
Oracle® Database Provider for DRDA
User's Guide

Release 19c
E96456-02
August 2021

Oracle Database Provider for DRDA User's Guide, Release 19c

E96456-02

Copyright © 2011, 2021, Oracle and/or its affiliates.

Primary Author: Apoorva Srinivas

Contributing Authors: Tulika Das, Tanmay Choudary

Contributors: Peter Castro, Charles Benet, Mark Jones, Roger Ford, Peter Wong

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software" or "commercial computer software documentation" pursuant to the
applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use,
reproduction, duplication, release, display, disclosure, modification, preparation of derivative works, and/or
adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government’s use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience xiii

Related Documents xiii

Documentation Accessibility xiii

Conventions xiii

1 Introduction to Oracle Database Provider for DRDA

1.1 What is Oracle Database Provider for DRDA? 1-1

1.2 Release Information 1-1

1.3 DB2 Client Applications 1-1

1.3.1 Remote DB2 Applications 1-2

1.3.2 Native DB2 Applications 1-3

1.4 Usage Scenarios for Oracle Database Provider for DRDA 1-4

2 Architecture of Oracle Database Provider for DRDA

2.1 Protocol Considerations 2-1

2.2 Two-Phase Commit and Transaction Recovery 2-1

2.3 Autonomy of Service 2-1

2.4 Packages 2-2

2.5 SQL Dialect 2-3

3 Installation and Configuration of Oracle Database Provider for DRDA

3.1 About Installing Oracle Database Provider for DRDA 3-1

3.1.1 Installing Oracle Database Provider for DRDA 3-1

3.2 Configuring Oracle Database Provider for DRDA 3-1

3.2.1 Updating the drdaas.ora Configuration File 3-1

3.2.1.1 DATA_PORT Considerations 3-2

3.2.1.2 RDB_MAP Considerations 3-2

3.2.1.3 Oracle Database Provider for DRDA Instance Considerations 3-2

3.2.2 Installing Database Objects 3-2

iii

3.2.2.1 About Global Objects 3-2

3.2.2.2 Creating a SYSIBM tablespace 3-3

3.2.2.3 Installing Oracle Database Provider for DRDA Catalogs 3-3

3.2.2.4 Installing DB2 SQL translator 3-3

3.2.2.5 Designating Oracle Database Provider for DRDA Administrative Role 3-4

3.2.3 SQL Translation Profile 3-4

3.2.3.1 Prerequisites for Creating a SQL Translation Profile 3-5

3.2.3.2 Creating a SQL Translation Interface Package and Translation Profile 3-5

3.2.4 Configuration File: drdaas.ora 3-6

3.3 Authorizing Oracle Database Provider for DRDA 3-7

3.3.1 Administrator Role 3-7

3.3.1.1 Granting DRDAAS_ADMIN_ROLE 3-7

3.3.1.2 Adding DRDAA_ADMIN_ROLE 3-8

3.3.1.3 Dropping ORACLE.MYPACKAGE by Administrator 3-8

3.3.1.4 Dropping ORACLE.MYPACKAGE by User 3-8

3.3.1.5 Maintaining DRDA Packages 3-8

3.3.2 DRDA Package Authorization 3-8

3.3.2.1 Managing a User’s Package Privileges 3-9

3.3.2.2 Managing DRDA Package Translation Profile 3-9

3.3.3 User Role 3-10

3.3.3.1 Granting the DRDAAS_USER_ROLE 3-10

3.3.3.2 Adding DRDAAS_USER_ROLE 3-10

3.4 Uninstalling Oracle Database Provider for DRDA 3-10

3.4.1 Removing the Database Objects 3-10

3.4.2 Uninstalling Oracle Database Provider for DRDA software 3-11

3.5 Configuration Parameters 3-11

3.5.1 DATA_PORT 3-11

3.5.2 RDB_MAP 3-11

3.5.3 PROTOPROC_TRACE 3-12

3.5.4 PROTOPROC_OPTIONS 3-13

4 SQL Translation and Examples for Oracle Database Provider for DRDA

4.1 Overview of SQL Translation Process 4-1

4.1.1 Implementing SQL Translation 4-1

4.1.2 Requirements for SQL Translation 4-2

4.2 Specifics of Translating DB2-Specific SQL Syntax 4-2

4.2.1 DB2 Special Registers 4-3

4.2.2 DB2 SQL Functions and Procedures 4-3

4.2.3 DB2 Named Datatypes 4-3

4.2.4 DB2 Syntactic Statements 4-3

iv

4.3 SQL Translator Interface Package 4-3

4.3.1 About SQL Translator Interface Package 4-3

4.3.2 Creating a SQL Translator Interface Package 4-4

4.3.3 Granting EXECUTE Access to SQL Translator Interface Package 4-4

4.3.4 Creating a SQL Translation Profile 4-4

4.3.4.1 Granting Translation Authority Through Administrator Role 4-5

4.3.4.2 Granting Translation Authority Through User Role 4-5

4.3.4.3 Creating and Managing SQL Translation Profile 4-5

4.4 Using Third-Party SQL Translators 4-6

4.4.1 Using a Third-Party SQL Translator, Loaded as a Single Object 4-6

4.4.2 Using a Third-Party SQL Translator, Loaded as Multiple Objects 4-7

4.5 Using a Translator Management Script 4-7

4.6 Verifying the SQL Translator Profile 4-7

4.7 Altering the SQL Translation Profile 4-8

5 Administration and Customization of Oracle Database Provider for
DRDA

5.1 Migration Steps using Oracle Database Provider for DRDA 5-1

5.2 Considerations for Using Oracle Database Provider for DRDA 5-1

5.3 Prerequisites to Installing Oracle Database Provider for DRDA 5-1

5.4 Administering DRDA Package Authority 5-2

5.5 Migrating DB2 Data 5-2

5.6 Retargeting the Application to Use Oracle Database 5-3

5.6.1 Re-targeting Native Applications 5-3

5.6.2 Re-targeting Remote Applications 5-4

5.7 Translating SQL Statement and Typing Datatypes 5-5

5.7.1 Registering a SQL Substitution Statement 5-5

5.7.2 Registering an On-Demand Datatype Conversion 5-5

6 Diagnostics and Maintenance of Oracle Database Provider for DRDA

6.1 Diagnostics for Oracle Database Provider for DRDA 6-1

6.2 Maintaining Oracle Database Provider for DRDA 6-1

7 Datatype Support and Conversion in Oracle Database Provider for
DRDA

7.1 Overview of Datatype Conversion 7-1

7.2 Numerical Range Considerations; General 7-1

7.2.1 Oracle NUMBER 7-2

v

7.2.2 FLOAT (IBM HEX or S390) 7-2

7.2.3 FLOAT (IEEE) 7-2

7.2.4 DECFLOAT 7-3

7.3 Numerical Range Considerations, for COBOL Users 7-3

7.3.1 Constraining Oracle NUMBER 7-5

7.4 Conversion between DRDA Datatypes to Oracle Datatypes 7-5

7.4.1 INTEGER 7-5

7.4.2 SMALLINT 7-5

7.4.3 BIGINT 7-6

7.4.4 float 7-6

7.4.5 DOUBLE PRECISION or FLOAT(b) 7-6

7.4.6 REAL or FLOAT(b) 7-6

7.4.7 DECIMAL(p,s) 7-7

7.4.8 DECIMAL(p,s) zoned 7-7

7.4.9 NUMERIC(p,s) 7-7

7.4.10 DECFLOAT(n=34) 7-8

7.4.11 DECFLOAT(n=16) 7-8

7.4.12 CHAR(n) 7-8

7.4.13 CHAR(n) for Bit Data 7-8

7.4.14 VARCHAR(n) 7-9

7.4.15 VARCHAR(n) 7-9

7.4.16 VARCHAR(n) for Bit Data 7-9

7.4.17 VARCHAR(n) 7-9

7.4.18 VARCHAR(n) 7-10

7.4.19 VARCHAR(n) for Bit Data 7-10

7.4.20 char(n+1) 7-10

7.4.21 char(n+1) 7-11

7.4.22 char(n) for Bit Data 7-11

7.4.23 VARGRAPHIC(n) 7-11

7.4.24 GRAPHIC(n) 7-11

7.4.25 VARGRAPHIC(n) 7-12

7.4.26 char(n) (Pascal L String) 7-12

7.4.27 char(n) for Bit Data (Pascal L String) 7-12

7.4.28 DATE 7-13

7.4.29 TIME 7-13

7.4.30 TIMESTAMP 7-13

7.4.31 (datalink) 7-13

7.4.32 BLOB 7-13

7.4.33 CLOB 7-14

7.4.34 DBCLOB 7-14

7.4.35 BLOB LOCATOR 7-14

vi

7.4.36 CLOB LOCATOR 7-14

7.4.37 DBCLOB LOCATOR 7-15

7.4.38 boolean 7-15

7.4.39 BINARY(n) 7-15

7.4.40 VARBINARY(n) 7-15

7.4.41 XML 7-16

7.5 Conversion of Oracle Datatype to DRDA 7-16

7.5.1 BINARY_FLOAT 7-16

7.5.2 BINARY_DOUBLE 7-16

7.5.3 VARCHAR2(n) 7-16

7.5.4 LONG 7-17

7.5.5 LONG RAW 7-17

7.5.6 NVARCHAR2(n) 7-17

7.5.7 CHAR(n) 7-17

7.5.7.1 Shorter version 7-18

7.5.7.2 Longer Version 7-18

7.5.8 NCHAR(n) 7-18

7.5.8.1 Shorter version 7-18

7.5.8.2 Longer Version 7-18

7.5.9 UROWID 7-19

7.5.10 DATE 7-19

7.5.11 TIMESTAMP 7-19

7.5.12 TIMESTAMP WITH LOCAL TIME ZONE 7-19

7.5.13 TIMESTAMP(p) WITH TIME ZONE 7-20

7.5.14 RAW(n) 7-20

7.5.15 NUMBER and FLOAT 7-20

7.6 Datatype Equivalence and Remapping 7-21

7.6.1 Applying Datatype Mapping 7-22

7.6.2 Using TYPEMAP in Queries 7-23

7.6.3 Using TYPEMAP in Functions 7-23

7.6.4 Oracle NUMBER TYPEMAP 7-23

8 Data Dictionary for Oracle Database Provider for DRDA

8.1 Data Dictionary Emulation in Oracle Database Provider for DRDA 8-1

8.1.1 DB2 for z/OS 8-1

8.2 Data Dictionary Views for Oracle Database Provider for DRDA 8-2

8.2.1 ALL_DRDAASPACKAGE Data Dictionary View 8-2

8.2.2 ALL_DRDAASPACKAUTH Data Dictionary View 8-2

8.2.3 ALL_DRDAASPACKSIDE Data Dictionary View 8-3

8.2.4 DBA_DRDAASPACKAGE Data Dictionary View 8-3

vii

8.2.5 DBA_DRDAASPACKAUTH Data Dictionary View 8-4

8.2.6 DBA_DRDAASPACKSIDE Data Dictionary View 8-5

8.2.7 DBA_DRDAASPACKSTMT Data Dictionary View 8-5

8.2.8 DBA_DRDAASTRACE Data Dictionary View 8-6

8.2.9 USER_DRDAASPACKAGE Data Dictionary View 8-6

8.2.10 USER_DRDAASPACKAUTH Data Dictionary View 8-7

8.2.11 USER_DRDAASPACKSIDE Data Dictionary View 8-7

8.2.12 USER_DRDAASPACKSTMT Data Dictionary View 8-7

8.2.13 USER_DRDAASTRACE Data Dictionary View 8-8

9 Error Codes Support in Oracle Database Provider for DRDA

9.1 Oracle Error Codes 9-1

9.1.1 Error Code Mapping, from Oracle to DRDA 9-1

10

Command-line Utility for Oracle Database Provider for DRDA

10.1 Command-line Utility 10-1

10.1.1 START 10-1

10.1.2 STOP 10-1

10.1.3 STATUS 10-1

10.1.4 TRACE 10-1

10.1.5 PAUSE 10-2

10.1.6 RESUME 10-2

10.1.7 RELOAD 10-2

10.1.8 EXIT 10-2

11

Security and Storage Considerations for Oracle Database Provider for
DRDA

11.1 Overview of Security and Storage for Oracle Database Provider for DRDA 11-1

11.2 Authentication and Encryption in Oracle Database Provider for DRDA 11-1

11.2.1 Authentication Services 11-1

11.2.2 Encryption Services 11-2

11.3 Database Roles in Oracle Database Provider for DRDA 11-2

11.3.1 DRDAAS_ADMIN_ROLE 11-2

11.3.2 DRDAAS_USER_ROLE 11-2

11.4 Storage in Oracle Database Provider for DRDA 11-3

11.4.1 SYSIBM Tablespace 11-3

11.4.2 SYSIBM User 11-3

viii

12

Restrictions on Using Oracle Database Provider for DRDA

12.1 Resynch Manager 12-1

12.2 Cursor HOLD Attribute Semantics 12-1

12.3 DB2 Password Blank Padding 12-1

12.4 Restrictions on Datatypes 12-1

12.4.1 DATE Datatype 12-1

12.4.2 Oracle Object-Relational Datatypes 12-2

12.4.3 TIMESTAMP Datatype 12-2

12.4.4 TIMESTAMP WITH TIMEZONE Datatype 12-2

12.4.5 XML Datatype 12-2

12.4.6 SYS.XMLType Datatype 12-2

12.5 Extended Length Mode 12-2

12.6 DB2 for z/OS Log usage 12-3

12.7 Other Restrictions 12-3

13

PL/SQL Packages Used by Oracle Database Provider for DRDA

13.1 DBMS_DRDAAS_ADMIN Package 13-1

13.1.1 DBMS_DRDAAS_ADMIN Privilege Constants 13-1

13.1.2 GRANT_PRIVILEGE 13-2

13.1.3 REVOKE_PRIVILEGE 13-2

13.1.4 DROP_PACKAGE 13-3

13.1.5 DROP_PACKAGE_VN 13-3

13.1.6 DROP_PACKAGE_CT 13-4

13.1.7 SET_PROFILE 13-4

13.1.8 SET_LOCALDATE_FORMAT 13-5

13.1.9 SET_LOCALTIME_FORMAT 13-5

13.1.10 SET_TYPEMAP 13-6

13.2 DBMS_DRDAAS Package 13-6

13.2.1 DBMS_DRDAAS Privilege Constants 13-6

13.2.2 BIND_PACKAGE 13-7

13.2.3 BIND_STATEMENT 13-8

13.2.4 END_BIND 13-9

13.2.5 GRANT_PRIVILEGE 13-10

13.2.6 REVOKE_PRIVILEGE 13-10

13.2.7 DROP_PACKAGE 13-11

14

SQL Statement Support in Oracle Database Provider for DRDA

14.1 Overview of SQL Statement Support 14-1

14.2 SQL Clause Restrictions 14-1

ix

14.2.1 Internally Processed SQL Statements 14-2

14.2.2 Removed SQL Clauses that Retain Semantic Effect 14-2

14.2.3 Ignored SQL Clauses 14-3

14.2.4 Translated SQL Clauses 14-3

14.3 Support for Special Registers 14-3

14.3.1 Retrieving Values from Special Registers 14-4

14.3.2 Setting Special Registers 14-4

14.3.3 Special Registers Supported by Oracle Database Provider for DRDA 14-4

14.3.3.1 APPLICATION ENCODING SCHEME 14-4

14.3.3.2 CLIENT_ACCTNG 14-5

14.3.3.3 CLIENT_APPLNAME 14-5

14.3.3.4 CLIENT_PROGRAMID 14-5

14.3.3.5 CLIENT_USERID 14-5

14.3.3.6 CLIENT_WRKSTNNAME 14-6

14.3.3.7 DATE 14-6

14.3.3.8 DBPARTITIONNUM 14-6

14.3.3.9 DEBUG MODE 14-7

14.3.3.10 DECFLOAT ROUNDING MODE 14-7

14.3.3.11 DEFAULT TRANSFORM GROUP 14-7

14.3.3.12 DEGREE 14-7

14.3.3.13 EXPLAIN MODE 14-8

14.3.3.14 EXPLAIN SNAPSHOT 14-8

14.3.3.15 FEDERATED ASYNCHRONY 14-8

14.3.3.16 IMPLICIT XMLPARSE OPTION 14-9

14.3.3.17 ISOLATION 14-9

14.3.3.18 LOCK TIMEOUT 14-9

14.3.3.19 LOCALE LC_TYPE 14-9

14.3.3.20 MAINTAINED TABLE TYPES FOR OPTIMIZATION 14-10

14.3.3.21 MEMBER 14-10

14.3.3.22 OPTIMIZATION HINT 14-10

14.3.3.23 PACKAGE PATH 14-11

14.3.3.24 PACKAGESET 14-11

14.3.3.25 PATH 14-11

14.3.3.26 PRECISION 14-11

14.3.3.27 QUERY ACCELERATION 14-12

14.3.3.28 QUERY OPTIMIZATION 14-12

14.3.3.29 REFRESH AGE 14-12

14.3.3.30 ROUTINE VERSION 14-13

14.3.3.31 RULES 14-13

14.3.3.32 SCHEMA 14-13

14.3.3.33 SERVER 14-13

x

14.3.3.34 SQL_CCFLAGS 14-14

14.3.3.35 SQLID 14-14

14.3.3.36 TIMESTAMP 14-14

14.3.3.37 USER 14-15

14.3.3.38 SESSION_USER 14-15

14.3.3.39 SYSTEM_USER 14-15

14.3.3.40 ENCRYPTION PASSWORD 14-15

A Scripts for Creating and Maintaining Oracle Database Provider for
DRDA

A.1 catdrdaas.sql A-1

A.2 catnodrdaas.sql A-1

A.3 drdapkg_db2.sql A-2

A.4 drdasqtt_translator_setup.sql A-6

A.5 drdasqt_set_profile_dd.sql A-9

B Package Binding Options in Oracle Database Provider for DRDA

Glossary

Index

xi

List of Tables

7-1 Converting Oracle NUMBER Variants to DRDA Datatypes 7-21

7-2 Converting Oracle FLOAT Variants to DRDA Datatypes 7-21

7-3 Oracle NUMBER TYPEMAP Datatype Names 7-23

8-1 ALL_DRDAASPACKAGE data dictionary view description 8-2

8-2 ALL_DRDAASPACKAUTH data dictionary view description 8-2

8-3 ALL_DRDAASPACKSIDE data dictionary view description 8-3

8-4 DBA_DRDAASPACKAGE data dictionary view description 8-3

8-5 DBA_DRDAASPACKAUTH data dictionary view description 8-5

8-6 DBA_DRDAASPACKSIDE data dictionary view description 8-5

8-7 DBA_DRDAASPACKSTMT data dictionary view description 8-5

8-8 DBA_DRDAASPATRACE data dictionary view description 8-6

9-1 Error Code Mappings, from Oracle to DRDA 9-1

xii

Preface

Oracle Database Provider for DRDA User's Guide s describes how to migrate to Oracle
Database while keeping DB2-based applications largely unchanged.

Audience
This document is intended for anyone who plans to migrate DB2- based applications to
Oracle Database. Users should have knowledge of Oracle Database concepts and
administration.

Related Documents
For more information, see the following documents in the Oracle Database documentation
set:

• Oracle® Database Concepts

• Oracle® Database Administrator’s Guide

• Oracle® Database Migration Guide

• Oracle® Database SQL Language Reference

• Oracle® Database Reference

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

xiii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Convention Meaning

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Preface

xiv

1
Introduction to Oracle Database Provider for
DRDA

Consider some of the basic concepts of Oracle Database Provider for DRDA technology.

1.1 What is Oracle Database Provider for DRDA?
The Oracle Database Provider for DRDA is a network front-end that enables client programs
to connect to Oracle Database using the Distributed Relational Database Architecture
(DRDA) protocol.

Oracle Database Provider for DRDA implements a large subset of the full DRDA Version 4
specification, and several aspects of other DRDA server products (such as IBM's DB2) for
compatibility. It is a database-independent protocol, and it provides only the functionality
available from Oracle Database. Oracle Database Provider for DRDA product enables
existing DB2 application customers to leverage their current investment in application
technology while migrating from DB2 server.

Client programs or systems that use the DRDA protocol are called Application Requesters
(ARs). Server programs or systems that provide DRDA protocol services, such as Oracle
Database Provider for DRDA, are called Application Servers (AS).

Applications that are written to use the DRDA protocol, either as direct ARs or through an
intermediate interface (such as embedded SQL), generally do not need to change their
existing code to connect to Oracle Database through Oracle Database Provider for DRDA.
Only minimal application configuration changes, such as retargeting, are necessary to
successfully change the client application environment to use Oracle Database.

1.2 Release Information
Oracle Database Provider for DRDA is a network front-end that enables client programs to
connect to Oracle Database using the Distributed Relational Database Architecture (DRDA)
protocol. DRDA is a database-independent protocol. It provides only the functionality
available from Oracle Database. Oracle Database Provider for DRDA enables existing DB2
application customers to leverage their current investment in application technology while
migrating from DB2 server.

1.3 DB2 Client Applications
There are two general classes of DB2 applications:

• Remote DB2 Applications

• Native DB2 Applications

1-1

1.3.1 Remote DB2 Applications
Remote applications use the DRDA data protocol to communicate with a target server
database. The protocol's architecture is an example of a client/server model that
includes the following, as illustrated in Figure 1-1:

• Client component, DRDA Application Requester (AR)

• Network substrate, such as a TCP/IP network or an SNA/APPC network

• Server component, Application Server (AS)

Figure 1-1 DRDA Connectivity Model

AR

Client Machine

Database

Database

Database

AS

Server Machine

DRDA

TCP/IP

Remote
Application

The application uses the AR to communicate with an AS, which in turn communicates
with the database. In this configuration, applications are indirectly aware of the
network because the AR connects to the network. The application does not require
direct knowledge of the network connectivity.

Typically, DRDA AR implementations provide a directly callable API that may be coded
by an application writer, such as ODBC. This API may also be invoked as part of a
language pre-processor that translates source code with embedded SQL statements
into equivalent embedded API calls. This is similar in concept to Oracle's OCI API and
Oracle's Pro*C preprocessor products. In both cases, the application is agnostic with
respect to the actual database connectivity; only specific API calls attach the
application to the database.

Within a network, client/server architecture has cross-platform interoperability: the
client and the server may run on any supported computer platform. For example, IBM
makes DB2 Database server product available on AS/400, z/OS, VM, VSE, Linux,
several Unix platforms, as well as Microsoft Windows. IBM also makes clients, such as
IBM's DB2 Connect product, available on several platforms. This arrangement enables
the client to communicate with several servers and to be easily redirected to a different
server, which may be on the same or different remote host.

Examples of remote applications include:

• ODBC-based applications

• Java/JDBC-based applications

• DB2 Database, used for remote database-to-database connections

• DB2 Connect, used to redirect native applications

• Custom applications that use one of several available AR implementations

ODBC- and JDBC-enabled applications may be retargeted to use Oracle Database
Provider for DRDA with little or no change to the application itself.

Chapter 1
DB2 Client Applications

1-2

IBM's DB2 products have native support for DRDA, where DB2 may be a requester, a server,
or both. This book only discusses the scenarios where DB2 is a requester to the Oracle
Server.

Related Topics

• Oracle Call Interface Programmer's Guide

• Pro*C/C++ Programmer's Guide

1.3.2 Native DB2 Applications
Native Applications are supported by Oracle Database Provider for DRDA, but they require
an existing DB2 database server to redirect the network. This is because native DB2
applications are more tightly intertwined with the DB2 server. This class of application
communicates directly with a specific DB2 server using a local and proprietary API. While
such applications cannot directly connect to other databases, they can use a remote node
connectivity mechanism to connect indirectly to a remote database. This is illustrated in
Figure 1-2.

Figure 1-2 Native Application Remote Connectivity Model

AR

RPCNative
Application

Client Machine

Oracle
DatabaseAS

Server Machine

DRDA

TCP/IP

DB2 Server

This is not an ideal approach, because using a full DB2 server merely to provide remote
access to native applications is very cost-prohibitive. This is both because of a licensing
model's "per processor" structure, and the disk and memory footprint.

A more attractive alternative to a full multiprocessor DB2 server is to use a local application,
such as DB2 Connect, to provide remote connectivity. In such cases, the applications' access
can be converted to network connectivity through DRDA, as illustrated in Figure 1-3.

Figure 1-3 DB2 Connect Replacement of DB2 Server Connectivity Model

AR

RPCNative
Application

Client Machine

Oracle
DatabaseAS

Server Machine

DRDA

TCP/IP

DB2 Connect

In some cases, it is not possible to replace the DB2 database server with an alternative
native application enabler. Such applications include the following:

• CICS DB2-connected applications on z/OS

• DB2/400 native applications

Chapter 1
DB2 Client Applications

1-3

• DB2 for z/OS native applications

• DB2 for Linux, Unix, and Windows native applications

In these situations, the application can connect, by proxy, through the local DB2
database server. While this is not an ideal approach, it reduces the investment in DB2
server products. If an application does not use the DB2 database product, the number
of DB2 servers may be reduced to the DB2 instances that are necessary as
application proxies.

1.4 Usage Scenarios for Oracle Database Provider for
DRDA

Sections Remote DB2 Applications and Native DB2 Applications describe some
possible usage scenarios for an Oracle Database Provider for DRDA. Obviously, both
remote and native applications may be retargeted to use Oracle Database through
Oracle Database Provider for DRDA.

Because Oracle Database Provider for DRDA is a network solution, the network
infrastructure should have sufficient excess capacity to accommodate increased load
when retargeting native applications. In cases of remote applications the data flow
between the client and the server does not change significantly.

While most scenarios revolve around a standard AR, usually supplied by IBM, there is
a case where the Application Server replaces Oracle Access Manager for AS/400,
which has been discontinued. Access Manager is a client-side product that enables
native DB2/400 applications to connect to Oracle Database as if it were a remote DB2
database. The Access Manager runs on the AS/400 as a DB2/400 API plug-in and
uses an OCI method to connect to Oracle Database, as illustrated in Figure 1-4.

Figure 1-4 Access Manager Plug-in Architecture Connectivity Model

“AR”

RPCNative
Application

AS / 400

Oracle
Database

Oracle
Listener

Server Machine

SQL*Net

TCP/IP

Access
Manager OCI

DB2 /
400

“plug-in”

DB2/400's plug-in interface API behaves like DRDA, and appears to the system as an
application requester that uses OCI and SQL*Net internally to connect to an Oracle
Database. Customers who must connect a native application from the AS/400 to an
Oracle Database will find Oracle Database Provider for DRDA a more cost-effective
solution. This approach is illustrated in Figure 1-5.

Figure 1-5 DB2/400 Native DRDA Usage Connectivity Model

AR

RPCNative
Application

AS / 400

Oracle
Database

Oracle
AS

Server Machine

DRDA

TCP/IP

DB2 / 400

Chapter 1
Usage Scenarios for Oracle Database Provider for DRDA

1-4

The example of the Access Manager is just one such scenario where a native application can
be retargeted to an Oracle Database instance through the Application Server.

All of the scenarios discussed here can use Oracle Database Provider for DRDA to connect
to Oracle Database.

Related Topics

• Remote DB2 Applications

Related Topics

• Native DB2 Applications

Chapter 1
Usage Scenarios for Oracle Database Provider for DRDA

1-5

2
Architecture of Oracle Database Provider for
DRDA

Consider the architecture of Oracle Database Provider for DRDA.

For more information about DRDA in DB2, see DB2 Version 9.1 for z/OS Information Center
at http://www.ibm.com. More specifically, see http://www.redbooks.ibm.com/redbooks/
pdfs/sg246952.pdf.

2.1 Protocol Considerations
DRDA is a data protocol with some similarities to Oracle's SQL*Net data protocol. While
DRDA is designed to move relational data between a client and a server, it lacks the more
robust management and routing controls of SQL*Net. The primary difference between DRDA
and SQL*Net is the language of the protocol itself. DRDA and SQL*Net are not compatible,
so it is not possible to use a SQL*Net client to connect to a DRDA server, or vice versa.

The terminology used with DRDA is also similar to SQL*Net, and general concepts translate
to conventional Oracle definitions, as demonstrated by the following examples:

• An application requester (AR) is an interface that client programs use to create and
send SQL-based requests to an application server.

• An application server (AS) is a server and database-side program that accepts such
requests on behalf of the client, executes database operations, and returns resulting data
back to the client.

2.2 Two-Phase Commit and Transaction Recovery
DRDA and DB2 implement two command sets that enable commit and rollback of
transactions. They ensure that data integrity is maintained during updates of a transaction,
and that these updates may be recovered if either the connection or applications fail at the
time that the transaction is being committed. DRDA supports commands that implement both
SingleSite and TwoPhase commit protocols. At a minimum, the AS must support SingleSite
commitment.

• Single Site commit protocol consists of a simple operation that has no ability to
coordinate between nodes that may be involved in a distributed transaction. It is the basic
mechanism for committing data, and it is used by most common applications.

• Two Phase commit protocol enables the coordination of multiple transactions, either on
the same node or on separately networked nodes.

2.3 Autonomy of Service
The Application Server is external to the Oracle Database server. Because of this, the
application has a wide range of location options.

2-1

http://www.ibm.com
http://www.redbooks.ibm.com/redbooks/pdfs/sg246952.pdf
http://www.redbooks.ibm.com/redbooks/pdfs/sg246952.pdf

In a typical configuration, the AS runs on the same machine as the Oracle Database,
as described in the DRDA Connectivity Model, under section Remote DB2
Applications. Because the AS is not tightly integrated into the Oracle Database, it may
be installed into its own Oracle Home, or on a machine separate from either the client
or the database, as illustrated in Figure 2-1. This middle tier configuration enables
the separation of service resources. It also allows for better scaling of service because
separate machine resources can be dedicated to both AS and Database.

