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Preface

Oracle Spatial and Graph Topology Data Model and Network Data Model Graph
Developer's Guide provides usage and reference information about the Topology Data
Model and Network Data Model Graph features of Oracle Spatial and Graph, which is
often referred to as just Spatial and Graph.

• Audience

• Documentation Accessibility

• Related Documents

• Conventions

Audience
This guide is intended for those who need to work with data about nodes, edges, and
faces in a topology or nodes, links, and paths in a network.

You are assumed to be familiar with the main spatial concepts, data types, and
operations, as documented in Oracle Spatial and Graph Developer's Guide.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Related Documents
For more information, see Oracle Spatial and Graph Developer's Guide.

Conventions
The following text conventions are used in this document:
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Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.
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Part I
Topology Data Model

This part covers the topology data model feature of Oracle Spatial and Graph.

This document has two main parts:

• Part I provides conceptual, usage, and reference information about the Topology Data
Model feature of Oracle Spatial and Graph.

• Network Data Model provides conceptual, usage, and reference information about the
Network Data Model Graph feature of Oracle Spatial and Graph.

Part I contains the following chapters:

• Topology Data Model Overview
The Topology Data Model feature of Oracle Spatial and Graph lets you work with data
about nodes, edges, and faces in a topology.

• Editing Topologies
Node and edge data in a topology can be edited. The operations include adding, moving,
and removing nodes and edges, and updating the coordinates of an edge.

• SDO_TOPO Package Subprograms
The MDSYS.SDO_TOPO package contains subprograms (functions and procedures)
that constitute part of the PL/SQL application programming interface (API) for the Spatial
and Graph Topology Data Model feature. This package mainly contains subprograms for
creating and managing topologies.

• SDO_TOPO_MAP Package Subprograms
The MDSYS.SDO_TOPO_MAP package contains subprograms (functions and
procedures) that constitute part of the PL/SQL application programming interface (API)
for the Spatial and Graph Topology Data Model feature.



1
Topology Data Model Overview

The Topology Data Model feature of Oracle Spatial and Graph lets you work with data about
nodes, edges, and faces in a topology.

Note:

Topology Data Model is only supported if Oracle JVM is enabled on your Oracle
Autonomous Database instance in shared deployments. To enable Oracle JVM, see 
Use Oracle Java in Using Oracle Autonomous Database on Shared Exadata
Infrastructure for more information.

For example, United States Census geographic data is provided in terms of nodes, chains,
and polygons, and this data can be represented using the Spatial and Graph Topology Data
Model feature. You can store information about topological elements and geometry layers in
Oracle Spatial and Graph tables and metadata views. You can then perform certain spatial
operations referencing the topological elements, for example, finding which chains (such as
streets) have any spatial interaction with a specific polygon entity (such as a park).

This chapter describes the spatial data structures and data types that support the Topology
Data Model feature, and what you need to do to populate and manipulate the structures. You
can use this information to write a program to convert your topological data into formats
usable with Spatial and Graph.

Note:

Although this chapter discusses some topology terms as they relate to Oracle
Spatial and Graph, it assumes that you are familiar with basic topology concepts.

It also assumes that you are familiar with the main concepts, data types, and
operations as documented in Oracle Spatial and Graph Developer's Guide.

• Main Steps in Using Topology Data
This topic summarizes the main steps for working with topology data.

• Topology Data Model Concepts
Topology is a branch of mathematics concerned with objects in space. Topological
relationships include such relationships as contains, inside, covers, covered by, touch,
and overlap with boundaries intersecting.

• Topology Geometries and Layers
A topology geometry (also referred to as a feature) is a spatial representation of a real
world object. For example, Main Street and Walden State Park might be the names of
topology geometries.
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• Topology Geometry Layer Hierarchy
In some topologies, the topology geometry layers (feature layers) have one or
more parent-child relationships in a topology hierarchy. That is, the layer at the
topmost level consists of features in its child layer at the next level down in the
hierarchy; the child layer might consist of features in its child layer at the next layer
farther down; and so on.

• Topology Data Model Tables
To use the Spatial and Graph topology capabilities, you must first insert data into
special edge, node, and face tables, which are created by Spatial and Graph when
you create a topology.

• Topology Data Types
The main data type associated with the Topology Data Model is
SDO_TOPO_GEOMETRY, which describes a topology geometry.

• Topology Metadata Views
There are two sets of topology metadata views for each schema (user):
xxx_SDO_TOPO_INFO and xxx_SDO_TOPO_METADATA, where xxx can be
USER or ALL. These views are read-only to users; they are created and
maintained by Spatial and Graph.

• Topology Application Programming Interface
The Topology Data Model application programming interface (API) consists of the
following.

• Exporting and Importing Topology Data
You can export a topology from one database and import it into a new topology
with the same name, structures, and data in another database, as long as the
target database does not already contain a topology with the same name as the
exported topology.

• Cross-Schema Topology Usage and Editing
This topic contains requirements and guidelines for using and editing topologies
when multiple database users (schemas) are involved.

• Function-Based Indexes Not Supported
You cannot create a function-based index on a column of type
SDO_TOPO_GEOMETRY.

• Topology Examples (PL/SQL)
This topic presents simplified PL/SQL examples that perform Topology Data Model
operations.

• README File for Spatial and Graph and Related Features

1.1 Main Steps in Using Topology Data
This topic summarizes the main steps for working with topology data.

It refers to important concepts, structures, and operations that are described in detail
in other topics.

The specific main steps depend on which of two basic approaches you follow, which
depend on the kind of data you will use to build the topology:

• If you have data about the edges, nodes, and faces (but not spatial geometry
data), follow the steps in Using a Topology Built from Topology Data.

Chapter 1
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• If you will build the topology from spatial geometries that will become topology features,
follow the steps in Using a Topology Built from Spatial Geometries.

You can use the Topology Data Model PL/SQL and Java APIs to update the topology (for
example, to change the data about an edge, node, or face). The PL/SQL API for most editing
operations is the SDO_TOPO_MAP package, which is documented in SDO_TOPO_MAP
Package Subprograms. The Java API is described in Topology Data Model Java Interface.

• Using a Topology Built from Topology Data

• Using a Topology Built from Spatial Geometries

1.1.1 Using a Topology Built from Topology Data
The main steps for working with a topology built from topology data are as follows:

1. Create the topology, using the SDO_TOPO.CREATE_TOPOLOGY procedure. This
causes the <topology-name>_EDGE$, <topology-name>_NODE$, <topology-
name>_FACE$, and <topology-name>_HISTORY$ tables to be created. (These tables
are described in Edge Information Table, Node Information Table, Face Information Table,
and History Information Table, respectively.)

2. Load topology data into the node, edge, and face tables created in Step 1. This is
typically done using a bulk-load utility, but it can be done using SQL INSERT statements.

3. Create a feature table for each type of topology geometry layer in the topology. For
example, a city data topology might have separate feature tables for land parcels, streets,
and traffic signs.

4. Associate the feature tables with the topology, using the 
SDO_TOPO.ADD_TOPO_GEOMETRY_LAYER procedure for each feature table. This
causes the <topology-name>_RELATION$ table to be created. (This table is described in 
Relationship Information Table.)

5. Initialize topology metadata, using the SDO_TOPO.INITIALIZE_METADATA procedure.
(This procedure also creates spatial indexes on the <topology-name>_EDGE$,
<topology-name>_NODE$, and <topology-name>_FACE$ tables, and additional B-tree
indexes on the <topology-name>_EDGE$ and <topology-name>_NODE$ tables.)

6. Load the feature tables using the SDO_TOPO_GEOMETRY constructor. (This
constructor is described in SDO_TOPO_GEOMETRY Constructors.)

7. Query the topology data (for example, using one of topology operators described in 
Topology Operators).

8. Optionally, edit topology data using the PL/SQL or Java application programming
interfaces (APIs).

Topology Built from Topology Data contains a PL/SQL example that performs these main
steps.

1.1.2 Using a Topology Built from Spatial Geometries
To build a topology from spatial geometries, you must first perform the standard operations
for preparing data for use with Oracle Spatial and Graph, as described in Oracle Spatial and
Graph Developer's Guide:

1. Create the spatial tables.

2. Update the spatial metadata (USER_SDO_GEOM_METADATA view).

Chapter 1
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3. Load data into the spatial tables.

4. Validate the spatial data.

5. Create the spatial indexes.

The main steps for working with a topology built from Oracle Spatial and Graph
geometries are as follows:

1. Create the topology, using the SDO_TOPO.CREATE_TOPOLOGY procedure.
This causes the <topology-name>_EDGE$, <topology-name>_NODE$,
<topology-name>_FACE$, and <topology-name>_HISTORY$ tables to be
created. (These tables are described in Edge Information Table, Node Information
Table, Face Information Table, and History Information Table, respectively.)

2. Create the universe face (F0, defined in Topology Data Model Concepts).

3. Create a feature table for each type of topology geometry layer in the topology. For
example, a city data topology might have separate feature tables for land parcels,
streets, and traffic signs.

4. Associate the feature tables with the topology, using the 
SDO_TOPO.ADD_TOPO_GEOMETRY_LAYER procedure for each feature table.
This causes the <topology-name>_RELATION$ table to be created. (This table is
described in Relationship Information Table.)

5. Initialize topology metadata, using the SDO_TOPO.INITIALIZE_METADATA
procedure. (This procedure also creates spatial indexes on the <topology-
name>_EDGE$, <topology-name>_NODE$, and <topology-name>_FACE$
tables, and additional B-tree indexes on the <topology-name>_EDGE$ and
<topology-name>_NODE$ tables.)

6. Create a TopoMap object and load the whole topology into cache.

7. Load the feature tables, inserting data from the spatial tables and using the 
SDO_TOPO_MAP.CREATE_FEATURE function.

8. Query the topology data (using one of topology operators described in Topology
Operators).

9. Optionally, edit topology data using the PL/SQL or Java application programming
interfaces (APIs).

Topology Built from Spatial Geometries contains a PL/SQL example that performs
these main steps.

1.2 Topology Data Model Concepts
Topology is a branch of mathematics concerned with objects in space. Topological
relationships include such relationships as contains, inside, covers, covered by, touch,
and overlap with boundaries intersecting.

Topological relationships remain constant when the coordinate space is deformed,
such as by twisting or stretching. (Examples of relationships that are not topological
include length of, distance between, and area of.)

The basic elements in a topology are its nodes, edges, and faces.

A node, represented by a point, can be isolated or it can be used to bound edges. Two
or more edges meet at a non-isolated node. A node has a coordinate pair associated
with it that describes the spatial location for that node. Examples of geographic entities

Chapter 1
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that might be represented as nodes include start and end points of streets, places of
historical interest, and airports (if the map scale is sufficiently large).

An edge is bounded by two nodes: the start (origin) node and the end (terminal) node. An
edge has an associated geometric object, usually a coordinate string that describes the
spatial representation of the edge. An edge may have several vertices making up a line
string. (Circular arcs are not supported for topologies.) Examples of geographic entities that
might be represented as edges include segments of streets and rivers.

The order of the coordinates gives a direction to an edge, and direction is important in
determining topological relationships. The positive direction agrees with the orientation of the
underlying edge, and the negative direction reverses this orientation. Each orientation of an
edge is referred to as a directed edge, and each directed edge is the mirror image of its
other directed edge. The start node of the positive directed edge is the end node of the
negative directed edge. An edge also lies between two faces and has references to both of
them. Each directed edge contains a reference to the next edge in the contiguous perimeter
of the face on its left side.A face, corresponding to a polygon, has a reference to one directed
edge of its outer boundary. If any island nodes or island edges are present, the face also has
a reference to one directed edge on the boundary of each island. Examples of geographic
entities that might be represented as faces include parks, lakes, counties, and states.

Figure 1-1 shows a simplified topology containing nodes, edges, and faces. The arrowheads
on each edge indicate the positive direction of the edge (or, more precisely, the orientation of
the underlying line string or curve geometry for positive direction of the edge).

Figure 1-1    Simplified Topology
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Notes on Figure 1-1:
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• E elements (E1, E2, and so on) are edges, F elements (F0, F1, and so on) are
faces, and N elements (N1, N2, and so on) are nodes.

• F0 (face zero) is created for every topology. It is the universe face containing
everything else in the topology. There is no geometry associated with the universe
face. F0 has the face ID value of -1 (negative 1).

• There is a node created for every point geometry and for every start and end node
of an edge. For example, face F1 has only an edge (a closed edge), E1, that has
the same node as the start and end nodes (N1). F1 also has edge E25, with start
node N21 and end node N22.

• An isolated node (also called an island node) is a node that is isolated in a face.
For example, node N4 is an isolated node in face F2.

• An isolated edge (also called an island edge) is an edge that is isolated in a
face. For example, edge E25 is an isolated edge in face F1.

• A loop edge is an edge that has the same node as its start node and end node.
For example, edge E1 is a loop edge starting and ending at node N1.

• An edge cannot have an isolated (island) node on it. The edge can be broken up
into two edges by adding a node on the edge. For example, if there was originally
a single edge between nodes N16 and N18, adding node N17 resulted in two
edges: E6 and E7.

• Information about the topological relationships is stored in special edge, face, and
node information tables. For example, the edge information table contains the
following information about edges E9 and E10. (Note the direction of the
arrowheads for each edge.) The next and previous edges are based on the left
and right faces of the edge.

For edge E9, the start node is N15 and the end node is N14, the next left edge is
E19 and the previous left edge is -E21, the next right edge is -E22 and the
previous right edge is E20, the left face is F3 and the right face is F6.

For edge E10, the start node is N13 and the end node is N14, the next left edge is
-E20 and the previous left edge is E18, the next right edge is E17 and the previous
right edge is -E19, the left face is F7 and the right face is F4.

For additional examples of edge-related data, including an illustration and
explanations, see Edge Information Table.

Figure 1-2 shows the same topology illustrated in Figure 1-1, but it adds a grid and unit
numbers along the x-axis and y-axis. Figure 1-2 is useful for understanding the output
of some of the examples in SDO_TOPO Package Subprograms and 
SDO_TOPO_MAP Package Subprograms.
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Figure 1-2    Simplified Topology, with Grid Lines and Unit Numbers
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• Tolerance in the Topology Data Model

1.2.1 Tolerance in the Topology Data Model
Tolerance is used to associate a level of precision with spatial data. Tolerance reflects the
distance that two points can be apart and still be considered the same (for example, to
accommodate rounding errors). The tolerance value must be a positive number greater than
zero.

However, in the Topology Data Model, tolerance can have two meanings depending on the
operation being performed: one meaning is the traditional Oracle Spatial and Graph definition
of tolerance, and the other is a fixed tolerance value of 10E-15.

• The tolerance value specified in the call to the SDO_TOPO.CREATE_TOPOLOGY
procedure refers to the traditional Oracle Spatial and Graph definition, as explained in 
Oracle Spatial and Graph Developer's Guide. This value is used when indexes are
created in the node, edge, and face tables, and when spatial operators are used to query
these tables.

• The tolerance value used for internal computations (for example, finding edge
intersections) during topology editing operations is always 10E-15 (based on Java double
precision arithmetic). This value is used during the validation checks performed by the 
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SDO_TOPO_MAP.VALIDATE_TOPO_MAP and 
SDO_TOPO_MAP.VALIDATE_TOPOLOGY functions.

Thus, for example, an edge geometry that is considered valid by the 
SDO_TOPO_MAP.VALIDATE_TOPO_MAP or 
SDO_TOPO_MAP.VALIDATE_TOPOLOGY function might not be valid if that geometry
is passed to the SDO_GEOM.VALIDATE_GEOMETRY_WITH_CONTEXT function.

1.3 Topology Geometries and Layers
A topology geometry (also referred to as a feature) is a spatial representation of a
real world object. For example, Main Street and Walden State Park might be the
names of topology geometries.

The geometry is stored as a set of topological elements (nodes, edges, and faces),
which are sometimes also referred to as primitives. Each topology geometry has a
unique ID (assigned by Spatial and Graph when records are imported or loaded)
associated with it.

A topology geometry layer consists of topology geometries, usually of a specific
topology geometry type, although it can be a collection of multiple types (see 
Collection Layers for information about collection layers). For example, Streets might
be the topology geometry layer that includes the Main Street topology geometry, and
State Parks might be the topology geometry layer that includes the Walden State Park
topology geometry. Each topology geometry layer has a unique ID (assigned by
Spatial and Graph) associated with it. The data for each topology geometry layer is
stored in a feature table. For example, a feature table named CITY_STREETS might
contain information about all topology geometries (individual roads or streets) in the
Streets topology geometry layer.

Each topology geometry (feature) is defined as an object of type
SDO_TOPO_GEOMETRY (described in SDO_TOPO_GEOMETRY Type), which
identifies the topology geometry type, topology geometry ID, topology geometry layer
ID, and topology ID for the topology.

Topology metadata is automatically maintained by Spatial and Graph in the
USER_SDO_TOPO_METADATA and ALL_SDO_TOPO_METADATA views, which are
described in xxx_SDO_TOPO_METADATA Views. The USER_SDO_TOPO_INFO and
ALL_SDO_TOPO_INFO views (described in xxx_SDO_TOPO_INFO Views) contain a
subset of this topology metadata.

• Features

• Collection Layers

1.3.1 Features
Often, there are fewer features in a topology than there are topological elements
(nodes, edges, and faces). For example, a road feature may consist of many edges,
an area feature such as a park may consist of many faces, and some nodes may not
be associated with point features. Figure 1-3 shows point, line, and area features
associated with the topology that was shown in Figure 1-1 in Topology Data Model
Concepts.
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Figure 1-3    Features in a Topology
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Figure 1-3 shows the following kinds of features in the topology:

• Point features (traffic signs), shown as dark circles: S1, S2, S3, and S4
• Linear features (roads or streets), shown as dashed lines: R1, R2, R3, and R4
• Area features (land parcels), shown as rectangles: P1, P2, P3, P4, and P5

Land parcel P5 does not include the shaded area within its area. (Specifically, P5 includes
face F1 but not face F9. These faces are shown in Figure 1-1 in Topology Data Model
Concepts.)

Example 1-12 in Topology Built from Topology Data defines these features.

1.3.2 Collection Layers
A collection layer is a topology geometry layer that can contain topological elements of
different topology geometry types. For example, using the CITY_DATA topology from the
examples in Topology Examples (PL/SQL), you could create a collection layer to contain
specific land parcel, city street, and traffic sign elements.

To create a collection layer, follow essentially the same steps for creating other types of
layers. Create a feature table for the layer, as in the following example:

CREATE TABLE collected_features ( -- Selected heterogeneous features
  feature_name VARCHAR2(30) PRIMARY KEY,
  feature SDO_TOPO_GEOMETRY);

Associate the feature table with the topology, specifying COLLECTION for the
topo_geometry_layer_type parameter in the call to the 
SDO_TOPO.ADD_TOPO_GEOMETRY_LAYER procedure, as in the following example:
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EXECUTE SDO_TOPO.ADD_TOPO_GEOMETRY_LAYER('CITY_DATA', COLLECTED_FEATURES', 
'FEATURE', 'COLLECTION');

To load the feature table for the collection layer, insert the necessary rows, as shown
in Example 1-1.

Example 1-1    Loading the Feature Table for a Collection Layer

-- Take R5 from the CITY_STREETS layer.
INSERT INTO collected_features VALUES(
  'C_R5',
  SDO_TOPO_GEOMETRY('CITY_DATA',
    2,  -- tg_type = line/multiline
    4,  -- tg_layer_id
    SDO_TOPO_OBJECT_ARRAY(
      SDO_TOPO_OBJECT(20, 2),
      SDO_TOPO_OBJECT(-9, 2)))
);
 
-- Take S3 from the TRAFFIC_SIGNS layer.
INSERT INTO collected_features VALUES(
  'C_S3',
  SDO_TOPO_GEOMETRY('CITY_DATA',
    1,  -- tg_type = point/multipoint 
    4,  -- topo layer id
    SDO_TOPO_OBJECT_ARRAY(
       SDO_TOPO_OBJECT(6, 1)))
);
 
-- Take P3 from the LAND_PARCELS layer.
INSERT INTO collected_features VALUES(
  'C_P3',
  SDO_TOPO_GEOMETRY('CITY_DATA',
    3,  -- tg_type = (multi)polygon
    4,
    SDO_TOPO_OBJECT_ARRAY(
      SDO_TOPO_OBJECT(5, 3),
      SDO_TOPO_OBJECT(8, 3)))
);
 
-- Create a collection from a polygon and a point.
INSERT INTO collected_features VALUES(
  'C1',
  SDO_TOPO_GEOMETRY('CITY_DATA',
    4,  -- tg_type = collection
    4,
    SDO_TOPO_OBJECT_ARRAY(
      SDO_TOPO_OBJECT(5, 3),
      SDO_TOPO_OBJECT(6, 1)))
);
 
-- Create a collection from a polygon and a line.
INSERT INTO collected_features VALUES(
  'C2',
  SDO_TOPO_GEOMETRY('CITY_DATA',
    4,  -- tg_type = collection
    4,
    SDO_TOPO_OBJECT_ARRAY(
      SDO_TOPO_OBJECT(8, 3),
      SDO_TOPO_OBJECT(10, 2)))
);
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-- Create a collection from a line and a point.
INSERT INTO collected_features VALUES(
  'C3',
  SDO_TOPO_GEOMETRY('CITY_DATA',
     4,  -- tg_type = collection
     4,
     SDO_TOPO_OBJECT_ARRAY(
       SDO_TOPO_OBJECT(-5, 2),
       SDO_TOPO_OBJECT(10, 1)))
);

1.4 Topology Geometry Layer Hierarchy
In some topologies, the topology geometry layers (feature layers) have one or more parent-
child relationships in a topology hierarchy. That is, the layer at the topmost level consists of
features in its child layer at the next level down in the hierarchy; the child layer might consist
of features in its child layer at the next layer farther down; and so on.

For example, a land use topology might have the following topology geometry layers at
different levels of hierarchy:

• States at the highest level, which consists of features from its child layer, Counties

• Counties at the next level down, which consists of features from its child layer, Tracts

• Tracts at the next level down, which consists of features from its child layer, Block Groups

• Block Groups at the next level down, which consists of features from its child layer, Land
Parcels

• Land Parcels at the lowest level of the hierarchy

If the topology geometry layers in a topology have this hierarchical relationship, it is far more
efficient if you model the layers as hierarchical than if you specify all topology geometry
layers at a single level (that is, with no hierarchy). For example, it is more efficient to
construct SDO_TOPO_GEOMETRY objects for counties by specifying only the tracts in the
county than by specifying all land parcels in all block groups in all tracts in the county.

The lowest level (for the topology geometry layer containing the smallest kinds of features) in
a hierarchy is level 0, and successive higher levels are numbered 1, 2, and so on. Topology
geometry layers at adjacent levels of a hierarchy have a parent-child relationship. Each
topology geometry layer at the higher level is the parent layer for one layer at the lower level,
which is its child layer. A parent layer can have only one child layer, but a child layer can
have one or more parent layers. Using the preceding example, the Counties layer can have
only one child layer, Tracts; however, the Tracts layer could have parent layers named
Counties and Water Districts.
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Note:

Topology geometry layer hierarchy is somewhat similar to network hierarchy,
which is described in Network Hierarchy; however, there are significant
differences, and you should not confuse the two. For example, the lowest
topology geometry layer hierarchy level is 0, and the lowest network
hierarchy level is 1; and in a topology geometry layer hierarchy each parent
must have one child and each child can have many parents, while in a
network hierarchy each parent can have many children and each child must
have one parent.

Figure 1-4 shows the preceding example topology geometry layer hierarchy. Each
level of the hierarchy shows the level number and the topology geometry layer in that
level.

Figure 1-4    Topology Geometry Layer Hierarchy

Level 0 Land Parcels

Level 1 Block Groups

Level 2 Tracts

Level 3 Counties

Level 4 States

Example 1-2    Modeling a Topology Geometry Layer Hierarchy

To model topology geometry layers as hierarchical, specify the child layer in the
child_layer_id parameter when you call the 
SDO_TOPO.ADD_TOPO_GEOMETRY_LAYER procedure to add a parent topology
geometry layer to the topology. Add the lowest-level (level 0) topology geometry layer
first; then add the level 1 layer, specifying the level 0 layer as its child; then add the
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level 2 layer, specifying the level 1 layer as its child; and so on. Example 1-2 shows five
topology geometry layers being added so that the 5-level hierarchy is established.

-- Create the topology. (Null SRID in this example.)
EXECUTE SDO_TOPO.CREATE_TOPOLOGY('LAND_USE_HIER', 0.00005);
 
-- Create feature tables.
CREATE TABLE land_parcels ( -- Land parcels (selected faces)
  feature_name VARCHAR2(30) PRIMARY KEY,
  feature SDO_TOPO_GEOMETRY);
 
CREATE TABLE block_groups (
  feature_name VARCHAR2(30) PRIMARY KEY,
  feature SDO_TOPO_GEOMETRY);
 
CREATE TABLE tracts (
  feature_name VARCHAR2(30) PRIMARY KEY,
  feature SDO_TOPO_GEOMETRY);
 
CREATE TABLE counties (
  feature_name VARCHAR2(30) PRIMARY KEY,
  feature SDO_TOPO_GEOMETRY);
 
CREATE TABLE states (
  feature_name VARCHAR2(30) PRIMARY KEY,
  feature SDO_TOPO_GEOMETRY);
 
-- (Other steps not shown here, such as populating the feature tables
-- and initializing the metadata.)
. . .
-- Associate feature tables with the topology; include hierarchy information.

DECLARE
  land_parcels_id NUMBER;
  block_groups_id NUMBER;
  tracts_id NUMBER;
  counties_id NUMBER;
BEGIN
SDO_TOPO.ADD_TOPO_GEOMETRY_LAYER('LAND_USE_HIER', 'LAND_PARCELS',
  'FEATURE','POLYGON');
SELECT tg_layer_id INTO land_parcels_id FROM user_sdo_topo_info 
  WHERE topology = 'LAND_USE_HIER' AND table_name = 'LAND_PARCELS';
SDO_TOPO.ADD_TOPO_GEOMETRY_LAYER('LAND_USE_HIER', 'BLOCK_GROUPS',
  'FEATURE','POLYGON', NULL, land_parcels_id);
SELECT tg_layer_id INTO block_groups_id FROM user_sdo_topo_info 
  WHERE topology = 'LAND_USE_HIER' AND table_name = 'BLOCK_GROUPS';
SDO_TOPO.ADD_TOPO_GEOMETRY_LAYER('LAND_USE_HIER', 'TRACTS',
  'FEATURE','POLYGON', NULL, block_groups_id);
SELECT tg_layer_id INTO tracts_id FROM user_sdo_topo_info 
  WHERE topology = 'LAND_USE_HIER' AND table_name = 'TRACTS';
SDO_TOPO.ADD_TOPO_GEOMETRY_LAYER('LAND_USE_HIER', 'COUNTIES',
  'FEATURE','POLYGON', NULL, tracts_id);
SELECT tg_layer_id INTO counties_id FROM user_sdo_topo_info 
  WHERE topology = 'LAND_USE_HIER' AND table_name = 'COUNTIES';
SDO_TOPO.ADD_TOPO_GEOMETRY_LAYER('LAND_USE_HIER', 'STATES',
  'FEATURE','POLYGON', NULL, counties_id);
END;/

Within each level above level 0, each layer can contain features built from features at the
next lower level (as is done in Example 1-2), features built from topological elements (faces,
nodes, edges), or a combination of these. For example, a tracts layer can contain tracts built
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from block groups or tracts built from faces, or both. However, each feature within the
layer must be built only either from features from the next lower level or from
topological elements. For example, a specific tract can consist of block groups or it can
consist of faces, but it cannot consist of a combination of block groups and faces.

To insert or update topology geometry objects in feature tables for the levels in a
hierarchy, use the appropriate forms of the SDO_TOPO_GEOMETRY constructor.
Feature tables are described in Topology Geometries and Layers, and
SDO_TOPO_GEOMETRY constructors are described in SDO_TOPO_GEOMETRY
Constructors.

Note that the TOPO_ID and TOPO_TYPE attributes in the relationship information
table have special meanings when applied to parent layers in a topology with a
topology geometry layer hierarchy. See the explanations of these attributes in 
Table 1-5 in Relationship Information Table.

1.5 Topology Data Model Tables
To use the Spatial and Graph topology capabilities, you must first insert data into
special edge, node, and face tables, which are created by Spatial and Graph when
you create a topology.

The edge, node, and face tables are described in Edge Information Table, Node
Information Table, and Face Information Table, respectively.

Spatial and Graph automatically maintains a relationship information (<topology-
name>_RELATION$) table for each topology, which is created the first time that a
feature table is associated with a topology (that is, at the first call to the 
SDO_TOPO.ADD_TOPO_GEOMETRY_LAYER procedure that specifies the
topology). The relationship information table is described in Relationship Information
Table.

Figure 1-5 shows the role of the relationship information table in connecting
information in a feature table with information in its associated node, edge, or face
table.

Figure 1-5    Mapping Between Feature Tables and Topology Tables
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As shown in Figure 1-5, the mapping between feature tables and the topology node,
edge, and face tables occurs through the <topology-name>_RELATION$ table. In
particular:

• Each feature table includes a column of type SDO_TOPO_GEOMETRY. This type
includes a TG_LAYER_ID attribute (the unique ID assigned by Oracle Spatial and
Graph when the layer is created), as well as a TG_ID attribute (the unique ID
assigned to each feature in a layer). The values in these two columns have

Chapter 1
Topology Data Model Tables

1-14



corresponding values in the TG_LAYER_ID and TG_ID columns in the <topology-
name>_RELATION$ table.

• Each feature has one or more rows in the <topology-name>_RELATION$ table.

• Given the TG_LAYER_ID and TG_ID values for a feature, the set of nodes, faces, and
edges associated with the feature can be determined by matching the TOPO_ID value
(the node, edge, or face ID) in the <topology-name>_RELATION$ table with the
corresponding ID value in the <topology-name>_NODE$, <topology-name>_EDGE$, or
<topology-name>_FACE$ table.

The following considerations apply to schema, table, and column names that are stored in
any Oracle Spatial and Graph metadata views. For example, these considerations apply to
the names of edge, node, face, relationship, and history information tables, and to the names
of any columns in these tables and schemas for these tables that are stored in the topology
metadata views described in Topology Metadata Views.

• The name must contain only letters, numbers, and underscores. For example, the name
cannot contain a space ( ), an apostrophe ('), a quotation mark ("), or a comma (,).

• All letters in the names are converted to uppercase before the names are stored in
metadata views or before the tables are accessed. This conversion also applies to any
schema name specified with the table name.

• Edge Information Table

• Node Information Table

• Face Information Table

• Relationship Information Table

• History Information Table

1.5.1 Edge Information Table
You must store information about the edges in a topology in the <topology-name>_EDGE$
table, where <topology-name> is the name of the topology as specified in the call to the 
SDO_TOPO.CREATE_TOPOLOGY procedure. Each edge information table has the columns
shown in Table 1-1.

Table 1-1    Columns in the <topology-name>_EDGE$ Table

Column Name Data Type Description

EDGE_ID NUMBER Unique ID number for this edge

START_NODE_ID NUMBER ID number of the start node for
this edge

END_NODE_ID NUMBER ID number of the end node for
this edge

NEXT_LEFT_EDGE_ID NUMBER ID number (signed) of the next
left edge for this edge

PREV_LEFT_EDGE_ID NUMBER ID number (signed) of the
previous left edge for this edge

NEXT_RIGHT_EDGE_ID NUMBER ID number (signed) of the next
right edge for this edge

PREV_RIGHT_EDGE_ID NUMBER ID number (signed) of the
previous right edge for this edge
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Table 1-1    (Cont.) Columns in the <topology-name>_EDGE$ Table

Column Name Data Type Description

LEFT_FACE_ID NUMBER ID number of the left face for this
edge

RIGHT_FACE_ID NUMBER ID number of the right face for
this edge

GEOMETRY SDO_GEOMETRY Geometry object (line string)
representing this edge, listing the
coordinates in the natural order
for the positive directed edge

The NEXT_LEFT_EDGE_ID and NEXT_RIGHT_EDGE_ID values refer to the next
directed edges in the counterclockwise delineation of the perimeters of the left and
right faces, respectively. The PREV_LEFT_EDGE_ID and PREV_RIGHT_EDGE_ID
values refer to the previous directed edges in the counterclockwise delineation of the
perimeters of the left and right faces, respectively. The LEFT_FACE_ID value refers to
the face to the left of the positive directed edge, and the RIGHT_FACE_ID value refers
to the face to the left of the negative directed edge. For any numeric ID value, the sign
indicates which orientation of the target edge is being referred to.

Figure 1-6 shows nodes, edges, and faces that illustrate the relationships among the
various ID columns in the edge information table. (In Figure 1-6, thick lines show the
edges, and thin lines with arrowheads show the direction of each edge.)

Figure 1-6    Nodes, Edges, and Faces

N1

N3 N4

N2

E3

E2

E4

E5

E6

E8

F1

F2

E1 E7

Table 1-2 shows the ID column values in the edge information table for edges E4 and
E8 in Figure 1-6. (For clarity, Table 1-2 shows ID column values with alphabetical
characters, such as E4 and N1; however, the ID columns actually contain numeric
values only, specifically the numeric ID value associated with each named object.)
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Table 1-2    Edge Table ID Column Values

EDGE_I
D

START_N
ODE_ID

END_NO
DE_ID

NEXT_L
EFT_ED
GE_ID

PREV_L
EFT_ED
GE_ID

NEXT_RI
GHT_ED
GE_ID

PREV_RI
GHT_ED
GE_ID

LEFT_F
ACE_ID

RIGHT_F
ACE_ID

E4 N1 N2 -E5 E3 E2 -E6 F1 F2

E8 N4 N3 -E8 -E8 E8 E8 F2 F2

In Figure 1-6 and Table 1-2:

• The start node and end node for edge E4 are N1 and N2, respectively. The next left edge
for edge E4 is E5, but its direction is the opposite of edge E4, and therefore the next left
edge for E4 is stored as -E5 (negative E5).

• The previous left edge for edge E4 is E3, and because it has the same direction as edge
E4, the previous left edge for E4 is stored as E3.

• The next right face is determined using the negative directed edge of E4. This can be
viewed as reversing the edge direction and taking the next left edge and previous left
edge. In this case, the next right edge is E2 and the previous right edge is -E6 (the
direction of edge E6 is opposite the negative direction of edge E4). For edge E4, the left
face is F1 and the right face is F2.

• Edges E1 and E7 are neither leftmost nor rightmost edges with respect to edge E4, and
therefore they do not appear in the edge table row associated with edge E4.

1.5.2 Node Information Table
You must store information about the nodes in a topology in the <topology-name>_NODE$
table, where <topology-name> is the name of the topology as specified in the call to the 
SDO_TOPO.CREATE_TOPOLOGY procedure. Each node information table has the columns
shown in Table 1-3.

Table 1-3    Columns in the <topology-name>_NODE$ Table

Column Name Data Type Description

NODE_ID NUMBER Unique ID number for this node

EDGE_ID NUMBER ID number (signed) of the edge
(if any) associated with this node

FACE_ID NUMBER ID number of the face (if any)
associated with this node

GEOMETRY SDO_GEOMETRY Geometry object (point)
representing this node

For each node, the EDGE_ID or FACE_ID value (but not both) must be null:

• If the EDGE_ID value is null, the node is an isolated node (that is, isolated in a face).

• If the FACE_ID value is null, the node is not an isolated node, but rather the start node or
end node of an edge.
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1.5.3 Face Information Table
You must store information about the faces in a topology in the <topology-
name>_FACE$ table, where <topology-name> is the name of the topology as
specified in the call to the SDO_TOPO.CREATE_TOPOLOGY procedure. Each face
information table has the columns shown in Table 1-4.

Table 1-4    Columns in the <topology-name>_FACE$ Table

Column Name Data Type Description

FACE_ID NUMBER Unique ID number for this face

BOUNDARY_EDGE_ID NUMBER ID number of the boundary
edge for this face. The sign of
this number (which is ignored
for use as a key) indicates
which orientation is being
used for this boundary
component (positive numbers
indicate the left of the edge,
and negative numbers indicate
the right of the edge).

ISLAND_EDGE_ID_LIST SDO_LIST_TYPE Island edges (if any) in this
face. (The SDO_LIST_TYPE
type is described in 
SDO_LIST_TYPE Type.)

ISLAND_NODE_ID_LIST SDO_LIST_TYPE Island nodes (if any) in this
face. (The SDO_LIST_TYPE
type is described in 
SDO_LIST_TYPE Type.)

MBR_GEOMETRY SDO_GEOMETRY Minimum bounding rectangle
(MBR) that encloses this face.
(This is required, except for
the universe face.) The MBR
must be stored as an
optimized rectangle (a
rectangle in which only the
lower-left and the upper-right
corners are specified). The 
SDO_TOPO.INITIALIZE_MET
ADATA procedure creates a
spatial index on this column.

1.5.4 Relationship Information Table
As you work with topological elements, Spatial and Graph automatically maintains
information about each object in <topology-name>_RELATION$ tables, where
<topology-name> is the name of the topology and there is one such table for each
topology. Each row in the table uniquely identifies a topology geometry with respect to
its topology geometry layer and topology. Each relationship information table has the
columns shown in Table 1-5.
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Table 1-5    Columns in the <topology-name>_RELATION$ Table

Column Name Data Type Description

TG_LAYER_ID NUMBER ID number of the topology
geometry layer to which the
topology geometry belongs

TG_ID NUMBER ID number of the topology
geometry

TOPO_ID NUMBER For a topology that does not
have a topology geometry layer
hierarchy: ID number of a
topological element in the
topology geometry

For a topology that has a
topology geometry layer
hierarchy: Reserved for Oracle
use

TOPO_TYPE NUMBER For a topology that does not
have a topology geometry layer
hierarchy: 1 = node, 2 = edge, 3
= face

For a topology that has a
topology geometry layer
hierarchy: Reserved for Oracle
use

TOPO_ATTRIBUTE VARCHAR2 Reserved for Oracle use

1.5.5 History Information Table
The history information table for a topology contains information about editing operations that
are not recorded in other information tables. Thus, the history information table is not a
comprehensive record of topology modifications. Instead, it contains rows for node, edge, or
face editing operations only when one or more feature tables are associated with the
topology and any of the following conditions are met:

• An existing face or edge is split as a result of the operation.

• A single face or edge is created by merging two faces or two edges as a result of the
operation.

Spatial and Graph automatically maintains information about these operations in <topology-
name>_HISTORY$ tables, where <topology-name> is the name of the topology and there is
one such table for each topology. Each row in the table uniquely identifies an editing
operation on a topological element, although an editing operation (such as using the 
SDO_TOPO_MAP.ADD_POLYGON_GEOMETRY function) can add multiple rows. (Topology
editing is discussed in Editing Topologies .) Each history information table has the columns
shown in Table 1-6.
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Table 1-6    Columns in the <topology-name>_HISTORY$ Table

Column Name Data Type Description

TOPO_TX_ID NUMBER ID number of the transaction
that was started by a call to
the 
SDO_TOPO_MAP.LOAD_TO
PO_MAP function or
procedure or to the
loadWindow or loadTopology
Java method. Each transaction
can consist of several editing
operations. You can get the
transaction ID number for the
current updatable TopoMap
object by calling the 
SDO_TOPO_MAP.GET_TOP
O_TRANSACTION_ID
function.

TOPO_SEQUENCE NUMBER Sequence number assigned to
an editing operation within the
transaction

TOPOLOGY VARCHAR2 ID of the topology containing
the objects being edited

TOPO_ID NUMBER ID number of a topological
element in the topology
geometry

TOPO_TYPE NUMBER Type of topological element: 1
= node, 2 = edge, 3 = face

TOPO_OP VARCHAR2 Type of editing operation that
was performed on the
topological element: I for
insert or D for delete

PARENT_ID NUMBER For an insert operation, the ID
of the parent topological
element from which the
current topological element is
derived; for a delete operation,
the ID of the resulting
topological element

Consider the following examples:

• Adding a node to break edge E2, generating edge E3: The TOPO_ID value of the
new edge is the ID of E3, the TOPO_TYPE value is 2, the PARENT_ID value is
the ID of E2, and the TOPO_OP value is I.

• Deleting a node to merge edges E6 and E7, resulting in E7: The TOPO_ID value
is the ID of E6, the TOPO_TYPE value is 2, the PARENT_ID value is the ID of E7,
and the TOPO_OP value is D.

To further illustrate the effect of editing operations on the history information table, a
test procedure was created to perform various editing operations on a simple topology,
and to examine the effect on the history information table for the topology. The
procedure performed these main steps:

Chapter 1
Topology Data Model Tables

1-20



1. It created and initialized a non-geodetic topology with a universe face, and added a line
feature layer and an area feature layer to the topology.

2. It created a rectangular area by adding four isolated nodes and four edges connecting
the isolated nodes. This caused a face (consisting of the rectangle) to be created, and it
caused one row to be added to the history information table: an insert operation for the
new face, whose parent is the universe face.

The following statement shows the history information table row added by this insertion:

SELECT topo_id, topo_type, topo_op, parent_id
  FROM hist_test_history$ ORDER BY topo_tx_id, topo_sequence, topology;
 
   TOPO_ID  TOPO_TYPE TOP  PARENT_ID
---------- ---------- --- ----------
         1          3 I           -1
 
1 row selected.

3. It split the rectangular face into two smaller rectangular faces (side-by-side) by adding
two nodes and a vertical edge connecting these nodes, which caused two edges (the top
and bottom edges) and the face to be split. Three rows were added to the history
information table: an insert operation for each of the two new edges (with the parent of
each new edge being the existing edge that was split), and an insert operation for the
new face (whose parent is the original rectangular face that was split).

The following statement shows the history information table rows added thus far. The
rows added by this step are shown in bold:

SELECT topo_id, topo_type, topo_op, parent_id
  FROM hist_test_history$ ORDER BY topo_tx_id, topo_sequence, topology;
 
   TOPO_ID  TOPO_TYPE TOP  PARENT_ID
---------- ---------- --- ----------
         1          3 I           -1
         6          2 I            2
         7          2 I            4
         2          3 I            1
 
4 rows selected.

4. It added a diagonal edge to small rectangular face on the left (using the existing nodes),
and it removed the vertical edge that was added in Step 3. Two rows were added to the
history information table: an insert operation for the new face created as a result of the
edge addition (with the parent of each new face being the small rectangular face on the
left that was split), and a delete operation as a result of the edge removal (with the
resulting face taking its topological object ID from one of the "parent" faces that were
merged).

The following statement shows the history information table rows added thus far. The
rows added by this step are shown in bold:

SELECT topo_id, topo_type, topo_op, parent_id
  FROM hist_test_history$ ORDER BY topo_tx_id, topo_sequence, topology;
 
   TOPO_ID  TOPO_TYPE TOP  PARENT_ID
---------- ---------- --- ----------
         1          3 I           -1
         6          2 I            2
         7          2 I            4
         2          3 I            1
         3          3 I            2
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         1          3 D            2
 
6 rows selected.

1.6 Topology Data Types
The main data type associated with the Topology Data Model is
SDO_TOPO_GEOMETRY, which describes a topology geometry.

The SDO_TOPO_GEOMETRY type has several constructors and member functions.
This section describes the topology model types, constructors, and member functions.

• SDO_TOPO_GEOMETRY Type

• SDO_TOPO_GEOMETRY Constructors

• GET_GEOMETRY Member Function

• GET_TGL_OBJECTS Member Function

• GET_TOPO_ELEMENTS Member Function

• SDO_LIST_TYPE Type

• SDO_EDGE_ARRAY and SDO_NUMBER_ARRAY Types

1.6.1 SDO_TOPO_GEOMETRY Type
The description of a topology geometry is stored in a single row, in a single column of
object type SDO_TOPO_GEOMETRY in a user-defined table. The object type
SDO_TOPO_GEOMETRY is defined as:

CREATE TYPE sdo_topo_geometry AS OBJECT
  (tg_type      NUMBER,
   tg_id        NUMBER,
   tg_layer_id  NUMBER,
   topology_id  NUMBER);

The SDO_TOPO_GEOMETRY type has the attributes shown in Table 1-7.

Table 1-7    SDO_TOPO_GEOMETRY Type Attributes

Attribute Explanation

TG_TYPE Type of topology geometry: 1 = point or
multipoint, 2 = line string or multiline string, 3 =
polygon or multipolygon, 4 = heterogeneous
collection

TG_ID Unique ID number (generated by Spatial and
Graph) for the topology geometry

TG_LAYER_ID ID number for the topology geometry layer to
which the topology geometry belongs. (This
number is generated by Spatial and Graph,
and it is unique within the topology geometry
layer.)

TOPOLOGY_ID Unique ID number (generated by Spatial and
Graph) for the topology
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Each topology geometry in a topology is uniquely identified by the combination of its TG_ID
and TG_LAYER_ID values.

You can use an attribute name in a query on an object of SDO_TOPO_GEOMETRY. 
Example 1-3 shows SELECT statements that query each attribute of the FEATURE column of
the CITY_STREETS table, which is defined in Example 1-12 in Topology Examples (PL/
SQL).

Example 1-3    SDO_TOPO_GEOMETRY Attributes in Queries

SELECT s.feature.tg_type FROM city_streets s;
SELECT s.feature.tg_id FROM city_streets s;
SELECT s.feature.tg_layer_id FROM city_streets s;
SELECT s.feature.topology_id FROM city_streets s;

1.6.2 SDO_TOPO_GEOMETRY Constructors
The SDO_TOPO_GEOMETRY type has constructors for inserting and updating topology
geometry objects. The constructors can be classified into two types, depending on the kind of
objects they use:

• Constructors that specify the lowest-level topological elements (nodes, edges, and
faces). These constructors have at least one attribute of type
SDO_TOPO_OBJECT_ARRAY and no attributes of type SDO_TGL_OBJECT_ARRAY.

• Constructors that specify elements in the child level. These constructors have at least
one attribute of type SDO_TGL_OBJECT_ARRAY and no attributes of type
SDO_TOPO_OBJECT_ARRAY.

To insert and update topology geometry objects when the topology does not have a topology
geometry layer hierarchy or when the operation affects the lowest level (level 0) in the
hierarchy, you must use constructors that specify the lowest-level topological elements
(nodes, edges, and faces). (Topology geometry layer hierarchy is explained in Topology
Geometry Layer Hierarchy.)

To insert and update topology geometry objects when the topology has a topology geometry
layer hierarchy and the operation affects a level other than the lowest in the hierarchy, you
can use either or both types of constructor. That is, for each topology geometry object to be
inserted or updated, you can use either of the following:

• To insert and update a topology geometry object consisting of the lowest-level topological
elements (for example, to create a tract from faces), use the format that has at least one
attribute of type SDO_TOPO_OBJECT_ARRAY and no attributes of type
SDO_TGL_OBJECT_ARRAY.

• To insert and update a topology geometry object consisting of features at the next lower
level (for example, create a tract from block groups), use the format that has at least one
attribute of type SDO_TGL_OBJECT_ARRAY and no attributes of type
SDO_TOPO_OBJECT_ARRAY.

This section describes the available SDO_TOPO_GEOMETRY constructors.
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Note:

An additional SDO_TOPO_GEOMETRY constructor with the same attributes
as the type definition (tg_type, tg_id, tg_layer_id, topology_id) is for
Oracle internal use only.

• Constructors for Insert Operations: Specifying Topological Elements

• Constructors for Insert Operations: Specifying Lower-Level Features

• Constructors for Update Operations: Specifying Topological Elements

• Constructors for Update Operations: Specifying Lower-Level Features

1.6.2.1 Constructors for Insert Operations: Specifying Topological Elements
The SDO_TOPO_GEOMETRY type has the following constructors for insert
operations in which you specify topological elements (faces, nodes, or edges). You
must use one of these formats to create new topology geometry objects when the
topology does not have a topology geometry layer hierarchy or when the operation
affects the lowest level (level 0) in the hierarchy, and you can use one of these formats
to create new topology geometry objects when the operation affects a level higher than
level 0 in the hierarchy:

SDO_TOPO_GEOMETRY (topology     VARCHAR2,
                   tg_type      NUMBER,
                   tg_layer_id  NUMBER,
                   topo_ids     SDO_TOPO_OBJECT_ARRAY)

SDO_TOPO_GEOMETRY (topology      VARCHAR2,
                   table_name    VARCHAR2,
                   column_name   VARCHAR2,
                   tg_type       NUMBER,
                   topo_ids      SDO_TOPO_OBJECT_ARRAY)

The SDO_TOPO_OBJECT_ARRAY type is defined as a VARRAY of
SDO_TOPO_OBJECT objects.

The SDO_TOPO_OBJECT type has the following two attributes:

(topo_id NUMBER, topo_type NUMBER)

The TG_TYPE and TOPO_IDS attribute values must be within the range of values
from the <topology-name>_RELATION$ table (described in Relationship Information
Table) for the specified topology.

Example 1-4 shows two SDO_TOPO_GEOMETRY constructors, one in each format.
Each constructor inserts a topology geometry into the LAND_PARCELS table, which is
defined in Example 1-12 in Topology Examples (PL/SQL).

Example 1-4    INSERT Using Constructor with SDO_TOPO_OBJECT_ARRAY

INSERT INTO land_parcels VALUES ('P1', -- Feature name
  SDO_TOPO_GEOMETRY(
    'CITY_DATA', -- Topology name
    3, -- Topology geometry type (polygon/multipolygon)
    1, -- TG_LAYER_ID for this topology (from ALL_SDO_TOPO_METADATA)
    SDO_TOPO_OBJECT_ARRAY (
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      SDO_TOPO_OBJECT (3, 3), -- face_id = 3
      SDO_TOPO_OBJECT (6, 3))) -- face_id = 6
);

INSERT INTO land_parcels VALUES ('P1A', -- Feature name
  SDO_TOPO_GEOMETRY(
    'CITY_DATA', -- Topology name
    'LAND_PARCELS', -- Table name
    'FEATURE', -- Column name
    3, -- Topology geometry type (polygon/multipolygon)
    SDO_TOPO_OBJECT_ARRAY (
      SDO_TOPO_OBJECT (3, 3), -- face_id = 3
      SDO_TOPO_OBJECT (6, 3))) -- face_id = 6
);

1.6.2.2 Constructors for Insert Operations: Specifying Lower-Level Features
The SDO_TOPO_GEOMETRY type has the following constructors for insert operations in
which you specify features in the next lower level of the hierarchy. You can use one of these
formats to create new topology geometry objects when the operation affects a level higher
than level 0 in the hierarchy:

SDO_TOPO_GEOMETRY (topology     VARCHAR2,
                   tg_type      NUMBER,
                   tg_layer_id  NUMBER,
                   topo_ids     SDO_TGL_OBJECT_ARRAY)

SDO_TOPO_GEOMETRY (topology      VARCHAR2,
                   table_name    VARCHAR2,
                   column_name   VARCHAR2,
                   tg_type       NUMBER,
                   topo_ids      SDO_TGL_OBJECT_ARRAY)

The SDO_TGL_OBJECT_ARRAY type is defined as a VARRAY of SDO_TGL_OBJECT
objects.

The SDO_TGL_OBJECT type has the following two attributes:

(tgl_id NUMBER, tg_id NUMBER)

Example 1-5 shows an SDO_TOPO_GEOMETRY constructor that inserts a row into the
BLOCK_GROUPS table, which is the feature table for the Block Groups level in the topology
geometry layer hierarchy. The Block Groups level is the parent of the Land Parcels level at
the bottom of the hierarchy.

Example 1-5    INSERT Using Constructor with SDO_TGL_OBJECT_ARRAY

INSERT INTO block_groups VALUES ('BG1', -- Feature name
  SDO_TOPO_GEOMETRY('LAND_USE_HIER',
    3, -- Topology geometry type (polygon/multipolygon)
    2, -- TG_LAYER_ID for block groups (from ALL_SDO_TOPO_METADATA)
    SDO_TGL_OBJECT_ARRAY (
      SDO_TGL_OBJECT (1, 1), -- land parcel ID = 1
      SDO_TGL_OBJECT (1, 2))) -- land parcel ID = 2
);

1.6.2.3 Constructors for Update Operations: Specifying Topological Elements
The SDO_TOPO_GEOMETRY type has the following constructors for update operations in
which you specify topological elements (faces, nodes, or edges). You must use one of these
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formats to update topology geometry objects when the topology does not have a
topology geometry layer hierarchy or when the operation affects the lowest level (level
0) in the hierarchy, and you can use one of these formats to update topology geometry
objects when the operation affects a level higher than level 0 in the hierarchy:

SDO_TOPO_GEOMETRY (topology         VARCHAR2,
                   tg_type          NUMBER,
                   tg_layer_id      NUMBER,
                   add_topo_ids     SDO_TOPO_OBJECT_ARRAY,
                   delete_topo_ids  SDO_TOPO_OBJECT_ARRAY)

SDO_TOPO_GEOMETRY (topology         VARCHAR2,
                   table_name       VARCHAR2,
                   column_name      VARCHAR2,
                   tg_type          NUMBER,
                   add_topo_ids     SDO_TOPO_OBJECT_ARRAY,
                   delete_topo_ids  SDO_TOPO_OBJECT_ARRAY)

For example, you could use one of these constructor formats to add an edge to a
linear feature or to remove an obsolete edge from a feature.

The SDO_TOPO_OBJECT_ARRAY type definition and the requirements for the
TG_TYPE and TOPO_IDS attribute values are as described in Constructors for Insert
Operations: Specifying Topological Elements.

You can specify values for both the ADD_TOPO_IDS and DELETE_TOPO_IDS
attributes, or you can specify values for one attribute and specify the other as null;
however, you cannot specify null values for both ADD_TOPO_IDS and
DELETE_TOPO_IDS.

Example 1-6 shows two SDO_TOPO_GEOMETRY constructors, one in each format.
Each constructor removes two faces from the CITY_DATA topology in the
LAND_PARCELS table, which is defined in Example 1-12 in Topology Examples (PL/
SQL).

Example 1-6    UPDATE Using Constructor with SDO_TOPO_OBJECT_ARRAY

UPDATE land_parcels l SET l.feature = SDO_TOPO_GEOMETRY(
    'CITY_DATA', -- Topology name
    3, -- Topology geometry type (polygon/multipolygon)
    1, -- TG_LAYER_ID for this topology (from ALL_SDO_TOPO_METADATA)
    NULL, -- No topological elements to be added
    SDO_TOPO_OBJECT_ARRAY (
      SDO_TOPO_OBJECT (3, 3), -- face_id = 3
      SDO_TOPO_OBJECT (6, 3))) -- face_id = 6
WHERE l.feature_name = 'P1';
 
UPDATE land_parcels l SET l.feature = SDO_TOPO_GEOMETRY(
    'CITY_DATA', -- Topology name
    'LAND_PARCELS', -- Table name
    'FEATURE', -- Column name
    3, -- Topology geometry type (polygon/multipolygon)
    NULL, -- No topological elements to be added
    SDO_TOPO_OBJECT_ARRAY (
      SDO_TOPO_OBJECT (3, 3), -- face_id = 3
      SDO_TOPO_OBJECT (6, 3))) -- face_id = 6
WHERE l.feature_name = 'P1A';

Chapter 1
Topology Data Types

1-26



1.6.2.4 Constructors for Update Operations: Specifying Lower-Level Features
The SDO_TOPO_GEOMETRY type has the following constructors for update operations in
which you specify features in the next lower level of the hierarchy. You can use one of these
formats to update topology geometry objects when the operation affects a level higher than
level 0 in the hierarchy:

SDO_TOPO_GEOMETRY (topology         VARCHAR2,
                   tg_type          NUMBER,
                   tg_layer_id      NUMBER,
                   add_topo_ids     SDO_TGL_OBJECT_ARRAY,
                   delete_topo_ids  SDO_TGL_OBJECT_ARRAY)

SDO_TOPO_GEOMETRY (topology         VARCHAR2,
                   table_name       VARCHAR2,
                   column_name      VARCHAR2,
                   tg_type          NUMBER,
                   add_topo_ids     SDO_TGL_OBJECT_ARRAY,
                   delete_topo_ids  SDO_TGL_OBJECT_ARRAY)

For example, you could use one of these constructor formats to add an edge to a linear
feature or to remove an obsolete edge from a feature.

The SDO_TGL_OBJECT_ARRAY type definition and the requirements for its attribute values
are as described in Constructors for Insert Operations: Specifying Lower-Level Features.

You can specify values for both the ADD_TOPO_IDS and DELETE_TOPO_IDS attributes, or
you can specify values for one attribute and specify the other as null; however, you cannot
specify null values for both ADD_TOPO_IDS and DELETE_TOPO_IDS.

Example 1-7 shows two SDO_TOPO_GEOMETRY constructors, one in each format. Each
constructor deletes the land parcel with the ID value of 2 from a feature (named BG1 in the
first format and BG1A in the second format, though each feature has the same definition) from
the CITY_DATA topology in the BLOCK_GROUPS table, which is the feature table for the
Block Groups level in the topology geometry layer hierarchy. The Block Groups level is the
parent of the Land Parcels level at the bottom of the hierarchy.

Example 1-7    UPDATE Using Constructor with SDO_TGL_OBJECT_ARRAY

UPDATE block_groups b SET b.feature = SDO_TOPO_GEOMETRY(
  'LAND_USE_HIER',
  3, -- Topology geometry type (polygon/multipolygon)
  2, -- TG_LAYER_ID for block groups (from ALL_SDO_TOPO_METADATA)
  null, -- No IDs to add
  SDO_TGL_OBJECT_ARRAY (
    SDO_TGL_OBJECT (1, 2)) -- land parcel ID = 2
  )
WHERE b.feature_name = 'BG1';
 
UPDATE block_groups b SET b.feature = SDO_TOPO_GEOMETRY(
  'LAND_USE_HIER',
  'BLOCK_GROUPS', -- Feature table
  'FEATURE', -- Feature column
  3, -- Topology geometry type (polygon/multipolygon)
  null, -- No IDs to add
  SDO_TGL_OBJECT_ARRAY (
    SDO_TGL_OBJECT (1, 2)) -- land parcel ID = 2
  )
WHERE b.feature_name = 'BG1A';
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1.6.3 GET_GEOMETRY Member Function
The SDO_TOPO_GEOMETRY type has a member function GET_GEOMETRY, which
you can use to return the SDO_GEOMETRY object for the topology geometry object.

Example 1-8 uses the GET_GEOMETRY member function to return the
SDO_GEOMETRY object for the topology geometry object associated with the land
parcel named P1.

Example 1-8    GET_GEOMETRY Member Function

SELECT l.feature_name, l.feature.get_geometry()
  FROM land_parcels l WHERE l.feature_name = 'P1';
 
FEATURE_NAME                                                                    
------------------------------                                                  
L.FEATURE.GET_GEOMETRY()(SDO_GTYPE, SDO_SRID, SDO_POINT(X, Y, Z), SDO_ELEM_INFO,
--------------------------------------------------------------------------------
P1                                                                              
SDO_GEOMETRY(2003, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 3, 1), SDO_ORDINATE_ARRAY(
21, 14, 21, 22, 9, 22, 9, 14, 9, 6, 21, 6, 21, 14)) 

1.6.4 GET_TGL_OBJECTS Member Function
The SDO_TOPO_GEOMETRY type has a member function GET_TGL_OBJECTS,
which you can use to return the SDO_TOPO_OBJECT_ARRAY object for a topology
geometry object in a geometry layer with a hierarchy level greater than 0 (zero) in a
topology with a topology geometry layer hierarchy. (If the layer is at hierarchy level 0 or
is in a topology that does not have a topology geometry layer hierarchy, this method
returns a null value.)

The SDO_TGL_OBJECT_ARRAY type is described in Constructors for Insert
Operations: Specifying Lower-Level Features.

Example 1-9 uses the GET_TGL_OBJECTS member function to return the
SDO_TOPO_OBJECT_ARRAY object for the topology geometry object associated
with the block group named BG2.

Example 1-9    GET_TGL_OBJECTS Member Function

SELECT bg.feature_name, bg.feature.get_tgl_objects()
  FROM block_groups bg WHERE bg.feature_name = 'BG2';
 
FEATURE_NAME                                                                    
------------------------------                                                  
BG.FEATURE.GET_TGL_OBJECTS()(TGL_ID, TG_ID)                                     
--------------------------------------------------------------------------------
BG2                                                                             
SDO_TGL_OBJECT_ARRAY(SDO_TGL_OBJECT(1, 3), SDO_TGL_OBJECT(1, 4))

1.6.5 GET_TOPO_ELEMENTS Member Function
The SDO_TOPO_GEOMETRY type has a member function GET_TOPO_ELEMENTS,
which you can use to return the SDO_TOPO_OBJECT_ARRAY object for the topology
geometry object.
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The SDO_TOPO_OBJECT_ARRAY type is described in Constructors for Insert Operations:
Specifying Topological Elements.

Example 1-8 uses the GET_TOPO_ELEMENTS member function to return the
SDO_TOPO_OBJECT_ARRAY object for the topology geometry object associated with the
land parcel named P1.

Example 1-10    GET_TOPO_ELEMENTS Member Function

SELECT l.feature_name, l.feature.get_topo_elements()
  FROM land_parcels l WHERE l.feature_name = 'P1';
 
FEATURE_NAME                                                                    
------------------------------                                                  
L.FEATURE.GET_TOPO_ELEMENTS()(TOPO_ID, TOPO_TYPE)                               
--------------------------------------------------------------------------------
P1                                                                              
SDO_TOPO_OBJECT_ARRAY(SDO_TOPO_OBJECT(3, 3), SDO_TOPO_OBJECT(6, 3))

1.6.6 SDO_LIST_TYPE Type
The SDO_LIST_TYPE type is used to store the EDGE_ID values of island edges and
NODE_ID values of island nodes in a face. The SDO_LIST_TYPE type is defined as:

CREATE TYPE sdo_list_type as VARRAY(2147483647) OF NUMBER;

1.6.7 SDO_EDGE_ARRAY and SDO_NUMBER_ARRAY Types
The SDO_EDGE_ARRAY type is used to specify the coordinates of attached edges affected
by a node move operation. The SDO_EDGE_ARRAY type is defined as:

CREATE TYPE sdo_edge_array as VARRAY(1000000) OF MDSYS.SDO_NUMBER_ARRAY;

The SDO_NUMBER_ARRAY type is a general-purpose type used by Spatial and Graph for
arrays. The SDO_NUMBER_ARRAY type is defined as:

CREATE TYPE sdo_number_array as VARRAY(1048576) OF NUMBER;

1.7 Topology Metadata Views
There are two sets of topology metadata views for each schema (user):
xxx_SDO_TOPO_INFO and xxx_SDO_TOPO_METADATA, where xxx can be USER or ALL.
These views are read-only to users; they are created and maintained by Spatial and Graph.

The xxx_SDO_TOPO_METADATA views contain the most detailed information, and each
xxx_SDO_TOPO_INFO view contains a subset of the information in its corresponding
xxx_SDO_TOPO_METADATA view.

• xxx_SDO_TOPO_INFO Views

• xxx_SDO_TOPO_METADATA Views

1.7.1 xxx_SDO_TOPO_INFO Views
The following views contain basic information about topologies:

• USER_SDO_TOPO_INFO contains topology information for all feature tables owned by
the user.
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• ALL_SDO_TOPO_INFO contains topology information for all feature tables on
which the user has SELECT permission.

The USER_SDO_TOPO_INFO and ALL_SDO_TOPO_INFO views contain the same
columns, as shown Table 1-8. (The columns are listed in their order in the view
definition.)

Table 1-8    Columns in the xxx_SDO_TOPO_INFO Views

Column Name Data Type Purpose

OWNER VARCHAR2 Owner of the topology

TOPOLOGY VARCHAR2 Name of the topology

TOPOLOGY_ID NUMBER ID number of the topology

TOLERANCE NUMBER Tolerance value associated
with topology geometries in
the topology. (Tolerance is
explained in Tolerance in the
Topology Data Model.)

SRID NUMBER Coordinate system (spatial
reference system) associated
with all topology geometry
layers in the topology. Is null if
no coordinate system is
associated; otherwise, it
contains a value from the
SRID column of the
MDSYS.CS_SRS table
(described in Oracle Spatial
and Graph Developer's
Guide).

TABLE_SCHEMA VARCHAR2 Name of the schema that
owns the table containing the
topology geometry layer
column

TABLE_NAME VARCHAR2 Name of the table containing
the topology geometry layer
column

COLUMN_NAME VARCHAR2 Name of the column
containing the topology
geometry layer data

TG_LAYER_ID NUMBER ID number of the topology
geometry layer

TG_LAYER_TYPE VARCHAR2 Contains one of the following:
POINT, LINE, CURVE,
POLYGON, or COLLECTION.
(LINE and CURVE have the
same meaning.)

TG_LAYER_LEVEL NUMBER Hierarchy level number of this
topology geometry layer.
(Topology geometry layer
hierarchy is explained in 
Topology Geometry Layer
Hierarchy.)
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Table 1-8    (Cont.) Columns in the xxx_SDO_TOPO_INFO Views

Column Name Data Type Purpose

CHILD_LAYER_ID NUMBER ID number of the topology
geometry layer that is the child
layer of this layer in the
topology geometry layer
hierarchy. Null if this layer has
no child layer or if the topology
does not have a topology
geometry layer hierarchy.
(Topology geometry layer
hierarchy is explained in 
Topology Geometry Layer
Hierarchy.)

DIGITS_RIGHT_OF_DECIMA
L

NUMBER Number of digits permitted to
the right of the decimal point in
the expression of any
coordinate position when
features are added to an
existing topology. All incoming
features (those passed as
arguments to the
addLinearGeometry,
addPolygonGeometry, or
addPointGeometry method
in the Java API or the
equivalent PL/SQL
subprograms) are
automatically snapped
(truncated) to the number of
digits right of the decimal.
Default: 16.

1.7.2 xxx_SDO_TOPO_METADATA Views
The following views contain detailed information about topologies:

• USER_SDO_TOPO_METADATA contains topology information for all tables owned by
the user.

• ALL_SDO_TOPO_METADATA contains topology information for all tables on which the
user has SELECT permission.

The USER_SDO_TOPO_METADATA and ALL_SDO_TOPO_METADATA views contain the
same columns, as shown Table 1-9. (The columns are listed in their order in the view
definition.)

Table 1-9    Columns in the xxx_SDO_TOPO_METADATA Views

Column Name Data Type Purpose

OWNER VARCHAR2 Owner of the topology

TOPOLOGY VARCHAR2 Name of the topology

TOPOLOGY_ID NUMBER ID number of the topology
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Table 1-9    (Cont.) Columns in the xxx_SDO_TOPO_METADATA Views

Column Name Data Type Purpose

TOLERANCE NUMBER Tolerance value associated with
topology geometries in the
topology. (Tolerance is explained
in Tolerance in the Topology
Data Model.)

SRID NUMBER Coordinate system (spatial
reference system) associated
with all topology geometry layers
in the topology. Is null if no
coordinate system is associated;
otherwise, contains a value from
the SRID column of the
MDSYS.CS_SRS table
(described in Oracle Spatial and
Graph Developer's Guide).

TABLE_SCHEMA VARCHAR2 Name of the schema that owns
the table containing the topology
geometry layer column

TABLE_NAME VARCHAR2 Name of the table containing the
topology geometry layer column

COLUMN_NAME VARCHAR2 Name of the column containing
the topology geometry layer data

TG_LAYER_ID NUMBER ID number of the topology
geometry layer

TG_LAYER_TYPE VARCHAR2 Contains one of the following:
POINT, LINE, CURVE,
POLYGON, or COLLECTION.
(LINE and CURVE have the
same meaning.)

TG_LAYER_LEVEL NUMBER Hierarchy level number of this
topology geometry layer.
(Topology geometry layer
hierarchy is explained in 
Topology Geometry Layer
Hierarchy.)

CHILD_LAYER_ID NUMBER ID number of the topology
geometry layer that is the child
layer of this layer in the topology
geometry layer hierarchy. Null if
this layer has no child layer or if
the topology does not have a
geometry layer hierarchy.
(Topology geometry layer
hierarchy is explained in 
Topology Geometry Layer
Hierarchy.)

NODE_SEQUENCE VARCHAR2 Name of the sequence
containing the next available
node ID number
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Table 1-9    (Cont.) Columns in the xxx_SDO_TOPO_METADATA Views

Column Name Data Type Purpose

EDGE_SEQUENCE VARCHAR2 Name of the sequence
containing the next available
edge ID number

FACE_SEQUENCE VARCHAR2 Name of the sequence
containing the next available face
ID number

TG_SEQUENCE VARCHAR2 Name of the sequence
containing the next available
topology geometry ID number

DIGITS_RIGHT_OF_DECIMAL NUMBER Number of digits permitted to the
right of the decimal point in the
expression of any coordinate
position when features are added
to an existing topology. All
incoming features (those passed
as arguments to the
addLinearGeometry,
addPolygonGeometry, or
addPointGeometry method in
the Java API or the equivalent
PL/SQL subprograms) are
automatically snapped
(truncated) to the number of
digits right of the decimal.
Default: 16

1.8 Topology Application Programming Interface
The Topology Data Model application programming interface (API) consists of the following.

• PL/SQL functions and procedures in the SDO_TOPO package (described in SDO_TOPO
Package Subprograms) and the SDO_TOPO_MAP package (described in 
SDO_TOPO_MAP Package Subprograms)

• PL/SQL topology operators (described in Topology Operators)

• Java API (described in Topology Data Model Java Interface)

• Topology Operators

• Topology Data Model Java Interface

1.8.1 Topology Operators
With the Topology Data Model PL/SQL API, you can use the Oracle Spatial and Graph
operators, except for the following:

• SDO_RELATE (but you can use the SDO_RELATE convenience operators that do not
use the mask parameter)

• SDO_NN

• SDO_NN_DISTANCE
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• SDO_WITHIN_DISTANCE

To use spatial operators with the Topology Data Model, you must understand the
usage and reference information about spatial operators, which are documented in 
Oracle Spatial and Graph Developer's Guide. This topic describes only additional
information or differences that apply to using spatial operators with topologies.
Otherwise, unless this section specifies otherwise, the operator-related information in 
Oracle Spatial and Graph Developer's Guide applies to the use of operators with
topology data.

When you use spatial operators with topologies, the formats of the first two parameters
can be any one of the following:

• Two topology geometry objects (type SDO_TOPO_GEOMETRY)

For example, the following statement finds all city streets features that have any
interaction with a land parcel feature named P3. (This example uses definitions
and data from Topology Built from Topology Data.)

SELECT c.feature_name FROM city_streets c, land_parcels l
  WHERE l.feature_name = 'P3' AND
    SDO_ANYINTERACT (c.feature, l.feature) = 'TRUE';
 
FEATURE_NAME                                                                 
   
------------------------------                                               
   
R1 

• A topology geometry object (type SDO_TOPO_GEOMETRY) as the first
parameter and a spatial geometry (type SDO_GEOMETRY) as the second
parameter

For example, the following statement finds all city streets features that have any
interaction with a geometry object that happens to be a polygon identical to the
boundary of the land parcel feature named P3. (This example uses definitions and
data from Topology Built from Spatial Geometries.)

SELECT c.feature_name FROM city_streets c
  WHERE SDO_ANYINTERACT (c.feature,
    SDO_GEOMETRY(2003, NULL, NULL, SDO_ELEM_INFO_ARRAY(1,1003,1),
      SDO_ORDINATE_ARRAY(35,6, 47,6, 47,14, 47,22, 35,22, 35,14, 35,6))) = 
'TRUE';
 
FEATURE_NAME                                                                 
   
------------------------------                                               
   
R1

• A topology geometry object (type SDO_TOPO_GEOMETRY) as the first
parameter and a topology object array object (type
SDO_TOPO_OBJECT_ARRAY) as the second parameter

For example, the following statement finds all city streets features that have any
interaction with an SDO_TOPO_OBJECT_ARRAY object that happens to be
identical to the land parcel feature named P3. (This example uses definitions and
data from Topology Built from Spatial Geometries.)

SELECT c.feature_name FROM city_streets c WHERE
  SDO_ANYINTERACT (c.feature,
   SDO_TOPO_OBJECT_ARRAY (SDO_TOPO_OBJECT (5, 3), SDO_TOPO_OBJECT (8, 3)))
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   = 'TRUE';
 
FEATURE_NAME                                                                    
------------------------------                                                  
R1

Example 1-11 shows different topology operators checking for a specific relationship between
city streets features and the land parcel named P3. The first statement shows the
SDO_FILTER operator, and the remaining statements show the SDO_RELATE convenience
operators that include the "mask" in the operator name. With the convenience operators in
this example, only SDO_ANYINTERACT, SDO_OVERLAPBDYINTERSECT, and
SDO_OVERLAPS return any resulting feature data. (As Figure 1-3 in Features shows, the
only street feature to have any interaction with land parcel P3 is R1.) All statements in 
Example 1-11 use the format where the first two parameters are topology geometry objects.

Example 1-11    Topology Operators

-- SDO_FILTER
SELECT c.feature_name FROM city_streets c, land_parcels l
  WHERE l.feature_name = 'P3' AND
    SDO_FILTER (c.feature, l.feature) = 'TRUE';
 
FEATURE_NAME                                                                    
------------------------------                                                  
R1                                                                              
 
-- SDO_RELATE convenience operators
SELECT c.feature_name FROM city_streets c, land_parcels l
  WHERE l.feature_name = 'P3' AND
    SDO_ANYINTERACT (c.feature, l.feature) = 'TRUE';
 
FEATURE_NAME                                                                    
------------------------------                                                  
R1                                                                              
 
SELECT c.feature_name FROM city_streets c, land_parcels l
  WHERE l.feature_name = 'P3' AND
    SDO_CONTAINS (c.feature, l.feature) = 'TRUE';
 
no rows selected
 
SELECT c.feature_name FROM city_streets c, land_parcels l
  WHERE l.feature_name = 'P3' AND
    SDO_COVEREDBY (c.feature, l.feature) = 'TRUE';
 
no rows selected
 
SELECT c.feature_name FROM city_streets c, land_parcels l
  WHERE l.feature_name = 'P3' AND
    SDO_COVERS (c.feature, l.feature) = 'TRUE';
 
no rows selected
 
SELECT c.feature_name FROM city_streets c, land_parcels l
  WHERE l.feature_name = 'P3' AND
    SDO_EQUAL (c.feature, l.feature) = 'TRUE';
 
no rows selected
 
SELECT c.feature_name FROM city_streets c, land_parcels l
  WHERE l.feature_name = 'P3' AND
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    SDO_INSIDE (c.feature, l.feature) = 'TRUE';
 
no rows selected
 
SELECT c.feature_name FROM city_streets c, land_parcels l
  WHERE l.feature_name = 'P3' AND
    SDO_ON (c.feature, l.feature) = 'TRUE';
 
no rows selected
 
SELECT c.feature_name FROM city_streets c, land_parcels l
  WHERE l.feature_name = 'P3' AND
    SDO_OVERLAPBDYINTERSECT (c.feature, l.feature) = 'TRUE';
 
FEATURE_NAME                                                                    
------------------------------                                                  
R1                                                                              
 
SELECT c.feature_name FROM city_streets c, land_parcels l
  WHERE l.feature_name = 'P3' AND
    SDO_OVERLAPBDYDISJOINT (c.feature, l.feature) = 'TRUE';
 
no rows selected
 
SELECT c.feature_name FROM city_streets c, land_parcels l
  WHERE l.feature_name = 'P3' AND
    SDO_OVERLAPS (c.feature, l.feature) = 'TRUE';
 
FEATURE_NAME                                                                    
------------------------------                                                  
R1                                                                              
 
SELECT c.feature_name FROM city_streets c, land_parcels l
  WHERE l.feature_name = 'P3' AND
    SDO_TOUCH (c.feature, l.feature) = 'TRUE';
 
no rows selected

See Also:

• Usage Notes for the SDO_TOPO.RELATE function

1.8.2 Topology Data Model Java Interface
The Java client interface for the Topology Data Model consists of the following classes:

• TopoMap: class that stores edges, nodes, and faces, and provides methods for
adding and deleting elements while maintaining topological consistency both in the
cache and in the underlying database tables

• Edge: class for an edge

• Face: class for a face

• Node: class for a node
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• Point2DD: class for a point

• CompGeom: class for static computational geometry methods

• InvalidTopoOperationException: class for the invalid topology operation exception

• TopoValidationException: class for the topology validation failure exception

• TopoEntityNotFoundException: class for the entity not found exception

• TopoDataException: class for the invalid input exception

The Spatial and Graph Java class libraries are in .jar files under the <ORACLE_HOME>/md/
jlib/ directory.

See Also:

• Oracle Spatial and Graph Java API Reference for detailed reference
information about the Topology Data Model classes, as well as some usage
information about the Java API

1.9 Exporting and Importing Topology Data
You can export a topology from one database and import it into a new topology with the same
name, structures, and data in another database, as long as the target database does not
already contain a topology with the same name as the exported topology.

To export topology data from one database and import it into another database, follow the
steps in this section.

Note:

The steps are required regardless of whether the topology data is transported using
transportable tablespaces. (For detailed information about transportable
tablespaces and transporting tablespaces to other databases, see Oracle Database
Administrator's Guide.)

In the database with the topology data to be exported, perform the following actions:

1. Connect to the database as the owner of the topology.

2. Execute the SDO_TOPO.PREPARE_FOR_EXPORT procedure (documented in 
SDO_TOPO Package Subprograms), to create the topology export information table, with
a name in the format <topology-name>_EXP$. (This table contains the same columns as
the USER_SDO_TOPO_INFO and ALL_SDO_TOPO_INFO views. These columns are
described in Table 1-8 in xxx_SDO_TOPO_INFO Views.)

For example, preparing the sample CITY_DATA topology for export creates the
CITY_DATA_EXP$ table.

3. Export all tables related to the topology, including the feature tables and the <topology-
name>_EDGE$, <topology-name>_FACE$, <topology-name>_HISTORY$, <topology-
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name>_NODE$, <topology-name>_RELATION$, and <topology-name>_EXP$
tables. The names of feature tables (if they exist) are stored in the topology
metadata.

This creates a file with the extension .dmp (for example, city_data.dmp).

In the database into which to import the topology data, perform the following actions:

1. Connect to the target database, that is, the database in which to create a topology
with the same name, structures, and data as the topology exported from the
source database. Connect as the user for the schema that is to own the topology
to be created.

2. Ensure that the target database does not already contain a topology with the same
name as the topology in the .dmp file.

3. Import the tables from the .dmp file that you created when you exported the
topology data. Specify the indexes=N option.

4. If you have imported the topology tables into a different schema than the one used
for the topology in the source database, update the values in the OWNER and
TABLE_SCHEMA columns in all rows of the <topology-name>_EXP$ table to
reflect the table owner and schema names in the current (target) database.

5. Execute the SDO_TOPO.INITIALIZE_AFTER_IMPORT procedure, which creates
the topology and performs other operations, as necessary, to make the topology
ready for use.

1.10 Cross-Schema Topology Usage and Editing
This topic contains requirements and guidelines for using and editing topologies when
multiple database users (schemas) are involved.

• Cross-Schema Topology Usage

• Cross-Schema Topology Editing

1.10.1 Cross-Schema Topology Usage
The following considerations apply when one user owns a topology and another user
owns a topology geometry layer table. In the following, assume that user A owns the
CITY_DATA topology and that user B owns the CITY_STREETS topology geometry
layer table.

• The owner of the topology must create the topology and initialize the metadata. In
this example, user A must perform these actions.

• Only the owner of a topology can add layers to or delete layers from the topology.
Therefore, if you add a table owned by another user to a topology, or when you
remove such a table from the topology, you must qualify the table name with the
schema name. For example, user A could add the CITY_STREETS table owned
by user B to the CITY_DATA topology with the following statement:

EXECUTE SDO_TOPO.ADD_TOPO_GEOMETRY_LAYER('CITY_DATA', 'B.CITY_STREETS', 
'FEATURE', 'LINE');

User A could delete the CITY_STREETS table owned by user B from the
CITY_DATA topology with the following statement:
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EXECUTE SDO_TOPO.DELETE_TOPO_GEOMETRY_LAYER('CITY_DATA', 'B.CITY_STREETS', 
'FEATURE');

• The owner of the topology should grant the SELECT or READ privilege on the node,
edge, and face information tables to the owner of the topology geometry layer table. For
example, user A should grant the SELECT privilege on the CITY_DATA_NODE$,
CITY_DATA_EDGE$, and CITY_DATA_FACE$ tables to user B.

• The owner of the topology geometry layer table should grant the SELECT and INDEX
privileges on that table to the owner of the topology. For example, user B should grant the
SELECT and INDEX privileges on the CITY_STREETS table to user A.

The owner of the topology geometry layer table should also grant appropriate privileges
to other users that need to access the table. For read-only access, grant the SELECT
privilege on the table to a user; for read/write access, grant the INSERT, SELECT, and
UPDATE privileges.

1.10.2 Cross-Schema Topology Editing
The following considerations apply when one user owns a topology and another user wants
to edit the topology. In the following, assume that user A owns the CITY_DATA topology and
that user B wants to edit that topology.

• The owner of the topology should grant the following privileges to users who can edit the
topology: INSERT, SELECT, and UPDATE on the node, edge, face, and relationship
information tables, and SELECT on the node, edge, and face sequences used to
generate ID numbers for the topology primitives. For example, user A could grant the
following privileges to user B, where the table names end with $ and the sequence
names end with _S:

GRANT insert,select,update ON city_data_node$ TO b;
GRANT insert,select,update ON city_data_edge$ TO b;
GRANT insert,select,update ON city_data_face$ TO b;
GRANT insert,select,update ON city_data_relation$ TO b;
GRANT select ON city_data_node_s TO b;
GRANT select ON city_data_edge_s TO b;
GRANT select ON city_data_face_s TO b;

• When a user who does not own the topology edits that topology, the owner's schema
name should be specified with the topology name in functions and procedures that
accept the topology name as an input parameter. For example, user B should specify the
topology as A.CITY_DATA, not just CITY_DATA.

See Also:

• Editing Topologies for information about editing topologies.

1.11 Function-Based Indexes Not Supported
You cannot create a function-based index on a column of type SDO_TOPO_GEOMETRY.

(Function-based indexes are explained in Oracle Database Development Guide and Oracle
Database Administrator's Guide.)
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1.12 Topology Examples (PL/SQL)
This topic presents simplified PL/SQL examples that perform Topology Data Model
operations.

The examples refer to concepts that are explained in this chapter. They use
SDO_TOPO and SDO_TOPO_MAP functions and procedures, which are documented
in SDO_TOPO Package Subprograms and SDO_TOPO_MAP Package Subprograms,
and the SDO_ANYINTERACT topology operator (see Topology Operators).

Both examples are based on the "city data" topology shown in Figure 1-1 in Topology
Data Model Concepts, and the features shown in Figure 1-3 in Features. However, the
topologies created are not identical, because the topology built from Spatial and Graph
geometries (Example 1-13) does not contain all the edges, nodes, and faces that are
defined for the topology build from topology data (Example 1-12).

• Topology Built from Topology Data

• Topology Built from Spatial Geometries

1.12.1 Topology Built from Topology Data
Example 1-12 uses a topology built from edge, node, and face data.

Example 1-12    Topology Built from Topology Data

------------------------------
-- Main steps for using the Topology Data Model with a topology
-- built from edge, node, and face data
------------------------------
-- 1. Create a topology.
-- 2. Load (normally bulk-load) topology data (node, edge, and face tables).
-- 3. Create feature tables.
-- 4. Associate feature tables with the topology.
-- 5. Initialize topology metadata.
-- 6. Load feature tables using the SDO_TOPO_GEOMETRY constructor.
-- 7. Query the data.
-- 8. Optionally, edit data using the PL/SQL or Java API.
 
-- 1. Create the topology. (Null SRID in this example.)
EXECUTE SDO_TOPO.CREATE_TOPOLOGY('CITY_DATA', 0.00005);
 
-- 2. Load topology data (node, edge, and face tables).
--  Use INSERT statements here instead of a bulk-load utility.
 
-- 2A. Insert data into <topology_name>_EDGE$ table.
 
-- E1
INSERT INTO city_data_edge$ (edge_id, start_node_id, end_node_id, 
    next_left_edge_id, prev_left_edge_id, next_right_edge_id, 
    prev_right_edge_id, left_face_id, right_face_id, geometry)
 VALUES(1, 1, 1, 1, 1, -1, -1, 1, -1,
  SDO_GEOMETRY(2002, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 2, 1),
    SDO_ORDINATE_ARRAY(8,30, 16,30, 16,38, 3,38, 3,30, 8,30)));
-- E2
INSERT INTO city_data_edge$ (edge_id, start_node_id, end_node_id, 
    next_left_edge_id, prev_left_edge_id, next_right_edge_id, 
    prev_right_edge_id, left_face_id, right_face_id, geometry)
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 VALUES(2, 2, 2, 3, -3, -2, -2, 2, -1,
  SDO_GEOMETRY(2002, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 2, 1),
    SDO_ORDINATE_ARRAY(25,30, 31,30, 31,40, 17,40, 17,30, 25,30)));
-- E3
INSERT INTO city_data_edge$ (edge_id, start_node_id, end_node_id, 
    next_left_edge_id, prev_left_edge_id, next_right_edge_id, 
    prev_right_edge_id, left_face_id, right_face_id, geometry)
 VALUES(3, 2, 3, -3, 2, 2, 3, 2, 2,
  SDO_GEOMETRY(2002, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 2, 1),
    SDO_ORDINATE_ARRAY(25,30, 25,35)));
-- E4
INSERT INTO city_data_edge$ (edge_id, start_node_id, end_node_id, 
    next_left_edge_id, prev_left_edge_id, next_right_edge_id, 
    prev_right_edge_id, left_face_id, right_face_id, geometry)
 VALUES(4, 5, 6, -5, -4, 4, 5, -1, -1,
  SDO_GEOMETRY(2002, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 2, 1),
    SDO_ORDINATE_ARRAY(36,38, 38,35, 41,34, 42,33, 45,32, 47,28, 50,28, 52,32,
57,33)));
-- E5
INSERT INTO city_data_edge$ (edge_id, start_node_id, end_node_id, 
    next_left_edge_id, prev_left_edge_id, next_right_edge_id, 
    prev_right_edge_id, left_face_id, right_face_id, geometry)
 VALUES(5, 7, 6, -4, -5, 5, 4, -1, -1,
  SDO_GEOMETRY(2002, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 2, 1),
    SDO_ORDINATE_ARRAY(41,40, 45,40, 47,42, 62,41, 61,38, 59,39, 57,36,
57,33)));
-- E6
INSERT INTO city_data_edge$ (edge_id, start_node_id, end_node_id, 
    next_left_edge_id, prev_left_edge_id, next_right_edge_id, 
    prev_right_edge_id, left_face_id, right_face_id, geometry)
 VALUES(6, 16, 17, 7, 21, -21, 19, -1, 3,
  SDO_GEOMETRY(2002, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 2, 1),
    SDO_ORDINATE_ARRAY(9,22, 21,22)));
-- E7
INSERT INTO city_data_edge$ (edge_id, start_node_id, end_node_id, 
    next_left_edge_id, prev_left_edge_id, next_right_edge_id, 
    prev_right_edge_id, left_face_id, right_face_id, geometry)
 VALUES(7, 17, 18, 8, 6, -19, 17, -1, 4,
  SDO_GEOMETRY(2002, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 2, 1),
    SDO_ORDINATE_ARRAY(21,22, 35,22)));
-- E8
INSERT INTO city_data_edge$ (edge_id, start_node_id, end_node_id, 
    next_left_edge_id, prev_left_edge_id, next_right_edge_id, 
    prev_right_edge_id, left_face_id, right_face_id, geometry)
 VALUES(8, 18, 19, -15, 7, -17, 15, -1, 5,
  SDO_GEOMETRY(2002, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 2, 1),
    SDO_ORDINATE_ARRAY(35,22, 47,22)));
-- E9
INSERT INTO city_data_edge$ (edge_id, start_node_id, end_node_id, 
    next_left_edge_id, prev_left_edge_id, next_right_edge_id, 
    prev_right_edge_id, left_face_id, right_face_id, geometry)
 VALUES(9, 15, 14, 19, -21, -22, 20, 3, 6,
  SDO_GEOMETRY(2002, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 2, 1),
    SDO_ORDINATE_ARRAY(9,14, 21,14)));
-- E10
INSERT INTO city_data_edge$ (edge_id, start_node_id, end_node_id, 
    next_left_edge_id, prev_left_edge_id, next_right_edge_id, 
    prev_right_edge_id, left_face_id, right_face_id, geometry)
 VALUES(10, 13, 14, -20, 18, 17, -19, 7, 4,
  SDO_GEOMETRY(2002, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 2, 1),
    SDO_ORDINATE_ARRAY(35,14, 21,14)));
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-- E11
INSERT INTO city_data_edge$ (edge_id, start_node_id, end_node_id, 
    next_left_edge_id, prev_left_edge_id, next_right_edge_id, 
    prev_right_edge_id, left_face_id, right_face_id, geometry)
 VALUES(11, 13, 12, 15, -17, -18, 16, 5, 8,
  SDO_GEOMETRY(2002, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 2, 1),
    SDO_ORDINATE_ARRAY(35,14, 47,14)));
-- E12
INSERT INTO city_data_edge$ (edge_id, start_node_id, end_node_id, 
    next_left_edge_id, prev_left_edge_id, next_right_edge_id, 
    prev_right_edge_id, left_face_id, right_face_id, geometry)
 VALUES(12, 8, 9, 20, -22, 22, -13, 6, -1,
  SDO_GEOMETRY(2002, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 2, 1),
    SDO_ORDINATE_ARRAY(9,6, 21,6)));
-- E13
INSERT INTO city_data_edge$ (edge_id, start_node_id, end_node_id, 
    next_left_edge_id, prev_left_edge_id, next_right_edge_id, 
    prev_right_edge_id, left_face_id, right_face_id, geometry)
 VALUES(13, 9, 10, 18, -20, -12, -14, 7, -1,
  SDO_GEOMETRY(2002, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 2, 1),
    SDO_ORDINATE_ARRAY(21,6, 35,6)));
-- E14
INSERT INTO city_data_edge$ (edge_id, start_node_id, end_node_id, 
    next_left_edge_id, prev_left_edge_id, next_right_edge_id, 
    prev_right_edge_id, left_face_id, right_face_id, geometry)
 VALUES(14, 10, 11, 16, -18, -13, -16, 8, -1,
  SDO_GEOMETRY(2002, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 2, 1),
    SDO_ORDINATE_ARRAY(35,6, 47,6)));
-- E15
INSERT INTO city_data_edge$ (edge_id, start_node_id, end_node_id, 
    next_left_edge_id, prev_left_edge_id, next_right_edge_id, 
    prev_right_edge_id, left_face_id, right_face_id, geometry)
 VALUES(15, 12, 19, -8, 11, -16, 8, 5, -1,
  SDO_GEOMETRY(2002, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 2, 1),
    SDO_ORDINATE_ARRAY(47,14, 47,22)));
-- E16
INSERT INTO city_data_edge$ (edge_id, start_node_id, end_node_id, 
    next_left_edge_id, prev_left_edge_id, next_right_edge_id, 
    prev_right_edge_id, left_face_id, right_face_id, geometry)
 VALUES(16, 11, 12, -11, 14, -14, -15, 8, -1,
  SDO_GEOMETRY(2002, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 2, 1),
    SDO_ORDINATE_ARRAY(47,6, 47,14)));
-- E17
INSERT INTO city_data_edge$ (edge_id, start_node_id, end_node_id, 
    next_left_edge_id, prev_left_edge_id, next_right_edge_id, 
    prev_right_edge_id, left_face_id, right_face_id, geometry)
 VALUES(17, 13, 18, -7, -10, 11, -8, 4, 5,
  SDO_GEOMETRY(2002, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 2, 1),
    SDO_ORDINATE_ARRAY(35,14, 35,22)));
-- E18
INSERT INTO city_data_edge$ (edge_id, start_node_id, end_node_id, 
    next_left_edge_id, prev_left_edge_id, next_right_edge_id, 
    prev_right_edge_id, left_face_id, right_face_id, geometry)
 VALUES(18, 10, 13, 10, 13, 14, -11, 7, 8,
  SDO_GEOMETRY(2002, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 2, 1),
    SDO_ORDINATE_ARRAY(35,6, 35,14)));
-- E19
INSERT INTO city_data_edge$ (edge_id, start_node_id, end_node_id, 
    next_left_edge_id, prev_left_edge_id, next_right_edge_id, 
    prev_right_edge_id, left_face_id, right_face_id, geometry)
 VALUES(19, 14, 17, -6, 9, -10, -7, 3, 4,
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  SDO_GEOMETRY(2002, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 2, 1),
    SDO_ORDINATE_ARRAY(21,14, 21,22)));
-- E20
INSERT INTO city_data_edge$ (edge_id, start_node_id, end_node_id, 
    next_left_edge_id, prev_left_edge_id, next_right_edge_id, 
    prev_right_edge_id, left_face_id, right_face_id, geometry)
 VALUES(20, 9, 14, -9, 12, 13, 10, 6, 7,
  SDO_GEOMETRY(2002, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 2, 1),
    SDO_ORDINATE_ARRAY(21,6, 21,14)));
-- E21
INSERT INTO city_data_edge$ (edge_id, start_node_id, end_node_id, 
    next_left_edge_id, prev_left_edge_id, next_right_edge_id, 
    prev_right_edge_id, left_face_id, right_face_id, geometry)
 VALUES(21, 15, 16, 6, 22, 9, -6, -1, 3,
  SDO_GEOMETRY(2002, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 2, 1),
    SDO_ORDINATE_ARRAY(9,14, 9,22)));
-- E22
INSERT INTO city_data_edge$ (edge_id, start_node_id, end_node_id, 
    next_left_edge_id, prev_left_edge_id, next_right_edge_id, 
    prev_right_edge_id, left_face_id, right_face_id, geometry)
 VALUES(22, 8, 15, 21, -12, 12, -9, -1, 6,
  SDO_GEOMETRY(2002, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 2, 1),
    SDO_ORDINATE_ARRAY(9,6, 9,14)));
-- E25
INSERT INTO city_data_edge$ (edge_id, start_node_id, end_node_id, 
    next_left_edge_id, prev_left_edge_id, next_right_edge_id, 
    prev_right_edge_id, left_face_id, right_face_id, geometry)
 VALUES(25, 21, 22, -25, -25, 25, 25, 1, 1,
  SDO_GEOMETRY(2002, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 2, 1),
    SDO_ORDINATE_ARRAY(9,35, 13,35)));
-- E26
INSERT INTO city_data_edge$ (edge_id, start_node_id, end_node_id, 
    next_left_edge_id, prev_left_edge_id, next_right_edge_id, 
    prev_right_edge_id, left_face_id, right_face_id, geometry)
 VALUES(26, 20, 20, 26, 26, -26, -26, 9, 1,
  SDO_GEOMETRY(2002, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 2, 1),
    SDO_ORDINATE_ARRAY(4,31, 7,31, 7,34, 4,34, 4,31)));
 
-- 2B. Insert data into <topology_name>_NODE$ table.
 
