Oracle® Database
Security Guide

19c
E96299-47
May 2024

ORACLE"

Oracle Database Security Guide, 19c¢

E96299-47

Copyright © 1996, 2024, Oracle and/or its affiliates.
Primary Author: Patricia Huey

Contributing Authors: Sumit Jeloka

Contributors: Suraj Adhikari, Thomas Baby, Tammy Bednar, Todd Bottger, Sanjay Bharadwaj, Leo Cloutier, Sudha
Duraiswamy, Naveen Gopal, Rishabh Gupta, Yong Hu, Srinidhi Kayoor , Peter Knaggs, Andre Kruklikov, Sanjay Kulhari,
Anup A. Kumar, Bryn Llewellyn, Dah-Yoh Lim, Rahil Mir, Hari Mohankumar, Gopal Mulagund, Abhishek Munnolimath,
Paul Needham, Robert Pang, Dilip Raj, Kumar Rajamani, Kathy Rich, Saikat Saha, Vipin Samar, Saravana
Soundararajan, James Spiller, Srividya Tata, Kamal Tbeileh, Can Tuzla, Anand Verma, Patrick Wheeler, Peter H. Wong

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation,” or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

Preface

Audience lii
Documentation Accessibility lii
Related Documents lii
Conventions liii

Changes in This Release for Oracle Database Security Guide

Changes in Oracle Database Security 19c liv

Updates to Oracle Database Security 19¢ lix
1 Introduction to Oracle Database Security

1.1 About Oracle Database Security 1-1

1.2 Additional Oracle Database Security Products 1-2

Part | Managing User Authentication and Authorization

2 Managing Security for Oracle Database Users

2.1 About User Security 2-1
2.2 Creating User Accounts 2-2
2.2.1 About Common Users and Local Users 2-2
2.2.1.1 About Common Users 2-3

2.2.1.2 How Plugging in PDBs Affects CDB Common Users 2-4

2.2.1.3 About Local Users 2-5

2.2.2 Who Can Create User Accounts? 2-6
2.2.3 Creating a New User Account That Has Minimum Database Privileges 2-6
2.2.4 Restrictions on Creating the User Name for a New Account 2-7
2.2.4.1 Uniqueness of User Names 2-8

2.2.4.2 User Names in a Multitenant Environment 2-8

2.2.4.3 Case Sensitivity for User Names 2-8

2.2.5 Assignment of User Passwords 2-9

ORACLE il

2.2.6 Default Tablespace for the User

2.2.6.1 About Assigning a Default Tablespace for a User

2.2.6.2 DEFAULT TABLESPACE Clause for Assigning a Default Tablespace
2.2.7 Tablespace Quotas for a User

2.2.7.1 About Assigning a Tablespace Quota for a User

2.2.7.2 CREATE USER Statement for Assigning a Tablespace Quota

2.2.7.3 Restriction of the Quota Limits for User Objects in a Tablespace

2.2.7.4 Grants to Users for the UNLIMITED TABLESPACE System Privilege
2.2.8 Temporary Tablespaces for the User

2.2.8.1 About Assigning a Temporary Tablespace for a User

2.2.8.2 TEMPORARY TABLESPACE Clause for Assigning a Temporary
Tablespace

2.2.9 Profiles for the User
2.2.10 Creation of a Common User or a Local User
2.2.10.1 About Creating Common User Accounts
2.2.10.2 CREATE USER Statement for Creating a Common User Account
2.2.10.3 About Creating Local User Accounts
2.2.10.4 CREATE USER Statement for Creating a Local User Account
2.2.11 Creating a Default Role for the User
2.3 Altering User Accounts
2.3.1 About Altering User Accounts
2.3.2 Methods of Altering Common or Local User Accounts
2.3.3 Changing Non-SYS User Passwords
2.3.3.1 About Changing Non-SYS User Passwords

2.3.3.2 Using the PASSWORD Command or ALTER USER Statement to Change
a Password

2.3.4 Changing the SYS User Password
2.3.4.1 About Changing the SYS User Password
2.3.4.2 ORAPWD Utility for Changing the SYS User Password
2.4 Configuring User Resource Limits
2.4.1 About User Resource Limits
2.4.2 Types of System Resources and Limits
2.4.2.1 Limits to the User Session Level
2.4.2.2 Limits to Database Call Levels
2.4.2.3 Limits to CPU Time
2.4.2.4 Limits to Logical Reads
2.4.2.,5 Limits to Other Resources
2.4.3 Values for Resource Limits of Profiles
2.4.4 Managing Resources with Profiles
2.4.4.1 About Profiles
2.4.4.2 ora_stig_profile User Profile
2.4.4.3 Creating a Profile

ORACLE

2.4.4.4 Creating a CDB Profile or an Application Profile 2-28
2.4.45 Assigning a Profile to a User 2-28
2.4.4.6 Dropping Profiles 2-29
2.5 Dropping User Accounts 2-29
2.5.1 About Dropping User Accounts 2-29
2.5.2 Terminating a User Session 2-30
2.5.3 About Dropping a User After the User Is No Longer Connected to the Database 2-30
2.5.4 Dropping a User Whose Schema Contains Objects 2-31
2.6 Predefined Schema User Accounts Provided by Oracle Database 2-31
2.6.1 About the Predefined Schema User Accounts 2-31
2.6.2 Predefined Administrative Accounts 2-32
2.6.3 Predefined Non-Administrative User Accounts 2-35
2.6.4 Predefined Sample Schema User Accounts 2-36
2.7 Database User and Profile Data Dictionary Views 2-36
2.7.1 Data Dictionary Views That List Information About Users and Profiles 2-37
2.7.2 Query to Find All Users and Associated Information 2-38
2.7.3 Query to List All Tablespace Quotas 2-38
2.7.4 Query to List All Profiles and Assigned Limits 2-39
2.7.5 Query to View Memory Use for Each User Session 2-40
3 Configuring Authentication

3.1 About Authentication 3-2
3.2 Configuring Password Protection 3-2
3.2.1 What Are the Oracle Database Built-in Password Protections? 3-3
3.2.2 Minimum Requirements for Passwords 3-4
3.2.3 Creating a Password by Using the IDENTIFIED BY Clause 3-4
3.2.4 Using a Password Management Policy 3-4
3.2.4.1 About Managing Passwords 3-5
3.2.4.2 Finding User Accounts That Have Default Passwords 3-6
3.2.4.3 Password Settings in the Default Profile 3-6
3.2.4.4 Using the ALTER PROFILE Statement to Set Profile Limits 3-8
3.2.4.5 Disabling and Enabling the Default Password Security Settings 3-8
3.2.4.6 Automatically Locking Inactive Database User Accounts 3-9

3.2.4.7 Automatically Locking User Accounts After a Specified Number of Failed
Log-in Attempts 3-10
3.2.4.8 Example: Locking an Account with the CREATE PROFILE Statement 3-10
3.2.4.9 Explicitly Locking a User Account 3-11
3.2.4.10 Controlling the User Ability to Reuse Previous Passwords 3-11
3.2.4.11 About Controlling Password Aging and Expiration 3-12

3.2.4.12 Using the CREATE PROFILE or ALTER PROFILE Statement to Set a

Password Lifetime 3-13
3.2.4.13 Checking the Status of a User Account 3-13

ORACLE

3.24.14
3.24.15

Password Change Life Cycle
PASSWORD_LIFE_TIME Profile Parameter Low Value

3.2.5 Managing Gradual Database Password Rollover for Applications

3.251
3.25.2

3.25.3
3.254

3.255

3.25.6
3.25.7
3.2.5.8
3.25.9
3.2.5.10

3.25.11

3.25.12

About Managing Gradual Database Password Rollover for Applications

Password Change Life Cycle During a Gradual Database Password
Rollover

Enabling the Gradual Database Password Rollover

Changing a Password to Begin the Gradual Database Password Rollover
Period

Changing a Password During the Gradual Database Password Rollover
Period

Ending the Password Rollover Period

Database Behavior During the Gradual Password Rollover Period
Database Server Behavior After the Password Rollover Period Ends
Guideline for Handling Compromised Passwords

How Gradual Database Password Rollover Works During Oracle Data
Pump Exports

Using Gradual Database Password Rollover in an Oracle Data Guard
Environment

Finding Users Who Still Use Their Old Passwords

3.2.6 Managing the Complexity of Passwords

3.26.1
3.2.6.2
3.2.6.3
3.26.4
3.2.6.5
3.2.6.6
3.2.6.7
3.2.6.8
3.2.6.9

About Password Complexity Verification

How Oracle Database Checks the Complexity of Passwords
Who Can Use the Password Complexity Functions?
verify_function_11G Function Password Requirements
oral2c_verify function Password Requirements
oral2c_strong_verify_function Function Password Requirements
oral2c_stig_verify_function Password Requirements

About Customizing Password Complexity Verification

Enabling Password Complexity Verification

3.2.7 Managing Password Case Sensitivity

3.271

3.2.7.2

3.2.7.3
3.2.74
3.2.75

3.2.7.6
3.2.7.7

SEC_CASE_SENSITIVE_LOGON Parameter and Password Case
Sensitivity

Using the ALTER SYSTEM Statement to Enable Password Case
Sensitivity

Management of Case Sensitivity for Secure Role Passwords
Management of Password Versions of Users

Finding and Resetting User Passwords That Use the 10G Password
Version

How Case Sensitivity Affects Password Files

How Case Sensitivity Affects Passwords Used in Database Link
Connections

3.2.8 Ensuring Against Password Security Threats by Using the 12C Password
Version

ORACLE

3-13
3-15
3-16
3-17

3-18
3-19

3-20

3-21
3-22
3-22
3-23
3-23

3-24

3-24
3-24
3-25
3-26
3-26
3-26
3-26
3-27
3-27
3-28
3-28
3-29
3-30

3-30

3-31
3-31
3-32

3-34
3-36

3-37

3-37

Vi

3.2.8.1 About the 12C Version of the Password Hash
3.2.8.2 Oracle Database 12C Password Version Configuration Guidelines

3.2.8.3 Configuring Oracle Database to Use the 12C Password Version
Exclusively

3.2.8.4 How Server and Client Logon Versions Affect Database Links

3.2.8.5 Configuring Oracle Database Clients to Use the 12C Password Version
Exclusively

3.2.9 Managing the Secure External Password Store for Password Credentials
3.2.9.1 About the Secure External Password Store
3.2.9.2 How Does the Secure External Password Store Work?
3.2.9.3 About Configuring Clients to Use the Secure External Password Store
3.2.9.4 Configuring a Client to Use the Secure External Password Store
3.2.9.5 Example: Sample sqglnet.ora File with Wallet Parameters Set
3.2.9.6 Managing External Password Store Credentials

3.2.10 Managing Passwords for Administrative Users
3.2.10.1 About Managing Passwords for Administrative Users
3.2.10.2 Setting the LOCK and EXPIRED Status of Administrative Users
3.2.10.3 Password Profile Settings for Administrative Users
3.2.10.4 Last Successful Login Time for Administrative Users
3.2.10.5 Management of the Password File of Administrative Users
3.2.10.6 Migration of the Password File of Administrative Users

3.2.10.7 How the Multitenant Option Affects Password Files for Administrative
Users

3.2.10.8 Password Complexity Verification Functions for Administrative Users
3.3 Authentication of Database Administrators
3.3.1 About Authentication of Database Administrators
3.3.2 Strong Authentication, Centralized Management for Administrators
3.3.2.1 About Strong Authentication for Database Administrators
3.3.2.2 Configuring Directory Authentication for Administrative Users
3.3.2.3 Configuring Kerberos Authentication for Administrative Users
3.3.2.4 Configuring User Authentication with Transport Layer Security
3.3.3 Authentication of Database Administrators by Using the Operating System
3.3.4 Authentication of Database Administrators by Using Their Passwords
3.3.5 Risks of Using Password Files for Database Administrator Authentication
3.4 Database Authentication of Users
3.4.1 About Database Authentication of Users
3.4.2 Advantages of Database Authentication
3.4.3 Creating Users Who Are Authenticated by the Database
3.5 Schema-Only Accounts
3.5.1 About Schema-Only Accounts
3.5.2 Creating a Schema-Only Account
3.5.3 Altering a Schema-Only Account
3.6 Operating System Authentication of Users

ORACLE

3-37
3-38

3-40
3-42

3-43
3-44
3-44
3-45
3-46
3-46
3-47
3-48
3-50
3-50
3-50
3-51
3-51
3-51
3-52

3-52
3-53
3-53
3-54
3-54
3-54
3-54
3-55
3-56
3-58
3-59
3-60
3-60
3-61
3-62
3-62
3-63
3-63
3-64
3-64
3-64

Vii

3.7 Network Authentication of Users

3.7.1 Authentication with Transport Layer Security
3.7.2 Authentication with Third-Party Services

3.7.21
3.7.2.2
3.7.2.3
3.7.2.4
3.7.2.5

About Authentication Using Third-Party Services
Authentication with Kerberos

Authentication with RADIUS

Authentication with Directory-Based Services
Authentication with Public Key Infrastructure

3.8 Configuring Operating System Users for a PDB

3.8.1 About Configuring Operating System Users for a PDB

3.8.2 Configuring an Operating System User for a PDB

3.9 Global User Authentication and Authorization

3.9.1 About Configuring Global User Authentication and Authorization

3.9.2 Configuration of Users Who Are Authorized by a Directory Service

3.9.21
3.9.2.2

Creating a Global User Who Has a Private Schema
Creating Multiple Enterprise Users Who Share Schemas

3.9.3 Advantages of Global Authentication and Global Authorization

3.10 Configuring an External Service to Authenticate Users and Passwords
3.10.1 About External Authentication
3.10.2 Advantages of External Authentication

3.10.3 Enabling External Authentication

3.10.4 Creating a User Who Is Authenticated Externally

3.10.5 Authentication of User Logins By Using the Operating System

3.10.6 Authentication of User Logins Using Network Authentication

3.11 Multitier Authentication and Authorization

3.12 Administration and Security in Clients, Application Servers, and Database Servers

3.13 Preserving User Identity in Multitiered Environments
3.13.1 Middle Tier Server Use for Proxy Authentication

3.13.1.1
3.13.1.2
3.13.1.3
3.13.1.4
3.13.1.5

3.13.1.6

3.13.1.7
3.13.1.8
3.13.1.9
3.13.1.10
3.13.1.11
3.13.1.12

ORACLE"

About Proxy Authentication

Advantages of Proxy Authentication

Who Can Create Proxy User Accounts?
Guidelines for Creating Proxy User Accounts

Creating Proxy User Accounts and Authorizing Users to Connect
Through Them

Proxy User Accounts and the Authorization of Users to Connect Through
Them

Using Proxy Authentication with the Secure External Password Store
How the Identity of the Real User Is Passed with Proxy Authentication
Limits to the Privileges of the Middle Tier

Authorizing a Middle Tier to Proxy and Authenticate a User

Authorizing a Middle Tier to Proxy a User Authenticated by Other Means

Reauthenticating a User Through the Middle Tier to the Database

3-65
3-66
3-66
3-66
3-66
3-67
3-67
3-67
3-68
3-68
3-69
3-70
3-70
3-71
3-71
3-71
3-72
3-72
3-73
3-73
3-74
3-74
3-75
3-75
3-75
3-76
3-77
3-78
3-79
3-79
3-80
3-80

3-81

3-81
3-82
3-83
3-84
3-85
3-85
3-85

viii

3.13.1.13 Using Password-Based Proxy Authentication 3-86
3.13.1.14 Using Proxy Authentication with Enterprise Users 3-86
3.13.2 Using Client Identifiers to Identify Application Users Unknown to the Database 3-87
3.13.2.1 About Client Identifiers 3-88
3.13.2.2 How Client Identifiers Work in Middle Tier Systems 3-88
3.13.2.3 Use of the CLIENT_IDENTIFIER Attribute to Preserve User Identity 3-88

3.13.2.4 Use of the CLIENT_IDENTIFIER Independent of Global Application
Context 3-89

3.13.2.5 Setting the CLIENT_IDENTIFIER Independent of Global Application
Context 3-90

3.13.2.6 Use of the DBMS_SESSION PL/SQL Package to Set and Clear the
Client Identifier 3-90
3.13.2.7 Enabling the CLIENTID_OVERWRITE Event System-Wide 3-91
3.13.2.8 Enabling the CLIENTID_OVERWRITE Event for the Current Session 3-91
3.13.2.9 Disabling the CLIENTID_OVERWRITE Event 3-92
3.14 User Authentication Data Dictionary Views 3-92

4 Configuring Privilege and Role Authorization

4.1 About Privileges and Roles 4-2
4.2 Who Should Be Granted Privileges? 4-3
4.3 How the Oracle Multitenant Option Affects Privileges 4-3
4.4 Managing Administrative Privileges 4-4
4.4.1 About Administrative Privileges 4-5
4.4.2 Grants of Administrative Privileges to Users 4-5
4.4.3 SYSDBA and SYSOPER Privileges for Standard Database Operations 4-5
4.4.4 Forcing oracle Users to Enter a Password When Logging in as SYSDBA 4-6
445 SYSBACKUP Administrative Privilege for Backup and Recovery Operations 4-6
4.4.6 SYSDG Administrative Privilege for Oracle Data Guard Operations 4-7
4.47 SYSKM Administrative Privilege for Transparent Data Encryption 4-8
4.4.8 SYSRAC Administrative Privilege for Oracle Real Application Clusters 4-9
4.5 Managing System Privileges 4-10
4.5.1 About System Privileges 4-11
4.5.2 Why Is It Important to Restrict System Privileges? 4-11
45.2.1 About the Importance of Restricting System Privileges 4-11
4.5.2.2 User Access to Objects in the SYS Schema 4-11
4.5.3 Grants and Revokes of System Privileges 4-12
4.5.4 Who Can Grant or Revoke System Privileges? 4-12
455 About ANY Privileges and the PUBLIC Role 4-13
4.6 Managing Commonly and Locally Granted Privileges 4-13
4.6.1 About Commonly and Locally Granted Privileges 4-14
4.6.2 How Commonly Granted System Privileges Work 4-14
4.6.3 How Commonly Granted Object Privileges Work 4-15

ORACLE

4.6.4 Granting or Revoking Privileges to Access a PDB

4.6.5 Example: Granting a Privilege in a Multitenant Environment

4.6.6 Enabling Common Users to View CONTAINER_DATA Object Information
4.6.6.1 Viewing Data About the Root, CDB, and PDBs While Connected to the

4.6.6.2

Root

Enabling Common Users to Query Data in Specific PDBs

4.7 Managing Common Roles and Local Roles

4.7.1 About Common Roles and Local Roles

4. 7.2 How Common Roles Work
4.7.3 How the PUBLIC Role Works in a Multitenant Environment

4.7.4 Privileges Required to Create, Modify, or Drop a Common Role

4.7.5 Rules for Creating Common Roles

4.7.6 Creating a Common Role

4.7.7 Rules for Creating Local Roles

4.7.8 Creating a Local Role

4.7.9 Role Grants and Revokes for Common Users and Local Users

4.8 Managing User Roles
4.8.1 About User Roles

48.1.1
4.8.1.2
4.8.1.3
48.1.4
48.15
4.8.1.6
48.1.7
48.1.8
4.8.1.9

What Are User Roles?