Figure 2-1 AS Middle Tier Configuration

AR

Client Machine

Oracle
AS

Middle Tier

Oracle
Database

Server Machine

DRDA

TCP/IP

SQL*NetRemote
Application

Additionally, the separation of the AS from the Client and Server tiers provides an extra
layer of security and reliability. If the AS crashes, the Oracle Database instance is not
impacted. Database integrity is maintained, and Oracle Database recovers the state of
the transaction.

Related Topics

• Remote DB2 Applications

2.4 Packages
The resources associated with DRDA application are known as packages. More
specifically, the application requester utilizes a package as a reference to what the
application does: the package is where the statements are stored. The application
refers to the statement through a section number. There are two general classes of
application statements: static and dynamic.

• Static statements contain hard-coded SQL, statements where the SQL text does
not change during the run of the application. They are very quick to execute, and
are often optimized prior to run-time to achieve high performance. Because it is
predefined, static SQL has a shorter execution time at first invocation.

• Dynamic statements are primarily empty placeholders, and are sometimes called
generic cursors. They have no SQL text before run-time, and the application
constructs the actual SQL statements it needs during operation and optimizes
them at runtime. After the first invocation, processed dynamic SQL statements are
typically cached, so subsequent execution time of the same statement is
comparable to static SQL statements of similar complexity.

The packages are constructed through proprietary tools. For example, in a DB2
application environment, a developer often writes an application that contains
embedded SQL statements. The application source is processed by the SQL
PreCompiler, which is analogous to Oracle's Pro*C precompiler. The output is typically
post-processed into a source module, along with an on-disk resource form of the
statements used in the source program. In DB2 terminology, this creates a Database
Request Module, or DBRM. Most implementations that create this file store it
externally in a proprietary format.

Chapter 2
Packages

2-2

The contents of the DBRM must be either loaded into the remote database or otherwise
made available to the AS at the time of execution. However, loading data that is in proprietary
format has many challenges. DRDA addresses this by providing a set of Command Requests
to remotely upload the resource definition into a target AS. Most AR implementations provide
an option or tool to upload the resource, either before or during the application's SQL
session. This process is called binding a package.

After the resource definition (DBRM) is bound as a package to the remote database, the AS
may load it in advance for better performance.

2.5 SQL Dialect
While Oracle is partially ANSI SQL compliant, as are most SQL-based database systems
today, there are some exceptions. Database vendors implemented the ANSI SQL standard
differently; this resulted in SQL 'dialects' that present some challenges during statement
execution. Because the original target database used with DRDA is DB2, the applications
that are discussed here use the DB2-specific dialect of SQL.

Much of Data Manipulation Language (DML) and some Data Definition Language (DDL) has
been standardized in ANSI SQL for commonly used objects such as tables, views, indexes,
simple procedures, or function definitions. However, each database vendor will still have its
own set of product-specific extensions to both DDL and DML. The DRDA protocol treats SQL
statements as database-specific entities that the database must handle; it indicates to Oracle
Database that its SQL is in a DB2 dialect, and that it must have a translation service to
handle it. This translation is supplied by the SQL Translation Framework feature, fully
described in Oracle Database SQL Translation and Migration Guide.

Chapter 2
SQL Dialect

2-3

3
Installation and Configuration of Oracle
Database Provider for DRDA

Consider installation, configuration, and administration of Oracle Database Provider for
DRDA.

3.1 About Installing Oracle Database Provider for DRDA
Oracle Database Provider for DRDA is bundled with the Oracle Database software.
Installation involves starting the Oracle Universal Installer and entering the Oracle home path.

Note that the following procedure creates the drdaas.ora configuration file in the
directory $ORACLE_HOME/drdaas/admin/.

Related Topics

• Configuration File: drdaas.ora

3.1.1 Installing Oracle Database Provider for DRDA
1. Start Oracle Universal Installer.

2. Enter the path of an existing ORACLE_HOME, or a new path for a stand-alone installation.

3. [Optional] Enter the ORACLE_HOME name.

4. Select Software Only Install.

5. Select Finish.

6. At the command prompt, create a diagnostic directory:

% mkdir -p $ORACLE_HOME/log/diag/dps

3.2 Configuring Oracle Database Provider for DRDA
To configure Oracle Database Provider for DRDA, you must update the drdaas.ora
configuration file with any necessary information.

Additionally, you must install the objects that depend on Oracle Database Provider for DRDA
product in all Oracle Database instances that use Oracle Database Provider for DRDA.

3.2.1 Updating the drdaas.ora Configuration File
Create the drdaas.ora configuration file and add initial instance and configuration
parameters.

In more advanced scenarios, it may be necessary to specify more than one DATA_PORT
parameter or configure more than one RDB_MAP entry. Still more complex installations may
require multiple Oracle Database Provider for DRDA instances.

3-1

For a list of parameters and their options, refer to the section Configuration
Parameters.

Related Topics

• Configuration Parameters

3.2.1.1 DATA_PORT Considerations
Additional DATA_PORT entries may be specified with different host name or IP
addresses, and unallocated network port numbers. This is called a Multiplexed
Instance configuration.

3.2.1.2 RDB_MAP Considerations
Additional RDB_MAP entries may be specified to add other map entries for converting
between third-party relational databases and Oracle.

Note:

For some DRDA clients, such as the IBM DB2 Database for z/OS, the user
must configure only one RDB_MAP entry for each Oracle Database Provider for
DRDA instance. This is called a Dedicated Instance configuration.

3.2.1.3 Oracle Database Provider for DRDA Instance Considerations
It may be necessary to define more than one Oracle Database Provider for DRDA
Instance to accommodate an environment that contains both types of DRDA clients.
Therefore, Oracle Database Provider for DRDA product supports the definition of
multiple instance configurations in the same drdaas.ora configuration file.

3.2.2 Installing Database Objects
There are two sets of database objects that must be installed: Global Objects and Per-
User Objects.

3.2.2.1 About Global Objects
Each instance of Oracle Database used in an Oracle Database Provider for DRDA
configuration must install Oracle Database Provider for DRDA specific objects. This
involves the following procedures:

• Creating a SYSIBM tablespace

• Installing Oracle Database Provider for DRDA catalogs

• Installing DB2 SQL translator

• Designate Oracle Database Provider for DRDA administrative role

Related Topics

• Security and Storage Considerations for Oracle Database Provider for DRDA

Chapter 3
Configuring Oracle Database Provider for DRDA

3-2

3.2.2.2 Creating a SYSIBM tablespace
1. Connect to the database; this example uses SYSDBA privileges, but they are not

necessary.

> connect SYS as SYSDBA

2. Create the tablespace SYSIBM.

> create tablespace SYSIBM datafile 'sysibm01.dbf' size 70M reuse extent
management local segment space management auto online;

This creates tablespace SYSIBM in the directory specified by the parameter
DB_CREATE_FILE_DEST.

Related Topics

• SYSIBM Tablespace

3.2.2.3 Installing Oracle Database Provider for DRDA Catalogs

1. Change directory to $ORACLE_HOME/rdbms/admin

$ cd $ORACLE_HOME/rdbms/admin

2. Connect to the database with SYSDBA privileges.

> connect SYS as SYSDBA

3. Invoke the following SQL script:

> @catdrdaas.sql

4. If using Oracle Database Release 12c, invoke the following SQL script:

> @prvtdpsadzoscat.plb

If using Oracle Database Release 11.2, invoke the following SQL script:

> @prvtdpsadzoscat11.plb

Related Topics

• catdrdaas.sql

3.2.2.4 Installing DB2 SQL translator
The DB2 SQL Translator is available starting from Oracle Database 12c.

Note:

The SQL Translator is an optional feature that you can use, when the SQL used
within the application consists of a lot of DB2 specific syntax.

1. Change directory to $ORACLE_HOME/drdaas/admin

$ cd $ORACLE_HOME/drdaas/admin

2. Connect to the database with SYSDBA privileges.

Chapter 3
Configuring Oracle Database Provider for DRDA

3-3

> connect SYS as SYSDBA

3. Invoke the following SQL script, and answer its prompts:

> @drdasqtt_translator_setup.sql

The script drdasqtt_translator_setup.sql is demonstrated in the section Code
for SQL Translation Interface Package and a Translation Profile.

Related Topics

• Creating a SQL Translation Interface Package and Translation Profile

3.2.2.5 Designating Oracle Database Provider for DRDA Administrative Role
1. Designate one or more user IDs to be an Oracle Database Provider for DRDA

administrator. This role may set the access authority for DRDA packages and
associated DRDA package attributes. Oracle user SYSTEM may be used, but the
privilege may be granted to any user who performs the functions of DRDA
administrator.

2. Grant initial DRDA package binding authority. Invoke the following SQL script and
answer the prompts:

> @drdapkg_db2.sql

SQL> Prompt Enter the OracleID under which the initial package BINDs will be
made
SQL> Use quotes (') if needed.
SQL> Accept OracleID
DRDAUSR

SQL> Enter default collection ID for package binding (usually NULLID)
SQL> Use quotes (') if needed.
SQL> Accept DefaultCollection
NULLID

Related Topics

• DBMS_DRDAAS_ADMIN Package

3.2.3 SQL Translation Profile
To facilitate correct interpretation of DRDA-based application SQL from it's native DB2
dialect to Oracle, the user must create a SQL Translation Profile.

SQL Translation Profiles are managed on a per-user basis. In contrast, DRDA
packages are managed on the application basis. As a result, only one SQL translation
profile name may be associated with a specific DRDA package. The same SQL
Translation Profile may be also associated with many packages; for consistency, the
same SQL Translation Profile should be associated with each defined package.

To create an additional translation profile, DRDA users must request a profile name
from the DRDA administrator and then invoke the drdasqtt_translator_setup.sql
script, in $ORACLE_HOME/drdaas/admin/ directory. The section ‘Create a SQL
Translation Interface Package and Translation Profile demonstrates how to create a
SQL Translation Profile for profile name DB2ZOS; this code creates the template of a
translation profile.

Chapter 3
Configuring Oracle Database Provider for DRDA

3-4

Note:

SQL Translation Profile is an optional feature, and can be used only when the SQL
Translation Feature is configured.

Related Topics

• Creating a SQL Translation Interface Package and Translation Profile

3.2.3.1 Prerequisites for Creating a SQL Translation Profile
This feature is available to users of Oracle Database 12c or higher.

The user must have DRDAAS_USER_ROLE, as described in the section Authorizing Oracle
Database Provider for DRDA.

A DB2 SQL Translator must be loaded into the database. The user may create a translation
profile using this translator.

3.2.3.2 Creating a SQL Translation Interface Package and Translation Profile
Example 3-1 creates a SQL Translator Interface Package SYSIBM.DBTooIntPkg, and a SQL
Translation Profile TRANS_ADMIN.MyDBTooTransProfile. It assumes that the third-party SQL
translator is in JAVA, and that it appears entirely within an object
ThirdPartyDB2Translator.class in the rdbms/drdaas/jlib directory.

Additional translations may be added, changed, or removed as needed. Please refer to the
Oracle® Database SQL Translation and Migration Guide for details.

Example 3-1 Code for SQL Translation Interface Package and a Translation Profile

The following two lines describe the signatures of the two translator methods within the third-
party object:

ThirdPartyTranslator.translateSQL(oracle.sql.CLOB,oracle.sql.CLOB[])
ThirdPartyTranslator.translateError(int,int[],java.lang.String[])

These signatures determine the method Oracle calls to translate both SQL text and Oracle
Error codes. The method translateSQL()has two arguments: a CLOB for the original SQL
text, and a CLOB for the CLOB output from the SQL translator. The second method may be
ignored.

connect / as sysdba
@$ORACLE_HOME/drdaas/admin/drdasqtt_translator_setup.sql

Enter schema in which the SQL Translator Interface Package will be created as well
as into which the third-party SQL translator will be loaded (usually SYSIBM).
SQL Translator Interface Package Schema:SYSIBM

Enter unqualified name of the SQL Translator Interface Package
SQL Translator Interface Package Name:DBTooIntPkg

Enter schema in which the Translation Profile will be created:
Translation Profile Schema:TRANS_ADMIN

Enter the unqualified name of the translation profile:
Translation Profile Name:MyDBTooTransProfile

Chapter 3
Configuring Oracle Database Provider for DRDA

3-5

Enter the "language" type of the translator: C, java, etc
Translator Language:JAVA

Enter the path names of the third-party SQL Translator objects;
(All objects must be located under the "rdbms/" directory,
for example: "rdbms/drdaas/jlib/objecta.jar").

Enter all path qualified objects, one per prompt, up to 10.

Enter "" for all remaining object prompts.
SQL Translator object#1: rdbms/drdaas/jlib/ThirdPartyDB2Translator.class
SQL Translator object#2: ""
...
SQL Translator object#10: ""

Enter the signature for the entry for 'translateSQL' in one of the
previously entered SQL Translator objects:
Entry for

translateSQL:ThirdPartyTranslator.translateSQL(oracle.sql.CLOB,oracle.sql.CLOB[])

Enter the signature for the entry for 'translateError' in one of the
previously entered SQL Translator objects callout for
 translateError:ThirdPartyTranslator.translateError(int,int[],java.lang.String[])

3.2.4 Configuration File: drdaas.ora
The file drdaas.ora defines the instances of Oracle Database Provider for DRDA. This
file is composed of initialization parameters that define the instances of the Application
Server.

The file drdaas.ora may be customized. However, it may also be created at
installation time from questions posed by the Installer and from user input.

The drdaas.ora configuration file must be located in the Oracle Home, under the
product administration directory.

The default location is: $ORACLE_HOME/drdaas/admin.

Note that parameters that are qualified by the instance name apply only to that specific
instance. Parameters that are not qualified by an instance name apply to all instances
specified in the file.

Example 3-2 Sample configuration file, drdaas.ora

Example pre-configured instance named "drdaas"
defines a single port and an rdb map that uses
the local database instance accessed through
the ORACLE_SID environmental variable.
drdaas.DATA_PORT = 10.0.0.1:1446
drdaas.RDB_MAP = RDB(DB2DS4M)->ORACLE_SID
#
Example instance using a single port and a single rdb map
drdasingle.DATA_PORT = 10.0.0.1:1546
drdasingle.RDB_MAP = RDB(DB2DSN1)->TNS(ora101)
#
Example instance using multiple rdb mappings
drdamulti.DATA_PORT = 10.0.0.1:2446
drdamulti.RDB_MAP = RDB(DB2DSN1)->TNS(ora101)

Chapter 3
Configuring Oracle Database Provider for DRDA

3-6

drdamulti.RDB_MAP = RDB(DB2DSN2)->TNS(ora102)
drdamulti.RDB_MAP = RDB(DB2DSN3)->TNS(ora103)
#
global section affects all instances unless overridden
PROTOPROC_TRACE="ALL ERROR"

3.3 Authorizing Oracle Database Provider for DRDA
Oracle users must have the appropriate Oracle Database Provider for DRDA role in order to
access Oracle Database Provider for DRDA catalogs and specific DRDA packages.

Related Topics

• About Global Objects

3.3.1 Administrator Role
Users who must perform administrative functions must have the DRDAAS_ADMIN_ROLE role.
This enables privilege grants on a specific DRDA package, and assigning package attributes
(SQL translation profile name).

For installations that do not have the default role ALL, have several default roles for users,
such as CONNECT or RESOURCE, and add the add DRDAAS_ADMIN_ROLE role to the default list.

The DRDAAS_ADMIN_ROLE role is not meant for users who must use the DRDA packages. They
should have the DRDAAS_USER_ROLE assignment, instead.

Administration is mainly concerned with granting and revoking of privilege to users, setting
attributes on packages, and dropping packages.

Users who create packages, or are designated as owners of a package, have implicit
authority over that package and may grant access to others. For example, the package
owner may grant RUN privileges to any number of users. An owner may also set package
attributes and drop the package.

However, in order to bind a package initially, a user must have BIND privilege, either for any
package in a collection, or specifically for that package. Only users who have the
DRDAAS_ADMIN_ROLE role may grant authorization to users for packages that are not already
bound, or are not created or owned by that user. For information on how to grant access to a
package and how to set package attributes, refer DRDA Package Authorization.

Related Topics

• Granting DRDAAS_ADMIN_ROLE

• Adding DRDAA_ADMIN_ROLE

• Adding DRDAAS_USER_ROLE

• DRDA Package Authorization

3.3.1.1 Granting DRDAAS_ADMIN_ROLE
Example 3-3 Granting the DRDAAS_ADMIN_ROLE

connect sys as sysdba
grant DRDAAS_ADMIN_ROLE to DRDAADMIN;

Chapter 3
Authorizing Oracle Database Provider for DRDA

3-7

3.3.1.2 Adding DRDAA_ADMIN_ROLE
Example 3-4 Adding DRDAAS_ADMIN_ROLE to Default Values

alter user DRDAADMIN default role CONNECT, DRDAAS_ADMIN_ROLE;

3.3.1.3 Dropping ORACLE.MYPACKAGE by Administrator
This function should be performed by a user with DRDA administrator role.

Example 3-5 Dropping package ORACLE.MYPACKAGE, as Administrator

connect DRDAADM/password
execute DBMS_DRDAAS_ADMIN.DROP_PACKAGE('ORACLE','MYPACKAGE);
commit;

3.3.1.4 Dropping ORACLE.MYPACKAGE by User
This function should be performed by a user with DRDA user role. This operation fails
if user DRDAUSR2 does not own package ORACLE.MYPACKAGE, if the user is not the
creator of this package, or if the user has no DROP privilege for this package.

Example 3-6 Dropping package ORACLE.MYPACKAGE, as User

connect DRDAUSR2/password
execute DBMS_DRDAAS.DROP_PACKAGE('ORACLE','MYPACKAGE);
commit;

3.3.1.5 Maintaining DRDA Packages
Another primary responsibility of an administrator is to clean old or unused packages
from the system. A list of all packages may be found by querying table
ALL_DRDAASPACKAGE:

SELECT * from ALL_DRDAASPACKAGE;

3.3.2 DRDA Package Authorization
The DRDA administrator must perform these functions before supplying the user with
the DRDA package name and (optionally) the SQL translation profile name.

Only a DRDA administrator may grant access to specific DRDA packages.

Refer the section on Granting and Revoking a User’s Package Privileges to
understand how to grant the BIND, DROP and EXECUTE privileges to user DRDAUSRx for
package ORACLE.MYPACKAGE.

The DRDA Administrator may also designate a SQL translation profile name to
associate with the DRDA package.

Refer the section on Setting and Deleting Translation Profile Name for a DRDA
Package to understand how to set the profile name to DB2ZOS.

Related Topics

• Managing a User’s Package Privileges

Chapter 3
Authorizing Oracle Database Provider for DRDA

3-8

3.3.2.1 Managing a User’s Package Privileges
Example 3-7 Granting and Revoking a User's Package Privileges

connect DRDAADM/password

Rem Grant BIND on any package in collection ORACLE to DRDAUSR
execute DBMS_DRDAAS_ADMIN.GRANT_PRIVILEGE(
 DBMS_DRDAAS_ADMIN.BIND_PRIVILEGE, 'ORACLE', '*', 'DRDAUSR');

Rem Grant BIND on package ORACLE.MYPACKAGE to user DRDAUSR2
execute DBMS_DRDAAS_ADMIN.GRANT_PRIVILEGE(
 DBMS_DRDAAS_ADMIN.BIND_PRIVILEGE, 'ORACLE', 'MYPACKAGE', 'DRDAUSR2');

Rem Grant EXECUTE on package ORACLE.MYPACKAGE to PUBLIC
execute DBMS_DRDAAS_ADMIN.GRANT_PRIVILEGE(
 DBMS_DRDAAS_ADMIN.EXECUTE_PRIVILEGE, 'ORACLE', 'MYPACKAGE', 'PUBLIC');

Rem Grant SET on package ORACLE.MYPACKAGE to user DRDAUSR3
execute DBMS_DRDAAS_ADMIN.GRANT_PRIVILEGE(
 DBMS_DRDAAS_ADMIN.SET_PRIVILEGE, 'ORACLE', 'MYPACKAGE', 'DRDAUSR3');

Rem Grant DROP on any package in collection ORACLE to user DRDAUSR3
execute DBMS_DRDAAS_ADMIN.GRANT_PRIVILEGE(
 DBMS_DRDAAS_ADMIN.DROP_PRIVILEGE, 'ORACLE', '*', 'DRDAUSR3');

Rem Grant ALL on any package in collection NULLID to user DRDAUSR3
execute DBMS_DRDAAS_ADMIN.GRANT_PRIVILEGE(
 DBMS_DRDAAS_ADMIN.ALL_PRIVILEGE, 'NULLID', '*', 'DRDAUSR3');

Rem Revoke BIND on package ORACLE.NOTYOURPKG from user DRDAUSR3
execute DBMS_DRDAAS_ADMIN.REVOKE_PRIVILEGE(
 DBMS_DRDAAS_ADMIN.BIND_PRIVILEGE, 'ORACLE', 'NOTYOURPKG', 'DRDAUSR3');

Rem Revoke ALL on any package in Collection OTHER from user DRDAUSR4
execute DBMS_DRDAAS_ADMIN.REVOKE_PRIVILEGE(
 DBMS_DRDAAS_ADMIN.ALL_PRIVILEGE, 'OTHER', '*', 'DRDAUSR4');

3.3.2.2 Managing DRDA Package Translation Profile
Example 3-8 Setting and Deleting Translation Profile Name for a DRDA Package

connect DRDAADM/password

Rem Set the DB2ZOS profile name for "any" package in collection ORACLE
DBMS_DRDAAS_ADMIN.SET_PROFILE('ORACLE', '*', 'DB2ZOS');

Rem Set the MYDB2ZOS profile name for package ORACLE.MYPACKAGE
DBMS_DRDAAS_ADMIN.SET_PROFILE('ORACLE', 'MYPACKAGE', 'MYDB2ZOS');

Rem Deleting the profile name for package ORACLE.MYPACKAGE
execute DBMS_DRDAAS_ADMIN.SET_PROFILE(NULL, 'ORACLE', 'MYPACKAGE');

Rem Deleting the profile name for "any" package in collection ORACLE
execute DBMS_DRDAAS_ADMIN.SET_PROFILE(NULL, 'ORACLE', '*');

Chapter 3
Authorizing Oracle Database Provider for DRDA

3-9

3.3.3 User Role
Each user who accesses the database through DRDA must have the
DRDAAS_USER_ROLE user role as a default.

Users commonly have the default role ALL, which immediately enables all granted
roles. If a user has explicit default roles, they must also have the DRDAAS_USER_ROLE
role, as described in the section Adding DRDAAS_USER_ROLE to Default Values.

Note that failing to specify the complete list of default roles may prevent the user from
connecting to the database, or form being able to address certain resources implicitly.

Refer to Oracle® Database SQL Language Reference and Oracle Database Security
Guide.

Related Topics

• Adding DRDAAS_USER_ROLE

3.3.3.1 Granting the DRDAAS_USER_ROLE
Example 3-9 Granting the DRDAAS_USER_ROLE

connect sys as sysdba
grant DRDAAS_USER_ROLE to DRDAUSR;

3.3.3.2 Adding DRDAAS_USER_ROLE
Example 3-10 Adding DRDAAS_USER_ROLE to Default Values

alter user DRDAUSR default role CONNECT, RESOURCE, DRDAAS_USER_ROLE;

3.4 Uninstalling Oracle Database Provider for DRDA
Full uninstall of Oracle Database Provider for DRDA involves the removal of the
Database objects and uninstall of Oracle Database Provider for DRDA software. The
product-dependent objects are removed, while the customer data remains intact.

3.4.1 Removing the Database Objects
The following steps remove all Oracle Database Provider for DRDA objects from the
database, and drop the user-created tablespace.

To remove Database objects:

1. Change directory to $ORACLE_HOME/rdbms/admin.

> cd $ORACLE_HOME/rdbms/admin

2. Connect to the database using the SYSDBA option.

connect / as sysdba

3. Run the removal script.

catnodrdaas.sql

4. Drop the user-created tablespace sysibm and its contents.

Chapter 3
Uninstalling Oracle Database Provider for DRDA

3-10

> drop tablespace sysibm;

See Oracle® Database SQL Language Reference for DROP TABLESPACE options.

3.4.2 Uninstalling Oracle Database Provider for DRDA software
To uninstall Oracle Database Provider for DRDA software, you must use the Oracle Universal
Installer with the -deinstall option. You may choose specify path to Oracle Home using the
-home option, or choose Oracle Home when Oracle Universal Installer is running.See further
instructions on uninstalling Oracle software in Oracle® Database Installation Guide.

To uninstall Oracle Database Provider for DRDA software:

1. In Oracle Universal Installer, click Installed Products.

2. Select the desired ORACLE_HOME.

Either select the whole ORACLE_HOME, or open ORACLE_HOME navigation tree and select
Oracle Database Provider for DRDA product software.

3. Click Remove.

3.5 Configuration Parameters
Oracle Database Provider for DRDA uses several parameters to configure its environment;
they are specified in the configuration file.

3.5.1 DATA_PORT
This designates the DRDA data port used by this instance, and is represented by an Internet
Address and Port Number.

Default Value

There is no default port number; an explicit port number must be specified. Oracle
recommends using 1446.

Allowable Values

A valid, unallocated TCP/IP network port number, optionally prefixed with a specific host
name or IP address associated with a defined network interface on the local machine.

Syntax

DATA_PORT = {host_name|ip_address:}number

Usage Example

DATA_PORT = 10.0.0.1:1446

3.5.2 RDB_MAP
This string parameter maps relational database names, as passed in the DRDA ACCRDB
command object, to Oracle TNS entries, or to the locally addressable Oracle instance. This
parameter may contain several occurrences of a map entry.

Chapter 3
Configuration Parameters

3-11

This has no default value.

A list of optional values includes the following:

• tns_name_entry corresponds to a TNS entry in the local tnsnames.ora
configuration file.

• tns_entry is a fully-formed TNS descriptor string. It may be used instead of a TNS
name entry.

• oracle_sid uses the $ORACLE_SID environment variable value that is set prior to
starting an Oracle Database Provider for DRDA instance.

Note that the use of one or more occurrences of RDB_MAP determines a mode of
compatibility with older application requesters. The default is a single, dedicated
definition that connects to a single Oracle Database instance based on the ORACLE_SID
environmental variable.

Allowable Values

A valid, unallocated TCP/IP network port number, optionally prefixed with a specific
host name or IP address associated with a defined network interface on the local
machine.

Syntax

RDB_MAP = RDB(rdb_name)->TNS(tns_name_entry)
RDB_MAP = RDB(rdb_name)->ORACLE_SID
RDB_MAP = RDB(rdb_name)->"tns_entry"

Usage Examples

RDB_MAP = RDB(DB2DSN1)->ORACLE_SID
RDB_MAP = RDB(DB2DSN2)->TNS(ora101)
RDB_MAP = RDB(DB2DSN3)->"(ADDRESS=(PROTOCOL=TCP)(HOST=10.0.0.1)
(PORT=1446))"

3.5.3 PROTOPROC_TRACE
This parameter designates the trace facility and level of detail for tracing of the DRDA
Protocol Processor. All initial Oracle Database Provider for DRDA sessions run with
this setting. The parameter consists of a value pair that represents facility and level
values. Multiple values may be specified simultaneously if the value tuples are
separated by a comma.

It also designates the initial level of trace under which all AS session threads execute.
PROTOPROC_TRACE is a decimal number or textual designated equivalent.

The facility names used with PROTOPROC_TRACE parameter are as follows:

• TASK – Task-specific operations

• NET – Network-specific operations

• SQL – SQL-specific operations

• OCI – OCI resource operations

• MEM – Memory resource operations

• ALL – All facilities mentioned already

Chapter 3
Configuration Parameters

3-12

The values of PROTOPROC_TRACE level are additive. For example, setting ERROR(4) includes
WARN(2) and INFO(1) messages. The following values are expected:

• 0 or NONE – No trace is generated; this is the default.

• 1 or INFO – Minimal trace is generated.

• 2 or WARN – Warning information is generated.

• 4 or ERROR – Error information is generated.

• 8 or ADMIN – Administration information is generated.

• 255 or ALL – All details are generated.

Default Value

0 or none

Allowable Values

Facility name followed by level.

Usage Example

PROTOPROC_TRACE="ALL ADMIN"
PROTOPROC_TRACE="TASK WARN, NET ADMIN, MEM INFO"

3.5.4 PROTOPROC_OPTIONS
The PROTOPROC_OPTIONS parameter specifies protoproc processing options, effecting DRDA
protocol operations.

Default Value

There is no default value for this parameter.

Allowable Values

The following values may be specified:

• QRYDTA/ELMODE

Enables Extended Length Mode for all returned Query Data objects. Generally, this is
used with queries that do not involve LOBs.

• EXTDTA/ELMODE

Enables Extended Length Mode for all returned Extended Data objects. Typically used
with queries involving LOBs.

• ALLDSS/ELMODE

Enables Extended Length Mode for all protocol objects. This is an alternative to either
above value, and should not be specified unless other values have no positive effect.

• LOGNAME/<NAME>

Specifies a static DRDA Log Name. The Log Name should alphanumeric and consist of
18 characters. This option may be required when you use DB2 for z/OS as a client.

• LOGTSTMP/<YYYYMMDDHHMMSSTTTT>

Specifies a static DRDA Log Timestamp. The timestamp must have the following format:

Chapter 3
Configuration Parameters

3-13

YYYYMMDDHHMMSSTTTT

This value may be required when you use DB2 for z/OS as a client.

Syntax

PROTOPROC_OPTIONS = value {, value ...}

Usage Example

PROTOPROC_OPTIONS = QRYDTA/ELMODE, EXTDTA/ELMODE, LOGNAME/ORACLEDB,
LOGTSTMP/201609191201020001

See Also:

Extended Length Mode section, in Chapter 12 — Restrictions on Using
Oracle Database Provider for DRDA

Chapter 3
Configuration Parameters

3-14

4
SQL Translation and Examples for Oracle
Database Provider for DRDA

SQL Translation is a new feature in Oracle Database 12c Release 2 (12.2). Oracle Provider
for DRDA may be used without SQL Translation with earlier releases of Oracle Database.