-- N1
INSERT INTO city_data_node$ (node_id, edge_id, face_id, geometry) 
 VALUES(1, 1, NULL,
  SDO_GEOMETRY(2001, NULL, SDO_POINT_TYPE(8,30,NULL), NULL, NULL));
-- N2
INSERT INTO city_data_node$ (node_id, edge_id, face_id, geometry) 
 VALUES(2, 2, NULL,
  SDO_GEOMETRY(2001, NULL, SDO_POINT_TYPE(25,30,NULL), NULL, NULL));
-- N3
INSERT INTO city_data_node$ (node_id, edge_id, face_id, geometry) 
 VALUES(3, -3, NULL,
  SDO_GEOMETRY(2001, NULL, SDO_POINT_TYPE(25,35,NULL), NULL, NULL));
-- N4
INSERT INTO city_data_node$ (node_id, edge_id, face_id, geometry) 
 VALUES(4, NULL, 2,
  SDO_GEOMETRY(2001, NULL, SDO_POINT_TYPE(20,37,NULL), NULL, NULL));
-- N5
INSERT INTO city_data_node$ (node_id, edge_id, face_id, geometry) 
 VALUES(5, 4, NULL,
  SDO_GEOMETRY(2001, NULL, SDO_POINT_TYPE(36,38,NULL), NULL, NULL));
-- N6
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INSERT INTO city_data_node$ (node_id, edge_id, face_id, geometry) 
 VALUES(6, -4, NULL,
  SDO_GEOMETRY(2001, NULL, SDO_POINT_TYPE(57,33,NULL), NULL, NULL));
-- N7
INSERT INTO city_data_node$ (node_id, edge_id, face_id, geometry) 
 VALUES(7, 5, NULL,
  SDO_GEOMETRY(2001, NULL, SDO_POINT_TYPE(41,40,NULL), NULL, NULL));
-- N8
INSERT INTO city_data_node$ (node_id, edge_id, face_id, geometry) 
 VALUES(8, 12, NULL,
  SDO_GEOMETRY(2001, NULL, SDO_POINT_TYPE(9,6,NULL), NULL, NULL));
-- N9
INSERT INTO city_data_node$ (node_id, edge_id, face_id, geometry) 
 VALUES(9, 20, NULL,
  SDO_GEOMETRY(2001, NULL, SDO_POINT_TYPE(21,6,NULL), NULL, NULL));
-- N10
INSERT INTO city_data_node$ (node_id, edge_id, face_id, geometry) 
 VALUES(10, 18, NULL,
  SDO_GEOMETRY(2001, NULL, SDO_POINT_TYPE(35,6,NULL), NULL, NULL));
-- N11
INSERT INTO city_data_node$ (node_id, edge_id, face_id, geometry) 
 VALUES(11, -14, NULL,
  SDO_GEOMETRY(2001, NULL, SDO_POINT_TYPE(47,6,NULL), NULL, NULL));
-- N12
INSERT INTO city_data_node$ (node_id, edge_id, face_id, geometry) 
 VALUES(12, 15, NULL,
  SDO_GEOMETRY(2001, NULL, SDO_POINT_TYPE(47,14,NULL), NULL, NULL));
-- N13
INSERT INTO city_data_node$ (node_id, edge_id, face_id, geometry) 
 VALUES(13, 17, NULL,
  SDO_GEOMETRY(2001, NULL, SDO_POINT_TYPE(35,14,NULL), NULL, NULL));
-- N14
INSERT INTO city_data_node$ (node_id, edge_id, face_id, geometry) 
 VALUES(14, 19, NULL,
  SDO_GEOMETRY(2001, NULL, SDO_POINT_TYPE(21,14,NULL), NULL, NULL));
-- N15
INSERT INTO city_data_node$ (node_id, edge_id, face_id, geometry) 
 VALUES(15, 21, NULL,
  SDO_GEOMETRY(2001, NULL, SDO_POINT_TYPE(9,14,NULL), NULL, NULL));
-- N16
INSERT INTO city_data_node$ (node_id, edge_id, face_id, geometry) 
 VALUES(16, 6, NULL,
  SDO_GEOMETRY(2001, NULL, SDO_POINT_TYPE(9,22,NULL), NULL, NULL));
-- N17
INSERT INTO city_data_node$ (node_id, edge_id, face_id, geometry) 
 VALUES(17, 7, NULL,
  SDO_GEOMETRY(2001, NULL, SDO_POINT_TYPE(21,22,NULL), NULL, NULL));
-- N18
INSERT INTO city_data_node$ (node_id, edge_id, face_id, geometry) 
 VALUES(18, 8, NULL,
  SDO_GEOMETRY(2001, NULL, SDO_POINT_TYPE(35,22,NULL), NULL, NULL));
-- N19
INSERT INTO city_data_node$ (node_id, edge_id, face_id, geometry) 
 VALUES(19, -15, NULL,
  SDO_GEOMETRY(2001, NULL, SDO_POINT_TYPE(47,22,NULL), NULL, NULL));
-- N20
INSERT INTO city_data_node$ (node_id, edge_id, face_id, geometry) 
 VALUES(20, 26, NULL,
  SDO_GEOMETRY(2001, NULL, SDO_POINT_TYPE(4,31,NULL), NULL, NULL));
-- N21
INSERT INTO city_data_node$ (node_id, edge_id, face_id, geometry) 
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 VALUES(21, 25, NULL,
  SDO_GEOMETRY(2001, NULL, SDO_POINT_TYPE(9,35,NULL), NULL, NULL));
-- N22
INSERT INTO city_data_node$ (node_id, edge_id, face_id, geometry) 
 VALUES(22, -25, NULL,
  SDO_GEOMETRY(2001, NULL, SDO_POINT_TYPE(13,35,NULL), NULL, NULL));
 
-- 2C. Insert data into <topology_name>_FACE$ table.
 
-- F0 (id = -1, not 0)
INSERT INTO city_data_face$ (face_id, boundary_edge_id, 
    island_edge_id_list, island_node_id_list, mbr_geometry) 
 VALUES(-1, NULL, SDO_LIST_TYPE(-1, -2, 4, 6), 
   SDO_LIST_TYPE(), NULL);
-- F1
INSERT INTO city_data_face$ (face_id, boundary_edge_id, 
    island_edge_id_list, island_node_id_list, mbr_geometry) 
 VALUES(1, 1, SDO_LIST_TYPE(25, -26), SDO_LIST_TYPE(),
  SDO_GEOMETRY(2003, NULL, NULL, SDO_ELEM_INFO_ARRAY(1,1003,3),
    SDO_ORDINATE_ARRAY(3,30, 15,38)));
-- F2
INSERT INTO city_data_face$ (face_id, boundary_edge_id, 
    island_edge_id_list, island_node_id_list, mbr_geometry) 
 VALUES(2, 2, SDO_LIST_TYPE(), SDO_LIST_TYPE(4),
  SDO_GEOMETRY(2003, NULL, NULL, SDO_ELEM_INFO_ARRAY(1,1003,3),
    SDO_ORDINATE_ARRAY(17,30, 31,40)));
-- F3
INSERT INTO city_data_face$ (face_id, boundary_edge_id, 
    island_edge_id_list, island_node_id_list, mbr_geometry) 
 VALUES(3, 19, SDO_LIST_TYPE(), SDO_LIST_TYPE(),
  SDO_GEOMETRY(2003, NULL, NULL, SDO_ELEM_INFO_ARRAY(1,1003,3),
    SDO_ORDINATE_ARRAY(9,14, 21,22)));
-- F4
INSERT INTO city_data_face$ (face_id, boundary_edge_id, 
    island_edge_id_list, island_node_id_list, mbr_geometry) 
 VALUES(4, 17, SDO_LIST_TYPE(), SDO_LIST_TYPE(),
  SDO_GEOMETRY(2003, NULL, NULL, SDO_ELEM_INFO_ARRAY(1,1003,3),
    SDO_ORDINATE_ARRAY(21,14, 35,22)));
-- F5
INSERT INTO city_data_face$ (face_id, boundary_edge_id, 
    island_edge_id_list, island_node_id_list, mbr_geometry) 
 VALUES(5, 15, SDO_LIST_TYPE(), SDO_LIST_TYPE(),
  SDO_GEOMETRY(2003, NULL, NULL, SDO_ELEM_INFO_ARRAY(1,1003,3),
    SDO_ORDINATE_ARRAY(35,14, 47,22)));
-- F6
INSERT INTO city_data_face$ (face_id, boundary_edge_id, 
    island_edge_id_list, island_node_id_list, mbr_geometry) 
 VALUES(6, 20, SDO_LIST_TYPE(), SDO_LIST_TYPE(),
  SDO_GEOMETRY(2003, NULL, NULL, SDO_ELEM_INFO_ARRAY(1,1003,3),
    SDO_ORDINATE_ARRAY(9,6, 21,14)));
-- F7
INSERT INTO city_data_face$ (face_id, boundary_edge_id, 
    island_edge_id_list, island_node_id_list, mbr_geometry) 
 VALUES(7, 10, SDO_LIST_TYPE(), SDO_LIST_TYPE(),
  SDO_GEOMETRY(2003, NULL, NULL, SDO_ELEM_INFO_ARRAY(1,1003,3),
    SDO_ORDINATE_ARRAY(21,6, 35,14)));
-- F8
INSERT INTO city_data_face$ (face_id, boundary_edge_id, 
    island_edge_id_list, island_node_id_list, mbr_geometry) 
 VALUES(8, 16, SDO_LIST_TYPE(), SDO_LIST_TYPE(),
  SDO_GEOMETRY(2003, NULL, NULL, SDO_ELEM_INFO_ARRAY(1,1003,3),
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    SDO_ORDINATE_ARRAY(35,6, 47,14)));
-- F9
INSERT INTO city_data_face$ (face_id, boundary_edge_id, 
    island_edge_id_list, island_node_id_list, mbr_geometry) 
 VALUES(9,26,SDO_LIST_TYPE(), SDO_LIST_TYPE(),
  SDO_GEOMETRY(2003, NULL, NULL, SDO_ELEM_INFO_ARRAY(1,1003,3),
    SDO_ORDINATE_ARRAY(4,31, 7,34)));
 
-- 3. Create feature tables.
 
CREATE TABLE land_parcels ( -- Land parcels (selected faces)
  feature_name VARCHAR2(30) PRIMARY KEY,
  feature SDO_TOPO_GEOMETRY);
 
CREATE TABLE city_streets ( -- City streets (selected edges)
  feature_name VARCHAR2(30) PRIMARY KEY,
  feature SDO_TOPO_GEOMETRY);
 
CREATE TABLE traffic_signs ( -- Traffic signs (selected nodes)
  feature_name VARCHAR2(30) PRIMARY KEY,
  feature SDO_TOPO_GEOMETRY);
 
-- 4. Associate feature tables with the topology.
--    Add the three topology geometry layers to the CITY_DATA topology.
--    Any order is OK.
 
EXECUTE SDO_TOPO.ADD_TOPO_GEOMETRY_LAYER('CITY_DATA', 'LAND_PARCELS','FEATURE', 
'POLYGON');
EXECUTE SDO_TOPO.ADD_TOPO_GEOMETRY_LAYER('CITY_DATA', 'TRAFFIC_SIGNS','FEATURE', 
'POINT');
EXECUTE SDO_TOPO.ADD_TOPO_GEOMETRY_LAYER('CITY_DATA', 'CITY_STREETS', 
'FEATURE','LINE');
 
--  As a result, Spatial and Graph generates a unique TG_LAYER_ID for each layer 
in 
--  the topology metadata (USER/ALL_SDO_TOPO_METADATA).
 
-- 5. Initialize topology metadata.
EXECUTE SDO_TOPO.INITIALIZE_METADATA('CITY_DATA');
 
-- 6. Load feature tables using the SDO_TOPO_GEOMETRY constructor.
 
-- Each topology feature can consist of one or more objects (face, edge, node)
-- of an appropriate type. For example, a land parcel can consist of one face,
-- or two or more faces, as specified in the SDO_TOPO_OBJECT_ARRAY.
 
-- There are typically fewer features than there are faces, nodes, and edges.
-- In this example, the only features are these:
-- Area features (land parcels): P1, P2, P3, P4, P5
-- Point features (traffic signs): S1, S2, S3, S4
-- Linear features (roads/streets): R1, R2, R3, R4

-- 6A. Load LAND_PARCELS table.
 
-- P1
INSERT INTO land_parcels VALUES ('P1', -- Feature name
  SDO_TOPO_GEOMETRY(
    'CITY_DATA', -- Topology name
    3, -- Topology geometry type (polygon/multipolygon)
    1, -- TG_LAYER_ID for this topology (from ALL_SDO_TOPO_METADATA)
    SDO_TOPO_OBJECT_ARRAY (
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      SDO_TOPO_OBJECT (3, 3), -- face_id = 3
      SDO_TOPO_OBJECT (6, 3))) -- face_id = 6
);
-- P2
INSERT INTO land_parcels VALUES ('P2', -- Feature name
  SDO_TOPO_GEOMETRY(
    'CITY_DATA', -- Topology name
    3, -- Topology geometry type (polygon/multipolygon)
    1, -- TG_LAYER_ID for this topology (from ALL_SDO_TOPO_METADATA)
    SDO_TOPO_OBJECT_ARRAY (
      SDO_TOPO_OBJECT (4, 3), -- face_id = 4
      SDO_TOPO_OBJECT (7, 3))) -- face_id = 7
);
-- P3
INSERT INTO land_parcels VALUES ('P3', -- Feature name
  SDO_TOPO_GEOMETRY(
    'CITY_DATA', -- Topology name
    3, -- Topology geometry type (polygon/multipolygon)
    1, -- TG_LAYER_ID for this topology (from ALL_SDO_TOPO_METADATA)
    SDO_TOPO_OBJECT_ARRAY (
      SDO_TOPO_OBJECT (5, 3), -- face_id = 5
      SDO_TOPO_OBJECT (8, 3))) -- face_id = 8
);
-- P4
INSERT INTO land_parcels VALUES ('P4', -- Feature name
  SDO_TOPO_GEOMETRY(
    'CITY_DATA', -- Topology name
    3, -- Topology geometry type (polygon/multipolygon)
    1, -- TG_LAYER_ID for this topology (from ALL_SDO_TOPO_METADATA)
    SDO_TOPO_OBJECT_ARRAY (
      SDO_TOPO_OBJECT (2, 3))) -- face_id = 2
);
-- P5 (Includes F1, but not F9.)
INSERT INTO land_parcels VALUES ('P5', -- Feature name
  SDO_TOPO_GEOMETRY(
    'CITY_DATA', -- Topology name
    3, -- Topology geometry type (polygon/multipolygon)
    1, -- TG_LAYER_ID for this topology (from ALL_SDO_TOPO_METADATA)
    SDO_TOPO_OBJECT_ARRAY (
      SDO_TOPO_OBJECT (1, 3))) -- face_id = 1
);
 
-- 6B. Load TRAFFIC_SIGNS table.
 
-- S1
INSERT INTO traffic_signs VALUES ('S1', -- Feature name
  SDO_TOPO_GEOMETRY(
    'CITY_DATA', -- Topology name
    1, -- Topology geometry type (point)
    2, -- TG_LAYER_ID for this topology (from ALL_SDO_TOPO_METADATA)
    SDO_TOPO_OBJECT_ARRAY (
      SDO_TOPO_OBJECT (14, 1))) -- node_id = 14
);
-- S2
INSERT INTO traffic_signs VALUES ('S2', -- Feature name
  SDO_TOPO_GEOMETRY(
    'CITY_DATA', -- Topology name
    1, -- Topology geometry type (point)
    2, -- TG_LAYER_ID for this topology (from ALL_SDO_TOPO_METADATA)
    SDO_TOPO_OBJECT_ARRAY (
      SDO_TOPO_OBJECT (13, 1))) -- node_id = 13
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);
-- S3
INSERT INTO traffic_signs VALUES ('S3', -- Feature name
  SDO_TOPO_GEOMETRY(
    'CITY_DATA', -- Topology name
    1, -- Topology geometry type (point)
    2, -- TG_LAYER_ID for this topology (from ALL_SDO_TOPO_METADATA)
    SDO_TOPO_OBJECT_ARRAY (
      SDO_TOPO_OBJECT (6, 1))) -- node_id = 6
);
-- S4
INSERT INTO traffic_signs VALUES ('S4', -- Feature name
  SDO_TOPO_GEOMETRY(
    'CITY_DATA', -- Topology name
    1, -- Topology geometry type (point)
    2, -- TG_LAYER_ID for this topology (from ALL_SDO_TOPO_METADATA)
    SDO_TOPO_OBJECT_ARRAY (
      SDO_TOPO_OBJECT (4, 1))) -- node_id = 4
);
 
-- 6C. Load CITY_STREETS table.
-- (Note: "R" in feature names is for "Road", because "S" is used for signs.)
 
-- R1
INSERT INTO city_streets VALUES ('R1', -- Feature name
  SDO_TOPO_GEOMETRY(
    'CITY_DATA', -- Topology name
    2, -- Topology geometry type (line string)
    3, -- TG_LAYER_ID for this topology (from ALL_SDO_TOPO_METADATA)
    SDO_TOPO_OBJECT_ARRAY (
      SDO_TOPO_OBJECT (9, 2),
      SDO_TOPO_OBJECT (-10, 2),
      SDO_TOPO_OBJECT (11, 2))) -- edge_ids = 9, -10, 11
);
-- R2
INSERT INTO city_streets VALUES ('R2', -- Feature name
  SDO_TOPO_GEOMETRY(
    'CITY_DATA', -- Topology name
    2, -- Topology geometry type (line string)
    3, -- TG_LAYER_ID for this topology (from ALL_SDO_TOPO_METADATA)
    SDO_TOPO_OBJECT_ARRAY (
      SDO_TOPO_OBJECT (4, 2),
      SDO_TOPO_OBJECT (-5, 2))) -- edge_ids = 4, -5
);
-- R3
INSERT INTO city_streets VALUES ('R3', -- Feature name
  SDO_TOPO_GEOMETRY(
    'CITY_DATA', -- Topology name
    2, -- Topology geometry type (line string)
    3, -- TG_LAYER_ID for this topology (from ALL_SDO_TOPO_METADATA)
    SDO_TOPO_OBJECT_ARRAY (
      SDO_TOPO_OBJECT (25, 2))) -- edge_id = 25
);
-- R4
INSERT INTO city_streets VALUES ('R4', -- Feature name
  SDO_TOPO_GEOMETRY(
    'CITY_DATA', -- Topology name
    2, -- Topology geometry type (line string)
    3, -- TG_LAYER_ID for this topology (from ALL_SDO_TOPO_METADATA)
    SDO_TOPO_OBJECT_ARRAY (
      SDO_TOPO_OBJECT (3, 2))) -- edge_id = 3
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);
 
-- 7. Query the data.
 
SELECT a.feature_name, a.feature.tg_id, a.feature.get_geometry()
FROM land_parcels a;
 
/* Window is city_streets */
SELECT  a.feature_name, b.feature_name
  FROM city_streets b,
     land_parcels a
  WHERE  b.feature_name like 'R%' AND 
     sdo_anyinteract(a.feature, b.feature) = 'TRUE'
  ORDER BY b.feature_name, a.feature_name;
 
-- Find all streets that have any interaction with land parcel P3.
-- (Should return only R1.)
SELECT c.feature_name FROM city_streets c, land_parcels l 
  WHERE l.feature_name = 'P3' AND
   SDO_ANYINTERACT (c.feature, l.feature) = 'TRUE';
 
-- Find all land parcels that have any interaction with traffic sign S1.
-- (Should return P1 and P2.)
SELECT l.feature_name FROM land_parcels l, traffic_signs t 
  WHERE t.feature_name = 'S1' AND
   SDO_ANYINTERACT (l.feature, t.feature) = 'TRUE';
 
-- Get the geometry for land parcel P1.
SELECT l.feature_name, l.feature.get_geometry()
  FROM land_parcels l WHERE l.feature_name = 'P1';
 
-- Get the boundary of face with face_id 3.
SELECT SDO_TOPO.GET_FACE_BOUNDARY('CITY_DATA', 3) FROM DUAL;
 
-- Get the topological elements for land parcel P2.
-- CITY_DATA layer, land parcels (tg_ layer_id = 1), parcel P2 (tg_id = 2)
SELECT SDO_TOPO.GET_TOPO_OBJECTS('CITY_DATA', 1, 2) FROM DUAL;

1.12.2 Topology Built from Spatial Geometries
Example 1-13 uses a topology built from Oracle Spatial and Graph geometry data.

Example 1-13    Topology Built from Spatial Geometries

------------------------------
-- Main steps for using the Topology Data Model with a topology
-- built from Spatial and Graph geometry data
------------------------------
-- 1. Create the topology.
-- 2. Insert the universe face (F0). (id = -1, not 0)
-- 3. Create feature tables.
-- 4. Associate feature tables with the topology.
-- 5. Initialize topology metadata.
-- 6. Create a TopoMap object and load the whole topology into 
--     cache for updating.
-- 7. Load feature tables, inserting data from the spatial tables and 
--     using SDO_TOPO_MAP.CREATE_FEATURE.
-- 8. Query the data.
-- 9. Optionally, edit the data using the PL/SQL or Java API.
 
-- Preliminary work for this example (things normally done to use
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-- data with Oracle Spatial and Graph): 
-- * Create the spatial tables.
-- * Update the spatial metadata (USER_SDO_GEOM_METADATA).
-- * Load data into the spatial tables.
-- * Validate the spatial data (validate the layers).
-- * Create the spatial indexes.
 
-- Create spatial tables of geometry features: names and geometries.
 
CREATE TABLE city_streets_geom ( -- City streets/roads
  name VARCHAR2(30) PRIMARY KEY,
  geometry SDO_GEOMETRY);
 
CREATE TABLE traffic_signs_geom ( -- Traffic signs
  name VARCHAR2(30) PRIMARY KEY,
  geometry SDO_GEOMETRY);
 
CREATE TABLE land_parcels_geom ( -- Land parcels
  name VARCHAR2(30) PRIMARY KEY,
  geometry SDO_GEOMETRY);
 
INSERT INTO user_sdo_geom_metadata
    (TABLE_NAME,
     COLUMN_NAME,
     DIMINFO,
     SRID)
  VALUES (
    'CITY_STREETS_GEOM',
    'GEOMETRY',
    SDO_DIM_ARRAY(
      SDO_DIM_ELEMENT('X', 0, 65, 0.005),
      SDO_DIM_ELEMENT('Y', 0, 45, 0.005)
      ),
    NULL -- SRID
  );
 
INSERT INTO user_sdo_geom_metadata
    (TABLE_NAME,
     COLUMN_NAME,
     DIMINFO,
     SRID)
  VALUES (
    'TRAFFIC_SIGNS_GEOM',
    'GEOMETRY',
    SDO_DIM_ARRAY(
      SDO_DIM_ELEMENT('X', 0, 65, 0.005),
      SDO_DIM_ELEMENT('Y', 0, 45, 0.005)
      ),
    NULL -- SRID
  );
 
INSERT INTO user_sdo_geom_metadata
    (TABLE_NAME,
     COLUMN_NAME,
     DIMINFO,
     SRID)
  VALUES (
    'LAND_PARCELS_GEOM',
    'GEOMETRY',
    SDO_DIM_ARRAY(
      SDO_DIM_ELEMENT('X', 0, 65, 0.005),
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      SDO_DIM_ELEMENT('Y', 0, 45, 0.005)
      ),
    NULL -- SRID
  );
 
-- Load these tables (names and geometries for city streets/roads,
-- traffic signs, and land parcels).
 
-- Insert data into city street line geometries.
 
-- R1 
INSERT INTO city_streets_geom VALUES('R1',
  SDO_GEOMETRY(2002, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 2, 1),
    SDO_ORDINATE_ARRAY(9,14, 21,14, 35,14, 47,14)));
 
-- R2
INSERT INTO city_streets_geom VALUES('R2',
  SDO_GEOMETRY(2002, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 2, 1),
    SDO_ORDINATE_ARRAY(36,38, 38,35, 41,34, 42,33, 45,32, 47,28, 50,28, 52,32,
57,33, 57,36, 59,39, 61,38, 62,41, 47,42, 45,40, 41,40)));
 
-- R3
INSERT INTO city_streets_geom VALUES('R3',
  SDO_GEOMETRY(2002, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 2, 1),
    SDO_ORDINATE_ARRAY(9,35, 13,35)));
 
-- R4
INSERT INTO city_streets_geom VALUES('R4',
  SDO_GEOMETRY(2002, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 2, 1),
    SDO_ORDINATE_ARRAY(25,30, 25,35)));
 
-- Insert data into traffic sign point geometries.
 
-- S1
INSERT INTO traffic_signs_geom VALUES('S1',
  SDO_GEOMETRY(2001, NULL, SDO_POINT_TYPE(21,14,NULL), NULL, NULL));
 
-- S2
INSERT INTO traffic_signs_geom VALUES('S2',
  SDO_GEOMETRY(2001, NULL, SDO_POINT_TYPE(35,14,NULL), NULL, NULL));
 
-- S3
INSERT INTO traffic_signs_geom VALUES('S3',
  SDO_GEOMETRY(2001, NULL, SDO_POINT_TYPE(57,33,NULL), NULL, NULL));
 
-- S4
INSERT INTO traffic_signs_geom VALUES('S4',
  SDO_GEOMETRY(2001, NULL, SDO_POINT_TYPE(20,37,NULL), NULL, NULL));
 
-- Insert data into land parcel polygon geometries.
 
-- P1
INSERT INTO land_parcels_geom VALUES('P1',
  SDO_GEOMETRY(2003, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 1003, 1), 
    SDO_ORDINATE_ARRAY(9,6, 21,6, 21,14, 21,22, 9,22, 9,14, 9,6)));
 
-- P2
INSERT INTO land_parcels_geom VALUES('P2',
  SDO_GEOMETRY(2003, NULL, NULL, SDO_ELEM_INFO_ARRAY(1,1003,1),
    SDO_ORDINATE_ARRAY(21,6, 35,6, 35,14, 35,22, 21,22, 21,14, 21,6)));
 

Chapter 1
Topology Examples (PL/SQL)

1-51



-- P3
INSERT INTO land_parcels_geom VALUES('P3',
  SDO_GEOMETRY(2003, NULL, NULL, SDO_ELEM_INFO_ARRAY(1,1003,1),
    SDO_ORDINATE_ARRAY(35,6, 47,6, 47,14, 47,22, 35,22, 35,14, 35,6)));
 
-- P4
INSERT INTO land_parcels_geom VALUES('P4',
  SDO_GEOMETRY(2003, NULL, NULL, SDO_ELEM_INFO_ARRAY(1,1003,1),
    SDO_ORDINATE_ARRAY(17,30, 31,30, 31,40, 17,40, 17,30)));
 
-- P5 (polygon with a hole; exterior ring and one interior ring)
INSERT INTO land_parcels_geom VALUES('P5',
  SDO_GEOMETRY(2003, NULL, NULL, SDO_ELEM_INFO_ARRAY(1,1003,1, 11,2003,1), 
      SDO_ORDINATE_ARRAY(3,30, 16,30, 16,38, 3,38, 3,30, 4,31, 4,34, 7,34, 7,31, 
4,31)));
 
-- Validate the layers.
create table val_results (sdo_rowid ROWID, result VARCHAR2(2000));
call 
SDO_GEOM.VALIDATE_LAYER_WITH_CONTEXT('CITY_STREETS_GEOM','GEOMETRY','VAL_RESULTS'
);
SELECT * from val_results;
truncate table val_results;
call 
SDO_GEOM.VALIDATE_LAYER_WITH_CONTEXT('TRAFFIC_SIGNS_GEOM','GEOMETRY','VAL_RESULTS
');
SELECT * from val_results;
truncate table val_results;
call 
SDO_GEOM.VALIDATE_LAYER_WITH_CONTEXT('LAND_PARCELS_GEOM','GEOMETRY','VAL_RESULTS'
);
SELECT * from val_results;
drop table val_results;
 
-- Create the spatial indexes.
CREATE INDEX city_streets_geom_idx ON city_streets_geom(geometry)
  INDEXTYPE IS MDSYS.SPATIAL_INDEX;
CREATE INDEX traffic_signs_geom_idx ON traffic_signs_geom(geometry)
  INDEXTYPE IS MDSYS.SPATIAL_INDEX;
CREATE INDEX land_parcels_geom_idx ON land_parcels_geom(geometry)
  INDEXTYPE IS MDSYS.SPATIAL_INDEX;
 
-- Start the main steps for using the Topology Data Model with a
-- topology built from spatial geometry data.
 
-- 1. Create the topology. (Null SRID in this example.)
EXECUTE SDO_TOPO.CREATE_TOPOLOGY('CITY_DATA', 0.00005);
 
-- 2. Insert the universe face (F0). (id = -1, not 0)
INSERT INTO CITY_DATA_FACE$ values (
  -1, NULL, SDO_LIST_TYPE(), SDO_LIST_TYPE(), NULL);
 
COMMIT;
 
-- 3. Create feature tables.
 
CREATE TABLE city_streets ( -- City streets/roads
  feature_name VARCHAR2(30) PRIMARY KEY,
  feature SDO_TOPO_GEOMETRY);
 
CREATE TABLE traffic_signs ( -- Traffic signs
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  feature_name VARCHAR2(30) PRIMARY KEY,
  feature SDO_TOPO_GEOMETRY);
 
CREATE TABLE land_parcels ( -- Land parcels
  feature_name VARCHAR2(30) PRIMARY KEY,
  feature SDO_TOPO_GEOMETRY);
 
-- 4. Associate feature tables with the topology.
--    Add the three topology geometry layers to the CITY_DATA topology.
--    Any order is OK.
 
EXECUTE SDO_TOPO.ADD_TOPO_GEOMETRY_LAYER('CITY_DATA', 'CITY_STREETS', 
'FEATURE','LINE');
EXECUTE SDO_TOPO.ADD_TOPO_GEOMETRY_LAYER('CITY_DATA', 'TRAFFIC_SIGNS','FEATURE', 
'POINT');
EXECUTE SDO_TOPO.ADD_TOPO_GEOMETRY_LAYER('CITY_DATA', 'LAND_PARCELS','FEATURE', 
'POLYGON');
 
--  As a result, Spatial and Graph generates a unique TG_LAYER_ID for each layer in 
--  the topology metadata (USER/ALL_SDO_TOPO_METADATA).

-- 5. Initialize topology metadata.
EXECUTE SDO_TOPO.INITIALIZE_METADATA('CITY_DATA');
 
-- 6. Create a TopoMap object and load the whole topology into cache for updating.
 
EXECUTE SDO_TOPO_MAP.CREATE_TOPO_MAP('CITY_DATA', 'CITY_DATA_TOPOMAP');
EXECUTE SDO_TOPO_MAP.LOAD_TOPO_MAP('CITY_DATA_TOPOMAP', 'true');
 
-- 7. Load feature tables, inserting data from the spatial tables and 
--    using SDO_TOPO_MAP.CREATE_FEATURE.
 
BEGIN
  FOR street_rec IN (SELECT name, geometry FROM city_streets_geom) LOOP
   INSERT INTO city_streets VALUES(street_rec.name,
     SDO_TOPO_MAP.CREATE_FEATURE('CITY_DATA', 'CITY_STREETS', 'FEATURE',
         street_rec.geometry));
  END LOOP;
 
  FOR sign_rec IN (SELECT name, geometry FROM traffic_signs_geom) LOOP
   INSERT INTO traffic_signs VALUES(sign_rec.name,
     SDO_TOPO_MAP.CREATE_FEATURE('CITY_DATA', 'TRAFFIC_SIGNS', 'FEATURE',
         sign_rec.geometry));
  END LOOP;
 
  FOR parcel_rec IN (SELECT name, geometry FROM land_parcels_geom) LOOP
   INSERT INTO land_parcels VALUES(parcel_rec.name,
     SDO_TOPO_MAP.CREATE_FEATURE('CITY_DATA', 'LAND_PARCELS', 'FEATURE',
         parcel_rec.geometry));
  END LOOP;
END;
/
 
CALL SDO_TOPO_MAP.COMMIT_TOPO_MAP();
CALL SDO_TOPO_MAP.DROP_TOPO_MAP('CITY_DATA_TOPOMAP');
 
-- 8. Query the data.
 
SELECT a.feature_name, a.feature.tg_id, a.feature.get_geometry()
FROM land_parcels a;
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SELECT a.feature_name, a.feature.tg_id, a.feature.get_geometry()
FROM city_streets a;
 
SELECT a.feature_name, a.feature.tg_id, a.feature.get_geometry()
FROM traffic_signs a;
 
SELECT sdo_topo.get_face_boundary('CITY_DATA', face_id), face_id
FROM city_data_face$;
 
SELECT sdo_topo.get_face_boundary('CITY_DATA', face_id), face_id
FROM city_data_face$;
 
SELECT sdo_topo.get_face_boundary('CITY_DATA', face_id, 'TRUE'), face_id
FROM city_data_face$;
 
-- Get topological elements.
SELECT a.FEATURE_NAME,
 sdo_topo.get_topo_objects('CITY_DATA', a.feature.TG_LAYER_ID, a.feature.TG_ID)
FROM land_parcels a;
 
SELECT a.FEATURE_NAME, 
 sdo_topo.get_topo_objects('CITY_DATA', a.feature.TG_LAYER_ID, a.feature.TG_ID)
FROM city_streets a;
 
SELECT a.FEATURE_NAME, 
 sdo_topo.get_topo_objects('CITY_DATA', a.feature.TG_LAYER_ID, a.feature.TG_ID)
FROM traffic_signs a;
 
SELECT sdo_topo.get_topo_objects('CITY_DATA', sdo_geometry(2003,null, null,
       sdo_elem_info_array(1,1003,3),
        sdo_ordinate_array(1,1, 20,20)))
        FROM DUAL;
 
SELECT sdo_topo.get_topo_objects('CITY_DATA', sdo_geometry(2003,null, null,
       sdo_elem_info_array(1,1003,3),
        sdo_ordinate_array(17,30, 31,40)))
        FROM DUAL;
 
-- Find all city streets interacting with a query window.
SELECT c.feature_name FROM city_streets c WHERE
  SDO_ANYINTERACT(
    c.feature,
    SDO_GEOMETRY(2003, NULL, NULL,
      SDO_ELEM_INFO_ARRAY(1, 1003, 3),
      SDO_ORDINATE_ARRAY(5,5, 30,40)))
= 'TRUE';
 
-- Find all streets that have any interaction with land parcel P3.
-- (Should return only R1.)
SELECT c.feature_name FROM city_streets c, land_parcels l 
  WHERE l.feature_name = 'P3' AND
   SDO_ANYINTERACT (c.feature, l.feature) = 'TRUE';
 
-- Find all land parcels that have any interaction with traffic sign S1.
-- (Should return P1 and P2.)
SELECT l.feature_name FROM land_parcels l, traffic_signs t 
  WHERE t.feature_name = 'S1' AND
   SDO_ANYINTERACT (l.feature, t.feature) = 'TRUE';
 
-- Get the geometry for land parcel P1.
SELECT l.feature_name, l.feature.get_geometry()
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  FROM land_parcels l WHERE l.feature_name = 'P1';
 
-- Query SDO_TOPO_GEOMETRY attributes,
SELECT s.feature.tg_type FROM city_streets s;
SELECT s.feature.tg_id FROM city_streets s;
SELECT s.feature.tg_layer_id FROM city_streets s;
SELECT s.feature.topology_id FROM city_streets s;
 
-- Topology-specific functions
 
-- Get the boundary of face with face_id 3.
SELECT SDO_TOPO.GET_FACE_BOUNDARY('CITY_DATA', 3) FROM DUAL;
-- Try 'TRUE' as third parameter.
SELECT SDO_TOPO.GET_FACE_BOUNDARY('CITY_DATA', 3, 'TRUE') FROM DUAL;
-- Get the boundary of face with face_id 2.
SELECT SDO_TOPO.GET_FACE_BOUNDARY('CITY_DATA', 2) FROM DUAL;
-- Try 'TRUE' as third parameter.
SELECT SDO_TOPO.GET_FACE_BOUNDARY('CITY_DATA', 2, 'TRUE') FROM DUAL;
-- Get the boundary of face with face_id 1.
SELECT SDO_TOPO.GET_FACE_BOUNDARY('CITY_DATA', 1) FROM DUAL;
-- Specify 'TRUE' for the all_edges parameter.
SELECT SDO_TOPO.GET_FACE_BOUNDARY('CITY_DATA', 1, 'TRUE') FROM DUAL;
 
-- CITY_DATA layer, land parcels (tg_ layer_id = 1), parcel P2 (tg_id = 2)
SELECT SDO_TOPO.GET_TOPO_OBJECTS('CITY_DATA', 1, 2) FROM DUAL;
 
-- 10. Optionally, edit the data using the PL/SQL or Java API.

1.13 README File for Spatial and Graph and Related Features
A README.txt file supplements the information in the following manuals: Oracle Spatial and
Graph Developer's Guide, Oracle Spatial and Graph GeoRaster Developer's Guide, and
Oracle Spatial and Graph Topology Data Model and Network Data Model Graph Developer's
Guide (this manual).
This file is located at:

$ORACLE_HOME/md/doc/README.txt
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2
Editing Topologies

Node and edge data in a topology can be edited. The operations include adding, moving, and
removing nodes and edges, and updating the coordinates of an edge.

This chapter explains two approaches to editing topology data, and it explains why one
approach (creating and using a special cache) is better in most cases. It also describes the
behavior and implications of some major types of editing operations.

The explanations in this chapter refer mainly to the PL/SQL application programming
interface (API) provided in the MDSYS.SDO_TOPO_MAP package, which is documented in 
SDO_TOPO_MAP Package Subprograms. However, you can also perform topology editing
operations using the client-side Java API, which is introduced in Topology Data Model Java
Interface and is explained in the Javadoc-generated documentation.

To edit topology data, always use the PL/SQL or Java API. Do not try to perform editing
operations by directly modifying the node, edge, or face information tables.

• Approaches for Editing Topology Data

• Performing Operations on Nodes
This topic contains sections that describe the effects of adding, moving, and removing
nodes, and that explain how to perform these operations using the PL/SQL API.

• Performing Operations on Edges
This topic describes the effects of adding, moving, removing, and updating edges, and
explains how to perform these operations using the PL/SQL API.

See Also:

• Cross-Schema Topology Editing

2.1 Approaches for Editing Topology Data
Whenever you need to edit a topology, you can use PL/SQL or Java API. In both cases,
Oracle Spatial and Graph uses an in-memory topology cache, specifically, a TopoMap object.
(This object is described in TopoMap Objects.)

• If you use the PL/SQL API, you can either explicitly create and use the cache or allow
Spatial and Graph to create and use the cache automatically.

• If you use the Java API, you must explicitly create and use the cache.

Allowing Spatial and Graph to create and manage the cache automatically is simpler,
because it involves fewer steps than creating and using a cache. However, because allowing
Spatial and Graph to create and manage the cache involves more database activity and disk
accesses, it is less efficient when you need to edit more than a few topological elements.

• TopoMap Objects
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• Specifying the Editing Approach with the Topology Parameter

• Using GET_xxx Topology Functions

• Process for Editing Using Cache Explicitly (PL/SQL API)

• Process for Editing Using the Java API

• Error Handling for Topology Editing

2.1.1 TopoMap Objects
A TopoMap object is associated with an in-memory cache that is associated with a
topology. If you explicitly create and use a cache for editing a topology, you must
create a TopoMap object to be associated with a topology, load all or some of the
topology into the cache, edit objects, periodically update the topology to write changes
to the database, commit the changes made in the cache, and clear the cache.

Although this approach involves more steps than allowing Spatial and Graph to create
and use the cache automatically, it is much faster and more efficient for most topology
editing sessions, which typically affect hundreds or thousands of topological elements.
It is the approach shown in most explanations and illustrations.

A TopoMap object can be updatable or read-only, depending on the value of the
allow_updates parameter when you call the SDO_TOPO_MAP.LOAD_TOPO_MAP
function or procedure:

• With a read-only TopoMap object, topological elements (primitives) are loaded but
not locked.

• With an updatable TopoMap object, topological elements (primitives) are loaded
and locked. If you specified a rectangular window for an updatable TopoMap
object, you can edit only those topological elements inside the specified window.
(The TopoMap object may also contain locked topological elements that you
cannot edit directly, but that Oracle Spatial and Graph can modify indirectly as
needed.)

For more information about what occurs when you use an updatable TopoMap
object, see the Usage Notes for the SDO_TOPO_MAP.LOAD_TOPO_MAP
function or procedure.

The following procedures set an updatable TopoMap object to be read-only:

• SDO_TOPO_MAP.COMMIT_TOPO_MAP

• SDO_TOPO_MAP.ROLLBACK_TOPO_MAP

• SDO_TOPO_MAP.CLEAR_TOPO_MAP

Within a user session at any given time, there can be no more than one updatable
TopoMap object. However, multiple different user sessions can work with updatable
TopoMap objects based on the same topology, as long as their editing windows do not
contain any topological elements that are in any other updatable TopoMap objects.
There can be multiple read-only TopoMap objects within and across user sessions.

Two or more users can edit a topology at the same time as long as their editing
windows (specified in the call to the SDO_TOPO_MAP.LOAD_TOPO_MAP function or
procedure) do not overlap.
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2.1.2 Specifying the Editing Approach with the Topology Parameter
For many SDO_TOPO_MAP package functions and procedures that edit topologies, such as 
SDO_TOPO_MAP.ADD_NODE or SDO_TOPO_MAP.MOVE_EDGE, you indicate the
approach you are using for editing by specifying either a topology name or a null value for the
first parameter, which is named topology:

• If you specify a topology name, Spatial and Graph checks to see if an updatable
TopoMap object already exists in the user session; and if one does not exist, Spatial and
Graph creates an internal TopoMap object, uses that cache to perform the editing
operation, commits the change (or rolls back changes to the savepoint at the beginning of
the process if an exception occurred), and deletes the TopoMap object. (If an updatable
TopoMap object already exists, an exception is raised.) For example, the following
statement removes the node with node ID value 99 from the MY_TOPO topology:

CALL SDO_TOPO_MAP.REMOVE_NODE('MY_TOPO', 99);
• If you specify a null value, Spatial and Graph checks to see if an updatable TopoMap

object already exists in the user session; and if one does exist, Spatial and Graph
performs the operation in the TopoMap object's cache. (If no updatable TopoMap object
exists, an exception is raised.) For example, the following statement removes the node
with node ID value 99 from the current updatable TopoMap object:

CALL SDO_TOPO_MAP.REMOVE_NODE(null, 99);

2.1.3 Using GET_xxx Topology Functions
Some SDO_TOPO_MAP package functions that get information about topologies have
topology and topo_map as their first two parameters. Examples of such functions are 
SDO_TOPO_MAP.GET_EDGE_COORDS and SDO_TOPO_MAP.GET_NODE_STAR. To
use these functions, specify a valid value for one parameter and a null value for the other
parameter, as follows:

• If you specify a valid topology parameter value, Spatial and Graph retrieves the
information for the specified topology. It creates an internal TopoMap object, uses that
cache to perform the operation, and deletes the TopoMap object. For example, the
following statement returns the edge coordinates of the edge with an ID value of 1 from
the CITY_DATA topology:

SELECT SDO_TOPO_MAP.GET_EDGE_COORDS('CITY_DATA', null, 1) FROM DUAL;
• If you specify a null topology parameter value and a valid topo_map parameter value,

Spatial and Graph uses the specified TopoMap object (which can be updatable or read-
only) to retrieve the information for the specified topology. For example, the following
statement returns the edge coordinates of the edge with an ID value of 1 from the
CITY_DATA_TOPOMAP TopoMap object:

SELECT SDO_TOPO_MAP.GET_EDGE_COORDS(null, 'CITY_DATA_TOPOMAP', 1) FROM DUAL;
• If you specify a null or invalid value for both the topology and topo_map parameters, an

exception is raised.

Some SDO_TOPO_MAP package functions that get information about topology editing
operations have no parameters. Examples of such functions are 
SDO_TOPO_MAP.GET_FACE_ADDITIONS and 
SDO_TOPO_MAP.GET_NODE_CHANGES. These functions use the current updatable
TopoMap object. If no updatable TopoMap object exists, an exception is raised. For example,
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the following statement returns an SDO_NUMBER_ARRAY object (described in 
SDO_EDGE_ARRAY and SDO_NUMBER_ARRAY Types) with the node ID values of
nodes that have been added to the current updatable TopoMap object:

SELECT SDO_TOPO_MAP.GET_NODE_ADDITIONS FROM DUAL;

2.1.4 Process for Editing Using Cache Explicitly (PL/SQL API)
Figure 2-1 shows the recommended process for editing topological elements using the
PL/SQL API and explicitly using a TopoMap object and its associated cache.

Figure 2-1    Editing Topologies Using the TopoMap Object Cache (PL/SQL API)
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As Figure 2-1 shows, the basic sequence is as follows:

1. Create the TopoMap object, using the SDO_TOPO_MAP.CREATE_TOPO_MAP
procedure.

This creates an in-memory cache for editing objects associated with the specified
topology.

2. Load the entire topology or a rectangular window from the topology into the
TopoMap object cache for update, using the 
SDO_TOPO_MAP.LOAD_TOPO_MAP function or procedure.

You can specify that in-memory R-tree indexes be built on the edges and faces
that are being loaded. These indexes use some memory resources and take some
time to create and periodically rebuild; however, they significantly improve
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performance if you edit a large number of topological elements in the session. (They can
also improve performance for queries that use a read-only TopoMap object.)

3. Perform a number of topology editing operations (for example, add 1000 nodes).

Periodically, validate the cache by calling the SDO_TOPO_MAP.VALIDATE_TOPO_MAP
function.

You can rebuild existing in-memory R-tree indexes on edges and faces in the TopoMap
object, or create new indexes if none exist, by using the 
SDO_TOPO_MAP.CREATE_EDGE_INDEX and 
SDO_TOPO_MAP.CREATE_FACE_INDEX procedures. For best index performance,
these indexes should be rebuilt periodically when you are editing a large number of
topological elements.

If you want to discard edits made in the cache, call the 
SDO_TOPO_MAP.CLEAR_TOPO_MAP procedure. This procedure fails if there are any
uncommitted updates; otherwise, it clears the data in the cache and sets the cache to be
read-only.

4. Update the topology by calling the SDO_TOPO_MAP.UPDATE_TOPO_MAP procedure.

5. Repeat Steps 3 and 4 (editing objects, validating the cache, rebuilding the R-tree
indexes, and updating the topology) as often as needed, until you have finished the
topology editing operations.

6. Commit the topology changes by calling the SDO_TOPO_MAP.COMMIT_TOPO_MAP
procedure. (The SDO_TOPO_MAP.COMMIT_TOPO_MAP procedure automatically
performs the actions of the SDO_TOPO_MAP.UPDATE_TOPO_MAP procedure before it
commits the changes.) After the commit operation, the cache is made read-only (that is, it
is no longer updatable). However, if you want to perform further editing operations using
the same TopoMap object, you can load it again and use it (that is, repeat Steps 2
through 5, clearing the cache first if necessary).

To perform further editing operations, clear the TopoMap object cache by calling the 
SDO_TOPO_MAP.CLEAR_TOPO_MAP procedure, and then go to Step 2.

If you want to discard all uncommitted topology changes, you can call the 
SDO_TOPO_MAP.ROLLBACK_TOPO_MAP procedure at any time. After the rollback
operation, the cache is cleared.

7. Remove the TopoMap object by calling the SDO_TOPO_MAP.DROP_TOPO_MAP
procedure.

This procedure removes the TopoMap object and frees any resources that it had used. (If
you forget to drop the TopoMap object, it will automatically be dropped when the user
session ends.) This procedure also rolls back any topology changes in the cache that
have not been committed.

If the application terminates abnormally, all uncommitted changes to the database will be
discarded.

If you plan to perform a very large number of topology editing operations, you can divide the
operations among several editing sessions, each of which performs Steps 1 through 7 in the
preceding list.

2.1.5 Process for Editing Using the Java API
Figure 2-2 shows the recommended process for editing topological elements using the client-
side Java API, which is introduced in Topology Data Model Java Interface and is explained in
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the Javadoc-generated documentation. The Java API requires that you create and
manage a TopoMap object and its associated cache.

Figure 2-2    Editing Topologies Using the TopoMap Object Cache (Java API)
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As Figure 2-2 shows, the basic sequence is as follows:

1. Create the TopoMap object, using a constructor of the TopoMap class, specifying a
topology and a database connection.

This creates an in-memory cache for editing objects associated with the specified
topology.

2. Load the entire topology or a rectangular window from the topology into the
TopoMap object cache for update, using the loadTopology or loadWindow method
of the TopoMap class.

You can specify that in-memory R-tree indexes be built on the edge and edge face
that are being affected. These indexes use some memory resources and take
some time to create and periodically rebuild; however, they significantly improve
performance if you edit a large number of topological elements during the
database connection.

3. Perform a number of topology editing operations (for example, add 1000 nodes),
and update the topology by calling the updateTopology method of the TopoMap
class.
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Periodically, validate the cache by calling the validateCache method of the TopoMap
class.

If you caused in-memory R-tree indexes to be created when you loaded the TopoMap
object (in Step 2), you can periodically (for example, after each addition of 100 nodes)
rebuild the indexes by calling the createEdgeIndex and createFaceIndex methods of the
TopoMap class. For best index performance, these indexes should be rebuilt periodically
when you are editing a large number of topological elements.

If you do not want to update the topology but instead want to discard edits made in the
cache since the last update, call the clearCache method of the TopoMap class. The
clearCache method fails if there are any uncommitted updates; otherwise, it clears the
data in the cache and sets the cache to be read-only.

4. Update the topology by calling the updateTopology method of the TopoMap class.

5. Repeat Steps 3 and 4 (editing objects, validating the cache, rebuilding the R-tree
indexes, and updating the topology) as often as needed, until you have finished the
topology editing operations.

6. Commit the topology changes by calling the commitDB method of the TopoMap class. (The
commitDB method automatically calls the updateTopology method before it commits the
changes.) After the commit operation, the cache is made read-only (that is, it is no longer
updatable). However, if you want to perform further editing operations using the same
TopoMap object, you can load it again and use it (that is, repeat Steps 2 through 5,
clearing the cache first if necessary).

To perform further editing operations, clear the TopoMap object cache by calling the
clearCache method of the TopoMap class, and then go to Step 2.

If you want to discard all uncommitted topology changes, you can call the rollbackDB
method of the TopoMap class at any time. After the rollback operation, the cache is
cleared.

7. Remove the TopoMap object by setting the TopoMap object to null, which makes the
object available for garbage collection and frees any resources that it had used. (If you
forget to remove the TopoMap object, it will automatically be garbage collected when the
application ends.)

If the application terminates abnormally, all uncommitted changes to the database will be
discarded.

If you plan to perform a very large number of topology editing operations, you can divide the
operations among several editing sessions, each of which performs Steps 1 through 7 in the
preceding list.

2.1.6 Error Handling for Topology Editing
This section discusses the following conditions.

• Input Parameter Errors

• All Exceptions

2.1.6.1 Input Parameter Errors
When an SDO_TOPO_MAP PL/SQL subprogram or a public method in the TopoMap Java
class is called, it validates the values of the input parameters, and it uses or creates a
TopoMap object to perform the editing or read-only operation. Whenever there is an input
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error, an oracle.spatial.topo.TopoDataException exception is thrown. Other errors
may occur when the underlying TopoMap object performs an operation.

If the method is called from SQL or PL/SQL, the caller gets the following error
message:

ORA-29532: Java call terminated by uncaught Java exception:
<specific error message text>

The following PL/SQL example shows how you can handle a TopoDataException
exception:

DECLARE
  topo_data_error EXCEPTION;
  PRAGMA EXCEPTION_INIT(topo_data_error, -29532);
BEGIN
  sdo_topo_map.create_topo_map(null, null, 100, 100, 100);
EXCEPTION
  WHEN topo_data_error THEN
    DBMS_OUTPUT.PUT_LINE(SQLERRM);
END;/
 

The preceding example generates the following output:

ORA-29532: Java call terminated by uncaught Java 
exception:oracle.spatial.topo.TopoDataException: invalid TopoMap name

2.1.6.2 All Exceptions
The following actions are performed automatically when any exception occurs in a call
to any of the following SDO_TOPO_MAP PL/SQL subprograms or their associated
methods in the TopoMap Java class: SDO_TOPO_MAP.ADD_EDGE (addEdge), 
SDO_TOPO_MAP.ADD_ISOLATED_NODE (addIsolatedNode), 
SDO_TOPO_MAP.ADD_LOOP (addLoop), SDO_TOPO_MAP.ADD_NODE (addNode), 
SDO_TOPO_MAP.ADD_POINT_GEOMETRY (addPointGeometry), 
SDO_TOPO_MAP.ADD_POLYGON_GEOMETRY (addPolygonGeometry), 
SDO_TOPO_MAP.CHANGE_EDGE_COORDS (changeEdgeCoords), 
SDO_TOPO_MAP.MOVE_ISOLATED_NODE (moveIsolatedNode), 
SDO_TOPO_MAP.MOVE_NODE (moveNode), SDO_TOPO_MAP.MOVE_EDGE
(moveEdge), SDO_TOPO_MAP.REMOVE_EDGE (removeEdge), 
SDO_TOPO_MAP.REMOVE_NODE (removeNode), and 
SDO_TOPO_MAP.UPDATE_TOPO_MAP (updateTopology).

• The transaction is rolled back.

• The TopoMap object cache is cleared.

• The TopoMap object is made read-only.

2.2 Performing Operations on Nodes
This topic contains sections that describe the effects of adding, moving, and removing
nodes, and that explain how to perform these operations using the PL/SQL API.

• Adding a Node

• Moving a Node
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• Removing a Node

• Removing Obsolete Nodes

2.2.1 Adding a Node
Adding a non-isolated node adds the node to an edge at a point that is currently on the edge.
This operation also splits the edge, causing the original edge to be divided into two edges.
Spatial and Graph automatically adjusts the definition of the original edge and creates a new
edge (assigning it an ID value that is unique among edges in the topology).

To add a non-isolated node, use the SDO_TOPO_MAP.ADD_NODE function. To add an
isolated node, use the SDO_TOPO_MAP.ADD_ISOLATED_NODE function.

Figure 2-3 shows the addition of a node (N3) on edge E1.

Figure 2-3    Adding a Non-Isolated Node
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As a result of the operation shown in Figure 2-3:

• Edge E1 is redefined to be between the original edge's start point and the point at the
added node (N3).

• Edge E2 is created. Its start point is the point at node N3, and its end point is the end
point of the original edge.

• If any linear features were defined on the original edge, they are automatically redefined
to be on both resulting edges, the edge is split, and a record is added to the history
information table (explained in History Information Table) for the topology. For example, if
a street named Main Street had been defined on the original edge E1 in Figure 2-3, then
after the addition of node N3, Main Street would be defined on both edges E1 and E2.

Figure 2-4 shows a more complicated example of adding a node, where the result depends
on whether or not the added node is a new shape point of the original edge (that is, on the
value of the is_new_shape_point parameter to the SDO_TOPO_MAP.ADD_NODE function).
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Figure 2-4    Effect of is_new_shape_point Value on Adding a Node
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In Figure 2-4:

• In the top part of the figure, the original edge (E1) starts at node N1, ends at node
N2, and has two intermediate shape points.

• In the middle part of the figure, a new node (N3) is added that is not a shape point
of the original edge, but instead is a new shape point (that is,
is_new_shape_point=>'TRUE'). The new node is added at the location specified
with the point parameter, and is added after the vertex specified in the
coord_index parameter (in this case, coord_index=>1 to indicate after the first
vertex). The new node becomes the end node for edge E1 and the start node for
the new edge E2, which ends at node N2.

• In the bottom part of the figure, a new node (N3) is added that is a shape point of
the original edge, and is thus not a new shape point (that is,
is_new_shape_point=>'FALSE'). Because it is not a new shape point, the node is
added at the vertex specified with the coord_index parameter (in this case,
coord_index=>2). As in the middle part of the figure, the new node becomes the
end node for edge E1 and the start node for the new edge E2, which ends at node
N2.

2.2.2 Moving a Node
Moving a non-isolated node to a new position causes the ends of all edges that are
attached to the node to move with the node. You must specify the vertices for all edges
affected by the moving of the node; each point (start or end) that is attached to the
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node must have the same coordinates as the new location of the node, and the other end
points (not the moved node) of each affected edge must remain the same.

To move a non-isolated node, use the SDO_TOPO_MAP.MOVE_NODE procedure. To move
an isolated node, use the SDO_TOPO_MAP.MOVE_ISOLATED_NODE procedure.

Figure 2-5 shows the original topology before node N1 is moved.

Figure 2-5    Topology Before Moving a Non-Isolated Node
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Figure 2-6 shows two cases of the original topology after node N1 is moved. In one case, no
reshaping occurs; that is, all edges affected by the movement are specified as straight lines.
In the other case, reshaping occurs; that is, one or more affected edges are specified as line
segments with multiple vertices.

Figure 2-6    Topology After Moving a Non-Isolated Node
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In both cases shown in Figure 2-6:

• The topology does not change. That is, the number of nodes, edges, and faces does not
change, and the relationships (such as adjacency and connectivity) among the nodes,
edges, and faces do not change.
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• All features defined on the nodes, edges, and faces retain their definitions.

Any isolated nodes and edges might remain in the same face or be moved to a
different face as a result of a move operation on a non-isolated node. The 
SDO_TOPO_MAP.MOVE_NODE procedure has two output parameters,
moved_iso_nodes and moved_iso_edges, that store the ID numbers of any isolated
nodes and edges that were moved to a different face as a result of the operation.

A node cannot be moved if, as a result of the move, any of the following would
happen:

• Any edges attached to the node would intersect any other edge. For example,
assume that the original topology shown in Figure 2-6 had included another edge
E20 that passed just above and to the right of node N1. If the movement of node
N1 would cause edge E3, E4, E6, E8, or E9 to intersect edge E20, the move
operation is not performed.

• The node would be moved to a face that does not currently bound the node. For
example, if the movement of node N1 would place it outside the original topology
shown in Figure 2-6, the move operation is not performed.

• The node would be moved to the opposite side of an isolated face. This is not
allowed because the move would change the topology by changing one or more of
the following: the relationship or ordering of edges around the face, and the left
and right face for each edge. Figure 2-7 shows a node movement (flipping node
N1 from one side of isolated face F1 to the other side) that would not be allowed.

Figure 2-7    Node Move Is Not Allowed

Before Flip After Flip

(Not Allowed)
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F2

N3N2

N1

• Additional Examples of Allowed and Disallowed Node Moves

2.2.2.1 Additional Examples of Allowed and Disallowed Node Moves
This section provides additional examples of node movement operations that are
either allowed or not allowed. All refer to the topology shown in Figure 2-8.
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Figure 2-8    Topology for Node Movement Examples
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In the topology shown in Figure 2-8:

• Attempts will be made to move node N1 to points P1, P2, P3, and P4. (These points are
locations but are not existing nodes.)

• The edges have no shape points, either before or after the move operation.

• New vertices are specified for the edges E1, E2, E3, and E4, but the ID values of the
start and end points for the edges remain the same.

When the following node move operations are attempted using the topology shown in 
Figure 2-8, the following results occur:

• Moving node N1 to point P1: Not allowed, because one or more of the four attached
edges would intersect edge E5. (Edge E3 would definitely intersect edge E5 if the move
were allowed.)

• Moving node N1 to point P2: Allowed.

• Moving node N1 to point P3: Allowed. However, this operation causes the isolated node
N2 to change from face F2 to face F1, and this might cause the application to want to roll
back or disallow the movement of node N1. Similarly, if the movement of a node would
cause any isolated edges or faces to change from one face to another, the application
might want to roll back or disallow the node move operation.

• Moving node N1 to point P4: Not allowed, because the node must be moved to a point in
a face that bounds the original (current) position of the node.

2.2.3 Removing a Node
You can remove individual nodes (isolated or non-isolated), as explained in this section, and
you can remove all obsolete nodes in a topology, as explained in Removing Obsolete Nodes.

Removing a non-isolated node deletes the node and merges the edges that were attached to
the node into a single edge. (Spatial and Graph applies complex rules, which are not
documented, to determine the ID value and direction of the resulting edge.)

To remove a non-isolated or isolated node, use the SDO_TOPO_MAP.REMOVE_NODE
procedure.

Figure 2-9 shows the removal of a node (N1) that is attached to edges E1 and E2.

Chapter 2
Performing Operations on Nodes

2-13



Figure 2-9    Removing a Non-Isolated Node
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As a result of the operation shown in Figure 2-9:

• Edge E1 is redefined to consist of the line segments that had represented the
original edges E1 and E2.

• Edge E2 is deleted.

• If any linear features were defined on both original edges, they are automatically
redefined to be on the resulting edge, and a record is added to the history
information table (explained in History Information Table) for the topology. For
example, if a street named Main Street had been defined on the original edges E1
and E2 in Figure 2-9, then after the removal of node N1, Main Street would be
defined on edge E1.

A node cannot be removed if one or more of the following are true:

• A point feature is defined on the node. For example, if a point feature named
Metropolitan Art Museum had been defined on node N1 in Figure 2-9, node N1
cannot be removed. Before you can remove the node in this case, you must
remove the definition of any point features on the node.

• A linear feature defined on either original edge is not also defined on both edges.
For example, if a linear feature named Main Street had been defined on edge E1
but not edge E2 in Figure 2-9, node N1 cannot be removed.

2.2.4 Removing Obsolete Nodes
An obsolete node is a node that is connected to only two distinct edges, is not
assigned to any point feature, and does not serve as the demarcation between
different linear features. Obsolete nodes can result when the 
SDO_TOPO_MAP.ADD_POLYGON_GEOMETRY function is used repeatedly to build
a topology, or when edges have been removed during editing operations, leaving
some unnecessary nodes. Therefore, it is recommended that you use the 
SDO_TOPO_MAP.REMOVE_OBSOLETE_NODES procedure to remove obsolete
nodes in such cases.

Spatial and Graph automatically updates the appropriate entries in the <topology-
name>_NODE$ and <topology-name>_EDGE$ tables, and in the <topology-
name>_FACE$ table if necessary.

Figure 2-10 shows the removal of obsolete nodes in a simple topology. In this
topology, node N1 has a point feature named Art Museum defined on it, and node N3
has a point feature named Town Hall defined on it. Edges E1, E2, and E3 have a linear
feature named Main Street defined on them, and edge E4 has a linear feature named
First Avenue defined on it.
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Figure 2-10    Removing Obsolete Nodes
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In Figure 2-10, the only node removed is N2, because only that node satisfies all the criteria
for an obsolete node. As for the other nodes:

• N1 is connected to only one edge (E1), and it has a point feature defined on it (Art
Museum).

• N3 has a point feature defined on it (Town Hall).

• N4 is the demarcation between two different linear features (Main Street and First
Avenue).

• N5 is connected to only one edge (E4).

• Node N6 is an isolated node (not connected to any edges).

Also as a result of the operation shown in Figure 2-10, edge E2 was removed as a result of
the removal of node N2.

2.3 Performing Operations on Edges
This topic describes the effects of adding, moving, removing, and updating edges, and
explains how to perform these operations using the PL/SQL API.

• Adding an Edge

• Moving an Edge

• Removing an Edge

• Updating an Edge
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2.3.1 Adding an Edge
Adding a non-isolated edge adds the edge to a face. It also splits the face, causing the
original face to be divided into two faces. Spatial and Graph automatically adjusts the
definition of the original face and creates a new face (assigning it an ID value that is
unique among faces in the topology).

To add an edge, use the SDO_TOPO_MAP.ADD_EDGE procedure. You must specify
existing nodes as the start and end nodes of the added edge.

Figure 2-11 shows the addition of an edge (E7) between nodes N3 and N5 on face F3.

Figure 2-11    Adding a Non-Isolated Edge
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As a result of the operation shown in Figure 2-11, face F3 is redefined to be two faces,
F1 and F3. (Spatial and Graph applies complex rules, which are not documented, to
determine the ID values of the resulting faces.)

Any polygon features that were defined on the original face are automatically redefined
to be on both resulting faces. For example, if a park named Walden State Park had
been defined on the original face F3 in Figure 2-11, then after the addition of edge E7,
Walden State Park would be defined on both faces F1 and F3.

2.3.2 Moving an Edge
Moving a non-isolated edge keeps the start or end point of the edge in the same
position and moves the other of those two points to another existing node position. You
must specify the source node (location before the move of the node to be moved), the
target node (location after the move of the node being moved), and the vertices for the
moved edge.

To move an edge, use the SDO_TOPO_MAP.MOVE_EDGE procedure.

Figure 2-12 shows the movement of edge E7, which was originally between nodes N3
and N5, to be between nodes N2 and N5.
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Figure 2-12    Moving a Non-Isolated Edge
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As a result of the operation shown in Figure 2-12, faces F1 and F3 are automatically
redefined to reflect the coordinates of their edges, including the new coordinates for edge E7.

Any isolated nodes and edges might remain in the same face or be moved to a different face
as a result of a move operation on a non-isolated edge. The 
SDO_TOPO_MAP.MOVE_EDGE procedure has two output parameters, moved_iso_nodes
and moved_iso_edges, that store the ID numbers of any isolated nodes and edges that were
moved to a different face as a result of the operation.

An edge cannot be moved if, as a result of the move, any of the following would happen:

• The moved edge would intersect any other edge. For example, assume that the topology
before the move, as shown in Figure 2-12, had included another edge (E10) that was
between nodes N3 and N4. In this case, the movement of edge E7 would cause it to
intersect edge E10, and therefore the move operation is not performed.

• The node would be moved to a face that does not currently bound the edge. For
example, if the movement of edge E7 would place its terminating point at a node outside
the faces shown in Figure 2-12 (F1 and F3), the move operation is not performed.

2.3.3 Removing an Edge
Removing a non-isolated edge deletes the edge and merges the faces that bounded the
edge. (Spatial and Graph applies complex rules, which are not documented, to determine the
ID value of the resulting face.)

To remove an edge, use the SDO_TOPO_MAP.REMOVE_EDGE procedure.

Figure 2-13 shows the removal of an edge (E7) that is bounded by faces F1 and F3.
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Figure 2-13    Removing a Non-Isolated Edge
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As a result of the operation shown in Figure 2-13:

• Face F1 is redefined to consist of the area of the original faces F1 and F3.

• Face F3 is deleted.

• The start and end nodes of the deleted edge (nodes N3 and N5) are not removed.

Any polygon features that were defined on both original faces are automatically
redefined to be on the resulting face. For example, if a park named Adams Park had
been defined on the original faces F1 and F3 in Figure 2-13, then after the removal of
edge E7, Adams Park would be defined on face F1.

A non-isolated edge cannot be removed if one or more of the following are true:

• A linear feature is defined on the edge. For example, if a linear feature named
Main Street had been defined on edge E7 in Figure 2-13, edge E7 cannot be
removed. Before you can remove the edge in this case, you must remove the
definition of any linear features on the edge.

• A polygon feature defined on either original face is not also defined on both faces.
For example, if a linear feature named Adams Park had been defined on face F1
but not face F3 in Figure 2-13, edge E7 cannot be removed.

2.3.4 Updating an Edge
Updating an isolated edge means changing one or more coordinates of the edge, but
without changing the start point and end point.

To update an edge, use the SDO_TOPO_MAP.CHANGE_EDGE_COORDS
procedure.

Any isolated nodes and edges might remain in the same face or be moved to a
different face as a result of an update operation on a non-isolated edge. The 
SDO_TOPO_MAP.CHANGE_EDGE_COORDS procedure has two output parameters,
moved_iso_nodes and moved_iso_edges, that store the ID numbers of any isolated
nodes and edges that were moved to a different face as a result of the operation.
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An edge cannot be updated if, as a result of the operation, it would intersect any other edge.
See the Usage Notes for the SDO_TOPO_MAP.CHANGE_EDGE_COORDS procedure for
more information about updating an edge.
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3
SDO_TOPO Package Subprograms

The MDSYS.SDO_TOPO package contains subprograms (functions and procedures) that
constitute part of the PL/SQL application programming interface (API) for the Spatial and
Graph Topology Data Model feature. This package mainly contains subprograms for creating
and managing topologies.

To use the subprograms in this chapter, you must understand the conceptual information
about topology in Topology Data Model Overview.

Note:

SDO_TOPO subprograms are only supported if Oracle JVM is enabled on your
Oracle Autonomous Database instance in shared deployments. To enable Oracle
JVM, see Use Oracle Java in Using Oracle Autonomous Database on Shared
Exadata Infrastructure for more information.

Another package, SDO_TOPO_MAP, mainly contains subprograms related to editing
topologies. Reference information for the SDO_TOPO_MAP package is in SDO_TOPO_MAP
Package Subprograms.

The rest of this chapter provides reference information about the SDO_TOPO subprograms,
listed in alphabetical order.

• SDO_TOPO.ADD_TOPO_GEOMETRY_LAYER

• SDO_TOPO.CREATE_TOPOLOGY

• SDO_TOPO.DELETE_TOPO_GEOMETRY_LAYER

• SDO_TOPO.DROP_TOPOLOGY

• SDO_TOPO.GET_FACE_BOUNDARY

• SDO_TOPO.GET_TOPO_OBJECTS

• SDO_TOPO.INITIALIZE_AFTER_IMPORT

• SDO_TOPO.INITIALIZE_METADATA

• SDO_TOPO.PREPARE_FOR_EXPORT

• SDO_TOPO.RELATE

3.1 SDO_TOPO.ADD_TOPO_GEOMETRY_LAYER
Format

SDO_TOPO.ADD_TOPO_GEOMETRY_LAYER(     
  topology                 IN VARCHAR2,      
  table_name               IN VARCHAR2,      
  column_name              IN VARCHAR2,      
  topo_geometry_layer_type IN VARCHAR2,      
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  relation_table_storage   IN VARCHAR2 DEFAULT NULL,      
  child_layer_id           IN NUMBER DEFAULT NULL);

Description

Adds a topology geometry layer to a topology.

Parameters

topology
Topology to which to add the topology geometry layer containing the topology
geometries in the specified column. The topology must have been created using the 
SDO_TOPO.CREATE_TOPOLOGY procedure.

table_name
Name of the topology geometry layer table containing the column specified in
column_name.

column_name
Name of the column (of type SDO_TOPO_GEOMETRY) containing the topology
geometries in the topology geometry layer to be added to the topology.

topo_geometry_layer_type
Type of topology geometry layer: POINT, LINE, CURVE, POLYGON, or
COLLECTION.

relation_table_storage
Physical storage parameters used internally to create the <topology-
name>_RELATION$ table (described in Relationship Information Table). Must be a
valid string for use with the CREATE TABLE statement. For example: TABLESPACE
tbs_3 STORAGE (INITIAL 100K NEXT 200K). If you do not specify this parameter, the
default physical storage values are used.

child_layer_id
Layer ID number of the child topology geometry layer for this layer, if the topology has
a topology geometry layer hierarchy. (Topology geometry layer hierarchy is explained
in Topology Geometry Layer Hierarchy.) If you do not specify this parameter and if the
topology has a topology geometry layer hierarchy, the topology geometry layer is
added to the lowest level (level 0) of the hierarchy.
If the topology does not have a topology geometry layer hierarchy, do not specify this
parameter when adding any of the topology geometry layers.

Usage Notes

The first call to this procedure for a given topology creates the <topology-
name>_RELATION$ table, which is described in Relationship Information Table.

This procedure automatically performs a commit operation, and therefore it cannot be
rolled back. To delete the topology that you just created, call the 
SDO_TOPO.DELETE_TOPO_GEOMETRY_LAYER procedure.

The procedure creates a spatial index on the spatial features in the topology
geometries, and a B-tree index on the combination of tg_type and tg_id in the
topology geometries.

Users granted CONNECT and RESOURCE roles must also be granted the CREATE
VIEW privilege to call the procedure. This is necessary because effective with Oracle
Database 10g Release 2, the CONNECT role privilege reduction feature removed the
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following privileges from the CONNECT role: CREATE CLUSTER, CREATE DATABASE
LINK, CREATE SEQUENCE, ALTER SESSION, CREATE SYNONYM, CREATE TABLE, and
CREATE VIEW.

The topology geometry layer table (table_name parameter) cannot be an object table.

An exception is raised if topology, table_name, or column_name does not exist, or if
topo_geometry_layer_type is not one of the supported values.

Examples

The following example adds a topology geometry layer to the CITY_DATA topology. The
topology geometry layer consists of polygon geometries in the FEATURE column of the
LAND_PARCELS table. (The example refers to definitions and data from Topology Built from
Topology Data.)

EXECUTE SDO_TOPO.ADD_TOPO_GEOMETRY_LAYER('CITY_DATA', 'LAND_PARCELS', 'FEATURE', 
'POLYGON');

3.2 SDO_TOPO.CREATE_TOPOLOGY
Format

SDO_TOPO.CREATE_TOPOLOGY(     
  topology                 IN VARCHAR2,      
  tolerance                IN NUMBER,      
  srid                     IN NUMBER DEFAULT NULL,      
  node_table_storage       IN VARCHAR2 DEFAULT NULL,      
  edge_table_storage       IN VARCHAR2 DEFAULT NULL,      
  face_table_storage       IN VARCHAR2 DEFAULT NULL,      
  history_table_storage    IN VARCHAR2 DEFAULT NULL.      
  digits_right_of_decimal  IN VARCHAR2 DEFAULT 16);

Description

Creates a topology.

Parameters

topology
Name of the topology to be created. Must not exceed 20 characters.

tolerance
Tolerance value associated with topology geometries in the topology. (Tolerance is explained
in Tolerance in the Topology Data Model.)

srid
Coordinate system (spatial reference system) associated with all topology geometry layers in
the topology. The default is null: no coordinate system is associated; otherwise, it must be a
value from the SRID column of the SDO_COORD_REF_SYS table (described in Oracle
Spatial and Graph Developer's Guide).

node_table_storage
Physical storage parameters used internally to create the <topology-name>_NODE$ table
(described in Node Information Table). Must be a valid string for use with the CREATE
TABLE statement. For example: TABLESPACE tbs_3 STORAGE (INITIAL 100K NEXT 200K). If
you do not specify this parameter, the default physical storage values are used.
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edge_table_storage
Physical storage parameters used internally to create the <topology-name>_EDGE$
table (described in Edge Information Table). Must be a valid string for use with the
CREATE TABLE statement. For example: TABLESPACE tbs_3 STORAGE (INITIAL
100K NEXT 200K). If you do not specify this parameter, the default physical storage
values are used.

face_table_storage
Physical storage parameters used internally to create the <topology-name>_FACE$
table (described in Face Information Table). Must be a valid string for use with the
CREATE TABLE statement. For example: TABLESPACE tbs_3 STORAGE (INITIAL
100K NEXT 200K). If you do not specify this parameter, the default physical storage
values are used.

history_table_storage
Physical storage parameters used internally to create the <topology-
name>_HISTORY$ table (described in History Information Table. Must be a valid
string for use with the CREATE TABLE statement. For example: TABLESPACE tbs_3
STORAGE (INITIAL 100K NEXT 200K). If you do not specify this parameter, the default
physical storage values are used.

digits_right_of_decimal
The number of digits permitted to the right of the decimal point in the expression of
any coordinate position when features are added to an existing topology. All incoming
features (those passed as arguments to the addLinearGeometry,
addPolygonGeometry, or addPointGeometry method in the Java API or the equivalent
PL/SQL subprograms) will be automatically snapped (truncated) to the number of
digits right of the decimal that is specified in this parameter. The default is 16.
This value should be set to match the last digit right of the decimal point that is
considered valid based on the accuracy of the incoming data. This mechanism is
provided to improve the stability of the computational geometry during the feature
insertion process, and to minimize the creation of sliver polygons and other undesired
results.

Usage Notes

This procedure creates the <topology-name>_EDGE$, <topology-name>_NODE$,
<topology-name>_FACE$, and <topology-name>_HISTORY$ tables, which are
described in Topology Data Model Tables, and it creates B-tree indexes on the primary
keys of these tables. This procedure also creates the metadata for the topology.

In the srid parameter, you can specify a geodetic coordinate system; however, all
Spatial and Graph internal operations on the topology will use Cartesian (not geodetic)
arithmetic operations. (Geodetic and non-geodetic coordinate systems are discussed
in Oracle Spatial and Graph Developer's Guide.)

Node, edge, face, and history tables are created without partitions; however, you can
alter any of these tables to make it partitioned. You can also create a partitioned
spatial index on a partitioned table, as explained in Oracle Spatial and Graph
Developer's Guide.

This procedure automatically performs a commit operation, and therefore it cannot be
rolled back. To delete the topology that you just created, call the 
SDO_TOPO.DROP_TOPOLOGY procedure.

An exception is raised if the topology already exists.
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Examples

The following example creates a topology named CITY_DATA. The spatial geometries in this
topology have a tolerance value of 0.5 and use the WGS 84 coordinate system (longitude and
latitude, SRID value 8307). (The example refers to definitions and data from Topology Built
from Topology Data.)

EXECUTE SDO_TOPO.CREATE_TOPOLOGY('CITY_DATA', 0.5, 8307);

3.3 SDO_TOPO.DELETE_TOPO_GEOMETRY_LAYER
Format

SDO_TOPO.DELETE_TOPO_GEOMETRY_LAYER(     
  topology    IN VARCHAR2,      
  table_name  IN VARCHAR2,      
  column_name IN VARCHAR2);

Description

Deletes a topology geometry layer from a topology.

Parameters

topology
Topology from which to delete the topology geometry layer containing the topology
geometries in the specified column. The topology must have been created using the 
SDO_TOPO.CREATE_TOPOLOGY procedure.

table_name
Name of the table containing the column specified in column_name.

column_name
Name of the column containing the topology geometries in the topology geometry layer to be
deleted from the topology.

Usage Notes

This procedure deletes data associated with the specified topology geometry layer from the
<topology-name>_RELATION$ table (described in Relationship Information Table). If this
procedure is deleting the only remaining topology geometry layer from the topology, it also
deletes the <topology-name>_RELATION$ table.

This procedure automatically performs a commit operation, and therefore it cannot be rolled
back.

Examples

The following example deletes the topology geometry layer that is based on the geometries in
the FEATURE column of the LAND_PARCELS table from the topology named CITY_DATA.
(The example refers to definitions and data from Topology Built from Topology Data.)

EXECUTE SDO_TOPO.DELETE_TOPO_GEOMETRY_LAYER('CITY_DATA', 'LAND_PARCELS', 'FEATURE');
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3.4 SDO_TOPO.DROP_TOPOLOGY
Format

SDO_TOPO.DROP_TOPOLOGY(     
  topology  IN VARCHAR2);

Description

Deletes a topology.

Parameters

topology
Name of the topology to be deleted. The topology must have been created using the 
SDO_TOPO.CREATE_TOPOLOGY procedure.

Usage Notes

This procedure deletes the <topology-name>_EDGE$, <topology-name>_NODE$,
<topology-name>_FACE$, <topology-name>_NODE$, <topology-
name>_RELATION$, and <topology-name>_HISTORY$ tables (described in Topology
Data Model Tables).

If there are no topology layers associated with the topology, the topology is removed
from the Spatial and Graph metadata.

This procedure automatically performs a commit operation, and therefore it cannot be
rolled back.

A database user that owns a topology cannot be deleted. Therefore, before you can
use the DROP USER ... CASCADE statement on a database user that owns a
topology, you must connect as that user and execute the
SDO_TOPO.DROP_TOPOLOGY procedure.

An exception is raised if the topology contains any topology geometries from any
topology geometry layers. If you encounter this exception, delete all topology geometry
layers in the topology using the SDO_TOPO.DELETE_TOPO_GEOMETRY_LAYER
procedure for each topology geometry layer, and then drop the topology.

Examples

The following example drops the topology named CITY_DATA. (The example refers to
definitions and data from Topology Built from Topology Data.)

EXECUTE SDO_TOPO.DROP_TOPOLOGY('CITY_DATA');

3.5 SDO_TOPO.GET_FACE_BOUNDARY
Format

SDO_TOPO.GET_FACE_BOUNDARY(     
  topology   IN VARCHAR2,      
  face_id    IN NUMBER,      
  all_edges  IN VARCHAR2 DEFAULT 'FALSE'      
) RETURN SDO_LIST_TYPE;
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Description

Returns a list of the signed ID numbers of the edges for the specified face.

Parameters

topology
Name of the topology that contains the face. Must not exceed 20 characters.

face_id
Face ID value of the face.

all_edges
TRUE includes all edges that bound the face (that is, that have the face on one or both sides);
FALSE (the default) includes only edges that constitute the external boundary of the face.
(See the examples for this function.)

Usage Notes

None.

Examples

The following examples return the ID numbers of the edges for the face whose face ID value
is 1. The first example accepts the default value of 'FALSE' for the all_edges parameter. The
second example specifies 'TRUE' for all_edges, and the list includes the ID numbers of the
boundary edge and the two isolated edges on the face. (The examples refer to definitions
and data from Topology Examples (PL/SQL).)

-- Get the boundary of face with face_id 1.
SELECT SDO_TOPO.GET_FACE_BOUNDARY('CITY_DATA', 1) FROM DUAL;
 
SDO_TOPO.GET_FACE_BOUNDARY('CITY_DATA',1)                                       
--------------------------------------------------------------------------------
SDO_LIST_TYPE(1)                                                                
 
-- Specify 'TRUE' for the all_edges parameter.
SELECT SDO_TOPO.GET_FACE_BOUNDARY('CITY_DATA', 1, 'TRUE') FROM DUAL;
 
SDO_TOPO.GET_FACE_BOUNDARY('CITY_DATA',1,'TRUE')                                
--------------------------------------------------------------------------------
SDO_LIST_TYPE(1, -26, 25)

3.6 SDO_TOPO.GET_TOPO_OBJECTS
Format

SDO_TOPO.GET_TOPO_OBJECTS(     
  topology  IN VARCHAR2,      
  geometry  IN SDO_GEOMETRY      
) RETURN SDO_TOPO_OBJECT_ARRAY;

or

SDO_TOPO.GET_TOPO_OBJECTS(     
  topology               IN VARCHAR2,      
  topo_geometry_layer_id IN NUMBER,      
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  topo_geometry_id       IN NUMBER      
) RETURN SDO_TOPO_OBJECT_ARRAY;

Description

Returns an array of SDO_TOPO_OBJECT objects that interact with a specified
geometry object or topology geometry object.

Parameters

topology
Name of the topology. Must not exceed 20 characters.

geometry
Geometry object to be checked.

topo_geometry_layer_id
ID number of the topology geometry layer that contains the topology geometry object
to be checked.

topo_geometry_id
ID number of the topology geometry object to be checked.

Usage Notes

The SDO_TOPO_OBJECT_ARRAY data type is described in Constructors for Insert
Operations: Specifying Topological Elements.

For a topology that has a topology geometry layer hierarchy, this function works for all
levels of the hierarchy, and it always returns the leaf-level (lowest-level) objects.
(Topology geometry layer hierarchy is explained in Topology Geometry Layer
Hierarchy.)

Examples

The following example returns the topology geometry objects that interact with land
parcel P2 in the CITY_DATA topology. (The example refers to definitions and data from 
Topology Built from Topology Data.)

-- CITY_DATA layer, land parcels (topo_geometry_ layer_id = 1), 
-- parcel P2 (topo_geometry_id = 2)
SELECT SDO_TOPO.GET_TOPO_OBJECTS('CITY_DATA', 1, 2) FROM DUAL;
 
SDO_TOPO.GET_TOPO_OBJECTS('CITY_DATA',1,2)(TOPO_ID, TOPO_TYPE)                  
--------------------------------------------------------------------------------
SDO_TOPO_OBJECT_ARRAY(SDO_TOPO_OBJECT(9, 1), SDO_TOPO_OBJECT(10, 1), SDO_TOPO_OB
JECT(13, 1), SDO_TOPO_OBJECT(14, 1), SDO_TOPO_OBJECT(17, 1), SDO_TOPO_OBJECT(18,
 1), SDO_TOPO_OBJECT(6, 2), SDO_TOPO_OBJECT(7, 2), SDO_TOPO_OBJECT(8, 2), SDO_TO
PO_OBJECT(9, 2), SDO_TOPO_OBJECT(10, 2), SDO_TOPO_OBJECT(11, 2), SDO_TOPO_OBJECT
(12, 2), SDO_TOPO_OBJECT(13, 2), SDO_TOPO_OBJECT(14, 2), SDO_TOPO_OBJECT(17, 2),
 SDO_TOPO_OBJECT(18, 2), SDO_TOPO_OBJECT(19, 2), SDO_TOPO_OBJECT(20, 2), SDO_TOP
O_OBJECT(-6, 2), SDO_TOPO_OBJECT(-7, 2), SDO_TOPO_OBJECT(-8, 2), SDO_TOPO_OBJECT
(-9, 2), SDO_TOPO_OBJECT(-10, 2), SDO_TOPO_OBJECT(-11, 2), SDO_TOPO_OBJECT(-12, 
2), SDO_TOPO_OBJECT(-13, 2), SDO_TOPO_OBJECT(-14, 2), SDO_TOPO_OBJECT(-17, 2), S
DO_TOPO_OBJECT(-18, 2), SDO_TOPO_OBJECT(-19, 2), SDO_TOPO_OBJECT(-20, 2), SDO_TO
PO_OBJECT(-1, 3), SDO_TOPO_OBJECT(3, 3), SDO_TOPO_OBJECT(4, 3), SDO_TOPO_OBJECT(
5, 3), SDO_TOPO_OBJECT(6, 3), SDO_TOPO_OBJECT(7, 3), SDO_TOPO_OBJECT(8, 3)) 
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3.7 SDO_TOPO.INITIALIZE_AFTER_IMPORT
Format

SDO_TOPO.INITIALIZE_AFTER_IMPORT(     
  topology  IN VARCHAR2);

Description

Creates (initializes) a topology that was imported from another database.

