABORTED: AutoUpgrade stopped performing the stage workflow, in response to a
user request.

3-6



Chapter 3
About AutoUpgrade Processing Modes

ERROR: An error was encountered while the stage workflow was being performed.
Review the cause of the error.

FINISHED: AutoUpgrade successfully completed the workflow for the stage.
RUNNING: AutoUpgrade is performing the stage workflow.

About AutoUpgrade Processing Modes

The four AutoUpgrade processing modes (Analyze, Fixup, Deploy, and Upgrade)
characterize the actions that AutoUpgrade performs as it runs.

Preparations for Running AutoUpgrade Processing Modes
You must complete preparations before you can run an AutoUpgrade processing mode.

About the AutoUpgrade Analyze Processing Mode
The AutoUpgrade Analyze (analyze) processing mode checks your database to see if it
is ready for upgrade.

About the AutoUpgrade Fixups Processing Mode
The AutoUpgrade Fixups (fixups) processing mode analyzes your database, and
performs fixups of items that must be corrected before you can perform an upgrade.

About the AutoUpgrade Deploy Processing Mode
The AutoUpgrade Deploy (deploy) processing mode performs the actual upgrade of the
database, and performs any pending fixups.

About the AutoUpgrade Upgrade Processing Mode
The AutoUpgrade Upgrade (upgrade) processing mode enables you to upgrade either
the source or target Oracle home.

Preparations for Running AutoUpgrade Processing Modes

You must complete preparations before you can run an AutoUpgrade processing mode.

ORACLE

Before you can use an AutoUpgrade processing mode, confirm that you meet the following
requirements:

You have created a user configuration file.

The source Oracle Database release is up and running in the original Oracle home. In
case of a restart of AutoUpgrade, you must start the database in the Oracle home that
corresponds to the phase in the upgrade flow.

The server on which the database is running is registered on the server hosts file (for
example, /etc/hosts), or on a domain name server (DNS).

If you are logged in to the server on which the target database is located, and the
database is running either on localhost, or where AutoUpgrade is running, then remove
the hostname parameter from the AutoUpgrade config file.

On container databases (CDBSs), if you want to upgrade a subset of pluggable databases
(PDBs), then the PDBs on which you want to run the upgrade are open, and they are
configured in the user configuration file, using the AutoUpgrade local parameter pdbs. If
you do not specify a list of PDBs, then AutoUpgrade upgrades all PDBs on the CDB.

You have the AutoUpgrade jar file (autoupgrade.jar) downloaded or available, and you
are able to run it using a Java 8 distribution.

3-7



Chapter 3
About AutoUpgrade Processing Modes

* If you want to run AutoUpgrade in a batch or script , then you have called
AutoUpgrade using the noconsole parameter in the command.

In Oracle Database 19c (19.3) and later target Oracle homes, the autoupgrade.jar
file exists by default. However, before you use AutoUpgrade, Oracle strongly
recommends that you download the latest version, which is available form My Oracle
Support Document 2485457.1.

Related Topics
e My Oracle Support Document 2485457.1

About the AutoUpgrade Analyze Processing Mode

ORACLE

The AutoUpgrade Analyze (analyze) processing mode checks your database to see if
it is ready for upgrade.

When you run AutoUpgrade in Analyze mode, AutoUpgrade only reads data from the
database, and does not perform any updates to the database. You can run
AutoUpgrade using the Analyze mode during normal business hours. You can run
AutoUpgrade in Analyze mode on your source Oracle Database home before you
have set up your target release Oracle Database home.

You start AutoUpgrade in Analyze mode using the following syntax, where Java-8-
home is the location of your Java 8 distribution, or the environment variable set for the
Java 8 home, and path/yourconfig. txt is the path and filename of your configuration
file:

Java-8-home/bin/java -jar autoupgrade.jar -config /path/yourconfig.txt
-mode analyze

For example, suppose you have copied the most recent AutoUpgrade release to the
new release Oracle home under rdbms/admin, and set an environment variable for
that home to 21CHOME, and copied the configuration file under the Oracle user home,
under the directory /scripts, and called it 21config.cfg, you then enter the following
command:

java -jar $21CHOME/rdbms/admin/autoupgrade.jar -config /scratch/
scripts/2lconfig.cfg -mode analyze -mode analyze

Oracle Database Release 12.2 (12.2.0.1) or newer Oracle homes have a valid java
version by default.

SETUP PRECHECKS

The AutoUpgrade Analyze mode produces two output files, which are given the name
of the system identifier (s1D) of the database that you check:

e SID.html: View this file using a web browser.
* SID preupgrade.log: View this file using a text editor.

Each report identifies upgrade errors that would occur if you do not correct them,
either by running an automatic fixup script, or by manual correction. If errors occur,
then they are reported in the user log file, and also in the status. json file.

3-8


https://support.oracle.com/rs?type=doc&id=2485457.1

Chapter 3
About AutoUpgrade Processing Modes

The Analyze mode also generates a status directory in the path cfgtoollogs/upgrade/auto/
status. This directory contains files that indicate if the analysis was successful or failed. This
directory has two JSON files, status.json and progress.json:

* status.json : A high-level status JSON file that contains the final status of the upgrade.

* progress.json: A JSON file that contains the current progress of all upgrades being
performed on behalf of the configuration file. If errors occur, then they are reported in the
log file of the user running AutoUpgrade, and also in the status.json file.

If your target database Oracle home is not available on the server, then in your configuration
file, you must set the source Oracle home parameters to the same path, so that the
AutoUpgrade analyze processing mode can run. For example:

#

# Source Home

#

sales3.source _home=d:\app\oracle\product\12.2.0\dbhome 1
#

# Target Oracle Home

#

sales3.target home=d:\app\oracle\product\21.0.0\dbhome 1

Earlier releases of AutoUpgrade required you to set target home. In later releases of
AutoUpgrade, this restriction has been lifted for both Analyze and Fixups modes.

About the AutoUpgrade Fixups Processing Mode

The AutoUpgrade Fixups (fixups) processing mode analyzes your database, and performs
fixups of items that must be corrected before you can perform an upgrade.

When you run AutoUpgrade in Fixups mode, AutoUpgrade performs the checks that it also
performs in Analyze mode. After completing these checks, AutoUpgrade then performs all
automated fixups that are required to fix before you start an upgrade. When you plan to move
your database to a different platform, using the Fixups mode prepares the database for
upgrade.

Caution:

Oracle recommends that you run AutoUpgrade in Analyze mode separately before
running AutoUpgrade in Fixups mode. Fixup mode can make changes to the source
database.

As part of upgrade preparation, if the source database requires corrections for conditions that
would cause errors during an upgrade, then AutoUpgrade run in Fixups mode performs
automated fixes to the source database. Because running AutoUpgrade in Fixups mode is a
step that you perform as you are moving to another system, it does not create a guaranteed
restore point. Oracle recommends that you run this mode outside of normal business hours.

ORACLE 3-9



Chapter 3
About AutoUpgrade Processing Modes

You start AutoUpgrade in Fixups mode using the following syntax, where Java-8-home
is the location of your Java 8 distribution, or the environment variable set for the Java
8 home:

Java-8-home/bin/java -jar autoupgrade.jar -config yourconfig.txt -mode
fixups

If Java 8 is in your source Oracle home, then start AutoUpgrade in Fixups mode using
the following syntax, where Oracle home is the Oracle home directory, or the
environment variable set for the Oracle home, and yourconfig.txt is your
configuration file:

Oracle home/jdk8/bin/java -jar autoupgrade.jar -config yourconfig.txt -
mode fixups

SETUP ]—»[ PRECHECKS ]—»[ PREFIXUPS

As AutoUpgrade runs in Fixups mode, it starts out by running the same prechecks that
are run in Analyze mode. It then runs automated fixups in the source database in
preparation for upgrade, and generates a high-level status file that indicates the
success or failure of fixup operations. If errors occur, then they are reported in the log
file of the user running AutoUpgrade.

Caution:

AutoUpgrade in Fixups mode does not create a guaranteed restore point.
Before starting AutoUpgrade in Fixups mode, ensure that your database is
backed up.

About the AutoUpgrade Deploy Processing Mode

The AutoUpgrade Deploy (deploy) processing mode performs the actual upgrade of
the database, and performs any pending fixups.

Before you run Deploy, you must have the target Oracle home already installed, and
you must have a backup plan in place, in addition to the backup plan run as part of the
AutoUpgrade script.

You start AutoUpgrade in Deploy mode using the following syntax, where
Oracle home is the Oracle home directory, or the environment variable set for the
Oracle home, and yourconfig.txt is your configuration file:

Oracle home/jdk8/bin/java -jar autoupgrade.jar -config yourconfig.txt -
mode deploy

ORACLE 3-10



Chapter 3
About AutoUpgrade Processing Modes

| SETUP GRP PREUPGRADE PRECHECKS |PREFIXUPS

f
DRAIMN DBUPGRADEl POSTCHECKS | POSTFIXUPS | POSTUPGRADE |SYSUPDATES

When you run AutoUpgrade in Deploy mode, AutoUpgrade runs all upgrade operations on
the database, from preupgrade source database analysis to post-upgrade checks. Each
operation prepares for the next operation. If errors occur, then the operation is stopped. All
errors are logged to relevant log files, and to the console, if enabled. A high level status file is
generated for each operation, which shows the success or failure of the operation. If there
are fixups that are still pending (for example, if you run AutoUpgrade in Deploy mode without
running AutoUpgrade first in Analyze and Fixups mode) then AutoUpgrade can complete
fixups during the Deploy mode.

About the AutoUpgrade Upgrade Processing Mode

ORACLE

The AutoUpgrade Upgrade (upgrade) processing mode enables you to upgrade either the
source or target Oracle home.

You can use the Upgrade mode to divide an upgrade into two parts:

1. (Strongly Recommended) Run the Prefixups mode on the source database running on its
Oracle home.

2. (Optional) Move the source database to a new Oracle home on a different system.

3. Perform the upgrade of the database using the Upgrade mode.

" Note:

When run in the source Oracle home, AutoUpgrade will start processing the
upgrade immediately after skipping the PRECHECKS and PREFIXUPS stages.
All other stages (except POSTUPGRADE) typically run during a DEPLOY will be run.

To use the Upgrade mode, the database must be up and running in either the source or the
target Oracle home before you run AutoUpgrade in Upgrade mode. This option is particularly
of value when you have moved your Oracle Database to a different system from the original
source system, so that you cannot use the AutoUpgrade Deploy mode.

This procedure runs the upgrade, and postfixups operations on the database in the new
Oracle home location.

Upgrading PDBs with Upgrade Mode
To upgrade a PDB, the folllowing requirements must be met:

e The PDB must already be added to the CDB.
e The PDB must already be opened in Upgrade mode.

e If you ran a manual Non-CDB to PDB or Unplug-Plug procedure, these processes must
be fully completed before you run AutoUpgrade.

3-11



ORACLE

Chapter 3
About AutoUpgrade Processing Modes

*  When the PDB was not previously added to the CDB, and that PDB had a
Transparent Data Encryption (TDE) configuration, you must reimport the TDE after
the upgrade is completed.

AutoUpgrade Upgrade Mode in Target Oracle Home

In a CDB, when CDBSROOT is in a major version (first numeral), we can use
Autoupgrade to upgrade the PDBs that are in a lower version. The process for each
PDB that you upgrade is as follows:

DBUpgrade Postchecks Postupgrade Sysupdates

As AutoUpgrade runs in Upgrade mode, errors are logged to the log file of the user
running the AutoUpgrade script. A high level status file is generated for each
operation, which shows the success or failure of the operation.

< Note:

When you run AutoUpgrade in Upgrade mode, PDBs must already be open
in migration mode. There is no automated backup option for this
configuration. In this scenario, postupgrade operations are not performed, so
you must complete those steps separately later. For example, the following
postupgrade operations are not performed:

e Copy of network files (tnsnames.ora, sqlnet.ora, listener.ora and
other listener files, LDAP files, oranfstab

* Removal of the guaranteed restore point (GRP) created during the
upgrade

e Final restart of an Oracle Real Application Clusters database

AutoUpgrade Upgrade Mode in Source Oracle Home

When the database in open in the source Oracle home, the stages run in the upgrade
home depend on whether Fixups have been run on the source Oracle home before
you start AutoUpgrade in Upgrade mode:

* If Fixups have already been run on the Source Oracle home, then all of the stages
of a typical Deploy mode are run, except for Prechecks and Prefixups.
Use this option if you can run the Prechecks and Prefixups separately, because
AutoUpgrade bypasses running the Prechecks and Prefixups stages during the
upgrade itself, which reduces your downtime.

» If fixups on the source Oracle home have not been run within the previous 3 days,
then Upgrade mode includes those stages. The result is that running AutoUpgrade
in Upgrade mode on the source Oracle home is exactly the same as running
AutoUpgrade in Deploy mode, because the Prechecks and Prefixups stages are
run as part of the Upgrade mode.

Example 3-1 Running AutoUpgrade in the Target Home After Moving the
Database to a New Location

Where dbname is the name of your database, you run AutoUpgrade using the following
steps:

3-12



Chapter 3
Understanding AutoUpgrade Workflows and Stages

1. + If you ran AutoUpgrade with the Prefixups mode:

a. Copy the during upgrade pfile dbname.ora file to the default location in the
target Oracle home with the default name (initSID.ora).

The during upgrade pfile dbname.ora file is located under the temp directory
in the log path used to run AutoUpgrade.

b. (Optional) You can connect to SQL*Plus and create an SPFILE using
during upgrade pfile dbname.ora in the temp directory. For example:

SQL> create spfile from pfile='/ull/autoupgrade/au2l/CDBUP/temp/
during upgrade pfile cdbupg.ora';

* If you did not run AutoUpgrade with the Prefixups mode:

a. Copy the initialization file (init.ora or spfileSID.ora from the source Oracle
home to the target Oracle home location.

2. Run AutoUpgrade in Upgrade mode using the following syntax, where Oracle home is the
Oracle home directory path, or the environment variable set for the Oracle home, and
yourconfig. txt is your configuration file:

Oracle home/jdk8/bin/java -jar autoupgrade.jar -config yourconfig.txt -
mode upgrade

This command runs the upgrade operations on the database.

Understanding AutoUpgrade Workflows and Stages

The AutoUpgrade workflow automates each step of a typical upgrade process. The stages
that run depend on the processing mode that you select.

AutoUpgrade is designed to enable you to perform an upgrade with as little human
intervention as possible. When you start AutoUpgrade, the configuration file you identify with
the command is passed to the AutoUpgrade job manager. The job manager creates the
required jobs for the processing mode that you selected, and passes the data structures
required for the mode to the dispatcher. The dispatcher then starts lower-level modules that
perform each individual task.

AutoUpgrade Processing Mode Workflow Processing

To understand how AutoUpgrade processes a workflow mode, review the following figure,
which shows how a deploy processing mode is processed:

ORACLE 3-13



Chapter 3
Understanding AutoUpgrade Workflows and Stages

$ORACLE_HOME/jdk8/bin/java -jar autoupgrade.jar -config config.txt -mode deploy

config.txt | [+ 0B Name

« Oracle 51D
: Uparade Bootstra Process conflguration files

+ Start Time _ Pg P and starts the required
« Source Home Modules components
+ Target Home

|_* Log Directory

O l
f o e

&

d - Upgrade Job Prepares and submits
JDb 100 Manager each job

Each job runs under its own
thread and is isolated from the
rest to maximize performance and
reduce risks

AutoUpgrade Processing Mode Stages

The stages that AutoUpgrade runs for an upgrade job depends on the processing
mode that you select.

Analyze [ Fixups I | Deploy [ Upgrade |

Setup ._ 2 -

L 2

GRP

[ Preupgrade ]

Prechecks - =
e —
&

7(:;Lf‘Job xyz | - Frefues | *

L

-

Dirain

| DBUpgrade

| Postchecks
Postfixups - - -

P

There are four AutoUpgrade modes. For each mode, AutoUpgrade steps are
performed in sequence. Note the differences in steps for each mode

* Analyze Mode: Setup, Prechecks.
*  Fixups Mode: Setup, Prechecks, and Prefixups.

» Deploy Mode: Setup, Guaranteed Restore Point (GRP), Preupgrade, Prechecks,
Prefixups, Drain, DB (database) Upgrade, Postchecks, Postfixups, Postupgrade,
and Sysupdates. You can run your own scripts before the upgrade (Preupgrade
stage) or after the upgrade (Postupgrade stage), or both before and after the
upgrade.

* Upgrade Mode: Setup, DB (database) Upgrade, Postchecks, Postfixups, and
Sysupdates.

ORACLE 3-14



Chapter 3
Understanding Non-CDB to PDB Upgrades with AutoUpgrade

Understanding Non-CDB to PDB Upgrades with AutoUpgrade

ORACLE

You can upgrade and convert a non-CDB to a PDB in a new CDB in a single operation, or
upgrade and then convert a Non-CDB database to a PDB in a pre-existing CDB.

All upgrades to Oracle Database 21c must use the multitenant architecture. Use of the non-
CDB Oracle Database architecture is desupported. When you migrate your database from
the non-CDB architecture to PDBs, you obtain up to three user-configurable PDBs in a
container database (CDB), without requiring a multitenant license. If you choose to configure
four or more PDBs, then a multitenant license is required.

The non-CDB to PDB feature of the AutoUpgrade utility provides you flexible options to
control how you upgrade your earlier release non-CDB Oracle Database when you upgrade
and convert to the multitenant architecture. Starting with Oracle Database 21c, when you
have an existing target release CDB, you can use AutoUpgrade to convert a non-CDB Oracle
Database to a PDB on the target release CDB during the upgrade. To perform an upgrade
and conversion of the non-CDB to a PDB, you provide information about your non-CDB in the
AutoUpgrade configuration file. If you prefer, you can also choose to convert your non-CDB
Oracle Database to a PDB in the source release, and then plug in the PDB to a target release
CDB, where the upgrade is performed when you plug in the PDB.

After the upgrade you must configure the database listeners and local naming parameters
(tnsnames.ora files) .

Caution:

Before you run AutoUpgrade to complete the conversion and upgrade. Oracle
strongly recommends that you create a full backup of your source database, and
complete thorough testing of the upgrade. There is no option to roll back to the non-
CDB Oracle Database state after AutoUpgrade starts this procedure.

Figure 3-1 Converting and Upgrading a Non-CDB Using AutoUpgrade

In this illustration, a non-CDB Oracle Database called Sales is converted and upgraded to a
PDB called Sales.

3-15



ORACLE

Chapter 3
Understanding Non-CDB to PDB Upgrades with AutoUpgrade

Root (CDBSROOT)

EN E'_’r.a—'_ Mew
iy PDB
o000, -
| | e ol

| |
CADEX IATA

Non-CDB
Sales

=p| AutoUpgrade

Requirements for Source Non-CDB and Target CDB

Requirements on the source non-CDB and target CDB to perform upgrades and
conversions to PDBs are as follows:

The target CDB must be created in advance of performing the upgrade with
AutoUpgrade.

The PDB created from the non-CDB must continue to use the source non-CDB
name. You cannot change the name of the database.

The same set of Oracle Database options are configured for both the source and
target.

The endian format of the source and target CDBs are identical.

The source and target CDBs have compatible character sets and national
character sets.

The source non-CDB Oracle Database release and operating system platform
must be supported for direct upgrade to the target CDB release.

Operating system authentication is enabled for the source and target CDBs

The minimum COMPATIBLE parameter setting for the source database must be at least
12.2.0. If the COMPATIBLE Setting is a lower version, then during the conversion and
upgrade process, COMPATIBLE is set to 12.2.0. During the conversion, the original
datafiles are retained. They are not copied to create the new PDB. To enable
AutoUpgrade to perform the upgrade, edit the AutoUpgrade configuration file to set the
AutoUpgrade parameters target version to the target CDB release, and identify the
CDB to which the upgraded database is placed using target cdb. During the

3-16



Chapter 3
Understanding Unplug-Plug Upgrades with AutoUpgrade

conversion and upgrade process, AutoUpgrade uses that information to complete the
upgrade to the target CDB.

Example 3-2 AutoUpgrade Configuration File for Non-CDB to PDB Conversion

To use the non-CDB to PDB option, you must set the parameters target cdb in the
AutoUpgrade configuration file. The target cdb parameter value defines the Oracle system
identifier (SID) of the container database into which you are plugging the non-CDB Oracle
Database. For example:

global.autoupg log dir=/home/oracle/autoupg
upgl.sid=s12201

upgl.source home=/ull/product/12.2.0/dbhome 1
upgl.log dir=/home/oracle/autoupg

upgl.target home=/ull/product/20.1.0/dbhome 1
upgl.target base=/ull

upgl.target version=19.1.0

upgl.target cdb=cdbl9x

Related Topics

» Permitted Features, Options, and Management Packs by Oracle Database Offering

Understanding Unplug-Plug Upgrades with AutoUpgrade

AutoUpgrade can perform an unplug of a pluggable database (PDB) from an earlier release
source container database (CDB), plug it into a later release target CDB, and then complete
all the steps required to upgrade the PDB to the target CDB release.

There are two workflows for unplug-plug PDB upgrades using AutoUpgrade, depending on
how you configure the upgrade:

*  You unplug one or more pluggable databases from one source CDB, and plug them into
a new release target CDB

*  You unplug multiple pluggable databases from different source CDBs, and plug them into
a new release target CDB

In addition, for unplug-plug operations, AutoUpgrade now supports moving the default state
of a PDB from the source PDB to the target PDB. If you set alter pluggable database save
state on a source PDB, then that state is transferred to the target PDB, so that the PDB is
automatically opened when CDB$ROOT is opened.

Caution:

As with any other change to the database, before you run AutoUpgrade to complete
the conversion and upgrade, Oracle strongly recommends that you implement a
reliable backup strategy to prevent unexpected data loss. There is no option to roll
back an unplug-plug PDB upgrade after AutoUpgrade starts this procedure.
Flashback Database also does not work across the PDB conversion, and is not
reversible. Backups are the only fallback strategy.

The following illustration shows the unplug-plug operation, in this case of a single PDB:

ORACLE 3-17



ORACLE

1.

3.

Chapter 3
Understanding Unplug-Plug Upgrades with AutoUpgrade

There is one source Oracle Database, and one target release Oracle Database. At
this stage, create your configuration file and run AutoUpgrade in Analyze mode
(autoupgrade.jar -mode analyze) to check your readiness for upgrade, and to
correct any issues that are reported.

You run AutoUpgrade in Deploy mode (autoupgrade.jar -mode deploy).
AutoUpgrade uses the information you provide in the configuration file to move the
PDB to the target release, and plug in the PDB.

AutoUpgrade runs prefixups, and then upgrades the PDB to the target release.

Figure 3-2 Unplug-Plug Upgrades from Source to Target

L

f'll("r"hL Prefixups

-;;J,;;Job XyZ -

Analyze " Fixups Deploy ] Upgrade |

Setup ] & .

3

GRP

-
»
»—

-Preupgrade ]

|

Prechecks -
) !

Drain

DBUpgrade -

Postchecks

Postfixups

99
-

Postupgrade

Requirements for Source and Target CDBs

To perform an unplug-plug upgrade, your source and target CDBs must meet the
following conditions:

You have created the target release CDB, and opened the CDB before starting the
unplug-plug upgrade.

The endian format of the source and target CDBs are identical.

The set of Oracle Database components configured for the target release CDB
include all of the components available on the source CDB.

The source and target CDBs have compatible character sets and national
character sets

The source CDB release must be supported for direct upgrade to the target CDB
release.

External authentication (operating system authentication) is enabled for the source
and target CDBs

The Oracle APEX installation type on the source CDBs should match the
installation type on the target CDB.

There should be no existing guaranteed restore point (GRP) on the non-CDB
Oracle Database that you want to plug in to the CDB.

3-18



Chapter 3
AutoUpgrade Command-Line Parameters and Options

< Note:

With AutoUpgrade 22 and later updates, you can now use AutoUpgrade to plug into
an Oracle Data Guard configuration. AutoUpgrade creates the PDB with the
STANDBYS=NONE clause. After the upgrade, you can re-establish standbys by
recovering the data files on the standby databases.

Features of Unplug-Plug Upgrades

When you select an unplug-plug upgrade, depending on how you configure the AutoUpgrade
configuration file, you can use AutoUpgrade to perform the following options during the
upgrade:

* You can either keep the PDB name that you have in the source CDB, or you can change
the PDB name.

* You can make a copy of the data files to the target CDB, while preserving all of the old
files.

* You can copy the data files to the target location, and then delete the old files on the
source CDB

* You can process one PDB, or you can link to an inclusion list and process many PDBs in
one upgrade procedure; the only limit for the number of PDBs you can process are the
server limits, and the limits for PDBS on the CDB.

Example 3-3 AutoUpgrade Configuration File for Unplug-Plug Upgrades

To use the unplug-plug PDB upgrade option, you must identify the following values in the
AutoUpgrade configuration file:

* The system identifier parameters for the source CDB (parameter sid).
* The target CDB (parameter target cdb).

»  The name of the PDB in the source CDB, and, if you want to convert it, the target
conversion hame.

For example, where the source CDB is CDB122, the target CDB is cdb21x, the name of the
PDB in the source CDB is pdb2, and the conversion name for the PDB that you want on the
target CDB is depsales:

global.autoupg log dir=/home/oracle/autoupg

upgl.sid=CDB122

upgl.source home=/u0l/app/oracle/product/12.2.0/dbhome 1

upgl.target home=/u0l/app/oracle/product/19.1.0/dbhome 1

upgl.target cdb=cdb21x

upgl.pdbs=pdb 2

upgl.target pdb name.pdb 2=depsales

upgl.target pdb copy option.pdb 2=file name convert=('pdb 2', 'depsales')

AutoUpgrade Command-Line Parameters and Options

Review the AutoUpgrade parameters and select the parameters and options for your Oracle
Database upgrade use case.

ORACLE 3-19



ORACLE

Chapter 3
AutoUpgrade Command-Line Parameters and Options

Use the parameters with the command java -jar autoupgrade.jar.

AutoUpgrade Command-Line Syntax
To see how to use AutoUpgrade to perform your upgrades, review the syntax and
run time use cases.

debug
The AutoUpgrade parameter debug turns on the AutoUpgrade debug message
feature, which assists you with correcting faulty AutoUpgrade job syntax.

clear_recovery_data

The AutoUpgrade parameter clear recovery data removes the recovery
checkpoint, which causes AutoUpgrade to have a fresh start the next time the tool
is launched on specified databases, or on all databases.

config
The AutoUpgrade parameter config identifies the configuration file that you use to
provide information about databases that you want to upgrade.

config_values

The AutoUpgrade parameter config values enables you to provide the same
input values about systems as a text configuration file. You can use it conjunction
with the config parameter.

console
The AutoUpgrade parameter console turns on the AutoUpgrade console, and
provides a set of commands to monitor the progress of AutoUpgrade jobs.

create_sample_file

The AutoUpgrade parameter create sample file generates either a
configuration file, or a settings file. You edit these files to create production
configuration or settings files for AutoUpgrade.

error_code
The AutoUpgrade parameter error code shows the error codes for AutoUpgrade
errors.

listchecks
load_password
load_win_credential

mode
The AutoUpgrade parameter mode value sets the mode from which AutoUpgrade
runs.

noconsole
The AutoUpgrade parameter noconsole turns off the AutoUpgrade console, so
that AutoUpgrade runs using only configuration file information.

preupgrade

The AutoUpgrade parameter preupgrade runs database checks and preupgrade
fixups that fix most issues before you start an upgrade, and postupgrade fixups
that fix most issues after an upgrade is completed.

settings
The AutoUpgrade parameter settings identifies the configuration file that you use
to provide custom runtime configuration of the AutoUpgrade utility.

3-20



Chapter 3
AutoUpgrade Command-Line Parameters and Options

* version
The AutoUpgrade parameter version prints to the terminal screen the current build of the
autoupgrade.jar file.

* restore
The AutoUpgrade parameter restore performs a system-level restoration of the
AutoUpgrade jobs that you specify.

e restore_on_fail
The AutoUpgrade parameter restore on fail automatically restores any job that failed
during the deployment.

e Zip
The AutoUpgrade parameter zip creates a zip file of log files required for filing an
AutoUpgrade service request.

AutoUpgrade Command-Line Syntax

ORACLE

To see how to use AutoUpgrade to perform your upgrades, review the syntax and run time
use cases.

Prerequisites

* You must have Java Development Kit (JDK) 8 or later installed in your source
environment.

JDK 8 is installed with every release starting with Oracle Database 12c Release 2 (12.2).
For any release earlier than 12.2, you must either run AutoUpgrade using the Java
release in the target Oracle Database, or you must install JDK 8 on your source database
server.

* Oracle Database upgrades using the AutoUpgrade utility follow the same upgrade rules
that apply to manual Oracle Database upgrades. Confirm that your source Oracle
Database release is supported for upgrade.

With non-CDB to PDB conversion and upgrade, AutoUpgrade can automatically complete
both upgrade and conversion when these conditions are met:

* The target release CDB must exist.

* Inthe AutoUpgrade configuration file, where the target CDB system identifier is
target cdb, you must set the local parameter target cdb using the following syntax:
target cdb=target cdb. For example:

target cdb=cdbl
* The target cdb value is the Oracle SID of the CDB into which you are plugging the non-
CDB.

File Path

The AutoUpgrade utility is a Java JAR file that is located in the new release Oracle Database
home.

Oracle home/rdbms/admin/autoupgrade.jar

Oracle strongly recommends that you obtain the latest AutoUpgrade JAR file from My Oracle
Support. The JAR file and deployment instructions for the JAR file are available from My
Oracle Support note 2485457.1

3-21



Syntax

Chapter 3

AutoUpgrade Command-Line Parameters and Options

AutoUpgrade command syntax is case-sensitive. Enter commands in lowercase.

java -jar autoupgrade.jar [options]

Multiple options can be concatenated.

Run Type One (Basic) Parameters for AutoUpgrade

Run type one (Basic) parameters and options for AutoUpgrade provide a starting point

for preparing for upgrades.

Parameter Description
-version Displays the AutoUpgrade version.
-help Displays the help file for AutoUpgrade syntax.

-create sample file [settings |
config config-file-name]

Creates an example configuration file for
AutoUpgrade. For a description of the options,
see the create sample file parameter
topic.

Run Type Two (Core) Parameters for AutoUpgrade

Run type two (Core) parameters and options for AutoUpgrade provide essential
upgrade functionality for most upgrade scenarios.

Parameter

Description

-config [config path | -
config values config values]

-mode [analyze|fixups|deploy|
upgrade|postfixups]

-restore -jobs job#

-restore on fail

-console
-noconsole
-debug

-clear recovery data [-Jobs
job#,job#,...]

ORACLE

Identifies the configuration file that you use to
provide information about databases that you
want to upgrade. For a description of the
options, see the config parameter topic.

Sets the mode from which AutoUpgrade runs.
For a description of the options, see the mode
parameter topic.

Performs a system-level restoration of the
AutoUpgrade jobs that you specify

If set, then when a job fails, the database is
restored automatically. Errors in PDBs are not
considered irrecoverable, only errors in
CDBSROOT or Non-CDBs.

Starts AutoUpgrade with the console enabled.
Starts AutoUpgrade with the console disabled.
Enables debug messages.

Removes the recovery information, which
causes AutoUpgrade to start from the
beginning on all databases, or on databases in
a comma-delimited list specified by -jobs. For
a full description of the options, see the

clear recovery data parameter topic.

3-22



Chapter 3
AutoUpgrade Command-Line Parameters and Options

Parameter Description

Runs a system-level restoration of the
specified jobs. The databases are flashed
back to the Guaranteed Restore Point (GRP).
Before you run this command, the GRP must
already be created by AutoUpgrade. For a full

-restore -jobs job#,job#,...

debug

ORACLE

description of the options, see the
clear recovery data parameter topic.

-zip [-sid sid] [-d dir]

Zips up log files required for filing an

AutoUpgrade service request. For a
description of the options, see the zip
parameter topic.

Run Type Three (Additional) Parameters for AutoUpgrade

Run type three (Additional) parameters and options for AutoUpgrade are useful for particular
upgrade scenarios, such as restarting from a failed point in an upgrade, or running particular

fixups.
Parameter Description
-debug Enables debug messages.

-error code

Displays the AutoUpgrade error codes.

-help

Displays the help file for AutoUpgrade syntax.

-mode [analyze|fixups|postfixups]

Sets the mode from which AutoUpgrade runs. For
a description of the options, see the mode
parameter topic.

-load password

Enables you to enter passwords AutoUpgrade
requires safely into AutoUpgrade's keystore.

-preupgrade preupgrade options options

Runs database checks and preupgrade fixups that
fix most issues before you start an upgrade, and
postupgrade fixups that fix most issues after an
upgrade is completed. For a description of the
options, see the preupgrade parameter topic.

Related Topics
* My Oracle Support note 2485457.1

* Oracle Database Releases That Support Direct Upgrade

The AutoUpgrade parameter debug turns on the AutoUpgrade debug message feature, which
assists you with correcting faulty AutoUpgrade job syntax.

Property Description

Parameter type string

Syntax

autoupgrade.jar -parameter -debug

3-23


https://support.oracle.com/rs?type=doc&id=2485457.1

Chapter 3
AutoUpgrade Command-Line Parameters and Options

Description

The AutoUpgrade debug parameter turns on debugging messages, which can assist
you with correcting AutoUpgrade command syntax.

Usage Notes

Use the debug parameter in concert with any other AutoUpgrade parameter.

clear_recovery data

ORACLE

The AutoUpgrade parameter clear recovery data removes the recovery checkpoint,
which causes AutoUpgrade to have a fresh start the next time the tool is launched on
specified databases, or on all databases.

Property Description

Parameter type  string

Syntax clear recovery data [-jobs job numbers]
where:
job_numbers is a comma-delimited list of jobs that you want to clear

Description

The AutoUpgrade clear recovery data parameter removes the recovery information,
which causes AutoUpgrade to start from the beginning on specified databases, or on
all databases.

Usage Notes

Use after manually restoring a database and attempting a new upgrade. If no list of
jobs is provided, then by default, all job metadata is removed. Removing the metadata
does not remove log files, or reset the job identifier (jobid) counter. Only the
AutoUpgrade files used to keep track of the progress of each job are removed.

Examples

The following example shows how to use the clear recovery data option after you
encounter an issue, fix it, and then run AutoUpgrade again.

You start AutoUpgrade in deploy mode

java -jar autoupgrade.jar -config config.cfg -mode deploy

However, you encounter an issue during the upgrade. You stop AutoUpgrade, restore
the database, and make changes to the database to correct the issue. To start over
the AutoUpgrade procedure and clear out the current job state information, specify the
job number that is associated with the previously run job. If you specify the job
number, then AutoUpgrade only removes the state information for that specific job.
The rest of the jobs will remain untouched.

java -jar autoupgrade.jar -config config.cfg -mode analyze -
clear recovery data -jobs 100

3-24



Chapter 3
AutoUpgrade Command-Line Parameters and Options

< Note:

The job ID number associates the job with the database. If you enter the wrong job
id, then that causes AutoUpgrade to restart the wrong job from the beginning.

The analyze results are good, so you then run the deploy option again:

java -jar autoupgrade.jar -config config.cfg -mode deploy

When you run autoupgrade.jar -config with the -clear recovery data parameter,
AutoUpgrade only drops state files. It ignores any previously generated log files, so you can
retain log files for further reference. Running AutoUpgrade with the -clear recovery data
parameter also preserves the latest jobid information, so that the jobid AutoUpgrade
creates for the next job is the next ID in sequence. By maintaining the jobid state,
AutoUpgrade helps you to avoid mixing log output from earlier AutoUpgrade jobs in the same
log file.

The following are additional examples of how you can run the clear recovery data
parameter.

java -jar autoupgrade.jar -config config.cfg -clear recovery data
java -jar autoupgrade.jar -config config.cfg -clear recovery data -jobs 111,222

config

The AutoUpgrade parameter config identifies the configuration file that you use to provide
information about databases that you want to upgrade.

Property Description
Parameter type string
Syntax

-config [configfile

Default value None

Description

The config parameter specifies a configuration file name. It takes three arguments:
e The configuration file name

» (Optional) The path to the configuration file, as represented by config-file

When used in conjunction with the parameter -load password, AutoUpgrade also
creates a keystore for Transparent Data Encryption (TDE) passwords in the location
specified by the global configuration file parameter global.keystore, if that parameter is
set in the configuration file for a database.

ORACLE 3-25



Chapter 3
AutoUpgrade Command-Line Parameters and Options

Examples

Running AutoUpgrade with a configuration file named myconfig.cfg, with the
processing mode deploy:

java -jar autoupgrade.jar -config myconfig.cfg -mode deploy

config_values

ORACLE

The AutoUpgrade parameter config values enables you to provide the same input
values about systems as a text configuration file. You can use it conjunction with the
config parameter.

Property Description
Parameter type String.
Syntax

-config values [config-parameterl=value*,config-
parameter2=value,...]

Default value None.