For more information on SQL Translation, see Oracle® Database Migration Guide.

Note:

SQL Translation is an optional feature and recommended in cases where SQL used
within the application is more DB2–centric syntax.

4.1 Overview of SQL Translation Process
Oracle Database Release 12c introduces the concept of SQL Translation. This feature
enables the translation of 'foreign' SQL statements, such as DB2, into a SQL syntax that may
be correctly used by Oracle Database. SQL Translation itself is implemented through a SQL
Translator that is most often supplied by a third party to the translation. The SQL Translator
inspects the input SQL, and sometimes alters it to adhere to Oracle SQL syntax. A SQL
Translation Profile, which is specified through a SQL Translator Interface Package, specifies
a SQL Translator that is used.

A SQL Translation Profile is a schema-level object of type SQL TRANSLATION PROFILE. It
references a PL/SQL package through its ATTR_TRANSLATOR attribute; this package is known
as the SQL Translator Interface Package. The package specifies the third-party SQL
translator that performs the SQL translation when the SQL Translation Profile is active. Only
one SQL Translation Profile may be enabled at a time.

SQL Translation Profiles may be shared among users. Commonly, all users share the same
single SQL Translation Profile for a set of packages, but that is not necessary.

Note that each DB2 package may be associated with a SQL Translation profile through the
attributes kept for that package. The SQL Translator associated with the SQL Translation
Profile specified for the DB2 package is used when preparing SQL statements within that
DB2 package.

4.1.1 Implementing SQL Translation
In order for translation to proceed, the following sequence of events must take place:

1. Acquisition of a SQL Translator.

2. Creation of a SQL Interface Package that references that translator.

3. Creation of a SQL Translation Profile that references the SQL Interface Package.

4-1

This step may be done only once in the life of an instance. However, it must be
performed at least once to use SQL Translation.

In situations with multiple translators, or where different SQL Translation Profiles
are necessary, this process may be repeated.

4. Association of DB2 packages with a SQL Translation profile.

This step must be completed for each package created.

Note that a package does not have to be created before it is associated with the
translation profile; only the name of the package is necessary. This step does not
validate that a particular package already exists.

5. At execution time, the user passes SQL text to Oracle Database Provider for
DRDA through the package.

6. When Oracle Database Provider for DRDA acquires SQL text, it checks if the
package is associated with a SQL Translation Profile, and then sets that SQL
Translation Profile to be in effect during the time when SQL text is parsed and
executed.

7. After Oracle Database Provider for DRDA prepares SQL text for execution, Oracle
Database uses the current SQL Translation Profile to translate the SQL
statements, and then executes them.

4.1.2 Requirements for SQL Translation
Successful SQL translation may occur only in the following are true:

• A SQL Translation Profile must be enabled for the session, through the following
command:

ALTER SESSION SET SQL_TRANSLATION_PROFILE

• The process must specify that incoming SQL statements are in a foreign syntax, or
in a non-Oracle SQL dialect. In all cases discussed here, these dialect are variants
of DB2 SQL.

For Oracle Database Provider for DRDA product, the preceding two conditions are
coupled; if a DB2 package is associated with a SQL Translation Profile, then the SQL
statements are expected to be in a foreign syntax, and the SQL Translator associated
with the SQL Translation Profile is called to translate any SQL in that package.

4.2 Specifics of Translating DB2-Specific SQL Syntax
While most of the SQL constructs that a client application submits to Oracle Database
Provider for DRDA may be executed directly, some DB2 SQL constructs are not
recognized by Oracle. Consider the known issues that occur when translating DB2
SQL statements issued by an application that is re-configured to use an Oracle
Database instance.

If a SQL Translation Profile is in place, the SQL Translator associated with the profile
may be designed to alter these SQL statements so that the application performs
equivalent or similar operations in Oracle SQL, and returns the expected results.

Chapter 4
Specifics of Translating DB2-Specific SQL Syntax

4-2

4.2.1 DB2 Special Registers
Oracle Database does not support the CURRENT TIME special register construct, to get the
current time of day. Calls to this construct, as in the following example, results in an
ORA-00936 error.

SELECT CURRENT TIME FROM SYSIBM.SYSDUMMY1

4.2.2 DB2 SQL Functions and Procedures
Oracle does not support some functions that are defined in DB2. For example, the CEILING
function does not exist in Oracle; instead, Oracle SQL syntax includes a compatible CEIL
function.

4.2.3 DB2 Named Datatypes
Some elementary SQL datatypes, such as BIGINT, are not defined in Oracle. When the
application runs against Oracle, casting a column value or constant as a BIGINT produces an
error. The following example results in an ORA-00902 error because BIGINT is not recognized
as a valid Oracle datatype.

SELECT CAST(12345678912 AS BIGINT) from SYSIBM.SYSDUMMY1

4.2.4 DB2 Syntactic Statements
An INSERT statement in DB2 may contain syntactic clauses that are Oracle does not interpret.
An example of such is the isolation clause, shown in the following code example.

INSERT INTO SCOTT.DEPT VALUES(50, "FARMING", "SPRINGFIELD") WITH CHG

4.3 SQL Translator Interface Package
A SQL Translation Profile is a schema-level object of type SQL TRANSLATION PROFILE created
through the DBMS_SQL_TRANSLATOR.CREATE_PROFILE() procedure. The SQL Translator
Interface Package is a PL/SQL package of a certain format; it references the third-party-
supplied translator objects and is, itself, referenced by the SQL Translation Profile. So the
SQL Translator Interface Package connects the SQL Translation Profile and the third-party
supplied SQL translator objects.

4.3.1 About SQL Translator Interface Package
A SQL Translation Profile references a PL/SQL wrapper package that has a fixed format, the
SQL Translator Interface Package. When a session sets a SQL TRANSLATION PROFILE, it
specifies that all SQL is translated by the third-party SQL translator associated with the SQL
Translator Interface Package. The procedure translate_sql() of the SQL Translator
Interface Package performs the translation.

Note that Oracle does not provide a SQL Translator. Instead, a SQL Translator must be
obtained from third-party vendors, or developed internally. Oracle provides various
administrative scripts for creating and managing a SQL Translation Profile.

Chapter 4
SQL Translator Interface Package

4-3

4.3.2 Creating a SQL Translator Interface Package
Example 4-1 shows a simple SQL Translation Interface Package used with a SQL
Translation Profile. The language and name specifications are relative to the
language-type and callable-names in the third-party SQL translator. After logging into
the Oracle Database with SYSDBA privileges, the following package declaration must be
made. The package name is the value of the TRANSLATOR_ATTR attribute of the SQL
Translation Profile.

Example 4-1 Creating a SQL Translator Interface Package

create or replace package SYSIBM.DBTooSQLTranslator as
 procedure translate_sql(
 sql_text in CLOB,
 translated_text out CLOB);
 procedure translate_error(
 error_code in BINARY_INTEGER,
 translated_code out BINARY_INTEGER,
 translated_sqlstate out VARCHAR2);
end;
/
create or replace package body SYSIBM.DBTooSQLTranslator as
 procedure translate_sql(
 sql_text in CLOB,
 translated_text out CLOB)
 as language JAVA
 name /* actually the "signature" of the third-party callable */
 /* procedure associated with translate_sql */
 'DBTooSQLApiInterface.translateSQL(oracle.sql.CLOB, oracle.sql.CLOB[])';

 procedure translate_error(error_code in BINARY_INTEGER,
 translated_code out BINARY_INTEGER,
 translated_sqlstate out VARCHAR2) as
 language JAVA
 name /* actually the "signature" of the third-party callable */
 /* procedure associated with translate_error */
 'DBTooSQLApiInterface.translateError(oracle.sql.CLOB, oracle.sql.CLOB[])';
 end;
 /

4.3.3 Granting EXECUTE Access to SQL Translator Interface
Package

Because the SQL Translator Interface Package is called at run-time, it must have
EXECUTE access enabled. Example 4-2 shows how to grant this access.

Example 4-2 Granting EXECUTE access to SQL Translator Interface Package

GRANT EXECUTE ON SYSIBM.DBTooSQLTranslator TO DRDAAS_USER_ROLE

4.3.4 Creating a SQL Translation Profile
The SQL Translation Profile may be created and administered by any user who has
the CREATE SQL TRANSLATION PROFILE authority and TRANSLATE ANY SQL authority.
The section on Granting Required Authority to Users with DRDAAS_TRANS_ADMIN Role

Chapter 4
SQL Translator Interface Package

4-4

shows how to grant these two privileges to DRDAAS_TRANS_ADMIN. These privileges may be
granted by a user with existing SYSDBA privileges.

The ADMIN OPTION clause enables DRDAAS_TRANS_ADMIN to GRANT the TRANSLATE ANY SQL
authority to other Oracle users. In this manner, the DRDAAS_TRANS_ADMIN may allow many
users with DRDAAS_USER_ROLE to use the translation facility, as demonstrated in the section
Granting Translation Authority to Users with DRDAAS_USER_ROLE.

The actual SQL Translation Profile may be managed through a script provided in Creating
and Managing the SQL Translation Profile. Note that the administering id must already have
the required authority to perform CREATE SQL TRANSLATION PROFILE.

Related Topics

• Granting Translation Authority Through Administrator Role

• Granting Translation Authority Through User Role

• Creating and Managing SQL Translation Profile

4.3.4.1 Granting Translation Authority Through Administrator Role
Example 4-3 Granting Required Authority to Users with DRDAAS_TRANS_ADMIN
Role

GRANT CREATE SQL TRANSLATION PROFILE TO DRDAAS_TRANS_ADMIN;
GRANT TRANSLATE ANY SQL TO DRDAAS_TRANS_ADMIN WITH ADMIN OPTION;

4.3.4.2 Granting Translation Authority Through User Role
Example 4-4 Granting Translation Authority to Users with DRDAAS_USER_ROLE

GRANT TRANSLATE ANY SQL TO DRDAAS_USER_ROLE;

4.3.4.3 Creating and Managing SQL Translation Profile
Example 4-5 Creating and Managing the SQL Translation Profile

declare
 PROFILE_DOES_NOT_EXIST exception;
 pragma EXCEPTION_INIT(PROFILE_DOES_NOT_EXIST, -24252);
 /* profile_name is the nsme of the SQL Translation Profile */
 /* created here. */
 profile_name VARCHAR2(32) := 'DRDAAS_TRANS_ADMIN.MY_PROFILE';

 /* SYSIBM is the schema in which the SQL Translator Interface */
 /* package (viz., SYSIBM.DBTooSQLTranslator) is found. */
 sql_trnsltr_intfc_schema VARCHAR2(32) := 'SYSIBM';

 /* DBTooTranslator is the unqualified package name of the SQL */
 /* Translator Interface Package */
 sql_trnsltr_intfc_pkgnm VARCHAR2(32) := 'DBTooSQLTranslator';

 sql_trnsltr_intfc_pkg VARCHAR2(128);
 grant_cmd VARCHAR2(256);
 cursor_id NUMBER;

begin
 sql_trnsltr_intfc_pkg := sql_trnsltr_intfc_schema || '.' ||
 sql_trnsltr_intfc_pkgnm;

Chapter 4
SQL Translator Interface Package

4-5

 begin
 DBMS_SQL_TRANSLATOR.DROP_PROFILE(profile_name);
 exception
 WHEN PROFILE_DOES_NOT_EXIST THEN NULL; /* ignore if non-existant */
 end;
 /* Create SQL Translation Profile */
 DBMS_SQL_TRANSLATOR.CREATE_PROFILE(profile_name);
 /* Associate the SQL Translator Interface Package denoted by */
 /* sql_trnsltr_intfc_pkg with this profile */
 DBMS_SQL_TRANSLATOR.SET_ATTRIBUTE(profile_name,
 DBMS_SQL_TRANSLATOR.ATTR_TRANSLATOR,
 sql_trnsltr_intfc_pkg);
 /* Mark this SQL Translation Profile as "registered" */
 DBMS_SQL_TRANSLATOR.SET_ATTRIBUTE(profile_name,
 DBMS_SQL_TRANSLATOR.ATTR_TRANSLATION_REGISTRATION,
 DBMS_SQL_TRANSLATOR.ATTR_VALUE_TRUE);
 /* The owner of the SQL Translator Interface Package must have */
 /* full authority for the SQL TRANSLATION PROFILE */
 grant_cmd := 'GRANT ALL ON SQL TRANSLATION PROFILE ' ||
 profile_name || ' TO ' || sql_trnsltr_intfc_schema;
 cursor_id := DBMS_SQL.OPEN_CURSOR();
 DBMS_SQL.PARSE(cursor_id, grant_cmd, DBMS_SQL.NATIVE);
 DBMS_SQL.CLOSE_CURSOR(cursor_id);
 /* Let all with DRDAAS_USER_ROLE have access to the SQL Translation profile.
*/
 grant_cmd := 'GRANT USE ON SQL TRANSLATION PROFILE ' ||
 profile_name || ' TO DRDAAS_USER_ROLE';
 cursor_id := DBMS_SQL.OPEN_CURSOR();
 DBMS_SQL.PARSE(cursor_id, grant_cmd, DBMS_SQL.NATIVE);
 DBMS_SQL.CLOSE_CURSOR(cursor_id);
end;
/

4.4 Using Third-Party SQL Translators
To use a third-party translator, its files and objects must be installed in the
directory $ORACLE_HOME/rdbms/drdaas/jlib.

In case of difficulties, use DBMS_JAVA.SET_OUTPUT() procedure to redirect server-side
error messages to DBMS_OUTPUT.

For more information on using Java in Oracle, refer Oracle® Database Java
Developer's Guide.

4.4.1 Using a Third-Party SQL Translator, Loaded as a Single Object
If the third-party SQL translator is in Java, Example 4-6 may be run in SQL*Plus
environment by a SYSDBA user. Example 4-6 uses DBMS_JAVA.LOADJAVA() procedure to
load the objects into the SYSIBM schema; it loads a single third-party object,
DBTooSQLAPI.jar.

Example 4-6 Loading a Third-Party SQL Translator; Single Object

begin
 DBMS_JAVA.LOADJAVA('-definer -genmissing -schema SYSIBM ' || '
 ' rdbms/drdaas/jlib/DBTooSQLAPI.jar',
 '((* SYSIBM)(* PUBLIC)(* -))');
end;
/

Chapter 4
Using Third-Party SQL Translators

4-6

4.4.2 Using a Third-Party SQL Translator, Loaded as Multiple Objects
If the third-party translator consists of multiple objects, each component must be specified in
the LOADJAVA call. Example 4-7 specifies two translator objects, DBTooSQLAPI.jar and
DBTooMainClass.class.

Example 4-7 Loading a Third-Party SQL Translator; Multiple Objects

begin
 DBMS_JAVA.LOADJAVA('-definer -genmissing -schema SYSIBM ' ||
 ' rdbms/drdaas/jlib/DBTooMainClass.class' ||
 ' rdbms/drdaas/jlib/DBTooSQLAPI.jar',
 '((* SYSIBM)(* PUBLIC)(* -))');
end;
/

4.5 Using a Translator Management Script
Oracle Database ships a drdasqtt_translator_setup.sql script, which manages translation
profiles. The script must be invoked in SQL*Plus by a user with SYSDBA privileges. It asks for
the following inputs:

1. SQL Translator Interface Package Schema, such as SYSIBM.

2. SQL Translator Interface Package Name, such as DBTooTranslator.

3. SQL Translation Profile Schema, such as DRDAAS_TRANS_ADMIN.

4. SQL Translation Profile Name, such as MY_PROFILE.

5. Language type of the third-party translator, such as Java.

6. The names of files or objects supplied by the third-party vendor. If more than one is
supplied, enclose the list in four (4) single quotes and separate the items by blank
spaces, as in the following code:

''''rdbms/drdaas/jlib/DBTooMainClass.class rdbms/drdaas/jlib/DBTooSQLAPI.jar''''

7. The signature (entry name plus argument descriptions) of the entry in the files or objects
supplied by the third-party vendor that are used for translating SQL. For Java-based
third-party code, the signature may be obtained through the javap program. Note that
signatures that contain blank space must be enclosed within double quotes.

8. The signature (entry name plus argument descriptions) for the entry in the files or objects
supplied by the third-party vendor that are used for translating error codes. For Java-
based third-party code, the signature may be obtained through the javap program. Note
that signatures that contain blank space must be enclosed within double quotes.

4.6 Verifying the SQL Translator Profile
The following steps verify that the SQL Translation Profile is correctly installed and fully
enabled.

To verify the SQL Translator Profile configuration:

1. Log into Oracle Database with SYSDBA privileges

2. Check that the translator profile is loaded into Oracle Database.

Chapter 4
Using a Translator Management Script

4-7

SELECT * FROM ALL_SQL_TRANSLATION_PROFILES;

3. Log in with an id that has DRDAAS_USER_ROLE privileges.

4. Ensure that the role is set:

SET ROLE DRDAAS_USER_ROLE;

5. Set the SQL Translation Profile for of session to the value specified at the time the
SQL Translation Profile was created.

ALTER SESSION SET SQL_TRANSLATION_PROFILE = DRDAAS_TRANS_ADMIN.MY_PROFILE;

6. Attempt the following commands:

ALTER SESSION SET EVENTS = '10601 trace name context forever, level 32';
SELECT CAST(1234567 AS BIGINT) FROM DUAL;
ALTER SESSION SET EVENTS = '10601 trace name context off';
SELECT CAST(1234567 AS BIGINT) FROM DUAL;

The first SELECT should succeed, while the second should fail. The ALTER SESSION
SET EVENTS commands specify that the following SQL is one of:

• foreign syntax (trace name context forever, level 32)

• native Oracle syntax (trace name context off)

This works only when using SQL*Plus.

4.7 Altering the SQL Translation Profile
At times, it becomes necessary to completely change the SQL Translation Profile, and
make the SQL TRANSLATION PROFILE attribute of a DB2 package reference a new SQL
Translation Profile.

DB2 packages usually come in sets, and the names of the DB2 packages are
determined by the client. However, if the client uses ODBC to access Oracle Database
Provider for DRDA, the ODBC driver determines the names of the packages.

Oracle supplies two scripts that may be used to set the SQL Translation Profile
attribute for a set of packages.

• If the DataDirect ODBC driver accesses Oracle Database Provider for DRDA, use
the drdasqt_set_profile_dd.sql script, in the drdaas/admin directory.

• If the IBM ODBC driver accesses Oracle Database Provider for DRDA, use the
drdasqt_set_profile_ibm.sql script, in the drdaas/admin directory. Native client
application may also use this script, but it may have to be extended.

These scripts may be copied and altered for use with other sets of DB2 packages.

Additionally, each of these scripts must be run in SQL*Plus by a user with
DRDAAS_ADMIN_ROLE privileges. The script prompts for the qualified name of the profile
that is referenced by the various packages (such as
DRDAAS_TRANS_ADMIN.MY_PROFILE). It also prompts for the default Package Collection
schema, which is usually NULLID.

Chapter 4
Altering the SQL Translation Profile

4-8

5
Administration and Customization of Oracle
Database Provider for DRDA

Consider various administration and customization issues.

5.1 Migration Steps using Oracle Database Provider for DRDA
While migration of existing DB2 applications to Oracle Database is data- and target-specific,
the general methodology has the following six steps:

1. Installing and configuring Oracle Database Provider for DRDA software

2. Installing Oracle Database Provider for DRDA objects in the Oracle Database

3. Administering DRDA Package authority

4. Migrating DB2 data

5. Re-targeting the application

6. Tuning SQL Translation and Datatypes

5.2 Considerations for Using Oracle Database Provider for
DRDA

Before installing Oracle Database Provider for DRDA software, an organization must
consider several operational and resource issues. Flexibility and performance of machine and
network resources is paramount when determining whether an optimal installation is as a
standalone Oracle home, an Oracle home within an existing Oracle Database, or on a
machine that is entirely separate from the Oracle Database. Additionally, the nature of all
possible DB2 clients that must use the installation is a determining factor; in this context, DB2
is considered a client.

Related Topics

• Installing Oracle Database Provider for DRDA

5.3 Prerequisites to Installing Oracle Database Provider for
DRDA

Before installing Oracle Database Provider for DRDA objects in the Oracle Database, one or
more users must be designated as DRDA Administrators, and have the Administrator role.

Similarly, designate users who will be accessing the Oracle Database through Oracle
Database Provider for DRDA or DB2 applications, and grant to them roles and privileges of
DRDA User. Some aspects of setting the DRDA User's authority and configuration may need
to be delayed until further in the migration process. This mostly concerns specific DRDA
packages used by the application, and any specific SQL translations or datatype tuning. If the

5-1

application's packages are identified before migration, these may be applied as part of
the package authorization workflow.

Related Topics

• Administrator Role

• User Role

5.4 Administering DRDA Package Authority
In order to successfully access Oracle Database from DRDA or DB2 applications
through Oracle Database Provider for DRDA, package authorization must be in place.
At a minimum, the following information must be collected about the application and its
users:

• package collection ID, such as NULLID

• package name, such as DSNPBD3

• package version name, if applicable, such as 01 or NULL

• name of the Oracle user who must access the database, such as DRDAUSR

A SQL Translation Profile Name must also be designated for the application
represented by the package.

Related Topics

• SQL Translator Interface Package

• Packages

5.5 Migrating DB2 Data
In DB2, objects may be created under an arbitrary schema, whereas schema names
are not arbitrary in Oracle Database. Therefore, careful use of schemas must be
considered when migrating data from DB2 to Oracle. In Oracle, all schema objects,
such as tables, views, synonyms, and so on, must be allocated in a schema of an
actual user. This obviously effects how these objects are named, created, and
accessed.

Consider the following example: USER1 creates tables "USER1"."TABLE1" and
"USER2"."TABLE2". In DB2, TABLE1 and TABLE2 are owned by USER1, because USER1 is
their creator. In Oracle, the table "USER2"."TABLE2" is owned by user USER2.
Additionally, USER1 could not have created TABLE2 unless USER1 has CREATE ANY TABLE
privelege. Instead, USER2 must create TABLE2, and then grant USER1 access to it.

Data migrated from DB2 to Oracle must be defined also in terms of Oracle datatypes.
While Oracle uses ANSI-defined datatype names, they do not necessarily have the
same range limits or semantics as the DB2 implementation. To accurately model
existing DB2 application datatypes, review the section Data Dictionary for Oracle
Database Provider for DRDA.

After creating the schema and objects with appropriate datatypes, the data may be
imported into Oracle.

Related Topics

• Data Dictionary Emulation in Oracle Database Provider for DRDA

Chapter 5
Administering DRDA Package Authority

5-2

5.6 Retargeting the Application to Use Oracle Database
The following example shows how to migrate DB2 z/OS applications. You would need to
follow similar steps when migrating DB2/LUW or DB2/400 applications. Refer to IBM
documentation for details of each product's equivalent steps.

Note:

This example is applicable only for DB2 for z/OS.

There are two general categories of applications: native applications and remote
applications.

5.6.1 Re-targeting Native Applications
Typical DB2 applications are called native because they interact with a local DB2 system
directly, through an internal IPC mechanism. These applications use embedded SQL
programming, and utilize the DB2 SQL PreProcessor. Pre-processing the source generates
an execution plan that is stored in a Database Resource Module (DBRM). Users must
upload, or bind the execution plan to the local DB2 instance before the program runs.

The execution plan contains all the static SQL embedded in the application source, as well as
additional attributes such as location, also called the Current Server. By default, Current
Server is blank; this indicates that the server is on the local DB2 instance. It is possible,
however, to re-target the execution plan to run all operations on another server by setting a
new value for the Current Server attribute.

The following steps should be performed by an IBM DB administrator.

1. Create location entries in the DB2 Communications Database.

DB2 has a internal communications system for connecting to remote DB2 instances. To
address a remote instance, insert records into the SYSIBM.IPNAMES table, the
SYSIBM.LOCATIONS table and, optionally, into the SYSIBM.USERNAMES table.

See IBM DB2 documentation for a description of the DB2 Communications Database
facility.

The following command inserts a linkname REMHOST, a location entry DRDAAS, and an
optional username mapping entry in the DB2 Communications Database. The linkname
specifies the hostname or IP address of the computer that is running Oracle Database
Provider for DRDA. The location specifies an RDB name that uses the linkname and the
port number that Oracle Database Provider for DRDA is listening on. These correspond
to Oracle Database Provider for DRDA configuration parameters DATA_PORT and RDB_MAP.
Note that the location name must match exactly to the RDB() value specified in the
RDB_MAP parameter.

INSERT INTO SYSIBM.IPNAMES (LINKNAME,SECURITY_OUT,USERNAMES,IPADDR)
 VALUES ('REMHOST','P','O','remotehost.remotedomain.com');

INSERT INTO SYSIBM.LOCATIONS (LOCATION,LINKNAME,PORT)
 VALUES ('DRDAAS','REHMOST','1446');

Chapter 5
Retargeting the Application to Use Oracle Database

5-3

INSERT INTO SYSIBM.USERNAMES (TYPE,AUTHID,LINKNAME,NEWAUTHID,PASSWORD)
 VALUES ('O',' ','REMHOST','DRDAUSER', 'userpwd');

2. Remotely bind the application Plan to Oracle Database Provider for DRDA.

After the location entries are inserted, you must remotely bind the application
execution plan. The following code binds plan DSNPBD3 through the DSN command
processor IKJEFT01. Note that location DRDAAS prefixes the collection Id.

BIND PACKAGE(DRDAAS.NULLID) MEMBER(DSNPBD3) -
 ACT(REP) ISO(CS) CURRENTDATA(YES) ENCODING(EBCDIC)

3. Locally bind the package with current server.

After the plan is bound remotely, re-bind the local plan using the current server
option to re-target execution. The following code binds plan DSNPBD3 through the
DSN command processor IKJEFT01.

Note that the plan must be referred to in the remote plan through the package list,
PKLIST, and must specify both the location in the package reference,
DRDAAS.NULLID.DSNPBD3, and specify the CURRENTSERVER option that contains the
location.

BIND PLAN(DSNPBD3) -
 PKLIST(DRDAAS.NULLID.DSNPBD3) -
 ACT(REP) ISO(CS) CURRENTDATA(YES) ENCODING(EBCDIC) -
 CURRENTSERVER(DRDAAS)

4. After the plan is bound remotely and re-bound locally, the application runs using
plan DSNPBD3, implicitly makes a remote connection through the local DB2 to
Oracle Database Provider for DRDA, and executes all operations of the plan
remotely. The local DB2 remains a pass through coordinator in this configuration.

5.6.2 Re-targeting Remote Applications
Remote applications are typically not directly tied to the Local DB2. Such applications
typically are referred to as being network-aware or network-oriented and have a
remote server location configuration attribute that is used to specify what and where to
connect to.

Such applications utilize Oracle Database Provider for DRDA through the network
protocol. Re-targeting of this type of application is simple to configure, as the following
steps show.

1. Change the configuration options of the Application to use the hostname (or IP
address), port number and RDB name of that configured in Oracle Database
Provider for DRDA. An example of this is through ODBC, in which the DSN entry
contains network parameters.

In this example, the Network and PortNumber parameters correspond to the
Linkname and Location entries inserted into the DB2 Communication Database
example used earlier. The Database parameter corresponds to the Location
name. All of which, again, correspond to the DATA_PORT and RDB_MAP parameters
of the configured Oracle Database Provider for DRDA.

Here is an example of an odbc.ini file.

[DRDAAS]
 Network=remotehost.remotedomain.com
 PortNumber=1446
 Database=DRDAAS

Chapter 5
Retargeting the Application to Use Oracle Database

5-4

2. Execute the package resource binding operation for the application.

Often this is handled implicitly by the application itself, or is documented as a one-time
step to setting up the applications access and resource to a remote DB2 instance. Refer
to the documentation for the specific application for Binding instructions.

5.7 Translating SQL Statement and Typing Datatypes
Some applications may have DB2-specific SQL that is beyond the automatic translation
mechanism of SQL translation, or may be expecting a very specific datatype for a particular
column in a query. In such cases it may be necessary to manually insert SQL substitution
statements, or add item-specific datatype manipulations.

For example, suppose an application has a specific SQL statement that has the following
DB2-specific syntax: SELECT LOG2(COL1) FROM TABLE1. To work correctly in Oracle, the SQL
needs to be translated into this statement: SELECT LOG10(COL1,2) FROM TABLE1.

Through SQL Translation's Register facility, a direct translation may be registered for this
SQL statement, as shown in the section Registering a SQL Substitution Statement. Note that
this must be done by the user who is executing the SQL statement; remember that the SQL
Translation Profile must created as a resource for that user.

After the SQL translator is registered, when the application issues the original SQL it is
implicitly translated to the new SQL and processes.

In some very specific cases, application clients require the datatypes of select items in a
query to be returned in a very specific format.

Let's say that the result of the translated query SELECT LOG10(COL1,2) FROM TABLE1 returns
a DECFLOAT34 datatype, but the application is unable to process it, it is possible to implicitly
coerce the datatype to another, compatible type.

If the application supports the DOUBLE PRECISION datatype, it is possible to use the TYPEMAP
facility to add this specific coercion described in Registering an On-Demand Datatype
Conversion.

5.7.1 Registering a SQL Substitution Statement
Example 5-1 Registering a SQL Substitution Statement

The application's package has been assigned the Profile name DB2ZOS.

connect DRDAUSER/userpwd
execute dbms_sql_translator.register_sql_translation('DB2ZOS',
 'SELECT LOG2(COL1) FROM TABLE1',
 'SELECT LOG10(COL1,2) FROM TABLE1')

5.7.2 Registering an On-Demand Datatype Conversion
Example 5-2 Registering an On-demand Datatype Conversion

connect DRDAADM/adminpwd

execute DBMS_DRDAAS_ADMIN.SET_TYPEMAP('NULLID', 'DSNPBD3', NULL,
 'TABLE1:LOG10(COL1,2)', 'NUMBER=DOUBLE')

execute DBMS_DRDAAS_ADMIN.SET_TYPEMAP('NULLID', 'DSNPBD3', NULL,
 'TABLE1:LOG10(COL1,2)', 'NUMBER(0,-127)=DOUBLE')

Chapter 5
Translating SQL Statement and Typing Datatypes

5-5

6
Diagnostics and Maintenance of Oracle
Database Provider for DRDA

Consider the issues of Diagnostics and Maintenance.