Parameters

topology
Name of the topology to be created. The topology must have been exported from a source
database.

Usage Notes

This procedure creates the specified topology and all related database structures, adjusts (if
necessary) the topology ID values in all feature tables, and creates the feature layers in the
correct order.

Before calling this procedure, connect to the database as the user for the schema that is to
own the topology to be created.

You must use this procedure after following all other required steps for exporting and
importing the topology, as explained in Exporting and Importing Topology Data.

Examples

The following example creates the topology named CITY_DATA, using information from the
imported tables, including CITY_DATA_EXP$. (The example refers to definitions and data
from Topology Built from Topology Data.)

EXECUTE SDO_TOPO.INITIALIZE_AFTER_IMPORT('CITY_DATA');

3.8 SDO_TOPO.INITIALIZE_METADATA
Format

SDO_TOPO.INITIALIZE_METADATA(     
  topology  IN VARCHAR2);

Description

Initializes the topology metadata: sets sequence information for the node, edge, and face
tables, and creates (or re-creates) required indexes on these tables.

Parameters

topology
Name of the topology for which to initialize the sequences. The topology must have been
created using the SDO_TOPO.CREATE_TOPOLOGY procedure.
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Usage Notes

You should run this procedure after loading data into the node, edge, or face tables, to
initialize the sequences for these tables with numeric values 2 higher than the highest
ID values stored in those tables. This ensures that no attempt is made to reuse the
unique ID values in these tables. (The node, edge, and face tables are described in 
Topology Data Model Tables.)

This procedure creates spatial indexes on the geometry or MBR geometry columns in
the node, edge, and face tables. If the indexes were dropped before a bulk load
operation, running this procedure after the bulk load will re-create these indexes.

Examples

The following example initializes the metadata for the topology named CITY_DATA.
(The example refers to definitions and data from Topology Built from Topology Data.)

EXECUTE SDO_TOPO.INITIALIZE_METADATA('CITY_DATA');

3.9 SDO_TOPO.PREPARE_FOR_EXPORT
Format

SDO_TOPO.PREPARE_FOR_EXPORT(     
  topology  IN VARCHAR2);

Description

Prepares a topology to be exported to another database.

Parameters

topology
Name of the topology to be prepared for export. The topology must have been
created using the SDO_TOPO.CREATE_TOPOLOGY procedure.

Usage Notes

This procedure prepares the specified topology in the current database (the source
database) to be exported to another database (the target database).

This procedure creates a table in the current schema with a table name in the format
<topology-name>_EXP$. This table contains the same columns as the
USER_SDO_TOPO_INFO and ALL_SDO_TOPO_INFO views. These columns are
described in Table 1-8 in xxx_SDO_TOPO_INFO Views.

Before calling this procedure, connect to the database as the owner of the topology.

For information about exporting and importing topologies, including the steps to be
followed, see Exporting and Importing Topology Data.

Examples

The following example prepares the topology named CITY_DATA for export to a target
database. (The example refers to definitions and data from Topology Built from
Topology Data.)

EXECUTE SDO_TOPO.PREPARE_FOR_EXPORT('CITY_DATA');
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3.10 SDO_TOPO.RELATE
Format

SDO_TOPO.RELATE(     
  geom1  IN SDO_TOPO_GEOMETRY,      
  geom2  IN SDO_TOPO_GEOMETRY,      
  mask   IN VARCHAR2      
) RETURN VARCHAR2;

or

SDO_TOPO.RELATE(
  feature1  IN SDO_TOPO_GEOMETRY,
  feature2  IN SDO_GEOMETRY,
  mask      IN VARCHAR2
) RETURN VARCHAR2;

or

SDO_TOPO.RELATE(
  geom            IN SDO_TOPO_GEOMETRY,
  topo_elem_array IN SDO_TOPO_OBJECT_ARRAY,
  mask            IN VARCHAR2      
) RETURN VARCHAR2;

Description

Examines two topology geometry objects, or a topology geometry and a spatial geometry, or
a topology geometry and a topology object array (SDO_TOPO_OBJECT_ARRAY object), to
determine their spatial relationship.

Parameters

geom1
Topology geometry object.

geom2
Topology geometry object.

feature1
Topology geometry object.

feature2
Spatial geometry object.

geom
Topology geometry object.

topo_elem_array
Topology object array (of type SDO_TOPO_OBJECT_ARRAY, which is described in 
Constructors for Insert Operations: Specifying Topological Elements).

mask
Specifies one or more relationships to check. See the list of keywords in the Usage Notes.
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Usage Notes

The topology operators (described in Topology Operators) provide better performance
than the SDO_TOPO.RELATE function if you are checking a large number of objects;
however, if you are checking just two objects or a small number, the
SDO_TOPO.RELATE function provides better performance. In addition, sometimes
you may need to use the SDO_TOPO.RELATE function instead of a topology operator.
For example, you cannot specify the DETERMINE mask keyword with the topology
operators.

The following keywords can be specified in the mask parameter to determine the
spatial relationship between two objects:

• ANYINTERACT: Returns TRUE if the objects are not disjoint.

• CONTAINS: Returns TRUE if the second object is entirely within the first object
and the object boundaries do not touch; otherwise, returns FALSE.

• COVEREDBY: Returns TRUE if the first object is entirely within the second object
and the object boundaries touch at one or more points; otherwise, returns FALSE.

• COVERS: Returns TRUE if the second object is entirely within the first object and
the boundaries touch in one or more places; otherwise, returns FALSE.

• DETERMINE: Returns the one relationship keyword that best matches the
geometries.

• DISJOINT: Returns TRUE if the objects have no common boundary or interior
points; otherwise, returns FALSE.

• EQUAL: Returns TRUE if the objects share every point of their boundaries and
interior, including any holes in the objects; otherwise, returns FALSE.

• INSIDE: Returns TRUE if the first object is entirely within the second object and
the object boundaries do not touch; otherwise, returns FALSE.

• ON: Returns TRUE if the boundary and interior of a line (the first object) is
completely on the boundary of a polygon (the second object); otherwise, returns
FALSE.

• OVERLAPBDYDISJOINT: Returns TRUE if the objects overlap, but their
boundaries do not interact; otherwise, returns FALSE.

• OVERLAPBDYINTERSECT: Returns TRUE if the objects overlap, and their
boundaries intersect in one or more places; otherwise, returns FALSE.

• TOUCH: Returns TRUE if the two objects share a common boundary point, but no
interior points; otherwise, returns FALSE.

Values for mask (except for DETERMINE) can be combined using the logical Boolean
operator OR. For example, 'INSIDE + TOUCH' returns the string TRUE or FALSE
depending on the outcome of the test.

Examples

The following example finds whether or not the ANYINTERACT relationship exists
between each topology geometry object in the CITY_STREETS table and the P3 land
parcel (that is, which streets interact with that land parcel). (The example refers to
definitions and data from Topology Examples (PL/SQL). The output is reformatted for
readability.)
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SELECT c.feature_name,
  SDO_TOPO.RELATE(c.feature, l.feature, 'anyinteract') Any_Interaction
  FROM city_streets c, land_parcels l WHERE l.feature_name = 'P3';
 
FEATURE_NAME  
ANY_INTERACTION                                                                     
------------  ---------------        
R1            TRUE
R2            FALSE                
R3            FALSE                            
R4            FALSE

The following example finds whether or not the ANYINTERACT relationship exists between
each topology geometry object in the CITY_STREETS table and an
SDO_TOPO_OBJECT_ARRAY object that happens to be identical to the land parcel feature
named P3. (This example uses definitions and data from Topology Examples (PL/SQL).) The
output is identical to that in the preceding example, and is reformatted for readability.

SELECT c.feature_name, 
  SDO_TOPO.RELATE(c.feature,
    SDO_TOPO_OBJECT_ARRAY (SDO_TOPO_OBJECT (5, 3), SDO_TOPO_OBJECT (8, 3)), 
    'anyinteract') Any_Interaction 
  FROM city_streets c, land_parcels l WHERE l.feature_name = 'P3';
 
FEATURE_NAME  
ANY_INTERACTION                                                                     
------------  ---------------        
R1            TRUE
R2            FALSE                
R3            FALSE                            
R4            FALSE
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4
SDO_TOPO_MAP Package Subprograms

The MDSYS.SDO_TOPO_MAP package contains subprograms (functions and procedures)
that constitute part of the PL/SQL application programming interface (API) for the Spatial and
Graph Topology Data Model feature.

This package contains subprograms related to editing topologies. These subprograms use a
TopoMap object, either one that you previously created or that Spatial and Graph creates
implicitly.

To use the subprograms in this chapter, you must understand the conceptual information
about topology in Topology Data Model Overview, as well as the information about editing
topologies in Editing Topologies .

Note:

SDO_TOPO_MAP subprograms are only supported if Oracle JVM is enabled on
your Oracle Autonomous Database instance in shared deployments. To enable
Oracle JVM, see Use Oracle Java in Using Oracle Autonomous Database on
Shared Exadata Infrastructure for more information.

The rest of this chapter provides reference information about the SDO_TOPO_MAP
subprograms, listed in alphabetical order.

• SDO_TOPO_MAP.ADD_EDGE

• SDO_TOPO_MAP.ADD_ISOLATED_NODE

• SDO_TOPO_MAP.ADD_LINEAR_GEOMETRY

• SDO_TOPO_MAP.ADD_LOOP

• SDO_TOPO_MAP.ADD_NODE

• SDO_TOPO_MAP.ADD_POINT_GEOMETRY

• SDO_TOPO_MAP.ADD_POLYGON_GEOMETRY

• SDO_TOPO_MAP.CHANGE_EDGE_COORDS

• SDO_TOPO_MAP.CLEAR_TOPO_MAP

• SDO_TOPO_MAP.COMMIT_TOPO_MAP

• SDO_TOPO_MAP.CREATE_EDGE_INDEX

• SDO_TOPO_MAP.CREATE_FACE_INDEX

• SDO_TOPO_MAP.CREATE_FEATURE

• SDO_TOPO_MAP.CREATE_TOPO_MAP

• SDO_TOPO_MAP.DROP_TOPO_MAP

• SDO_TOPO_MAP.GET_CONTAINING_FACE
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• SDO_TOPO_MAP.GET_EDGE_ADDITIONS

• SDO_TOPO_MAP.GET_EDGE_CHANGES

• SDO_TOPO_MAP.GET_EDGE_COORDS

• SDO_TOPO_MAP.GET_EDGE_DELETIONS

• SDO_TOPO_MAP.GET_EDGE_NODES

• SDO_TOPO_MAP.GET_FACE_ADDITIONS

• SDO_TOPO_MAP.GET_FACE_CHANGES

• SDO_TOPO_MAP.GET_FACE_BOUNDARY

• SDO_TOPO_MAP.GET_FACE_DELETIONS

• SDO_TOPO_MAP.GET_NEAREST_EDGE

• SDO_TOPO_MAP.GET_NEAREST_EDGE_IN_CACHE

• SDO_TOPO_MAP.GET_NEAREST_NODE

• SDO_TOPO_MAP.GET_NEAREST_NODE_IN_CACHE

• SDO_TOPO_MAP.GET_NODE_ADDITIONS

• SDO_TOPO_MAP.GET_NODE_CHANGES

• SDO_TOPO_MAP.GET_NODE_COORD

• SDO_TOPO_MAP.GET_NODE_DELETIONS

• SDO_TOPO_MAP.GET_NODE_FACE_STAR

• SDO_TOPO_MAP.GET_NODE_STAR

• SDO_TOPO_MAP.GET_TOPO_NAME

• SDO_TOPO_MAP.GET_TOPO_TRANSACTION_ID

• SDO_TOPO_MAP.LIST_TOPO_MAPS

• SDO_TOPO_MAP.LOAD_TOPO_MAP

• SDO_TOPO_MAP.MOVE_EDGE

• SDO_TOPO_MAP.MOVE_ISOLATED_NODE

• SDO_TOPO_MAP.MOVE_NODE

• SDO_TOPO_MAP.REMOVE_EDGE

• SDO_TOPO_MAP.REMOVE_NODE

• SDO_TOPO_MAP.REMOVE_OBSOLETE_NODES

• SDO_TOPO_MAP.ROLLBACK_TOPO_MAP

• SDO_TOPO_MAP.SEARCH_EDGE_RTREE_TOPO_MAP

• SDO_TOPO_MAP.SEARCH_FACE_RTREE_TOPO_MAP

• SDO_TOPO_MAP.SET_MAX_MEMORY_SIZE

• SDO_TOPO_MAP.UPDATE_TOPO_MAP

• SDO_TOPO_MAP.VALIDATE_TOPO_MAP

• SDO_TOPO_MAP.VALIDATE_TOPOLOGY
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4.1 SDO_TOPO_MAP.ADD_EDGE
Format

SDO_TOPO_MAP.ADD_EDGE(     
  topology IN VARCHAR2,      
  node_id1 IN NUMBER,      
  node_id2 IN NUMBER,      
  geom     IN SDO_GEOMETRY      
) RETURN NUMBER;

Description

Adds an edge to a topology, and returns the edge ID of the added edge.

Parameters

topology
Name of the topology to which to add the edge, or null if you are using an updatable
TopoMap object (see Specifying the Editing Approach with the Topology Parameter). Must
not exceed 20 characters.

node_id1
Node ID of the start node for the edge to be added.

node_id2
Node ID of the end node for the edge to be added.

geom
SDO_GEOMETRY object (line or contiguous line string geometry) representing the edge to
be added.

Usage Notes

Spatial and Graph automatically assigns an edge ID to the added edge. If topology is not
null, the appropriate entry is inserted in the <topology-name>_EDGE$ table; and if the
addition of the edge affects the face information table, the appropriate entries in the
<topology-name>_FACE$ table are updated. (If topology is null, you can update these tables
at any time by calling the SDO_TOPO_MAP.UPDATE_TOPO_MAP procedure.)

If node_id1 and node_id2 are the same value, a loop edge is created.

For information about adding and deleting nodes and edges, see Editing Topologies .

This function is equivalent to using the addEdge method of the TopoMap class of the client-side
Java API (described in Topology Data Model Java Interface).

Examples

The following example adds an edge connecting node N3 to node N4 in the current
updatable TopoMap object. (The example refers to definitions and data from Topology Built
from Topology Data.)

CALL SDO_TOPO_MAP.ADD_EDGE(null, 3, 4,
  SDO_GEOMETRY(2002, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 2, 1),
    SDO_ORDINATE_ARRAY(25,35, 20,37)))
  INTO :res_number;

Chapter 4
SDO_TOPO_MAP.ADD_EDGE

4-3



 
Call completed.
 
SQL> PRINT res_number;
 
RES_NUMBER                                                                      
----------                                                                      
        29 

4.2 SDO_TOPO_MAP.ADD_ISOLATED_NODE
Format

SDO_TOPO_MAP.ADD_ISOLATED_NODE(     
  topology IN VARCHAR2,      
  face_id  IN NUMBER,      
  point    IN SDO_GEOMETRY      
) RETURN NUMBER;

or

SDO_TOPO_MAP.ADD_ISOLATED_NODE(     
  topology IN VARCHAR2,      
  point    IN SDO_GEOMETRY      
) RETURN NUMBER;

or

SDO_TOPO_MAP.ADD_ISOLATED_NODE(     
topology IN VARCHAR2,      
face_id  IN NUMBER,      
x        IN NUMBER,      
y        IN NUMBER      
) RETURN NUMBER;

or

SDO_TOPO_MAP.ADD_ISOLATED_NODE(     
topology IN VARCHAR2,      
x        IN NUMBER,      
y        IN NUMBER      
) RETURN NUMBER;

Description

Adds an isolated node (that is, an island node) to a topology, and returns the node ID
of the added isolated node.

Parameters

topology
Name of the topology to which to add the isolated node, or null if you are using an
updatable TopoMap object (see Specifying the Editing Approach with the Topology
Parameter). Must not exceed 20 characters.

face_id
Face ID of the face on which the isolated node is to be added. (An exception is raised
if the specified point is not on the specified face.)
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point
SDO_GEOMETRY object (point geometry) representing the isolated node to be added.

x
X-axis value of the point representing the isolated node to be added.

y
Y-axis value of the point representing the isolated node to be added.

Usage Notes

Spatial and Graph automatically assigns a node ID to the added node. If topology is not null,
the appropriate entry is inserted in the <topology-name>_NODE$ table, and the <topology-
name>_FACE$ table is updated to include an entry for the added isolated node. (If topology
is null, you can update these tables at any time by calling the 
SDO_TOPO_MAP.UPDATE_TOPO_MAP procedure.)

If you know the ID of the face on which the isolated node is to be added, you can specify the
face_id parameter. If you specify this parameter, there are two benefits:

• Validation: The function checks to see if the point is on the specified face, and raises an
exception if it is not. Otherwise, the function checks to see if the point is on any face in
the topology, and raises an exception if it is not.

• Performance: The function checks only if the point is on the specified face. Otherwise, it
checks potentially all faces in the topology to see if the point is on any face.

To add a non-isolated node, use the SDO_TOPO_MAP.ADD_NODE function.

For information about adding and deleting nodes and edges, see Editing Topologies .

This function is equivalent to using the addIsolatedNode method of the TopoMap class of the
client-side Java API (described in Topology Data Model Java Interface).

Examples

The following example adds an isolated node to the right of isolated node N4 on face F2, and
it returns the node ID of the added node. It uses the current updatable TopoMap object. (The
example refers to definitions and data from Topology Built from Topology Data.)

DECLARE
  result_num NUMBER;
BEGIN
result_num := SDO_TOPO_MAP.ADD_ISOLATED_NODE(null, 2,
  SDO_GEOMETRY(2001, NULL, SDO_POINT_TYPE(22,37,NULL), NULL, NULL));
DBMS_OUTPUT.PUT_LINE('Result = ' || result_num);
END;
/
Result = 24                                                                     
 
PL/SQL procedure successfully completed.

4.3 SDO_TOPO_MAP.ADD_LINEAR_GEOMETRY
Format

SDO_TOPO_MAP.ADD_LINEAR_GEOMETRY(     
  topology IN VARCHAR2,      
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  curve    IN SDO_GEOMETRY      
) RETURN SDO_NUMBER_ARRAY;

or

SDO_TOPO_MAP.ADD_LINEAR_GEOMETRY(     
  topology IN VARCHAR2,      
  coords   IN SDO_NUMBER_ARRAY      
) RETURN SDO_NUMBER_ARRAY;

Description

Adds a linear (line string or multiline string) geometry to the topology, inserting edges
and nodes as necessary based on the full intersection of the geometry with the edges
and nodes in the topology graph, and an array of the edge IDs of the inserted and
shared edges in sequence from the start to the end of the geometry.

Parameters

topology
Name of the topology to which to add the edge or edges, or null if you are using an
updatable TopoMap object (see Specifying the Editing Approach with the Topology
Parameter). Must not exceed 20 characters.

curve
SDO_GEOMETRY object (curve or line string geometry) representing the edge or
edges to be added.

coords
SDO_NUMBER_ARRAY object specifying the coordinates of the edge or edges to be
added.

Usage Notes

This function creates at least one new edge, and more edges if necessary. For
example, if the line string geometry intersects an existing edge, two edges are created
for the added line string, and the existing edge (the one being intersected) is divided
into two edges. If topology is not null, Spatial and Graph automatically updates the
<topology-name>_EDGE$ table as needed. (If topology is null, you can update this
table at any time by calling the SDO_TOPO_MAP.UPDATE_TOPO_MAP procedure.)

This function returns an array of the edge IDs of the inserted and shared edges in
sequence from the start to the end of the geometry. If a segment in the added
geometry overlaps an existing edge in the topology, the sign of the returned edge
depends on the directions of the added segment and the existing edge: if the direction
of the existing edge is the same as the linear geometry, the returned edge element is
positive; if the direction of the existing edge is the opposite of the linear geometry, the
returned edge element is negative.

An exception is raised if the object in the curve or coords parameter contains any line
segments that run together (overlap) in any manner; however, the line segments can
cross at one or more points.

For information about adding and deleting nodes and edges, see Editing Topologies .

This function is equivalent to using the addLinearGeometry method of the TopoMap
class of the client-side Java API (described in Topology Data Model Java Interface).
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Examples

The following example adds an edge representing a specified line string geometry, and it
returns the edge ID of the added edge. It uses the current updatable TopoMap object. (The
example refers to definitions and data from Topology Built from Topology Data.)

SELECT SDO_TOPO_MAP.ADD_LINEAR_GEOMETRY(null,
  SDO_GEOMETRY(2002, NULL, NULL, SDO_ELEM_INFO_ARRAY(1,2,1),
    SDO_ORDINATE_ARRAY(50,10, 55,10, 57,11)))
FROM DUAL;
 
SDO_TOPO_MAP.ADD_LINEAR_GEOMETRY(NULL,SDO_GEOMETRY(2002,NULL,NULL,SDO_ELEM_INFO_
--------------------------------------------------------------------------------
SDO_NUMBER_ARRAY(31)

4.4 SDO_TOPO_MAP.ADD_LOOP
Format

SDO_TOPO_MAP.ADD_LOOP(     
  topology  IN VARCHAR2,      
  node_id   IN NUMBER,      
  geom      IN SDO_GEOMETRY      
) RETURN NUMBER;

Description

Adds an edge that loops and connects to the same node, and returns the edge ID of the
added edge.

Parameters

topology
Name of the topology to which to add the edge, or null if you are using an updatable
TopoMap object (see Specifying the Editing Approach with the Topology Parameter). Must
not exceed 20 characters.

node_id
Node ID of the node to which to add the edge that will start and end at this node.

geom
SDO_GEOMETRY object (line string geometry) representing the edge to be added. The
start and end points of the line string must be the same point representing node_id.

Usage Notes

This function creates a new edge, as well as a new face consisting of the interior of the loop.
If the edge is added at an isolated node, the edge is an isolated edge. If topology is not null,
Spatial and Graph automatically updates the <topology-name>_EDGE$ and <topology-
name>_FACE$ tables as needed. (If topology is null, you can update these tables at any
time by calling the SDO_TOPO_MAP.UPDATE_TOPO_MAP procedure.)

For information about adding and deleting nodes and edges, see Editing Topologies .

This function is equivalent to using the addLoop method of the TopoMap class of the client-side
Java API (described in Topology Data Model Java Interface).
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Examples

The following example adds an edge loop starting and ending at node N4, and it
returns the edge ID of the added edge. It uses the current updatable TopoMap object.
(The example refers to definitions and data from Topology Built from Topology Data.)

CALL SDO_TOPO_MAP.ADD_LOOP(null, 4,
  SDO_GEOMETRY(2002, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 2, 1),
    SDO_ORDINATE_ARRAY(20,37, 20,39, 25,39, 20,37)))
  INTO :res_number;
 
Call completed.
 
SQL> PRINT res_number;
 
RES_NUMBER                                                                      
----------                                                                      
        30 

4.5 SDO_TOPO_MAP.ADD_NODE
Format

SDO_TOPO_MAP.ADD_NODE(     
  topology           IN VARCHAR2,      
  edge_id            IN NUMBER,      
  point              IN SDO_GEOMETRY,      
  coord_index        IN NUMBER,      
  is_new_shape_point IN VARCHAR2      
) RETURN NUMBER;

or

SDO_TOPO_MAP.ADD_NODE(     
  topology           IN VARCHAR2,      
  edge_id            IN NUMBER,      
  x                  IN NUMBER,      
  y                  IN NUMBER,      
  coord_index        IN NUMBER,      
  is_new_shape_point IN VARCHAR2      
) RETURN NUMBER;

Description

Adds a non-isolated node to a topology to split an existing edge, and returns the node
ID of the added node.

Parameters

topology
Name of the topology to which to add the node, or null if you are using an updatable
TopoMap object (see Specifying the Editing Approach with the Topology Parameter).
Must not exceed 20 characters.

edge_id
Edge ID of the edge on which the node is to be added.

Chapter 4
SDO_TOPO_MAP.ADD_NODE

4-8



point
SDO_GEOMETRY object (point geometry) representing the node to be added. The point
must be an existing shape point or a new point that breaks a line segment connecting two
consecutive shape points.

x
X-axis value of the point representing the node to be added. The point must be an existing
shape point or a new point that breaks a line segment connecting two consecutive shape
points.

y
Y-axis value of the point representing the node to be added. The point must be an existing
shape point or a new point that breaks a line segment connecting two consecutive shape
points.

coord_index
The index (position) of the array position in the edge coordinate array on or after which the
node is to be added. Each vertex (node or shape point) has a position in the edge coordinate
array. The start point (node) is index (position) 0, the first point after the start point is 1, and
so on. (However, the coord_index value cannot be the index of the last vertex.) For
example, if the edge coordinates are (2,2, 5,2, 8,3) the index of the second vertex (5,2) is 1.

is_new_shape_point
TRUE if the added node is to be a new shape point following the indexed vertex (coord_index
value) of the edge; FALSE if the added node is exactly on the indexed vertex.
A value of TRUE lets you add a node at a new point, breaking an edge segment at the
coordinates specified in the point parameter or the x and y parameter pair. A value of FALSE
causes the coordinates in the point parameter or the x and y parameter pair to be ignored,
and causes the node to be added at the existing shape point associated with the
coord_index value.

Usage Notes

Spatial and Graph automatically assigns a node ID to the added node and creates a new
edge. The split piece at the beginning of the old edge is given the edge ID of the old edge. If
topology is not null, appropriate entries are inserted in the <topology-name>_NODE$ and
<topology-name>_EDGE$ tables. (If topology is null, you can update these tables at any
time by calling the SDO_TOPO_MAP.UPDATE_TOPO_MAP procedure.)

To add an isolated node (that is, an island node), use the 
SDO_TOPO_MAP.ADD_ISOLATED_NODE function.

For information about adding and deleting nodes and edges, see Editing Topologies .

This function is equivalent to using the addNode method of the TopoMap class of the client-side
Java API (described in Topology Data Model Java Interface).

Examples

The following example adds a non-isolated node to the right of node N2 on edge E2, and it
returns the node ID of the added node. It uses the current updatable TopoMap object. (The
example refers to definitions and data from Topology Built from Topology Data.)

DECLARE
  result_num NUMBER;
BEGIN
result_num := SDO_TOPO_MAP.ADD_NODE(null, 2,
  SDO_GEOMETRY(2001, NULL, SDO_POINT_TYPE(27,30,NULL), NULL, NULL),
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  0, 'TRUE');
DBMS_OUTPUT.PUT_LINE('Result = ' || result_num);
END;
/
Result = 26                                                                     
 
PL/SQL procedure successfully completed.

4.6 SDO_TOPO_MAP.ADD_POINT_GEOMETRY
Format

SDO_TOPO_MAP.ADD_POINT_GEOMETRY(
  topology IN VARCHAR2,      
  point    IN SDO_GEOMETRY      
) RETURN NUMBER;

or

SDO_TOPO_MAP.ADD_POINT_GEOMETRY(
  topology IN VARCHAR2,      
  coord    IN SDO_NUMBER_ARRAY      
) RETURN NUMBER;

Description

Adds a node representing a specified point geometry or coordinate pair, and returns
the node ID of the added node.

Parameters

topology
Name of the topology to which to add the node, or null if you are using an updatable
TopoMap object (see Specifying the Editing Approach with the Topology Parameter).
Must not exceed 20 characters.

point
SDO_GEOMETRY object (point geometry) representing the node to be added.

coord
SDO_NUMBER_ARRAY object specifying the coordinates of the node to be added.

Usage Notes

If the point coincides with an existing node, no changes are made to the topology.
Otherwise, an isolated node or a node splitting an edge is added.

For information about adding and deleting nodes and edges, see Editing Topologies .

This function is equivalent to using the addPointGeometry method of the TopoMap class
of the client-side Java API (described in Topology Data Model Java Interface).

Examples

The following example adds a node representing a specified point geometry, and it
returns the node ID of the added node. It uses the current updatable TopoMap object.

SELECT SDO_TOPO_MAP.ADD_POINT_GEOMETRY(null,
  SDO_GEOMETRY(2001, NULL, SDO_POINT_TYPE(57,12,NULL), NULL, NULL))
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FROM DUAL;
 
SDO_TOPO_MAP.ADD_POINT_GEOMETRY(NULL,SDO_GEOMETRY(2001,NULL,SDO_POINT_TYPE(57,12
--------------------------------------------------------------------------------
                                                                              29

The following example adds a node at the specified coordinates (58, 12), and it returns the
node ID of the added node. It uses the current updatable TopoMap object.

SELECT SDO_TOPO_MAP.ADD_POINT_GEOMETRY(null, SDO_NUMBER_ARRAY(58,12))
FROM DUAL;
 
SDO_TOPO_MAP.ADD_POINT_GEOMETRY(NULL,SDO_NUMBER_ARRAY(58,12))                   
-------------------------------------------------------------                   
                                                           30 

4.7 SDO_TOPO_MAP.ADD_POLYGON_GEOMETRY
Format

SDO_TOPO_MAP.ADD_POLYGON_GEOMETRY(     
  topology  IN VARCHAR2,      
  polygon   IN SDO_GEOMETRY      
) RETURN SDO_NUMBER_ARRAY;

or

SDO_TOPO_MAP.ADD_POLYGON_GEOMETRY(     
  topology  IN VARCHAR2,      
  coords    IN SDO_NUMBER_ARRAY      
) RETURN SDO_NUMBER_ARRAY;

Description

Adds one or more faces representing a specified polygon geometry, and returns the face ID
of each added face.

Parameters

topology
Name of the topology to which to add the face or faces, or null if you are using an updatable
TopoMap object (see Specifying the Editing Approach with the Topology Parameter). Must
not exceed 20 characters.

polygon
SDO_GEOMETRY object (polygon or multipolygon geometry) representing the face or faces
to be added. Each polygon in the object must have a single exterior ring that can contain any
number of interior rings.

coords
SDO_NUMBER_ARRAY object specifying the coordinates of a single polygon geometry
representing the face or faces to be added. The vertices of the polygon must be in
counterclockwise order, with the last vertex the same as the first vertex.

Usage Notes

This function creates at least one new face, and more faces if necessary. For example, if the
polygon geometry intersects an existing face, faces are created for the added polygon, and
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the existing face (the one being intersected) definition is adjusted. If topology is not
null, Spatial and Graph automatically updates the <topology-name>_FACE$ table as
needed. (If topology is null, you can update this table at any time by calling the 
SDO_TOPO_MAP.UPDATE_TOPO_MAP procedure.)

If the polygon coincides with an existing face, no changes are made to the topology.

For a multipolygon geometry, no exterior ring may overlap any other exterior ring. For
example, you cannot add a face representing the following single multipolygon
geometry: a park (exterior ring) containing a lake (interior ring) with an island in the
lake (exterior ring inside the preceding interior ring).

This function is equivalent to using the addPolygonGeometry method of the TopoMap
class of the client-side Java API (described in Topology Data Model Java Interface).

Examples

The following example adds a face representing a specified polygon geometry, and it
returns and prints the face ID of the added edge. It uses the current updatable
TopoMap object.

DECLARE
  res_number_array SDO_NUMBER_ARRAY;
  face_count NUMBER;
  face_ctr NUMBER;
  this_face NUMBER;
BEGIN
res_number_array := SDO_TOPO_MAP.ADD_POLYGON_GEOMETRY(null,
  SDO_GEOMETRY(2003, NULL, NULL, SDO_ELEM_INFO_ARRAY(1,1003,1),
    SDO_ORDINATE_ARRAY(61,10, 70,10, 70,15, 65,15, 61,10)));
-- DBMS_OUTPUT.PUT_LINE('Result = ' || res_number_array);
-- Print each face associated with the geometry.
face_count := res_number_array.count;
for face_ctr in 1..face_count loop
  this_face := res_number_array(face_ctr);
  dbms_output.put_line ('this face = '|| this_face);
  end loop;  -- printed each face
END;
/
this face = 12 

4.8 SDO_TOPO_MAP.CHANGE_EDGE_COORDS
Format

SDO_TOPO_MAP.CHANGE_EDGE_COORDS(     
  topology  IN VARCHAR2,      
  edge_id   IN NUMBER,      
  geom      IN SDO_GEOMETRY);

or

SDO_TOPO_MAP.CHANGE_EDGE_COORDS(     
  topology         IN VARCHAR2,      
  edge_id          IN NUMBER,      
  geom             IN SDO_GEOMETRY,      
  moved_iso_nodes  OUT SDO_NUMBER_ARRAY,      
  moved_iso_edges  OUT SDO_NUMBER_ARRAY,      
  allow_iso_moves  IN VARCHAR2);
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Description

Changes the coordinates and related information about an edge.

Parameters

topology
Name of the topology containing the edge, or null if you are using an updatable TopoMap
object (see Specifying the Editing Approach with the Topology Parameter). Must not exceed
20 characters.

edge_id
Edge ID of the edge whose coordinates are to be changed.

geom
SDO_GEOMETRY object (line or contiguous line string geometry) representing the modified
edge. The start and end points of the modified edge must be the same as for the original
edge.

moved_iso_nodes
Output parameter in which, if the allow_iso_moves parameter value is TRUE, Spatial and
Graph stores the node ID values of any isolated nodes that have moved to a different face
as a result of this procedure. If the allow_iso_moves parameter value is FALSE, Spatial and
Graph stores the node ID values of any isolated nodes that did not move but that would have
moved to a different face if the allow_iso_moves parameter value had been TRUE.

moved_iso_edges
Output parameter in which, if the allow_iso_moves parameter value is TRUE, Spatial and
Graph stores the edge ID values of any isolated edges that have moved to a different face
as a result of this procedure. If the allow_iso_moves parameter value is FALSE, Spatial and
Graph stores the edge ID values of any isolated edges that did not move but that would have
moved to a different face if the allow_iso_moves parameter value had been TRUE.

allow_iso_moves
TRUE causes Spatial and Graph to allow an edge coordinates change operation that would
cause any isolated nodes or edges to be in a different face, and to adjust the containing face
information for such isolated nodes and edges; FALSE causes Spatial and Graph not to allow
an edge coordinates change operation that would cause any isolated nodes or edges to be
in a different face.
If you use the format that does not include the allow_iso_moves parameter, Spatial and
Graph allows edge move operations that would cause any isolated nodes or edges to be in a
different face, and it adjusts the containing face information for such isolated nodes and
edges.

Usage Notes

If this procedure modifies a boundary between faces, Spatial and Graph automatically
performs the following operations and updates the Topology Data Model tables as needed:
reassigning island nodes and faces, and adjusting the MBRs of the faces on both sides.

If topology is not null, this procedure modifies the information about the specified edge in the
<topology-name>_EDGE$ table (described in Edge Information Table). (If topology is null,
you can update this table at any time by calling the SDO_TOPO_MAP.UPDATE_TOPO_MAP
procedure.)
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You cannot use this procedure to change the start point or the end point, or both, of
the specified edge. To do any of these operations, you must delete the edge, delete
the node or nodes for the start or end point (or both) to be changed, add the necessary
new node or nodes, and add the edge.

For information about editing topological elements, see Editing Topologies .

This procedure is equivalent to using the changeEdgeCoords method of the TopoMap
class of the client-side Java API (described in Topology Data Model Java Interface).

Examples

The following example changes the coordinates of edge E1. (It changes only the third
point, from 16,38 to 16,39.) It uses the current updatable TopoMap object. (The
example refers to definitions and data from Topology Built from Topology Data.)

CALL SDO_TOPO_MAP.CHANGE_EDGE_COORDS(null, 1,
  SDO_GEOMETRY(2002, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 2, 1),
    SDO_ORDINATE_ARRAY(8,30, 16,30, 16,39, 3,38, 3,30, 8,30)));

4.9 SDO_TOPO_MAP.CLEAR_TOPO_MAP
Format

SDO_TOPO_MAP.CLEAR_TOPO_MAP(     
  topo_map  IN VARCHAR2);

Description

Clears all objects and changes in the cache associated with a TopoMap object.

Parameters

topo_map
Name of the TopoMap object. (TopoMap objects are explained in TopoMap Objects.)

Usage Notes

If the TopoMap object is updatable, this procedure changes it to be read-only.

For information about using an in-memory cache to edit topological elements, see 
Approaches for Editing Topology Data.

Contrast this procedure with the SDO_TOPO_MAP.UPDATE_TOPO_MAP procedure,
which applies the changes in the cache associated with the TopoMap object to the
topology. You cannot call the SDO_TOPO_MAP.CLEAR_TOPO_MAP procedure if you
previously used the SDO_TOPO_MAP.UPDATE_TOPO_MAP procedure on the
specified TopoMap object.

This procedure is equivalent to using the clearCache method of the TopoMap class of
the client-side Java API (described in Topology Data Model Java Interface).

Examples

The following example clears the cache associated with the TopoMap object named
CITY_DATA_TOPOMAP, which is associated with the topology named CITY_DATA. (The
example refers to definitions and data from Topology Built from Topology Data.)

CALL SDO_TOPO_MAP.CLEAR_TOPO_MAP('CITY_DATA_TOPOMAP');
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4.10 SDO_TOPO_MAP.COMMIT_TOPO_MAP
Format

SDO_TOPO_MAP.COMMIT_TOPO_MAP;

Description

Updates the topology to reflect changes made to the current updatable TopoMap object,
commits all changes to the database, and makes the TopoMap object read-only.

Parameters

None.

Usage Notes

Use this procedure when you are finished with a batch of edits to a topology and you want to
commit all changes to the database. After the commit operation completes, you cannot edit
the TopoMap object. To make further edits to the topology, you must either clear the cache
(using the SDO_TOPO_MAP.CLEAR_TOPO_MAP procedure) or create a new TopoMap
object (using the SDO_TOPO_MAP.CREATE_TOPO_MAP procedure), and then load the
topology into the TopoMap object for update (using the 
SDO_TOPO_MAP.LOAD_TOPO_MAP function or procedure).

Contrast this procedure with the SDO_TOPO_MAP.UPDATE_TOPO_MAP procedure, which
leaves the TopoMap object available for editing operations and which does not perform a
commit operation (and thus does not end the database transaction).

To roll back all TopoMap object changes, use the 
SDO_TOPO_MAP.ROLLBACK_TOPO_MAP procedure.

For information about using an in-memory cache to edit topological elements, see 
Approaches for Editing Topology Data.

This procedure is equivalent to using the commitDB method of the TopoMap class of the client-
side Java API (described in Topology Data Model Java Interface).

Examples

The following example commits to the database all changes to the current updatable
TopoMap object, and prevents further editing of the TopoMap object.

EXECUTE SDO_TOPO_MAP.COMMIT_TOPO_MAP;

4.11 SDO_TOPO_MAP.CREATE_EDGE_INDEX
Format

SDO_TOPO_MAP.CREATE_EDGE_INDEX(     
  topo_map  IN VARCHAR2);

Description

Creates an internal R-tree index (or rebuilds the index if one already exists) on the edges in
the cache associated with a TopoMap object.
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Parameters

topo_map
Name of the TopoMap object. (TopoMap objects are explained in TopoMap Objects.)

Usage Notes

You can cause Spatial and Graph to create in-memory R-tree indexes to be built on
the edges and faces in the specified TopoMap object. These indexes use some
memory resources and take some time to create; however, they significantly improve
performance if you edit a large number of topological elements in the session. They
can also improve performance for queries that use a read-only TopoMap object. If the
TopoMap object is updatable and if you are performing many editing operations, you
should probably rebuild the indexes periodically; however, if the TopoMap object will
not be updated, create the indexes when or after loading the read-only TopoMap
object or after calling the SDO_TOPO_MAP.COMMIT_TOPO_MAP procedure.

Compare this procedure with the SDO_TOPO_MAP.CREATE_FACE_INDEX
procedure, which creates an internal R-tree index (or rebuilds the index if one already
exists) on the faces in the cache associated with a TopoMap object.

This procedure is equivalent to using the createEdgeIndex method of the TopoMap
class of the client-side Java API (described in Topology Data Model Java Interface).

Examples

The following example creates an internal R-tree index (or rebuilds the index if one
already exists) on the edges in the cache associated with the TopoMap object named
CITY_DATA_TOPOMAP, which is associated with the topology named CITY_DATA. (The
example refers to definitions and data from Topology Built from Topology Data.)

CALL SDO_TOPO_MAP.CREATE_EDGE_INDEX('CITY_DATA_TOPOMAP');

4.12 SDO_TOPO_MAP.CREATE_FACE_INDEX
Format

SDO_TOPO_MAP.CREATE_FACE_INDEX(     
  topo_map  IN VARCHAR2);

Description

Creates an internal R-tree index (or rebuilds the index if one already exists) on the
faces in the cache associated with a TopoMap object.

Parameters

topo_map
Name of the TopoMap object. (TopoMap objects are explained in TopoMap Objects.)

Usage Notes

You can cause Spatial and Graph to create in-memory R-tree indexes to be built on
the edges and faces in the specified TopoMap object. These indexes use some
memory resources and take some time to create; however, they significantly improve
performance if you edit a large number of topological elements in the session. They
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can also improve performance for queries that use a read-only TopoMap object. If the
TopoMap object is updatable and if you are performing many editing operations, you should
probably rebuild the indexes periodically; however, if the TopoMap object will not be updated,
create the indexes when or after loading the read-only TopoMap object or after calling the 
SDO_TOPO_MAP.COMMIT_TOPO_MAP procedure.

Compare this procedure with the SDO_TOPO_MAP.CREATE_EDGE_INDEX procedure,
which creates an internal R-tree index (or rebuilds the index if one already exists) on the
edges in the cache associated with a TopoMap object.

This procedure is equivalent to using the createFaceIndex method of the TopoMap class of
the client-side Java API (described in Topology Data Model Java Interface).

Examples

The following example creates an internal R-tree index (or rebuilds the index if one already
exists) on the faces in the cache associated with the TopoMap object named
CITY_DATA_TOPOMAP, which is associated with the topology named CITY_DATA. (The example
refers to definitions and data from Topology Built from Topology Data.)

CALL SDO_TOPO_MAP.CREATE_FACE_INDEX('CITY_DATA_TOPOMAP');

4.13 SDO_TOPO_MAP.CREATE_FEATURE
Format (no topology geometry layer hierarchy or lowest level in a hierarchy)

SDO_TOPO_MAP.CREATE_FEATURE(     
  topology    IN VARCHAR2,      
  table_name  IN VARCHAR2,      
  column_name IN VARCHAR2,      
  geom        IN SDO_GEOMETRY      
) RETURN SDO_TOPO_GEOMETRY;
or
SDO_TOPO_MAP.CREATE_FEATURE(     
  topology    IN VARCHAR2,      
  table_name  IN VARCHAR2,      
  column_name IN VARCHAR2,      
  geom        IN SDO_GEOMETRY,
  snapfeature IN NUMBER     
) RETURN SDO_TOPO_GEOMETRY;

Format (parent level in a hierarchy)

SDO_TOPO_MAP.CREATE_FEATURE(     
  topology      IN VARCHAR2,      
  table_name    IN VARCHAR2,      
  column_name   IN VARCHAR2,      
  dml_condition IN VARCHAR2      
) RETURN SDO_TOPO_GEOMETRY;

Description

Creates a feature from Oracle Spatial and Graph geometries. (This function is intended to be
used for inserting rows into a feature table.)

• The first two formats (with the geom parameter and without the dml_condition parameter)
are for creating a feature in a topology without a topology geometry layer hierarchy or in
the lowest level of a topology with a topology geometry layer hierarchy.

Chapter 4
SDO_TOPO_MAP.CREATE_FEATURE

4-17



• The third format (with the dml_condition parameter and without the geom
parameter) is for creating a feature in a parent level of a topology with a topology
geometry layer hierarchy.

Parameters

topology
Topology having the associated specified feature table and feature column.

table_name
Name of the feature table containing the feature column specified in column_name.

column_name
Name of the feature column (of type SDO_TOPO_GEOMETRY) containing the
topology geometries.

geom
Geometry objects.

snapfeature
If set to 1, the specified new feature is snapped to existing edges and nodes in the
topology.

dml_condition
For topologies with a topology geometry layer hierarchy (described in Topology
Geometry Layer Hierarchy): DML condition for selecting rows from a child layer to be
inserted into a parent layer. Specify the condition in a quoted string, but without the
word WHERE. For example, to select only rows where the STATE_ABBR column
value is MA, specify the following: 'state_abbr=''MA'''

Usage Notes

This function is used to create features from existing geometries stored in a spatial
table. Creating features from existing geometries is one approach to creating topology
features; the other approach is to load the topology data into the node, edge, and face
information tables. Both approaches are described in Main Steps in Using Topology
Data, which contains the following subsections:

• Using a Topology Built from Topology Data

• Using a Topology Built from Spatial Geometries (that is, the approach using the
CREATE_FEATURE function)

When you use the first or second format of this function, you must first create and load
an updatable TopoMap object. To create a topology feature or an associated
topological element, the function internally calls the addPointGeometry,
addLinearGeometry, or addPolygonGeometry method of the updatable TopoMap
object, depending on the SDO_GTYPE value of the geometry object, and it calls the
updateTopology method of the updatable TopoMap object to write topological
elements to the database. If this function is called in an INSERT or UPDATE
statement, a feature is created or updated in the feature table. When the function
completes, it has the effect of overlaying the geometry onto the topology. (That is,
Spatial and Graph uses an implicitly created TopoMap object to create a new TopoMap
object for each call to this function.)

When you use the third format of this function, you do not need to create an updatable
TopoMap object. The function internally collects TG_ID values of features in the child
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level based on the dml_condition parameter value, and it assembles an
SDO_TGL_OBJECT_ARRAY object to create the SDO_GEOMETRY object.

To ensure that this function works correctly with all geometries, use a loop to call the function
for each geometry. Do not use this function in a subquery in an INSERT or UPDATE
statement, because doing so may cause inconsistencies in the topology, and you may not
receive any error or warning messages about the inconsistencies.

An exception is raised if one or more of the following conditions exist:

• topology, table_name, or column_name does not exist.

• geom specifies geometry objects of a type inconsistent with the topology geometry layer
type. For example, you cannot use line string geometries to create land parcel features.

• dml_condition is used with a topology that does not have a topology geometry layer
hierarchy.

• The input geometries include any optimized shapes, such as optimized rectangles or
circles.

• A line string or multiline string geometry contains any overlapping line segments.

• In a multipolygon geometry, an exterior ring overlaps any other exterior ring.

Examples

The following example populates the FEATURE column in the CITY_STREETS,
TRAFFIC_SIGNS, and LAND_PARCELS feature tables with all geometries in the
GEOMETRY column in the CITY_STREETS_GEOM, TRAFFIC_SIGNS_GEOM, and
LAND_PARCELS_GEOM spatial tables, respectively. This example assumes that an
updatable TopoMap object has been created and loaded for the CITY_DATA topology. (The
example refers to definitions and data from Topology Built from Spatial Geometries.)

BEGIN
  FOR street_rec IN (SELECT name, geometry FROM city_streets_geom) LOOP
   INSERT INTO city_streets VALUES(street_rec.name,
     SDO_TOPO_MAP.CREATE_FEATURE('CITY_DATA', 'CITY_STREETS', 'FEATURE',
         street_rec.geometry));
  END LOOP;
 
  FOR sign_rec IN (SELECT name, geometry FROM traffic_signs_geom) LOOP
   INSERT INTO traffic_signs VALUES(sign_rec.name,
     SDO_TOPO_MAP.CREATE_FEATURE('CITY_DATA', 'TRAFFIC_SIGNS', 'FEATURE',
         sign_rec.geometry));
  END LOOP;
 
  FOR parcel_rec IN (SELECT name, geometry FROM land_parcels_geom) LOOP
   INSERT INTO land_parcels VALUES(parcel_rec.name,
     SDO_TOPO_MAP.CREATE_FEATURE('CITY_DATA', 'LAND_PARCELS', 'FEATURE',
         parcel_rec.geometry));
  END LOOP;
END;
/

The following example creates a topology that has a topology geometry layer hierarchy with
two layers: counties and states. The calls to the CREATE_FEATURE function that create
parent layer (state) features include the dml_condition parameter (for example,
'p_name=''NH''').
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declare
 name varchar2(64);
 cursor c1 is select state_abrv, county from
   counties order by 1, 2;
 stateabrv varchar2(2);
begin
 
 -- Initialize.
 sdo_topo_map.create_topo_map('cnty', 'm2', 10000, 10000, 10000);
 sdo_topo_map.load_topo_map('m2', -180, -90, 180, 90, 'true');
 
 -- Insert one county at a time.
 for cnty_rec in c1 loop
   stateabrv := cnty_rec.state_abrv;
   name := cnty_rec.county;
   insert into cnty_areas select state_abrv || '-' ||county,
     sdo_topo_map.create_feature('CNTY', 'CNTY_AREAS', 'FEATURE', geom) from
     counties where state_abrv=stateabrv and county=name;
 end loop;
 
 -- Roll back topology.
 sdo_topo_map.rollback_topo_map();
 sdo_topo_map.drop_topo_map('m2');
 
 -- Roll back inserts.
 rollback;
 
exception
 when others then
   dbms_output.put_line(SQLERRM);
   sdo_topo_map.rollback_topo_map();
   sdo_topo_map.drop_topo_map('m2');
   rollback;
end;
/
 
-- Add parent feature layer.
--  
--   The following commented out statement can be used to populate the
--     child_layer_id parameter in sdo_topo.add_topo_geometry_layer.
--  
--   select tg_layer_id
--     from user_sdo_topo_info 
--     where TOPOLOGY = 'SC' 
--       and table_name = 'SC_AREAS';
-- 
execute sdo_topo.add_topo_geometry_layer('SC','SC_P_AREAS', 'FEATURE', -
                                      'POLYGON', NULL, child_layer_id => 1);
 
-- Create and insert state features (logically) from county features.
insert into sc_p_areas (f_name, p_name, feature) values ('NH', 'US',
  sdo_topo_map.create_feature('SC','SC_P_AREAS','FEATURE','p_name=''NH'''));
insert into sc_p_areas (f_name, p_name, feature) values ('CT', 'US',
  sdo_topo_map.create_feature('SC','SC_P_AREAS','FEATURE','p_name=''CT'''));
insert into sc_p_areas (f_name, p_name, feature) values ('ME', 'US',
  sdo_topo_map.create_feature('SC','SC_P_AREAS','FEATURE','p_name=''ME'''));
insert into sc_p_areas (f_name, p_name, feature) values ('MA', 'US',
  sdo_topo_map.create_feature('SC','SC_P_AREAS','FEATURE','p_name=''MA'''));
commit;
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4.14 SDO_TOPO_MAP.CREATE_TOPO_MAP
Format

SDO_TOPO_MAP.CREATE_TOPO_MAP(     
  topology         IN VARCHAR2,      
  topo_map         IN VARCHAR2,      
  number_of_edges  IN NUMBER DEFAULT 100,      
  number_of_nodes  IN NUMBER DEFAULT 80,      
  number_of_faces  IN NUMBER DEFAULT 30);

Description

Creates a TopoMap object cache associated with an existing topology.

Parameters

topology
Name of the topology. Must not exceed 20 characters.

topo_map
Name of the TopoMap object. (TopoMap objects are explained in TopoMap Objects.)

number_of_edges
An estimate of the maximum number of edges that will be in the TopoMap object at any
given time. If you do not specify this parameter, a default value of 100 is used.

number_of_nodes
An estimate of the maximum number of nodes that will be in the TopoMap object at any
given time. If you do not specify this parameter, a default value of 80 is used.

number_of_faces
An estimate of the maximum number of faces that will be in the TopoMap object at any given
time. If you do not specify this parameter, a default value of 30 is used.

Usage Notes

The number_of_edges, number_of_nodes, and number_of_faces parameters let you improve
the performance and memory usage of the procedure when you have a good idea of the
approximate number of edges, nodes, or faces (or any combination) that will be placed in the
cache associated with the specified TopoMap object. Spatial and Graph initially allocates
memory cache for the specified or default number of objects of each type, and incrementally
increases the allocation later if more objects need to be accommodated.

You can create more than one TopoMap object in a user session; however, there can be no
more than one updatable TopoMap object at any given time in a user session.

For information about using an in-memory cache to edit topological elements, see 
Approaches for Editing Topology Data.

Using this procedure is equivalent to calling the constructor of the TopoMap class of the client-
side Java API (described in Topology Data Model Java Interface).
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Examples

The following example creates a TopoMap object named CITY_DATA_TOPOMAP and its
associated cache, and it associates the TopoMap object with the topology named
CITY_DATA. (The example refers to definitions and data from Topology Built from
Topology Data.)

CALL SDO_TOPO_MAP.CREATE_TOPO_MAP('CITY_DATA', 'CITY_DATA_TOPOMAP');

4.15 SDO_TOPO_MAP.DROP_TOPO_MAP
Format

SDO_TOPO_MAP.DROP_TOPO_MAP(     
  topo_map IN VARCHAR2);

Description

Deletes a TopoMap object from the current user session.

Parameters

topo_map
Name of the TopoMap object. (TopoMap objects are explained in TopoMap Objects.)

Usage Notes

This procedure rolls back any uncommitted changes if the TopoMap object is
updatable (that is, performs the equivalent of an 
SDO_TOPO_MAP.ROLLBACK_TOPO_MAP operation). It clears the cache associated
with the TopoMap object, and removes the TopoMap object from the session.

For information about using an in-memory cache to edit topological elements, see 
Approaches for Editing Topology Data.

Using this procedure is equivalent to setting the variable of the TopoMap object to a
null value in a client-side Java application. (The client-side Java API is described in 
Topology Data Model Java Interface.)

Examples

The following example drops the TopoMap object named CITY_DATA_TOPOMAP. (The
example refers to definitions and data from Topology Built from Topology Data.)

CALL SDO_TOPO_MAP.DROP_TOPO_MAP('CITY_DATA_TOPOMAP');

4.16 SDO_TOPO_MAP.GET_CONTAINING_FACE
Format

SDO_TOPO_MAP.GET_CONTAINING_FACE(     
  topology IN VARCHAR2,      
  topo_map IN VARCHAR2,      
  point    IN SDO_GEOMETRY      
) RETURN NUMBER;
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or

SDO_TOPO_MAP.GET_CONTAINING_FACE(     
  topology IN VARCHAR2,      
  topo_map IN VARCHAR2,      
  x        IN NUMBER,      
  y        IN NUMBER      
) RETURN NUMBER;

Description

Returns the face ID number of the face that contains the specified point.

Parameters

topology
Name of the topology that contains the face and the point, or a null value, as explained in 
Using GET_xxx Topology Functions. Must not exceed 20 characters.

topo_map
Name of the TopoMap object, or a null value, as explained in Using GET_xxx Topology
Functions. (TopoMap objects are explained in TopoMap Objects.)

point
Geometry object specifying the point.

x
X-axis value of the point.

y
Y-axis value of the point.

Usage Notes

The topology or topo_map parameter should specify a valid name, as explained in Using
GET_xxx Topology Functions.

This function determines, from the faces in the specified TopoMap object (including any
island faces), which one face (if any) contains the specified point in its open set, excluding
islands. (The open set, excluding islands, of a face consists of all points inside, but not on the
boundary of, the face.) If the point is exactly on the boundary of a face, the function returns a
value of 0 (zero).

If the entire topology has been loaded into the TopoMap object and if the point is not in any
finite face in the cache, this function returns a value of -1 (for the universe face). If a window
from the topology has been loaded into the TopoMap object and if the point is not in any finite
face in the cache, this function returns a value of -1 (for the universe face) if the point is
inside the window and a value of 0 (zero) if the point is outside the window. If neither the
entire topology nor a window has been loaded, this function returns 0 (zero).

This function is equivalent to using the getContainingFace method of the TopoMap class of
the client-side Java API (described in Topology Data Model Java Interface).

Examples

The following example returns the face ID number of the face that contains the point at (22,
37) in the CITY_DATA_TOPOMAP TopoMap object. (The example refers to definitions and data
from Topology Built from Topology Data.)
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SELECT SDO_TOPO_MAP.GET_CONTAINING_FACE(null, 'CITY_DATA_TOPOMAP',
  SDO_GEOMETRY(2001, NULL, SDO_POINT_TYPE(22,37,NULL), NULL, NULL))
  FROM DUAL;
 
SDO_TOPO_MAP.GET_CONTAINING_FACE(NULL,'CITY_DATA_TOPOMAP',SDO_GEOMETRY(2001,NULL
--------------------------------------------------------------------------------
                                                                               2

4.17 SDO_TOPO_MAP.GET_EDGE_ADDITIONS
Format

SDO_TOPO_MAP.GET_EDGE_ADDITIONS() RETURN SDO_NUMBER_ARRAY;

Description

Returns an array of edge ID numbers of edges that have been added to the current
updatable TopoMap object.

Parameters

None.

Usage Notes

This function returns the edge ID numbers of edges in the current updatable TopoMap
object that have been added since the object was most recently loaded (using 
SDO_TOPO_MAP.LOAD_TOPO_MAP), updated (using 
SDO_TOPO_MAP.UPDATE_TOPO_MAP), cleared (using 
SDO_TOPO_MAP.CLEAR_TOPO_MAP), committed (using 
SDO_TOPO_MAP.COMMIT_TOPO_MAP), or rolled back (using 
SDO_TOPO_MAP.ROLLBACK_TOPO_MAP). If there have been no additions during
that time, the function returns an empty SDO_NUMBER_ARRAY object.

This function is equivalent to using the getEdgeAdditions method of the TopoMap class
of the client-side Java API (described in Topology Data Model Java Interface).

Examples

The following example returns the edge ID numbers of edges that have been added to
the current updatable TopoMap object.

SELECT SDO_TOPO_MAP.GET_EDGE_ADDITIONS FROM DUAL;
 
GET_EDGE_ADDITIONS                                                              
--------------------------------------------------------------------------------
SDO_NUMBER_ARRAY(28, 29, 30, 32)

4.18 SDO_TOPO_MAP.GET_EDGE_CHANGES
Format

SDO_TOPO_MAP.GET_EDGE_CHANGES() RETURN SDO_NUMBER_ARRAY;
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Description

Returns an array of edge ID numbers of edges that have been changed (modified) in the
current updatable TopoMap object.

Parameters

None.

Usage Notes

This function returns the edge ID numbers of edges in the current updatable TopoMap object
that have been changed since the object was most recently loaded (using 
SDO_TOPO_MAP.LOAD_TOPO_MAP), updated (using 
SDO_TOPO_MAP.UPDATE_TOPO_MAP), cleared (using 
SDO_TOPO_MAP.CLEAR_TOPO_MAP), committed (using 
SDO_TOPO_MAP.COMMIT_TOPO_MAP), or rolled back (using 
SDO_TOPO_MAP.ROLLBACK_TOPO_MAP). If there have been no changes during that
time, the function returns an empty SDO_NUMBER_ARRAY object.

This function is equivalent to using the getEdgeChanges method of the TopoMap class of the
client-side Java API (described in Topology Data Model Java Interface).

Examples

The following example returns the edge ID numbers of edges that have been changed in the
current updatable TopoMap object.

SELECT SDO_TOPO_MAP.GET_EDGE_CHANGES FROM DUAL;
 
GET_EDGE_CHANGES                                                                
--------------------------------------------------------------------------------
SDO_NUMBER_ARRAY(3, 2, 1) 

4.19 SDO_TOPO_MAP.GET_EDGE_COORDS
Format

SDO_TOPO_MAP.GET_EDGE_COORDS(     
  topology IN VARCHAR2,      
  topo_map IN VARCHAR2,      
  edge_id  IN NUMBER      
) RETURN SDO_NUMBER_ARRAY;

Description

Returns an array with the coordinates of the start node, shape points, and end node for the
specified edge.

Parameters

topology
Name of the topology that contains the edge, or a null value, as explained in Using GET_xxx
Topology Functions. Must not exceed 20 characters.
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topo_map
Name of the TopoMap object, or a null value, as explained in Using GET_xxx
Topology Functions. (TopoMap objects are explained in TopoMap Objects.)

edge_id
Edge ID value of the edge.

Usage Notes

The topology or topo_map parameter should specify a valid name, as explained in 
Using GET_xxx Topology Functions.

This function is equivalent to using the getEdgeCoords method of the TopoMap class of
the client-side Java API (described in Topology Data Model Java Interface).

Examples

The following example returns the coordinates of the start node, shape points, and end
node for the edge whose edge ID value is 1. The returned array contains coordinates
for six points. (The example refers to definitions and data from Topology Built from
Topology Data.)

SELECT SDO_TOPO_MAP.GET_EDGE_COORDS(null, 'CITY_DATA_TOPOMAP', 1) FROM DUAL;
 
SDO_TOPO_MAP.GET_EDGE_COORDS(NULL,'CITY_DATA_TOPOMAP',1)                         
   
--------------------------------------------------------------------------------
SDO_NUMBER_ARRAY(8, 30, 16, 30, 16, 38, 3, 38, 3, 30, 8, 30)

4.20 SDO_TOPO_MAP.GET_EDGE_DELETIONS
Format

SDO_TOPO_MAP.GET_EDGE_DELETIONS() RETURN SDO_NUMBER_ARRAY;

Description

Returns an array of edge ID numbers of edges that have been deleted from the
current updatable TopoMap object.

Parameters

None.

Usage Notes

This function returns the edge ID numbers of edges in the current updatable TopoMap
object that have been deleted since the object was most recently loaded (using 
SDO_TOPO_MAP.LOAD_TOPO_MAP), updated (using 
SDO_TOPO_MAP.UPDATE_TOPO_MAP), cleared (using 
SDO_TOPO_MAP.CLEAR_TOPO_MAP), committed (using 
SDO_TOPO_MAP.COMMIT_TOPO_MAP), or rolled back (using 
SDO_TOPO_MAP.ROLLBACK_TOPO_MAP). If there have been no deletions during
that time, the function returns an empty SDO_NUMBER_ARRAY object.

This function is equivalent to using the getEdgeDeletions method of the TopoMap class
of the client-side Java API (described in Topology Data Model Java Interface).
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Examples

The following example returns the edge ID numbers of edges that have been deleted from
the current updatable TopoMap object. In this case, the return of an empty
SDO_NUMBER_ARRAY object indicates that no edges have been deleted.

SELECT SDO_TOPO_MAP.GET_EDGE_DELETIONS FROM DUAL;
 
GET_EDGE_DELETIONS                                                              
--------------------------------------------------------------------------------
SDO_NUMBER_ARRAY()

4.21 SDO_TOPO_MAP.GET_EDGE_NODES
Format

SDO_TOPO_MAP.GET_EDGE_NODES(     
  topology IN VARCHAR2,      
  topo_map IN VARCHAR2,      
  edge_id  IN NUMBER      
) RETURN SDO_NUMBER_ARRAY;

Description

Returns an array with the ID numbers of the start and end nodes on the specified edge.

Parameters

topology
Name of the topology that contains the edge, or a null value, as explained in Using GET_xxx
Topology Functions. Must not exceed 20 characters.

topo_map
Name of the TopoMap object, or a null value, as explained in Using GET_xxx Topology
Functions. (TopoMap objects are explained in TopoMap Objects.)

edge_id
Edge ID value of the edge.

Usage Notes

The topology or topo_map parameter should specify a valid name, as explained in Using
GET_xxx Topology Functions.

If the edge starts and ends at a node, the ID number of the node is the first and last number
in the array.

This function has no exact equivalent method in the TopoMap class of the client-side Java API
(described in Topology Data Model Java Interface). The getEdge method returns a Java edge
object of the oracle.spatial.topo.Edge class.

Examples

The following example returns the ID numbers of the nodes on the edge whose edge ID
value is 1. The returned array contains two nodes ID numbers, both of them 1 (for the same
node), because the specified edge starts and ends at the node with node ID 1 and has a loop
edge. (The example refers to definitions and data from Topology Built from Topology Data.)
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SELECT SDO_TOPO_MAP.GET_EDGE_NODES(null, 'CITY_DATA_TOPOMAP', 1) FROM DUAL;
 
SDO_TOPO_MAP.GET_EDGE_NODES(NULL,'CITY_DATA_TOPOMAP',1)                          
   
--------------------------------------------------------------------------------
SDO_NUMBER_ARRAY(1, 1)

4.22 SDO_TOPO_MAP.GET_FACE_ADDITIONS
Format

SDO_TOPO_MAP.GET_FACE_ADDITIONS() RETURN SDO_NUMBER_ARRAY;

Description

Returns an array of face ID numbers of faces that have been added to the current
updatable TopoMap object.

Parameters

None.

Usage Notes

This function returns the face ID numbers of faces in the current updatable TopoMap
object that have been added since the object was most recently loaded (using 
SDO_TOPO_MAP.LOAD_TOPO_MAP), updated (using 
SDO_TOPO_MAP.UPDATE_TOPO_MAP), cleared (using 
SDO_TOPO_MAP.CLEAR_TOPO_MAP), committed (using 
SDO_TOPO_MAP.COMMIT_TOPO_MAP), or rolled back (using 
SDO_TOPO_MAP.ROLLBACK_TOPO_MAP). If there have been no additions during
that time, the function returns an empty SDO_NUMBER_ARRAY object.

This function is equivalent to using the getFaceAdditions method of the TopoMap class
of the client-side Java API (described in Topology Data Model Java Interface).

Examples

The following example returns the face ID numbers of faces that have been added to
the current updatable TopoMap object.

SELECT SDO_TOPO_MAP.GET_FACE_ADDITIONS FROM DUAL;
 
GET_FACE_ADDITIONS                                                              
--------------------------------------------------------------------------------
SDO_NUMBER_ARRAY(11)

4.23 SDO_TOPO_MAP.GET_FACE_CHANGES
Format

SDO_TOPO_MAP.GET_FACE_CHANGES() RETURN SDO_NUMBER_ARRAY;

Description

Returns an array of face ID numbers of faces that have been changed (modified) in
the current updatable TopoMap object.
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Parameters

None.

Usage Notes

This function returns the face ID numbers of faces in the current updatable TopoMap object
that have been changed since the object was most recently loaded (using 
SDO_TOPO_MAP.LOAD_TOPO_MAP), updated (using 
SDO_TOPO_MAP.UPDATE_TOPO_MAP), cleared (using 
SDO_TOPO_MAP.CLEAR_TOPO_MAP), committed (using 
SDO_TOPO_MAP.COMMIT_TOPO_MAP), or rolled back (using 
SDO_TOPO_MAP.ROLLBACK_TOPO_MAP). If there have been no changes during that
time, the function returns an empty SDO_NUMBER_ARRAY object.

This function is equivalent to using the getFaceChanges method of the TopoMap class of the
client-side Java API (described in Topology Data Model Java Interface).

Examples

The following example returns the face ID numbers of faces that have been changed in the
current updatable TopoMap object.

SELECT SDO_TOPO_MAP.GET_FACE_CHANGES FROM DUAL;
 
GET_FACE_CHANGES                                                                
--------------------------------------------------------------------------------
SDO_NUMBER_ARRAY(2, 1, -1)

4.24 SDO_TOPO_MAP.GET_FACE_BOUNDARY
Format

SDO_TOPO_MAP.GET_FACE_BOUNDARY(     
  topology IN VARCHAR2,      
  topo_map IN VARCHAR2,      
  face_id  IN NUMBER      
  option   IN NUMBER      
) RETURN SDO_NUMBER_ARRAY;

Description

Returns an array with the edge ID numbers of the edges that make up the boundary for the
specified face.

Parameters

topology
Name of the topology that contains the face, or a null value, as explained in Using GET_xxx
Topology Functions. Must not exceed 20 characters.

topo_map
Name of the TopoMap object, or a null value, as explained in Using GET_xxx Topology
Functions. (TopoMap objects are explained in TopoMap Objects.)
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face_id
Face ID value of the face.

option
One of the following numbers to indicate an option for computing the boundary: 0 for
an external boundary ring without spurs (that is, without doubly traced edges), 1 for
external and internal rings without spurs, or 2 for external and internal rings with
spurs. A value of 2 returns the full, though possibly degenerate, boundary.

Usage Notes

The topology or topo_map parameter should specify a valid name, as explained in 
Using GET_xxx Topology Functions.

This function is equivalent to using the getFaceBoundary method of the TopoMap class
of the client-side Java API (described in Topology Data Model Java Interface).

Examples

The following example returns the edges in the external boundary ring without spurs
for the face whose face ID value is 3. The returned array contains four edge ID values.
(The example refers to definitions and data from Topology Built from Topology Data.)

SELECT SDO_TOPO_MAP.GET_FACE_BOUNDARY(null, 'CITY_DATA_TOPOMAP', 3, 0) FROM DUAL;
 
SDO_TOPO_MAP.GET_FACE_BOUNDARY(NULL,'CITY_DATA_TOPOMAP',3,0)                    
--------------------------------------------------------------------------------
SDO_NUMBER_ARRAY(19, 6, 21, 9)

4.25 SDO_TOPO_MAP.GET_FACE_DELETIONS
Format

SDO_TOPO_MAP.GET_FACE_DELETIONS() RETURN SDO_NUMBER_ARRAY;

Description

Returns an array of face ID numbers of faces that have been deleted from the current
updatable TopoMap object.

Parameters

None.

Usage Notes

This function returns the face ID numbers of faces in the current updatable TopoMap
object that have been deleted since the object was most recently loaded (using 
SDO_TOPO_MAP.LOAD_TOPO_MAP), updated (using 
SDO_TOPO_MAP.UPDATE_TOPO_MAP), cleared (using 
SDO_TOPO_MAP.CLEAR_TOPO_MAP), committed (using 
SDO_TOPO_MAP.COMMIT_TOPO_MAP), or rolled back (using 
SDO_TOPO_MAP.ROLLBACK_TOPO_MAP). If there have been no deletions during
that time, the function returns an empty SDO_NUMBER_ARRAY object.

This function is equivalent to using the getFaceDeletions method of the TopoMap class
of the client-side Java API (described in Topology Data Model Java Interface).
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Examples

The following example returns the face ID numbers of faces that have been deleted from the
current updatable TopoMap object. In this case, the return of an empty
SDO_NUMBER_ARRAY object indicates that no faces have been deleted.

SELECT SDO_TOPO_MAP.GET_FACE_DELETIONS FROM DUAL;
 
GET_FACE_DELETIONS                                                              
--------------------------------------------------------------------------------
SDO_NUMBER_ARRAY()

4.26 SDO_TOPO_MAP.GET_NEAREST_EDGE
Format

SDO_TOPO_MAP.GET_NEAREST_EDGE(     
  topology IN VARCHAR2,      
  topo_map IN VARCHAR2,      
  point    IN SDO_GEOMETRY      
) RETURN NUMBER;

or

SDO_TOPO_MAP.GET_NEAREST_EDGE(     
  topology IN VARCHAR2,      
  topo_map IN VARCHAR2,      
  x        IN NUMBER,      
  y        IN NUMBER      
) RETURN NUMBER;

Description

Returns the edge ID number of the edge that is nearest (closest to) the specified point.

Parameters

topology
Name of the topology that contains the edge and the point, or a null value, as explained in 
Using GET_xxx Topology Functions. Must not exceed 20 characters.

topo_map
Name of the TopoMap object, or a null value, as explained in Using GET_xxx Topology
Functions. (TopoMap objects are explained in TopoMap Objects.)

point
Geometry object specifying the point.

x
X-axis value of the point.

y
Y-axis value of the point.

Usage Notes

The topology or topo_map parameter should specify a valid name, as explained in Using
GET_xxx Topology Functions.
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The nearest edge is determined from the representation of the topology in the
database, using the spatial index. If there are changed, added, or deleted edges in the
instance and the database has not been updated to reflect those changes, the result
may not reflect the true situation in the TopoMap object cache.

If multiple edges are equally close to the point, any one of the edge ID values is
returned. If no edges exist in the topology, this function returns 0 (zero).

This function is equivalent to using the getNearestEdge method of the TopoMap class
of the client-side Java API (described in Topology Data Model Java Interface).

Examples

The following example returns the edge ID number of the edge that is closest to the
point at (8, 8) in the CITY_DATA_TOPOMAP TopoMap object. (The example refers to
definitions and data from Topology Built from Topology Data.)

SELECT SDO_TOPO_MAP.GET_NEAREST_EDGE(null, 'CITY_DATA_TOPOMAP',
  SDO_GEOMETRY(2001, NULL, SDO_POINT_TYPE(8,8,NULL), NULL, NULL))
  FROM DUAL;
 
SDO_TOPO_MAP.GET_NEAREST_EDGE(NULL,'CITY_DATA_TOPOMAP',SDO_GEOMETRY(2001,NULL,SD
--------------------------------------------------------------------------------
                                                                              22

4.27
SDO_TOPO_MAP.GET_NEAREST_EDGE_IN_CACHE

Format

SDO_TOPO_MAP.GET_NEAREST_EDGE_IN_CACHE(     
  topo_map IN VARCHAR2,      
  point    IN SDO_GEOMETRY      
) RETURN NUMBER;

or

SDO_TOPO_MAP.GET_NEAREST_EDGE_IN_CACHE(     
  topo_map IN VARCHAR2,      
  x        IN NUMBER,      
  y        IN NUMBER      
) RETURN NUMBER;

Description

Returns the edge ID number of the edge that, of the edges loaded in the specified
TopoMap object, is nearest (closest to) the specified point.

Parameters

topo_map
Name of the TopoMap object. (TopoMap objects are explained in TopoMap Objects.)

point
Geometry object specifying the point.
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x
X-axis value of the point.

y
Y-axis value of the point.

Usage Notes

If multiple edges are equally close to the point, any one of the edge ID values is returned. If
no topology data is loaded or if no edges exist in the cache, this function returns 0 (zero).

This function is equivalent to using the getNearestEdgeInCache method of the TopoMap class
of the client-side Java API (described in Topology Data Model Java Interface).

Examples

The following example returns the edge ID number of the edge that is closest to the point at
(8, 8) in the CITY_DATA_TOPOMAP TopoMap object. (The example refers to definitions and data
from Topology Built from Topology Data.)

SELECT SDO_TOPO_MAP.GET_NEAREST_EDGE_IN_CACHE('CITY_DATA_TOPOMAP',
  SDO_GEOMETRY(2001, NULL, SDO_POINT_TYPE(8,8,NULL), NULL, NULL))
  FROM DUAL;
 
SDO_TOPO_MAP.GET_NEAREST_EDGE_IN_CACHE('CITY_DATA_TOPOMAP',SDO_GEOMETRY(2001,NUL
--------------------------------------------------------------------------------
                                                                              22

4.28 SDO_TOPO_MAP.GET_NEAREST_NODE
Format

SDO_TOPO_MAP.GET_NEAREST_NODE(     
  topology IN VARCHAR2,      
  topo_map IN VARCHAR2,      
  point    IN SDO_GEOMETRY      
) RETURN NUMBER;

or

SDO_TOPO_MAP.GET_NEAREST_NODE(     
  topology IN VARCHAR2,      
  topo_map IN VARCHAR2,      
  x        IN NUMBER,      
  y        IN NUMBER      
) RETURN NUMBER;

Description

Returns the node ID number of the node that is nearest (closest to) the specified point.

Parameters

topology
Name of the topology that contains the node and the point, or a null value, as explained in 
Using GET_xxx Topology Functions. Must not exceed 20 characters.
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topo_map
Name of the TopoMap object, or a null value, as explained in Using GET_xxx
Topology Functions. (TopoMap objects are explained in TopoMap Objects.)

point
Geometry object specifying the point.

x
X-axis value of the point.

y
Y-axis value of the point.

Usage Notes

The topology or topo_map parameter should specify a valid name, as explained in 
Using GET_xxx Topology Functions.

The nearest node is determined from the representation of the topology in the
database, using the spatial index. If there are changed, added, or deleted nodes in the
instance and the database has not been updated to reflect those changes, the result
may not reflect the true situation in the TopoMap object cache.

If multiple nodes are equally close to the point, any one of the node ID values is
returned.

This function is equivalent to using the getNearestNode method of the TopoMap class
of the client-side Java API (described in Topology Data Model Java Interface).

Examples

The following example returns the node ID number of the node that is closest to the
point at (8, 8) in the CITY_DATA_TOPOMAP TopoMap object. (The example refers to
definitions and data from Topology Built from Topology Data.)

SELECT SDO_TOPO_MAP.GET_NEAREST_NODE(null, 'CITY_DATA_TOPOMAP',
  SDO_GEOMETRY(2001, NULL, SDO_POINT_TYPE(8,8,NULL), NULL, NULL))
  FROM DUAL;
 
SDO_TOPO_MAP.GET_NEAREST_NODE(NULL,'CITY_DATA_TOPOMAP',SDO_GEOMETRY(2001,NULL,SD
--------------------------------------------------------------------------------
                                                                               8

4.29
SDO_TOPO_MAP.GET_NEAREST_NODE_IN_CACHE

Format

SDO_TOPO_MAP.GET_NEAREST_NODE_IN_CACHE(     
  topo_map IN VARCHAR2,      
  point    IN SDO_GEOMETRY      
) RETURN NUMBER;

or

SDO_TOPO_MAP.GET_NEAREST_NODE_IN_CACHE(     
  topo_map IN VARCHAR2,      
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  x        IN NUMBER,      
  y        IN NUMBER      
) RETURN NUMBER;

Description

Returns the node ID number of the node that, of the nodes loaded in the specified TopoMap
object, is nearest (closest to) the specified point.

Parameters

topo_map
Name of the TopoMap object. (TopoMap objects are explained in TopoMap Objects.)

point
Geometry object specifying the point.

x
X-axis value of the point.

y
Y-axis value of the point.

Usage Notes

If multiple nodes are equally close to the point, any one of the node ID values is returned. If
no topology data is loaded or if no nodes exist in the cache, this function returns 0 (zero).

This function is equivalent to using the getNearestNodeInCache method of the TopoMap class
of the client-side Java API (described in Topology Data Model Java Interface).

Examples

The following example returns the node ID number of the node that is closest to the point at
(8, 8) in the CITY_DATA_TOPOMAP TopoMap object. (The example refers to definitions and data
from Topology Built from Topology Data.)

SELECT SDO_TOPO_MAP.GET_NEAREST_NODE_IN_CACHE('CITY_DATA_TOPOMAP',
  SDO_GEOMETRY(2001, NULL, SDO_POINT_TYPE(8,8,NULL), NULL, NULL))
  FROM DUAL;
 
SDO_TOPO_MAP.GET_NEAREST_NODE_IN_CACHE('CITY_DATA_TOPOMAP',SDO_GEOMETRY(2001,NUL
--------------------------------------------------------------------------------
                                                                               8

4.30 SDO_TOPO_MAP.GET_NODE_ADDITIONS
Format

SDO_TOPO_MAP.GET_NODE_ADDITIONS() RETURN SDO_NUMBER_ARRAY;

Description

Returns an array of node ID numbers of nodes that have been added to the current
updatable TopoMap object.
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Parameters

None.

Usage Notes

This function returns the node ID numbers of nodes in the current updatable TopoMap
object that have been added since the object was most recently loaded (using 
SDO_TOPO_MAP.LOAD_TOPO_MAP), updated (using 
SDO_TOPO_MAP.UPDATE_TOPO_MAP), cleared (using 
SDO_TOPO_MAP.CLEAR_TOPO_MAP), committed (using 
SDO_TOPO_MAP.COMMIT_TOPO_MAP), or rolled back (using 
SDO_TOPO_MAP.ROLLBACK_TOPO_MAP). If there have been no additions during
that time, the function returns an empty SDO_NUMBER_ARRAY object.

This function is equivalent to using the getNodeAdditions method of the TopoMap class
of the client-side Java API (described in Topology Data Model Java Interface).

Examples

The following example returns the node ID numbers of nodes that have been added to
the current updatable TopoMap object.

SELECT SDO_TOPO_MAP.GET_NODE_ADDITIONS FROM DUAL;
 
GET_NODE_ADDITIONS                                                              
--------------------------------------------------------------------------------
SDO_NUMBER_ARRAY(24, 25, 26, 27, 28)

4.31 SDO_TOPO_MAP.GET_NODE_CHANGES
Format

SDO_TOPO_MAP.GET_NODE_CHANGES() RETURN SDO_NUMBER_ARRAY;

Description

Returns an array of node ID numbers of nodes that have been changed (modified) in
the current updatable TopoMap object.

Parameters

None.

Usage Notes

This function returns the node ID numbers of nodes in the current updatable TopoMap
object that have been changed since the object was most recently loaded (using 
SDO_TOPO_MAP.LOAD_TOPO_MAP), updated (using 
SDO_TOPO_MAP.UPDATE_TOPO_MAP), cleared (using 
SDO_TOPO_MAP.CLEAR_TOPO_MAP), committed (using 
SDO_TOPO_MAP.COMMIT_TOPO_MAP), or rolled back (using 
SDO_TOPO_MAP.ROLLBACK_TOPO_MAP). If there have been no changes during
that time, the function returns an empty SDO_NUMBER_ARRAY object.

This function is equivalent to using the getNodeChanges method of the TopoMap class
of the client-side Java API (described in Topology Data Model Java Interface).
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Examples

The following example returns the node ID numbers of nodes that have been changed in the
current updatable TopoMap object.

SELECT SDO_TOPO_MAP.GET_NODE_CHANGES FROM DUAL;
 
GET_NODE_CHANGES                                                                
--------------------------------------------------------------------------------
SDO_NUMBER_ARRAY(2, 4) 

4.32 SDO_TOPO_MAP.GET_NODE_COORD
Format

SDO_TOPO_MAP.GET_NODE_COORD(     
  topology  IN VARCHAR2,      
  topo_map  IN VARCHAR2,      
  node_id   IN NUMBER      
) RETURN SDO_GEOMETRY;

Description

Returns an SDO_GEOMETRY object with the coordinates of the specified node.

Parameters

topology
Name of the topology that contains the node, or a null value, as explained in Using GET_xxx
Topology Functions. Must not exceed 20 characters.

topo_map
Name of the TopoMap object, or a null value, as explained in Using GET_xxx Topology
Functions. (TopoMap objects are explained in TopoMap Objects.)

node_id
Node ID value of the node.

Usage Notes

The topology or topo_map parameter should specify a valid name, as explained in Using
GET_xxx Topology Functions.

This function is equivalent to using the getNodeCoord method of the TopoMap class of the
client-side Java API (described in Topology Data Model Java Interface).

Examples

The following example returns a geometry object with the coordinates of the node whose
node ID value is 14. (The example refers to definitions and data from Topology Built from
Topology Data.)

SELECT SDO_TOPO_MAP.GET_NODE_COORD(null, 'CITY_DATA_TOPOMAP', 14) FROM DUAL;
 
SDO_TOPO_MAP.GET_NODE_COORD(NULL,'CITY_DATA_TOPOMAP',14)(SDO_GTYPE, SDO_SRID, SD
--------------------------------------------------------------------------------
SDO_GEOMETRY(2001, 0, SDO_POINT_TYPE(21, 14, NULL), NULL, NULL)
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4.33 SDO_TOPO_MAP.GET_NODE_DELETIONS
Format

SDO_TOPO_MAP.GET_NODE_DELETIONS() RETURN SDO_NUMBER_ARRAY;

Description

Returns an array of node ID numbers of nodes that have been deleted from the
current updatable TopoMap object.

Parameters

None.

Usage Notes

This function returns the node ID numbers of nodes in the current updatable TopoMap
object that have been deleted since the object was most recently loaded (using 
SDO_TOPO_MAP.LOAD_TOPO_MAP), updated (using 
SDO_TOPO_MAP.UPDATE_TOPO_MAP), cleared (using 
SDO_TOPO_MAP.CLEAR_TOPO_MAP), committed (using 
SDO_TOPO_MAP.COMMIT_TOPO_MAP), or rolled back (using 
SDO_TOPO_MAP.ROLLBACK_TOPO_MAP). If there have been no deletions during
that time, the function returns an empty SDO_NUMBER_ARRAY object.

This function is equivalent to using the getNodeDeletions method of the TopoMap class
of the client-side Java API (described in Topology Data Model Java Interface).

Examples

The following example returns the node ID numbers of nodes that have been deleted
from the current updatable TopoMap object. In this case, the return of an empty
SDO_NUMBER_ARRAY object indicates that no nodes have been deleted.

SELECT SDO_TOPO_MAP.GET_NODE_DELETIONS FROM DUAL;
 
GET_NODE_DELETIONS                                                              
--------------------------------------------------------------------------------
SDO_NUMBER_ARRAY()

4.34 SDO_TOPO_MAP.GET_NODE_FACE_STAR
Format

SDO_TOPO_MAP.GET_NODE_FACE_STAR(     
  topology  IN VARCHAR2,      
  topo_map  IN VARCHAR2,      
  node_id   IN NUMBER      
) RETURN SDO_NUMBER_ARRAY;

Description

Returns an SDO_NUMBER_ARRAY object with the face ID numbers, in clockwise
order, of the faces that are connected to the specified node.
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Parameters

topology
Name of the topology that contains the node, or a null value, as explained in Using GET_xxx
Topology Functions. Must not exceed 20 characters.

topo_map
Name of the TopoMap object, or a null value, as explained in Using GET_xxx Topology
Functions. (TopoMap objects are explained in TopoMap Objects.)

node_id
Node ID value of the node.

Usage Notes

The node face star of a node is the faces that are connected to the node. One face is
returned for each edge connected to the node. For an isolated node, the containing face is
returned. A face may appear more than once in the list.

The topology or topo_map parameter should specify a valid name, as explained in Using
GET_xxx Topology Functions.

This function is equivalent to using the getNodeFaceStar method of the TopoMap class of the
client-side Java API (described in Topology Data Model Java Interface).

To return the node star of a node, use the SDO_TOPO_MAP.GET_NODE_STAR function.

Examples

The following example returns the node face star of the node whose node ID value is 14.
(The example refers to definitions and data from Topology Built from Topology Data.)

SELECT SDO_TOPO_MAP.GET_NODE_FACE_STAR(null, 'CITY_DATA_TOPOMAP', 14) FROM DUAL;
 
SDO_TOPO_MAP.GET_NODE_FACE_STAR(NULL,'CITY_DATA_TOPOMAP',14)                    
--------------------------------------------------------------------------------
SDO_NUMBER_ARRAY(4, 7, 6, 3)

4.35 SDO_TOPO_MAP.GET_NODE_STAR
Format

SDO_TOPO_MAP.GET_NODE_STAR(     
  topology  IN VARCHAR2,      
  topo_map  IN VARCHAR2,      
  node_id   IN NUMBER      
) RETURN SDO_NUMBER_ARRAY;

Description

Returns an SDO_NUMBER_ARRAY object with the edge ID numbers, in clockwise order, of
the edges that are connected to the specified node.
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Parameters

topology
Name of the topology that contains the node, or a null value, as explained in Using
GET_xxx Topology Functions. Must not exceed 20 characters.

topo_map
Name of the TopoMap object, or a null value, as explained in Using GET_xxx
Topology Functions. (TopoMap objects are explained in TopoMap Objects.)

node_id
Node ID value of the node.

Usage Notes

The node star of a node is the edges that are connected to the node. A positive edge
ID represents an edge for which the node is its start node. A negative edge ID
represents an edge for which the node is its end node. If any loops are connected to
the node, edges may appear in the list twice with opposite signs.

The topology or topo_map parameter should specify a valid name, as explained in 
Using GET_xxx Topology Functions.

This function is equivalent to using the getNodeStar method of the TopoMap class of
the client-side Java API (described in Topology Data Model Java Interface).

To return the node face star of a node, use the 
SDO_TOPO_MAP.GET_NODE_FACE_STAR function.

Examples

The following example returns the node star of the node whose node ID value is 14.
(The example refers to definitions and data from Topology Built from Topology Data.)

SELECT SDO_TOPO_MAP.GET_NODE_STAR(null, 'CITY_DATA_TOPOMAP', 14) FROM DUAL;
 
SDO_TOPO_MAP.GET_NODE_STAR(NULL,'CITY_DATA_TOPOMAP',14)                          
   
--------------------------------------------------------------------------------
SDO_NUMBER_ARRAY(19, -10, -20, -9)

4.36 SDO_TOPO_MAP.GET_TOPO_NAME
Format

SDO_TOPO_MAP.GET_TOPO_NAME(     
  topo_map  IN VARCHAR2      
) RETURN VARCHAR2;

Description

Returns the name of the topology associated with the specified TopoMap object.
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Parameters

topo_map
Name of the TopoMap object. (TopoMap objects are explained in TopoMap Objects.)

Usage Notes

This function is equivalent to using the getTopoName method of the TopoMap class of the
client-side Java API (described in Topology Data Model Java Interface).

Examples

The following example returns the name of the topology associated with the TopoMap object
named CITY_DATA_TOPOMAP. (The example refers to definitions and data from Topology Built
from Topology Data.)

SELECT SDO_TOPO_MAP.GET_TOPO_NAME('CITY_DATA_TOPOMAP') FROM DUAL;
 
SDO_TOPO_MAP.GET_TOPO_NAME('CITY_DATA_TOPOMAP')                                     
--------------------------------------------------------------------------------
CITY_DATA 

4.37 SDO_TOPO_MAP.GET_TOPO_TRANSACTION_ID
Format

SDO_TOPO_MAP.GET_TOPO_TRANSACTION_ID() RETURN NUMBER;

Description

Returns the topology transaction ID number, if data has been loaded into the current
updatable TopoMap object.

Parameters

None.

Usage Notes

For each row in the history information table for a topology, the TOPO_TX_ID column
contains the topology transaction ID number. The history information table is described in 
History Information Table.

This function is equivalent to using the getTopoTransactionId method of the TopoMap class
of the client-side Java API (described in Topology Data Model Java Interface).

Examples

The following example returns the topology transaction ID number for the current updatable
TopoMap object.

SELECT SDO_TOPO_MAP.GET_TOPO_TRANSACTION_ID FROM DUAL;
 
GET_TOPO_TRANSACTION_ID                                                              
-----------------------
                      1 
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4.38 SDO_TOPO_MAP.LIST_TOPO_MAPS
Format

SDO_TOPO_MAP.LIST_TOPO_MAPS() RETURN VARCHAR2;

Description

Returns a comma-delimited list of entries for each TopoMap object currently active in
the session, or an empty string if there are no currently active TopoMap objects.