Description

The config values parameter enables you to provide values about database paths,
instances, and target releases through the AutoUpgrade command line that otherwise
require you to specify a configuration file. AutoUpgrade then creates a configuration
file as the utility runs. Using config values enables you to run AutoUpgrade without a
configuration file.

The config values options are a comma-delimited list that can support multiple
database upgrades. Each database configuration is separated by asterisks (*) to
identify different databases. Global entries must include the global prefix in the name.
For example:

global.autoupg log dir=/ul0l/app/oracle/cfgtoollogs/upgradelogs/

Local entries only need to include the name:

target home=/u0l/app/oracle/product/21.0.0.0/dbhome 1

Logging directories are resolved in the following manner.

» Case: Global autoupg log dir is not specified.

If the config file parameter is not passed to AutoUpgrade, then the local
directory is used as the global log directory. If the config file parameter is not
passed to AutoUpgrade, then the global log directory defaults to the Java
temporary directory:

— Unix and Linux systems: /tmp/autoupgrade

— Microsoft Windows: C:\Users\name\AppData\Local\Temp\autoupgrade

3-26



ORACLE

Chapter 3
AutoUpgrade Command-Line Parameters and Options

— A configuration file is created with the name autoupgradeYYYYMMMHHMMSS . cfg, where
YYYYis year, MvM is month, HH is hour, MM is minute, and SS is second.

» Case: Global autoupg log dir is specified.

If the config file parameter does not pass the directory to AutoUpgrade, then
AutoUpgrade creates a configuration file in the AutoUpgrade log directory specified by
the parameter. If the config file parameter does not pass the directory to AutoUpgrade,
then the configuration file is created under the global log directory. If you specify a
configuration file name that already exists, then AutoUpgrade renames the existing
configuration file using the suffix YyyyMuMHHMMMMSS. c£g, where YYYY is year, M4M iS month,
HHis hour, MM is minute, and SS is second. For example: on April 29, 2020, at 08:30:04, if
configuration file \tmp\autoupgrade.cfg already exists, and you pass the file name -
config file \tmp\autoupgrade.cfg to AutoUpgrade, then the existing file is renamed to
\tmp\autoupgrade.cfg20200429083004. AutoUpgrade then creates the new configuration
file \tmp\autoupgrade.cfq.

If you use the -config values parameter, and the user account running the AutoUpgrade
command has the following operating system environment variables set, then AutoUpgrade
picks up the path defined for these variables:

* ORACLE HOME - The Oracle home path for the source Oracle home
* ORACLE TARGET HOME - The target Oracle home path.

— Linux and Unix: Equivalent to an export ORACLE TARGET HOME command. For
example: export ORACLE TARGET HOME=/u0l/app/oracle/product/19.0.0/

— Microsoft Windows: Equivalent to a SET ORACLE TARGET HOME command. For
example: SET ORACLE TARGET HOME=C:\oracle\19

* ORACLE SID - The Oracle Database system identifier (SID).

— Linux and Unix: Set with the operating system shell command export ORACLE SID.
For example: export ORACLE SID=sales

— Microsoft Windows: Set with the operating system shell command SET ORACLE SID
command. For example: SET ORACLE SID=sales

* ORACLE TARGET VERSION - The target release of the new Oracle home. You must set this
operating system environment variable either when the target Oracle home does not
exist, or the target home is a release earlier than Oracle Database 18c.

— Linux and Unix: Set with export ORACLE TARGET VERSION. For example, for Oracle
Database 19c:

export ORACLE TARGET VERSION=19.1

For Oracle Database 21c:
export ORACLE TARGET VERSION=21.1

— Microsoft Windows: Set with SET ORACLE TARGET VERSION.

For example, for Oracle Database 19c:

SET ORACLE TARGET VERSION=19.1

3-27



ORACLE

Chapter 3
AutoUpgrade Command-Line Parameters and Options

For example, for Oracle Database 21c:
SET ORACLE TARGET VERSION=21.1

If you use the config values parameter in place of a configuration file, and you do
not have these operating system environment variables set for the user account
running AutoUpgrade, then you must provide at least these four values as
arguments using config values.

Example: Running AutoUpgrade With an Existing Configuration File

Scenario: Running AutoUpgrade with an existing configuration file, using

config values. The following command syntax creates the global.autoupg log dir
from the local directory where the myconfig.cfg file is created. As a result of this
command, the location for global.autoupg log dir is setto /dir:

java -jar autoupgrade.jar -config /dir/myconfig.cfg -config values
“source home=/srcdir, target home=/trgdir, sid=sales” -mode
deploy

The configuration file myconfig is created in the path /dir, with the following entries:

global.autoupg log dir=/dir
autoupgradel.source home=/srcdir
autoupgradel.target home=/trgdir
autoupgradel.sid=sales

Example: Running AutoUpgrade Without Specifying a Value for -config values

In analyze, fixup, upgrade, or deploy mode, if you have set user environment values
that AutoUpgrade requires to run, and you do not pass these values as an argument
for -config values, then AutoUpgrade defaults to using the user environmental
variables set on the server.

To understand how this works, suppose you run AutoUpgrade as the user oracle, for
which the following environment variables are set, where the target version is Oracle
Database 21c:

* ORACLE HOME is setto /u0l/app/oracle/product/12.2.0.1/dbhome 1

* ORACLE_TARGET HOME is setto /u0l/app/oracle/product/19.0.0/dbhome 1

* ORACLE SIDIis setto sales

* ORACLE TARGET VERSION issetto 19.1

Now suppose you run the following command at 11:45:15 AM on September 30, 2020:

[Wed Sep 30 11:45:15] oraclelexample:~$ java —-jar autoupgrade.jar -
config values -mode analyze

Because the log directory was unspecified, AutoUpgrade defaults writing the
configuration file for the run to the temporary directory. The configuration file

3-28



Chapter 3
AutoUpgrade Command-Line Parameters and Options

AutoUpgrade creates resides in the path /tmp/autoupgrade as the file/tmp/autoupgrade/
autoupgrade20200501114515.cfg, with the following entries:

global.autoupg log dir=/tmp/autoupgrade

# Value from environmental variable ORACLE HOME
autoupgradel.source home=/u02/app/oracle/122

# Value from environmental variable ORACLE TARGET HOME
autoupgradel.target home=/scratch/oracle/19

# Value from environmental variable ORACLE SID
autoupgradel.sid=sales

# Value from environmental variable ORACLE TARGET VERSION
autoupgradel.target version=19.3

This option enables you to use AutoUpgrade to handle a single database upgrade without
requiring you to specify extensive details about the upgrade.

Example: Running AutoUpgrade with -config_values entries for multiple databases

In this scenario, you run AutoUpgrade with ~config values entries for multiple databases,
using * to delimit values for each database, with a target release of Oracle Database 21c:

java -jar autoupgrade.jar -config /tmp/auto.cfg -config values
"global.autoupg log dir=/scratch/upglogs, source home=/scratch/

122, target _home=/scratch/21,sid=sales, *, source home=/scratch/18,target home=/
scratch/21, sid=employees"

The configuration file is created in the directory /tmp as /tmp/auto.cfg, with the following
entries.

global.autoupg log dir=/scratch/upglogs
autoupgradel.source home=/scratch/19
autoupgradel.target home=/scratch/21
autoupgradel.sid=sales
autoupgrade2.source home=/scratch/19
autoupgrade2.target home=/scratch/21
autoupgrade?.sid=employees

console

The AutoUpgrade parameter console turns on the AutoUpgrade console, and provides a set
of commands to monitor the progress of AutoUpgrade jobs.

Property Description

Parameter type string

Syntax autoupgrade.jar -confiqg your-file -mode your-mode

ORACLE 3-29



ORACLE

Chapter 3
AutoUpgrade Command-Line Parameters and Options

Description

To monitor upgrades, use the AutoUpgrade parameter console to run the Console,
which monitors the status of upgrade jobs.

The AutoUpgrade console starts by default with the AutoUpgrade command. You can
reenable or disable the AutoUpgrade console using the option -console|-noconsole

When you use the -noconsole option, AutoUpgrade runs using only the settings in the
configuration file, without requiring console input. Use the noconsole option when you
want to create scripts for AutoUpgrade, such as in cases where you want to analyze
multiple databases. After the AutoUpgrade jobs are finished, you can review the output
of the Analyze mode logs to see what is required to upgrade each of the databases
included with your configuration script.

" Note:

You can start as many instances of AutoUpgrade as you want, but each
instance must use a unique global logging directory
(global.autoupg log dir). If you only have one global logging directory,
then you can only start one instance.

Usage Notes

When you start the console, you can use options within the console.

Console Option Description

-exit Closes and exits from the console. If there are jobs
running, then they are stopped.

-help Displays the console command help.

-1sj [(-r|-f|-pl-e)-a number] Lists jobs by status, up to the number of jobs you

-n number specify with the numeric value number. You can use

the following flags:

-f: (Optional) Filter by finished jobs.

-r: (Optional) Filter by running jobs.

-e: (Optional) Filter by jobs with errors.

-p: (Optional) Filter by jobs in preparation.

-a number: (Optional) Repeats the command after

the number of seconds specified by integer value
(number).

-n number: (Required) Number of jobs to display,
specified by integer value.

-1sr Displays the restoration queue.
-1sa Displays the queue of jobs to stop.
-tasks Displays the tasks that are running.
-clear Clears the terminal display.

3-30



Chapter 3
AutoUpgrade Command-Line Parameters and Options

Console Option

Description

-resume -job number [-
ignore errors=ORA-number, ORA-
number]

-status [-job number | -c
dbname| -config| -a number]

-restore [-Jjob (0-9) |-
all failed]

-logs

-abort -job number

-h[ist] [/number]

Restarts from a previous job that was running,
specified by a numeric value (number) for the job.

ignore errors option: This flag is optional. If there
are any resume errors during patching or upgrade
stage processing, then that is reported as a stage
failure. AutoUpgrade will not proceed to postupgrade
operations. There are some cases where an error can
be ignored, and postupgrade operations can
continue. If you think that a specific error will not
affect patching or upgrade, then you can use the
ignore errors option to specify the errors that you
want to ignore, so that postupgrade operations can
continue. The error numbers are specified by a
comma-delimited list of errors. Example:

-resume -job 444 -

ignore errors=0RA-48101,0RA-00001

Lists the status of a particular job with the response
you specify with the flag.

Flags:

-job number: Shows information about a specific
job, specified by a numeric value.

-c dbname: Displays information about the specific
database name that you specify (dbname), with
detailed information, if available.

-config number Displays configuration information
for the job that you specify.

-a number: (Optional) Repeats the command after

the number of seconds specified by integer value
(number).

Restores the database in the AutoUpgrade job
specified by the integer value number to its state
before starting the upgrade.

When run with the al1 failed option, restores all
failed jobs to their previous state before the upgrade
started.

Displays all log file locations.

Stops the job specified by the numeric value that you
provide (number).

Displays the console command-line history, and takes
the option to run a command again, depending on the
flat with which you run it:

Flags:

/ Runs the last command again.

/ number Runs the command in the history log
specified by the command line number that you
specify.

ORACLE

3-31



Chapter 3
AutoUpgrade Command-Line Parameters and Options

create_sample _file

The AutoUpgrade parameter create sample file generates either a configuration
file, or a settings file. You edit these files to create production configuration or settings
files for AutoUpgrade.

Property Description
Parameter type string
Syntax -create sample file config [filename] [full|unplug]

noncdbtopdb] | settings [filename]

Default value For create sample file config, if you append a filename to the
command, then an example configuration file is created with the name
you provide. If you do not provide an output file name, then the
example configuration file is created with the name
sample config.cfq.

You can add a clause to specify the type of AutoUpgrade configuration

file, using one of the following options:

e full: A complete options AutoUpgrade configuration file

e unplug : An AutoUpgrade configuration file with options for
unplug-plug upgrades of PDBs.

* noncdbtopdb : An AutoUpgrade configuration file with options for
nonCDB to PDB upgrades.

When you add the settings clause, an internal settings configuration

file is generated. You can accept the default file name, or specify a file
name.

Usage Notes

The create sample file parameter is optional. It cannot be used together with other
parameters. When you specify this parameter, it requires either the settings or the
config clause:

settings: Generates an AutoUpgrade settings file, either with the name
sample autoupg.cfg, or with a name that you specify.

config: Generates an AutoUpgrade configuration file, either with the name
sample config.cfg, or with a name that you specify.

After you generate one of these example files, you can modify the file to control how
the AutoUpgrade utility performs upgrades.

* config: Generates a template upgrade configuration file of a configuration mode
type. AutoUpgrade generates a file named sample config.cfg, or with a name
you provide, in the current folder

* settings AutoUpgrade generates a file named sample autoupg.cfg, or with the
name you provide, in the current folder.

For both the config and settings options, the default file name is generated with the
extension .cfg. However, AutoUpgrade can read files without an extension, or with an
extension that you provide, as long as the file is a valid (plain text) file. The default
extension is for convenience in identifying these files as configuration files.

ORACLE 3-32



error_code

ORACLE

Chapter 3
AutoUpgrade Command-Line Parameters and Options

Generating an example configuration file is a standard part of preparing to use AutoUpgrade.
After you customize the configuration file parameters in the example configuration file, you
can use that file as the production settings and configuration file for your upgrade.

Caution:

The settings file is used to overwrite internal settings of the AutoUpgrade.
Generating an example settings file is not required for most use cases. Use
carefully.

Examples

Example of running the create sample file parameter with the config clause:

[oracle@example ~]$ java -jar autoupgrade.jar -create sample file config
Created sample configuration file /home/oracle/sample config.cfg

Example of running the create sample file parameter with the config, clause specifying an
output configuration file name:

[oracle@example ~]$ java -jar autoupgrade.jar -create sample file config

sales(1
Created sample configuration file /home/oracle/salesOl.cfg

Example of running the create sample file parameter with the settings clause:

oracle€example ~]$ java -jar autoupgrade.jar -create sample file settings
Created sample settings file /home/oracle/sample autoupg.cfg

Example of running the create sample file parameter with the settings, clause specifying
an output configuration file name:

oracle€example ~]$ java -jar autoupgrade.jar -create sample file settings
testsetting.test
Created sample settings file /home/oracle/testsetting.test

The AutoUpgrade parameter error code shows the error codes for AutoUpgrade errors.

Property Description

Parameter type string

Syntax -error code [errorcode]

Default value When no error code is specified, all AutoUpgrade error codes are displayed

in the Console.

When an error code is specified, the information about the specified error
code is displayed in the Console.

3-33



listchecks

ORACLE

Chapter 3
AutoUpgrade Command-Line Parameters and Options

Examples

When entered without a specification, Autoupgrade produces descriptions of all of the
error codes:

$ java -jar autoupgrade.jar -error code

ERROR1000.ERROR = UPG-1000

ERROR1000.CAUSE = It was not possible to create the data file where the
jobsTable is being written or there was a problem during the writing, it might
be thrown due to a permission error or a busy resource scenario

ERROR1001.ERROR = UPG-1001
ERROR1001.CAUSE = There was a problem reading the state file perhaps there was
corruption writing the file and in the next write it might be fixed

ERROR1002.ERROR = UPG-1002
ERROR1002.CAUSE = Error deserializing the object for rerun, review log for any
errors

When entered with a specific error code, AutoUpgrade provides output for the error
that you specify. For example:

java -jar autoupgrade.jar -error code UPG-3010

This command produces the following output:

ERROR3010.ERROR = UPG-3010
ERROR3010.CAUSE = Error running approot to pdb.sql script

Here is another example:

$ java -jar autoupgrade.jar -error code UPG-1400

This command produces the following output:

ERROR1400.ERROR = UPG-1400
ERROR1400.CAUSE = Database upgrade failed with errors

The AutoUpgrade parameter 1istchecks either provides a list of all upgrade checks
for an upgrade, or if you specify a particular check, the details about the check you
specify.

Property Description
Parameter type string
Syntax

-listchecks [checkname]

Default value None. If no specific check is specified, then a list of all
AutoUpgrade checks is provided.

3-34



ORACLE

Chapter 3
AutoUpgrade Command-Line Parameters and Options

Examples

When entered without a specification, the Autoupgrade 1istchecks parameter generates
descriptions of all of the checks AutoUpgrade performs for the upgrade.

$ java -jar autoupgrade.jar -listchecks
Check : AMD EXISTS

Description : Starting with Oracle Database 12c, the OLAP Catalog
(OLAP AMD) is desupported and will be automatically marked as OPTION OFF
during the database upgra
de if present. Oracle recommends removing OLAP Catalog (OLAP AMD) before
database upgrade. This step can be manually performed before the upgrade to
reduce downtime.

Fixup Action : Remove OLAP Catalog by running the {1} SQL
script $SORACLE HOME/olap/admin/catnoamd.sql script.

Severity : WARNING

Fixup Stage : PRE

Min Version (inclusive) Check applies : NONE

Max Version (exclusive) Check applies : NONE

Check Introduced Version : NONE

Check Removed Version : NONE

Manual Fixup or Automatic : AUTO

AutoUpgrade Only : NO

Run for Datapatch : NO

Check : APEX MANUAL UPGRADE

Description : Starting with Oracle Database Release 18, APEX is not
upgraded automatically as part of the database upgrade. Refer to My Oracle
Support Note 1088970.
1 for information about APEX installation and upgrades. Refer to MOS Note
1344948.1 for the minimum APEX version supported for your target database
release. Unsupported ver
sions of APEX will be in an INVALID state when its database dependencies are
not in sync with the upgraded database.

Fixup Action : Upgrade Oracle Application Express (APEX) manually
before or after the database upgrade.

Severity : WARNING

Fixup Stage : PRE

Min Version (inclusive) Check applies : NONE

Max Version (exclusive) Check applies : NONE

Check Introduced Version : 18

Check Removed Version : NONE

Manual Fixup or Automatic : MANUAL

AutoUpgrade Only : NO

Run for Datapatch : NO

Check : APEX PATCH

Description : The APEX patching process is not performed by the {1}
Oracle database upgrade. The APEX version upgrade only ensures that the
APEX version is upgrade
d to version {3} and does not guarantee the version is brought all the way
to the patched level {2}. 1If a PDB from this CDB is unplugged and plugged

3-35



into ano

Chapter 3

AutoUpgrade Command-Line Parameters and Options

ther ROOT, the

When entered with a specified check, 1istchecks provides details about the checks
for the check you specify:

$ java -
Check :

problem.

load password

The AutoUpgrade parameter load password enables you to enter passwords safely
into AutoUpgrade's keystore. When you run AutoUpgrade in analyze mode, you are

ORACLE

notified which passwords are needed, and can be loaded into the AutoUpgrade
keystore. With AutoUpgrade 22.1 and later, you can enter Transparent Data
Encryption (TDE) keystore passwords as part of a later database upgrade.

jar autoupgrade.jar -listchecks XDB RESOURCE TYPE

XDB RESOURCE_TYPE

Description : Direct access to either TYPE XDB.XDBSRESOURCE T
or TABLE XDB.XDBSRESOURCE is restricted to Oracle internal code only.
Fixup Action : Please contact Oracle Support to resolve the

Severity : ERROR

Fixup Stage : PRE

Min Version(inclusive) Check applies
Max Version (exclusive) Check applies
Check Introduced Version : NONE
Check Removed Version : NONE

Manual Fixup or Automatic : MANUAL
AutoUpgrade Only : NO

Run for Datapatch : NO

11.1

: NONE

Property Description
Parameter type string
Syntax

Default value

-load password

interactive prompt.

None. AutoUpgrade prompts you for input values in an

Descript

To provide passwords required for upgrade, you can use the load password

ion

parameter. This parameter must be used in conjunction with the -config parameter. It
takes no arguments. Instead, it starts an interactive prompt with specific commands

that enable you to provide information required for the keystore.

Starting with AutoUpgrade 22.1, if you do not have a Keystore External Password
Store, and you use TDE, then you can use load password to load TDE passwords
required for the upgrade.

3-36



ORACLE

Chapter 3
AutoUpgrade Command-Line Parameters and Options

< Note:

* If you configure an Keystore External Password Store in the database, then
AutoUpgrade detects the presence of an Keystore External Password Store,
and uses this external password store instead of requiring manual input of the
TDE keystore passwords. However, if all databases are configured with
Keystore External Password Store, then in some situations, you can still need
to define global.keystore.

* In some situations, AutoUpgrade needs access to the AutoUpgrade keystore to
write other sensitive information. For example, AutoUpgrade can write transport
secrets (passphrases) that are used by ADMINISTER KEY MANAGEMENT
EXPORT KEYS and ADMINISTRATER KEY MANAGEMENT IMPORT KEYS
commands to AutoUpgrade.

For more information about Keystore External Password Stores, refer to Oracle
Database Advanced Security Guide.

When you run AutoUpgrade using -mode analyze, AutoUpgrade detect which passwords are
needed for the databases specified for upgrade in your configuration file, and lists them in the
preupgrade summary report. Before the upgrade, you can then use -load parameter to enter
the passwords for the databases. These passwords are stored safely in AutoUpgrade's own
keystore, in the location specified by global.keystore. The passwords are used only to
access the source database TDE keystores, and to write the TDE passwords in the target
keystores.

Caution:

Because the directory you specify AutoUpgrade to create with global.keystore
contains a software keystore, it should be protected using the same security best
practices as you use with TDE keystore files.

When you run AutoUpgrade with the -load parameter option at the command line,
AutoUpgrade starts an interactive console so that you can configure password options. In
AutoUpgrade 22.1 and later, the following configuration options are available:

* add ORACLE SID [-pdb isolated-pdb]
Adds a TDE password for the specified Oracle System identifier (ORACLE SID).

If you have an isolated PDB that requires a password, then use the optional -pdb
parameter in the configuration file to specify an isolated PDB for which you want to
provide a password. If the CDB root and all PDBs are configured in united mode, then the
-pdb parameter is not required, as the keystore is shared between the CDB root and all
PDBs that are configured in united mode.

e delete ORACLE SID [-pdb isolated-pdb]
Deletes a loaded password for the specified Oracle System identifier (ORACLE SID).

If you loaded a password for an isolated PDB that you want to delete, then use the
optional -pdb pdbname parameter in the configuration file to specify the name of the

3-37



ORACLE

Chapter 3
AutoUpgrade Command-Line Parameters and Options

isolated PDB whose password you want to delete. If the CDB root and all PDBs
are configured in united mode, then the -pdb parameter is not required.

o list

Lists each Oracle Database by Oracle System Identifier (ORACLE SID), provides
details for each database, and indicates if further actions are necessary to perform
an encrypted database upgrade. AutoUpgrade starts a deploy mode only when
there are no pending actions for any of the databases listed in the configuration
file. If an action is required before a database can be upgraded, then the
AutoUpgrade check tde passwords required fails during the prechecks stage.

* group

Changes the password group being processed. With AutoUpgrade 22.1,
Transparent Data Encryption (TDE) is the only group option.

° save

Saves the keystore to the location specified by the global.keystore directory. If
an auto-login keystore is not already enabled, then you are prompted whether you
want to convert the keystore to an auto-login keystore.

* help
Lists all the available 1oad password commands.
°  exit

Exits the 1oad password interactive console. If the keystore has been modified
and not yet saved, then you are prompted to determine if you want to save the
keystore before exiting.

During the upgrade, AutoUpgrade places passwords in an encrypted password array
in memory, so that AutoUpgrade can access source database keystores. No
passwords are written to SQL*Plus scripts during the upgrade. After AutoUpgrade no
longer requires the passwords, these passwords are purged from memory. No log
records are kept of the passwords.

Examples

TDE Keystore Passwords Added to AutoUpgrade Keystore

Run AutoUpgrade to add the TDE keystore passwords to AutoUpgrade's own
keystore, using a configuration file named myconfig.cfg, where -load password is
used to prompt you for TDE passwords of any database where the TDE keystore
password is needed:

java -jar autoupgrade.jar -config myconfig.cfg -load password

After the TDE passwords are loaded, you can then either run AutoUpgrade in analyze
or config mode:

java -jar autoupgrade.jar -config myfile.cfg -mode deploy

AutoUpgrade uses the TDE password files from its own keystore to access the source
database TDE keystores, and to write the TDE passwords in the target database
keystores.

3-38



ORACLE

Chapter 3
AutoUpgrade Command-Line Parameters and Options

Multiple Load Password Options Used with Multiple Source Database Upgrades

In the following example, all of the load password command options are used to load TDE
passwords from source databases db12201, cdb122, and dbl9x to the common target CDB
cdbl9x:

$ java -jar autoupgrade.jar -config config.cfg -load password
Processing config file

Starting AutoUpgrade Password Loader - Type help for available options
Creating new keystore - Password required

Enter password:

Enter password again:

Keystore was successfully created

TDE> add cdbl9x

Enter your secret/Password:
Re-enter your secret/Password:
TDE> add cdbl22

Enter your secret/Password:
Re-enter your secret/Password:
TDE> add dbl2201

Enter your secret/Password:
Re-enter your secret/Password:
TDE> add dbl9x

Enter your secret/Password:
Re-enter your secret/Password:
TDE> delete cdbl9x

TDE> list

fommm o o fomm -

Fom e +

|ORACLE SID|Action Required | TDE Password |SEPS Status|Active Wallet
Type|

fommm o o fomm -

Fom e +

| cdbl22| | Verified| Inactive]

Any |

| cdbl9x|Add TDE password|No password loaded]| Inactive]

Any |

| db12201 | | Verified| Inactive] Auto-
login|

| db19x | | Verified| Inactive]

Any |

fommm o o fomm -

Fom e +

TDE> help

The following options are available
1 add
2 delete
3 list
4 group
5 save
6 help

3-39



Chapter 3
AutoUpgrade Command-Line Parameters and Options

7 exit

TDE> save
Convert the keystore to auto-login [YES|NO] ? YES
TDE> exit

AutoUpgrade Password Loader finished - Exiting AutoUpgrade

Adding an isolated PDB TDE Keystore Password Added to AutoUpgrade
Keystore

In isolated mode, where a pluggable database (PDB) has its own keystore, PDBs are
allowed to independently create and manage their own keystore. For isolated mode
PDBs, start the AutoUpgrade Password Loader, and use the syntax add Oracle SID -
pdb pdbname, where Oracle SIDis the name of the CDB root, and pdbname is the
name of the isolated PDB.

For example, where CDB root is cdb19x and the isolated PDB name is iso:

TDE> add cdbl9x -pdb iso
Enter your secret/Password:
Re-enter your secret/Password:

Related Topics
e About Configuring United Mode
*  About Configuring an External Keystore

»  Configuring Auto-Open Connections into External Key Managers

load_win_credential

ORACLE

The AutoUpgrade parameter load win credential uses PowerShell to create a
credential object so that AutoUpgrade can be run without interruption during the
upgrade.

Description

To provide passwords required for upgrade on Microsoft Windows platforms, you can
use the load win credential parameter. This parameter must be used in conjunction
with the -config parameter, and with a configuration file that specifies the local
wincredential parameter. The parameter starts up a Microsoft Windows PowerShell
credential request, where you can provide Administrator credentials to create a
PowerShell credential object. By default, the Windows PowerShell Credential request
is for the local machine. You provide the username for the credential (the owner of the
Oracle binaries) and that user password. Windows Powershell then generates a
credential using the format database-name.xml, where database-name is the name of
the database that you specified in your local configuration file sid entry. For example,
upgl.sid=db12201 in the configuration file with the wincredential entry
upgl.wincredential=C:\Users\oracle\cred generates the powershell credential file
db12201.xml in the path upgl.wincredential=C:\Users\oracle\cred

When you run AutoUpgrade for the database upgrade, AutoUpgrade reads the
credential from the path specified by the local wincredential, so that AutoUpgrade is

3-40



Chapter 3
AutoUpgrade Command-Line Parameters and Options

able to create services automatically in the Target database without requiring an administrator
to provide Administrator credentials manually during the upgrade.

After AutoUpgrade no longer requires the passwords, these passwords are purged from
memory. No log records are kept of the passwords.

Example

In the following example, you complete these steps in order to automate calling the
Administrator credentials during the upgrade:

1. Create the configuration file, using the wincredential local parameter to specify the
location for the Windows Powershell credential for the source database db12201:

global.autoupg log dir=C:\Users\oracle\autoupg
global.target.version=19.0.0
global.target home=C:\u0l\app\oracle\product\19\dbhome 1

upgl.sid=db12201

upgl.source home=C:\uOl\app\oracle\product\12.2\dbhome 1
upgl.log dir=C:\Users\Oracle\autoupg

upgl.upgrade node=localhost

upgl.target base=C:\uOl\app\oracle

upgl.target version=19.0.0.0
upgl.wincredential=C:\Users\oracle\cred

2. Run AutoUpgrade in Configuration mode, using the load_win_credential command-line
parameter, specifying the upgrade prefix for the upgrade for which you want to provide
credentials. For example:

C:\Users\oracle>java -jar autoupgrade.jar -config config.cfg -
load win credential upgl

AutoUpgrade 24.1.240306 launched with default internal options
Processing config file ...

3. A Microsoft Windows Powershell Credential prompt opens. Provide the credentials for the
Oracle Database binary owner. PowerShell then generrates the credential object (in this
example, db12201.xml), and places it in the path that you specified with the
wincredential parameter.

4. During the upgrade, run AutoUpgrade using the configuration file that specifies the
credential object path. For example:

C:\Users\oracle>java -jar autoupgrade.jar -config config.cfg -mode deploy

AutoUpgrade processes the upgrade without prompting you for credentials.

mode

The AutoUpgrade parameter mode value sets the mode from which AutoUpgrade runs.

Property Description

Parameter type string

ORACLE 3-41



noconsole

ORACLE

Chapter 3
AutoUpgrade Command-Line Parameters and Options

Property Description
Syntax -mode = [analyze|fixups|deploy|upgrade]|postfixups]
Default value None. Choose one of the following options:

* analyze : Runs upgrade readiness checks in the source Oracle home.

»  fixups : Runs the upgrade readiness checks and preupgrade fixups,
but does not perform the upgrade.

* deploy : Performs the upgrade of the databases from start to finish.

* upgrade : Performs the database upgrade and postupgrade actions.
Databases in the target Oracle homes must be up and running before
you start this mode.

e postfixups Runs postfixups of databases in the target Oracle home.

Examples

java -jar autoupgrade.jar -config config.cfg -mode analyze
java -jar autoupgrade.jar -config config.cfg -mode deploy
java -jar autoupgrade.jar -preupgrade "target version=21" -mode fixups

The AutoUpgrade parameter noconsole turns off the AutoUpgrade console, so that
AutoUpgrade runs using only configuration file information.

Property Description
Parameter type string
Syntax -noconsole
Description

When you use the noconsole option, AutoUpgrade runs using only the settings in the
configuration file, without requiring console input. Use the noconsole option when you
want to run AutoUpgrade as part of a batch flow, or in scripts, such as in cases where
you want to analyze multiple databases. After the AutoUpgrade jobs are finished, you
can review the output of the Analyze mode logs to see what is required to upgrade
each of the databases included with your configuration script.

# Note:

You can run only one AutoUpgrade instance at a time that is associated with
a given configuration file.

3-42



preupgrade

ORACLE

Chapter 3
AutoUpgrade Command-Line Parameters and Options

Usage Notes

In this example, AutoUpgrade is run in Analyze mode, using the configuration file in
noconsole mode.

java -jar autoupgrade.jar -config autoupgrade.cfg -mode analyze -noconsole

The AutoUpgrade parameter preupgrade runs database checks and preupgrade fixups that
fix most issues before you start an upgrade, and postupgrade fixups that fix most issues after
an upgrade is completed.

Property Description
Parameter type string
Syntax -preupgrade preupgrade options -mode

[analyze|fixups|postfixups]

Default value analyze

Description

The -preupgrade clause of AutoUpgrade replaces the functions previously preformed by the
manual Pre-Upgrade Information Tool (preupgrade.jar) in previous releases. The -mode
clause takes one of three values:

* analyze: Check your system for readiness to upgrade.

« fixups: Perform fixups as needed on your source Oracle Database release in
preparation for upgrade

* postfixups: Perform fixups on your target Oracle Database release after upgrade is
completed.

If no value for -mode is specified, then by default the -preupgrade parameter defaults to
analyze mode.
Usage Notes

Use the preupgrade clause only if you want to obtain the same features previously made
available with the Pre-Upgrade Information Tool (preupgrade.jar). For most upgrade
scenarios, you do not need to use this parameter.

The -preupgrade parameter requires preupgrade options, which specifies a list of comma-
delimited option-value pairs in the following format: optionl=valuel, option2=value2, ..
Arguments

* target version=release-number: Specifies the target Oracle Database release version,
which is the release to which you want to upgrade.

The value for this argument is required by the analyze and fixups modes. However, the
target release can be derived from target home. Accordingly, for analyze and fixups

3-43



ORACLE

Chapter 3
AutoUpgrade Command-Line Parameters and Options

modes, either target version or target home must be specified. The value for
target version mustbe 12.2, or a later release value.

target home=[target-path|env-variable]: Specifies the Oracle Database home
location of the target release to which you want to upgrade, which can either be
the Oracle home path, or an operating system path variable.

This argument is mandatory if you select the postfixups mode. If you select the
postfixups mode, and you do not specify a target home path, then the default
value is specified by the Oracle home environment variable for the Oracle home
set for the user running AutoUpgrade (SORACLE HOME on Linux and Unix systems,
or $ORACLE HOME$ on Microsoft Windows systems).

oh=[source-path|env-variable]: Specifies the Oracle Database home location
of the source release from which you want to upgrade, which can either be the
Oracle home path, or an operating system path variable.

This argument is mandatory if you select the analyze or fixups mode. If you
select either analyze or fixups modes, and you do not specify a source home
path, then the default value is specified by the Oracle home environment variable
for the Oracle home set for the user running AutoUpgrade ($ORACLE HOME on Linux
and Unix systems, $ORACLE HOME$% on Microsoft Windows systems).

sid=system-identirfier: Specifies an Oracle system identifier for the source
database that you want to upgrade. This argument is mandatory for analyze or
fixups modes. If you select either the analyze or the fixups mode, and you do
not specify a system identifier, then the default value is specified by the Oracle
home environment variable for the Oracle home set for the user running
AutoUpgrade (SORACLE_SID on Linux and Unix systems, $ORACLE SID% on
Microsoft Windows systems).

dir=path: Directs the output to a specific directory. If you do not specify an output
directory with the dir argument, then the output is directed to a folder called
autoupgrade that is placed in the temporary directory on your system. Typically,
that directory is in one of the following locations:

—  Linux or Unix: /tmp, or /var/tmp.
—  Microsoft Windows: C: \WINNT\TEMP

inclusion list=list: Specifies a list of pluggable databases (PDBs) inside a
container database (CDBSs) that you want to include for processing. Provide a
space-delimited list of PDBs that you want processed, in one of the following two
formats, where pdb1, pdb2, and pdb3 are PDBs that you want processed:

—  pdbl pdb2 pdb3
—  (pdbl pdb2 pdb3)
If you do not specify a list of PDBs, then all PDBs in a CDB are processed.

exclusion list=list: Specifies a list of pluggable databases (PDBs) inside a
container database (CDBSs) that you want to exclude for processing. Provide a
space-delimited list of PDBs that you want processed, in one of the following two
formats, where pdb1, pdb2, and pdb3 are PDBs that you want processed:

—  pdbl pdb2 pdb3
—  (pdbl pdb2 pdb3)
If you do not specify a list of PDBs, then all PDBs in a CDB are processed.

3-44



ORACLE

Chapter 3
AutoUpgrade Command-Line Parameters and Options

* user=username: Specifies the Oracle Database user name that the AutoUpgrade utility
uses to connect to Oracle Database If the user is specified, then AutoUpgrade prompts
for the user name password input on the command line. If no user name is specified,
then AutoUpgrade uses operating system authentication for the Oracle Database
connection.

Modes

* analyze (Default value): Runs Autoupgrade in Analyze mode, with all of the preupgrade
checks that apply for the target release argument that you specify. If you do not specify a
mode, then AutoUpgrade defaults to analyze.

e fixups: Runs preupgrade fixups (when available) for all issues reported by AutoUpgrade
Analyze preupgrade checks on the source database that must be fixed before upgrade.
All checks are run.

Fixup results are reported in the file upgrade.xml. That file is placed in the path Iog dir/
db name/jobnumber/prefixups/prefixups.xml, where log diris the log directory that
you specify using the dir argument, db_name is the name of the source database, and
jobnumber is the autoupgrade job number.

* postfixups: Runs postupgrade fixups (when available) for all issues reported by
AutoUpgrade Analyze preupgrade checks on the upgraded database that you must fix
after the upgrade is completed.

Postfixup results are reported in the file postfixups.xml. That file is placed in the path
log dir/db name/jobnumber/postfixups, where log diris the log directory that you
specify using the dir argument, db_name is the name of the source database, and
jobnumber is the AutoUpgrade job number.