6.1 Diagnostics for Oracle Database Provider for DRDA
Diagnostics for Oracle Database Provider for DRDA consist of the trace facility, which is
configurable through the trace level before the application runs, and may be adjusted by the
command-line tool. Oracle Database Provider for DRDA uses the Automatic Diagnostic
Repository (ADR) to hold all logs, traces and dump records. See section "Automatic
Diagnostic Repository (ADR)" in Oracle® Database Administrator’s Guide.

The trace logs DRDA protocol errors before, during, and after each client session. There are
specific DRDA architecture error alerts that are intended to diagnose a protocol violation.
Additional errors from the OCI session may also be logged there.

Diagnostics may be summarized as the ability to trace, or collect diagnostic information,
usually in a file.

The trace directory may be specified by the user. By default, Oracle Database Provider for
DRDA creates a trace directory in ORACLE_BASE/diagor ORACLE_HOME/log/diag. Within this
root directory, Oracle Database Provider for DRDA stores trace files in dps/drdaas/
instance/trace, where instance is the instance name used in the drdaas.ora file. The
adrci utility enables viewing and manipulation of trace files.

Depending on the application, different levels of diagnostic detail might become necessary.
By default, diagnostic depth is set to off, for performance reasons. However, incidents are
logged in the repository if the AS fails.

Related Topics

• Command-line Utility

6.2 Maintaining Oracle Database Provider for DRDA
To communicate with the Application Server, Oracle provides an external command interface.
The command interface supports the following interactions:

• Starting the server

• Stopping the server

• Determining server status

• Displaying connected client sessions

• Displaying details of client sessions, which includes:

– Session state (command being executed, such as preparing, executing, fetching,
idle, and so on)

6-1

– Last SQL statement prepared

– Client IP address and port number

– Oracle SQL Session Id

• Pausing a SQL session

• Terminating a SQL session

• Reloading server configuration

See “Command-line Utility for Oracle Database Provider for DRDA” for details of these
operations.

Related Topics

• Command-line Utility for Oracle Database Provider for DRDA

Chapter 6
Maintaining Oracle Database Provider for DRDA

6-2

7
Datatype Support and Conversion in Oracle
Database Provider for DRDA

Consider datatype support in Oracle, and conversion between Oracle and DRDA datatypes.

7.1 Overview of Datatype Conversion
DRDA utilizes Formatted Data Object Content Architecture (FD:OCA) for datatype encoding.
Several types do not have a direct analog to Oracle native types, and require conversion.
Also, some Oracle datatypes have no direct encoding support in FD:OCA.For example,
consider Oracle NUMBER, which may contain a wide range of values, both integers and floating
point. This duality prevents it from being mapped to a specific DRDA type, to mitigate loss of
value of the number. Any choice of type will have some loss of either precision or scale at
extreme ranges of value.

There are two datatype conversions used by Oracle Database Provider for DRDA:
conversion of DRDA MetaData Descriptors to Oracle OCI interface types, and conversion of
Oracle column types to DRDA MetaData Descriptors. For application programmers, these are
described through the SQL Type of the bind variable or described column type. See sections
“Conversion between DRDA Datatypes to Oracle Datatypes” and “Conversion of Oracle
Datatype to DRDA.”

A general mechanism for mapping Oracle NUMBER is covered in section “Datatype
Equivalence and Remapping”.

Related Topics

• Conversion between DRDA Datatypes to Oracle Datatypes

• Conversion of Oracle Datatype to DRDA

• Datatype Equivalence and Remapping

7.2 Numerical Range Considerations; General
When converting between Oracle NUMBER, IEEE floating point, IBM Hexadecimal floating point
(HEX floating point, S390 or System390 floating point), and Decimal floating point (DECFLOAT)
datatypes, note that they have different ranges and capabilities. For example, all values of
IBM HEX FLOAT bind variables in a client-side program fit in an Oracle NUMBER, but not all
values of Oracle NUMBER may be returned correctly in an IBM HEX FLOAT; DECFLOAT34 is a
better choice.

Some other considerations include the following:

• Infinities. Some floating point types support positive and negative infinities.

When infinities are used for datatypes that don't support them, the highest possible
number for positive infinities and its negative for negative infinities is used.

• Floating Point. IEEE FLOAT columns may be defined in Oracle with types of
BINARY_FLOAT and BINARY_DOUBLE. In DB2 z/OS the floating point types (REAL, FLOAT,

7-1

DOUBLE and DOUBLE PRECISION) are IBM HEX floating point. In DB2/400 and DB2
LUW, the floating point types (REAL, FLOAT, DOUBLE and DOUBLE PRECISION) are
IEEE floating point.

• Not a Number. Some datatypes support Not A Number (NAN), a special value to
indicate either that no value was assigned, or the result of a computation is invalid
or undefined.

7.2.1 Oracle NUMBER
Oracle NUMBER has the following characteristics:

Lower Range

1E-130

Upper Range

9.999 999 999 999 999 999 999 999 999 999 999 999 9E+125

Infinity

Supported for both negative and positive infinity

Not A Number

Not supported

7.2.2 FLOAT (IBM HEX or S390)
The following characteristics apply to FLOAT, DOUBLE and LONG DOUBLE sub datatypes.

Lower Range

5.397605 x 10-79

Upper Range

7.237005 x 10+75

Infinity

Not supported

Not A Number

Not supported

7.2.3 FLOAT (IEEE)
The following characteristics apply to FLOAT (Oracle BINARY_FLOAT), DOUBLE (Oracle
BINARY_DOUBLE), and LONG DOUBLE sub datatypes.

Infinity

Supported for both positive and negative infinity

Chapter 7
Numerical Range Considerations; General

7-2

Not A Number

Supported

The bounds for the subtypes follow:

Lower Range

FLOAT (Oracle BINARY_FLOAT): 1.175 494 x 10-38

DOUBLE (Oracle BINARY_DOUBLE): 2.225 074 x 10-308

LONG DOUBLE: 3.362 103 x 10-4932

Upper Range

FLOAT (Oracle BINARY_FLOAT): 3.402 823 x 10+38

DOUBLE (Oracle BINARY_DOUBLE): 1.797 693 x 10+308

LONG DOUBLE: 1.189 731 x 10+4932

7.2.4 DECFLOAT
The following characteristics apply to DECFLOAT7, DECFLOAT16, and DECFLOAT34 sub
datatypes.

Infinity

Supported for both positive and negative infinity

Not A Number

Supported

The bounds for the subtypes follow:

Lower Range

DECFLOAT7: 0.000 001 x 10-95

DECFLOAT16: 0.000 000 000 000 001 x 10-383

DECFLOAT34: 0.000 000 000 000 000 000 000 000 000 000 001 x 10-6143

Upper Range

DECFLOAT7: 9.999 999 x 10+96

DECFLOAT16: 9.999 999 999 999 999 x 10+384

DECFLOAT34: 9.999 999 999 999 999 999 999 999 999 999 999 x 10+6144

7.3 Numerical Range Considerations, for COBOL Users
DRDA databases offer three options for integer types: SMALLINT (2 binary bytes), INTEGER (4
binary bytes), and BIGINT (8 binary bytes). During conversion, Oracle columns that hold

Chapter 7
Numerical Range Considerations, for COBOL Users

7-3

equivalent values must be defined based on usage rather than on the type used in the
DB2 CREATE TABLE definition.

The actual range of DRDA SMALLINT, INTEGER and BIGINT follows:

• SMALLINT has a lower bound of -32,768 and an upper bound of 32,767

• INTEGER has a lower bound of -2,147,483,648 and an upper bound of
2,147,483,647

• BIGINT has a lower bound of -9,223,372,036,854,775,808 and an upper bound
of 9,223,372,036,854,775,807

However, at the level of the application, the COBOL variables that hold these DRDA
column values may be declared either with a fixed number of decimal digits, or with
the full binary precision of the corresponding DRDA integer datatypes.

In COBOL, the equivalent binary integer datatypes are defined as follows:

• USAGE of BINARY, COMPUTATIONAL, COMP, COMPUTATIONAL-4, and COMP-4; these are
equivalent

• PICTURE of S9(1-4) for a 2-byte integer, S9(5-9) for a 4-byte integer, and
S9(10-18) for an 8-byte integer.

The value is normally limited to the number of digits in the picture.

For example PICTURE S9(4) COMP is a 2-byte integer that normally ranges from
-32,768 to +32,767. However, the generated COBOL code only allows the value to
range from -9,999 to +9,999. When using these types of bind variables exclusively to
access and update DRDA SMALLINT, INTEGER, and BIGINT columns, define the
columns in Oracle as NUMBER(n), where n matches the above PICTURE S9(n)
definition.

When using BINARY, COMPUTATIONAL, COMP, COMPUTATIONAL-4, and COMP-4 COBOL
variables with the TRUNC(BIN) COBOL compiler option, the binary integers may range
to the full bounds of the datatype. Using COMPUTATIONAL-5 or COMP-5 has the same
effect, regardless whether the TRUNC compiler option is in effect. When programming in
COBOL, C, PL/I, or Assembler with a full range of the binary integers, define the
Oracle column as NUMBER(n+1), where n matches the above PICTURE S9(n) definition.

Based on datatype and usage in DRDA, here are the recommended substitute Oracle
datatypes:

Used with COBOL COMP:

• SMALLINT should be converted to Oracle NUMBER(4)

• INTEGER should be converted to Oracle NUMBER(9)

• BIGINT should be converted to Oracle NUMBER(18)

Used with COBOL COMP, TRUNC(BIN), COMP-5, C, PL/I, or Assembler binary
integer variables:

• SMALLINT should be converted to Oracle NUMBER(5)

• INTEGER should be converted to Oracle NUMBER(10)

• BIGINT should be converted to Oracle NUMBER(19)

Chapter 7
Numerical Range Considerations, for COBOL Users

7-4

7.3.1 Constraining Oracle NUMBER
When using the full range of binary integer values, it is advisable to implement Oracle
constraints and limit the value to the range of the corresponding datatype.

For example, a DRDA SMALLINT gets an equivalent Oracle NUMBER column that supports a full
range of SMALLINT values, only, as demonstrated in Example 7-1.

Note however that there is a performance penalty for specifying this type of check constraint,
Oracle verifies all constraints every time the column is updated.

Example 7-1 Constraining Oracle NUMBER to Exactly Match DRDA SMALLINT

CREATE TABLE smint_tab
 (smint NUMBER(5)
 CONSTRAINT check_smallint CHECK (smint BETWEEN -32768 AND 32767)
)

7.4 Conversion between DRDA Datatypes to Oracle Datatypes
Consider the mappings between DRDA and Oracle datatypes.

Note the following abbreviations:

• In a Single Byte Character Set (SBCS), the column can only contain single byte data.

• In a Multi-Byte Character Set (MBCS), the column may contain a combination of single-
byte and multi-byte characters.

7.4.1 INTEGER
4-byte binary number

SQL Type

496, 497

Size

4 bytes

Oracle Type

NUMBER(10)

7.4.2 SMALLINT
2-byte binary number

SQL Type

500, 501

Size

2 bytes

Chapter 7
Conversion between DRDA Datatypes to Oracle Datatypes

7-5

Oracle Type

NUMBER(5)

7.4.3 BIGINT
8-byte binary number

SQL Type

492, 493

Size

8 bytes

Oracle Type

NUMBER(19)

7.4.4 float
long double-precision (16 bytes)

SQL Type

480, 481

Range

54� b�126

Oracle Type

NUMBER

7.4.5 DOUBLE PRECISION or FLOAT(b)
double-precision (8 bytes)

SQL Type

480, 481

Range

22� b� 53

Oracle Type

BINARY_DOUBLE

7.4.6 REAL or FLOAT(b)
Single-precision (4 bytes)

Chapter 7
Conversion between DRDA Datatypes to Oracle Datatypes

7-6

SQL Type

480, 481

Range

1�b�21

Oracle Type

BINARY_FLOAT

7.4.7 DECIMAL(p,s)
precision and scale packed decimal

SQL Type

484, 485

Range

1�p�31, 1�s�31

Oracle Type

NUMBER(p,s)

7.4.8 DECIMAL(p,s) zoned
precision and scale zoned decimal

SQL Type

488, 489

Range

1�p�31, 1�s�31

Oracle Type

NUMBER(p,s)

7.4.9 NUMERIC(p,s)
precision and scale character decimal

SQL Type

504, 505

Range

1�p�31, 1�s�31

Chapter 7
Conversion between DRDA Datatypes to Oracle Datatypes

7-7

Oracle Type

NUMBER(p,s)

7.4.10 DECFLOAT(n=34)
precision and scale, with exponent; subject to loss

SQL Type

996, 997

Range

n=34

Oracle Type

NUMBER

7.4.11 DECFLOAT(n=16)
precision and scale, with exponent; subject to loss

SQL Type

996, 997

Range

n=16

Oracle Type

NUMBER

7.4.12 CHAR(n)
sbcs and mixed

SQL Type

452,453

Range

1≤ n≤255

Oracle Type

CHAR

7.4.13 CHAR(n) for Bit Data
byte

Chapter 7
Conversion between DRDA Datatypes to Oracle Datatypes

7-8

SQL Type

452,453

Range

1≤ n≤255

Oracle Type

RAW

7.4.14 VARCHAR(n)
sbcs

SQL Type

448,449

Oracle Type

VARCHAR2

7.4.15 VARCHAR(n)
mixed

SQL Type

448,449

Oracle Type

VARCHAR2

7.4.16 VARCHAR(n) for Bit Data
byte

SQL Type

448,449

Range

1≤ n≤2000

Oracle Type

RAW

7.4.17 VARCHAR(n)
sbcs

Chapter 7
Conversion between DRDA Datatypes to Oracle Datatypes

7-9

SQL Type

456,457

Range

1≤ n≤32767

Oracle Type

LONG

7.4.18 VARCHAR(n)
mixed

SQL Type

456,457

Range

1≤ n≤32767

Oracle Type

LONG

7.4.19 VARCHAR(n) for Bit Data
byte

SQL Type

456,457

Range

1≤ n≤32767

Oracle Type

LONG RAW

7.4.20 char(n+1)
sbcs

SQL Type

460,461

Range

1≤ n≤4000

Chapter 7
Conversion between DRDA Datatypes to Oracle Datatypes

7-10

Oracle Type

CHAR

7.4.21 char(n+1)
mixed

SQL Type

460,461

Range

1≤ n≤2000

Oracle Type

CHAR

7.4.22 char(n) for Bit Data
byte

SQL Type

460,461

Range

1≤ n≤2000

Oracle Type

RAW

7.4.23 VARGRAPHIC(n)
dbcs

SQL Type

464,465

Range

1≤ n≤2000

Oracle Type

NVARCHAR2

7.4.24 GRAPHIC(n)
dbcs

Chapter 7
Conversion between DRDA Datatypes to Oracle Datatypes

7-11

SQL Type

468,469

Range

1≤ n≤127

Oracle Type

NCHAR

7.4.25 VARGRAPHIC(n)
dbcs

SQL Type

472,473

Range

1≤ n≤2000

Oracle Type

NVARCHAR2

7.4.26 char(n) (Pascal L String)
byte

SQL Type

476,477

Range

1≤ n≤255

Oracle Type

CHAR

7.4.27 char(n) for Bit Data (Pascal L String)
byte

SQL Type

476,477

Range

1≤ n≤255

Chapter 7
Conversion between DRDA Datatypes to Oracle Datatypes

7-12

Oracle Type

RAW

7.4.28 DATE
Date with zero time component

SQL Type

384, 385

Oracle Type

DATE

7.4.29 TIME
Uses time component of date only, or is formatted as textual time representation

SQL Type

388, 389

Oracle Type

DATE or CHAR(8)

7.4.30 TIMESTAMP
Timestamp

SQL Type

392, 393

Oracle Type

TIMESTAMP(6)

7.4.31 (datalink)
no equivalent representation

SQL Type

396, 397

Oracle Type

VARCHAR2 for sbcs, or NVARCHAR2 for dbcs

7.4.32 BLOB
Binary Long OBject

Chapter 7
Conversion between DRDA Datatypes to Oracle Datatypes

7-13

SQL Type

404, 405

Oracle Type

BLOB

7.4.33 CLOB
Character Long OBject (LOB) for sbcs or mixed representation

SQL Type

408, 409

Oracle Type

CLOB for sbcs, and CLOB for mixed representation

7.4.34 DBCLOB
For dbcs

SQL Type

412, 413

Oracle Type

NCLOB

7.4.35 BLOB LOCATOR
Binary Long OBject (LOB)

SQL Type

960, 961

Oracle Type

BLOB

7.4.36 CLOB LOCATOR
For sbcs or mixed representation

SQL Type

964, 965

Oracle Type

CLOB

Chapter 7
Conversion between DRDA Datatypes to Oracle Datatypes

7-14

7.4.37 DBCLOB LOCATOR
For dbcs representation

SQL Type

968, 969

Oracle Type

NCLOB

7.4.38 boolean
No equivalent representation

SQL Type

2436, 2437

Oracle Type

NUMBER(5)

7.4.39 BINARY(n)
Fixed-length binary string

SQL Type

912, 913

Range

1 ≤ n ≤ 255

Oracle Type

RAW

7.4.40 VARBINARY(n)
Variable-length binary string

SQL Type

908, 909

Range

1 ≤ n ≤ 32767

Oracle Type

LONG RAW

Chapter 7
Conversion between DRDA Datatypes to Oracle Datatypes

7-15

7.4.41 XML
External form

SQL Type

988, 989

Oracle Type

SYS.XMLType

7.5 Conversion of Oracle Datatype to DRDA
Tables and procedures use Oracle datatypes. When describing objects, or returning
data from a table or procedure, Oracle maps Oracle datatypes onto equivalent DRDA
datatypes.

7.5.1 BINARY_FLOAT
8 bytes

SQL Type

480, 481

SQL Type Name

DOUBLE (8 byte floating point)

7.5.2 BINARY_DOUBLE
8 bytes

SQL Type

480, 481

SQL Type Name

DOUBLE (8 byte floating point)

7.5.3 VARCHAR2(n)
mixed variable length character string

SQL Type

448, 449

Range

1 ≤ n ≤ 32,767

Chapter 7
Conversion of Oracle Datatype to DRDA

7-16

SQL Type Name

VARCHAR(n) FOR MIXED DATA

7.5.4 LONG
Mixed long variable-length character string; Oracle LONG supports up to 2^31-1 bytes, but only
the first 32,767 bytes are currently returned.

SQL Type

448, 449

SQL Type Name

VARCHAR(32767) FOR MIXED DATA

7.5.5 LONG RAW
Binary long variable length character string; Oracle LONG RAW supports up to 2^31-1 bytes, but
only the first 32,767 bytes are currently returned.

SQL Type

448, 449

SQL Type Name

VARCHAR(32767) FOR BIT DATA

7.5.6 NVARCHAR2(n)
National variable length character string

SQL Type

464, 465

Range

1 ≤ n ≤ 32,767

SQL Type Name

VARGRAPHIC(n)

7.5.7 CHAR(n)
Mixed fixed length character string; there are two possibilities, determined by the range
necessary for the datatype: converts to CHAR(n) for n under 256, and to VARCHAR(n) for longer
character strings.

Chapter 7
Conversion of Oracle Datatype to DRDA

7-17

7.5.7.1 Shorter version

SQL Type

452, 453

Range

1 � n � 255

SQL Type Name

CHAR(n) FOR MIXED DATA

7.5.7.2 Longer Version

SQL Type

448, 449

Range

256 � n � 32,767

SQL Type Name

VARCHAR(n) FOR MIXED DATA

7.5.8 NCHAR(n)
National fixed length character string; there are two possibilities, determined by the
range necessary for the datatype: converts to CHAR(n) for n under 256, and to
VARCHAR(n) for longer character strings.

7.5.8.1 Shorter version

SQL Type

468, 469

Range

1 � n � 255

SQL Type Name

GRAPHIC(n)

7.5.8.2 Longer Version

SQL Type

464, 465

Chapter 7
Conversion of Oracle Datatype to DRDA

7-18

Range

256 � n � 32,767

SQL Type Name

VARGRAPHIC(n)

7.5.9 UROWID
Oracle universal ROWID

SQL Type

908, 909

SQL Type Name

VARBINARY(4000)

7.5.10 DATE
Oracle DATE

SQL Type

384, 385

SQL Type Name

DATE

7.5.11 TIMESTAMP
Oracle TIMESTAMP

SQL Type

392, 393

SQL Type Name

TIMESTAMP

7.5.12 TIMESTAMP WITH LOCAL TIME ZONE
Oracle TIMESTAMP WITH LOCAL TIME ZONE

SQL Type

392, 393

SQL Type Name

TIMESTAMP

Chapter 7
Conversion of Oracle Datatype to DRDA

7-19

7.5.13 TIMESTAMP(p) WITH TIME ZONE
Oracle TIMESTAMP WITH LOCAL TIME ZONE

SQL Type

448, 449

Range

0 � p � 9

SQL Type Name

VARCHAR(n) FOR MIXED DATA

n=148 for TIMESTAMP(0) WITH TIME ZONE; otherwise, 149+p for TIMESTAMP(p) WITH
TIME ZONE

7.5.14 RAW(n)
Binary variable length string

SQL Type

908, 909

Range

1 � n � 2000

SQL Type Name

VARBINARY(n)

7.5.15 NUMBER and FLOAT
Oracle NUMBER and FLOAT may be used to represent several numeric types:

• simple integer types with only a decimal precision

• fixed-point decimal types with a specific precision and scale

• floating point types with up to 38 decimal digits of precision and an exponent

Additionally, NUMBER may be defined with a scale that is greater than precision, with
negative scale, and as a FLOAT with binary precision. See Table 7-1 and Table 7-2 for
details.

Note that the general form of this datatype is NUMBER(p,s), where p is the variable for
precision and s is the variable for scale.

Chapter 7
Conversion of Oracle Datatype to DRDA

7-20

Table 7-1 Converting Oracle NUMBER Variants to DRDA Datatypes

Oracle Variant of
NUMBER(p,s)

DRDA Datatype Notes

NUMBER(1) DECIMAL(1)

NUMBER(2-4) SMALLINT

NUMBER(5-9) INTEGER

NUMBER(10-18) BIGINT Whenever the client does not support BIGINT, the
mapping is made to DECIMAL(n)

NUMBER(19-31) DECIMAL(p)

NUMBER(1-31, 1-31) DECIMAL(p,s) For both datatypes, scale <= precision

NUMBER(32-38) DECFLOAT34 Whenever the client does not support DECFLOAT, the
mapping is made to DOUBLE.

Oracle NUMBER(35-38) is rounded to 34 digits during
conversion.

NUMBER(1-38, -s)

where scale is negative

DECFLOAT34 Whenever the client does not support DECFLOAT, the
mapping is made to DOUBLE.

Oracle NUMBER(35-38) is rounded to 34 digits during
conversion.

NUMBER(1-38, s)

where scale > precision

DECFLOAT34 Whenever the client does not support DECFLOAT, the
mapping is made to DOUBLE.

Oracle NUMBER(35-38) is rounded to 34 digits during
conversion.

NUMBER(32-38, s)

with any scale

DECFLOAT34 Whenever the client does not support DECFLOAT, the
mapping is made to DOUBLE.

Oracle NUMBER(35-38) is rounded to 34 digits during
conversion.

NUMBER DECFLOAT34 Whenever the client does not support DECFLOAT, the
mapping is made to DOUBLE

Table 7-2 Converting Oracle FLOAT Variants to DRDA Datatypes

Oracle Variant of
FLOAT(n)

DRDA Datatype Notes

FLOAT(1-53) DECFLOAT16 Whenever the client does not support DECFLOAT, the
mapping is made to DOUBLE

FLOAT(n)

where n > 53

DECFLOAT34 Whenever the client does not support DECFLOAT, the
mapping is made to DOUBLE

FLOAT DECFLOAT34 Whenever the client does not support DECFLOAT, the
mapping is made to DOUBLE

7.6 Datatype Equivalence and Remapping
Oracle does not provide discrete database datatypes such as SMALLINT, INTEGER or BIGINT
DRDA datatypes. In some cases, often to limit the column's range of values, it may become
necessary to define a numeric column with specific precision or scale. Oracle therefore

Chapter 7
Datatype Equivalence and Remapping

7-21

supplies a more flexible numeric database datatype, Oracle NUMBER, which may be
defined by specified precision and scale. Oracle NUMBER may contain both integral and
fractional values in the same column, if no specific range limitations have been defined
for the column.

Consideration, therefore, must be made for appropriate database datatypes when
migrating data from a non-Oracle database. This is particularly important when
migrating applications that expect to handle data of a limited range or form.

For example, if the application accepts a data range specific to NUMBER(5), but the
column is defined by datatype NUMBER, it is likely that an inappropriate or invalid values
may be inserted into the column and causing data issues when using or retrieving that
value.

If the table definition is mapped to a close approximation of the original non-Oracle
data, there should be no datatype compatibility issues. However, in cases where data
that was not modeled accurately must be accessed, or if a query uses an expression
that yields a non-range limited datatype, it may become necessary to apply an
alternate datatype that is more compatible.

Consider that the COUNT(*) expression results in a non-range limited Oracle NUMBER
datatype. If the application expects the result of the query that uses COUNT to be
represented as a DRDA INTEGER datatype, it becomes necessary perform one of the
following steps to avoid a type mis-match:

• change the application to use the Oracle NUMBER

• change the query expression to CAST the result to the appropriate form

• remap the resulting datatype form

Often, it is neither practical nor feasible to modify the application, and remapping the
datatype is the only workable solution.

The Application Server has a limited facility to convert Oracle NUMBER datatype results
to more discrete equivalent DRDA datatypes, on a per table or per column basis. This
mechanism may also be used when the client AR is unable to properly convert the
default mappings of Oracle NUMBER to DRDA datatype. See “Conversion of Oracle
Datatype to DRDA” for all supported conversions.

Related Topics

• Conversion of Oracle Datatype to DRDA

7.6.1 Applying Datatype Mapping
To apply datatype mappings, you must invoke the PL/SQL function. Refer the section
on “SET_TYPEMAP.” The procedure SET_TYPEMAP implements a specified type
conversion map for a specified table and column expression. The syntax for the type
map object name is table_name:column_expression. The wildcard character, *, may
be used in place of table name to include all tables with the specified column
expression. It may also be used to indicate that all column expressions for a specified
table that evaluate to an Oracle NUMBER be type mapped.

The syntax for converting from Oracle NUMBER to another datatype is NUMBER=datatype.
See Oracle NUMBER TYPEMAP Datatype Names for available datatype names.

The default mapping of Oracle NUMBER is to DRDA DECFLOAT(34). “Using TYPEMAP in
Queries that Use the Column Directly” shows that queries that use a column directly

Chapter 7
Datatype Equivalence and Remapping

7-22

may use re-mapping on the retrieved column as a DRDA type INTEGER. When using a column
in a function it may be necessary to apply a typemap for the expression, as described in
“Using TYPEMAP in a function”.

Related Topics

• Using TYPEMAP in Queries

7.6.2 Using TYPEMAP in Queries
Assume that an application expects an EMPLOYEE_ID value to be in a format of DRDA type
INTEGER.

Example 7-2 Using TYPEMAP in Queries that Use the Column Directly

CREATE TABLE employees(employee_id NUMBER(6), first_name VARCHAR2(20), ...);

This mapping enforces range limitations. To facilitate this mapping, apply the following
typemap entry for the applications package ORACLE.MYPACKAGE:

begin
 dbms_drdaas.set_typemap (
 'ORACLE', 'MYPACKAGE', 'EMPLOYEES:EMPLOYEE_ID',
 'NUMBER=INTEGER');
end;

7.6.3 Using TYPEMAP in Functions
When using the COUNT function against the column, as in

Example 7-3 Using TYPEMAP in a Function

SELECT COUNT(employee_id) FROM employees;

apply the following typemap expression:

begin
 dbms_drdaas.set_typemap (
 'ORACLE', 'MYPACKAGE', 'EMPLOYEES:COUNT(EMPLOYEE_ID)',
 'NUMBER=INTEGER');
end;

7.6.4 Oracle NUMBER TYPEMAP
Table 7-3 lists available typemap names and their conversion to DRDA datatypes.

Table 7-3 Oracle NUMBER TYPEMAP Datatype Names

Datatype Name SQL Type Datatype Size Notes

SMALLINT 500, 501 2 bytes small integer

INTEGER 496, 497 4 bytes integer

BIGINT 492, 493 8 bytes large integer

FLOAT 480. 481 4 bytes single-precision floating point

DOUBLE 480, 481 8 bytes double-precision floating point

Chapter 7
Datatype Equivalence and Remapping

7-23

8
Data Dictionary for Oracle Database Provider
for DRDA

Oracle enhanced its data dictionary to enable Oracle Database Provider for DRDA.

8.1 Data Dictionary Emulation in Oracle Database Provider for
DRDA

Many applications use a subset of DB2 system catalogs. Oracle Database Provider for DRDA
supports three major sets of catalogs. While all three have some common structures among
them, there are many distinct differences.

These catalogs may be implemented as overlays, or views, of existing Oracle data dictionary
tables and views.

The catalog described in this section is for “DB2 for z/OS”.

Related Topics

• DB2 for z/OS

8.1.1 DB2 for z/OS
DB2 for z/OS includes the following catalog tables. Please see IBM's DB2 for z/OS SQL
Reference manual for description of these views.