The Functionality of Roles

Properties of Roles and Why They Are Advantageous
Typical Uses of Roles

Common Uses of Application Roles

Common Uses of User Roles

How Roles Affect the Scope of a User's Privileges
How Roles Work in PL/SQL Blocks

How Roles Aid or Restrict DDL Usage

4.8.1.10 How Operating Systems Can Aid Roles

48.1.11

How Roles Work in a Distributed Environment

4.8.2 Predefined Roles in an Oracle Database Installation
4.8.3 Creating a Role

48.3.1
4.8.3.2
48.3.3
4.8.3.4
4.8.3.5

About the Creation of Roles

Creating a Role That Is Authenticated With a Password
Creating a Role That Has No Password Authentication
Creating a Role That Is External or Global

Altering a Role

4.8.4 Specifying the Type of Role Authorization

48.4.1
4.8.4.2
48.4.3
4.8.4.4
4.8.4.5

ORACLE"

Authorizing a Role by Using the Database
Authorizing a Role by Using an Application
Authorizing a Role by Using an External Source
Authorizing a Role by Using the Operating System
Authorizing a Role by Using a Network Client

4-16
4-16
4-16

4-16
4-17
4-18
4-19
4-19
4-20
4-20
4-20
4-21
4-21
4-21
4-22
4-23
4-23
4-24
4-24
4-25
4-26
4-26
4-27
4-27
4-27
4-28
4-29
4-29
4-29
4-34
4-34
4-35
4-36
4-36
4-37
4-37
4-38
4-38
4-39
4-39
4-39

4.8.4.6 Authorizing a Global Role by an Enterprise Directory Service
4.8.5 Granting and Revoking Roles
4.8.5.1 About Granting and Revoking Roles
4.8.5.2 Who Can Grant or Revoke Roles?
4.8.5.3 Granting and Revoking Roles to and from Program Units
4.8.6 Dropping Roles
4.8.7 Restricting SQL*Plus Users from Using Database Roles
4.8.7.1 Potential Security Problems of Using Ad Hoc Tools
4.8.7.2 How the PRODUCT_USER_PROFILE System Table Can Limit Roles
4.8.7.3 How Stored Procedures Can Encapsulate Business Logic
4.8.8 Role Privileges and Secure Application Roles
4.9 Restricting Operations on PDBs Using PDB Lockdown Profiles
4.9.1 About PDB Lockdown Profiles
4.9.2 PDB Lockdown Profile Inheritance
4.9.3 Default PDB Lockdown Profiles
4.9.4 Creating a PDB Lockdown Profile
4.9.5 Enabling or Disabling a PDB Lockdown Profile
4.9.6 Dropping a PDB Lockdown Profile
4.10 Managing Object Privileges
4.10.1 About Object Privileges
4.10.2 Who Can Grant Object Privileges?
4.10.3 Grants and Revokes of Object Privileges
4.10.3.1 About Granting and Revoking Object Privileges
4.10.3.2 How the ALL Clause Grants or Revokes All Available Object Privileges
4.10.4 READ and SELECT Object Privileges
4.10.4.1 About Managing READ and SELECT Object Privileges

4.10.4.2 Enabling Users to Use the READ Obiject Privilege to Query Any Table in
the Database

4.10.4.3 Restrictions on the READ and READ ANY TABLE Privileges
4.10.5 Object Privilege Use with Synonyms
4.10.6 Sharing Application Common Objects
4.10.6.1 Metadata-Linked Application Common Objects
4.10.6.2 Data-Linked Application Common Objects
4.10.6.3 Extended Data-Linked Application Common Objects
4.11 Table Privileges
4.11.1 How Table Privileges Affect Data Manipulation Language Operations
4.11.2 How Table Privileges Affect Data Definition Language Operations
4.12 View Privileges
4.12.1 Privileges Required to Create Views
4.12.2 Privileges to Query Views in Other Schemas
4.12.3 The Use of Views to Increase Table Security
4.13 Procedure Privileges

ORACLE

4-40
4-40
4-40
4-41
4-41
4-42
4-42
4-42
4-43
4-43
4-44
4-44
4-45
4-46
4-47
4-47
4-49
4-50
4-51
4-51
4-52
4-52
4-53
4-53
4-53
4-53

4-54
4-54
4-55
4-56
4-56
4-57
4-58
4-58
4-59
4-59
4-60
4-60
4-60
4-61
4-61

Xi

4.13.1
4.13.2
4.13.3
4.13.4
4.13.5

The Use of the EXECUTE Privilege for Procedure Privileges
Procedure Execution and Security Domains

System Privileges Required to Create or Replace a Procedure
System Privileges Required to Compile a Procedure

How Procedure Privileges Affect Packages and Package Objects

4.13.5.1 About the Effect of Procedure Privileges on Packages and Package

Objects

4.13.5.2 Example: Procedure Privileges Used in One Package

4.13.5.3 Example: Procedure Privileges and Package Objects

4.14 Type Privileges

4.14.1
4.14.2
4.14.3
4.14.4
4.14.5
4.14.6
4.14.7

System Privileges for Named Types

Object Privileges for Named Types

Method Execution Model for Named Types

Privileges Required to Create Types and Tables Using Types
Example: Privileges for Creating Types and Tables Using Types
Privileges on Type Access and Object Access

Type Dependencies

4.15 Grants of User Privileges and Roles

4.15.1

415.1.1

Granting System Privileges and Roles to Users and Roles

4.15.1.2 Example: Granting a System Privilege and a Role to a User
4.15.1.3 Example: Granting the EXECUTE Privilege on a Directory Object

4.15.1.4

4.15.1.5 Creating a New User with the GRANT Statement

4.15.2

Granting Object Privileges to Users and Roles

4.15.2.1 About Granting Object Privileges to Users and Roles
4.15.2.2 How the WITH GRANT OPTION Clause Works

4.15.2.3 Grants of Object Privileges on Behalf of the Object Owner
4.15.2.4 Grants of Privileges on Columns

4.15.2.5 Row-Level Access Control

4.16 Revokes of Privileges and Roles from a User

4.16.1
4.16.2

Revokes of System Privileges and Roles
Revokes of Object Privileges

4.16.2.1 About Revokes of Object Privileges

4.16.2.2 Revokes of Multiple Object Privileges

4.16.2.3 Revokes of Object Privileges on Behalf of the Object Owner
4.16.2.4 Revokes of Column-Selective Object Privileges

4.16.2.5 Revokes of the REFERENCES Object Privilege

4.16.3

Cascading Effects of Revoking Privileges

4.16.3.1 Cascading Effects When Revoking System Privileges
4.16.3.2 Cascading Effects When Revoking Object Privileges
4.17 Grants and Revokes of Privileges to and from the PUBLIC Role

ORACLE

Privileges for Grants of System Privileges and Roles to Users and Roles

Use of the ADMIN Option to Enable Grantee Users to Grant the Privilege

4-62
4-62
4-62
4-63
4-63

4-63
4-64
4-64
4-65
4-66
4-66
4-66
4-66
4-67
4-68
4-69
4-70
4-70
4-70
4-71
4-71
4-71
4-71
4-72
4-72
4-73
4-73
4-75
4-75
4-75
4-76
4-76
4-76
4-77
4-77
4-78
4-78
4-79
4-79
4-79
4-80

Xii

4.18 Grants of Roles Using the Operating System or Network 4-80
4.18.1 About Granting Roles Using the Operating System or Network 4-81
4.18.2 Operating System Role Identification 4-82
4.18.3 Operating System Role Management 4-83
4.18.4 Role Grants and Revokes When OS_ROLES Is Set to TRUE 4-83
4.18.5 Role Enablements and Disablements When OS_ROLES Is Set to TRUE 4-83
4.18.6 Network Connections with Operating System Role Management 4-83

4.19 How Grants and Revokes Work with SET ROLE and Default Role Settings 4-84
4.19.1 When Grants and Revokes Take Effect 4-84
4.19.2 How the SET ROLE Statement Affects Grants and Revokes 4-84
4.19.3 Specifying the Default Role for a User 4-85
4.19.4 The Maximum Number of Roles That a User Can Have Enabled 4-85

4.20 User Privilege and Role Data Dictionary Views 4-85
4.20.1 Data Dictionary Views to Find Information about Privilege and Role Grants 4-86
4.20.2 Query to List All System Privilege Grants 4-88
4.20.3 Query to List All Role Grants 4-88
4.20.4 Query to List Object Privileges Granted to a User 4-89
4.20.5 Query to List the Current Privilege Domain of Your Session 4-89
4.20.6 Query to List Roles of the Database 4-90
4.20.7 Query to List Information About the Privilege Domains of Roles 4-91

5 Performing Privilege Analysis to Identify Privilege Use

5.1 What Is Privilege Analysis? 5-1
5.1.1 About Privilege Analysis 5-2
5.1.2 Benefits and Use Cases of Privilege Analysis 5-2

5.1.2.1 Least Privileges Best Practice 5-2
5.1.2.2 Development of Secure Applications 5-3
5.1.3 Who Can Perform Privilege Analysis? 5-3
5.1.4 Types of Privilege Analysis 5-3
5.1.5 How Does a Multitenant Environment Affect Privilege Analysis? 5-4
5.1.6 How Privilege Analysis Works with Pre-Compiled Database Objects 5-4

5.2 Creating and Managing Privilege Analysis Policies 5-5
5.2.1 About Creating and Managing Privilege Analysis Policies 5-5
5.2.2 General Steps for Managing Privilege Analysis 5-5
5.2.3 Creating a Privilege Analysis Policy 5-6
5.2.4 Examples of Creating Privilege Analysis Policies 5-8

5.2.4.1 Example: Privilege Analysis of Database-Wide Privileges 5-8
5.2.4.2 Example: Privilege Analysis of Privilege Usage of Two Roles 5-8
5.2.4.3 Example: Privilege Analysis of Privileges During SQL*Plus Use 5-9
5.2.4.4 Example: Privilege Analysis of PSMITH Privileges During SQL*Plus

Access 5-9

ORACLE

Xiii

5.2.5 Enabling a Privilege Analysis Policy 5-9
5.2.6 Disabling a Privilege Analysis Policy 5-10
5.2.7 Generating a Privilege Analysis Report 5-10
5.2.7.1 About Generating a Privilege Analysis Report 5-10
5.2.7.2 General Process for Managing Multiple Named Capture Runs 5-11

5.2.7.3 Generating a Privilege Analysis Report Using
DBMS_PRIVILEGE_CAPTURE 5-12
5.2.7.4 Generating a Privilege Analysis Report Using Cloud Control 5-12
5.2.7.5 Accessing Privilege Analysis Reports Using Cloud Control 5-13
5.2.8 Dropping a Privilege Analysis Policy 5-13
5.3 Creating Roles and Managing Privileges Using Cloud Control 5-14
5.3.1 Creating a Role from a Privilege Analysis Report in Cloud Control 5-14
5.3.2 Revoking and Regranting Roles and Privileges Using Cloud Control 5-15
5.3.3 Generating a Revoke or Regrant Script Using Cloud Control 5-15
5.3.3.1 About Generating Revoke and Regrant Scripts 5-15
5.3.3.2 Generating a Revoke Script 5-16
5.3.3.3 Generating a Regrant Script 5-17
5.4 Tutorial: Using Capture Runs to Analyze ANY Privilege Use 5-17
5.4.1 Step 1: Create User Accounts 5-18
5.4.2 Step 2: Create and Enable a Privilege Analysis Policy 5-19
5.4.3 Step 3: Use the READ ANY TABLE System Privilege 5-19
5.4.4 Step 4: Disable the Privilege Analysis Policy 5-20
5.4.5 Step 5: Generate and View a Privilege Analysis Report 5-20
5.4.6 Step 6: Create a Second Capture Run 5-21
5.4.7 Step 7: Remove the Components for This Tutorial 5-22
5.5 Tutorial: Analyzing Privilege Use by a User Who Has the DBA Role 5-22
5.5.1 Step 1: Create User Accounts 5-23
5.5.2 Step 2: Create and Enable a Privilege Analysis Policy 5-23
5.5.3 Step 3: Perform the Database Tuning Operations 5-24
5.5.4 Step 4: Disable the Privilege Analysis Policy 5-25
5.5.5 Step 5: Generate and View Privilege Analysis Reports 5-25
5.5.6 Step 6: Remove the Components for This Tutorial 5-26
5.6 Privilege Analysis Policy and Report Data Dictionary Views 5-27

6 Configuring Centrally Managed Users with Microsoft Active Directory

6.1 Introduction to Centrally Managed Users with Microsoft Active Directory 6-1
6.1.1 About the Oracle Database-Microsoft Active Directory Integration 6-2
6.1.2 How Centrally Managed Users with Microsoft Active Directory Works 6-3
6.1.3 Centrally Managed User-Microsoft Active Directory Architecture 6-3
6.1.4 Supported Authentication Methods 6-4
6.1.5 Users Supported by Centrally Managed Users with Microsoft Active Directory 6-4

ORACLE

Xiv

6.1.6 How the Oracle Multitenant Option Affects Centrally Managed Users

6.1.7 Centrally Managed Users with Database Links

6.2 Configuring the Oracle Database-Microsoft Active Directory Integration

6.2.1 About Configuring the Oracle Database-Microsoft Active Directory Connection

6.2.2 Connecting to Microsoft Active Directory

6.2.2.1

6.2.2.2

6.2.2.3
6.2.2.4
6.2.2.5
6.2.2.6
6.2.2.7
6.2.2.8
6.2.2.9

Step 1: Create an Oracle Service Directory User Account on Microsoft
Active Directory and Grant Permissions

Step 2: For Password Authentication, Install the Password Filter and
Extend the Microsoft Active Directory Schema

Step 3: If Necessary, Install the Oracle Database Software

Step 4: Create the dsi.ora or Idap.ora File

Step 5: Request an Active Directory Certificate for a Secure Connection
Step 6: Create the Wallet for a Secure Connection

Step 7: Configure the Microsoft Active Directory Connection

Step 8: Verify the Oracle Wallet

Step 9: Test the Integration

6.3 Configuring Authentication for Centrally Managed Users

6.3.1 Configuring Password Authentication for Centrally Managed Users

6.3.1.1
6.3.1.2
6.3.1.3

About Configuring Password Authentication for Centrally Managed Users
Configuring Password Authentication for a Centrally Managed User
Logging in to an Oracle Database Using Password Authentication

6.3.2 Configuring Kerberos Authentication for Centrally Managed Users

6.3.3 Configuring Authentication Using PKI Certificates for Centrally Managed Users

6.4 Configuring Authorization for Centrally Managed Users

6.4.1 About Configuring Authorization for Centrally Managed Users

6.4.2 Mapping a Directory Group to a Shared Database Global User

6.4.3 Mapping a Directory Group to a Global Role

6.4.4 Exclusively Mapping a Directory User to a Database Global User

6.4.5 Altering or Migrating a User Mapping Definition

6.4.6 Configuring Administrative Users

6.4.6.1
6.4.6.2

Configuring Database Administrative Users with Shared Access Accounts
Configuring Database Administrative Users Using Exclusive Mapping

6.4.7 Verifying the Centrally Managed User Logon Information

6.5 Troubleshooting Centrally Managed Users
6.5.1 ORA-28276 Connection Errors
6.5.2 ORA-01017 Connection Errors
6.5.3 ORA-28274 Connection Errors
6.5.4 ORA-28300 Connection Errors
6.5.5 Using Trace Files to Diagnose CMU Connection Errors

6.6 Integration of Oracle Database with Microsoft Active Directory Account Policies

6.7 Configuring Centrally Managed Users with Oracle Autonomous Database

6.8 Troubleshooting Centrally Managed Users

ORACLE

6-7

6-8
6-10
6-10
6-15
6-16
6-17
6-21
6-22
6-23
6-23
6-23
6-24
6-25
6-26
6-27
6-27
6-28
6-29
6-30
6-30
6-30
6-31
6-31
6-31
6-32
6-35
6-35
6-36
6-36
6-37
6-37
6-38
6-38
6-39

XV

6.8.1 ORA-28276 Connection Errors
6.8.2 ORA-01017 Connection Errors
6.8.3 ORA-28274 Connection Errors
6.8.4 ORA-28300 Connection Errors
6.8.5 Using Trace Files to Diagnose CMU Connection Errors

6-39
6-40
6-40
6-41
6-41

7 Authenticating and Authorizing IAM Users for Oracle DBaaS Databases

7.1 Introduction to Authenticating and Authorizing IAM Users for Oracle DBaaS
7.1.1 About Authenticating and Authorizing IAM Users for Oracle DBaaS
7.1.2 Architecture of the IAM Integration with Oracle DBaaS
7.1.3 1AM Users and Groups to Map with Oracle DBaaS

7.2 Configuring Oracle DBaaS for IAM
7.2.1 Enabling External Authentication for Oracle DBaaS

7.2.2 Configuring Authorization for IAM Users and Oracle Cloud Infrastructure
Applications

7.2.2.1 About Configuring Authorization for IAM Users and Oracle Cloud
Infrastructure Applications

7.2.2.2 Mapping an IAM Group to a Shared Oracle Database Global User
7.2.2.3 Mapping an IAM Group to an Oracle Database Global Role
7.2.2.4 Exclusively Mapping an IAM User to an Oracle Database Global User
7.2.2.5 Altering or Migrating an IAM User Mapping Definition
7.2.2.6 Mapping Instance and Resource Principals
7.2.2.7 \Verifying the IAM User Logon Information
7.2.3 Configuring IAM Proxy Authentication
7.2.3.1 About Configuring IAM Proxy Authentication
7.2.3.2 Configuring Proxy Authentication for the IAM User
7.2.3.3 Validating the IAM User Proxy Authentication
7.3 Configuring IAM for Oracle DBaaS
7.3.1 Creating an IAM Policy to Authorize Users Authenticating with Tokens
7.3.2 Creating an IAM Database Password
7.4 Accessing the Database Using an Instance Principal or a Resource Principal
7.5 Configuring the Database Client Connection
7.5.1 About Connecting to an Autonomous Database Instance Using IAM
7.5.2 Supported Client Drivers for IAM Connections

7.5.3 Using Centralized Oracle Cloud Infrastructure Services for Net Naming and
Secrets

7.5.4 Client Connections That Use an IAM Database Password Verifier

7.5.5 Client Connections That Use a Token Requested by an IAM User Name and
Database Password

7.5.5.1 About Client Connections That Use a Token Requested by an IAM User

Name and Database Password

7.5.5.2 Parameters to Set for Client Connections That Use a Token Requested by

an 1AM User Name and Database Password

ORACLE

7-1

7-4
7-7
7-8
7-8

7-9

7-9
7-11
7-11
7-12
7-12
7-13
7-14
7-17
7-17
7-17
7-18
7-19
7-19
7-20
7-20
7-21
7-21
7-22

7-22
7-22

7-22

7-23

7-23

XVi

7.5.5.3 Configuring the Database Client to Retrieve a Token Using an IAM User
Name and Database Password

7.5.5.4 Configuring a Secure External Password Store Wallet to Retrieve an IAM
Token

7.5.6 Client Connections That Use a Token Requested by a Client Application or Tool
7.5.7 TLS Connections without Client Wallets
7.5.8 Common Database Client Configurations

7.5.8.1 Configuring a Client Connection for SQL*Plus That Uses an IAM
Database Password

7.5.8.2 Configuring a Client Connection for SQL*Plus That Uses an IAM Token
7.6 Accessing a Database Cross-Tenancy Using an IAM Integration
7.6.1 About Cross-Tenancy Access for IAM Users to DBaaS Instances
7.6.2 Configuring Policies
7.6.2.1 Configuring the Source User Tenancy
7.6.2.2 Configuring the Target Database Resource Tenancy
7.6.2.3 Policy Examples for Cross-Tenancy Access

7.6.3 Mapping Database Schemas and Roles to Users and Groups in Another
Tenancy

7.6.4 Configuring Database Clients for Cross-Tenancy Access

7.6.5 Requesting Cross-Tenancy Tokens Using the OCI Command-Line Interface
7.7 Database Links in an Oracle DBaaS-to-IAM Integration
7.8 Troubleshooting IAM Connections

7.8.1 Areas to Check on the Client-Side for ORA-01017 Errors

7.8.2 Database Client Trace Files

7.8.3 Check in the Oracle Cloud Infrastructure IAM and the Oracle Database for
ORA-01017 Errors

7.8.4 ORA-01017 Errors Caused by Improperly Configured IAM Users

7.8.5 ORA-12599 and ORA-03114 Errors Caused When Trying to Access a Database
Using a Token

7.8.6 Actions IAM Administrators Can Take to Address ORA-01017 Errors

7-26

7-26
7-27
7-27
7-28

7-28
7-28
7-30
7-31
7-32
7-32
7-32
7-33

7-34
7-35
7-35
7-35
7-36
7-37
7-38

7-39
7-40

7-41
7-41

Authenticating and Authorizing Microsoft Azure Active Directory Users for

Oracle Databases

8.1 Introduction to Oracle Database Integration with Microsoft Azure AD
8.1.1 About Integrating Oracle Database with Microsoft Azure AD
8.1.2 Architecture of Oracle Database Integration with Microsoft Azure AD
8.1.3 Azure AD Users Mapping to an Oracle Database Schema and Roles
8.1.4 Use Cases for Connecting to an Oracle Database Using Azure AD

8.1.5 General Process of Authenticating Microsoft Azure AD ldentities with Oracle
Database

8.2 Configuring the Oracle Database for Microsoft Azure AD Integration
8.2.1 Oracle Database Requirements for the Microsoft Azure AD Integration
8.2.2 Registering the Oracle Database Instance with a Microsoft Azure AD Tenancy

ORACLE

8-7
8-7
8-8
8-9

XVii

8.2.3 Enabling Microsoft Azure AD v2 Access Tokens
8.2.4 Managing App Roles in Microsoft Azure AD
8.2.4.1 Creating a Microsoft Azure AD App Role
8.2.4.2 Assigning Users and Groups to the Microsoft Azure AD App Role
8.2.4.3 Assigning an Application to an App Role
8.2.5 Enabling Azure AD External Authentication for Oracle Database
8.2.6 Disabling Azure AD External Authentication for Oracle Database
8.3 Mapping Oracle Database Schemas and Roles
8.3.1 Exclusively Mapping an Oracle Database Schema to a Microsoft Azure AD User
8.3.2 Mapping a Shared Oracle Schema to an App Role
8.3.3 Mapping an Oracle Database Global Role to an App Role
8.4 Configuring Azure AD Client Connections to the Oracle Database
8.4.1 About Configuring Client Connections to Azure ADs
8.4.2 Supported Client Drivers for Azure AD Connections

8.4.3 Using Centralized Oracle Cloud Infrastructure Services for Net Naming and
Secrets

8.4.4 Operational Flow for SQL*Plus Client Connection in PowerShell to Oracle
Database

8.4.5 Registering a Client with Azure AD Application Registration
8.4.5.1 Confidential and Public Client Registration
8.4.5.2 Registering a Database Client App with Azure AD
8.4.6 Examples of Retrieving Azure AD OAuth2 Tokens

8.4.6.1 Example: Using PowerShell to Get a Token Using Resource Owner
Password Credentials

8.4.6.2 Example: Using Python with Microsoft Authentication Library Using an
Authorization Flow

8.4.6.3 Example: Using Curl with a Resource Owner Password Credential Flow
8.4.6.4 Example: Azure CLI Using Authorization Flow

8.4.7 Configuring SQL*Plus for Azure AD Access Tokens

8.4.8 Creating a Network Proxy for the Database to Connect with the Internet

8.4.8.1 About Creating a Network Proxy for the Database to Connect with the
Internet

8.4.8.2 Testing the Accessibility of the Azure Endpoint
8.4.8.3 Creating the Network Proxy for the Default Oracle Database Environment

8.4.8.4 Creating the Network Proxy for an Oracle Real Application Clusters
Environment

8.4.8.,5 Creating the Network Proxy in the Windows Registry Editor
8.4.9 Enabling Clients to Directly Retrieve Azure Tokens
8.5 Configuring Microsoft Azure AD Proxy Authentication
8.5.1 About Configuring Microsoft Azure AD Proxy Authentication
8.5.2 Configuring Proxy Authentication for the Azure AD User
8.5.3 \Validating the Azure AD User Proxy Authentication
8.6 Troubleshooting Microsoft Azure AD Connections

ORACLE

8-12
8-12
8-13
8-14
8-14
8-15
8-16
8-16
8-17
8-17
8-17
8-18
8-18
8-19

8-19

8-19
8-20
8-20
8-21
8-22

8-23

8-24
8-25
8-25
8-26
8-28

8-28
8-28
8-30

8-30
8-31
8-32
8-33
8-33
8-33
8-34
8-34

XVviil

8.6.1 Trace Files for Troubleshooting Oracle Database Client Connections with Azure

AD 8-35
8.6.1.1 About Trace Files Used for Troubleshooting Connections 8-35
8.6.1.2 Setting Client Tracing for Token Authentication 8-36

8.6.2 ORA-12599 and ORA-03114 Errors Caused When Trying to Access a Database
Using a Token 8-36
8.6.3 Checking the Azure AD Access Token Version 8-37