Parameters

None.

Usage Notes

Each entry in the comma-delimited list contains the following information: the name of
the TopoMap object, the name of the topology associated with the TopoMap object,
and either updatable if the TopoMap object can be updated (that is, edited) or read-
only if the TopoMap object cannot be updated.

For more information about TopoMap objects, including updatable and read-only
status, see TopoMap Objects.

To remove a TopoMap object from the session, use the 
SDO_TOPO_MAP.DROP_TOPO_MAP procedure.

Examples

The following example lists the Topomap object name, topology name, and whether
the object is updatable or read-only for each TopoMap object currently active in the
session. (The example refers to definitions and data from Topology Built from Topology
Data.)

SELECT SDO_TOPO_MAP.LIST_TOPO_MAPS FROM DUAL;
 
LIST_TOPO_MAPS
--------------------------------------------------------------------------------
(CITY_DATA_TOPOMAP, CITY_DATA, updatable)

4.39 SDO_TOPO_MAP.LOAD_TOPO_MAP
Format (Function)

SDO_TOPO_MAP.LOAD_TOPO_MAP(     
  topo_map      IN VARCHAR2,      
  allow_updates IN VARCHAR2,      
  build_indexes IN VARCHAR2 DEFAULT 'TRUE'      
) RETURN VARCHAR2;

or

SDO_TOPO_MAP.LOAD_TOPO_MAP(     
  topo_map      IN VARCHAR2,      
  xmin          IN NUMBER,      
  ymin          IN NUMBER,      
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  xmax          IN NUMBER,      
  ymax          IN NUMBER,      
  allow_updates IN VARCHAR2,      
  build_indexes IN VARCHAR2 DEFAULT 'TRUE'      
) RETURN VARCHAR2;

or

SDO_TOPO_MAP.LOAD_TOPO_MAP(     
  topo_map      IN VARCHAR2,      
  xmin          IN NUMBER,      
  ymin          IN NUMBER,      
  xmax          IN NUMBER,      
  ymax          IN NUMBER,      
  allow_updates IN VARCHAR2,      
  build_indexes IN VARCHAR2,      
  next_load     IN VARCHAR2 DEFAULT 'FALSE'      
) RETURN VARCHAR2;

Format (Procedure)

SDO_TOPO_MAP.LOAD_TOPO_MAP(     
  topo_map      IN VARCHAR2,      
  allow_updates IN VARCHAR2,      
  build_indexes IN VARCHAR2 DEFAULT 'TRUE');'

or

SDO_TOPO_MAP.LOAD_TOPO_MAP(     
  topo_map      IN VARCHAR2,      
  xmin          IN NUMBER,      
  ymin          IN NUMBER,      
  xmax          IN NUMBER,      
  ymax          IN NUMBER,      
  allow_updates IN VARCHAR2,      
  build_indexes IN VARCHAR2 DEFAULT 'TRUE');'

Description

Loads the topological elements (primitives) for an entire topology or a window (rectangular
portion) of a topology into a TopoMap object. If you use a function format, returns the string
TRUE if topological elements were loaded into the cache, and FALSE if no topological elements
were loaded into the cache.

Parameters

topo_map
Name of the TopoMap object. (TopoMap objects are explained in TopoMap Objects.)

xmin
Lower-left X coordinate value for the window (rectangular portion of the topology) to be
loaded.
See the Usage Notes and Figure 4-1 for information about which topological elements are
loaded when you specify a window.

ymin
Lower-left Y coordinate value for the window (rectangular portion of the topology) to be
loaded.
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xmax
Upper-right X coordinate value for the window (rectangular portion of the topology) to
be loaded.

ymax
Upper-right Y coordinate value for the window (rectangular portion of the topology) to
be loaded.

allow_updates
TRUE makes the TopoMap object updatable; that is, it allows topology editing
operations to be performed on the TopoMap object and changes to be written back to
the database. FALSE makes the TopoMap object read-only with respect to the
database; that is, it allows topology editing operations to be performed on the
TopoMap object but does not allow changes to be written back to the database.
Making a TopoMap object updatable causes the topological elements in the TopoMap
object to be locked, which means that they cannot be included in an updatable
TopoMap object in the session of another database user. (Within any given user
session, there can be no more than one updatable TopoMap object active.)

build_indexes
TRUE (the default) builds in-memory R-tree indexes for edge and face data; FALSE
does not build in-memory R-tree indexes for edge and face data. The indexes
improve the performance of editing operations, especially with large topologies.

next_load
TRUE allows you to expand the load window area (rectangular portion of the topology)
in order to add more data if you discover that the existing window does not cover the
area that you want to edit; FALSE (the default) does not allow you to add more data to
the load window.
The first call to the function on a TopoMap object (topo_map) should always have
next_load as FALSE (either by default or explicitly specified). If you need to expand
the window area, call the function again but with next_load as TRUE, then perform any
desired additional editing operations.

Usage Notes

Using a procedure format for loading the TopoMap object is more efficient than using
the function format, if you do not need to know if any topological elements were loaded
(for example, if the specified topology or rectangular area is empty). Using a function
format lets you know if any topological elements were loaded.

You must create the TopoMap object (using the 
SDO_TOPO_MAP.CREATE_TOPO_MAP procedure) before you load data into it.

You cannot use this function or procedure if the TopoMap object already contains data,
unless you use the function format with next_load as TRUE. Otherwise, if the TopoMap
object contains any data, you must do one of the following before calling this function
or procedure: commit the changes (using the 
SDO_TOPO_MAP.COMMIT_TOPO_MAP procedure) and clear the cache (using the 
SDO_TOPO_MAP.CLEAR_TOPO_MAP procedure), or roll back the changes (using
the SDO_TOPO_MAP.ROLLBACK_TOPO_MAP procedure).

For information about using an in-memory cache to edit topological elements, see 
Approaches for Editing Topology Data.
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This function or procedure is equivalent to using the loadTopology or loadWindow method of
the TopoMap class of the client-side Java API (described in Topology Data Model Java
Interface).

Every TopoMap object, whether for an entire topology or for a window specified using the
xmin, ymin, xmax, and ymax parameters, has a region associated with it. For an updatable
TopoMap object, updates are allowed only within this region. (The region might also contain
topological elements that you cannot update directly, but that might be modified by Oracle
Spatial and Graph as needed as a result of your editing operations.)

When a TopoMap object is loaded, all nodes, faces, and edges that intersect the region for
the TopoMap object are loaded. When a face is loaded, all edges and nodes that are on the
boundary of the face are loaded. When an edge is loaded, the start node and end node of the
edge are loaded. Consider the topology and the window (shown by a dashed line) in 
Figure 4-1.

Figure 4-1    Loading Topological Elements into a Window
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With the window shown in Figure 4-1:

• Face F1 is loaded because it partially overlaps the window.

• The following edges are loaded: E3, E4, E5, E6, E7, E8, E9, E10, E11, E12, E13, E14,
E16.

Edge E3 is loaded because it partially overlaps the window.

Edge E9 is loaded because it bounds a face (F1) that partially overlaps a window.

Edge E12 is loaded because it is an island edge in a face (F1) that partially overlaps the
window.

Edge E1 is not loaded because it is not associated with any face that interacts with the
window.
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• The following nodes are loaded: N2, N5, N6, N7, N8, N9, N10, N11, N12, N16,
N19, N20.

Non-isolated node N2 is loaded because edge E3 is loaded.

Non-isolated node N12 is loaded because edges E9 and E11 are loaded.

Isolated node N16 is loaded because it is an isolated (island) node inside a locked
face.

Examples

The following example loads all CITY_DATA topology elements into its associated
TopoMap object for editing and builds the in-memory R-tree indexes by default. It
returns a result indicating that the operation was successful and that some topological
elements were loaded into the cache. (The example refers to definitions and data from 
Topology Built from Topology Data.)

CALL SDO_TOPO_MAP.LOAD_TOPO_MAP('CITY_DATA_TOPOMAP', 'TRUE') INTO :res_varchar;
 
Call completed.
 
PRINT res_varchar;
 
RES_VARCHAR
--------------------------------------------------------------------------------
TRUE

4.40 SDO_TOPO_MAP.MOVE_EDGE
Format

SDO_TOPO_MAP.MOVE_EDGE(     
  topology    IN VARCHAR2,      
  edge_id     IN NUMBER,      
  s_node_id   IN NUMBER,      
  t_node_id   IN NUMBER,      
  edge_coords IN SDO_NUMBER_ARRAY);

or

SDO_TOPO_MAP.MOVE_EDGE(     
  topology        IN VARCHAR2,      
  edge_id         IN NUMBER,      
  s_node_id       IN NUMBER,      
  t_node_id       IN NUMBER,      
  edge_coords     IN SDO_NUMBER_ARRAY,      
  moved_iso_nodes OUT SDO_NUMBER_ARRAY,      
  moved_iso_edges OUT SDO_NUMBER_ARRAY,      
  allow_iso_moves IN VARCHAR2);

Description

Moves a non-isolated edge.
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Parameters

topology
Name of the topology in which to move the edge, or null if you are using an updatable
TopoMap object (see Specifying the Editing Approach with the Topology Parameter). Must
not exceed 20 characters.

edge_id
Edge ID of the edge to be moved.

edge_coords
An array of coordinates of the resulting moved edge, from start point to end point.

s_node_id
Node ID of the source node, which identifies the point (start node or end node of the edge)
affected by the move, before the move occurs. For example, if the end point of edge E19 is
to be moved from node N17 to node N16, the s_node_id value is the node ID number for
node N17.

t_node_id
Node ID of the target node, which identifies the point affected by the move, after the move
occurs. For example, if the end point of edge E19 is to be moved from node N17 to node
N16, the t_node_id value is the node ID number for node N16.

moved_iso_nodes
Output parameter in which, if the allow_iso_moves parameter value is TRUE, Spatial and
Graph stores the node ID values of any isolated nodes that have moved to a different face
as a result of this procedure. If the allow_iso_moves parameter value is FALSE, Spatial and
Graph stores the node ID values of any isolated nodes that did not move but that would have
moved to a different face if the allow_iso_moves parameter value had been TRUE.

moved_iso_edges
Output parameter in which, if the allow_iso_moves parameter value is TRUE, Spatial and
Graph stores the edge ID values of any isolated edges that have moved to a different face
as a result of this procedure. If the allow_iso_moves parameter value is FALSE, Spatial and
Graph stores the edge ID values of any isolated edges that did not move but that would have
moved to a different face if the allow_iso_moves parameter value had been TRUE.

allow_iso_moves
TRUE causes Spatial and Graph to allow an edge move operation that would cause any
isolated nodes or edges to be in a different face, and to adjust the containing face
information for such isolated nodes and edges; FALSE causes Spatial and Graph not to allow
an edge move operation that would cause any isolated nodes or edges to be in a different
face.
If you use the format that does not include the allow_iso_moves parameter, Spatial and
Graph allows an edge move operation that would cause any isolated nodes or edges to be in
a different face, and it adjusts the containing face information for such isolated nodes and
edges.

Usage Notes

For information about moving edges, see Moving an Edge.

This procedure is equivalent to using the moveEdge method of the TopoMap class of the client-
side Java API (described in Topology Data Model Java Interface).

Chapter 4
SDO_TOPO_MAP.MOVE_EDGE

4-47



Examples

The following example moves the edge with edge ID value 19, and it displays the edge
coordinates before and after the move. The edge move operation moves the end point
of the edge from the node with node ID value 17 to the node with node ID value 16.
(The edge being moved is E19 in Figure 1-2 in Topology Data Model Concepts; and
the edge is being changed from going vertically up to node N17, to going diagonally up
and left to node N16. The example refers to definitions and data from Topology Built
from Topology Data.)

-- Get coordinates of edge E19.
SELECT SDO_TOPO_MAP.GET_EDGE_COORDS(null, 'CITY_DATA_TOPOMAP', 19) FROM DUAL;
 
SDO_TOPO_MAP.GET_EDGE_COORDS(NULL,'CITY_DATA_TOPOMAP',19)                        
   
--------------------------------------------------------------------------------
SDO_NUMBER_ARRAY(21, 14, 21, 22)                                                
 
-- Move edge E19: from N14 -> N17 to N14 -> N16. The 3rd and 4th parameters
-- identify N17 and N16.
CALL SDO_TOPO_MAP.MOVE_EDGE(null, 19, 17, 16,
  SDO_NUMBER_ARRAY(21,14, 9,22));
 
Call completed.
 
-- Get coordinates of edge E19 after the move.
SELECT SDO_TOPO_MAP.GET_EDGE_COORDS(null, 'CITY_DATA_TOPOMAP', 19) FROM DUAL;
 
SDO_TOPO_MAP.GET_EDGE_COORDS(NULL,'CITY_DATA_TOPOMAP',19)                        
   
--------------------------------------------------------------------------------
SDO_NUMBER_ARRAY(21, 14, 9, 22)

4.41 SDO_TOPO_MAP.MOVE_ISOLATED_NODE
Format

SDO_TOPO_MAP.MOVE_ISOLATED_NODE(     
  topology  IN VARCHAR2,      
  node_id   IN NUMBER,      
  point     IN SDO_GEOMETRY);

or

SDO_TOPO_MAP.MOVE_ISOLATED_NODE(     
  topology  IN VARCHAR2,      
  node_id   IN NUMBER,      
  x         IN NUMBER,      
  y         IN NUMBER);

Description

Moves an isolated (island) node.
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Parameters

topology
Name of the topology in which to move the node, or null if you are using an updatable
TopoMap object (see Specifying the Editing Approach with the Topology Parameter). Must
not exceed 20 characters.

node_id
Node ID of the node to be moved.

point
SDO_GEOMETRY object (point geometry) representing the location to which the isolated
node is to be moved.

x
X-axis value of the point representing the location to which the isolated node is to be moved.

y
Y-axis value of the point representing the location to which the isolated node is to be moved.

Usage Notes

For information about moving nodes, see Moving a Node.

The node must be moved to a location inside the face in which it is currently located.
Otherwise, you must delete the node and re-create it.

This procedure is equivalent to using the moveIsolatedNode method of the TopoMap class of
the client-side Java API (described in Topology Data Model Java Interface).

Examples

The following example adds an isolated node and then moves it. (The example refers to
definitions and data from Topology Built from Topology Data.)

CALL SDO_TOPO_MAP.ADD_ISOLATED_NODE(null, 2, 
  SDO_GEOMETRY(2001, NULL, SDO_POINT_TYPE(22,38,NULL), NULL, NULL))
  INTO :res_number;
 
-- Move the just-added isolated node (from 20,38 to 22,39).
CALL SDO_TOPO_MAP.MOVE_ISOLATED_NODE( null, :res_number, 
  SDO_GEOMETRY(2001, NULL, SDO_POINT_TYPE(22,39,NULL), NULL, NULL));

4.42 SDO_TOPO_MAP.MOVE_NODE
Format

SDO_TOPO_MAP.MOVE_NODE(     
  topology     IN VARCHAR2,      
  node_id      IN NUMBER,      
  edges_coords IN SDO_EDGE_ARRAY);

or

SDO_TOPO_MAP.MOVE_NODE(     
  topology        IN VARCHAR2,      
  node_id         IN NUMBER,      
  edges_coords    IN SDO_EDGE_ARRAY,      
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  moved_iso_nodes OUT SDO_NUMBER_ARRAY,      
  moved_iso_edges OUT SDO_NUMBER_ARRAY,      
  allow_iso_moves IN VARCHAR2);

Description

Moves a non-isolated node and its attached edges.

Parameters

topology
Name of the topology in which to move the node, or null if you are using an updatable
TopoMap object (see Specifying the Editing Approach with the Topology Parameter).
Must not exceed 20 characters.

node_id
Node ID of the node to be moved.

edges_coords
An array of arrays, of type SDO_EDGE_ARRAY (described in SDO_EDGE_ARRAY
and SDO_NUMBER_ARRAY Types). Each inner array consists of coordinates of
each resulting attached edge, from start point to end point. The outer array consists of
the attached edge arrays, starting with the start edge of the node to be moved and
proceeding in clockwise order (with the sequence of the edges as would be obtained
in a call to the SDO_TOPO_MAP.GET_NODE_STAR function).
The array for each edge must include the start and end points. Any loops that connect
twice at the moved node must be specified twice in the array.

moved_iso_nodes
Output parameter in which, if the allow_iso_moves parameter value is TRUE, Spatial
and Graph stores the node ID values of any isolated nodes that have moved to a
different face as a result of this procedure. If the allow_iso_moves parameter value is
FALSE, Spatial and Graph stores the node ID values of any isolated nodes that did not
move but that would have moved to a different face if the allow_iso_moves parameter
value had been TRUE.

moved_iso_edges
Output parameter in which, if the allow_iso_moves parameter value is TRUE, Spatial
and Graph stores the edge ID values of any isolated edges that have moved to a
different face as a result of this procedure. If the allow_iso_moves parameter value is
FALSE, Spatial and Graph stores the edge ID values of any isolated edges that did not
move but that would have moved to a different face if the allow_iso_moves parameter
value had been TRUE.

allow_iso_moves
TRUE causes Spatial and Graph to allow a node move operation that would cause any
isolated nodes or edges to be in a different face, and to adjust the containing face
information for such isolated nodes and edges; FALSE causes Spatial and Graph not
to allow a node move operation that would cause any isolated nodes or edges to be in
a different face.
If you use the format that does not include the allow_iso_moves parameter, Spatial
and Graph allows a node move operation that would cause any isolated nodes or
edges to be in a different face, and it adjusts the containing face information for such
isolated nodes and edges.
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Usage Notes

For information about moving nodes, see Moving a Node.

This procedure is equivalent to using the moveNode method of the TopoMap class of the client-
side Java API (described in Topology Data Model Java Interface).

Examples

The following example moves node N3 and adjusts the coordinates of the only attached
edge. (The example refers to definitions and data from Topology Built from Topology Data.)

-- Move node N3 to right: from 25,35 to 26,35.
-- E3 is changed from 25,30 -> 25,35 to 25,30 -> 26,35.
CALL SDO_TOPO_MAP.MOVE_NODE(null, 3,
  SDO_EDGE_ARRAY(SDO_NUMBER_ARRAY(25,30, 26,35)));

4.43 SDO_TOPO_MAP.REMOVE_EDGE
Format

SDO_TOPO_MAP.REMOVE_EDGE(     
  topology IN VARCHAR2,      
  edge_id  IN NUMBER);

Description

Removes an edge from a topology.

Parameters

topology
Name of the topology from which to remove the edge, or null if you are using an updatable
TopoMap object (see Specifying the Editing Approach with the Topology Parameter). Must
not exceed 20 characters.

edge_id
Edge ID of the edge to be removed.

Usage Notes

If topology is not null, Spatial and Graph automatically updates the appropriate entries in the
<topology-name>_EDGE$ and <topology-name>_FACE$ tables. (If topology is null, you can
update these tables at any time by calling the SDO_TOPO_MAP.UPDATE_TOPO_MAP
procedure.)

For information about removing an edge from a topology, see Removing an Edge.

Examples

The following example removes the edge with edge ID value 99 from the current updatable
TopoMap object.

CALL SDO_TOPO_MAP.REMOVE_EDGE(null, 99);

Chapter 4
SDO_TOPO_MAP.REMOVE_EDGE

4-51



4.44 SDO_TOPO_MAP.REMOVE_NODE
Format

SDO_TOPO_MAP.REMOVE_NODE(     
  topology IN VARCHAR2,      
  node_id  IN NUMBER);

Description

Removes a node from a topology.

Parameters

topology
Name of the topology from which to remove the node, or null if you are using an
updatable TopoMap object (see Specifying the Editing Approach with the Topology
Parameter). Must not exceed 20 characters.

node_id
Node ID of the node to be removed.

Usage Notes

If topology is not null, Spatial and Graph automatically updates the appropriate entries
in the <topology-name>_NODE$ and <topology-name>_EDGE$ tables, and in the
<topology-name>_FACE$ table if necessary. (If topology is null, you can update these
tables at any time by calling the SDO_TOPO_MAP.UPDATE_TOPO_MAP procedure.)

For information about removing a node from a topology, see Removing a Node.

Examples

The following example removes the node with node ID value 500 from the current
updatable TopoMap object.

CALL SDO_TOPO_MAP.REMOVE_NODE(null, 500);

4.45 SDO_TOPO_MAP.REMOVE_OBSOLETE_NODES
Format

SDO_TOPO_MAP.REMOVE_OBSOLETE_NODES(     
  topology  IN VARCHAR2);

Description

Removes obsolete nodes from a topology. (Obsolete nodes are explained in Removing
Obsolete Nodes.)
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Parameters

topology
Name of the topology from which to remove obsolete nodes, or null if you are using an
updatable TopoMap object (see Specifying the Editing Approach with the Topology
Parameter). Must not exceed 20 characters.

Usage Notes

For information about removing obsolete nodes from a topology, see Removing Obsolete
Nodes.

Examples

The following example removes all obsolete nodes from the current updatable TopoMap
object.

CALL SDO_TOPO_MAP.REMOVE_OBSOLETE_NODES(null);

4.46 SDO_TOPO_MAP.ROLLBACK_TOPO_MAP
Format

SDO_TOPO_MAP.ROLLBACK_TOPO_MAP;

Description

Rolls back all changes to the database that were made using the current updatable TopoMap
object, discards any changes in the object, clears the object's cache structure, and makes the
object read-only.

Parameters

None.

Usage Notes

Use this procedure when you are finished with a batch of edits to a topology and you want to
discard (that is, not commit) all changes to the database and in the cache. After the rollback
operation completes, you cannot edit the TopoMap object. To make further edits to the
topology, you can load the topology into the same TopoMap object for update (using the 
SDO_TOPO_MAP.LOAD_TOPO_MAP function or procedure), or you can create a new
TopoMap object (using the SDO_TOPO_MAP.CREATE_TOPO_MAP procedure) and load the
topology into that TopoMap object for update.

To commit all TopoMap object changes, use the SDO_TOPO_MAP.COMMIT_TOPO_MAP
procedure.

For information about using an in-memory cache to edit topological elements, see 
Approaches for Editing Topology Data.

This procedure is equivalent to using the rollbackDB method of the TopoMap class of the
client-side Java API (described in Topology Data Model Java Interface).
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Examples

The following example rolls back from the database all changes associated with the
current updatable TopoMap object.

EXECUTE SDO_TOPO_MAP.ROLLBACK_TOPO_MAP;

4.47
SDO_TOPO_MAP.SEARCH_EDGE_RTREE_TOPO_MAP

Format

SDO_TOPO_MAP.SEARCH_EDGE_RTREE_TOPO_MAP(     
  topo_map IN VARCHAR2,      
  xmin     IN NUMBER,      
  ymin     IN NUMBER,      
  xmax     IN NUMBER,      
  ymax     IN NUMBER,      
  capacity IN NUMBER      
) RETURN SDO_NUMBER_ARRAY;

Description

Returns an array with the edge ID numbers of the edges that interact with a specified
query window. The query uses the edge R-tree built on the specified TopoMap object.

Parameters

topo_map
Name of the TopoMap object. (TopoMap objects are explained in TopoMap Objects.)

xmin
Lower-left X coordinate value for the query window.

ymin
Lower-left Y coordinate value for the query window.

xmax
Upper-right X coordinate value for the query window.

ymax
Upper-right Y coordinate value for the query window.

capacity
Maximum number of edge ID values to be returned. If you specify 0 or a negative
number, 100 is used.

Usage Notes

This procedure is equivalent to using the searchEdgeRTree method of the TopoMap
class of the client-side Java API (described in Topology Data Model Java Interface).

Examples

The following example returns the edge ID numbers (up to 200) of edge that interact
with a query window whose lower-left corner is at (5,5) and upper-right corner is at

Chapter 4
SDO_TOPO_MAP.SEARCH_EDGE_RTREE_TOPO_MAP

4-54



(30,40). (The example refers to definitions and data from Topology Built from Topology Data.)

SELECT SDO_TOPO_MAP.SEARCH_EDGE_RTREE_TOPO_MAP('CITY_DATA_TOPOMAP', -
  5,5, 30,40, 200) FROM DUAL;
 
SDO_TOPO_MAP.SEARCH_EDGE_RTREE_TOPO_MAP('CITY_DATA_TOPOMAP',5,5,30,40,200)      
--------------------------------------------------------------------------------
SDO_NUMBER_ARRAY(12, 13, 22, 20, 9, 21, 19, 6, 10, 7, 26, 3, 1, 25, 2)

4.48 SDO_TOPO_MAP.SEARCH_FACE_RTREE_TOPO_MAP
Format

SDO_TOPO_MAP.SEARCH_FACE_RTREE_TOPO_MAP(     
  topo_map IN VARCHAR2,      
  xmin     IN NUMBER,      
  ymin     IN NUMBER,      
  xmax     IN NUMBER,      
  ymax     IN NUMBER,      
  capacity IN NUMBER      
) RETURN SDO_NUMBER_ARRAY;

Description

Returns an array with the face ID numbers of the faces that interact with a specified query
window. The query uses the face R-tree built on the specified TopoMap object.

Parameters

topo_map
Name of the TopoMap object. (TopoMap objects are explained in TopoMap Objects.)

xmin
Lower-left X coordinate value for the query window.

ymin
Lower-left Y coordinate value for the query window.

xmax
Upper-right X coordinate value for the query window.

ymax
Upper-right Y coordinate value for the query window.

capacity
Maximum number of face ID values to be returned. If you specify 0 or a negative number,
100 is used.

Usage Notes

This procedure is equivalent to using the searchFaceRTree method of the TopoMap class of
the client-side Java API (described in Topology Data Model Java Interface).

Examples

The following example returns the face ID numbers (up to 200) of faces that interact with a
query window whose lower-left corner is at (5,5) and upper-right corner is at (30,40). (The
example refers to definitions and data from Topology Built from Topology Data.)
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SELECT SDO_TOPO_MAP.SEARCH_FACE_RTREE_TOPO_MAP('CITY_DATA_TOPOMAP', -
  5,5, 30,40, 200) FROM DUAL;
 
SDO_TOPO_MAP.SEARCH_FACE_RTREE_TOPO_MAP('CITY_DATA_TOPOMAP',5,5,30,40,200)      
--------------------------------------------------------------------------------
SDO_NUMBER_ARRAY(6, 7, 3, 4, 9, 1, 2)

4.49 SDO_TOPO_MAP.SET_MAX_MEMORY_SIZE
Format

SDO_TOPO_MAP.SET_MAX_MEMORY_SIZE(     
  maxsize IN NUMBER DEFAULT 268435456);

Description

Sets the Java maximum heap size for an application to run in an Oracle Java virtual
machine.

Parameters

maxsize
Number of bytes for the Java maximum heap size. The default value is 268435456
(256 MB).

Usage Notes

If you encounter the java.lang.OutOfMemoryError exception, you can use this
procedure to increase the maximum heap size.

If you specify a value greater than the system limit, the system limit is used.

Examples

The following example sets the Java maximum heap size to 536870912 (512 MB).

EXECUTE SDO_TOPO_MAP.SET_MAX_MEMORY_SIZE(536870912);

4.50 SDO_TOPO_MAP.UPDATE_TOPO_MAP
Format

SDO_TOPO_MAP.UPDATE_TOPO_MAP;

Description

Updates the topology to reflect edits made to the current updatable TopoMap object.

Parameters

None.

Usage Notes

Use this procedure to update the topology periodically during an editing session, as
explained in Process for Editing Using Cache Explicitly (PL/SQL API). Updates are
made, as needed, to the edge, face, and node information tables (described in 
Topology Data Model Tables). The TopoMap object remains open for further editing
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operations. The updates are not actually committed to the database until you call the 
SDO_TOPO_MAP.COMMIT_TOPO_MAP procedure.

This procedure performs a level-0 validation of the TopoMap object before it updates the
topology. (See the explanation of the level parameter for the 
SDO_TOPO_MAP.VALIDATE_TOPO_MAP function.)

If you caused in-memory R-tree indexes to be created when you loaded the TopoMap object
(by specifying or accepting the default value of TRUE for the build_indexes parameter with
the SDO_TOPO_MAP.LOAD_TOPO_MAP function or procedure), you can rebuild these
indexes by using the SDO_TOPO_MAP.CREATE_EDGE_INDEX and 
SDO_TOPO_MAP.CREATE_FACE_INDEX procedures. For best index performance, these
indexes should be rebuilt periodically when you are editing a large number of topological
elements.

Contrast this procedure with the SDO_TOPO_MAP.CLEAR_TOPO_MAP procedure, which
clears the cache associated with a specified TopoMap object and makes the object read-only.

To commit all TopoMap object changes, use the SDO_TOPO_MAP.COMMIT_TOPO_MAP
procedure.

For information about using an in-memory cache to edit topological elements, see 
Approaches for Editing Topology Data.

This procedure is equivalent to using the updateTopology method of the TopoMap class of the
client-side Java API (described in Topology Data Model Java Interface).

Examples

The following example updates the topology associated with the current updatable TopoMap
object to reflect changes made to that object.

EXECUTE SDO_TOPO_MAP.UPDATE_TOPO_MAP;

4.51 SDO_TOPO_MAP.VALIDATE_TOPO_MAP
Format

SDO_TOPO_MAP.VALIDATE_TOPO_MAP(     
  topo_map IN VARCHAR2,      
  level    IN NUMBER DEFAULT 1      
) RETURN VARCHAR2;

Description

Performs a first-order validation of a TopoMap object, and optionally (by default) checks the
computational geometry also; returns the string TRUE if the structure of the topological
elements in TopoMap object is consistent, and raises an exception if the structure of the
topological elements in TopoMap object is not consistent.

Parameters

topo_map
Name of the TopoMap object. (TopoMap objects are explained in TopoMap Objects.)

level
A value of 0 checks for the following conditions as part of a first-order validation:
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• All faces are closed, and none have infinite loops.

• All previous and next edge pointers are consistent.

• All edges meet at nodes.

• Each island node is associated with a face.

• All edges on a face boundary are associated with the face.

A value of 1 (the default) checks for all conditions associated with a value of 0, plus
the following conditions related to computational geometry:

• Each island is inside the boundary of its associated face.

• No edge intersects itself or another edge.

• Start and end coordinates of edges match coordinates of nodes.

• Node stars are properly ordered geometrically.

Usage Notes

This function checks the consistency of all pointer relationships among edges, nodes,
and faces. You can use this function to validate an updatable TopoMap object before
you update the topology (using the SDO_TOPO_MAP.UPDATE_TOPO_MAP
procedure) or to validate a read-only TopoMap object before issuing queries.

This function uses a tolerance value of 10E-15 for its internal computations, as
explained in Tolerance in the Topology Data Model.

This function is equivalent to using the validateCache method of the TopoMap class of
the client-side Java API (described in Topology Data Model Java Interface).

Examples

The following example validates the topology in the TopoMap object named
CITY_DATA_TOPOMAP, and it returns a result indicating that the topology is valid. (The
example refers to definitions and data from Topology Built from Topology Data.)

CALL SDO_TOPO_MAP.VALIDATE_TOPO_MAP('CITY_DATA_TOPOMAP') INTO :res_varchar;
 
Call completed.
 
PRINT res_varchar;
 
RES_VARCHAR
--------------------------------------------------------------------------------
TRUE

4.52 SDO_TOPO_MAP.VALIDATE_TOPOLOGY
Format

SDO_TOPO_MAP.VALIDATE_TOPOLOGY(     
  topology  IN VARCHAR2,      
) RETURN VARCHAR2;

or

SDO_TOPO_MAP.VALIDATE_TOPOLOGY(
  topology         IN VARCHAR2,
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  prevent_updates  IN VARCHAR2,
  level            IN NUMBER DEFAULT 1      
) RETURN VARCHAR2;

or

SDO_TOPO_MAP.VALIDATE_TOPOLOGY(
  topology  IN VARCHAR2,
  xmin      IN NUMBER,
  ymin      IN NUMBER,  
  xmax      IN NUMBER,
  ymax      IN NUMBER      
) RETURN VARCHAR2;

or

SDO_TOPO_MAP.VALIDATE_TOPOLOGY(
  topology  IN VARCHAR2,
  xmin      IN NUMBER,
  ymin      IN NUMBER,  
  xmax      IN NUMBER,
  ymax      IN NUMBER      
) RETURN VARCHAR2;

Description

Loads an entire topology or a window (rectangular portion) of a topology into a TopoMap
object; returns the string TRUE if the structure of the topology is consistent, and raises an
exception if the structure of the topology is not consistent.

Parameters

topology
Name of the topology to be validated. Must not exceed 20 characters.

xmin
Lower-left X coordinate value for the window (rectangular portion of the topology) to be
validated.

ymin
Lower-left Y coordinate value for the window (rectangular portion of the topology) to be
validated.

xmax
Upper-right X coordinate value for the window (rectangular portion of the topology) to be
validated.

ymax
Upper-right Y coordinate value for the window (rectangular portion of the topology) to be
validated.

prevent_updates
TRUE prevents other users from updating the topology while the validation is being
performed; FALSE allows other users to update the topology while the validation is being
performed. If you specify FALSE, any topology changes made by other users while the
validation is being performed will not be considered by this function and will not affect the
result.
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level
A value of 0 checks for the following conditions:

• All faces are closed, and none have infinite loops.

• All previous and next edge pointers are consistent.

• All edges meet at nodes.

• Each island node is associated with a face.

• All edges on a face boundary are associated with the face.

A value of 1 (the default) checks for all conditions associated with a value of 0, plus
the following conditions related to computational geometry:

• Each island is inside the boundary of its associated face.

• No edge intersects itself or another edge.

• Start and end coordinates of edges match coordinates of nodes.

• Node stars are properly ordered geometrically.

Usage Notes

This function implicitly creates a TopoMap object, and removes the object after the
validation is complete. (TopoMap objects are described in TopoMap Objects.)

This function uses a tolerance value of 10E-15 for its internal computations, as
explained in Tolerance in the Topology Data Model.

Examples

The following example validates the topology named CITY_DATA, and it returns a result
indicating that the topology is valid. (The example refers to definitions and data from 
Topology Built from Topology Data.)

CALL SDO_TOPO_MAP.VALIDATE_TOPOLOGY('CITY_DATA') INTO :res_varchar;
 
Call completed.
 
PRINT res_varchar;
 
RES_VARCHAR
--------------------------------------------------------------------------------
TRUE
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Part II
Network Data Model

This part covers the network data model graph feature of Oracle Spatial and Graph.

This document has two main parts:

• Topology Data Model provides conceptual, usage, and reference information about the
Topology Data Model feature of Oracle Spatial and Graph.

• Part II provides conceptual, usage, and reference information about the Network Data
Model Graph feature of Oracle Spatial and Graph.

Part II contains the following chapters:

• Network Data Model Graph Overview
This chapter explains the concepts and operations related to the network data model for
representing capabilities or objects that are modeled as nodes and links (vertices and
edges) in a graph.

• SDO_NET Package Subprograms
The MDSYS.SDO_NET package contains subprograms (functions and procedures) for
managing networks.

• SDO_NFE Package Subprograms
The MDSYS.SDO_NFE package contains subprograms (functions and procedures) for
performing network feature editing.



5
Network Data Model Graph Overview

This chapter explains the concepts and operations related to the network data model for
representing capabilities or objects that are modeled as nodes and links (vertices and edges)
in a graph.

This model is called the Oracle Spatial and Graph Network Data Model Graph feature, or
simply Network Data Model Graph. This chapter assumes that you are familiar with the main
Oracle Spatial and Graph concepts, data types, and operations, as documented in Oracle
Spatial and Graph Developer's Guide.

Although this chapter discusses some network-related terms as they relate to Oracle Spatial
and Graph, it assumes that you are familiar with basic network data modeling concepts.

• Introduction to Network Modeling
In many applications, capabilities or objects are modeled as nodes and links in a network.
The network model contains logical information such as connectivity relationships among
nodes and links, directions of links, and costs of nodes and links.

• Main Steps in Using the Network Data Model Graph
This topic summarizes the main steps for working with the Network Data Model Graph
feature in Oracle Spatial and Graph. It refers to important concepts, structures, and
operations that are described in detail in other topics.

• Network Data Model Graph Concepts
A network is a type of mathematical graph that captures relationships between objects
using connectivity.

• Network Applications
Networks are used in applications to find how different objects are connected to each
other.

• Network Hierarchy
Some network applications require representations at different levels of abstraction. For
example, two major processes might be represented as nodes with a link between them
at the highest level of abstraction, and each major process might have several
subordinate processes that are represented as nodes and links at the next level down.

• Network User Data
For user data defined through the xxx_SDO_NETWORK_USER_DATA views, the default
user data I/O implementation (LODUserDataIOSDO) is used to access the user data during
network analysis. However, some user data is not included in the node or link table, and
thus cannot be registered through xxx_SDO_NETWORK_USER_DATA views.

• Feature Modeling
You can model objects of interest on the network as features.

• Feature Modeling Using Network Feature Editing (NFE)
Network feature editing (NFE) lets you create and manage an NFE model. An NFE
model extends the feature modeling capabilities by enabling you to visualize and
manipulate features using Java Swing components and a PL/SQL API.

• Network Constraints
Network constraints are restrictions defined on network analysis computations.
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• Network Analysis Using Load on Demand

• Network Data Model Graph Tables
The connectivity information for a spatial network is stored in two tables: a node
table and a link table. In addition, path information can be stored in a path table
and a path-link table.

• Network Data Model Graph and Network Feature Editing (NFE) Model Metadata
Views
Two sets of network metadata views can be created for each schema (user):
xxx_SDO_NETWORK_xxxxxx and xxx_SDO_NFE_MODEL_xxxxxx, where the
initial xxx can be USER or ALL. These views are created, as needed, by Spatial
and Graph

• Network Data Model Graph Application Programming Interface
The Oracle Spatial and Graph Network Data Model Graph feature includes two
client application programming interfaces (APIs): a PL/SQL interface provided by
the SDO_NET package and a Java interface.

• Cross-Schema Network Access
If database users other than the network owner need to read a network into
memory, you need to do one of the following options.

• Network Examples
This topic presents several Network Data Model Graph examples.

• Network Data Model Graph Tutorial and Other Resources
Network Data Model Graph learning resources are available.

• README File for Spatial and Graph and Related Features

5.1 Introduction to Network Modeling
In many applications, capabilities or objects are modeled as nodes and links in a
network. The network model contains logical information such as connectivity
relationships among nodes and links, directions of links, and costs of nodes and links.

With logical network information, you can analyze a network and answer questions,
many of them related to path computing and tracing. For example, for a biochemical
pathway, you can find all possible reaction paths between two chemical compounds; or
for a road network, you can find the following information:

• What is the shortest (distance) or fastest (travel time) path between two cities?

• What is the closest hotel to a specific airport, and how can I get there?

In addition to logical network information, spatial information such as node locations
and link geometries can be associated with the network. This information can help you
to model the logical information (such as the cost of a route, because its physical
length can be directly computed from its spatial representation).

The Spatial and Graph Network Data Model Graph feature can be used for large,
complex networks. For example, Figure 5-1 shows San Francisco and links, which
have been defined using the Network Data Model Graph feature, displayed in a demo
web-based application for network analysis. (You can install this demo using the NDM
tutorial described in Network Data Model Graph Tutorial and Other Resources.)
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Figure 5-1    San Francisco Nodes and Links

The generic data model and network analysis capability can model and analyze many kinds
of network applications in addition to traditional geographical information systems (GIS). For
example, in biochemistry, applications may need to model reaction pathway networks for
living organisms; and in the pharmaceutical industry, applications that model the drug
discovery process may need to model protein-protein interaction.

The network modeling capabilities of Spatial and Graph include schema objects and an
application programming interface (API). The schema objects include metadata and network
tables. The API includes a server-side PL/SQL API (the SDO_NET package) for creating and
managing networks in the database, and a middle-tier (or client-side) Java API for network
editing and analysis.

5.2 Main Steps in Using the Network Data Model Graph
This topic summarizes the main steps for working with the Network Data Model Graph
feature in Oracle Spatial and Graph. It refers to important concepts, structures, and
operations that are described in detail in other topics.

There are two basic approaches to creating a network:

• Let Spatial and Graph perform most operations, using procedures with names in the form
CREATE_<network-type>_NETWORK.

• Perform the operations yourself: create the necessary network tables and update the
network metadata.

With each approach, you must insert the network data into the network tables. You can then
use the Network Data Model Graph PL/SQL and Java application programming interfaces
(APIs) to update the network and perform other operations. (The PL/SQL and Java APIs are
described in Network Data Model Graph Application Programming Interface.)
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• Letting Spatial Perform Most Operations

• Performing the Operations Yourself

5.2.1 Letting Spatial Perform Most Operations
To create a network by letting Spatial and Graph perform most of the necessary
operations, follow these steps:

1. Create the network using a procedure with a name in the form
CREATE_<network-type>_NETWORK, where <network-type> reflects the type of
network that you want to create:

• SDO_NET.CREATE_SDO_NETWORK for a spatial network with non-LRS
SDO_GEOMETRY objects

• SDO_NET.CREATE_LRS_NETWORK for a spatial network with LRS
SDO_GEOMETRY objects

• SDO_NET.CREATE_TOPO_NETWORK for a spatial network with topology
geometry (SDO_TOPO_GEOMETRY) objects

• SDO_NET.CREATE_LOGICAL_NETWORK for a logical network that does not
contain spatial information

Each of these procedures creates the necessary Network Data Model Graph
tables (described in Network Data Model Graph Tables) and inserts a row with the
appropriate network metadata information into the
xxx_SDO_NETWORK_METADATA views (described in 
xxx_SDO_NETWORK_METADATA Views).

Each procedure has two formats: one format creates all Network Data Model
Graph tables using default names for the tables and certain columns, and other
format lets you specify names for the tables and certain columns. The default
names for the Network Data Model Graph tables are <network-name>_NODE$,
<network-name>_LINK$, <network-name>_PATH$, and <network-
name>_PLINK$. The default name for cost columns in the Network Data Model
Graph tables is COST, and the default name for geometry columns is
GEOMETRY.

2. Insert data into the node and link tables, and if necessary into the path and path-
link tables. (The node, link, path, and path-link tables are described in Network
Data Model Graph Tables.)

3. Validate the network, using the SDO_NET.VALIDATE_NETWORK function.

4. For a spatial (SDO or LRS) network, insert the appropriate information into the
USER_SDO_GEOM_METADATA view, and create spatial indexes on the
geometry columns.

If you plan to use a view as a node, link, or path table, you must specify the view
name for the TABLE_NAME column value when you insert information about the
node, link, or path table in the USER_SDO_GEOM_METADATA view.

5.2.2 Performing the Operations Yourself
To create a network by performing the necessary operations yourself, follow these
steps:

1. Create the node table, using the SDO_NET.CREATE_NODE_TABLE procedure.

Chapter 5
Main Steps in Using the Network Data Model Graph

5-4



2. Insert data into the node table.

3. Create the link table, using the SDO_NET.CREATE_LINK_TABLE procedure.

4. Insert data into the link table.

5. Optionally, create the path table, using the SDO_NET.CREATE_PATH_TABLE procedure.

6. If you created the path table, create the path-link table, using the 
SDO_NET.CREATE_PATH_LINK_TABLE procedure.

7. If you created the path table and if you want to create paths, insert data into the table.

8. If you inserted data into the path table, insert the appropriate rows into the path-link table.

9. Insert a row into the USER_SDO_NETWORK_METADATA view with information about
the network. (The USER_SDO_NETWORK_METADATA view is described in 
xxx_SDO_NETWORK_METADATA Views.)

If you plan to use a view as a node, link, path, or path-link table, you must specify the
view name for the relevant columns when you insert information about the network in the
USER_SDO_NETWORK_METADATA view.

10. For a spatial (SDO or LRS) network, insert the appropriate information into the
USER_SDO_GEOM_METADATA view, and create spatial indexes on the geometry
columns.

If you plan to use a view as a node, link, or path table, you must specify the view name
for the TABLE_NAME column value when you insert information about the node, link, or
path table in the USER_SDO_GEOM_METADATA view.

11. Validate the network, using the SDO_NET.VALIDATE_NETWORK function.

You can change the sequence of some of these steps. For example, you can create both the
node and link tables first, and then insert data into each one; and you can insert the row into
the USER_SDO_NETWORK_METADATA view before you create the node and link tables.

5.3 Network Data Model Graph Concepts
A network is a type of mathematical graph that captures relationships between objects using
connectivity.

The connectivity may or may not be based on spatial proximity. For example, if two towns are
on opposite sides of a lake, the shortest path based on spatial proximity (a straight line
across the middle of the lake) is not relevant if you want to drive from one town to the other.
Instead, to find the shortest driving distance, you need connectivity information about roads
and intersections and about the "cost" of individual links.

A network consists of a set of nodes and links. Each link (sometimes also called an edge or a
segment) specifies two nodes.

A network can be directed (that is, by default, the start and end nodes determine link
direction) or undirected (that is, links can be traversed in either direction).

The following are some key terms related to the Network Data Model Graph: feature

• A node, also called a vertex, is a point where links can join each other. An isolated node
is a node that is not included in any links. (A non-isolated node will become isolated if all
links that include that node are deleted.)

• A link represents a relationship between two nodes. Within a directed network, any link
can be undirected (that is, able to be traversed either from the start node to the end
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node or from the end node to the start node) or directed (that is, able to be
traversed only from the start node to the end node). Within an undirected network,
all links are undirected.

• A network element is a node or a link.

• A path is an alternating sequence of nodes and links, beginning and ending with
nodes, and usually with no nodes and links appearing more than once. (Repeating
nodes and links within a path are permitted, but are rare in most network
applications.)

• A subpath is a partial path along a path, created either as a result of a network
analysis operation or explicitly by a user. Subpaths are explained and illustrated in 
Subpaths.

• A logical network contains connectivity information but no geometric information.
This is the model used for network analysis. A logical network can be treated as a
directed graph or undirected graph, depending on the application.

• A spatial network contains both connectivity information and geometric
information. In a spatial network, the nodes and links are SDO_GEOMETRY
geometry objects without LRS information (an SDO network) or with LRS
information (an LRS network), or SDO_TOPO_GEOMETRY objects (a topology
geometry network).

In an LRS network, each node includes a geometry ID value and a measure value,
and each link includes a geometry ID value and start and end measure values;
and the geometry ID value in each case refers to an SDO_GEOMETRY object
with LRS information. A spatial network can be directed or undirected, depending
on the application.

• A feature is an object of interest in a network application that is associated with a
node or link. Features and feature layer types are explained in Features and
Feature Layers

• Cost is a non-negative numeric attribute that can be associated with links or
nodes for computing the minimum cost path, which is the path that has the
minimum total cost from a start node to an end node. You can specify a single cost
factor, such as driving time or driving distance for links, in the network metadata,
and network analytical functions that examine cost will use this specified cost
factor.

• Duration is a non-negative numeric attribute that can be associated with links or
nodes to specify a duration value for the link or node. The duration value can
indicate a number of minutes or any other user-determined significance. You can
specify a single duration factor, such as driving time for links, in the network
metadata; however, if you use duration instead of cost to indicate elapsed time,
network analytical functions that examine cost will not consider the specified
duration factor.

• State is a string attribute, either ACTIVE or INACTIVE, that is associated with links
or nodes to specify whether or not a link or node will be considered by network
analysis functions. For example, if the state of a node is INACTIVE, any links from
or to that node are ignored in the computation of the shortest path between two
nodes. The state is ACTIVE by default when a link or node is created, but you can
set the state INACTIVE.

• Type is a string attribute that can be associated with links or nodes to specify a
user-defined value for the type of a link or a node.
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• Temporary links, nodes, and paths exist only in a network memory object, and are not
written to the database when the network memory object is written. For example, during a
network analysis and editing session you might create temporary nodes to represent
street addresses for shortest-path computations, but not save these temporary nodes
when you save the results of editing operations.

• Reachable nodes are all nodes that can be reached from a given node. Reaching
nodes are all nodes that can reach a given node.

• The degree of a node is the number of links to (that is, incident upon) the node. The in-
degree is the number of inbound links, and the out-degree is the number of outbound
links.

• A connected component is a group of network nodes that are directly or indirectly
connected. If node A can reach node B, they must belong to the same connected
component. If two nodes are not connected, it is concluded that there is no possible path
between them. This information can be used as a filter to avoid unnecessary path
computations.

• A spanning tree of a connected graph is a tree (that is, a graph with no cycles) that
connects all nodes of the graph. (The directions of links are ignored in a spanning tree.)
The minimum cost spanning tree is the spanning tree that connects all nodes and has
the minimum total cost.

• A partitioned network is a network that contains multiple partitions. Partitioning a large
network enables only the necessary partitions to be loaded on demand into memory, thus
providing better overall performance.

Network partitions are sub-networks, each covering a subset of nodes and links of the
entire network. Network partitions are the basic processing units for load on demand
analysis. They are created by assigning every node in the network to only one partition
ID. Network partition information is stored in a partition table.

• Load on demand (load on demand analysis) is an approach that divides large networks
into manageable partitions and only loads needed partitions during analysis, thus
removing memory limitation as a consideration and providing better overall performance.

• Partition BLOBs are binary representations for network partitions. They provide faster
partition loading time. They are stored in a partition BLOB table.

• The load on demand partition cache is an in-memory placeholder for network partitions
loaded into memory during network analysis. You can configure the partition cache.

• User-defined data is the information (not related to connectivity) that users want to
associate with a network representation. User-defined data can be defined at the node,
link, path, and subpath level, and is stored in columns in the node, link, path, and subpath
tables.

• Subpaths

• Features and Feature Layers

5.3.1 Subpaths
A subpath is a partial path along a path, created either as a result of a network analysis
operation or explicitly by a user. The start and end points of a subpath are defined as link
indexes and the percentage of the distance from the previous node in the path, as shown in 
Figure 5-2.
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Figure 5-2    Path and Subpaths
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A subpath refers to an existing path (the reference path) using the following
parameters:

• Reference path ID: the path ID of the reference path.

• Start link index: the start link index on the reference path. (Link index 0 refers to
the link between the first and second nodes on the path.) In Figure 5-2, link index
0 is the start link index.

• Start percentage: the percentage of the distance along the start link for the start
node of the subpath. In Figure 5-2, the subpath starts at 65 percent of the distance
between the start and end of link index 0.

• End link index: the end link index on the reference path. In Figure 5-2, link index 6
is the end link index.

• End percentage: the percentage of the distance along the end link for the end
node of the subpath. In Figure 5-2, the subpath ends at 50 percent of the distance
between the start and end of link index 6.

5.3.2 Features and Feature Layers
A feature is an object of interest in a network application that is associated with a
node or link. For example, in a transportation network, features include exits and
intersections (mapped to nodes), and highways and streets (mapped to links).

A feature consists of one or more feature elements. A feature element is a point or
line along the network. If it is a point, it can lie on a node or along a line; if it is a line, it
can be a full link or a partial link.

Depending on the types of feature elements in the feature, a feature can have any of
the feature types shown in Table 5-1.

Table 5-1    Feature Types

Type Number Type Name Feature Elements Consist
of:

1 SDO_NET.FEAT_TYPE_PON A single point on a node

2 SDO_NET.FEAT_TYPE_POL A single point on a link

3 SDO_NET.FEAT_TYPE_POIN
T

A single point, but whether it is
on a node or a link is unknown

4 SDO_NET.FEAT_TYPE_LINE A single line
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Table 5-1    (Cont.) Feature Types

Type Number Type Name Feature Elements Consist
of:

5 SDO_NET.FEAT_TYPE_MPO
N

One or more points on one or
more nodes

6 SDO_NET.FEAT_TYPE_MPO
L

One or more points on one or
more links

7 SDO_NET.FEAT_TYPE_MPOI
NT

One or more points, but the
points can be on nodes or
links (or a combination)

8 SDO_NET.FEAT_TYPE_MLIN
E

One or more lines

9 SDO_NET.FEAT_TYPE_COLL A collection of both points and
lines, or the types of the
feature elements are unknown

A feature layer corresponds to a table containing features that have the same set of
attributes. For example, in a roads network, there may be separate feature layers for
restaurants and hotels (and perhaps other feature layers for other kinds of things of interest
to travelers).

Depending on the types of features in the feature layer, a feature layer can have any of the
feature layer types shown in Table 5-2, which maps each feature layer type to the
associated feature type or types from Table 5-1.

Table 5-2    Feature Layer Types

Layer Type Number Features in the Layer Are of (type from 
Table 5-1):

1 Type 1 (SDO_NET.FEAT_TYPE_PON)

2 Type 2 (SDO_NET.FEAT_TYPE_POL)

3 Type 3 (SDO_NET.FEAT_TYPE_POINT)

4 Type 4 (SDO_NET.FEAT_TYPE_LINE)

5 Type 5 (SDO_NET.FEAT_TYPE_MPON) or 1
(SDO_NET.FEAT_TYPE_PON)

6 Type 6 (SDO_NET.FEAT_TYPE_MPOL) or 2
(SDO_NET.FEAT_TYPE_POL)

7 Type 1, 2, 3, 5, 6, or 7

8 Type 8 (SDO_NET.FEAT_TYPE_MLINE) or 4
(SDO_NET.FEAT_TYPE_LINE)

9 Potentially a mixture of any number of feature
types

A parent feature consists of features from one or more feature layers. For example, in an
electrical network, substation is a parent feature for the feature layers for all its associated
parts, such as joints, switches, and cables.

Features and feature layers can be edited and displayed using the NFE API. This API makes
it easier to model certain types of networks, such as electrical, gas, and water utilities.
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See Also:

• Feature Modeling Using Network Feature Editing (NFE)

5.4 Network Applications
Networks are used in applications to find how different objects are connected to each
other.

The connectivity is often expressed in terms of adjacency and path relationships. Two
nodes are adjacent if they are connected by a link. There are often several paths
between any two given nodes, and you may want to find the path with the minimum
cost.

This topic describes some typical examples of different kinds of network applications.

• Road Network Example

• Subway (Train) Network Example

• Multimodal Network and Temporal Examples

• Utility Network Example

• Biochemical Network Example

5.4.1 Road Network Example
In a typical road network, the intersections of roads are nodes and the road segments
between two intersections are links. The spatial representation of a road is not
inherently related to the nodes and links in the network. For example, a shape point in
the spatial representation of a road (reflecting a sharp turn in the road) is not a node in
the network if that shape point is not associated with an intersection; and a single
spatial object may make up several links in a network (such as a straight segment
intersected by three crossing roads). An important operation with a road network is to
find the path from a start point to an end point, minimizing either the travel time or
distance. There may be additional constraints on the path computation, such as having
the path go through a particular landmark or avoid a particular intersection.

5.4.2 Subway (Train) Network Example
The subway network of any major city is probably best modeled as a logical network,
assuming that precise spatial representation of the stops and track lines is
unimportant. In such a network, all stops on the system constitute the nodes of the
network, and a link is the connection between two stops if a train travels directly
between these two stops. Important operations with a train network include finding all
stations that can be reached from a specified station, finding the number of stops
between two specified stations, and finding the travel time between two stations.
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5.4.3 Multimodal Network and Temporal Examples
Multimodal networks are networks that consist of multiple modes, such as a network
consisting of driving and walking routes. They are usually modeled as individual networks (of
the specific mode) and are treated as an aggregate network so that routes of single mode as
well as multiple modes can be represented and computed. In general, multimodal networks
are "connected" by schedules of different modes, and in such cases they are also temporal
networks. An example is to compute an itinerary with walking to nearest bus stop, taking the
fastest bus route, getting off at the stop that is closest to the destination, then walking to your
destination. You could also add modes like driving or flight to be taken into consideration.

Temporal modeling and analysis adds a temporal (time) dimension to network modeling and
analysis. The time factor provides cost and/or constraints on top of static (non-temporal)
networks. An example is to consider traffic patterns (time-dependent travel time costs)
instead of static travel-time costs.

Many metropolitan transportation networks consist of multiple modes such as buses,
subways, and commuter rail lines, where transfers across modes are possible (for example,
from a bus to the subway). Each transportation mode has a component network within the
larger transportation network. The component networks can be modeled using nodes and
links, and the transfers across modes can be modeled as links that connect the stops where
transfers are possible.

An important feature of such multimodal transportation networks is their schedule-based
operation. When performing common network operations such as computing the fastest route
from a start point to an end point, the schedule information and possible transfers across
modes must be considered. The schedule information at stops can be represented as user-
defined data at the nodes representing these stops. Examples of operations that use
schedule information in a multimodal network are (A) finding the fastest route (minimum
travel time) from a start point to an end point for a specified start time, and (B) finding the
latest departure time at a start point to reach an end point by a specified arrival time.

5.4.4 Utility Network Example
Utility networks, such as power line or cable networks, must often be configured to minimize
the cost. An important operation with a utility network is to determine the connections among
nodes, using minimum cost spanning tree algorithms, to provide the required quality of
service at the minimum cost. Another important operation is reachability analysis, so that, for
example, if a station in a water network is shut down, you know which areas will be affected.

5.4.5 Biochemical Network Example
Biochemical processes can be modeled as biochemical networks to represent reactions and
regulations in living organisms. For example, metabolic pathways are networks involved in
enzymatic reactions, while regulatory pathways represent protein-protein interactions. In this
example, a pathway is a network; genes, proteins, and chemical compounds are nodes; and
reactions among nodes are links. Important operations for a biochemical network include
computing paths and the degrees of nodes.

5.5 Network Hierarchy
Some network applications require representations at different levels of abstraction. For
example, two major processes might be represented as nodes with a link between them at
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the highest level of abstraction, and each major process might have several
subordinate processes that are represented as nodes and links at the next level down.

A network hierarchy enables you to represent a network with multiple levels of
abstraction by assigning a hierarchy level to each node. (Links are not assigned a
hierarchy level, and links can be between nodes in the same hierarchy level or in
different levels.) The lowest (most detailed) level in the hierarchy is level 1, and
successive higher levels are numbered 2, 3, and so on.

Nodes at adjacent levels of a network hierarchy have parent-child relationships. Each
node at the higher level can be the parent node for one or more nodes at the lower
level. Each node at the lower level can be a child node of one node at the higher
level. Sibling nodes are nodes that have the same parent node.

Links can also have parent-child relationships. However, because links are not
assigned to a hierarchy level, there is not necessarily a relationship between link
parent-child relationships and network hierarchy levels. Sibling links are links that
have the same parent link.

Figure 5-3 shows a simple hierarchical network, in which there are two levels.

Figure 5-3    Network Hierarchy
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As shown in Figure 5-3:

• The top level (level 2) contains two nodes. Each node is the parent node of
several nodes in the bottom level. The link between the nodes in the top level is
the parent link of two links between nodes in the bottom level.

• The bottom level (level 1) shows the nodes that make up each node in the top
level. It also shows the links between nodes that are child nodes of each parent
node in the top level, and two links between nodes that have different parent
nodes.

• The links between nodes in the bottom level that have different parent nodes are
shown with dark connecting lines. These links are child links of the single link
between the nodes in the top level in the hierarchy. (However, these two links in
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the bottom level could also be defined as not being child links of any parent link between
nodes in a higher level.)

• The parent-child relationships between each parent node and link and its child nodes and
links are shown with dashed lines with arrowheads at both ends.

Although it is not shown in Figure 5-3, links can cross hierarchy levels. For example, a link
could be defined between a node in the top level and any node in the bottom level. In this
case, there would not be a parent-child relationship between the links.

Given certain grouping of nodes in a network, a parent network can be defined. The group
IDs in the child network are used as node IDs in the parent network. The aggregated links
between groups in the child network represent the links in the parent network, with arbitrary
link IDs assigned.

A network can have multiple ways of grouping its nodes based on different criteria; therefore,
it can have multiple parent networks. In addition, nodes in a parent network can be further
grouped to form a higher-level parent network. For example, in a social network, members
can be grouped by city, profession, income, or other criteria. Members grouped by city, for
example, can be further grouped into higher-level county, state, or country networks.

The parent-child network relationship is defined through the CHILD_NETWORK and
HIERARCHY_TABLE_NAME columns in the network metadata.

Note:

Do not confuse a hierarchical network with a multilevel network, which is a
network with multiple link levels. A multilevel network does not necessarily have
parent-child relationships between nodes; that is, a multilevel network may also be
a hierarchical network or may also not be a hierarchical network. In a multilevel
network, a higher-level network (such as level 2) is just a subnetwork of a lower-
level network (such as level 1), with link levels greater than or equal to the higher-
level link.

5.6 Network User Data
For user data defined through the xxx_SDO_NETWORK_USER_DATA views, the default
user data I/O implementation (LODUserDataIOSDO) is used to access the user data during
network analysis. However, some user data is not included in the node or link table, and thus
cannot be registered through xxx_SDO_NETWORK_USER_DATA views.

For such user data, users must provide their own custom implementation of the user data I/O
interface. A typical way of implementing a custom data I/O interface is to generate BLOBs
corresponding to node and link user data, one BLOB for each partition, and then retrieve user
data information from the BLOBs during network analysis.

Network Data Model Graph also allows you to associate multiple categories of user-defined
data (categorized user data) with a single network. For example, in a multimodal network, if
you need to associate driving-related attributes (such as speed limit) with a link in addition to
the link's multimodal attributes, user-defined data can be organized in two categories, one for
driving-related attributes and the other for multimodal attributes.

See these examples of user-defined data:

• User-Defined Data Example (PL/SQL and Java)
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• User-Defined Data Example (Custom User Data I/O Implementation)

5.6.1 User-Defined Data Example (PL/SQL and Java)
This section presents an example of using network user-defined data, which is the
information (not related to connectivity) that users want to associate with a network
representation. The USER_SDO_NETWORK_USER_DATA and ALL_SDO_
NETWORK_USER_DATA metadata views (described in 
xxx_SDO_NETWORK_USER_DATA Views) contain information about user-defined
data.

To use user-defined data, you must set the USER_DEFINED_DATA column value to Y
in the appropriate xxx_SDO_NETWORK_METADATA views (described in Section 
xxx_SDO_NETWORK_METADATA Views).

Example 5-1 inserts link-related user-defined data into the network metadata.

Example 5-1    Inserting User-Defined Data into Network Metadata

-- Insert link user data named 'interaction' of
-- type varchar2 (50) in network 'bi_test'.
--'interaction' is a column of type varchar2(50) in the link table of network 
'bi_
test'.
insert into user_sdo_network_user_data (network, table_type, data_name, 
data_type, data_length, category_id) 
                  values ('bi_test', 'LINK', 'interaction', 'VARCHAR2', 50, 0) ;
-- insert link user data named 'PROB' of type Number.
--'PROB' is a column of type NUMBER in the link table of network 'bi_test'.
insert into user_sdo_network_user_data (network, table_type, data_name, 
data_type, category_id)
                  values ('bi_test','LINK','PROB','NUMBER', 0) ;
 
After a network or network partition is loaded, user-defined data is available 
in Java representations. You can access user-defined data through the 
getCategorizedUserData and setCategorizedUserData methods for the Node, Link, 
Path, and SubPath interfaces. For example:
 
//The user data index is the sequence number of a user data within a category 
sorted by data name.
 
int interactionUserDataIndex = 0;
int probUserDataIndex = 1;
 
String interaction = (String)link.getCategorizedUserData().getUserData(0).
                                get(interactionUseDataIndex);
 
double prob = ((Double)link.getCategorizedUserData().getUserData(0).
                       get(probUserdataIndex)).doubleValue();

5.6.2 User-Defined Data Example (Custom User Data I/O
Implementation)

This section presents an example of a custom user data I/O implementation
(nondefault implementation) of the LODUserDataIO interface. In Example 5-2, user data
associated with links is written to BLOBs (one BLOB per partition) and read from
BLOBs during analysis. It is assumed that the user-defined data BLOB for multimodal
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data for each partition has the partition ID and number of links associated with the partition,
followed by <Link ID, link route ID> for each link.

Example 5-2    Implementation of writeUserData method of LODUserDataIO

//Method getLinksInPartition(partitionId) computes a vector that
// consists of  the ID and the route ID of each link associated with a partition
// with ID = partitionId
LinkVector = getLinksInPartition(partitionId);

ObjectOutputStream dout = null;

//Insert an empty blob for the partition with ID = partition_id
String insertStr = "INSERT INTO " + MULTIMODAL_USER_DATA +
                             " (partition_id, blob) " + " VALUES " + " (?, 
EMPTY_LOB())" ;

PreparedStatement stmt = conn.prepareStatement(insertStr);
stmt.setInt(1,partitionId);
int n = stmt.executeUpdate();
stmt.close();

//lock the row for blob update
 String lockRowStr = "SELECT blob FROM " + MULTIMODAL_USER_DATA +
                                  " WHERE partition_id = ? " + " FOR UPDATE";
 stmt = conn.prepareStatement(lockRowStr);
 stmt.setInt(1,partitionId);
 ResultSet rs = stmt.executeQuery();

 rs.next();
oracle.sql.BLOB userDataBlob = (oracle.sql.BLOB) rs.getBlob(1);
stmt.close();

 OutputStream blobOut = ((oracle.sql.BLOB) userDataBlob).setBinaryStream(1);
 dout = new ObjectOutputStream(blobOut);

 //write partition ID
 dout.writeInt(partitionId);
 int numLinks = linkVector.size()

  for (int i=0; i<linkVector.size(); i++) {
        //MultimodalLink is a class with variables link ID and route ID
        MultimodalLink link = (MultimodalLink) linkVector.elementAt(i);
         //write link ID 
        dout.writeLong(link.getLinkId());

        // write route ID into file
        dout.writeInt(link.getRouteId());
   }
   dout.close();
    blobOut.close();
    rs.close();

The subsections that follow describe the implementations of the writeUserData and
readUserData methods of the LODUserDataIO interface.

• Implementation of writeUserData method of LODUserDataIO

• Implementation of readUserData method of LODUserDataIO
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5.6.2.1 Implementation of writeUserData method of LODUserDataIO
In the implementation of the writeUserData method of LODUserDataIO, the user-
defined data BLOB table name is assumed to be MULTIMODAL_USER_DATA.

//Method getLinksInPartition(partitionId) computes a vector that
// consists of  the ID and the route ID of each link associated with a partition
// with ID = partitionId
LinkVector = getLinksInPartition(partitionId);

ObjectOutputStream dout = null;

//Insert an empty blob for the partition with ID = partition_id
String insertStr = "INSERT INTO " + MULTIMODAL_USER_DATA +
                      " (partition_id, blob) " + " VALUES " + " (?, 
EMPTY_BLOB())" ;

PreparedStatement stmt = conn.prepareStatement(insertStr);
stmt.setInt(1,partitionId);
int n = stmt.executeUpdate();
stmt.close();

//lock the row for blob update
 String lockRowStr = "SELECT blob FROM " + MULTIMODAL_USER_DATA +
                                  " WHERE partition_id = ? " + " FOR UPDATE";
 stmt = conn.prepareStatement(lockRowStr);
 stmt.setInt(1,partitionId);
 ResultSet rs = stmt.executeQuery();

 rs.next();
oracle.sql.BLOB userDataBlob = (oracle.sql.BLOB) rs.getBlob(1);
stmt.close();

 OutputStream blobOut = ((oracle.sql.BLOB) userDataBlob).setBinaryStream(1);
 dout = new ObjectOutputStream(blobOut);

 //write partition ID
 dout.writeInt(partitionId);
 int numLinks = linkVector.size()

  for (int i=0; i<linkVector.size(); i++) {
        //MultimodalLink is a class with variables link ID and route ID
        MultimodalLink link = (MultimodalLink) linkVector.elementAt(i);
         //write link ID 
        dout.writeLong(link.getLinkId());

        // write route ID into file
        dout.writeInt(link.getRouteId());
   }
   dout.close();
    blobOut.close();
    rs.close();

5.6.2.2 Implementation of readUserData method of LODUserDataIO
The user-defined data is accessed through the getCategorizedUserData and
setCategorizedUserData methods for the Node, Link, Path, and SubPath interfaces
and getUserData and setUserData methods of the CategorizedUserData interface.
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//Read the blob for the required partition from the user data blob table
// In this example,
// MULTIMODAL_USER_DATA  is the name of user –defined data blob table
BLOB multimodalBlob = null;
String queryStr = "SELECT blob FROM " + 
MULTIMODAL_USER_DATA                                
                             " WHERE partition_id = ?";
PreparedStatement stmt = conn.prepareStatement(queryStr);
stmt.setInt(1,partitionId);
ResultSet rs = stmt.executeQuery();
if (rs.next())   {
     multimodalBlob = (oracle.sql.BLOB)rs.getBlob(1);
}
 
// Materialize the blob value as an input stream        
InputStream is = multimodalBlob.getBinaryStream();
 
//Create an ObjectInputStream that reads from the InputStream is
ObjectInputStream ois = new ObjectInputStream(is);
 
//Read the values of partition ID and number of links from the blob
int partitionId = ois.readInt();
int numLinks = ois.readInt();
 
for (int i=0; i<numLinks; i++)  {
 
    //Read link ID and route ID for each link
     long linkId = ois.readLong();
     int routeId = ois.readInt();
 
     //MultimodalLinkUserData is an implementation of NDM LOD UserData interface
     //Implementation is provided at the end of the example 
     linkUserData = new MultimodalLinkUserData(routeId);
 
     //Get the link object corresponding to the link ID
     LogicalNetLink link = partition.getLink(linkId);
 
     //Get the (categorized) user data associated with the link. 
     CategorizedUserData cud = link.getCategorizedUserData();
    
     // If the link does not have categorized user data associated with it,
     // initialize it to linkUserData
     // Else, set the user data for category USER_DATA_MULTIMODAL 
     // to linkUserData 
     if (cud == null) {
            UserData [] userDataArray = {linkUserData};
            cud = new CategorizedUserDataImpl(userDataArray);
             link.setCategorizedUserData(cud);
     }
     else {                   
            cud.setUserData(USER_DATA_MULTIMODAL,linkUserData);
     }
}

The following segment shows how to read the user-defined data, specifically the route ID
associated with a link during analysis.

//info is an instance of LODAnalysisInfo 
LogicalLink currentLink = info.getCurrentLink();
 
//Read the user-defined data (in this case, route ID) 
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int linkRouteId   = (Integer)currentLink.getCategorizedUserData().
                           
getUserData(USER_DATA_MULTIMODAL).                                      
                           get(INDEX_LINK_ROUTEID);
        
 
Implementation of MultimodalLinkUserData :
 
class MultimodalLinkUserData implements UserData
{
    private int routeId;
 
    protected MultimodalLinkUserData(int routeId)
   {
        this.routeId = routeId;
   }
 
  public Object get(int index)
  {
    switch(index)
    {
         case INDEX_LINK_ROUTEID:
              return routeId;
    }
    return null;
  }
 
  public void set(int index, Object userData)
  {
    switch(index)
    {
         case INDEX_LINK_ROUTEID:
            this.routeId = (Integer) userData;
    }
  }
 
  public int getNumberOfUserData()
  {
       return 1;
  }
 
  public Object clone()
{
    return new MultimodalLinkUserData(routeId);
  }
}

5.7 Feature Modeling
You can model objects of interest on the network as features.

A feature consists of one or many feature elements. A feature element can be a point,
a link, or a partial link along the network. You can define feature layers on top of a
network. For example, restaurants and hotels can each be defined as a feature layer
on a road network, and switches can be defined as a feature layer on an electrical
network.

The following are the typical steps for using feature modeling.

1. Create a feature layer.
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For example, the points of interest (POIs) on a road network can be modeled as features.
Each type of POI (hotels, restaurants, hospitals, schools, and so on) corresponds to one
feature layer. The following example adds a feature layer for hotels:

sdo_net.add_feature_layer(
   'US_ROAD_NETWORK', --network name
   'HOTEL',           --feature layer name
   2,                 --feature layer type: point on link
   'HOTEL_TAB',       --feature table or view name
   'HOTEL_NET_REL',   --relation table or view name
   null);             --hierarchy table or view name

2. Register feature user data, if any application-specific feature attributes are potentially
useful in feature analysis.

Feature user data is registered by adding an entry in the
XXX_SDO_NETWORK_USER_DATA view, just like registering the user data for network
nodes or links, except that the TABLE_TYPE column is set to the name of the feature
table. The following example adds hotel name as user data for hotel features:

INSERT INTO USER_SDO_NETWORK_USER_DATA(
   network, table_type, data_name, data_type, category_id)
VALUES(
   'US_ROAD_NETWORK',  --network name
   'HOTEL_TAB',            --feature table or view name
   'NAME',             --user data name, i.e., name of the user data column
   'VARCHAR2',         --user data type
   3);                 --user data category

3. Add, update, or delete features on the feature layer.

If the content of feature tables, feature element relationship table, and feature hierarchy
table (all described in Feature Layer Tables) -- or any combination of these tables -- is
managed by the data provider, then you can skip this step. Otherwise, you can call
procedures in the SDO_NET package, such as ADD_FEATURE, UPDATE_FEATURE,
DELETE_FEATURES, to add, update or delete features in a feature layer. (The
SDO_NET subprograms are described in SDO_NET Package Subprograms.)

4. Perform feature analysis using NetworkAnalyst. The feature analysis functions include:

• Shortest paths between features

• Nearest (reaching) features

• Within (reaching) cost features

• Data Types Used for Feature Modeling

5.7.1 Data Types Used for Feature Modeling
This section describes the following PL/SQL data types that are used for parameters and
return values of some SDO_NET package subprograms related to feature modeling:

• SDO_NET_FEAT_ELEM_ARRAY

• SDO_NET_FEAT_ELEM

• SDO_NET_LAYER_FEAT_ARRAY

• SDO_NET_LAYER_FEAT

• SDO_NETWORK_NVP_TAB

• SDO_NETWORK_NVP

Chapter 5
Feature Modeling

5-19



SDO_NET_FEAT_ELEM_ARRAY is defined as VARRAY(1024) OF
MDSYS.SDO_NET_FEAT_ELEM.

SDO_NET_FEAT_ELEM is defined as:

FEAT_ELEM_TYPE    NUMBER
NET_ELEM_ID       NUMBER
START_PERCENTAGE  NUMBER
END_PERCENTAGE    NUMBER

SDO_NET_LAYER_FEAT_ARRAY is defined as VARRAY(1024) OF
MDSYS.SDO_NET_LAYER_FEAT.

SDO_NET_LAYER_FEAT is defined as:

FEATURE_LAYER_ID  NUMBER
FEATURE_ID        NUMBER

SDO_NETWORK_NVP_TAB is defined as TABLE OF MDSYS.SDO_NETWORK_NVP.

SDO_NETWORK_NVP is defined as:

NAME   VARCHAR2(128)
VALUE  VARCHAR2(1024)

5.8 Feature Modeling Using Network Feature Editing (NFE)
Network feature editing (NFE) lets you create and manage an NFE model. An NFE
model extends the feature modeling capabilities by enabling you to visualize and
manipulate features using Java Swing components and a PL/SQL API.

NFE lets you define features on the top of an existing network. For example,
restaurants and hotels can be defined as features on the top of a road network. You
can also define models that consist just of features (network elements are hidden from
you), and where the connectivity can be restricted by rules. Such connectivity
restrictions are typically used in utility networks, such as electrical, water, or gas
networks, to model the network devices and restrict the connectivity. One example of
using connectivity restrictions is to avoid connections between high tension and low
tension devices in an electrical network

NFE includes concepts such as feature classes and rules, which can be built into a
model. Metadata tables and views are automatically created and maintained when you
create and work with an NFE model.

The minimum privileges required for using NFE features are CREATE TABLE,CREATE
VIEW, CREATE SEQUENCE, and CREATE SESSION. These are in addition to any other
privileges that the user might need to perform operations not specifically related to
NFE.

• Creation Modes for NFE Models

• NFE Feature Classes

• NFE Rules

• Data Types Used for NFE Connectivity Rules
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5.8.1 Creation Modes for NFE Models
You can create a network feature editing (NFE) model in one of two possible modes: from
scratch and over an existing network model.

• From scratch: In this mode, a network is generated automatically when you create the
NFE the model, and the network is assign to the model. You will work only with features,
and the underlying network elements will be hidden from you. This mode supports rules
whose statements specify what kind of features (feature classes) can be connected with
each other kinds of features. One typical use of this mode is to model utility networks,
such as electricity or water networks, where you want to restrict the connections among
certain components in the network.

• Over an existing network model: In this mode, an existing network is used when you
create the NFE model. The network is visible to you, and you can add features over the
network elements. Rules are not supported in this mode.

The feature class relationship table contains information about the relationship between
features and feature classes, that is, which feature belongs to which feature class.

5.8.2 NFE Feature Classes
A feature class describes a group of features based on attributes values, shape, and style.
Each feature class belongs only to one feature layer, so the group of features in the feature
class also belongs to the same feature layer.

For example, an electrical network might include two feature layers: Transformers and
Conductors. Each of these feature layers might include two feature classes:

• The Transformers feature layer might include the HT Transformers (high tension
transformers) and LT Transformers (low tension transformers), where transformers within
each feature type have specified input and output voltages, and tension types. Both
feature types are associated with points (their shape). Each feature type has a different
associated icon for use in diagrams.

• The Conductors feature layer might include the HT Conductors (high tension conductors)
and LT Conductors (low tension conductors), where conductors within each feature type
have specified attribute values. Both feature types are associated with lines (their shape).
Each feature type has a different associated icon for use in diagrams.

The following table lists the shapes that can be associated with a feature class, and
requirements and restrictions depending on the creation mode used for the NFE model..

Table 5-3    Shapes for NFE Feature Classes

Shape
Type
(Number)

Shape
Name

Model Created from Scratch Model Created over Existing
Network

1 Point Features can have only one
PointOnNode feature element.

Features can have one or more
feature elements of types
PointOnNode and PointOnLine.

2 Line Features can have only one line
feature element. A line supports
connections only on its start and end
points.

Features can contain one or more line
feature elements. It does not matter if
the lines are adjacent or not.
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Table 5-3    (Cont.) Shapes for NFE Feature Classes

Shape
Type
(Number)

Shape
Name

Model Created from Scratch Model Created over Existing
Network

3 Complex
line

Features can have multiple adjacent
(connected) line feature elements. A
complex line supports connection on
its middle points; when this happens,
the complex line is divided into two
line feature elements.

(Complex lines not supported for this
creation mode.)

4 Path Feature representing a path. This type
of feature class is typically used when
analysis is performed.

Feature representing a path. This type
of feature class is typically used when
analysis is performed.

5.8.3 NFE Rules
Rules in NFE models are constraints related to feature connections. Rules are
available only for models created from scratch, that is, not for models created over an
existing network. Rules can be customized, and can support any kind of connection
constraint.

Rules can generally be classified into cardinality rules and connectivity rules:

• Cardinality rules are used over point features that have specific characteristics
(that is, belong to the same feature class), to specify the maximum and minimum
number of incoming and outgoing connections that the point feature can accept.

• Connectivity rules are used to indicate whether two features can be connected if
they have some specific characteristics (feature layer, feature class, and
attributes) and a specific interaction. A connectivity rule will allow the connection
with a point feature as long as the point feature has available space to support the
corresponding incoming and outgoing connections needed, as dictated by its
related cardinality rule.

Connectivity rules are the only way to connect features in NFE, and they are
always positive; that is, they allow connections, but cannot deny them. The
absence of connectivity rules between elements indicates that elements cannot be
connected.

Line-Point Connectivity Rules

A line-point connectivity rule states that whenever a line feature and a point feature
interact in certain ways, they can be connected.

A line-point connectivity rule, along with its cardinality rule, can be expressed as
follows: “Any Line Feature from Feature Layer L1 with Feature Class C1 matching the
condition P1 can be connected to a Point Feature from Feature Layer L2 with Feature
Class C2 matching the condition P2. The cardinality of Point Feature indicates that
maximum of X incoming connections and a maximum of Y outgoing connections are
allowed.”

The following table shows examples of line-point connectivity rules.
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Table 5-4    Examples of Line-Point Connectivity Rules

Line Condition Point Condition Cardinality Description

HT Conductor class
from Conductors
layer

HT Transformer
class from
Transformers layer

Unbounded Any number of high tension conductors
can connect to a high tension
transformer.

HT Conductor class
from Conductors
layer

LT Transformer
class from
Transformers layer

In: unbounded;
Out: 0

Any number of incoming high tension
conductors can connect to a low tension
transformer, but no outgoing high
tension conductors can be connected
out from a low tension transformer.
A low tension transformer steps down
the voltage from a high tension
conductor to a low tension conductor.

LT Conductor class
from Conductors
layer

LT Transformer
class from
Transformers layer

Unbounded Any number of low tension conductors
can connect to a low tension
transformer.

Line-Line Connectivity Rules

A line-line connectivity rule states that when two line features interact in some specific way,
they can be connected through one specific point feature. The rule can also specify to
automatically create the connecting point, if it does not already exist, when the interaction
between the feature lines occurs. Another way of looking at a line-line rule is as two line-point
rules having in common the same point feature restrictions, so in that sense a line-line rule
refers to two line-point rules with the same point feature condition.

An example line-line connectivity rule might be expressed as follows: “If interaction I is true
between (Line Feature1 from Feature Layer L1 with Feature Class C1 matching the condition
P1) AND (Line Feature2 from Feature Layer L2 with Feature Class C2 matching the condition
P2) the lines can be connected using (Point Feature P1) (Optionally: create automatically
Point Feature P1 if it does not exist).”

Left Hand Side and Right Hand Size of a Line-Line Connectivity Rule

A line-line connectivity rule specifies interaction between two line features: line feature 1 and
line feature 2. These two line features are known as the left hand side (LHS) of the rule and
the right hand side (RHS) of the rule, respectively. Any feature that is on line feature 1 is
considered to be on the LHS of the rule, and any feature that is on line feature 2 is
considered to be on the RHS of the rule.

The following table shows examples of line-line rules suitable for an electrical network model,
identifying the LHS and RHS line feature groups of the rule. Each row in the table describes
one line-line rule.
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Table 5-5    LHS and RHS for Sample Line-Line Rules

LHS Line
Features
Group

Interacti
on Type

RHS Line
Features
Group

Common
Point

Description

HT
Conductor
class from
Conductors
layer

Touch
end point

HT Conductor
class from
Conductors
layer

HT
Transformer
class from
Transformers
layer

High tension conductors are
automatically connected to each other
by a high tension transformer when
they are touching on their end points.

LT Conductor
class from
Conductors
layer

Touch
end point

LT Conductor
class from
Conductors
layer

LT
Transformer
class from
Transformers
layer

Low tension conductors are
automatically connected to each other
by a low tension transformer when
they are touching on their end points.

HT
Conductor
class from
Conductors
layer

Touch
end point

LT Conductor
class from
Conductors
layer

LT
Transformer
class from
Transformers
layer

High tension conductors are
automatically connected to low tension
conductors by a low tension
transformer when they are touching on
their end points.

Rule Decision Handlers

Rules can be customized by using rule decision handlers, which can be applied to
both line-point and line-line rules. Decision handlers are a mechanism that allows a
user to determine which elements in an interaction must be connected and how.

A rule implementation always uses a decision handler to manage the connections
among the features. NFE provides a default implementation to connect features for
line-point and line-line rules. When executing a rule, the default decision handler
implementation will try to connect as many elements matching the rule as possible, but
there could be scenarios where you want more control over the connections than the
rule provides by default, in which case you must modify the default decision handler
implementation..

Using a water network example, assume that two valves can interact with pipes at a
spatial point. Each valve has four outlets. Either (A) all four pipe ends can be
connected to the four outlets of a single valve, or (B) two pipe ends can connect to two
opposite outlets of one valve, and the two other pipe ends can connect to two opposite
outlets of the other valve. The default decision handler implementation will try the first
approach (all four pipe ends connecting to a single valve); but if you wanted to
distribute the four pipes among the two available valves, you could implement a
custom decision handler tio use the second approach (two pipe ends connecting to the
first valve, the two other pipe ends connecting to the second valve).

Rule Instances

When features are connected because of the application of certain rule, the group of
connected features is called a rule instance, that is, an instance of the rule that
allowed the connection. Rule instances are maintained in the Rule Instance Table.

A rule definition can be removed or modified only if no dependent rule instances exist
(that is, no connections that depend on any existing rule instances)

If a feature element involved in a rule instance is deleted, the rule instance may or may
not be automatically deleted. If the feature element deletion causes the number of
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elements to drop below the minimum number for the rule instance (which depends on the
type of rule), then the rule instance is deleted. However, if the feature element deletion does
not cause the number of elements to drop below the minimum number for the rule instance,
then the feature element is deleted from the rule instance, but the .the rule instance itself is
not deleted (but it is modified).

5.8.4 Data Types Used for NFE Connectivity Rules
This section describes the following PL/SQL data types that are used for parameters and
return values of some SDO_NFE package subprograms related to network feature editing
(NFE):

• SDO_INTERACT_POINT_FEAT_ARRAY

• SDO_INTERACT_POINT_FEAT

• SDO_INTERACT_LINE_FEAT_ARRAY

• SDO_INTERACT_LINE_FEAT

• SDO_INTERACTION_ARRAY

• SDO_INTERACTION

SDO_INTERACT_POINT_FEAT_ARRAY is defined as VARRAY(1024) OF
MDSYS.SDO_INTERACT_POINT_FEAT.

SDO_INTERACT_POINT_FEAT is defined as:

FEATURE_LAYER_ID       NUMBER 
FEATURE_ID             NUMBER 
FEATURE_CLASS_ID       NUMBER
NODE_ID                NUMBER 
NODE_GEOM              SDO_GEOMETRY
AVAILABLE_IN_CONN      SDO_NUMBER_ARRAYSET
AVAILABLE_OUT_CONN    SDO_NUMBER_ARRAYSET
RUNTIME_CREATED         CHAR(1)

SDO_INTERACT_LINE_FEAT_ARRAY is defined as VARRAY(1024) OF
MDSYS.SDO_INTERACT_LINE_FEAT.

SDO_NET_LAYER_FEAT is defined as:

FEATURE_LAYER_ID      NUMBER
FEATURE_ID            NUMBER
FEATURE_CLASS_ID      NUMBER
LINK_ID               NUMBER
LINK_GEOM             SDO_GEOMETRY
START_NODE            SDO_INTERACT_POINT_FEAT
END_NODE              SDO_INTERACT_POINT_FEAT
BIDIRECTED            CHAR(1)
INTERSECTION_LOCATION     NUMBER
RULE_SIDE             CHAR(1)

SDO_INTERACTION_ARRAY is defined as VARRAY (1048576) OF MDSYS.SDO_INTERACTION.

SDO_INTERACTION is defined as:

LINES             SDO_INTERACT_LINE_FEAT_ARRAY
POINTS            SDO_INTERACT_POINT_FEAT_ARRAY
INTERSECT_PT_GEOM SDO_GEOMETRY
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5.9 Network Constraints
Network constraints are restrictions defined on network analysis computations.

For example, a network constraint might list a series of prohibited turns in a roads
network due to one-way streets and "No Left Turn" signs, with each prohibited turn
represented as a pair of links (a start link and an end link onto which a turn cannot be
made from the start link). As another example, a network constraint might require that
driving routes must not include toll roads or must not include expressways.

To create a network constraint, you must create a Java class that implements the
constraint, and you must register the constraint by using the 
SDO_NET.REGISTER_CONSTRAINT procedure. To apply a network constraint to a
network analysis operation, you must specify that constraint.

Examples of Java classes to implement network constraints are provided in the
Network Data Model Graph demo files, which are described in Network Data Model
Graph Tutorial and Other Resources. For example, the ProhibitedTurns.java file
creates a network constraint that defines a series of prohibited turns, and it then
returns the shortest path between two nodes, first without applying the constraint and
then applying the constraint.

5.10 Network Analysis Using Load on Demand
Load on demand means that during network analysis, a network partition is not
loaded into memory until the analysis has reached this partition while exploring the
network.

With load on demand, Oracle Spatial and Graph performs most partitioning and
loading operations automatically, and this usually results in more efficient memory
utilization with very large networks.

Load on demand analysis involves the following major steps: network creation,
network partition, partition cache configuration, and network analysis.

1. Create the network, using one of the approaches described in Main Steps in Using
the Network Data Model Graph.

2. Partition the network using the SDO_NET.SPATIAL_PARTITION procedure, as
explained in Partitioning a Network.

3. Optionally, generate partition BLOBs, as explained in Generating Partition BLOBs.

4. Configure the load on demand environment, including the partition cache, as
explained in Configuring the Partition Cache.

5. Analyze the network, as explained in Analyzing the Network.

Note:

Load on demand analysis also works with nonpartitioned networks by
treating the entire network as one partition. For a small network, there may
be no performance benefit in partitioning it, in which case you can skip the
partitioning but still use load on demand APIs.
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For examples of performing load on demand network analysis and configuring the partition
cache, see Partitioning and Load on Demand Analysis Examples (PL/SQL_ XML_ and Java).

Additional examples of partitioning and load on demand analysis are included on the Oracle
Database Examples media (see Oracle Database Examples Installation Guide). For more
information about Network Data Model Graph example and demo files, see Network Data
Model Graph Tutorial and Other Resources.

• Partitioning a Network

• Generating Partition BLOBs

• Configuring the Partition Cache

• Analyzing the Network

• Using Link Levels for Priority Modeling

• Precomputed Analysis Results

5.10.1 Partitioning a Network
You can partition a network using the SDO_NET.SPATIAL_PARTITION procedure, specifying
the maximum number of nodes in each partition. The partition result is stored in a partition
table, which is automatically generated, and partition metadata information is inserted into the
network metadata. (As an alternative to using the procedure, you can partition a network by
creating and populating a partition table.) You can use other SDO_NET subprograms to
query the partitioning metadata.

A good partition strategy is to minimize the number of links between partitions, which reduces
the number of partitions that need to be loaded and the probable number of times that the
same partitions need to be reloaded. Moreover, partitions that are too small require excessive
loading and unloading of partitions during analysis.

The recommended maximum number of nodes per partition, assuming 1 GB of memory, is
between 5,000 and 10,000. You can tune the number and see what is best for your
applications, considering the available memory, type of analysis, and network size. You
should also consider configuring the partition caching size.

5.10.2 Generating Partition BLOBs
To enhance the performance of network loading, you can optionally store partitions as BLOBs
in a network partition BLOB table. This information needs to be stored in the network
metadata view in order to take advantage of faster partition loading time. Note that if a
network or partition information is updated, the partition BLOBs need to be regenerated as
well.