• SYSIBM.SYSCOLUMNS

• SYSIBM.SYSDUMMY1

• SYSIBM.SYSFOREIGNKEYS

• SYSIBM.SYSINDEXES

• SYSIBM.SYSKEYCOLUSE

• SYSIBM.SYSKEYS

• SYSIBM.SYSPACKAGE

• SYSIBM.SYSPACKSTMT

• SYSIBM.SYSPARMS

• SYSIBM.SYSPLAN

• SYSIBM.SYSRELS

• SYSIBM.SYSROUTINES

• SYSIBM.SYSSYNONYMS

• SYSIBM.SYSTABCONST

8-1

• SYSIBM.SYSTABLES

• SYSIBM.SYSVIEWS

8.2 Data Dictionary Views for Oracle Database Provider for
DRDA

Oracle Database Provider for DRDA has uses several data dictionary views:

8.2.1 ALL_DRDAASPACKAGE Data Dictionary View
Table 8-1 contains the list of currently bound DRDA packages. It is owned by user
SYSIBM. Users must be granted either the DRDAAS_USER_ROLE or the
DRDAAS_ADMIN_ROLE in order to access this view; see “DRDAAS_USER_ROLE” and
“DRDAAS_ADMIN_ROLE”.

Table 8-1 ALL_DRDAASPACKAGE data dictionary view description

Column Name Datatype Null? Description

COLLID VARCHAR2(128) Not NULL collection ID of Pkg (RDBCOLID)

NAME VARCHAR2(128) Not NULL name of DRDA package (PKGID)

VRSNAM VARCHAR2(128) version name of package (VRSNAM)

CONTOKEN RAW(8) Not NULL consistency string of package
(PKGCNSTKN)

OWNER VARCHAR2(128) Not NULL userid that owns package

CREATOR VARCHAR2(128) Not NULL userid that created/bound package

CREATE_TIME TIMESTAMP Not NULL time package is created

LAST_BIND_TIME TIMESTAMP Not NULL time of the last binding of package

Related Topics

• DRDAAS_USER_ROLE

• DRDAAS_ADMIN_ROLE

8.2.2 ALL_DRDAASPACKAUTH Data Dictionary View
Table 8-2 contains the set of user ids, DRDA package names, and privileges granted
to the user for each package. It is owned by user SYSIBM. Users must be granted either
the DRDAAS_ADMIN_ROLE or the DRDAAS_ADMIN_ROLE in order to access this view; see
“DRDAAS_USER_ROLE” and “DRDAAS_ADMIN_ROLE”.

Table 8-2 ALL_DRDAASPACKAUTH data dictionary view description

Column Name Datatype Null? Description

GRANTOR VARCHAR2(128) Not NULL userid of user who granted privileges

GRANTEE VARCHAR2(128) Not NULL userid of user who received privileges

GRANT_TIME TIMESTAMP Not NULL time privileges were created

Chapter 8
Data Dictionary Views for Oracle Database Provider for DRDA

8-2

Table 8-2 (Cont.) ALL_DRDAASPACKAUTH data dictionary view description

Column Name Datatype Null? Description

COLLID VARCHAR2(128) Not NULL collection ID of DRDA package
(RDBCOLID)

NAME VARCHAR2(128) Not NULL name of DRDA package (PKGID)

PRIVILEGE VARCHAR2(128) Not NULL privilege

Related Topics

• DRDAAS_USER_ROLE

• DRDAAS_ADMIN_ROLE

8.2.3 ALL_DRDAASPACKSIDE Data Dictionary View
Table 8-3 shows side attributes for the DRDA package. It is owned by user SYSIBM. Users
must be granted either the DRDAAS_ADMIN_ROLE or the DRDAAS_ADMIN_ROLE in order to access
this view; refer “DRDAAS_USER_ROLE” and “DRDAAS_ADMIN_ROLE”.

Table 8-3 ALL_DRDAASPACKSIDE data dictionary view description

Column Name Datatype Null? Description

COLLID VARCHAR2(128) Not NULL collection ID (Schema) of DRDA package
(RDBCOLID)

NAME VARCHAR2(128) Not NULL name of DRDA package (PKGID)

SIDEITEM VARCHAR2(128) Not NULL side item

SIDEWORD VARCHAR2(255) Not NULL side keyword

SIDEVALUE VARCHAR2(255) Not NULL side value

Related Topics

• DRDAAS_ADMIN_ROLE

• DRDAAS_USER_ROLE

8.2.4 DBA_DRDAASPACKAGE Data Dictionary View
Table 8-4 contains the DRDA package definition data. It is owned by user SYSIBM. Users must
be granted the DRDAAS_ADMIN_ROLE in order to access this view; see “DRDAAS_ADMIN_ROLE”.

Table 8-4 DBA_DRDAASPACKAGE data dictionary view description

Column Name Datatype Null? Description

COLLID VARCHAR2(128) Not NULL collection ID (Schema) of DRDA package
(RDBCOLID)

NAME VARCHAR2(128) Not NULL name of DRDA package (PKGID)

VRSNAM VARCHAR2(128) version name of package (VRSNAM)

Chapter 8
Data Dictionary Views for Oracle Database Provider for DRDA

8-3

Table 8-4 (Cont.) DBA_DRDAASPACKAGE data dictionary view description

Column Name Datatype Null? Description

CONTOKEN RAW(8) Not NULL consistency string of package
(PKGCNSTKN)

OWNER VARCHAR2(128) Not NULL userid that owns package

CREATOR VARCHAR2(128) Not NULL userid that created package

CREATE_TIME TIMESTAMP Not NULL time package is created

LAST_BIND_TIME TIMESTAMP Not-NULL time of the last binding of package

QUALIFIER VARCHAR2(128) default schema of package (DFTRDBCOL)

PKSIZE NUMBER(5) Not NULL number of sections in the package
(MAXSCTNBR)

VALID CHAR(1) Not NULL package valid state; Y for yes, N for no

ISOLATION CHAR(1) Not NULL R=RR, A=ALL, C=CS, G=CHG, N=NC
(PKGISOLVI)

RELEASEOPT CHAR(1) C=COMMIT, D=DEALLOCATE (RDBRLSOPT)

BLOCKING CHAR(1) B=block, N=no blocking (QRYBLKCTL)

CODEPAGES NUMBER(5) default DBCS codepage
(PKGDFTCC(CCSIDSBC))

CODEPAGED NUMBER(5) Default DBCS codepage
(PKGDFTCC(CCSIDDBC))

CODEPAGEM NUMBER(5) Default MBCS codepage
(PKGDFTCC(CCSIDMBC))

CODEPAGEX NUMBER(5) Default XML codepage
(PKGDFTCC(CCSIDXML))

DEGREEIOPRL NUMBER(5) Degree of parallel I/O (DGRIOPRL)

DATEFMT CHAR(1) Date Format, 1=USA, 2=EUR, 3=ISO, 4JIS,
5=LOCAL

TIMEFMT CHAR(1) Time Format, 1=USA, 2=EUR, 3=ISO, 4JIS,
5=LOCAL

DECDEL CHAR(1) Decimal Delimiter (STTDECDEL)

STRDEL CHAR(1) String Delimiter (STTSTRDEL)

DECPRC NUMBER(5) Decimal Precision (DECPRC)

CHARSUBTYPE CHAR(1) Character Subtype (PKGDFTCST)

DYNAMICRULES CHAR(1) Future usage (PKGATHRUL)

REPREPDYNSQL CHAR(1) Future usage (PRPSTTKP)

Related Topics

• DRDAAS_ADMIN_ROLE

8.2.5 DBA_DRDAASPACKAUTH Data Dictionary View
Table 8-5 contains the set of userids and RDA package names, as well as privileges
granted to the user for each package. It is owned by user SYSIBM. Users must be

Chapter 8
Data Dictionary Views for Oracle Database Provider for DRDA

8-4

granted the DRDAAS_ADMIN_ROLE in order to access this view; see “DRDAAS_ADMIN_ROLE”.

Table 8-5 DBA_DRDAASPACKAUTH data dictionary view description

Column Name Datatype Null? Description

GRANTOR VARCHAR2(128) Not NULL authorization ID of user who grants package
privileges

GRANTEE VARCHAR2(128) Not NULL authorization ID of user who has package
privileges

COLLID VARCHAR2(128) Not NULL collection ID (Schema) of DRDA package
(RDBCOLID)

NAME VARCHAR2(128) Not NULL name of DRDA package (PKGID)

VRSNAM VARCHAR(128) Not NULL version name of package (VRSNAM)

PRIVILEGE VARCHAR2(128) Not NULL granted privilege

Related Topics

• DRDAAS_ADMIN_ROLE

8.2.6 DBA_DRDAASPACKSIDE Data Dictionary View
Table 8-6 shows side attributes for the DRDA package. It is owned by user SYSIBM. Users
must have DRDAAS_ADMIN_ROLE in order to access this view.

Table 8-6 DBA_DRDAASPACKSIDE data dictionary view description

Column Name Datatype Null? Description

COLLID VARCHAR2(128) Not NULL collection ID (Schema) of DRDA package
(RDBCOLID)

NAME VARCHAR2(128) Not NULL name of DRDA package (PKGID)

SIDEITEM VARCHAR(128) Not NULL side item

SIDEWORD VARCHAR2(255) Not NULL side keyword

SIDEVALUE VARCHAR2(255) Not NULL side value

8.2.7 DBA_DRDAASPACKSTMT Data Dictionary View
Table 8-7 contains the DRDA package body data. It is owned by user SYS. Users must be
granted the DRDAAS_ADMIN_ROLE in order to access this view; see “DRDAAS_ADMIN_ROLE”.

Table 8-7 DBA_DRDAASPACKSTMT data dictionary view description

Column Name Datatype Null? Description

COLLID VARCHAR2(128) Not NULL collection ID (Schema) of DRDA package
(RDBCOLID)

NAME VARCHAR2(128) Not NULL name of DRDA package (PKGID)

VRSNAM VARCHAR(128) version name of package (VRSNAM)

CONTOKEN RAW(8) Not NULL consistency string of package (PKGCNSTKN)

Chapter 8
Data Dictionary Views for Oracle Database Provider for DRDA

8-5

Table 8-7 (Cont.) DBA_DRDAASPACKSTMT data dictionary view description

Column Name Datatype Null? Description

STMTASM CHAR(1) Not NULL Statement Assumptions (BNDSTTADM)

STMTNO NUMBER(5) Not NULL statement number (SQLSTTNBR)

SECTNO NUMBER(5) Not NULL section number (PKGSN)

STMTLEN NUMBER Not NULL statement text length

STMT CLOB Not NULL statement text

Related Topics

• DRDAAS_ADMIN_ROLE

8.2.8 DBA_DRDAASTRACE Data Dictionary View
“DRDAASPATRACE data dictionary view description contains trace entry from the
DBMS_DRDAAS and DBMS_DRDAAS_ADMIN package functions. It is owned by user
SYSIBM.Users must be granted either the DRDAAS_ADMIN_ROLE or the
DRDAAS_ADMIN_ROLE in order to access this view.

This is a debugging feature only.

Table 8-8 DBA_DRDAASPATRACE data dictionary view description

Column Name Datatype Null? Description

CALLER VARCHAR2(128) Not NULL userid of user who wrote the trace record

FUNC VARCHAR2(128) Not NULL function that is traced

ARG1 VARCHAR(128) argument 2

ARG2 VARCHAR(128) argument 1

ARG3 VARCHAR(128) argument 3

ARG4 VARCHAR(128) argument 4

ARG5 VARCHAR(128) argument 5

TS TIMESTAMP Not-NULL timestamp of trace entry

Related Topics

• DRDAAS_ADMIN_ROLE

• DRDAAS_USER_ROLE

8.2.9 USER_DRDAASPACKAGE Data Dictionary View
The view only returns rows that match the current SQL user ID in the creator or owner
column and have EXECUTE_PRIVILEGE granted to the userid in DBA_DRDAASPACKAUTH
matching the package COLLID and name.

The view USER_DRDAASPACKAGE maps onto DBA_DRDAASPACKAGE table. It is owned by
user SYSIBM. Users must have the DRDAAS_USER_ROLE in order to select from this view;
see “DRDAAS_USER_ROLE”.

Chapter 8
Data Dictionary Views for Oracle Database Provider for DRDA

8-6

This view has the same column definition as the DBA_DRDAASPACKAGE table; see
“DBA_DRDAASPACKAGE data dictionary view description.”

Related Topics

• DBA_DRDAASPACKAGE Data Dictionary View

8.2.10 USER_DRDAASPACKAUTH Data Dictionary View
This view only return rows that match the current SQL user ID in the grantee column.

The view USER_DRDAASPACKAUTH maps on top of DBA_DRDAASPACKAUTH. It is owned by user
SYSIBM. Users must have the DRDAAS_USER_ROLE in order to select from this table; see
“DRDAAS_USER_ROLE”.

This view has the same column definition as the DBA_DRDAASPACKAUTH table; see
“DBA_DRDAASPACKAUTH data dictionary view description”.

Related Topics

• DRDAAS_USER_ROLE

• DBA_DRDAASPACKAUTH Data Dictionary View

8.2.11 USER_DRDAASPACKSIDE Data Dictionary View
This view is used internally by the Application Server.

The view USER_DRDAASPACKSIDE maps on top of DBA_DDRDAASPACKSIDE. It is owned by user
SYSIBM. Users must have the DRDAAS_USER_ROLE in order to select from this table; see
“DRDAAS_USER_ROLE”.

This view has the same column definition as the DBA_DRDAASPACKSIDE table; see
“DBA_DRDAASPACKSIDE data dictionary view description”.

Related Topics

• DRDAAS_USER_ROLE

• DBA_DRDAASPACKSIDE Data Dictionary View

8.2.12 USER_DRDAASPACKSTMT Data Dictionary View
The view only returns rows that match the current SQL user ID in the creator or owner
column, and have EXECUTE_PRIVILEGE granted to the userid in DBA_DRDAASPACKAUTH matching
the package COLLID and name.

The view USER_DRDAASPACKSTMT maps onto of DBA_DRDAASPACKSTMT table. It is owned by user
SYSIBM. Users must have the DRDAAS_USER_ROLE in order to select from this table; see
“DRDAAS_USER_ROLE”.

This view has the same column definition as the DBA_DRDAASPACKSTMT table; see
“DBA_DRDAASPACKSTMT data dictionary view description.”

Related Topics

• DRDAAS_USER_ROLE

• DBA_DRDAASPACKSTMT Data Dictionary View

Chapter 8
Data Dictionary Views for Oracle Database Provider for DRDA

8-7

8.2.13 USER_DRDAASTRACE Data Dictionary View
The view returns only the rows that match the userid of the current user.

This is a debugging feature only.

The view USER_DRDAASTRACE maps onto DBA_DRDAASTRACE view. It is owned by user
SYSIBM. Users must be granted the DRDAAS_USER_ROLE in order to access this view;
see “DRDAAS_USER_ROLE”.

This view has the same column definition as the USER_DRDAASTRACE view, with the
exception of the caller column. See “DBA_DRDAASPATRACE data dictionary view”.

Related Topics

• DRDAAS_USER_ROLE

• DBA_DRDAASTRACE Data Dictionary View

Chapter 8
Data Dictionary Views for Oracle Database Provider for DRDA

8-8

9
Error Codes Support in Oracle Database
Provider for DRDA

Oracle Database Provider for DRDA has error code support, and supports management of
errors and warnings generated by applications developed for DB2 and DRDA.

9.1 Oracle Error Codes
In DRDA and DB2, certain types of operations may be successful but generate a warning.
For example, when an operation generates an integer overflow situation, DB2 continues and
returns the rest of the row data with an indicator set for the column value that contains the
error. It will also issue the warning code +802:

(EXCEPTION ERROR exceptioncode HAS OCCURRED DURING
 operationtype OPERATION
 ON datatype DATA,
 POSITION positionnumber)

In DB2 and DRDA, negative SQLCODEs are errors, and positive SQLCODEs are warnings.
Oracle, unlike DRDA (and DB2), has no notion of a warning condition. In Oracle, call
execution is either successful or generates an error. For example, Oracle treats an overflow
situation as an error, and does not continue. Thus, Oracle Database Provider for DRDA
cannot emulate DB2 behavior precisely.

However, most normal error conditions that are common to both Oracle and DRDA (and DB2)
may be mapped.

“Error Code Mappings, from Oracle to DRDA” lists some common Oracle error codes and
their equivalent SQL codes and SQL states.

Related Topics

• Error Code Mapping, from Oracle to DRDA

9.1.1 Error Code Mapping, from Oracle to DRDA

Table 9-1 Error Code Mappings, from Oracle to DRDA

Oracle Error Code SQLCODE SQLSTATE Error Code Description

ORA-00001 -803 23505 Unique constraint violation

ORA-00900 -104 or -199 42601 Invalid SQL statement

ORA-00900 -84 42616 Invalid SQL statement

ORA-00901 -104 or -199 42601 Invalid CREATE command

ORA-00902 -104 or -199 42601 Invalid datatype

ORA-00903 -104 or -199 42601 Invalid table name

ORA-00904 -204 42704 Invalid identifier

9-1

Table 9-1 (Cont.) Error Code Mappings, from Oracle to DRDA

Oracle Error Code SQLCODE SQLSTATE Error Code Description

ORA-00904 -206 42703 Invalid identifier

ORA-00905 -199 42601 Misspelled keyword

ORA-00906 -104 42601 Missing left parenthesis

ORA-00907 -104 42601 Missing right parenthesis

ORA-00908 -104 42601 Missing NULL

ORA-00909 -170 42605 Incorrect number of arguments

ORA-00910 -604 42611 Creating a CHAR column with length of max+1

ORA-00911 -104 or -199 42601 Invalid character

ORA-00913 -117 42802 Too many values

ORA-00917 -104 or -199 42601 Missing coma

ORA-00918 -203 42702 Ambiguous column usage

ORA-00920 -104 or -199 42601 Invalid relational operator

ORA-00922 -104 or -199 42601 Invalid or missing option

ORA-00923 -104 42601 FROM keyword not found where expected

ORA-00925 -104 42601 Missing INTO keyword

ORA-00926 -104 42601 Missing VALUES keyword

ORA-00927 -199 42601 Missing = sign

ORA-00928 -104 42601 Missing SELECT keyword

ORA-00932 -408 42821 Value not compatible with target column type

ORA-00933 -104 or -199 42601 SQL command not properly ended

ORA-00934 -120 42903 Group function not allowed

ORA-00936 -104 or -199 42601 Missing expression

ORA-00937 -122 42803 Not a single group function

ORA-00942 -204 42704 Table or view does not exist

ORA-00947 -117 42802 Not enough values

ORA-00950 -104 or -199 42601 Invalid DROP option

ORA-00955 -601 42710 Name is already used by an existing object

ORA-00957 -612 42711 Duplicate column name

ORA-00960 -203 42702 Ambiguous column naming in select list

ORA-00969 -104 42601 Missing ON keyword

ORA-00971 -104 42601 Missing SET keyword

ORA-00972 -107 46002 Identifier is too long

ORA-00975 -182 42816 Date + date not allowed

ORA-00979 -122 42803 Not a GROUP BY expression

ORA-00999 -104 or -199 42601 Invalid view name

ORA-01000 -905 57014 Maximum open cursors exceeded

ORA-01002 -501 22003 Fetch out of sequence

Chapter 9
Oracle Error Codes

9-2

Table 9-1 (Cont.) Error Code Mappings, from Oracle to DRDA

Oracle Error Code SQLCODE SQLSTATE Error Code Description

ORA-01008 -313 07001 Not all variables bound

ORA-01031 -551 42501 Insufficient privilege to perform operation on
object

ORA-01036 -313 07001 Illegal variable name/number

ORA-01400 -407 23502 Cannot insert NULL into column

ORA-01403 +100 02000 No data found

ORA-01410 -399 22511 Invalid ROWID

ORA-01422 -811 21000 Exact fetch returns more than requested
number of rows

ORA-01424 -130 22019 Missing or illegal character following the
escape character

ORA-01425 -130 22025 Escape character must be string of length 1

ORA-01427 -811 21000 Single-row subquery returns more than one
row

ORA-01435 -553 42503 User does not exist

ORA-01438 -413 22003 Value larger than specified precision allowed
for this column

ORA-01455 -413 22003 Converting column overflows INTEGER
datatype

ORA-01476 -802 22012 Divisor equal to zero

ORA-01488 -302 22001 Invalid nibble or byte in the input data

ORA-01722 -408 42821 Invalid number

ORA-01730 -158 42811 CREATE VIEW with ambiguous number of
columns

ORA-01745 -313 07001 Invalid host/bind variable name

ORA-01747 -104 or -199 42601 Invalid table or column specification

ORA-01756 -104 42603 Missing quote for quoted string

ORA-01789 -421 42826 Operands of a set operator do not have the
same number of columns

ORA-01830 -181 22007 Date format picture ends before converting
entire input string

ORA-01841 -181 22007 (Full) year must be between -4713 and
+9999, and not 0

ORA-01843 -181 22007 Bad month

ORA-01847 -181 22007 Bad year

ORA-01858 -181 22007 not numeric where numeric expected in date

ORA-01861 -180 22007 Literal does not match format string

ORA-02089 -426 2D528 COMMIT is not allowed in subordinate session

ORA-02291 -530 23503 Parent not found (insert/update/delete)

ORA-02292 -531 23504 Child not found (insert/update)

ORA-02292 -532 23504 Child not found (delete)

Chapter 9
Oracle Error Codes

9-3

Table 9-1 (Cont.) Error Code Mappings, from Oracle to DRDA

Oracle Error Code SQLCODE SQLSTATE Error Code Description

ORA-04043 -204 42704 Object not found

ORA-04063 -84 42612 Package body has errors

ORA-06550 -204 42504 Reports various PL/SQL errors, such as:

• PLS00201: identifier must be declared
• PLS-00904: insufficient privilege to

access object

ORA-06576 -440 42884 Not a valid function or procedure name

ORA-08006 -508 24504 Specified row no longer exists

ORA-12899 -404 22001 Value too large for column

ORA-20980 -551 42501 User does not have package privilege for
operation

ORA-20981 -917 42969 Bind package failed

ORA-20982 -551 42501 User does not have package privilege for
operation

ORA-20983 -722 42704 Package does not exist

ORA-22275 -423 0F001 Invalid LOB locator specified

ORA-24333 -104 or -199 42601 Misspelled SQL statement

ORA-24381 -253 22529 array insert or merge reported some errors

All other errors -84 42612

Chapter 9
Oracle Error Codes

9-4

10
Command-line Utility for Oracle Database
Provider for DRDA

Oracle Database Provider for DRDA provides command-line utility.

10.1 Command-line Utility
The command-line utility drdactl enables the user to control the Oracle DRDA Application
Sever. It controls startup, shutdown, status and operational changes of the AS. The drdactl
utility may be invoked with command arguments for immediate execution, or without
arguments (the utility will prompt for commands).

10.1.1 START
This command starts the designated instance.

Syntax

START {instance_name}

10.1.2 STOP
This command stops the designated running instance.

Syntax

STOP {instance_name}

10.1.3 STATUS
This command displays the current status of the designated running instance, and any
currently connected session information.

Syntax

STATUS {instance_name} {DETAIL}

10.1.4 TRACE
This command disables or enables tracing at a specified level, for the specified session id.

Syntax

TRACE {<instance_name>} <OFF|Level> {SESSION {<session_id>|ALL}}

10-1

10.1.5 PAUSE
This command pauses the session with the specified session id.

Syntax

PAUSE {instance_name} SESSION <session_id>

10.1.6 RESUME
This command resumes the session with the specified session id.

Syntax

RESUME {instance_name} SESSION <session_id>

10.1.7 RELOAD
This command causes the server to reload the instance configuration.

Syntax

RELOAD {instance_name}

10.1.8 EXIT
This command exits the utility and returns to the operating system.

Syntax

EXIT

Chapter 10
Command-line Utility

10-2

11
Security and Storage Considerations for
Oracle Database Provider for DRDA

Before using Oracle Database Provider for DRDA to transition DB2 DRDA applications to
Oracle, several security and storage issues must be considered.

11.1 Overview of Security and Storage for Oracle Database
Provider for DRDA

Oracle Database Provider for DRDA uses the security and authorization models of the Oracle
Database; this ensures correct SQL access to user data.

DRDA specifies two primary authorization models: REQUESTER and OWNER. They are specified
as attribute of the package, PKGATHRUL.

• In the REQUESTER model, currently logged-in user is the authorization control.

The REQUESTER model is also called Dynamic SQL Rules, and it is used for executing the
SQL that is constructed at runtime. This is the security model that Oracle Database
implements for SQL access.

• In the OWNER model, a stored USERID (package owner, PKGOWNID) instantiates a different
USERID for the duration of the statement execution.

The OWNER model is also called Static SQL Rules, and it is used for pre-bound SQL within
the package. Oracle Database does not implement an equivalent security model.

Because Oracle Database only implements one security model, all SQL within a package,
both stored and dynamically created, is executed under the Dynamic SQL Rules model. This
does not override the instantiation modes of any PL/SQL objects created with the AUTHID
DEFINER attribute.

See Oracle® Database PL/SQL Language Reference for details about AUTHID DEFINER.

11.2 Authentication and Encryption in Oracle Database Provider
for DRDA

DRDA requires that user authentication (ACCSEC(SECMEC), SECCHK) be performed
before any access to the database (ACCRDB) may be performed.

11.2.1 Authentication Services
DRDA provides two types of services for authentication: dedicated use, and multiplexed use.

• Under dedicated use, the AS provides access to a single, dedicated database, without
an option to connect to another database. The rdbnam passed later in the ACCRDB must

11-1

match the target database name; otherwise, the session access fails with an
RDBAFLRM message.

In this mode, the ACCSEC does not require the rdbnam instance variable to
perform authentication because there is no choice to be made between
databases. Thus, the AS is free to make a session association with the single
database at the time of ACCSEC processing, and to verify that the requested
security mechanism (SECMEC) is available. When the SECCHK command is
sent, the initial database session is maintained and full authentication is
performed.

This mode must be used with older ARs that do not support multiplexed servers. If
the AR supplies the rdbnam in this mode, it must be validated against the
connected database.

• Under multiplexed mode, the AS provides access to many databases at the same
time. In this mode, the rdbnam instance variable in the ACCSEC is required to
validate the requested security mechanism. The AS connects to the requested
database for security validation. When the SECCHK command is sent, the initial
database session is maintained and full authentication is performed.

This mode is supported with newer ARs, which supply the rdbnam as part of the
ACCSEC. If the AR does not supply the rdbnam in the ACCSEC in this mode, it
generates an error and an RDBAFLRM response is sent to the ACCSEC.

11.2.2 Encryption Services
Oracle Database Provider for DRDA supports the following security mechanisms:

• EUSRIDPWD – Encrypted User ID and Password Mechanism

• EUSRIDNWPWD – Encrypted User ID, Password, and New Password Mechanism

• USRIDPWD – User ID and Password Mechanism

• USRIDNWPWD – User ID, Password, and New Password Mechanism

• USRENCPWD – User ID and Password Encrypted Mechanism

After the security mechanisms are verified as accessible, the actual security
authorization (SECCHK) can proceed.

11.3 Database Roles in Oracle Database Provider for DRDA
Oracle Database Provider for DRDA uses the following two roles: DRDAAS_ADMIN_ROLE
and DRDAAS_USER_ROLE.

11.3.1 DRDAAS_ADMIN_ROLE
The DRDAAS_ADMIN_ROLE role allows access to and use of the DBMS_DRDAAS_ADMIN
package. It is a DBA-level privilege specific to Oracle Database Provider for DRDA.
Administrators who manage remote DRDA access to the Oracle database must be
granted this role.

11.3.2 DRDAAS_USER_ROLE
The DRDAAS_USER_ROLE role permits an Oracle Database Provider for DRDA user
access to the DBMS_DRDAAS package for the following purposes:

Chapter 11
Database Roles in Oracle Database Provider for DRDA

11-2

• For binding a DRDA package

• For permitting read access to Oracle Database Provider for DRDA package resource
tables

• For package execution

Without the privileges of the DRDAAS_USER_ROLE role, Oracle Database Provider for DRDA
user is unable to execute DRDA packages to which they have granted access.

11.4 Storage in Oracle Database Provider for DRDA
Oracle Database Provider for DRDA users have allocated storage named SYSIBM. This is
implemented by the SYSIBM tablespace and SYSIBM user.

11.4.1 SYSIBM Tablespace
All tables, views and packages supplied and used by the Application Server for management
and support functions are in the tablespace SYSIBM. This tablespace must be created before
installing Oracle Database Provider for DRDA support packages. An example of how to
create the SYSIBM tablespace is the catdrdaas.sql script supplied with the product. See the
listing for “catdrdaas.sql” in “Scripts for Creating and Maintaining Oracle Database Provider
for DRDA”.

create tablespace SYSIBM datafile 'sysibm01.dbf' size 70M reuse
 extent management local segment space management auto online;

Related Topics

• catdrdaas.sql

• Scripts for Creating and Maintaining Oracle Database Provider for DRDA

11.4.2 SYSIBM User
All tables, views, and packages supplied and used by Oracle Database Provider for DRDA
are under the user schema SYSIBM. As part of the installation of Oracle Database Provider for
DRDA packages and tables, this user id is created as a locked account, and is set to use the
SYSIBM tablespace for its storage.

Chapter 11
Storage in Oracle Database Provider for DRDA

11-3

12
Restrictions on Using Oracle Database
Provider for DRDA

Several restrictions and known workarounds may be used when customizing or maintaining
in Oracle Database applications that were originally designed for IBM DB2.

12.1 Resynch Manager
Oracle Database Provider for DRDA supports Sync Point Manager services for Distributed
Units of Work. It also supports Resynchronization Manager services for resynchronization
during migrations that use a source Sync Point Manager without a log.

This release of Oracle Database Provider for DRDA does not support active in-doubt
transaction resolution services. Transactions that have been migrated and are in-doubt
require manual resolution between the client system and Oracle Database. See Oracle®
Database Administrator’s Guide for information on manual resolution of in-doubt transactions.