9 Managing Security for Definer's Rights and Invoker's Rights
9.1 About Definer's Rights and Invoker's Rights 9-1
9.2 How Procedure Privileges Affect Definer's Rights 9-2
9.3 How Procedure Privileges Affect Invoker's Rights 9-3
9.4 When You Should Create Invoker's Rights Procedures 9-3
9.5 Controlling Invoker's Rights Privileges for Procedure Calls and View Access 9-4
9.5.1 How the Privileges of a Schema Affect the Use of Invoker's Rights Procedures 9-5
9.5.2 How the INHERIT [ANY] PRIVILEGES Privileges Control Privilege Access 9-6
9.5.3 Grants of the INHERIT PRIVILEGES Privilege to Other Users 9-6
9.5.4 Example: Granting INHERIT PRIVILEGES on an Invoking User 9-6
9.5.5 Example: Revoking INHERIT PRIVILEGES 9-7
9.5.6 Grants of the INHERIT ANY PRIVILEGES Privilege to Other Users 9-7
9.5.7 Example: Granting INHERIT ANY PRIVILEGES to a Trusted Procedure Owner 9-7
9.5.8 Managing INHERIT PRIVILEGES and INHERIT ANY PRIVILEGES 9-7
9.6 Definer's Rights and Invoker's Rights in Views 9-8
9.6.1 About Controlling Definer's Rights and Invoker's Rights in Views 9-8
9.6.2 Using the BEQUEATH Clause in the CREATE VIEW Statement 9-9
9.6.3 Finding the User Name or User ID of the Invoking User 9-10
9.6.4 Finding BEQUEATH DEFINER and BEQUEATH_CURRENT_USER Views 9-10
9.7 Using Code Based Access Control for Definer's Rights and Invoker's Rights 9-11
9.7.1 About Using Code Based Access Control for Applications 9-11
9.7.2 Who Can Grant Code Based Access Control Roles to a Program Unit? 9-12
9.7.3 How Code Based Access Control Works with Invoker's Rights Program Units 9-12
9.7.4 How Code Based Access Control Works with Definer's Rights Program Units 9-14
9.7.5 Grants of Database Roles to Users for Their CBAC Grants 9-15
9.7.6 Grants and Revokes of Database Roles to a Program Unit 9-16
9.7.7 Tutorial: Controlling Access to Sensitive Data Using Code Based Access Control 9-17
9.7.7.1 About This Tutorial 9-17
9.7.7.2 Step 1: Create the User and Grant HR the CREATE ROLE Privilege 9-18
9.7.7.3 Step 2: Create the print_employees Invoker's Rights Procedure 9-18
9.7.7.4 Step 3: Create the hr_clerk Role and Grant Privileges for It 9-19
9.7.7.5 Step 4: Test the Code Based Access Control HR.print_employees

Procedure 9-19
9.7.7.6 Step 5: Create the view_emp_role Role and Grant Privileges for It 9-20

ORACLE

XiX

9.7.7.7 Step 6: Test the HR.print_employees Procedure Again 9-20
9.7.7.8 Step 7: Remove the Components of This Tutorial 9-21
9.8 Controlling Definer's Rights Privileges for Database Links 9-21
9.8.1 About Controlling Definer's Rights Privileges for Database Links 9-22
9.8.2 Grants of the INHERIT REMOTE PRIVILEGES Privilege to Other Users 9-23
9.8.3 Example: Granting INHERIT REMOTE PRIVILEGES on a Connected User 9-23
9.8.4 Grants of the INHERIT ANY REMOTE PRIVILEGES Privilege to Other Users 9-24
9.8.,5 Revokes of the INHERIT [ANY] REMOTE PRIVILEGES Privilege 9-24
9.8.6 Example: Revoking the INHERIT REMOTE PRIVILEGES Privilege 9-25
9.8.7 Example: Revoking the INHERIT REMOTE PRIVILEGES Privilege from PUBLIC 9-25
9.8.8 Tutorial: Using a Database Link in a Definer's Rights Procedure 9-25
9.8.8.1 About This Tutorial 9-26
9.8.8.2 Step 1: Create User Accounts 9-26
9.8.8.3 Step 2: As User dbuser2, Create a Table to Store User IDs 9-26
9.8.8.4 Step 3: As User dbuserl, Create a Database Link and Definer's Rights
Procedure 9-26
9.8.8.5 Step 4: Test the Definer's Rights Procedure 9-27
9.8.8.6 Step 5: Remove the Components of This Tutorial 9-28
10 Managing Fine-Grained Access in PL/SQL Packages and Types
10.1 About Managing Fine-Grained Access in PL/SQL Packages and Types 10-2
10.2 About Fine-Grained Access Control to External Network Services 10-2
10.3 About Access Control to Oracle Wallets 10-3
10.4 Upgraded Applications That Depend on Packages That Use External Network
Services 10-3
10.5 Configuring Access Control for External Network Services 10-4
10.5.1 Syntax for Configuring Access Control for External Network Services 10-4
10.5.2 Enabling the Listener to Recognize Access Control for External Network
Services 10-6
10.5.3 Example: Configuring Access Control for External Network Services 10-6
10.5.4 Revoking Access Control Privileges for External Network Services 10-6
10.5.5 Example: Revoking External Network Services Privileges 10-7
10.6 Configuring Access Control to an Oracle Wallet 10-7
10.6.1 About Configuring Access Control to an Oracle Wallet 10-8
10.6.2 Step 1: Create an Oracle Wallet 10-8
10.6.3 Step 2: Configure Access Control Privileges for the Oracle Wallet 10-8
10.6.4 Step 3: Make the HTTP Request with the Passwords and Client Certificates 10-9
10.6.4.1 Making the HTTPS Request with the Passwords and Client Certificates 10-10
10.6.4.2 Using a Request Context to Hold the Wallet When Sharing the Session
with Other Applications 10-11
10.6.4.3 Use of Only a Client Certificate to Authenticate 10-11
10.6.4.4 Use of a Password to Authenticate 10-11

ORACLE

XX

10.6.5
10.6.6

Revoking Access Control Privileges for Oracle Wallets
Troubleshooting ORA-29024 Errors

10.7 Examples of Configuring Access Control for External Network Services

10.7.1

10.7.2
10.7.3
10.7.4
10.7.5

Example: Configuring Access Control for a Single Role and Network
Connection

Example: Configuring Access Control for a User and Role

Example: Using the DBA_HOST_ACES View to Show Granted Privileges
Example: Configuring ACL Access Using Passwords in a Non-Shared Wallet
Example: Configuring ACL Access for a Wallet in a Shared Database Session

10.8 Specifying a Group of Network Host Computers

10.9 Precedence Order for a Host Computer in Multiple Access Control List Assignments

10.10 Precedence Order for a Host in Access Control List Assignments with Port Ranges

10.11 Checking Privilege Assignments That Affect User Access to Network Hosts

10.11.1
10.11.2
10.11.3
10.11.4
10.11.5

About Privilege Assignments that Affect User Access to Network Hosts

How to Check User Network Connection and Domain Privileges

Example: Administrator Checking User Network Access Control Permissions
How Users Can Check Their Network Connection and Domain Privileges
Example: User Checking Network Access Control Permissions

10.12 Configuring Network Access for Java Debug Wire Protocol Operations

10.13 Data Dictionary Views for Access Control Lists Configured for User Access

10-12
10-13
10-13

10-14
10-14
10-15
10-15
10-16
10-17
10-17
10-18
10-19
10-19
10-20
10-20
10-21
10-21
10-21
10-22

11 Managing Security for a Multitenant Environment in Enterprise Manager

11.1 About Managing Security for a Multitenant Environment in Enterprise Manager

11.2 Logging into a Multitenant Environment in Enterprise Manager

11.2.1
11.2.2

Logging into a CDB or a PDB
Switching to a Different PDB or to the Root

11.3 Managing Common and Local Users in Enterprise Manager

11.3.1
11.3.2
11.3.3
11.3.4
11.3.5
11.3.6

Creating a Common User Account in Enterprise Manager
Editing a Common User Account in Enterprise Manager
Dropping a Common User Account in Enterprise Manager
Creating a Local User Account in Enterprise Manager
Editing a Local User Account in Enterprise Manager
Dropping a Local User Account in Enterprise Manager

11.4 Managing Common and Local Roles and Privileges in Enterprise Manager

11.4.1
11.4.2
11.4.3
11.4.4
11.4.5
11.4.6
11.4.7

ORACLE

Creating a Common Role in Enterprise Manager

Editing a Common Role in Enterprise Manager

Dropping a Common Role in Enterprise Manager
Revoking Common Privilege Grants in Enterprise Manager
Creating a Local Role in Enterprise Manager

Editing a Local Role in Enterprise Manager

Dropping a Local Role in Enterprise Manager

11-1
11-1
11-2
11-3
11-3
11-4
11-4
11-5
11-6
11-6
11-7
11-7
11-8
11-8
11-9
11-9
11-10
11-10
11-11

XXi

11.4.8 Revoking Local Privilege Grants in Enterprise Manager 11-11
Part Il Application Development Security
12 Managing Security for Application Developers
12.1 About Application Security Policies 12-1
12.2 Considerations for Using Application-Based Security 12-2
12.2.1 Are Application Users Also Database Users? 12-2
12.2.2 Is Security Better Enforced in the Application or in the Database? 12-3
12.3 Securing Passwords in Application Design 12-3
12.3.1 General Guidelines for Securing Passwords in Applications 12-4
12.3.1.1 Platform-Specific Security Threats 12-4
12.3.1.2 Guidelines for Designing Applications to Handle Password Input 12-4
12.3.1.3 Guidelines for Configuring Password Formats and Behavior 12-5
12.3.1.4 Guidelines for Handling Passwords in SQL Scripts 12-6
12.3.2 Use of an External Password Store to Secure Passwords 12-7
12.3.3 Securing Passwords Using the ORAPWD Utility 12-8
12.3.4 Example: Java Code for Reading Passwords 12-8
12.4 Securing External Procedures 12-12
12.4.1 About Securing External Procedures 12-12
12.4.2 General Process for Configuring extproc for a Credential Authentication 12-13
12.4.3 extproc Process Authentication and Impersonation Expected Behaviors 12-13
12.4.4 Configuring Authentication for External Procedures 12-14
12.4.5 External Procedures for Legacy Applications 12-16
12.5 Securing LOBs with LOB Locator Signatures 12-16
12.5.1 About Securing LOBs with LOB Locator Signatures 12-16
12.5.2 Managing the Encryption of a LOB Locator Signature Key 12-17
12.6 Managing Application Privileges 12-18
12.7 Advantages of Using Roles to Manage Application Privileges 12-18
12.8 Creating Secure Application Roles to Control Access to Applications 12-19
12.8.1 Step 1: Create the Secure Application Role 12-19
12.8.2 Step 2: Create a PL/SQL Package to Define the Access Policy for the
Application 12-20
12.8.2.1 About Creating a PL/SQL Package to Define the Access Policy for an
Application 12-20
12.8.2.2 Creating a PL/SQL Package or Procedure to Define the Access Policy
for an Application 12-21
12.8.2.3 Testing the Secure Application Role 12-22
12.9 Association of Privileges with User Database Roles 12-22
12.9.1 Why Users Should Only Have the Privileges of the Current Database Role 12-22
12.9.2 Use of the SET ROLE Statement to Automatically Enable or Disable Roles 12-23
ORACLE

XX

12.10 Protecting Database Objects by Using Schemas 12-23
12.10.1 Protecting Database Objects in a Unique Schema 12-23
12.10.2 Protection of Database Objects in a Shared Schema 12-24

12.11 Object Privileges in an Application 12-24
12.11.1 What Application Developers Must Know About Object Privileges 12-24
12.11.2 SQL Statements Permitted by Object Privileges 12-25

12.12 Parameters for Enhanced Security of Database Communication 12-26
12.12.1 Bad Packets Received on the Database from Protocol Errors 12-26
12.12.2 Controlling Server Execution After Receiving a Bad Packet 12-27
12.12.3 Configuration of the Maximum Number of Authentication Attempts 12-28
12.12.4 Configuring the Display of the Database Version Banner 12-28
12.12.5 Configuring Banners for Unauthorized Access and Auditing User Actions 12-29

Part Il Controlling Access to Data
13 Using Application Contexts to Retrieve User Information

13.1 About Application Contexts 13-1
13.1.1 What Is an Application Context? 13-2
13.1.2 Components of the Application Context 13-2
13.1.3 Where Are the Application Context Values Stored? 13-2
13.1.4 Benefits of Using Application Contexts 13-3
13.1.5 How Editions Affects Application Context Values 13-3
13.1.6 Application Contexts in a Multitenant Environment 13-3

13.2 Types of Application Contexts 13-4

13.3 Using Database Session-Based Application Contexts 13-5
13.3.1 About Database Session-Based Application Contexts 13-6
13.3.2 Components of a Database Session-Based Application Context 13-7
13.3.3 Creating Database Session-Based Application Contexts 13-7

13.3.3.1 About Creating Database Session-Based Application Contexts 13-8
13.3.3.2 Creating a Database Session-Based Application Context 13-8
13.3.3.3 Database Session-Based Application Contexts for Multiple Applications 13-9
13.3.4 Creating a Package to Set a Database Session-Based Application Context 13-9
13.3.4.1 About the Package That Manages the Database Session-Based
Application Context 13-10
13.3.4.2 Using the SYS_CONTEXT Function to Retrieve Session Information 13-11
13.3.4.3 Checking the SYS_CONTEXT Settings 13-12
13.3.4.4 Dynamic SQL with SYS_CONTEXT 13-12
13.3.4.5 SYS_CONTEXT in a Parallel Query 13-12
13.3.4.6 SYS_CONTEXT with Database Links 13-13
13.3.4.7 DBMS_SESSION.SET_CONTEXT for Setting Session Information 13-13
13.3.4.8 Example: Simple Procedure to Create an Application Context Value 13-14

ORACLE"

XXxiil

13.3.5 Logon Triggers to Run a Database Session Application Context Package

13.3.6 Example: Creating a Simple Logon Trigger

13.3.7 Example: Creating a Logon Trigger for a Production Environment

13.3.8 Example: Creating a Logon Trigger for a Development Environment

13.3.9 Tutorial: Creating and Using a Database Session-Based Application Context

13.3.9.1
13.3.9.2
13.3.9.3

13.3.9.4
13.3.9.5
13.3.9.6

Step 1: Create User Accounts and Ensure the User SCOTT Is Active
Step 2: Create the Database Session-Based Application Context

Step 3: Create a Package to Retrieve Session Data and Set the
Application Context

Step 4: Create a Logon Trigger for the Package
Step 5: Test the Application Context
Step 6: Remove the Components of This Tutorial

13.3.10 Initializing Database Session-Based Application Contexts Externally

13.3.10.1

13.3.10.2
13.3.10.3
13.3.10.4

13.3.10.5

About Initializing Database Session-Based Application Contexts
Externally

Default Values from Users
Values from Other External Resources

Example: Creating an Externalized Database Session-based
Application Context

Initialization of Application Context Values from a Middle-Tier Server

13.3.11 Initializing Database Session-Based Application Contexts Globally

13.3.11.1

13.3.11.2
13.3.11.3

13.3.11.4

About Initializing Database Session-Based Application Contexts
Globally

Database Session-Based Application Contexts with LDAP

How Globally Initialized Database Session-Based Application Contexts

Work
Initializing a Database Session-Based Application Context Globally

13.3.12 Externalized Database Session-Based Application Contexts

13.4 Global Application Contexts
13.4.1 About Global Application Contexts
13.4.2 Uses for Global Application Contexts

13.4.3 Components of a Global Application Context

13.4.4 Global Application Contexts in an Oracle Real Application Clusters
Environment

13.4.5 Creating Global Application Contexts

1345.1
13.4.5.2

Ownership of the Global Application Context
Creating a Global Application Context

13.4.6 PL/SQL Package to Manage a Global Application Context

13.4.6.1
13.4.6.2

13.4.6.3
13.4.6.4

ORACLE

About the Package That Manages the Global Application Context

How Editions Affects the Results of a Global Application Context PL/SQL

Package

DBMS_SESSION.SET_CONTEXT username and client_id Parameters

Sharing Global Application Context Values for All Database Users

13-15
13-16
13-16
13-16
13-17
13-17
13-18

13-18
13-20
13-20
13-21
13-21

13-21
13-22
13-22

13-22
13-23
13-23

13-23
13-24

13-25
13-26
13-27
13-28
13-28
13-29
13-29

13-30
13-30
13-30
13-31
13-31
13-32

13-32
13-33
13-34

XXiV

13.4.6.5 Example: Package to Manage Global Application Values for All Database
Users 13-34
13.4.6.6 Global Contexts for Database Users Who Move Between Applications 13-35
13.4.6.7 Global Application Context for Nondatabase Users 13-37
13.4.6.8 Example: Package to Manage Global Application Context Values for
Nondatabase Users 13-37
13.4.6.9 Clearing Session Data When the Session Closes 13-39
13.4.7 Embedding Calls in Middle-Tier Applications to Manage the Client Session ID 13-40
13.4.7.1 About Managing Client Session IDs Using a Middle-Tier Application 13-40
13.4.7.2 Step 1: Retrieve the Client Session ID Using a Middle-Tier Application 13-40
13.4.7.3 Step 2: Set the Client Session ID Using a Middle-Tier Application 13-41
13.4.7.4 Step 3: Clear the Session Data Using a Middle-Tier Application 13-43
13.4.8 Tutorial: Creating a Global Application Context That Uses a Client Session ID 13-43
13.4.8.1 About This Tutorial 13-44
13.4.8.2 Step 1: Create User Accounts 13-44
13.4.8.3 Step 2: Create the Global Application Context 13-44
13.4.8.4 Step 3: Create a Package for the Global Application Context 13-45
13.4.8.5 Step 4: Test the Newly Created Global Application Context 13-46
13.4.8.6 Step 5: Modify the Session ID and Test the Global Application Context
Again 13-47
13.4.8.7 Step 6: Remove the Components of This Tutorial 13-48
13.4.9 Global Application Context Processes 13-48
13.4.9.1 Simple Global Application Context Process 13-48
13.4.9.2 Global Application Context Process for Lightweight Users 13-49
13.5 Using Client Session-Based Application Contexts 13-51
13.5.1 About Client Session-Based Application Contexts 13-52
13.5.2 Setting a Value in the CLIENTCONTEXT Namespace 13-53
13.5.3 Retrieving the CLIENTCONTEXT Namespace 13-53
13.5.4 Example: Retrieving a Client Session ID Value for Client Session-Based
Contexts 13-53
13.5.5 Clearing a Setting in the CLIENTCONTEXT Namespace 13-54
13.5.6 Clearing All Settings in the CLIENTCONTEXT Namespace 13-54
13.6 Application Context Data Dictionary Views 13-55
14 Using Oracle Virtual Private Database to Control Data Access
14.1 About Oracle Virtual Private Database 14-1
14.1.1 What Is Oracle Virtual Private Database? 14-2
14.1.2 Benefits of Using Oracle Virtual Private Database Policies 14-3
14.1.2.1 Security Policies Based on Database Objects Rather Than Applications 14-3
14.1.2.2 Control Over How Oracle Database Evaluates Policy Functions 14-3
14.1.3 Who Can Create Oracle Virtual Private Database Policies? 14-4
14.1.4 Privileges to Run Oracle Virtual Private Database Policy Functions 14-4

ORACLE

XXV

14.1.5 Oracle Virtual Private Database Use with an Application Context

14.1.6 Oracle Virtual Private Database in a Multitenant Environment

14.2 Components of an Oracle Virtual Private Database Policy

14.2.1 Function to Generate the Dynamic WHERE Clause

14.2.2 Policies to Attach the Function to the Objects You Want to Protect
14.3 Configuration of Oracle Virtual Private Database Policies

14.3.1 About Oracle Virtual Private Database Policies

14.3.2 Attaching a Policy to a Database Table, View, or Synonym

14.3.3 Example: Attaching a Simple Oracle Virtual Private Database Policy to a Table

14.3.4 Enforcing Policies on Specific SQL Statement Types
14.3.5 Example: Specifying SQL Statement Types with DBMS_RLS.ADD_POLICY
14.3.6 Control of the Display of Column Data with Policies

14.3.6.1
14.3.6.2

14.3.6.3
14.3.6.4
14.3.6.5

Policies for Column-Level Oracle Virtual Private Database

Example: Creating a Column-Level Oracle Virtual Private Database
Policy

Display of Only the Column Rows Relevant to the Query
Column Masking to Display Sensitive Columns as NULL Values

Example: Adding Column Masking to an Oracle Virtual Private Database
Policy

14.3.7 Oracle Virtual Private Database Policy Groups

14.3.7.1
14.3.7.2
14.3.7.3
14.3.7.4
14.3.7.5

About Oracle Virtual Private Database Policy Groups

Creation of a New Oracle Virtual Private Database Policy Group
Default Policy Group with the SYS_DEFAULT Policy Group
Multiple Policies for Each Table, View, or Synonym

Validation of the Application Used to Connect to the Database

14.3.8 Optimizing Performance by Using Oracle Virtual Private Database Policy Types

14.3.8.1
14.3.8.2
14.3.8.3
14.3.8.4
14.3.8.5
14.3.8.6
14.3.8.7
14.3.8.8
14.3.8.9

14.3.8.10

14.3.8.11
14.3.8.12

14.3.8.13
14.3.8.14

ORACLE"

About Oracle Virtual Private Database Policy Types

Dynamic Policy Type to Automatically Rerun Policy Functions

Example: Creating a DYNAMIC Policy with DBMS_RLS.ADD_POLICY
Static Policy to Prevent Policy Functions from Rerunning for Each Query
Example: Creating a Static Policy with DBMS_RLS.ADD_POLICY
Example: Shared Static Policy to Share a Policy with Multiple Objects
When to Use Static and Shared Static Policies

Context-Sensitive Policy for Application Context Attributes That Change

Example: Creating a Context-Sensitive Policy with
DBMS_RLS.ADD_POLICY

Example: Refreshing Cached Statements for a VPD Context-Sensitive
Policy

Example: Altering an Existing Context-Sensitive Policy

Example: Using a Shared Context Sensitive Policy to Share a Policy
with Multiple Objects

When to Use Context-Sensitive and Shared Context-Sensitive Policies
Summary of the Five Oracle Virtual Private Database Policy Types

14-4
14-5
14-6
14-6
14-8
14-8
14-9
14-10
14-10
14-11
14-11
14-12
14-12

14-13
14-13
14-14

14-15
14-15
14-16
14-16
14-17
14-17
14-18
14-18
14-19
14-20
14-20
14-21
14-21
14-22
14-22
14-23