A partition BLOB is a binary stream of data containing the network partition information,
such as number of nodes, number of links, properties of each node, properties of each link,
and so on. If a partition BLOB exists, Spatial and Graph uses it to read information during the
load operation, rather than performing time-consuming database queries.

To generate partition BLOBs, use the SDO_NET.GENERATE_PARTITION_BLOBS
procedure. The partition BLOBs and their metadata are stored in the Partition BLOB Table.
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5.10.3 Configuring the Partition Cache
Before you perform network analysis, you can configure the network partition cache to
optimize performance, by modifying an XML configuration file to override the default
configuration. You can specify the following:

• Cache size: the maximum number of nodes in partition cache

• Partitions source: from network tables or partition BLOBs

• Resident partitions: IDs of partitions that will not be flushed out of the cache, but
will stay in memory once they are loaded

• Cache flushing policy: class name of the CachingHandler implementation

The default caching policy is LeastRecentlyUsed, which flushes out the oldest
partition out of memory when the cache is full. You can specify other caching
policies by implementing the CachingHandler interface.

A copy of the default load on demand configuration file is included in the
supplementary documentation, described in Network Data Model Graph Tutorial and
Other Resources.

5.10.4 Analyzing the Network
After you have created and partitioned the network, and optionally configured the
partition cache, you can issue analysis queries. Analysis results are returned in Java
representation or XML responses, depending on whether you used the Java or XML
API. For details, see the load on demand (LOD) Javadoc and XML schemas (the latter
described in Network Data Model Graph Tutorial and Other Resources).

You can write the analysis results to the database using the load on demand Java API.

5.10.5 Using Link Levels for Priority Modeling
Although the load on demand approach reduces the effect of memory limitations in
analyzing large networks, analysis operations still can sometimes be very slow. For
example, shortest path analysis of two nodes diagonally across the entire network is
likely to require traversing almost every link in the network, and this will take a
significant amount of time for a network with more than, for example, two million
nodes.

To further reduce network analysis time, you can perform analysis on different link
levels. Link level is a positive integer assigned to a link indicating the level of
preference of this link. The higher the link level, the higher the preference. For
example, a road network may consist of two link levels, level 1 for local roads and level
2 for highways. During network analysis, highways are preferred to local roads, and
the minimum link level is 1. (If no link level is assigned to a link, the default link level of
1 is used for the link.)

Link levels have an implicit inheritance property, which means that a network at higher
link levels must be a subnetwork of a network at a lower link level. That is, link level 2
is a subnetwork of link level 1, link level 3 is a subnetwork of link level 2, and so on.

You can specify a link level when you load a network or a partition, which causes links
at that level and higher levels to be loaded. Using the road network example, with link
level 1 for local roads and link level 2 for highways, specifying link level 1 on a load
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operation loads links at link levels 1 and 2 (that is, local roads and highways), but specifying
link level 2 on a load operation loads only the highways links. If you wanted to perform
analysis using only highways links, you could optimize the performance by specifying link
level 2 for the load operation.

5.10.6 Precomputed Analysis Results
Some analysis operations, such as connected component analysis, can be time consuming.
To improve runtime performance, you can call the 
SDO_NET.FIND_CONNECTED_COMPONENTS procedure, which computes the connected
components in the network and stores the results in the Connected Component Table.

At runtime, before calling shortest path analysis or reachability analysis, you can check
whether the nodes of interest belong to the same connected component by querying the
connected component table. If precomputed component information does not exist, it may
take a long time for shortest path and reachability analysis to discover that two nodes are, in
fact, not connected.

5.11 Network Data Model Graph Tables
The connectivity information for a spatial network is stored in two tables: a node table and a
link table. In addition, path information can be stored in a path table and a path-link table.

You can have Spatial and Graph create these tables automatically when you create the
network using a CREATE_<network-type>_NETWORK procedure; or you can create these
tables using the SDO_NET.CREATE_NODE_TABLE, SDO_NET.CREATE_LINK_TABLE, 
SDO_NET.CREATE_PATH_TABLE, and SDO_NET.CREATE_PATH_LINK_TABLE
procedures.

These tables contain columns with predefined names, and you must not change any of the
predefined column names; however, you can add columns to the tables by using the ALTER
TABLE statement with the ADD COLUMN clause. For example, although each link and path
table is created with a single COST column, you can create additional columns and associate
them with other comparable attributes. Thus, to assign a driving time, scenic appeal rating,
and a danger rating to each link, you could use the COST column for driving time, add
columns for SCENIC_APPEAL and DANGER to the link table, and populate all three columns
with values to be interpreted by applications.

The following considerations apply to schema, table, and column names that are stored in
any Oracle Spatial and Graph metadata views. For example, these considerations apply to
the names of node, link, path, and path-link tables, and to the names of any columns in these
tables that are stored in the network metadata views described in Network Data Model Graph
Metadata Views.

• The name must contain only letters, numbers, and underscores. For example, the name
cannot contain a space ( ), an apostrophe ('), a quotation mark ("), or a comma (,).

• All letters in the names are converted to uppercase before the names are stored in
metadata views or before the tables are accessed. This conversion also applies to any
schema name specified with the table name.

• Network Layer Tables

• Feature Layer Tables

• Network Feature Editing (NFE) Model Tables
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5.11.1 Network Layer Tables
The metadata tables in this section are not related to feature modeling.

• Node Table

• Link Table

• Path Table

• Path-Link Table

• Subpath Table

• Partition Table

• Partition BLOB Table

• Connected Component Table

• Node Hierarchy Table (Optional)

• Node Level Table (Optional)

5.11.1.1 Node Table
Each network has a node table that can contain the columns described in Table 5-6.
(The specific columns depend on the network type and whether the network is
hierarchical or not.)

Table 5-6    Node Table Columns

Column Name Data Type Description

NODE_ID NUMBER ID number that uniquely identifies this node within the
network

NODE_NAME VARCHAR2(32) Name of the node

NODE_TYPE VARCHAR2(24) User-defined string to identify the node type

ACTIVE VARCHAR2(1) Contains Y if the node is active (visible in the network), or
N if the node is not active.

PARTITION_ID NUMBER (Not used. Instead, node and partition relationships are
stored in the partition table, which is described in 
Partition Table.)

<node_geometry
_column>, or
GEOM_ID and
MEASURE

SDO_GEOMET
RY, or
SDO_TOPO_GE
OMETRY, or
NUMBER

For a spatial (SDO, non-LRS) network, the
SDO_GEOMETRY object associated with the node

For a spatial topology network, the
SDO_TOPO_GEOMETRY object associated with the
node

For a spatial LRS network, GEOM_ID and MEASURE
column values (both of type NUMBER) for the geometry
objects associated with the node

For a logical network, this column is not used.

For a spatial SDO or topology network, the actual
column name is either a default name or what you
specified as the geom_column parameter value in the
call to the SDO_NET.CREATE_NODE_TABLE
procedure.
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Table 5-6    (Cont.) Node Table Columns

Column Name Data Type Description

<node_cost_colu
mn>

NUMBER Cost value to be associated with the node, for use by
applications that use the network. The actual column
name is either a default name or what you specified as
the cost_column parameter value in the call to the 
SDO_NET.CREATE_NODE_TABLE procedure. The cost
value can represent anything you want, for example, the
toll to be paid at a toll booth.

HIERARCHY_LE
VEL

NUMBER For hierarchical networks only: number indicating the
level in the network hierarchy for this node. (Network
Hierarchy explains network hierarchy.)

PARENT_NODE_
ID

NUMBER For hierarchical networks only: node ID of the parent
node of this node. (Network Hierarchy explains network
hierarchy.)

5.11.1.2 Link Table
Each network has a link table that contains the columns described in Table 5-7.

Table 5-7    Link Table Columns

Column Name Data Type Description

LINK_ID NUMBER ID number that uniquely identifies this link within the network

LINK_NAME VARCHAR2(32) Name of the link

START_NODE_ID NUMBER Node ID of the node that starts the link

END_NODE_ID NUMBER Node ID of the node that ends the link

LINK_TYPE VARCHAR2(24) User-defined string to identify the link type

ACTIVE VARCHAR2(1) Contains Y if the link is active (visible in the network), or N if
the link is not active.

LINK_LEVEL NUMBER Priority level for the link; used for network analysis, so that
links with higher priority levels can be considered first in
computing a path

<link_geometry_co
lumn>; or
GEOM_ID,
START_MEASUR
E, and
END_MEASURE

SDO_GEOMETRY
, or
SDO_TOPO_GEO
METRY, or
NUMBER

For a spatial (SDO, non-LRS) network, the
SDO_GEOMETRY object associated with the link

For a spatial topology network, the SDO_TOPO_GEOMETRY
object associated with the link

For a spatial LRS network, GEOM_ID, START_MEASURE,
and END_MEASURE column values (all of type NUMBER)
for the geometry objects associated with the link

For a logical network, this column is not used.

For a spatial SDO or topology network, the actual column
name is either a default name or what you specified as the
geom_column parameter value in the call to the 
SDO_NET.CREATE_LINK_TABLE procedure.
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Table 5-7    (Cont.) Link Table Columns

Column Name Data Type Description

<link_cost_column
>

NUMBER Cost value to be associated with the link, for use by
applications that use the network. The actual column name is
either a default name or what you specified as the
cost_column parameter value in the call to the 
SDO_NET.CREATE_LINK_TABLE procedure. The cost value
can represent anything you want, for example, the estimated
driving time for the link.

PARENT_LINK_ID NUMBER For hierarchical networks only: link ID of the parent link of this
link. (Network Hierarchy explains parent-child relationships in
a network hierarchy.)

BIDIRECTED VARCHAR2(1) For directed networks only: contains Y if the link is undirected
(that is, can be traversed either from the start node to the end
node or from the end node to the start node), or N if the link is
directed (in one direction only, from the start node to the end
node).

5.11.1.3 Path Table
Each network can have a path table. A path is an ordered sequence of links, and is
usually created as a result of network analysis. A path table provides a way to store
the result of this analysis. For each path table, you must create an associated path-link
table (described in Path-Link Table). Each path table contains the columns described
in Table 5-8.

Table 5-8    Path Table Columns

Column Name Data Type Description

PATH_ID NUMBER ID number that uniquely
identifies this path within the
network

PATH_NAME VARCHAR2(32) Name of the path

PATH_TYPE VARCHAR2(24) User-defined string to identify
the path type

START_NODE_ID NUMBER Node ID of the node that starts
the first link in the path

END_NODE_ID NUMBER Node ID of the node that ends
the last link in the path

COST NUMBER Cost value to be associated
with the path, for use by
applications that use the
network. The cost value can
represent anything you want,
for example, the estimated
driving time for the path.
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Table 5-8    (Cont.) Path Table Columns

Column Name Data Type Description

SIMPLE VARCHAR2(1) Contains Y if the path is a
simple path, or N if the path is
a complex path. In a simple
path, the links form an ordered
list that can be traversed from
the start node to the end node
with each link visited once. In
a complex path, there are
multiple options for going from
the start node to the end node.

<path_geometry_column> SDO_GEOMETRY For all network types except
logical, the geometry object
associated with the path. The
actual column name is either a
default name or what you
specified as the geom_column
parameter value in the call to
the 
SDO_NET.CREATE_PATH_T
ABLE procedure.

For a logical network, this
column is not used.

5.11.1.4 Path-Link Table
For each path table (described in Path Table), you must create a path-link table. Each row in
the path-link table uniquely identifies a link within a path in a network; that is, each
combination of PATH_ID, LINK_ID, and SEQ_NO values must be unique within the network.
The order of rows in the path-link table is not significant. Each path-link table contains the
columns described in Table 5-9.

Table 5-9    Path-Link Table Columns

Column Name Data Type Description

PATH_ID NUMBER ID number of the path in the
network

LINK_ID NUMBER ID number of the link in the
network

SEQ_NO NUMBER Unique sequence number of the
link in the path. (The sequence
numbers start at 1.) Sequence
numbers allow paths to contain
repeating nodes and links.

5.11.1.5 Subpath Table
Each path can have one or more associated subpaths, and information about all subpaths in
a network is stored in the subpath table. A subpath is a partial path along a path, as
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explained in Network Data Model Graph Concepts. The subpath table contains the
columns described in Table 5-10.

Table 5-10    Subpath Table Columns

Column Name Data Type Description

SUBPATH_ID NUMBER ID number that uniquely
identifies this subpath within
the reference path

SUBPATH_NAME VARCHAR2(32) Name of the subpath

SUBPATH_TYPE VARCHAR2(24) User-defined string to identify
the subpath type

REFERENCE_PATH_ID NUMBER Path ID number of the path
that contains this subpath

START_LINK_INDEX NUMBER Link ID of the link used to
define the start of the subpath.
For example, in Figure 5-2 in 
Network Data Model Graph
Concepts, the
START_LINK_INDEX is 0, and
the START_PERCENTAGE is
0.65.

END_LINK_INDEX NUMBER Link ID of the link used to
define the end of the subpath.
For example, in Figure 5-2 in 
Network Data Model Graph
Concepts, the
END_LINK_INDEX is 6, and
the END_PERCENTAGE is
0.5.

START_PERCENTAGE NUMBER Percentage of the distance
between START_LINK_INDEX
and the next link in the path,
representing the start point of
the subpath. Can be a positive
or negative number. For
example, in Figure 5-2 in 
Network Data Model Graph
Concepts, the
START_LINK_INDEX is 0, and
the START_PERCENTAGE is
0.65. ("Percentage" values in
this case are expressed as
between 0 and 1.0, so 0.65 is
65 percent.)
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Table 5-10    (Cont.) Subpath Table Columns

Column Name Data Type Description

END_PERCENTAGE NUMBER Percentage of the distance
between END_LINK_INDEX
and the next link in the path,
representing the end point of
the subpath. Can be a positive
or negative number. For
example, in Figure 5-2 in 
Network Data Model Graph
Concepts, the
END_LINK_INDEX is 6, and
the END_PERCENTAGE is
0.5. ("Percentage" values in
this case are expressed as
between 0 and 1.0, so 0.5 is
50 percent.)

COST NUMBER Cost value to be associated
with the subpath, for use by
applications that use the
network. The cost value can
represent anything you want,
for example, the estimated
driving time for the path.

GEOM SDO_GEOMETRY For all network types except
logical, the geometry object
associated with the subpath.
The actual column name is
either a default name or what
you specified as the
geom_column parameter
value in the call to the 
SDO_NET.CREATE_SUBPAT
H_TABLE procedure.

For a logical network, this
column is not used.

5.11.1.6 Partition Table
Each partitioned network has a partition table. For information about partitioned networks,
see Network Analysis Using Load on Demand. Each partition table contains the columns
described in Table 5-11.

Table 5-11    Partition Table Columns

Column Name Data Type Description

NODE_ID NUMBER ID number of the node

PARTITION_ID NUMBER ID number of the partition. Must
be unique within the network.
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Table 5-11    (Cont.) Partition Table Columns

Column Name Data Type Description

LINK_LEVEL NUMBER Link level (Link level reflects the
priority level for the link, and is
used for network analysis, so
that links with higher priority
levels can be considered first in
computing a path.)

5.11.1.7 Partition BLOB Table
Each partitioned network can have a partition BLOB table, which stores binary large
object (BLOB) representations for each combination of link level and partition ID in the
network. Having BLOB representations of partitions enables better performance for
network load on demand analysis operations. To create the partition BLOB table, use
the SDO_NET.GENERATE_PARTITION_BLOBS procedure, where you specify the
partition BLOB table name as one of the parameters. For information about partitioned
networks, see Network Analysis Using Load on Demand.

Note:

You should never directly modify the partition BLOB table. This table is
automatically updated as a result of calls to the 
SDO_NET.GENERATE_PARTITION_BLOBS and 
SDO_NET.GENERATE_PARTITION_BLOB procedures.

Each partition table contains the columns described in Table 5-12.

Table 5-12    Partition BLOB Table Columns

Column Name Data Type Description

LINK_LEVEL VARCHAR2(32) Link level (Link level reflects
the priority level for the link,
and is used for network
analysis, so that links with
higher priority levels can be
considered first in computing a
path.)

PARTITION_ID NUMBER ID number of the partition

BLOB BLOB Binary large object (BLOB)
representing the specified link
level within the specified
partition

NUM_INODES NUMBER Number of internal nodes in
the BLOB (that is, total
number of nodes in the BLOB)
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Table 5-12    (Cont.) Partition BLOB Table Columns

Column Name Data Type Description

NUM_ENODES NUMBER Number of external nodes. An
external node is a node that is
outside the BLOB, but is one
end of a link in which the other
node is inside the BLOB.

NUM_ILINKS NUMBER Number of internal links in the
BLOB (that is, links completely
inside the BLOB)

NUM_ELINKS NUMBER Number of external links. An
external link is a link in which
one node is internal (inside the
BLOB) and one node is
external (outside the BLOB).

NUM_INLINKS NUMBER Number of incoming links. An
incoming link is an external
link in which the start node is
outside the BLOB and the end
node is inside the BLOB.

NUM_OUTLINKS NUMBER Number of outgoing links. An
outgoing link is an external link
in which the start node is
inside the BLOB and the end
node is outside the BLOB.

USER_DATA_INCLUDED VARCHAR2(1) Contains Y if the BLOB can
include user data, or N if the
BLOB cannot include user
data.

5.11.1.8 Connected Component Table
Each network can have a connected component table, which stores the component ID for
each node. Nodes of the same connected component have the same component ID. Having
this information in the table enables better performance for many network analysis
operations. To create the connected component table, and to update the contents of the table
at any time afterwards, use the SDO_NET.FIND_CONNECTED_COMPONENTS procedure,
where you specify the connected component table name as one of the parameters. For more
information about using the precomputed information about connected components, see 
Precomputed Analysis Results.

Each connected component table contains the columns described in Table 5-13.
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Table 5-13    Connected Component Table Columns

Column Name Data Type Description

LINK_LEVEL NUMBER Link level of the component
assignment. (Link level reflects
the priority level for the link,
and is used for network
analysis, so that links with
higher priority levels can be
considered first in computing a
path.)

NODE_ID NUMBER ID number of the node from
which to compute all other
components that are
reachable.

COMPONENT_ID NUMBER ID number of a component
that is reachable from the
specified node.

5.11.1.9 Node Hierarchy Table (Optional)
Each network can have a node hierarchy table, which stores parent-child relationships
if the network has a hierarchy (explained in Network Hierarchy).

If the node hierarchy table exists, it contains the columns described in Table 5-14.

Table 5-14    Node Hierarchy Table Columns

Column Name Data Type Description

PARENT_ID NUMBER Parent node ID, that is, the
node ID in the parent network,
or the group, cluster, or
partition ID in the child
network.

CHILD_ID NUMBER Child ID, that is, the node ID in
the child network.

LINK_LEVEL NUMBER Link level on which the parent-
child relationship is defined. A
network on a higher link level
is a subnetwork of that on a
lower link level. A network on
link level n consists of only
links with link level greater
than or equal to n.

5.11.1.10 Node Level Table (Optional)
Each network can have a node level table, which stores information on the maximum
link level for each higher level node (that is, a node whose maximum link level is
greater than 1). The node level table is only useful for multilevel networks; it makes
loading partitions from node and link tables faster.

If the node level table exists, it contains the columns described in Table 5-15.

Chapter 5
Network Data Model Graph Tables

5-38



Table 5-15    Node Level Table Columns

Column Name Data Type Description

NODE_ID NUMBER ID of a node whose maximum
link level is greater than 1

LINK_LEVEL NUMBER Maximum link level to which the
node is connected.

5.11.2 Feature Layer Tables
The tables in this section are related to feature modeling (see Feature Modeling). These
tables are used to describe each registered feature layer.

In most applications, the tables containing feature entity information, feature to network
relationships, or feature hierarchy relationships already exist, although the table schema may
be different from that of the NDM tables. In such cases, you can create views to map the
existing table schema to the NDM table schema.

• Feature Table

• Feature Element Relationships Table

• Feature Hierarchy Table

5.11.2.1 Feature Table
A feature table contains feature entity information. Each feature table must contain a
FEATURE_ID column. Other feature attributes that are potentially useful during feature
analysis can be registered as user data.

Each feature table contains the columns described in Table 5-16.

Table 5-16    Feature Table Columns

Column Name Data Type Description

FEATURE_ID NUMBER ID of the feature.

(Additional
columns as
needed)

(As appropriate) (Other feature attributes that are potentially useful during
feature analysis)

5.11.2.2 Feature Element Relationships Table
The feature element relationships table contains information about the relationships between
feature elements and network elements (nodes and links).

The feature element relationships table contains the columns described in Table 5-17.

Table 5-17    Feature Element Relationships Table Columns

Column Name Data Type Description

FEATURE_ID NUMBER ID of the feature.
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Table 5-17    (Cont.) Feature Element Relationships Table Columns

Column Name Data Type Description

FEAT_ELEM_TYPE NUMBER Feature element type. One of the
following: 1 for SDO_NET.
FEAT_ELEM_TYPE_PON (point
on node) ; 2 for SDO_NET.
FEAT_ELEM_TYPE_POL (point
on link); 3 for SDO_NET.
FEAT_ELEM_TYPE_LINE (line).

NET_ELEM_ID NUMBER ID of the network element (node
or link) associated with this
feature element.

START_PERCENTAGE NUMBER Start percentage along
NET_ELEM_ID for this feature
element (ignored for point on
node feature elements).

END_PERCENTAGE NUMBER End percentage along
NET_ELEM_ID for this feature
element (ignored for point on
node and point on line feature
elements).

SEQUENCE NUMBER Sequence number of the feature
element.

5.11.2.3 Feature Hierarchy Table
The feature hierarchy table contains feature hierarchy information. Child features can
belong to different feature layers.

The feature hierarchy table contains the columns described in Table 5-18.

Table 5-18    Feature Hierarchy Table Columns

Column Name Data Type Description

PARENT_ID NUMBER ID of the parent feature.

CHILD_LAYER_ID NUMBER Feature layer ID of the child feature.

CHILD_ID NUMBER ID of the child feature.

SEQUENCE NUMBER Sequence number of the child feature.

5.11.3 Network Feature Editing (NFE) Model Tables
The tables in this section are related to feature manipulation using Network Feature
Editing (NFE) (see Feature Modeling Using Network Feature Editing (NFE)). These
tables are used to describe each NFE model.

In most cases, these tables are created or updated automatically when a new NFE
Model is created using the PL/SQL function 
SDO_NFE.CREATE_MODEL_STRUCTURE or the Java API; but you can also
manually create the tables or views and register them to the desired model.
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• Automatically Created Points Default Attributes Table
The automatically created points default attributes table contains information about the
default values for the attributes of automatically created points as the result of the
execution of a connectivity line-line rule.

• Connectivity Line-Line Rules Table
The connectivity line-line rules table contains the information about the definition of
connectivity line-line rules applicable to features involved in an NFE model.

• Connectivity Line-Point Rules Table
The connectivity line-point rules table contains the information about the definition of
connectivity line-point rules applicable to features involved in an NFE model.

• Feature Class Table
A feature class is related to a feature. A feature class table contains the records of all
feature classes from a feature layer, and must contain the columns described in the
following table.

• Feature Class Attributes Constraints Table
The feature class attributes constraints table contains information about user restrictions
over feature class attributes, which are the same attributes defined for the feature layer
that the feature class belongs to.

• Feature Class Default Predefined Connected Points Table
The feature class default predefined connected points table contains the information
about such default connected point features along a line feature described by a feature
class.

• Feature Class Relationship Table
The feature class relationship table contains information about the relationship between
features and feature classes, that is, which feature belongs to which feature class.

• Feature Rule Relationship Table
The feature rule relationship table contains information that relates each feature element
involved in a rule, with the rule that caused its generation or connection.

• Feature User Data Table
The feature user data table contains he information of feature class attributes of a catalog
type.

• Feature User Data Catalog Table
You can assign a value to a feature class attribute from a catalog; this is, that the attribute
type from a feature class can be a catalog type. The feature user data catalog table
keeps a register of the catalogs that can be used for that purpose.

• Feature User Data Catalog Values Table
The feature user data catalog values table contains the list of values held by catalogs
defined in feature user data catalog table.

• Point Cardinality Rules Table
The point cardinality rules table contains the configuration of the maximum and minimum
inbound and outbound connections that a specific point feature must support in an NFE
model.

• Rule Decision Handlers Table
The rule decision handlers table contains information about the names of the Java class
and/or PL/SQL procedures to be executed as decision handlers when a connectivity rule
(line-line or line-point) is executed.

• Rule Instance Table
The rule instance table contains information about rule instances generated by the
application of either line-line or line-point connectivity rules in an NFE model.
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5.11.3.1 Automatically Created Points Default Attributes Table
The automatically created points default attributes table contains information about the
default values for the attributes of automatically created points as the result of the
execution of a connectivity line-line rule.

. The following table describes the columns of the automatically created points default
attributes table. When an NFE model is created, the name by default given to this kind
of table is POINT_ATTR_DEF_[model_id]$.

Table 5-19    Automatically Created Points Default Attributes Table Columns

Column
Name

Data Type Description

ID NUMBER Primary key. Default value identifier.

LINE_LINE_R
ULE_ID

NUMBER Foreign key. An existing line-line rule identifier. Refers to the ID
column in the line-line rules table.

ATTRIBUTE_N
AME

VARCHAR(50
)

A point feature class attribute name. Refers to the
DATA_NAME column in the
xxx_SDO_NETWORK_USER_DATA view.

DEFAULT_VAL
UE

VARCHAR(10
0)

Default value for the point's attribute.

5.11.3.2 Connectivity Line-Line Rules Table
The connectivity line-line rules table contains the information about the definition of
connectivity line-line rules applicable to features involved in an NFE model.

This definition depicts how two line features (described in a line-point rule) must
interact in order to be connected each other.

The following table describes the columns of a connectivity line-line rules table When
an NFE model is created, the name by default given to this kind of table is
LINE_LINE_RULE_[model_id]$.

Table 5-20    Connectivity Line-Line Rules Table Columns

Column
Name

Data Type Description

ID NUMBER Primary key. Line-line rule identifier.

LINE_POINT_
1_ID

NUMBER Foreign key. An existing line-point rule identifier. Refers to the
ID column from a line point rules table.

LINE_POINT_
2_ID

NUMBER Foreign key. An existing line-point rule identifier. Refers to the
ID column from a line point rules table.

INTERACTION NUMBER Interaction type between the two lines. Posible values: 1 =
Crosses, 2 = Touches end points, 3 = Touches middle points, 4
= Touches any point, 5 = Any interact

DECISION_HA
NDLER_ID

NUMBER Foreign key. The ID of the decision handler (if any) associated
with the rule. Refrs to the ID column in the rules decision
handler table.
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Table 5-20    (Cont.) Connectivity Line-Line Rules Table Columns

Column
Name

Data Type Description

CREATE_POI
NT

VARCHAR2(1
)

Specifies whether the connection point should be created
automatically or not when the interaction among feature lines
occurs. Possible values: ‘Y’, ‘N’.

5.11.3.3 Connectivity Line-Point Rules Table
The connectivity line-point rules table contains the information about the definition of
connectivity line-point rules applicable to features involved in an NFE model.

This definition includes specifications of feature layer, feature class, and feature attributes
conditions for both line and point interacting features that can be connected.

The following table describes the columns of a connectivity line-point rules table When an
NFE model is created, the name by default given to this kind of table is
LINE_POINT_RULE_[model_id]$.

Table 5-21    Connectivity Line-Point Rules Table Columns

Column Name Data Type Description

ID NUMBER Primary key. Line-point rule identifier.

LINE_FEATURE_L
AYER_ID

NUMBER Feature layer identifier to which the line belongs. Refers to the
xxx_SDO_NETWORK_FEATURE table. A value of -1 means all
feature layers.

LINE_FEATURE_C
LASS_ID

NUMBER Feature class identifier for the line to which the rule will be
applied. A value of -1 means all feature classes.

LINE_ATTRIBUTE_
CONDITION

VARCHAR2(2
00)

Condition to be evaluated in the rule over the feature line
attributes. Example: MATERIAL = 'IRON'

POINT_FEATURE_
LAYER_ID

NUMBER Feature layer identifier to which allowed connection point
belongs. Refers to the xxx_SDO_NETWORK_FEATURE table.

POINT_FEATURE_
CLASS_ID

NUMBER Feature class identifier for the allowed connection point. A value
of -1 means all feature classes.

DECISION_HAND
LER_ID

NUMBER Foreign key. The ID of the decision handler (if any) associated
with the rule. Refers to the ID column from the rule decision
handler table.

MAX_IN_CONN NUMBER Maximum number of incoming lines that can be connected to the
point.

MAX_OUT_CONN NUMBER Maximum number of outgoing lines that can be connected to the
point.

MIN_IN_CONN NUMBER Minimum number of incoming lines that must be connected to the
point

MIN_OUT_CONN NUMBER Minimum number of outgoing lines that must be connected to the
point

SOURCE NUMBER Indicates whether the rule was created by the user or by a line-
line rule. Possible values are: 1 = User, 2=Line-Line Rule. The
default value is 1.

ID NUMBER Primary key. Line-line rule identifier.
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5.11.3.4 Feature Class Table
A feature class is related to a feature. A feature class table contains the records of all
feature classes from a feature layer, and must contain the columns described in the
following table.

When an NFE model is created, the name by default given to this kind of table is
FT_CLASS_[model_id]$.

Table 5-22    Feature Class Table Columns

Column Name Data Type Description

ID NUMBER Primary key. Feature class identifier

NAME VARCHAR2(
50)

Feature class name

FEATURE_LAYE
R_ID

NUMBER Feature layer identifier. Reference to
xxx_SDO_NETWORK_FEATURE table.

SHAPE NUMBER Feature class shape type. Possible values:
SDO_NFE.FT_CLASS_POINT (1),
SDO_NFE.FT_CLASS_SIMPLE_LINE (2),
SDO_NFE.FT_CLASS_COMPLEX_LINE (3),
SDO_NFE.FT_CLASS_PATH (4).

STYLE VARCHAR2(
50)

Feature class style. Reference to xxx_SDO_STYLES table.

5.11.3.5 Feature Class Attributes Constraints Table
The feature class attributes constraints table contains information about user
restrictions over feature class attributes, which are the same attributes defined for the
feature layer that the feature class belongs to.

This table must contain the columns described in the following table. When an NFE
model is created, the name by default given to this kind of table is
FT_CLASS_ATTR_CSTR_[model_id]$.

Table 5-23    Feature Class Attributes Constraints Table Columns

Column Name Data Type Description

ID NUMBER Primary key. Constraint identifier.

FEATURE_CLAS
S_ID

NUMBER Foreign key. Feature class identifier. Reference to feature
class table.

ATTRIBUTE_NA
ME

VARCHAR2(
50)

Name of the attribute to be restricted. Reference to
DATA_NAME column from the
xxx_SDO_NETWORK_USER_DATA view.

DEFAULT_VALU
E

VARCHAR2(
100)

Default value for the specified attribute (attribute_name).

VISIBLE VARCHAR2(
1)

Specifies whether the attribute must be visible or not.

EDITABLE VARCHAR2(
1)

Specifies whether the attribute must be editable or not.

Chapter 5
Network Data Model Graph Tables

5-44



5.11.3.6 Feature Class Default Predefined Connected Points Table
The feature class default predefined connected points table contains the information about
such default connected point features along a line feature described by a feature class.

A Line Feature Class can be defined with points connected by default. The following table
describes the columns of a feature class default predefined connected points table. When an
NFE model is created, the name by default given to this kind of table is
FT_CLASS_DEF_CON_PT_[model_id]$.

Table 5-24    Feature Class Default Predefined Connected Points Table Columns

Column Name Data Type Description

ID NUMBER Primary key. Default connected point identifier.

LINE_FEATURE_C
LASS_ID

NUMBER Foreign key. Line feature class identifier. Refers to the ID column
in the feature class table.

POINT_FEATURE_
CLASS_ID

NUMBER Foreign key. Point feature class identifier. Refers to the ID column
in the feature class table.

POSITION_PERC
ENTAGE

DECIMAL Percentage of point's location along the line.

5.11.3.7 Feature Class Relationship Table
The feature class relationship table contains information about the relationship between
features and feature classes, that is, which feature belongs to which feature class.

The feature class relationship table contains the columns described in the following table.
When an NFE model is created, the name by default given to this kind of table is
FT_CLASS_REL_[model_id]$.

Table 5-25    Feature Class Relationship Table Columns

Column Name Data Type Description

FEATURE_ID NUMBER Primary key. Feature identifier. Reference to feature table.

FEATURE_CLASS
_ID

NUMBER Foreign key. Feature class identifier. Reference to feature class
table.

5.11.3.8 Feature Rule Relationship Table
The feature rule relationship table contains information that relates each feature element
involved in a rule, with the rule that caused its generation or connection.

The feature rule relationship table contains the columns described in the following table.
When an NFE model is created, the name by default given to this kind of table is
FT_RULE_REL_[model_id]$.

Chapter 5
Network Data Model Graph Tables

5-45



Table 5-26    Feature Rule Relationship Table Columns

Column Name Data Type Description

RULE_INSTAN
CE_ID

NUMBER Primary key. Rule instance identifier.

FEATURE_LAY
ER_ID

NUMBER Primary key. Feature layer identifier. Refers to the
xxx_SDO_NETWORK_FEATURE table.

FEATURE_ID NUMBER Primary key. Feature identifier. Refers to the FEATURE_ID
column from the feature table.

NET_ELEM_ID NUMBER Primary key. Network element identifier. Refers to the
NET_ELEM_ID column from the feature element
relationships table.

FEAT_ELEM_T
YPE

NUMBER Primary key. Feature element type. Refers to the
FEAT_ELEM_TYPE column from the feature element
relationships table.

5.11.3.9 Feature User Data Table
The feature user data table contains he information of feature class attributes of a
catalog type.

The feature user data table is an extension of xxx_SDO_NETWORK_USER_DATA
view. The following table describes the columns of a feature user data table. When an
NFE model is created, the name by default given to this kind of table is
FT_USR_DATA_[model_id]$.

Table 5-27    Feature User Data Table Columns

Column
Name

Data Type Description

ID NUMBER Primary key. Feature class attribute identifier.

FEATURE_L
AYER_ID

NUMBER Feature layer identifier to which the feature class attribute
belongs.

ATTRIBUTE
_NAME

VARCHAR2(5
0)

Attribute name. Refers to the DATA_NAME column of the
xxx_SDO_NETWORK_USER_DATA view.

CATALOG_I
D

NUMBER Foreign key. Catalog identifier. Refers to the ID column from the
feature user data catalog table.

5.11.3.10 Feature User Data Catalog Table
You can assign a value to a feature class attribute from a catalog; this is, that the
attribute type from a feature class can be a catalog type. The feature user data catalog
table keeps a register of the catalogs that can be used for that purpose.

The following table describes the columns that a feature user data catalog table must
contain. When an NFE model is created, the name by default given to this kind of table
is FT_USR_DATA_CATLG_[model_id]$.
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Table 5-28    Feature User Data Catalog Table Columns

Column
Name

Data Type Description

ID NUMBER Primary key. Catalog identifier.

NAME VARCHAR2(20
0)

Catalog name.

DATA_TYPE VARCHAR2(12
)

Catalog data type (for example, Number or Varchar2).

5.11.3.11 Feature User Data Catalog Values Table
The feature user data catalog values table contains the list of values held by catalogs defined
in feature user data catalog table.

The following table describes the columns that a feature user data catalog values table must
contain. When an NFE model is created, the name by default given to this kind of table is
FT_USR_DATA_CVAL_[model_id]$.

Table 5-29    Feature User Data Catalog Values Table Columns

Column
Name

Data Type Description

ID NUMBER Primary key. Catalog entry identifier.

CATALOG_ID NUMBER Foreign key. Catalog identifier. Reference to the feature user data
catalog table.

VALUE VARCHAR2(12
)

Catalog entry.

5.11.3.12 Point Cardinality Rules Table
The point cardinality rules table contains the configuration of the maximum and minimum
inbound and outbound connections that a specific point feature must support in an NFE
model.

The point cardinality rules table contains the columns described in the following table. When
an NFE model is created, the name by default given to this kind of table is
POINT_CARD_RULE_[model_id]$.

Table 5-30    Point Cardinality Rules Table Columns

Column Name Data Type Description

ID NUMBER Primary key. Cardinality rule identifier

FEATURE_LAY
ER_ID

NUMBER Feature layer of the point

FEATURE_CLA
SS_ID

NUMBER Feature class of the point. The shape of the class must be of type
POINT

MAX_IN_CON
N

NUMBER Maximum number of incoming lines that can be connected to the point
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Table 5-30    (Cont.) Point Cardinality Rules Table Columns

Column Name Data Type Description

MAX_OUT_CO
NN

NUMBER Maximum number of outgoing lines that can be connected to the point

5.11.3.13 Rule Decision Handlers Table
The rule decision handlers table contains information about the names of the Java
class and/or PL/SQL procedures to be executed as decision handlers when a
connectivity rule (line-line or line-point) is executed.

The rule decision handlers table contains the columns described in the following table.
When an NFE model is created, the name by default given to this kind of table is
RULE_DEC_HANDLER_[model_id]$.

Table 5-31    Rule Decision Handlers Table Columns

Column Name Data Type Description

ID NUMBER Primary key. Decision handler identifier.

TYPE VARCHAR2(
1)

SDO_NFE.RULE_TYPE_LINE_LINE for line-line rule handler,
or SDO_NFE.RULE_TYPE_LINE_POINT for line-point rule
handler.

CLASS_FQNAME VARCHAR(1
00)

Handler class fully qualified name. This class must be an
implementation of
oracle.spatial.network.nfe.model.rule.DecisionHandler. The
implementation class must be accessible from the classpath
of the application that is running the rule engine in the Java
API.
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Table 5-31    (Cont.) Rule Decision Handlers Table Columns

Column Name Data Type Description

PLSQL_SP_GET
_CONN_GROUP
S

VARCHAR2(
50)

Name of the PL/SQL stored procedure used to obtain the
different groups of elements participating in an intersection
that can be connected through a rule. The name must
include the package name. For a handler of type 'L', the
default value is SDO_NFE.get_ll_conn_intersections, and
the parameters must be:

model_id IN NUMBER - Model identifier ll_rule_id IN
NUMBER - Line-Line rule identifier

interaction_grp IN OUT SDO_INTERACTION - Group of
lines and points that are interacting

rule_lhs_lines_indexes IN dbms_sql.NUMBER_TABLE -
Among the line features in the interacting group, indexes of
the lines that specifically match the LEFT hand side of the
line-line rule.

rule_rhs_lines_indexes IN dbms_sql.NUMBER_TABLE -
Among the line features in the interacting group, indexes of
the lines that specifically match the RIGHT hand side of the
line-line rule.

rule_points_indexes IN dbms_sql.NUMBER_TABLE -
Among the point features in the interacting group, indexes of
the points that specifically match the point feature
specification in the line-line rule. These points are the ones
to be considered in the conformation of connectable groups.

Refer to SDO_NFE.GET_LL_CONN_INTERSECTIONS
function documentation in Section 7 for more details.

For a handler of type 'P', the default value is
SDO_NFE.get_lp_conn_intersections, and the
parameters must be:

model_id IN NUMBER - Model identifier

lp_rule_id IN NUMBER - Line-point rule identifier

interaction_grp IN OUT SDO_INTERACTION - Group of
lines and points that are interacting.

rule_lines_indexes IN dbms_sql.NUMBER_TABLE - Among
the line features in the interacting group, indexes of the
LINES that specifically match the line-point rule. These lines
will be considered in the conformation of connectable
groups.

rule_points_indexes IN dbms_sql.NUMBER_TABLE -
Among the point features in the interacting group, indexes of
the POINTS that specifically match the point feature
specification in the line-point rule. These points are the
ones to be considered in the conformation of connectable
groups.

Refer to
SDO_NFE.GET_LP_CONN_INTERSECTIONSfunction
documentation in Section 7 for more details.
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Table 5-31    (Cont.) Rule Decision Handlers Table Columns

Column Name Data Type Description

PLSQL_SP_GET
_CONN_POINT

VARCHAR2(
50)

Name of the PL/SQL stored procedure used to determine
the geometry of the connection point between the
participating elements in an intersection. The name must
include the package name. Default value is
SDO_NFE.get_connection_point_geom. It must accept
only one parameter as an object of type
SDO_INTERACTION which is the group of interacting
features. Refer to
SDO_NFE.GET_CONNECTION_POINT_GEOM function
documentation for more details.

For using customized rule decision handlers in the Java API, the decision handler
Java class to be used must be specified in CLASS_FQNAME. For using customized
rule decision handlers in PL/SQL, the subprogram for calculating the connectable
groups of features must be specified in PLSQL_SP_GET_CONN_GROUPS, and the
subprogram for calculating the geometry of the connection point among the features to
be connected must be specified in PLSQL_SP_GET_CONN_POINT.

5.11.3.14 Rule Instance Table
The rule instance table contains information about rule instances generated by the
application of either line-line or line-point connectivity rules in an NFE model.

This definition includes the identifier for the rule instance, the identifier of the rule that
generated the instance, and the type of the rule.

The following table describes the columns of a rule instance table When an NFE
model is created, the name by default given to this kind of table is
RULE_INSTANCE_[model_id]$.

Table 5-32    Rule Instance Table Columns

Column
Name

Data Type Description

ID NUMBER Primary key. Rule instance identifier

RULE_ID NUMBER Rule identifier. Refers to ID column in either the line-line rules
table or line-point rules table.

RULE_TY
PE

VARCHAR(1) Must be SDO_NFE.RULE_TYPE_LINE_LINE or
SDO_NFE.RULE_TYPE_LINE_POINT.

5.12 Network Data Model Graph and Network Feature
Editing (NFE) Model Metadata Views

Two sets of network metadata views can be created for each schema (user):
xxx_SDO_NETWORK_xxxxxx and xxx_SDO_NFE_MODEL_xxxxxx, where the initial
xxx can be USER or ALL. These views are created, as needed, by Spatial and Graph
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The xxx_SDO_NFE_MODEL_xxxxxx metadata views relate to Feature Modeling Using
Network Feature Editing (NFE).

• xxx_SDO_NETWORK_METADATA Views

• xxx_SDO_NETWORK_CONSTRAINTS Views

• xxx_SDO_NETWORK_USER_DATA Views

• xxx_SDO_NETWORK_FEATURE Views

• xxx_SDO_NFE_MODEL_FTLAYER_REL Views

• xxx_SDO_NFE_MODEL_METADATA Views

• xxx_SDO_NFE_MODEL_WORKSPACE Views

5.12.1 xxx_SDO_NETWORK_METADATA Views
The following views contain information about networks:

• USER_SDO_NETWORK_METADATA contains information about all networks owned by
the user.

• ALL_SDO_NETWORK_METADATA contains information about all networks on which the
user has SELECT permission.

If you create a network using one of the CREATE_<network-type>_NETWORK procedures,
the information in these views is automatically updated to reflect the new network; otherwise,
you must insert information about the network into the USER_SDO_NETWORK_METADATA
view.

The USER_SDO_NETWORK_METADATA and ALL_SDO_NETWORK_METADATA views
contain the same columns, as shown Table 5-33, except that the
USER_SDO_NETWORK_METADATA view does not contain the OWNER column. (The
columns are listed in their order in the view definition.)

Table 5-33    Columns in the xxx_SDO_NETWORK_METADATA Views

Column Name Data Type Purpose

OWNER VARCHAR2(32) Owner of the network
(ALL_SDO_NETWORK_METAD
ATA view only)

NETWORK VARCHAR2(24) Name of the network

NETWORK_ID NUMBER ID number of the network;
assigned by Spatial and Graph

NETWORK_CATEGORY VARCHAR2(12) Contains SPATIAL if the network
nodes and links are associated
with spatial geometries; contains
LOGICAL if the network nodes
and links are not associated with
spatial geometries. A value of
LOGICAL causes the Network
Data Model Graph PL/SQL and
Java APIs to ignore any spatial
attributes of nodes, links, and
paths.
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Table 5-33    (Cont.) Columns in the xxx_SDO_NETWORK_METADATA Views

Column Name Data Type Purpose

GEOMETRY_TYPE VARCHAR2(24) If NETWORK_CATEGORY is
SPATIAL, contains a value
indicating the geometry type of
nodes and links: SDO_GEOMETRY
for non-LRS SDO_GEOMETRY
objects, LRS_GEOMETRY for LRS
SDO_GEOMETRY objects,
TOPO_GEOMETRY for
SDO_TOPO_GEOMETRY
objects.

NETWORK_TYPE VARCHAR2(24) User-defined string to identify the
network type.

NO_OF_HIERARCHY_LEVELS NUMBER Number of levels in the network
hierarchy. Contains 1 if there is
no hierarchy. (See Network
Hierarchy for information about
network hierarchy.)

NO_OF_PARTITIONS NUMBER (Not currently used)

LRS_TABLE_NAME VARCHAR2(32) If GEOMETRY_TYPE is
SDO_GEOMETRY, contains the
name of the table containing
geometries associated with
nodes.

LRS_GEOM_COLUMN VARCHAR2(32) If LRS_TABLE_NAME contains a
table name, identifies the
geometry column in that table.

NODE_TABLE_NAME VARCHAR2(32) If GEOMETRY_TYPE is
SDO_GEOMETRY, contains the
name of the table containing
geometries associated with
nodes. (The node table is
described in Node Table.)

NODE_GEOM_COLUMN VARCHAR2(32) If NODE_TABLE_NAME contains a
table name, identifies the
geometry column in that table.

NODE_COST_COLUMN VARCHAR2(1024) If NODE_TABLE_NAME contains a
table name, identifies the cost
column in that table, or a PL/SQL
function to compute the cost
value.

NODE_PARTITION_COLUMN VARCHAR2(32) (Not currently used).

NODE_DURATION_COLUMN VARCHAR2(32) If NODE_TABLE_NAME contains a
table name, identifies the
optional duration column in that
table. This column can contain a
numeric value that has any user-
defined significance, such as a
number of minutes associated
with the node.
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Table 5-33    (Cont.) Columns in the xxx_SDO_NETWORK_METADATA Views

Column Name Data Type Purpose

LINK_TABLE_NAME VARCHAR2(32) If GEOMETRY_TYPE is
SDO_GEOMETRY, contains the
name of the table containing
geometries associated with links.
(The link table is described in 
Link Table.)

LINK_GEOM_COLUMN VARCHAR2(32) If LINK_TABLE_NAME contains a
table name, identifies the
geometry column in that table.

LINK_DIRECTION VARCHAR2(12) Contains a value indicating the
type for all links in the network:
UNDIRECTED or DIRECTED.

LINK_COST_COLUMN VARCHAR2(1024) If LINK_TABLE_NAME contains a
table name, identifies the
optional numeric column
containing a cost value for each
link, or a PL/SQL function to
compute the cost value.

LINK_PARTITION_COLUMN VARCHAR2(32) (Not currently used)

LINK_DURATION_COLUMN VARCHAR2(32) If LINK_TABLE_NAME contains a
table name, identifies the
optional duration column in that
table. This column can contain a
numeric value that has any user-
defined significance, such as a
number of minutes associated
with the link.

PATH_TABLE_NAME VARCHAR2(32) Contains the name of an optional
table containing information
about paths. (The path table is
described in Path Table.)

PATH_GEOM_COLUMN VARCHAR2(32) If PATH_TABLE_NAME is
associated with a spatial
network, identifies the geometry
column in that table.

PATH_LINK_TABLE_NAME VARCHAR2(32) Contains the name of an optional
table containing information
about links for each path. (The
path-link table is described in 
Path-Link Table.)

SUBPATH_TABLE_NAME VARCHAR2(32) Contains the name of an optional
table containing information
about subpaths. (The subpath
table is described in Subpath
Table.)

SUBPATH_GEOM_COLUMN VARCHAR2(32) If SUBPATH_TABLE_NAME is
associated with a spatial
network, identifies the geometry
column in that table.
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Table 5-33    (Cont.) Columns in the xxx_SDO_NETWORK_METADATA Views

Column Name Data Type Purpose

PARTITION_TABLE_NAME VARCHAR2(32) For a partitioned network: the
name of the partition table. (The
partition table is described in 
Partition Table.

PARTITION_BLOB_TABLE_NA
ME

VARCHAR2(32) For a partitioned network for
which any partition BLOBs have
been generated: the name of the
partition BLOB table. (The
partition BLOB table is described
in Partition BLOB Table.

COMPONENT_TABLE_NAME VARCHAR2(32) The name of the table containing
information about precomputed
connected components, as
explained in Precomputed
Analysis Results. (The
connected component table is
described in Connected
Component Table.)

NODE_LEVEL_TABLE_NAME VARCHAR2(32) The name of the table containing
information about node levels in
a multilevel network. Specify this
table as the
node_level_table_name
parameter with the 
SDO_NET.GENERATE_NODE_
LEVELS procedure.

TOPOLOGY VARCHAR2(32) For a spatial network containing
SDO_TOPO_GEOMETRY
objects (creating using the 
SDO_NET.CREATE_TOPO_NE
TWORK procedure), contains
the name of the topology.

USER_DEFINED_DATA VARCHAR2(1) Contains Y if the network
contains user-defined data;
contains N if the network does
not contain user-defined data.

EXTERNAL_REFERENCES VARCHAR2(1) (Not currently used)

CHILD_NETWORK VARCHAR2(32) Name of the child network, if a
network hierarchy is involved.

HIERARCHY_TABLE_NAME VARCHAR2(32) Name of the hierarchy table, if a
network hierarchy is involved.

5.12.2 xxx_SDO_NETWORK_CONSTRAINTS Views
The following views contain information about network constraints (described in 
Network Constraints):

• USER_SDO_NETWORK_CONSTRAINTS contains information about all network
constraints owned by the user.
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• ALL_SDO_NETWORK_CONSTRAINTS contains information about all network
constraints on which the user has SELECT permission.

These views are automatically maintained by the SDO_NET.REGISTER_CONSTRAINT and 
SDO_NET.DEREGISTER_CONSTRAINT procedures. You should not directly modify the
contents of these views.

The USER_SDO_NETWORK_CONSTRAINTS and ALL_SDO_NETWORK_CONSTRAINTS
views contain the same columns, as shown Table 5-34, except that the
USER_SDO_NETWORK_CONSTRAINTS view does not contain the OWNER column. (The
columns are listed in their order in the view definition.)

Table 5-34    Columns in the xxx_SDO_NETWORK_CONSTRAINTS Views

Column Name Data Type Purpose

OWNER VARCHAR2(32) Owner of the network constraint
(ALL_SDO_NETWORK_CONST
RAINTS view only)

CONSTRAINT VARCHAR2(32) Name of the network constraint

DESCRIPTION VARCHAR2(200) Descriptive information about the
network constraint, such as its
purpose and any usage notes

CLASS_NAME VARCHAR2(4000) Name of the Java class that
implements the network
constraint

CLASS BINARY FILE LOB The Java class that implements
the network constraint

5.12.3 xxx_SDO_NETWORK_USER_DATA Views
The following views contain information about network user-defined data, which is the
information (not related to connectivity) that users want to associate with a network
representation:

• USER_SDO_NETWORK_USER_DATA contains information about all network user-
defined data owned by the user.

• ALL_SDO_NETWORK_USER_DATA contains information about all network user-defined
data on which the user has SELECT permission.

The USER_SDO_NETWORK_USER_DATA and ALL_SDO_NETWORK_USER_DATA views
contain the same columns, as shown Table 5-34, except that the
USER_SDO_NETWORK_USER_DATA view does not contain the OWNER column. (The
columns are listed in their order in the view definition.)

Table 5-35    Columns in the xxx_SDO_NETWORK_USER_DATA Views

Column Name Data Type Purpose

OWNER VARCHAR2(32) Owner of the network constraint
(ALL_SDO_NETWORK_USER_
DATA view only)

NETWORK VARCHAR2(32) Name of the network
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Table 5-35    (Cont.) Columns in the xxx_SDO_NETWORK_USER_DATA Views

Column Name Data Type Purpose

TABLE_TYPE VARCHAR2(12) Type of the table containing the
user-defined data: NODE, LINK,
PATH, or SUBPATH
If feature user data is registered
through the
xxx_SDO_USER_NETWORK_U
SER_DATA views. TABLE_TYPE
is set to the name of the feature
table.

DATA_NAME VARCHAR2(32) Name of column containing the
user-defined data

DATA_TYPE VARCHAR2(12) Data type of the user-defined
data: VARCHAR2, INTEGER,
NUMBER, DATE, TIMESTAMP, or
SDO_GEOMETRY

DATA_LENGTH NUMBER(38) If DATA_TYPE is VARCHAR2, the
length of the user-defined data

CATEGORY_ID NUMBER User data category ID (non-
negative number, default 0). The
category ID allows for grouping
of user data for different
applications. Category 0 is
reserved for general-purpose
user data that is useful for all
applications. User data for
different purposes can be
grouped into different categories,
so that during network analysis,
only the relevant user data
categories are loaded into
memory, reducing memory
consumption at runtime.

For example, for a road network,
category 0 user data can include
the speed limit and function class
of links, and the x, y coordinates
of nodes; trucking-related user
data might belong to category 1;
and traffic-related user data
might belong to category 2.

To use user-defined data, you must set the USER_DEFINED_DATA column value to Y
in the appropriate xxx_SDO_NETWORK_METADATA views (described in 
xxx_SDO_NETWORK_METADATA Views).

For an example of using user-defined data, see User-Defined Data Examples (PL/SQL
and Java).

For user data defined through the xxx_SDO_NETWORK_USER_DATA views, the
default user data I/O implementation (LODUserDataIOSDO) is used to access the user
data during network analysis. However, some user data is not included in the node or
link table, and thus cannot be registered through xxx_SDO_NETWORK_USER_DATA
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views. For such user data, you must provide your own implementation of the user data I/O
interface. A typical way of implementing a custom user data I/O interface is to generate
BLOBs corresponding to node and link user data , one BLOB for each partition, and then
retrieve user data information from the BLOBs during network analysis.

You can also associate multiple categories of user-defined data (categorized user data) with
a single network. For example, in a multimodal network (described in Multimodal Network
and Temporal Examples), if you must associate driving-related attributes (such as speed
limit) with a link in addition to the link's multimodal attributes, you can organize user-defined
data in two categories: one for driving-related attributes and the other for multimodal
attributes.

5.12.4 xxx_SDO_NETWORK_FEATURE Views
The following views contain information about network feature layers (described in Features
and Feature Layers):

• USER_SDO_NETWORK_FEATURE contains information about all network feature
layers owned by the user.

• ALL_SDO_NETWORK_FEATURE contains information about all network feature layers
on which the user has SELECT permission.

The USER_SDO_NETWORK_FEATURE and ALL_SDO_NETWORK_FEATURE views
contain the same columns, as shown Table 5-34, except that the
USER_SDO_NETWORK_FEATURE view does not contain the OWNER column. (The
columns are listed in their order in the view definition.)

Table 5-36    Columns in the xxx_SDO_NETWORK_FEATURE Views

Column Name Data Type Purpose

OWNER VARCHAR2(32) Owner of the network feature
layer
(ALL_SDO_NETWORK_FEATU
RE view only)

NETWORK VARCHAR2(32) Name of the network on which
the feature layer is defined

FEATURE_LAYER_NAME VARCHAR2(32) Name of the feature layer

FEATURE_LAYER_ID NUMBER ID of the feature layer (assigned
by Oracle Spatial and Graph)

FEATURE_LAYER_TYPE NUMBER Type of the feature layer (see 
Table 5-2 in Features and
Feature Layers)

FEATURE_TABLE_NAME VARCHAR2(32) Name of the feature table (see 
Feature Table)

RELATION_TABLE_NAME VARCHAR2(32) Name of the feature element
relationships table, which maps
feature elements with network
elements (nodes and links) (see 
Feature Element Relationships
Table)
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Table 5-36    (Cont.) Columns in the xxx_SDO_NETWORK_FEATURE Views

Column Name Data Type Purpose

HIERRCHY_TABLE_NAME VARCHAR2(32) Name of the feature hierarchy
table, which defines parent-child
relationships between features
(see Feature Hierarchy Table)

To use user-defined data, you must set the USER_DEFINED_DATA column value to Y
in the appropriate xxx_SDO_NETWORK_METADATA views (described in 
xxx_SDO_NETWORK_METADATA Views).

For an example of using user-defined data, see User-Defined Data Examples (PL/SQL
and Java).

For user data defined through the xxx_SDO_NETWORK_USER_DATA views, the
default user data I/O implementation (LODUserDataIOSDO) is used to access the user
data during network analysis. However, some user data is not included in the node or
link table, and thus cannot be registered through xxx_SDO_NETWORK_USER_DATA
views. For such user data, you must provide your own implementation of the user data
I/O interface. A typical way of implementing a custom user data I/O interface is to
generate BLOBs corresponding to node and link user data , one BLOB for each
partition, and then retrieve user data information from the BLOBs during network
analysis.

You can also associate multiple categories of user-defined data (categorized user
data) with a single network. For example, in a multimodal network (described in 
Multimodal Network and Temporal Examples), if you must associate driving-related
attributes (such as speed limit) with a link in addition to the link's multimodal attributes,
you can organize user-defined data in two categories: one for driving-related attributes
and the other for multimodal attributes.

5.12.5 xxx_SDO_NFE_MODEL_FTLAYER_REL Views
The following views contain information about network feature layers related to NFE
models. (This topic assumes you are familiar with the concepts explained in Feature
Modeling Using Network Feature Editing (NFE).)

• USER_SDO_NFE_MODEL_FTLAYER_REL contains information about feature
layers that are related to all NFE models that are owned by the user.

• ALL_SDO_NFE_MODEL_FTLAYER_REL contains information about feature
layers that are related to NFE models on which the user has SELECT permission.

The USER_SDO_NFE_MODEL_FTLAYER_REL and
ALL_SDO_NFE_MODEL_FTLAYER_REL views contain the same columns, as shown
in Table 5-37, except that the USER_SDO_NFE_MODEL_FTLAYER_REL view does
not contain the OWNER column. (The columns are listed in their order in the view
definition.)
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Table 5-37    Columns in the xxx_SDO_NFE_MODEL_FTLAYER_REL Views

Column Name Data Type Purpose

OWNER VARCHAR2(32) Owner of the NFE model
(ALL_SDO_NFE_MODEL_FTLA
YER_REL view only)

MODEL_ID NUMBER Identifier of the model related to
a feature layer.

FEATURE_LAYER_ID NUMBER Identifier of the related feature
layer.

HIERARCHY_LEVEL NUMBER Hierarchical level for the feature
layer in the model. The default is
0 (zero). Higher levels are on top
of lower levels.

Z_ORDER NUMBER Depth of the feature layer among
other feature layers in the same
hierarchy level. Normally used to
determine the order of drawing
the feature layer elements on a
canvas: the lowest order is the
first to be presented.

PATH_LAYER VARCHAR2(1) Indicates whether the feature
layer is a path generated from an
analysis operation. Y indicates a
path feature layer (generated
from an analysis operation); N or
null indicates a common feature
layer.

5.12.6 xxx_SDO_NFE_MODEL_METADATA Views
The following views contain information about NFE models. (This topic assumes you are
familiar with the concepts explained in Feature Modeling Using Network Feature Editing
(NFE).)

• USER_SDO_NFE_MODEL_METADATA contains information about NFE models that are
owned by the user.

• ALL_SDO_NFE_MODEL_METADATA contains information about NFE models on which
the user has SELECT permission.

The USER_SDO_NFE_MODEL_METADATA and ALL_SDO_NFE_MODEL_METADATA
views contain the same columns, as shown in Table 5-38, except that the
USER_SDO_NFE_MODEL_METADATA view does not contain the OWNER column. (The
columns are listed in their order in the view definition.)

Table 5-38    Columns in the xxx_SDO_NFE_MODEL_METADATA Views

Column Name Data Type Purpose

OWNER VARCHAR2(32) Owner of the NFE model
(ALL_SDO_NFE_MODEL_META
DATA view only).
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Table 5-38    (Cont.) Columns in the xxx_SDO_NFE_MODEL_METADATA Views

Column Name Data Type Purpose

ID NUMBER Model identifier (assigned by
Oracle Spatial and Graph).

NAME VARCHAR2(100) Name of the model.

EDITION_MODE NUMBER Can be 1
(SDO_NFE.FROM_SCRATCH)
for models using a new network,
creating features along with
underlying network elements, or
2
(SDO_NFE.OVER_EXISTING_N
ETWORK) for models built on top
of a currently existing network (in
which network elements cannot
be modified).

VERSIONABLE_IND VARCHAR2(1) Indicates whether the model will
allow different versions or
branches. Y indicates a they are
allowed; N indicates they are not
allowed.

TABLE_REG_TAB VARCHAR2(50) Name of the table in which the
names of the Network Feature
Editing (NFE) Model Tables are
registered. This table is
automatically created and
maintained, and it has the
columns described in Table 5-39.

SEQUENCE_REG_TAB VARCHAR2(50) Name of the table in which the
sequences associated with the
model’s tables are registered.
This table is automatically
created and maintained, and it
has the columns described in 
xxx_SDO_NFE_MODEL_META
DATA Views.

NETWORK_NAME VARCHAR2(50) Name of the network associated
with the model.
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Table 5-39    Columns in the TABLE_REG_TAB Table

Column Name Data Type Purpose

TABLE_TYPE VARCHAR2(50) Primary Key. Type of the table to
be registered. Possible values:
SDO_NFE.FT_CLASS,
SDO_NFE.FT_CLASS_REL,
SDO_NFE.FT_CLASS_ATTR_C
ON, DO_NFE.FT_USR_DATA,
SDO_NFE.FT_USR_DATA_CAT,
SDO_NFE.FT_USR_DATA_CVA
L,
SDO_NFE.FT_CLASS_DEF_PT
S,
SDO_NFE.LINE_LINE_RULES,
SDO_NFE.LINE_POINT_RULES
, SDO_NFE.RULE_INSTANCE,
SDO_NFE.FT_RULE_REL,
SDO_NFE.RULE_DEC_HANDL
ER,
SDO_NFE.POINT_CARD_RULE
S,
SDO_NFE.POINT_ATTR_DEF

TABLE_NAME VARCHAR2(50) Name assigned to the table.
When you use 
SDO_NET.ADD_CHILD_FEATU
RE, by default this name is
created in the form
[TABLE_TYPE]_[model_id]$.

Table 5-40    Columns in the SEQUENCE_REG_TAB Table

Column Name Data Type Purpose

TABLE_NAME VARCHAR2(50) Primary key. Name of the table
associated with the sequence..

SEQUENCE_NAME VARCHAR2(50) Name of the sequence..

5.12.7 xxx_SDO_NFE_MODEL_WORKSPACE Views
The following views contain information about workspaces related to NFE models. (This topic
assumes you are familiar with the concepts explained in Feature Modeling Using Network
Feature Editing (NFE).)

• USER_SDO_NFE_MODEL_WORKSPACE contains information about workspaces that
are related to all NFE models that are owned by the user.

• ALL_SDO_NFE_MODEL_WORKSPACE contains information about workspaces that are
related to NFE models on which the user has SELECT permission.

These views are automatically maintained by Spatial and Graph using the NFE Java and
PL/SQL interfaces for creating and deleting Workspace Manager workspaces. You should
never directly modify the content of these views.
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The USER_SDO_NFE_MODEL_WORKSPACE and
ALL_SDO_NFE_MODEL_WORKSPACE views contain the same columns, as shown
in Table 5-37, except that the USER_SDO_NFE_MODEL_WORKSPACE view does
not contain the OWNER column. (The columns are listed in their order in the view
definition.)

Table 5-41    Columns in the xxx_SDO_NFE_MODEL_WORKSPACE Views

Column Name Data Type Purpose

OWNER VARCHAR2(32) Owner of the NFE model
(ALL_SDO_NFE_MODEL_W
ORKSPACE view only)

ID NUMBER Identifier of the workspace.
Assigned by Oracle Spatial
and Graph.

MODEL_ID NUMBER Identifier of the model to which
the workspace belongs.

WORKSPACE_NAME VARCHAR2(50) Name of the workspace.

MBR_IND VARCHAR2(1) Indicates whether the
workspace represents an
MBR (minimum bounding
rectangle) region in the model.
Y indicates the workspace
represents an MBR; N
indicates the workspace does
not represent an MBR

LOWER_X NUMBER If MBR_IND is Y, the X value
for the lower coordinate of the
MBR.

UPPER_X NUMBER If MBR_IND is Y, the X value
for the upper coordinate of the
MBR.

LOWER_Y NUMBER If MBR_IND is Y, the Y value
for the lower coordinate of the
MBR.

UPPER_Y NUMBER If MBR_IND is Y, the Y value
for the upper coordinate of the
MBR.

LOCK_IND VARCHAR2(1) Indicates whether the
workspace is locked for editing
by others (that is,, unable to
be edited by others). Y
indicates the workspace is
locked; N indicates the
workspace is not locked.
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5.13 Network Data Model Graph Application Programming
Interface

The Oracle Spatial and Graph Network Data Model Graph feature includes two client
application programming interfaces (APIs): a PL/SQL interface provided by the SDO_NET
package and a Java interface.

Both interfaces let you create and update network data, and the Java interface lets you
perform network analysis. It is recommended that you use only PL/SQL or SQL to populate
network tables and to create indexes, and that you mainly use Java for application
development.

The following performance considerations apply to the PL/SQL and Java APIs:

• If you plan to analyze or edit only nonspatial aspects of a spatial network, you can get
better performance by setting the NETWORK_CATEGORY column value to LOGICAL in
the USER_SDO_NETWORK_METADATA view (described in 
xxx_SDO_NETWORK_METADATA Views) before performing the analysis or editing, and
then changing the value back to SPATIAL afterward.

For example, you could use this technique when finding the shortest path between two
nodes, because the shortest-path computation considers cost values. However, you
could not use this technique when setting the spatial geometry object or the end measure
value for a link.

• If you do not plan to modify any network objects (that is, if you plan to perform only
network analysis operations or to retrieve network information), you can get better
performance by creating the network memory object as read-only (that is, by specifying
that updates are not allowed).

• Network Data Model Graph PL/SQL Interface

• Network Data Model Graph Java Interface

• Network Data Model Graph XML Interface

5.13.1 Network Data Model Graph PL/SQL Interface
The SDO_NET package provides subprograms for creating, accessing, and managing
networks on a database server. Example 5-5 in Network Examples shows the use of
SDO_NET functions and procedures.

The SDO_NET subprograms can be grouped into the following logical categories:

• Creating networks:

SDO_NET.CREATE_SDO_NETWORK

SDO_NET.CREATE_LRS_NETWORK

SDO_NET.CREATE_TOPO_NETWORK

SDO_NET.CREATE_LOGICAL_NETWORK

• Copying and deleting networks:

SDO_NET.COPY_NETWORK

SDO_NET.DROP_NETWORK
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• Creating network tables:

SDO_NET.CREATE_NODE_TABLE

SDO_NET.CREATE_LINK_TABLE

SDO_NET.CREATE_PATH_TABLE

SDO_NET.CREATE_PATH_LINK_TABLE

SDO_NET.CREATE_LRS_TABLE

• Validating network objects:

SDO_NET.VALIDATE_NETWORK

SDO_NET.VALIDATE_NODE_SCHEMA

SDO_NET.VALIDATE_LINK_SCHEMA

SDO_NET.VALIDATE_PATH_SCHEMA

SDO_NET.VALIDATE_LRS_SCHEMA

• Retrieving information (getting information about the network, checking for a
characteristic):

SDO_NET.GET_CHILD_LINKS

SDO_NET.GET_CHILD_NODES

SDO_NET.GET_GEOMETRY_TYPE

SDO_NET.GET_IN_LINKS

SDO_NET.GET_LINK_COST_COLUMN

SDO_NET.GET_LINK_DIRECTION

SDO_NET.GET_LINK_GEOM_COLUMN

SDO_NET.GET_LINK_GEOMETRY

SDO_NET.GET_LINK_TABLE_NAME

SDO_NET.GET_LRS_GEOM_COLUMN

SDO_NET.GET_LRS_LINK_GEOMETRY

SDO_NET.GET_LRS_NODE_GEOMETRY

SDO_NET.GET_LRS_TABLE_NAME

SDO_NET.GET_NETWORK_TYPE

SDO_NET.GET_NO_OF_HIERARCHY_LEVELS

SDO_NET.GET_NO_OF_LINKS

SDO_NET.GET_NO_OF_NODES

SDO_NET.GET_NODE_DEGREE

SDO_NET.GET_NODE_GEOM_COLUMN

SDO_NET.GET_NODE_GEOMETRY

SDO_NET.GET_NODE_IN_DEGREE

SDO_NET.GET_NODE_OUT_DEGREE

SDO_NET.GET_NODE_TABLE_NAME
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SDO_NET.GET_OUT_LINKS

SDO_NET.GET_PATH_GEOM_COLUMN

SDO_NET.GET_PATH_TABLE_NAME

SDO_NET.IS_HIERARCHICAL

SDO_NET.IS_LOGICAL

SDO_NET.IS_SPATIAL

SDO_NET.LRS_GEOMETRY_NETWORK

SDO_NET.NETWORK_EXISTS

SDO_NET.SDO_GEOMETRY_NETWORK

SDO_NET.TOPO_GEOMETRY_NETWORK

For reference information about each SDO_NET function and procedure, see SDO_NET
Package Subprograms.

5.13.2 Network Data Model Graph Java Interface
The Network Data Model Graph feature includes the load on demand Java interface.
Complete reference information about this interface is provided in Oracle Spatial and Graph
Java API Reference. The classes of the load on demand Java interface are in the
oracle.spatial.network.lod package and its subpackages.

The Spatial and Graph Java class libraries are in .jar files under the <ORACLE_HOME>/md/
jlib/ directory.

• Network Metadata and Data Management

• Network Analysis Using the Load on Demand Approach

5.13.2.1 Network Metadata and Data Management
You can use the Java API to perform network metadata and data management operations
such as the following:

• Insert, delete, and modify node and link data

• Load a network from a database

• Store a network in a database

• Store network metadata in a database

• Modify network metadata attributes

5.13.2.2 Network Analysis Using the Load on Demand Approach
You can use the oracle.spatial.network.lod.NetworkAnalyst class to perform network
analysis operations, such as the following, using the load on demand approach:

• Shortest path: typical transitive closure problems in graph theory. Given a start and an
end node, find the shortest path.

• Reachability: Given a node, find all nodes that can reach that node, or find all nodes that
can be reached by that node.
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• Within-cost analysis: Given a target node and a cost, find all nodes that can be
reached by the target node within the given cost.

• Nearest-neighbors analysis: Given a target node and number of neighbors, find
the neighbor nodes and their costs to go to the given target node.

• Dynamic data input: Create and use a NetworkUpdate object with network update
information.

• User-defined link and node cost calculators: Define the method for computing the
cost of a link or a node.

5.13.3 Network Data Model Graph XML Interface
You can use the Network Data Model Graph XML API to perform network analysis.
Web service requests are supported through Oracle Spatial and Graph web services,
which are described in Oracle Spatial and Graph Developer's Guide.

HTTP requests can be sent to the web service from Java, PLSQL, or .NET programs
or simply from a HTML form. The SDO_NET.POST_XML function (described in 
SDO_NET Package Subprograms) enables PL/SQL users to call the web service.

The XML schema of the Network Data Model Graph XML API is described in the
following: $ORACLE_HOME/md/doc/sdondmxml.zip
• User-Specified Implementations

5.13.3.1 User-Specified Implementations
The XML API can take user-specified constraints, cost calculators, or even network
analysis algorithm settings, by letting you specify the Java class that implements the
LOD interfaces. For any implementation that requires input parameters, such as truck
weight or height in a trucking constraint implementation, the Java class must
implement the oracle.spatial.network.lod.XMLConfigurable interface, that is, it
must implement the following two methods:

• void init(Element parameter);
• String getXMLSchema();
The init method lets you pass in the input parameter as an XML element, which must
follow the schema returned from the getXMLSchema method.

The following XML code segment is an example of how to configure the shortest path
algorithm for a shortest path analysis request:

<startPoint>
  <nodeID>123</nodeID>
</startPoint>
<endPoint>
  <nodeID>456</nodeID>
</endPoint>
<shortestPathAlgorithm>
  <className>oracle.spatial.network.lod.AStar</className>
  <parameters>
    <heuristicCostFunction>
      <className>oracle.spatial.network.lod.GeodeticCostFunction</className>
      <parameters>
        <userDataCategory>0</userDataCategory>
        <xCoordUserDataIndex>0</xCoordUserDataIndex>
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        <yCoordUserDataIndex>1</yCoordUserDataIndex>
      </parameters>
    </heuristicCostFunction>
    <linkLevelSelector>
      <className>oracle.spatial.network.lod.DynamicLinkLevelSelector</className>
      <parameters>
        <maxLinkLevel>2</maxLinkLevel>
        <costThreshold linkLevel="1">40000</costThreshold>
        <numHighLevelNeighbors>8</numHighLevelNeighbors>
        <costMultiplier>1.5</costMultiplier>
        <costFunction>
          <className>oracle.spatial.network.lod.GeodeticCostFunction</className>
          <parameters>
            <userDataCategory>0</userDataCategory>
            <xCoordUserDataIndex>0</xCoordUserDataIndex>
            <yCoordUserDataIndex>1</yCoordUserDataIndex>
          </parameters>
        </costFunction>
      </parameters>
    </linkLevelSelector>
  </parameters>
</shortestPathAlgorithm>

More examples of the XML API are provided with the NDM tutorial (see Network Data Model
Graph Tutorial and Other Resources).

5.14 Cross-Schema Network Access
If database users other than the network owner need to read a network into memory, you
need to do one of the following options.

• For each non-owner user, qualify the network tables with the schema of the network
owner in the USER_SDO_NETWORK_METADATA view, as explained in Cross-Schema
Access by Specifying Owner in Network Metadata.

• For each non-owner user, create views on the Network Data Model Graph tables and
update the USER_SDO_NETWORK_METADATA view, as explained in Cross-Schema
Access by Using Views.

The second approach requires the extra step of creating views, but the views provide you
with flexibility in controlling the parts of the network that are accessible. Each view can
provide access to all of the network, or it can use a WHERE clause to provide access to just
one or more parts (for example, WHERE STATE_CODE='NY' to restrict the view users to rows for
New York) .

Consider the following example scenario:

• User1 creates (and thus owns) Network1.

• User2 attempts to call the SDO_NET_MEM.NETWORK_MANAGER.READ_NETWORK
procedure to read Network1, but receives an error. The error occurs even though User2
has the appropriate privileges on the Network Data Model Graph tables for Network1.

To work around this problem, you must use the approach in either Cross-Schema Access by
Specifying Owner in Network Metadata or Cross-Schema Access by Using Views.

• Cross-Schema Access by Specifying Owner in Network Metadata

• Cross-Schema Access by Using Views
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5.14.1 Cross-Schema Access by Specifying Owner in Network
Metadata

To enable a non-owner user (with suitable privileges) to access a network, you can
specify the network owner in the network metadata. For each non-owner user that will
be permitted to access the network, follow these steps:

1. Ensure that the user has SELECT or READ privilege access to the necessary
Network Data Model Graph tables. If the user does not have this access, connect
as the network owner and grant it. For example, connect as User1 and execute
the following statements:

GRANT select ON network1_node$ TO user2;
GRANT select ON network1_link$ TO user2;
GRANT select ON network1_path$ TO user2;
GRANT select ON network1_plink$ TO user2;

2. Connect as the non-owner user. For example, connect as User2.

3. Use the schema name of the network owner to qualify the Network Data Model
Graph tables for the network in the USER_SDO_NETWORK_METADATA view
(explained in xxx_SDO_NETWORK_METADATA Views). For example, if the
network is not already defined in this view, enter the following while connected as
User2:

INSERT INTO user_sdo_network_metadata 
  (network, network_category, geometry_type, 
   node_table_name,node_geom_column,
   link_table_name, link_geom_column, link_direction,
   path_table_name, path_geom_column,
   path_link_table_name)
VALUES
  ('NETWORK1','SPATIAL', 'SDO_GEOMETRY',
   'USER1.NETWORK1_NODE$', 'GEOMETRY',
   'USER1.NETWORK1_LINK$', 'GEOMETRY', 'DIRECTED',
   'USER1.NETWORK1_PATH$', 'GEOMETRY',
   'USER1.NETWORK1_PLINK$');

If the network is already defined in this view, update the definition to qualify each
table name with the schema name. For example:

UPDATE USER_SDO_NETWORK_METADATA
  SET node_table_name = 'USER1.NETWORK1_NODE$',
      link_table_name = 'USER1.NETWORK1_LINK$',
      path_table_name = 'USER1.NETWORK1_PATH$',
      path_link_table_name = 'USER1.NETWORK1_PLINK$'
  WHERE network = 'NETWORK1';

In this scenario, User2 can now read NETWORK1 into memory.

5.14.2 Cross-Schema Access by Using Views
To enable a non-owner user (with suitable privileges) to access a network, or specific
parts of a network, you can create views. For each non-owner user that will be
permitted to access the network, follow these steps:

1. Ensure that the user has SELECT or READ privilege access to the necessary
Network Data Model Graph tables. If the user does not have this access, connect
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as the network owner and grant it. For example, connect as User1 and execute the
following statements:

GRANT select ON network1_node$ TO user2;
GRANT select ON network1_link$ TO user2;
GRANT select ON network1_path$ TO user2;
GRANT select ON network1_plink$ TO user2;

2. Connect as the non-owner user. For example, connect as User2.

3. Create a view on each of the necessary Network Data Model Graph nodes, with each
view selecting all columns in the associated table. Qualify the table name with the
schema name of the network owner. For example, while connected as User2:

CREATE VIEW network1_node$ AS select * from user1.network1_node$;
CREATE VIEW network1_link$ AS select * from user1.network1_link$;
CREATE VIEW network1_path$ AS select * from user1.network1_path$;
CREATE VIEW network1_plink$ AS select * from user1.network1_plink$;

Note:

Although this example shows views that include all data in the underlying
tables, you can restrict the parts of the network that are available by using a
WHERE clause in each view definition (for example, WHERE STATE_CODE='NY').

4. Add a row specifying the newly created views to the
USER_SDO_NETWORK_METADATA view (explained in 
xxx_SDO_NETWORK_METADATA Views). For example, while connected as User2:

INSERT INTO user_sdo_network_metadata 
  (network, network_category, geometry_type, 
   node_table_name,node_geom_column,
   link_table_name, link_geom_column, link_direction,
   path_table_name, path_geom_column,
   path_link_table_name)
VALUES
  ('NETWORK1','SPATIAL', 'SDO_GEOMETRY',
   'NETWORK1_NODE$', 'GEOMETRY',
   'NETWORK1_LINK$', 'GEOMETRY', 'DIRECTED',
   'NETWORK1_PATH$', 'GEOMETRY',
   'NETWORK1_PLINK$');

In this scenario, User2 can now read into memory those parts of NETWORK1 that are
available through the views that were created.

5.15 Network Examples
This topic presents several Network Data Model Graph examples.

Most are simplified examples. All examples use the PL/SQL API, and some also use other
APIs.

The examples refer to concepts that are explained in this chapter, and they use PL/SQL
functions and procedures documented in SDO_NET Package Subprograms.

• Simple Spatial (SDO) Network Example (PL/SQL)

• Simple Logical Network Example (PL/SQL)
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• Spatial (LRS) Network Example (PL/SQL)

• Logical Hierarchical Network Example (PL/SQL)

• Partitioning and Load on Demand Analysis Examples (PL/SQL, XML, and Java)

• User-Defined Data Examples (PL/SQL and Java)

5.15.1 Simple Spatial (SDO) Network Example (PL/SQL)
This section presents an example of a very simple spatial (SDO, not LRS) network that
contains three nodes and a link between each node. The network is illustrated in 
Figure 5-4.

Figure 5-4    Simple Spatial (SDO) Network
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As shown in Figure 5-4, node N1 is at point 1,1, node N2 is at point 15,1, and node N3
is at point 9,4. Link L1 is a straight line connecting nodes N1 and N2, link L2 is a straight
line connecting nodes N2 and N3, and link L3 is a straight line connecting nodes N3 and
N1. There are no other nodes or shape points on any of the links.

Example 5-3 does the following:

• In a call to the SDO_NET.CREATE_SDO_NETWORK procedure, creates the
SDO_NET1 directed network; creates the SDO_NET1_NODE$, SDO_NET1_LINK$,
SDO_NET1_PATH$, and SDO_NET1_PLINK$ tables; and updates the
xxx_SDO_NETWORK_METADATA views. All geometry columns are named
GEOMETRY. Both the node and link tables contain a cost column named COST.

• Populates the node, link, path, and path-link tables. It inserts three rows into the
node table, three rows into the link table, two rows into the path table, and four
rows into the path-link table.

• Updates the Oracle Spatial and Graph metadata, and creates spatial indexes on
the GEOMETRY columns of the node and link tables. (These actions are not
specifically related to network management, but that are necessary if applications
are to benefit from spatial indexing on these geometry columns.)

Example 5-3 does not show the use of many SDO_NET functions and procedures;
these are included in Example 5-5 in Spatial (LRS) Network Example (PL/SQL).

Example 5-3    Simple Spatial (SDO) Network Example (PL/SQL)

-- Create the SDO_NET1 directed network. Also creates the SDO_NET1_NODE$, 
-- SDO_NET1_LINK$, SDO_NET1_PATH$, SDO_NET1_PLINK$ tables, and updates 
-- USER_SDO_NETWORK_METADATA. All geometry columns are named GEOMETRY. 
-- Both the node and link tables contain a cost column named COST. 
EXECUTE SDO_NET.CREATE_SDO_NETWORK('SDO_NET1', 1, TRUE, TRUE);
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-- Populate the SDO_NET1_NODE$ table.
-- N1
INSERT INTO sdo_net1_node$ (node_id, node_name, active, geometry, cost)
  VALUES(1, 'N1', 'Y',
    SDO_GEOMETRY(2001, NULL, SDO_POINT_TYPE(1,1,NULL), NULL, NULL),
    5);
-- N2
INSERT INTO sdo_net1_node$ (node_id, node_name, active, geometry, cost)
  VALUES(2, 'N2', 'Y',
    SDO_GEOMETRY(2001, NULL, SDO_POINT_TYPE(15,1,NULL), NULL, NULL),
    8);
-- N3
INSERT INTO sdo_net1_node$ (node_id, node_name, active, geometry, cost)
  VALUES(3, 'N3', 'Y',
    SDO_GEOMETRY(2001, NULL, SDO_POINT_TYPE(9,4,NULL), NULL, NULL),
    4);
 
-- Populate the SDO_NET1_LINK$ table.
-- L1
INSERT INTO sdo_net1_link$ (link_id, link_name, start_node_id, end_node_id,
     active, geometry, cost, bidirected)
  VALUES(1, 'L1', 1, 2, 'Y',
    SDO_GEOMETRY(2002, NULL, NULL, 
      SDO_ELEM_INFO_ARRAY(1,2,1), 
        SDO_ORDINATE_ARRAY(1,1, 15,1)),
    14, 'Y');
-- L2
INSERT INTO sdo_net1_link$ (link_id, link_name, start_node_id, end_node_id,
     active, geometry, cost, bidirected)
   VALUES(2, 'L2', 2, 3, 'Y',
    SDO_GEOMETRY(2002, NULL, NULL, 
      SDO_ELEM_INFO_ARRAY(1,2,1), 
        SDO_ORDINATE_ARRAY(15,1, 9,4)),
    10, 'Y');
-- L3
INSERT INTO sdo_net1_link$ (link_id, link_name, start_node_id, end_node_id,
     active, geometry, cost, bidirected)
  VALUES(3, 'L3', 3, 1, 'Y',
    SDO_GEOMETRY(2002, NULL, NULL, 
      SDO_ELEM_INFO_ARRAY(1,2,1), 
        SDO_ORDINATE_ARRAY(9,4, 1,1)),
    10, 'Y');
 
-- Do not populate the SDO_NET1_PATH$ and SDO_NET1_PLINK$ tables now.
-- Do this only when you need to create any paths.
 
---------------------------------------------------------------------------
-- REMAINING STEPS NEEDED TO USE SPATIAL INDEXES --
---------------------------------------------------------------------------
-- Update the USER_SDO_GEOM_METADATA view. This is required before the
-- spatial index can be created. Do this only once for each layer
-- (that is, table-column combination).

INSERT INTO user_sdo_geom_metadata
    (TABLE_NAME,
     COLUMN_NAME,
     DIMINFO,
     SRID)
  VALUES (
    'SDO_NET1_NODE$',
    'GEOMETRY',
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    SDO_DIM_ARRAY(   -- 20X20 grid
      SDO_DIM_ELEMENT('X', 0, 20, 0.005),
      SDO_DIM_ELEMENT('Y', 0, 20, 0.005)
       ),
    NULL   -- SRID (spatial reference system, also called coordinate system)
  );
INSERT INTO user_sdo_geom_metadata
    (TABLE_NAME,
     COLUMN_NAME,
     DIMINFO,
     SRID)
  VALUES (
    'SDO_NET1_LINK$',
    'GEOMETRY',
    SDO_DIM_ARRAY(   -- 20X20 grid
      SDO_DIM_ELEMENT('X', 0, 20, 0.005),
      SDO_DIM_ELEMENT('Y', 0, 20, 0.005)
       ),
    NULL   -- SRID (spatial reference system, also called coordinate system)
  );
 
-- Create the spatial indexes
CREATE INDEX sdo_net1_nodes_idx ON sdo_net1_node$(geometry)
  INDEXTYPE IS MDSYS.SPATIAL_INDEX;
CREATE INDEX sdo_net1_links_idx ON sdo_net1_link$(geometry)
  INDEXTYPE IS MDSYS.SPATIAL_INDEX;

5.15.2 Simple Logical Network Example (PL/SQL)
This section presents an example of a very simple logical network that contains three
nodes and a link between the nodes. The network is illustrated in Figure 5-5.

Figure 5-5    Simple Logical Network
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As shown in Figure 5-5, link L1 is a straight line connecting nodes N1 and N2, link L2 is
a straight line connecting nodes N2 and N3, and link L3 is a straight line connecting
nodes N3 and N1. There are no other nodes on any of the links.

Example 5-4 calls the SDO_NET.CREATE_LOGICAL_NETWORK procedure, which
does the following: creates the LOG_NET1 directed network; creates the
LOG_NET1_NODE$, LOG_NET1_LINK$, LOG_NET1_PATH$, and
LOG_NET1_PLINK$ tables; and updates the xxx_SDO_NETWORK_METADATA
views. Both the node and link tables contain a cost column named COST. (Because
this is a logical network, there are no geometry columns.) The example also populates
the node and link tables.

Example 5-4 does not show the use of many SDO_NET functions and procedures;
these are included in the logical hierarchical network example (Example 5-6) in Logical
Hierarchical Network Example (PL/SQL).
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Example 5-4    Simple Logical Network Example (PL/SQL)

-- Creates the LOG_NET1 directed logical network. Also creates the
-- LOG_NET1_NODE$, LOG_NET1_LINK$, LOG_NET1_PATH$,
-- and LOG_NET1_PLINK$ tables, and updates USER_SDO_NETWORK_METADATA.
-- Both the node and link tables contain a cost column named COST. 
EXECUTE SDO_NET.CREATE_LOGICAL_NETWORK('LOG_NET1', 1, TRUE, TRUE);
 
-- Populate the LOG_NET1_NODE$ table.
-- N1
INSERT INTO log_net1_node$ (node_id, node_name, active, cost)
  VALUES (1, 'N1', 'Y', 2);
-- N2
INSERT INTO log_net1_node$ (node_id, node_name, active, cost)
  VALUES (2, 'N2', 'Y', 3);
-- N3
INSERT INTO log_net1_node$ (node_id, node_name, active, cost)
  VALUES (3, 'N3', 'Y', 2);
 
-- Populate the LOG_NET1_LINK$ table.
-- L1
INSERT INTO log_net1_link$ (link_id, link_name, start_node_id, end_node_id,
     active, link_level, cost)
  VALUES (1, 'L1', 1, 2, 'Y', 1, 10);
-- L2
INSERT INTO log_net1_link$ (link_id, link_name, start_node_id, end_node_id,
     active, link_level, cost)
  VALUES (2, 'L2', 2, 3, 'Y', 1, 7);
-- L3
INSERT INTO log_net1_link$ (link_id, link_name, start_node_id, end_node_id,
     active, link_level, cost)
  VALUES (3, 'L3', 3, 1, 'Y', 1, 8);
 
-- Do not populate the LOG_NET1_PATH$ and LOG_NET1_PLINK$ tables now.
-- Do this only when you need to create any paths.

5.15.3 Spatial (LRS) Network Example (PL/SQL)
This section presents an example of a spatial (LRS) network that uses the roads (routes)
illustrated in Figure 5-6. Each road is built from individual line segments (associated with
links) taken from one or more road segment geometries, which are also shown in the figure.
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Figure 5-6    Roads and Road Segments for Spatial (LRS) Network Example
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As shown in Figure 5-6:

• Route1 starts at point 2,2 and ends at point 5,14. It has the following nodes: N1, N2,
N3, N4, N5, N6, and N7. It has the following links: R1L1, R1L2, R1L3, R1L4, R1L5, and
R1L6.

• Route2 starts at point 8,4 and ends at point 8,13. It has the following nodes: N3, N6,
and N8. It has the following links: R2L1 and R2L2.

• Route3 starts at point 12,10 and ends at point 5,14. It has the following nodes: N5,
N8, and N7. It has the following links: R3L1 and R3L2.

• The four road segment geometries are shown individually on the right side of the
figure. (The points on each segment are labeled with their associated node
names, to clarify how each segment geometry fits into the illustration on the left
side.)

Example 5-5 does the following:

• Creates a table to hold the road segment geometries.

• Inserts four road segment geometries into the table.

• Inserts the spatial metadata into the USER_SDO_GEOM_METADATA view.

• Creates a spatial index on the geometry column in the ROAD_SEGMENTS table.

• Creates and populates the node table.

• Creates and populates the link table.

• Creates and populates the path table and path-link table, for possible future use.
(Before an application can use paths, you must populate these two tables.)