12.2 Cursor HOLD Attribute Semantics
Cursors marked with the HOLD attribute have the following restrictions:

1. Under Remote Unit of Work (RUOW), cursors that have been prepared with the FOR
UPDATE clause are implicitly closed on COMMIT or ROLLBACK.

2. Under Distribute Unit of Work (DUOW), all cursors are implicitly closed if any updates
occur to the server containing the open cursor on COMMIT or ROLLBACK.

12.3 DB2 Password Blank Padding
When passwords are encrypted and sent through DRDA, DB2 for z/OS inserts blank spaces
into passwords that have less than 8 characters. This results in a log-on failure, error
ORA-01017. Oracle recommends that user account passwords be at least 8 characters long.

12.4 Restrictions on Datatypes
There are several restrictions on use of datatypes.

12.4.1 DATE Datatype
Oracle DATE datatype contains a time component that DRDA DATE datatype does not support.
Operating on Oracle DATE data may not yield expected results if the DATE data contains a time
component. For consistency, do not store a time component when inserting DATE data using
Oracle native DATE syntax. Alternatively, remap the DATE column to TIMESTAMP.

12-1

12.4.2 Oracle Object-Relational Datatypes
This release does not support queries on objects that contain columns defined through
Object-Relational datatypes.

This release does not support calling SQL procedures defined through Object-
Relational datatypes for their input or return arguments.

12.4.3 TIMESTAMP Datatype
Oracle Database Provider for DRDA represents TIMESTAMP with a fixed precision of 6
decimal places.

For compatibility reasons, extra care should be exercised when using TIMESTAMP data,
and programmatic adjustments, such as type casting, may have to be made. See
Oracle® Database SQL Language Reference for information about casting with the
TIMESTAMP datatype.

12.4.4 TIMESTAMP WITH TIMEZONE Datatype
Representation of TIMESTAMP WITH TIMEZONE is significantly different between Oracle
Database and DB2.

Oracle Database Provider for DRDA represents TIMESTAMP WITH TIMEZONE according
to Oracle's presentation rules. For best compatibility between client and server, use
four digit time zone suffix notation instead of written timezone description notation,
such as -08:00.

12.4.5 XML Datatype
The DRDA XML datatype (988, 989) is not supported as a program or bind variable
datatype in this release.

12.4.6 SYS.XMLType Datatype
The Oracle XML datatype, SYS.XMLType, is not supported in this release.

12.5 Extended Length Mode
The latest release of DB2 for z/OS (v11.1) does not support ‘Streaming Layer B mode’
protocol for query results, generated by cursors. These cursors are defined using
ROWSETs parameter, that generate a rowset exceeding 32767 bytes of data.

Example of cursor declaration

EXEC SQL DECLARE DT CURSOR WITH ROWSET POSITIONING FOR SEL;

According to the DRDA standard, the target server can determine the returned form of
query data for any given query. Streaming Layer B mode is the most efficient form, for
this purpose. However, some releases of DB2 do not support this more when
ROWSETs are involved and will cause an error to be returned to the DB2 client
application:

Chapter 12
Extended Length Mode

12-2

DSNT4081 SQLCODE = —30020, ERROR: EXECUTION FAILED DUE TO A DISTRIBUTION
PROTOCOL ERROR THAT CAUSED DEALLOCATION OF THE CONVERSATION: REASON 124C (0100)

Under these conditions, DB2 will not accept Streaming Layer B mode objects. However, it will
accept Extended Length mode objects instead.

You can set the PROTOPROC_OPTIONS configuration parameter to enable this mode until DB2
supports Streaming Layer B mode.

Related Topics

• PROTOPROC_OPTIONS

See Also:

PROTOPROC_OPTIONS Section, in the Configurations Parameters Chapter.

12.6 DB2 for z/OS Log usage
LOGNAME

The LOGNAME value specifies a fixed Log name exchanged between the server and client. The
Log Name should be in the format <NAME>. The Log name can contain between 1 and 18
alpha-numeric characters only. In case there is an invalid value or length entered, it will be
rejected, and a random name will be generated.

LOGTSTMP

The LOGTSTMP specifies a fixed Log Timestamp exchanged between the server and client.
The Log Timestamp should be in the format <YYYYMMDDHHMMSSTTTT> and have only numeric
values. In case an invalid value or length is entered, it will be rejected and a timestamp with
the current time will be generated.

Following is an illustration:

drdaas.protoproc_options=”QRYDTA/ELMODE, EXTDTA/ELMODE, LOGNAME/ORACLEDB,
LOGTSTMP/201609191201020001”

12.7 Other Restrictions
Other restrictions, such as “SQL Clause Restrictions” are outlined in “SQL Statement Support
in Oracle Database Provider for DRDA.”

Related Topics

• SQL Clause Restrictions

• SQL Statement Support in Oracle Database Provider for DRDA

Chapter 12
DB2 for z/OS Log usage

12-3

13
PL/SQL Packages Used by Oracle Database
Provider for DRDA

Oracle Database Provider for DRDA uses DBMS_DRDAAS_ADMIN and DBMS_DRDAAS PL/SQL
packages and their APIs.

For in-depth information on the type map values used in these two packages, see Datatype
Support and Conversion in Oracle Database Provider for DRDA .

13.1 DBMS_DRDAAS_ADMIN Package
DBMS_DRDAAS_ADMIN PL/SQL package grants DRDA package privileges to Oracle Database
Provider for DRDA users. These privileges include the following:

• bind DRDA packages

• drop DRDA packages

• execute DRDA packages

• set package values

13.1.1 DBMS_DRDAAS_ADMIN Privilege Constants
These constants are used with “GRANT_PRIVILEGE” and “REVOKE_PRIVILEGE”.

ALL_PRIVILEGE

This privilege grants all privileges to a client for an Application Package.

BIND_PRIVILEGE

This privilege allows a client to bind or rebind an Application Package to the database.

COPY_PRIVILEGE

This privilege allows a client to copy an existing Application Package to another name
(optionally with different default package options).

EXECUTE_PRIVILEGE

This privilege allows a client to execute an existing Application Package.

DROP_PRIVILEGE

This privilege allows a client to drop an existing Application Package.

SET_PRIVILEGE

This privilege allows a client to set specific Application Package options. See the SET_XXX
functions elsewhere in this document.

13-1

Related Topics

• GRANT_PRIVILEGE

• REVOKE_PRIVILEGE

13.1.2 GRANT_PRIVILEGE
Grants a privilege to the user for a DRDA package.

Syntax

PROCEDURE grant_privilege(
 privilege_grant IN PLS_INTEGER,
 collection_id IN VARCHAR2,
 package_name IN VARCHAR2,
 user_name IN VARCHAR2);

Parameters

• privilege_grant (IN)

Privilege to grant

• collection_id (IN)

Collection Id

• package_name (IN)

Package Name

• user_name (IN)

Userid to grant privileges to

Usage Example

begin
 dbms_drdaas_admin.grant_privilege (DBMS_DRDAAS_ADMIN.ALL_PRIVILEGE, 'ORACLE',
 'MYPACKAGE', 'DRDAUSR1');
end;

13.1.3 REVOKE_PRIVILEGE
Revokes a privilege from a user for a DRDA package.

Syntax

PROCEDURE revoke_privilege(
 privilege_revoke IN PLS_INTEGER,
 collection_id IN VARCHAR2,
 package_name IN VARCHAR2,
 user_name IN VARCHAR2);

Parameters

• privilege_revoke (IN)

Privilege to revoke

• collection_id (IN)

Chapter 13
DBMS_DRDAAS_ADMIN Package

13-2

Collection Id

• package_name (IN)

Package Name

• user_name (IN)

Userid to revoke privileges from

Usage Example

begin
 dbms_drdaas_admin.revoke_privilege (DBMS_DRDAAS_ADMIN.ALL_PRIVILEGE, 'ORACLE',
 'MYPACKAGE', 'DRDAUSR1');
end;

13.1.4 DROP_PACKAGE
Drops all instances of a package by package_name.

Syntax

procedure DROP_PACKAGE(
 collection_id IN VARCHAR2,
 package_name IN VARCHAR2);

Parameters

• collection_id (IN)

Collection Id

• package_name (IN)

Package Name

Usage Example

begin
 dbms_drdaas_admin.drop_package(
 'ORACLE', 'MYPACKAGE');
end;

13.1.5 DROP_PACKAGE_VN
Drops a package by version_name.

Syntax

procedure DROP_PACKAGE_VN(
 collection_id IN VARCHAR2,
 package_name IN VARCHAR2,
 version_name IN VARCHAR2 DEFAULT NULL);

Parameters

• collection_id (IN)

Collection Id

• package_name (IN)

Chapter 13
DBMS_DRDAAS_ADMIN Package

13-3

Package name

• version_name (IN)

Version name

13.1.6 DROP_PACKAGE_CT
Drops a package by consistency_token.

Syntax

procedure DROP_PACKAGE_CT(
 collection_id IN VARCHAR2,
 package_name IN VARCHAR2,
 consistency_token IN RAW);

Parameters

• collection_id (IN)

Collection Id

• package_name (IN)

Package name

• consistency_token (IN)

Consistency token

13.1.7 SET_PROFILE
Sets the SQL Translation profile name for a DRDA package.

Syntax

PROCEDURE set_profile(
 collection_id IN VARCHAR2,
 package_name IN VARCHAR2,
 profile_name IN VARCHAR2);

Parameters

• collection_id (IN)

Collection Id

• package_name (IN)

Package Name

• profile_name (IN)

SQL Translation profile name

Usage Example

begin
 dbms_drdaas_admin.set_profile ('ORACLE', 'MYPACKAGE', 'DB2ZOS');
end;

Chapter 13
DBMS_DRDAAS_ADMIN Package

13-4

13.1.8 SET_LOCALDATE_FORMAT
Sets the Local Date Format to use with a DRDA package.

Syntax

PROCEDURE set_localdate_format(
 collection_id IN VARCHAR2,
 package_name IN VARCHAR2,
 date_format IN VARCHAR2);

Parameters

• collection_id (IN)

Collection Id

• package_name (IN)

Package Name

• date_format (IN)

date format string

Usage Example

begin
 dbms_drdaas_admin.set_localdate_format ('ORACLE', 'MYPACKAGE', 'YYYYMMDD');
end;

13.1.9 SET_LOCALTIME_FORMAT
Sets the local time format to use with a DRDA package.

Syntax

PROCEDURE set_localtime_format(
 collection_id IN VARCHAR2,
 package_name IN VARCHAR2,
 time_format IN VARCHAR2);

Parameters

• collection_id (IN)

Collection Id

• package_name (IN)

Package Name

• time_format (IN)

time format String

Usage Example

begin
 dbms_drdaas_admin.set_localtime_format ('ORACLE', 'MYPACKAGE', 'HH:MM:SS');
end;

Chapter 13
DBMS_DRDAAS_ADMIN Package

13-5

13.1.10 SET_TYPEMAP
Sets datatype mapping rules for specific table and column combinations.

Syntax

PROCEDURE set_typemap(
 collection_id IN VARCHAR2,
 package_name IN VARCHAR2,
 table_map IN VARCHAR2,
 type_map IN VARCHAR2);

Parameters

• collection_id (IN)

Collection Id

• package_name (IN)

Package Name

• table_map (IN)

table and column name expression

• type_map (IN)

numeric type equivalence expression

Usage Example

begin
 dbms_drdaas_admin.set_typemap ('ORACLE', 'MYPACKAGE',
 'SYSIBM.SYSPACKSTMT:COUNT(DISTINCT(NAME))', 'NUMBER=INTEGER');
end;

13.2 DBMS_DRDAAS Package
DBMS_DRDAAS PL/SQL package manipulates DRDA packages. Use this package to bind
new DRDA packages, modify attributes of existing DRDA packages, or drop DRDA
packages.

Oracle Database Provider for DRDA uses package DBMS_DRDAAS to perform specific
DRDA package operations.

13.2.1 DBMS_DRDAAS Privilege Constants
These constants are used with “GRANT_PRIVILEGE” and “REVOKE_PRIVILEGES”
procedures.

ALL_PRIVILEGE

This privilege grants all of the above privileges to a client for an Application Package.

BIND_PRIVILEGE

This privilege allows a client to bind or rebind an Application Package to the database.

Chapter 13
DBMS_DRDAAS Package

13-6

COPY_PRIVILEGE

This privilege allows a client to copy an existing Application Package to another name
(optionally with different default package options).

EXECUTE_PRIVILEGE

This privilege allows a client to execute an existing Application Package.

DROP_PRIVILEGE

This privilege allows a client to drop an existing Application Package.

SET_PRIVILEGE

This privilege allows a client to set specific Application Package options. See the SET_XXX
functions elsewhere in this document.

Related Topics

• GRANT_PRIVILEGE

• REVOKE_PRIVILEGE

13.2.2 BIND_PACKAGE
Creates the beginnings of a DRDA package definition.

This is used internally by Oracle Database Provider for DRDA part of BGNBND processing.

Syntax

PROCEDURE bind_package(
 collection_id IN VARCHAR2,
 package_name IN VARCHAR2,
 version_name IN VARCHAR2 DEFAULT NULL,
 consistency_token IN RAW,
 owner IN VARCHAR2,
 qualifier IN VARCHAR2,
 isolation IN CHAR,
 releaseopt IN CHAR,
 blocking IN CHAR DEFAULT 'N',
 codepage_s IN NUMBER,
 codepage_d IN NUMBER,
 codepage_m IN NUMBER,
 codepage_x IN NUMBER,
 degreeioprl IN NUMBER,
 date_format IN CHAR DEFAULT '3',
 time_format IN CHAR DEFAULT '3',
 decimal_delimiter IN CHAR DEFAULT NULL,
 string_delimiter IN CHAR DEFAULT NULL,
 decprc IN NUMBER,
 charsubtype IN CHAR,
 dynamic_rules IN CHAR DEFAULT NULL,
 reprepdynsql IN CHAR DEFAULT NULL);

Parameters

• collection_id (IN) is collection ID

Chapter 13
DBMS_DRDAAS Package

13-7

• package_name (IN) is package name

• version_name (IN) is version name (optional, default NULL)

• consistency_token (IN) is consistency token

• owner (IN) is owner of package

• qualifier (IN) is default schema

• isolation (IN) is isolation level (R=RR, A=ALL, C=CS, G=CHG, N=NC)

• releaseopt (IN) is release package resource option

• blocking (IN) is blocking mode (B=blocking, N=no blocking)

• codepage_s (IN) is default codepage (SBCS)

• codepage_d (IN) is default codepage (DBCS)

• codepage_m (IN) is default codepage (MBCS)

• codepage_x (IN) is default codepage (XML)

• degreeioprl (IN) is degree of IO parallelism

• date_format (IN) is date format (1=USA, 2=EUR, 3=ISO, 4=JIS, 5=Local)

• time_format (IN) is time format (1=USA, 2=EUR, 3=ISO, 4=JIS, 5=Local)

• decimal_delimiter (IN) is decimal delimiter

• string_delimiter (IN) is string delimiter

• decprc (IN) is the decimal precision (15 or 31)

• charsubtype (IN) is character subtype

• dynamic_rules (IN) is dynamic rules (future)

• reprepdynsql (IN) is prepare dynamic SQL rules again (future)

Usage Example

begin
 dbms_drdaas.bind_package (
 'ORACLE', 'MYPACKAGE', NULL, HEXTORAW('11223344'), 'DRADUSR1',
 'PETER', 'C', 'D', 'B', 1208, 1200, 1208, 1208, 1, '3', '3', '.', '''',
 31, 'M', 'R', 'Y');
end;

13.2.3 BIND_STATEMENT
Inserts a statement into DRDA package currently being bound.

This is used internally by Oracle Database Provider for DRDA as part of BNDSQLSTT
processing.

Syntax

PROCEDURE bind_statement(
 collection_id IN VARCHAR2,
 package_name IN VARCHAR2,
 version_name IN VARCHAR2 DEFAULT NULL,
 consistency_token IN RAW,
 statement_assumption IN CHAR,

Chapter 13
DBMS_DRDAAS Package

13-8

 statement_no IN NUMBER,
 section_no IN NUMBER,
 statement_len IN NUMBER,
 statement IN CLOB);

Parameters

• collection_id (IN) is collection Id

• package_name (IN) is package name

• version_name (IN) is version name (optional, default NULL)

• consistency_token (IN) is consistency token

• statement_assumption (IN) is statement assumption

• statement_no (IN) is statement number

• section_no (IN) is section number

• statement_len (IN) is length of SQL statement text

• statement (IN) is statement text

Usage Example

begin
 dbms_drdaas.bind_statement ('ORACLE', 'MYPACKAGE', NULL, HEXTORAW('11223344'),
 'C', 1, 1, 42, 'DECLARE CURSOR C1 AS SELECT EMPLOYEE_ID FROM EMPLOYEES');
end;

13.2.4 END_BIND
Finalizes a DRDA package currently being bound. (This is used internally by Oracle
Database Provider for DRDA as part of ENDBND processing.)

Syntax

PROCEDURE end_bind(
 collection_id IN VARCHAR2,
 package_name IN VARCHAR2,
 version_name IN VARCHAR2 DEFAULT NULL,
 consistency_token IN RAW,
 max_sections IN NUMBER);

Parameters

• collection_id (IN) is collection ID

• package_name (IN) is package name

• version_name (IN) is version name (optional, default NULL)

• consistency_token (IN) is the consistency token

• max_sections (IN) is the maximum number of sections

Usage Example

begin
 dbms_drdaas.end_bind ('ORACLE', 'MYPACKAGE', NULL,
 HEXTORAW('11223344'), 1);
end;

Chapter 13
DBMS_DRDAAS Package

13-9

13.2.5 GRANT_PRIVILEGE
Grants a privilege on a package to a user.

Syntax

PROCEDURE grant_privilege(
 privilege_grant IN PLS_INTEGER,
 collection_id IN VARCHAR2,
 package_name IN VARCHAR2,
 user_name IN VARCHAR2);

Parameters

• privilege_grant (IN)

Privilege to grant

• collection_id (IN)

Collection Id

• package_name (IN)

Package Name

• user_name (IN)

Userid to grant privileges to

Usage Example

begin
 dbms_drdaas.grant_privilege (DBMS_DRDAAS_ADMIN.ALL_PRIVILEGE, 'ORACLE',
 'MYPACKAGE', 'DRDAUSR1');
end;

13.2.6 REVOKE_PRIVILEGE
Revokes a privilege from a user for a DRDA package.

Syntax

PROCEDURE revoke_privilege(
 privilege_revoke IN PLS_INTEGER,
 collection_id IN VARCHAR2,
 package_name IN VARCHAR2,
 user_name IN VARCHAR2);

Parameters

• privilege_revoke (IN)

Privilege to revoke

• collection_id (IN)

Collection Id

• package_name (IN)

Package Name

Chapter 13
DBMS_DRDAAS Package

13-10

• user_name (IN)

Userid to revoke privileges from

Usage Example

begin
 dbms_drdaas.revoke_privilege (DBMS_DRDAAS_ADMIN.ALL_PRIVILEGE, 'ORACLE',
 'MYPACKAGE', 'DRDAUSR1');
end;

13.2.7 DROP_PACKAGE
Drops a DRDA package using the version name.

Syntax

PROCEDURE drop_package(
 collection_id IN VARCHAR2,
 package_name IN VARCHAR2);

Parameters

• collection_id (IN) is the collection id

• package_name (IN) is package name

Usage Example

begin
 dbms_drdaas.drop_package(
 'ORACLE', 'MYPACKAGE');
end;

Chapter 13
DBMS_DRDAAS Package

13-11

14
SQL Statement Support in Oracle Database
Provider for DRDA

Oracle Database Provider for DRDA supports the use of native DB2 SQL clauses.

14.1 Overview of SQL Statement Support
Oracle Database Provider for DRDA transforms parts of the third-party native SQL
statements before sending them for processing on the Oracle Database. In this release,
Oracle Database Provider for DRDA is made compatible with Oracle Database Release 11g,
which does not have a native understanding of many clauses not supported by Oracle's
version of SQL because it does not support SQL Translation. When using SQL Translation,
this affects the data and content of SQL requests received by the translator.

Because the Translator never gets the WITH UR clause, the translation of the statement and
the subsequent result set may not be what the user expects.

For this reason, this release of Oracle Database Provider for DRDA encompasses some
translations functions.

Example 14-1 Removing Clauses from SQL Statements

If a user enters the following SQL line on the client:

SELECT * FROM EMPLOYEES WITH UR

Oracle Database Provider for DRDA strips out the clause WITH UR, so if the user is using a
Translator, it receives the following line of SQL:

SELECT * FROM EMPLOYEEES

14.2 SQL Clause Restrictions
There are some restrictions on SQL statements that are supported for conversion by Oracle
Database Provider for DRDA.

When describing SQL statements, keep in mind the following notation.

• Use of (..), parantheses, enclose the applicable SQL statement context. For example,
(SELECT) means that the clause applies to a SELECT statement.

• Use of {..}, curly brackets, indicates an optional constant.

• Use of <..> indicates an optional variable.

SQL language restrictions are arranged in following groups.

• Internally Processed SQL Statements

• Removed SQL Clauses that Retain Semantic Effect

• Ignored SQL Clauses

14-1

• Translated SQL Clauses

Related Topics

• Internally Processed SQL Statements

• Removed SQL Clauses that Retain Semantic Effect

• Ignored SQL Clauses

• Translated SQL Clauses

14.2.1 Internally Processed SQL Statements
The following clauses are processed internally.

GRANT {ALL, BIND, COPY, EXECUTE, DROP, SET} ON PACKAGE <collid>.<pkgnam> TO
<authid>

GRANT {ALL, BIND, COPY, EXECUTE, DROP, SET} ON PACKAGE <collid>.<pkgnam> TO
<authid> WITH GRANT OPTION

GRANT {ALL, BIND, COPY, EXECUTE, DROP, SET} ON PROGRAM <collid>.<pkgnam> TO
<authid>

GRANT {ALL, BIND, COPY, EXECUTE, DROP, SET} ON PROGRAM <collid>.<pkgnam> TO
<authid> WITH GRANT OPTION

REVOKE {ALL, BIND, COPY, EXECUTE, DROP, SET} ON PACKAGE <collid>.<pkgnam> FROM
<authid>

REVOKE {ALL, BIND, COPY, EXECUTE, DROP, SET} ON PROGRAM <collid>.<pkgnam> FROM
<authid>

DROP PACKAGE <collid>.<pkgnam> VERSION <vsn>

DROP PACKAGE <collid>.<pkgnam>

FREE LOCATOR :H

HOLD LOCATOR :H

14.2.2 Removed SQL Clauses that Retain Semantic Effect
The following SQL clauses are removed from SQL statements. This should be noted
because they have a semantic effect.

(SELECT) FOR READ ONLY

(SELECT) FOR FETCH ONLY

(DECLARE) WITH HOLD

(DECLARE) WITHOUT HOLD

(DECLARE) WITH ROWSET POSITIONING

(DECLARE) WITHOUT ROWSET POSITIONING

(DECLARE) NO SCROLL

Chapter 14
SQL Clause Restrictions

14-2

(DECLARE) SCROLL

(CALL) WITH RETURN CLIENT

(CALL) WITH RETURN CALLER

(CALL) <:hostvar> USING DESCRIPTOR <:hostvar>

(SAVEPOINT) {UNIQUE} ON ROLLBACK RETAIN CURSORS

(SAVEPOINT) ON ROLLBACK RETAIN LOCKS

(INSERT) FOR <literal>|<bind-variable> ROWS

(INSERT) FOR MULTIPLE ROWS

(INSERT) NOT ATOMIC CONTINUE ON SQLEXCEPTION

14.2.3 Ignored SQL Clauses
These clauses are removed and ignored during translation.

WITH RR

WITH RR USE AND KEEP {EXCLUSIVE|UPDATE|SHARE} LOCKS

WITH RS

WITH RS USE AND KEEP {EXCLUSIVE|UPDATE|SHARE} LOCKS

WITH CS

WITH CS KEEP LOCKS

WITH UR

WITH NC

14.2.4 Translated SQL Clauses
The following SQL clauses are translated into an alternative syntax; this may have a
semantic effect.

• The original clause WHERE CURRENT OF <cursorname> becomes WHERE ROWID = :N. N is a
number.

• The original = becomes '' IS NULL.

• The original != becomes '' IS NOT NULL.

14.3 Support for Special Registers
DB2 uses a concept known as special registers; they may be thought of as environment
variables within a SQL context. Oracle Database provides limited native support for special
registers.

Chapter 14
Support for Special Registers

14-3

14.3.1 Retrieving Values from Special Registers
Example 14-2 Retrieving values from special registers

When a user enters the following statement on the client:

SELECT CURRENT CLIENT_ACCTNG FROM SYSIBM.SYSDUMMY1;

Oracle Database Provider for DRDA parses the preceding statement, and replaces the
clause CURRENT CLIENT_ACCTNG by the clause
SYS_CONTEXT('DRDAAS_CTX_NAME','CLIENT_ACCTNG'), as follows:

SELECT SYS_CONTEXT('DRDAAS_CTX_NAME','CLIENT_ACCTNG') FROM SYSIBM.SYSDUMMY1;

Therefore, if a translator expects a CURRENT CLIENT_ACCTNG clause, it will receive an
altered query.

14.3.2 Setting Special Registers
Example 14-3 Setting special registers

When a user enters the following statement on the client:

SET CLIENT_ACCTNG = 'abc';

Oracle Database Provider for DRDA sets the value of the CLIENT_ACCTNG register to
the string abc by replacing the clause CLIENT_ACCTNG = 'abc' by clause
SYS_CONTEXT('DRDAAS_CTX_NAME','CLIENT_ACCTNG'), as follows:

SET SYS_CONTEXT('DRDAAS_CTX_NAME','CLIENT_ACCTNG') = 'abc';

Therefore, if a translator expects a CURRENT CLIENT_ACCTNG clause, it will receive an
altered statement.

14.3.3 Special Registers Supported by Oracle Database Provider for
DRDA

Oracle Database Provider for DRDA supports the following registers.

14.3.3.1 APPLICATION ENCODING SCHEME
CURRENT APPLICATION ENCODING SCHEME

Query

SYS_CONTEXT('DRDAAS','APPLICATION_ENCODING_SCHEME')

Set

Updates SYS_CONTEXT

Semantics

No effect

Chapter 14
Support for Special Registers

14-4

14.3.3.2 CLIENT_ACCTNG
CURRENT CLIENT_ACCTNG CLIENT ACCTNG

Query

SYS_CONTEXT('DRDAAS','CLIENT_ACCTNG')

Set

Updates SYS_CONTEXT and CLIENT_INFO

Semantics

Updates CLIENT_INFO in V$SESSION

Notes

See MVS and DDF Accounting Information, as defined by IBM and DB2, documented in the
DSNDQMDA macro.