14-24

14-24
14-24

14-25
14-25
14-26

XXVi

14.4 Tutorials: Creating Oracle Virtual Private Database Policies

14.4.1 Tutorial: Creating a Simple Oracle Virtual Private Database Policy

14411
14.4.1.2
14.4.1.3
14.4.1.4
14.4.1.5
14.4.1.6

About This Tutorial

Step 1: Ensure That the OE User Account Is Active

Step 2: Create a Policy Function

Step 3: Create the Oracle Virtual Private Database Policy
Step 4: Test the Policy

Step 5: Remove the Components of This Tutorial

14.4.2 Tutorial: Implementing a Session-Based Application Context Policy

14.4.2.1
14.4.2.2
14.4.2.3
14.4.2.4
14.4.2.5

14.4.2.6
14.4.2.7

14.4.2.8
14.4.2.9

About This Tutorial

Step 1: Create User Accounts and Sample Tables

Step 2: Create a Database Session-Based Application Context
Step 3: Create a PL/SQL Package to Set the Application Context

Step 4: Create a Logon Trigger to Run the Application Context PL/SQL
Package

Step 5: Test the Logon Trigger

Step 6: Create a PL/SQL Policy Function to Limit User Access to Their
Orders

Step 7: Create the New Security Policy
Step 8: Test the New Policy

14.4.2.10 Step 9: Remove the Components of This Tutorial
14.4.3 Tutorial: Implementing an Oracle Virtual Private Database Policy Group

14.4.3.1
14.4.3.2
14.4.3.3
14.43.4
14.4.3.5
14.4.3.6
14.4.3.7
14.4.3.8

About This Tutorial

Step 1: Create User Accounts and Other Components for This Tutorial
Step 2: Create the Two Policy Groups

Step 3: Create PL/SQL Functions to Control the Policy Groups

Step 4: Create the Driving Application Context

Step 5: Add the PL/SQL Functions to the Policy Groups

Step 6: Test the Policy Groups

Step 7: Remove the Components of This Tutorial

14.5 How Oracle Virtual Private Database Works with Other Oracle Features

14.5.1 Oracle Virtual Private Database Policies with Editions
14.5.2 SELECT FOR UPDATE Statement in User Queries on VPD-Protected Tables
14.5.3 Oracle Virtual Private Database Policies and Outer or ANSI Joins

14.5.4 Oracle Virtual Private Database Security Policies and Applications

14.5.5 Automatic Reparsing for Fine-Grained Access Control Policies Functions

14.5.6 Oracle Virtual Private Database Policies and Flashback Queries

14.5.7 Oracle Virtual Private Database and Oracle Label Security

14571

14.5.7.2

Using Oracle Virtual Private Database to Enforce Oracle Label Security
Policies

Oracle Virtual Private Database and Oracle Label Security Exceptions

14.5.8 Export of Data Using the EXPDP Utility access_method Parameter
14.5.9 User Models and Oracle Virtual Private Database

ORACLE

14-26
14-27
14-27
14-27
14-28
14-29
14-29
14-30
14-30
14-31
14-31
14-33
14-33

14-34
14-34

14-35
14-35
14-36
14-37
14-37
14-38
14-38
14-39
14-40
14-41
14-41
14-42
14-43
14-44
14-44
14-45
14-45
14-45
14-46
14-46
14-47

14-47
14-47
14-49
14-49

XXVil

14.6 Oracle Virtual Private Database Data Dictionary Views 14-50

15 Using Transparent Sensitive Data Protection

15.1 About Transparent Sensitive Data Protection 15-2
15.2 General Steps for Using Transparent Sensitive Data Protection 15-2
15.3 Use Cases for Transparent Sensitive Data Protection Policies 15-3
15.4 Privileges Required for Using Transparent Sensitive Data Protection 15-4
15.5 How a Multitenant Environment Affects Transparent Sensitive Data Protection 15-4
15.6 Creating Transparent Sensitive Data Protection Policies 15-5
15.6.1 Step 1: Create a Sensitive Type 15-5
15.6.2 Step 2: Identify the Sensitive Columns to Protect 15-6
15.6.3 Step 3: Import the Sensitive Columns List from ADM into Your Database 15-7
15.6.4 Step 4: Create the Transparent Sensitive Data Protection Policy 15-7
15.6.4.1 About Creating the Transparent Sensitive Data Protection Policy 15-8
15.6.4.2 Creating the Transparent Sensitive Data Protection Policy 15-8
15.6.4.3 Setting the Oracle Data Redaction or Virtual Private Database Feature

Options 15-9
15.6.4.4 Setting Conditions for the Transparent Sensitive Data Protection Policy 15-10
15.6.4.5 Specifying the DBMS_TSDP_PROTECT.ADD_POLICY Procedure 15-11
15.6.5 Step 5: Associate the Policy with a Sensitive Type 15-11
15.6.6 Step 6: Enable the Transparent Sensitive Data Protection Policy 15-12
15.6.6.1 Enabling Protection for the Current Database in a Protected Source 15-12
15.6.6.2 Enabling Protection for a Specific Table Column 15-12
15.6.6.3 Enabling Protection for a Specific Column Type 15-13
15.6.7 Step 7: Optionally, Export the Policy to Other Databases 15-13
15.7 Altering Transparent Sensitive Data Protection Policies 15-14
15.8 Disabling Transparent Sensitive Data Protection Policies 15-14
15.9 Dropping Transparent Sensitive Data Protection Policies 15-15
15.10 Using the Predefined REDACT_AUDIT Policy to Mask Bind Values 15-17
15.10.1 About the REDACT_AUDIT Policy 15-17
15.10.2 Variables Associated with Sensitive Columns 15-18
15.10.2.1 About Variables Associated with Sensitive Columns 15-18
15.10.2.2 Bind Variables and Sensitive Columns in the Expressions of Conditions 15-18

15.10.2.3 A Bind Variable and a Sensitive Column Appearing in the Same
SELECT Item 15-19

15.10.2.4 Bind Variables in Expressions Assigned to Sensitive Columns in
INSERT or UPDATE Operations 15-20
15.10.3 How Bind Variables on Sensitive Columns Behave with Views 15-20
15.10.4 Disabling the REDACT_AUDIT Policy 15-20
15.10.5 Enabling the REDACT_AUDIT Policy 15-21
15.11 Transparent Sensitive Data Protection Policies with Data Redaction 15-21
15.12 Using Transparent Sensitive Data Protection Policies with Oracle VPD Policies 15-22

ORACLE Vi

15.12.1 About Using TSDP Policies with Oracle Virtual Private Database Policies 15-22

15.12.2 DBMS_RLS.ADD_POLICY Parameters That Are Used for TSDP Policies 15-23
15.12.3 Tutorial: Creating a TSDP Policy That Uses Virtual Private Database
Protection 15-24
15.12.3.1 Step 1: Create the hr_appuser User Account 15-25
15.12.3.2 Step 2: Identify the Sensitive Columns 15-25
15.12.3.3 Step 3: Create an Oracle Virtual Private Database Function 15-26
15.12.3.4 Step 4: Create and Enable a Transparent Sensitive Data Protection
Policy 15-26
15.12.3.5 Step 5: Test the Transparent Sensitive Data Protection Policy 15-27
15.12.3.6 Step 6: Remove the Components of This Tutorial 15-28
15.13 Using Transparent Sensitive Data Protection Policies with Unified Auditing 15-28
15.13.1 About Using TSDP Policies with Unified Audit Policies 15-29
15.13.2 Unified Audit Policy Settings That Are Used with TSDP Policies 15-30
15.14 Using Transparent Sensitive Data Protection Policies with Fine-Grained Auditing 15-31
15.14.1 About Using TSDP Policies with Fine-Grained Auditing 15-31
15.14.2 Fine-Grained Auditing Parameters That Are Used with TSDP Policies 15-31
15.15 Using Transparent Sensitive Data Protection Policies with TDE Column Encryption 15-32
15.15.1 About Using TSDP Policies with TDE Column Encryption 15-33
15.15.2 TDE Column Encryption ENCRYPT Clause Settings Used with TSDP Policies 15-34
15.16 Transparent Sensitive Data Protection Data Dictionary Views 15-34

16 Encryption of Sensitive Credential Data in the Data Dictionary

16.1 About Encrypting Sensitive Credential Data in the Data Dictionary 16-1
16.2 How the Multitenant Option Affects the Encryption of Sensitive Data 16-2
16.3 Encrypting Sensitive Credential Data in System Tables 16-2
16.4 Rekeying Sensitive Credential Data in the SYS.LINK$ System Table 16-3
16.5 Deleting Sensitive Credential Data in System Tables 16-4
16.6 Restoring the Functioning of Database Links After a Lost Keystore 16-5
16.7 Data Dictionary Views for Encrypted Data Dictionary Credentials 16-6

17 Manually Encrypting Data

17.1 Security Problems That Encryption Does Not Solve 17-1
17.1.1 Principle 1: Encryption Does Not Solve Access Control Problems 17-1
17.1.2 Principle 2: Encryption Does Not Protect Against a Malicious Administrator 17-2
17.1.3 Principle 3: Encrypting Everything Does Not Make Data Secure 17-3
17.2 Data Encryption Challenges 17-4
17.2.1 Encrypted Indexed Data 17-4
17.2.2 Generated Encryption Keys 17-5
17.2.3 Transmitted Encryption Keys 17-5
17.2.4 Storing Encryption Keys 17-5
ORACLE

XXiX

17.2.4.1 About Storing Encryption Keys 17-6
17.2.4.2 Storage of Encryption Keys in the Database 17-6
17.2.4.3 Storage of Encryption Keys in the Operating System 17-7
17.2.4.4 Users Managing Their Own Encryption Keys 17-8
17.2.4.5 Manual Encryption with Transparent Database Encryption and
Tablespace Encryption 17-8
17.2.5 Importance of Changing Encryption Keys 17-8
17.2.6 Encryption of Binary Large Objects 17-8
17.3 Data Encryption Storage with the DBMS_CRYPTO Package 17-9
17.4 Asymmetric Key Operations with the DBMS_CRYPTO Package 17-12
17.5 Using Ciphertexts Encrypted in OFB Mode in Oracle Database Release 11g 17-12
17.6 Examples of Using the Data Encryption API 17-15
17.6.1 Example: Data Encryption Procedure 17-15
17.6.2 Example: AES 256-Bit Data Encryption and Decryption Procedures 17-16
17.6.3 Example: Encryption and Decryption Procedures for BLOB Data 17-17
17.7 Data Dictionary Views for Encrypted Data 17-20
Part IV Securing Data on the Network
18 Configuring Oracle Database Native Network Encryption and Data
Integrity
18.1 About Oracle Database Native Network Encryption and Data Integrity 18-1
18.1.1 How Oracle Database Native Network Encryption and Integrity Works 18-2
18.1.2 Advanced Encryption Standard 18-2
18.1.3 Triple-DES Encryption 18-2
18.1.4 Choosing Between Native Network Encryption and Transport Layer Security 18-3
18.2 Oracle Database Native Network Encryption Data Integrity 18-3
18.3 Improving Native Network Encryption Security 18-4
18.3.1 About Improving Native Network Encryption Security 18-4
18.3.2 Applying Security Improvement Updates to Native Network Encryption 18-5
18.4 Data Integrity Algorithms Support 18-6
18.5 Diffie-Hellman Based Key Negotiation 18-7
18.6 Configuration of Data Encryption and Integrity 18-7
18.6.1 About Activating Encryption and Integrity 18-8
18.6.2 About Negotiating Encryption and Integrity 18-9
18.6.2.1 About the Values for Negotiating Encryption and Integrity 18-9
18.6.2.2 REJECTED Configuration Parameter 18-10
18.6.2.3 ACCEPTED Configuration Parameter 18-10
18.6.2.4 REQUESTED Configuration Parameter 18-11
18.6.2.5 REQUIRED Configuration Parameter 18-11
18.6.3 Configuring Encryption and Integrity Parameters Using Oracle Net Manager 18-11

ORACLE

XXX

18.6.3.1 Configuring Encryption on the Client and the Server 18-11

18.6.3.2 Configuring Integrity on the Client and the Server 18-13
18.6.3.3 Enabling Both Oracle Native Encryption and SSL Authentication for
Different Users Concurrently 18-14

19 Configuring the Thin JDBC Client Network

19.1 About the Java Implementation 19-1
19.2 Java Database Connectivity Support 19-1
19.3 Thin JDBC Features 19-2
19.4 Implementation Overview 19-3
19.5 Obfuscation of the Java Cryptography Code 19-3
19.6 Configuration Parameters for the Thin JDBC Network Implementation 19-4
19.6.1 About the Thin JDBC Network Implementation Configuration Parameters 19-4
19.6.2 Client Encryption Level Parameter 19-5
19.6.3 Client Encryption Selected List Parameter 19-5
19.6.4 Client Integrity Level Parameter 19-5
19.6.5 Client Integrity Selected List Parameter 19-6
19.6.6 Client Authentication Service Parameter 19-6
19.6.7 AnoServices Constants 19-7

Part V. Managing Strong Authentication

20 Introduction to Strong Authentication

20.1 What Is Strong Authentication? 20-1
20.2 Centralized Authentication and Single Sign-On 20-2
20.3 How Centralized Network Authentication Works 20-2
20.4 Supported Strong Authentication Methods 20-3

20.4.1 About Kerberos 20-4

20.4.2 About Remote Authentication Dial-In User Service (RADIUS) 20-4

20.4.3 About Transport Layer Security 20-5
20.5 Oracle Database Native Network Encryption/Strong Authentication Architecture 20-6
20.6 System Requirements for Strong Authentication 20-7
20.7 Oracle Database Native Network Encryption and Strong Authentication Restrictions 20-7

271 Strong Authentication Administration Tools

21.1 About the Configuration and Administration Tools 21-1

21.2 Native Network Encryption and Strong Authentication Configuration Tools 21-1

21.2.1 About Oracle Net Manager 21-1

21.2.2 Kerberos Adapter Command-Line Utilities 21-2
ORACLE

XXXI

21.3 Public Key Infrastructure Credentials Management Tools 21-2
21.3.1 About Oracle Wallet Manager 21-3
21.3.2 About the orapki Utility 21-3

21.4 Duties of Strong Authentication Administrators 21-4

22 Configuring Kerberos Authentication

22.1 Enabling Kerberos Authentication 22-1
22.1.1 Step 1: Install Kerberos 22-2
22.1.2 Step 2: Configure a Service Principal for an Oracle Database Server 22-3
22.1.3 Step 3: Extract a Service Key Table from Kerberos 22-3
22.1.4 Step 4: Install an Oracle Database Server and an Oracle Client 22-4
22.1.5 Step 5: Configure Oracle Net Services and Oracle Database 22-4
22.1.6 Step 6: Configure Kerberos Authentication 22-4

22.1.6.1 Step 6A: Configure Kerberos on the Client and on the Database Server 22-5
22.1.6.2 Step 6B: Set the Initialization Parameters 22-7
22.1.6.3 Step 6C: Set sglnet.ora Parameters (Optional) 22-8
22.1.7 Step 7: Create a Kerberos User 22-10
22.1.8 Step 8: Create an Externally Authenticated Oracle User 22-10
22.1.9 Step 9: Get an Initial Ticket for the Kerberos/Oracle User 22-11

22.2 Utilities for the Kerberos Authentication Adapter 22-11
22.2.1 okinit Utility Options for Obtaining the Initial Ticket 22-12
22.2.2 oklist Utility Options for Displaying Credentials 22-13
22.2.3 okdstry Utility Options for Removing Credentials from the Cache File 22-14
22.2.4 okcreate Utility Options for Automatic Keytab Creation 22-14

22.3 Connecting to an Oracle Database Server Authenticated by Kerberos 22-15

22.4 Configuring Interoperability with a Windows 2008 Domain Controller KDC 22-16
22.4.1 About Configuring Interoperability with a Microsoft Windows Server Domain

Controller KDC 22-16
22.4.2 Step 1: Configure Oracle Kerberos Client for Windows 2008 Domain Controller 22-16
22.4.2.1 Step 1A: Create the Client Kerberos Configuration Files 22-17
22.4.2.2 Step 1B: Specify the Oracle Configuration Parameters in the sqlnet.ora
File 22-17
22.4.2.3 Step 1C: Optionally, Specify Additional Kerberos Principals Using
tnsnames.ora 22-18
22.4.2.4 Step 1D: Specify the Listening Port Number 22-18
22.4.3 Step 2: Configure a Microsoft Windows Server Domain Controller KDC for the
Oracle Client 22-19
22.4.3.1 Step 2A: Create the User Account 22-19
22.4.3.2 Step 2B: Create the Oracle Database Principal User Account and Keytab 22-19
22.4.4 Step 3: Configure Oracle Database for a Microsoft Windows Server Domain
Controller KDC 22-20
22.4.4.1 Step 3A: Set Configuration Parameters in the sqlnet.ora File 22-20

ORACLE

XXXil

22.4.4.2 Step 3B: Create an Externally Authenticated Oracle User 22-21

22.45 Step 4: Obtain an Initial Ticket for the Kerberos/Oracle User 22-21
22.5 Configuring Kerberos Authentication Fallback Behavior 22-21
22.6 Troubleshooting the Oracle Kerberos Authentication Configuration 22-22

22.6.1 Common Kerberos Configuration Problems 22-23

22.6.2 ORA-12631 Errors in the Kerberos Configuration 22-23

22.6.3 ORA-28575 Errors in the Kerberos Configuration 22-24

22.6.4 ORA-01017 Errors in the Kerberos Configuration 22-24

22.6.5 Enabling Tracing for Kerberos okinit Operations 22-25

23 Configuring Transport Layer Security Authentication

23.1 Transport Layer Security and Secure Sockets Layer 23-2
23.1.1 The Difference Between Transport Layer Security and Secure Sockets Layer 23-2
23.1.2 Using Transport Layer Security in a Multitenant Environment 23-2

23.2 How Oracle Database Uses Transport Layer Security for Authentication 23-3

23.3 How Transport Layer Security Works in an Oracle Environment: The TLS Handshake 23-4

23.4 Public Key Infrastructure in an Oracle Environment 23-4
23.4.1 About Public Key Cryptography 23-5
23.4.2 Public Key Infrastructure Components in an Oracle Environment 23-5

23.4.2.1 Certificate Authority 23-6
23.4.2.2 Certificates 23-6
23.4.2.3 Certificate Revocation Lists 23-6
23.4.2.4 Wallets 23-7
23.4.2.5 Hardware Security Modules 23-8

23.5 Transport Layer Security Combined with Other Authentication Methods 23-8
23.5.1 Architecture: Oracle Database and Transport Layer Security 23-9
23.5.2 How Transport Layer Security Works with Other Authentication Methods 23-9

23.6 Transport Layer Security and Firewalls 23-10

23.7 Transport Layer Security Usage Issues 23-10

23.8 Transport Layer Security Connection without a Client Wallet 23-11
23.8.1 About Transport Layer Security Connections without a Client Wallet 23-11
23.8.2 Configuring a Transport Layer Security Connection without a Client Wallet 23-12

23.9 Transport Layer Security Connection with a Client Wallet 23-13
23.9.1 Step 1: Configure Transport Layer Security on the Server 23-14

23.9.1.1 Step 1A: Confirm Wallet Creation on the Server 23-14
23.9.1.2 Step 1B: Specify the Database Wallet Location on the Server 23-15
23.9.1.3 Step 1C: Set the Transport Layer Security Cipher Suites on the Server

(Optional) 23-16
23.9.1.4 Step 1D: Set the Required Transport Layer Security Version on the

Server (Optional) 23-19
23.9.1.5 Step 1E: Set Transport Layer Security Client Authentication on the

Server (Optional) 23-20

ORACLE

XXXiii

23.9.1.6

23.9.1.7
23.9.1.8

23.9.1.9

Step 1F: Set Transport Layer Security as an Authentication Service on
the Server (Optional)

Step 1G: Disable SSLv3 on the Server and Client (Optional)

Step 1H: Create a Listening Endpoint that Uses TCP/IP with Transport
Layer Security on the Server

Step 1H: Restart the Database

23.9.2 Step 2: Configure Transport Layer Security on the Client

239.2.1
23.9.2.2

23.9.2.3
23.9.2.4
23.9.2.5
23.9.2.6
23.9.2.7

23.9.2.8

23.9.2.9

Step 2A: Confirm Client Wallet Creation

Step 2B: Configure Server DN Matching and Use TCP/IP with TLS on
the Client

Step 2C: Specify Required Client TLS Configuration (Wallet Location)

Step 2D: Set the Client Transport Layer Security Cipher Suites (Optional)

Step 2E: Set the Required TLS Version on the Client (Optional)
Step 2F: Set TLS as an Authentication Service on the Client (Optional)

Step 2G: Specify the Certificate to Use for Authentication on the Client
(Optional)

Step 2H: Check That the Connections Are Using Transport Layer
Security

Step 2I: Restart the Database

23.9.3 Step 3: Log in to the Database Instance

23.10 Transport Layer Security Oracle Wallet Search Order

23.11 Transport Layer Security Connections in an Oracle Real Application Clusters
Environment

23.11.1 Step 1: Configure TCPS Protocol Endpoints

23.11.2 Step 2: Ensure That the LOCAL_LISTENER Parameter Is Correctly Set on
Each Node

23.11.3 Step 3: Create Transport Layer Security Wallets and Certificates

23.11.3.1
23.11.3.2

Oracle Real Application Clusters Components That Need Certificates
Creating Transport Layer Security Wallets and Certificates

23.11.4 Step 4: Create a Wallet in Each Node of the Oracle RAC Cluster
23.11.5 Step 5: Define Wallet Locations in the listener.ora and sqlnet.ora Files

23.11.6 Step 6: Restart the Database Instances and Listeners
23.11.7 Step 7: Test the Cluster Node Configuration
23.11.8 Step 8: Test the Remote Client Configuration

23.12 Configuring Transport Layer Security for Client Authentication and Encryption Using

Microsoft Certificate Store

23.12.1 About Configuring Transport Layer Security for Client Authentication and
Encryption Using Microsoft Certificate Store

23.12.2 Step 1: Create and Configure the Server Wallet
23.12.3 Step 2: Create and Configure the Client Wallet
23.12.4 Step 3: Create an External User in the Oracle Database

23.12.5 Step 4: Configure the Server listener.ora File

23.12.6 Step 5: Configure the Server sqlnet.ora File
23.12.7 Step 6: Import the Client Wallet into the Microsoft Certificate Store