Examples

Running AutoUpgrade with the preupgrade clause using analyze mode, and specifying that
the target release is Oracle Database 19c.

java -jar autoupgrade.jar -preupgrade "target version=19" -mode analyze

Running AutoUpgrade with the preupgrade clause using fixups mode, and specifying that
the target release is Oracle Database 19c.

java -jar autoupgrade.jar -preupgrade "target version=19" -mode fixups

Running AutoUpgrade with the preupgrade clause using postfixups mode, and specifying
that the target Oracle home is in the path C:\app\oracle\product\19.0.0\dbhome 1.

java -jar autoupgrade.jar -preupgrade
"target home=C:\app\oracle\product\19.0.0\dbhome 1" -mode postfixups

Running AutoUpgrade with the preupgrade clause without specifying the mode, and
specifying that the target release is Oracle Database 19c. In this case, the mode used is the
default mode, analyze.

java -jar autoupgrade.jar -preupgrade "target version=19"

3-45



settings

version

ORACLE

Chapter 3
AutoUpgrade Command-Line Parameters and Options

The AutoUpgrade parameter settings identifies the configuration file that you use to
provide custom runtime configuration of the AutoUpgrade utility.

Property Description

Parameter type String

Syntax -settings my-custom-advanced-
settings

Default value Not applicable

Description

The settings parameter has the required argument of the name and path to the
settings configuration file, which you have modified with custom settings. The
settings parameter cannot be used alone, but rather as a configuration input file that
modifies the way that AutoUpgrade runs a processing mode.

Usage Notes

This parameter is an advanced parameter. For most upgrade scenarios, you should
not need to modify any internal AutoUpgrade parameter settings.

Example

In this example, settings specifies a settings input file called
my_custom_advanced_settings.cfg.

java -jar autoupgrade.jar -settings my custom advanced settings.cfg -
config config.cfg -mode deploy

The AutoUpgrade parameter version prints to the terminal screen the current build of
the autoupgrade. jar file.

Property Description
Parameter type string

Syntax -version
Default value Not applicable.
Description

Use this optional parameter to check which version of the autoupgrade.jar utility is on
your server.

3-46



restore

Chapter 3
AutoUpgrade Command-Line Parameters and Options

Usage Notes

Command Example:

java -jar autoupgrade.jar -version

Output example:

[oracle@example ~]$ java -jar autoupgrade.jar -version

build.version 22.1.220304

build.date 2022/03/04 13:29:34 -0500
build.hash 29007da

build.hash date 2022/03/04 12:48:36 -0500
build.supported target versions 12.2,18,19,21
build.type production

The AutoUpgrade parameter restore performs a system-level restoration of the
AutoUpgrade jobs that you specify.

Property Description

Parameter type string

Syntax -restore -jobs job#, job#
Default value Not applicable.

Description

Use this optional parameter to specify a system-level restoration of the jobs you specify,
using a comma-delimited list of job numbers. The databases in the upgrade jobs that you
specify are flashed back to the Guarantee Restore Point (GRP). Before you run this
command, the GRP must have been created by AutoUpgrade.

Examples

java -jar autoupgrade.jar -config config.cfg -restore -jobs 111
java -jar autoupgrade.jar -config config.cfg -restore -jobs 111,222 -console
java -jar autoupgrade.jar -config config.cfg -restore -jobs 111,222 -noconsole

restore_on_fail

ORACLE

The AutoUpgrade parameter restore on fail automatically restores any job that failed
during the deployment.

Property Description
Parameter type string

Syntax -restore on fail
Default value Not applicable.

3-47



Zip

ORACLE

Chapter 3
AutoUpgrade Command-Line Parameters and Options

Description

Use this optional parameter to specify that AutoUpgrade restores any jobs that failed
during the upgrade deployment.

Examples

java -jar autoupgrade.jar -config config.cfg -mode deploy -restore on fail

The AutoUpgrade parameter zip creates a zip file of log files required for filing an
AutoUpgrade service request.

Property Description
Parameter type string
Syntax

-zip [-sid sid] [-d dir] [-
zip exclusion_list exclusion list]

Default value Not applicable.

Description

Use this optional parameter to create a zip file that you can send to Oracle Support
that contains the log files for jobs that are the object of your service request. Use the -
sid clause to specify a comma-delimited list of system identifiers (SIDs) of databases
whose log files you want to send. If no SID value is defined, then AutoUpgrade creates
a zip file for all databases specified in the configuration file. Use the -d clause to
specify a specific output directory. If no directory is specified, then the current directory
from which the command is run is used for the zip file output. Use the -

zip exclusion list clause to specify a double-comma-delimited regular string list
that is used to exclude files that match any regular string from the zip file.

Usage Notes

< Note:

When you use the -zip clause, you cannot use the -mode clause.

Examples

java -jar autoupgrade.jar -config yourconfig.cfg -zip java -jar
autoupgrade.jar -config yourconfig.cfqg -zip -sid salesl,sales2 -d /
scratch/upgrd java -jar autoupgrade.jar -config yourconfig.cfg -zip -

zip _exclusion list ".*/dbl11204/.*" java -jar autoupgrade.jar -config
yourconfig.cfg -zip -zip exclusion list "/home/oracle/autopatch/DB19X/100/
goldimage/db _home 2023-09-21 09-18-13AM.zip,,/home/oracle/autopatch/
DB19X/100/extract/35320081/.*"

3-48



Chapter 3
AutoUpgrade Utility Configuration Files

AutoUpgrade Utility Configuration Files

AutoUpgrade configuration files contain all the information required to perform Oracle
Database upgrades.

Before you can use an AutoUpgrade processing mode, you must create an AutoUpgrade
configuration file for the databases that you want to upgrade.

AutoUpgrade configuration files contain global and local configuration parameters. Global
parameters by default apply to all databases addressed by the configuration file. When
specified for a specific database, local configuration parameters override global parameters
specified by the configuration file.

* Locally Modifiable Global Parameters for AutoUpgrade Configuration File
Required configuration parameters for AutoUpgrade can be set either globally for all
upgrades, or locally.

* Local Parameters for the AutoUpgrade Configuration File
To configure information for specific Oracle Databases for the AutoUpgrade utility
upgrade, you provide information in the AutoUpgrade local parameters.

*  Global Parameters for the AutoUpgrade User Configuration File
To specify a default behavior for a parameter for all Oracle Database upgrades
addressed in the configuration file, you can use the optional AutoUpgrade global
parameters.

Locally Modifiable Global Parameters for AutoUpgrade Configuration File

ORACLE

Required configuration parameters for AutoUpgrade can be set either globally for all
upgrades, or locally.

Usage Notes

If you set required AutoUpgrade parameters globally, as a locally modifiable global
parameter, then these parameters can be overridden by local parameters set for particular
upgrades, so that you can better control AutoUpgrade job processing.

With locally modifiable global parameters, you can use the prefix global to set values for
required parameters as global parameters for all jobs in your AutoUpgrade configuration file,
but identify the same parameter with a local job prefix to reset the global value to a different
value for a particular job in the same configuration file. You can also choose to set locally
modifiable global parameters only as local parameters for each AutoUpgrade job.

# Note:

These parameters are available in the latest version of AutoUpgrade that you can
download from My Oracle Support.

When a locally modifiable global parameter is set both with a global prefix, and with a local
job prefix, the locally modified parameter value overrides the global parameter values for the
job identified by the prefix that you use with the parameter.

3-49



ORACLE

Chapter 3
AutoUpgrade Utility Configuration Files

For example, with global.target home, the syntax you use is in the form
global.target home=Global target Oracle home, and
database.target home=local target Oracle home.

Example

In the AutoUpgrade configuration file, the required parameter target home is set
globally to one Oracle home path. But in the configuration file, the same parameter is
set locally to a different Oracle home path. As AutoUpgrade processes the jobs in the
configuration file, it uses the locally defined path for target home for the job defined by
the prefix upgrade3, overriding the global parameter setting:

global.target home=/ull/app/oracle/21.0.0/dbhome01l
upgrade3.target home=/u03/app/oracle3/12.2.0.1/dbhome3

o defer_standby_log_shipping

e dictionary_stats_after
(Optional) Specifies that AutoUpgrade gathers data dictionary statistics on the
target database after the upgrade is complete.

» dictionary_stats before
(Optional) Specifies that AutoUpgrade gathers data dictionary statistics on the
source database before starting the upgrade.

e drop_grp_after_upgrade
Deletes the Guaranteed Restore Point (GRP) after database upgrade.

* enable_local _undo
For a CDB upgrade, specifies whether or not LOCAL undo should be enabled
before the upgrade of CDBSROOT.

- fixed_stats_before
(Optional) Specifies that AutoUpgrade gathers fixed object statistics on the source
database before starting the upgrade.

* manage_network_files
Specifies whether network files are processed during the upgrade.

e patch_in_upgrade_mode
(Optional) Specifies that the database that you want to patch is patched in
upgrade mode, instead of normal mode.

* remove_underscore_parameters
Removes underscore (hidden) parameters from PFILE files during upgrade, and
after upgrade, for all Oracle Databases in the configuration file.

e restoration
(Available with Enterprise Edition only) Generates a Guaranteed Restore Point
(GRP) for database restoration.

e target base
Specifies the target ORACLE BASE path for the target Oracle home.

e target_home
(Required for upgrade and deploy modes, if the target home is not on the
system. Optional for analyze and fixups mode. ) Specifies the target Oracle home
(ORACLE HOME) path.

3-50



Chapter 3
AutoUpgrade Utility Configuration Files

e target version
(Required if target Oracle home is not on the system, or is release 12.2) Specifies
the target release version on which you want AutoUpgrade to perform the upgrade.

defer_standby log_shipping

Defers shipping logs from the primary database to any standby database. All log archive
destionations (log_archive dest n) are set to deferred.

Usage Notes

By default, log shipping occurs as part of the upgrade. When Autoupgrade defers log
shipping, you receive a notice that log shipping is deferred, and that after the upgrade
completes successfully, you need to reenable shipping logs from the primary database to the
secondary database.

" Note:

This configuration file parameter affects not only standby databases, but all
products or services that receive redo from the primary database, such as Oracle
Zero Data Loss Recovery Appliance (ZDLRA) real-time log transport, and Oracle
GoldenGate downstream capture.

Options
[yes | no]
The default value is no

The default is no (log-shipping is not deferred). If you change the default to ves, then log
shipping is deferred, and you must choose to re-enable it manually after upgrade.

Example

defer standby log shipping=yes

dictionary_stats_after

ORACLE

(Optional) Specifies that AutoUpgrade gathers data dictionary statistics on the target
database after the upgrade is complete.

Usage Notes

Oracle recommends that you gather dictionary statistics both before and after upgrading the
database, because Data Dictionary tables are modified and created during the upgrade.
When you specify yes, AutoUpgrade gathers dictionary statistics after the upgrade is
completed.

Options
[yes | no]

The default value is Yes.

3-51



Chapter 3
AutoUpgrade Utility Configuration Files

Example

global.dictionary stats after=yes

sales.dictionary stats after=yes

dictionary_stats_before

(Optional) Specifies that AutoUpgrade gathers data dictionary statistics on the source
database before starting the upgrade.

Usage Notes

Oracle recommends that you gather dictionary statistics both before and after
upgrading the database, because Data Dictionary tables are modified and created
during the upgrade. When you specify yes, AutoUpgrade gathers dictionary statistics
before beginning the upgrade.

Options
[yes | no]

The default value is Yes.
Example

global.dictionary stats before=yes

sales.dictionary stats before=yes

drop_grp_after upgrade

ORACLE

Deletes the Guaranteed Restore Point (GRP) after database upgrade.

Usage Notes

If you select this option, then GRP is deleted after upgrade completes successfully.

Options
[yes | no]

The default value is no.
Example

global.drop grp after upgrade=yes

sales.drop grp after upgrade=yes

3-52



Chapter 3
AutoUpgrade Utility Configuration Files

enable local undo

For a CDB upgrade, specifies whether or not LOCAL undo should be enabled before the
upgrade of CDBSROOT.

Usage Notes

If you select this option, then AutoUpgrade runs the following statement before upgrade:
ALTER DATABASE LOCAL UNDO ON;.

When local undo is first enabled, the size of the undo tablespace in PDBSSEED is determined
as a factor of the size of the undo tablespace in CDBSROOT. The default is 30 percent of the
undo tablespace size. Every other PDB in the CDB inherits this property from PDBSSEED.
Ensure that there is enough space to allocate new UNDO tablespaces.

Options
[yes | no]

The default value is no.
Example

enable local undo=yes

fixed_stats before

(Optional) Specifies that AutoUpgrade gathers fixed object statistics on the source database
before starting the upgrade.

Usage Notes
Before an upgrade, Oracle recommends that you regather fixed object statistics.

Fixed objects are the x$ tables and their indexes. v$ performance views are defined through
x$ tables. Gathering fixed object statistics is valuable for database performance, because
these statistics help the optimizer generate good execution plans, which can improve
database performance. Failing to obtain representative statistics can lead to suboptimal
execution plans, which can cause significant performance problems.

Options
[yes | no]

The default value is Yes.
Example

global.fixed stats before=yes

sales.fixed stats before=yes

ORACLE 3-53



Chapter 3
AutoUpgrade Utility Configuration Files

manage_network_files

Specifies whether network files are processed during the upgrade.

Usage Notes

If you select this option, then AutoUpgrade processes network files, depending on the
option that you specify.

The following network files are processed: oranfstab, 1dap.ora, tnsnames.ora,
sglnet.ora, and listener.ora

Options
[FULL|SKIP|IGNORE READ ONLY]

* FULL: (default) Raise all exceptions encountered during the copy and merge of
network files into the target Oracle home.

e SKIP: Do not process network files during postupgrade.

* IGNORE READ ONLY: Attempt to copy and merge network files, but do not raise an
exception during the upgrade if the target file is read only

Example

manage network files=ignore read only

patch_in_upgrade_mode

ORACLE

(Optional) Specifies that the database that you want to patch is patched in upgrade
mode, instead of normal mode.

Usage Notes

In AutoUpgrade 23.4 and earlier versions, the default for patching has been to perform
patching in upgrade mode. Starting with AutoUpgrade 24.1, the default is to perform
patching in normal mode. If you prefer to perform patching only in upgrade mode, then
you can use this parameter to override that default behavior, and patch in upgrade
mode.

Options
[ves | no]

The default value is no.
Example

sales.patch _in upgrade mode=yes

3-54



Chapter 3
AutoUpgrade Utility Configuration Files

remove_underscore_parameters

restoration

target_base

ORACLE

Removes underscore (hidden) parameters from PFILE files during upgrade, and after
upgrade, for all Oracle Databases in the configuration file.

Usage Notes

Underscore parameters should only be used by advice of Oracle Support.

Options
[yes | no]

The default value is no.
Example

global.remove underscore parameters=yes

(Available with Enterprise Edition only) Generates a Guaranteed Restore Point (GRP) for
database restoration.

Usage Notes

This option determines whether database backup and database restoration must be
performed manually by the DBA.

Standard Edition does not support Flashback Database, so this option is not available for
Standard Edition. If your database is a Standard Edition Oracle Database, then you must
ensure that you have a separate fallback mechanism is in place.

Options
[yes | no]

The default value is vyes.
Example

global.restoration=no

Specifies the target ORACLE BASE path for the target Oracle home.
Example

global.target base=/ull/app/oracle
sales4.target base=/u04/app/oracled

3-55



target_home

Chapter 3
AutoUpgrade Utility Configuration Files

(Required for upgrade and deploy modes, if the target home is not on the
system. Optional for analyze and fixups mode. ) Specifies the target Oracle home
(ORACLE_HOME) path.

Usage Notes

AutoUpgrade uses the release version information that you provide in this parameter
to ensure that the correct checks and fixups are used for the target Oracle Database
release to which you are upgrading. The format for this parameter are period-delimited
values of valid Oracle versions.

This option is only required if the target home is not present on the system, or if the
target home is a 12.2 release. Otherwise, AutoUpgrade can derive the target release
value.

Options
Valid values
. 122

- 18

« 19

o 21
Example

global.target version=19
employees.target version=12.2

target_version

ORACLE

(Required if target Oracle home is not on the system, or is release 12.2) Specifies
the target release version on which you want AutoUpgrade to perform the upgrade.

Usage Notes

AutoUpgrade uses the release version information that you provide in this parameter
to ensure that the correct checks and fixups are used for the target Oracle Database
release to which you are upgrading. The format for this parameter are period-delimited
values of valid Oracle versions.

This option is only required if the target home is not present on the system, or if the
target home is a 12.2 release. Otherwise, AutoUpgrade can derive the target release
value.

Options
Valid values

e 122
- 18

3-56



Chapter 3
AutoUpgrade Utility Configuration Files

- 19
e 21
Example

global.target version=19
employees.target version=12.2

Local Parameters for the AutoUpgrade Configuration File

ORACLE

To configure information for specific Oracle Databases for the AutoUpgrade utility upgrade,
you provide information in the AutoUpgrade local parameters.

Usage Notes

Local parameters take precedence over any global parameters set in the AutoUpgrade
configuration file. Local parameters that either must be set locally, or as a locally modifiable
global parameter are indicated by (Required). All local parameters take a prefix (in
examples, identified by a value you define to identify a particular database or upgrade. The
prefix identifies the specific upgrade job to which the parameter applies in the configuration
file.

Example: The set of parameters for the first upgrade in the configuration file uses the prefix
sales, and the set of parameters for the next upgrade in the configuration file uses the prefix
employees:

sales.source home=/ull/app/oracle/12.2/dbhomel

employees.sid=salescdb
employees.source home-/03/app/oracle/21/dbhomel

* add_after upgrade pfile
(Optional) Specifies a path and file name of a PFILE whose parameters you want to add
after the upgrade.

e add_during_upgrade_pfile
(Optional) Specifies a path and file name of a PFILE whose parameters you want to add
during the upgrade.

- after_action
(Optional) In deploy mode, specifies a custom action that you want to have performed
after completing the deploy job for the database identified by the prefix address.

e before_action
(Optional) In deploy mode, specifies a custom action that you want to have performed
before starting the upgrade job for the specific database job addressed by the prefix. If
you want to have a script run before all upgrade jobs, then specify that script by using the
local parameter (global.before_action)

e catctl_options
(Optional) Specifies one or more of a set of catctl.pl options that you can select for
AutoUpgrade to submit for catctl.pl to override default behavior.

3-57



ORACLE

Chapter 3
AutoUpgrade Utility Configuration Files

checklist

(Optional) Specifies the path to a checklist that you can use to override the default
list of fixups that AutoUpgrade performs, such as fixups that you do not want
implemented automatically, due to policy or security concerns.

close_source
(Optional) Closes the source non-CDB or source PDB just before AutoUpgrade
starts an unplug-relocate upgrade.

del_after_upgrade_pfile
(Optional) Specifies a path and file name of a PFILE whose parameters you want
to have removed after upgrade.

del_during_upgrade_pfile
(Optional) Specifies a path and file name of a PFILE whose parameters you want
to have removed during upgrade.

drop_win_src_service
(Optional) For upgrades on Microsoft Windows, specifies whether to drop the
Windows operating system service for the source Oracle Database after upgrade.

env
(Optional) Specifies custom operating system environment variables set on your
operating system, excluding ORACLE_SID, ORACLE HOME, ORACLE BASE, and
TNS_ADMIN.

exclusion_list

(Optional) Sets a list of PDBs that you want to be excluded from the AutoUpgrade
run. This parameter only applies to the multitenant architecture (CDB) databases.
If you are plugging in and upgrading a non-CDB database, then this parameter is
ignored.

ignore_errors
(Optional) Enables you to specify a comma-delimited list of specific Oracle errors
that you want AutoUpgrade to ignore during the upgrade or patching process.

keep_source_pdb
(Optional) Specifies if the source PDB in an unplug-plug upgrade operation is kept
in a closed state instead of being removed from the source CDB.

log_dir

(Optional) Sets the location of log files that are generated for database upgrades
that are in the set of databases included in the upgrade job identified by the prefix
for the parameter.

manage_standbys_clause

(Optional) Specifies whether standby Oracle Data Guard standby databases you
identify by DB UNIQUE NAME are excluded from AutoUpgrade plug-in upgrades, so
that standby database files can be reused.

parallel_pdb_creation_clause
(Optional) Specifies the number of servers that will run in parallel when creating a
pluggable database during unplug/plug or unplug/relocate processes.

patch_in_upgrade_mode
(Optional) Specifies that the database that you want to patch is patched in
upgrade mode, instead of normal mode.

pdbs
(Optional) Sets a list of PDBs on which you want the upgrade to run. This
parameter only applies to upgrades of multitenant architecture (CDB) databases. If

3-58



ORACLE

Chapter 3
AutoUpgrade Utility Configuration Files

you are plugging in and upgrading a non-CDB database, then this parameter is ignored.

raise_compatible
(Optional) Increases the Oracle Database COMPATIBLE initialization parameter to the
default value of the target release after the upgrade is completed successfully.

remove_rac_config

(Optional) Specifies whether to remove a hon-CDB Oracle RAC database from
clusterware on the source Oracle home after a successful conversion to the target CDB
home, or to leave the source database unchanged.

remove_underscore_parameters
(Optional) Removes underscore (hidden) parameters from PFILE files during upgrade,
and after upgrade, for all Oracle Databases in the configuration file.

replay
(Optional) Specifies whether to use replay to upgrade the database.

restoration
(Optional) Generates a Guaranteed Restore Point (GRP) for database restoration.

revert_after_action

(Optional) Specifies a custom action that you want to have run on the operating system
after a system restoration is completed for the specific database job addressed by the
prefix, and the database is up.

revert_before action

(Optional) Specifies a custom action that you want to have run on the operating system
before a system restoration is completed for the specific database job addressed by the
prefix, and the database is up.

run_dictionary_health
(Optional) Specifies whether you run Oracle Dictionary Health Checks as part of
preupgrade checks to identify database dictionary inconsistencies.

run_utlrp

(Optional) Enables or disables running a version of utlrp.sql as part of post upgrade, to
recompile only invalid objects in Oracle-maintained schemas.

sid

(Required) Identifies the Oracle system identifier (SID) of the database that you want to
upgrade.

skip_tde_key import
(Optional) When set to yes, the upgrade is run, but import of the source database
KeyStore into the target database is skipped, without raising an error.

source_base
(Optional) Specifies the source ORACLE BASE path for the source Oracle home.

source_dblink
(Optional) Specifies the database link set up for an unplug-plug relocate (hot clone)
upgrade.

source_home
(Required for analyze, fixups, and deploy modes. Optional for upgrade mode.)
Current Oracle home (ORACLE HOME) of the database that you want to upgrade.

source_ldap_admin_dir
(Optional) Specifies the path to the LDAP ADMIN directory in the source database home.

3-59



Chapter 3
AutoUpgrade Utility Configuration Files

e source_tns_admin_dir
(Optional) Specifies the path to the TNS ADMIN directory in the source database
home.

e start_time
(Optional) Sets a future start time for the upgrade job to run. Use this parameter to
schedule upgrade jobs to balance the load on your server, and to prevent multiple
jobs from starting immediately.

* target_base
(Optional) Specifies the target ORACLE_BASE path for the target Oracle home.

e target cdb
(Optional) Specifies the s1D of the target CDB into which a non-CDB Oracle
Database is plugged in. This parameter is mandatory when you want to upgrade
and convert a non-CDB Oracle Database.

e target pdb_copy_option=file_name_convert
(Optional) Specifies the file name convert option used by the create pluggable
database statement that AutoUpgrade runs when converting a non-CDB database
to a PDB or an existing PDB from a different source CDB into a PDB in the
specified target CDB.

e target_pdb_name
(Optional) Specifies the name that you want to assign to a non-CDB source Oracle
Database after it is plugged in to the target CDB.

e target_ldap_admin_dir
(Optional) Specifies the path to the LDAP ADMIN directory in the target database
home.

e target _tns_admin_dir
(Optional) Specifies the path to the TNS ADMIN directory in the target database
home.

e timezone_upg
(Optional) Enables or disables running the time zone upgrade as part of the
AutoUpgrade process.

* tune_setting
(Optional) Enables special workflows that alter the behavior of AutoUpgrade
during runtime, depending on the workflow option that you specify.

e upgrade_node
(Optional) Specifies the node on which the current user configuration is valid. The
default value is localhost.

e wincredential
(Optional) Specifies the location of a Microsoft Windows credential object file that
you have previously generated with the AutoUpgrade command-line parameter
load win credential.

ORACLE 3-60



Chapter 3
AutoUpgrade Utility Configuration Files

add_after_upgrade_pfile

(Optional) Specifies a path and file name of a PFILE whose parameters you want to add after
the upgrade.

Examples

sales3.add after upgrade pfile=/path/to/my/pfile add.ora

add_during_upgrade_pfile

after_action

ORACLE

(Optional) Specifies a path and file name of a PFILE whose parameters you want to add
during the upgrade.

Examples

sales3.add during upgrade pfile=/path/to/my/newpfile.ora

(Optional) In deploy mode, specifies a custom action that you want to have performed after
completing the deploy job for the database identified by the prefix address.
Usage Notes

The script that you use must be in the form of name. ext (for example, myscript.sh, so that
AutoUpgrade can identify the type of script that you want to run. Permitted extension options:

e Unix shell (. sh)

*  Microsoft Windows batch (.bat, .cmd)

*  Microsoft Windows PowerShell (.ps1)

* Oracle SQL file (.sql), with a local operation only designated by the prefix.

By default, if the script fails, then AutoUpgrade continues to run. Use the Y flag to specify that
AutoUpgrade stops if the operating system detects that your script fails. If the script finishes
with a status different than 0, then it is considered a failed completion.

In contrast to the global atter action parameter, the local after action parameter can
specify a SQL script, which then runs on the database using the target Oracle Database
binaries on a non-CDB Oracle home, or on CDBSROOT. If you want to run additional container-
specific actions, then they must be set within the code. For more complex scenarios, you can
run container-specific actions in a shell.

The output of the script is captured and stored in files. Both stdout and stderr are captured.
The files are stored in the postupgrade subdirectory in the directory matching the specific
database or job.

The following environment variables are set in the shell that runs the script:
* ORACLE SID

° ORACLE_UNQNAME

3-61



Chapter 3
AutoUpgrade Utility Configuration Files

°* ORACLE BASE
° ORACLE HOME

° TNS_ADMIN

Examples

Run the specified script after AutoUpgrade starts processing, with the v flag set to stop
AutoUpgrade if the script fails:

sales2.after action=/user/path/script.sh Y

Run the specified script after AutoUpgrade starts processing the deploy option, with
AutoUpgrade set to continue to run if the script fails:

sales3.after action=/user/path/script.sh

before_action

ORACLE

(Optional) In deploy mode, specifies a custom action that you want to have performed
before starting the upgrade job for the specific database job addressed by the prefix. If
you want to have a script run before all upgrade jobs, then specify that script by using

the local parameter (global.before_action)

Usage Notes

The script that you use must be in the form of name. ext (for example, myscript.sh),
so that AutoUpgrade can identify the type of script that you want to run. Permitted
extension options:

e Unix shell (.sh)

e Microsoft Windows batch (.bat, .cmd)

e Microsoft Windows PowerShell (.ps1)

e Oracle SQL file (.sql), with a local operation only designated by the prefix.

By default, if the script fails, then AutoUpgrade continues to run. Use the Y flag to
specify that AutoUpgrade stops if the operating system detects that your script fails. If
the script finishes with a status different than 0, then it is considered a failed
completion.

In contrast to the global before action parameter, the local before action parameter
can specify a SQL script, which can run on the database in the source database
Oracle home, using the earlier release Oracle Database binaries. The script runs on a
non-CDB Oracle home, or on CDBSROOT. If you want to run additional container-specific
actions, then they must be set within the code. For more complex scenarios, you can
run container-specific actions in a shell.

The output of the script is captured and stored in files. Both stdout and stderr are
captured. The files are stored in the preupgrade subdirectory in the directory matching
the specific database or job.

The following environment variables are set in the shell that runs the script:

¢ ORACLE_SID

3-62



Chapter 3
AutoUpgrade Utility Configuration Files

°* ORACLE UNQNAME
° ORACLE BASE
° ORACLE_HOME

e TNS_ADMIN

Examples

Run the specified script before AutoUpgrade starts processing deploy mode, with the Y flag
set to stop AutoUpgrade if the script fails:

sales.before action=/user/path/script.sh Y

Run the specified script before AutoUpgrade starts processing, with AutoUpgrade set to
continue to run if the script fails:

sales4.before action=/user/path/script.sh

catctl_options

ORACLE

(Optional) Specifies one or more of a set of catctl.pl options that you can select for
AutoUpgrade to submit for catctl.pl to override default behavior.

Usage Notes

Available catctl.pl options:

* -n Number of processes to use for parallel operations. For Replay upgrades, the number
of parallel processes used for the upgrade defaults to the value of (CPU_COUNT divided by
4) . For Classic upgrades, the default for CDBSROOT is 8.

e -N Number of processors to use when upgrading PDBs. For Replay upgrades, the
number of parallel processes used for the upgrade defaults to the value of (CPU_COUNT
divided by 4) For Classic upgrades, the default is 2

* -T Takes offline user schema-based table spaces.

e -z Turns on production debugging information for catcon.pl.
Examples

sales4.catctl options=-n 24 -N 4

Related Topics
» Upgrade Script (catctl.pl) Parameters

3-63



Chapter 3
AutoUpgrade Utility Configuration Files

checklist

(Optional) Specifies the path to a checklist that you can use to override the default list
of fixups that AutoUpgrade performs, such as fixups that you do not want implemented
automatically, due to policy or security concerns.

Usage Notes

To use this parameter during other AutoUpgrade modes, you must run AutoUpgrade in
analyze mode. After AutoUpgrade finishes the analysis, you can then find the
checklist file identified by the database name under the precheck directory

(dbname checklist.cfg). Update the file manually to exclude the fixups that you want
AutoUpgrade to bypass, and save the file with a new name. When you run
AutoUpgrade again, you can specify the parameter pointing to the checkilist file that
you created, and modify fixups that are performed for individual databases. If you do
not specify a checklist file path, then the set of fixups that run during the upgrade is the
latest version of the checklist file that is created during the deploy mode that you
specified.

Examples

sales.checklist=/ull/app/oracle/upgrade-jobs/salesdb checklist.cfg

In the preceding example, salesdb checklist.cfg is the checklist configuration file
for the database salesdb.

close_source

(Optional) Closes the source non-CDB or source PDB just before AutoUpgrade starts
an unplug-relocate upgrade.

Usage Notes

During an unplug-relocate operation, if close source is set to yes (the default), then
AutoUpgrade closes source non-CDB or source PDB just before starting the upgrade.
Additionally, if Oracle Real Application Clusters or Oracle Grid Infrastructure (CRS)
services are configured for a non-CDB source, then they are disabled before starting
the upgrade.

This parameter can only be used when the source and target databases are both on
the same system. When they are on different systems, the source non-CDB or PDB
cannot be closed, because AutoUpgrade has no access to it.

Options

[yes | no]

The default value is yes.
Examples

sales3.close source=yes

ORACLE 3-64



Chapter 3
AutoUpgrade Utility Configuration Files

del after_upgrade pfile

(Optional) Specifies a path and file name of a PFILE whose parameters you want to have
removed after upgrade.

Examples

sales3.del after upgrade pfile=/path/to/my/pfile del.ora

del during_upgrade_pfile

(Optional) Specifies a path and file name of a PFILE whose parameters you want to have
removed during upgrade.

Examples

sales3.del during upgrade pfile=/path/to/my/oldpfile.ora

drop_win_src_service

ORACLE

(Optional) For upgrades on Microsoft Windows, specifies whether to drop the Windows
operating system service for the source Oracle Database after upgrade.

Usage Notes

By default, for Oracle Database upgrades on Microsoft Windows operating systems, after
AutoUpgrade shuts down the Windows Oracle Database service and completes the upgrade,
it leaves the service in place. Leaving the service down but in place gives you the option to
restore the database to the source Oracle home without having to recreate the Microsoft
Windows service for the database. However, you can choose to have the Microsoft Windows
service for the source database removed automatically after upgrade is completed
successfully. If either no is specified, or no value is is specified, then the service is shut down
on the source, but left in place after the upgrade.

Options

[yes | no]

The default value is no.
Examples

upgl.drop win src service=yes

3-65



env

Chapter 3
AutoUpgrade Utility Configuration Files

(Optional) Specifies custom operating system environment variables set on your
operating system, excluding ORACLE _SID, ORACLE HOME, ORACLE BASE, and TNS_ADMIN.

Usage Notes

Use this parameter to provide environment setting that are indicated in the database
sqlnet.ora file, such as secure socket layer cipher suites that are used for Oracle
Wallet. Multiple settings are comma-delimited.

Syntax:

prefix=VARIABLEl=valuel [, VARIABLEZ2=value2, ...]

Example

Assume that for the PDB sales2, the value for WALLET LOCATION is set using custom
environment variables:

WALLET LOCATION=
(SOURCE=
(METHOD=file)
(METHOD DATA= (DIRECTORY=/databases/
wallets/$CUSTOM ENV1/$CUSTOM ENV2))

In that case, for AutoUpgrade to know what those custom environment variables are,
you must provide them using the env parameter, where dir1 is the path indicated by
the environment variable CUSTOM ENV1, and dir2 is the path specified by CUSTOM ENV2:

sales2.env=CUSTOM ENV1=dirl, CUSTOM ENV2=dir2

exclusion_list

ORACLE

(Optional) Sets a list of PDBs that you want to be excluded from the AutoUpgrade run.
This parameter only applies to the multitenant architecture (CDB) databases. If you
are plugging in and upgrading a non-CDB database, then this parameter is ignored.

Usage Notes

Use this parameter to provide a list of PDBs to exclude from the AutoUpgrade run. The
PDB list is comma-delimited. It can contain either a list of PDB names, or an asterisk
character (*), which indicates that you want ot exclude all PDBs that are open on the
CDB at the time that you run AutoUpgrade.

Syntax:

prefix.exclusion list=[pdb-name|*] [, pdb-name, ...]

3-66



ignore_errors

Chapter 3
AutoUpgrade Utility Configuration Files

Examples

Assume that you want to exclude PDBs pdb1 and pdb2 from the upgrade of cdb sales1. The
following entry in the configuration file excludes pdb1 and pdb2 from being processed during
the AutoUpgrade run:

salesl.exclusion list=pdbl, pdb2

This entry in the configuration file excludes all open PDBs from the CDB sales2:

sales2.exclusion list=*

(Optional) Enables you to specify a comma-delimited list of specific Oracle errors that you
want AutoUpgrade to ignore during the upgrade or patching process.

Usage Notes

If you add this parameter to your configuration file, then the error numbers that you specify
are ignored during the upgrade for the upgrade prefix that you specify.

Examples

sales3.ignore errors=0RA-48181,0RA-00001

keep_source _pdb

ORACLE

(Optional) Specifies if the source PDB in an unplug-plug upgrade operation is kept in a closed
state instead of being removed from the source CDB.

Usage Notes

By default, the source PDB is removed from the source CDB during the upgrade process.
When keep source pdb is set to YES, the source PDB is not removed from the earlier release
system. You are only able to set the parameter to YES when the copy option is specified in the
parameter target pdb copy option. When the copy option is not used, this parameter is
ignored, because the PDB must be dropped. Without a copy, the existing datafiles can only
be used by a single CDB.

Options

[yes | no]

The default value is no.
Example

salesl.keep source pdb=yes

3-67



log_dir

Chapter 3
AutoUpgrade Utility Configuration Files

(Optional) Sets the location of log files that are generated for database upgrades that
are in the set of databases included in the upgrade job identified by the prefix for the
parameter.

Usage Notes

When set, AutoUpgrade creates a hierarchical directory based on a local log file path
that you specify. For example, where the job identifier prefix is sales, and where

log dir is identified as upgrade-jobs, and stagel, stage2, and stagen represent
stages of the upgrades:

/u0l/app/oracle/upgrade-jobs
/temp/
/sales/
/sales/stagel
/sales/stage?2
/sales/stagen

You cannot use wild cards for paths, such as tilde (~). You must use a complete path.
Example

salesdb.log dir=/ull/app/oracle/upgrade-jobs

By default, if the global configuration file parameter global.autoupg log diris
specified, and you do not specify 1log dir, then the default is the path specified in
global.autoupg log dir.

When neither global.autoupg log dir nor log dir is specified, then by default the
log files are placed in the location indicated by the orabase utility for the databases
that you include in your configuration file. In that case, the default logs directory is in
the path ORACLE BASE/cfgtoollogs/autoupgrade.

If the orabase utility fails for all databases included in the configuration file, then the
log file location is then based on the temp directory for the user running AutoUpgrade.

manage_standbys_clause

ORACLE

(Optional) Specifies whether standby Oracle Data Guard standby databases you
identify by DB UNIQUE NAME are excluded from AutoUpgrade plug-in upgrades, so that
standby database files can be reused.

Usage Notes

Before upgrades of database configurations with standby databases, to reduce
potential issues, Oracle recommends that you run AutoUpgrade in analyze mode on
your standby databases.