14.3.3.3 CLIENT_APPLNAME
CURRENT CLIENT_APPLNAME CLIENT APPLNAME

Query

SYS_CONTEXT('DRDAAS','CLIENT_APPLNAME')

Set

Updates SYS_CONTEXT and CLIENT_IDENTIFIER

Semantics

Updates CLIENT_IDENTIFIER in V$SESSION

14.3.3.4 CLIENT_PROGRAMID
CURRENT CLIENT_PROGRAMID

Query

SYS_CONTEXT('DRDAAS','CLIENT_PROGRAMID')

Set

Updates SYS_CONTEXT

Semantics

No effect

14.3.3.5 CLIENT_USERID
CURRENT CLIENT_USERID CLIENT USERID

Chapter 14
Support for Special Registers

14-5

Query

SYS_CONTEXT('DRDAAS','CLIENT_USERID')

Set

Cannot be set

Semantics

Cannot be set

14.3.3.6 CLIENT_WRKSTNNAME
CURRENT CLIENT_WRKSTNNAME CLIENT WRKSTNNAME

Query

SYS_CONTEXT('DRDAAS','CLIENT_WRKSTNNAME')

Set

Updates SYS_CONTEXT

Semantics

No effect

14.3.3.7 DATE
CURRENT DATE CURRENT_DATE

Query

CURRENT DATE

Set

Cannot be set

Semantics

Cannot be set

14.3.3.8 DBPARTITIONNUM
CURRENT DBPARTITIONNUM

Query

SYS_CONTEXT('DRDAAS','DBPARTITIONNUM')

Set

Cannot be set

Chapter 14
Support for Special Registers

14-6

Semantics

Cannot be set

14.3.3.9 DEBUG MODE
CURRENT DEBUG MODE

Query

SYS_CONTEXT('DRDAAS','DEBUG_MODE')

Set

Updates SYS_CONTEXT

Semantics

No effect

14.3.3.10 DECFLOAT ROUNDING MODE
CURRENT DECFLOAT ROUNDING MODE

Query

SYS_CONTEXT('DRDAAS','DECFLOAT_ROUNDING_MODE')

Set

Updates SYS_CONTEXT

Semantics

No effect

14.3.3.11 DEFAULT TRANSFORM GROUP
CURRENT DEFAULT TRANSFORM GROUP

Query

SYS_CONTEXT('DRDAAS','DEFAULT_TRANSFORM_GROUP')

Set

Updates SYS_CONTEXT

Semantics

No effect

14.3.3.12 DEGREE
CURRENT DEGREE

Chapter 14
Support for Special Registers

14-7

Query

SYS_CONTEXT('DRDAAS','DEGREE')

Set

Updates SYS_CONTEXT

Semantics

No effect

14.3.3.13 EXPLAIN MODE
CURRENT EXPLAIN MODE

Query

SYS_CONTEXT('DRDAAS','EXPLAIN_MODE')

Set

Updates SYS_CONTEXT

Semantics

No effect

14.3.3.14 EXPLAIN SNAPSHOT
CURRENT EXPLAIN SNAPSHOT

Query

SYS_CONTEXT('DRDAAS','EXPLAIN_SNAPSHOT')

Set

Updates SYS_CONTEXT

Semantics

No effect

14.3.3.15 FEDERATED ASYNCHRONY
CURRENT FEDERATED ASYNCHRONY

Query

SYS_CONTEXT('DRDAAS','FEDERATED_ASYNCHRONY')

Set

Updates SYS_CONTEXT

Chapter 14
Support for Special Registers

14-8

Semantics

No effect

14.3.3.16 IMPLICIT XMLPARSE OPTION
CURRENT IMPLICIT XMLPARSE OPTION

Query

SYS_CONTEXT('DRDAAS','IMPLICIT_XMLPARSE_OPTION')

Set

Updates SYS_CONTEXT

Semantics

No effect

14.3.3.17 ISOLATION
CURRENT ISOLATION

Query

SYS_CONTEXT('DRDAAS','ISOLATION')

Set

Updates SYS_CONTEXT

Semantics

No effect

14.3.3.18 LOCK TIMEOUT
CURRENT LOCK TIMEOUT

Query

SYS_CONTEXT('DRDAAS','LOCK_TIMEOUT')

Set

Updates SYS_CONTEXT

Semantics

No effect

14.3.3.19 LOCALE LC_TYPE
CURRENT LOCALE LC_TYPE CURRENT_LC_TYPE

Chapter 14
Support for Special Registers

14-9

Query

SYS_CONTEXT('DRDAAS','LC_TYPE')

Set

Updates SYS_CONTEXT

Semantics

No effect

14.3.3.20 MAINTAINED TABLE TYPES FOR OPTIMIZATION
CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION

Query

SYS_CONTEXT('DRDAAS','MAINTAINED_TYPES')

Set

Updates SYS_CONTEXT

Semantics

No effect

14.3.3.21 MEMBER
CURRENT MEMBER

Query

SYS_CONTEXT('DRDAAS','MEMBER')

Set

Cannot be set

Semantics

Cannot be set

14.3.3.22 OPTIMIZATION HINT
CURRENT OPTIMIZATION HINT

Query

SYS_CONTEXT('DRDAAS','OPTIMIZATION_HINT')

Set

Updates SYS_CONTEXT

Chapter 14
Support for Special Registers

14-10

Semantics

No effect

14.3.3.23 PACKAGE PATH
CURRENT PACKAGE PATH

Query

SYS_CONTEXT('DRDAAS','PACKAGE_PATH')

Set

Updates SYS_CONTEXT

Semantics

No effect

14.3.3.24 PACKAGESET
CURRENT PACKAGESET

Query

SYS_CONTEXT('DRDAAS','PACKAGESET')

Set

Updates SYS_CONTEXT

Semantics

No effect

14.3.3.25 PATH
CURRENT PATH CURRENT_PATH CURRENT FUNCTION PATH

Query

SYS_CONTEXT('DRDAAS','PATH')

Set

Updates SYS_CONTEXT

Semantics

No effect

14.3.3.26 PRECISION
CURRENT PRECISION

Chapter 14
Support for Special Registers

14-11

Query

SYS_CONTEXT('DRDAAS','PRECISION')

Set

Updates SYS_CONTEXT

Semantics

No effect

14.3.3.27 QUERY ACCELERATION
CURRENT QUERY ACCELERATION

Query

SYS_CONTEXT('DRDAAS','QUERY_ACCELERATION')

Set

Updates SYS_CONTEXT

Semantics

No effect

14.3.3.28 QUERY OPTIMIZATION
CURRENT QUERY OPTIMIZATION

Query

SYS_CONTEXT('DRDAAS','QUERY_OPTIMIZATION')

Set

Updates SYS_CONTEXT

Semantics

No effect

14.3.3.29 REFRESH AGE
CURRENT REFRESH AGE

Query

SYS_CONTEXT('DRDAAS','REFRESH_AGE')

Set

Updates SYS_CONTEXT

Chapter 14
Support for Special Registers

14-12

Semantics

No effect

14.3.3.30 ROUTINE VERSION
CURRENT ROUTINE VERSION

Query

SYS_CONTEXT('DRDAAS','ROUTINE_VERSION')

Set

Updates SYS_CONTEXT

Semantics

No effect

14.3.3.31 RULES
CURRENT RULES

Query

SYS_CONTEXT('DRDAAS','RULES')

Set

Updates SYS_CONTEXT

Semantics

No effect

14.3.3.32 SCHEMA
CURRENT SCHEMA CURRENT_SCHEMA

Query

SYS_CONTEXT('USERENV','CURRENT_SCHEMA')

Set

Updates SYS_CONTEXT

Semantics

No effect

14.3.3.33 SERVER
CURRENT SERVER CURRENT_SERVER

Chapter 14
Support for Special Registers

14-13

Query

SYS_CONTEXT('DRDAAS','SERVER')

Set

Cannot be set

Semantics

Cannot be set

14.3.3.34 SQL_CCFLAGS
CURRENT SQL_CCFLAGS

Query

SYS_CONTEXT('DRDAAS','SQL_CCFLAGS')

Set

Updates SYS_CONTEXT

Semantics

No effect

14.3.3.35 SQLID
CURRENT SQLID USER

Query

USER

Set

Updates SYS_CONTEXT('DRDAAS', 'CURRENT_SQLID')

Semantics

No effect

14.3.3.36 TIMESTAMP
CURRENT TIMESTAMP CURRENT_TIMESTAMP

Query

CURRENT TIMESTAMP

Set

Cannot be set

Chapter 14
Support for Special Registers

14-14

Semantics

Cannot be set

14.3.3.37 USER
CURRENT USER CURRENT_USER

Query

USER

Set

Cannot be set

Semantics

Cannot be set

14.3.3.38 SESSION_USER
SESSION_USER

Query

USER

Set

Cannot be set

Semantics

Cannot be set

14.3.3.39 SYSTEM_USER
SYSTE_USER

Query

USER

Set

Cannot be set

Semantics

Cannot be set

14.3.3.40 ENCRYPTION PASSWORD
ENCRYPTION PASSWORD

Chapter 14
Support for Special Registers

14-15

Query

Cannot be queried

Set

Updates SYS_CONTEXT('DRDAAS','ENCRYPTION_PASSWORD')

Semantics

No effect

Chapter 14
Support for Special Registers

14-16

A
Scripts for Creating and Maintaining Oracle
Database Provider for DRDA

Oracle Database Provider for DRDA needs several scripts to establish a proper environment.

A.1 catdrdaas.sql
The script catdrdaas.sql creates Oracle Database Provider for DRDA catalog objects.

Rem catdrdaas.sql
Rem
Rem Copyright (c) 2011, Oracle and/or its affiliates. All rights reserved.
Rem
Rem NAME
Rem catdrdaas.sql - CATalog Oracle Database Provider for DRDA
Rem
Rem ===
Rem Exit immediately if there are errors in the initial checks
Rem ===

WHENEVER SQLERROR EXIT;

DOC
###
 Customer should create the SYSIBM tablespace

Eg:
 create tablespace SYSIBM datafile 'sysibm01.dbf'
 size 70M reuse
 extent management local
 segment space management auto
 online;

###
#

@@prvtdpsadrda.plb

A.2 catnodrdaas.sql
The script catnodrdaas.sql removes Oracle Database Provider for DRDA catalog objects

Rem catnodrdaas.sql
Rem
Rem Copyright (c) 2011, 2013, Oracle and/or its affiliates.
Rem All rights reserved.
Rem
Rem NAME
Rem catnodrdaas.sql - CATalog NO Oracle Database Provider for DRDA
Rem

A-1

drop public synonym DBMS_DRDAAS;
drop public synonym DBMS_DRDAAS_ADMIN;

drop public synonym USER_DRDAASTRACE;
drop public synonym DBA_DRDAASTRACE;

drop public synonym ALL_DRDAASPACKAGE;
drop public synonym USER_DRDAASPACKAGE;
drop public synonym DBA_DRDAASPACKAGE;

drop public synonym USER_DRDAASPACKSTMT;
drop public synonym DBA_DRDAASPACKSTMT;

drop public synonym ALL_DRDAASPACKAUTH;
drop public synonym USER_DRDAASPACKAUTH;
drop public synonym DBA_DRDAASPACKAUTH;

drop public synonym ALL_DRDAASPACKSIDE;
drop public synonym USER_DRDAASPACKSIDE;
drop public synonym DBA_DRDAASPACKSIDE;

drop role DRDAAS_USER_ROLE;
drop role DRDAAS_ADMIN_ROLE;

drop user SYSIBM cascade;

commit;
DOC
###
 Customer should drop the SYSIBM tablespace.

Eg:
 drop tablespace SYSIBM;

###

A.3 drdapkg_db2.sql
Rem drdapkg_db2.sql
Rem
Rem Copyright (c) 2012, Oracle and/or its affiliates. All rights reserved.
Rem
Rem NAME
Rem drdapkg_db2.sql - Initialize DRDA-AS environment so that
Rem packages can be bound and correct datatypes
Rem are returned for various SQL constructs
Rem
Rem DESCRIPTION
Rem The DRDA-AS environment needs to be initialized so that the initial
Rem packages (usually with an RDBCOLID of NULLID) can be bound.
Rem Using the DataDirect driver, those package names look like
Rem NULLID.DDOC510A, NULLID.DDOC510B, and NULLID.DDOC510C
Rem Using the IBM driver (libdb2.so), the package names look like
Rem NULLID.SYSTAT and NULLID.SYSshyxx (where s is one of L or S,
Rem h is one of H or N, y is 1, 2, 3, or 4 and
Rem xx is somwhere in 00 through FF)
Rem Also, various columns must be TYPEMAPped -- their normal
Rem attributes must be altered.

Appendix A
drdapkg_db2.sql

A-2

Rem
Rem The initial package bindings should be done under the id that runs
Rem this script. That is, if we run this script under the Oracle ID
Rem of xxxx, then the initial connection through an ODBC driver should be
Rem using that same id, namely xxxx.
Rem
Rem NOTES
Rem The following is relevant when using the IBM driver: libdb2.so ...
Rem Note that the normal set of packages produced by the jdbcbinder
Rem process (db2jdbcbinder in DB2/LUW) defines packages with names like
Rem SYSSTAT and SYSLNmnn and SYSLHmnn. Thus, before running the
Rem jdbcbinder on DB2/LUW specifying the Oracle Id accepted in the prompt
Rem for this script, one needs to inform DRDA-AS that the id has the
Rem required privilege, namely to create ANY package in the NULLID
Rem schema. That is part of what we are doing here.
Rem
Rem This script can be run ONLY by a user that has the ability to use
Rem the DRDAAS_ADMIN_ROLE which must be GRANTed to the user; also this
Rem role must be active either by being set as a default ROLE or
Rem by actively doing a SET ROLE DRDAAS_ADMIN_ROLE.

SET ECHO ON
SET FEEDBACK 1
SET NUMWIDTH 10
SET LINESIZE 80
SET TRIMSPOOL ON
SET TAB OFF
SET PAGESIZE 100

SET SERVEROUTPUT ON

SHOW USER

/* The following will work even if DRDAAS_ADMIN_ROLE is not one of the */
/* DEFAULT Roles, but HAS been GRANTed to the user running this script. */
/* (A prerequisite of setting a DEFAULT ROLE for a user is that the user*/
/* has been GRANTed that ROLE). */

SET ROLE DRDAAS_ADMIN_ROLE;

Prompt Enter the OracleID under which the initial package BINDs will be made
Prompt Use quotes (') if needed.
Accept OracleID
Define BindID = &OracleID
Prompt Enter default collection ID for package binding (usually NULLID)
Prompt Use quotes (') if needed.
Accept DefaultCollection
Define DfltCollid = &DefaultCollection

declare
 id_passed CONSTANT VARCHAR2(128) := '&&BindId';
 collid_passed CONSTANT VARCHAR2(128) := '&&DfltCollid';
 id_to_use VARCHAR2(128);
 collid_to_use VARCHAR2(128);
 id_len PLS_INTEGER;
 collid_len PLS_INTEGER;
 quote CONSTANT CHAR := '''';
begin
 id_len := LENGTH(id_passed);
 collid_len := LENGTH(collid_passed);

Appendix A
drdapkg_db2.sql

A-3

 IF SUBSTR(id_passed, 1, 1) = quote AND SUBSTR(id_passed, id_len, 1) = quote
 THEN
 /* Use Id exactly as passed */
 id_to_use := SUBSTR(id_passed, 2, id_len - 2);
 ELSE
 id_to_use := UPPER(id_passed) ;
 END IF;
 IF SUBSTR(collid_passed, 1, 1) = quote AND
 SUBSTR(collid_passed, collid_len, 1) = quote THEN
 /* Use Collection ID exactly as passed */
 collid_to_use := SUBSTR(collid_passed, 2, collid_len-2) ;
 ELSE
 collid_to_use := UPPER(collid_passed) ;
 END IF;

 -- The following section is pertinent to ALL flavors of DB2
 -- ===

 -- The id of the specified user will have ALL privileges for ANY Package in
 -- RDBCOLID=collid_to_use

 DBMS_DRDAAS_ADMIN.GRANT_PRIVILEGE(DBMS_DRDAAS_ADMIN.ALL_PRIVILEGE,
 collid_to_use,'*', id_to_use);

 commit;

 -- If you might want the id specified to create packages in rcbcolid= SCOTT,
 -- then you need to do the following:

 -- DBMS_DRDAAS_ADMIN.GRANT_PRIVILEGE(DBMS_DRDAAS_ADMIN.ALL_PRIVILEGE,
 -- 'SCOTT','*', id_to_use);
 -- commit;

 -- Typemaps ...

 -- The described "type" for "COUNT(*)" columns in any package in the
 -- collid_to_use schema should be INTEGER

 -- General "COUNT(*)" case
 DBMS_DRDAAS_ADMIN.SET_TYPEMAP(collid_to_use,'*','COUNT(*)',
 'NUMBER=INTEGER');

 -- ==
 -- The following section is pertinent ONLY to DB2/zOS
 -- ==

 -- To use DB2 z/OS SPUFI asgainst DRDAAS, the given oracle-id must be able to
 -- define packages in the DSNESPCS and DSNESPRR schemas
 --
 -- DB2 z/OS SPUFI Packages

 DBMS_DRDAAS_ADMIN.GRANT_PRIVILEGE(DBMS_DRDAAS_ADMIN.ALL_PRIVILEGE,
 'DSNESPCS','*', id_to_use);
 DBMS_DRDAAS_ADMIN.GRANT_PRIVILEGE(DBMS_DRDAAS_ADMIN.ALL_PRIVILEGE,
 'DSNESPRR','*', id_to_use);
 commit;

 -- ==
 -- Specific DataDirect ODBC package discovery queries for DB2 z/OS

Appendix A
drdapkg_db2.sql

A-4

 -- When accessing the collid_to_use.DDOC510A package, the
 -- "column" MAX(SECTNO) referencing table SYSIBM.SYSPACKSTMT (which is a
 -- NUMBER in Oracle terms) should be described as a SMALLINT to the
 -- application

 DBMS_DRDAAS_ADMIN.SET_TYPEMAP(collid_to_use,'DDOC510A',
 'SYSIBM.SYSPACKSTMT:MAX(SECTNO)',
 'NUMBER=SMALL');

 -- Same as above but for package collid_to_use.DDOC510B

 DBMS_DRDAAS_ADMIN.SET_TYPEMAP(collid_to_use,'DDOC510B',
 'SYSIBM.SYSPACKSTMT:MAX(SECTNO)',
 'NUMBER=SMALL');

 -- When accessing the collid_to_use.DDOC510A package, the
 -- "column" COUNT(DISTINCT(NAME)) referencing table SYSIBM.SYSPACKSTMT
 -- (which is a NUMBER in Oracle terms) should be described as a SMALLINT to
 -- the application

 DBMS_DRDAAS_ADMIN.SET_TYPEMAP(collid_to_use,'DDOC510A',
 'SYSIBM.SYSPACKSTMT:COUNT(DISTINCT(NAME))',
 'NUMBER=INTEGER');

 -- Same as above but for package collid_to_use.DDOC510B

 DBMS_DRDAAS_ADMIN.SET_TYPEMAP(collid_to_use,'DDOC510B',
 'SYSIBM.SYSPACKSTMT:COUNT(DISTINCT(NAME))',
 'NUMBER=INTEGER');
 commit;

 -- ==
 -- Specific DataDirect JDBC package discovery queries for DB2 z/OS

 -- When accessing the collid_to_use.DDJC360B package, the "column"
 -- COUNT(*)-1 referencing table SYSIBM.SYSPACKSTMT (which is a NUMBER in
 -- Oracle terms) should be described as an INTEGER to the application

 DBMS_DRDAAS_ADMIN.SET_TYPEMAP(collid_to_use,'DDJC360B',
 'SYSIBM.SYSPACKSTMT:COUNT(*)-1',
 'NUMBER=INTEGER');

 -- When accessing the collid_to_use.DDJC360B package, the "column"
 -- COUNT(*)-1 referencing table SYSIBM.SYSPACKSTMT (which might be described
 -- as NUMBER(0,-127) in Oracle terms) describe the column as an INTEGER
 -- to the application.

 DBMS_DRDAAS_ADMIN.SET_TYPEMAP(collid_to_use,'DDJC360B',
 'SYSIBM.SYSPACKSTMT:COUNT(*)-1',
 'NUMBER(0,-127)=INTEGER');
 commit;

 -- ==
 -- the following section is pertinent ONLY to DB2/luw
 -- ==

 -- ==
 -- Specific DataDirect ODBC package discovery queries for DB2/LUW

Appendix A
drdapkg_db2.sql

A-5

 DBMS_DRDAAS_ADMIN.SET_TYPEMAP(collid_to_use,'DDOC510A',
 'SYSIBM.SYSPLAN:MIN(TOTALSECT)',
 'NUMBER=SMALL');

 DBMS_DRDAAS_ADMIN.SET_TYPEMAP(collid_to_use,'DDOC510A',
 'SYSIBM.SYSPLAN:COUNT(*)',
 'NUMBER=INTEGER');
 -- DBMS_DRDAAS_ADMIN.SET_TYPEMAP(collid_to_use,'DDOC510A',
 -- 'MIN(TOTALSECT)', 'NUMBER=SMALL');
 commit;

 -- ==
 -- The following section is pertinent ONLY to DB2/iOS
 -- ==

 -- Currently empty!
end;
/

A.4 drdasqtt_translator_setup.sql
Rem drdasqtt_translator_setup.sql
Rem
Rem Copyright (c) 2012, Oracle and/or its affiliates. All rights reserved.
Rem
Rem NAME
Rem drdasqtt_translator_setup.sql - Generalized script for setting up an
Rem external SQL translator
Rem
Rem
Rem DESCRIPTION
Rem This script can be used to set up any external SQL translator.
Rem Some translators, e.g., BableFish, may need extra customizations.
Rem For BabelFish, that would include the source/target SQL text for
Rem the fingerprint translations (to be inserted into
Rem DBA_SQL_TRANSLATIONS).
Rem
Rem NOTES
Rem Should be run "/ as sysdba"
Rem

SET ECHO ON
SET FEEDBACK 1
SET NUMWIDTH 10
SET LINESIZE 80
SET TRIMSPOOL ON
SET TAB OFF
SET PAGESIZE 100
SET SERVEROUTPUT ON

show user

Prompt Enter schema in which the SQL Translator Interface Package will be
created as well
Prompt as into which the third-party SQL translator will be loaded (usually
SYSIBM).
Accept TRANS_PKG_SCHEMA_ Prompt 'SQL Translator Interface Package Schema:'
DEFINE TRANSLATOR_PACKAGE_SCHEMA = &TRANS_PKG_SCHEMA_

Appendix A
drdasqtt_translator_setup.sql

A-6

Prompt Enter unqualified name of the SQL Translator Interface Package
Accept TRANS_PKG_NAME_ Prompt 'SQL Translator Interface Package Name:'
DEFINE TRANSLATOR_PACKAGE_NAME = &TRANS_PKG_NAME_

Prompt Enter schema in which the Translation Profile will be created:
Accept TRANS_PROFILE_SCHEMA_ Prompt 'Translation Profile Schema:'
DEFINE TRANS_PROFILE_SCHEMA = &TRANS_PROFILE_SCHEMA_

Prompt Enter the unqualified name of the translation profile:
Accept TRANS_PROFILE_NAME_ Prompt 'Translation Profile Name:'
DEFINE TRANS_PROFILE_NAME = &TRANS_PROFILE_NAME_

Prompt Enter the "language" type of the translator: C, java, etc
Accept TRANS_LANG_ Prompt 'Translator Language:'
DEFINE TRANS_LANG = &TRANS_LANG_

Prompt Enter the names of the third-party SQL Translator objects;
Prompt They should be available through rdbms/drdaas/jlib/..
Prompt If there is more than one object, enclose the entire set
Prompt in four quotes, such as ''''object_a object_b''''.
Accept EXTERNAL_CODE_ Prompt 'SQL Translator object(s):'
DEFINE EXTERNAL_CODE = '''&EXTERNAL_CODE_'''
DEFINE EXTERNAL_CODE

Prompt Enter the signature for the entry for 'translateSQL' in one of the
Prompt previously entered SQL Translator objects:
Accept CALLOUT_TRANSLATE_SQL_ Prompt 'Entry for translateSQL:'
DEFINE CALLOUT_TRANSLATE_SQL = '''&CALLOUT_TRANSLATE_SQL_'''

Prompt Enter the signature for the entry for 'translateError' in one of the
Prompt previously entered SQL Translator objects
Accept CALLOUT_TRANSLATE_ERROR_ Prompt 'Callout for translateError:'
DEFINE CALLOUT_TRANSLATE_ERROR = '''&CALLOUT_TRANSLATE_ERROR_'''

Rem Create the SQL Translator Interface Package ...

create or replace package &&TRANSLATOR_PACKAGE_SCHEMA..&&TRANSLATOR_PACKAGE_NAME as

 procedure translate_sql(sql_text in clob,
 translated_text out clob);

 procedure translate_error(error_code in binary_integer,
 translated_code out binary_integer,
 translated_sqlstate out varchar2);

end;
/
show errors

declare
 COMP_ERROR exception;
 pragma EXCEPTION_INIT(COMP_ERROR, -24344);
 translateSQLcode CONSTANT VARCHAR2(1024) := &&CALLOUT_TRANSLATE_SQL;
 translateErrorcode CONSTANT VARCHAR2(1024) := &&CALLOUT_TRANSLATE_ERROR;
 translateSQLToUse VARCHAR2(1024);
 translateErrorToUse VARCHAR2(1024);
 ln NUMBER;
 quote CONSTANT CHAR := '''';

Appendix A
drdasqtt_translator_setup.sql

A-7

 my_cursor BINARY_INTEGER;
 n BINARY_INTEGER;
 i BINARY_INTEGER;
 package_body VARCHAR2(1024);
 /* we can't use bind variables to substitute for the "name" part of the */
 /* procedures in the package body declaration; the "name" part MUST be a*/
 /* single-quoted string!!! ARGHHH !!! */
 package_body_1 VARCHAR2(400) :=
 'create or replace package ' ||
 'body &&TRANSLATOR_PACKAGE_SCHEMA..&&TRANSLATOR_PACKAGE_NAME as ' ||
 'procedure translate_sql(sql_text in clob, ' ||
 ' translated_text out clob) as ' ||
 'language &&TRANS_LANG ' ||
 'name ''';
 package_body_2 VARCHAR2(400) := ''' ;' ||
 'procedure translate_error(error_code in binary_integer, ' ||
 ' translated_code out binary_integer,' ||
 ' translated_sqlstate out varchar2) as ' ||
 'language &&TRANS_LANG ' ||
 'name ''';
 package_body_end VARCHAR2(10) := '''; end;';
begin
 ln := LENGTH(translateSQLcode);
 IF SUBSTR(translateSQLCode,1,1) = quote AND
 SUBSTR(translateSQLCode,ln,1) = quote THEN
 translateSQLToUse := SUBSTR(translateSQLCode, 2, ln-2);
 ELSE
 translateSQLToUse := translateSQLCode;
 END IF;
 ln := LENGTH(translateErrorcode);
 IF SUBSTR(translateErrorCode,1,1) = quote AND
 SUBSTR(translateErrorCode,ln,1) = quote THEN
 translateErrorToUse := SUBSTR(translateErrorCode, 2, ln-2);
 ELSE
 translateErrorToUse := translateErrorCode;
 END IF;
 my_cursor := DBMS_SQL.OPEN_CURSOR;
 package_body := package_body_1 || translateSQLToUse || package_body_2 ||
 translateErrorToUse || package_body_end;
 BEGIN
 DBMS_SQL.PARSE(my_cursor, package_body, DBMS_SQL.NATIVE);
 EXCEPTION
 when COMP_ERROR THEN DBMS_OUTPUT.PUT_LINE('SQLCODE=' || SQLCODE || ':' ||
 SQLERRM);
 END;
 n := DBMS_SQL.EXECUTE(my_cursor);
 DBMS_SQL.CLOSE_CURSOR(my_cursor);
end;
/

show errors

Rem Load the Java code
Rem CALL DBMS_JAVA.LOADJAVA('-definer -genmissing -schema SYSIBM
Rem rdbms/drdaas/jlib/DBTooSQLAPI.jar rdbms/drdaas/jlib/DBTooTranslator.class',
Rem '((* SYSIBM)(* PUBLIC)(* -))');
Rem DBTooSQLAPI.jar and DBTooSQLTranslator.class are fictional names

set serveroutput on

show user

Appendix A
drdasqtt_translator_setup.sql

A-8

Rem Load the .class and .jar objects as specified ...

declare
 extcode VARCHAR2(4096) := &&EXTERNAL_CODE;
 real_extcode VARCHAR2(4096);
 first_parm_first_part VARCHAR2(128) :=
 '-definer -genmissing -schema &&TRANSLATOR_PACKAGE_SCHEMA ';
 first_parm VARCHAR2(4096);
 ln NUMBER;
begin
 ln := LENGTH(extcode);
 /* We might have a beginning and ending aprostrophe --*/
 /* we need to delete them */
 IF SUBSTR(extcode,1,1) = '''' AND SUBSTR(extcode,ln,1) = '''' THEN
 real_extcode := SUBSTR(extcode, 2, ln-2);
 ELSE
 real_extcode := extcode;
 END IF;
 first_parm := first_parm_first_part || ' ' || real_extcode;
/*DBMS_OUTPUT.PUT_LINE('First parm ' || first_parm); */
 DBMS_JAVA.LOADJAVA(first_parm ,
 '((* &&TRANSLATOR_PACKAGE_SCHEMA)(* PUBLIC)(* -))');
end;
/

GRANT EXECUTE ON &&TRANSLATOR_PACKAGE_SCHEMA..&&TRANSLATOR_PACKAGE_NAME to PUBLIC;

GRANT CREATE SQL TRANSLATION PROFILE TO &&TRANS_PROFILE_SCHEMA;
GRANT TRANSLATE ANY SQL TO &&TRANS_PROFILE_SCHEMA WITH ADMIN OPTION;

CALL DBMS_SQL_TRANSLATOR.DROP_PROFILE('&&TRANS_PROFILE_SCHEMA..&&TRANS_PROFILE_NAME');
CALL
DBMS_SQL_TRANSLATOR.CREATE_PROFILE('&&TRANS_PROFILE_SCHEMA..&&TRANS_PROFILE_NAME');

begin
 dbms_sql_translator.set_attribute('&&TRANS_PROFILE_SCHEMA..&&TRANS_PROFILE_NAME',
 dbms_sql_translator.attr_translator,

'&&TRANSLATOR_PACKAGE_SCHEMA..&&TRANSLATOR_PACKAGE_NAME');

 dbms_sql_translator.set_attribute('&&TRANS_PROFILE_SCHEMA..&&TRANS_PROFILE_NAME',
 dbms_sql_translator.attr_translate_new_sql,
 dbms_sql_translator.attr_value_true);
end;
/

GRANT ALL ON SQL TRANSLATION PROFILE &&TRANS_PROFILE_SCHEMA..
 &&TRANS_PROFILE_NAME TO &&TRANSLATOR_PACKAGE_SCHEMA ;
GRANT USE ON SQL TRANSLATION PROFILE &&TRANS_PROFILE_SCHEMA..
 &&TRANS_PROFILE_NAME TO DRDAAS_USER_ROLE;

A.5 drdasqt_set_profile_dd.sql
Rem drdasqt_set_profile_dd.sql
Rem
Rem Copyright (c) 2012, Oracle and/or its affiliates. All rights reserved.
Rem

Appendix A
drdasqt_set_profile_dd.sql

A-9

Rem NAME
Rem drdasqt_set_profile_dd.sql - Set a sqllangprofile for each of
Rem the DataDirect (dd) packages.
Rem

SET ECHO ON
SET FEEDBACK 1
SET NUMWIDTH 10
SET LINESIZE 80
SET TRIMSPOOL ON
SET TAB OFF
SET PAGESIZE 100

Rem You will be prompted for the profile name.
Rem Must be run under an id that has access to the DRDAAS_ADMIN_ROLE role.