ORACLE"

23-21
23-22

23-22
23-22
23-22
23-23

23-23
23-26
23-28
23-30
23-31

23-31

23-32
23-32
23-33
23-33

23-34
23-34

23-36
23-36
23-37
23-37
23-39
23-40
23-40
23-41
23-41

23-42

23-43
23-43
23-44
23-45
23-45
23-46
23-46

XXXIV

23.12.8 Step 7: Configure the Client sqglnet.ora File
23.12.9 Step 8: Configure the Oracle Database
23.12.10 Step 9: Test the Client and Server Connection
23.13 Troubleshooting the Transport Layer Security Configuration
23.14 Certificate Validation with Certificate Revocation Lists
23.14.1 About Certificate Validation with Certificate Revocation Lists
23.14.2 What CRLs Should You Use?
23.14.3 How CRL Checking Works
23.14.4 Configuring Certificate Validation with Certificate Revocation Lists
23.14.4.1 About Configuring Certificate Validation with Certificate Revocation Lists
23.14.4.2 Enabling Certificate Revocation Status Checking for the Client or Server
23.14.4.3 Disabling Certificate Revocation Status Checking
23.14.5 Certificate Revocation List Management
23.14.5.1 About Certificate Revocation List Management
23.14.5.2 Displaying orapki Help for Commands That Manage CRLs
23.14.5.3 Renaming CRLs with a Hash Value for Certificate Validation
23.14.5.4 Uploading CRLs to Oracle Internet Directory
23.14.5.5 Listing CRLs Stored in Oracle Internet Directory
23.14.5.6 Viewing CRLs in Oracle Internet Directory
23.14.5.7 Deleting CRLs from Oracle Internet Directory
23.14.6 Troubleshooting CRL Certificate Validation
23.14.7 Oracle Net Tracing File Error Messages Associated with Certificate Validation
23.15 Configuring Your System to Use Hardware Security Modules
23.15.1 General Guidelines for Using Hardware Security Modules for TLS
23.15.2 Configuring Your System to Use nCipher Hardware Security Modules

23.15.2.1 About Configuring Your System to Use nCipher Hardware Security
Modules

23.15.2.2 Oracle Components Required To Use an nCipher Hardware Security
Module

23.15.2.3 Directory Path Requirements for Installing an nCipher Hardware
Security Module

23.15.3 Configuring Your System to Use SafeNET Hardware Security Modules

23.15.3.1 About Configuring Your System to Use SafeNET Hardware Security
Modules

23.15.3.2 Oracle Components Required for SafeNET Luna SA Hardware Security
Modules

23.15.3.3 Directory Path Requirements for Installing a SafeNET Hardware
Security Module

23.15.4 Troubleshooting Using Hardware Security Modules
23.15.4.1 Errors in the Oracle Net Trace Files
23.15.4.2 Error Messages Associated with Using Hardware Security Modules

ORACLE"

23-47
23-47
23-47
23-48
23-51
23-51
23-52
23-52
23-53
23-53
23-53
23-55
23-56
23-56
23-57
23-57
23-58
23-58
23-59
23-60
23-60
23-61
23-62
23-63
23-63

23-63

23-64

23-64
23-65

23-65

23-65

23-66
23-66
23-66
23-67

XXXV

24 Configuring RADIUS Authentication

24.1 About Configuring RADIUS Authentication 24-1
24.2 RADIUS Components 24-2
24.3 RADIUS Authentication Modes 24-3
24.3.1 Synchronous Authentication Mode 24-3
24.3.1.1 Sequence for Synchronous Authentication Mode 24-3
24.3.1.2 Example: Synchronous Authentication with SecurlD Token Cards 24-4

24.3.2 Challenge-Response (Asynchronous) Authentication Mode 24-5
24.3.2.1 Sequence for Challenge-Response (Asynchronous) Authentication Mode 24-5
24.3.2.2 Example: Asynchronous Authentication with Smart Cards 24-7
24.3.2.3 Example: Asynchronous Authentication with ActivCard Tokens 24-7

24.4 Enabling RADIUS Authentication, Authorization, and Accounting 24-8
24.4.1 Step 1: Configure RADIUS Authentication 24-8
24.41.1 Step 1A: Configure RADIUS on the Oracle Client 24-9
24.4.1.2 Step 1B: Configure RADIUS on the Oracle Database Server 24-10
24.41.3 Step 1C: Configure Additional RADIUS Features 24-13

24.4.2 Step 2: Create a User and Grant Access 24-16
24.4.3 Step 3: Configure External RADIUS Authorization (Optional) 24-16
24.4.3.1 Step 3A: Configure the Oracle Server (RADIUS Client) 24-16
24.4.3.2 Step 3B: Configure the Oracle Client Where Users Log In 24-17
24.4.3.3 Step 3C: Configure the RADIUS Server 24-17

24.4.4 Step 4: Configure RADIUS Accounting 24-18
24.4.4.1 Step 4A: Set RADIUS Accounting on the Oracle Database Server 24-18
24.4.4.2 Step 4B: Configure the RADIUS Accounting Server 24-18

24.45 Step 5: Add the RADIUS Client Name to the RADIUS Server Database 24-19
24.4.6 Step 6: Configure the Authentication Server for Use with RADIUS 24-19
24.4.7 Step 7: Configure the RADIUS Server for Use with the Authentication Server 24-19
24.4.8 Step 8: Configure Mapping Roles 24-20
24.5 Using RADIUS to Log in to a Database 24-20
24.6 RSA ACE/Server Configuration Checklist 24-21

25 Customizing the Use of Strong Authentication

25.1 Connecting to a Database Using Strong Authentication 25-1
25.2 Disabling Strong Authentication and Native Network Encryption 25-2
25.3 Configuring Multiple Authentication Methods 25-4
25.4 Configuring Oracle Database for External Authentication 25-5
25.4.1 Setting the SQLNET.AUTHENTICATION_SERVICES Parameter in sglnet.ora 25-5
25.4.2 Setting OS_AUTHENT_PREFIX to a Null Value 25-6

ORACLE

XXXV

Part VI Monitoring Database Activity with Auditing

26 Introduction to Auditing

26.1 What Is Auditing? 26-2
26.2 Why Is Auditing Used? 26-3
26.3 Best Practices for Auditing 26-3
26.4 What Is Unified Auditing? 26-4
26.5 Benefits of the Unified Audit Trail 26-5
26.6 Checking if Your Database Has Migrated to Pure Unified Auditing 26-5
26.7 Mixed Mode Auditing 26-6

26.7.1 About Mixed Mode Auditing 26-6

26.7.2 Enablement of Unified Auditing 26-7

26.7.3 How Database Creation Determines the Type of Auditing You Have Enabled 26-8

26.7.4 Capabilities of Mixed Mode Auditing 26-8
26.8 Who Can Perform Auditing? 26-9
26.9 Unified Auditing in a Multitenant Environment 26-9
26.10 Auditing in a Distributed Database 26-10

27 Configuring Audit Policies

27.1 Selecting an Auditing Type 27-1
27.1.1 Auditing SQL Statements, Privileges, and Other General Activities 27-1
27.1.2 Auditing Commonly Used Security-Relevant Activities 27-2
27.1.3 Auditing Specific, Fine-Grained Activities 27-2

27.2 Auditing Activities with Unified Audit Policies and the AUDIT Statement 27-3
27.2.1 About Auditing Activities with Unified Audit Policies and AUDIT 27-4
27.2.2 Best Practices for Creating Custom Unified Audit Policies 27-5
27.2.3 Syntax for Creating a Unified Audit Policy 27-5
27.2.4 Auditing Roles 27-7

27.2.4.1 About Role Auditing 27-7
27.2.4.2 Configuring Role Unified Audit Policies 27-8
27.2.4.3 Example: Auditing the DBA Role in a Multitenant Environment 27-8
27.2.5 Auditing System Privileges 27-8
27.2.5.1 About System Privilege Auditing 27-9
27.2.5.2 System Privileges That Can Be Audited 27-9
27.2.5.3 System Privileges That Cannot Be Audited 27-10
27.2.5.4 Configuring a Unified Audit Policy to Capture System Privilege Use 27-10
27.2.5.5 Example: Auditing a User Who Has ANY Privileges 27-10
27.2.5.6 Example: Using a Condition to Audit a System Privilege 27-11
27.2.5.7 How System Privilege Unified Audit Policies Appear in the Audit Trail 27-11
27.2.6 Auditing Administrative Users 27-11
ORACLE

XXXVil

27.2.6.1
27.2.6.2
27.2.6.3

Administrative User Accounts That Can Be Audited
Configuring a Unified Audit Policy to Capture Administrator Activities
Example: Auditing the SYS User

27.2.7 Auditing Object Actions

27.2.7.1
27.2.7.2
27.2.7.3
27.2.7.4
27.2.7.5
27.2.7.6
27.2.7.7
27.2.7.8
27.2.7.9
27.2.7.10
27.2.7.11
27.2.7.12
27.2.7.13
27.2.7.14

About Auditing Object Actions

Object Actions That Can Be Audited

Configuring an Object Action Unified Audit Policy

Example: Auditing Actions on SYS Objects

Example: Auditing Multiple Actions on One Object

Example: Auditing GRANT and REVOKE Operations on an Object

Example: Auditing Both Actions and Privileges on an Object

Example: Auditing All Actions on a Table

Example: Auditing All Actions in the Database
How Object Action Unified Audit Policies Appear in the Audit Trail
Auditing Functions, Procedures, Packages, and Triggers
Auditing of Oracle Virtual Private Database Predicates
Audit Policies for Oracle Virtual Private Database Policy Functions
Unified Auditing with Editioned Objects

27.2.8 Auditing the READ ANY TABLE and SELECT ANY TABLE Privileges

27.2.8.1

27.2.8.2

27.2.8.3

About Auditing the READ ANY TABLE and SELECT ANY TABLE
Privileges

Creating a Unified Audit Policy to Capture READ Object Privilege
Operations

How the Unified Audit Trail Captures READ ANY TABLE and SELECT
ANY TABLE

27.2.9 Auditing SQL Statements and Privileges in a Multitier Environment
27.2.10 Creating a Condition for a Unified Audit Policy

27.2.10.1
27.2.10.2
27.2.10.3
27.2.10.4
27.2.10.5
27.2.10.6
27.2.10.7

27.2.10.8

27.2.10.9

About Conditions in Unified Audit Policies

Configuring a Unified Audit Policy with a Condition

Example: Auditing Access to SQL*Plus

Example: Auditing Actions Not in Specific Hosts

Example: Auditing Both a System-Wide and a Schema-Specific Action
Example: Auditing a Condition Per Statement Occurrence

Example: Unified Audit Session ID of a Current Administrative User
Session

Example: Unified Audit Session ID of a Current Non-Administrative
User Session

How Audit Records from Conditions Appear in the Audit Trall

27.2.11 Auditing Application Context Values

27.2.11.1
27.2.11.2
27.2.11.3
27.2.11.4

ORACLE"

About Auditing Application Context Values

Configuring Application Context Audit Settings

Disabling Application Context Audit Settings

Example: Auditing Application Context Values in a Default Database

27-12
27-12
27-12
27-13
27-13
27-14
27-14
27-15
27-15
27-15
27-16
27-16
27-16
27-17
27-17
27-18
27-19
27-20
27-20

27-20

27-21

27-21
27-23
27-25
27-26
27-26
27-28
27-28
27-28
27-28

27-29

27-29
27-30
27-30
27-30
27-31
27-31
27-32

XXXVili

27.2.11.5

27.2.11.6

Example: Auditing Application Context Values from Oracle Label
Security

How Audited Application Contexts Appear in the Audit Trall

27.2.12 Auditing Oracle Database Real Application Security Events

27.2.121
27.2.12.2
27.2.12.3

27.2.12.4

27.2.125
27.2.12.6
27.2.12.7

27.2.12.8
27.2.12.9

27.2.12.10

About Auditing Oracle Database Real Application Security Events
Oracle Database Real Application Security Auditable Events

Oracle Database Real Application Security User, Privilege, and Role
Audit Events

Oracle Database Real Application Security Security Class and ACL
Audit Events

Oracle Database Real Application Security Session Audit Events
Oracle Database Real Application Security ALL Events

Configuring a Unified Audit Policy for Oracle Database Real Application
Security

Example: Auditing Real Application Security User Account Modifications

Example: Using a Condition in a Real Application Security Unified Audit
Policy

How Oracle Database Real Application Security Events Appear in the
Audit Trall

27.2.13 Auditing Oracle Recovery Manager Events

27.2.13.1
27.2.13.2
27.2.13.3

About Auditing Oracle Recovery Manager Events
Oracle Recovery Manager Unified Audit Trail Events
How Oracle Recovery Manager Audited Events Appear in the Audit Trail

27.2.14 Auditing Oracle Database Vault Events

27.2.141
27.2.14.2
27.2.14.3
27.2.14.4
27.2.145
27.2.14.6
27.2.14.7
27.2.14.8
27.2.14.9
27.2.14.10
27.2.14.11
27.2.14.12
27.2.14.13
27.2.14.14
27.2.14.15
27.2.14.16
27.2.14.17

About Auditing Oracle Database Vault Events

Who Is Audited in Oracle Database Vault?

About Oracle Database Vault Unified Audit Trail Events

Oracle Database Vault Realm Audit Events

Oracle Database Vault Rule Set and Rule Audit Events

Oracle Database Vault Command Rule Audit Events

Oracle Database Vault Factor Audit Events

Oracle Database Vault Secure Application Role Audit Events

Oracle Database Vault Oracle Label Security Audit Events
Oracle Database Vault Oracle Data Pump Audit Events
Oracle Database Vault Enable and Disable Audit Events
Configuring a Unified Audit Policy for Oracle Database Vault
Example: Auditing an Oracle Database Vault Realm
Example: Auditing an Oracle Database Vault Rule Set
Example: Auditing Two Oracle Database Vault Events
Example: Auditing Oracle Database Vault Factors
How Oracle Database Vault Audited Events Appear in the Audit Trail

27.2.15 Auditing Oracle Label Security Events

27.2.15.1

ORACLE"

About Auditing Oracle Label Security Events

27-32
27-32
27-32
27-33
27-34

27-34

27-36
27-37
27-38

27-38
27-39

27-39

27-39
27-39
27-40
27-40
27-41
27-41
27-42
27-43
27-43
27-44
27-44
27-45
27-46
27-47
27-47
27-48
27-48
27-49
27-49
27-50
27-50
27-50
27-50
27-51
27-51

XXXIX

27.2.15.2
27.2.15.3
27.2.15.4
27.2.15.5
27.2.15.6
27.2.15.7
27.2.15.8
27.2.15.9

Oracle Label Security Unified Audit Trail Events

Oracle Label Security Auditable User Session Labels

Configuring a Unified Audit Policy for Oracle Label Security
Example: Auditing Oracle Label Security Session Label Attributes
Example: Excluding a User from an Oracle Label Security Policy
Example: Auditing Oracle Label Security Policy Actions

Example: Querying for Audited OLS Session Labels

How Oracle Label Security Audit Events Appear in the Audit Trail

27.2.16 Auditing Oracle Data Mining Events

27.2.16.1
27.2.16.2
27.2.16.3
27.2.16.4
27.2.16.5
27.2.16.6

About Auditing Oracle Data Mining Events

Oracle Data Mining Unified Audit Trail Events

Configuring a Unified Audit Policy for Oracle Data Mining

Example: Auditing Multiple Oracle Data Mining Operations by a User
Example: Auditing All Failed Oracle Data Mining Operations by a User
How Oracle Data Mining Events Appear in the Audit Trail

27.2.17 Auditing Oracle Data Pump Events

27.2.17.1
27.2.17.2
27.2.17.3
27.2.17.4
27.2.17.5
27.2.17.6

About Auditing Oracle Data Pump Events

Oracle Data Pump Unified Audit Trail Events

Configuring a Unified Audit Policy for Oracle Data Pump
Example: Auditing Oracle Data Pump Import Operations
Example: Auditing All Oracle Data Pump Operations

How Oracle Data Pump Audited Events Appear in the Audit Trail

27.2.18 Auditing Oracle SQL*Loader Direct Load Path Events

27.2.18.1
27.2.18.2
27.2.18.3

27.2.18.4
27.2.18.5

About Auditing in Oracle SQL*Loader Direct Path Load Events
Oracle SQL*Loader Direct Load Path Unified Audit Trail Events

Configuring a Unified Audit Trail Policy for Oracle SQL*Loader Direct
Path Events

Example: Auditing Oracle SQL*Loader Direct Path Load Operations

How SQL*Loader Direct Path Load Audited Events Appear in the Audit
Trail

27.2.19 Auditing Only Top-Level Statements

27.2.19.1
27.2.19.2

27.2.19.3
27.2.19.4
27.2.19.5

About Auditing Only Top-Level SQL Statements

Configuring a Unified Audit Policy to Capture Only Top-Level
Statements

Example: Auditing Top-Level Statements
Example: Comparison of Top-Level SQL Statement Audits
How the Unified Audit Trail Captures Top-Level SQL Statements

27.2.20 Unified Audit Policies or AUDIT Settings in a Multitenant Environment

ORACLE"

27.2.20.1
27.2.20.2
27.2.20.3
27.2.20.4
27.2.20.5

About Local, CDB Common, and Application Common Audit Policies
Traditional Auditing in a Multitenant Environment

Configuring a Local Unified Audit Policy or Common Unified Audit Policy
Example: Local Unified Audit Policy

Example: CDB Common Unified Audit Policy

27-52
27-54
27-54
27-55
27-55
27-55
27-55
27-56
27-56
27-57
27-57
27-57
27-58
27-58
27-58
27-59
27-59
27-60
27-60
27-60
27-60
27-61
27-61
27-61
27-62

27-62
27-62

27-63
27-63
27-63

27-64
27-64
27-64
27-70
27-70
27-71
27-72
27-73
27-74
27-75

x|

27.2.20.6 Example: Application Common Unified Audit Policy 27-75
27.2.20.7 How Local or Common Audit Policies or Settings Appear in the Audit

Trail 27-76
27.2.21 Altering Unified Audit Policies 27-76
27.2.21.1 About Altering Unified Audit Policies 27-77
27.2.21.2 Altering a Unified Audit Policy 27-77
27.2.21.3 Example: Altering a Condition in a Unified Audit Policy 27-78
27.2.21.4 Example: Altering an Oracle Label Security Component in a Unified
Audit Policy 27-78
27.2.21.5 Example: Altering Roles in a Unified Audit Policy 27-79
27.2.21.6 Example: Dropping a Condition from a Unified Audit Policy 27-79
27.2.21.7 Example: Altering an Existing Unified Audit Policy Top-Level Statement
Audits 27-79
27.2.22 Enabling and Applying Unified Audit Policies to Users and Roles 27-79
27.2.22.1 About Enabling Unified Audit Policies 27-80
27.2.22.2 Enabling a Unified Audit Policy 27-81
27.2.22.3 Example: Enabling a Unified Audit Policy 27-82
27.2.23 Disabling Unified Audit Policies 27-82
27.2.23.1 About Disabling Unified Audit Policies 27-82
27.2.23.2 Disabling a Unified Audit Policy 27-82
27.2.23.3 Example: Disabling a Unified Audit Policy 27-83
27.2.24 Dropping Unified Audit Policies 27-83
27.2.24.1 About Dropping Unified Audit Policies 27-83
27.2.24.2 Dropping a Unified Audit Policy 27-84
27.2.24.3 Example: Disabling and Dropping a Unified Audit Policy 27-84
27.2.25 Tutorial: Auditing Nondatabase Users 27-84
27.2.25.1 Step 1: Create the User Accounts and Ensure the User OE Is Active 27-85
27.2.25.2 Step 2: Create the Unified Audit Policy 27-85
27.2.25.3 Step 3: Test the Policy 27-86
27.2.25.4 Step 4: Remove the Components of This Tutorial 27-87
27.3 Auditing Activities with the Predefined Unified Audit Policies 27-87
27.3.1 Logon Failures Predefined Unified Audit Policy 27-88
27.3.2 Secure Options Predefined Unified Audit Policy 27-89
27.3.3 Oracle Database Parameter Changes Predefined Unified Audit Policy 27-89
27.3.4 User Account and Privilege Management Predefined Unified Audit Policy 27-90
27.3.5 Center for Internet Security Recommendations Predefined Unified Audit Policy 27-90
27.3.6 Oracle Database Real Application Security Predefined Audit Policies 27-91
27.3.6.1 System Administrator Operations Predefined Unified Audit Policy 27-91
27.3.6.2 Session Operations Predefined Unified Audit Policy 27-92
27.3.7 Oracle Database Vault Predefined Unified Audit Policy for DVSYS and
LBACSYS Schemas 27-92
27.3.8 Oracle Database Vault Predefined Unified Audit Policy for Default Realms and
Command Rules 27-93

ORACLE" xli

27.4 Auditing Specific Activities with Fine-Grained Auditing 27-93
27.4.1 About Fine-Grained Auditing 27-94
27.4.2 Where Are Fine-Grained Audit Records Stored? 27-95
27.4.3 Who Can Perform Fine-Grained Auditing? 27-95
27.4.4 Fine-Grained Auditing on Tables or Views That Have Oracle VPD Policies 27-96
27.4.5 Fine-Grained Auditing in a Multitenant Environment 27-96
27.4.6 Fine-Grained Audit Policies with Editions 27-97
27.4.7 Using the DBMS_FGA PL/SQL Package to Manage Fine-Grained Audit

Policies 27-97
27.4.7.1 About the DBMS_FGA PL/SQL PL/SQL Package 27-98
27.4.7.2 The DBMS_FGA PL/SQL Package with Editions 27-99
27.4.7.3 The DBMS_FGA PL/SQL Package in a Multitenant Environment 27-99
27.4.7.4 Creating a Fine-Grained Audit Policy 27-99
27.4.7.5 Example: Using DBMS_FGA.ADD_POLICY to Create a Fine-Grained
Audit Policy 27-102
27.4.7.6 Disabling a Fine-Grained Audit Policy 27-103
27.4.7.7 Enabling a Fine-Grained Audit Policy 27-103
27.4.7.8 Dropping a Fine-Grained Audit Policy 27-104
27.4.8 Tutorial: Adding an Email Alert to a Fine-Grained Audit Policy 27-104
27.4.8.1 About This Tutorial 27-105
27.4.8.2 Step 1: Install and Configure the UTL_MAIL PL/SQL Package 27-106
27.4.8.3 Step 2: Create User Accounts 27-107
27.4.8.4 Step 3: Configure an Access Control List File for Network Services 27-108
27.4.8.5 Step 4: Create the Email Security Alert PL/SQL Procedure 27-109
27.4.8.6 Step 5: Create and Test the Fine-Grained Audit Policy Settings 27-109
27.4.8.7 Step 6: Test the Alert 27-110
27.4.8.8 Step 7: Remove the Components of This Tutorial 27-111
27.5 Audit Policy Data Dictionary Views 27-111
28 Administering the Audit Trail