3-68



ORACLE

Chapter 3
AutoUpgrade Utility Configuration Files

Options

In the following syntax, pdb-name is @ DB_UNIQUE NAME of a source PDB that you are
upgrading to the target CDB in an unplug/plug upgrade.

manage standbys clause=STANDBYS=[STANDBYS=NONE | STANDBYS=ALL | STANDBYS=ALL
EXCEPT ('pdb-name', 'pdb-name', ...)|STANDBYS=('pdb-name', 'pdb-name', ...)]

The default value is NONE.

Examples

In the following example, any non-CDB or pluggable database that is a member of an Oracle
Data Guard standby is not excluded from AutoUpgrade plug-in upgrades:

upg?2.sid=cdbl

upg?2.pdbs=*

upg?2.target cdb=cdb2lx

upg2.source home=/source/18x

upg2.target home=/target/21x
upg2.manage standbys clause=standbys=none

In the following example, applying the redo on data files on all standby databases is deferred
on all AutoUpgrade plug-in upgrades:

upg3.sid=cdb?

upg3.pdbs=*

upg3.target cdb=cdb21x

upg3.source home=/source/18x

upg3.target home=/target/21x
upg3.manage_standbys clause=standbys=all

In the following example, during the AutoUpgrade plug-in upgrades, applying the redo on
data files is deferred on all standby PDBs except PDBs cdb3 stby 1 and cdb3 stby 2.

upgé.sid=cdb3

upg4 .pdbs=*

upg4.target cdb=cdb2lx

upg4.source home=/source/12.2x

upg4.target home=/target/21x

upg4 .manage standbys clause=standbys=all except ('cdb3 stby 1','cdb3 stby 2')

In the following example, during the AutoUpgrade plug-in upgrades, applying the redo on
data files is deferred only on standby PDB cdb4 stbyl.

upg4.sid=cdb4
upg4.pdbs=*
upg4.target cdb=cdb21x

3-69



Chapter 3
AutoUpgrade Utility Configuration Files

upg4.source home=/source/12.2x
upg4.target home=/target/21x
upg4 .manage standbys clause=standbys=('cdb4 stby 1')

parallel_pdb_creation_clause

(Optional) Specifies the number of servers that will run in parallel when creating a
pluggable database during unplug/plug or unplug/relocate processes.

Usage Notes

This parameter is optional. You can use this parameter to specify the number of
servers to run in parallel when you want to upgrade and convert a non-CDB Oracle
Database to a PDB, or you want to unplug a PDB from a source release CDB and plug
it in for an upgrade to a target release CDB.

When set, the parameter is specific for every source database or pluggable database.
If you do not use this parameter to specify the number of parallel servers, then the
default is for AutoUpgrade to select the number of parallel servers automatically,
based on the database available resources detected. Using this parameter enables
you to provide better control of the load placed on either the source or the target
database.

Options

Use an integer value to specify the number of servers to run in parallel, where source-
db-name-or-pdb is the non-CDB database name or the PDB name, and integer-
value is a numeric value specifying the number of servers to run in parallel:

prefix.parallel pdb creation clause.source-db-name-or-pdb="integer-
value'

Example

In the following example, 16 servers are specified as the limit for the number of
servers to run in parallel.

upgl.parallel pdb creation clause.pdbl=16

patch_in_upgrade_mode

ORACLE

(Optional) Specifies that the database that you want to patch is patched in upgrade
mode, instead of normal mode.

Usage Notes

In AutoUpgrade 23.4 and earlier versions, the default for patching has been to perform
patching in upgrade mode. Starting with AutoUpgrade 24.1, the default is to perform
patching in normal mode. If you prefer to perform patching only in upgrade mode, then
you can use this parameter to override that default behavior, and patch in upgrade
mode.

Options

[yes | no]

3-70



pdbs

Chapter 3
AutoUpgrade Utility Configuration Files

The default value is no.
Example

sales.patch in upgrade mode=yes

(Optional) Sets a list of PDBs on which you want the upgrade to run. This parameter only
applies to upgrades of multitenant architecture (CDB) databases. If you are plugging in and
upgrading a non-CDB database, then this parameter is ignored.

Usage Notes

The PDB list is comma-deliminated. The list can contain either PDB names, or a star
character (*), which indicates that you want to upgrade all PDBs that are open on the CDB at
the time that you run AutoUpgrade. If the parameter is not specified, then the default value is

*

If running in ANALYZE mode, AutoUpgrade ignores the PDBs in a mounted state.

If running in FIXUPS, DEPLOY or UPGRADE mode, AutoUpgrade opens the PDBs in mount state
in read-write mode, upgrade mode, or both, depending on the execution mode.

Example

salesl.pdbs=pdbl, pdb2, pdbn
upgrl.pdbs=*

raise_compatible

ORACLE

(Optional) Increases the Oracle Database COMPATIBLE initialization parameter to the default
value of the target release after the upgrade is completed successfully.

Usage Notes

Options:

e Y :Increase the COMPATIBLE parameter setting to the target release

* N: Do notincrease the COMPATIBLE parameter setting to the target release

The default is N.

3-71



Chapter 3
AutoUpgrade Utility Configuration Files

Caution:

e After the COMPATIBLE parameter is increased, database downgrade is not
possible.

e Oracle recommends that you only raise the COMPATIBLE parameter to the
current release level after you have thoroughly tested the upgraded
database.

« Regardless of what value you use for the autoupgrade command-line
parameter restore, if you set the value of the configuration file
parameter raise compatible to yes, then before starting the upgrade,
you must delete manually any guaranteed restore point you have
created. After the upgrade is completed successfully, AutoUpgrade
deletes the guaranteed restore point it creates before starting the
upgrade. When AutoUpgrade starts the POSTUPGRADE stage, there is
no way to restore the database.

Example

salesl.raise compatible=yes

remove_rac_config
(Optional) Specifies whether to remove a non-CDB Oracle RAC database from
clusterware on the source Oracle home after a successful conversion to the target
CDB home, or to leave the source database unchanged.

Usage Notes

By default, the source Oracle RAC database configuration on a non-CDB is removed
from the source Oracle Grid Infrastructure when it is migrated to a CDB during the
upgrade process. When remove rac config is set to no, the source Oracle RAC
database is not removed from the earlier release non-CDB system.

Options

[yes | no]

The default value is yes.
Example

upgl.remove rac_config=no

ORACLE 3-72



Chapter 3
AutoUpgrade Utility Configuration Files

remove_underscore_parameters

replay

restoration

ORACLE

(Optional) Removes underscore (hidden) parameters from PFILE files during upgrade, and
after upgrade, for all Oracle Databases in the configuration file.

Usage Notes

Underscore parameters should only be used by advice of Oracle Support.
Options

[yes | no]

The default value is no.

Example

salesl.remove underscore parameters=yes

(Optional) Specifies whether to use replay to upgrade the database.

Usage Notes

By default, AutoUpgrade performs a Classic upgrade to upgrade the database.
Options

[yes | no]

The default value is no.
Example

upgl.replay=yes

(Optional) Generates a Guaranteed Restore Point (GRP) for database restoration.

Usage Notes

If you set restoration=no, then both the database backup and restoration must be
performed manually. Use this option for databases that operate in NOARCHIVELOG mode, and
for Standard Edition and Standard Edition 2 databases, which do not support the Oracle
Flashback technology feature Flashback Database. If you do not specify the parameter, then
the default value (yes) is used, and a guaranteed restore point is created.

Options
[yes | no]

The default value is vyes.

3-73



Chapter 3
AutoUpgrade Utility Configuration Files

Example

salesl.restoration=no

revert_after_action

(Optional) Specifies a custom action that you want to have run on the operating
system after a system restoration is completed for the specific database job addressed
by the prefix, and the database is up.

Usage Notes

The action that you specify with revert after action runs on the target Oracle home
binaries after the restoration process is completed, and the database is up.

The script that you specify to run must be in the form of name. ext (for example,
myscript.sh), so that AutoUpgrade can identify the type of script that you want to run.
Permitted extension options:

e Unix shell (.sh)
e Microsoft Windows batch (.bat, .cmd)
*  Microsoft Windows PowerShell (.ps1)

* Oracle SQL script (.sql), with a local operation on the database designated by the
revert before action parameter prefix.

Options
Stop on fail: [Y|N]. The default is N.

By default, if the specified script fails, then AutoUpgrade continues to run (N. To specify
that AutoUpgrade stops if the script fails, use the Y flag. If the script finishes running on
the operating system with a status different than 0, then AutoUpgrade identifies the
script as failed.

Examples

Run the script you specify on the operating system after AutoUpgrade completes
processing the restoration, with the Y flag set to stop AutoUpgrade if the script fails:

sales3.revert after action =/user/path/script.sh Y

Run the script you specify on the operating system after AutoUpgrade completes
processing the restoration. With no flag, the default stop on fail option is N, so
AutoUpgrade continues to run if the script fails:

sales3.revert after action =/user/path/script.sh

ORACLE 3-74



Chapter 3
AutoUpgrade Utility Configuration Files

revert_before_action

(Optional) Specifies a custom action that you want to have run on the operating system
before a system restoration is completed for the specific database job addressed by the
prefix, and the database is up.

Usage Notes

The action that you specify with revert before action runs on the target Oracle home
binaries before database restoration is started, and the database is up.

The script that you specify to run must be in the form of name. ext (for example,
myscript.sh), so that AutoUpgrade can identify the type of script that you want to run.
Permitted extension options:

e Unix shell (.sh)
*  Microsoft Windows batch (.bat, .cmd)
*  Microsoft Windows PowerShell (.ps1)

e Oracle SQL script (.sgl), with a local operation on the database designated by the
revert before action parameter prefix.

Options
Stop on fail: [y |N]. The default is N.

By default, if the specified script fails, then AutoUpgrade continues to run (N. To specify that
AutoUpgrade stops if the script fails, use the Y flag. If the script finishes running on the
operating system with a status different than 0, then AutoUpgrade identifies the script as
failed.

Examples

Run the script you specify on the operating system before AutoUpgrade starts the restoration,
with the Y flag set to stop AutoUpgrade if the script fails:

sales3.revert before action =/user/path/script.sh Y

Run the script you specify on the operating system before AutoUpgrade starts the restoration.
With no flag, the default stop on fail option is N, so AutoUpgrade continues to run if the script
fails:

sales3.revert before action =/user/path/script.sh

run_dictionary_health

ORACLE

(Optional) Specifies whether you run Oracle Dictionary Health Checks as part of preupgrade
checks to identify database dictionary inconsistencies.

Usage Notes

To help to identify database dictionary inconsistencies, you can specify that AutoUpgrade
runs the DBMS DICTIONARY CHECK PL/SQL package on the source database as part of

3-75



Chapter 3
AutoUpgrade Utility Configuration Files

preupgrade checks. If set, the AutoUpgrade run dictionary health parameter
enables you to specify for each upgrade source database that AutoUpgrade runs
either the full array of Oracle Dictionary Health Checks on the database dictionary, or
that it runs only the most critical set of checks. If the check detects potential or critical
problems with the database dictionary, then it prevents the upgrade from starting.

Oracle Dictionary Health Check results are stored under the AutoUpgrade precheck
directory in the format dbname healthcheck result.log, where dbname is the name of
the database on which the check was run. For more information about Oracle
Dictionary Health Check, refer to the DBMS HCHECK package documentation in Oracle
Database PL/SQL Packages and Types Reference.

Options
[full] critical]

If the parameter is not set, then the default is to not run DBMS DICTIONARY CHECK.
Example

salesl.run dictionary health=full
sales2.run_dictionary health=critical

Related Topics
- DBMS_DICTIONARY_CHECK PL/SQL Package

run_utlrp

(Optional) Enables or disables running a version of utlrp.sql as part of post upgrade,
to recompile only invalid objects in Oracle-maintained schemas.

Usage Notes

The utlrp utility recompiles all Data Dictionary and user objects that become invalid
during a database upgrade. If you set run_utlrp=no, or if you want invalid user objects
also to be recompiled, then Oracle recommends that you use this utility to recompile
invalid objects after upgrading with AutoUpgrade.

Options
[yes | no]

The default value is yes.
Example

prefix.run utlrp=yes

ORACLE 3-76



sid

Chapter 3
AutoUpgrade Utility Configuration Files

(Required) Identifies the Oracle system identifier (SID) of the database that you want to
upgrade.

Example

salesl.sid=salesdb

skip_tde_key import

source_base

ORACLE

(Optional) When set to yes, the upgrade is run, but import of the source database KeyStore
into the target database is skipped, without raising an error.

Usage Notes

" Note:

This parameter is deprecated, because it is no longer needed. It can be removed in
a future AutoUpgrade release. Instead of using this parameter, Oracle recommends
that you either use the -load password command line option to add the TDE
password to AutoUpgrade's keystore, or add the TDE password to a Secure
External Password Store (SEPS).

You can use this option for nonCDB-to-PDB and unplug/plug operations. When import of the
source database KeyStore into the target database is skipped, AutoUpgrade will leave the
PDB open in upgrade mode, so that you can import the keys manually yourself. After you
import the keys, you must then restart the database in normal mode.

Options
[yes | no]

The default value is no.
Example

salesl.skip tde key import=yes

(Optional) Specifies the source ORACLE BASE path for the source Oracle home.
Examples

source base=/ull/app/oracle
sales4.source base=/u04/app/oracled

3-77



Chapter 3
AutoUpgrade Utility Configuration Files

source_dblink

ORACLE

(Optional) Specifies the database link set up for an unplug-plug relocate (hot clone)
upgrade.

Usage Notes

To set up an unplug-plug relocate upgrade for a non-CDB or a PDB, you must first set
up a database link between the source database and the target database location. You
then pass that database link to AutoUpgrade using the source dblink parameter. You
identify source database name associated with the database link as a suffix to
source_dblink. parameter. You also have the option to specify a time value, in
seconds, that the database is refreshed from the database link.

# Note:

This option is available for source database releases Oracle Database
12.1.0.2 and later.

The source dblink parameter becomes active when you use the

target pdb_copy option parameter. When you use source dblink, you must also
must specify a value for the file name convert parameter, either to convert file
names, or to specify not to convert file names. If file name convert is set to none,
then you must also set db_create file dest to specify where you want to place the
database files.

You can also choose to set a refresh interval, in seconds, specifying how frequently
the target database is updated over the database link from the source database. You
can use the refresh interval with the start time parameter to keep the source
database refreshed for the target location. If no refresh rate is specified, then the
source database is cloned only one time, and no refresh occurs. If the refresh rate is
specified, but you do not specify a future start time using the start time parameter,
then the refresh interval value is ignored, and the database is cloned only one time.

Options
e (Required) The source database name, specified as a suffix.

e (Required) The name of the database link that you created.

e (Optional) The refresh rate for the target database from the source database, in
seconds. If you specify a refresh rate, then typically you also specify a future start
time using the start time parameter.

* (Optional) CLONE ONLY. Adding this option specifies that the PDB that is created is
a clone that is never refreshed, and that the upgrade is started immediately after
the clone operation is completed. This option is required when the source is
Oracle Database 12.1 (Release 12.1.0.2).

Examples

In the following example, two database links are created:

3-78



Chapter 3
AutoUpgrade Utility Configuration Files

* pdbxcdbl8x_link, created on the PDB source database named pdbx:

CREATE DATABASE LINK pdbxcdbl8x link CONNECT TO remote-user IDENTIFIED BY
password

USING' (DESCRIPTION =(ADDRESS = (PROTOCOL = TCP) (HOST

GRANT CREATE SESSION, CREATE PLUGGABLE DATABASE, SELECT CATALOG ROLE TO
remote-user;

GRANT READ ON sys.enc$ TO remote-user;

* dbl8x link, created on the non-CDB source database named db18x:

CREATE DATABASE LINK dbl8x link CONNECT TO remote-user IDENTIFIED BY
password

USING' (DESCRIPTION =(ADDRESS = (PROTOCOL = TCP) (HOST = db-nodel) (PORT =
1521))

(CONNECT DATA = (SERVICE NAME = dbl8x)))"';

In the AutoUpgrade configuration file, the database name associated with the database link is
specified by using that name as a suffix to source dblink: The suffix: pdox for the PDB
source database, and the suffix db18x for the non-CDB source database.

In the following example, source dblink is used to specify the dblink for the source database
pdox. The PDB upgrade deployment starts immediately after you start AutoUpgrade, because
no time interval is specified:

upgl.source dblink.pdbx=pdbxcdbl8x

Using the same configuration file, AutoUpgrade starts the upgrade of the database named
db18x in 1 hour and 40 minutes after AutoUpgrade is started from the command line.
Between the time that AutoUpgrade is started, and the deployment time specified by
start_time, the cloned target database is refreshed every 20 seconds from the source.

upgl.source dblink.dbl8x=dbl8x link 20
upgl.start time=+1h40m

In the following example, the source database db18x is cloned to the target PDB db18x link,
and the upgrade is started immediately after that source database is cloned successfully:

upgl.source dblink.dbl8x=dbl8x link CLONE ONLY

source_home

ORACLE

(Required for analyze, fixups, and deploy modes. Optional for upgrade mode.) Current
Oracle home (ORACLE HOME) of the database that you want to upgrade.

Usage Notes

For the mode upgrade, the source home and target home values can be the same path.
Example

sales2.source _home=/path/to/my/source/oracle/home

3-79



Chapter 3
AutoUpgrade Utility Configuration Files

source_ldap_admin_dir

(Optional) Specifies the path to the LDAP_ADMIN directory in the source database
home.

Usage Notes

This parameter has no effect on Microsoft Windows, because on Windows, the
LDAP_ADMIN environmental variable is set within the registry.

Example

salesl.source ldap admin dir=/u0l/app/oracle/12.2/dbhome0l/ldap/admin

source_tns_admin_dir

start_time

ORACLE

(Optional) Specifies the path to the TNS ADMIN directory in the source database home.

Usage Notes

This parameter has no effect on Microsoft Windows, because on Windows, the
TNS_ADMIN environmental variable is set within the registry.

Example

salesl.source tns admin dir=/u0l/app/oracle/12.2/dbhome0l/network/admin

(Optional) Sets a future start time for the upgrade job to run. Use this parameter to
schedule upgrade jobs to balance the load on your server, and to prevent multiple jobs
from starting immediately.

Usage Notes

Values must either take the form now (start immediately), or take the English Date
Format form DD/IMMIYYYY or MMIDDIYYYY, where MM is month, DD is day, and
YYYY is year. If you do not set a value, then the default is now.

Permitted values:

now
30/12/2019 15:30:00
01/11/2020 01:30:15
2/5/2020 3:30:50

If more than one job is started with the start time value set to now, then AutoUpgrade
schedules start times based on resources available in the system, which can result in
start time for jobs that are separated by a few minutes.

3-80



Chapter 3
AutoUpgrade Utility Configuration Files

Values are invalid that use the wrong deliminator for the date or time element, or that use the
wrong date or hour format, such as the following:

30-12-2019 15:30:00
01/11/2020 3:30:15pm
2020/06/01 01:30:15

Examples

salesl.start time=now
sales2.start time=07/11/2020 01:30:15

target_base

(Optional) Specifies the target ORACLE BASE path for the target Oracle home.
Examples

target base=/ull/app/oracle
sales4.target base=/u04/app/oracled

target_cdb

(Optional) Specifies the s1D of the target CDB into which a non-CDB Oracle Database is
plugged in. This parameter is mandatory when you want to upgrade and convert a non-CDB
Oracle Database.

Example

emp.target cdb=salescdb

target_pdb_copy_option=file_name_convert

(Optional) Specifies the file name convert option used by the create pluggable database
statement that AutoUpgrade runs when converting a non-CDB database to a PDB or an
existing PDB from a different source CDB into a PDB in the specified target CDB.

Usage Notes

Caution:

Specifying target pdb_copy option enables AutoUpgrade to manage the recovery
as needed. When target pdb copy option is not set, and the default nocopy
option is used, there is no recovery of the default PDB. Ensure that you have a
backup of your source PDB.

This option is only used when creating a pluggable database within the target CDB. If you do
not specify this parameter, then the default value of the parameter is NOCOPY, and existing

ORACLE 3-81



ORACLE

Chapter 3
AutoUpgrade Utility Configuration Files

data files on the source database are reused. When you do specify this parameter,
then you must append a suffix to the parameter that specifies either the source
database name or PDB name (target pdb copy option.suffix, and specify
file name convert= with one of the following options:

e Specify source file names (f) and target replacement file names (r) ('f, 'r"), or
specify NONE

* If you are creating a refreshable clone database, then append a suffix to the
parameter that specifies either the source database name or PDB name
(target pdb copy option.suffix

On the target CDB, if you are using ASM, or if you have the parameters
DB CREATE FILE DEST or PDB FILE NAME CONVERT Set, and you want these parameters

on the target CDB to take effect for replacement file names, then set the value of
prefix.target pdb copy option.source-db-name-or-
pdb=file name convert=NONE.

If you want one or more data file names changed during conversion on the target
CDB, then enter values for the parameter to indicate the source database name or
PDB, specified as a suffix, the source filename you want to change, and the target
filename to which you want the existing files copied, using the syntax

prefix.target pdb copy option.source-db-name-or-pdb=('f1', 'ri', 'f2',
'r2', . . .),where £1 is the first filename pattern on your source, r1 is the first
replacement filename pattern on your target CDB, 2 is the second filename pattern on
your source, r2 is the second replacement file pattern on your target CDB, and so on.

Syntax

prefix.target pdb copy option.source-db-name-or-
pdb=file name convert=('fl', 'rl', 'f2', 'r2', 'f£3', 'r3'...)

Example

In this example, AutoUpgrade will copy existing datafiles during conversion of a
database specified with the prefix string upg1, and with the suffix sales to replace the
file path string and filename /old/path/pdb_2 with the file path string and

filename /new/path/depsales:

upgl.target pdb copy option.sales=file name convert=('/old/path/
pdbo 2', '/new/path/depsales"')

To convert OMF files with target pdb copy optionsource-db-name-or-
pdb=file name convert, the target Oracle home must be Oracle Database 19c
Release Update 6 or later (19.6.0), or Oracle Database 18c Release Update 10 or
later (18.10.0).

In this example, the parameter is configured so that data files that are stored on Oracle
ASM, but not stored as Oracle-managed files, are copied from +DATA/dbname/sales to
+DATA/dbname/depsales:

upgl.target pdb copy option.sales=file name convert=('+DATA/dbname/
sales', '+DATA/dbname/depsales')

3-82



Chapter 3
AutoUpgrade Utility Configuration Files

target_pdb_name

(Optional) Specifies the name that you want to assign to a non-CDB source Oracle Database
after it is plugged in to the target CDB.

Usage Notes

This parameter is optional. It is used when you want to upgrade and convert a non-CDB
Oracle Database to a PDB, or you want to unplug a PDB from a source release CDB and
plug it in for an upgrade to a targetr release CDB.

When you upgrade and convert an existing non-CDB database to a PDB on a target CDB,
the target cdb parameter is mandatory, because it specifies the target CDB. If you want to
determine how the PDB is created on the target CDB, you can use the optional parameters
target pdb name and target pdb copy option to specify how the PDB is created on the
target CDB. However, if neither optional parameters are used, then a full upgrade of the
source CDB is performed.

The default name for the target PDB when you convert a non-CDB to a PDB is to use the
database unique name of the non-CDB Oracle Database. To specify a name that is different
from the existing name of the non-CDB when you plug it in to the CDB, set the new name by
using target pdb name. In addition, if you are creating a refreshable clone database, then
append a suffix to the parameter that specifies either the source database name or PDB
name (target name.suffix)

Examples

In the following example, the source non-CDB database is emp19. The target_pdb_name
parameter is used to change the name to emp23pdb on the target CDB database.

upg.target pdb name=emp23pdb

For a refreshable clone, add a prefix to indicate the source database for the clone. In this
example, the the source container database is db122b and we are cloning pdbl from db122b
into the target container database db19. The suffix pdb1 is used as the identifier for both
target pdb name and source dblink. The pdbl suffix identifier associates both the target
pdb name and the dblink used to move the data from the source, pdb1, into the target PDB
PLUG122.

global.autoupg log dir=/tmp/logs

upgl.source home=/ull/app/oracle/122

upgl.target home=/ull/app/oracle/19

upgl.sid=dbl22b

upgl.target cdb=dbl9

upgl.pdbs=pdbl

upgl.target pdb name.pdbl=PLUG122

upgl.target pdb copy option.pdbl=file name convert=('/ull/app/oracle/oradata/
dbl122b/pdbl', '/uOl/app/oracle/plug/pdbl22b"')

upgl.source dblink.pdbl=pdbxcdbl22x link

ORACLE 3-83



Chapter 3
AutoUpgrade Utility Configuration Files

target_Idap_admin_dir

(Optional) Specifies the path to the LDAP_ADMIN directory in the target database home.
Example

salesl.target ldap admin dir=/u0l/app/oracle/19/dbhome01/ldap/admin

target_tns_admin_dir

(Optional) Specifies the path to the TNS_ADMIN directory in the target database home.
Example

salesl.target tns admin dir=/u0l/app/oracle/19/dbhome0l/network/admin

timezone_upg

ORACLE

(Optional) Enables or disables running the time zone upgrade as part of the
AutoUpgrade process.

Usage Notes

To preserve data integrity, Oracle recommends that you upgrade the time zone file
(DST) settings at the time of your database upgrade. In particular, upgrade the
timezone when you have data that depend on the time zone, such as timestamp with
time zone table columns. Note that this setting can be disabled by overwriting the
fixup on the checklist file.

If you explicitly disable the time zone file upgrade in your AutoUpgrade configuration
file, then Oracle recommends that you perform this task either as part of your upgrade
plan, or at a later point in time.

Options
[yes | no]
The default value is yes for upgrade, and no for patching.

Example

salesl.timezone upg=no

# Note:

If you patch a database with RU 19.18 or later, then updated time zone files
are installed in the Oracle home by default. A new database created with
Database Configuration Assistant (DBCA) in a patched Oracle home will be
created with the latest time zone files.

3-84



tune_setting

ORACLE

Chapter 3
AutoUpgrade Utility Configuration Files

(Optional) Enables special workflows that alter the behavior of AutoUpgrade during runtime,
depending on the workflow option that you specify.

Usage Notes

The tune setting parameter enables you to fine-tune upgrade steps or the resources
allocated to the processing of the upgrades specified by the container databases or
pluggable databases (CDBs or PDBs) specified by the parameter prefix in your AutoUpgrade
configuration file. This capability can be useful for some upgrades if you find the default
AutoUpgrade values are insufficient for your system requirements, or when you want to
enable nondefault AutoUpgrade options.

Syntax

prefix.tune setting=option[, option, option, ...]

Select the tune setting options that provide the AutoUpgrade runtime tuning that you
require from the list that follows. To combine multiple tuning options with the tune setting
parameter, use comma delimiters. Example:

sales3.tune setting=proactive fixups=true,query hint parallel=8,utlrp threads
_per pdb=8

# Note:

You can concatinate multiple parameters together in a single tune setting entry

Option Description

active nodes limit Sets a new total of active cluster member nodes that you want to
use during a distributed upgrade of Oracle Real Application
Clusters databases. The default is 2. If the number you specify is
equal to or greater than the maximum number of cluster member
nodes, then all nodes are taken.

sales3.tune setting=active nodes limit=4

distributed upgrade Specifies that AutoUpgrade performs a distributed upgrade. A
distributed upgrade leverages the resources of the Oracle
Clusterware cluster member nodes to perform the upgrades of
PDBs more rapidly on the cluster. Use this option when a CDB in
an Oracle RAC cluster of at least two nodes is being upgraded.
When you choose this option, the proactive fixups optionis
also enabled by default. Example:

sales3.tune setting=proactive fixups=true,distribu
ted upgrade=true

3-85



Chapter 3
AutoUpgrade Utility Configuration Files

Option Description

make pdbs available Opens the PDBs designated by the prefix in read/write and non-
restricted mode after postfixups are complete when proactive
fixups mode is used. This option enables PDBs designated by
the prefix to become available for service immediately after the
upgrade is completed, while other PDBs continue to be
upgraded, which can be useful for large fleet upgrade
deployments.

Precautions:

Choosing this option enables the PDBs you designate to accept
service requests from users, while other PDBs are being
upgraded. The response time of the PDBs for service requests,
and the time required for ongoing PDB upgrades can each be
affected.

Example:

sales3.tune setting=make pdbs available=true

proactive fixups Enables proactive fixups mode, where the PDBs are upgraded as
the last stage of the upgrade. When the number of PDBs is
higher than the CPU count defined in the database, divided by 2,
choosing this tuning option can result in a faster upgrade.
Example:
sales3.tune_ setting=proactive fixups=true
Precautions:

If the number of CPUs is higher than the number of PDBs, then
changing this setting may not improve performance.

query hint parallel Specifies a parallel thread specification to the code that gathers
data from the tablespaces during the query of the PDBs specified
by the prefix, so that you can allocate a greater number or lesser
number of parallel threads to the PDBs specified by the prefix.
Example:
sales3.tune setting=query hint parallel=8

Choosing this option can cause AutoUpgrade to consume more
system resources.

Option NO_HINT avoids the use of optimizer hints on the query
that gathers information about database tablespaces. This option
can be useful in environments where existing hints (materialize
and parallel) affect the performance of the query. For example:

sales3.tune setting=query hint parallel=NO HINT
utlrp threads per pdb Overwrites default maximum number of threads generated by the

recompilation of invalid objects in the CDB, and uses the number
of threads that you specify. Example:

sales3.tune setting=utlrp threads per pdb=8
Precautions:

If the number of threads specified exceeds available threads on
the system, then performance can be compromised.

ORACLE 3-86



Chapter 3
AutoUpgrade Utility Configuration Files

Option Description

utlrp pdb in parallel Overwrites default maximum number of concurrent recompilation
threads to the number that you specify. Use this option to
overwrite the default maximum number of concurrent processes
of recompilation of invalid objects. Example:

sales3.tune setting=utlrp pdbs in parallel=2
Precautions:

Each PDB process requires from the system as many threads as
specified by utlrp threads per pdb.

Examples

In the following example, the database upgrades specified with the prefix sales3 are Oracle
Real Application Clusters Oracle Database instances. The tune_ setting parameter is used
to set these database instances to use the setting distributed upgrade, which distributes
the upgrade load across multiple CDBs in the Oracle Grid Infrastructure cluster:

sales3.tune setting=proactive fixups=true,distributed upgrade=true

In the following example, the database upgrades specified with the prefix sales3 are tuned
with multiple tune setting parameter options:

sales3.tune setting=proactive fixups=true,query hint parallel=8,utlrp threads
_per pdb=8

upgrade_node

(Optional) Specifies the node on which the current user configuration is valid. The default
value is localhost.

Usage Notes

The purpose of this parameter is to prevent AutoUpgrade from processing databases that are
listed in the configuration file that you use with AutoUpgrade, where the value for the

upgrade node parameter does not correspond to the current host name. It does not enable
running AutoUpgrade remotely. You can use the keyword localhost as a wild card to indicate
that databases on the local host should be processed.

Use case:

The configuration file config.cfg contains 10 databases. Five of the databases have the
value of upgrade node set to denver01. The remaining five have the value of upgrade node
set to denver02. If AutoUpgrade is run on the server denver01 using the configuration file
config.cfg, then AutoUpgrade only processes the databases where upgrade node is set to
denver01. It ignores the databases where upgrade node is set to denver02. The utility
hostname identifies the value used to resolve the upgrade node.

ORACLE 3-87



Chapter 3
AutoUpgrade Utility Configuration Files

Example

hostname
denver(2
salesl.upgrade node=denver0l

wincredential

(Optional) Specifies the location of a Microsoft Windows credential object file that you
have previously generated with the AutoUpgrade command-line parameter
load win credential.

Usage Notes

The purpose of this parameter is to create a credentials file to store the user and
password credentials for the owner of the Oracle database binaries, and to specify the
location of the Administrator PowerShell credential object for those credentials, so that
AutoUpgrade can be run using that that credential object during the Oracle Database
upgrade. To use this feature, you must have already created the Windows PowerShell
credential object, and then specify that credential object in the configuration file using
wincredential.

Use case:

You want to specify credentials for the owner of database binaries on a Microsoft
Windows server. To specify these credentials, after you enter the wincredential
paramter in your configuration file, you run AutoUpgrade in Configuration mode using
the load win credentials command-line paramter, and provide credentials as
prompted. Microsoft Window Powershell then creates the credential object, and stores
the generated credential object in the path location you specify with wincredential.
For example, in the following file, the location of the credential file is specified with
upgl.wincredential=C:\Users\oracle\cred

Example

global.autoupg log dir=C:\Users\oracle\autoupg
global.target.version=19.0.0
global.target home=C:\u0l\app\oracle\product\19\dbhome 1

upgl.sid=dbl12201

upgl.source home=C:\uOl\app\oracle\product\12.2\dbhome 1
upgl.log dir=C:\Users\Oracle\autoupg

upgl.upgrade node=localhost

upgl.target base=C:\uOl\app\oracle

upgl.target version=19.0.0.0
upgl.wincredential=C:\Users\oracle\cred

ORACLE 3-88



Chapter 3
AutoUpgrade Utility Configuration Files

Global Parameters for the AutoUpgrade User Configuration File

To specify a default behavior for a parameter for all Oracle Database upgrades addressed in
the configuration file, you can use the optional AutoUpgrade global parameters.

ORACLE

Usage Notes

All global parameters are optional, except for target_home when using upgrade or deploy
mode. All global parameters take the prefix global.

The add_after upgrade pfile and del during upgrade pfile global and local PFILE
parameters operations are run in the following hierarchical order:

1.

Global Actions

a. Remove global
b. Add global
Local Actions

a. Remove local

b. Add local

add_after_upgrade_pfile
(Optional) Specifies a path and file name of a PFILE whose parameters you want to add
after the PFILE is upgraded.

add_during_upgrade_pfile
(Optional) Specifies a path and file name of a PFILE whose parameters you want to add
during the PFILE is upgraded.

after_action
(Optional) Specifies a path and a file name for a custom user script that you want to have
run after all the upgrade jobs finish successfully.

autoupg_log_dir
(Optional) Sets the location of the log files, and temporary files that belong to global
modules, which AutoUpgrade uses.

before_action
(Optional) Specifies a custom user script that you want to have run for all upgrades
before starting the upgrade jobs.

catctl_options
(Optional) Specifies one or more of a set of catctl.pl options that you can select for
AutoUpgrade to submit for catctl.pl to override default behavior.

del_after_upgrade_pfile
(Optional) Specifies a path and file name of a PFILE whose parameters you want to have
removed after the PFILE upgrade.

del_during_upgrade_pfile
(Optional) Specifies a path and file name of a PFILE whose parameters you want to have
removed during the PFILE upgrade.

drop_grp_after_upgrade
(Optional) Deletes the Guaranteed Restore Point (GRP) after database upgrade.

json_progress_writing_interval

3-89



Chapter 3
AutoUpgrade Utility Configuration Files

*  keystore

* raise_compatible
(Optional) Increases the compatible parameter to the default value of the target
release after the upgrade is completed successfully.

* replay
(Optional) Specifies whether to use replay to upgrade the database.

* target base
(Optional) Specifies the target ORACLE BASE path for the target Oracle home.

e target_home
(Optional for analyze and fixups modes. Required for upgrade and deploy
modes.) Sets a global target home for all of the databases specified in the
configuration file.

e target version
(Optional) Specifies the target release version on which you want AutoUpgrade to
perform the upgrade.

e upgradexml
(Optional) Generates the upgrade.xml file.

add_after_upgrade_pfile

(Optional) Specifies a path and file name of a PFILE whose parameters you want to
add after the PFILE is upgraded.

Usage Notes

This specification applies to all databases in the user configuration file.
Example

global.add after upgrade pfile=/path/to/my/add after.ora

add_during_upgrade_pfile

(Optional) Specifies a path and file name of a PFILE whose parameters you want to
add during the PFILE is upgraded.

Usage Notes

This specification applies to all databases in the user configuration file.
Example

global.add during upgrade pfile=/path/to/my/add during.ora

ORACLE 3-90



after_action

Chapter 3
AutoUpgrade Utility Configuration Files

(Optional) Specifies a path and a file name for a custom user script that you want to have run
after all the upgrade jobs finish successfully.

Usage Notes

The script that you use must be in the form of name. ext (for example, myscript.sh, so that
AutoUpgrade can identify the type of script that you want to run. Permitted extension options:

e Unix shell (. sh)
e Microsoft Windows batch (.bat, .cmd)
*  Microsoft Windows PowerShell (.ps1)

By default, if the script fails, then AutoUpgrade continues to run. Use the Y flag to specify that
AutoUpgrade stops if the operating system detects that your script fails. If the script finishes
with a status different than 0, then it is considered a failed completion.

The output of the script is captured and stored in files. Both stdout and stderr are captured.
The files are stored in the postupgrade subdirectory in the directory matching the specific
database or job.

The following environment variables are set in the shell that runs the script:
* ORACLE SID

* ORACLE UNQNAME

* ORACLE BASE

* ORACLE HOME

° TNS ADMIN

Examples

If the script fails, then stop AutoUpgrade:

global.after action=/path/to/my/script.sh Y

If the script fails, then continue AutoUpgrade:

global.after action=/path/to/my/script.sh

autoupg_log_dir

ORACLE

(Optional) Sets the location of the log files, and temporary files that belong to global modules,
which AutoUpgrade uses.