• Inserts network metadata into the USER_SDO_NETWORK_METADATA view.
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Example 5-5    Spatial (LRS) Network Example (PL/SQL)

---------------------------------------------------------------------------
-- CREATE AND POPULATE TABLE --
---------------------------------------------------------------------------
-- Create a table for road segments. Use LRS.
CREATE TABLE road_segments (
  segment_id  NUMBER PRIMARY KEY,
  segment_name  VARCHAR2(32),
  segment_geom  SDO_GEOMETRY, 
  geom_id NUMBER);
 
-- Populate the table with road segments.
INSERT INTO road_segments VALUES(
  1,
  'Segment1',
  SDO_GEOMETRY(
    3302,  -- line string, 3 dimensions (X,Y,M), 3rd is measure dimension
    NULL,
    NULL,
    SDO_ELEM_INFO_ARRAY(1,2,1), -- one line string, straight segments
    SDO_ORDINATE_ARRAY(
      2,2,0,   -- Starting point - Node1; 0 is measure from start.
      2,4,2,   -- Node2; 2 is measure from start. 
      8,4,8,   -- Node3; 8 is measure from start. 
      12,4,12) -- Node4; 12 is measure from start. 
  ), 1001
);
 
INSERT INTO road_segments VALUES(
  2,
  'Segment2',
  SDO_GEOMETRY(
    3302,  -- line string, 3 dimensions (X,Y,M), 3rd is measure dimension
    NULL,
    NULL,
    SDO_ELEM_INFO_ARRAY(1,2,1), -- one line string, straight segments
    SDO_ORDINATE_ARRAY(
      8,4,0,   -- Node3; 0 is measure from start. 
      8,10,6,  -- Node6; 6 is measure from start. 
      8,13,9)  -- Ending point - Node8; 9 is measure from start.
  ), 1002
);
 
INSERT INTO road_segments VALUES(
  3,
  'Segment3',
  SDO_GEOMETRY(
    3302,  -- line string, 3 dimensions (X,Y,M), 3rd is measure dimension
    NULL,
    NULL,
    SDO_ELEM_INFO_ARRAY(1,2,1), -- one line string, straight segments
    SDO_ORDINATE_ARRAY(
      12,4,0,     -- Node4; 0 is measure from start.
      12,10,6,    -- Node5; 6 is measure from start. 
      8,13,11,    -- Node8; 11 is measure from start. 
      5,14,14.16) -- Ending point - Node7; 14.16 is measure from start.
  ), 1003
);
 
INSERT INTO road_segments VALUES(
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  4,
  'Segment4',
  SDO_GEOMETRY(
    3302,  -- line string, 3 dimensions (X,Y,M), 3rd is measure dimension
    NULL,
    NULL,
    SDO_ELEM_INFO_ARRAY(1,2,1), -- one line string, straight segments
    SDO_ORDINATE_ARRAY(
      12,10,0, -- Node5; 0 is measure from start.
      8,10,4,  -- Node6; 4 is measure from start.  
      5,14,9)  -- Ending point - Node7; 9 is measure from start.
  ), 1004
);
 
---------------------------------------------------------------------------
-- UPDATE THE SPATIAL METADATA --
---------------------------------------------------------------------------
-- Update the USER_SDO_GEOM_METADATA view. This is required before the
-- spatial index can be created. Do this only once for each layer
-- (that is, table-column combination; here: road_segment and segment_geom).
INSERT INTO user_sdo_geom_metadata
    (TABLE_NAME,
     COLUMN_NAME,
     DIMINFO,
     SRID)
  VALUES (
  'ROAD_SEGMENTS',
  'SEGMENT_GEOM',
  SDO_DIM_ARRAY(   -- 20X20 grid
    SDO_DIM_ELEMENT('X', 0, 20, 0.005),
    SDO_DIM_ELEMENT('Y', 0, 20, 0.005),
    SDO_DIM_ELEMENT('M', 0, 20, 0.005) -- Measure dimension
     ),
  NULL   -- SRID (spatial reference system, also called coordinate system)
);
 
-------------------------------------------------------------------
-- CREATE THE SPATIAL INDEX --
-------------------------------------------------------------------
CREATE INDEX road_segments_idx ON road_segments(segment_geom)
  INDEXTYPE IS MDSYS.SPATIAL_INDEX;
  
--------------------------------
-- USE SDO_NET SUBPROGRAMS
--------------------------------
 
-- This procedure does not use the CREATE_LRS_NETWORK procedure. Instead,
-- the user creates the network tables and populates the network metadata view.
-- Basic steps:
-- 1. Create and populate the node table.
-- 2. Create and populate the link table.
-- 3. Create the path table and paths and links table (for possible 
--    future use, before which they will need to be populated).
-- 4. Populate the network metadata (USER_SDO_NETWORK_METADATA).
--    Note: Can be done before or after Steps 1-3.
-- 5. Use various SDO_NET functions and procedures.
 
-- 1. Create and populate the node table.
EXECUTE SDO_NET.CREATE_NODE_TABLE('ROADS_NODES', 'LRS_GEOMETRY', 
'NODE_GEOMETRY', 'COST', 1);
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-- Populate the node table.
 
-- N1
INSERT INTO roads_nodes (node_id, node_name, active, geom_id, measure) 
  VALUES (1, 'N1', 'Y', 1001, 0);
 
-- N2
INSERT INTO roads_nodes (node_id, node_name, active, geom_id, measure)
  VALUES (2, 'N2', 'Y', 1001, 2);
 
-- N3
INSERT INTO roads_nodes (node_id, node_name, active, geom_id, measure)
  VALUES (3, 'N3', 'Y', 1001, 8);
 
-- N4
INSERT INTO roads_nodes (node_id, node_name, active, geom_id, measure)
  VALUES (4, 'N4', 'Y', 1001, 12);
 
-- N5
INSERT INTO roads_nodes (node_id, node_name, active, geom_id, measure)
  VALUES (5, 'N5', 'Y', 1004, 0);
 
-- N6
INSERT INTO roads_nodes (node_id, node_name, active, geom_id, measure)
  VALUES (6, 'N6', 'Y', 1002, 6);
 
-- N7
INSERT INTO roads_nodes (node_id, node_name, active, geom_id, measure)
  VALUES (7, 'N7', 'Y', 1004, 9);
 
-- N8
INSERT INTO roads_nodes (node_id, node_name, active, geom_id, measure)
  VALUES (8, 'N8', 'Y', 1002, 9);
 
-- 2. Create and populate the link table.
EXECUTE SDO_NET.CREATE_LINK_TABLE('ROADS_LINKS', 'LRS_GEOMETRY', 'LINK_GEOMETRY', 
'COST', 1);
 
-- Populate the link table.
 
-- Route1, Link1
INSERT INTO roads_links (link_id, link_name, start_node_id, end_node_id, active, 
   cost, geom_id, start_measure, end_measure)
VALUES (101, 'R1L1', 1, 2, 'Y', 3, 1001, 0, 2);
 
-- Route1, Link2
INSERT INTO roads_links (link_id, link_name, start_node_id, end_node_id, active, 
   cost, geom_id, start_measure, end_measure)
VALUES (102, 'R1L2', 2, 3, 'Y', 15, 1001, 2, 8);
 
 -- Route1, Link3
INSERT INTO roads_links (link_id, link_name, start_node_id, end_node_id, active,
   cost, geom_id, start_measure, end_measure)
VALUES (103, 'R1L3', 3, 4, 'Y', 10, 1001, 8, 12);
 
-- Route1, Link4
INSERT INTO roads_links (link_id, link_name, start_node_id, end_node_id, active,
   cost, geom_id, start_measure, end_measure)
VALUES (104, 'R1L4', 4, 5, 'Y', 15, 1003, 0, 6);
 
-- Route1, Link5
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INSERT INTO roads_links (link_id, link_name, start_node_id, end_node_id, active,
   cost, geom_id, start_measure, end_measure)
VALUES (105, 'R1L5', 5, 6, 'Y', 10, 1004, 0, 4);
 
-- Route1, Link6
INSERT INTO roads_links (link_id, link_name, start_node_id, end_node_id, active,
   cost, geom_id, start_measure, end_measure)
VALUES (106, 'R1L6', 6, 7, 'Y', 7, 1004, 4, 9);
 
-- Route2, Link1 (cost = 30, a slow drive)
INSERT INTO roads_links (link_id, link_name, start_node_id, end_node_id, active,
   cost, geom_id, start_measure, end_measure)
VALUES (201, 'R2L1', 3, 6, 'Y', 30, 1002, 0, 6);
 
-- Route2, Link2
INSERT INTO roads_links (link_id, link_name, start_node_id, end_node_id, active,
   cost, geom_id, start_measure, end_measure)
VALUES (202, 'R2L2', 6, 8, 'Y', 5, 1002, 6, 9);
 
-- Route3, Link1
INSERT INTO roads_links (link_id, link_name, start_node_id, end_node_id, active,
   cost, geom_id, start_measure, end_measure)
VALUES (301, 'R3L1', 5, 8, 'Y', 5, 1003, 6, 11);
 
-- Route3, Link2
INSERT INTO roads_links (link_id, link_name, start_node_id, end_node_id, active,
   cost, geom_id, start_measure, end_measure)
VALUES (302, 'R3L2', 8, 7, 'Y', 5, 1003, 11, 14.16);
 
-- 3. Create the path table (to store created paths) and the path-link 
--    table (to store links for each path) for possible future use,
--    before which they will need to be populated.
EXECUTE SDO_NET.CREATE_PATH_TABLE('ROADS_PATHS', 'PATH_GEOMETRY');
EXECUTE SDO_NET.CREATE_PATH_LINK_TABLE('ROADS_PATHS_LINKS');
 
-- 4. Populate the network metadata (USER_SDO_NETWORK_METADATA).
 
INSERT INTO user_sdo_network_metadata 
    (NETWORK,
     NETWORK_CATEGORY,
     GEOMETRY_TYPE,
     NETWORK_TYPE,
     NO_OF_HIERARCHY_LEVELS,
     NO_OF_PARTITIONS,
     LRS_TABLE_NAME,
     LRS_GEOM_COLUMN,
     NODE_TABLE_NAME,
     NODE_GEOM_COLUMN,
     NODE_COST_COLUMN,
     LINK_TABLE_NAME,
     LINK_GEOM_COLUMN,
     LINK_DIRECTION,
     LINK_COST_COLUMN,
     PATH_TABLE_NAME,
     PATH_GEOM_COLUMN,
     PATH_LINK_TABLE_NAME)
  VALUES (
    'ROADS_NETWORK',  -- Network name
    'SPATIAL',  -- Network category
    'LRS_GEOMETRY',  -- Geometry type
    'Roadways',  -- Network type (user-defined)
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    1,  -- No. of levels in hierarchy
    1,  -- No. of partitions
    'ROAD_SEGMENTS',   -- LRS table name
    'SEGMENT_GEOM' ,  -- LRS geometry column
    'ROADS_NODES',  -- Node table name
    'NODE_GEOMETRY',  -- Node geometry column
    'COST',  -- Node cost column
    'ROADS_LINKS',  -- Link table name
    'LINK_GEOMETRY',  -- Link geometry column
    'DIRECTED',  -- Link direction
    'COST',  -- Link cost column
    'ROADS_PATHS',  -- Path table name
    'PATH_GEOMETRY',  -- Path geometry column
    'ROADS_PATHS_LINKS'  -- Paths and links table
    );
 
-- 5. Use various SDO_NET functions and procedures.
 
-- Validate the network.
SELECT SDO_NET.VALIDATE_NETWORK('ROADS_NETWORK') FROM DUAL;
 
-- Validate parts or aspects of the network.
SELECT SDO_NET.VALIDATE_LINK_SCHEMA('ROADS_NETWORK') FROM DUAL;
SELECT SDO_NET.VALIDATE_LRS_SCHEMA('ROADS_NETWORK') FROM DUAL;
SELECT SDO_NET.VALIDATE_NODE_SCHEMA('ROADS_NETWORK') FROM DUAL;
SELECT SDO_NET.VALIDATE_PATH_SCHEMA('ROADS_NETWORK') FROM DUAL;
 
-- Retrieve various information (GET_xxx and some other functions).
SELECT SDO_NET.GET_CHILD_LINKS('ROADS_NETWORK', 101) FROM DUAL;
SELECT SDO_NET.GET_CHILD_NODES('ROADS_NETWORK', 1) FROM DUAL;
SELECT SDO_NET.GET_GEOMETRY_TYPE('ROADS_NETWORK') FROM DUAL;
SELECT SDO_NET.GET_IN_LINKS('ROADS_NETWORK', 3) FROM DUAL;
SELECT SDO_NET.GET_INVALID_LINKS('ROADS_NETWORK') FROM DUAL;
SELECT SDO_NET.GET_INVALID_NODES('ROADS_NETWORK') FROM DUAL;
SELECT SDO_NET.GET_INVALID_PATHS('ROADS_NETWORK') FROM DUAL;
SELECT SDO_NET.GET_ISOLATED_NODES('ROADS_NETWORK') FROM DUAL;
SELECT SDO_NET.GET_LINK_COST_COLUMN('ROADS_NETWORK') FROM DUAL;
SELECT SDO_NET.GET_LINK_DIRECTION('ROADS_NETWORK') FROM DUAL;
SELECT SDO_NET.GET_LINK_GEOM_COLUMN('ROADS_NETWORK') FROM DUAL;
SELECT SDO_NET.GET_LINK_GEOMETRY('ROADS_NETWORK', 103) FROM DUAL;
SELECT SDO_NET.GET_LINK_TABLE_NAME('ROADS_NETWORK') FROM DUAL;
SELECT SDO_NET.GET_LRS_GEOM_COLUMN('ROADS_NETWORK') FROM DUAL;
SELECT SDO_NET.GET_LRS_LINK_GEOMETRY('ROADS_NETWORK', 103) FROM DUAL;
SELECT SDO_NET.GET_LRS_NODE_GEOMETRY('ROADS_NETWORK', 3) FROM DUAL;
SELECT SDO_NET.GET_LRS_TABLE_NAME('ROADS_NETWORK') FROM DUAL;
SELECT SDO_NET.GET_NETWORK_CATEGORY('ROADS_NETWORK') FROM DUAL;
SELECT SDO_NET.GET_NETWORK_ID('ROADS_NETWORK') FROM DUAL;
SELECT SDO_NET.GET_NETWORK_NAME(3) FROM DUAL;
SELECT SDO_NET.GET_NETWORK_TYPE('ROADS_NETWORK') FROM DUAL;
SELECT SDO_NET.GET_NO_OF_HIERARCHY_LEVELS('ROADS_NETWORK') FROM DUAL;
SELECT SDO_NET.GET_NO_OF_LINKS('ROADS_NETWORK') FROM DUAL;
SELECT SDO_NET.GET_NO_OF_NODES('ROADS_NETWORK') FROM DUAL;
SELECT SDO_NET.GET_NODE_DEGREE('ROADS_NETWORK', 3) FROM DUAL;
SELECT SDO_NET.GET_NODE_GEOM_COLUMN('ROADS_NETWORK') FROM DUAL;
SELECT SDO_NET.GET_NODE_GEOMETRY('ROADS_NETWORK', 3) FROM DUAL;
SELECT SDO_NET.GET_NODE_IN_DEGREE('ROADS_NETWORK', 3) FROM DUAL;
SELECT SDO_NET.GET_NODE_OUT_DEGREE('ROADS_NETWORK', 3) FROM DUAL;
SELECT SDO_NET.GET_NODE_TABLE_NAME('ROADS_NETWORK') FROM DUAL;
SELECT SDO_NET.GET_NODE_COST_COLUMN('ROADS_NETWORK') FROM DUAL;
SELECT SDO_NET.GET_NODE_HIERARCHY_LEVEL('ROADS_NETWORK', 3) FROM DUAL;
SELECT SDO_NET.GET_OUT_LINKS('ROADS_NETWORK', 3) FROM DUAL;
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SELECT SDO_NET.GET_PATH_GEOM_COLUMN('ROADS_NETWORK') FROM DUAL;
SELECT SDO_NET.GET_PATH_TABLE_NAME('ROADS_NETWORK') FROM DUAL;
SELECT SDO_NET.IS_COMPLEX('ROADS_NETWORK') FROM DUAL;
SELECT SDO_NET.IS_HIERARCHICAL('ROADS_NETWORK') FROM DUAL;
SELECT SDO_NET.IS_LOGICAL('ROADS_NETWORK') FROM DUAL;
SELECT SDO_NET.IS_SIMPLE('ROADS_NETWORK') FROM DUAL;
SELECT SDO_NET.IS_SPATIAL('ROADS_NETWORK') FROM DUAL;
SELECT SDO_NET.LRS_GEOMETRY_NETWORK('ROADS_NETWORK') FROM DUAL;
SELECT SDO_NET.NETWORK_EXISTS('ROADS_NETWORK') FROM DUAL;
SELECT SDO_NET.SDO_GEOMETRY_NETWORK('ROADS_NETWORK') FROM DUAL;
SELECT SDO_NET.TOPO_GEOMETRY_NETWORK('ROADS_NETWORK') FROM DUAL;
 
-- Copy a network.
EXECUTE SDO_NET.COPY_NETWORK('ROADS_NETWORK', 'ROADS_NETWORK2');
 
-- Create a trigger.
EXECUTE SDO_NET.CREATE_DELETE_TRIGGER('ROADS_NETWORK');

5.15.4 Logical Hierarchical Network Example (PL/SQL)
This section presents an example of a logical network that contains the nodes and
links illustrated in Figure 5-7. Because it is a logical network, there are no spatial
geometries associated with it. (Figure 5-7 is essentially the same as Figure 5-3 in 
Network Hierarchy, but with the nodes and links labeled.)

Figure 5-7    Nodes and Links for Logical Network Example
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As shown in Figure 5-7:

• The network is hierarchical, with two levels. The top level (level 2) consists of two
nodes (HN1 and HN2), and the remaining nodes and links are in the bottom level
(level 1) of the hierarchy.

• Each node in level 1 is a child node of one of the nodes in level 2. Node HN1 has
the following child nodes: N1, N2, N3, N4, N5, and N6. Node HN2 has the following
child nodes: N7, N8, N9, N10, N11, N12, N13, and N14.
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• One link (HN1HN2) links nodes HN1 and HN2, and two links (N5N8 and N6N7) are child links
of parent link HN1HN2. Note, however, that links are not associated with a specific network
hierarchy level.

Example 5-6 does the following:

• Creates and populates the node table.

• Creates and populates the link table.

• Creates and populates the path table and path-link table, for possible future use. (Before
an application can use paths, you must populate these two tables.)

• Inserts network metadata into the USER_SDO_NETWORK_METADATA view.

• Uses various SDO_NET functions and procedures.

Example 5-6    Logical Network Example (PL/SQL)

-- Basic steps:
-- 1. Create and populate the node table.
-- 2. Create and populate the link table.
-- 3. Create the path table and paths and links table (for possible 
--    future use, before which they will need to be populated).
-- 4. Populate the network metadata (USER_SDO_NETWORK_METADATA).
--    Note: Can be done before or after Steps 1-3.
-- 5. Use various SDO_NET functions and procedures.
 
-- 1. Create and populate the node table.
EXECUTE SDO_NET.CREATE_NODE_TABLE('XYZ_NODES', NULL, NULL, NULL, 2);
 
-- Populate the node table, starting with the highest level in the hierarchy.
 
-- HN1 (Hierarchy level=2, highest in this network)
INSERT INTO xyz_nodes (node_id, node_name, active, hierarchy_level)
  VALUES (1, 'HN1', 'Y', 2);
 
-- HN2 (Hierarchy level=2, highest in this network)
INSERT INTO xyz_nodes (node_id, node_name, active, hierarchy_level)
  VALUES (2, 'HN2', 'Y', 2);
 
-- N1 (Hierarchy level 1, parent node ID = 1 for N1 through N6)
INSERT INTO xyz_nodes (node_id, node_name, active, hierarchy_level, 
     parent_node_id)
  VALUES (101, 'N1', 'Y', 1, 1);
 
-- N2 
INSERT INTO xyz_nodes (node_id, node_name, active, hierarchy_level, 
     parent_node_id)
  VALUES (102, 'N2', 'Y', 1, 1);
 
-- N3 
INSERT INTO xyz_nodes (node_id, node_name, active, hierarchy_level, 
     parent_node_id)
  VALUES (103, 'N3', 'Y', 1, 1);
 
-- N4 
INSERT INTO xyz_nodes (node_id, node_name, active, hierarchy_level, 
     parent_node_id)
  VALUES (104, 'N4', 'Y', 1, 1);
 
-- N5 
INSERT INTO xyz_nodes (node_id, node_name, active, hierarchy_level, 
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     parent_node_id)
  VALUES (105, 'N5', 'Y', 1, 1);
 
-- N6 
INSERT INTO xyz_nodes (node_id, node_name, active, hierarchy_level, 
     parent_node_id)
  VALUES (106, 'N6', 'Y', 1, 1);
 
-- N7 (Hierarchy level 1, parent node ID = 2 for N7 through N14)
INSERT INTO xyz_nodes (node_id, node_name, active, hierarchy_level, 
     parent_node_id)
  VALUES (107, 'N7', 'Y', 1, 2);
 
-- N8 
INSERT INTO xyz_nodes (node_id, node_name, active, hierarchy_level, 
     parent_node_id)
  VALUES (108, 'N8', 'Y', 1, 2);
 
-- N9 
INSERT INTO xyz_nodes (node_id, node_name, active, hierarchy_level, 
     parent_node_id)
  VALUES (109, 'N9', 'Y', 1, 2);
 
-- N10 
INSERT INTO xyz_nodes (node_id, node_name, active, hierarchy_level, 
     parent_node_id)
  VALUES (110, 'N10', 'Y', 1, 2);
 
-- N11 
INSERT INTO xyz_nodes (node_id, node_name, active, hierarchy_level, 
     parent_node_id)
  VALUES (111, 'N11', 'Y', 1, 2);
 
-- N12 
INSERT INTO xyz_nodes (node_id, node_name, active, hierarchy_level, 
     parent_node_id)
  VALUES (112, 'N12', 'Y', 1, 2);
 
-- N13 
INSERT INTO xyz_nodes (node_id, node_name, active, hierarchy_level, 
     parent_node_id)
  VALUES (113, 'N13', 'Y', 1, 2);
 
-- N14 
INSERT INTO xyz_nodes (node_id, node_name, active, hierarchy_level, 
     parent_node_id)
  VALUES (114, 'N14', 'Y', 1, 2);
 
-- 2. Create and populate the link table.
EXECUTE SDO_NET.CREATE_LINK_TABLE('XYZ_LINKS', NULL, NULL, 'COST', 2);
 
-- Populate the link table.
 
-- HN1HN2 (single link in highest hierarchy level: link level = 2)
INSERT INTO xyz_links (link_id, link_name, start_node_id, end_node_id, active, 
     link_level)
  VALUES (1001, 'HN1HN2', 1, 2, 'Y', 2);
 
-- For remaining links, link level = 1 and cost (10, 20, or 30) varies among 
links.
-- N1N2
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INSERT INTO xyz_links (link_id, link_name, start_node_id, end_node_id, active, 
     link_level, cost)
  VALUES (1101, 'N1N2', 101, 102, 'Y', 1, 10);
 
-- N1N3
INSERT INTO xyz_links (link_id, link_name, start_node_id, end_node_id, active, 
     link_level, cost)
  VALUES (1102, 'N1N3', 101, 103, 'Y', 1, 20);
 
-- N2N3
INSERT INTO xyz_links (link_id, link_name, start_node_id, end_node_id, active, 
     link_level, cost)
  VALUES (1103, 'N2N3', 102, 103, 'Y', 1, 30);
 
-- N3N4
INSERT INTO xyz_links (link_id, link_name, start_node_id, end_node_id, active, 
     link_level, cost)
  VALUES (1104, 'N3N4', 103, 104, 'Y', 1, 10);
 
-- N4N5
INSERT INTO xyz_links (link_id, link_name, start_node_id, end_node_id, active, 
     link_level, cost)
  VALUES (1105, 'N4N5', 104, 105, 'Y', 1, 20);
 
-- N4N6
INSERT INTO xyz_links (link_id, link_name, start_node_id, end_node_id, active, 
     link_level, cost)
  VALUES (1106, 'N4N6', 104, 106, 'Y', 1, 30);
 
-- N5N6
INSERT INTO xyz_links (link_id, link_name, start_node_id, end_node_id, active, 
     link_level, cost)
  VALUES (1107, 'N5N6', 105, 106, 'Y', 1, 10);
 
-- N5N8 (child of the higher-level link: parent ID = 1001)
INSERT INTO xyz_links (link_id, link_name, start_node_id, end_node_id, active, 
     link_level, cost, parent_link_id)
  VALUES (1108, 'N5N8', 105, 108, 'Y', 1, 20, 1001);
 
-- N6N7 (child of the higher-level link: parent ID = 1001)
INSERT INTO xyz_links (link_id, link_name, start_node_id, end_node_id, active, 
     link_level, cost, parent_link_id)
  VALUES (1109, 'N6N7', 106, 107, 'Y', 1, 30, 1001);
 
-- N7N8
INSERT INTO xyz_links (link_id, link_name, start_node_id, end_node_id, active, 
     link_level, cost)
  VALUES (1110, 'N7N8', 107, 108, 'Y', 1, 10);
 
-- N7N9
INSERT INTO xyz_links (link_id, link_name, start_node_id, end_node_id, active, 
     link_level, cost)
  VALUES (1111, 'N7N9', 107, 109, 'Y', 1, 20);
 
-- N8N9
INSERT INTO xyz_links (link_id, link_name, start_node_id, end_node_id, active, 
     link_level, cost)
  VALUES (1112, 'N8N9', 108, 109, 'Y', 1, 30);
 
-- N9N10
INSERT INTO xyz_links (link_id, link_name, start_node_id, end_node_id, active, 
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     link_level, cost)
  VALUES (1113, 'N9N10', 109, 110, 'Y', 1, 30);
 
-- N9N13
INSERT INTO xyz_links (link_id, link_name, start_node_id, end_node_id, active, 
     link_level, cost)
  VALUES (1114, 'N9N13', 109, 113, 'Y', 1, 10);
 
-- N10N11
INSERT INTO xyz_links (link_id, link_name, start_node_id, end_node_id, active, 
     link_level, cost)
  VALUES (1115, 'N10N11', 110, 111, 'Y', 1, 20);
 
-- N11N12
INSERT INTO xyz_links (link_id, link_name, start_node_id, end_node_id, active, 
     link_level, cost)
  VALUES (1116, 'N11N12', 111, 112, 'Y', 1, 30);
 
-- N12N13
INSERT INTO xyz_links (link_id, link_name, start_node_id, end_node_id, active, 
     link_level, cost)
  VALUES (1117, 'N12N13', 112, 113, 'Y', 1, 10);
 
-- N12N14
INSERT INTO xyz_links (link_id, link_name, start_node_id, end_node_id, active, 
     link_level, cost)
  VALUES (1118, 'N12N14', 112, 114, 'Y', 1, 20);
 
-- N13N14
INSERT INTO xyz_links (link_id, link_name, start_node_id, end_node_id, active, 
     link_level, cost)
  VALUES (1119, 'N13N14', 113, 114, 'Y', 1, 30);
 
-- 3. Create the path table (to store created paths) and the path-link 
--    table (to store links for each path) for possible future use,
--    before which they will need to be populated.
EXECUTE SDO_NET.CREATE_PATH_TABLE('XYZ_PATHS', NULL);
EXECUTE SDO_NET.CREATE_PATH_LINK_TABLE('XYZ_PATHS_LINKS');
 
-- 4. Populate the network metadata (USER_SDO_NETWORK_METADATA).
 
INSERT INTO user_sdo_network_metadata 
    (NETWORK,
     NETWORK_CATEGORY,
     NO_OF_HIERARCHY_LEVELS,
     NO_OF_PARTITIONS,
     NODE_TABLE_NAME,
     LINK_TABLE_NAME,
     LINK_DIRECTION,
     LINK_COST_COLUMN,
     PATH_TABLE_NAME,
     PATH_LINK_TABLE_NAME)
  VALUES (
    'XYZ_NETWORK',  -- Network name
    'LOGICAL',   -- Network category
    2,  -- No. of levels in hierarchy
    1,  -- No. of partitions
    'XYZ_NODES',  -- Node table name
    'XYZ_LINKS',  -- Link table name
    'BIDIRECTED',  -- Link direction
    'COST',  -- Link cost column
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    'XYZ_PATHS',  -- Path table name
    'XYZ_PATHS_LINKS'  -- Path-link table name
  );
 
-- 5. Use various SDO_NET functions and procedures.
 
-- Validate the network.
SELECT SDO_NET.VALIDATE_NETWORK('XYZ_NETWORK') FROM DUAL;
 
-- Validate parts or aspects of the network.
SELECT SDO_NET.VALIDATE_LINK_SCHEMA('XYZ_NETWORK') FROM DUAL;
SELECT SDO_NET.VALIDATE_LRS_SCHEMA('XYZ_NETWORK') FROM DUAL;
SELECT SDO_NET.VALIDATE_NODE_SCHEMA('XYZ_NETWORK') FROM DUAL;
SELECT SDO_NET.VALIDATE_PATH_SCHEMA('XYZ_NETWORK') FROM DUAL;
 
-- Retrieve various information (GET_xxx and some other functions).
SELECT SDO_NET.GET_CHILD_LINKS('XYZ_NETWORK', 1001) FROM DUAL;
SELECT SDO_NET.GET_CHILD_NODES('XYZ_NETWORK', 1) FROM DUAL;
SELECT SDO_NET.GET_CHILD_NODES('XYZ_NETWORK', 2) FROM DUAL;
SELECT SDO_NET.GET_IN_LINKS('XYZ_NETWORK', 104) FROM DUAL;
SELECT SDO_NET.GET_LINK_COST_COLUMN('XYZ_NETWORK') FROM DUAL;
SELECT SDO_NET.GET_LINK_DIRECTION('XYZ_NETWORK') FROM DUAL;
SELECT SDO_NET.GET_LINK_TABLE_NAME('XYZ_NETWORK') FROM DUAL;
SELECT SDO_NET.GET_NETWORK_TYPE('XYZ_NETWORK') FROM DUAL;
SELECT SDO_NET.GET_NO_OF_HIERARCHY_LEVELS('XYZ_NETWORK') FROM DUAL;
SELECT SDO_NET.GET_NO_OF_LINKS('XYZ_NETWORK') FROM DUAL;
SELECT SDO_NET.GET_NO_OF_NODES('XYZ_NETWORK') FROM DUAL;
SELECT SDO_NET.GET_NODE_DEGREE('XYZ_NETWORK', 104) FROM DUAL;
SELECT SDO_NET.GET_NODE_IN_DEGREE('XYZ_NETWORK', 104) FROM DUAL;
SELECT SDO_NET.GET_NODE_OUT_DEGREE('XYZ_NETWORK', 104) FROM DUAL;
SELECT SDO_NET.GET_OUT_LINKS('XYZ_NETWORK', 104) FROM DUAL;
SELECT SDO_NET.GET_PATH_TABLE_NAME('XYZ_NETWORK') FROM DUAL;
SELECT SDO_NET.IS_HIERARCHICAL('XYZ_NETWORK') FROM DUAL;
SELECT SDO_NET.IS_LOGICAL('XYZ_NETWORK') FROM DUAL;
SELECT SDO_NET.IS_SPATIAL('XYZ_NETWORK') FROM DUAL;
SELECT SDO_NET.NETWORK_EXISTS('XYZ_NETWORK') FROM DUAL;
 
-- Copy a network.
EXECUTE SDO_NET.COPY_NETWORK('XYZ_NETWORK', 'XYZ_NETWORK2');
 
-- Create a trigger.
EXECUTE SDO_NET.CREATE_DELETE_TRIGGER('XYZ_NETWORK');

5.15.5 Partitioning and Load on Demand Analysis Examples (PL/SQL,
XML, and Java)

This section presents examples of partitioning a network, including related operations, and
performing load on demand network analysis. The examples illustrate concepts and
techniques explained in Network Analysis Using Load on Demand.

Additional examples of using load on demand analysis with partitioned networks are included
in the demo files, described in Network Data Model Graph Tutorial and Other Resources.

Example 5-7    Partitioning a Spatial Network

Example 5-7 partitions a spatial network named NYC_NET. (Assume that this network already
exists and its metadata, node, and link tables are populated.)
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Example 5-7 and Example 5-8 generate the necessary partition tables for the NYC_NET
network. After executing these examples, you can check the .log file for the current
status or any errors encountered during partitioning or BLOB generation.

exec sdo_net.spatial_partition(
  network->'NYC_NET', -- network name
  partition_table_name->'NYC_PART$', -- partition table name
  max_num_nodes->5000, -- max. number of nodes per partition
  log_loc->'MDDIR', -- partition log directory
  log_file->'nyc_part.log', --partition log file name
  open_mode->'w', -- partition log file open mode
  link_level->1); -- link level

Example 5-8    Generating Partition BLOBs

Example 5-8 generates partition BLOBs for the network.

exec sdo_net.generate_partition_blobs(
  network->'NYC_NET', ,-- network name
  link_level ->1, -- link level
  partition_blob_table_name->'NYC_PBLOB$', -- partition blob table name
  includeUserdata->FALSE, -- include user data in partition blobs?
  log_loc->'MYDIR',  -- partition log directory
  log_file->'nyc_part.log', --partition log file name
  open_mode->'a'); -- partition log file open mode

Example 5-9    Configuring the Load on Demand Environment, Including
Partition Cache

Example 5-9 shows the XML for configuring the load on demand environment,
including the partition cache.

<?xml version="1.0" encoding="UTF-8" ?>
<LODConfigs xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
            xmlns ="http://xmlns.oracle.com/spatial/network"
            version = "12.1">      
<!--The new xml configuration schema takes the version number. If the version 
attribute is missing, then we assume it is 11.2 or lower. -->
<!-- default configuration for networks not configured -->
  <LODConfig globalNetworkName="$DEFAULT$" networkName="$DEFAULT$">
    <networkIO>
      <geometryTolerance>0.000001</geometryTolerance>
      <readPartitionFromBlob>false</readPartitionFromBlob>
      <partitionBlobTranslator>
        <className>oracle.spatial.network.lod.PartitionBlobTranslator11gR2</
className>
        <parameters></parameters>
      </partitionBlobTranslator>
      <userDataIO categoryId="0">
        <className>oracle.spatial.network.lod.LODUserDataIOSDO</className>
        <parameters></parameters>
      </userDataIO>
      <cachingPolicy linkLevel="1">
        <maxNodes>500000</maxNodes>
        <residentPartitions></residentPartitions>
        <flushRule>
          <className>oracle.spatial.network.lod.LRUCachingHandler</className>
          <parameters></parameters>
        </flushRule>
      </cachingPolicy>
    </networkIO>
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    <networkAnalysis>
      <linkLevelSelector>
        <className>oracle.spatial.network.lod.DummyLinkLevelSelector</className>
        <parameters></parameters>
      </linkLevelSelector>
      <withinCostPolygonTolerance>0.05</withinCostPolygonTolerance>
    </networkAnalysis>
  </LODConfig>
  <LODConfig globalNetworkName="SAMPLE_NETWORK" networkName="SAMPLE_NETWORK">
    <networkIO>
      <geometryTolerance>0.000001</geometryTolerance>
      <readPartitionFromBlob>true</readPartitionFromBlob>
      <partitionBlobTranslator>
        <className>oracle.spatial.router.ndm.RouterPartitionBlobTranslator11gR2</
className>
        <parameters></parameters>
      </partitionBlobTranslator>
      <userDataIO categoryId="0">
        <className>oracle.spatial.network.lod.LODUserDataIOSDO</className>
        <parameters></parameters>
      </userDataIO>
      <userDataIO categoryId="1">
        <className>oracle.spatial.router.ndm.RouterUserDataIO</className>
        <parameters></parameters>
      </userDataIO>
      <cachingPolicy linkLevel="1">
        <maxNodes>200000</maxNodes>
        <residentPartitions></residentPartitions>
        <flushRule>
          <className>oracle.spatial.network.lod.LRUCachingHandler</className>
          <parameters></parameters>
        </flushRule>
      </cachingPolicy>
      <cachingPolicy linkLevel="2">
        <maxNodes>800000</maxNodes>
        <residentPartitions>0</residentPartitions>
        <flushRule>
          <className>oracle.spatial.network.lod.LRUCachingHandler</className>
          <parameters></parameters>
        </flushRule>
      </cachingPolicy>
    </networkIO>
    <networkAnalysis>
    </networkAnalysis>
  </LODConfig>
</LODConfigs>

Example 5-10    Reloading the Load on Demand Configuration (Java API)

Example 5-10 and Example 5-11 show the Java and PL/SQL APIs, respectively, for reloading
the load on demand configuration.

InputStream config = ClassLoader.getSystemResourceAsStream(
                     "netlodcfg.xml");
LODNetworkManager.getConfigManager().loadConfig(config);

Example 5-11    Reloading the Load on Demand Configuration (PL/SQL API)

EXECUTE SDO_NET.LOAD_CONFIG('WORK_DIR', 'netlodcfg.xml');
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Example 5-12    Getting Estimated Partition Size

Example 5-12 returns the estimated size in bytes for a specified network partition.

SELECT SDO_NET.GET_PARTITION_SIZE (
  NETWORK->'NYC_NET',
  PARTITION_ID->1,
  LINK_LEVEL ->1,
  INCLUDE_USER_DATA->'FALSE',
  INCLUDE_SPATIAL_DATA->'TRUE') FROM DUAL;

Example 5-13    Network Analysis: Shortest Path (LOD Java API)

Example 5-13 uses the load on demand Java API (oracle.spatial.network.lod) to issue
a shortest-path query on a network.

Connection conn = LODNetworkManager.getConnection(dbUrl, dbUser, dbPassword);
// get LOD network IO Adapter
String networkName = "NYC_NET";
NetworkIO reader = LODNetworkManager.getCachedNetworkIO(conn, networkName, 
networkName, null);
// get analysis module
NetworkAnalyst analyst = LODNetworkManager.getNetworkAnalyst(reader);
// compute the shortest path
LogicalSubPath path = analyst.shortestPathDijkstra(new PointOnNet(startNodeId),
      new PointOnNet(endNodeId), null);
// print path result
PrintUtility.print(System.out, path, false, 0, 0);
. . .

Example 5-14    Network Analysis: Shortest Path (XML API)

Example 5-14 uses the XML API (oracle.spatial.network.xml) to issue a shortest-path
query on a network. It includes the request and the response.

<?xml version="1.0" encoding="UTF-8"?>
<ndm:networkAnalysisRequest
    xmlns:ndm="http://xmlns.oracle.com/spatial/network"
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
    xmlns:gml="http://www.opengis.net/gml">
  <ndm:networkName>NYC_NET</ndm:networkName>
  <ndm:shortestPath>
    <ndm:startPoint>
      <ndm:nodeID>65</ndm:nodeID>
    </ndm:startPoint>
    <ndm:endPoint>
      <ndm:nodeID>115</ndm:nodeID>
    </ndm:endPoint>
    <ndm:subPathRequestParameter>
      <ndm:isFullPath> true </ndm:isFullPath>
      <ndm:startLinkIndex> true </ndm:startLinkIndex>
      <ndm:startPercentage> true </ndm:startPercentage>
      <ndm:endLinkIndex> true </ndm:endLinkIndex>
      <ndm:endPercentage> true </ndm:endPercentage>
      <ndm:geometry>false</ndm:geometry>
    <ndm:pathRequestParameter>
      <ndm:cost> true </ndm:cost>
      <ndm:isSimple> true </ndm:isSimple>
      <ndm:startNodeID>true</ndm:startNodeID>
      <ndm:endNodeID>true</ndm:endNodeID>
      <ndm:noOfLinks>true</ndm:noOfLinks>
      <ndm:linksRequestParameter>
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        <ndm:onlyLinkID>true</ndm:onlyLinkID>
      </ndm:linksRequestParameter>
      <ndm:nodesRequestParameter>
        <ndm:onlyNodeID>true</ndm:onlyNodeID>
      </ndm:nodesRequestParameter>
      <ndm:geometry>true</ndm:geometry>
    </ndm:pathRequestParameter>
    </ndm:subPathRequestParameter>
  </ndm:shortestPath>
</ndm:networkAnalysisRequest>
 
<?xml version = '1.0' encoding = 'UTF-8'?>
<ndm:networkAnalysisResponse xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xmlns:ndm="http://xmlns.oracle.com/spatial/network" xmlns:gml="http://www.opengis.net/
gml">
  <ndm:networkName>NYC_NET</ndm:networkName>
  <ndm:shortestPath>
    <ndm:subPathResponse>
      <ndm:isFullPath>true</ndm:isFullPath>
      <ndm:startLinkIndex>0</ndm:startLinkIndex>
      <ndm:startPercentage>0.0</ndm:startPercentage>
      <ndm:endLinkIndex>17</ndm:endLinkIndex>
      <ndm:endPercentage>1.0</ndm:endPercentage>
      <ndm:pathResponse>
        <ndm:cost>6173.212694405703</ndm:cost>
        <ndm:isSimple>true</ndm:isSimple>
        <ndm:startNodeID>65</ndm:startNodeID>
        <ndm:endNodeID>115</ndm:endNodeID>
        <ndm:noOfLinks>18</ndm:noOfLinks>
        <ndm:linkIDs>145477046 145477044 145477042 145477039 145476926 145476930 
145480892 145480891 145476873 145476871 145477023 145489019 145489020 145476851 
145488986 145488987 145476913 145476905         
        </ndm:linkIDs>
        <ndm:nodeIDs>65 64 60 57 58 61 71 70 73 87 97 95 91 101 102 104 117 120 115 
        </ndm:nodeIDs>
        <ndm:geometry>
          <gml:LineString>
            <gml:coordinates>-71.707462,43.555262 -71.707521,43.555601…
            </gml:coordinates>
          </gml:LineString>
        </ndm:geometry>
      </ndm:pathResponse>
    </ndm:subPathResponse>
  </ndm:shortestPath>
</ndm:networkAnalysisResponse>

5.15.6 User-Defined Data Examples (PL/SQL and Java)
This section presents examples of using network user-defined data, which is the information
(not related to connectivity) that users want to associate with a network representation. The
USER_SDO_NETWORK_USER_DATA and ALL_SDO_NETWORK_USER_DATA metadata
views (described in xxx_SDO_NETWORK_USER_DATA Views) contain information about
user-defined data.

To use user-defined data, you must set the USER_DEFINED_DATA column value to Y in the
appropriate xxx_SDO_NETWORK_METADATA views (described in 
xxx_SDO_NETWORK_METADATA Views).
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Example 5-15    Inserting User-Defined Data into Network Metadata

Example 5-15 uses the PL/SQL API to insert link-related user-defined data into the
network metadata.

-- Insert link user data named 'interaction' of
-- type varchar2 (50) in network 'bi_test'.
--'interaction' is a column of type varchar2(50) in the link table of network 
'bi_
test'.
insert into user_sdo_network_user_data 
         (network,table_type, data_name, data_type, data_length, category_id) 
          values ('bi_test', 'LINK', 'interaction', 'VARCHAR2', 50, 0) ;
-- insert link user data named 'PROB' of type Number.
--'PROB' is a column of type NUMBER in the link table of network 'bi_test'.
insert into user_sdo_network_user_data 
         (network,table_type,data_name,data_type, category_id)
          values ('bi_test','LINK','PROB','NUMBER', 0) ;

After a network or network partition is loaded, user-defined data is available in Java
representations. You can access user-defined data through the
getCategorizedUserData and setCategorizedUserData methods for the Node, Link,
Path, and SubPath interfaces. For example:

// The user data index is the sequence number of a user data within a category
// sorted by data name.
 
int interactionUserDataIndex = 0;
int probUserDataIndex = 1;
 
String interaction = (String)link.getCategorizedUserData().getUserData(0).
                     get(interactionUseDataIndex);
 
double prob = ((Double)link.getCategorizedUserData().getUserData(0).
              get(probUserdataIndex)).doubleValue();

Example 5-16    Implementation of writeUserData method of LODUserDataIO
Interface

Example 5-16 uses the Java API for a custom user data I/O implementation (non-
default implementation) of the LODUserDataIO interface. User data associated to links
is written to BLOBs (one BLOB per partition) and read from BLOBs during analysis. In
this example it is assumed that:

• The user-defined data BLOB for multimodal data for each partition has the
partition ID and number of links associated with the partition followed by <Link ID,
link route ID> for each link

• The user-defined data BLOB table name is MULTIMODAL_USER_DATA

 //Method getLinksInPartition(partitionId) computes a vector that
 // consists of  the ID and the route ID of each link associated with a partition
 // with ID = partitionId
 LinkVector = getLinksInPartition(partitionId);
 
 ObjectOutputStream dout = null;
 
 //Insert an empty blob for the partition with ID = partition_id
 String insertStr = "INSERT INTO " + MULTIMODAL_USER_DATA +
                              " (partition_id, blob) " + " VALUES " + " (?, 
EMPTY_BLOB())" ;
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 PreparedStatement stmt = conn.prepareStatement(insertStr);
 stmt.setInt(1,partitionId);
 int n = stmt.executeUpdate();
 stmt.close();
 
 //lock the row for blob update
  String lockRowStr = "SELECT blob FROM " + MULTIMODAL_USER_DATA +
                                   " WHERE partition_id = ? " + " FOR UPDATE";
  stmt = conn.prepareStatement(lockRowStr);
  stmt.setInt(1,partitionId);
  ResultSet rs = stmt.executeQuery();
 
  rs.next();
 oracle.sql.BLOB userDataBlob = (oracle.sql.BLOB) rs.getBlob(1);
 stmt.close();
 
  OutputStream blobOut = ((oracle.sql.BLOB) userDataBlob).setBinaryStream(1);
  dout = new ObjectOutputStream(blobOut);
 
  //write partition ID
  dout.writeInt(partitionId);
  int numLinks = linkVector.size()
 
   for (int i=0; i<linkVector.size(); i++) {
         //MultimodalLink is a class with variables link ID and route ID
         MultimodalLink link = (MultimodalLink) linkVector.elementAt(i);
          //write link ID 
         dout.writeLong(link.getLinkId());
 
         // write route ID into file
         dout.writeInt(link.getRouteId());
    }
    dout.close();
     blobOut.close();
     rs.close();

Example 5-17    Implementation of readUserData method of LODUserDataIO Interface

In Example 5-17, the user-defined data is accessed through the getCategorizedUserData
and setCategorizedUserData methods for the Node, Link, Path, and SubPath interfaces and
the getUserData and setUserData methods of the CategorizedUserData interface.

//Read the blob for the required partition from the user data blob table
// In this example,
// MULTIMODAL_USER_DATA  is the name of user –defined data blob table
BLOB multimodalBlob = null;
String queryStr = "SELECT blob FROM " + 
MULTIMODAL_USER_DATA                                
                             " WHERE partition_id = ?";
PreparedStatement stmt = conn.prepareStatement(queryStr);
stmt.setInt(1,partitionId);
ResultSet rs = stmt.executeQuery();
if (rs.next())   {
     multimodalBlob = (oracle.sql.BLOB)rs.getBlob(1);
}
 
// Materialize the blob value as an input stream        
InputStream is = multimodalBlob.getBinaryStream();
 
//Create an ObjectInputStream that reads from the InputStream is
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ObjectInputStream ois = new ObjectInputStream(is);
 
//Read the values of partition ID and number of links from the blob
int partitionId = ois.readInt();
int numLinks = ois.readInt();
 
for (int i=0; i<numLinks; i++)  {
 
    //Read link ID and route ID for each link
     long linkId = ois.readLong();
     int routeId = ois.readInt();
 
     //MultimodalLinkUserData is an implementation of NDM LOD UserData interface
     //Implementation is provided at the end of the example 
     linkUserData = new MultimodalLinkUserData(routeId);
 
     //Get the link object corresponding to the link ID
     LogicalNetLink link = partition.getLink(linkId);
 
     //Get the (categorized) user data associated with the link. 
     CategorizedUserData cud = link.getCategorizedUserData();
    
     // If the link does not have categorized user data associated with it,
     // initialize it to linkUserData
     // Else, set the user data for category USER_DATA_MULTIMODAL 
     // to linkUserData 
     if (cud == null) {
            UserData [] userDataArray = {linkUserData};
            cud = new CategorizedUserDataImpl(userDataArray);
             link.setCategorizedUserData(cud);
     }
     else {                   
            cud.setUserData(USER_DATA_MULTIMODAL,linkUserData);
     }
}

The following example shows how to read the user-defined data, namely the route ID
associated with a link during analysis:

//info is an instance of LODAnalysisInfo 
LogicalLink currentLink = info.getCurrentLink();
 
//Read the user-defined data (in this case, route ID) 
int linkRouteId   = (Integer)currentLink.getCategorizedUserData().
                           
getUserData(USER_DATA_MULTIMODAL).                                      
                           get(INDEX_LINK_ROUTEID);

The implementation of the MultimodalLinkUserData interface is as follows:

class MultimodalLinkUserData implements UserData
{
    private int routeId;
 
    protected MultimodalLinkUserData(int routeId)
   {
        this.routeId = routeId;
   }
 
  public Object get(int index)
  {
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    switch(index)
    {
         case INDEX_LINK_ROUTEID:
              return routeId;
    }
    return null;
  }
 
  public void set(int index, Object userData)
  {
    switch(index)
    {
         case INDEX_LINK_ROUTEID:
            this.routeId = (Integer) userData;
    }
  }
 
  public int getNumberOfUserData()
  {
       return 1;
  }
 
  public Object clone()
{
    return new MultimodalLinkUserData(routeId);
  }
}

5.16 Network Data Model Graph Tutorial and Other Resources
Network Data Model Graph learning resources are available.

http://www.oracle.com/technetwork/database-options/spatialandgraph on the Oracle
Technology Network provides links to valuable resources to help you get started with Oracle
Spatial and Graph technologies, including the Network Data Model (NDM) Graph. The
Network Data Model Graph resources include the following:

• A Network Data Model Graph tutorial (ndm_tutorial.zip on http://www.oracle.com/
technetwork/indexes/samplecode/spatial-1433316.html) outlines the steps to set up
and configure a network, and to conduct the analysis. It also includes sample code and a
web application that demonstrates how to use Oracle Maps to display analysis results.

• An NDM white paper ("A Load-On-Demand Approach to Handling Large Networks in the
Oracle Spatial and Graph Network Data Model Graph") provides detailed explanations
and examples.

• The NDM editor, provided as a demo intended for small and medium-size networks, is a
graphical tool to view, browse, and navigate through data that is stored in the network
data model. You can also use this tool to perform analysis on networks (shortest path,
nearest neighbor, minimum cost spanning tree, and so on), and to add and delete nodes,
links, and paths.

• NFE (Network Feature Editing) Java API documentation provides examples of NFE
capabilities. It also provides electricity and water network examples, and a NFE data
dictionary with NFE table descriptions.

You are encouraged to examine the Java examples before starting development with
NFE.
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• The NFE editor is a sample application to create NFE models and manage them.
The models can be created in the From Scratch mode or the Over Existing
Network Model mode. You can create and manage feature layers, feature classes
and features. Additionally, a video presentation shows how to create and manage
NFE models with the NFE editor.

5.17 README File for Spatial and Graph and Related
Features

A README.txt file supplements the information in the following manuals: Oracle Spatial
and Graph Developer's Guide, Oracle Spatial and Graph GeoRaster Developer's
Guide, and Oracle Spatial and Graph Topology Data Model and Network Data Model
Graph Developer's Guide (this manual).
This file is located at:

$ORACLE_HOME/md/doc/README.txt
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6
SDO_NET Package Subprograms

The MDSYS.SDO_NET package contains subprograms (functions and procedures) for
managing networks.

To use the subprograms in this chapter, you must understand the conceptual information in 
Network Data Model Graph Overview.

For a listing of the subprograms grouped in logical categories, see Network Data Model
Graph PL/SQL Interface. The rest of this chapter provides reference information about the
subprograms, listed in alphabetical order.

• SDO_NET.ADD_CHILD_FEATURE

• SDO_NET.ADD_CHILD_FEATURES

• SDO_NET.ADD_FEATURE

• SDO_NET.ADD_FEATURE_ELEMENT

• SDO_NET.ADD_FEATURE_ELEMENTS

• SDO_NET.ADD_FEATURE_LAYER

• SDO_NET.COMPUTE_PATH_GEOMETRY

• SDO_NET.COPY_NETWORK

• SDO_NET.CREATE_LINK_TABLE

• SDO_NET.CREATE_LOGICAL_NETWORK

• SDO_NET.CREATE_LRS_NETWORK

• SDO_NET.CREATE_LRS_TABLE

• SDO_NET.CREATE_NODE_TABLE

• SDO_NET.CREATE_PARTITION_TABLE

• SDO_NET.CREATE_PATH_LINK_TABLE

• SDO_NET.CREATE_PATH_TABLE

• SDO_NET.CREATE_SDO_NETWORK

• SDO_NET.CREATE_SUBPATH_TABLE

• SDO_NET.CREATE_TOPO_NETWORK

• SDO_NET.DELETE_CHILD_FEATURES

• SDO_NET.DELETE_CHILD_FEATURES_AT

• SDO_NET.DELETE_DANGLING_FEATURES

• SDO_NET.DELETE_DANGLING_LINKS

• SDO_NET.DELETE_DANGLING_NODES

• SDO_NET.DELETE_FEATURE_ELEMENTS

• SDO_NET.DELETE_FEATURE_ELEMENTS_AT
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• SDO_NET.DELETE_FEATURES

• SDO_NET.DELETE_LINK

• SDO_NET.DELETE_NODE

• SDO_NET.DELETE_PATH

• SDO_NET.DELETE_PHANTOM_FEATURES

• SDO_NET.DELETE_SUBPATH

• SDO_NET.DEREGISTER_CONSTRAINT

• SDO_NET.DROP_FEATURE_LAYER

• SDO_NET.DROP_NETWORK

• SDO_NET.FIND_CONNECTED_COMPONENTS

• SDO_NET.GENERATE_NODE_LEVELS

• SDO_NET.GENERATE_PARTITION_BLOB

• SDO_NET.GENERATE_PARTITION_BLOBS

• SDO_NET.GET_CHILD_FEATURE_IDS

• SDO_NET.GET_CHILD_LINKS

• SDO_NET.GET_CHILD_NODES

• SDO_NET.GET_DANGLING_FEATURES

• SDO_NET.GET_DANGLING_LINKS

• SDO_NET.GET_DANGLING_NODES

• SDO_NET.GET_FEATURE_ELEMENTS

• SDO_NET.GET_FEATURE_LAYER_ID

• SDO_NET.GET_FEATURES_ON_LINKS

• SDO_NET.GET_FEATURES_ON_NODES

• SDO_NET.GET_GEOMETRY_TYPE

• SDO_NET.GET_IN_LINKS

• SDO_NET.GET_INVALID_LINKS

• SDO_NET.GET_INVALID_NODES

• SDO_NET.GET_INVALID_PATHS

• SDO_NET.GET_ISOLATED_NODES

• SDO_NET.GET_LINK_COST_COLUMN

• SDO_NET.GET_LINK_DIRECTION

• SDO_NET.GET_LINK_GEOM_COLUMN

• SDO_NET.GET_LINK_GEOMETRY

• SDO_NET.GET_LINK_TABLE_NAME

• SDO_NET.GET_LINKS_IN_PATH

• SDO_NET.GET_LRS_GEOM_COLUMN

• SDO_NET.GET_LRS_LINK_GEOMETRY
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• SDO_NET.GET_LRS_NODE_GEOMETRY

• SDO_NET.GET_LRS_TABLE_NAME

• SDO_NET.GET_NETWORK_TYPE

• SDO_NET.GET_NO_OF_HIERARCHY_LEVELS

• SDO_NET.GET_NO_OF_LINKS

• SDO_NET.GET_NO_OF_NODES

• SDO_NET.GET_NODE_DEGREE

• SDO_NET.GET_NODE_GEOM_COLUMN

• SDO_NET.GET_NODE_GEOMETRY

• SDO_NET.GET_NODE_IN_DEGREE

• SDO_NET.GET_NODE_OUT_DEGREE

• SDO_NET.GET_NODE_TABLE_NAME

• SDO_NET.GET_OUT_LINKS

• SDO_NET.GET_PARENT_FEATURE_IDS

• SDO_NET.GET_PARTITION_SIZE

• SDO_NET.GET_PATH_GEOM_COLUMN

• SDO_NET.GET_PATH_TABLE_NAME

• SDO_NET.GET_PERCENTAGE

• SDO_NET.GET_PHANTOM_FEATURES

• SDO_NET.GET_PT

• SDO_NET.IS_HIERARCHICAL

• SDO_NET.IS_LINK_IN_PATH

• SDO_NET.IS_LOGICAL

• SDO_NET.IS_NODE_IN_PATH

• SDO_NET.IS_SPATIAL

• SDO_NET.LOAD_CONFIG

• SDO_NET.LOGICAL_PARTITION

• SDO_NET.LOGICAL_POWERLAW_PARTITION

• SDO_NET.LRS_GEOMETRY_NETWORK

• SDO_NET.NETWORK_EXISTS

• SDO_NET.POST_XML

• SDO_NET.REGISTER_CONSTRAINT

• SDO_NET.SDO_GEOMETRY_NETWORK

• SDO_NET.SET_LOGGING_LEVEL

• SDO_NET.SET_MAX_JAVA_HEAP_SIZE

• SDO_NET.SPATIAL_PARTITION

• SDO_NET.TOPO_GEOMETRY_NETWORK
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• SDO_NET.UPDATE_FEATURE

• SDO_NET.UPDATE_FEATURE_ELEMENT

• SDO_NET.VALIDATE_LINK_SCHEMA

• SDO_NET.VALIDATE_LRS_SCHEMA

• SDO_NET.VALIDATE_NETWORK

• SDO_NET.VALIDATE_NODE_SCHEMA

• SDO_NET.VALIDATE_PARTITION_SCHEMA

• SDO_NET.VALIDATE_PATH_SCHEMA

• SDO_NET.VALIDATE_SUBPATH_SCHEMA

6.1 SDO_NET.ADD_CHILD_FEATURE
Format

SDO_NET.ADD_CHILD_FEATURE(
     parent_layer_id   IN NUMBER,
     parent_feature_id IN NUMBER,
     child_layer_id    IN NUMBER,
     child_feature_id  IN SDO_NET_LAYER_FEAT,
     sequence_number   IN NUMBER DEFAULT NULL,
     check_integrity   IN BOOLEAN DEFAULT TRUE);

Description

Associates a feature as a child feature of a specified parent feature.

Parameters

parent_layer_id
ID of the parent feature layer.

parent_feature_id
ID of the feature that is to become the parent feature of the specified child feature.

child_layer_id
ID of the child feature layer.

child_feature_id
ID of the feature to be associated as a child feature of the specified parent feature.
(The SDO_NET_LAYER_FEAT type is described in Data Types Used for Feature
Modeling.)

sequence_number
Sequence number of the child_feature_id feature in the child feature layer. If this
parameter is null, a sequence number after the last current number is assigned.

check_integrity
TRUE (the default) checks if the child feature exists; and if it does not exist, an error is
generated. FALSE does not check if the child feature exists.

Usage Notes

The specified child feature must already exist.
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To associate multiple features as child features, use the SDO_NET.ADD_CHILD_FEATURES
procedure.

Examples

The following example adds a child feature at sequence number 2.

DECLARE
  parent_layer_id NUMBER;
  parent_feature_id NUMBER := 1;
  child_layer_id NUMBER;
  child_feature_id NUMBER := 3;
BEGIN
  parent_layer_id := sdo_net.get_feature_layer_id('GRID', 'PARENT_LAYER');
  child_layer_id := sdo_net.get_feature_layer_id('GRID', 'POI');
  sdo_net.add_child_feature(parent_layer_id, parent_feature_id, child_layer_id, 
child_feature_id, 2, true);
END;
/

6.2 SDO_NET.ADD_CHILD_FEATURES
Format

SDO_NET.ADD_CHILD_FEATURES(
     parent_layer_id   IN NUMBER,
     parent_feature_id IN NUMBER,
     child_feature_ids IN SDO_NET_LAYER_FEAT_ARRAY,
     check_integrity   IN BOOLEAN DEFAULT TRUE);

Description

Associates multiple features as child features of a specified parent feature.

Parameters

parent_layer_id
ID of the parent feature layer.

parent_feature_id
ID of the feature that is to become the parent feature of the specified child features.

child_feature_ids
IDs of features to be associated as child features of the specified parent feature. (The
SDO_NET_LAYER_FEAT_ARRAY type is described in Data Types Used for Feature
Modeling.)

check_integrity
TRUE (the default) checks if the child features exist; and if any do not exist, an error is
generated. FALSE does not check if the child features exist.

Usage Notes

The specified child features must already exist.

To associate a single feature as a child feature, use the SDO_NET.ADD_CHILD_FEATURE
procedure.
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Examples

The following example adds two child features at the end of the parent feature.

DECLARE
  parent_layer_id NUMBER;
  parent_feature_id NUMBER := 1;
  child_layer_id NUMBER;
  child_feature_ids SDO_NET_LAYER_FEAT_ARRAY := SDO_NET_LAYER_FEAT_ARRAY();
BEGIN
  parent_layer_id := sdo_net.get_feature_layer_id('GRID', 'PARENT_LAYER');
  child_layer_id := sdo_net.get_feature_layer_id('GRID', 'POI');
  child_feature_ids.extend;
  child_feature_ids(1) := SDO_NET_LAYER_FEAT(child_layer_id, 4);
  child_feature_ids.extend;
  child_feature_ids(2) := SDO_NET_LAYER_FEAT(child_layer_id, 10);
  sdo_net.add_child_features(parent_layer_id, parent_feature_id, 
child_feature_ids, true);
END;
/

6.3 SDO_NET.ADD_FEATURE
Format

SDO_NET.ADD_FEATURE(
     feature_layer_id  IN NUMBER,
     feature_id        IN NUMBER,
     feature_elements  IN SDO_NET_FEAT_ELEM_ARRAY DEFAULT NULL,
     child_feature_ids IN SDO_NET_LAYER_FEAT_ARRAY DEFAULT NULL,
     check_integrity   IN BOOLEAN DEFAULT TRUE);

Description

Adds a feature to a feature layer.

Parameters

feature_layer_id
ID of the feature layer to which to add the feature.

feature_id
ID of the feature to be added to the feature layer.

feature_elements
Feature elements of the feature to be added. If this parameter is null, no feature
elements are defined for this feature. (The SDO_NET_FEAT_ELEM_ARRAY type is
described in Data Types Used for Feature Modeling.)

child_feature_ids
IDs of the child features of the feature that are to be added along with the feature. If
this parameter is null, no child features are to be added. (The
SDO_NET_LAYER_FEAT_ARRAY type is described in Data Types Used for Feature
Modeling.)
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check_integrity
TRUE (the default) checks if the input network elements exist; and if any do not exist, an error
is generated. FALSE does not check if the input network elements exist.

Usage Notes

To update a feature in a feature layer, use the SDO_NET.UPDATE_FEATURE procedure.

Examples

The following example adds a feature associated with a point at 20% on link 1314.

DECLARE
  feature_layer_id NUMBER;
  feature_id NUMBER := 1;
  elements SDO_NET_FEAT_ELEM_ARRAY := SDO_NET_FEAT_ELEM_ARRAY();
  link_id NUMBER := 1314;
BEGIN
  feature_layer_id := sdo_net.get_feature_layer_id('GRID', 'POI');
  elements.extend;
  elements(1) := SDO_NET_FEAT_ELEM(SDO_NET.FEAT_ELEM_TYPE_POL, link_id, 0.2, null);
  sdo_net.add_feature(feature_layer_id, feature_id, elements, null);  
END;
/

6.4 SDO_NET.ADD_FEATURE_ELEMENT
Format

SDO_NET.ADD_FEATURE_ELEMENT(
     feature_layer_id IN NUMBER,
     feature_id       IN NUMBER,
     feature_element  IN SDO_NET_FEAT_ELEM,
     sequence_number  IN NUMBER DEFAULT NULL,
     check_integrity  IN BOOLEAN DEFAULT TRUE);

Description

Adds a feature element to a feature.

Parameters

feature_layer_id
ID of the feature layer for the feature.

feature_id
ID of the feature.

feature_element
Feature element to be added to the feature. This feature element is automatically appended
to the end of any existing feature elements in the feature. (The SDO_NET_FEAT_ELEM type
is described in Data Types Used for Feature Modeling.)

sequence_number
Sequence number of the added feature element in the feature. If this parameter is null, a
sequence number after the last current number is assigned.
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check_integrity
TRUE (the default) checks if the input network elements exist; and if any do not exist,
an error is generated. FALSE does not check if the input network elements exist.

Usage Notes

To add multiple feature elements to a feature in a single operation, use the 
SDO_NET.ADD_FEATURE_ELEMENTS procedure.

To update a feature element, use the SDO_NET.UPDATE_FEATURE_ELEMENT
procedure.

Examples

The following example adds a point feature for node ID 13 at sequence number 2.

DECLARE
  feature_layer_id NUMBER;
  feature_id NUMBER := 1;
  feature_element SDO_NET_FEAT_ELEM;
  node_id NUMBER := 13;
BEGIN
  feature_layer_id := sdo_net.get_feature_layer_id('GRID', 'POI');
  feature_element := SDO_NET_FEAT_ELEM(SDO_NET.FEAT_ELEM_TYPE_PON, node_id, 
null, null);
  sdo_net.add_feature_element(feature_layer_id, feature_id, feature_element, 2);
END;
/

6.5 SDO_NET.ADD_FEATURE_ELEMENTS
Format

SDO_NET.ADD_FEATURE_ELEMENTS(
     feature_layer_id IN NUMBER,
     feature_id       IN NUMBER,
     feature_elements IN SDO_NET_FEAT_ELEM,_ARRAY,
     check_integrity  IN BOOLEAN DEFAULT TRUE);

Description

Adds an array of feature elements to a feature.

Parameters

feature_layer_id
ID of the feature layer for the feature.

feature_id
ID of the feature.

feature_elements
Feature elements to be added to the feature. These feature elements are
automatically appended to the end of any existing feature elements in the feature.
(The SDO_NET_FEAT_ELEM_ARRAY type is described in Data Types Used for
Feature Modeling.)
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check_integrity
TRUE (the default) checks if the input network elements exist; and if any do not exist, an error
is generated. FALSE does not check if the input network elements exist.

Usage Notes

To add a single feature element to a feature, use the SDO_NET.ADD_FEATURE_ELEMENT
procedure.

Examples

The following example adds two point feature elements at the end of the feature elements
associated with feature ID 1.

DECLARE
  feature_layer_id NUMBER;
  feature_id NUMBER := 1;
  elements SDO_NET_FEAT_ELEM_ARRAY := SDO_NET_FEAT_ELEM_ARRAY();
  link_id NUMBER := 1314;
BEGIN
  feature_layer_id := sdo_net.get_feature_layer_id('GRID', 'POI');
  elements.extend;
  elements(1) := SDO_NET_FEAT_ELEM(SDO_NET.FEAT_ELEM_TYPE_POL, link_id, 0.7, null);
  elements.extend;
  elements(2) := SDO_NET_FEAT_ELEM(SDO_NET.FEAT_ELEM_TYPE_POL, link_id, 0.8, null);
  sdo_net.add_feature_elements(feature_layer_id, feature_id, elements);
END;
/

6.6 SDO_NET.ADD_FEATURE_LAYER
Format

SDO_NET.ADD_FEATURE_LAYER(
     network_name IN VARCHAR2,
     feature_layer_name IN VARCHAR2,
     feature_layer_type IN VARCHAR2,
     feature_table      IN VARCHAR2,
     relation_table     IN VARCHAR2,
     hierarchy_table    IN VARCHAR2);

Description

Adds a feature layer.

Parameters

network_name
Name of the network.

feature_layer_name
Name of the feature layer.

feature_layer_type
Type of features in the layer (from Table 5-1).
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feature_table
Name of the feature table (see Feature Table).

relation_table
Name of the feature element relationships table (see Feature Element Relationships
Table).

hierarchy_table
Name of the feature hierarchy table (see Feature Hierarchy Table).

Usage Notes

A feature layer ID is automatically generated for the feature layer.

Examples

The following example creates a feature layer named POI (points of interest) of
multipoints (SDO_NET.FEAT_TYPE_MPOINT).

BEGIN
  sdo_net.add_feature_layer(
    'GRID',
    'POI',
    SDO_NET.FEAT_TYPE_MPOINT,
    'POI_FEAT$',
    'POI_REL$',
    NULL
  );
END;
/

6.7 SDO_NET.COMPUTE_PATH_GEOMETRY
Format

SDO_NET.COMPUTE_PATH_GEOMETRY(
     network   IN VARCHAR2,
     path_id   IN NUMBER,
     tolerance IN NUMBER
) RETURN SDO_GEOMETRY;

Description

Returns the spatial geometry for a path.

Parameters

network
Network name.

path_id
Path ID number.

tolerance
Tolerance value associated with geometries in the network. (Tolerance is explained in
Chapter 1 of Oracle Spatial and Graph Developer's Guide.) This value should be

Chapter 6
SDO_NET.COMPUTE_PATH_GEOMETRY

6-10



consistent with the tolerance values of the geometries in the link table and node table for the
network.

Usage Notes

This function computes and returns the SDO_GEOMETRY object for the specified path.

This function and the SDO_NET_MEM.PATH.COMPUTE_GEOMETRY procedure
(documented in SDO_NET Package Subprograms) both compute a path geometry, but they
have the following differences:

• The SDO_NET.COMPUTE_PATH_GEOMETRY function computes the path from the
links in the database, and does not use a network memory object. It returns the path
geometry.

• The SDO_NET_MEM.PATH.COMPUTE_GEOMETRY procedure computes the path
using a network memory object that has been loaded. It does not return the path
geometry; you must use the SDO_NET_MEM.PATH.GET_GEOMETRY function to get
the geometry.

Examples

The following example computes and returns the spatial geometry of the path with path ID 1
in the network named SDO_NET1, using a tolerance value of 0.005. The returned path
geometry is a straight line from (1,1) to (15,1) because this path consists of a single link.

SELECT SDO_NET.COMPUTE_PATH_GEOMETRY('SDO_NET1', 1, 0.005) FROM DUAL;
 
SDO_NET.COMPUTE_PATH_GEOMETRY('SDO_NET1',1,0.005)(SDO_GTYPE, SDO_SRID, SDO_POINT
--------------------------------------------------------------------------------
SDO_GEOMETRY(2002, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 2, 1), SDO_ORDINATE_ARRAY(
1, 1, 15, 1))

6.8 SDO_NET.COPY_NETWORK
Format

SDO_NET.COPY_NETWORK(
     source_network     IN VARCHAR2,
     target_network     IN VARCHAR2,
     storage_parameters IN VARCHAR2 DEFAULT NULL);

Description

Creates a copy of a network, including its metadata tables.

Parameters

source_network
Name of the network to be copied.

target_network
Name of the network to be created as a copy of source_network.

storage_parameters
Physical storage parameters used internally to create network tables. Must be a valid string
for use with the CREATE TABLE statement. For example: TABLESPACE tbs_3 STORAGE
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(INITIAL 100K NEXT 200K). If you do not specify this parameter, the default physical
storage values are used.

Usage Notes

This procedure creates an entry in the xxx_SDO_NETWORK_METADATA views
(described in xxx_SDO_NETWORK_METADATA Views) for target_network that has
the same information as for source_network, except for the new network name.

This procedure also creates a new node table, link table, and path table (if a path table
exists for source_network) for target_network based on the metadata and data in
these tables for source_network. These tables have names in the form <target-
network>_NODE$, <target-network>_LINK$, and <target-network>_PATH$. For
example, if target_network has the value ROADS_NETWORK2 and if source_network has
a path table, the names of the created metadata tables are
ROADS_NETWORK2_NODE$, ROADS_NETWORK2_LINK$, and
ROADS_NETWORK2_PATH$.

Examples

The following example creates a new network named ROADS_NETWORK2 that is a copy of
the network named ROADS_NETWORK.

EXECUTE SDO_NET.COPY_NETWORK('ROADS_NETWORK', 'ROADS_NETWORK2');

6.9 SDO_NET.CREATE_LINK_TABLE
Format

SDO_NET.CREATE_LINK_TABLE(
     table_name             IN VARCHAR2,
     geom_type              IN VARCHAR2,
     geom_column            IN VARCHAR2,
     cost_column            IN VARCHAR2,
     no_of_hierarchy_levels IN NUMBER,
     add_bidirected_column  IN BOOLEAN DEFALT FALSE,
     storage_parameters     IN VARCHAR2 DEFAULT NULL);

Description

Creates a link table for a network.

Parameters

table_name
Name of the link table.

geom_type
For a spatial network, specify a value indicating the geometry type of links:
SDO_GEOMETRY for non-LRS SDO_GEOMETRY objects, LRS_GEOMETRY for LRS
SDO_GEOMETRY objects, or TOPO_GEOMETRY for SDO_TOPO_GEOMETRY objects.

geom_column
For a spatial network, the name of the column containing the geometry objects
associated with the links. (If the geom_type value is not spelled correctly, the
geom_column column is not included in the table.)
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cost_column
Name of the column containing the cost values to be associated with the links.

no_of_hierarchy_levels
Number of hierarchy levels for links in the network. (For an explanation of network hierarchy,
see Network Hierarchy.)

add_bidirected_column
TRUE adds a column named BIDIRECTED to the link table; FALSE (the default) does not add
a column named BIDIRECTED to the link table.

storage_parameters
Physical storage parameters used internally to create the link table. Must be a valid string for
use with the CREATE TABLE statement. For example: TABLESPACE tbs_3 STORAGE
(INITIAL 100K NEXT 200K). If you do not specify this parameter, the default physical
storage values are used.

Usage Notes

The link table is described in Link Table.

Examples

The following example creates a link table named ROADS_LINKS, with a geometry column
named LINK_GEOMETRY that will contain LRS geometries, a cost column named COST,
and a single hierarchy level.

EXECUTE SDO_NET.CREATE_LINK_TABLE('ROADS_LINKS', 'LRS_GEOMETRY', 'LINK_GEOMETRY', 
'COST', 1);

6.10 SDO_NET.CREATE_LOGICAL_NETWORK
Format

SDO_NET.CREATE_LOGICAL_NETWORK(
     network                IN VARCHAR2,
     no_of_hierarchy_levels IN NUMBER,
     is_directed            IN BOOLEAN,
     node_with_cost         IN BOOLEAN DEFAULT FALSE,
     is_complex             IN BOOLEAN DEFAULT FALSE,
     storage_parameters     IN VARCHAR2 DEFAULT NULL);

or

SDO_NET.CREATE_LOGICAL_NETWORK(
     network                IN VARCHAR2,
     no_of_hierarchy_levels IN NUMBER,
     is_directed            IN BOOLEAN,
     node_table_name        IN VARCHAR2,
     node_cost_column       IN VARCHAR2,
     link_table_name        IN VARCHAR2,
     link_cost_column       IN VARCHAR2,
     path_table_name        IN VARCHAR2,
     path_link_table_name   IN VARCHAR2,
     subpath_table_name     IN VARCHAR2,
     is_complex             IN BOOLEAN DEFAULT FALSE,
     storage_parameters     IN VARCHAR2 DEFAULT NULL);
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Description

Creates a logical network, creates all necessary tables, and updates the network
metadata.

Parameters

network
Network name.

no_of_hierarchy_levels
Number of hierarchy levels for links in the network. (For an explanation of network
hierarchy, see Network Hierarchy.)

is_directed
A Boolean value. TRUE indicates that the links are directed; FALSE indicates that the
links are undirected (not directed).

node_with_cost
A Boolean value. TRUE causes a column named COST to be included in the <network-
name>_NODE$ table; FALSE (the default) causes a column named COST not to be
included in the <network-name>_NODE$ table.

node_table_name
Name of the node table to be created. (The node table is explained in Node Table.) If
you use the format that does not specify this parameter, a node table named
<network-name>_NODE$ is created.

node_cost_column
Name of the cost column in the node table. (The node table is explained in Node
Table.) If you use the format that does not specify this parameter, the geometry
column is named COST.

link_table_name
Name of the link table to be created. (The link table is explained in Link Table.) If you
use the format that does not specify this parameter, a link table named <network-
name>_LINK$ is created.

link_cost_column
Name of the cost column in the link table. (The link table is explained in Link Table.) If
you use the format that does not specify this parameter, the geometry column is
named COST.

path_table_name
Name of the path table to be created. (The path table is explained in Path Table.) If
you use the format that does not specify this parameter, a path table named
<network-name>_PATH$ is created.

path_link_table_name
Name of the path-link table to be created. (The path-link table is explained in Path-
Link Table.) If you use the format that does not specify this parameter, a path-link
table named <network-name>_PLINK$ is created.
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subpath_table_name
Name of the subpath table to be created. (The subpath table is explained in Subpath Table.)

is_complex
Reserved for future use. Ignored for the current release.

storage_parameters
Physical storage parameters used internally to create network tables. Must be a valid string
for use with the CREATE TABLE statement. For example: TABLESPACE tbs_3 STORAGE
(INITIAL 100K NEXT 200K). If you do not specify this parameter, the default physical
storage values are used.

Usage Notes

This procedure provides a convenient way to create a logical network when the node, link,
and optional related tables do not already exist. The procedure creates the network; creates
the node, link, path, and path-link tables for the network; and inserts the appropriate
information in the xxx_SDO_NETWORK_METADATA views (described in 
xxx_SDO_NETWORK_METADATA Views).

An exception is generated if any of the tables to be created already exists.

The procedure has two formats. The simpler format creates the tables using default values
for the table name and the cost column name. The other format lets you specify names for
the tables and the cost column.

As an alternative to using this procedure, you can create the network as follows: create the
tables using the SDO_NET.CREATE_NODE_TABLE, SDO_NET.CREATE_LINK_TABLE, 
SDO_NET.CREATE_PATH_TABLE, and SDO_NET.CREATE_PATH_LINK_TABLE
procedures; and insert the appropriate row in the USER_SDO_NETWORK_METADATA view.

Examples

The following example creates a directed logical network named LOG_NET1. The example
creates the LOG_NET1_NODE$, LOG_NET1_LINK$,LOG_NET1_PATH$, and
LOG_NET1_PLINK$ tables, and updates the xxx_SDO_NETWORK_METADATA views. Both
the node and link tables contain a cost column named COST.

EXECUTE SDO_NET.CREATE_LOGICAL_NETWORK('LOG_NET1', 1, TRUE, TRUE);

6.11 SDO_NET.CREATE_LRS_NETWORK
Format

SDO_NET.CREATE_LRS_NETWORK(
     network IN VARCHAR2,
     lrs_table_name         IN VARCHAR2,
     lrs_geom_column        IN VARCHAR2,
     no_of_hierarchy_levels IN NUMBER,
     is_directed            IN BOOLEAN,
     node_with_cost         IN BOOLEAN DEFAULT FALSE,
     is_complex             IN BOOLEAN DEFAULT FALSE,
     storage_parameters     IN VARCHAR2 DEFAULT NULL);

or

SDO_NET.CREATE_LRS_NETWORK(
     network                IN VARCHAR2,
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     no_of_hierarchy_levels IN NUMBER,
     is_directed            IN BOOLEAN,
     node_table_name        IN VARCHAR2,
     node_cost_column       IN VARCHAR2,
     link_table_name        IN VARCHAR2,
     link_cost_column       IN VARCHAR2,
     lrs_table_name         IN VARCHAR2,
     lrs_geom_column        IN VARCHAR2,
     path_table_name        IN VARCHAR2,
     path_geom_column       IN VARCHAR2,
     path_link_table_name   IN VARCHAR2,
     subpath_table_name     IN VARCHAR2,
     subpath_geom_column    IN VARCHAR2,
     is_complex             IN BOOLEAN DEFAULT FALSE,
     storage_parameters     IN VARCHAR2 DEFAULT NULL);

Description

Creates a spatial network containing LRS SDO_GEOMETRY objects, creates all
necessary tables, and updates the network metadata.

Parameters

network
Network name.

lrs_table_name
Name of the table containing the LRS geometry column.

lrs_geom_column
Name of the column in lrs_table_name that contains LRS geometries (that is,
SDO_GEOMETRY objects that include measure information for linear referencing).

is_directed
A Boolean value. TRUE indicates that the links are directed; FALSE indicates that the
links are undirected (not directed).

no_of_hierarchy_levels
Number of hierarchy levels for links in the network. (For an explanation of network
hierarchy, see Network Hierarchy.)

node_with_cost
A Boolean value. TRUE causes a column named COST to be included in the <network-
name>_NODE$ table; FALSE (the default) causes a column named COST not to be
included in the <network-name>_NODE$ table.

is_complex
Reserved for future use. Ignored for the current release.

node_table_name
Name of the node table to be created. (The node table is explained in Node Table.) If
you use the format that does not specify this parameter, a node table named
<network-name>_NODE$ is created.
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node_cost_column
Name of the cost column in the node table. (The node table is explained in Node Table.) If
you use the format that does not specify this parameter, the geometry column is named
COST.

link_table_name
Name of the link table to be created. (The link table is explained in Link Table.) If you use the
format that does not specify this parameter, a link table named <network-name>_LINK$ is
created.

link_cost_column
Name of the cost column in the link table. (The link table is explained in Link Table.) If you
use the format that does not specify this parameter, the geometry column is named COST.

path_table_name
Name of the path table to be created. (The path table is explained in Path Table.) If you use
the format that does not specify this parameter, a path table named <network-name>_PATH$
is created.

path_geom_column
Name of the geometry column in the path table. (The path table is explained in Path Table.)
If you use the format that does not specify this parameter, the geometry column is named
GEOMETRY.

path_link_table_name
Name of the path-link table to be created. (The path-link table is explained in Path-Link
Table.) If you use the format that does not specify this parameter, a path-link table named
<network-name>_PLINK$ is created.

subpath_table_name
Name of the subpath table to be created. (The subpath table is explained in Subpath Table.).

subpath_geom_column
Name of the geometry column in the subpath table. (The subpath table is explained in 
Subpath Table.)

storage_parameters
Physical storage parameters used internally to create network tables. Must be a valid string
for use with the CREATE TABLE statement. For example: TABLESPACE tbs_3 STORAGE
(INITIAL 100K NEXT 200K). If you do not specify this parameter, the default physical
storage values are used.

Usage Notes

This procedure provides a convenient way to create a spatial network of LRS geometries
when the node, link, and optional related tables do not already exist. The procedure creates
the network; creates the node, link, path, and path-link tables for the network; and inserts the
appropriate information in the xxx_SDO_NETWORK_METADATA views (described in 
xxx_SDO_NETWORK_METADATA Views).

An exception is generated if any of the tables to be created already exists.

The procedure has two formats. The simpler format creates the tables using default values
for the table name and the geometry and cost column names. The other format lets you
specify names for the tables and the geometry and cost columns.

As an alternative to using this procedure, you can create the network as follows: create the
tables using the SDO_NET.CREATE_NODE_TABLE, SDO_NET.CREATE_LINK_TABLE, 
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SDO_NET.CREATE_PATH_TABLE, and SDO_NET.CREATE_PATH_LINK_TABLE
procedures; and insert the appropriate row in the
USER_SDO_NETWORK_METADATA view.

Examples

The following example creates a directed spatial network named LRS_NET1. The LRS
geometries are in the column named LRS_GEOM in the table named LRS_TAB. The
example creates the LRS_NET1_NODE$, LRS_NET1_LINK$, LRS_NET1_PATH$,
and LRS_NET1_PLINK$ tables, and updates the xxx_SDO_NETWORK_METADATA
views. All geometry columns are named GEOMETRY. Both the node and link tables
contain a cost column named COST.

EXECUTE SDO_NET.CREATE_LRS_NETWORK('LRS_NET1', 'LRS_TAB', 'LRS_GEOM', 1, TRUE, 
TRUE);

6.12 SDO_NET.CREATE_LRS_TABLE
Format

SDO_NET.CREATE_LRS_TABLE(
     table_name         IN VARCHAR2,
     geom_column        IN VARCHAR2,
     storage_parameters IN VARCHAR2 DEFAULT NULL);

Description

Creates a table for storing Oracle Spatial and Graph linear referencing system (LRS)
geometries.

Parameters

table_name
Name of the table containing the geometry column specified in geom_column.

geom_column
Name of the column (of type SDO_GEOMETRY) to contain geometry objects.

storage_parameters
Physical storage parameters used internally to create the LRS table. Must be a valid
string for use with the CREATE TABLE statement. For example: TABLESPACE tbs_3
STORAGE (INITIAL 100K NEXT 200K). If you do not specify this parameter, the default
physical storage values are used.

Usage Notes

This procedure creates a table named table_name with two columns: GEOM_ID of
type NUMBER and geom_column of type SDO_GEOMETRY.

Although the created table does not need to be used to store LRS geometries, the
procedure is intended as a convenient method for creating a table to store such
geometries. You will probably want to modify the table to add other columns before
you store data in the table.
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Examples

The following example creates a table named HIGHWAYS with a geometry column named
GEOM.

EXECUTE SDO_NET.CREATE_LRS_TABLE('HIGHWAYS', 'GEOM');
 
PL/SQL procedure successfully completed.
 
DESCRIBE highways
 Name                                      Null?    Type
 ----------------------------------------- -------- ----------------------------
 GEOM_ID                                   NOT NULL NUMBER
 GEOM                                               MDSYS.SDO_GEOMETRY

6.13 SDO_NET.CREATE_NODE_TABLE
Format

SDO_NET.CREATE_NODE_TABLE(
     table_name             IN VARCHAR2,
     geom_type              IN VARCHAR2,
     geom_column            IN VARCHAR2,
     cost_column            IN VARCHAR2,
     no_of_hierarchy_levels IN NUMBER,
     is_complex             IN BOOLEAN DEFAULT FALSE,
     storage_parameters     IN VARCHAR2 DEFAULT NULL);

or

SDO_NET.CREATE_NODE_TABLE(
     table_name             IN VARCHAR2,
     geom_type              IN VARCHAR2,
     geom_column            IN VARCHAR2,
     cost_column            IN VARCHAR2,
     partition_column       IN VARCHAR2,
     no_of_hierarchy_levels IN NUMBER,
     is_complex             IN BOOLEAN DEFAULT FALSE,
     storage_parameters     IN VARCHAR2 DEFAULT NULL);

Description

Creates a node table.

Parameters

table_name
Name of the node table.

geom_type
For a spatial network, specify a value indicating the geometry type of nodes: SDO_GEOMETRY
for non-LRS SDO_GEOMETRY objects, LRS_GEOMETRY for LRS SDO_GEOMETRY objects,
or TOPO_GEOMETRY for SDO_TOPO_GEOMETRY objects. (If the geom_type value is not
spelled correctly, the geom_column column is not included in the table.)
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geom_column
For a spatial network, the name of the column containing the geometry objects
associated with the nodes.

cost_column
Name of the column containing the cost values to be associated with the nodes.

partition_column
Name of the column containing the partition ID values to be associated with the
nodes.

no_of_hierarchy_levels
Number of hierarchy levels for nodes in the network. (For an explanation of network
hierarchy, see Network Hierarchy.)

is_complex
Reserved for future use. Ignored for the current release.

storage_parameters
Physical storage parameters used internally to create the <network-name>_NODE$
table (described in Node Table). Must be a valid string for use with the CREATE
TABLE statement. For example: TABLESPACE tbs_3 STORAGE (INITIAL 100K NEXT
200K). If you do not specify this parameter, the default physical storage values are
used.

Usage Notes

This procedure has two formats, one without the partition_column parameter and
one with the partition_column parameter.

The node table is described in Node Table.

Examples

The following example creates a node table named ROADS_NODES with a geometry
column named NODE_GEOMETRY that will contain LRS geometries, no cost column,
and a single hierarchy level.

EXECUTE SDO_NET.CREATE_NODE_TABLE('ROADS_NODES', 'LRS_GEOMETRY', 
'NODE_GEOMETRY', NULL, 1);

6.14 SDO_NET.CREATE_PARTITION_TABLE
Format

SDO_NET.CREATE_PARTITION_TABLE(
     table_name IN VARCHAR2);

Description

Creates a partition table.

Parameters

table_name
Name of the partition table.
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Usage Notes

The partition table is described in Partition Table.

For information about using partitioned networks to perform analysis using the load on
demand approach, see Network Analysis Using Load on Demand.

Examples

The following example creates a partition table named MY_PART_TAB.

EXECUTE SDO_NET.CREATE_PARTITION_TABLE('MY_PART_TAB');

6.15 SDO_NET.CREATE_PATH_LINK_TABLE
Format

SDO_NET.CREATE_PATH_LINK_TABLE(
     table_name         IN VARCHAR2,
     storage_parameters IN VARCHAR2 DEFAULT NULL);

Description

Creates a path-link table, that is, a table with a row for each link in each path in the path
table.

Parameters

table_name
Name of the path-link table.

storage_parameters
Physical storage parameters used internally to create the path-link table. Must be a valid
string for use with the CREATE TABLE statement. For example: TABLESPACE tbs_3 STORAGE
(INITIAL 100K NEXT 200K). If you do not specify this parameter, the default physical
storage values are used.

Usage Notes

The path-link table is described in Path-Link Table.

To use paths with a network, you must populate the path-link table.

Examples

The following example creates a path-link table named ROADS_PATHS_LINKS.

EXECUTE SDO_NET.CREATE_PATH_LINK_TABLE('ROADS_PATHS_LINKS');

6.16 SDO_NET.CREATE_PATH_TABLE
Format

SDO_NET.CREATE_PATH_TABLE(
     table_name         IN VARCHAR2,
     geom_column        IN VARCHAR2,
     storage_parameters IN VARCHAR2 DEFAULT NULL);
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Description

Creates a path table.

Parameters

table_name
Name of the path table.

geom_column
For a spatial network, name of the column containing the geometry objects associated
with the paths.

storage_parameters
Physical storage parameters used internally to create the path table. Must be a valid
string for use with the CREATE TABLE statement. For example: TABLESPACE tbs_3
STORAGE (INITIAL 100K NEXT 200K). If you do not specify this parameter, the default
physical storage values are used.

Usage Notes

The path table is described in Path Table.

To use paths with a network, after you create the path table, you must create the path-
link table using the SDO_NET.CREATE_PATH_LINK_TABLE procedure, and populate
the path-link table.

Examples

The following example creates a path table named ROADS_PATHS that contains a
geometry column named PATH_GEOMETRY.