28.1 Managing the Unified Audit Trall 28-1
28.1.1 When and Where Are Audit Records Created? 28-2
28.1.2 Activities That Are Mandatorily Audited 28-2
28.1.3 How Do Cursors Affect Auditing? 28-4
28.1.4 Writing the Unified Audit Trail Records to the AUDSYS Schema 28-4
28.1.5 Writing the Unified Audit Trail Records to SYSLOG or the Windows Event

Viewer 28-4
28.1.5.1 About Writing the Unified Audit Trail Records to SYSLOG or the
Windows Event Viewer 28-5
28.1.5.2 Enabling SYSLOG and Windows Event Viewer Captures for the Unified
Audit Trall 28-6
28.1.6 When Audit Records Are Written to the Operating System 28-7

ORACLE

xlii

28.1.7 Moving Operating System Audit Records into the Unified Audit Trall 28-8
28.1.8 Exporting and Importing the Unified Audit Trail Using Oracle Data Pump 28-9
28.1.9 Disabling Unified Auditing 28-10
28.2 Archiving the Audit Trall 28-11
28.2.1 Archiving the Traditional Operating System Audit Trall 28-11
28.2.2 Archiving the Unified and Traditional Database Audit Trails 28-11
28.3 Purging Audit Trail Records 28-12
28.3.1 About Purging Audit Trail Records 28-12
28.3.2 Selecting an Audit Trail Purge Method 28-13
28.3.2.1 Purging the Audit Trail on a Regularly Scheduled Basis 28-13
28.3.2.2 Manually Purging the Audit Trail at a Specific Time 28-14
28.3.3 Scheduling an Automatic Purge Job for the Audit Trail 28-14
28.3.3.1 About Scheduling an Automatic Purge Job 28-14
28.3.3.2 Step 1: If Necessary, Tune Online and Archive Redo Log Sizes 28-15
28.3.3.3 Step 2: Plan a Timestamp and Archive Strategy 28-15
28.3.3.4 Step 3: Optionally, Set an Archive Timestamp for Audit Records 28-15
28.3.3.5 Step 4: Create and Schedule the Purge Job 28-17
28.3.4 Manually Purging the Audit Trall 28-18
28.3.4.1 About Manually Purging the Audit Trail 28-19
28.3.4.2 Using DBMS_AUDIT_MGMT.CLEAN_AUDIT_TRAIL to Manually Purge
the Audit Trall 28-19
28.3.5 Other Audit Trail Purge Operations 28-21
28.3.5.1 Enabling or Disabling an Audit Trail Purge Job 28-21
28.3.5.2 Setting the Default Audit Trail Purge Job Interval for a Specified Purge
Job 28-22
28.3.5.3 Deleting an Audit Trail Purge Job 28-22
28.3.5.4 Clearing the Archive Timestamp Setting 28-23
28.3.6 Example: Directly Calling a Unified Audit Trail Purge Operation 28-23
28.4 Audit Trail Management Data Dictionary Views 28-24
Part VIl Appendixes
A Keeping Your Oracle Database Secure
A.1 About the Oracle Database Security Guidelines A-1
A.2 Downloading Security Patches and Contacting Oracle Regarding Vulnerabilities A-2
A.2.1 Downloading Security Patches and Workaround Solutions A-2
A.2.2 Contacting Oracle Security Regarding Vulnerabilities in Oracle Database A-2
A.3 Guidelines for Securing User Accounts and Privileges A-3
A.4 Guidelines for Securing Roles A-7
A.5 Guidelines for Securing Passwords A-7
A.6 Guidelines for Securing Data A-10
ORACLE

xliii

A.7 Guidelines for Securing the ORACLE_LOADER Access Driver A-11

A.8 Guidelines for Securing a Database Installation and Configuration A-12
A.9 Guidelines for Securing the Network A-13
A.9.1 Client Connection Security A-13
A.9.2 Network Connection Security A-14
A.9.3 Transport Layer Security Connection Security A-17
A.10 Guideline for Securing External Procedures A-18
A.11 Guidelines for Auditing A-19
A.11.1 Manageability of Audited Information A-19
A.11.2 Audits of Typical Database Activity A-20
A.11.3 Audits of Suspicious Database Activity A-21
A.11.4 Audits of Sensitive Data A-21
A.11.5 Recommended Audit Settings A-21
A.11.6 Best Practices for Querying the UNIFIED_AUDIT_TRAIL Data Dictionary View A-22
A.12 Addressing the CONNECT Role Change A-23
A.12.1 Why Was the CONNECT Role Changed? A-23
A.12.2 How the CONNNECT Role Change Affects Applications A-24
A.12.2.1 How the CONNECT Role Change Affects Database Upgrades A-24
A.12.2.2 How the CONNECT Role Change Affects Account Provisioning A-24
A.12.2.3 How the CONNECT Role Change Affects Applications Using New
Databases A-24
A.12.3 How the CONNECT Role Change Affects Users A-25
A.12.3.1 How the CONNECT Role Change Affects General Users A-25
A.12.3.2 How the CONNECT Role Change Affects Application Developers A-25
A.12.3.3 How the CONNECT Role Change Affects Client Server Applications A-25
A.12.4 Approaches to Addressing the CONNECT Role Change A-26
A.12.4.1 Creating a New Database Role A-26
A.12.4.2 Restoring the CONNECT Privilege A-27
A.12.4.3 Data Dictionary View to Show CONNECT Grantees A-28
A.12.4.4 Least Privilege Analysis Studies A-28

B Data Encryption and Integrity Parameters

B.1 About Using sqlnet.ora for Data Encryption and Integrity B-1
B.2 Sample sqginet.ora File B-1
B.3 Data Encryption and Integrity Parameters B-3
B.3.1 About the Data Encryption and Integrity Parameters B-3
B.3.2 SQLNET.ENCRYPTION_SERVER B-4
B.3.3 SQLNET.ENCRYPTION_CLIENT B-5
B.3.4 SQLNET.CRYPTO_CHECKSUM_SERVER B-5
B.3.5 SQLNET.CRYPTO_CHECKSUM_CLIENT B-6
B.3.6 SQLNET.ENCRYPTION_TYPES_ SERVER B-6
ORACLE

xliv

B.3.7 SQLNET.ENCRYPTION_TYPES_CLIENT B-7
B.3.8 SQLNET.CRYPTO_CHECKSUM_TYPES_SERVER B-7
B.3.9 SQLNET.CRYPTO_CHECKSUM_TYPES_CLIENT B-8

C Kerberos, TLS, and RADIUS Authentication Parameters

C.1 Parameters for Clients and Servers Using Kerberos Authentication C-1
C.2 Parameters for Clients and Servers Using Transport Layer Security C-2
C.2.1 Ways to Configure a Parameter for Transport Layer Security C-2
C.2.2 Transport Layer Security Authentication Parameters for Clients and Servers C-2
C.2.3 Cipher Suite Parameters for Transport Layer Security C-3
C.2.4 Supported Transport Layer Security Cipher Suites C-4
C.2.5 Transport Layer Security Version Parameters C-4
C.2.6 Transport Layer Security Client Authentication Parameters C-5
C.2.7 Transport Layer Security X.509 Server Match Parameters C-6
C.2.7.1 SSL_SERVER_DN_MATCH C-6
C.2.7.2 SSL_SERVER_CERT_DN C-7
C.2.8 Oracle Wallet Location C-7
C.3 Parameters for Clients and Servers Using RADIUS Authentication C-8
C.3.1 sqglnet.ora File Parameters C-8
C.3.1.1 SQLNET.AUTHENTICATION_SERVICES C-9
C.3.1.2 SQLNET.RADIUS_ALTERNATE C-9
C.3.1.3 SQLNET.RADIUS_ALTERNATE_PORT C-9
C.3.1.4 SQLNET.RADIUS_ALTERNATE_TIMEOUT C-10
C.3.1.5 SQLNET.RADIUS_ALTERNATE_RETRIES C-10
C.3.1.6 SQLNET.RADIUS_AUTHENTICATION C-10
C.3.1.7 SQLNET.RADIUS_AUTHENTICATION_INTERFACE C-11
C.3.1.8 SQLNET.RADIUS_AUTHENTICATION_PORT c-11
C.3.1.9 SQLNET.RADIUS_AUTHENTICATION_TIMEOUT C-11
C.3.1.10 SQLNET.RADIUS_AUTHENTICATION_RETRIES C-11
C.3.1.11 SQLNET.RADIUS_CHALLENGE_RESPONSE C-12
C.3.1.12 SQLNET.RADIUS_CHALLENGE_KEYWORD C-12
C.3.1.13 SQLNET.RADIUS_CLASSPATH C-12
C.3.1.14 SQLNET.RADIUS_SECRET C-13
C.3.1.15 SQLNET.RADIUS_SEND_ACCOUNTING C-13
C.3.2 Minimum RADIUS Parameters C-13
C.3.3 Initialization File Parameter for RADIUS C-13

D Integrating Authentication Devices Using RADIUS

D.1 About the RADIUS Challenge-Response User Interface D-1
D.2 Customizing the RADIUS Challenge-Response User Interface D-1
ORACLE

xIv

D.3 Example: Using the OracleRadiusinterface Interface D-2

E Oracle Database FIPS 140-2 Settings

E.1 About the Oracle Database FIPS 140-2 Settings E-1
E.2 Configuring FIPS 140-2 for Transparent Data Encryption and DBMS_CRYPTO E-2
E.3 Configuration of FIPS 140-2 for Transport Layer Security E-3
E.3.1 Configuring the SSLFIPS 140 and SSLFIPS_LIB Parameters for Transport
Layer Security E-3
E.3.2 Approved TLS Cipher Suites for FIPS 140-2 E-4
E.4 Configuration of FIPS 140-2 for Native Network Encryption E-5
E.4.1 About Configuration of FIPS 140-2 for Native Network Encryption E-5
E.4.2 Configuring the FIPS_140 Parameter for Native Network Encryption E-5
E.5 Postinstallation Checks for FIPS 140-2 E-6
E.6 Verifying FIPS 140-2 Connections E-6
E.6.1 Verifying FIPS 140-2 Connections for Transport Layer Security E-6
E.6.2 Verifying FIPS 140-2 Connections for Network Native Encryption E-7
E.6.3 Verifying FIPS 140-2 Connections for Transparent Data Encryption and
DBMS_CRYPTO E-7

F Managing Public Key Infrastructure (PKI) Elements

F.1 Uses of the orapki Utility F-1
F.2 orapki Utility Syntax F-2
F.3 Creating Signed Certificates for Testing Purposes F-2
F.4 Viewing a Certificate F-3
F.5 Importing a User-Supplied or Trusted Certificate into an Oracle Wallet F-3
F.6 Controlling MD5 and SHA-1 Certificate Use F-3
F.7 Managing Oracle Wallets with orapki Utility F-4
F.7.1 About Managing Wallets with orapki F-4
F.7.2 Creating, Viewing, and Modifying Wallets with orapki F-4
F.7.2.1 Creating a PKCS#12 Wallet F-5
F.7.2.2 Creating an Auto-Login Wallet F-5
F.7.2.3 Creating an Auto-Login Wallet That Is Associated with a PKCS#12 Wallet F-5

F.7.2.4 Creating an Auto-Login Wallet That Is Local to the Computer and User
Who Created It F-6
F.7.2.5 Viewing a Wallet F-6
F.7.2.6 Modifying the Password for a Wallet F-7
F.7.2.7 Converting an Oracle Wallet to Use the AES256 Algorithm F-7
F.7.3 Adding Certificates and Certificate Requests to Oracle Wallets with orapki F-7
F.7.3.1 Adding a Certificate Request to an Oracle Wallet F-8
F.7.3.2 Adding a Trusted Certificate to an Oracle Wallet F-8
F.7.3.3 Adding a Root Certificate to an Oracle Wallet F-8

ORACLE

XIvi

F.7.3.4 Adding a User Certificate to an Oracle Wallet F-9
F.7.3.5 Verifying Credentials on the Hardware Device That Uses a PKCS#11

Wallet F-9

F.7.3.6 Adding PKCS#11 Information to an Oracle Wallet F-9

F.7.4 Exporting Certificates and Certificate Requests from Oracle Wallets with orapki F-10

F.8 Management of Certificate Revocation Lists (CRLs) with orapki Utility F-10
F.9 orapki Usage F-10
F.9.1 Example: Wallet with a Self-Signed Certificate and Export of the Certificate F-11
F.9.2 Example: Creating a Wallet and a User Certificate F-11
F.10 orapki Utility Commands Summary F-12
F.10.1 orapki cert create F-13
F.10.2 orapki cert display F-14
F.10.3 orapki crl delete Command F-14
F.10.4 orapki crl display F-14
F.10.5 orapki crl hash F-15
F.10.6 orapki crl list F-15
F.10.7 orapki crl upload F-16
F.10.8 orapki wallet add F-16
F.10.9 orapki wallet convert F-17
F.10.10 orapki wallet create F-17
F.10.11 orapki wallet display F-18
F.10.12 orapki wallet export F-18

G How the Unified Auditing Migration Affects Individual Audit Features

Glossary

Index

ORACLE XIvii

List of Tables

2-1 Predefined Oracle Database Administrative User Accounts

2-2 Predefined Oracle Database Non-Administrative User Accounts

2-3 Default Sample Schema User Accounts

2-4 Data Dictionary Views That Display Information about Users and Profiles
3-1 Password-Specific Settings in the Default Profile

3-2 Parameters Controlling Reuse of a Previous Password

3-3 Password Rollover Time Limits

3-4 Effect of SQLNET.ALLOWED_ LOGON_VERSION_SERVER on Password Version Generation
3-5 Data Dictionary Views That Describe User Authentication

4-1 Roles to Allow Access to SYS Schema Objects

4-2 Properties of Roles and Their Description

4-3 Oracle Database Predefined Roles

4-4 System Privileges for Named Types

4-5 Privileges for Object Tables

4-6 Data Dictionary Views That Display Privilege and Role Information

5-1 Data Dictionary Views That Display Privilege Analysis Information

8-1 Parameters to Directly Retrieve Tokens

10-1 Data Dictionary Views That Display Information about Access Control Lists
12-1 Features Affected by the One Big Application User Model

12-2 Expected Behaviors for extproc Process Authentication and Impersonation Settings
12-3 How Privileges Relate to Schema Objects

12-4 SQL Statements Permitted by Database Object Privileges

13-1 Types of Application Contexts

13-2 Setting the DBMS_SESSION.SET_CONTEXT username and client_id Parameters
13-3 Data Dictionary Views That Display Information about Application Contexts
14-1 DBMS_RLS Procedures

14-2 DBMS_RLS.ADD_POLICY Policy Types

14-3 Oracle Virtual Private Database in Different User Models

14-4 Data Dictionary Views That Display Information about VPD Policies

15-1 DBMS_RLS.ADD_POLICY Parameters Used for TSDP Policies

15-2 Unified Audit Policy Settings Used for TSDP Policies

15-3 Fine-Grained Audit Policy Settings Used for TSDP Policies

15-4 TDE Column Encryption ENCRYPT Settings Used for TSDP Policies

15-5 Transparent Sensitive Data Protection Views

16-1 Data Dictionary Views for Encrypted Data Dictionary Credentials

17-1 DBMS_CRYPTO Package Feature Summary

ORACLE

2-32
2-35
2-36
2-37
3-7
3-11
3-20
3-41
3-92
4-12
4-25
4-30
4-66
4-68
4-86
5-27
8-32
10-22
12-2
12-14
12-24
12-25
13-5
13-33
13-55
14-9
14-26
14-50
14-51
15-23
15-30
15-32
15-34
15-35
16-6
17-10

XIviil

17-2 SHA Hash Algorithms

17-3 Encryption and Decryption Algorithms

17-4 Other Algorithms

17-5 Data Dictionary Views That Display Information about Encrypted Data

18-1 Comparison of Native Network Encryption and Transport Layer Security

18-2 Two Forms of Network Attacks

18-3 Encryption and Data Integrity Negotiations

18-4 Valid Encryption Algorithms

19-1 CONNECTION_PROPERTY_THIN_NET_ENCRYPTION_LEVEL Attributes
19-2 CONNECTION_PROPERTY_THIN_NET_ENCRYPTION_TYPES Attributes
19-3 CONNECTION_PROPERTY_THIN_NET_CHECKSUM_LEVEL Attributes
19-4 CONNECTION_PROPERTY_THIN_NET_CHECKSUM_TYPES Attributes
19-5 CONNECTION_PROPERTY_THIN_NET_AUTHENTICATION_SERVICES Attributes
20-1 Authentication Methods and System Requirements

21-1 Kerberos Adapter Command-Line Utilities

21-2 Common Security Administrator/DBA Configuration and Administrative Tasks
22-1 Kerberos-Specific sqlnet.ora Parameters

22-2 Options for the okinit Utility

22-3 Options for the oklist Utility

22-4 Options for the okdstry Utility

22-5 okcreate Utility Options for Automatic Keytab Creation

23-1 Transport Layer Security Cipher Suites

23-2 SSL_DH Transport Layer Security Cipher Suites

24-1 RADIUS Authentication Components

26-1 Differences Between Mixed Mode Audting and Pure Unified Auditing

27-1 Administrative Users and Administrative Privileges

27-2 Object-Level Standard Database Action Audit Option

27-3 Auditing Behavior for READ ANY TABLE and SELECT ANY TABLE

27-4 Oracle Database Real Application Security User, Privilege, and Role Audit Events
27-5 Oracle Database Real Application Security Security Class and ACL Audit Events
27-6 Oracle Database Real Application Security Session Audit Events

27-7 Oracle Database Real Application Security ALL Events

27-8 Oracle Recovery Manager Columns in UNIFIED_AUDIT_TRAIL View

27-9 Oracle Database Vault Realm Audit Events

27-10 Oracle Database Vault Rule Set and Rule Audit Events

27-11 Oracle Database Vault Command Rule Audit Events

27-12 Oracle Database Vault Factor Audit Events

ORACLE

17-10
17-11
17-11
17-20
18-3
18-3
18-10
18-12
19-5
19-5
19-6
19-6
19-6
20-7
21-2
21-4
22-9
22-12
22-13
22-14
22-14
23-17
23-18
24-3
26-6
27-12
27-14
27-21
27-35
27-36
27-37
27-38
27-40
27-44
27-44
27-45
27-46

XliX

27-13
27-14
27-15
27-16
27-17
27-18
27-19
27-20
28-1
28-2
A-1
B-1
B-2
B-3
B-4
B-5
B-6
B-7
B-8
B-9
C-1
C-2
C-3

C-5
C-6
C-7
C-8
C-9
C-10
C-11
C-12
C-13
C-14
C-15
C-16
C-17

Oracle Database Vault Secure Application Role Audit Events
Oracle Database Vault Oracle Label Security Audit Events
Oracle Database Vault Oracle Data Pump Audit Events
Oracle Database Vault Enable and Disable Audit Events
Oracle Label Security Audit Events

Oracle Data Mining Audit Events

How Audit Policies Apply to the CDB Root, Application Root, and Individual PDBs

Views That Display Information about Audited Activities

Audit Record Field Names for SYSLOG and the Windows Event Viewer
Views That Display Information about Audit Trail Management Settings
Columns and Contents for DBA_ CONNECT_ROLE_GRANTEES
Algorithm Type Selection

SQLNET.ENCRYPTION_SERVER Parameter Attributes
SQLNET.ENCRYPTION_CLIENT Parameter Attributes
SQLNET.CRYPTO_CHECKSUM_SERVER Parameter Attributes
SQLNET.CRYPTO_CHECKSUM_CLIENT Parameter Attributes
SQLNET.ENCRYPTION_TYPES_SERVER Parameter Attributes
SQLNET.ENCRYPTION_TYPES_CLIENT Parameter Attributes
SQLNET.CRYPTO_CHECKSUM_TYPES_SERVER Parameter Attributes
SQLNET.CRYPTO_CHECKSUM_TYPES_CLIENT Parameter Attributes
Kerberos Authentication Parameters

TLS Authentication Parameters for Clients and Servers

Cipher Suite Parameters for Transport Layer Security

Transport Layer Security Version Parameters

Transport Layer Security Client Authentication Parameters
SSL_SERVER_DN_MATCH Parameter

SSL_SERVER_CERT_DN Parameter

Wallet Location Parameters

SQLNET.AUTHENTICATION_SERVICES Parameter Attributes
SQLNET.RADIUS_ALTERNATE Parameter Attributes
SQLNET.RADIUS_ALTERNATE_PORT Parameter Attributes
SQLNET.RADIUS_ALTERNATE_TIMEOUT Parameter Attributes
SQLNET.RADIUS_ALTERNATE_RETRIES Parameter Attributes
SQLNET.RADIUS_AUTHENTICATION Parameter Attributes
SQLNET.RADIUS_AUTHENTICATION_INTERFACE Parameter Attributes
SQLNET.RADIUS_AUTHENTICATION_PORT Parameter Attributes
SQLNET.RADIUS_AUTHENTICATION_TIMEOUT Parameter Attributes

ORACLE

27-47
27-48
27-48
27-48
27-52
27-57
27-72
27-111
28-5
28-25
A-28

C-10
C-10
C-10
C-10
C-11
C-11
C-11

C-18
C-19
C-20
C-21
C-22
C-23
E-1

G-1

SQLNET.RADIUS_AUTHENTICATION_RETRIES Parameter Attributes
SQLNET.RADIUS_CHALLENGE_RESPONSE Parameter Attributes
SQLNET.RADIUS_CHALLENGE_KEYWORD Parameter Attributes
SQLNET.RADIUS_CLASSPATH Parameter Attributes
SQLNET.RADIUS_SECRET Parameter Attributes
SQLNET.RADIUS_SEND_ACCOUNTING Parameter Attributes

How the DBFIPS_140 Initialization Parameter Affects Platforms
Availability of Unified Auditing Features Before and After Migration

ORACLE

C-12
C-12
C-12
C-13
C-13
C-13

E-2

G-1

Preface

Preface

Audience

Welcome to Oracle Database Security Guide. This guide describes how you can configure
security for Oracle Database by using the default database features.

e Audience
e Documentation Accessibility
e Related Documents

e Conventions

Oracle Database Security Guide is intended for database administrators (DBASs), security
administrators, application developers, and others tasked with performing the following
operations securely and efficiently.