Usage Notes

You can configure different log directory path in the userconfig file in the logs directory for a
specific prefix

3-91



Chapter 3
AutoUpgrade Utility Configuration Files

If you do not set this parameter to a path, then by default the log files are placed in the
location indicated by the orabase utility for the databases that you include in your
configuration file. In that case, the default logs directory is in the path ORACLE BASE/
cfgtoollogs/autoupgrade.

If the orabase utility fails for all databases included in the configuration file, then the
log file location is then based on the temp directory for the user running AutoUpgrade.

Examples

global.autoupg log dir=/path/to/my/global/log/dir

Configure different log directory path in the userconfig file in the logs directory for a
specific prefix

global.autoupg log dir=/path/to/my/global/log/dir
myprefix.log dir=global.auto log dir:different/path

The result of using this syntax is that log files and temporary files are placed in the
following path for databases identified by the prefix myprefix:

/path/to/my/global/log/dir/different/path

before_action

ORACLE

(Optional) Specifies a custom user script that you want to have run for all upgrades
before starting the upgrade jobs.

Usage Notes

The script that you use must be in the form of name. ext (for example, myscript.sh),
so that AutoUpgrade can identify the type of script that you want to run. If you want to
have a script run before a specific upgrade job, then specify that script by using the
local parameter (local.before action)

Permitted extension options:

e Unix shell (. sh)

e Microsoft Windows batch (.bat, .cmd)
*  Microsoft Windows PowerShell (.ps1)

By default, if the script fails, then AutoUpgrade continues to run. Use the Y flag to
specify that AutoUpgrade stops if the operating system detects that your script fails. If
the script finishes with a status different than 0, then it is considered a failed
completion.

The output of the script is captured and stored in files. Both stdout and stderr are
captured. The files are stored in the preupgrade subdirectory in the directory matching
the specific database or job.

The following environment variables are set in the shell that runs the script:

e ORACLE_SID

3-92



Chapter 3
AutoUpgrade Utility Configuration Files

°* ORACLE UNQNAME
° ORACLE BASE
° ORACLE_HOME

e TNS_ADMIN

Examples

If the script fails, then stop AutoUpgrade:

global.before action=/path/to/my/script.sh Y

If the script fails, then continue AutoUpgrade:

global.before action=/path/to/my/script.sh

catctl_options

(Optional) Specifies one or more of a set of catctl.pl options that you can select for
AutoUpgrade to submit for catctl.pl to override default behavior.

Usage Notes

For a complete description of the options, refer to "Parallel Upgrade Utility (catctl.pl)
Parameters."

Options

Available catctl.pl options:

e -n Number of processes to use for parallel operations. For Replay upgrades, the number
of parallel processes used for the upgrade defaults to the value of (CPU_COUNT divided by
4) . For Classic upgrades, the default for CDBSROOT is 8.

*  -N Number of processors to use when upgrading PDBs. For Replay upgrades, the
number of parallel processes used for the upgrade defaults to the value of (CPU_COUNT
divided by 4) For Classic upgrades, the default is 2

e -T Takes offline user schema-based table spaces.

e -z Turns on production debugging information for catcon.pm.
Examples

global.catctl options=-n 24 -N 4

Related Topics
» Parallel Upgrade Utility (catctl.pl) Parameters

* Syntax and Parameters for catcon.pl

ORACLE 3-93



Chapter 3
AutoUpgrade Utility Configuration Files

del after_upgrade pfile

(Optional) Specifies a path and file name of a PFILE whose parameters you want to
have removed after the PFILE upgrade.

Usage Notes

This specification applies to all databases in the user configuration file.
Example

global.del after upgrade pfile=/path/to/my/del after.ora

del during_upgrade_pfile

(Optional) Specifies a path and file name of a PFILE whose parameters you want to
have removed during the PFILE upgrade.

Usage Notes

This specification applies to all databases in the user configuration file.

Example

global.del during upgrade pfile=/path/to/my/del during.ora

drop_grp_after_upgrade

ORACLE

(Optional) Deletes the Guaranteed Restore Point (GRP) after database upgrade.

Usage Notes

If you select this option, then GRP is deleted after upgrade completes successfully. If
you set raise compatible to yes, then you must also set the parameter
drop grp after upgrade tO yes.

Options
[yes | no]

The default value is no.
Example

global.drop grp _after upgrade=yes

3-94



Chapter 3
AutoUpgrade Utility Configuration Files

json_progress_writing_interval

keystore

ORACLE

(Optional) Sets the time interval for how often to write the AutoUpgrade progress JSON
report.

Usage Notes

This parameter specifies how often the AutoUpgrade progress JSON report is written. If you
do not set this parameter, then by default the AutoUpgrade progress JSON report interval is
30 seconds

Example

In the following example, global.json progress writing interval=90 is used to specify
that the JSON progress report is written every 90 seconds to the log directory specified by
global.autoupg log dir

global.json progress writing interval=90
global.autoupg log dir=/path/to/my/global/log/dir

(Optional) Specifies the location for a dedicated software keystore used exclusively by
AutoUpgrade to store passwords, and other sensitive information.

Usage Notes

You can use the keystore parameter to specify where you want AutoUpgrade to create a
dedicated software keystore that is used exclusively by AutoUpgrade.

The AutoUpgrade keystore contains the file ewallet.pl2 (similar to other kind of keystores
used by the database). The file is created when you use the save command in the TDE
prompt. If you choose to generate an auto-login keystore, then the file cwallet.sso is created
as well. If you have an auto-login keystore, then AutoUpgrade does not prompt for a keystore
password when AutoUpgrade starts.

The keystore generated by AutoUpgrade contains sensitive information, and is protected by a
password that you choose when the keystore is used for the first time. Each time changes
are made to the keystore, the password must be supplied. Unless you decide to create an
auto-login keystore for AutoUpgrade, each time you start AutoUpgrade, and AutoUpgrade
requires information from the keystore, you must provide the keystore password.

Caution:

Because the directory you specify with global.keystore contains a software
keystore, it should be protected using the same security best practices as you use
with all other highly secure keystore files.

3-95



Chapter 3
AutoUpgrade Utility Configuration Files

Example

In the following example, replace ORACLE SID with the system identifier of the
database using the keystore.

global.keystore=/etc/oracle/keystores/ORACLE SID/autoupgrade

raise_compatible

ORACLE

(Optional) Increases the compatible parameter to the default value of the target
release after the upgrade is completed successfully.

Usage Notes

If you select this option, then GRP is deleted after upgrade completes successfully. If
you set raise compatible to yes, then you must also set the parameter
drop grp after upgrade tO yes.

Caution:

»  After the COMPATIBLE parameter is increased, database downgrade is not possible.

*  Oracle recommends that you only raise the COMPATIBLE parameter to the current
release level after you have thoroughly tested the upgraded database.

* Regardless of what value you use for the autoupgrade command-line parameter
restore, if you set the value of the configuration file parameter raise compatible
to yes, then before starting the upgrade, you must delete manually any guaranteed
restore point you have created. After the upgrade is completed successfully,
AutoUpgrade deletes the guaranteed restore point it creates before starting the
upgrade. When AutoUpgrade starts the POSTUPGRADE stage, there is no way to
restore the database.

* Ifyou set raise compatible to yes, then you must also set the parameter
drop grp after upgrade fO yes.

Options
[ves | no]

The default value is no.
Example

global.raise compatible=yes

3-96



replay

target_base

target_home

ORACLE

Chapter 3
AutoUpgrade Utility Configuration Files

(Optional) Specifies whether to use replay to upgrade the database.

Usage Notes

By default, AutoUpgrade performs a Classic upgrade to upgrade the database.

Options
[yves | no]

The default value is no.
Example

global.replay=yes

(Optional) Specifies the target ORACLE BASE path for the target Oracle home.

Usage Notes

Use of this parameter is only required in rare cases.

Example

global.target base=/ull/app/oracle
sales4.target base=/u04/app/oracled

(Optional for analyze and fixups modes. Required for upgrade and deploy modes.) Sets a
global target home for all of the databases specified in the configuration file.

Usage Notes

Use this option to avoid specifying the same target home multiple times. This parameter can
be overwritten locally.

Example

global.target home=/target/Oracle/home

3-97



Chapter 3
AutoUpgrade Utility Configuration Files

target_version

upgradexml

ORACLE

(Optional) Specifies the target release version on which you want AutoUpgrade to
perform the upgrade.

Usage Notes

AutoUpgrade uses the release version information that you provide in this parameter
to ensure that the correct checks and fixups are used for the target Oracle Database
release to which you are upgrading. The format for this parameter are period-delimited
values of valid Oracle versions.

Valid values
o 122

- 18

- 19

o 21

This option is only required if the target home is not present on the system, or if the
target home is a 12.2 release. Otherwise, AutoUpgrade can derive the target release
value.

Example

global.target version=19
employees.target version=12.2

(Optional) Generates the upgrade.xml file.

Usage Notes

The upgrade.xml generated is equivalent to the file in earlier releases that the
preupgrade package generated when you specified the XML parameter. This file is
created during the analyze mode (mode -analyze). It is generated in the prechecks
directory defined for the AutoUpgrade log files.

Options
[yes | no]

The default value is no.
Example

global.upgradexml=yes

3-98



Chapter 3
AutoUpgrade and Oracle Database Configuration Options

AutoUpgrade and Oracle Database Configuration Options

When you run AutoUpgrade, it determines the type of database (Oracle Database, Oracle
Database Standalone with Oracle ASM, or Oracle RAC), and performs an upgrade for that
type of database

Non-CDB to PDB Upgrade Guidelines and Examples
Before conversion, back up your datafiles and database, and follow the guidelines for
your source Oracle Database release.

e AutoUpgrade Process Flow for Oracle Grid Infrastructure Managed Configurations
When AutoUpgrade detects Oracle RAC, Oracle RAC One Node, or Oracle Restart, it
proceeds to perform upgrade steps required for all Oracle RAC instances.

e Oracle RAC Requirements for Upgrade with AutoUpgrade
To determine if AutoUpgrade can upgrade your Oracle Real Application Clusters (Oracle
RAC) or Oracle RAC One Node database, review the use case requirements.

e Preparing for Oracle RAC Upgrades Using AutoUpgrade
Review to find what information you must collect before the upgrade, and other upgrade
preparation guidelines.

e AutoUpgrade Patching
AutoUpgrade can patch Oracle Database releases to a newer Release Update or
Monthly Recommended Patches using out-of-place patching.

e AutoUpgrade and Oracle Data Guard
The AutoUpgrade utility that you download from My Oracle Support can simplify the
upgrade process for your primary and secondary databases configured for Oracle Data
Guard.

e How to Run AutoUpgrade Using the Fast Deploy Option
To minimize downtime, you can upgrade your database by running AutoUpgrade using
the Fast Deploy option.

e How to Perform an Unplug-Plug Upgrade of an Encrypted PDB
Learn how you can perform unplug-plug upgrades of encrypted PDBs using the
AutoUpgrade Utility.

e How to Perform a Non-CDB to PDB Conversion of an Encrypted PDB
With AutoUpgrade 22.1 and later updates, AutoUpgrade simplifies the upgrade and
conversion of Oracle Databases that use Transparent Data Encryption (TDE).

Non-CDB to PDB Upgrade Guidelines and Examples

ORACLE

Before conversion, back up your datafiles and database, and follow the guidelines for your
source Oracle Database release.

To ensure that you can recover from a failed conversion, Oracle strongly recommends that
allow time in your upgrade plan to implement your backup strategy before you use
AutoUpgrade to perform a non-CDB upgrade and conversion.

Guidelines for Upgrade Planning

The non-CDB-to-PDB conversion and upgrade process is not recoverable. To ensure a
proper upgrade and conversion, and to reduce unexpected downtime, Oracle strongly
recommends that you address any error conditions found during the analyze phase.

3-99



Chapter 3
AutoUpgrade and Oracle Database Configuration Options

If you use the target pdb copy option in your configuration file to create copies of
your data files, then your existing database is available as a backup. This is a safe
option, but will require additional time and disk space. If you do not set the

target pdb_copy option in your AutoUpgrade configuration file, then the database
conversion uses the same file location and file names that are used with existing
database files. To prevent potential data loss, ensure that your data is backed up, and
consider your file placement plans before starting AutoUpgrade.

GRP and Upgrades from Non-CDB to Multitenant Architecture

« During the upgrade, AutoUpgrade creates a guaranteed restore point (GRP) that
is available only in the context of the upgrade stage of the AutoUpgrade Deploy
workflow. To ensure against any potential data loss, you must implement your
backup strategy before starting AutoUpgrade.

» Database conversion from non-CDB to the multitenant architecture is performed
during the AutoUpgrade Drain stage. After this stage is complete, the GRP that
AutoUpgrade creates is removed, and it is not possible to use the AutoUpgrade
restore command to restore the database. In the event that you require a
recovery to the earlier non-CDB Oracle Database release, you must be prepared
to recover the database manually.

Example 3-4 Upgrading and Converting a Non-CDB to Oracle Database 19¢
Using Multitenant Architecture

During the Deploy conversion and upgrade workflow, AutoUpgrade creates a GRP,
and runs the Prefixup stage. If any part of the Deploy workflow up to the Prefixup
stage completion fails, then AutoUpgrade can restore the database back to the GRP
created at the start of the deployment,

However, after the Prefixup stage is complete, the upgraded database is plugged in to
the target release Oracle Database container database (CDB) to complete conversion.
As soon as the non-CDB is plugged into the CDB, the GRP is no longer valid, and is
dropped.

If anything goes wrong during the plug-in, and you did not choose to use the

target pdb_copy option in your configuration file to create copies of your data files,
then be aware that AutoUpgrade cannot recover and restore the database. In that
event, you must restore the database manually.

AutoUpgrade Process Flow for Oracle Grid Infrastructure Managed
Configurations

When AutoUpgrade detects Oracle RAC, Oracle RAC One Node, or Oracle Restart, it
proceeds to perform upgrade steps required for all Oracle RAC instances.

When you start AutoUpgrade, it detects when Oracle Database is configured with
Oracle Grid Infrastructure, either as a cluster member node member in Oracle Real
Application Clusters (Oracle RAC), or an Oracle RAC One Node configuration, or an
Oracle Grid Infrastructure for a Standalone Server (Oracle Restart) configuration.

ORACLE 3-100



ORACLE

Chapter 3
AutoUpgrade and Oracle Database Configuration Options

< Note:

Choosing this upgrade option requires downtime of the clustered database while
AutoUpgrade completes upgrades of database instances, and system configuration.
If you use Oracle Enterprise Manager, then you must reconfigure it after the
upgrade.

When AutoUpgrade detects that the Oracle Database is an Oracle Clusterware resource, it
performs the following steps, in sequence:

1. AutoUpgrade shuts down the database, or all instances of the Oracle RAC database.
2. AutoUpgrade disables Oracle RAC, Oracle RAC One Node, or Oracle Restart services.

3. If the Oracle Clusterware resource is Oracle RAC, then AutoUpgrade disables the cluster
membership of all Oracle RAC database cluster member nodes in Oracle Clusterware.

4. AutoUpgrade starts up the Oracle Database instance:

e If the instance was an Oracle RAC cluster member, then it starts the local Oracle
Database instance in upgrade mode, and with the cluster parameter set to FALSE.

» If the instance was a single-instance Oracle Database, then it starts up the instance
in upgrade mode.

5. AutoUpgrade upgrades the local Oracle Database Oracle home binaries to the new
Oracle Database release binaries.

6. AutoUpgrade runs srvctl upgrade database from the local Oracle Database home, and
for Oracle RAC, upgrades the configuration of the Oracle RAC services to the new
release.

7. AutoUpgrade enables Oracle Grid Infrastructure services for the database, using srvctl
enable database. For Oracle RAC, it adds the upgraded Oracle RAC database to the
Oracle RAC cluster as a cluster member node.

8. AutoUpgrade recreates the server parameter file (SPFILE) with the updated parameters,
and the parameter options you previously set for your environment that are not affected
by the release upgrade.

9. If the Oracle Database was a member of an Oracle RAC cluster, then AutoUpgrade
repeats this process on each other cluster member node, until all cluster members are
upgraded and added back to the cluster, and the SPFILE is recreated on each cluster
member node.

10. AutoUpgrade starts up the Oracle Database. For Oracle RAC, it starts all instances of
Oracle Real Application Clusters on the cluster.

# Note:

Before you start AutoUpgrade on an Oracle Grid Infrastructure for a standalone
server (Oracle Restart, Oracle RAC One Node, or Oracle RAC Database, you must
upgrade Oracle Grid Infrastructure to a release equal to or more recent than the
Oracle Database release to which you are upgrading.

3-101



Chapter 3
AutoUpgrade and Oracle Database Configuration Options

Oracle RAC Requirements for Upgrade with AutoUpgrade

To determine if AutoUpgrade can upgrade your Oracle Real Application Clusters
(Oracle RAC) or Oracle RAC One Node database, review the use case requirements.

Requirements for Using AutoUpgrade with Oracle RAC Databases

You can use AutoUpgrade to perform upgrades of Oracle RAC or Oracle Real
Application Clusters One Node systems. However, your system must meet all of the
following requirements:

e Must be either a Linux or Unix-based system. Microsoft Windows systems are not
supported.

*  Must meet the upgrade requirements to upgrade to the new Oracle Database
release.

*  Must be registered and managed through the Server Control (SRVCTL) utility.

Required Tasks for Database Administrators to Use AutoUpgrade
As the database administrator, you must complete the following tasks:

» Create an adequate backup strategy to prevent data loss from any problems
resulting from the upgrade.

» Configure Listener and Transparent Network Substrate (TNS) files, both for local
tnsnames.ora and SCAN listeners, if needed.

»  Configure Oracle Wallet certificates and management (if needed), and configure
for automatic login.

Related Topics
*  Enabling Full Deployments for AutoUpgrade

Preparing for Oracle RAC Upgrades Using AutoUpgrade

ORACLE

Review to find what information you must collect before the upgrade, and other
upgrade preparation guidelines.

To use AutoUpgrade for Oracle Real Application Clusters (Oracle RAC) upgrades, in
which Oracle Automatic Storage Management (Oracle ASM) is also upgraded, ensure
that you collect information as needed before the upgrade, and be prepared to provide
information during the upgrade.

Scope Limits for AutoUpgrade and Oracle RAC

* AutoUpgrade does not perform upgrades of the Oracle Clusterware component of
Oracle Grid Infrastructure. Before you start AutoUpgrade to upgrade your Oracle
RAC database, you must first complete a successful Oracle Grid Infrastructure
upgrade to the new release.

File System Preparation Before Upgrades Using AutoUpgrade

AutoUpgrade can identify the PFILE and SPFILE files shared on Oracle ASM.
AutoUpgrade recreates the SPFILE as part of the upgrade. If you are sharing files on
the cluster using Oracle ASM, then you do not need to complete this procedure.

3-102



Chapter 3
AutoUpgrade and Oracle Database Configuration Options

AutoUpgrade Patching

AutoUpgrade can patch Oracle Database releases to a newer Release Update or Monthly
Recommended Patches using out-of-place patching.

AutoUpgrade Patching enables you to apply Release Update (RU) and Monthly
Recommended Patches (MRPs). When you use this AutoUpgrade procedure, you leverage
the AutoUpgrade capabilities of prechecks, resume, restoration, and Oracle RAC
management, to perform multiple RU or MRP applications in one seamless operation.
AutoUpgrade Patching can simplify the deployment of Oracle Database updates to your
enterprise.

* How AutoUpgrade Performs AutoUpgrade Patching
AutoUpgrade Patching extends the AutoUpgrade upgrade process to patching, which
enables you to perform out-of-place patching for multiple databases using a single
command.

* AutoUpgrade Patching Configuration Files and Log Files
See examples of configuration files and log files for AutoUpgrade Patching.

How AutoUpgrade Performs AutoUpgrade Patching

ORACLE

AutoUpgrade Patching extends the AutoUpgrade upgrade process to patching, which
enables you to perform out-of-place patching for multiple databases using a single command.

With the latest release of AutoUpgrade the AutoUpgrade Patching procedure can be
performed on Release Update (RU), Monthly Recommended Patches (MRPs), and one-off
patches, using out-of-place patching. When you patch from an earlier RU or MRP with
AutoUpgrade, the simplicity, reliability, and recoverability of AutoUpgrade is extended to the
patching process. As a result, patching is easier to perform, and you also obtain simpler
recovery from any issues that can arise during the patch deployment.

There are no additional parameters or options that you need to set in the configuration file for
AutoUpgrade to perform patching. Just specify the source and target Oracle homes, and
AutoUpgrade will apply changes to the databases. When the source and target Oracle homes
are the same Oracle Database release (for example, from 19.11 to 19.13), AutoUpgrade
identifies the operation as an RU or MRP patch operation. This capability also applies to one-
off patches: If the RU or MRP applied to the target Oracle home is later than the RU or MRP
of the source Oracle home, then you can apply one-off patches as needed to the target
Oracle home using this method.

As AutoUpgrade performs the patch operation, it uses Datapatch to apply an RU or MRP to
databases, including Oracle Real Application Clusters (Oracle RAC) databases. The process
of patching takes advantage of existing AutoUpgrade options and operations, as with a full
release upgrade, including creating a Guarantee Restore Point. During the patching process,
the database is shut down in the source Oracle home, and brought back up in the target
Oracle home. RU or MRP updates are performed in upgrade mode, using Datapatch.

Benefits of AutoUpgrade Patching

e AutoUpgrade enables patching of all databases specified in the configuration file, in one
operation.

e Resume capabilities are already included with AutoUpgrade.

* Restore capabilities are provided so that it is possible to roll back to the earlier release
Oracle home:

3-103



ORACLE

Chapter 3
AutoUpgrade and Oracle Database Configuration Options

— Restore using the Guarantee Restore Point (GRP) generated during the
patching process.

— If a GRP is not present, then the Datapatch rollback functionality can also
perform a restore. AutoUpgrade detects that a GRP does not exist, and
automatically performs the restore using Datapatch. To enable a Datapatch
rollback restore, set the restoration configuration option to no. For example:
salesl.restoration=no.

Oracle RAC management is provided automatically with AutoUpgrade.
The error management reporting features of AutoUpgrade are extended to
patching.

The JSON status and progress reporting of AutoUpgrade are extended to
patching.

AutoUpgrade uses the Datapatch JSON status files to determine success or
failure of each process, and reports those results to you at the completion of the
process.

To simplify troubleshooting and error triage, AutoUpgrade provides extensive trace
logging that identifies all actions performed by AutoUpgrade, and the reason why
an action failed.

Features Supported for AutoUpgrade Patching

The following features are provided with AutoUpgrade Patching

Patching of databases encrypted with Transparent Data Encryption (TDE).

Hot Cloning/Relocate, so that you can create PDBs from a Non-CDB, or from a
PDB on a remote host.

Proactive Fixups, which runs postfixups on the PDB as soon as the PDB is
patched.

Distributed Database Upgrades using Oracle Real Application Clusters (Oracle
RAC), which enables you to spread patching workload across multiple nodes.

Configuration management, by copying or merging the source Oracle home
configuration files (tnsnames.ora, sqlnet.ora, and other files) to the target Oracle
home.

Analysis of the database before starting a patching procedure, to ensure patch
readiness.

Running fixups during production before patching, so that you reduce downtime.
You can then use -mode upgrade to bypass running fixups and proceed directly to
patching the database.

Performing all patching tasks in Deploy mode, to achieve end-to-end patching.

Enhanced reporting of the patching process, which enables you to diagnose errors
more easily by using the datapatch summary.log report.

Datapatch log files found in the Datapatch summary JSON file are copied to the
output file of the apply or rollback operational logs as follows:

— Apply log format, where dbname is the name of the database:
applydatapatchlogfiles#dbname.log

— Rollback log format, where dbname is the name of the database:
rollbackdatapatchlogfiles#dbname.log

3-104



ORACLE

Chapter 3
AutoUpgrade and Oracle Database Configuration Options

Datapatch output is logged to following operational logs:

— Apply log format, where dbname is the name of the database:
applyautoupgrade#dbname.log

— Rollback log format, where dbname is the name of the database:
rollbackautoupgrade#dbname.log

Datapatch JSON output is logged to the following operational logs:

— Apply log format, where dbname is the name of the database:
applydatapatchsummary#dbname.log

— Rollback log format, where dbname is the name of the database:
rollbackdatapatchsummary#dbname.log

Storage of all related patching log files produced by AutoUpgrade are stored in the
dbupgrade directory.

Standard Datapatch log files are stored in Oracle-base/cfgtoollogs/sqlpatch, where
Oracle-base is the Oracle base directory of the user account running AutoUpgrade.

Starting with AutoUpgrade 23.1, Patching is supported for databases on Microsoft
Windows.

Requirements and Restrictions for using AutoUpgrade Patching

Downtime is required to use AutoUpgrade Patching:
— After the patch operation is completed, the database is restarted.

— Patching in normal mode enables the database to be available in the target home
while the patching is proceeding.

— Patching in upgrade mode requires the patching to be completed before the
database is restarted in the target home.

— During the patch operation, by default, CDBs and all PDBs are unavailable until the
entire patching process completes in all PDBs.

— To enable PDBs to become available as soon as they are successfully patched, then
ensure that you set the tune settings option make pdbs avaliable to true in your
configuration file. For example:
sales3.tune setting=proactive fixups=true,make pdbs available=true

AutoUpgrade can support a target RU or MRP that has additional patches applied.
However, the source Oracle Database must be on an earlier RU or MRP than the target
Oracle Database RU or MRP.

AutoUpgrade does not run any OPatch commands. For that reason, the target Oracle
home must be fully patched before starting AutoUpgrade.

AutoUpgrade does not move the listener to the new Oracle home. If needed, you must
manually move the listener to the new Oracle home before you start AutoUpgrade.

Installation and configuration of the target Oracle Database home must be complete
before you can run RUs and MRPs on the target home using AutoUpgrade Patching. If a
target RU is patched after it has been applied to the database, then you can no longer
use AutoUpgrade Patching. Instead, you must use Datapatch to apply the updates.

Performing rolling patches of Oracle Database (single-instance or Oracle RAC) is not
supported. When you use AutoUpgrade Patching on a single-instance or Oracle RAC
Oracle Database, AutoUpgrade's Oracle RAC management will shut down the database
on all nodes.

3-105



ORACLE

Chapter 3
AutoUpgrade and Oracle Database Configuration Options

The target Oracle Database RU must be at least Oracle Database 19c¢, RU 19.3,
or later releases. You cannot use AutoUpgrade Patching to perform RUs or MRPs
to earlier Oracle Database releases.

The effect of AutoUpgrade Patching on databases using Oracle Data Guard
Physical Standby or Oracle Data Guard Logical Standby and Rolling Upgrade is
the same as with using Datapatch. AutoUpgrade patching can be a part of the
procedures.

When the database is moved to a different target system, AutoUpgrade Patching
can be used with the -mode upgrade option. However, when the database is
moved to a different system, AutoUpgrade is unable to perform restore. In that
case, the upgrade options for patching follow the same rules that apply for
upgrading your database.

This documentation refers to AutoUpgrade performing upgrades. When
AutoUpgrade performs patching, patching is functionally similar to upgrades.
Accordingly, references to upgrades in this guide or in diagrams are applicable to
both upgrade and patching with AutoUpgrade Patching.

Performing patching with AutoUpgrade Patching supports all AutoUpgrade -mode
options except the preupgrade mode, which is only supported for upgrades.

When patching or upgrading relocatable PDB's the configuration file cannot
contain a mixture of patch clone PDBs and upgraded clone PDBs. The
configuration for the clone PDB's must be either all upgrade clones, or all patched
clones.

AutoUpgrade patching supports only one catctl options setting, -n number,
where number is the number of processes to use for parallel operations. The
catctl options=-n setting enables you to control the total number of PDBs that
you want to run concurrently during the patching process. The default is
CPU_COUNT divided by 2. For example if CPU COUNT is set to 24 then by default, 12
PDBs (Datapatch instances) can run concurrently during the patching process.

To overwrite the default, add prefix.catctl options to your configuration file
with a value for the number of concurrent Datapatch instances you want to run.
For example, to configure AutoUpgrade to run 6 PDBs (Datapatch instances) for
the patch operations specified with the prefix sales, overriding the default, add the
following line to your configuration file:

sales.catctl options=-n 6

3-106



Chapter 3
AutoUpgrade and Oracle Database Configuration Options

Caution:

For 19.13 and earlier release updates (RUs), Oracle strongly recommends that
you set the catctl options parameter for patching operations.

With 19.13 and earlier RUs, the default value of SQL*Plus processors allocated
to each Datapatch instance is CPU_COUNT multiplied by two (CPU_COUNT*2)
processors for each Datapatch instance that AutoUpgrade starts. This default
SQL*Plus processor allocation can quickly overload your system. To restrict
system resources allocated to the patch operation, restricting how many
Datapatch instances running simultaneously is the only option. For RU 19.13
and later, only one SQL*Plus process is started for each instance of Datapatch.
This change enables AutoUpgrade to run more PDBs in parallel without
consuming a large amount of system resources.

Security Characteristics of AutoUpgrade Patching

e The user running AutoUpgrade Patching must have the sYSDBA system privilege to log
into the database, and run the patching operation.

e The same security rules that apply for upgrades also apply with AutoUpgrade Patching.

Performance Characteristics of AutoUpgrade Patching

e The speed of deploying an RU or MRP depends on the number of PDBs in a CDB, and
on changes in the release update or release update revision. If the number of changes
from the source RU or MRP patches are relatively few, then deployment of patches
should be quick. If the patches have many changes, then applying the patches requires
more time.

e Because AutoUpgrade Patching includes a number of additional automated procedures,
release update deployment is slightly slower than running Datapatch manually. For
example, AutoUpgrade Patching automatically includes recompiling invalid objects, and
configuring Oracle RAC management on the target system.

What Happens If AutoUpgrade Patching Rolls Back a Release Update

e AutoUpgrade uses the Guarantee Restore Point (GRP) generated during the patch
process to roll back to the earlier release Oracle home.

e If no GRP is created, then AutoUpgrade automatically calls Datapatch to rollback the
changes.

AutoUpgrade Patching Configuration Files and Log Files

ORACLE

See examples of configuration files and log files for AutoUpgrade Patching.

An AutoUpgrade Patching configuration file is essentially the same as an AutoUpgrade
configuration file for upgrades. However, instead of AutoUpgrade using the parameters you
specify to perform an upgrade, AutoUpgrade performs a patch operation from a source
Oracle Database patch release to a target Oracle Database patch release, and AutoUpgrade
runs Datapatch as part of the procedure.

Example 3-5 AutoUpgrade Configuration Files for Different Patching Scenarios

In the following configuration file examples, the following Oracle Databases are patched from
Oracle Database 19c patched to Release Update (RU) 11 to 19c RU 13:

3-107



ORACLE

Chapter 3
AutoUpgrade and Oracle Database Configuration Options

* A non-CDB database patched from 19.11.0 to 19.13.0, designated with the prefix
patchl

* An Oracle Database 19c CDB patched from 19.11 to 19.13, designated with the
prefix patch?

* An encrypted PDB patched by unplug-plug, designated with the prefix patch3

A non-CDB, which is patched and converted to a CDB, designated with the prefix
patchi4

A CDB with a PDB that is relocated during the patching operation, designated with
the prefix patch5

e An Oracle Real Application Clusters (Oracle RAC) database, designated with the
prefix patché

e An Oracle RAC database in a distributed cluster configuration, designated with the
prefix patch’

#

# Global log directory for patch logs

#

global.autoupg log dir=/databases/patchlogs

#

# Non-CDB patch to Non-CDB patch, source and target home
#

patchl.sid=dbl9

patchl.source home=/databases/ee/product/1911/dbhome 1
patchl.target home=/databases/ee/product/1913/dbhome 2

#

#

# CDB patch, Source and Target home

#

patch2.sid=cdbl9

patch2.source home=/databases/ee/product/1911/dbhome 1
patch2.target home=/databases/ee/product/1913/dbhome 2

#

# Unplug-Plug with KeyStore

#

global.keystore=/databases/tde

patch3.sid=cdbl9

patch3.source home=/databases/ee/product/1911/dbhome 1
patch3.target home=/databases/ee/product/1913/dbhome 2
patch3.target cdb=cdbl913

patch3.target pdb name=sales

patch3.target pdb copy option=file name convert=('/databases/ee/
oradata/CDB19/sales', '/databases/ee/oradata/CDB1913/sales"')
#

# Non-CDB to CDB, Source and Target home

#

patch4.sid=dbl9

patché.source home=/databases/ee/product/1911/dbhome 1
patché.target home=/databases/ee/product/1913/dbhome 2
patchd.target cdb=cdbl913

patchd.target pdb name=emp

patch4.target pdb copy option=file name convert=('/databases/ee/
oradata/DB19', '/databases/ee/oradata/CDB1913/emp')

3-108



ORACLE

Chapter 3
AutoUpgrade and Oracle Database Configuration Options

#

# Patch relocate DB

#

patch5.sid=cdbl9

patch5.source home=/databases/ee/product/1911/dbhome 1
patch5.target home=/databases/ee/product/1913/dbhome 2
patch5.target cdb=cdbl913

patch5.pdbs=cars

patch5.target pdb copy option.cars=file name convert=('/databases/ee/oradata/
CDB19/cars', '/databases/ee/oradata/CDB1913/cars"')
patch5.source dblink.cars=dbl9 link

#

# Oracle RAC

#

patch6.sid=racl

patch6.source home=/databases/ee/product/1911/dbhome 1
patch6.target home=/databases/ee/product/1913/dbhome 2
#

# Distributed Oracle RAC with proactive fixups

#

patch7.sid=rac2

patch7.source home=/databases/ee/product/1911/dbhome 1
patch7.target home=/databases/ee/product/1913/dbhome 2
patch7.tune setting=distributed upgrade=true

Example 3-6 A Summary Log File for AutoUpgrade Patching

In this patching summary report file, you can see how AutoUpgrade applies patches to the
CDB and PDBs.

Kk hkhkhkhk kA Ak kA A A A A A A A Ak Ak h ko hkhkhkhkhk Ak Ak Ak A A A A A kA Ak khhkhkhkhkhkhkhkhk Ak A A A A A Ak hkhkhkhkhkhkhkhkhkhkhkhkhkkxx %

* Kk

Datapatch Apply Summary Report for CDBSROOT

Return code = 0 SUCCESS

Failure reason = null

Total time = 161.721805095673

Install patches =1

Database Open = SUCCESS

Invocation Log = /databases/cfgtoollogs/sqglpatch/

sqlpatch 17781 2022 05 18 10 57 58/sqglpatch _invocation.log
Bootstrap Required = 1

Bootstrap Status = SUCCESS

Bootstrap Log = /databases/cfgtoollogs/sqglpatch/
sqlpatch 17781 2022 05 18 10 57 58/bootstrapl CDB19X CDBROOT.log

Total patches =1

Patch Key = 33192793-24462514

Mode = apply

Status = SUCCESS

Patch Log File = /databases/cfgtoollogs/sqglpatch/
33192793/24462514/33192793 apply CDB19X CDBROOT 2022Mayl8 10 58 06.log

RU Log File = /databases/cfgtoollogs/sqglpatch/

33192793/24462514/33192793 ru_apply CDB19X CDBROOT 2022Mayl8 10 58 05.log

3-109



ORACLE

Chapter 3
AutoUpgrade and Oracle Database Configuration Options

RU Errors = N/A

Kk hkhkhkhhkhkh Ak Ak Ak khkhkhkhkhkhhhhhh kA A Ak Ak dkhkhkhkhkhkhhhhhhhhhhkhkkxxkkkhkkkhkhkhkhkhkhkhhkrkxx*x

*kkkkkkkk

Datapatch Apply Summary Report for PDBX

Return code 0 SUCCESS

Failure reason null

Total time = 123.969398021698

Install patches 1

Database Open SUCCESS

Invocation Log = /databases/cfgtoollogs/sqlpatch/
sqglpatch 18416 2022 05 18 11 01 40/sglpatch invocation.log

Bootstrap Required = 1

Bootstrap Status = SUCCESS

Bootstrap Log /databases/cfgtoollogs/sqlpatch/
sqlpatch 18416 2022 05 18 11 01 40/bootstrapl CDB19X PDBX.log

Total patches =1

Patch Key = 33192793-24462514

Mode = apply

Status = SUCCESS

Patch Log File = /databases/cfgtoollogs/sqlpatch/
33192793/24462514/33192793 apply CDB19X PDBX 2022Mayl8 11 01 _55.log

RU Log File = /databases/cfgtoollogs/sqlpatch/
33192793/24462514/33192793 ru_apply CDB19X PDBX 2022Mayl8 11 01 55.log

RU Errors = N/A

Kk hkhkhkhhkhkhhkhk kA Ak khkhkhkhkhkhhhhhhh A A Ak kdkhkhkhkhkhkhkhhhhhhhhhkhkkxxkkkkkhkhkhhkhkhkhhhkrkxx*x

*kkkkkkkk

Datapatch Apply Summary Report for PDBSSEED

Return code = (0 SUCCESS

Failure reason = null

Total time = 124.234117984772

Install patches =1

Database Open = SUCCESS

Invocation Log = /databases/cfgtoollogs/sqlpatch/

sglpatch 18406 2022 05 18 11 01 40/sglpatch invocation.log

Bootstrap Required = 1

Bootstrap Status = SUCCESS

Bootstrap Log = /databases/cfgtoollogs/sqglpatch/
sqlpatch 18406 2022 05 18 11 01 _40/bootstrapl CDB19X PDBSEED.log

Total patches =1

Patch Key = 33192793-24462514

Mode = apply

Status = SUCCESS

Patch Log File = /databases/cfgtoollogs/sqlpatch/
33192793/24462514/33192793 apply CDB19X PDBSEED 2022Mayl8 11 01 55.log

RU Log File = /databases/cfgtoollogs/sqlpatch/

33192793/24462514/33192793 ru_apply CDB19X PDBSEED 2022Mayl18 11 01 55.1

og
RU Errors = N/A

3-110



Chapter 3
AutoUpgrade and Oracle Database Configuration Options

AutoUpgrade and Oracle Data Guard

The AutoUpgrade utility that you download from My Oracle Support can simplify the upgrade
process for your primary and secondary databases configured for Oracle Data Guard.

e How AutoUpgrade Performs Oracle Data Guard Upgrades
AutoUpgrade can detect Oracle Data Guard configurations, and defer shipping logs to
standby databases configured for the primary database.

e Steps AutoUpgrade Completes for Oracle Data Guard Upgrades
The steps that AutoUpgrade completes vary, depending on whether standby databases
are managed manually, or through Data Guard Broker.

e Steps After the Primary Database is Upgraded

For Oracle Data Guard upgrades, after you upgrade the primary database you must
complete these procedures.