EXECUTE SDO_NET.CREATE_PATH_TABLE('ROADS_PATHS', 'PATH_GEOMETRY');

6.17 SDO_NET.CREATE_SDO_NETWORK
Format

SDO_NET.CREATE_SDO_NETWORK(
     network                IN VARCHAR2,
     no_of_hierarchy_levels IN NUMBER,
     is_directed            IN BOOLEAN,
     node_with_cost         IN BOOLEAN DEFAULT FALSE,
     is_complex             IN BOOLEAN DEFAULT FALSE,
     storage_parameters     IN VARCHAR2 DEFAULT NULL);

or

SDO_NET.CREATE_SDO_NETWORK(
     network                IN VARCHAR2,
     no_of_hierarchy_levels IN NUMBER,
     is_directed            IN BOOLEAN,
     node_table_name        IN VARCHAR2,
     node_geom_column       IN VARCHAR2,
     node_cost_column       IN VARCHAR2,
     link_table_name        IN VARCHAR2,
     link_geom_column       IN VARCHAR2,
     link_cost_column       IN VARCHAR2,
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     path_table_name        IN VARCHAR2,
     path_geom_column       IN VARCHAR2,
     path_link_table_name   IN VARCHAR2,
     subpath_table_name     IN VARCHAR2,
     subpath_geom_column    IN VARCHAR2,
     is_complex             IN BOOLEAN DEFAULT FALSE,
     storage_parameters     IN VARCHAR2 DEFAULT NULL);

Description

Creates a spatial network containing non-LRS SDO_GEOMETRY objects, creates all
necessary tables, and updates the network metadata.

Parameters

network
Network name.

no_of_hierarchy_levels
Number of hierarchy levels for links in the network. (For an explanation of network hierarchy,
see Network Hierarchy.)

is_directed
A Boolean value. TRUE indicates that the links are directed; FALSE indicates that the links are
undirected (not directed).

node_with_cost
A Boolean value. TRUE causes a column named COST to be included in the <network-
name>_NODE$ table; FALSE (the default) causes a column named COST not to be included
in the <network-name>_NODE$ table.

node_table_name
Name of the node table to be created. (The node table is explained in Node Table.) If you
use the format that does not specify this parameter, a node table named <network-
name>_NODE$ is created.

node_geom_column
Name of the geometry column in the node table. (The node table is explained in Node
Table.) If you use the format that does not specify this parameter, the geometry column is
named GEOMETRY.

node_cost_column
Name of the cost column in the node table. (The node table is explained in Node Table.) If
you use the format that does not specify this parameter, the geometry column is named
COST.

link_table_name
Name of the link table to be created. (The link table is explained in Link Table.) If you use the
format that does not specify this parameter, a link table named <network-name>_LINK$ is
created.

link_geom_column
Name of the geometry column in the link table. (The link table is explained in Link Table.) If
you use the format that does not specify this parameter, the geometry column is named
GEOMETRY.
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link_cost_column
Name of the cost column in the link table. (The link table is explained in Link Table.) If
you use the format that does not specify this parameter, the geometry column is
named COST.

path_table_name
Name of the path table to be created. (The path table is explained in Path Table.) If
you use the format that does not specify this parameter, a path table named
<network-name>_PATH$ is created.

path_geom_column
Name of the geometry column in the path table. (The path table is explained in Path
Table.) If you use the format that does not specify this parameter, the geometry
column is named GEOMETRY.

path_link_table_name
Name of the path-link table to be created. (The path-link table is explained in Path-
Link Table.) If you use the format that does not specify this parameter, a path-link
table named <network-name>_PLINK$ is created.

subpath_table_name
Name of the subpath table to be created. (The subpath table is explained in Subpath
Table.)

subpath_geom_column
Name of the geometry column in the subpath table. (The subpath table is explained in 
Subpath Table.).

is_complex
Reserved for future use. Ignored for the current release.

storage_parameters
Physical storage parameters used internally to create network tables. Must be a valid
string for use with the CREATE TABLE statement. For example: TABLESPACE tbs_3
STORAGE (INITIAL 100K NEXT 200K). If you do not specify this parameter, the default
physical storage values are used.

Usage Notes

This procedure provides a convenient way to create a spatial network when the node,
link, and optional related tables do not already exist. The procedure creates the
network; creates the node, link, path, and path-link tables for the network; and inserts
the appropriate information in the xxx_SDO_NETWORK_METADATA views (described
in xxx_SDO_NETWORK_METADATA Views).

An exception is generated if any of the tables to be created already exists.

The procedure has two formats. The simpler format creates the tables using default
values for the table name and the geometry and cost column names. The other format
lets you specify names for the tables and the geometry and cost columns.

As an alternative to using this procedure, you can create the network as follows:
create the tables using the SDO_NET.CREATE_NODE_TABLE, 
SDO_NET.CREATE_LINK_TABLE, SDO_NET.CREATE_PATH_TABLE, and 
SDO_NET.CREATE_PATH_LINK_TABLE procedures; and insert the appropriate row
in the USER_SDO_NETWORK_METADATA view.
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Examples

The following example creates a directed spatial network named SDO_NET1. The example
creates the SDO_NET1_NODE$, SDO_NET1_LINK$, SDO_NET1_PATH$, and
SDO_NET1_PLINK$ tables, and updates the xxx_SDO_NETWORK_METADATA views. All
geometry columns are named GEOMETRY. Both the node and link tables contain a cost
column named COST.

EXECUTE SDO_NET.CREATE_SDO_NETWORK('SDO_NET1', 1, TRUE, TRUE);

6.18 SDO_NET.CREATE_SUBPATH_TABLE
Format

SDO_NET.CREATE_SUBPATH_TABLE(
     table_name         IN VARCHAR2,
     geom_column        IN VARCHAR2,
     storage_parameters IN VARCHAR2 DEFAULT NULL);

Description

Creates a subpath table.

Parameters

table_name
Name of the subpath table.

geom_column
For a spatial network, name of the column containing the geometry objects associated with
the subpaths.

storage_parameters
Physical storage parameters used internally to create the subpath table (described in Node
Table). Must be a valid string for use with the CREATE TABLE statement. For example:
TABLESPACE tbs_3 STORAGE (INITIAL 100K NEXT 200K). If you do not specify this
parameter, the default physical storage values are used.

Usage Notes

The subpath table is described in Subpath Table.

To use subpaths with a network, you must create one or more path tables and their
associated path-link tables.

Examples

The following example creates a subpath table named ROADS_SUBPATHS that contains a
geometry column named SUBPATH_GEOMETRY.

EXECUTE SDO_NET.CREATE_SUBPATH_TABLE('ROADS_SUBPATHS', 'SUBPATH_GEOMETRY');
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6.19 SDO_NET.CREATE_TOPO_NETWORK
Format

SDO_NET.CREATE_TOPO_NETWORK(
     network                IN VARCHAR2,
     no_of_hierarchy_levels IN NUMBER,
     is_directed            IN BOOLEAN,
     node_with_cost         IN BOOLEAN DEFAULT FALSE,
     is_complex             IN BOOLEAN DEFAULT FALSE,
     storage_parameters     IN VARCHAR2 DEFAULT NULL);

or

SDO_NET.CREATE_TOPO_NETWORK(
     network                IN VARCHAR2,
     no_of_hierarchy_levels IN NUMBER,
     is_directed            IN BOOLEAN,
     node_table_name        IN VARCHAR2,
     node_cost_column       IN VARCHAR2,
     link_table_name        IN VARCHAR2,
     link_cost_column       IN VARCHAR2,
     path_table_name        IN VARCHAR2,
     path_geom_column       IN VARCHAR2,
     path_link_table_name   IN VARCHAR2,
     is_complex             IN BOOLEAN DEFAULT FALSE,
     storage_parameters     IN VARCHAR2 DEFAULT NULL);

or

SDO_NET.CREATE_TOPO_NETWORK(
     network                IN VARCHAR2,
     no_of_hierarchy_levels IN NUMBER,
     is_directed            IN BOOLEAN,
     node_table_name        IN VARCHAR2,
     node_geom_column       IN VARCHAR2,
     node_cost_column       IN VARCHAR2,
     link_table_name        IN VARCHAR2,
     link_cost_column       IN VARCHAR2,
     path_table_name        IN VARCHAR2,
     path_geom_column       IN VARCHAR2,
     path_link_table_name   IN VARCHAR2,
     subpath_table_name     IN VARCHAR2,
     subpath_geom_column    IN VARCHAR2,
     is_complex             IN BOOLEAN DEFAULT FALSE,
     storage_parameters     IN VARCHAR2 DEFAULT NULL);

Description

Creates a spatial topology network containing SDO_TOPO_GEOMETRY objects,
creates all necessary tables, and updates the network metadata.

Parameters

network
Network name.
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no_of_hierarchy_levels
Number of hierarchy levels for links in the network. (For an explanation of network hierarchy,
see Network Hierarchy.)

is_directed
A Boolean value. TRUE indicates that the links are directed; FALSE indicates that the links are
undirected (not directed).

node_with_cost
A Boolean value. TRUE causes a column named COST to be included in the <network-
name>_NODE$ table; FALSE (the default) causes a column named COST not to be included
in the <network-name>_NODE$ table.

node_table_name
Name of the node table to be created. (The node table is explained in Node Table.) If you
use the format that does not specify this parameter, a node table named <network-
name>_NODE$ is created.

node_cost_column
Name of the cost column in the node table. (The node table is explained in Node Table.) If
you use the format that does not specify this parameter, the geometry column is named
COST.

link_table_name
Name of the link table to be created. (The link table is explained in Link Table.) If you use the
format that does not specify this parameter, a link table named <network-name>_LINK$ is
created.

link_cost_column
Name of the cost column in the link table. (The link table is explained in Link Table.) If you
use the format that does not specify this parameter, the geometry column is named COST.

path_table_name
Name of the path table to be created. (The path table is explained in Path Table.) If you use
the format that does not specify this parameter, a path table named <network-name>_PATH$
is created.

path_geom_column
Name of the geometry column in the path table. (The path table is explained in Path Table.)
If you use the format that does not specify this parameter, the geometry column is named
GEOMETRY.

path_link_table_name
Name of the path-link table to be created. (The path-link table is explained in Path-Link
Table.) If you use the format that does not specify this parameter, a path-link table named
<network-name>_PLINK$ is created.

subpath_table_name
Name of the subpath table to be created. (The subpath table is explained in Subpath Table.).

subpath_geom_column
Name of the geometry column in the subpath table. (The subpath table is explained in 
Subpath Table.)

is_complex
Reserved for future use. Ignored for the current release.
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storage_parameters
Physical storage parameters used internally to create network tables. Must be a valid
string for use with the CREATE TABLE statement. For example: TABLESPACE tbs_3
STORAGE (INITIAL 100K NEXT 200K). If you do not specify this parameter, the default
physical storage values are used.

Usage Notes

This procedure provides a convenient way to create a spatial network when the node,
link, and optional related tables do not already exist. The procedure creates the
network; creates the node, link, path, and path-link tables for the network; and inserts
the appropriate information in the xxx_SDO_NETWORK_METADATA views (described
in xxx_SDO_NETWORK_METADATA Views). The node and link tables contain a
topology geometry column named TOPO_GEOMETRY of type
SDO_TOPO_GEOMETRY.

An exception is generated if any of the tables to be created already exists.

The procedure has two formats. The simpler format creates the tables using default
values for the table name and the geometry and cost column names. The other format
lets you specify names for the tables and the geometry and cost columns.

As an alternative to using this procedure, you can create the network as follows:
create the tables using the SDO_NET.CREATE_NODE_TABLE, 
SDO_NET.CREATE_LINK_TABLE, SDO_NET.CREATE_PATH_TABLE, and 
SDO_NET.CREATE_PATH_LINK_TABLE procedures; and insert the appropriate row
in the USER_SDO_NETWORK_METADATA view.

Examples

The following example creates a directed spatial topology geometry network named
TOPO_NET1. The example creates the TOPO_NET1_NODE$, TOPO_NET1_LINK$,
TOPO_NET1_PATH$, and TOPO_NET1_PLINK$ tables, and updates the
xxx_SDO_NETWORK_METADATA views. The topology geometry columns are named
TOPO_GEOMETRY. Both the node and link tables contain a cost column named
COST.

EXECUTE SDO_NET.CREATE_TOPO_NETWORK('TOPO_NET1', 1, TRUE, TRUE);

6.20 SDO_NET.DELETE_CHILD_FEATURES
Format

SDO_NET.DELETE_CHILD_FEATURES(
     parent_layer_id   IN NUMBER,
     parent_feature_id IN NUMBER,
     child_feature_ids IN SDO_NET_LAYER_FEAT_ARRAY);

Description

Removes the parent-child relationship for the input child features.

Parameters

parent_layer_id
ID of the parent feature layer.
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parent_feature_id
ID of the parent feature of the specified child features.

child_feature_ids
IDs of the child features. (The SDO_NET_LAYER_FEAT_ARRAY type is described in Data
Types Used for Feature Modeling.)

Usage Notes

The specified parent and child features must exist.

To delete the child features at specified sequence points, use the 
SDO_NET.DELETE_CHILD_FEATURES_AT procedure.

Examples

The following example deletes a child feature with feature ID 1 in the POI feature layer.

DECLARE
  parent_layer_id NUMBER;
  parent_feature_id NUMBER := 1;
  child_layer_id NUMBER;
  child_feature_ids SDO_NET_LAYER_FEAT_ARRAY := SDO_NET_LAYER_FEAT_ARRAY();
BEGIN
  parent_layer_id := sdo_net.get_feature_layer_id('GRID', 'PARENT_LAYER');
  child_layer_id := sdo_net.get_feature_layer_id('GRID', 'POI');
  child_feature_ids.extend;
  child_feature_ids(1) := SDO_NET_LAYER_FEAT(child_layer_id, 1);
  sdo_net.delete_child_features(parent_layer_id, parent_feature_id, child_feature_ids);
END;
/

6.21 SDO_NET.DELETE_CHILD_FEATURES_AT
Format

SDO_NET.DELETE_CHILD_FEATURES_AT(
     parent_layer_id   IN NUMBER,
     parent_feature_id IN NUMBER,
     sequence_numbers  IN SDO_NUMBER_ARRAY);

Description

Removes the parent-child relationship for the child features at the specified sequence
numbers.

Parameters

parent_layer_id
ID of the parent feature layer.

parent_feature_id
ID of the parent feature of the specified child features.

child_feature_ids
IDs of the child features. (The SDO_NET_LAYER_FEAT_ARRAY type is described in Data
Types Used for Feature Modeling.)
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Usage Notes

The specified parent and child features must exist.

To delete child features specified by their ID values, use the 
SDO_NET.DELETE_CHILD_FEATURES procedure.

Examples

The following example deletes a child feature at sequence number 1.

DECLARE
  parent_layer_id NUMBER;
  parent_feature_id NUMBER := 1;
  sequence_numbers SDO_NUMBER_ARRAY := SDO_NUMBER_ARRAY(1);
BEGIN
  parent_layer_id := sdo_net.get_feature_layer_id('GRID', 'PARENT_LAYER');
  sdo_net.delete_child_features_at(parent_layer_id, parent_feature_id, 
sequence_numbers);
END;
/

6.22 SDO_NET.DELETE_DANGLING_FEATURES
Format

SDO_NET.DELETE_DANGLING_FEATURES(
     feature_layer_id IN NUMBER);

Description

Deletes dangling features in a feature layer. A dangling feature is a feature that is not
associated with any network elements (nodes or links).

Parameters

feature_layer_id
ID of the feature layer containing the features.

Usage Notes

To find the dangling features in a feature layer, use the 
SDO_NET.GET_DANGLING_FEATURES function.

Examples

The following example deletes any dangling features in the POI feature layer in the
GRID network.

DECLARE
  feature_layer_id NUMBER;
BEGIN
  feature_layer_id := sdo_net.get_feature_layer_id('GRID', 'POI');
  sdo_net.delete_dangling_features(feature_layer_id);
END;
/
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6.23 SDO_NET.DELETE_DANGLING_LINKS
Format

SDO_NET.DELETE_DANGLING_LINKS(
     network IN VARCHAR2);

Description

Deletes links that are not referenced by any feature in any feature layer.

Parameters

network
Name of the network.

Usage Notes

To find the dangling links in a network, use the SDO_NET.GET_DANGLING_LINKS function.

Examples

The following example deletes any dangling links in the GRID network.

EXECUTE sdo_net.delete_dangling_links('GRID');

6.24 SDO_NET.DELETE_DANGLING_NODES
Format

SDO_NET.DELETE_DANGLING_NODES(
     network IN VARCHAR2);

Description

Deletes nodes that are not referenced by any feature in any feature layer.

Parameters

network
Name of the network.

Usage Notes

To find the dangling nodes in a network, use the SDO_NET.GET_DANGLING_NODES
function.

Examples

The following example deletes any dangling nodes in the GRID network.

EXECUTE sdo_net.delete_dangling_nodes('GRID');
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6.25 SDO_NET.DELETE_FEATURE_ELEMENTS
Format

SDO_NET.DELETE_FEATURE_ELEMENTS(
     feature_layer_id IN NUMBER,
     feature_id       IN NUMBER,
     feature_elements IN SDO_NET_FEAT_ELEM_ARRAY,
     delete_net_elems IN BOOLEAN DEFAULT FALSE);

Description

Deletes feature elements from a feature.

Parameters

feature_layer_id
ID of the feature layer containing the feature.

feature_id
ID of the feature from which to delete the feature elements.

feature_elements
Feature elements to be deleted. (The SDO_NET_FEAT_ELEM_ARRAY type is
described in Data Types Used for Feature Modeling.)

delete_net_elems
Controls whether all network elements that are referenced only by the specified
features are also deleted: TRUE also deletes such elements; FALSE (the default) does
not also delete such elements.

Usage Notes

Contrast this procedure with SDO_NET.DELETE_FEATURE_ELEMENTS_AT.

Examples

The following example two point feature elements from a specified feature layer.

DECLARE
  feature_layer_id NUMBER;
  feature_id NUMBER := 1;
  elements SDO_NET_FEAT_ELEM_ARRAY := SDO_NET_FEAT_ELEM_ARRAY();
  link_id NUMBER := 1314;
BEGIN
  feature_layer_id := sdo_net.get_feature_layer_id('GRID', 'POI');
  elements.extend;
  elements(1) := SDO_NET_FEAT_ELEM(SDO_NET.FEAT_ELEM_TYPE_POL, link_id, 0.2, 
null);
  elements.extend;
  elements(2) := SDO_NET_FEAT_ELEM(SDO_NET.FEAT_ELEM_TYPE_POL, link_id, 0.7, 
null);
  sdo_net.delete_feature_elements(feature_layer_id, feature_id, elements);
END;
/
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6.26 SDO_NET.DELETE_FEATURE_ELEMENTS_AT
Format

SDO_NET.DELETE_FEATURE_ELEMENTS_AT(
     feature_layer_id IN NUMBER,
     feature_id       IN NUMBER,
     sequence_numbers IN SDO_NUMBER_ARRAY,
     delete_net_elems IN BOOLEAN DEFAULT FALSE);

Description

Deletes the feature elements with specified sequence numbers from a feature.

Parameters

feature_layer_id
ID of the feature layer containing the feature.

feature_id
ID of the feature from which to delete the feature elements.

sequence_numbers
Array of sequence numbers for the feature elements to be deleted.

delete_net_elems
Controls whether all network elements that are referenced only by the specified features are
also deleted: TRUE also deletes such elements; FALSE (the default) does not also delete such
elements.

Usage Notes

Contrast this procedure with SDO_NET.DELETE_FEATURE_ELEMENTS

Examples

The following example deletes the feature element at sequence number 1.

DECLARE
  feature_layer_id NUMBER;
  feature_id NUMBER := 1;
  sequence_numbers SDO_NUMBER_ARRAY := SDO_NUMBER_ARRAY();
BEGIN
  feature_layer_id := sdo_net.get_feature_layer_id('GRID', 'POI');
  sequence_numbers.extend;
  sequence_numbers(1) := 1;
  sdo_net.delete_feature_elements_at(feature_layer_id, feature_id, sequence_numbers);
END;
/

6.27 SDO_NET.DELETE_FEATURES
Format

SDO_NET.DELETE_FEATURES(
     feature_layer_id IN NUMBER,
     feature_ids      IN SDO_NUMBER_ARRAY,
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     delete_net_elems IN BOOLEAN DEFAULT FALSE,
     delete_children  IN BOOLEAN DEFAULT FALSE);

Description

Deletes features.

Parameters

feature_layer_id
ID of the feature layer containing the features

feature_ids
IDs of the features to be deleted.

delete_net_elems
Controls whether all network elements that are referenced only by the specified
features are also deleted: TRUE also deletes such elements; FALSE (the default) does
not also delete such elements.

delete_children
Controls whether all child features that are referenced only by the specified features
are also deleted: TRUE also deletes such features; FALSE (the default) does not also
delete such features.

Usage Notes

(None.)

Examples

The following example deletes the feature with feature ID 1 from the POI feature layer
in the GRID network.

DECLARE
  feature_layer_id NUMBER;
  feature_ids SDO_NUMBER_ARRAY := SDO_NUMBER_ARRAY(1);
BEGIN
  feature_layer_id := sdo_net.get_feature_layer_id('GRID', 'POI');
  sdo_net.delete_features(feature_layer_id, feature_ids, false, false);
END;
/

6.28 SDO_NET.DELETE_LINK
Format

SDO_NET.DELETE_LINK(
     network IN VARCHAR2,
     link_id IN NUMBER);

Description

Deletes a link, along with all dependent network elements and all references to the link
from features.
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Parameters

network
Network name.

link_id
ID of the link to delete.

Usage Notes

This procedure deletes the specified link from the link table (described in Link Table), and it
deletes any other network elements that depend on this link. For example, if the specified link
is included in any paths and subpaths, those paths and subpaths are deleted also.

Examples

The following example deletes the link in the SDO_NET2 network whose link ID is 1.

SELECT SDO_NET.DELETE_LINK('SDO_NET2', 1);

6.29 SDO_NET.DELETE_NODE
Format

SDO_NET.DELETE_NODE(
     network IN VARCHAR2,
     node_id IN NUMBER);

Description

Deletes a node, along with all dependent network elements and all references to the node
from features.

Parameters

network
Network name.

node_id
ID of the node to delete.

Usage Notes

This procedure deletes the specified node from the node table (described in Node Table), and
it deletes any other network elements that depend on this node. For example, if the specified
node is included in any link definitions, those links are deleted; and if any of the deleted links
are included in any paths and subpaths, those paths and subpaths are deleted also.

Examples

The following example deletes the node in the SDO_NET2 network whose node ID is 1.

SELECT SDO_NET.DELETE_NODE('SDO_NET2', 1);

Chapter 6
SDO_NET.DELETE_NODE

6-35



6.30 SDO_NET.DELETE_PATH
Format

SDO_NET.DELETE_PATH(
     network IN VARCHAR2,
     path_id IN NUMBER);

Description

Deletes a path and all dependent network elements.

Parameters

network
Network name.

path_id
ID of the path to delete.

Usage Notes

This procedure deletes the specified path from the path table (described in Path
Table), and it deletes any other network elements that depend on this path. For
example, if the specified path has any subpaths, those subpaths are deleted also.

Examples

The following example deletes the path in the SDO_NET2 network whose path ID is 1.

SELECT SDO_NET.DELETE_PATH('SDO_NET2', 1);

6.31 SDO_NET.DELETE_PHANTOM_FEATURES
Format

SDO_NET.DELETE_PHANTOM_FEATURES(
     feature_layer_id IN NUMBER);

Description

Deletes phantom features in a feature layer. A phantom feature is a feature that
references nonexistent network elements (nodes or links).

Parameters

feature_layer_id
ID of the feature layer containing the features.

Usage Notes

To find the phantom features in a feature layer, use the 
SDO_NET.GET_PHANTOM_FEATURES function.
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Examples

The following example deletes any phantom features in the POI feature layer in the GRID
network.

DECLARE
  feature_layer_id NUMBER;
BEGIN
  feature_layer_id := sdo_net.get_feature_layer_id('GRID', 'POI');
  sdo_net.delete_phantom_features(feature_layer_id);
END;
/

6.32 SDO_NET.DELETE_SUBPATH
Format

SDO_NET.DELETE_SUBPATH(
     network    IN VARCHAR2,
     subpath_id IN NUMBER);

Description

Deletes a subpath.

Parameters

network
Network name.

subpath_id
ID of the subpath to delete.

Usage Notes

This procedure deletes the specified subpath from the path table (described in Path Table). It
does not delete any other network elements, because no other elements depend on a
subpath definition.

Examples

The following example deletes the subpath in the SDO_NET2 network whose subpath ID is
17.

SELECT SDO_NET.DELETE_SUBPATH('SDO_NET2', 17);

6.33 SDO_NET.DEREGISTER_CONSTRAINT
Format

SDO_NET.DEREGISTER_CONSTRAINT(
     constraint_name IN VARCHAR2);

Description

Unloads (removes) the class for the specified network constraint from the Java repository in
the database, and deletes the row for that constraint from the
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USER_SDO_NETWORK_CONSTRAINTS view (described in 
xxx_SDO_NETWORK_CONSTRAINTS Views).

Parameters

constraint_name
Name of the network constraint. Must match a value in the CONSTRAINT column of
the USER_SDO_NETWORK_CONSTRAINTS view.

Usage Notes

Use this procedure if you want to disable a network constraint that you had previously
enabled, such as by using the SDO_NET.REGISTER_CONSTRAINTprocedure. For
more information about network constraints, see Network Constraints.

Examples

The following example deregisters (disables) a network constraint named
GivenProhibitedTurn.

EXECUTE SDO_NET.DEREGISTER_CONSTRAINT('GivenProhibitedTurn');

6.34 SDO_NET.DROP_FEATURE_LAYER
Format

SDO_NET.DROP_FEATURE_LAYER(
     network_name       IN VARCHAR2,
     feature_layer_name IN VARCHAR2,
     drop_tables        IN BOOLEAN DEFAULT FALSE);

Description

Drops (deletes) a feature layer.

Parameters

network_name
Name of the network containing the feature layer to be dropped.

feature_layer_name
Name of the feature layer to be dropped.

drop_tables
Controls whether all relevant tables are deleted along with the feature layer metadata:
TRUE drops the feature table, feature element relationships table, and feature
hierarchy table, and deletes the feature layer metadata; FALSE (the default) deletes
the feature layer metadata but does not drop the feature table, feature element
relationships table, and feature hierarchy table.

Usage Notes

(None.)
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Examples

The following example drops the POI feature layer in the GRID network, and (because
drop_tables is true) drops the feature table, feature element relationships table, and feature
hierarchy table, and deletes the feature layer metadata

EXECUTE sdo_net.drop_feature_layer('GRID', 'POI', true);

6.35 SDO_NET.DROP_NETWORK
Format

SDO_NET.DROP_NETWORK(
     network IN VARCHAR2);

Description

Drops (deletes) a network.

Parameters

network
Name of the network to be dropped.

Usage Notes

This procedure also deletes the node, link, and path tables associated with the network, and
the network metadata for the network.

Examples

The following example drops the network named ROADS_NETWORK.

EXECUTE SDO_NET.DROP_NETWORK('ROADS_NETWORK');

6.36 SDO_NET.FIND_CONNECTED_COMPONENTS
Format

SDO_NET.FIND_CONNECTED_COMPONENTS(
     network IN VARCHAR2);

Description

Finds all connected components for a specified link level in a network, and stores the
information in the connected component table.

Parameters

network
Network name.
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link_level
Link level for which to find connected components (default = 1). The link level reflects
the priority level for the link, and is used for network analysis, so that links with higher
priority levels can be considered first in computing a path.

component_table_name
Name of the connected component table, which is created by this procedure. (If an
existing table with the specified name already exists, it is updated with information for
the specified link level.) The connected component table is described in Connected
Component Table.

log_loc
Directory object that identifies the path for the log file. To create a directory object, use
the SQL*Plus command CREATE DIRECTORY.

log_file
Log file containing information about spatial network operations, including any
possible errors or problems.

open_mode
A one-character code indicating the mode in which to open the log file: W for write over
(that is, delete any existing log file at the specified location and name, and create a
new file), or A (the default) for append (that is, append information to the existing
specified log file). If you specify A and the log file does not exist, a new log file is
created.

Usage Notes

This procedure finds, for each node in the specified network, information about all
other nodes that are reachable from that node, and it stores the information in the
specified connected component table. Having this information in the table enables
better performance for many network analysis operations.

Examples

The following example finds the connected components for link level 1 in the
SDO_PARTITIONED network, and creates or updates the
SDO_PARTITIONED_CONN_COMP_TAB table. Information about the operation is
added (open_mode => 'a') to the sdo_partitioned.log file, located in the location
associated with the directory object named LOG_DIR.

EXECUTE SDO_NET.FIND_CONNECTED_COMPONENTS(-
  network => 'SDO_PARTITIONED', -
  link_level => 1,-
  component_table_name => 'sdo_partitioned_conn_comp_tab',-
  log_loc => 'LOG_DIR', log_file=> 'sdo_partitioned.log',-
  open_mode => 'a');

6.37 SDO_NET.GENERATE_NODE_LEVELS
Format

SDO_NET.GENERATE_NODE_LEVELS(
     network               IN VARCHAR2,
     node_level_table_name IN VARCHAR2,
     overwrite             IN BOOLEAN DEFAULT FALSE,
     log_loc               IN VARCHAR2,
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     log_file              IN VARCHAR2,
     open_mode             IN VARCHAR2 DEFAULT 'A');

Description

Generates node levels for a specified multilevel network, and stores the information in a
table.

Parameters

network
Network name.

node_level_table_name
Table in which to store node level information. This table must have the following definition:
(node_id NUMBER PRIMARY KEY, link_level NUMBER)

overwrite
Controls the behavior if the table specified in node_level_table_name already exists: TRUE
replaces the contents of that table with new data; FALSE (the default) generates an error.
(This parameter has no effect if the table specified in node_level_table_name does not
exist.)

log_loc
Directory object that identifies the path for the log file. To create a directory object, use the
SQL*Plus command CREATE DIRECTORY.

log_file
Log file containing information about spatial network operations, including any possible
errors or problems.

open_mode
A one-character code indicating the mode in which to open the log file: W for write over (that
is, delete any existing log file at the specified location and name, and create a new file), or A
(the default) for append (that is, append information to the existing specified log file). If you
specify A and the log file does not exist, a new log file is created.

Usage Notes

If network is not a multilevel network (one with multiple link levels), this procedure does not
perform any operation.

This procedure is used internally by the SDO_NET.GENERATE_PARTITION_BLOBS
procedure. Therefore, if you have executed SDO_NET.GENERATE_PARTITION_BLOBS,
you do not need to execute this procedure. However, you do need to execute this procedure
explicitly in these cases:

• When a Java application has been configured to read partitions from the node or link
tables instead of from BLOBs, and partition BLOBs have never been generated on the
network.

• When a higher-level node has been added or deleted in the network and the node-
partition relationship has been updated. Before you execute 
SDO_NET.GENERATE_PARTITION_BLOB to regenerate the containing partition BLOB
or BLOBs, you must manually either update the node level table or execute this
procedure (SDO_NET.GENERATE_NODE_LEVELS).
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The node level table name is stored in the NODE_LEVEL_TABLE_NAME column of
the USER_SDO_NETWORK_METADATA view, which is described in 
xxx_SDO_NETWORK_METADATA Views.

Examples

The following example generates the node level information for the
MY_MULTILEVEL_NET network, and stores the information in the
MY_NET_NODE_LEVELS table. Information about the operation is added (open_mode
=> 'a') to the my_multilevel_net.log file, located in the location associated with the
directory object named LOG_DIR.

EXECUTE SDO_NET.GENERATE_NODE_LEVELS(-
  network => 'MY_MULTILEVEL_NET', -
  node_level_table_name => 'MY_NET_NODE_LEVELS',-
  overwrite => FALSE,-
  log_loc => 'LOG_DIR', log_file=> 'my_multilevel_net.log',-
  open_mode => 'a');

6.38 SDO_NET.GENERATE_PARTITION_BLOB
Format

SDO_NET.GENERATE_PARTITION_BLOB(
     network              IN VARCHAR2,
     link_level           IN NUMBER DEFAULT 1,
     partition_id         IN VARCHAR2,
     include_user_data    IN BOOLEAN,
     log_loc              IN VARCHAR2,
     log_file             IN VARCHAR2,
     open_mode            IN VARCHAR2 DEFAULT 'A',
     preform_delta_update IN BOOLEAN DEFAULT FALSE);

Description

Generates a single binary large object (BLOB) representation for a specified partition
associated with a specified link level in the network, and stores the information in the
existing partition BLOB table.

Parameters

network
Network name.

link_level
Link level for links to be included in the BLOB (default = 1). The link level reflects the
priority level for the link, and is used for network analysis, so that links with higher
priority levels can be considered first in computing a path.

partition_id
Partition ID number. Network elements associated with the specified combination of
link level and partition ID are included in the generated BLOB.
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include_user_data
TRUE if the BLOB should include any user data of category 0 (zero) associated with the
network elements represented in each BLOB, or FALSE if the BLOB should not include any
user data.

log_loc
Directory object that identifies the path for the log file. To create a directory object, use the
SQL*Plus command CREATE DIRECTORY.

log_file
Log file containing information about spatial network operations, including any possible
errors or problems.

open_mode
A one-character code indicating the mode in which to open the log file: W for write over (that
is, delete any existing log file at the specified location and name, and create a new file), or A
(the default) for append (that is, append information to the existing specified log file). If you
specify A and the log file does not exist, a new log file is created.

perform_delta_update
(Reserved for future use. The only permitted value is FALSE, the default.)

Usage Notes

This procedure adds a single new BLOB or replaces a single existing BLOB in the partition
BLOB table, which must have been previously created using the 
SDO_NET.GENERATE_PARTITION_BLOBS procedure.

One use for this procedure is to perform a relatively quick update of the BLOB for a desired
partition in a network that contains multiple large partitions, as opposed to than updating the
BLOBs for all partitions using the SDO_NET.GENERATE_PARTITION_BLOBS procedure.

Examples

The following example generates the partition BLOB for the partition associated with partition
ID 1 and link level 1 in the SDO_PARTITIONED network, and adds or replaces the
appropriate BLOB in the SDO_PARTITIONED_PART_BLOB_TAB table. Any user data of
category 0 (zero) associated with the network elements is also included. Information about
the operation is added (open_mode => 'a') to the sdo_partitioned.log file, located in the
location associated with the directory object named LOG_DIR.

EXECUTE SDO_NET.GENERATE_PARTITION_BLOB(-
  network => 'SDO_PARTITIONED', -
  link_level => 1,-
  partition_id => 1,-
  include_user_data => true,-
  log_loc => 'LOG_DIR', log_file=> 'sdo_partitioned.log',-
  open_mode => 'a');

6.39 SDO_NET.GENERATE_PARTITION_BLOBS
Format

SDO_NET.GENERATE_PARTITION_BLOBS(
     network                   IN VARCHAR2,
     link_level                IN NUMBER DEFAULT 1,
     partition_blob_table_name IN VARCHAR2,
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     include_user_data         IN BOOLEAN,
     commit_for_each_blob      IN BOOLEAN DEFAULT TRUE,
     log_loc                   IN VARCHAR2,
     log_file                  IN VARCHAR2,
     open_mode                 IN VARCHAR2 DEFAULT 'A',
     perform_delta_update      IN BOOLEAN DEFAULT FALSE,
     regenerate_node_levels    IN BOOLEAN DEFAULT FALSE);

Description

Generates a binary large object (BLOB) representation for partitions associated with a
specified link level in the network, and stores the information in the partition BLOB
table.

Parameters

network
Network name.

link_level
Link level for links to be included in each BLOB (default = 1). The link level reflects the
priority level for the link, and is used for network analysis, so that links with higher
priority levels can be considered first in computing a path.

partition_blob_table_name
Name of the partition BLOB table, which is created by this procedure. (If an existing
table with the specified name already exists, it is updated with information for the
specified link level.) The partition BLOB table is described in Partition BLOB Table.

include_user_data
TRUE if each BLOB should include any user data of category 0 (zero) associated with
the network elements represented in each BLOB, or FALSE if each BLOB should not
include any user data.

commit_for_each_blob
TRUE (the default) if each partition BLOB should be committed to the database after it
is generated, or FALSE if each BLOB should not be committed (in which case you must
perform one or more explicit commit operations).

log_loc
Directory object that identifies the path for the log file. To create a directory object, use
the SQL*Plus command CREATE DIRECTORY.

log_file
Log file containing information about spatial network operations, including any
possible errors or problems.

open_mode
A one-character code indicating the mode in which to open the log file: W for write over
(that is, delete any existing log file at the specified location and name, and create a
new file), or A (the default) for append (that is, append information to the existing
specified log file). If you specify A and the log file does not exist, a new log file is
created.

perform_delta_update
(Reserved for future use. The only permitted value is FALSE, the default.)
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regenerate_node_levels
TRUE to regenerate the node level table for multilevel networks, or FALSE (the default) not to
regenerate the node level table for multilevel networks. You should set this parameter to
TRUE if higher-level (second level or above) nodes are added or deleted from the network, or
if the level of a node is changed. The level of a node is defined as the maximum link level
coming into or out of the node.

Usage Notes

Generating partition BLOBs enables better performance for many network analysis
operations, especially with large networks.

If the network is not partitioned, this procedure generates a single BLOB representing the
entire network.

When this procedure is first executed on a multilevel network, it internally calls 
SDO_NET.GENERATE_NODE_LEVELS to create and populate the node level table
(described in Node Level Table (Optional)). When this procedure is called subsequently on a
multilevel network, you can use the regenerate_node_levels parameter to specify whether
to overwrite the existing node level table.

Do not confuse this procedure with SDO_NET.GENERATE_PARTITION_BLOB, which
regenerates a single BLOB for a specified combination of link level and partition ID, and adds
that information to the existing partition BLOB table.

Examples

The following example generates partition BLOBs for link level 1 in the SDO_PARTITIONED
network, and creates or updates the SDO_PARTITIONED_PART_BLOB_TAB table. Any user
data of category 0 (zero) associated with the network elements is also included. Information
about the operation is added (open_mode => 'a') to the sdo_partitioned.log file, located in
the location associated with the directory object named LOG_DIR.

EXECUTE SDO_NET.GENERATE_PARTITION_BLOBS(-
  network => 'SDO_PARTITIONED', -
  link_level => 1,-
  partition_blob_table_name => 'sdo_partitioned_part_blob_tab',-
  include_user_data => true,-
  log_loc => 'LOG_DIR', log_file=> 'sdo_partitioned.log',-
  open_mode => 'a');

6.40 SDO_NET.GET_CHILD_FEATURE_IDS
Format

SDO_NET.GET_CHILD_FEATURE_IDS(
     feature_layer_id IN NUMBER,
     feature_id       IN NUMBER
) RETURN SDO_NET_LAYER_FEAT_ARRAY;

Description

Returns the feature layer ID and child feature IDs for the specified feature. (The
SDO_NET_LAYER_FEAT_ARRAY type is described in Data Types Used for Feature
Modeling.)
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Parameters

feature_layer_id
ID of the feature layer for the feature (that is, the parent feature).

feature_id
ID of the feature.

Usage Notes

To get the feature layer ID and feature ID of the parent features for a specified feature,
use the SDO_NET.GET_PARENT_FEATURE_IDS function.

For information about features, including parent and child features, see Features and
Feature Layers.

Examples

The following example returns and displays the child feature IDs for feature 1 in the
PARENT_LAYER feature layer.

DECLARE
  feature_layer_id NUMBER;
  feature_id NUMBER := 1;
  feature_ids SDO_NET_LAYER_FEAT_ARRAY;
BEGIN
  feature_layer_id := sdo_net.get_feature_layer_id('GRID', 'PARENT_LAYER');
  feature_ids := sdo_net.get_child_feature_ids(feature_layer_id, feature_id);
  FOR i in 1..feature_ids.count
  LOOP
    --dbms_output.put_line('['||i||']'||' FEATURE_LAYER_ID   = '||
feature_ids(i).feature_layer_id);
    dbms_output.put_line('['||i||']'||' FEATURE_ID         = '||
feature_ids(i).feature_id);
    dbms_output.put_line('---');
  END LOOP;
END;
/

6.41 SDO_NET.GET_CHILD_LINKS
Format

SDO_NET.GET_CHILD_LINKS(
     network IN VARCHAR2,
     link_id IN NUMBER
) RETURN SDO_NUMBER_ARRAY;

Description

Returns the child links of a link.

Parameters

network
Network name.
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link_id
ID of the link for which to return the child links.

Usage Notes

For information about parent and child nodes and links in a network hierarchy, see Network
Hierarchy.

Examples

The following example returns the child links of the link in the XYZ_NETWORK network whose
link ID is 1001.

SELECT SDO_NET.GET_CHILD_LINKS('XYZ_NETWORK', 1001) FROM DUAL;
 
SDO_NET.GET_CHILD_LINKS('XYZ_NETWORK',1001)                                     
--------------------------------------------------------------------------------
SDO_NUMBER_ARRAY(1108, 1109) 

6.42 SDO_NET.GET_CHILD_NODES
Format

SDO_NET.GET_CHILD_NODES(
     network IN VARCHAR2,
     node_id IN NUMBER
) RETURN SDO_NUMBER_ARRAY;

Description

Returns the child nodes of a node.

Parameters

network
Network name.

node_id
ID of the node for which to return the child nodes.

Usage Notes

For information about parent and child nodes and links in a network hierarchy, see Network
Hierarchy.

Examples

The following example returns the child nodes of the node in the XYZ_NETWORK network whose
node ID is 1.

SELECT SDO_NET.GET_CHILD_NODES('XYZ_NETWORK', 1) FROM DUAL;
 
SDO_NET.GET_CHILD_NODES('XYZ_NETWORK',1)                                        
--------------------------------------------------------------------------------
SDO_NUMBER_ARRAY(101, 102, 103, 104, 105, 106)
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6.43 SDO_NET.GET_DANGLING_FEATURES
Format

SDO_NET.GET_DANGLING_FEATURES(
     feature_layer_id IN NUMBER
) RETURN SDO_NUMBER_ARRAY;

Description

Returns the IDs of dangling features in a feature layer. A dangling feature is a feature
that is not associated with any network elements (nodes or links).

Parameters

feature_layer_id
ID of the feature layer containing the features.

Usage Notes

To delete the dangling features in a feature layer, use the 
SDO_NET.DELETE_DANGLING_FEATURES procedure.

Examples

The following example gets the dangling features in the POI feature layer of the GRID
network and then displays their feature IDs.

DECLARE
  feature_layer_id NUMBER;
  feature_ids SDO_NUMBER_ARRAY;
BEGIN
  feature_layer_id := sdo_net.get_feature_layer_id('GRID', 'POI');
  feature_ids := sdo_net.get_dangling_features(feature_layer_id);
  dbms_output.put_line('Dangling Features:');
  for i in 1..feature_ids.count loop
    dbms_output.put_line('['||i||'] '||feature_ids(i));
  end loop;
END;
/

6.44 SDO_NET.GET_DANGLING_LINKS
Format

SDO_NET.GET_DANGLING_LINKS(
     network IN VARCHAR2
) RETURN SDO_NUMBER_ARRAY;

Description

Returns links that are not referenced by any feature in any feature layer.
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Parameters

network
Name of the network.

Usage Notes

To delete the dangling links in a network, use the SDO_NET.DELETE_DANGLING_LINKS
procedure.

Examples

The following example gets the dangling links in the GRID network and then displays the
number (count) of dangling links found.

DECLARE
  link_ids SDO_NUMBER_ARRAY;
BEGIN
  link_ids := sdo_net.get_dangling_links('GRID');
  dbms_output.put_line('Number of dangling Links: '||link_ids.count);
END;
/

6.45 SDO_NET.GET_DANGLING_NODES
Format

SDO_NET.GET_DANGLING_NODES(
     network IN VARCHAR2
) RETURN SDO_NUMBER_ARRAY;

Description

Returns nodes that are not referenced by any feature in any feature layer.

Parameters

network
Name of the network.

Usage Notes

To delete the dangling nodes in a network, use the SDO_NET.DELETE_DANGLING_NODES
procedure.

Examples

The following example gets the dangling nodes in the GRID network and then displays the
number (count) of dangling nodes found.

DECLARE
  node_ids SDO_NUMBER_ARRAY;
BEGIN
  node_ids := sdo_net.get_dangling_nodes('GRID');
  dbms_output.put_line('Number of dangling Nodes: '||node_ids.count);
END;
/
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6.46 SDO_NET.GET_FEATURE_ELEMENTS
Format

SDO_NET.GET_FEATURE_ELEMENTS(
     feature_layer_id IN NUMBER,
     feature_id       IN NUMBER
) RETURN SDO_NET_FEAT_ELEM_ARRAY;

Description

Returns the feature elements in a feature layer. (The
SDO_NET_FEAT_ELEM_ARRAY type is described in Data Types Used for Feature
Modeling.)

Parameters

feature_layer_id
ID of the feature layer for the feature.

feature_id
ID of the feature.

Usage Notes

To add a feature element to a feature, use the SDO_NET.ADD_FEATURE_ELEMENT
procedure; to add multiple feature elements in a single operation, use the 
SDO_NET.ADD_FEATURE_ELEMENTS procedure.

Examples

The following example gets the feature layer ID for a specified feature layer, then gets
and displays information about the feature elements for feature 1 in this feature layer.

DECLARE
  feature_layer_id NUMBER;
  feature_id NUMBER := 1;
  elements SDO_NET_FEAT_ELEM_ARRAY;
BEGIN
  feature_layer_id := sdo_net.get_feature_layer_id('GRID', 'POI');
  elements := sdo_net.get_feature_elements(feature_layer_id, feature_id);
  FOR i in 1..elements.count
  LOOP
    dbms_output.put_line('['||i||']'||' FEAT_ELEM_TYPE   = '||
elements(i).feat_elem_type);
    dbms_output.put_line('['||i||']'||' NET_ELEM_ID      = '||
elements(i).net_elem_id);
    dbms_output.put_line('['||i||']'||' START_PERCENTAGE = '||
elements(i).start_percentage);
    dbms_output.put_line('['||i||']'||' END_PERCENTAGE   = '||
elements(i).end_percentage);
    dbms_output.put_line('---');
  END LOOP;
END;
/
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6.47 SDO_NET.GET_FEATURE_LAYER_ID
Format

SDO_NET.GET_FEATURE_LAYER_ID(
     network_name       IN VARCHAR2
     feature_layer_name IN VARCHAR2
) RETURN NUMBER;

Description

Returns the feature layer ID for a specified feature layer.

Parameters

network_name
Network name.

feature_layer_name
Feature layer name.

Usage Notes

This function returns the value of the FEATURE_LAYER_ID column for the network and
feature layer combination in the USER_SDO_NETWORK_FEATURE view (see Table 5-36 in 
xxx_SDO_NETWORK_FEATURE Views).

Examples

The following example gets and displays the feature layer ID for a specified feature layer.

DECLARE
  feature_layer_id NUMBER;
BEGIN
  feature_layer_id := sdo_net.get_feature_layer_id('GRID', 'POI');
  dbms_output.put_line('Feature layer ID for the POI feature layer is '||
feature_layer_id);
END;
/

6.48 SDO_NET.GET_FEATURES_ON_LINKS
Format

SDO_NET.GET_FEATURES_ON_LINKS
     feature_layer_id IN NUMBER,
     link_ids         IN SDO_NUMBER_ARRAY
) RETURN SDO_NUMBER_ARRAY;

Description

Returns the IDs of features in a feature layer that reference specified links.
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Parameters

feature_layer_id
ID of the feature layer containing the features.

link_ids
IDs of the links to check for features.

Usage Notes

To find the IDs of features in a feature layer that reference specified nodes, use the 
SDO_NET.GET_FEATURES_ON_NODES procedure.

Examples

The following example gets and displays the feature IDs of features on a specified link.

DECLARE
  feature_layer_id NUMBER;
  link_ids SDO_NUMBER_ARRAY := SDO_NUMBER_ARRAY(1314);
  feature_ids SDO_NUMBER_ARRAY; 
BEGIN
  feature_layer_id := sdo_net.get_feature_layer_id('GRID', 'POI');
  feature_ids := sdo_net.get_features_on_links(feature_layer_id, link_ids);
  dbms_output.put_line('Features On Link '||link_ids(1)||':');
  for i in 1..feature_ids.count loop
    dbms_output.put_line('['||i||'] '||feature_ids(i));
  end loop;
END;
/

6.49 SDO_NET.GET_FEATURES_ON_NODES
Format

SDO_NET.GET_FEATURES_ON_NODES
     feature_layer_id IN NUMBER,
     node_ids         IN SDO_NUMBER_ARRAY
) RETURN SDO_NUMBER_ARRAY;

Description

Returns the IDs of features in a feature layer that reference specified nodes.

Parameters

feature_layer_id
ID of the feature layer containing the features.

node_ids
IDs of the nodes to check for features.

Usage Notes

To find the IDs of features in a feature layer that reference specified links, use the 
SDO_NET.GET_FEATURES_ON_LINKS procedure.
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Examples

The following example gets and displays the feature IDs of features on a specified node.

DECLARE
  feature_layer_id NUMBER;
  node_ids SDO_NUMBER_ARRAY := SDO_NUMBER_ARRAY(13);
  feature_ids SDO_NUMBER_ARRAY;
BEGIN
  feature_layer_id := sdo_net.get_feature_layer_id('GRID', 'POI');
  feature_ids := sdo_net.get_features_on_nodes(feature_layer_id, node_ids);
  dbms_output.put_line('Features On Node '||node_ids(1)||':');
  for i in 1..feature_ids.count loop
    dbms_output.put_line('['||i||'] '||feature_ids(i));
  end loop;
END;
/

6.50 SDO_NET.GET_GEOMETRY_TYPE
Format

SDO_NET.GET_GEOMETRY_TYPE(
     network IN VARCHAR2
) RETURN VARCHAR2;

Description

Returns the geometry type for a spatial network.

Parameters

network
Network name.

Usage Notes

This function returns the value of the GEOMETRY_TYPE column for the network in the
USER_SDO_NETWORK_METADATA view (see Table 5-33 in 
xxx_SDO_NETWORK_METADATA Views).

Examples

The following example returns the geometry type for the network named ROADS_NETWORK.

SELECT SDO_NET.GET_GEOMETRY_TYPE('ROADS_NETWORK') FROM DUAL;
 
SDO_NET.GET_GEOMETRY_TYPE('ROADS_NETWORK')                                      
--------------------------------------------------------------------------------
LRS_GEOMETRY 

6.51 SDO_NET.GET_IN_LINKS
Format

SDO_NET.GET_IN_LINKS(
     network IN VARCHAR2,
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     node_id IN NUMBER
) RETURN SDO_NUMBER_ARRAY;

Description

Returns an array of link ID numbers of the inbound links to a node.

Parameters

network
Network name.

node_id
ID of the node for which to return the array of inbound links.

Usage Notes

For information about inbound links and related Network Data Model Graph concepts,
see Network Data Model Graph Concepts.

Examples

The following example returns an array of link ID numbers of the inbound links into the
node whose node ID is 3 in the network named ROADS_NETWORK.

SELECT SDO_NET.GET_IN_LINKS('ROADS_NETWORK', 3) FROM DUAL;
 
SDO_NET.GET_IN_LINKS('ROADS_NETWORK',3)                                         
--------------------------------------------------------------------------------
SDO_NUMBER_ARRAY(102)

6.52 SDO_NET.GET_INVALID_LINKS
Format

SDO_NET.GET_INVALID_LINKS(
     network IN VARCHAR2
) RETURN SDO_NUMBER_ARRAY;

Description

Returns the invalid links in a network.

Parameters

network
Network name.

Usage Notes

This function returns an SDO_NUMBER_ARRAY object with a comma-delimited list of
node ID numbers of invalid links in the specified network. If there are no invalid links,
this function returns a null value.

Examples

The following example returns the invalid links in the SDO_PARTITIONED network.

SELECT SDO_NET.GET_INVALID_LINKS('SDO_PARTITIONED') FROM DUAL;
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6.53 SDO_NET.GET_INVALID_NODES
Format

SDO_NET.GET_INVALID_NODES(
     network IN VARCHAR2
) RETURN SDO_NUMBER_ARRAY;

Description

Returns the invalid nodes in a network.

Parameters

network
Network name.

Usage Notes

This function returns an SDO_NUMBER_ARRAY object with a comma-delimited list of node
ID numbers of invalid nodes in the specified network. If there are no invalid nodes, this
function returns a null value.

Examples

The following example returns the invalid nodes in the SDO_PARTITIONED network.

SELECT SDO_NET.GET_INVALID_NODES('SDO_PARTITIONED') FROM DUAL;

6.54 SDO_NET.GET_INVALID_PATHS
Format

SDO_NET.GET_INVALID_PATHS(
     network IN VARCHAR2
) RETURN SDO_NUMBER_ARRAY;

Description

Returns the invalid paths in a network.

Parameters

network
Network name.

Usage Notes

This function returns an SDO_NUMBER_ARRAY object with a comma-delimited list of node
ID numbers of invalid paths in the specified network. If there are no invalid paths, this function
returns a null value.

Examples

The following example returns the invalid paths in the SDO_PARTITIONED network.

SELECT SDO_NET.GET_INVALID_PATHS('SDO_PARTITIONED') FROM DUAL;
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6.55 SDO_NET.GET_ISOLATED_NODES
Format

SDO_NET.GET_ISOLATED_NODES( 
     network  IN VARCHAR2      
) RETURN SDO_NUMBER_ARRAY;

Description

Returns the isolated nodes in a network.

Parameters

network
Network name.

Usage Notes

This function returns an SDO_NUMBER_ARRAY object with a comma-delimited list of
node ID numbers of isolated nodes in the specified network. If there are no isolated
nodes, this function returns a null value.

For a brief explanation of isolated nodes in a network, see Network Data Model Graph
Concepts.

Examples

The following example returns the isolated nodes in the SDO_PARTITIONED network.

SELECT SDO_NET.GET_ISOLATED_NODES('SDO_PARTITIONED') FROM DUAL;

6.56 SDO_NET.GET_LINK_COST_COLUMN
Format

SDO_NET.GET_LINK_COST_COLUMN(      
     network  IN VARCHAR2      
) RETURN VARCHAR2;

Description

Returns the name of the link cost column for a network.

Parameters

network
Network name.

Usage Notes

This function returns the value of the LINK_COST_COLUMN column for the network in
the USER_SDO_NETWORK_METADATA view (see Table 5-33 in 
xxx_SDO_NETWORK_METADATA Views).
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Examples

The following example returns the name of the link cost column for the network named
ROADS_NETWORK.

SELECT SDO_NET.GET_LINK_COST_COLUMN('ROADS_NETWORK') FROM DUAL;
 
SDO_NET.GET_LINK_COST_COLUMN('ROADS_NETWORK')                                   
--------------------------------------------------------------------------------
COST

6.57 SDO_NET.GET_LINK_DIRECTION
Format

SDO_NET.GET_LINK_DIRECTION(      
  network  IN VARCHAR2      
) RETURN VARCHAR2;

Description

Returns the link direction for a network.

Parameters

network
Network name.

Usage Notes

This function returns the value of the LINK_DIRECTION column for the network in the
USER_SDO_NETWORK_METADATA view (see Table 5-33 in 
xxx_SDO_NETWORK_METADATA Views).

Examples

The following example returns the link direction for the network named ROADS_NETWORK.

SELECT SDO_NET.GET_LINK_DIRECTION('ROADS_NETWORK') FROM DUAL;
 
SDO_NET.GET_LINK_DIRECTION('ROADS_NETWORK')                                     
--------------------------------------------------------------------------------
DIRECTED 

6.58 SDO_NET.GET_LINK_GEOM_COLUMN
Format

SDO_NET.GET_LINK_GEOM_COLUMN(    
  network  IN VARCHAR2     
) RETURN VARCHAR2;

Description

Returns the name of the link geometry column for a spatial network.
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Parameters

network
Network name.

Usage Notes

This function returns the value of the LINK_GEOM_COLUMN column for the network
in the USER_SDO_NETWORK_METADATA view (see Table 5-33 in 
xxx_SDO_NETWORK_METADATA Views).

Examples

The following example returns the name of the link geometry column for the network
named ROADS_NETWORK.

SELECT SDO_NET.GET_LINK_GEOM_COLUMN('ROADS_NETWORK') FROM DUAL;
 
SDO_NET.GET_LINK_GEOM_COLUMN('ROADS_NETWORK')                                   
--------------------------------------------------------------------------------
LINK_GEOMETRY

6.59 SDO_NET.GET_LINK_GEOMETRY
Format

SDO_NET.GET_LINK_GEOMETRY(      
  network          IN VARCHAR2,      
  link_id          IN NUMBER,      
  start_percentage IN NUMBER DEFAULT 0,      
  end_percentage   IN NUMBER DEFAULT 1.0      
) RETURN SDO_GEOMETRY;

Description

Returns the entire geometry or a portion of the geometry associated with a link in a
spatial network.

Parameters

network
Network name.

link_id
ID number of the link for which to return the geometry.

start_percentage
Percentage of the distance along the link to be used for the start point of the returned
geometry. Expressed as a number between 0 and 1.0; for example, 0.5 is 50 percent.
The default value is 0; that is, the start of the returned geometry is associated with the
start point of the link.

end_percentage
Percentage of the distance along the link to be used for the end point of the returned
geometry. Expressed as a number between 0 and 1.0; for example, 0.5 is 50 percent.
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The default value is 1.0; that is, the end of returned geometry is associated with the end
point of the link.

Usage Notes

None.

Examples

The following example returns the geometry associated with the link whose link ID is 103 in
the network named ROADS_NETWORK.

SELECT SDO_NET.GET_LINK_GEOMETRY('ROADS_NETWORK', 103) FROM DUAL;
 
SDO_NET.GET_LINK_GEOMETRY('ROADS_NETWORK',103)(SDO_GTYPE, SDO_SRID, SDO_POINT(X,
--------------------------------------------------------------------------------
SDO_GEOMETRY(2002, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 2, 1), SDO_ORDINATE_ARRAY(
8, 4, 12, 4)) 

6.60 SDO_NET.GET_LINK_TABLE_NAME
Format

SDO_NET.GET_LINK_TABLE_NAME(      
  network  IN VARCHAR2      
) RETURN VARCHAR2;

Description

Returns the name of the link table for a network.

Parameters

network
Network name.

Usage Notes

This function returns the value of the LINK_TABLE_NAME column for the network in the
USER_SDO_NETWORK_METADATA view (see Table 5-33 in 
xxx_SDO_NETWORK_METADATA Views).

Examples

The following example returns the name of the link table for the network named
ROADS_NETWORK.

SELECT SDO_NET.GET_LINK_TABLE_NAME('ROADS_NETWORK') FROM DUAL;
 
SDO_NET.GET_LINK_TABLE_NAME('ROADS_NETWORK')                                    
--------------------------------------------------------------------------------
ROADS_LINKS  
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6.61 SDO_NET.GET_LINKS_IN_PATH
Format

SDO_NET.GET_LINKS_IN_PATH(      
  network  IN VARCHAR2,     
  path_id  IN NUMBER      
) RETURN SDO_NUMBER_ARRAY;

Description

Returns the links in a path.

Parameters

network
Network name.

path_id
ID of the path for which to return the links.

Usage Notes

For an explanation of links and paths, see Network Data Model Graph Concepts.

Examples

The following example returns the link ID values of links in the path in the XYZ_NETWORK
network whose path ID is 1.

SELECT SDO_NET.GET_LINKS_IN_PATH('XYZ_NETWORK', 1) FROM DUAL;
 
SDO_NET.GET_LINKS_IN_PATH('XYZ_NETWORK',1)
--------------------------------------------------------------------------------
SDO_NUMBER_ARRAY(1102, 1104, 1105)

6.62 SDO_NET.GET_LRS_GEOM_COLUMN
Format

SDO_NET.GET_LRS_GEOM_COLUMN(      
  network  IN VARCHAR2      
) RETURN VARCHAR2;

Description

Returns the name of the LRS geometry column for a spatial network.

Parameters

network
Network name.
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Usage Notes

This function returns the value of the LRS_GEOM_COLUMN column for the network in the
USER_SDO_NETWORK_METADATA view (see Table 5-33 in 
xxx_SDO_NETWORK_METADATA Views).

Examples

The following example returns the name of the LRS geometry column for the network named
ROADS_NETWORK.

SELECT SDO_NET.GET_LRS_GEOM_COLUMN('ROADS_NETWORK') FROM DUAL;
 
SDO_NET.GET_LRS_GEOM_COLUMN('ROADS_NETWORK')                                    
--------------------------------------------------------------------------------
ROAD_GEOM 

6.63 SDO_NET.GET_LRS_LINK_GEOMETRY
Format

SDO_NET.GET_LRS_LINK_GEOMETRY( 
  network  IN VARCHAR2,      
  link_id  IN NUMBER      
) RETURN SDO_GEOMETRY;

Description

Returns the LRS geometry associated with a link in a spatial LRS network.

Parameters

network
Network name.

link_id
ID number of the link for which to return the geometry.

Usage Notes

None.

Examples

The following example returns the LRS geometry associated with the link whose link ID is
103 in the network named ROADS_NETWORK.

SELECT SDO_NET.GET_LRS_LINK_GEOMETRY('ROADS_NETWORK', 103) FROM DUAL;
 
SDO_NET.GET_LRS_LINK_GEOMETRY('ROADS_NETWORK',103)(SDO_GTYPE, SDO_SRID, SDO_POIN
--------------------------------------------------------------------------------
SDO_GEOMETRY(2002, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 2, 1), SDO_ORDINATE_ARRAY(
8, 4, 12, 4))

Chapter 6
SDO_NET.GET_LRS_LINK_GEOMETRY

6-61



6.64 SDO_NET.GET_LRS_NODE_GEOMETRY
Format

SDO_NET.GET_LRS_NODE_GEOMETRY(     
  network IN VARCHAR2,      
  node_id IN NUMBER      
) RETURN SDO_GEOMETRY;

Description

Returns the LRS geometry associated with a node in a spatial LRS network.

Parameters

network
Network name.

node_id
ID number of the node for which to return the geometry.

Usage Notes

None.

Examples

The following example returns the LRS geometry associated with the node whose
node ID is 3 in the network named ROADS_NETWORK.

SELECT SDO_NET.GET_LRS_NODE_GEOMETRY('ROADS_NETWORK', 3) FROM DUAL;
 
SDO_NET.GET_LRS_NODE_GEOMETRY('ROADS_NETWORK',3)(SDO_GTYPE, SDO_SRID, SDO_POINT(
--------------------------------------------------------------------------------
SDO_GEOMETRY(2001, NULL, SDO_POINT_TYPE(8, 4, NULL), NULL, NULL)

6.65 SDO_NET.GET_LRS_TABLE_NAME
Format

SDO_NET.GET_LRS_TABLE_NAME(      
  network  IN VARCHAR2     
) RETURN VARCHAR2;

Description

Returns the name of the table containing LRS geometries in a spatial LRS network.

Parameters

network
Network name.
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Usage Notes

This function returns the value of the LRS_TABLE_NAME column for the network in the
USER_SDO_NETWORK_METADATA view (see Table 5-33 in 
xxx_SDO_NETWORK_METADATA Views).

Examples

The following example returns the name of the table that contains LRS geometries for the
network named ROADS_NETWORK.

SELECT SDO_NET.GET_LRS_TABLE_NAME('ROADS_NETWORK') FROM DUAL;
 
SDO_NET.GET_LRS_TABLE_NAME('ROADS_NETWORK')                                     
--------------------------------------------------------------------------------
ROADS 

6.66 SDO_NET.GET_NETWORK_TYPE
Format

SDO_NET.GET_NETWORK_TYPE(      
  network  IN VARCHAR2      
) RETURN VARCHAR2;

Description

Returns the network type.

Parameters

network
Network name.

Usage Notes

This function returns the value of the NETWORK_TYPE column for the network in the
USER_SDO_NETWORK_METADATA view (see Table 5-33 in 
xxx_SDO_NETWORK_METADATA Views).

Examples

The following example returns the network type for the network named ROADS_NETWORK.

SELECT SDO_NET.GET_NETWORK_TYPE('ROADS_NETWORK') FROM DUAL;
 
SDO_NET.GET_NETWORK_TYPE('ROADS_NETWORK')                                       
--------------------------------------------------------------------------------
Roadways

6.67 SDO_NET.GET_NO_OF_HIERARCHY_LEVELS
Format

SDO_NET.GET_NO_OF_HIERARCHY_LEVELS(      
  network  IN VARCHAR2      
) RETURN NUMBER;
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Description

Returns the number of hierarchy levels for a network.

Parameters

network
Network name.

Usage Notes

This function returns the value of the NO_OF_HIERARCHY_LEVELS column for the
network in the USER_SDO_NETWORK_METADATA view (see Table 5-33 in 
xxx_SDO_NETWORK_METADATA Views).

For an explanation of network hierarchy, see Network Hierarchy.

Examples

The following example returns the number of hierarchy levels for the network named
ROADS_NETWORK.

SELECT SDO_NET.GET_NO_OF_HIERARCHY_LEVELS('ROADS_NETWORK') FROM DUAL;
 
SDO_NET.GET_NO_OF_HIERARCHY_LEVELS('ROADS_NETWORK')                             
---------------------------------------------------                             
                                                  1

6.68 SDO_NET.GET_NO_OF_LINKS
Format

SDO_NET.GET_NO_OF_LINKS(      
  network  IN VARCHAR2      
) RETURN NUMBER;

or

SDO_NET.GET_NO_OF_LINKS(      
  network       IN VARCHAR2,      
  hierarchy_id  IN NUMBER      
) RETURN NUMBER;

Description

Returns the number of links for a network or a hierarchy level in a network.

Parameters

network
Network name.

hierarchy_id
Hierarchy level number for which to return the number of links.

Usage Notes

None.
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Examples

The following example returns the number of links in the network named ROADS_NETWORK.

SELECT SDO_NET.GET_NO_OF_LINKS('ROADS_NETWORK') FROM DUAL;
 
SDO_NET.GET_NO_OF_LINKS('ROADS_NETWORK')                                        
----------------------------------------                                        
                                      10 

6.69 SDO_NET.GET_NO_OF_NODES
Format

SDO_NET.GET_NO_OF_NODES(      
  network  IN VARCHAR2      
) RETURN NUMBER;

or

SDO_NET.GET_NO_OF_NODES(      
  network       IN VARCHAR2,      
  hierarchy_id  IN NUMBER      
) RETURN NUMBER;

Description

Returns the number of nodes for a network or a hierarchy level in a network.

Parameters

network
Network name.

hierarchy_id
Hierarchy level number for which to return the number of nodes.

Usage Notes

For information about nodes and related concepts, see Network Data Model Graph
Concepts.

Examples

The following example returns the number of nodes in the network named ROADS_NETWORK.

SELECT SDO_NET.GET_NO_OF_NODES('ROADS_NETWORK') FROM DUAL;
 
SDO_NET.GET_NO_OF_NODES('ROADS_NETWORK')                                        
----------------------------------------                                        
                                       8
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6.70 SDO_NET.GET_NODE_DEGREE
Format

SDO_NET.GET_NODE_DEGREE(      
  network  IN VARCHAR2,      
  node_id  IN NUMBER      
) RETURN NUMBER;

Description

Returns the number of links to a node.

Parameters

network
Network name.

node_id
Node ID of the node for which to return the number of links.

Usage Notes

For information about node degree and related Network Data Model Graph concepts,
see Network Data Model Graph Concepts.

Examples

The following example returns the number of links to the node whose node ID is 3 in
the network named ROADS_NETWORK.

SELECT SDO_NET.GET_NODE_DEGREE('ROADS_NETWORK', 3) FROM DUAL;
 
SDO_NET.GET_NODE_DEGREE('ROADS_NETWORK',3)                                      
------------------------------------------                                      
                                         3

6.71 SDO_NET.GET_NODE_GEOM_COLUMN
Format

SDO_NET.GET_NODE_GEOM_COLUMN(      
  network  IN VARCHAR2      
) RETURN VARCHAR2;

Description

Returns the name of the geometry column for nodes in a spatial network.

Parameters

network
Network name.
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Usage Notes

This function returns the value of the NODE_GEOM_COLUMN column for the network in the
USER_SDO_NETWORK_METADATA view (see Table 5-33 in 
xxx_SDO_NETWORK_METADATA Views).

Examples

The following example returns the name of the geometry column for nodes in the network
named ROADS_NETWORK.

SELECT SDO_NET.GET_NODE_GEOM_COLUMN('ROADS_NETWORK') FROM DUAL;
 
SDO_NET.GET_NODE_GEOM_COLUMN('ROADS_NETWORK')                                   
--------------------------------------------------------------------------------
NODE_GEOMETRY

6.72 SDO_NET.GET_NODE_GEOMETRY
Format

SDO_NET.GET_NODE_GEOMETRY(      
  network  IN VARCHAR2,      
  node_id  IN NUMBER      
) RETURN SDO_GEOMETRY;

Description

Returns the LRS geometry associated with a node in a spatial network.

Parameters

network
Network name.

node_id
ID number of the node for which to return the geometry.

Usage Notes

None.

Examples

The following example returns the geometry associated with the node whose node ID is 3 in
the network named ROADS_NETWORK.

SELECT SDO_NET.GET_NODE_GEOMETRY('ROADS_NETWORK', 3) FROM DUAL;
 
SDO_NET.GET_NODE_GEOMETRY('ROADS_NETWORK',3)(SDO_GTYPE, SDO_SRID, SDO_POINT(X, Y
--------------------------------------------------------------------------------
SDO_GEOMETRY(2001, NULL, SDO_POINT_TYPE(8, 4, NULL), NULL, NULL) 
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6.73 SDO_NET.GET_NODE_IN_DEGREE
Format

SDO_NET.GET_NODE_IN_DEGREE(      
  network  IN VARCHAR2,      
  node_id  IN NUMBER      
) RETURN NUMBER;

Description

Returns the number of inbound links to a node.

Parameters

network
Network name.

node_id
Node ID of the node for which to return the number of inbound links.

Usage Notes

For information about node degree and related Network Data Model Graph concepts,
see Network Data Model Graph Concepts.

Examples

The following example returns the number of inbound links to the node whose node ID
is 3 in the network named ROADS_NETWORK.

SELECT SDO_NET.GET_NODE_IN_DEGREE('ROADS_NETWORK', 3) FROM DUAL;
 
SDO_NET.GET_NODE_IN_DEGREE('ROADS_NETWORK',3)                                   
---------------------------------------------                                   
                                            1

6.74 SDO_NET.GET_NODE_OUT_DEGREE
Format

SDO_NET.GET_NODE_OUT_DEGREE(      
  network  IN VARCHAR2,      
  node_id  IN NUMBER      
) RETURN NUMBER;

Description

Returns the number of outbound links from a node.

Parameters

network
Network name.
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node_id
Node ID of the node for which to return the number of outbound links.

Usage Notes

For information about node degree and related Network Data Model Graph concepts, see 
Network Data Model Graph Concepts.

Examples

The following example returns the number of outbound links from the node whose node ID is
3 in the network named ROADS_NETWORK.

SELECT SDO_NET.GET_NODE_OUT_DEGREE('ROADS_NETWORK', 3) FROM DUAL;
 
SDO_NET.GET_NODE_OUT_DEGREE('ROADS_NETWORK',3)                                  
----------------------------------------------                                  
                                             2

6.75 SDO_NET.GET_NODE_TABLE_NAME
Format

SDO_NET.GET_NODE_TABLE_NAME(      
  network  IN VARCHAR2      
) RETURN VARCHAR2;

Description

Returns the name of the table that contains the nodes in a spatial network.

Parameters

network
Network name.

Usage Notes

This function returns the value of the NODE_TABLE_NAME column for the network in the
USER_SDO_NETWORK_METADATA view (see Table 5-33 in 
xxx_SDO_NETWORK_METADATA Views).

Examples

The following example returns the name of the table that contains the nodes in the network
named ROADS_NETWORK.

SELECT SDO_NET.GET_NODE_TABLE_NAME('ROADS_NETWORK') FROM DUAL;
 
SDO_NET.GET_NODE_TABLE_NAME('ROADS_NETWORK')                                    
--------------------------------------------------------------------------------
ROADS_NODES
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6.76 SDO_NET.GET_OUT_LINKS
Format

SDO_NET.GET_OUT_LINKS(      
  network  IN VARCHAR2,      
  node_id  IN NUMBER      
) RETURN SDO_NUMBER_ARRAY;

Description

Returns an array of link ID numbers of the outbound links from a node.

Parameters

network
Network name.

node_id
ID of the node for which to return the array of outbound links.

Usage Notes

For information about outbound links and related Network Data Model Graph
concepts, see Network Data Model Graph Concepts.

Examples

The following example returns an array of link ID numbers of the outbound links from
the node whose node ID is 3 in the network named ROADS_NETWORK.

SELECT SDO_NET.GET_OUT_LINKS('ROADS_NETWORK', 3) FROM DUAL;
 
SDO_NET.GET_OUT_LINKS('ROADS_NETWORK',3)                                        
--------------------------------------------------------------------------------
SDO_NUMBER_ARRAY(103, 201)

6.77 SDO_NET.GET_PARENT_FEATURE_IDS
Format

SDO_NET.GET_PARENT_FEATURE_IDS(      
  feature_layer_id  IN NUMBER,      
  feature_id        IN NUMBER      
) RETURN SDO_NET_LAYER_FEAT_ARRAY;

Description

Returns the feature layer ID and parent feature IDs for the specified feature. (The
SDO_NET_LAYER_FEAT_ARRAY type is described in Data Types Used for Feature
Modeling.)
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Parameters

feature_layer_id
ID of the feature layer for the feature (that is, the child feature).

feature_id
ID of the feature.

Usage Notes

To get the feature layer ID and feature ID of the child features for a specified feature, use the 
SDO_NET.GET_CHILD_FEATURE_IDS function.

For information about features, including parent and child features, see Features and Feature
Layers.

Examples

The following example returns and displays the parent feature IDs for feature 1 in the POI
feature layer.

DECLARE
  feature_layer_id NUMBER;
  feature_id NUMBER := 1;
  feature_ids SDO_NET_LAYER_FEAT_ARRAY;
BEGIN
  feature_layer_id := sdo_net.get_feature_layer_id('GRID', 'POI');
  feature_ids := sdo_net.get_parent_feature_ids(feature_layer_id, feature_id);
  FOR i in 1..feature_ids.count
  LOOP
    --dbms_output.put_line('['||i||']'||' FEATURE_LAYER_ID   = '||
feature_ids(i).feature_layer_id);
    dbms_output.put_line('['||i||']'||' FEATURE_ID         = '||
feature_ids(i).feature_id);
    dbms_output.put_line('---');
  END LOOP;
END;
/

6.78 SDO_NET.GET_PARTITION_SIZE
Format

SDO_NET.GET_PARTITION_SIZE(      
  network              IN VARCHAR2,      
  partition_id         IN VARCHAR2,      
  link_level           IN NUMBER DEFAULT 1,      
  include_user_data    IN VARCHAR2 DEFAULT 'FALSE',      
  include_spatial_data IN VARCHAR2 DEFAULT 'FALSE'
) RETURN NUMBER;

Description

Gets the estimated size (in bytes) for a specified combination of partition ID and link level.
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Parameters

network
Network name.

partition_id
Partition ID number.

link_level
Link level (default = 1). The link level reflects the priority level for the link, and is used
for network analysis, so that links with higher priority levels can be considered first in
computing a path.

include_user_data
TRUE if the size should include any user data associated with the network elements
represented in each BLOB, or FALSE (the default) if the size should not include any
user data.

include_spatial_data
TRUE if the size should include spatial geometry definitions associated with the
network elements represented in each BLOB, or FALSE (the default) if the size should
not include spatial geometry definitions.

Usage Notes

The returned size of a network partition is a rough estimate and might vary depending
on the Java Virtual Machine and garbage collection.

For information about using partitioned networks to perform analysis using the load on
demand approach, see Network Analysis Using Load on Demand.

Examples

The following example returns the number of bytes for the partition associated with
partition ID 1 and link level 1 in the SDO_PARTITIONED network, not including any
user data or spatial data.

SELECT SDO_NET.GET_PARTITION_SIZE('SDO_PARTITIONED', 1, 1, 'N', 'N') FROM DUAL;
 
SDO_NET.GET_PARTITION_SIZE('SDO_PARTITIONED',1,1,'FALSE','FALSE')
---------------------------------------------------------
                                                     5192

6.79 SDO_NET.GET_PATH_GEOM_COLUMN
Format

SDO_NET.GET_PATH_GEOM_COLUMN(      
  network  IN VARCHAR2      
) RETURN VARCHAR2;

Description

Returns the name of the geometry column for paths in a spatial network.
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Parameters

network
Network name.

Usage Notes

This function returns the value of the PATH_GEOM_COLUMN column for the network in the
USER_SDO_NETWORK_METADATA view (see Table 5-33 in 
xxx_SDO_NETWORK_METADATA Views).

Examples

The following example returns the name of the geometry column for paths in the network
named ROADS_NETWORK.

SELECT SDO_NET.GET_PATH_GEOM_COLUMN('ROADS_NETWORK') FROM DUAL;
 
SDO_NET.GET_PATH_GEOM_COLUMN('ROADS_NETWORK')                                   
--------------------------------------------------------------------------------
PATH_GEOMETRY

6.80 SDO_NET.GET_PATH_TABLE_NAME
Format

SDO_NET.GET_PATH_TABLE_NAME(      
  network  IN VARCHAR2      
) RETURN VARCHAR2;

Description

Returns the name of the table that contains the paths in a spatial network.

Parameters

network
Network name.

Usage Notes

This function returns the value of the PATH_TABLE_NAME column for the network in the
USER_SDO_NETWORK_METADATA view (see Table 5-33 in 
xxx_SDO_NETWORK_METADATA Views).

Examples

The following example returns the name of the table that contains the paths in the network
named ROADS_NETWORK.

SELECT SDO_NET.GET_PATH_TABLE_NAME('ROADS_NETWORK') FROM DUAL;
 
SDO_NET.GET_PATH_TABLE_NAME('ROADS_NETWORK')                                    
--------------------------------------------------------------------------------
ROADS_PATHS 
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6.81 SDO_NET.GET_PERCENTAGE
Format

SDO_NET.GET_PERCENTAGE(      
  network  IN VARCHAR2,      
  link_id  IN NUMBER,      
  pt_geom  IN SDO_GEOMETRY      
) RETURN SDO_GEOMETRY;

Description

Returns the percentage of the distance along a link's line string geometry of a point
geometry.

Parameters

network
Network name.

link_id
ID number of the link.

pt_geom
Point geometry.

Usage Notes

This function returns a value between 0 and 1. For example, if the point is 25 percent
(one-fourth) of the distance between the start node and end node for the link, the
function returns .25.

If pt_geom is not on the link geometry, the nearest point on the link geometry to
pt_geom is used.

To find the point geometry that is a specified percentage of the distance along a link's
line string geometry, use the SDO_NET.GET_PT function.

Examples

The following example returns the percentage (as a decimal fraction) of the distance of
a specified point along the geometry associated with the link whose link ID is 101 in
the network named ROADS_NETWORK.

SQL> SELECT SDO_NET.GET_PERCENTAGE('ROADS_NETWORK', 101,
  SDO_GEOMETRY(2001, NULL, SDO_POINT_TYPE(2, 2.5, NULL), NULL, NULL))
  FROM DUAL;  2    3
 
SDO_NET.GET_PERCENTAGE('ROADS_NETWORK',101,SDO_GEOMETRY(2001,NULL,SDO_POINT_TYPE
--------------------------------------------------------------------------------
                                                                             .25
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6.82 SDO_NET.GET_PHANTOM_FEATURES
Format

SDO_NET.GET_PHANTOM_FEATURES(      
  feature_layer_id  IN NUMBER      
) RETURN SDO_NUMBER_ARRAY;

Description

Returns the IDs of phantom features in a feature layer. A phantom feature is a feature that
references nonexistent network elements (nodes or links).

Parameters

feature_layer_id
ID of the feature layer containing the features.

Usage Notes

To delete the phantom features in a feature layer, use the 
SDO_NET.DELETE_PHANTOM_FEATURES procedure.

Examples

The following example gets and displays the feature IDs of phantom features in a specified
feature layer.

DECLARE
  feature_layer_id NUMBER;
  feature_ids SDO_NUMBER_ARRAY;
BEGIN
  feature_layer_id := sdo_net.get_feature_layer_id('GRID', 'POI');
  feature_ids := sdo_net.get_phantom_features(feature_layer_id);
  dbms_output.put_line('Phantom Features:');
  for i in 1..feature_ids.count loop
    dbms_output.put_line('['||i||'] '||feature_ids(i));
  end loop;
END;
/

6.83 SDO_NET.GET_PT
Format

SDO_NET.GET_PT(      
  network     IN VARCHAR2,      
  link_id     IN NUMBER,      
  percentage  IN NUMBER      
) RETURN SDO_GEOMETRY;

Description

Returns the point geometry that is a specified percentage of the distance along a link's line
string geometry.
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Parameters

network
Network name.

link_id
ID number of the link for which to return the point geometry at the specified
percentage distance.

percentage
Percentage value as a decimal fraction between 0 and 1. For example, 0.25 is 25
percent.

Usage Notes

To find the percentage along a link geometry for a specified point, use the 
SDO_NET.GET_PERCENTAGE function.

Examples

The following example returns the point geometry that is 25 percent of the distance
from the start node along the geometry associated with the link whose link ID is 101 in
the network named ROADS_NETWORK.

SELECT SDO_NET.GET_PT('ROADS_NETWORK', 101, 0.25) FROM DUAL;
 
SDO_NET.GET_PT('ROADS_NETWORK',101,0.25)(SDO_GTYPE, SDO_SRID, SDO_POINT(X, Y, Z)
--------------------------------------------------------------------------------
SDO_GEOMETRY(2001, NULL, SDO_POINT_TYPE(2, 2.5, NULL), NULL, NULL)

6.84 SDO_NET.IS_HIERARCHICAL
Format

SDO_NET.IS_HIERARCHICAL(      
  network  IN VARCHAR2      
) RETURN VARCHAR2;

Description

Returns the string TRUE if the network has more than one level of hierarchy; returns the
string FALSE if the network does not have more than one level of hierarchy.

Parameters

network
Network name.

Usage Notes

For an explanation of network hierarchy, see Network Hierarchy.

Examples

The following example checks if the network named ROADS_NETWORK has more than
one level of hierarchy.
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SELECT SDO_NET.IS_HIERARCHICAL('ROADS_NETWORK') FROM DUAL;

SDO_NET.IS_HIERARCHICAL('ROADS_NETWORK')                                        
--------------------------------------------------------------------------------
TRUE   

6.85 SDO_NET.IS_LINK_IN_PATH
Format

SDO_NET.IS_LINK_IN_PATH(      
  network  IN VARCHAR2,      
  path_id  IN NUMBER,      
  link_id  IN NUMBER,      
) RETURN VARCHAR2;

Description

Returns the string TRUE if the specified link is in the specified path; returns the string FALSE if
the specified link is not in the specified path.

Parameters

network
Network name.

path_id
ID number of the path.

link_id
ID number of the link.

Usage Notes

You can use this function to check if a specific link is included in a specific path.

Examples

The following example checks if the link with link ID 1 is in the path with path ID 1 in the
network named SDO_NET1.

SELECT SDO_NET.IS_LINK_IN_PATH('SDO_NET1', 1, 1) FROM DUAL;
 
SDO_NET.IS_LINK_IN_PATH('SDO_NET1',1,1)                                        
--------------------------------------------------------------------------------
TRUE

6.86 SDO_NET.IS_LOGICAL
Format

SDO_NET.IS_LOGICAL(      
  network  IN VARCHAR2      
) RETURN VARCHAR2;
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Description

Returns the string TRUE if the network is a logical network; returns the string FALSE if
the network is not a logical network.

Parameters

network
Network name.

Usage Notes

A network can be a spatial network or a logical network, as explained in Network Data
Model Graph Concepts.

Examples

The following example checks if the network named ROADS_NETWORK is a logical
network.

SELECT SDO_NET.IS_LOGICAL('ROADS_NETWORK') FROM DUAL;
 
SDO_NET.IS_LOGICAL('ROADS_NETWORK')                                             
--------------------------------------------------------------------------------
FALSE 

6.87 SDO_NET.IS_NODE_IN_PATH
Format

SDO_NET.IS_NODE_IN_PATH(      
  network  IN VARCHAR2,      
  path_id  IN NUMBER,      
  node_id  IN NUMBER,      
) RETURN VARCHAR2;

Description

Returns the string TRUE if the specified node is in the specified path; returns the string
FALSE if the specified node is not in the specified path.

Parameters

network
Network name.

path_id
ID number of the path.

node_id
ID number of the node.

Usage Notes

You can use this function to check if a specific node is included in a specific path.
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Examples

The following example checks if the node with node ID 1 is in the path with path ID 1 in the
network named SDO_NET1.

SELECT SDO_NET.IS_NODE_IN_PATH('SDO_NET1', 1, 1) FROM DUAL;
 
SDO_NET.IS_NODE_IN_PATH('SDO_NET1',1,1)                                        
--------------------------------------------------------------------------------
TRUE

6.88 SDO_NET.IS_SPATIAL
Format

SDO_NET.IS_SPATIAL(      
  network  IN VARCHAR2      
) RETURN VARCHAR2;

Description

Returns the string TRUE if the network is a spatial network; returns the string FALSE if the
network is not a spatial network.

Parameters

network
Network name.

Usage Notes

A network can be a spatial network or a logical network, as explained in Network Data Model
Graph Concepts.

You can further check for the geometry type of a spatial network by using the following
functions: SDO_NET.LRS_GEOMETRY_NETWORK, 
SDO_NET.SDO_GEOMETRY_NETWORK, and SDO_NET.TOPO_GEOMETRY_NETWORK.

Examples

The following example checks if the network named ROADS_NETWORK is a spatial network.

SELECT SDO_NET.IS_SPATIAL('ROADS_NETWORK') FROM DUAL;
 
SDO_NET.IS_SPATIAL('ROADS_NETWORK')                                             
--------------------------------------------------------------------------------
TRUE

6.89 SDO_NET.LOAD_CONFIG
Format

SDO_NET.LOAD_CONFIG(     
  file_directory  IN VARCHAR2,     
  file_name       IN VARCHAR2);
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Description

Loads (or reloads) the configuration for load on demand Java stored procedures from
the specified XML file. The load on demand configuration is mainly for partition BLOB
translation and partition cache configuration. (The Java stored procedures are classes
in the package oracle.spatial.network.lod.)

Parameters

file_directory
Directory object that identifies the path for the XML file. To create a directory object,
use the SQL*Plus command CREATE DIRECTORY.

file_name
Name of the XML file containing the information to be loaded.

Usage Notes

A default configuration is provided for load on demand. You can use this procedure if
you need to change the default configuration.

For information about configuring the load on demand environment, including the
partition cache, see Configuring the Partition Cache.

Examples

The following example loads the load on demand configuration from a specified XML
file.

EXECUTE SDO_NET.LOAD_CONFIG('WORK_DIR', 'netlodcfg.xml');

6.90 SDO_NET.LOGICAL_PARTITION
Format

SDO_NET.LOGICAL_PARTITION(      
  network              IN VARCHAR2,      
  partition_table_name IN VARCHAR2,      
  max_num_nodes        IN NUMBER,      
  log_loc              IN VARCHAR2,      
  log_file             IN VARCHAR2,      
  open_mode            IN VARCHAR2 DEFAULT 'A',      
  link_level           IN NUMBER DEFAULT 1);

or

SDO_NET.LOGICAL_PARTITION(      
  network              IN VARCHAR2,      
  partition_table_name IN VARCHAR2,      
  max_num_nodes        IN NUMBER,      
  log_loc              IN VARCHAR2,      
  log_file             IN VARCHAR2,      
  open_mode            IN VARCHAR2 DEFAULT 'A',      
  link_level           IN NUMBER DEFAULT 1,      
  part_size_tolerance  IN NUMBER);
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Description

Partitions a logical network, and stores the information in the partition table.

Note:

If the logical network is a power law (scale-free) network, do not use this procedure
to partition it, but instead use the SDO_NET.LOGICAL_POWERLAW_PARTITION
procedure.

Parameters

network
Network name.

partition_table_name
Name of the partition table, which is created by this procedure. (If an existing table with the
specified name already exists, it is updated with partition information for the specified link
level.) The partition table is described in Partition Table.

max_num_nodes
Maximum number of nodes to include in each partition. For example, if you specify 5000 and
if the network contains 50,000 nodes, each partition will have 5000 or fewer nodes, and the
total number of partitions will be 10 or higher.

log_loc
Directory object that identifies the path for the log file. To create a directory object, use the
SQL*Plus command CREATE DIRECTORY.

log_file
Log file containing information about operations on the logical network, including any
possible errors or problems.

open_mode
A one-character code indicating the mode in which to open the log file: W for write over (that
is, delete any existing log file at the specified location and name, and create a new file), or A
(the default) for append (that is, append information to the existing specified log file). If you
specify A and the log file does not exist, a new log file is created.

link_level
Network link level on which to perform the partitioning (default = 1). The link level reflects the
priority level for the link, and is used for network analysis, so that links with higher priority
levels can be considered first in computing a path.

part_size_tolerance
Allowed tolerance in partition size expressed as a decimal fraction of max_num_nodes. Must
be from 0 to 1. This parameter allows the partitioning procedure to create partitions with
sizes larger than the one specified by max_num_nodes, thereby providing the flexibility to
generate partitions with reduced inter-connectivity. For example, if max_num_nodes is 5000
and part_size_tolerance is 0.1, a partition can include up to 5500 (5000+500 because 500
is 0.1*5000) nodes.
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Usage Notes

The format with the part_size_tolerance parameter enables you to partition logical
networks with a primary focus on reducing the inter-connectivity among partitions while
keeping the edge-cut small.

After you use this procedure to create the partitions, consider using the 
SDO_NET.GENERATE_PARTITION_BLOBS procedure, to enable better performance
for many network analysis operations, especially with large networks.