It covers these areas:

» Designing and implementing security policies to protect the data of an organization, users,
and applications from accidental, inappropriate, or unauthorized actions

e Creating and enforcing policies and practices of auditing and accountability for
inappropriate or unauthorized actions

e Creating, maintaining, and terminating user accounts, passwords, roles, and privileges

» Developing applications that provide desired services securely in a variety of
computational models, leveraging database and directory services to maximize both
efficiency and ease of use

To use this document, you need a basic understanding of how and why a database is used,
and basic familiarity with SQL.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Related Documents

ORACLE

For more security-related information, see these Oracle resources:

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Preface

e Oracle Database Administrator’s Guide
e Oracle Database Concepts

e Oracle Database Reference

e Oracle Multitenant Administrator's Guide

Many of the examples in this guide use the sample schemas of the seed PDB, which you can
create when you install Oracle Database. See Oracle Database Sample Schemas for
information about how these schemas were created and how you can use them yourself.

Oracle Technical Services

To download the product data sheet, frequently asked questions, links to the latest product
documentation, product download, and other collateral, visit Oracle Technical Resources
(formerly Oracle Technology Network). You must register online before using Oracle Technical
Services. Registration is free and can be done at

https://www.oracle.com/technical-resources/

My Oracle Support

You can find information about security patches, certifications, and the support knowledge
base by visiting My Oracle Support (formerly OracleMetaLink) at

https://support.oracle.com

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

ORACLE lifi

https://www.oracle.com/technical-resources/
https://support.oracle.com

Changes in This Release for Oracle Database Security Guide

Changes in This Release for
Oracle Database Security Guide

This preface contains:

Changes in Oracle Database Security 19c

Updates to Oracle Database Security 19¢

Changes in Oracle Database Security 19¢

Oracle Database Security Guide for Oracle Database 19c has new security features.

ORACLE

Signature-Based Security for LOB Locators
Starting with this release, you can configure signature-based security for large object
(LOB) locators.

Default User Accounts Now Schema Only

Using the schema only account feature from Oracle Database release 18c, most of the
Oracle Database supplied schemas (users) now have their passwords removed to prevent
users from authenticating to these accounts.

Privilege Analysis Documentation Moved to Oracle Database Security Guide
The documentation for privilege analysis has moved from Oracle Database Vault
Administrator’s Guide to Oracle Database Security Guide.

Ability to Grant or Revoke Administrative Privileges to and from Schema-Only Accounts
Administrative privileges such as SYSOPER and SYSBACKUP can now be granted to schema-
only (passwordless) accounts.

Automatic Support for Both SASL and Non-SASL Active Directory Connections
Starting with this release, both Simple Authentication and Security Layer (SASL) and
Transport Layer Security (TLS) binds are supported for Microsoft Active Directory
connections.

Support for Oracle Native Encryption and TLS Authentication for Different Users
Concurrently

In previous releases, Oracle Database prevented the use of both Oracle native encryption
(also called Advanced Networking Option (ANO) encryption) and Transport Layer Security
(TLS) authentication together.

Support for Host Name-Based Partial DN Matching for Matching for Server Certificates
This new support for partial DN matching adds the ability for the client to further verify the
server certificate.

Ability to Audit Only Top-Level SQL Statements
The unified auditing top-level statements feature enables you to audit top level user (or,
direct user) activities in the database but without collecting indirect user activity audit data.

Improved Read Performance for the Unified Audit Trial
The AUDSYS.AUDSUNIFIED system table, which stores the unified audit trail records, has
been redesigned to use partition pruning to improve read performance.

liv

Changes in This Release for Oracle Database Security Guide

e SYSLOG Destination for Common Unified Audit Policies
Available with Oracle Database release 19.9, certain predefined columns of unified audit
records from common unified audit policies can be written to the UNIX SYSLOG
destination.

e PDB_GUID as Audit Record Field Name for SYSLOG and the Windows Event Viewer
The audit record fields for sYSL0G and the Windows Event Viewer now have a new field,
PDB_GUID, to identify the pluggable database associated with a unified audit trail record.

Signature-Based Security for LOB Locators

Starting with this release, you can configure signature-based security for large object (LOB)
locators.

This feature strengthens the security of Oracle Database LOBs, particularly when instances of
LOB data types (CLOB and BLOB) are used in distributed environments.

LOB signature keys can be in both multitenant PDBs or in standalone, non-multitenant
databases. You can enable the encryption of the LOB signature key credentials by executing
the ALTER DATABASE DICTIONARY ENCRYPT CREDENTIALS SQL statement; otherwise, the
credentials are stored in obfuscated format. If you choose to store the LOB signature key in
encrypted format, then the database or PDB must have an open TDE keystore.

Related Topics

e Securing LOBs with LOB Locator Signatures
You can secure large objects (LOB) by regenerating their LOB locator signatures.

Default User Accounts Now Schema Only

Using the schema only account feature from Oracle Database release 18c, most of the Oracle
Database supplied schemas (users) now have their passwords removed to prevent users from
authenticating to these accounts.

This enhancement does not affect the sample schemas. Sample schemas are still installed
with their default passwords.

For the default schemas that are schema only, administrators can still alter these accounts with
passwords if they need to authenticate to the schema, but Oracle recommends changing the
schemas back to a schema-only account afterward.

The benefit of this feature is that administrators no longer have to periodically rotate the
passwords for these Oracle Database-provided schemas. This feature also reduces the
security risk of attackers using default passwords to hack into these accounts.

Related Topics

e Predefined Schema User Accounts Provided by Oracle Database
The Oracle Database installation process creates predefined administrative, non-
administrative, and sample schema user accounts in the database.

e Schema-Only Accounts
You can create schema-only accounts, that is, the schema user has no password.

ORACLE

Changes in This Release for Oracle Database Security Guide

Privilege Analysis Documentation Moved to Oracle Database Security

Guide

The documentation for privilege analysis has moved from Oracle Database Vault
Administrator’s Guide to Oracle Database Security Guide.

See Oracle Database Licensing Information User Manual for privilege analysis licensing
information.

Related Topics

* Performing Privilege Analysis to Identify Privilege Use
Privilege analysis dynamically analyzes the privileges and roles that users use and do not
use.

e Oracle Database Licensing Information User Manual

Ability to Grant or Revoke Administrative Privileges to and from Schema-
Only Accounts

Administrative privileges such as SYSOPER and SYSBACKUP can now be granted to schema-only
(passwordless) accounts.

Existing user accounts (active, rarely accessed, and unused users) that are currently granted
administrative privileges can be altered to be schema-only accounts. This enhancement
prevents administrators from having to manage the passwords of these accounts.

Related Topics

e About Schema-Only Accounts
A schema-only account cannot log in to the database but can proxy in a single session
proxy.

Automatic Support for Both SASL and Non-SASL Active Directory
Connections

ORACLE

Starting with this release, both Simple Authentication and Security Layer (SASL) and Transport
Layer Security (TLS) binds are supported for Microsoft Active Directory connections.

For centrally managed users, the Oracle database will initially try to connect to Active Directory
using SASL bind. If the Active Directory server rejects the SASL bind connection, then the
Oracle database will automatically attempt the connection again without SASL bind but still
secured with TLS.

The Active Directory administrator is responsible for configuring the connection parameters for
Active Directory server, but does not need to configure the database to match this new Active
Directory connection enhancement. The database will automatically adjust from using SASL to
not using SASL bind.

Related Topics

e About Configuring the Oracle Database-Microsoft Active Directory Connection
Before you configure this connection, you must have Microsoft Active Directory installed
and configured.

Ivi

Changes in This Release for Oracle Database Security Guide

Support for Oracle Native Encryption and TLS Authentication for Different
Users Concurrently

In previous releases, Oracle Database prevented the use of both Oracle native encryption
(also called Advanced Networking Option (ANO) encryption) and Transport Layer Security
(TLS) authentication together.

Starting with this release, you can set a new parametetr,

SQLNET.IGNORE ANO ENCRYPTION FOR TCPS, to TRUE to ignore the SQLNET.ENCRYPTION CLIENT
or SQLNET .ENCRYPTION SERVER when there is a conflict between the use of a TCPS client and
either of these two parameters are set to required.

Related Topics

» Enabling Both Oracle Native Encryption and SSL Authentication for Different Users
Concurrently
Depending on the SQLNET.ENCRYPTION CLIENT and SQLNET.ENCRYPTION SERVER settings,
you can configure Oracle Database to allow both Oracle native encryption and SSL
authentication for different users concurrently.

Support for Host Name-Based Partial DN Matching for Matching for Server

Certificates

This new support for partial DN matching adds the ability for the client to further verify the
server certificate.

The earlier ability to perform a full DN match with the server certificate during the Transport
Layer Security (TLS) handshake is still supported. The client supports both full and partial DN
matching. If the server DN matching is enabled, then partial DN matching is the default.

Allowing partial and full DN matching for certificate verification enables more flexibility based
on how the certificates were created.

Related Topics

e About Configuring the Server DN Matching and Using TCP/IP with TLS on the Client
In addition to validating the server certificate's certificate chain, you can perform an extra
check through server DN matching.

Ability to Audit Only Top-Level SQL Statements

ORACLE

The unified auditing top-level statements feature enables you to audit top level user (or, direct
user) activities in the database but without collecting indirect user activity audit data.

You can use this feature to audit only the top-level user directly issued events, without the
overhead of indirect SQL statements. Top-level statements are SQL statements that users
directly issue. These statements can be important for both security and compliance. SQL
statements run from within PL/SQL procedures or functions are not considered top level, so
they may be less relevant for auditing purposes.

Related Topics

e Auditing Only Top-Level Statements
You can audit top-level SQL or PL/SQL statements to limit the volume of audit records.

Ivii

Changes in This Release for Oracle Database Security Guide

Improved Read Performance for the Unified Audit Trial

The AUDSYS.AUDSUNIFIED system table, which stores the unified audit trail records, has been
redesigned to use partition pruning to improve read performance.

This redesign entailed the addition of a new column to the AUDSYS.AUDSUNIFIED table. The
UNIFIED AUDIT TRAIL data dictionary view, which enables you to query the
AUDSYS.AUDSUNIFIED table audit records, now has the EVENT TIMESTAMP UTC column to
correspond with the new AUDSYS.AUDSUNIFIED table column. As part of this enhancement, the
data type of the EVENT TIMESTAMP column in the GVSUNIFIED AUDIT TRAIL view has changed
TIMESTAMP (6).

Oracle recommends that when you query the UNIFIED AUDIT TRAIL view, to include the
EVENT TIMESTAMP UTC column in the WHERE clause to achieve partitioning pruning.

Related Topics

e Best Practices for Querying the UNIFIED_AUDIT_TRAIL Data Dictionary View
To get the best results from querying the UNIFIED AUDIT TRAIL data dictionary view, you
should follow these guidelines.

SYSLOG Destination for Common Unified Audit Policies

Available with Oracle Database release 19.9, certain predefined columns of unified audit
records from common unified audit policies can be written to the UNIX SYSLOG destination.

To enable this feature, you set UNIFIED AUDIT COMMON SYSTEMLOG, a new CDB level init.ora

parameter. This enhancement enables all audit records from common unified audit policies to
be consolidated into a single destination.

This feature is available only on UNIX platforms, not Windows.

Related Topics

e Enabling SYSLOG and Windows Event Viewer Captures for the Unified Audit Trail
You can write a subset of unified audit trail records to the UNIX SYSLOG or to the
Windows Event Viewer.

PDB_GUID as Audit Record Field Name for SYSLOG and the Windows
Event Viewer

ORACLE

The audit record fields for sYSLOG and the Windows Event Viewer now have a new field,
PDB_GUID, to identify the pluggable database associated with a unified audit trail record.

In a multitenant database deployment, the pluggable database that generated a unified audit
trail record must be identified in the audit trail. Starting with this release, the sYsL0oG and
Windows Event Viewer will have a new field, PDB_GUID, to capture this information. The data
type is VARCHAR?2.

Related Topics

e About Writing the Unified Audit Trail Records to SYSLOG or the Windows Event Viewer
With this feature, you can copy some of the key unified audit fields to SYSLOG or the
Windows Event Viewer.

Iviii

Changes in This Release for Oracle Database Security Guide

Updates to Oracle Database Security 19¢

ORACLE

Oracle Database release 19c has several updates from the last update of release 19c.

Authenticating and Authorizing IAM Users to Oracle Autonomous Database on Dedicated
Exadata Infrastructure

Available for Oracle Database release 19.14, users now can authenticate and authorize
IAM users to Oracle Autonomous Database on Dedicated Exadata Infrastructure.

Enhancements for Identity and Access Management Integration with Oracle Database
Environments

Available for Oracle Database release 19.16 are enhancements to the integration of
Identity and Access Management (IAM) users with Oracle Database Environments.

Identity and Access Management Integration with Oracle Autonomous Cloud Databases
Available for Oracle Database release 19.13, Identity and Access Management (IAM)
users can log in to an Oracle Autonomous Database on Shared Exadata Infrastructure
using either password or token-based authentication.

Database Integration Support for Non-Default Domains for Identity and Access
Management with Identity Domains

Starting with this release, Oracle Database supports non-default domains in tenancies with
Identity and Access Management (IAM) with Identity Domains.

Microsoft Azure Active Directory Integration with Additional Oracle Database Environments
Including On-Premises

Available for Oracle Database release 19.16, Microsoft Azure Active Directory (Azure AD)
users can log in to additional Oracle Database environments with their Azure AD OAuth?2
access token.

Microsoft Azure Active Directory Integration with Oracle Cloud Infrastructure Autonomous
Databases

Available for Oracle Autonomous Database in June, 2022, Microsoft Azure Active Directory
(Azure AD) users can log in to Oracle Cloud Infrastructure (OCI) Autonomous Database
with their Azure AD OAuth2 access token.

Gradual Database Password Rollover for Applications
Available for Oracle Database release 19.12, an application can change its database
passwords without an administrator having to schedule downtime.

Ability to Use Multiple Kerberos Principals with a Single Database Client

Available for Oracle Database release 19.10, when you configure Kerberos authentication
for an Oracle Database client, you can specify multiple Kerberos principals with a single
Oracle Database client.

Updated Support for Micro Edition Suite (MES) for FIPS 140.2
Available for Oracle Database release 19.10, Oracle Database supports Micro Edition
Suite (MES) version 4.5 for FIPS 140.2.

Support for DBMS_CRYPTO Asymmetric Key Operations

Available for Oracle Database release 19.9, the DBMS CRYPTO PL/SQL package supports
asymmetric key operations, in addition to the existing support for symmetric key
operations.

SYSLOG Destination for Common Unified Audit Policies

Available with Oracle Database release 19.9, certain predefined columns of unified audit
records from common unified audit policies can be written to the UNIX SYSLOG
destination.

lix

Changes in This Release for Oracle Database Security Guide

Security Update for Native Encryption

Oracle provides a patch that you can download to address necessary security
enhancements that affect native network encryption environments in Oracle Database
release 11.2 and later.

Ability to Configure Transport Layer Security Connections without Client Wallets

Available in Oracle Database release 19.14, an Oracle Database client will not be required
to provide a wallet to hold well-known CA root certificates if they are available elsewhere in
the local system.

SSL_ALLOW_WEAK_DN_MATCH Parameter to Control the Behavior of
SSL_SERVER_DN_MATCH

Available with Oracle Database release 19.23, you can use the SSL ALLOW WEAK DN MATCH
parameter to control how SSL_SERVER DN MATCH allows the service name for partial
distinguished name matching and to only check the database server certificate.

Authenticating and Authorizing IAM Users to Oracle Autonomous Database
on Dedicated Exadata Infrastructure

Available for Oracle Database release 19.14, users now can authenticate and authorize IAM
users to Oracle Autonomous Database on Dedicated Exadata Infrastructure.

Additional enhancements are as follows:

Applications can now connect to an Autonomous Database instance by using end-user,
instance, and resource principals.

IAM users can now proxy to an Autonomous Database by using a database user schema.

Database links are supported for IAM connections.

Related Topics

Authenticating and Authorizing IAM Users for Oracle DBaaS Databases
Identity and Access Management (IAM) users can be configured to connect to an Oracle
Database as a service (Oracle DBaaS) instance.

Enhancements for Identity and Access Management Integration with Oracle
Database Environments

Available for Oracle Database release 19.16 are enhancements to the integration of Identity
and Access Management (IAM) users with Oracle Database Environments.

ORACLE

Additional Oracle Database environments: The full list of supported Oracle Database
environments is as follows:

— Oracle Autonomous Database on Dedicated Exadata Infrastructure
— Oracle Autonomous Database on Shared Exadata Infrastructure
— Oracle Base Database Service

Ability to use the IAM user name and password to retrieve an IAM token: Retrieving a
token using an IAM user name and password or secure external password store (SEPS) is
more secure than using the password verifier method of database access.

Changes in This Release for Oracle Database Security Guide

Related Topics

* Authenticating and Authorizing IAM Users for Oracle DBaaS Databases
Identity and Access Management (IAM) users can be configured to connect to an Oracle
Database as a service (Oracle DBaaS) instance.

Identity and Access Management Integration with Oracle Autonomous
Cloud Databases

Available for Oracle Database release 19.13, Identity and Access Management (IAM) users
can log in to an Oracle Autonomous Database on Shared Exadata Infrastructure using either
password or token-based authentication.

An |IAM ADMIN user can configure both the authentication and authorization of IAM users and
IAM groups. The IAM user can log in to the Oracle Autonomous Database using tools such as
SQL*Plus or SQLcl.

This enhancement provides the security advantages of both IAM and Oracle Database. For
example, the Oracle Database gradual password rollover feature can be used in this
configuration and update the application passwords without downtime.

Related Topics

* Authenticating and Authorizing IAM Users for Oracle DBaaS Databases
Identity and Access Management (IAM) users can be configured to connect to an Oracle
Database as a service (Oracle DBaaS) instance.

Database Integration Support for Non-Default Domains for Identity and
Access Management with Identity Domains

Starting with this release, Oracle Database supports non-default domains in tenancies with
Identity and Access Management (IAM) with Identity Domains.

The following releases are supported:

¢ Oracle Autonomous Database on Shared Exadata Infrastructure
* Oracle Autonomous Database on Dedicated Exadata Infrastructure

This update allows IAM users in non-default IAM domains to access the database with IAM
database password verifiers or IAM access tokens. IAM users in default domains are already
supported.

In previous releases, the IAM integration only worked with users and groups from the default
domain, and did not support users and groups from custom, non-default domains.

Related Topics

e Authenticating and Authorizing IAM Users for Oracle DBaaS Databases
Identity and Access Management (IAM) users can be configured to connect to an Oracle
Database as a service (Oracle DBaaS) instance.

ORACLE IXi

Changes in This Release for Oracle Database Security Guide

Microsoft Azure Active Directory Integration with Additional Oracle Database
Environments Including On-Premises

Available for Oracle Database release 19.16, Microsoft Azure Active Directory (Azure AD)
users can log in to additional Oracle Database environments with their Azure AD OAuth?2
access token.

The previous release supported Azure AD integration support for Oracle Cloud Infrastructure
(OCI) Autonomous Databases. This release has expanded Azure AD integration support to on-
premises Oracle Database release 19.16 and later, but not for Oracle Database 21c.

You can use Azure AD ORuth2 tokens to access the database. Azure AD users can access the

database directly using their Azure AD token, and applications can use their service tokens to
access the database.

Related Topics

e Authenticating and Authorizing Microsoft Azure Active Directory Users for Oracle
Databases
An Oracle Database can be configured for Microsoft Azure AD users to connect using
single-sign on.

Microsoft Azure Active Directory Integration with Oracle Cloud Infrastructure
Autonomous Databases

Available for Oracle Autonomous Database in June, 2022, Microsoft Azure Active Directory
(Azure AD) users can log in to Oracle Cloud Infrastructure (OCI) Autonomous Database with
their Azure AD OAuth2 access token.

OCI Oracle Autonomous Database now can accept Azure AD OAuth?2 tokens to access the
database. Azure AD users can access the database directly using their Azure AD token, and
applications can use their service tokens to access the database.

You can use Azure AD 0Auth? tokens to access the database. Azure AD users can access the
database directly using their Azure AD token, and applications can use their service tokens to
access the database.

Related Topics

e Authenticating and Authorizing Microsoft Azure Active Directory Users for Oracle
Databases
An Oracle Database can be configured for Microsoft Azure AD users to connect using
single-sign on.

Gradual Database Password Rollover for Applications

ORACLE

Available for Oracle Database release 19.12, an application can change its database
passwords without an administrator having to schedule downtime.

To accomplish this, a database administrator can associate a profile having a non-zero limit for
the PASSWORD ROLLOVER TIME password profile parameter, new with this release, with an
application schema. This allows the database password of the application user to be altered
while allowing the older password to remain valid for the time specified by the

PASSWORD ROLLOVER TIME limit. During the rollover period of time, the application instance can

Ixii

Changes in This Release for Oracle Database Security Guide

use either the old password or the new password to connect to the database server. When the
rollover time expires, only the new password is allowed.

Before this enhancement, an administrator normally took the application down when the
application database password was being rotated. This is because the password update
requires changes on both the database and the application side. With the gradual database
password rollover enhancement, the application can continue to use the older password until
the new password is configured in the application.

In addition to the new clause PASSWORD ROLLOVER TIME in the CREATE PROFILE and ALTER
PROFILE statements, the ALTER USER statement has a new clause, EXPIRE PASSWORD ROLLOVER
PERIOD. The ACCOUNT STATUS column of the DBA USERS and USER_USERS data dictionary views
have several new statuses indicating values to indicate rollover status.

Related Topics

e Managing Gradual Database Password Rollover for Applications
A gradual database password rollover enables the database password of an application to
be updated while avoiding application downtime while the new password is propagated to
application clients, by allowing the older password to remain valid for a specified period.