How AutoUpgrade Performs Oracle Data Guard Upgrades

AutoUpgrade can detect Oracle Data Guard configurations, and defer shipping logs to
standby databases configured for the primary database.

AutoUpgrade automatically detects the presence of an Oracle Data Guard deployment, and
whether that deployment is configured manually, or uses Data Guard Broker to manage and
monitor Oracle Data Guard configurations.

When you set the parameter defer standby log shipping to no (the default) in the
configuration file, AutoUpgrade can defer the log-shipping to configured standby databases,
both when Oracle Data Guard is configured manually, and when Oracle Data Guard is
configured through Data Guard Broker.

Preparation Before AutoUpgrade Upgrades of Databases with Oracle Data Guard

Before you begin the upgrade, to be prepared in case of a failure during the primary database
upgrade, or in case the primary database must be reverted to the source Oracle home,
ensure that your standby databases are protected and recoverable.

Steps AutoUpgrade Completes for Oracle Data Guard Upgrades

The steps that AutoUpgrade completes vary, depending on whether standby databases are
managed manually, or through Data Guard Broker.

For Oracle Data Guard earlier release (source) databases where Oracle Data Guard is
managed manually, or through Data Guard Broker, to manage log-shipping to standby
databases, you can set defer standby log shipping=yes in your AutoUpgrade
configuration file (the default is no). However, the specific actions that AutoUpgrade takes
vary, depending on how you manage standby databases.

ORACLE 3-111



Chapter 3
AutoUpgrade and Oracle Database Configuration Options

< Note:

For standby databases managed either manually or through Data Guard
Broker, after the upgrade completes, you must run ENABLE DATABASE
database-name; on each of the standby archive log destinations after
successful upgrade on the primary database, and perform all steps needed
to have standby databases upgraded through the redo log apply.

Manually Managed Oracle Data Guard Standby Databases

For Oracle Data Guard standby databases supported for direct upgrade, AutoUpgrade
places in DEFER mode all VALID and ENABLED standby archive log destinations before
starting the upgrade process for both manually managed and Data Guard Broker
managed standby databases.

Data Guard Broker-Managed Oracle Data Guard Standby Databases

For Oracle Database releases supported for direct upgrade with Oracle Data Guard
standby databases that are managed using Data Guard Broker, AutoUpgrade
completes the following actions:

e The primary database state is set to TRANSPORT-OFF to all standby databases
configured with Data Guard Broker

e The Data Guard Broker files are copied from the source Oracle home to the target
Oracle home.

¢ Note:

If the Data Guard Broker files are located outside of the Oracle home, then
files are not found and copied.

Steps After the Primary Database is Upgraded

ORACLE

For Oracle Data Guard upgrades, after you upgrade the primary database you must
complete these procedures.

» Ensure that redo transport is enabled on the primary database, so that the
upgrade is applied to the standby databases.

* Check that the archives are applied, and that there is a minimal gap. Oracle
recommends that Apply Lag and Transport Lag is not bigger than 5 minutes.

Example 3-7 Checking Redo Transport Service Status

To check the status of the redo transport services on the primary database, use the
Data Guard broker command-line interface (DGMGRL) LogXptStatus monitorable
property. For example:

DGMGRL> SHOW DATABASE 'salesl' 'LogXptStatus' ;

3-112



Chapter 3
AutoUpgrade and Oracle Database Configuration Options

Example 3-8 Checking Apply Lag and Transport Lag

To check that the archives are applied, and verify that Apply Lag and Transport Lag is not
bigger than 5 minutes, log in to the primary database and submit a SQL query similar to the
following:

[oracle]l$ sglplus / as sysdba
SYS@salesl>

SET LINESIZE 200
COL VALUE FOR A30
SELECT NAME, VALUE, TIME COMPUTED, DATUM TIME FROM VSDATAGUARD STATS WHERE NAME

LIKE '%lag';

The result should be similar to this output:

NAME VALUE TIME COMPUTED DATUM TIME

transport lag +00 00:00:00 timestamp timestamp
apply lag +00 00:01:07 timestamp timestamp

Related Topics

* Scenario 13: Monitoring a Data Guard Configuration

How to Run AutoUpgrade Using the Fast Deploy Option

ORACLE

To minimize downtime, you can upgrade your database by running AutoUpgrade using the
Fast Deploy option.

Starting with AutoUpgrade 21.2, if your applications require minimal downtime, you can now
upgrade with less downtime by using Fast Deploy. With the Fast Deploy option, you can run
the prechecks and prefixups while the database is still online. After the fixups run on the
source database, you can then run AutoUpgrade in Deploy mode, and skip the prechecks
and prefixups stages, so that only the actual upgrade requires downtime.

" Note:

Oracle recommends that you run AutoUpgrade using standard Analyze and Deploy
modes. If you choose to use the Fast Deploy method, then be aware that there is a
small risk that new issues can develop in the time duration after you run
AutoUpgrade in the preupgrade Analyze mode and before you run AutoUpgrade in
Upgrade mode, which can cause a problem. Assess that risk, and take precautions
accordingly.

1. Create your AutoUpgrade configuration file, providing information about your source and
target systems, and your upgrade preferences. In the steps that follow, that file name is
myconfig.cfg

2. Analyze the database using Analyze mode.

- java -jar autoupgrade.jar -config myconfig.cfg -mode analyze

3-113



Chapter 3
AutoUpgrade and Oracle Database Configuration Options
3. Run the preupgrade fixups using Fixups mode.
- java -jar autoupgrade.jar -config myconfig.cfg -mode fixups
4. Upgrade the database using Upgrade mode.

- java -jar autoupgrade.jar -config myconfig.cfg -mode upgrade

As this command runs, the database can experience downtime, because
databases being upgraded are opened in UPGRADE mode in the target Oracle
home.

How to Perform an Unplug-Plug Upgrade of an Encrypted PDB

ORACLE

Learn how you can perform unplug-plug upgrades of encrypted PDBs using the
AutoUpgrade Utility.

Caution:

If you choose to specify the directory for AutoUpgrade to create with
global.keystore, then be aware that it contains a software keystore. It
should be protected using the same security best practices as you use with
the TDE keystore files.

To perform upgrades of encrypted PDBs, AutoUpgrade requires loading the password
for the TDE keystore into its own secure keystore. To load the passwords, you set the
AutoUpgrade global configuration file parameter keystore in your configuration file,
and run AutoUpgrade using the command-line parameter load password. This
parameter must be used in conjunction with the -config parameter. It takes no
arguments. Instead, it starts an interactive prompt with specific commands that enable
you to provide information required for the keystore. AutoUpgrade stores the
passwords you load securely during the upgrade, and uses those passwords when
needed.

" Note:

If the database is using an Oracle Secure External Password Store (SEPS),
and a TDE keystore password is required, then AutoUpgrade uses the
IDENTIFIED BY EXTERNAL STORE clause, so it does not require loading
passwords into the AutoUpgrade password keystore. However, if all
databases are configured with a Secure External Password Store, then you
still need to define global.keystore in your configuration file.

The AutoUpgrade keystore is similar to other keystores that Oracle Database
uses. You have the option to create it as an auto-login keystore. For
example, if the external keystore is ewallet.pl2 AutoUpgrade creates an
auto-login keystore cwallet.sso, which is used to open the ewallet.pl2
keystore.

3-114



ORACLE

Chapter 3
AutoUpgrade and Oracle Database Configuration Options

Before you begin to upgrade the encrypted PDB, the following must be true:

AutoUpgrade must be version 22.2 or later. Oracle strongly recommends that you always
download and run the latest version of AutoUpgrade.

You must use an external TDE keystore

You have to have available to you the external keystore password of the source and
target CDB.

Example 3-9 Upgrading an Encrypted PDB with an Unplug Plug Upgrade Using
AutoUpgrade

In the following example, an Oracle Database 12c Release 2 (12.2) PDB using Transparent
Data Encryption (TDE) is upgraded to Oracle Database 19c, using the AutoUpgrade
load_password command option with the AutoUpgrade configuration file keystore parameter
to provide a secure store for the TDE keys during the upgrade.

1

Ensure that you have the latest version of AutoUpgrade:

$ java -jar autoupgrade.jar -version

If the AutoUpgrade version is an earlier release, then download the most recent version
of AutoUpgrade from My Oracle Support AutoUpgrade Tool (Doc ID 2485457.1)

Create your AutoUpgrade configuration file. In this example, the configuration file
PDB1.cfq is created with the path to the keystore, which is specified in the admin folder
under the Oracle base directory, in the path /u01/app/oracle/admin/autoupgrade/
keystore. The source CDB is cDB1,and the target CDB is CDB2:

global.autoupg log dir=/u0l/app/oracle/cfgtoollogs/autoupgrade
global.keystore=/u0l/app/oracle/admin/autoupgrade/keystore
upgl.log dir=/ull/app/oracle/cfgtoollogs/autoupgrade/DB12
upgl.source home=/u0l/app/oracle/product/12.2.0/dbhome 1
upgl.target home=/u0l/app/oracle/product/19.1.0/dbhome 1
upgl.sid=CDB1

upg.pdbs=PDB1

upgl.target cdb=CDB2

" Note:

If you do not specify a keystore location, and an AutoUpgrade keystore has not
been created previously, then AutoUpgrade creates the AutoUpgrade keystore
for you.

Run AutoUpgrade in Analyze mode:

$ java -jar autoupgrade.jar -config PDBl.cfg -mode analyze

The summary report indicates that TDE keystore passwords are needed before starting
the upgrade (TDE_PASSWORDS REQURED):

[Stage Name] PRECHECKS
[Status] FAILURE

3-115



ORACLE

Chapter 3
AutoUpgrade and Oracle Database Configuration Options

[Start Time] 2022-03-29 07:58:52
[Duration]
[Log Directory] /u0l/app/oracle/cfgtoollogs/autoupgrade/PDB1/
CDB1/100/prechecks
[Detail] /u0l/app/oracle/cfgtoollogs/autoupgrade/PDB1/
CDB1/100/prechecks/cdbl preupgrade.log

Check failed for PDB1, manual intervention needed for the
below checks

[TDE PASSWORDS REQUIRED]

Add the TDE keystore passwords into the AutoUpgrade keystore:

$ Jjava -jar autoupgrade.jar -config PDBl.cfg -load password

The first time you run AutoUpgrade with the -1oad password command option,
you are prompted to create a password for the AutoUpgrade keystore, where TDE
passwords can be stored securely:

Starting AutoUpgrade Password Loader - Type help for available
options

Creating new keystore - Password required

Enter password:

Enter password again:

Keystore was successfully created

If do not use a SEPS keystore, then AutoUpgrade prompts you to add the TDE
keystore passwords for the databases specified with source home in your
configuration file to AutoUpgrade's own keystore, where that database requires a
TDE keystore password. This is what we have specified in the configuration file
example.

In the following example, the source and target TDE keystore passwords are
loaded:

TDE> ADD CDB1
Enter your secret/Password:
Re-enter your secret/Password:

TDE> ADD CDB2

Enter your secret/Password:
Re-enter your secret/Password:

Confirm that the passwords are loaded:

TDE> LIST

e it e ettt o fom e
Frm +

|ORACLE SID |[Action Required |TDE Password | SEPS Status |
Active Wallet Type |

e it e ettt o fom e
Frm +

| CDB1 | | Verified | Inactive

3-116



ORACLE

Chapter 3
AutoUpgrade and Oracle Database Configuration Options

| Auto-login |
| CDB2 | | Verified | Inactive

When the Action Required column is empty, the TDE passwords are available for the
upgrade.

If you use a SEPS keystore on the source CDB or target CDB, then AutoUpgrade
automatically detects the SEPS keystore as the source for the TDE password.
AutoUpgrade uses the IDENTIFIED BY EXTERNAL STORE clause, and does not need to
load the TDE keystore passwords to the AutoUpgrade keystore. Again, the TDE LIST
command should show an empty Action Required column:

TDE> LIST

Fomm - e et e T B et
Fomm - Fom +

|ORACLE SID |Action Required | TDE Password | SEPS
Status |[Active Wallet Type |

Fomm - Fom o
Fomm - Fom +

| CDB1 | |INo password loaded
Verified | Any

| CDB2 | |INo password loaded
Verified | Any

Fomm - Fom o
Fomm - Fom +

Both options can be used in the same configuration file. For example, if you do not use a
SEPS keystore for the source non-CDB database, but you do use a SEPS keystore for
the target CDB, then you only need to load a password for the source non-CDB.

Save the TDE passwords into the AutoUpgrade keystore. (Optional): In this example, we
will convert the keystore to an auto-login keystore:

TDE> save
Convert the keystore to auto-login [YES|NO] ? YES
TDE> exit

Analyze the PDB again:

$ java -jar autoupgrade.jar -config PDBl.cfg -mode analyze

Review the report and confirm all issues are resolved.

Start the upgrade and conversion:

$ java -jar autoupgrade.jar -config PDBl.cfg -mode deploy

AutoUpgrade proceeds to upgrade pPDB1 on the target Oracle Database, using the TDE

passwords as needed to complete the upgrade. Because in this example we have
configured AutoUpgrade to create an AutoUpgrade auto-login keystore, and access the

3-117



Chapter 3
AutoUpgrade and Oracle Database Configuration Options

TDE passwords using its own secure keystore, you are not prompted to provide
TDE passwords during the upgrade.

Related Topics

* Managing the Secure External Password Store for Password Credentials
» Upgrading an Encrypted PDB

» AutoUpgrade Tool (Doc ID 2485457.1)

How to Perform a Non-CDB to PDB Conversion of an Encrypted PDB

ORACLE

With AutoUpgrade 22.1 and later updates, AutoUpgrade simplifies the upgrade and
conversion of Oracle Databases that use Transparent Data Encryption (TDE).

To protect sensitive information during upgrades while simplifying the upgrade
process, you can use the AutoUpgrade global configuration file parameter keystore,
and the AutoUpgrade command-line parameter load password to load TDE
passwords securely into the AutoUpgrade keystore, and use those passwords when
needed.

Before you can use the AutoUpgrade keystore, you specify the location of the external
password store in your AutoUpgrade configuration file using global.keystore.

" Note:

If you specify the AutoUpgrade keystore path, then that path should be
different from any other file path you specify in AutoUpgrade, so that the
keystore is not in any log file location. If the AutoUpgrade keystore path
directory does not exist, then AutoUpgrade automatically creates it..

If the database is using an Oracle Secure External Password Store (SEPS),
and a TDE keystore password is required, then AutoUpgrade uses the
IDENTIFIED BY EXTERNAL STORE clause, so it does not require loading
passwords into the AutoUpgrade password keystore. However, if all
databases are configured with a Secure External Password Store, you still
need to define global.keystore in your configuration file.

Example 3-10 Upgrading a Database Using TDE and Converting from Non-CDB
to PDB

In the following example, an Oracle Database 12c¢ Release 2 (12.2) non-CDB
database using Transparent Data Encryption (TDE) is upgraded to Oracle Database
19c and converted to a PDB, using the AutoUpgrade load password command option
with the AutoUpgrade configuration file keystore parameter to provide a secure store
for the TDE keys during PDB conversion and upgrade.

1. Ensure that you have the latest version of AutoUpgrade:

$ java -jar autoupgrade.jar -version

If the AutoUpgrade version is an earlier release, then download the most recent
version of AutoUpgrade from My Oracle Support AutoUpgrade Tool (Doc ID
2485457.1)

3-118


https://dohdatabase.com/2022/03/31/upgrading-an-encrypted-pdb/
https://support.oracle.com/rs?type=doc&id=2485457.1

ORACLE

Chapter 3
AutoUpgrade and Oracle Database Configuration Options

Create your AutoUpgrade configuration file. In this example, the path to the keystore is
specified in the admin folder under the Oracle base directory, in the path /u01/app/
oracle/admin/autoupgrade/keystore:

global.autoupg log dir=/ul0l/app/oracle/cfgtoollogs/autoupgrade
global.keystore=/ull/app/oracle/admin/autoupgrade/keystore
upgl.log dir=/ull/app/oracle/cfgtoollogs/autoupgrade/DB12
upgl.source home=/ull/app/oracle/product/12.2.0

upgl.target home=/ull/app/oracle/product/19.1.0

upgl.sid=DB12

upgl.target cdb=CDB2

Run AutoUpgrade in Analyze mode:

$ java -jar autoupgrade.jar -config DB12.cfg -mode analyze

The summary report indicates that no additional preupgrade tasks need to be completed
before starting the upgrade:

[Stage Name] PRECHECKS

[Status] SUCCESS

[Start Time] 2022-03-30 10:28:38
[Duration]

[

Log Directory] /u0l/app/oracle/cfgtoollogs/autoupgrade/DB12/DB12/100/
prechecks
[Detail] /u0l/app/oracle/cfgtoollogs/autoupgrade/DB12/DB12/100/
prechecks/dbl2 preupgrade.log
Check passed and no manual intervention needed

If the TDE_PASSWORDS_REQUIRED check fails, then load the TDE password:

$ java -jar autoupgrade.jar -config DB12.cfg -load password

The first time you run AutoUpgrade with the -1oad password command option, if
AutoUpgrade requires a TDE password to perform the upgrade, then you are prompted
to create a password for the AutoUpgrade keystore, where the TDE password can be
stored securely:

Starting AutoUpgrade Password Loader - Type help for available options
Creating new keystore - Password required

Enter password:

Enter password again:

Keystore was successfully created

If do not use a SEPS keystore, then AutoUpgrade prompts you to add the TDE keystore
passwords for the databases specified with source home in your configuration file to
AutoUpgrade's own keystore, where that database requires a TDE keystore password.
This is what we have specified in the configuration file example.

3-119



ORACLE

Chapter 3
AutoUpgrade and Oracle Database Configuration Options

In the following example, the source and target TDE keystore passwords are
loaded:

TDE> ADD DB12
Enter your secret/Password:
Re-enter your secret/Password:

TDE> ADD CDB2
Enter your secret/Password:
Re-enter your secret/Password:

To check the TDE configuration, you can run AutoUpgrade again using the -
load_password command parameter. This time, because the password is already
loaded, the TDE console prompt appears. Run the TDE console 1ist command to
check the TDE configuration:

$ java -jar autoupgrade.jar -config DB12.cfg -load password

TDE> list

|[ORACLE SID|Action Required| TDE Password  |SEPS Status|Active
Wallet Typel

Fom - Fom Fom Fom -
Fom e +

| CDB2 | |[No password loaded]|

Verified| Any |

| DB12 | |[No password loaded]| Unknown |
Auto-login]

Fom - Fom Fom Fom -
Fom e +

In the table output for the list command, the Action Required column is empty.
This result verifies that you have provided the TDE keystore password. In the SEPS
Status column, AutoUpgrade reports that it checked the password storage access
on the target Oracle Database, CDB2, and confirms that the password works.
Because the TDE console functionality to check the password was a feature
added in Oracle Database 19c, AutoUpgrade is unable to confirm the password
check for TDE on Oracle Database 12c Release 2 (12.2), so the result Unknown is
expected.

If you use a SEPS keystore on the source CDB or target CDB, then AutoUpgrade
automatically detects the SEPS keystore as the source for the TDE password.
AutoUpgrade uses the IDENTIFIED BY EXTERNAL STORE clause, and does not
need to load the TDE keystore passwords to the AutoUpgrade keystore. Again,
the TDE LIST command should show an empty Action Required column.

Both options can be used in the same configuration file. For example, if you do not
use a SEPS keystore for the source non-CDB database, but you do use a SEPS
keystore for the target CDB, then you only need to load a password for the source
non-CDB.

3-120



Chapter 3
AutoUpgrade Configuration File Examples

Start the upgrade and conversion:
$ java -jar autoupgrade.jar -config DB12.cfg -mode deploy

AutoUpgrade proceeds to upgrade and convert the source non-CDB Oracle Database to
a PDB on the target Oracle Database, using the TDE passwords as needed to complete
the upgrade.

Caution:

As with any other Oracle Database keystore, protect the AutoUpgrade keystore
files:

*  Apply restrictive file system permissions
e Audit access

e Back up the keystore

Related Topics

Managing the Secure External Password Store for Password Credentials
AutoUpgrade and Secure External Password Store Enables Complete Automation
AutoUpgrade Tool (Doc ID 2485457.1)

AutoUpgrade Configuration File Examples

Use these examples to understand how you can modify your own AutoUpgrade configuration
files to perform a variety of configuration actions during the upgrade.

ORACLE

Create Configuration File for AutoUpgrade
To use AutoUpgrade to complete the upgrade, you first create a configuration file with
AutoUpgrade from the new release Oracle home.

Updating the TDE Wallet Store Location During Upgrade Using AutoUpgrade
See how you can use AutoUpgrade configuration file parameters to update your
Transparent Data Encryption (TDE) wallet store during upgrade.

AutoUpgrade Configuration File with Two Database Entries
See how you can specify upgrade options for multiple databases in a configuration file.

Standardizing Upgrades With AutoUpgrade Configuration File Entries
See how to enforce standardization of your database configurations during upgrades
using AutoUpgrade.

AutoUpgrade Configuration File for Incremental Upgrade of a Set of PDBs
See how you can selectively upgrade a subset of PDBs using AutoUpgrade, without
affecting the other PDBs on the source CDB.

AutoUpgrade Configuration File For Upgrading PDBs Already in the Target CDB
See how you can specify an upgrade of earlier release PDBs that are on a later release
CDB.

How to Run AutoUpgrade in a Script or Batch job
Learn how to run AutoUpgrade in your own scripts in noninteractive mode by calling
AutoUpgrade using the noconsole parameter.

3-121


https://dohdatabase.com/2022/04/04/autoupgrade-and-secure-external-password-store-enables-complete-automation/
https://support.oracle.com/rs?type=doc&id=2485457.1

Chapter 3
AutoUpgrade Configuration File Examples

* Unplug-Plug Relocate Upgrades With AutoUpgrade
See how you can use the Unplug-Plug Relocate feature (also known as Hot-
Cloning upgrade) to create PDBs that can be refreshed for a given period before
upgrading them.

* Ignore Fixups and Checks Using the AutoUpgrade Configuration File
To skip an entire check and fixup step for a database, you can direct AutoUpgrade
to read the fixup runfix flag from the fixups checklist file, and set the flag for that
fixup from YES to SKIP.

*  Run Custom Scripts Using AutoUpgrade
Learn how to use AutoUpgrade to run your own scripts as part of the deploy
process.

Create Configuration File for AutoUpgrade

To use AutoUpgrade to complete the upgrade, you first create a configuration file with
AutoUpgrade from the new release Oracle home.

In the following example, the AutoUpgrade utility is run using the parameter

sample config file. This parameter generates a configuration file in the home of the
user running AutoUpgrade that you can edit to provide environment paths and settings
and upgrade preferences for the upgrade. To generate the configuration file (config),
you run AutoUpgrade from the new release Oracle Database home using the

sample config file parameter, and specify an output file name.

" Note:

AutoUpgrade is regularly updated. For additional examples, and for
information about the most recent AutoUpgrade releases, including new
command-line parameters and options, and new or enhanced configuration
file parameters, refer to the Oracle Database Upgrade Guide for the release
to which you want to upgrade. Also refer to the My Oracle Support note
"AutoUpgrade Tool (Doc ID 2485457.1)," which will contain information about
the most recent AutoUpgrade updates.

In this example, user oracle navigates to the location of an earlier release Oracle
home, which in this example is Oracle Database 19c:

cd /u0l/app/oracle/product/19.0.0/

Next, the Oracle user starts AutoUpgrade from the Oracle Database 23c Oracle home,
and creates a configuration file in its user home directory, /home/oracle:

java -jar /u0l/app/oracle/product/23/rdbms/admin/autoupgrade.jar -
create sample file config
Created sample configuration file /home/oracle/sample config.cfg

ORACLE 3-122



Chapter 3
AutoUpgrade Configuration File Examples

After you create the configuration file, open it up in your preferred text editor, and modify
parameter settings as needed for your environment.

cd /
vi sample config.cfg

Related Topics
e Oracle Database Documentation
e AutoUpgrade Tool (Doc ID 2485457.1)

Updating the TDE Wallet Store Location During Upgrade Using
AutoUpgrade

ORACLE

See how you can use AutoUpgrade configuration file parameters to update your Transparent
Data Encryption (TDE) wallet store during upgrade.

In previous releases, if you used Oracle Wallet with TDE, then you specified the location of
the existing keystore directory location by using the deprecated sglnet.ora parameter
SQLNET.ENCRYPTION WALLET LOCATION. In Oracle Database 19c and later releases, you
should specify the keystore location by using the WALLET ROOT System parameter in the
database initialization parameter file (PFILE). What you need to do depends on how your
source Oracle Database release is configured:

» If your source Oracle Database release has WALLET ROOT set already, then the parameter
files that AutoUpgrade generates automatically pick up the WALLET ROOT system
parameter from the source database during the upgrade, and use that parameter in
target database parameter files.

» If your source Oracle Database release does not have the initialization parameter
WALLET ROOT set, then you can use AutoUpgrade to complete that task during the
upgrade.

1. Create a text file on your operating system with the WALLET ROOT initialization parameter
value for the directory that you want to use, and that provides the configuration option
you want for the TDE_CONFIGURATION dynamic initialization parameter to create the type of
keystores that you require. For example, if you configure TDE CONFIGURATION to use FILE
for Transparent Data Encryption software keystores, then Oracle Database creates the
software keystore in WALLET ROOT/tde (lower case).

2. In the AutoUpgrade configuration file, use the AutoUpgrade configuration file parameters
add during upgrade pfile and add after upgrade pfile to refer to that file on the
operating system to set WALLET ROOT and TDE_CONFIGURATION during the upgrade.

For example, if you want WALLET ROOT to use the path /u01/app/oracle/admin/hr/wallet,
and Transparent Data Encryption to store software keystores in the location WALLET ROOT/
tde, then you can create a text file called tde-upgrade, which contains the following lines:

WALLET ROOT=/ull/app/oracle/admin/hr/wallet
tdeiconfiguration="KEYSTOREicONFIGURATION=FILE"

You can then specify for AutoUpgrade to set these parameters in the AutoUpgrade
configuration file. For example, to set the Transparent Data Encryption keystore during and

3-123


https://docs.oracle.com/en/database/oracle/oracle-database/index.html
https://support.oracle.com/rs?type=doc&id=2485457.1

Chapter 3
AutoUpgrade Configuration File Examples

after the upgrade, as part of the AutoUpgrade operation, add the following line to your
local configuration file to call that text file:

#

# Example local pfile configuration entries

upgl.add after upgrade pfile=/usr/home/oracle/tde-upgrade
upgl.add during upgrade pfile=/usr/home/oracle/tde-upgrade

Related Topics

» How Configuring Transparent Data Encryption Works

AutoUpgrade Configuration File with Two Database Entries

See how you can specify upgrade options for multiple databases in a configuration file.

This example is of an AutoUpgrade configuration file that specifies the upgrade of two
databases. The configuration file specifies that AutoUpgrade performs the following
actions:

Database 1

* Anin-place database upgrade of the Oracle Database 12c¢ Release 2 (12.2) CDB,
where the source and target Oracle homes use the same Oracle Base directory
(the database home directory for Oracle Database installation owner oracle
(/u01/app/oracle/) on the same server hardware, with the same system identifier
(sid=HR1).

e During the upgrade, all the PDBs of the CDB are upgraded (pdbs=*)
* The upgrade starts immediately (start time=now)

* The database upgrade logs will be sent to the path /database/logs/hr
(log_dir=/database/logs/hr)

* The Time Zone upgrade will run on all the containers (timezone upg=yes)

Database 2

e Anin-place database upgrade of the Oracle Database 18c CDB, where the source
and target Oracle homes use the same Oracle Base directory (the database home
directory for Oracle Database installation owner oracle (/u0l/app/oracle/) on
the same server hardware, with the same system identifier (sid=SALES1).

* The upgrade starts immediately (start time=now)

e The database upgrade logs will be sent to the path /database/logs/sales
(log_dir=/database/logs/sales).

* The Time Zone upgrade will not run on any containers (timezone upg=no).

For both databases:

*  The parameter upgrade node specifies the actual system host name (nodename-1),
and not to an alias assigned to the host name. (You can also use the keyword
localhost to refer to the current system.)

ORACLE 3-124



Chapter 3
AutoUpgrade Configuration File Examples

* The global AutoUpgrade log files (also known as job manager logs) are placed under the
path /database/jobmgr (autoupg log dir=/database/jobmgr).

#

# Global logging directory pertains to all jobs
#

global.autoupg log dir=/database/jobmgr

#

# Database 1

#

upgl.source home=/ull/app/oracle/product/12.2.0.2/dbhome 1
upgl.target home=/ull/app/oracle/product/19.0.0/dbhome 1
upgl.sid=HR1

upgl.start time=now

upgl.pdbs=*

upgl.log dir=/database/logs/hr

upgl.upgrade node=nodenamel

upgl.run utlrp=yes

upgl.timezone upg=yes

upgl.target version=21

#

# Database 2

#

upg2.source home=/ull/app/oracle/product/18.0.0/dbhome 1
upg2.target home=/ull/app/oracle/product/19.0.0/dbhome 1
upg2.sid=SALES1

upg2.start time=now

upg2.log dir=/database/logs/sales

upg2.upgrade node=nodenamel

upg2.timezone upg=no

upg2.target version=21

On the Oracle Database Upgrades and Migration YouTube Channel, you can see a similar
upgrade scenario, Oracle Database AutoUpgrade 19c - Upgrading 2 databases in parallel
(11:57), demonstrated by Mike Dietrich.

Related Topics
* Oracle Database AutoUpgrade 19c - Upgrading 2 databases in parallel

Standardizing Upgrades With AutoUpgrade Configuration File Entries

ORACLE

See how to enforce standardization of your database configurations during upgrades using
AutoUpgrade.

In the following configuration file, you can see how you can use AutoUpgrade configuration
file entries to standardize their database configurations. The global PFILE entries are applied
to all databases within the configuration file. The local PFILE entries are applied only to a

3-125


https://www.youtube.com/watch?v=kr3aZrqA9Go

ORACLE

Chapter 3
AutoUpgrade Configuration File Examples

specific database in the configuration file. The syntax for these PFILE values follow the
same Oracle rules for PFILE configurations.

# Example global pfile configuration entries

#

global.del during upgrade pfile=/database/pfiles/
global during delinit.ora

global.add during upgrade pfile=/database/pfiles/
global during addinit.ora

global.del after upgrade pfile=/database/pfiles/
global after delinit.ora

global.add after upgrade pfile=/database/pfiles/
global after addinit.ora

#

# Example local pfile configuration entries

#

upgl.del during upgrade pfile=/database/pfiles/hr during delinit.ora
upgl.add during upgrade pfile=/database/pfiles/hr during addinit.ora
upgl.del after upgrade pfile=/database/pfiles/hr after delinit.ora
upgl.add after upgrade pfile=/database/pfiles/hr after addinit.ora

During the AutoUpgrade process, the files during upgrade pfile dbname.ora and
after upgrade pfile dbname.ora are both created. These files are used to start the
database during the upgrade, and after the upgrade. If you want to change a system
parameter during the upgrade, or after the upgrade, then you can modify both files.

The global PFILE entries are applied first, and then the local PFILE entries designated
by the job prefix upgl are applied. Within those two configuration files, entries in the
parameter del upgrade pfile are applied first, followed by entries in the parameter
add upgrade pfile. The parameters in these PFILE configuration entries are applied
directly either to the PFILE during upgrade pfile dbname.ora oOr to the PFILE
after upgrade pfile dbname.ora, depending on which PFILE is targeted.

Actions:

* del during upgrade pfile Removes entries from
during upgrade pfile dbname.ora

* add during upgrade pfile Add entries to during upgrade pfile dbname.ora.

* del after upgrade pfile Removes entries from
after upgrade pfile dbname.ora

* add after upgrade pfile Add entriesto after upgrade pfile dbname.ora.

The files referenced by the parameters del during upgrade pfile and

del after upgrade pfile have a single database parameter listed on each line. You
cannot add any prefix to the parameter, because the entire line is part of the parameter
name. Consider the following example:

#

# global.del during upgrade pfile
#

3-126



Chapter 3
AutoUpgrade Configuration File Examples

processes
*.open_cursors

The result of this configuration setting is to remove from the pFILE for each database listed in
the configuration file all references to the processes parameter, but not references to the
open_cursors parameter: Only instances of open cursors that have a prefix are removed.
However, the parameters removed from the PFILE includes all parameters that are prefixed.
For example, *.processes and instance name.processes are both removed with this syntax.

The files referenced by the parameters add during upgrade pfile and

add_after upgrade pfile have a single parameter listed on each line with the format
parameter=value. If you delete the entry from the PFILE, then the value field can be left
empty. If the parameter is prefixed with *. or instancename., then those references are not
added to the modified PFILE. To update the value of an existing parameter, you must first
delete it. You can then add the parameter with the desired value. Consider the following
example:

#

# global.add during upgrade pfile
#

processes=400

*.open_cursors=250

This global configuration file entry results in adding the following entries to the PFILE for each
database that is listed in the configuration file:

processes=400
open_cursors=250

The parameter after upgrade pfile dbname is used to create the database SPFILE during
the postupgrade process.

AutoUpgrade Configuration File for Incremental Upgrade of a Set of PDBs

ORACLE

See how you can selectively upgrade a subset of PDBs using AutoUpgrade, without affecting
the other PDBs on the source CDB.

In this scenario, you upgrade two specific PDBs, without upgrading the other PDBs in the
source CDB, To perform the incremental upgrade, you direct AutoUpgrade in the
configuration file to unplug the PDBs you specify from an earlier release CDB, plug them into
a target release CDB, and then upgrade the earlier release PDBs on the target CDB. This
selection of PDBs to unplug, plug in, and upgrade, enables you to perform an incremental
upgrade of PDBs on the earlier release CDB to reduce downtime.

The following configuration file identifies the CDB cDB122 as the source CDB. The source
CDB has 10 PDBs, pDB1 through PDB10, but only PDB1 and PDB2 are upgraded. During the
upgrade, the PDB named PDB2 has its name changed to DEPSALES, and the database file
names for PDB2 are changed to DEPSALES:

global.autoupg log dir=/home/oracle/autoupg
upgl.sid=CDB122

upgl.source home=/ul3/app/oracle/product/12.2.0/dbhome 1
upgl.target home=/ull/app/oracle/product/19.0.0/dbhome 1

3-127



Chapter 3
AutoUpgrade Configuration File Examples

upgl.target cdb=CDB19C

upgl.pdbs=PDB2, PDB1

upgl.target pdb name.PDB2=DEPSALES
upgl.target pdb name.PDBI1=EMPLOYEES

upgl.target pdb copy option.PDB2=file name convert=('PDB2', 'DEPSALES')

This configuration file directs AutoUpgrade to do the following:

e Select PDBs from the source Oracle Database CDB122 in the home /u03/app/
oracle/product/12.2.0/dbhome 1

» Upgrade PDBs PDB2 and PDB1 to the target Oracle Database 19c Oracle
home /u01/app/oracle/product/19.0.0/dbhome 1

* Change the name of PDB2 to DEPSALES, and copy the PDB2 files using the new
filename DEPSALES.