Rem set echo on
set serveroutput on

SET ROLE DRDAAS_ADMIN_ROLE;

prompt Enter the (qualified) profile name to use for DataDirect packages
Accept SQLPROFILENAME
Define PROFILE_NAMEX = &SQLPROFILENAME
prompt Enter the default Package Collection (usually NULLID)
Prompt Use quotes (') if needed
Accept DefaultCollection
Define PACKAGE_COLLECTIONX = &DefaultCollection

declare
 TYPE FIRST_CHAR IS VARRAY(4) of CHAR(1);
 TYPE SECOND_CHAR IS VARRAY(3) of CHAR(1);

 first_chr FIRST_CHAR := FIRST_CHAR();
 second_chr SECOND_CHAR := SECOND_CHAR();
 package_name VARCHAR2(128);
 profile_name CONSTANT VARCHAR2(128) := '&&PROFILE_NAMEX';
 package_collection_as_passed CONSTANT VARCHAR2(128) :=
 '&&PACKAGE_COLLECTIONX';
 package_collection VARCHAR2(128);
 cmd VARCHAR2(255);
 quote CONSTANT CHAR := '''';
 ln BINARY_INTEGER;
begin

 ln := LENGTH(package_collection_as_passed);
 IF SUBSTR(package_collection_as_passed, 1, 1) = quote AND
 SUBSTR(package_collection_as_passed, ln, 1) = quote THEN
 /* Use package_collection exactly as passed */
 package_collection := SUBSTR(package_collection_as_passed, 2, ln - 2);
 ELSE
 package_collection := UPPER(package_collection_as_passed) ;
 END IF;

 first_chr.EXTEND(4);
 first_chr(1) := 'C'; first_chr(2) := 'S';
 first_chr(3) := 'U'; first_chr(4) := 'R';
 second_chr.EXTEND(3);
 second_chr(1) := 'A'; second_chr(2) := 'B'; second_chr(3) := 'C';

Appendix A
drdasqt_set_profile_dd.sql

A-10

 FOR f IN 1..first_chr.COUNT
 LOOP
 FOR s IN 1..second_chr.COUNT
 LOOP
 package_name := 'DDO' || first_chr(f) || '510' || second_chr(s);

 cmd := 'DBMS_DRDAAS_ADMIN.SET_PROFILE(' || package_collection || ',' ||
 package_name || ',' ||
 profile_name || ')';
 DBMS_OUTPUT.PUT_LINE('Doing ' || cmd);
 DBMS_DRDAAS_ADMIN.SET_PROFILE(package_collection, package_name,
 profile_name);

 END LOOP;
 END LOOP;
end;
/

Appendix A
drdasqt_set_profile_dd.sql

A-11

B
Package Binding Options in Oracle Database
Provider for DRDA

DB2 DSN sub-command BIND PACKAGE has several options that are used when Oracle binds
a client application' package.

Further details on the BIND PACKAGE sub-command are part of the following volume: DB2® 10
for z/OS® Command Reference (SC19-2972-05).

CONCURRENTACCESSRESOLUTION

Always implements WAITFOROUTCOME semantics; this is fundamental to how Oracle does data
locking, and cannot be changed.

CURRENTDATA

Supports YES semantics.

DBPROTOCOL

Supports DRDA semantics.

DEFER/NODEFER

Supports NODEFER semantics.

DYNAMICRULES

Supports RUN semantics.

Default qualifier usage applies for each statement, as defined by DB2's rules. This is
equivalent to SET CURRENT SQLID for a STATIC or DYNAMIC SQL statement. However, Oracle
restricts object access authorization to the current logon id, and not the package owner's id.
To control object access, the logon must be handled either through an explicit access grant
(object grants, or role grants), or through a stored procedure that imposes object access
authorization.

ENABLE/DISABLE

Supports ENABLE semantics.

EXTENDEDINDICATOR

Supports NO semantics.

ISOLATION

Supports CS semantics.

Oracle, and therefore Oracle Database Provider for DRDA, do not support most isolation
modes. Oracles data isolation mode may be described as a compromise between CS and
RR. This cannot be changed because it is fundamental to how Oracle implements data

B-1

integrity management. While the value is ignored, it is stored with the package
definition for future processing.

KEEPDYNAMIC

Supports YES semantics.

OWNER

Authorization id must be a valid Oracle userid.

QUALIFIER

Qualifier name should be a valid schema name within Oracle.

RELEASE

Implements COMMIT semantics.

When using DRDA, the release of resources is performed at different level. At Commit/
Rollback, the semantics of the cursor or statement may request a release of cursor
and object locks. Other resources, such as the package itself, are retained until the
session ends, and are only then de-allocated. This behaviors is specified largely by the
client at runtime, rather than by the server.

REOPT

Implements AUTO semantics.

Oracle, by default, automatically evaluates execution plans based on statement and
host variables; both STATIC or DYNAMIC statements receive the same treatment.

ROUNDING

Implements HALFEVEN semantics.

VALIDATE

Implements RUN semantics.

This option is ignored because Oracle Database Provider for DRDA does not perform
validation of STATIC SQL statements.

Appendix B

B-2

Glossary

Application requester (AR)
Used by the application, AR assumes the client component in a classical client/server
configuration acting on the behalf of the application making all DRDA protocol requests.

Application server (AS)
Application Server. Assumes the Server component in a classical client/server configuration,
acting as the DRDA protocol front end for the server, processing DRDA requests, performing
server function calls and returning results to the client.

AS/400
Application System/400, an IBM platform.

CCSID
Coded Character Set Identifier (IBM/DRDA terminology). A 16bit number that includes a
specific set of encoding scheme identifiers, character set identifiers code page identifiers, and
other information that uniquely identifies the coded graphic character representation.

Examples include: 500 INTL EBCDIC [CECP: Belgium, Canada (AS/400*), Switzerland,
International Latin1], 819 ISO 88591 ASCII [ISO 88591: Latin Alphabet Number 1Latin1
countries and regions], 850 LATIN1 PCDATA [PC Data: MLP 222 Latin Alphabet Number
1Latin1 Countries and Regions]

Special cases: CCSID 65534 (defer codepage to lower level definition) and CCSID 65535
(binary data).

Database Request Module (DBRM)
(IBM/DRDA terminology). This is a proprietary on-disk file that contains the SQL statements
of an embedded SQL application after it has been preprocessed. The post-processed
application source will then contain only a statement reference number indicating the SQL
statement to be used in the DBRM. The statements are externalized so that the database
system can fully analyze and optimize execution of the SQL.

Glossary-1

DB2
Short for IBM DB2, the database produced by IBM.

DBCS
In IBM terminology, this is a Doublebyte Character Set, any character set that has
character code points of exactly 2 bytes in length.

Dedicated Instance Configuration
an Oracle Database Provider for DRDA configuration where a single RDB_MAP entry is
made for each Oracle Database Provider for DRDA instance. This approach is used
for IBM DB2 Database for z/OS DRDA clients. See Multiplexed Instance
Configuration.

Distributed Data Management (DDM)
DDM architecture provides the overall command and reply structure used by the
distributed database. Fewer than 20 commands are required to implement all of the
distributed database functions for communication between the application requester
(client) and the application server.

Distributed Relational Database Architecture
Distributed Relational Database Architecture (DRDA) is an open, published
architecture that enables communication between applications and database systems
on disparate platforms, whether those applications and database systems are
provided by the same or different vendors and whether the platforms are the same or
different hardware/software architectures. DRDA is a combination of other
architectures and the environmental rules and process model for using them. The
architectures that actually comprise DRDA are Distributed Data Management (DDM)
and Formatted Data Object Content Architecture (FD:OCA).

DRDA
See Distributed Relational Database Architecture.

DRDA Package
(IBM/DRDA terminology). A "package" is a collection of SQL statements and attributes
defined in an embedded SQL application. A Package is created by binding a resource
file (DBRM) though DRDA BIND request commands.

Dynamic SQL
A Package may contain a mix of Static SQL and Dynamic SQL. Dynamic SQL is SQL
that is not preformed in the application (and generally considered adhoc, even if it is
constructed by the application). The primary differences between static and dynamic

Glossary

Glossary-2

SQL is that static SQL is preloaded into the database as part of the Package and dynamic
SQL must be sent to the database a runtime for execution. Historically, Oracle only
implements dynamic SQL, relying on the strength of it's cursor caching facility to enhance the
speed of SQL execution which largely negates the need for static SQL. See Static SQL.

FD:OCA
See Formatted Data Object Content Architecture.

Formatted Data Object Content Architecture
The Formatted Data Object Content Architecture (FD:OCA) provides the data definition
architectural base for DRDA. Descriptors defined by DRDA provide layout and datatype
information for all the information routinely exchanged between the application requesters
and servers. A descriptor organization is defined by DRDA to allow dynamic definition of user
data that flows as part of command or reply data. DRDA also specifies that the descriptors
only have to flow once per answer set, regardless of the number of rows actually returned,
thus minimizing data traffic on the wire.

IBM
International Business Machines, the company responsible DB2 Database and DB2 group of
products.

MBCS
In IBM terminology, this is a Multibyte Character Set, any character set that may contain
variable-length character code points. An example is Unicode (UTF-8). Another example is
when a singlebyte character set and a doublebyte character set are combined to make a
multibyte character set.

Multiplexed Instance Configuration
an Oracle Database Provider for DRDA configuration where additional DATA_PORT entries may
be specified with different host name or IP addresses, and unallocated network port numbers.
See Dedicated Instance Configuration.

Oracle Call Interface (OCI)
OCI is a set of C-language software APIs that provide an interface to the Oracle database.

OCI consists of procedural APIs that perform database administration tasks and for using
PL/SQL or SQL to query, access, and manipulate data.

Glossary

Glossary-3

SBCS
In IBM terminology, this is a Singlebyte Character Set, any character set that has
character code points of exactly 1 byte in length.

Special Register
In DB2, a special register is a storage area defined for an application process, and
used to store information that can be referenced in SQL statements. A reference to a
special register is a reference to a value provided by the current server. If the value is
a string, its CCSID is a default CCSID of the current server.

Static SQL
A Package may contain a mix of Static SQL and Dynamic SQL. Static SQL is SQL that
is already written as part of the application. It's syntax and use of in-program variables
(bind variables) is fixed in the code and cannot be changed during execution. Also, the
SQL is not part of the application. It is extracted from the source and uploaded as part
of the Package, further fixing its form and preventing malicious modification of it's
function. It is presumed that static SQL is also heavily analyzed in advance to allow for
a more efficient execution plan. Historically, DB2 invented static SQL for applications
that were primarily batch oriented and thus not subject to the idea of dynamic
construction. See Dynamic SQL.

SQL Type
In IBM's DB2 terminology, this is an interface value for datatype.

SQLAM Level
SQLAM stands for SQL Application Manager. SQLAM Level 8 is the support level
provided by Oracle's implementation of DRDA.

UOW
In IBM terminology, this is a Unit of Work, a resource designation for all changes to a
database within the scope of a transaction. DRDA maintains a Distributed (or Remote)
Unit of Work between a client and a database for the duration of the application's
transaction.

Glossary

Glossary-4

Index

A
Access Manager Plug-in Architecture

Connectivity Model, 1-4
Application Requesters, 1-1
Application Servers, 1-1
AR, 1-1
AS, 1-1
AS/400, 1-2, 1-4

C
CICS DB2, 1-3
client/server architecture, 1-2
CONCURRENTACCESSRESOLUTION option,

BIND PACKAGE subcommand, B-1
cross-platform interoperability, 1-2
CURRENTDATA option, BIND PACKAGE

subcommand, B-1
cursor HOLD attribute semantics

restrictions, 12-1
custom applications, 1-2

D
DATE datatype

restrictions, 12-1
DB2, 1-4
DB2 Client Applications, 1-1
DB2 Connect, 1-2, 1-3
DB2 Connect Replacement of DB2 Server

Connectivity Model, 1-3
DB2 Database, 1-2
DB2 server, 1-1
DB2/400, 1-3, 1-4
DB2/400 Native DRDA Usage Connectivity

Model, 1-4
DB2/400 plug-in interface, 1-4
DBPROTOCOL option, BIND PACKAGE

subcommand, B-1
DEFER option, BIND PACKAGE subcommand,

B-1
DISABLE option, BIND PACKAGE subcommand,

B-1
Distributed Relational Database Architecture, 1-1

DRDA Application Requester, 1-2
DRDA connectivity model, 1-2
DRDA data protocol, 1-2
DYNAMICRULES option, BIND PACKAGE

subcommand, B-1

E
embedded API, 1-2
embedded SQL, 1-1, 1-2
ENABLE option, BIND PACKAGE subcommand,

B-1
EXTENDEDINDICATOR option, BIND PACKAGE

subcommand, B-1

I
IBM DB2, 1-1
IBM DB2 Connect, 1-2
IBM DB2 Database, 1-2
ISOLATION option, BIND PACKAGE

subcommand, B-1

J
Java, 1-2
JDBC, 1-2

K
KEEPDYNAMIC option, BIND PACKAGE

subcommand, B-1

L
Linux, 1-2, 1-4

M
Microsoft Windows, 1-2

N
native application, 1-4

Index-1

Native Application Remote Connectivity Model,
1-3

native DB2 applications, 1-3
native DRDA support, 1-3
network infrastructure, 1-4
NODEFER option, BIND PACKAGE

subcommand, B-1

O
OCI, 1-4
OCI API, 1-2
ODBC, 1-2
Oracle Access Manager, 1-4
Oracle Database Provider for DRDA, 1-1
Oracle Object-Relational datatypes

restrictions, 12-2
OWNER option, BIND PACKAGE subcommand,

B-1

P
pre-processor, 1-2
Pro*C preprocessor, 1-2
proxy connection, 1-4

Q
QUALIFIER option, BIND PACKAGE

subcommand, B-1

R
RELEASE option, BIND PACKAGE

subcommand, B-1
remote application, 1-4
remote connectivity, 1-3
remote DB2 applications, 1-2
REOPT option, BIND PACKAGE subcommand,

B-1
requester, 1-3
restrictions

cursor HOLD attribute semantics, 12-1
DATE datatype, 12-1
Oracle Object-Relational datatypes, 12-2
Resynch Manager, 12-1
SYS.XMLType datatype, 12-2
TIMESTAMP datatype, 12-2
TIMESTAMP WITH TIMEZONE datatype,

12-2

restrictions (continued)
XML datatype, 12-2

Resynch Manager
restrictions, 12-1

retarget, 1-2, 1-4, 1-5
retargeting, 1-1
ROUNDING option, BIND PACKAGE

subcommand, B-1

S
SNA/APPC network, 1-2
SQL*Net, 1-4
SYS.XMLType datatype

restrictions, 12-2

T
TCP/IP network, 1-2
TIMESTAMP datatype

restrictions, 12-2
TIMESTAMP WITH TIMEZONE datatype

restrictions, 12-2

U
Unix, 1-2, 1-4
usage scenarios, 1-4

V
VALIDATE option, BIND PACKAGE

subcommand, B-1
VM, 1-2
VSE, 1-2

W
Windows, 1-4

X
XML datatype

restrictions, 12-2

Z
z/OS, 1-2–1-4

Index

Index-2

	Contents
	List of Tables
	Preface
	Audience
	Related Documents
	Documentation Accessibility
	Conventions

	1 Introduction to Oracle Database Provider for DRDA
	1.1 What is Oracle Database Provider for DRDA?
	1.2 Release Information
	1.3 DB2 Client Applications
	1.3.1 Remote DB2 Applications
	1.3.2 Native DB2 Applications

	1.4 Usage Scenarios for Oracle Database Provider for DRDA

	2 Architecture of Oracle Database Provider for DRDA
	2.1 Protocol Considerations
	2.2 Two-Phase Commit and Transaction Recovery
	2.3 Autonomy of Service
	2.4 Packages
	2.5 SQL Dialect

	3 Installation and Configuration of Oracle Database Provider for DRDA
	3.1 About Installing Oracle Database Provider for DRDA
	3.1.1 Installing Oracle Database Provider for DRDA

	3.2 Configuring Oracle Database Provider for DRDA
	3.2.1 Updating the drdaas.ora Configuration File
	3.2.1.1 DATA_PORT Considerations
	3.2.1.2 RDB_MAP Considerations
	3.2.1.3 Oracle Database Provider for DRDA Instance Considerations

	3.2.2 Installing Database Objects
	3.2.2.1 About Global Objects
	3.2.2.2 Creating a SYSIBM tablespace
	3.2.2.3 Installing Oracle Database Provider for DRDA Catalogs
	3.2.2.4 Installing DB2 SQL translator
	3.2.2.5 Designating Oracle Database Provider for DRDA Administrative Role

	3.2.3 SQL Translation Profile
	3.2.3.1 Prerequisites for Creating a SQL Translation Profile
	3.2.3.2 Creating a SQL Translation Interface Package and Translation Profile

	3.2.4 Configuration File: drdaas.ora

	3.3 Authorizing Oracle Database Provider for DRDA
	3.3.1 Administrator Role
	3.3.1.1 Granting DRDAAS_ADMIN_ROLE
	3.3.1.2 Adding DRDAA_ADMIN_ROLE
	3.3.1.3 Dropping ORACLE.MYPACKAGE by Administrator
	3.3.1.4 Dropping ORACLE.MYPACKAGE by User
	3.3.1.5 Maintaining DRDA Packages

	3.3.2 DRDA Package Authorization
	3.3.2.1 Managing a User’s Package Privileges
	3.3.2.2 Managing DRDA Package Translation Profile

	3.3.3 User Role
	3.3.3.1 Granting the DRDAAS_USER_ROLE
	3.3.3.2 Adding DRDAAS_USER_ROLE

	3.4 Uninstalling Oracle Database Provider for DRDA
	3.4.1 Removing the Database Objects
	3.4.2 Uninstalling Oracle Database Provider for DRDA software

	3.5 Configuration Parameters
	3.5.1 DATA_PORT
	3.5.2 RDB_MAP
	3.5.3 PROTOPROC_TRACE
	3.5.4 PROTOPROC_OPTIONS

	4 SQL Translation and Examples for Oracle Database Provider for DRDA
	4.1 Overview of SQL Translation Process
	4.1.1 Implementing SQL Translation
	4.1.2 Requirements for SQL Translation

	4.2 Specifics of Translating DB2-Specific SQL Syntax
	4.2.1 DB2 Special Registers
	4.2.2 DB2 SQL Functions and Procedures
	4.2.3 DB2 Named Datatypes
	4.2.4 DB2 Syntactic Statements

	4.3 SQL Translator Interface Package
	4.3.1 About SQL Translator Interface Package
	4.3.2 Creating a SQL Translator Interface Package
	4.3.3 Granting EXECUTE Access to SQL Translator Interface Package
	4.3.4 Creating a SQL Translation Profile
	4.3.4.1 Granting Translation Authority Through Administrator Role
	4.3.4.2 Granting Translation Authority Through User Role
	4.3.4.3 Creating and Managing SQL Translation Profile

	4.4 Using Third-Party SQL Translators
	4.4.1 Using a Third-Party SQL Translator, Loaded as a Single Object
	4.4.2 Using a Third-Party SQL Translator, Loaded as Multiple Objects

	4.5 Using a Translator Management Script
	4.6 Verifying the SQL Translator Profile
	4.7 Altering the SQL Translation Profile

	5 Administration and Customization of Oracle Database Provider for DRDA
	5.1 Migration Steps using Oracle Database Provider for DRDA
	5.2 Considerations for Using Oracle Database Provider for DRDA
	5.3 Prerequisites to Installing Oracle Database Provider for DRDA
	5.4 Administering DRDA Package Authority
	5.5 Migrating DB2 Data
	5.6 Retargeting the Application to Use Oracle Database
	5.6.1 Re-targeting Native Applications
	5.6.2 Re-targeting Remote Applications

	5.7 Translating SQL Statement and Typing Datatypes
	5.7.1 Registering a SQL Substitution Statement
	5.7.2 Registering an On-Demand Datatype Conversion

	6 Diagnostics and Maintenance of Oracle Database Provider for DRDA
	6.1 Diagnostics for Oracle Database Provider for DRDA
	6.2 Maintaining Oracle Database Provider for DRDA

	7 Datatype Support and Conversion in Oracle Database Provider for DRDA
	7.1 Overview of Datatype Conversion
	7.2 Numerical Range Considerations; General
	7.2.1 Oracle NUMBER
	7.2.2 FLOAT (IBM HEX or S390)
	7.2.3 FLOAT (IEEE)
	7.2.4 DECFLOAT

	7.3 Numerical Range Considerations, for COBOL Users
	7.3.1 Constraining Oracle NUMBER

	7.4 Conversion between DRDA Datatypes to Oracle Datatypes
	7.4.1 INTEGER
	7.4.2 SMALLINT
	7.4.3 BIGINT
	7.4.4 float
	7.4.5 DOUBLE PRECISION or FLOAT(b)
	7.4.6 REAL or FLOAT(b)
	7.4.7 DECIMAL(p,s)
	7.4.8 DECIMAL(p,s) zoned
	7.4.9 NUMERIC(p,s)
	7.4.10 DECFLOAT(n=34)
	7.4.11 DECFLOAT(n=16)
	7.4.12 CHAR(n)
	7.4.13 CHAR(n) for Bit Data
	7.4.14 VARCHAR(n)
	7.4.15 VARCHAR(n)
	7.4.16 VARCHAR(n) for Bit Data
	7.4.17 VARCHAR(n)
	7.4.18 VARCHAR(n)
	7.4.19 VARCHAR(n) for Bit Data
	7.4.20 char(n+1)
	7.4.21 char(n+1)
	7.4.22 char(n) for Bit Data
	7.4.23 VARGRAPHIC(n)
	7.4.24 GRAPHIC(n)
	7.4.25 VARGRAPHIC(n)
	7.4.26 char(n) (Pascal L String)
	7.4.27 char(n) for Bit Data (Pascal L String)
	7.4.28 DATE
	7.4.29 TIME
	7.4.30 TIMESTAMP
	7.4.31 (datalink)
	7.4.32 BLOB
	7.4.33 CLOB
	7.4.34 DBCLOB
	7.4.35 BLOB LOCATOR
	7.4.36 CLOB LOCATOR
	7.4.37 DBCLOB LOCATOR
	7.4.38 boolean
	7.4.39 BINARY(n)
	7.4.40 VARBINARY(n)
	7.4.41 XML

	7.5 Conversion of Oracle Datatype to DRDA
	7.5.1 BINARY_FLOAT
	7.5.2 BINARY_DOUBLE
	7.5.3 VARCHAR2(n)
	7.5.4 LONG
	7.5.5 LONG RAW
	7.5.6 NVARCHAR2(n)
	7.5.7 CHAR(n)
	7.5.7.1 Shorter version
	7.5.7.2 Longer Version

	7.5.8 NCHAR(n)
	7.5.8.1 Shorter version
	7.5.8.2 Longer Version

	7.5.9 UROWID
	7.5.10 DATE
	7.5.11 TIMESTAMP
	7.5.12 TIMESTAMP WITH LOCAL TIME ZONE
	7.5.13 TIMESTAMP(p) WITH TIME ZONE
	7.5.14 RAW(n)
	7.5.15 NUMBER and FLOAT

	7.6 Datatype Equivalence and Remapping
	7.6.1 Applying Datatype Mapping
	7.6.2 Using TYPEMAP in Queries
	7.6.3 Using TYPEMAP in Functions
	7.6.4 Oracle NUMBER TYPEMAP

	8 Data Dictionary for Oracle Database Provider for DRDA
	8.1 Data Dictionary Emulation in Oracle Database Provider for DRDA
	8.1.1 DB2 for z/OS

	8.2 Data Dictionary Views for Oracle Database Provider for DRDA
	8.2.1 ALL_DRDAASPACKAGE Data Dictionary View
	8.2.2 ALL_DRDAASPACKAUTH Data Dictionary View
	8.2.3 ALL_DRDAASPACKSIDE Data Dictionary View
	8.2.4 DBA_DRDAASPACKAGE Data Dictionary View
	8.2.5 DBA_DRDAASPACKAUTH Data Dictionary View
	8.2.6 DBA_DRDAASPACKSIDE Data Dictionary View
	8.2.7 DBA_DRDAASPACKSTMT Data Dictionary View
	8.2.8 DBA_DRDAASTRACE Data Dictionary View
	8.2.9 USER_DRDAASPACKAGE Data Dictionary View
	8.2.10 USER_DRDAASPACKAUTH Data Dictionary View
	8.2.11 USER_DRDAASPACKSIDE Data Dictionary View
	8.2.12 USER_DRDAASPACKSTMT Data Dictionary View
	8.2.13 USER_DRDAASTRACE Data Dictionary View

	9 Error Codes Support in Oracle Database Provider for DRDA
	9.1 Oracle Error Codes
	9.1.1 Error Code Mapping, from Oracle to DRDA

	10 Command-line Utility for Oracle Database Provider for DRDA
	10.1 Command-line Utility
	10.1.1 START
	10.1.2 STOP
	10.1.3 STATUS
	10.1.4 TRACE
	10.1.5 PAUSE
	10.1.6 RESUME
	10.1.7 RELOAD
	10.1.8 EXIT

	11 Security and Storage Considerations for Oracle Database Provider for DRDA
	11.1 Overview of Security and Storage for Oracle Database Provider for DRDA
	11.2 Authentication and Encryption in Oracle Database Provider for DRDA
	11.2.1 Authentication Services
	11.2.2 Encryption Services

	11.3 Database Roles in Oracle Database Provider for DRDA
	11.3.1 DRDAAS_ADMIN_ROLE
	11.3.2 DRDAAS_USER_ROLE

	11.4 Storage in Oracle Database Provider for DRDA
	11.4.1 SYSIBM Tablespace
	11.4.2 SYSIBM User

	12 Restrictions on Using Oracle Database Provider for DRDA
	12.1 Resynch Manager
	12.2 Cursor HOLD Attribute Semantics
	12.3 DB2 Password Blank Padding
	12.4 Restrictions on Datatypes
	12.4.1 DATE Datatype
	12.4.2 Oracle Object-Relational Datatypes
	12.4.3 TIMESTAMP Datatype
	12.4.4 TIMESTAMP WITH TIMEZONE Datatype
	12.4.5 XML Datatype
	12.4.6 SYS.XMLType Datatype

	12.5 Extended Length Mode
	12.6 DB2 for z/OS Log usage
	12.7 Other Restrictions

	13 PL/SQL Packages Used by Oracle Database Provider for DRDA
	13.1 DBMS_DRDAAS_ADMIN Package
	13.1.1 DBMS_DRDAAS_ADMIN Privilege Constants
	13.1.2 GRANT_PRIVILEGE
	13.1.3 REVOKE_PRIVILEGE
	13.1.4 DROP_PACKAGE
	13.1.5 DROP_PACKAGE_VN
	13.1.6 DROP_PACKAGE_CT
	13.1.7 SET_PROFILE
	13.1.8 SET_LOCALDATE_FORMAT
	13.1.9 SET_LOCALTIME_FORMAT
	13.1.10 SET_TYPEMAP

	13.2 DBMS_DRDAAS Package
	13.2.1 DBMS_DRDAAS Privilege Constants
	13.2.2 BIND_PACKAGE
	13.2.3 BIND_STATEMENT
	13.2.4 END_BIND
	13.2.5 GRANT_PRIVILEGE
	13.2.6 REVOKE_PRIVILEGE
	13.2.7 DROP_PACKAGE

	14 SQL Statement Support in Oracle Database Provider for DRDA
	14.1 Overview of SQL Statement Support
	14.2 SQL Clause Restrictions
	14.2.1 Internally Processed SQL Statements
	14.2.2 Removed SQL Clauses that Retain Semantic Effect
	14.2.3 Ignored SQL Clauses
	14.2.4 Translated SQL Clauses

	14.3 Support for Special Registers
	14.3.1 Retrieving Values from Special Registers
	14.3.2 Setting Special Registers
	14.3.3 Special Registers Supported by Oracle Database Provider for DRDA
	14.3.3.1 APPLICATION ENCODING SCHEME
	14.3.3.2 CLIENT_ACCTNG
	14.3.3.3 CLIENT_APPLNAME
	14.3.3.4 CLIENT_PROGRAMID
	14.3.3.5 CLIENT_USERID
	14.3.3.6 CLIENT_WRKSTNNAME
	14.3.3.7 DATE
	14.3.3.8 DBPARTITIONNUM
	14.3.3.9 DEBUG MODE
	14.3.3.10 DECFLOAT ROUNDING MODE
	14.3.3.11 DEFAULT TRANSFORM GROUP
	14.3.3.12 DEGREE
	14.3.3.13 EXPLAIN MODE
	14.3.3.14 EXPLAIN SNAPSHOT
	14.3.3.15 FEDERATED ASYNCHRONY
	14.3.3.16 IMPLICIT XMLPARSE OPTION
	14.3.3.17 ISOLATION
	14.3.3.18 LOCK TIMEOUT
	14.3.3.19 LOCALE LC_TYPE
	14.3.3.20 MAINTAINED TABLE TYPES FOR OPTIMIZATION
	14.3.3.21 MEMBER
	14.3.3.22 OPTIMIZATION HINT
	14.3.3.23 PACKAGE PATH
	14.3.3.24 PACKAGESET
	14.3.3.25 PATH
	14.3.3.26 PRECISION
	14.3.3.27 QUERY ACCELERATION
	14.3.3.28 QUERY OPTIMIZATION
	14.3.3.29 REFRESH AGE
	14.3.3.30 ROUTINE VERSION
	14.3.3.31 RULES
	14.3.3.32 SCHEMA
	14.3.3.33 SERVER
	14.3.3.34 SQL_CCFLAGS
	14.3.3.35 SQLID
	14.3.3.36 TIMESTAMP
	14.3.3.37 USER
	14.3.3.38 SESSION_USER
	14.3.3.39 SYSTEM_USER
	14.3.3.40 ENCRYPTION PASSWORD

	A Scripts for Creating and Maintaining Oracle Database Provider for DRDA
	A.1 catdrdaas.sql
	A.2 catnodrdaas.sql
	A.3 drdapkg_db2.sql
	A.4 drdasqtt_translator_setup.sql
	A.5 drdasqt_set_profile_dd.sql

	B Package Binding Options in Oracle Database Provider for DRDA
	Glossary
	Application requester (AR)
	Application server (AS)
	AS/400
	CCSID
	Database Request Module (DBRM)
	DB2
	DBCS
	Dedicated Instance Configuration
	Distributed Data Management (DDM)
	Distributed Relational Database Architecture
	DRDA
	DRDA Package
	Dynamic SQL
	FD:OCA
	Formatted Data Object Content Architecture
	IBM
	MBCS
	Multiplexed Instance Configuration
	Oracle Call Interface (OCI)
	SBCS
	Special Register
	Static SQL
	SQL Type
	SQLAM Level
	UOW

	Index