Examples

The following example creates partitions for link level 1 in the MY_LOGICAL_NET
network, and creates the MY_LOGICAL_PART_TAB table. The maximum number of
nodes to be placed in any partition is 5000. Information about the operation is added
(open_mode => 'a') to the my_logical_part.log file located in the location associated
with the directory object named LOG_DIR.

EXECUTE SDO_NET.LOGICAL_PARTITION(network => 'MY_LOGICAL_NET', -
  partition_table_name => 'my_logical_part_tab',-
  max_num_nodes => 5000,-
  log_loc => 'LOG_DIR', log_file=> 'my_logical_part.log',-
  link_level => 1, open_mode => 'a');

The following example creates partitions for link level 1 in the MY_LOGICAL_NET
network, and creates the MY_LOGICAL_PART_TAB table. The maximum number of
nodes to be placed in any partition is 5500 because of the combination of the
max_num_nodes and part_size_tolerance values (5000 + 0.1*5000 = 5500).
Information about the operation is written (open_mode => 'w') to the
my_logical_part.log file located in the location associated with the directory object
named LOG_DIR, replacing any existing file with that name in that location.

EXECUTE SDO_NET.LOGICAL_PARTITION(network => 'MY_LOGICAL_NET', -
  partition_table_name => 'my_logical_part_tab',-
  max_num_nodes => 5000,-
  log_loc => 'LOG_DIR', log_file=> 'my_logical_part.log',-
  link_level => 1, open_mode => 'w',
  part_size_tolerance => 0.1);

6.91 SDO_NET.LOGICAL_POWERLAW_PARTITION
Format

SDO_NET.LOGICAL_POWERLAW_PARTITION(      
  network              IN VARCHAR2,      
  partition_table_name IN VARCHAR2,      
  max_num_nodes        IN NUMBER,      
  log_loc              IN VARCHAR2,      
  log_file             IN VARCHAR2,      
  open_mode            IN VARCHAR2 DEFAULT 'A',      
  link_level           IN NUMBER DEFAULT 1,      
  part_size_tolerance  IN NUMBER DEFAULT 0);
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Description

Partitions a logical power law (also called scale-free) network, and stores the information in
the partition table. (In a power law network, the node degree values contain the power law
information.)

Parameters

network
Network name.

partition_table_name
Name of the partition table, which is created by this procedure. (If an existing table with the
specified name already exists, it is updated with partition information for the specified link
level.) The partition table is described in Partition Table.

max_num_nodes
Maximum number of nodes to include in each partition. For example, if you specify 5000 and
if the network contains 50,000 nodes, each partition will have 5000 or fewer nodes, and the
total number of partitions will be 10 or higher.
If the part_size_tolerance value is greater than 0, the maximum number of nodes to
include in each partition is increased, as explained in the description of that parameter.

log_loc
Directory object that identifies the path for the log file. To create a directory object, use the
SQL*Plus command CREATE DIRECTORY.

log_file
Log file containing information about operations on the logical power law network, including
any possible errors or problems.

open_mode
A one-character code indicating the mode in which to open the log file: W for write over (that
is, delete any existing log file at the specified location and name, and create a new file), or A
(the default) for append (that is, append information to the existing specified log file). If you
specify A and the log file does not exist, a new log file is created.

link_level
Network link level on which to perform the partitioning (default = 1). The link level reflects the
priority level for the link, and is used for network analysis, so that links with higher priority
levels can be considered first in computing a path.

part_size_tolerance
Allowed tolerance in partition size expressed as a percentage of max_num_nodes. Must be
from 0 (the default) to 100.
A part_size_tolerance value greater than 0 effectively raises the max_num_nodes value. For
example, if max_num_nodes is 5000 and you specify part_size_tolerance as 10, then the
actual maximum number of nodes to include in each partition is 5500 (5000 + 500, because
500 is 10 percent of 5000). In deciding whether to use part_size_tolerance and what value
to specify, consider the cache size and the probability of related nodes being placed in
different partitions.
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Usage Notes

After you use this procedure to create the partitions, consider using the 
SDO_NET.GENERATE_PARTITION_BLOBS procedure, to enable better performance
for many network analysis operations, especially with large networks.

If the logical network is not a power law network, do not use this procedure, but
instead use the SDO_NET.LOGICAL_PARTITION procedure.

Examples

The following example creates partitions for link level 1 in the MY_LOGICAL_PLAW_NET
network, and creates the MY_LOGICAL_PLAW_PART_TAB table. The maximum
number of nodes to be placed in any partition is 5000. Information about the operation
is added (open_mode => 'a') to the my_logical_plaw_part.log file, located in the
location associated with the directory object named LOG_DIR.

EXECUTE SDO_NET.LOGICAL_POWERLAW_PARTITION(network => 'MY_LOGICAL_PLAW_NET', -
  partition_table_name => 'my_logical_plaw_part_tab',-
  max_num_nodes => 5000,-
  log_loc => 'LOG_DIR', log_file=> 'my_logical_plaw_part.log',-
  link_level => 1, open_mode => 'a');

6.92 SDO_NET.LRS_GEOMETRY_NETWORK
Format

SDO_NET.LRS_GEOMETRY_NETWORK(      
  network  IN VARCHAR2      
) RETURN VARCHAR2;

Description

Returns the string TRUE if the network is a spatial network containing LRS geometries;
returns the string FALSE if the network is not a spatial network containing LRS
geometries.

Parameters

network
Network name.

Usage Notes

A network contains LRS geometries if the GEOMETRY_TYPE column in its entry in
the USER_SDO_NETWORK_METADATA view contains the value LRS_GEOMETRY. (The
USER_SDO_NETWORK_METADATA view is explained in 
xxx_SDO_NETWORK_METADATA Views.)

Examples

The following example checks if the network named ROADS_NETWORK is a spatial
network containing LRS geometries.

SELECT SDO_NET.LRS_GEOMETRY_NETWORK('ROADS_NETWORK') FROM DUAL;
 
SDO_NET.LRS_GEOMETRY_NETWORK('ROADS_NETWORK')                                   
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--------------------------------------------------------------------------------
TRUE

6.93 SDO_NET.NETWORK_EXISTS
Format

SDO_NET.NETWORK_EXISTS(      
  network  IN VARCHAR2      
) RETURN VARCHAR2;

Description

Returns the string TRUE if the network exists; returns the string FALSE if the network does not
exist.

Parameters

network
Network name.

Usage Notes

If you drop a network (using the SDO_NET.DROP_NETWORK procedure), the network no
longer exists.

Examples

The following example checks if the network named ROADS_NETWORK exists.

SELECT SDO_NET.NETWORK_EXISTS('ROADS_NETWORK') FROM DUAL;
 
SDO_NET.NETWORK_EXISTS('ROADS_NETWORK')                                         
--------------------------------------------------------------------------------
TRUE 

6.94 SDO_NET.POST_XML
Format

SDO_NET.POST_XML(      
  url      IN VARCHAR2,      
  request  IN XMLTYPE      
) RETURN XMLTYPE;

Description

Sends an XML request to a URL, and returns the XML response.

Parameters

url
Uniform resource locator (URL) to receive the request.

request
Request in XML form.
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Usage Notes

For information about the XML API to the Network Data Model Graph, see Network
Data Model Graph XML Interface.

Examples

The following example specifies an XML request, and sends it to a URL and returns
the XML response, which it then displays.

DECLARE
  xml_request varchar2(4000); 
  ndmws_url varchar2(4000);
  xml_response xmltype;
BEGIN
  xml_request :=
'<?xml version="1.0" ?>
<networkAnalysisRequest
   xmlns="http://xmlns.oracle.com/spatial/network"
   xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
   xmlns:gml="http://www.opengis.net/gml">
  <networkName>HILLSBOROUGH_NETWORK2</networkName>
  <shortestPath>
    <startPoint>
      <nodeID>1533</nodeID>
    </startPoint>
    <endPoint>
      <nodeID>10043</nodeID>
    </endPoint>
    <subPathRequestParameter>
      <cost> true </cost>
      <isFullPath> true </isFullPath>
      <startLinkIndex> true </startLinkIndex>
      <startPercentage> true </startPercentage>
      <endLinkIndex> true </endLinkIndex>
      <endPercentage> true </endPercentage>
    <pathRequestParameter>
      <cost> true </cost>
      <isSimple> true </isSimple>
      <startNodeID>true</startNodeID>
      <endNodeID>true</endNodeID>
      <noOfLinks>true</noOfLinks>
      <linksRequestParameter>
        <onlyLinkID>true</onlyLinkID>
      </linksRequestParameter>
      <nodesRequestParameter>
        <onlyNodeID>true</onlyNodeID>
      </nodesRequestParameter>
    </pathRequestParameter>
    </subPathRequestParameter>
  </shortestPath>
</networkAnalysisRequest>';
  ndmws_url := 'http://localhost:7001/SpatialWS-SpatialWS-context-root/
SpatialWSXmlServlet';
  xml_response := sdo_net.POST_XML(ndmws_url, XMLTYPE(xml_request));
  dbms_output.put_line(xml_response.getStringVal());
END;
/
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6.95 SDO_NET.REGISTER_CONSTRAINT
Format

SDO_NET.REGISTER_CONSTRAINT(      
  constraint_name IN VARCHAR2,      
  class_name      IN VARCHAR2,      
  directory_name  IN VARCHAR2,      
  description     IN VARCHAR2);

Description

Loads the compiled Java code for the specified network constraint into the Java class
repository in the database, and loads the class name into the CLASS column of the
USER_SDO_NETWORK_CONSTRAINTS view (described in 
xxx_SDO_NETWORK_CONSTRAINTS Views).

Parameters

constraint_name
Name of the network constraint.

class_name
Fully qualified name (including the name of the package) of the class that implements the
network constraint.

directory_name
Name of the directory object (created using the SQL statement CREATE DIRECTORY) that
identifies the location of the class file created when you compiled the network constraint.

description
Description of the network constraint.

Usage Notes

Before you call this procedure, you must insert a row into the
USER_SDO_NETWORK_CONSTRAINTS view, compile the code for the Java class that
implements the network constraint, and use the CREATE DIRECTORY statement to create a
directory object identifying the location of the compiled class. For more information about
network constraints, see Network Constraints.

To delete the row for the constraint from the USER_SDO_NETWORK_CONSTRAINTS view
and thus disable the constraint, use the SDO_NET.DEREGISTER_CONSTRAINT procedure.

Examples

The following example registers a network constraint named GivenProhibitedTurn.

-- Set up the network constraint.
REM
REM Create the geor_dir on the file system first.
REM
-- Connect as SYSTEM.
DECLARE 
  -- This is the directory that contains the CLASS file generated when you
  -- compiled the network constraint.
  geor_dir varchar2(1000) := 
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'C:\my_data\files81\PROTOTYPES\NETWORK_CONSTRAINT\PLSQL_EXAMPLE';
BEGIN 
  EXECUTE IMMEDIATE 'CREATE OR REPLACE DIRECTORY work_dir AS''' || geor_dir || 
''''; 
END;
/
GRANT read,write on directory work_dir to net_con;
 
-- Connect as the user that will register the constraint. 
 
REM
REM Compile GivenProhibitedTurn before you register the constraint.
REM
BEGIN
  SDO_NET.REGISTER_CONSTRAINT('GivenProhibitedTurn', 
     'com/network/constraints/ProhibitedTurn',
     'WORK_DIR', 'This is a network constraint that '||
     'prohibits certain turns');
 
END;
/

6.96 SDO_NET.SDO_GEOMETRY_NETWORK
Format

SDO_NET.SDO_GEOMETRY_NETWORK(      
  network  IN VARCHAR2      
) RETURN VARCHAR2;

Description

Returns the string TRUE if the network is a spatial network containing SDO geometries
(spatial geometries without measure information); returns the string FALSE if the
network is not a spatial network containing SDO geometries.

Parameters

network
Network name.

Usage Notes

A network contains SDO geometries if the GEOMETRY_TYPE column in its entry in
the USER_SDO_NETWORK_METADATA view contains the value SDO_GEOMETRY. (The
USER_SDO_NETWORK_METADATA view is explained in 
xxx_SDO_NETWORK_METADATA Views.)

Examples

The following example checks if the network named ROADS_NETWORK is a spatial
network containing SDO geometries.

SELECT SDO_NET.SDO_GEOMETRY_NETWORK('ROADS_NETWORK') FROM DUAL;
 
SDO_NET.SDO_GEOMETRY_NETWORK('ROADS_NETWORK')                                   
--------------------------------------------------------------------------------
FALSE
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6.97 SDO_NET.SET_LOGGING_LEVEL
Format

SDO_NET.SET_LOGGING_LEVEL(      
  level  IN NUMBER);

Description

Sets the minimum level of severity for messages to be displayed for network operations.

Parameters

level
Minimum severity level for messages to be displayed for network operations. Must be one of
the numeric constants specified in the Usage Notes.

Usage Notes

All messages at the specified logging level and higher levels will be written. The logging
levels, from highest to lowest, are:

SDO_NET.LOGGING_LEVEL_FATAL
SDO_NET.LOGGING_LEVEL_ERROR
SDO_NET.LOGGING_LEVEL_WARN
SDO_NET.LOGGING_LEVEL_INFO
SDO_NET.LOGGING_LEVEL_DEBUG
SDO_NET.LOGGING_LEVEL_FINEST

The logging level is the Java logging level from the underlying implementation of this function;
therefore, to see the Java logging output on the console, execute the following statements
beforehand:

SET SERVEROUTPUT ON;
EXECUTE DBMS_JAVA.SET_OUTPUT(10000);

Examples

The following example sets the logging level at SDO_NET.LOGGING_LEVEL_ERROR, which means
that only messages with a severity of SDO_NET.LOGGING_LEVEL_ERROR or
SDO_NET.LOGGING_LEVEL_FATAL will be displayed.

EXECUTE SDO_NET.SET_LOGGING_LEVEL(SDO_NET.LOGGING_LEVEL_ERROR);

6.98 SDO_NET.SET_MAX_JAVA_HEAP_SIZE
Format

SDO_NET.SET_MAX_JAVA_HEAP_SIZE(      
  bytes  IN NUMBER);

Description

Sets the Java maximum heap size for an application to run in an Oracle Java virtual machine.
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Parameters

bytes
Number of bytes for the Java maximum heap size.

Usage Notes

If you encounter the java.lang.OutOfMemoryError exception, you can use this
procedure to increase the maximum heap size.

If you specify a value greater than the system limit, the system limit is used.

Examples

The following example sets the Java maximum heap size to 536870912 (512 MB).

EXECUTE SDO_NET.SET_MAX_JAVA_HEAP_SIZE(536870912);

6.99 SDO_NET.SPATIAL_PARTITION
Format

SDO_NET.SPATIAL_PARTITION(      
  network              IN VARCHAR2,      
  partition_table_name IN VARCHAR2,      
  max_num_nodes        IN NUMBER,      
  log_loc              IN VARCHAR2,      
  log_file             IN VARCHAR2,      
  open_mode            IN VARCHAR2 DEFAULT 'A',      
  link_level           IN NUMBER DEFAULT 1);

Description

Partitions a spatial network, and stores the information in the partition table.

Parameters

network
Network name.

partition_table_name
Name of the partition table, which is created by this procedure. (If an existing table
with the specified name already exists, it is updated with partition information for the
specified link level.) The partition table is described in Partition Table.

max_num_nodes
Maximum number of nodes to include in each partition. For example, if you specify
5000 and if the network contains 50,000 nodes, each partition will have 5000 or fewer
nodes, and the total number of partitions will be 10 or higher.

log_loc
Directory object that identifies the path for the log file. To create a directory object, use
the SQL*Plus command CREATE DIRECTORY.
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log_file
Log file containing information about spatial network operations, including any possible
errors or problems.

open_mode
A one-character code indicating the mode in which to open the log file: W for write over (that
is, delete any existing log file at the specified location and name, and create a new file), or A
(the default) for append (that is, append information to the existing specified log file). If you
specify A and the log file does not exist, a new log file is created.

link_level
Network link level on which to perform the partitioning (default = 1). The link level reflects the
priority level for the link, and is used for network analysis, so that links with higher priority
levels can be considered first in network computations.

Usage Notes

After you use this procedure to create the partitions, consider using the 
SDO_NET.GENERATE_PARTITION_BLOBS procedure, to enable better performance for
many network analysis operations, especially with large networks.

Examples

The following example creates partitions for link level 1 in the MY_PARTITIONED_NET network,
and creates the MY_PARTITIONED_NET_TAB table. The maximum number of nodes to be
placed in any partition is 5000. Information about the operation is added (open_mode => 'a')
to the my_partitioned_net.log file, located in the location associated with the directory
object named LOG_DIR.

EXECUTE SDO_NET.SPATIAL_PARTITION(network => 'MY_PARTITIONED_NET', -
  partition_table_name => 'my_partitioned_net_tab',-
  max_num_nodes => 5000,-
  log_loc => 'LOG_DIR', log_file=> 'my_partitioned_net.log',-
  link_level => 1, open_mode => 'a');

6.100 SDO_NET.TOPO_GEOMETRY_NETWORK
Format

SDO_NET.TOPO_GEOMETRY_NETWORK(      
  network  IN VARCHAR2      
) RETURN VARCHAR2;

Description

Returns the string TRUE if the network is a spatial network containing
SDO_TOPO_GEOMETRY (topology geometry) objects; returns the string FALSE if the
network is not a spatial network containing SDO_TOPO_GEOMETRY objects.

Parameters

network
Network name.
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Usage Notes

A network contains SDO_TOPO_GEOMETRY objects if the GEOMETRY_TYPE
column in its entry in the USER_SDO_NETWORK_METADATA view contains the
value TOPO_GEOMETRY. (The USER_SDO_NETWORK_METADATA view is explained in 
xxx_SDO_NETWORK_METADATA Views.)

Examples

The following example checks if the network named ROADS_NETWORK is a spatial
network containing SDO_TOPO_GEOMETRY objects.

SELECT SDO_NET.TOPO_GEOMETRY_NETWORK('ROADS_NETWORK') FROM DUAL;
 
SDO_NET.TOPO_GEOMETRY_NETWORK('ROADS_NETWORK')                                  
--------------------------------------------------------------------------------
FALSE

6.101 SDO_NET.UPDATE_FEATURE
Format

SDO_NET.UPDATE_FEATURE(      
  feature_layer_id   IN NUMBER,      
  feature_id         IN NUMBER,      
  feature_elements   IN SDO_NET_FEAT_ELEM_ARRAY DEFAULT NULL,      
  child_feature_ids  IN SDO_NET_LAYER_FEAT_ARRAY DEFAULT NULL,      
  check_integrity    IN BOOLEAN DEFAULT TRUE);

Description

Updates a feature in a feature layer.

Parameters

feature_layer_id
ID of the feature layer to which to update the feature.

feature_id
ID of the feature to be updated.

feature_elements
Feature elements of the feature to add to any existing feature elements. If this
parameter is null, the existing feature elements are not changed. If this parameter in
empty, any existing feature elements are removed. (The
SDO_NET_FEAT_ELEM_ARRAY type is described in Data Types Used for Feature
Modeling.)

child_feature_ids
Child features of the feature that are to add to any existing child features. If this
parameter is null, the existing child features are not changed. If this parameter in
empty, any existing parent relationships for this feature with child features are
removed. (The SDO_NET_LAYER_FEAT_ARRAY type is described in Data Types
Used for Feature Modeling.)
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check_integrity
TRUE (the default) checks if the input network elements exist; and if any do not exist, an error
is generated. FALSE does not check if the input network elements exist.

Usage Notes

To add a feature to a feature layer, use the SDO_NET.ADD_FEATURE procedure.

A feature layer ID is automatically generated for the feature layer.

Examples

The following example updates a specified feature by defining two feature elements and
adding them.

DECLARE
  feature_layer_id NUMBER;
  feature_id NUMBER := 1;
  elements SDO_NET_FEAT_ELEM_ARRAY := SDO_NET_FEAT_ELEM_ARRAY();
  link_id NUMBER := 1314;
BEGIN
  feature_layer_id := sdo_net.get_feature_layer_id('GRID', 'POI');
  elements.extend;
  elements(1) := SDO_NET_FEAT_ELEM(SDO_NET.FEAT_ELEM_TYPE_POL, link_id, 0.7, null);
  elements.extend;
  elements(2) := SDO_NET_FEAT_ELEM(SDO_NET.FEAT_ELEM_TYPE_POL, link_id, 0.8, null);
  sdo_net.update_feature(feature_layer_id, feature_id, elements, null);
END;
/

6.102 SDO_NET.UPDATE_FEATURE_ELEMENT
Format

SDO_NET.UPDATE_FEATURE_ELEMENT(      
  feature_layer_id IN NUMBER,      
  feature_id       IN NUMBER,      
  sequence_number  IN NUMBER,      
  feature_element  IN SDO_NET_FEAT_ELEM,      
  check_integrity  IN BOOLEAN DEFAULT TRUE);

Description

Updates a feature element.

Parameters

feature_layer_id
ID of the feature layer for the feature.

feature_id
ID of the feature.

sequence_number
Sequence number of the feature element to be updated.
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feature_element
Feature element definition to replace the specified feature element. (The
SDO_NET_FEAT_ELEM type is described in Data Types Used for Feature Modeling.)

check_integrity
TRUE (the default) checks if the input network elements exist; and if any do not exist,
an error is generated. FALSE does not check if the input network elements exist.

Usage Notes

To add a feature element, use the SDO_NET.ADD_FEATURE_ELEMENT procedure;
to add multiple feature elements in a single operation, use the 
SDO_NET.ADD_FEATURE_ELEMENTS procedure.

Examples

The following example updates the feature element at sequence number 2 on link ID
1314 of feature ID 1.

DECLARE
  feature_layer_id NUMBER;
  feature_id NUMBER := 1;
  element SDO_NET_FEAT_ELEM;
  link_id NUMBER := 1314;
BEGIN
  feature_layer_id := sdo_net.get_feature_layer_id('GRID', 'POI');
  element := SDO_NET_FEAT_ELEM(SDO_NET.FEAT_ELEM_TYPE_POL, link_id, 0.2, null);
  sdo_net.update_feature_element(feature_layer_id, feature_id, 1, element);
END;
/

6.103 SDO_NET.VALIDATE_LINK_SCHEMA
Format

SDO_NET.VALIDATE_LINK_SCHEMA(      
  network  IN VARCHAR2      
) RETURN VARCHAR2;

Description

Returns the string TRUE if the metadata relating to links in a network is valid; returns
the string FALSE if the metadata relating to links in a network is not valid.

Parameters

network
Network name.

Usage Notes

This function checks the following for validity: table name, geometry column, and cost
column for spatial networks; measure-related information for LRS networks; topology-
related information for topology networks; and hierarchy-related information for
hierarchical networks.
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Examples

The following example checks the validity of the metadata related to links in the network
named ROADS_NETWORK.

SELECT SDO_NET.VALIDATE_LINK_SCHEMA('ROADS_NETWORK') FROM DUAL;
 
SDO_NET.VALIDATE_LINK_SCHEMA('ROADS_NETWORK')                                   
--------------------------------------------------------------------------------
TRUE

6.104 SDO_NET.VALIDATE_LRS_SCHEMA
Format

SDO_NET.VALIDATE_LRS_SCHEMA(      
  network  IN VARCHAR2      
) RETURN VARCHAR2;

Description

Returns the string TRUE if the metadata relating to LRS information in a network is valid;
returns the string FALSE if the metadata relating to LRS information in a network is not valid.

Parameters

network
Network name.

Usage Notes

None.

Examples

The following example checks the validity of the metadata related to LRS information in the
network named ROADS_NETWORK.

SELECT SDO_NET.VALIDATE_LRS_SCHEMA('ROADS_NETWORK') FROM DUAL;
 
SDO_NET.VALIDATE_LRS_SCHEMA('ROADS_NETWORK')                                    
--------------------------------------------------------------------------------
TRUE

6.105 SDO_NET.VALIDATE_NETWORK
Format

SDO_NET.VALIDATE_NETWORK(      
  network     IN VARCHAR2,      
  check_data  IN VARCHAR2 DEFAULT 'FALSE'       
) RETURN VARCHAR2;

Description

Returns the string TRUE if the network is valid; returns the string FALSE if the network is not
valid.
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Parameters

network
Network name.

check_data
TRUE performs additional checks on the referential integrity of network data; FALSE (the
default) performs basic checks, but not additional checks, on the referential integrity of
network data.

Usage Notes

This function checks the metadata for the network and any applicable network schema
structures (link, node, path, subpath, LRS). It performs basic referential integrity
checks on the network data, and it optionally performs additional checks. If any errors
are found, the function returns the string FALSE.

The checks performed by this function include the following:

• The network exists.

• The node and link tables for the network exist, and they contain the required
columns.

• The start and end nodes of each link exist in the node table.

• For an LRS geometry network, the LRS table exists and contains the required
columns.

• For a spatial network, columns for the node and path geometries exist and have
spatial indexes defined on them.

• If check_data is TRUE, additional referential integrity checking on the network data
is performed. This will take longer, especially if the network is large.

Examples

The following example validates the network named LOG_NET1.

SELECT SDO_NET.VALIDATE_NETWORK('LOG_NET1') FROM DUAL;
 
SDO_NET.VALIDATE_NETWORK('LOG_NET1')
--------------------------------------------------------------------------------
TRUE

6.106 SDO_NET.VALIDATE_NODE_SCHEMA
Format

SDO_NET.VALIDATE_NODE_SCHEMA(      
  network  IN VARCHAR2      
) RETURN VARCHAR2;

Description

Returns the string TRUE if the metadata relating to nodes in a network is valid; returns
the string FALSE if the metadata relating to nodes in a network is not valid.
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Parameters

network
Network name.

Usage Notes

This function checks the following for validity: table name, geometry column, and cost column
for spatial networks; measure-related information for LRS networks; topology-related
information for topology networks; and hierarchy-related information for hierarchical networks.

Examples

The following example checks the validity of the metadata related to nodes in the network
named LOG_NET1.

SELECT SDO_NET.VALIDATE_NODE_SCHEMA('LOG_NET1') FROM DUAL;
 
SDO_NET.VALIDATE_NODE_SCHEMA('LOG_NET1')
--------------------------------------------------------------------------------
TRUE

6.107 SDO_NET.VALIDATE_PARTITION_SCHEMA
Format

SDO_NET.VALIDATE_PARTITION_SCHEMA(      
  network  IN VARCHAR2      
) RETURN VARCHAR2;

Description

Returns the string TRUE if the metadata relating to partitions in a network is valid; returns the
string FALSE if the metadata relating to partitions in a network is not valid.

Parameters

network
Network name.

Usage Notes

This function checks the validity of information in the partition table, which is described in 
Partition Table.

Examples

The following example checks the validity of the metadata related to partitions in the network
named SDO_PARTITIONED.

SELECT SDO_NET.VALIDATE_PARTITION_SCHEMA('SDO_PARTITIONED') FROM DUAL;
 
SDO_NET.VALIDATE_PARTITION_SCHEMA('SDO_PARTITIONED')
--------------------------------------------------------------------------------
TRUE
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6.108 SDO_NET.VALIDATE_PATH_SCHEMA
Format

SDO_NET.VALIDATE_PATH_SCHEMA(      
  network  IN VARCHAR2      
) RETURN VARCHAR2;

Description

Returns the string TRUE if the metadata relating to paths in a network is valid; returns
the string FALSE if the metadata relating to paths in a network is not valid.

Parameters

network
Network name.

Usage Notes

This function checks the following for validity: table name, geometry column, and cost
column for spatial networks; measure-related information for LRS networks; topology-
related information for topology networks; and hierarchy-related information for
hierarchical networks.

Examples

The following example checks the validity of the metadata related to paths in the
network named ROADS_NETWORK.

SELECT SDO_NET.VALIDATE_PATH_SCHEMA('ROADS_NETWORK') FROM DUAL;
 
SDO_NET.VALIDATE_PATH_SCHEMA('ROADS_NETWORK')                                   
--------------------------------------------------------------------------------
TRUE

6.109 SDO_NET.VALIDATE_SUBPATH_SCHEMA
Format

SDO_NET.VALIDATE_SUBPATH_SCHEMA(      
  network  IN VARCHAR2      
) RETURN VARCHAR2;

Description

Returns the string TRUE if the metadata relating to subpaths in a network is valid;
returns the string FALSE if the metadata relating to subpaths in a network is not valid.

Parameters

network
Network name.
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Usage Notes

This function checks the validity of information in the subpath table, which is described in 
Subpath Table.

Examples

The following example checks the validity of the metadata related to subpaths in the network
named MY_NETWORK.

SELECT SDO_NET.VALIDATE_SUBPATH_SCHEMA('MY_NETWORK') FROM DUAL;
 
SDO_NET.VALIDATE_SUBPATH_SCHEMA('MY_NETWORK')
--------------------------------------------------------------------------------
TRUE
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7
SDO_NFE Package Subprograms

The MDSYS.SDO_NFE package contains subprograms (functions and procedures) for
performing network feature editing.

To use these subprograms, you must understand the conceptual information in Network Data
Model Graph Overview, and especially Feature Modeling Using Network Feature Editing
(NFE).

• SDO_NFE.APPLY_RULE

• SDO_NFE.CLASSIFY_LINES_BY_SIDE

• SDO_NFE.CREATE_MODEL_SEQUENCE

• SDO_NFE.CREATE_MODEL_STRUCTURE

• SDO_NFE.CREATE_MODEL_UNDERLYING_NET

• SDO_NFE.CREATE_MODEL_WORKSPACE

• SDO_NFE.DELETE_ALL_FT_LAYERS

• SDO_NFE.DELETE_ALL_WORKSPACES

• SDO_NFE.DELETE_MODEL_STRUCTURE

• SDO_NFE.DELETE_MODEL_WORKSPACE

• SDO_NFE.DROP_MODEL_SEQUENCE

• SDO_NFE.DROP_MODEL_UNDERLYING_NETWORK

• SDO_NFE.GET_CONNECTION_POINT_GEOM

• SDO_NFE.GET_INTERACTION_GROUPS

• SDO_NFE.GET_LINES_MATCH_LP_RULE

• SDO_NFE.GET_LL_CONN_INTERSECTIONS

• SDO_NFE.GET_LP_CONN_INTERSECTIONS

• SDO_NFE.GET_MODEL_SEQUENCE_NAME

• SDO_NFE.GET_MODEL_TABLE_NAME

• SDO_NFE.GET_MODEL_UNDERLYING_NETWORK

• SDO_NFE.GET_NEXT_SEQUENCE_VALUE

• SDO_NFE.GET_POINTS_MATCH_LP_RULE

• SDO_NFE.IMPORT_NETWORK

• SDO_NFE.SET_MODEL_UNDERLYING_NETWORK
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7.1 SDO_NFE.APPLY_RULE
Format

SDO_NFE.APPLY_RULE(
     model_id  IN NUMBER,
     rule_type IN VARCHAR2,
     rule_id   IN NUMBER);

Description

Applies a connectivity rule over all the features contained in a specified NFE model.

Parameters

model_id
ID of the NFE model.

rule_type
Type of connectivity rule to apply: RULE_TYPE_LINE or RULE_TYPE_POINT.

rule_id
ID of the connectivity rule.

Usage Notes

The specified rule must be registered in the specified model. You can register a
connectivity rule in the model tables or through the Java API.

Examples

The following example applies a line-line rule to any interacting lines in an NFE model
that meet the connectivity rule identified by the rule ID 1.

DECLARE
  model_id  NUMBER := 1;
  rule_type VARCHAR2(1) := sdo_nfe.RULE_TYPE_LINE_LINE;
  rule_id   NUMBER := 1;
BEGIN
  sdo_nfe.apply_rule( model_id, rule_type, rule_id );
END;
/

7.2 SDO_NFE.CLASSIFY_LINES_BY_SIDE
Format

SDO_NFE.CLASSIFY_LINES_BY_SIDE(
     model_id    IN NUMBER,
     ll_rule_id  IN NUMBER,
     lines       IN NUMBER,
     lhs_indexes OUT DBMS_SQL,NUMBER_TABLE,
     rhs_indexes OUT DBMS_SQL,NUMBER_TABLE);
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Description

Given a set of line features that match a connectivity Line-Line rule, this procedure classifies
which lines lie on the left hand side of the rule and which ones on the right hand side.

Parameters

model_id
ID of the NFE model.

ll_rule_id
Connectivity Line-Line rule identifier.

lines
Set of line features that meet the rule..

lhs_indexes
Associative array where the indexes of the lines lying on the left hand side of the rule will be
stored (in the form (index, index)).

rhs_indexes
Associative array where the indexes of the lines lying on the right hand side of the rule will
be stored.

Usage Notes

The specified rule must be registered in the specified model. You can register a connectivity
rule in the model tables or through the Java API.

Examples

The following example first gets all the interacting groups that meet the rule with ID 1 and
then classifies the lines by side. Left hand side lines are output in lhs_indexes while
rhs_indexes contain the rule’s right hand side lines.

DECLARE
  model_id    NUMBER := 1;
  ll_rule_id  NUMBER := 1;
  lines       SDO_INTERACT_LINE_FEAT_ARRAY;
  lhs_indexes dbms_sql.NUMBER_TABLE;  
  rhs_indexes dbms_sql.NUMBER_TABLE;
  inter_grps  SDO_INTERACTION_ARRAY;
BEGIN

  -- Get the groups of interacting features that meet the L-L Rule
  inter_grps := sdo_nfe.get_interaction_groups( model_id, sdo_nfe.RULE_TYPE_LINE_LINE, 
ll_rule_id );

  FOR i IN 1..inter_grps.count loop
    lines := inter_grps(i).lines;

    -- For each group, classify the lines by rule side.
    sdo_nfe.classify_lines_by_side( model_id, ll_rule_id, lines, lhs_indexes, 
rhs_indexes );
  END loop;

END;
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7.3 SDO_NFE.CREATE_MODEL_SEQUENCE
Format

SDO_NFE.CREATE_MODEL_SEQUENCE(
     model_id      IN NUMBER,
     owner_name    IN VARCHAR2,
     aequence_name IN VARCHAR2);

Description

Creates and registers a sequence for a model.

Parameters

model_id
ID of the NFE model.

owner_name
Sequence's related table.

aequence_name
Name of the sequence to be created.

Usage Notes

All the sequences for the base tables are created by the 
SDO_NFE.CREATE_MODEL_STRUCTURE function, but you may need to create
other sequences (such as for features).

The NFE model and the sequence’s related table must exist.

Examples

The following example creates a sequence for the NFE model identified by the ID 1
and a table named FEATURES.

SDO_NFE.CREATE_MODEL_SEQUENCE(’1’,’features’,’features_seq’)

7.4 SDO_NFE.CREATE_MODEL_STRUCTURE
Format

SDO_NFE.CREATE_MODEL_STRUCTURE(
     model_name    IN VARCHAR2,
     edition_mode  IN NUMBER,
     versionable   IN VARCHAR2
) RETURN NUMBER;

Description

Creates the tables and metadata for an NFE model.
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Parameters

model_name
Name to be given to the lNFE model.

edition_mode
Edition mode. Must be SDO_NFE.FROM_SCRATCH or SDO_NFE.OVER_EXIST_NETWORK.

versionable
The string value Y if the model will be versionable, otherwise N.

Usage Notes

This function returns the new model's ID value.

Examples

The following example creates a versionable model named MODEL01 with the
SDO_NFE.FROM_SCRATCH edition mode.

DECLARE
  model_id      NUMBER;
  model_name    VARCHAR2(50) := 'MODEL01';
  edition_mode  NUMBER       := SDO_NFE.FROM_SCRATCH;
  versionable   VARCHAR2(1)  := 'Y';
BEGIN
  model_id := SDO_NFE.create_model_structure( model_name, edition_mode, versionable );
END;
/

7.5 SDO_NFE.CREATE_MODEL_UNDERLYING_NET
Format

SDO_NFE.CREATE_MODEL_UNDERLYING_NET(
     model_id             IN NUMBER,
     network_name         IN VARCHAR2,
     num_hierarchy_levels IN NUMBER,
     is_directed          IN BOOLDEAN,
     node_with_costs      IN BOOLEAN);

Description

Creates a spatial network and associates it to the specified NFE Model. It also creates
sequences for its nodes, links, and paths, and registers them in the model's metadata.

Parameters

model_id
ID of the NFE model.

network_name
Name of the network to be created.

num_hierarchy_levels
Number of hierarchical levels for the network.
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is_directed
TRUE if the network is directed.

node_with_costs
TRUE if the network’s nodes contain cost values.

Usage Notes

An NFE model with the specified ID must exist. The geometry metadata must be
registered for the newly created network’s nodes and links tables.

Examples

The following example creates an underlying network for an NFE model and registers
the geometry metadata for the network’s links and nodes tables.

DECLARE
  model_id           NUMBER    := 1;
  network_name          VARCHAR2(50) := 'MODEL01';
  num_hierarchy_levels  NUMBER := 1;
  is_directed           VARCHAR2(10) := 'TRUE';
  node_with_costs       VARCHAR2(10) := 'TRUE';
BEGIN
-- create underlying network
  SDO_NFE.create_model_underlying_net( model_id, network_name, 
num_hierarchy_levels, is_directed, node_with_costs );
-- register links and nodes tables geom metadata
  SDO_NET.insert_geom_metadata(network_name, 
SDO_DIM_ARRAY(SDO_DIM_ELEMENT('LONGITUDE', -180, 180, 0.5), 
SDO_DIM_ELEMENT('LATITUDE', -90, 90, 0.5)), 8307);
END;
/

7.6 SDO_NFE.CREATE_MODEL_WORKSPACE
Format

SDO_NFE.CREATE_MODEL_WORKSPACE(
     model_id              IN NUMBER,
     parent_workspace_name IN VARCHAR2,
     workspace_name        IN VARCHAR2,
     is_mbr    IN VARCHAR2,
     is_locked IN VARCHAR2,
     lower_x   IN NUMBER,
     lower_y   IN NUMBER,
     upper_x   IN NUMBER,
     upper_y   IN NUMBER);

Description

Creates a new workspace and relates it to an NFE model.

Parameters

model_id
ID of the NFE model.
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parent_workspace_name
Name of the parent workspace.

workspace_name
Name of the workspace.

is_mbr
The string TRUE if the workspace is created for a minimum bounding rectangle (MBR)
rectangular area of the model.

is_locked
The string TRUE if the workspace is locked.

lower_x
The lower x ordinate of the workspace MBR.

lower_y
The lower y ordinate of the workspace MBR.

upper_x
The upper x ordinate of the workspace MBR.

upper_y
The upper y ordinate of the workspace MBR.

Usage Notes

The NFE model must have been created with the versionable option enabled.

Examples

The following example creates a workspace for an NFE model.

DECLARE
  model_id        NUMBER := 1;
  parent_ws_name  VARCHAR2(30) := 'LIVE';
  workspace_name  VARCHAR2(30) := 'PROJECT_V1';
  is_mbr          VARCHAR2(1) := 'Y';
  is_locked       VARCHAR2(1) := 'N';
  lower_x NUMBER := -15.575;
  lower_y       NUMBER :=  15.575;
  upper_x NUMBER := -12.825;
  upper_y NUMBER :=  28.975;
BEGIN
  SDO_NFE.create_model_workspace(model_id, parent_ws_name, workspace_name, is_mbr, 
is_locked, lower_x, lower_y, upper_x, upper_y);
END;
/

7.7 SDO_NFE.DELETE_ALL_FT_LAYERS
Format

SDO_NFE.DELETE_ALL_FT_LAYERS(
     model_id  IN NUMBER);
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Description

Drops all content in a specified NFE model.

Parameters

model_id
ID of the NFE model.

Usage Notes

This procedure is mainly used before deleting a model and its structure from the
database.

Examples

The following example deletes all content from the model with the ID value 1.

EXECUTE SDO_NFE.DELETE_ALL_FT_LAYERS(1);

7.8 SDO_NFE.DELETE_ALL_WORKSPACES
Format

SDO_NFE.DELETE_ALL_WORKSPACES(
     model_id  IN NUMBER);

Description

Dropa all the workspaces related to the specified NFE model, along with their
relationship to the model.

Parameters

model_id
ID of the NFE model.

Usage Notes

This procedure is mainly used before deleting a model and its structure from the
database.

Examples

The following example deletes all workspaces related to the model with ID value 1.

EXECUTE SDO_NFE.DELETE_ALL_WORKSPACES(1);

7.9 SDO_NFE.DELETE_MODEL_STRUCTURE
Format

SDO_NFE.DELETE_MODEL_STRUCTURE(
     model_id  IN NUMBER);

Chapter 7
SDO_NFE.DELETE_ALL_WORKSPACES

7-8



Description

Drops all tables in a specified NFE model, and deletes the metadata records for the model.

Parameters

model_id
ID of the NFE model.

Usage Notes

Before using this procedure, you may need to do the following:

• Delete model’s workspaces by executing the SDO_NFE.DELETE_ALL_WORKSPACES
procedure.

• Delete the model’s feature layers by executing the 
SDO_NFE.DELETE_ALL_FT_LAYERS procedure.

• If f the model’s edition mode is SDO_NFE.FROM_SCRATCH, delete the underlying network.

Examples

The following example the structure of the model with the ID value 1.

EXECUTE SDO_NFE.DELETE_MODEL_STRUCTURE(1);

7.10 SDO_NFE.DELETE_MODEL_WORKSPACE
Format

SDO_NFE.DELETE_MODEL_WORKSPACE(
     model_id       IN NUMBER,
     workspace_name IN VARCHAR2);

Description

Drops a workspace along with its relationship with the specified NFE model.

Parameters

model_id
ID of the NFE model.

workspace_name
Name of the workspace.

Usage Notes

workspace_name must be the name of an existing workspace under the specified NFE model.
All branches of the workspace are removed.

The relationship with the model is deleted from xxx_SDO_NFE_MODEL_WORKSPACE
views.
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Examples

The following example deletes the workspace named PROJECT_V4 from the NFE model
with the ID 1

EXECUTE SDO_NFE.DELETE_MODEL_WORKSPACE(1, 'PROJECT_V4');

7.11 SDO_NFE.DROP_MODEL_SEQUENCE
Format

SDO_NFE.DROP_MODEL_SEQUENCE(
     model_id  IN NUMBER,
     seq_name  IN VARCHAR2);

Description

Drops a sequence along with its relationship with the specified NFE model.

Parameters

model_id
ID of the NFE model.

seq_name
Name of the sequence.

Usage Notes

The relationship of the sequence with the model is deleted from the table registered in
SEQUENCE_REG_TAB from the xxx_SDO_NFE_MODEL_METADATA views.

Examples

The following example deletes the sequence named PIPES_FTLAY_ID_SEQ from the
NFE model with the ID 1.

EXECUTE SDO_NFE.DROP_MODEL_SEQUENCE(1, 'PIPES_FTLAY_ID_SEQ');

7.12
SDO_NFE.DROP_MODEL_UNDERLYING_NETWORK

Format

SDO_NFE.DROP_MODEL_UNDERLYING_NETWORK
     network_name  IN VARCHAR2);

Description

Drops a network and removes its relationship with any NFE model.
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Parameters

network_name
Name of the network.

Usage Notes

The network must be bound to at least one NFE model..

Examples

The following example drops the network named PIPES and removes its relationship with any
existing NFE model.

EXECUTE SDO_NFE.DROP_MODEL_UNDERLYING_NETWORK('PIPES');

7.13 SDO_NFE.GET_CONNECTION_POINT_GEOM
Format

SDO_NFE.GET_CONNECTION_POINT_GEOM(
     conn_intersection  IN SDO_INTERACTION
     ) RETURN SDO_GEOMETRY;

Description

Given a group of interacting features (lines and/or points), calculates and returns the
geometry of the point that must connect them.

Parameters

conn_intersection
Interaction group of features. Set of line and/or point features that interact at a common
spatial point. (The SDO_INTERACTION type is described in Data Types Used for NFE
Connectivity Rules.)

Usage Notes

This function is mainly used over a validated group of features that must be connected
because of the requirement of a connectivity rule (see NFE Rules). To get this group of
features, use SDO_NFE.GET_LP_CONN_INTERSECTIONS for Line-Point Rules or 
SDO_NFE.GET_LL_CONN_INTERSECTIONS for Line-Line Rules.

Examples

The following example gets the connection point geometry for each interacting group that
meets the given line-point rule.

DECLARE
  model_id        NUMBER := 1;
  lp_rule_id      NUMBER := 1;
  inter_grps          SDO_INTERACTION_ARRAY;
  conn_point_geom     SDO_GEOMETRY;
BEGIN
  -- Get the groups of interacting features that meet the L-P Rule in the model
 inter_grps := sdo_nfe.get_interaction_groups( model_id, sdo_nfe.RULE_TYPE_LINE_POINT, 
lp_rule_id ); 
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  -- Iterate through the interacting groups
 FOR i IN 1..inter_grps.count loop
  -- Get the connection point geometry for each interacting group
   conn_point_geom := sdo_nfe.get_connection_point_geom( inter_groups(i));
 END loop;
END;
/

7.14 SDO_NFE.GET_INTERACTION_GROUPS
Format

SDO_NFE.GET_INTERACTION_GROUPS(
     model_id   IN SDO_NUMBER,
     rule_type  IN VARCHAR2,
     rule_id    IN NUMBER
     ) RETURN SDO_INTERACTION_ARRAY;

Description

Returns an array of groups of all features that are interacting at spatial points where
the specified connectivity rule is being met.

Parameters

model_id
NFE model identifier.

rule_type
Connectivity rule type. Possible values: SDO_NFE.RULE_TYPE_LINE_LINE or
SDO_NFE.RULE_TYPE_LINE_POINT.

rule_id
Rule identifier. Must be a value from the LINE_LINE_RULE or LINE_POINT_RULE
table.

Usage Notes

This function returns an object of type SDO_INTERACTION_ARRAY, which is
described in Data Types Used for NFE Connectivity Rules.

Each group of the interacting features returned by this function is composed of all the
line and point features that interact at a specific spatial point where the specified rule is
being met.

By returning the whole group of all interacting features at specific points, this function
can help you if you want to create a customized way of connecting features depending
on which other features (meeting the rule or not) are taking part in a specified
interaction point. (See the discussion of rule decision handlers under NFE Rules.)

Examples

The following example gets the interacting groups which met the given line-point rule.

DECLARE
  model_id        NUMBER := 1;
  lp_rule_id      NUMBER := 1;
  inter_grps          SDO_INTERACTION_ARRAY;
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BEGIN
 inter_grps := sdo_nfe.get_interaction_groups( model_id, 
END;
/

7.15 SDO_NFE.GET_LINES_MATCH_LP_RULE
Format

SDO_NFE.GET_LINES_MATCH_LP_RULE(
     model_id    IN SDO_NUMBER,
     lp_rule_id  IN NUMBER,
     lines       IN SDO_INTERACT_LINE_FEAT_ARRAY,
     ) RETURN DBMS_SQL.NUMBER_TABLE;

Description

Given an set of line features, calculates the group of them that match a connectivity line-point
rule. Returns a DBMS_SQL.NUMBER_TABLE object with the indexes of the lines in the input
array that match the line-point rule.

Parameters

model_id
NFE model identifier.

lp_rule_id
Connectivity line-point rule identifier. Must exist in the LINE_POINT_RULE table.

lines
Array of line features where the search will take place. (The
SDO_INTERACT_LINE_FEAT_ARRAY type is described in Data Types Used for NFE
Connectivity Rules.)

Usage Notes

This function is mainly used after the SDO_NFE.GET_INTERACTION_GROUPS function,
which returned a group of mixed line features where some line features matched a specific
connectivity rule and some did not.

Examples

The following example finds the lines that meet a connectivity line-point rule from interacting
groups.

DECLARE
  model_id    NUMBER := 1;
  lp_rule_id  NUMBER := 1;
  lines       SDO_INTERACT_LINE_FEAT_ARRAY;
  match_lines dbms_sql.NUMBER_TABLE;
  inter_grps  SDO_INTERACTION_ARRAY;
BEGIN
  -- find interaction groups
  inter_grps := sdo_nfe.get_interaction_groups( model_id, sdo_nfe.RULE_TYPE_LINE_LINE, 
1 );

  FOR i IN 1..inter_grps.count loop
    lines := inter_grps(i).lines;
    match_lines := sdo_nfe.get_lines_match_lp_rule( model_id, lp_rule_id, lines );
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  END loop;

END;
/

7.16 SDO_NFE.GET_LL_CONN_INTERSECTIONS
Format

SDO_NFE.GET_LL_CONN_INTERSECTIONS(
     model_id               IN SDO_NUMBER,
     ll_rule_id             IN NUMBER,
     interaction_grp        IN OUT SDO_INTERACTION,
     rule_lhs_lines_indexes IN DBMS_SQL.NUMBER_TABLE,
     rule_rhs_lines_indexes IN DBMS_SQL.NUMBER_TABLE,
     rule_points_indexes    IN DBMS_SQL.NUMBER_TABLE,
     ) RETURN SDO_INTERACTION_ARRAY;

Description

Given a group of interacting features (lines and points) this function calculates
subgroups of these features that can be connected according to the connectivity line-
line rule specified, and returns the set of connectable features groups.

Parameters

model_id
NFE model identifier.

ll_rule_id
Connectivity line-line rule identifier.. Must exist in the LINE_LINE_RULE table.

interaction_grp
Group of interacting features. (The SDO_INTERACTION type is described in Data
Types Used for NFE Connectivity Rules.)

rule_lhs_lines_indexes
Among the line features in the interacting group, indexes of the lines that match the
left hand side of the line-line rule.

rule_rhs_lines_indexes
Among the line features in the interacting group, indexes of the lines that match the
right hand side of the line-line rule.

rule_points_indexes
Among the point features in the interacting group, indexes of the points that match the
point feature specification in the line-line rule. These points are the ones to be
considered in the conformation of connectable groups.

Usage Notes

This function returns an SDO_INTERACTION_ARRAY object. (The
SDO_INTERACTION_ARRAY type is described in Data Types Used for NFE
Connectivity Rules.)

The indexes of LHS and RHS lines can be obtained with the 
SDO_NFE.CLASSIFY_LINES_BY_SIDE procedure. The indexes of the points can be
obtained with the SDO_NFE.GET_POINTS_MATCH_LP_RULE function.
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This function is registered by default in the Rule Decision Handlers Table when a line-line rule
is created in a model (using the Java API). However, this function can be replaced by any
other user function that calculates the group of connectable features in a customized way.
See the information about Rule Decision Handlers under NFE Rules for information about
customizing connections (rule decision handlers).

Examples

The following example gets the set of connectable feature groups for each interacting group
that match a given line-line rule.

DECLARE
  model_id    NUMBER := 1;
  ll_rule_id  NUMBER := 1;
  rule_lhs_lines_indexes  dbms_sql.NUMBER_TABLE;
  rule_rhs_lines_indexes  dbms_sql.NUMBER_TABLE;
  rule_points_indexes     dbms_sql.NUMBER_TABLE;
  conn_interacs           SDO_INTERACTION_ARRAY;
  inter_grps              SDO_INTERACTION_ARRAY;
BEGIN 
-- Get the groups of interacting features that meet the L-L Rule in the model
  inter_grps := sdo_nfe.get_interaction_groups( model_id, sdo_nfe.RULE_TYPE_LINE_LINE, 
ll_rule_id );
  FOR i IN 1..inter_grps.count loop
    -- Classify the line features by side in the L-L rule (LHS, RHS).
    sdo_nfe.classify_lines_by_side( model_id, ll_rule_id, inter_grps(i).lines, 
rule_lhs_lines_indexes, rule_rhs_lines_indexes );
    -- Get the specific point features that match the L-L rule.
    rule_points_indexes := sdo_nfe.get_points_match_lp_rule( model_id,  1, 
inter_grps(i).points );
    -- Get the group of features that can be connected according the L-L rule.
    conn_interacs := sdo_nfe.get_ll_conn_intersections( model_id, ll_rule_id, 
inter_grps(i), rule_lhs_lines_indexes, rule_rhs_lines_indexes, rule_points_indexes);
  END loop;
END; 
/

7.17 SDO_NFE.GET_LP_CONN_INTERSECTIONS
Format

SDO_NFE.GET_LP_CONN_INTERSECTIONS(
     model_id               IN SDO_NUMBER,
     lp_rule_id             IN NUMBER,
     interaction_grp        IN OUT SDO_INTERACTION,
     rule_lhs_lines_indexes IN DBMS_SQL.NUMBER_TABLE,
     rule_rhs_lines_indexes IN DBMS_SQL.NUMBER_TABLE,
     rule_points_indexes    IN DBMS_SQL.NUMBER_TABLE,
     ) RETURN SDO_INTERACTION_ARRAY;

Description

Given a group of interacting features (lines and points) this function calculates subgroups of
these features that can be connected according to the connectivity line-point rule specified,
and returns the set of connectable features groups.

Chapter 7
SDO_NFE.GET_LP_CONN_INTERSECTIONS

7-15



Parameters

model_id
NFE model identifier.

lp_rule_id
Connectivity line-point rule identifier.. Must exist in the LINE_POINT_RULE table.

interaction_grp
Group of interacting features. (The SDO_INTERACTION type is described in Data
Types Used for NFE Connectivity Rules.)

rule_lhs_lines_indexes
Among the line features in the interacting group, indexes of the lines that match the
left hand side of the line-point rule.

rule_rhs_lines_indexes
Among the line features in the interacting group, indexes of the lines that match the
right hand side of the line-point rule.

rule_points_indexes
Among the point features in the interacting group, indexes of the points that match the
point feature specification in the line-point rule. These points are the ones to be
considered in the conformation of connectable groups.

Usage Notes

This function returns an SDO_INTERACTION_ARRAY object. (The
SDO_INTERACTION_ARRAY type is described in Data Types Used for NFE
Connectivity Rules.)

The indexes of LHS and RHS lines can be obtained with the 
SDO_NFE.CLASSIFY_LINES_BY_SIDE procedure. The indexes of the points can be
obtained with the SDO_NFE.GET_POINTS_MATCH_LP_RULE function.

This function is registered by default in the Rule Decision Handlers Table when a line-
point rule is created in a model (using the Java API). However, this function can be
replaced by any other user function that calculates the group of connectable features
in a customized way. See the information about Rule Decision Handlers under NFE
Rules for information about customizing connections (rule decision handlers).

Examples

The following example gets the group of feature that can be connected according to a
given line-point rule for each interacting group.

DECLARE
  model_id        NUMBER := 1;
  lp_rule_id      NUMBER := 1;
  rule_lines_indexes  dbms_sql.NUMBER_TABLE;
  rule_points_indexes dbms_sql.NUMBER_TABLE;
  conn_interacs       SDO_INTERACTION_ARRAY;
  inter_grps          SDO_INTERACTION_ARRAY;
BEGIN
  -- Get the groups of interacting features that meet the L-P Rule in the model
  inter_grps := sdo_nfe.get_interaction_groups( model_id, 
sdo_nfe.RULE_TYPE_LINE_POINT, lp_rule_id );
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  -- For each group:
  FOR i IN 1..inter_grps.count loop
    -- Get the specific line features that match the L-P rule.
    rule_lines_indexes  := sdo_nfe.get_lines_match_lp_rule( model_id, lp_rule_id, 
inter_grps(i).lines );

    -- Get the specific point features that match the L-P rule.
    rule_points_indexes := sdo_nfe.get_points_match_lp_rule( model_id,  lp_rule_id, 
inter_grps(i).points );

    -- Get the group of features that can be connected according the L-P rule.
    conn_interacs := sdo_nfe.get_lp_conn_intersections( model_id, lp_rule_id, 
inter_grps(i), rule_lines_indexes, rule_points_indexes ); 
  END loop;
END;
/ 

7.18 SDO_NFE.GET_MODEL_SEQUENCE_NAME
Format

SDO_NFE.GET_MODEL_SEQUENCE_NAME(
     model_id  IN SDO_NUMBER,
     tab_name  IN VARCHAR2
     ) RETURN VARCHAR2;

Description

Returns the sequence name for the specified model’s table.

Parameters

model_id
NFE model identifier.

tab_name
Table name for the model.

Usage Notes

The table name must exist in the TABLE_REG_TAB table, and the name of its sequence
must exist in the SEQUENCE_REG_TAB table. When a new model is created using 
SDO_NFE.CREATE_MODEL_STRUCTURE, all the model’s tables and sequences are
automatically registered in the appropriate views and tables. When 
SDO_NFE.CREATE_MODEL_SEQUENCEis executed, a sequence for the model’s table is
registered.

Examples

The following example gets the sequence name defined for the table that holds the feature
classes of the NFE model whose ID is 1.

SELECT SDO_NFE.GET_MODEL_SEQUENCE_NAME(1, sdo_nfe.get_model_table_name(1, 
SDO_NFE.FT_CLASS));
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7.19 SDO_NFE.GET_MODEL_TABLE_NAME
Format

SDO_NFE.GET_MODEL_TABLE_NAME(
     model_id    IN SDO_NUMBER,
     table_type  IN VARCHAR2
     ) RETURN VARCHAR2;

Description

Returns the name of the table of a specified type for an NFE model.

Parameters

model_id
NFE model identifier.

table_type
Type of table whose name is to be returned. For example, the value for the feature
classes table is SDO_NFE.FT_CLASS.

Usage Notes

The table name must exist in the TABLE_REG_TAB table, and the name of its
sequence must exist in the SEQUENCE_REG_TAB table. When a new model is
created using SDO_NFE.CREATE_MODEL_STRUCTURE, the names of all of the
model’s tables and sequences are automatically registered in the appropriate views
and tables.

Examples

The following example gets the name of the table that holds the feature classes in the
NFE model with the ID 1.

SELECT SDO_NFE.GET_MODEL_TABLE_NAME(1, SDO_NFE.FT_CLASS);

7.20 SDO_NFE.GET_MODEL_UNDERLYING_NETWORK
Format

SDO_NFE.GET_MODEL_UNDERLYING_NETWORK(
     model_id    IN SDO_NUMBER
     ) RETURN VARCHAR2;

Description

Returns the name of the network that is associated with an NFE model.

Parameters

model_id
NFE model identifier.
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Usage Notes

A network is associated with an NFE model during the creation process, either when using
the SDO_NFE.CREATE_MODEL_UNDERLYING_NET for models in the
SDO_NFE.FROM_SCRATCH mode, or using 
SDO_NFE.SET_MODEL_UNDERLYING_NETWORK for models in the
SDO_NFE.OVER_EXIST_NETWORK mode.

Examples

The following example gets the underlying network associated with an existing NFE model.

SELECT SDO_NFE.get_model_underlying_network(1) FROM DUAL;

7.21 SDO_NFE.GET_NEXT_SEQUENCE_VALUE
Format

SDO_NFE.GET_NEXT_SEQUENCE_VALUE(
     sequence_name        IN VARCHAR2,
     seq_value_increment  IN NUMBER
     ) RETURN NUMBER;

Description

Returns the value resulting from adding the value of the second parameter to the current
value of the specified sequence.

Parameters

sequence_name
Name of the sequence.

seq_value_increment
Integer value to be added to the current value of sequence_name. (If the specified value is
negative, it is subtracted from the current value.)

Usage Notes

This function does not change the INCREMENT BY value of the specified sequence or the
current value of that sequence.

This function can be used to manage a block of consecutive sequence numbers.

Examples

The following example returns the value that would result from adding 10 to the current value
of a sequence named MY_SEQ.

SELECT SDO_NFE.GET_NEXT_SEQUENCE_VALUE('my_seq', 10) FROM DUAL;

If the current value of MY_SEQ is 100, this example returns the value 110 (100 + 10).
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7.22 SDO_NFE.GET_POINTS_MATCH_LP_RULE
Format

SDO_NFE.GET_POINTS_MATCH_LP_RULE(
     model_id    IN SDO_NUMBER,
     lp_rule_id  IN NUMBER,
     points      IN SDO_INTERACT_POINT_FEAT_ARRAY,
     ) RETURN DBMS_SQL.NUMBER_TABLE;

Description

Given an set of point features, this function calculates the group of them that match a
connectivity line-point rule. Returns a DBMS_SQL.NUMBER_TABLE object with the
indexes of the points in the input array that match the line-point rule.

Parameters

model_id
NFE model identifier.

lp_rule_id
Connectivity line-point rule identifier. Must exist in the LINE_POINT_RULE table.

points
Array of point features where the search will take place. (The
SDO_INTERACT_POINT_FEAT_ARRAY type is described in Data Types Used for
NFE Connectivity Rules.)

Usage Notes

This function is mainly used after the SDO_NFE.GET_INTERACTION_GROUPS
function, which returned a group of mixed line features where some line features
matched a specific connectivity rule and some did not.

Examples

The following example gets the specific point features that match a line-point rule.

DECLARE
  model_id        NUMBER := 1;
  lp_rule_id      NUMBER := 1;
  rule_points_indexes dbms_sql.NUMBER_TABLE;
  inter_grps          SDO_INTERACTION_ARRAY;
BEGIN
  -- Get the groups of interacting features that meet the L-P Rule in the model
  inter_grps := sdo_nfe.get_interaction_groups( model_id, 
sdo_nfe.RULE_TYPE_LINE_POINT, lp_rule_id );

  -- For each group:
  FOR i IN 1..inter_grps.count loop
    -- Get the specific point features that match the L-P rule.
    rule_points_indexes := sdo_nfe.get_points_match_lp_rule( model_id,  
lp_rule_id, inter_grps(i).points );
  END loop;
END;
/
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7.23 SDO_NFE.IMPORT_NETWORK
Format

SDO_NFE.IMPORT_NETWORK(
     model_id          IN NUMBER,
     model_id          IN NUMBER, 
     network_from      IN VARCHAR2,
     line_ft_layer_id  IN NUMBER, 
     line_ft_class_id  IN NUMBER, 
     point_ft_layer_id IN NUMBER, 
     point_ft_class_id IN NUMBER);

Description

Copies the network elements from an existing network to the underlying network of an NFE
model (created in the SDO_NFE.FROM_SCRATCH mode), translating every link in line
features from the line feature class (line_ft_class_id), and every node in point features from
the point feature class (point_ft_class_id)..

Parameters

model_id
NFE model identifier.

network_from
Name of the network to be imported.

line_ft_layer_id
Feature layer ID for the newly created line features (created from the link elements).

line_ft_class_id
Feature class ID for the newly created line features.

point_ft_layer_id
Feature layer ID for the newly created point features (created from the node elements).

point_ft_class_id
Feature class ID for the newly created point features.

Usage Notes

The feature classes for the line and point features must already exist in the NFE model.

Examples

The following example imports a network named NET01 to a model identified by the ID 1.
Lines and point features will be created for every link and node using the feature layers 10
and 11 and the feature classes 5 and 6.

EXECUTE SDO_NFE.import_network(1, ‘NET01’, 10, 5, 11, 6);
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7.24 SDO_NFE.SET_MODEL_UNDERLYING_NETWORK
Format

SDO_NFE.SET_MODEL_UNDERLYING_NETWORK(
     model_id     IN SDO_NUMBER
     network_name IN VARCHAR2);

Description

Associates a network as the underlying network of an NFE model. (The model must
have been created in the SDO_NFE.OVER_EXIST_NETWORK mode.)

Parameters

model_id
NFE model identifier.

network_name
Name of the network to be associated with the model.

Usage Notes

See also the SDO_NFE.GET_MODEL_UNDERLYING_NETWORK function.

Examples

The following example ....

EXECUTE ... ;
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GET_EDGE_CHANGES function, 4-24
GET_EDGE_COORDS function, 4-25
GET_EDGE_DELETIONS function, 4-26
GET_EDGE_NODES function, 4-27
GET_FACE_ADDITIONS function, 4-28
GET_FACE_BOUNDARY function, 3-6, 4-29
GET_FACE_CHANGES function, 4-28
GET_FACE_DELETIONS function, 4-30
GET_FEATURE_ELEMENTS function, 6-50
GET_FEATURE_LAYER_ID function, 6-51
GET_FEATURES_ON_LINKS function

SDO_NET package
GET_FEATURES_ON_LINKS, 6-51

GET_FEATURES_ON_NODES function
SDO_NET package

GET_FEATURES_ON_NODES, 6-52
GET_GEOMETRY member function, 1-28
GET_GEOMETRY_TYPE function, 6-53
GET_IN_LINKS function, 6-53
GET_INTERACTION_GROUPS function, 7-12
GET_INVALID_LINKS function, 6-54
GET_INVALID_NODES function, 6-55
GET_INVALID_PATHS function, 6-55
GET_ISOLATED_NODES function, 6-56
GET_LINES_MATCH_LP_RULE function, 7-13
GET_LINK_COST_COLUMN function, 6-56
GET_LINK_DIRECTION function, 6-57
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GET_LINK_GEOM_COLUMN function, 6-57
GET_LINK_GEOMETRY function, 6-58
GET_LINK_TABLE_NAME function, 6-59
GET_LINKS_IN_PATH function, 6-60
GET_LL_CONN_INTERSECTIONS function,

7-14
GET_LP_CONN_INTERSECTIONS function,

7-15
GET_LRS_GEOM_COLUMN function, 6-60
GET_LRS_LINK_GEOMETRY function, 6-61
GET_LRS_NODE_GEOMETRY function, 6-62
GET_LRS_TABLE_NAME function, 6-62
GET_MODEL_SEQUENCE_NAME function,

7-17
GET_MODEL_TABLE_NAME function, 7-18
GET_MODEL_UNDERLYING_NETWORK

function, 7-18
GET_NEAREST_EDGE function, 4-31
GET_NEAREST_EDGE_IN_CACHE function,

4-32
GET_NEAREST_NODE function, 4-33
GET_NEAREST_NODE_IN_CACHE function,

4-34
GET_NETWORK_TYPE function, 6-63
GET_NEXT_SEQUENCE_VALUE function, 7-19
GET_NO_OF_HIERARCHY_LEVELS function,

6-63
GET_NO_OF_LINKS function, 6-64
GET_NO_OF_NODES function, 6-65
GET_NODE_ADDITIONS function, 4-35
GET_NODE_CHANGES function, 4-36
GET_NODE_COORD function, 4-37
GET_NODE_DEGREE function, 6-66
GET_NODE_DELETIONS function, 4-38
GET_NODE_FACE_STAR function, 4-38
GET_NODE_GEOM_COLUMN function, 6-66
GET_NODE_GEOMETRY function, 6-67
GET_NODE_IN_DEGREE function, 6-68
GET_NODE_OUT_DEGREE function, 6-68
GET_NODE_STAR function, 4-39
GET_NODE_TABLE_NAME function, 6-69
GET_OUT_LINKS function, 6-70
GET_PARENT_FEATURE_IDS function, 6-70
GET_PARTITION_SIZE function, 6-71
GET_PATH_GEOM_COLUMN function, 6-72
GET_PATH_TABLE_NAME function, 6-73
GET_PERCENTAGE function, 6-74
GET_PHANTOM_FEATURES function, 6-75
GET_POINTS_MATCH_LP_RULE function, 7-20
GET_PT function, 6-75
GET_TGL_OBJECTS member function, 1-28
GET_TOPO_ELEMENTS member function, 1-28
GET_TOPO_NAME function, 4-40
GET_TOPO_OBJECTS function, 3-7
GET_TOPO_TRANSACTION_ID function, 4-41

H
heap size

Java, 4-56
heap size (Java)

setting maximum, 6-89
hierarchy

network, 5-11
topology geometry layer, 1-11

history information table, 1-19

I
IMPORT_NETWORK procedure, 7-21
in-degree, 5-5
inbound links, 5-5

getting link ID numbers, 6-53
getting number of for node, 6-68

INITIALIZE_AFTER_IMPORT procedure, 3-9
INITIALIZE_METADATA procedure, 3-9
invalid links

getting, 6-54
invalid nodes

getting, 6-55
invalid paths

getting, 6-55
IS_HIERARCHICAL function, 6-76
IS_LINK_IN_PATH function, 6-77
IS_LOGICAL function, 6-77
IS_NODE_IN_PATH function, 6-78
IS_SPATIAL function, 6-79
island edge

See isolated edge
island node

See isolated nodes (topology)
isolated edge, 1-4
isolated nodes (network)

definition of, 5-5
getting, 6-56

isolated nodes (topology),
adding, 4-4
definition of, 1-6

J
Java client interface for Network Data Model

Graph (sdonm), 5-65
Java client interface for Topology Data Model

(sdotopo), 1-36
Java heap size

setting maximum, 6-89
Java maximum heap size

setting, 4-56
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L
layer

collection, 1-9
topology geometry, 1-8, 3-1

linear geometries
adding, 4-5

link direction
getting, 6-57

link geometry
getting, 6-58

link levels, 5-28
link table

definition, 5-31
links, 5-5

definition, 5-5
deleting, 6-34
determining if directed, 6-57
directed, 5-5
direction, 5-5
getting geometry for, 6-58
getting percentage of point on link, 6-74
invalid, 6-54
relationship to paths, 5-5
state of, 5-5
temporary, 5-5
undirected, 5-5

See also undirected links, inbound links,
outbound links

LIST_TOPO_MAPS function, 4-42
load on demand

using for editing and analysis, network
editing

using partitioning and load on demand,
5-26

load on demand analysis, 5-5
LOAD_CONFIG procedure, 6-79
LOAD_TOPO_MAP function or procedure, 4-42
logging level

setting for network operations, 6-89
logical network, 5-6
LOGICAL_PARTITION procedure, 6-80
LOGICAL_POWERLAW_PARTITION procedure,

6-82
loop edge, 1-4
loops

adding, 4-7
LRS network, 5-6
LRS_GEOMETRY_NETWORK function, 6-84

M
metadata

initializing for a topology, 3-9
minimum cost path, 5-5

minimum cost spanning tree, 5-5
MOVE_EDGE procedure, 4-46
MOVE_ISOLATED_NODE procedure, 4-48
MOVE_NODE procedure, 4-49
multilevel networks, 5-13
multimodal networks, 5-11

N
naming considerations

spatial table and column names, 1-15, 5-29
nearest edge

getting for point, 4-31
getting in cache for point, 4-32

nearest node
getting for point, 4-33
getting in cache for point, 4-34

network analysis
using the load on demand approach, 5-26

network constraints, 5-26
ALL_SDO_NETWORK_CONSTRAINTS

view, 5-55
deregistering, 6-37
registering, 6-87
USER_SDO_NETWORK_CONSTRAINTS

view, 5-54
Network Data Model Graph

application programming interface (API),
5-63

performance, 5-63
concepts, 5-5
examples, 5-69
network feature editor subprogram reference

information, 7-1
overview, 5-1
steps for using, 5-3
subprogram reference information, 6-1
tables for, 5-29

network elements
definition, 5-5

NETWORK_EXISTS function, 6-85
networks

directed, 5-5
hierarchical, 5-11
logical, 5-6
partitioned, 5-5
spatial, 5-6
undirected, 5-5

node face star
getting for node, 4-38

node geometry
getting, 6-67

node hierarchy table
definition, 5-38

node information table, 1-17
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node level table
definition, 5-38

node sequences
privileges needed for cross-schema topology

editing, 1-39
node star

getting for node, 4-39
node table

definition, 5-30
nodes

adding, 2-9, 4-8
adding isolated (topology), 4-4
adding point geometry, 4-10
definition, 1-4, 5-5
degree, 5-5
deleting, 6-35
generating node levels for multilevel network,

6-40
getting coordinates of, 4-37
getting geometry, 6-67
getting ID numbers of added nodes, 4-35
getting ID numbers of changed nodes, 4-36
getting ID numbers of deleted nodes, 4-38
getting nearest node for point, 4-33
getting nearest node in cache for point, 4-34
getting node face star, 4-38
getting node star, 4-39
getting number of, 6-65
invalid, 6-55
island, 1-6
isolated (network), 5-5, 6-56
isolated (topology), 1-6
moving, 2-10, 4-49
moving isolated nodes (topology), 4-48
obsolete, 2-14, 4-52
reachable, 5-5
reaching, 5-5
removing, 2-13, 4-52
removing obsolete, 2-14, 4-52
state of, 5-5
storing information in node information table,

1-17
temporary, 5-5

O
obsolete nodes

removing, 2-14, 4-52
operators

Topology Data Model, 1-33
out-degree, 5-5
outbound links, 5-5

getting link ID numbers, 6-70
getting number of for node, 6-68

OutOfMemoryError exception
raising maximum heap size, 4-56

P
parent feature

definition, 5-9
parent layer, 1-11
parent node, 5-12
partition BLOB

generating, 6-42
partition BLOBs, 5-5

generating, 6-43
generating and loading from, 5-27

partition cache, 5-5, 5-28
loading configuration, 6-79

partition size
getting, 6-71

partition table
definition, 5-35, 5-36

partitioned network, 5-5
partitions

caching, 5-28
partition table, 5-35, 5-36
partitioning a network, 6-80, 6-82, 6-90
resident, 5-28
using for editing and analysis, 5-26

path table
definition, 5-32

path-link table
definition, 5-33

paths
complex, 5-33
computing the geometry, 6-10
definition, 5-5
deleting, 6-36
invalid, 6-55
minimum cost, 5-5
simple, 5-33
subpaths, 5-7
temporary, 5-5

performance
Network Data Model Graph API, 5-63

phantom features
deleting, 6-36
getting, 6-75

PL/SQL examples
Network Data Model Graph, 5-69

point cardinality rules table
definition, 5-47

point geometries
adding, 4-10

points
getting point at percentage on link, 6-75
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polygon geometries
adding, 4-11

POST_XML function, 6-85
power law networks, 6-82
precomputed analysis results, 5-29
PREPARE_FOR_EXPORT procedure, 3-10
primitives

See topological elements

R
reachable nodes, 5-5
reaching nodes, 5-5
read-only TopoMap objects, 2-2
README file

for Spatial and Graph and related features,
5-94

reference path
definition, 5-7

REGISTER_CONSTRAINT procedure, 6-87
RELATE function, 3-11
relationship information table, 1-18
REMOVE_EDGE procedure, 4-51
REMOVE_NODE procedure, 4-52
REMOVE_OBSOLETE_NODES procedure, 4-52
resident partitions, 5-28
ROLLBACK_TOPO_MAP procedure, 4-53
rule decision handlers table

definition, 5-48
rule instance table

definition, 5-50

S
scale-free (power law) networks, 6-82
SDO network, 5-6
SDO_EDGE_ARRAY type, 1-29
SDO_GEOMETRY_NETWORK function, 6-88
SDO_INTERACT_LINE_FEAT_ARRAY data

type, 5-25
SDO_INTERACT_POINT_FEAT data type, 5-25
SDO_INTERACT_POINT_FEAT_ARRAY data

type, 5-25
SDO_INTERACTION data type, 5-25
SDO_INTERACTION_ARRAY data type, 5-25
SDO_LIST_TYPE type, 1-29
SDO_NET package

ADD_CHILD_FEATURE, 6-4
ADD_CHILD_FEATURES, 6-5
ADD_FEATURE, 6-6
ADD_FEATURE_ELEMENT, 6-7
ADD_FEATURE_ELEMENTS, 6-8
ADD_FEATURE_LAYER, 6-9
COMPUTE_PATH_GEOMETRY, 6-10
COPY_NETWORK, 6-11

SDO_NET package (continued)
CREATE_LINK_TABLE, 6-12
CREATE_LOGICAL_NETWORK, 6-13
CREATE_LRS_NETWORK, 6-15
CREATE_LRS_TABLE, 6-18
CREATE_NODE_TABLE, 6-19
CREATE_PARTITION_TABLE, 6-20
CREATE_PATH_LINK_TABLE, 6-21
CREATE_PATH_TABLE, 6-21
CREATE_SDO_NETWORK, 6-22
CREATE_SUBPATH_TABLE, 6-25
CREATE_TOPO_NETWORK, 6-26
DELETE_CHILD_FEATURES, 6-28
DELETE_CHILD_FEATURES_AT, 6-29
DELETE_DANGLING_FEATURES, 6-30
DELETE_DANGLING_LINKS, 6-31
DELETE_DANGLING_NODES, 6-31
DELETE_FEATURE_ELEMENTS, 6-32
DELETE_FEATURE_ELEMENTS_AT, 6-33
DELETE_FEATURES, 6-33
DELETE_LINK, 6-34
DELETE_NODE, 6-35
DELETE_PATH, 6-36
DELETE_PHANTOM_FEATURES, 6-36
DELETE_SUBPATH, 6-37
DEREGISTER_CONSTRAINT, 6-37
DROP_NETWORK, 6-39
FEATURE_LAYER, 6-38
FIND_CONNECTED_COMPONENTS, 6-39
GENERATE_NODE_LEVELS, 6-40
GENERATE_PARTITION_BLOB, 6-42
GENERATE_PARTITION_BLOBS, 6-43
GET_CHILD_FEATURE_IDS, 6-45
GET_CHILD_LINKS, 6-46
GET_CHILD_NODES, 6-47
GET_DANGLING_LINKS, 6-48
GET_DANGLING_NODES, 6-49
GET_FEATURE_ELEMENTS, 6-50
GET_FEATURE_LAYER_ID, 6-51
GET_GEOMETRY_TYPE, 6-53
GET_IN_LINKS, 6-53
GET_INVALID_LINKS, 6-54
GET_INVALID_NODES, 6-55
GET_INVALID_PATHS, 6-55
GET_ISOLATED_NODES, 6-56
GET_LINK_COST_COLUMN, 6-56
GET_LINK_DIRECTION, 6-57
GET_LINK_GEOM_COLUMN, 6-57
GET_LINK_GEOMETRY, 6-58
GET_LINK_TABLE_NAME, 6-59
GET_LINKS_IN_PATH, 6-60
GET_LRS_GEOM_COLUMN, 6-60
GET_LRS_LINK_GEOMETRY, 6-61
GET_LRS_NODE_GEOMETRY, 6-62
GET_LRS_TABLE_NAME, 6-62
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SDO_NET package (continued)
GET_NETWORK_TYPE, 6-63
GET_NO_OF_HIERARCHY_LEVELS, 6-63
GET_NO_OF_LINKS, 6-64
GET_NO_OF_NODES, 6-65
GET_NODE_DEGREE, 6-66
GET_NODE_GEOM_COLUMN, 6-66
GET_NODE_GEOMETRY, 6-67
GET_NODE_IN_DEGREE, 6-68
GET_NODE_OUT_DEGREE, 6-68
GET_NODE_TABLE_NAME, 6-69
GET_OUT_LINKS, 6-70
GET_PARENT_FEATURE_IDS, 6-70
GET_PARTITION_SIZE, 6-71
GET_PATH_GEOM_COLUMN, 6-72
GET_PATH_TABLE_NAME, 6-73
GET_PERCENTAGE, 6-74
GET_PHANTOM_FEATURES, 6-75
GET_PT, 6-75
IS_HIERARCHICAL, 6-76
IS_LINK_IN_PATH, 6-77
IS_LOGICAL, 6-77
IS_NODE_IN_PATH, 6-78
IS_SPATIAL, 6-79
LOAD_CONFIG, 6-79
LOGICAL_PARTITION, 6-80
LOGICAL_POWERLAW_PARTITION, 6-82
LRS_GEOMETRY_NETWORK, 6-84
NETWORK_EXISTS, 6-85
POST_XML, 6-85
reference information, 6-1
REGISTER_CONSTRAINT, 6-87
SDO_GEOMETRY_NETWORK, 6-88
SET_LOGGING_LEVEL, 6-89
SET_MAX_JAVA_HEAP_SIZE, 6-89
SPATIAL_PARTITION, 6-90
TOPO_GEOMETRY_NETWORK, 6-91
UPDATE_FEATURE, 6-92
UPDATE_FEATURE_ELEMENT, 6-93
VALIDATE_LINK_SCHEMA, 6-94
VALIDATE_LRS_SCHEMA, 6-95
VALIDATE_NETWORK, 6-95
VALIDATE_NODE_SCHEMA, 6-96
VALIDATE_PARTITION_SCHEMA, 6-97
VALIDATE_PATH_SCHEMA, 6-98
VALIDATE_SUBPATH_SCHEMA, 6-98

SDO_NET_FEAT_ELEM data type, 5-20
SDO_NET_FEAT_ELEM_ARRAY data type, 5-20
SDO_NET_LAYER_FEAT data type, 5-20, 5-25
SDO_NET_LAYER_FEAT_ARRAY data type,

5-20
SDO_NETWORK_NVP data type, 5-20
SDO_NETWORK_NVP_TAB data type, 5-20
SDO_NFE package

APPLY_RULE, 7-2

SDO_NFE package (continued)
CLASSIFY_LINES_BY_SIDE, 7-2
CREATE_MODEL_SEQUENCE, 7-4
CREATE_MODEL_STRUCTURE, 7-4
CREATE_MODEL_UNDERLYING_NET, 7-5
CREATE_MODEL_WORKSPACE, 7-6
DELETE_ALL_FT_LAYERS, 7-7
DELETE_ALL_WORKSPACES, 7-8
DELETE_MODEL_STRUCTURE, 7-8
DELETE_MODEL_WORKSPACE, 7-9
DROP_MODEL_SEQUENCE, 7-10
DROP_MODEL_UNDERLYING_NETWORK,

7-10
GET_CONNECTION_POINT_GEOM, 7-11
GET_INTERACTION_GROUPS, 7-12
GET_LINES_MATCH_LP_RULE, 7-13
GET_LL_CONN_INTERSECTIONS, 7-14
GET_LP_CONN_INTERSECTIONS, 7-15
GET_MODEL_SEQUENCE_NAME, 7-17
GET_MODEL_TABLE_NAME, 7-18
GET_MODEL_UNDERLYING_NETWORK,

7-18
GET_NEXT_SEQUENCE_VALUE, 7-19
GET_POINTS_MATCH_LP_RULE, 7-20
IMPORT_NETWORK, 7-21
reference information, 7-1
SET_MODEL_UNDERLYING_NETWORK,

7-22
SDO_NUMBER_ARRAY type, 1-29
SDO_TGL_OBJECT type, 1-25
SDO_TGL_OBJECT_ARRAY type, 1-25
SDO_TOPO package

ADD_TOPO_GEOMETRY_LAYER, 3-1
CREATE_TOPOLOGY, 3-3
DELETE_TOPO_GEOMETRY_LAYER, 3-5
DROP_TOPOLOGY, 3-6
GET_FACE_BOUNDARY, 3-6
GET_TOPO_OBJECTS, 3-7
INITIALIZE_AFTER_IMPORT, 3-9
INITIALIZE_METADATA, 3-9
PREPARE_FOR_EXPORT, 3-10
reference information, 3-1
RELATE, 3-11

SDO_TOPO_GEOMETRY constructors, 1-23
SDO_TOPO_GEOMETRY member functions

GET_GEOMETRY, 1-28
GET_TGL_OBJECTS, 1-28
GET_TOPO_ELEMENTS, 1-28

SDO_TOPO_GEOMETRY type, 1-22
SDO_TOPO_MAP package

ADD_EDGE, 4-3
ADD_ISOLATED_NODE, 4-4
ADD_LINEAR_GEOMETRY, 4-5
ADD_LOOP, 4-7
ADD_NODE, 4-8
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SDO_TOPO_MAP package (continued)
ADD_POINT_GEOMETRY, 4-10
ADD_POLYGON_GEOMETRY, 4-11
CHANGE_EDGE_COORDS, 4-12
CLEAR_TOPO_MAP, 4-14
COMMIT_TOPO_MAP, 4-15
CREATE_EDGE_INDEX, 4-15
CREATE_FACE_INDEX, 4-16
CREATE_FEATURE, 4-17
CREATE_TOPO_MAP, 4-21
DROP_TOPO_MAP, 4-22
GET_CONTAINING_FACE, 4-22
GET_EDGE_ADDITIONS, 4-24
GET_EDGE_CHANGES, 4-24
GET_EDGE_COORDS, 4-25
GET_EDGE_DELETIONS, 4-26
GET_EDGE_NODES, 4-27
GET_FACE_ADDITIONS, 4-28
GET_FACE_BOUNDARY, 4-29
GET_FACE_CHANGES, 4-28
GET_FACE_DELETIONS, 4-30
GET_NEAREST_EDGE, 4-31
GET_NEAREST_EDGE_IN_CACHE, 4-32
GET_NEAREST_NODE, 4-33
GET_NEAREST_NODE_IN_CACHE, 4-34
GET_NODE_ADDITIONS, 4-35
GET_NODE_CHANGES, 4-36
GET_NODE_COORD, 4-37
GET_NODE_DELETIONS, 4-38
GET_NODE_FACE_STAR, 4-38
GET_NODE_STAR, 4-39
GET_TOPO_NAME, 4-40
GET_TOPO_TRANSACTION_ID, 4-41
LIST_TOPO_MAPS, 4-42
LOAD_TOPO_MAP, 4-42
MOVE_EDGE, 4-46
MOVE_ISOLATED_NODE, 4-48
MOVE_NODE, 4-49
reference information, 4-1
REMOVE_EDGE, 4-51
REMOVE_NODE, 4-52
REMOVE_OBSOLETE_NODES, 4-52
ROLLBACK_TOPO_MAP, 4-53
SEARCH_EDGE_RTREE_TOPO_MAP, 4-54
SEARCH_FACE_RTREE_TOPO_MAP, 4-55
SET_MAX_MEMORY_SIZE, 4-56
UPDATE_TOPO_MAP, 4-56
VALIDATE_TOPO_MAP, 4-57
VALIDATE_TOPOLOGY, 4-58

SDO_TOPO_OBJECT type, 1-24
SDO_TOPO_OBJECT_ARRAY type, 1-24
sdonm Java client interface, 5-65
sdotopo Java client interface, 1-36
SEARCH_EDGE_RTREE_TOPO_MAP function,

4-54

SEARCH_FACE_RTREE_TOPO_MAP function,
4-55

sequences
node, edge, and face

privileges needed for cross-schema
topology editing, 1-39

SET_LOGGING_LEVEL procedure, 6-89
SET_MAX_JAVA_HEAP_SIZE procedure, 6-89
SET_MAX_MEMORY_SIZE procedure, 4-56
SET_MODEL_UNDERLYING_NETWORK

function, 7-22
sibling links, 5-12
sibling nodes, 5-12
simple path, 5-33
spanning tree, 5-7

minimum cost, 5-5
spatial network, 5-6
SPATIAL_PARTITION procedure, 6-90
star

node, 4-39
node face, 4-38

state, 5-5
subpath table

definition, 5-33
subpaths

CREATE_SUBPATH_TABLE procedure, 6-25
definition, 5-7
deleting, 6-37
subpath table, 5-33

T
temporal modeling and analysis for networks,

5-11
temporary links, 5-5
temporary nodes, 5-5
temporary paths, 5-5
TG_ID attribute of SDO_TOPO_GEOMETRY

type, 1-22
TG_LAYER_ID attribute of

SDO_TOPO_GEOMETRY type, 1-22
TG_TYPE attribute of SDO_TOPO_GEOMETRY

type, 1-22
tolerance

in the Topology Data Model, 1-7
TOPO_GEOMETRY_NETWORK function, 6-91
topo_map parameter

SDO_TOPO subprograms, 2-3
topological elements, 1-8

definition (nodes, edges, faces), 1-8
topology

clearing map, 4-14
committing map, 4-15
creating, 3-3
creating edge index, 4-15
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topology (continued)
creating face index, 4-16
creating map, 4-21
deleting (dropping), 3-6
deleting (dropping) map, 4-22
editing, 2-1
export information table format, 1-37
exporting

preparing for, 3-10
getting name from TopoMap object, 4-40
hierarchy of geometry layers, 1-11
importing

initializing after, 3-9
initializing metadata, 3-9
loading into TopoMap object, 4-42
updating, 4-56
validating, 4-58

Topology Data Model
application programming interface (API),

1-33
concepts, 1-4
overview, 1-1
PL/SQL example, 1-40
steps for using, 1-2
subprogram reference information, 3-1, 4-1

topology data types, 1-22
topology export information table, 1-37
topology geometry

definition, 1-8
layer, 1-8

topology geometry layer
adding, 3-1
definition, 1-8
deleting, 3-5
hierarchical relationships in, 1-11

topology geometry network, 5-6
topology maps, 2-2

listing, 4-42
loading, 4-42
rolling back, 4-53
validating, 4-57

See also TopoMap objects
topology operators, 1-33
topology parameter

SDO_TOPO subprograms, 2-3
topology transaction ID

getting, 4-41
TOPOLOGY_ID attribute of

SDO_TOPO_GEOMETRY type, 1-22
TopoMap objects, 2-2

clearing, 4-14
committing changes to the database, 4-15
creating, 4-21
creating edge index, 4-15
creating face index, 4-16

TopoMap objects (continued)
deleting (dropping), 4-22
description, 2-2
getting topology name, 4-40
listing, 4-42
loading, 4-42
process for using to edit topologies, 2-4, 2-5
read-only, 2-2
rolling back changes in, 4-53
updatable, 2-2
validating, 4-57

type
link or node type, 5-5

U
undirected links, 5-5
undirected networks, 5-5
universe face (F0), 1-4
updatable TopoMap objects, 2-2
UPDATE_FEATURE procedure, 6-92
UPDATE_FEATURE_ELEMENT procedure, 6-93
UPDATE_TOPO_MAP procedure, 4-56
USER_SDO_NETWORK_CONSTRAINTS view,

5-54
USER_SDO_NETWORK_METADATA view, 5-51
USER_SDO_NETWORK_USER_DATA view,

5-55, 5-57
USER_SDO_NFE_MODEL_FTLAYER_REL

view, 5-58
USER_SDO_NFE_MODEL_METADATA view,

5-59
USER_SDO_NFE_MODEL_WORKSPACE view,

5-61
USER_SDO_TOPO_INFO view, 1-29
USER_SDO_TOPO_METADATA view, 1-31
user-defined data, 5-5

ALL_SDO_NETWORK_USER_DATA view,
5-55, 5-57

USER_SDO_NETWORK_USER_DATA view,
5-55, 5-57

V
VALIDATE_LINK_SCHEMA function, 6-94
VALIDATE_LRS_SCHEMA function, 6-95
VALIDATE_NETWORK function, 6-95
VALIDATE_NODE_SCHEMA function, 6-96
VALIDATE_PARTITION_SCHEMA function, 6-97
VALIDATE_PATH_SCHEMA function, 6-98
VALIDATE_SUBPATH_SCHEMA function, 6-98
VALIDATE_TOPO_MAP function, 4-57
VALIDATE_TOPOLOGY procedure, 4-58
vertex (node), 5-5
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X
XML interface for Network Data Model Graph,

5-66
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