* Change the name of PDB1 t0 EMPLOYEES.

AutoUpgrade Configuration File For Upgrading PDBs Already in the

Target CDB

ORACLE

See how you can specify an upgrade of earlier release PDBs that are on a later
release CDB.

In this scenario, you upgrade specific PDBs that were excluded in a previous upgrade
of the CDB and PDBs, or PDBs that were added to the CDB through manual Non-CDB
to PDB or Unplug-Plug operations. The PDBs are in an earlier release version.

The configuration file has a Database 1 section that identifies the CDB database as
CDB19%, which is the CDB that has the existing PDBs PDB1 and PDB2. In this scenario
CDB19X has 10 PDBs, PDBL1 through PDB10, but PDB1 and PDB2 were excluded
from an earlier upgrade procedure. CDB19X and PDBs 3 through 10 are all upgraded
to the later release, but PDB1 and PDB2 remain on an earlier release. We will now run
AutoUpgrade to upgrade the remaining two PDBs on the earlier release, specifying
that the target upgrade PDBs PDB1 and PDB2 are on CDB19X (upgl.sid=CDB19x), and
the upgrade should start immediately with upg.start time=now.

# Note:

Before you begin, the PDBs PDB1 and PDB2 must already be in Upgrade
mode.

Update the configuration file (config.cfq):

#

# Global logging directory pertains to all jobs
#

global.autoupg log dir=/home/oracle/autoupg

#

# Database 1

#

upgl.sid=CDB19X

3-128



Chapter 3
AutoUpgrade Configuration File Examples

upgl.start time=now
upgl.target home=/ull/app/oracle/product/19.0.0/dbhome 1
upgl.pdbs= PDB1, PDB2

Start the upgrade with AutoUpgrade:

java -jar autoupgrade.jar -config config.cfg -mode upgrade

How to Run AutoUpgrade in a Script or Batch job

Learn how to run AutoUpgrade in your own scripts in noninteractive mode by calling
AutoUpgrade using the noconsole parameter.

By default, AutoUpgrade runs in console mode, which enables you to run commands to
monitor specific aspects of your AutoUpgrade jobs while they are running on your systems.

" Note:

You can run only one AutoUpgrade instance at a time that is associated with a
given configuration file.

Example 3-11

In this example, AutoUpgrade is run in Deploy mode, using the settings specified in the
configuration file autoupgrade.cfg, and turning off console using the noconsole parameter.

java -jar autoupgrade.jar -config autoupgrade.cfg -mode deploy -noconsole

Using the noconsole mode turns off requirements for user input, so you can enter this
command in a script to run the upgrades you specify in the configuration file.

Unplug-Plug Relocate Upgrades With AutoUpgrade

ORACLE

See how you can use the Unplug-Plug Relocate feature (also known as Hot-Cloning
upgrade) to create PDBs that can be refreshed for a given period before upgrading them.

You can use the Unplug-Plug relocate upgrade as a method to create clones from other
PDBs, or from non-CDB databases. If the source database is a non-CDB, then AutoUpgrade
upgrades and converts the non-CDB as part of the upgrade process. This feature is
compatible with Oracle Database 12c release 1 (12.1.0.2) and later releases as the source
release. Starting with AutoUgrade version 22.5, AutoUpgrade supports unplug-relocate
operations using a source of at least Oracle Database 12c Release 1 (12.1.0.2). When a
12.1.0.2 source is used, the deploy operation requires the source to be in read only mode,
and the target CDB to not be in local undo mode. The CLONE ONLY option is also required
when specifying the source dblink parameter.Oracle Database Release 11g (11.2) is not
compatible as a source version for the AutoUpgrade Hot-Cloning feature.

To use the Unplug-Plug relocate upgrade method, the following configuration must be
complete:

3-129



ORACLE

Chapter 3
AutoUpgrade Configuration File Examples

On the database that you plan to clone, a user must exist that is granted the
CREATE SESSION,CREATE PLUGGABLE DATABASE, SELECT CATALOG ROLE, and GRANT
READ ON sys.enc$ privileges

On the CDB where you plan to relocate the PDB, you must create a database link
(edblink) on the CDB that points to the database that you plan to clone.

The target CDB must have configured all of the components that the source
database has configured, or the upgrade process will fail.

Make a note of the database link, because you need it to fill out the AutoUpgrade
configuration file.

In the following example, we will go through each step in the process, for both a non-
CDB and a PDB. The scenario below is composed of two hosts:

1

db-nodel: The source database host location, where step 1 is run.

db-node2: The target database host location, where step 2 is run.

# Note:

This example uses two separate hosts, but this procedure can also be run on
a single host.

Grant a user on the database that you want to clone the CREATE SESSION, CREATE
PLUGGABLE DATABASE, and SELECT CATALOG ROLE privileges. Also, on SYS, give
the user GRANT READ ON sys.enc$. In this example, the user clone is created with
these privileges,

¢ Non-CDB:

alter system set local listener='(ADDRESS=(PROTOCOL=TCP) (HOST=db-
nodel) (PORT=1521))"';

ALTER SYSTEM REGISTER;

CREATE USER clone IDENTIFIED BY some-password;

GRANT CREATE SESSION, CREATE PLUGGABLE DATABASE,

SELECT CATALOG ROLE TO clone;

GRANT READ ON sys.enc$ TO user;

- PDB:

alter system set local listener='(ADDRESS=(PROTOCOL=TCP) (HOST=db-
nodel) (PORT=1521))"';

ALTER SYSTEM REGISTER;

CREATE USER c##clone IDENTIFIED BY some-password CONTAINER=ALL;
GRANT CREATE SESSION, CREATE PLUGGABLE DATABASE,

SELECT CATALOG ROLE TO c##clone CONTAINER=ALL;

GRANT READ ON sys.enc$ TO c##clone CONTAINER=ALL;

On a PDB, you can also limit the scope of creating the user to a single PDB on
the CDB by specifying a particular PDB name. For example:

CREATE USER c##clone IDENTIFIED BY some-password CONTAINER=PDBX;

3-130



ORACLE

Chapter 3
AutoUpgrade Configuration File Examples

Configure the CDB to which you want to clone the PDB by creating a database link
pointing to the source database on the source system that you plan to clone.

In the following example, the database link points to the source database db18x:

« Non-CDB

In the following example, the database link points to the source database db18x:

CREATE DATABASE LINK dbl8x link
CONNECT TO clone IDENTIFIED BY some-password
USING' (DESCRIPTION =(ADDRESS = (PROTOCOL = TCP) (HOST = db-nodel) (PORT

1521)) (CONNECT DATA = (SERVICE NAME = dbl8x)))';

- PDB

In the following example, the database link points to the source PDB pdbx on the
CDB cdb18x:

CREATE DATABASE LINK pdeCdbl8X_link

CONNECT TO c##clone IDENTIFIED BY some-password

USING' (DESCRIPTION =(ADDRESS = (PROTOCOL = TCP) (HOST = db-nodel)
(PORT =

1521))(CONNECT_DATA = (SERVICE NAME = pdbx)))"';

Update the AutoUpgrade configuration file with the information needed to identify the
databases that you want to clone.

Each database that you plan to clone must have the AutoUpgrade local parameter
target pdb copy option setto convert file names.

# Note:

On the target CDB, if you have the parameters DB_CREATE FILE DEST Or

PDB FILE NAME CONVERT set, and you want these parameters on the target CDB
to take effect, then set the value of

prefix.target pdb copy option=file name convert=NONE. However, you
must have a file name and path specified either in the configuration file, or on
the target CDB, or the upgrade will fail.

By using the prefix for local parameters for each database, you can combine non-CDB
and PDB upgrades in the same configuration file to relocate both non-CDBs and PDBs to
the same target CDB. The following is an example of the relevant portion of the
configuration file where both the non-CDB database db18x is configured for upgrade, and
the PDB pdbx is configured for upgrade. In this case, file names for db18x are set to
change the prepended name from DB18x to db18x, and the file names for the :

upgl.sid=dbl8x

upgl.source home=/source/18x
upgl.target home=/target/19x
upgl.target cdb=cdbl9x
upg2.sid=cdbl8x
upg?2 . pdbs=pdbx

3-131



ORACLE

Chapter 3
AutoUpgrade Configuration File Examples

upg?2.target cdb=cdblox
upg2.source home=/source/18x
upg2.target home=/target/19x

Each database has a target pdb copy option set. For example, here the non-
CDB filenames are converted from the prepended string DB18X to db18x:

upgl.target pdb copy option.dbl8x=file name convert=('DB18X',
'db18x")

Each database must have the local parameter source dblink set to the database
link that you created on the target CDB:

upgl.source dblink.dbl8x=dbl8x link

To improve consistency, you can also use the local parameter start time in
combination with source dblink with the optional refresh rate (in seconds) to set
a refresh rate for the data, and schedule the job start time. The following
parameters combined start AutoUpgrade, but sets a delay for the deployment of
the upgrade of one hour and 40 minutes from the time that AutoUpgrade was
started, and sets a refresh rate from the source database files to the target
database files every 20 seconds:

upgl.source dblink.dbl8x=dbl8x link 20
upgl.start time=+1h40m

If you do not set a refresh rate for source dblink, then the database files of the
cloned database are cloned only once, without a refresh. If start time is not set
(so there is no delay in the processing of the upgrade), then the source dblink
refresh rate value is ignored.

4. Start the Unplug-Plug relocate deployment, specifying the configuration file you
created for this task:

java -jar autoupgrade.jar -config config.cfg -mode deploy

Example 3-12 Configuration File for Unplug-Plug Relocate of Non-CDB and
PDB with No Refresh Rate for Data Files

global.autoupg log dir=/home/oracle/xupg

tdatabasel

upgl.sid=cdbl8x

upgl.target cdb=cdblox

upgl.source home=/databases/ee/product/18x/dbhome 1
upgl.target home=/databases/ee/product/19x/dbhome 1
upgl.pdbs=pdbx

upgl.target pdb name.pdbx=pdbxr

upgl.target pdb copy option.pdbx=file name convert=('pdbx', 'pdbxr')
upgl.source dblink.pdbx=pdbxcdbl8x link

#tdatabase?2

upg2.sid=dbl8x

upg?2.target cdb=cdblox

3-132



Chapter 3
AutoUpgrade Configuration File Examples

upg2.source home=/databases/ee/product/18x/dbhome 1

upg2.target home=/databases/ee/product/19x/dbhome 1

upg2.target pdb copy option.dbl8x=file name convert=('DB18X', 'dbl8x'")
upg2.source dblink.dbl8x=dbl8x link

upg?2.target pdb name.dbl8x=dbl8x

Example 3-13 Configuration File for Unplug-Plug Relocate of Non-CDB and PDB with
Deployment Delay and Refresh Rate for Data Files

global.autoupg log dir=/home/oracle/xupg

#databasel

upgl.sid=cdbl8x

upgl.target cdb=cdbl9x

upgl.source home=/databases/ee/product/18x/dbhome 1

upgl.target home=/databases/ee/product/19x/dbhome 1

upgl.pdbs=pdbx

upgl.target pdb name.pdbx=pdbxr

upgl.target pdb copy option.pdbx=file name convert=('pdbx', 'pdbxr')
upgl.source dblink.pdbx=pdbxcdbl8x link 600

upgl.start time=+3h

#database?

upg?.sid=dbl8x

upg2.target cdb=cdbl9x

upg2.source home=/databases/ee/product/18x/dbhome 1

upg2.target home=/databases/ee/product/19x/dbhome 1

upg2.target pdb copy option.dbl8x=file name convert=('DB18X', 'dbl8x'")
upg2.source _dblink.dbl8x=dbl8x link 900
upg2.target pdb name.dbl8x=dbl8x

upg2.start time=+3h30m

Example 3-14 Simple Configuration File for Unplug-Plug Relocate of a PDB

global.autoupg log dir=/home/oracle/xupg #databasel

upgl.sid=cdbl8x

upgl.target cdb=cdbl9x

upgl.source home=/databases/ee/product/18x/dbhome 1

upgl.target home=/databases/ee/product/19x/dbhome 1

upgl.pdbs=pdbx

upgl.target pdb copy option.pdbx=file name convert=('pdbx', 'pdbxr')
upgl.source dblink.pdbx=pdbxcdbl8x link

For more examples of unplug-plug upgrades, see Mike Dietrich's blog, "Upgrade Your
Database Now!" and Daniel Overby Hansen's blog, "Databases are Fun". New use case
examples are regularly presented on these sites. Two examples are appended below.

Related Topics
e Unplug/Plug Upgrade with AutoUpgrade
* Upgrading an Encrypted PDB

ORACLE 3-133


https://mikedietrichde.com/2021/06/07/unplug-plug-upgrade-with-autoupgrade/
https://dohdatabase.com/2022/03/31/upgrading-an-encrypted-pdb/

Chapter 3
AutoUpgrade Configuration File Examples

Ignore Fixups and Checks Using the AutoUpgrade Configuration File

To skip an entire check and fixup step for a database, you can direct AutoUpgrade to
read the fixup runfix flag from the fixups checkilist file, and set the flag for that fixup
from YES to SKIP.

To override the default list of fixups that AutoUpgrade performs automatically for
upgrades, you can load an existing checklist of fixup steps in to AutoUpgrade by using
the local configuration file parameter checklist. In the checklist that you specify with
the local parameter, you can set a precheck fixup as follows:

*  YES (the default): Run checks, and run fixups

e NO: Run checks, but do not run fixups.

*  SKIP: Do not run checks, and do not run fixups.

In the configuration file, the local parameter checklist is used to direct AutoUpgrade to

an existing checklist file.

global.autoupg log dir=/home/oracle/autoupg

upgl.sid=db12204

upgl.source home=/databases/ee/product/12.2.0/dbhome 1
upgl.target home=/databases/ee/product/21.1.0/dbhome 1
upgl.checklist=/home/oracle/autoupg/db12204/100/prechecks/
db11204 checklist.cfg

In the Fixups checklist file, the runfix flag for the DICTIONARY STATS fixup is is set to
skip that step.

[SID] [db21.1.0]

[container] [db21.1.0]

checkname] EXISTENCE OF DATAPUMP AQ TABLES
stage] PRECHECKS

fixup available] YES

runfix] YES

severity] WARNING

checkname] DICTIONARY STATS

stage] PRECHECKS

fixup available] YES

runfix] _SKIP

severity] RECOMMEND

— —— —

Run Custom Scripts Using AutoUpgrade

Learn how to use AutoUpgrade to run your own scripts as part of the deploy process.

You can configure four parameters in the configuration file that enable you to run
custom scripts:

ORACLE 3-134



Chapter 3
AutoUpgrade Configuration File Examples

* Dbefore action

Run a custom script on the source Oracle home before the database is upgraded, during
the Preupgrade stage when the database is up.

* after action

Run a custom script on the target Oracle home after the database is upgraded, during the
Postupgrade stage or PDB upgrade stage, depending on the options set in the
configuration file.

. revert before action

Run a custom script on the target Oracle home before the database is restored, typically
when the database is still up. Due to the nature of the upgrade process, be aware that
the database can be down when the script is started. You can use this script to undo
actions performed by a before action custom script.

e revert after action

Run a custom script on the source Oracle home after the database restored, and the
database is up. You can use this script to undo actions performed by an after action
custom script.

See parameter descriptions under "AutoUpgrade Utility Configuration Files" for more detailed
information about these parameters.

Example 3-15 Using before_action and after_action in the Configuration File

In the following example of configuration file config.cfg, the local parameter before action
is used in the configuration file to run the script scriptl.sh in the path /path/to/a/ before
the restoration, and the local parameter after action is used to run the script script2.shin
the path /path/to/a/ after the upgrade.

config.cfg

global.autoupg log dir=/home/oracle/autoupg
upgl.sid=db12204

upgl.source home=/databases/ee/product/12.2.0/dbhome 1
upgl.target home=/databases/ee/product/19.0.0/dbhome 1
upgl.before action=/path/to/a/scriptl.sh

upgl.after action=/path/to/a/script2.sh

The configuration file is called by AutoUpgrade from the command line:

java -jar autoupgrade.jar -config config.cfg -restore -jobs 100,101,...

Because these scripts are run during the preupgrade and postupgrade stages, restoration to
the GRP occurs before or after the scripts are run. The scripts do not affect the actual GRP
process itself, which makes them safer for reruns if the script actions can affect the database.

Example 3-16 Using revert before action and revert after action in the
Configuration File

In the following example of configuration file config.ctg, the local parameter
revert before action is used in the configuration file to run the script script3.sh in the

ORACLE 3-135



Chapter 3
AutoUpgrade Internal Settings Configuration File

path /path/to/a/ before the restoration, and the local parameter
revert after action is used to run the script script4.sh inthe path /path/to/a/
after the upgrade.

global.autoupg log dir=/home/oracle/autoupg
upgl.sid=dbl12204

upgl.source home=/databases/ee/product/12.2.0/dbhome 1
upgl.target home=/databases/ee/product/19.0.0/dbhome 1
upgl.revert before action=/path/to/a/script3.sh
upgl.revert after action=/path/to/a/scripté.sh

Again, the configuration file is used to direct AutoUpgrade as it runs the restore jobs:

java -jar autoupgrade.jar -config config.cfg -restore -jobs 100,101, ...

In this case, the scripts are run on the target Oracle Database binaries when the
database is up. The script3.sh script called by revert before action is run when
the database is up, before starting the restoration to the GRP, and the script4.sh
script called by revert after action is run on the database after restoration to the
earlier release is complete, and the database is up in the original Oracle home.

Related Topics
* AutoUpgrade Utility Configuration Files

AutoUpgrade Internal Settings Configuration File

Internal configuration settings control how AutoUpgrade runs.

Usage Notes

These configuration settings are provided for reference only. Typically, you should not
use these parameters.

Table 3-1 Internal Settings Configuration File Parameters for AutoUpgrade
Parameter Default Description
heartbeatHeartbeatSleep 1 Number of minutes to wait between each job
heartbeat.
heartbeatHeartbeatRetries 10 Number of times to retry after a failed job
heartbeat.
1sjNoConsoleTimer 30 Runtime interval in seconds of the 1s7
command for noconsole. The interval should
be between 7 and 1200 seconds.
shutdownJobWaitTime 10 Number of minutes to wait before a running job
is terminated in the job queue during a
scheduled upgrade.
systemChecksAbort timer 60 Number of minutes to wait before the system
checks job is automatically terminated.
systemChecksOracleHomeRegSpac 69 Minimum adequate disk space (in GB) system

check. (g is required.).

ORACLE

3-136



Chapter 3
AutoUpgrade Log File Structure

Table 3-1 (Cont.) Internal Settings Configuration File Parameters for AutoUpgrade

Parameter

Default

Description

systemChecksMinCpulIdlePct

10

Warning alert threshold percentage to indicate
that the remaining available percentage of CPU
resources on the system can be inadequate to
complete the upgrade.

systemChecksMinFreeMemPct

Warning alert threshold percentage to indicate
that the remaining available percentage of
system random access memory (RAM) can be
inadequate to complete the upgrade.

systemChecksMinFreeSwapPct

Warning alert threshold percentage to indicate
that the remaining available percentage of
system swap space memory can be inadequate
to complete the upgrade.

dbPreCheckAbortTimer

60

Number of minutes to wait before the database
preupgrade checks job is automatically
terminated.

dbUpgradeDurationTimer

180

Number of minutes to wait before the database
upgrade job starts additional monitoring of the
upgrade progress.

dbUpgradeWakeupTimer

Number of minutes to wait before the database
upgrade job restarts monitoring the upgrade.

dbUpgradeAbortTimer

1440

Number of minutes to wait before the database
upgrade is automatically terminated.

dbUpgradeFatalErrors

ORA-00600,
ORA-07445

Identifies which upgrade internal errors
automatically cause a post-upgrade restore of
the database back to the guarantee restore
point. Entries are comma-delimited.

dbPostUpgradeAbortTimer

60

Number of minutes to wait before the
postupgrade job is automatically terminated.

dbGrpAbortTimer

Number of minutes to wait before the guarantee
restore point job is automatically terminated.

AutoUpgrade Log File Structure

The AutoUpgrade utility produces a log file structure that includes job status and

configuration files.

AutoUpgrade Log File Base Path

The AutoUpgrade log file path is set using the global parameter autoupg log dir. By default,
the global parameter has the following definition:

global.autoupg log dir=/database/jobmgr

AutoUpgrade configuration and status file paths are relative to the directory path that you

establish with global.autoupg log dir.

ORACLE

3-137



ORACLE

Chapter 3
AutoUpgrade Log File Structure

Icfgtoollogs/upgrade/auto

The automatic configuration tools log directory (/cfgtoollogs/upgrade/auto) contains
three trace log files that provide specific information about each job that the
AutoUpgrade job manager processes:

e autoupgrade.log: Provides detailed logs of the job that identify any problems that
occur during job runs.

* autoupgrade usr.log: Job information, which is formatted to enhance readability.

* autoupgrade err.log: A report of any unexpected exceptions that occur when the
job runs.

If problems occur when jobs start or stop, then you can use information in these log
files to determine the cause of problems.

Iconfig_files

The config files directory contains AutoUpgrade internal runtime configurations and
global temporary files.

Istatus

The /status directory contains JSON job status files. It contains two directories:

e status.json: This directory contains the final job status of all jobs completed in
the JSON file format.

* progress.json: This directory contains the progress of all jobs currently running in
the JSON file format.

Each module in the directories contains a status file for the operation that it performed.
The module takes the following format, where the prefix dbname is the database name,
operation is the upgrade operation that was performed, and the suffix status is the
completion status of that operation:

dbname operation-name.status

The success or the failure of that operation is indicated by the suffix, which is

either .success, indicating the successful performance of that operation, or .failure,
indicating the failure of that operation. For example, the following module name
indicates a successful run of the prechecks operation on the database sales:

sales prechecks.success

The operation module name can be one of the following:

e preupgrade: The preupgrade stage, in which custom scripts can be run.
* prechecks: The upgrade checks completed before starting the upgrade.
* grp: Guaranteed restore point (using Oracle Flashback technology).

* prefixups: The preupgrade fixups run before starting the upgrade.

e drain: The stage where existing jobs are completed or migrated before starting
the upgrade.

3-138



Chapter 3
AutoUpgrade Log File Structure

* dbupgrade: The stage in which the upgrade takes place.

* postchecks: The stage in which postupgrade checks are run after the upgrade is
completed.

* postfixups: The stage in which postupgrade fixups are run.

* postupgrade: The stage in which custom postupgrade scripts can be run.

Individual Job and Database Log File Directories

Each job started by the AutoUpgrade dispatcher is given a directory with that job identifier
prefix. Inside that job directory, each database in the job is given a log directory in the path /
database/logs/sid, where sidis the system identifier for the database. For example, where
the job identified in the configuration file is salesl, and the database system identifier is
sales, the log file for the database sales is in the following path:

sales.log dir=/database/logs/salesl

The log directory contain all the relevant log files for all the tasks performed for that database.
By default, a directory identified by SID is created under the /database/logs directory. Each
database job can have a separate log directory, if you choose to set up your configuration file
that way.

/#### ( Job Number)

Individual job runs are placed in subdirectories identified by the run number, in the format /
####, where #### represents the job run number. For example: 0004. Job run number
directories contain the following log files:

* autoupgrade err.log: Reports any unexpected exceptions that occur while the job runs.

° autoupgradeYYYYMMDD.log: AutoUpgrade trace log file. Provides detailed logs of the job
that identify any problems that occur during job runs. The variable YyyyMMDD represents
year, month, and day of the job.

* autoupgrade YYYYMMDD user.log: AutoUpgrade job status file, which is formatted to
enhance readability. The variable YyyyyymMMDD represents year, month, and day of the job.

/preupgrade
The preupgrade directory (/preupgrade) contains the following files and log files:

* prechecks databasename.log: Trace log file. This file provides detailed logs that can
assist with identifying problems that occur during the preupgrade job stage. The variable
databasename is the name of the database checked.

* databasename preupgrade.html: HTML report on the database status. The variable
databasename is the name of the database checked.

* databasename preupgrade.log: Text report on the database status. The variable
databasename is the name of the database checked.

/dbupgrade

The database upgrade directory (/dbupgrade) contains all log files associated with the
database upgrade:

ORACLE 3-139



Chapter 3
Enabling Full Deployments for AutoUpgrade

° autoupgradeYYYYMMDDHHMISCdbname.log: Log files for the source database,
identified by the date on which the upgrade was run, and by the database name,
indicating parallelism. Format:

YYYY: Year
MM Month
pp: Day
HH: Hour
MI: Minute
sc: Second

dbname:. Database name, where dbname is the database name.

°  catupgradeYYYYMMDDHHMISCdbnameNl.log: log files for the source database,
identified by the date on which the upgrade was run.

Format:

/temp

YYyY: Year
MM: Month
pD. Day
HH: Hour
MI: Minute
sc: Second

dbnamelN: Database name, where dbname is the database name, and N
indicates the parallelism: 0...3 for CDB ROOT, and Non-CDB databases, and
0...1 for PDBs.

Temporary AutoUpgrade files (/temp). This directory can contain files such as the
PFILE used during an upgrade.

Enabling Full Deployments for AutoUpgrade

To enable a guaranteed restore point (GRP) so that you can flashback an upgrade,
you must set up archive logging, and you should complete other tasks to enable
AutoUpgrade to complete the upgrade.

For AutoUpgrade to be able to perform a full deployment of the new release Oracle
Database, the following must be true:

* The database must have a proper configuration of the fast recovery area (FRA).
Specifically, DB RECOVERY FILE DEST and DB RECOVERY FILE DEST SIZE must be
set, and be properly sized.

*  Your source Oracle Database must be running in ARCHIVELOG mode.

ORACLE

3-140



ORACLE

Chapter 3
Enabling Full Deployments for AutoUpgrade

< Note:

AutoUpgrade creates a guaranteed restore point (GRP) during Deploy processing
mode. You do not need to have a previously defined guaranteed restore point.

Example 3-17 Setting up Archive Logging and Fast Recovery Area (FRA) Before
Using AutoUpgrade

In the following example, your-directory-or-diskgroup is the directory path or disk group
where your recovery area is placed. The value for DB RECOVERY FILE DEST SIZE is specified
as 50GB, but you should use the value that you require for your recovery area.

sqlplus / as sysdba

shutdown immediate;

startup mount;

alter system set db recovery file dest size = 50g scope=both sid='*'";
alter system set db recovery file dest ='your-directory-or-diskgroup'
scope=both sid='*"';

alter database archivelog;

alter database open;

alter pluggable database all open;

Example 3-18 Password Files and Security Password File Updates

During the upgrade, the AutoUpgrade utility copies the password file from the source Oracle
Database Oracle home to the target Oracle Database Oracle home. However, the copied
password file retains the earlier release password file version. Oracle recommends that you
regenerate the password file to update it to the new release password file version.

Example 3-19 Transparent Data Encryption and AutoUpgrade

To enable the AutoUpgrade utility to obtain the privileges required for copying transparent
data encryption keystores, you must enable auto-login for these keystores so that
AutoUpgrade can copy them to the target release Oracle home. If you do not enable auto-
login, then AutoUpgrade cannot complete the upgrade.

In addition, AutoUpgrade looks for the location of the Oracle Net administration directory
using the TNS ADMIN environment variable. If your TNS ADMIN environment variable is not
defined, then the path to the network administration directory defaults to the path

Oracle home/network/admin. If you need to specify a different path, then specify the path in
your configuration file using the local configuration parameter source tns admin dir, and if
necessary, the target path with target tns admin dir.

Enable an Auto-Login or a Local Auto-Login Software Keystore by using the ADMINISTRATOR
KEY MANAGEMENT or SYSKM privilege on your existing keystore. For example, to create an auto-
login software keystore of the password-protected keystore that is located in the /etc/
ORACLE/WALLETS/orcl directory:

ADMINISTER KEY MANAGEMENT CREATE AUTO LOGIN KEYSTORE

FROM KEYSTORE '/etc/ORACLE/WALLETS/tde'
IDENTIFIED BY password;

keystore altered.

3-141



Chapter 3
Examples of How to Use the AutoUpgrade Console

< Note:

After AutoUpgrade completes copying the transparent data encryption
keystores, disable auto login, so that your previous release security is
restored.

Related Topics

e Creating an Auto-Login or a Local Auto-Login Software Keystore
e Overview of Local Naming Parameters

e Oracle Database Enterprise User Security Administrator's Guide
« DB_RECOVERY_FILE_DEST

Examples of How to Use the AutoUpgrade Console

ORACLE

The AutoUpgrade console provides a set of commands to monitor the progress of
AutoUpgrade jobs. The console starts by default when you run the AutoUpgrade utility,
and is enabled or disabled by the parameters console and noconsole.

In console mode, the AutoUpgrade console enables you to run commands to monitor
specific aspects of your AutoUpgrade jobs while they are running on your systems.

" Note:

If the AutoUpgrade console is exited out before it completes, then the jobs
that are running stop, and the job that are scheduled do not start. For this
reason, do not exit the console or stop the AutoUpgrade process until all of
the AutoUpgrade jobs are completed.

Example 3-20 Example of How to Enable and Disable the AutoUpgrade
Console

" Note:

You can run only one AutoUpgrade instance at a time that is associated with
a given configuration file.

In this example, AutoUpgrade is run in Analyze mode, using the configuration file in
noconsole mode.

java -jar autoupgrade.jar -config autoupgrade.cfg -mode analyze -
noconsole

Using the noconsole mode turns off requirements for user input, so it is suitable for
use with scripts.

3-142



Chapter 3
Known Restrictions for AutoUpgrade

In this example, AutoUpgrade is run in Analyze mode, and the console is turned on again
with the -console option:

java -jar autoupgrade.jar -config autoupgrade.cfg -mode analyze -console

Console user input is again resumed.

Known Restrictions for AutoUpgrade

If you encounter issues with your upgrade, review the known restrictions to find solutions.

AutoUpgrade and Disk Space Issues
If you run out of disk space while running AutoUpgrade, then review and apply the
solutions outlined here.

Oracle Enterprise Manager (EM) Cloud Control Registration
Autoupgrade is unable to register with Oracle Enterprise Manager Cloud Control as part
of the upgrade.

AutoUpgrade and Disk Space Issues

If you run out of disk space while running AutoUpgrade, then review and apply the solutions
outlined here.

ORACLE

To assist you to avoid disk space issues. Oracle has added a check to calculate the required
disk space. To see log sizing specifications, review the AutoUpgrade analyze reports. If the
database runs out of disk space during the upgrade, then free up the required disk space for
the database, and resume the job, if necessary.

Example 3-21 Disk Space Errors While Upgrade is Running

1.

Stop the current running upgrade
abort -job 100

Free up disk space so that the upgrade can resume.

Resume the stopped upgrade

resume -job 100

Example 3-22 Disk Space Errors After Upgrade has Completed

If AutoUpgrade completes with disk space errors then proceed as follows:

1
2.

Free up disk space so that the upgrade can resume.
Restart AutoUpgrade to complete any remaining issues.

For example, where the configuration file name is yourconfigfile.cfg:

java -jar autoupgrade.jar -mode deploy -config yourconfigfile.cfqg

3-143



Chapter 3
Proper Management of AutoUpgrade Database Changes

Oracle Enterprise Manager (EM) Cloud Control Registration

Autoupgrade is unable to register with Oracle Enterprise Manager Cloud Control as
part of the upgrade.

You are not able to use AutoUpgrade to register with Enterprise Manager (EM) Cloud
Control. Instead, after the upgrade is complete, you can register the database
management options manually.

Proper Management of AutoUpgrade Database Changes

ORACLE

AutoUpgrade is a powerful utility, which requires that you use it responsibly. Review
and avoid using AutoUpgrade in ways that put the database at risk.

The following is a list of improper uses of AutoUpgrade, and ways of attempting to
work around problems that result from these errors.

Breaking AutoUpgrade Resume Capability During Deployment

Problem Description::Using the -clean recovery data option prevents
AutoUpgrade from resuming or restoring the database.

Workaround: Restore from a backup copy of the database.

Cause: Running the AutoUpgrade in deploy mode, and then interrupting its execution
on any stage after the fixups are completed, and running the option

clear recovery data before resuming and completing successfully an AutoUpgrade
deploy command. For example:

java -jar autoupgrade.jar -config config.cfg -mode deploy

Ctrl+C //sample interruption

java -jar autoupgrade.jar -config config.cfg -clear recovery data
java -jar autoupgrade.jar -config config.cfg -mode deploy

Changing AutoUpgrade Global Log Directory During or After Deployment

Problem Description: If you change the global directory during or after running a
deploy command, then the AutoUpgrade utility is unable to resume its pending work.

Workaround: Restore from a backup copy of the database.

Cause: The AutoUpgrade global logs directory also contains files used by the
AutoUpgrade Utility to track the state of its operations. If you run the tool in deploy
mode, and the deploy operation is stopped, and then rename or drop the global log
directory, then the AutoUpgrade utility is unable to determine the state in which the
deploy operation was stopped. As a result, when you restart AutoUpgrade, it begins
the upgrade operation from the beginning, and the initial GRP is overwritten. You
cannot use that GRP to restore the original database.

Use of Keystore With Credentials Not Set With AUTOLOGIN

Problem Description: You run the tool, and you have keystore credentials configured,
but AutoUpgrade is unable to log in to the database.

3-144



Chapter 3
How to Override Default Fixups

Workaround: Create an Autologin Keystore, and configure the database with auto-login
enabled.

At the time of this release. AutoUpgrade does not support the use of keystore credentials
unless they are configured for automatic logins into the database

Related Topics

e Performing Operations That Require a Keystore Password

How to Override Default Fixups

You can use the RUNFIX column entry to disable automated fixups, except in cases where
disabling the fixup violates security or Oracle policy.

The default fixups that are part of the AutoUpgrade procedure are generated during the
Analyze processing mode stage. You can modify the generated fixups list to disable
automatic fixups, so that you can run your own fixups.

The sequence of steps is as follows:

1. Run the AutoUpgrade utility in Analyze mode

2. Open and edit the sid checklist.cfg file that is generated during Analyze mode, so that
the fixups you want to do manually are disabled from running automatically.

3. In your most recent AutoUpgrade configuration file, under your local parameters list for
the job on which you want to suppress the automatic fixup, find the parameter
sid.checklist, where sidis the system identifier (SID) of the database on which you
want to suppress an automatic fixup. By default, AutoUpgrade uses the most recent
generated file. If you want to point it to a different configuration file, then edit the
parameter to provide a path to the checklist.cfg file that you have edited.

" Note:
AutoUpgrade resume always uses the most recent sid checklist.config file.

For example, if you have two generated AutoUpgrade configuration files, /
logdir/100/sid checklist.cfg, and /logdir/101/sid checklist.cfg, then you
must either specify a direct path to the configuration file that you want to use, or edit
the most recent file, which in this case is the sid checklist.cfg file in /
logdir/101/

Suppose you have corrected an issue manually that you found, and want to have
AutoUpgrade to use a fixup file with different checks. If you want to direct
AutoUpgrade to use a different file, then you can specify the file path directly in the
checklist.cfq file by using the prefix.checklist parameter, where prefix is the
identifier for the database. For example: prefix.checklist=logdir/repress-
standard/sid checklist.cfg

If the AutoUpgrade utility finds an error level database condition, and there is not a
fixup available for it, or you have manually disabled the available fixup, then the
AutoUpgrade job that contains the database with the error condition stops.

Use the examples that follow to assist you with this procedure.

ORACLE 3-145



ORACLE

Chapter 3
How to Override Default Fixups

Example 3-23 Starting Up the AutoUpgrade Utility in Analyze Mode

java

-jar autoupgrade.jar -config config.cfg -mode analyze

Example 3-24 Creating a New Checklist for a Configuration File

In this scenario, you are running AutoUpgrade checks on an Oracle Database 11g
Release 2 (11.2) database home, in preparation for an upgrade to Oracle Database
18c, with release update 8. You start with the following configuration file, called
config.cfg:

global.autoupg log dir=/home/oracle/autoupg

upgl.
upgl.
upgl.
upgl.
upgl.

sid=dbl11204
source_home=/databases/ee/product/11.2.0/dbhome 1
target home=/databases/ee/product/18x/dbhome 1
target base=/databases

target version=18.8.0

You then complete the following steps:

1. Runthe command java -jar autoupgrade.jar -config config.cfg -mode
analyze

The command produces a checklist file in the following path:

/home/oracle/autoupg/db11204/100/prechecks/db11204 checklist.cfg

2. Move the checklist file to another location. For example:

oracle@example: $ cd SPRECHECKS

oracle@example: $ pwd
/home/oracle/autoupg/dbl11204/100/prechecks
oracle@example: $ mv ./dbl1204 checklist.cfg /tmp

3. Use a text editor to open up the file, and look for the checks AMD EXISTS and
EM PRESENT.

For example:

[SID] [dbl1204]

[container] [dbl1204]

[checkname] AMD EXISTS
[stage] PRECHECKS

[
[
[

fixup available] YES
runfix] YES
severity] WARNING

— o—— —

checkname] DICTIONARY STATS
stage] PRECHECKS

fixup available] YES
runfix] YES

severity] RECOMMEND

3-146



Chapter 3
How to Override Default Fixups

[checkname] EM PRESENT
[stage] PRECHECKS
[fixup available] YES
[runfix] YES
[severity] WARNING

[truncated]

4. Change the values for checks AMD EXISTS and EM PRESENT from yes to no.
For example

[SID] [dbl1204]

[container] [dbl1204]

[checkname] AMD EXISTS
[stage] PRECHECKS
[fixup available] YES
[runfix] NO

[severity] WARNING
checkname] DICTIONARY STATS
stage] PRECHECKS
fixup available] YES
runfix] YES

severity] RECOMMEND
[checkname] EM PRESENT
[stage] PRECHECKS
[fixup available] YES
[runfix] NO

[severity] WARNING

[truncated]

Notice that with both parameters, the fixup available value is YES. That means that
there is a fixup available, which you choose not to run. If no fixup is available, then the
value for runfix is N/A.

5. Change the location where AutoUpgrade looks for the configuration file by updating the
path for the parameter checklist. To do this, add an entry to the configuration file with the
checklist pointer to the directory where your edited file resides. For example:

global.autoupg log dir=/home/oracle/autoupg
upgl.sid=dbl1204

upgl.source home=/databases/ee/product/11.2.0/dbhome 1
upgl.target home=/databases/ee/product/18x/dbhome 1
upgl.target base=/databases

ORACLE 3-147



ORACLE

Chapter 3
How to Override Default Fixups

upgl.target version=18.8.0
upgl.checklist=/home/oracle/db11204 checklist.cfg

6. Run the fixups using the configuration file that you have edited and moved. For
example:

java -jar autoupgrade.jar -config config.cfg -mode fixups

Autoupgrade uses the configuration file in /home/oracle to run the AutoUpgrade
utility.

Example 3-25 Find and Edit checklist.cfg

The Analyze mode generates a fixup file with the file name checklist.cfg. Navigate
to the file, where DATABASE LOGS DIRis the value set for the AutoUpgrade log dir
parameter of the database, job-id refers to the job identifier that the AutoUpgrade
utility generates, and sid is the system identifier for the database on which you want to
suppress automatic fixups:

DATABASE LOGS DIR/job-id/prechecks/sid checklist.cfg

Open the checklist.cfg file with a text editor. The following is an example of the
checklist.cfgq file for the database with the SID DB11204:

[dbname] [DB11204]
[container] [DB11204]
[checkname] AMD EXISTS
[stage] PRECHECKS
[fixup available] YES
[runfix] YES
[severity] WARNING
[checkname] DEPEND USR TABLES
[stage] POSTCHECKS
[fixup available] YES
[runfix] YES
[severity] WARNING
[checkname] DICTIONARY STATS
[stage] PRECHECKS
[fixup available] YES
[runfix] YES
[severity] RECOMMEND
[checkname] EM PRESENT
[stage] PRECHECKS
[fixup available] YES
[runfix] YES
[severity] WARNING

3-148



Chapter 3
Local Configuration File Parameter Fixups Checklist Example

The file has a hierarchical structure. It starts with the database name, and the container name
for which the entries of the checklist.cfg apply. The file contains a series of fixup checks
that are applied automatically. For each entry, there are 5 relevant values parameters:

Parameter Description

[checkname] Name of the database check

[stage] AutoUpgrade stage in which the check is
performed. It can be either prechecks, or post
checks.

[fixup available] Availability of an automatic fixup. This parameter

value is either YES (an automatic fixup is
available), or NO (an automatic fixup is not
available).

runfix Run status for the fixup. This parameter takes one
of two values:

YES: Run the fixup.
NO: Do not run the fixup.

severity Class of severity of the issue that the automatic
fixup addresses.

For each fixup that you want to perform manually, change the [runfix] parameter value from
YES to NO.

Related Topics
e My Oracle Support Doc ID 2380601.1 "Database Preupgrade tool check list"

Local Configuration File Parameter Fixups Checklist Example

To include or exclude specific fixups for individual databases during upgrades, use the local
configuration file checklist.

In this example, there is a local checklist file called sales4 checklist.cfg, which provides a
preupgrade fixup checklist for the database sales4. A portion of the file contains the following
settings:

[checkname] DICTIONARY STATS
[stage] PRECHECKS

[fixup available] YES
[runfix] YES

[severity] RECOMMEND

ORACLE 3-149


https://support.oracle.com/rs?type=2380601.1

Chapter 3
AutoUpgrade and Microsoft Windows ACLs and CLIs

You can change the default fixup for DICTIONARY STATS to exclude performing a fixup
for the database sales4 by changing the runfix option for the check from YES to NO:

[checkname] DICTIONARY STATS
[stage] PRECHECKS

[fixup available] YES
[runfix] NO

[severity] RECOMMEND

AutoUpgrade and Microsoft Windows ACLs and CLIs

ORACLE

When running AutoUpgrade on Microsoft Windows systems, Oracle recommends
additional best practices with access control lists (ACLs) and command-line interfaces
(CLls).

AutoUpgrade and Access Control Lists (ACLSs)

When you use AutoUpgrade on Windows systems, there are difficulties in setting up
automated tools to work with Windows access control lists. Oracle strongly
recommends that you complete the following best practice procedures:

e Review permissions for each of your target databases, and how these permissions
relate to directories for these databases, such as the Oracle base directory, and
the oraInventory files.

* Refer to the Oracle Database Administrator's Reference section on postinstallation
configuration tasks for NTFS file systems.

* Review Microsoft's documentation regarding Windows PowerShell.

* Review the permissions for the groups ORA DBA, ORA HOME USERS, and ORA ASM
groups. The ORA DBA group only provides SYSDBA privileges to Oracle Database.
The Oracle ASM management privileges are controlled by members of the group
ASM DISKGROUPS.

» The ORA DBA group member permissions to perform many administration tasks is
limited, compared to the privileges available on P0SIX systems. To enable
AutoUpgrade to run as expected, Oracle recommends that the user account with
Administrator rights on the Microsoft Windows server also manages Oracle base
directory elements such as traces, listeners, and configuration.

e AutoUpgrade must be run using a command console (CMD) with administrative
rights, and that console should be opened as the Oracle Installation User, or a
user with similar privileges.

* Refer to My Oracle Support notes 1529702.1, and 1595375.1.

AutoUpgrade uses the following procedure with services running on the database:

» AutoUpgrade stops the services on the source database, and creates a temporary
service on the target database Oracle home.

If a restore is required, then the service in the target is dropped, and the service in
the source is restarted.

» After Deploy Mode processing has completed successfully, the service in the
target is dropped. At that point, it is the responsibility of the DBA for the upgraded
Oracle Database to use ORADIM to create a service. Creating this service manually

3-150



ORACLE

Chapter 3
AutoUpgrade and Microsoft Windows ACLs and CLIs

is required, because AutoUpgrade does not have the password to obtain permissions to
create the ORADIM service.

AutoUpgrade and Windows Command-Line Interfaces

With command-line interfaces on Windows, applications can stop responding while waiting
for a return character to be sent to the console. This behavior can affect the AutoUpgrade
utility. The cause is a well-known Microsoft Windows console window characteristic related to
the QEM (Quick Edit Mode). Even if you disable the Quick Edit console mode, the application
can still encounter this behavior.

To avoid the program waiting for a response, press the enter key a few times after the
application starts. Doing this provides the terminal input required to help the application
proceed without awaiting a terminal response.

Related Topics

* Oracle Database Administrator’s Reference for Microsoft Windows
e My Oracle Support Note 1529702.1

e My Oracle Support Note 1595375.1

3-151


https://support.oracle.com/rs?type=doc&id=1529702.1
https://support.oracle.com/rs?type=doc&id=1595375.1

Upgrading Oracle Database Manually Using
Parallel Upgrade Utility

You can upgrade manually by using the Parallel Upgrade Utility command-line option.

Starting with Oracle Database 19c, Database Upgrade Assistant (DBUA) is replaced by the
AutoUpgrade utility.

Caution:

If you retain the old Oracle Database software, then never start the upgraded
database with the old Oracle Database software. Only start the database with the
executables in the new Oracle Database installation.

Upgrading Manually with Parallel Upgrade Utility
To run upgrades with scripts that you run and manage manually, you can use the Parallel
Upgrade Utility (catctl.pl).

Manual Upgrade Scenarios for Multitenant Architecture Oracle Databases
To prepare for manual upgrades, review the manual upgrade scenarios and procedures
for Oracle Database deployed with multitenant architecture.

Example of Manual Upgrade of Windows Non-CDB Oracle Database

These examples show the steps to complete preupgrade checks, upgrade, and
postupgrade checks for an Oracle Database 11g Release 2 (11.2.0.4) upgrade to Oracle
Database 19c.

About Dbupgrade Scripts and catupgrd.sql in Earlier Releases of Oracle Database
The function of the catupgrd. sql script is replaced by the Parallel Upgrade Utility,
catctl.pl, and the dbupgrade and dbupgrade . cmd Scripts.

About Transporting and Upgrading a Database (Full Transportable Export/Import)
You can use file-based or nonfile-based modes for transporting data.

Upgrade Scenarios for Non-CDB Oracle Databases
Review these topics to understand the upgrade scenarios and procedures for non-CDB
Oracle Databases

Rerunning Upgrades for Oracle Database
Use these options to rerun upgrades.

Upgrading Manually with Parallel Upgrade Utility

ORACLE

To run upgrades with scripts that you run and manage manually, you can use the Parallel
Upgrade Utility (catctl.pl).

4-1



Chapter 4
Upgrading Manually with Parallel Upgrade Utility

»  About the Parallel Upgrade Utility for Oracle Database (CATCTL.PL and
DBUPGRADE)
The Parallel Upgrade Utility (catctl.pl, and the dbupgrade script) enable you
to upgrade simultaneously components that do not require upgrades to occur in a
specific order.

* General Steps for Running the Parallel Upgrade Utility
Review to obtain an overview of how to use the Parallel Upgrade Utility for Oracle
Database.

« Parallel Upgrade Utility (catctl.pl) Parameters
Control how the Parallel Upgrade Utility (catctl.pl) runs. You can also use
these arguments to run the dbupgrade shell command.

«  Example of Using the Parallel Upgrade Utility
Use this example to understand how you can run the parallel upgrade utility
manually to perform upgrades.

About the Parallel Upgrade Utility for Oracle Database (CATCTL.PL
and DBUPGRADE)

ORACLE

The Parallel Upgrade Utility (catctl.pl, and the dbupgrade script) enable you to
upgrade simultaneously components that do not require upgrades to occur in a
specific order.

Oracle Database 12c release 1 (12.1) introduced the Parallel Upgrade Utility,
catctl.pl. This utility reduces the total amount of time it takes to perform an
upgrade by loading the database dictionary in parallel, and by using multiple SQL
processes to upgrade the database. Performing parallel upgrades of components
enables you to take advantage of your CPU capacity. Oracle continues to make
improvements to the upgrade process to simplify both manual upgrades, and
upgrades performed with the Database Upgrade Assistant (DBUA). DBUA and the
manual upgrade procedures take advantage of the new Parallel Upgrade Utility.

You can run a shell command, dbupgrade, which starts up catctl.pl from the
command line, instead of requiring you to run it from Perl.

The dbupgrade shell command is located in the file path SORACLE HOME/bin on
Linux and UNIX, and $ORACLE_HOMES%\bin on Windows. You can provide any
command arguments that are valid for catctl.pl to the shell command. Either run
the command directly from the new Oracle home path, or set a user environment
variable to point to the file path.

For example:

Running with default values:

$ ./dbupgrade

Running to specify a log directory placed in /tmp:

$ ./dbupgrade -1 /tmp

4-2



Chapter 4
Upgrading Manually with Parallel Upgrade Utility

You can also run the Parallel Upgrade Utility using priority lists. For example:

$ ./dbupgrade -L priority list name

When you use a priority list, you can include or exclude a specific list of PDBs in your
upgrade.

You can also run the Parallel Upgrade Utility using priority emulation, so that you can see
how the priority list is read and carried out, without actually performing the upgrade. For
example:

$ ./dbupgrade -E

Related Topics
* Example of Testing Upgrades Using Priority List Emulation

General Steps for Running the Parallel Upgrade Utility

Review to obtain an overview of how to use the Parallel Upgrade Utility for Oracle Database.

The Parallel Upgrade Utility (catctl.pl, which you can start with the shell command
dbupgrade) loads the data dictionary and components in parallel. Loading in parallel
reduces the overall upgrade time. Before running the Parallel Upgrade Utility, follow the
procedures for backing up your database that you normally do before upgrading. Also, as a
prerequisite, you must run AutoUpgrade using the preupgrade clause to identify any
problems that a database administrator must address before the upgrade proceeds.

The general steps for upgrading your database with the Parallel Upgrade Utility are as
follows:

1. Back up your current database.
2. Install the Oracle Database software for the new release.

3. Run AutoUpgrade with the preupgrade parameter on the source database, and correct
any issues that AutoUpgrade does not fix.

4. Shut down your current database.

5. Set up the new Oracle home environment to access the new release database software,
and then start SQL*Plus from the directory ORACLE HOME/rdbms/admin.

6. Log in to a user account with SYSDBA system privileges, and connect to the database that
you want to upgrade:

CONNECT / AS SYSDBA
7. Start the database in upgrade mode. Use the command for your configuration type.

SQL> startup upgrade;
SQL> alter pluggable database all open upgrade;

ORACLE 4.3



Chapter 4
Upgrading Manually with Parallel Upgrade Utility

< Note:

The UPGRADE keyword performs operations that prepare the
environment for the upgrade.

You can be required to use the PFILE option in your startup command to specify
the location of your initialization parameter file.

When you start the database in upgrade mode, only queries on fixed views
execute without errors until after the catctl.pl scriptis run. Before you run
catctl.pl, you receive an error if you try to use PL/SQL, or if you try to run
gueries on any other view.

If errors appear listing desupported initialization parameters, then make a note of
the desupported initialization parameters, and continue with the upgrade. Remove
the desupported initialization parameters the next time you shut down the
database.

8. Exit SQL*Plus.
9. Run the Parallel Upgrade Utility from the new Oracle home.

You can run the utility as a shell command (dbupgrade on Linux and Unix, and
dbupgrade . cmd on Microsoft Windows) or you can run it as a Perl command
(catctl.pl).

For example, on Linux and Unix:

cd $ORACLE HOME/bin
./dbupgrade

For example, on Microsoft Windows:

cd SORACLE HOME% \bin
dbupgrade

The Parallel Upgrade Utility starts the upgrade process.

" Note:

The Parallel Upgrade Utility uses other files to carry out the upgrade. On
Linux and Unix systems, these files include catconst.pm, catcom.pm,
sqlpatch, sqlpatch.pl or sglpatch.pm, and orahome on Linux/UNIX
systems. On Windows systems, these files include orahome.exe. Do not
change or remove these files.

Related Topics

e Specifying Initialization Parameters at Startup

ORACLE 4-4



Chapter 4
Upgrading Manually with Parallel Upgrade Utility

Parallel Upgrade Utility (catctl.pl) Parameters

Control how the Parallel Upgrade Utility (catctl.pl) runs. You can also use these
arguments to run the dbupgrade shell command.

" Note:

The shell command utility dbupgrade starts catctl.pl. The dbupgrade utility
resides in the ORACLE HOME/bin directory. You can use the shell command utility
to start the Parallel Upgrade Utility at the command prompt. You can either run the
utility using default values, or you can use catctl.pl input parameters to specify
Parallel Upgrade Utility arguments.

Table 4-1 Parallel Upgrade Utility (catctl.pl) Parameters

Parameter

Description

-C

Specifies a space-delimited inclusion list for PDBs that you want to upgrade. For
example, in an Oracle Multitenant deployment with PDB1, PDB2, PDB3, and
PDBA4, include PDB1 and PDBZ2, but exclude the PDBs not named. PDB 1 and
PDB 2 are upgraded, but PDB 3 and PDB4 are not upgraded.

Linux and UNIX (use single quotes):

-c 'PDB1 PDB2'

Windows (use double quotes):

-c "PDB1 PDB2"

Specifies a space-delimited exclusion list for PDBs that you want to upgrade. For
example, in an Oracle Multitenant deployment with PDB1, PDB2, PDB3, and
PDBA4, you can use an exclusion list to exclude PDB1 and PDB2, but include the
PDBs not named. PDB1 and PDB2 are not upgraded, but PDB3 and PDB4 are
upgraded.

Linux and UNIX (use single quotes):

-C 'PDB1 PDB2'

Windows (use double quotes):

-C "PDB1 PDB2"

Note: -c and -C are mutually exclusive.

-C 'CATCTL LISTONLY' is an option that specifies that the Parallel Upgrade
Utility processes only the PDBs in a priority list. Use this option with the -1
parameter, specifying a list.

Specifies the location of the directory containing the files that you want
processed.

ORACLE

4-5



Chapter 4
Upgrading Manually with Parallel Upgrade Utility

Table 4-1 (Cont.) Parallel Upgrade Utility (catctl.pl) Parameters
]

Parameter Description
-e Sets echo OFF while running the scripts. The default is echo ON.
-E Enables you to run an upgrade emulation.

You can use the -E parameter to run the Parallel Upgrade Utility in emulation
mode to test how priority lists run, or to test how other upgrade parameter
selections are carried out during an upgrade. For example, you can run an
upgrade emulation to obtain more information about how the resource allocation
choices you make using the -n and -N parameters are carried out.

To carry out an upgrade emulation, complete all upgrade preparations before you
run the Parallel Upgrade Utility, and then run the command using -E.

When you run the Parallel Upgrade Utility with the -E parameter, and call a
priority list as part of the command using the -1 parameter, the utility writes the
upgrade order to the file catctl priority run.lst. Thislistis placed in
the file path that you specify by the -1 parameter, or in the default log file area if
you do not specify a different output file path.

-F Forces a cleanup of previous upgrade errors.

Non-CDB databases require only the -F parameter. For CDBs, use this option
with a space-delimited inclusion list, which you specify with -c.

-1 Specifies an identifier to use when creating spool log files.

-1 Specifies the location for the directory to use for spool log files.

The default location is Oracle base/cfgtoollogs/dbname/
upgradedatetime. The date and time strings are in the character string
format YYYYMMDDHHMMSC, in which YYYY designates the year, MM
designates the month, DD designates the day, HH designates the hour, MM
designates the minute, and SC designates the second.

Oracle strongly recommends that you do not write log files to the /admin
directory.

-L Upgrades PDBs using a priority list during an Oracle Database upgrade, and
specifies the priority list name. The priority list updates priority status in the
database during upgrade. This priority listing is maintained in future upgrades.

By default the CDB$ROOT and PDB$SEED databases are always processed

first. They are processed first even if they are not added to a priority list. All PDBs
in the priority list are processed before PDBs not in the priority list.

-M Keeps CDB$ROOT in UPGRADE mode while the PDBs are upgraded.

For non-CDBs, this parameter is ignored.

During CDB upgrades, using this parameter setting places the CDB and all its
PDBs in upgrade mode, which can reduce total upgrade time. However, you
cannot bring up any of the PDBs until the CDB and all its PDBs are upgraded.
By default, if you do not use the -M parameter setting, then CDB$ROOT is
upgraded and restarted in normal mode, and the normal background processes

are started. As each PDB is upgraded, you can bring the PDB online while other
PDBs are still being upgraded.

ORACLE 4-6



Chapter 4
Upgrading Manually with Parallel Upgrade Utility

Table 4-1 (Cont.) Parallel Upgrade Utility (catctl.pl) Parameters

Parameter Description

-n Specifies the number of processes to use for parallel operations.
Non-CDBs: The -n parameter specifies the number of SQL processes to use
when upgrading the database.
Multitenant architecture databases (CDBs): The number of PDBs upgraded
concurrently is controlled by the value of the -n parameter. Multiple PDB
upgrades are processed together. Starting in Oracle Database 12c, the default
value for multitenant architecture databases is the number of CPUs on your
system. A cpu_count equal to 24 equates to a default value of 24 for -n.
Values for the -n parameter:
Non-CDBs: The maximum value for -n is 8. The minimum value is 1. The default
value is 4.
Multitenant architecture databases (CDBs): The maximum value for -n is
unlimited. The minimum value is 4. The maximum PDB upgrades running
concurrently is the value of -n divided by the value of -N.

-N Specifies the number of SQL processors to use when upgrading PDBs.
For non-CDBs, this parameter is ignored.
For CDBs, the maximum value is 8. The minimum value is 1. The default value is
2.

-p Restarts from the specified phase. When you re-run an upgrade, it does not
restart phases already completed successfully.

-P Stops from the specified phase.

-R Resumes the upgrade from a failed phase. Using the -R parameter enables the
upgrade to resume at the point of failure, so that only the missing upgrade phases
are rerun.

-s Names the SQL script that initializes sessions.

-S Specifies serial upgrade instead of parallel.

Starting with Oracle Database 12.2, catupgrd. sql is no longer supported using
the -S option.

-T Takes offline user schema-based table spaces.

-u Specifies user name, and prompts for password.

-y Displays phases only.

-z Turns on production debugging information for catcon . pm.

-7 Turns on debug tracing information for catctl.pl.

For example, to set the number to 1, enter -Z 1.

Example of Using the Parallel Upgrade Utility

Use this example to understand how you can run the parallel upgrade utility manually to

ORACLE

perform upgrades.

The Parallel Upgrade Utility (catctl.pl) is integrated with AutoUpgrade and DBUA. The
catctl.pl Perl script uses classic upgrade to upgrade CDBSROOT. You can also run the

Parallel Upgrade Utility manually by using the command-line script dbupgrade. Run the
Parallel Upgrade Utility using the command-line parameters to specify how you want the

4-7



ORACLE

Chapter 4
Upgrading Manually with Parallel Upgrade Utility

upgrade to run. For example, to run the utility in serial mode instead of using parallel
operations, specify the -n 1 option.

Example 4-1 Running Parallel Upgrade Utility with Parameters for CDB and
Non-CDB Databases

If you use the option -n 4 when you run the Parallel Upgrade Utility, then the upgrade
process creates catupgrd0.log, catupgrdl.log, catupgrd2.log, and catupgrd3.log.
Check all of the catupgrd#. log files to confirm that the upgrade succeeded. If the
upgrade failed, and you fix issues and run the Parallel Upgrade Utility again, then the
previous log files are overwritten, unless you specify a different log directory by using
the -1 parameter.

For example:

cd $ORACLE_HOME/bin
dbupgrade -n 4 -1 SORACLE HOME/diagnostics

Example 4-2 Running Parallel Upgrades on Multiple Pluggable Databases
(PDBs) Using Parallel Upgrade Utility

These examples show how parameter settings change the way that the Parallel
Upgrade Utility performs the upgrade on multiple PDBs.

" Note:

In your upgrade plans, be aware of the following:

e The CDBSROOT defaults to a minimum value of 4 SQL processes, and to a
maximum value of 8

¢ The default value for -N is 2.
°  PDBSSEED always counts as one (1) PDB in the upgrade cycles

e The default for the Parallel Upgrade Utility parameter -n is the value of
the CPU_COUNT parameter

In the following examples, the system is an Oracle Multitenant Oracle Database
system that has a CPU_COUNT value of 24.

Run the Parallel Upgrade Utility without specifying values for the parameters -n and -N
(that is, accept the default value of -N, which is 2, and accept the default value of -n as
the CPU_COUNT parameter value, which is 24). The following parallel processing occurs:

* 12 PDBs are upgraded in parallel (CPU_COUNT divided by 2)

e 2 parallel processes run for each PDB

Specify the value of -n as 64, and -N as 4. The following parallel processing occurs:
» 16 PDBs are upgraded together (64 divided by 4)

* 4 parallel processes run for each PDB

Specify the value of -n as 20, and -N as 2. The following parallel processing occurs:

4-8



Chapter 4
Manual Upgrade Scenarios for Multitenant Architecture Oracle Databases

» 10 PDBs are upgraded together (20 divided by 2)
e 2 parallel processes run for each PDB

Specify the value of -n as 10, and -N as 4. The following parallel processing occurs:

- 2 PDBs are upgraded together (10 divided by 4), rounded down.
e 4 parallel processes run for each PDB

Do not specify the value of -n (that is, accept the default value of -n, which is the value of the
CPU_COUNT parameter), and specify the value of -N as 1. The following parallel processing
occurs:

* 24 PDBs are upgraded together (CPU_COUNT value divided by 1)
e 1 process runs for each PDB

Specify a value for -n as 20, and do not specify the value for -N (that is, accept the default
value of -N, which is 2). The following parallel processing occurs:

» 10 PDBs are upgraded together (20 divided by 2)

e 2 parallel processes run for each PDB

Manual Upgrade Scenarios for Multitenant Architecture Oracle
Databases

ORACLE

To prepare for manual upgrades, review the manual upgrade scenarios and procedures for
Oracle Database deployed with multitenant architecture.

Starting with Oracle Database 12c¢, multitenant architecture enables Oracle Database
deployments using multitenant container databases (CDB) that contain pluggable databases
(PDBSs). All Oracle Database releases earlier than Oracle Database 12c Release 1 (12.1.0.1)
use non-CDB architecture.

Caution:

You cannot downgrade a database after you have set the compatible initialization
parameter to 12.1.0.2 or later releases. A downgrade is possible for a pluggable
database (PDB) only if the compatibility is set to 12.1.0.1. There can still be
restrictions on downgrading.

Before starting an upgrade, and before starting a downgrade, Oracle strongly
recommends that you upgrade your source and target databases to the most recent
release update or release update revision.

e About Oracle Multitenant Oracle Database Upgrades
You can upgrade Oracle Databases installed on multitenant architecture either in parallel,
or in sequence.

e Coordinate Upgrades of Proxy PDBs with Multitenant Upgrades
Coordinate upgrades of the CDB so that proxy PDB and PDB targets are the same
version.

4-9



Chapter 4
Manual Upgrade Scenarios for Multitenant Architecture Oracle Databases

* Manually Upgrading a Multitenant Container Oracle Database (CDB)
The procedure in this section provides steps for upgrading a CDB manually using
a command-line procedure.

* About Upgrading PDBs Using the Parallel Upgrade Utility with Priority Lists
In Oracle Database 12.2 and later releases, you can upgrade PDBs using a
priority list to upgrade a set of PDBs ahead of other PDBs, and you can modify
that upgrade priority.

* About PDB Upgrades Using Priority Lists, Inclusion Lists, and Exclusion Lists
To control how your pluggable databases (PDBs) are upgraded, you can use
inclusion and exclusion lists with priority lists.

* Upgrading Multitenant Architecture In Parallel
Use this technique to upgrade multitenant architecture Oracle Database releases
(Oracle Database 12c Release 1 (12.1.0.1) and later by upgrading container
databases (CDBs), and then upgrading multiple pluggable databases (PDBSs) in
parallel.

* Upgrading Multitenant Architecture Sequentially Using Unplug-Plug
To upgrade pluggable databases (PDBs) that are in an earlier release multitenant
container databases (CDBs), Oracle Database Release 12¢ (12.1.0.1) and later,
you can unplug the PDBs from the earlier release CDB, and plug the PDBs into
the later release CDB.

Related Topics

e Oracle Multitenant Administrator's Guide

About Oracle Multitenant Oracle Database Upgrades

ORACLE

You can upgrade Oracle Databases installed on multitenant architecture either in
parallel, or in sequence.

Starting with Oracle Database 12c release 1 (12.1), Oracle provided multitenant
architecture, which enables the creation and administration of pluggable databases
(PDBs) in a container database (CDB). You can upgrade multitenant architecture
systems using either Oracle Database Upgrade Assistant (DBUA), or using the
Parallel Upgrade Utility to carry out manual upgrades.

There are two techniques for upgrading Oracle Databases using the multitenant
architecture:

* In parallel. With this technique, you carry out one upgrade operation that
upgrades the CDB, and then upgrades the PDBs in parallel.

* Sequentially. With this technique, you install a new release CDB, prepare and
unplug PDBs from the earlier release CDB, plug the PDBs into a later release
CDB, and then complete the upgrade for each PDB.

The following sections provide a high-level summary of each upgrade technique.

Upgrading Oracle Multitenant In Parallel

With the In Parallel technique, you first upgrade CDBSROOT using the Parallel Upgrade
Utility (catctl.pl), using parameters to set the degree of parallel processing and
availability:

e The -n parameter defines how many parallel processes run the upgrade, up to 8.

4-10



Chapter 4
Manual Upgrade Scenarios for Multitenant Architecture Oracle Databases

* The -M parameter determines if the CDBSROOT stays in UPGRADE mode through the entire
upgrade, or becomes available for access after the CDB upgrade is complete. If you do
not run the upgrade with the -M parameter, then when the CDBSROOT upgrade is complete,
PDBs then become available for access as soon as each PDB completes its upgrade. If
you run the upgrade with the -M parameter, then CDBSROOT stays in UPGRADE mode, and
PDBs do not become available until upgrade of all PDBs is complete.

Upgrading Oracle Multitenant In Sequence

With the In Sequence technique, you install the new release multitenant architecture CDB.
Next, in the earlier release multitenant architecture CDB, you issue SQL commands to run
preupgrade scripts to prepare one or more PDBs to upgrade, and shut them down. You then
unplug PDBs, plug them into the new release multenant architecture CDB, and complete the
upgrade sequentially for each PDB.

Coordinate Upgrades of Proxy PDBs with Multitenant Upgrades

Coordinate upgrades of the CDB so that proxy PDB and PDB targets are the same version.

During upgrades, upgrade of a Proxy PDB does not upgrade its corresponding target PDB.
Upgrade of the target PDB has to be done separately.

Manually Upgrading a Multitenant Container Oracle Database (CDB)

ORACLE

The procedure in this section provides steps for upgrading a CDB manually using a
command-line procedure.

You must complete the following steps before using this procedure:

e Install the new release software for Oracle Database
e Prepare the new Oracle home
* Run the Pre-Upgrade Information Tool

Oracle Database 12c introduced multitenant architecture, which enables Oracle Database to
function as a multitenant container database (CDB) with pluggable databases. You can
upgrade the CDB using DBUA, and in the process, upgrade all the pluggable databases
attached to the CDB at the same time. Or, after you install the software for Oracle Database
and prepare the new Oracle home, you can proceed with a manual, command-line upgrade.

1. If you have not done so, run the Pre-Upgrade Information Tool. Review the Pre-Upgrade
Information tool output and correct all issues noted in the output before proceeding.

2. Back up the source database.
3. If you have not done so, prepare the new Oracle home.

4. (Conditional) For Oracle RAC environments only, enter the following commands to set
the initialization parameter value for CLUSTER_DATABASE to FALSE:

ALTER SYSTEM SET CLUSTER DATABASE=FALSE SCOPE=SPFILE;

Restart the database after changing the CLUSTER DATABASE parameter.

5. Shut down the database. (The syntax is the same for a non-CDB and a CDB.)

SQL> SHUTDOWN IMMEDIATE

4-11



ORACLE

Chapter 4
Manual Upgrade Scenarios for Multitenant Architecture Oracle Databases

< Note:

To close a PDB, you can specify it from the CDB root: alter pluggable
database PDBname close.

6. If your operating system is Windows, then complete the following steps:

a.

Stop the OracleService SID Oracle service of the database you are
upgrading, where S1Dis the instance name. For example, if your SIDis ORCL,
then enter the following at a command prompt:

C:\> NET STOP OracleServiceORCL

Delete the Oracle service at a command prompt using ORADIM.

If your S1Dis ORCL, then enter the following command, substituting your SID for
SID.

C:\> ORADIM -DELETE -SID ORCL

Create the service for the new release Oracle Database at a command prompt
using the ORADIM command of the new Oracle Database release.

For example:

C:\> ORADIM -NEW -SID SID -SYSPWD PASSWORD -MAXUSERS USERS
-STARTMODE AUTO -PFILE ORACLE HOME\DATABASE\INITSID.ORA

Most Oracle Database services log on to the system using the privileges of the
Oracle Home User. The service runs with the privileges of this user. The
ORADIM command prompts you for the password to this user account. You
can specify other options using ORADIM.

In this example, if your SID value iS ORCL, your password (SYSPWD) value is
TWxy5791, the maximum number of users (MAXUSERS) value is 10, and the
Oracle home path is C: \ORACLE\PRODUCT\19.1.0\DB, then enter the following
command:

C:\> ORADIM -NEW -SID ORCL -SYSPWD TWxy5791 -MAXUSERS 10
-STARTMODE AUTO -PFILE
C:\ORACLE\PRODUCT\19.1.0\DB\DATABASE\INITORCL.ORA

ORADIM writes a log file to the ORACLE HOME\database directory. The log
file contains the name of the PDB in the multitenant database.

7. If your operating system is Linux or UNIX, then perform the following checks:

a.

b.

Your ORACLE_SID is set correctly
The oratab file points to the Oracle home for Oracle Database 12¢

The following environment variables point to the Oracle Database 12c
directories:

*  ORACLE_HOME

e PATH

4-12



Chapter 4
Manual Upgrade Scenarios for Multitenant Architecture Oracle Databases

d. Any scripts that clients use to set $SORACLE HOME environment variable must point to
the new Oracle home.

# Note:

If you are upgrading an Oracle Real Application Clusters database, then
perform these checks on all nodes where the Oracle Real Application Clusters
database has instances configured.

¢ See Also:

Oracle Database and Oracle Clusterware installation guides for information
about setting other important environment variables on your operating system

8. Log in to the system as the owner of the Oracle home under the new Oracle Database
release.

9. Start SQL*Plus in the new Oracle home from the path Oracle home/rdbms/admin
directory.

For example:
$ cd SORACLE HOME/rdbms/admin
$ pwd

/u0l/app/oracle/product/19.0.0/dbhome 1/rdbms/admin
$ sqglplus

On Windows platforms, to access SQL*Plus, change directory to $ORACLE HOME%/bin

10. Connect to the database that you want to upgrade using an account with SYSDBA
privileges:

SQL> CONNECT / AS SYSDBA
11. Start the CDB in upgrade mode:
SQL> startup upgrade
12. Start the instance by issuing the following command in SQL*Plus:

SQL> alter pluggable database all open upgrade;

If errors appear listing desupported initialization parameters, then make a note of the
desupported initialization parameters and continue with the upgrade. Remove the
desupported initialization parameters the next time you shut down the database.

ORACLE 4-13



Chapter 4
Manual Upgrade Scenarios for Multitenant Architecture Oracle Databases

¢ Note:
Starting up the database in UPGRADE mode does the following:

e Starts up the database with a new version of the Oracle Database
instance

e Restricts logins to SYSDBA
e Disables system triggers

e Performs additional operations that prepare the database for
upgrades

13. Exit SQL*Plus before proceeding to the next step.

For example:
SQL> EXIT

14. To upgrade an entire CDB, run the Parallel Upgrade Utility (catctl.pl) from the
new Oracle home. The Parallel Upgrade Utility provides parallel upgrade options
that reduce downtime. You can run the command by using the command-line
script doupgrade from the new Oracle home.

For example:
Linux:

cd $ORACLE_HOME/bin
. /dbupgrade

Windows:

cd %ORACLE HOME%\bin
dbupgrade

# Note:

e Use the -d option to specify the directory that contains the files that
you want to process. Use the -1 option to specify the directory that
you want to use for spool log files.

e If you are upgrading an entire CDB, and there are errors in
CDBSROOT, then the upgrade aborts.

15. To upgrade a subset of PDBs within a CDB, specify either an inclusion list, or an
exclusion list.

ORACLE 4-14



ORACLE

16.

17.

18.

19.

Chapter 4
Manual Upgrade Scenarios for Multitenant Architecture Oracle Databases

*  This example for a Linux or UNIX system uses an inclusion list to upgrade pPDB1 only:

cd $ORACLE_HOME/bin
./dbupgrade -c 'PDBI1'

e This example for a Windows system uses an exclusion list to upgrade everything in
the CDB except PDB1:

cd $ORACLE HOME\bin
dbupgrade -C "PDB1"

¢ Note:

You can upgrade an individual PDB by unplugging it from the earlier release
CDB, and plugging it into a later release CDB.

For Windows, when you run the dbupgrade command with the inclusion (-c)
or the exclusion (-C) options, you must specify the option with quotes around
the CDB root name and PDB seed name.

For example:

... =C "CDBSROOT PDBS$SEED"

For CDBs, log in to the CDB as SYSDBA and run the command alter pluggable database
all open to make databases available for recompiling code. For example:

$ sqlplus / as sysdba
SQL> alter pluggable database all open;

Run catcon.pl, using the log file base (-b) command to set the log file base to utlrp.
This command starts ut1rp.sql and recompiles any remaining stored PL/SQL and
Java code.

For example:

SORACLE HOME/perl/bin/perl catcon.pl -n 1 -e -b utlrp -d "''."'' utlrp.sql

Because the command specifies -b utlrp, recomplile results are stored in log file
utlrp0.log.

Use the catcon utility to run postupgrade fixups.sql, setting t