Ability to Use Multiple Kerberos Principals with a Single Database Client

Available for Oracle Database release 19.10, when you configure Kerberos authentication for
an Oracle Database client, you can specify multiple Kerberos principals with a single Oracle
Database client.

To enable this functionality, you will need to create a separate credential cache for each user in
the client and then use the connect string to specify the user.

In previous releases, you were restricted to one Kerberos principal for each Oracle Database
client.

Related Topics

e Step 1C: Optionally, Specify Additional Kerberos Principals Using thsnames.ora
You can configure additional Kerberos principal users to connect from an Oracle Database
client.

e Oracle Database Net Services Reference

Updated Support for Micro Edition Suite (MES) for FIPS 140.2

ORACLE

Available for Oracle Database release 19.10, Oracle Database supports Micro Edition Suite
(MES) version 4.5 for FIPS 140.2.

The Micro Edition Suite (MES) version 4.5 updates include four new CVEs in the RSA BSAFE
MES library, support for the rules that FIPS 140.2 requires, and access to the updated NZ/ZT
library from the Crypto Foundation.

This enhancement enables the Oracle Database FIPS 140.2 configuration to benefit from new
features and security improvements available from the latest RSA BSAFE MES library.

Related Topics

e Configuring FIPS 140-2 for Transparent Data Encryption and DBMS_CRYPTO
The DBFIPS 140 initialization parameter configures FIPS mode.

Iiii

Changes in This Release for Oracle Database Security Guide

Support for DBMS_CRYPTO Asymmetric Key Operations

Available for Oracle Database release 19.9, the DBMS CRYPTO PL/SQL package supports
asymmetric key operations, in addition to the existing support for symmetric key operations.

To implement the support for asymmetric key operations, the following procedures have been
added to the DBMS CRYPTO package:

e PKENCRYPT
e PKDECRYPT
e SIGN

e VERIFY

Related Topics

* Asymmetric Key Operations with the DBMS_CRYPTO Package
The DBMS_CRYPTO package provides four functions that enable you to perform asymmetric
key operations for encryption, decryption, signing, and verification.

e Oracle Database PL/SQL Packages and Types Reference

SYSLOG Destination for Common Unified Audit Policies

Available with Oracle Database release 19.9, certain predefined columns of unified audit
records from common unified audit policies can be written to the UNIX SYSLOG destination.

To enable this feature, you set UNIFIED AUDIT COMMON SYSTEMLOG, a new CDB level init.ora
parameter. This enhancement enables all audit records from common unified audit policies to
be consolidated into a single destination.

This feature is available only on UNIX platforms, not Windows.

Related Topics

e Enabling SYSLOG and Windows Event Viewer Captures for the Unified Audit Trail
You can write a subset of unified audit trail records to the UNIX SYSLOG or to the
Windows Event Viewer.

Security Update for Native Encryption

ORACLE

Oracle provides a patch that you can download to address necessary security enhancements
that affect native network encryption environments in Oracle Database release 11.2 and later.

This patch is available in My Oracle Support note 2118136.2.

The supported algorithms that have been improved are as follows:

e Encryption algorithms: AES128, AES192 and AES256

e Checksumming algorithms: SHA1, SHA256, SHA384, and SHA512

Algorithms that are deprecated and should not be used are as follows:

- Encryption algorithms: DES, DES40, 3DES112, 3DES168, RC4_40, RC4_56, RC4_128,
and RC4_256

e Checksumming algorithm: MD5

IXiv

https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&id=2118136.2

Changes in This Release for Oracle Database Security Guide

If your site requires the use of network native encryption, then you must download the patch
that is described in My Oracle Support note 2118136.2. To enable a smooth transition for your
Oracle Database installation, this patch provides two parameters that enable you to disable the
weaker algorithms and start using the stronger algorithms. You will need to install this patch on
both servers and clients in your Oracle Database installation.

An alternative to network native encryption is Transport Layer Security (TLS), which provides
protection against person-in-the-middle attacks.

Related Topics

¢ Choosing Between Native Network Encryption and Transport Layer Security
Oracle offers two ways to encrypt data over the network, native network encryption and
Transport Layer Security (TLS).

« Improving Native Network Encryption Security
Oracle provides a patch that will strengthen native network encryption security for both
Oracle Database servers and clients.

Ability to Configure Transport Layer Security Connections without Client

Wallets

Available in Oracle Database release 19.14, an Oracle Database client will not be required to
provide a wallet to hold well-known CA root certificates if they are available elsewhere in the
local system.

Transport Layer Security (TLS) encryption requires either one-way authentication or two-way
authentication. In one-way authentication (the default), which is commonly used for HTTPS
connections, the server certificate is verified using well-known root CA certificates that are
already available in local systems. Starting in this release, you will no longer need to install and
configure a wallet to hold a well-known root certificate if it is already available in the local
system.

This enhancement greatly simplifies the Oracle Database client installation and the use of TLS
protocol to encrypt Oracle Database client-server communications.

Related Topics

* Transport Layer Security Connection without a Client Wallet
A Transport Layer Security (TLS) connection that uses a common root certificate for the
database server does not require a client wallet.

SSL_ALLOW_WEAK DN_MATCH Parameter to Control the Behavior of
SSL_SERVER_DN_MATCH

ORACLE

Available with Oracle Database release 19.23, you can use the SSL_ALLOW WEAK DN MATCH
parameter to control how SSL_SERVER DN MATCH allows the service name for partial
distinguished name matching and to only check the database server certificate.

In this release, the behavior of the SSL_SERVER DN MATCH parameter has changed. Previously,
only the database server certificate was checked for DN matching. With this release, the
listener and server certificates are both checked. Also, the SERVICE NAME setting in the connect
string is not used to check during a partial DN match. The HOSTNAME setting can still be used for
partial DN matching with the certificate DN and subject alternative name (SAN), on both the
listener and server certificates. When set to TRUE, the SSL_ALLOW WEAK DN MATCH parameter
reverts SSL_SERVER DN MATCH to the older, pre-release 19c¢ behavior and enables DN matching

IXv

https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&id=2118136.2

ORACLE

Changes in This Release for Oracle Database Security Guide

to only check the database server certificate (but not the listener) and enable the service name
to be used for partial DN matching.

DN matching with both the listener and server certificates provides better security to ensure
that the client is connecting to the correct database server. The service name setting is also
removed from SSL_SERVER DN MATCH for better security and partial DN matching can still be
performed with the host name connect string parameter with the certificate common names
(CN) and subiject alternative name (SAN) matching.

The SSL_ALLOW WEAK DN MATCH, though new to this release, is marked as deprecated because
it is considered a temporary solution.

Related Topics

e Use of the SSL_ALLOW_WEAK_ DN_MATCH Parameter to Control
SSL_SERVER_DN_MATCH
The SSL_ALLOW WEAK DN MATCH parameter controls how the SSIL. SERVER DN MATCH
parameter allows the service name for partial distinguished name matching and check the
database server certificate.

Ixvi

Introduction to Oracle Database Security

Oracle Database provides a rich set of default security features to manage user accounts,
authentication, privileges, application security, encryption, network traffic, and auditing.

About Oracle Database Security
Use Oracle Database's security features to reduce risk and protect data from theft,
destruction, or misuse.

Additional Oracle Database Security Products
In addition to the security resources that are available in a default database installation,
Oracle Database provides several other database security products.

1.1 About Oracle Database Security

Use Oracle Database's security features to reduce risk and protect data from theft, destruction,
or misuse.

A few popular areas to focus security efforts on include:

ORACLE

User accounts. When you create user accounts, you can secure them in a variety of
ways. You can also create password profiles to better secure password policies for your
site. Managing Security for Oracle Database Users, describes how to manage user
accounts.

Authentication methods. Oracle Database provides several ways to configure
authentication for users and database administrators. For example, you can authenticate
users on the database level, from the operating system, and on the network. Configuring
Authentication, describes how authentication in Oracle Database works. See also
Configuring Centrally Managed Users with Microsoft Active Directory.

Privileges and roles. You can use privileges and roles to restrict user access to data. The
following chapters describe how to manage privileges and roles:

— Configuring Privilege and Role Authorization

— Performing Privilege Analysis to Identify Privilege Use

— Managing Security for Definer's Rights and Invoker's Rights

— Managing Fine-Grained Access in PL/SQL Packages and Types

— Managing Security for a Multitenant Environment in Enterprise Manager

Application security. The first step to creating a database application is to ensure that it is
properly secure. Managing Security for Application Developers, discusses how to
incorporate application security into your application security policies.

User session information using application context. An application context is a name-
value pair that holds the session information. You can retrieve session information about a
user, such as the user name or terminal, and restrict database and application access for

that user based on this information. Using Application Contexts

to Retrieve User Information, describes how to use application contexts.

Database access on the row and column level using Virtual Private Database. A
Virtual Private Database policy dynamically imbeds a WHERE predicate into SQL statements

1-1

Chapter 1
Additional Oracle Database Security Products

the user issues. Using Oracle Virtual Private Database to Control Data Access, describes
how to create and manage Virtual Private Database policies.

« Classify and protect data in different categories. You can find all table columns in a
database that hold sensitive data (such as credit card or Social Security numbers), classify
this data, and then create a policy that protects this data as a whole for a given class.
Using Transparent Sensitive Data Protection , explains how to create Transparent
Sensitive Data Protection policies.

* Network data encryption. Manually Encrypting Data, explains how to use the
DBMS CRYPTO PL/SQL package to encrypt data as it travels on the network to prevent
unauthorized access to that data. You can configure native Oracle Net Services data
encryption and integrity for both servers and clients, which are described in Configuring
Oracle Database Native Network Encryption and Data Integrity.

* Thin JDBC client network configuration. You can configure thin Java Database
Connectivity (JDBC) clients to securely connect to Oracle databases. Configuring the Thin
JDBC Client Network, provides detailed information.

e Strong authentication. You can configure your databases to use strong authentication
with Oracle authentication adapters that support various third-party authentication services,
including SSL with digital certificates. Oracle Database provides the following strong
authentication support:

— Centralized authentication and single sign-on.

— Kerberos

— Remote Authentication Dial-in User Service (RADIUS)
— Transport Layer Security (TLS) (formerly called Secure Sockets Layer)
The following chapters cover strong authentication:

— Introduction to Strong Authentication

— Strong Authentication Administration Tools

— Configuring Kerberos Authentication

— Configuring Transport Layer Security Authentication

— Configuring RADIUS Authentication

— Customizing the Use of Strong Authentication

* Auditing database activities. You can audit database activities in general terms, such as
auditing all SQL statements, SQL privileges, schema objects, and network activity. Or, you
can audit in a granular manner, such as when the IP addresses from outside the corporate
network is being used. This chapter also explains how to purge the database audit trail.
The following chapters describe how to configure and administer database auditing.

— Introduction to Auditing
— Configuring Audit Policies
— Administering the Audit Trail

In addition, Keeping Your Oracle Database Secure, provides guidelines that you should follow
when you secure your Oracle Database installation.

1.2 Additional Oracle Database Security Products

In addition to the security resources that are available in a default database installation, Oracle
Database provides several other database security products.

ORACLE 1o

ORACLE

Chapter 1
Additional Oracle Database Security Products

These products are as follows:

Oracle Advanced Security enables you to protect sensitive data by using Transparent
Data Encryption and Oracle Data Redaction.

Oracle Label Security applies classification labels to data, allowing you to filter user
access to data at the row level.

Oracle Database Vault provides fine-grained access control to your sensitive data,
including protecting data from privileged users. For example, you can restrict database
administrators from having access to employee information such as salaries.

Oracle Data Safe enables you to analyze the sensitivity and risks of data in your Oracle
databases, and based on these findings, create policies that mask sensitive data, create
and monitor security controls, assess user security, and monitor user activity.

Oracle Enterprise User Security enables you to manage user security at the enterprise
level.

Oracle Enterprise Manager Data Masking and Subsetting Pack can irreversibly replace
the original sensitive data with fictitious data so that production data can be shared safely
with IT developers or offshore business partners.

Oracle Audit Vault and Database Firewall collects database audit data from sources
such as Oracle Database audit trail tables, database operating system audit files, and
database redo logs. Using Oracle Audit Vault and Database Firewall, you can create alerts
on suspicious activities, and create reports on the history of privileged user changes,
schema modifications, and even data-level access.

Oracle Key Vault enables you to accelerate security and encryption deployments by
centrally managing encryption keys, Oracle wallets, Java keystores, and credential files. It
is optimized for Oracle wallets, Java keystores, and Oracle Advanced Security Transparent
Data Encryption (TDE) master keys. Oracle Key Vault supports the OASIS KMIP standard.
The full-stack, security-hardened software appliance uses Oracle Linux and Oracle
Database technology for security, availability, and scalability, and can be deployed on your
choice of compatible hardware.

In addition to these products, you can find the latest information about Oracle Database
security, such as new products and important information about security patches and alerts, by
visiting the Security Technology Center on Oracle Technology Network at

http://www.oracle.com/technetwork/topics/security/whatsnew/index.html

1-3

http://www.oracle.com/technetwork/topics/security/whatsnew/index.html

Managing User Authentication
and Authorization

ORACLE

Part | describes how to manage user authentication and authorization.

Managing Security for Oracle Database Users
You can manage the security for Oracle Database users in many ways, such as enforcing
restrictions on the way that passwords are created.

Configuring Authentication
Authentication means to verify the identity of users or other entities that connect to the
database.

Configuring Privilege and Role Authorization
Privilege and role authorization controls the permissions that users have to perform day-to-
day tasks.

Performing Privilege Analysis to Identify Privilege Use
Privilege analysis dynamically analyzes the privileges and roles that users use and do not
use.

Configuring Centrally Managed Users with Microsoft Active Directory
Oracle Database can authenticate and authorize Microsoft Active Directory users with the
database directly without intermediate directories or Oracle Enterprise User Security.

Authenticating and Authorizing IAM Users for Oracle DBaaS Databases
Identity and Access Management (IAM) users can be configured to connect to an Oracle
Database as a service (Oracle DBaaS) instance.

Authenticating and Authorizing Microsoft Azure Active Directory Users for Oracle
Databases

An Oracle Database can be configured for Microsoft Azure AD users to connect using
single-sign on.

Managing Security for Definer's Rights and Invoker's Rights
Invoker’s rights and definer’s rights have several security advantages when used to control
access to privileges during user-defined procedure executions.

Managing Fine-Grained Access in PL/SQL Packages and Types
Oracle Database provides PL/SQL packages and types for fine-grained access to control
access to external network services and wallets.

Managing Security for a Multitenant Environment in Enterprise Manager
You can manage common and local users and roles for a multitenant environment by using
Oracle Enterprise Manager.

Managing Security for Oracle Database Users

You can manage the security for Oracle Database users in many ways, such as enforcing
restrictions on the way that passwords are created.

e About User Security
You can secure users accounts through strong passwords and by specifying special limits
for the users.

e Creating User Accounts
A user account can have restrictions such as profiles, a default role, and tablespace
restrictions.

e Altering User Accounts
The ALTER USER statement modifies user accounts, such their default tablespace or profile,
or changing a user's password.

e Configuring User Resource Limits
A resource limit defines the amount of system resources that are available for a user.

e Dropping User Accounts
You can drop user accounts if the user is not in a session, and if the user has objects in the
user’s schema.

* Predefined Schema User Accounts Provided by Oracle Database
The Oracle Database installation process creates predefined administrative, non-
administrative, and sample schema user accounts in the database.

« Database User and Profile Data Dictionary Views
Oracle Database provides a set of data dictionary views that provide information about the
settings that you used to create users and profiles.

2.1 About User Security

ORACLE

You can secure users accounts through strong passwords and by specifying special limits for
the users.

Each Oracle database has a list of valid database users. To access a database, a user must
run a database application, and connect to the database instance using a valid user name
defined in the database.

When you create user accounts, you can specify limits to the user account. You can also set
limits on the amount of various system resources available to each user as part of the security
domain of that user. Oracle Database provides a set of database views that you can query to
find information such as resource and session information.

This section also describes profiles. Profiles provide a way to configure the resources for the
database user. A profile is collection of attributes that apply to a user. It enables a single point
of reference for any of multiple users that share those exact attributes.

Oracle Database provides a set of predefined administrative, non-administrative, and sample
schema accounts. The Oracle Database installation guides provide a listing of these accounts.
To find the status of these accounts, query the USERNAME and ACCOUNT STATUS columns of the
DBA_USERS data dictionary view.

2-1

Chapter 2
Creating User Accounts

Related Topics

Configuring Privilege and Role Authorization
Privilege and role authorization controls the permissions that users have to perform day-to-
day tasks.

2.2 Creating User Accounts

A user account can have restrictions such as profiles, a default role, and tablespace
restrictions.

About Common Users and Local Users
In a multitenant environment, CDB common users and application common have access to
their respective containers, and local users are specific to a PDB.

Who Can Create User Accounts?
Users who has been granted the CREATE USER system privilege can create user accounts,
including user accounts to be used as proxy users.

Creating a New User Account That Has Minimum Database Privileges
When you create a new user account, you should enable this user to access the database.

Restrictions on Creating the User Name for a New Account
When you specify a name for a user account, be aware of restrictions such as naming
conventions and whether the name is unique.

Assignment of User Passwords
The IDENTIFIED BY clause of the CREATE USER statement assigns the user a password.

Default Tablespace for the User
A default tablespace stores objects that users create.

Tablespace Quotas for a User
The tablespace quota defines how much space to provide for a user's tablespace.

Temporary Tablespaces for the User
A temporary tablespace contains transient data that persists only for the duration of a user
session.

Profiles for the User
A profile is a set of limits, defined by attributes, on database resources and password
access to the database.

Creation of a Common User or a Local User
The CREATE USER SQL statement can be used to create both common (CDB and
application) users and local users.

Creating a Default Role for the User
A default role is automatically enabled for a user when the user creates a session.

2.2.1 About Common Users and Local Users

ORACLE

In a multitenant environment, CDB common users and application common have access to
their respective containers, and local users are specific to a PDB.

About Common Users
Oracle provides two types of common users: CDB common users and application common
users.

2-2

Chapter 2
Creating User Accounts

e How Plugging in PDBs Affects CDB Common Users
Plugging a non-CDB into a CDB as a PDB affects both Oracle-supplied administrative and
user-created accounts and privileges.

e About Local Users
In a multitenant environment, a local user is a database user that exists only in a single
PDB.

2.2.1.1 About Common Users

ORACLE

Oracle provides two types of common users: CDB common users and application common
users.

A CDB common user is a database user whose single identity and password are known in the
CDB root and in every existing and future pluggable database (PDB), including any application
roots. All Oracle-supplied administrative user accounts, such as sys and SYSTEM, are CDB
common users and can navigate across the system container. CDB common users can have
different privileges in different PDBs. For example, the user sYSTEM can switch between PDBs
and use the privileges that are granted to SYSTEM in the current PDB. However, if one of the
PDBs is Oracle Database Vault-enabled, then the Database Vault restrictions, such as SYSTEM
not being allowed to create user accounts, apply to sYSTEM when this user is connected to that
PDB. Oracle does not recommend that you change the privileges of the Oracle-supplied CDB
common users.

A CDB common user can perform all tasks that an application common user can perform,
provided that appropriate privileges have been granted to that user.

An application common user is a user account that is created in an application root, and is
common only within this application container. In other words, the application common user
does not have access to the entire CDB environment like CDB common users. An application
common user is responsible for activities such as creating (which includes plugging), opening,
closing, unplugging, and dropping application PDBs. This user can create application common
objects in the application root. You can create an application common user only when you are
connected to an application root. The ability for users to access the application common
objects is subject to the same privileges as local and CDB common objects. For example, a
local user in a PDB that is associated with an application root has access to only the objects in
that PDB for which the user has privileges. In the application root itself, you can commonly
grant a privilege on a CDB common object that will apply across the application container.

Both of these types of common users are responsible for managing the common objects in
their respective roots. If the CDB common user or the application common user has the
appropriate privileges, then this user can perform operations in PDBs as well, such as granting
privileges to local users. These users can also locally grant common users different privileges
in each container.

Both CDB and application common users can perform the following activities:

* Granting privileges to common users or common roles. That is, a CDB common user can
grant a privilege to a common user or role, and the scope within which this privilege
applies is determined by the container (CDB root, application root, or PDB) in which the
statement is issued and whether the privilege is granted commonly (in the CDB root or the
application root). A CDB common user connected to an application root can commonly
grant a privilege on a CDB common object, and that privilege will apply across the
application container.

The following diagram illustrates the access hierarchy with CDB common users,
application common users, and local users:

2-3

Chapter 2
Creating User Accounts

CcDB

Root (CDB$ROOT

m

=]
LI
Application Root

-] ij

s

Appllcatlon PDBs

CDB common users are defined in the CDB root and may be able to access all PDBs
within the CDB, including application roots and their application PDBs. Application
common users are defined in the application root and have access to the PDBs that belong
to the application container. Local users in either the CDB PDBs or the application PDBs
have access only to the PDBs in which the local user resides.

e The state of a PDB can be altered by a suitably privileged user who can issue the ALTER
PLUGGABLE DATABASE statement from the CDB root, from an application root (if a PDB is an
application PDB that belongs to the application container), or from a PDB itself.

One difference between CDB common users and application common users is that only a CDB
common user can run an ALTER DATABASE statement that specifies the recovery clauses that
apply to the entire CDB.

¢ See Also:

e About Creating Common User Accounts

* About Commonly and Locally Granted Privileges for more information about how
privileges work in with PDBs

* Oracle Database Concepts for more conceptual information about CDB common
users and application common users

2.2.1.2 How Plugging in PDBs Affects CDB Common Users

ORACLE

Plugging a non-CDB into a CDB as a PDB affects both Oracle-supplied administrative and
user-created accounts and privileges.

This affects the passwords of these CDB common user accounts, and privileges of all accounts
in the newly plugged-in database.

The following actions take place:

2-4

Chapter 2
Creating User Accounts

The Oracle-supplied administrative accounts are merged with the existing common user
accounts.

User-created accounts are merged with the existing user-created common user accounts.

The passwords of the existing CDB common user accounts take precedence over the
passwords for the accounts from the non-CDB.

If you had modified the privileges of a user account in its original non-CDB, then these
privileges are saved, but they only apply to the PDB that was created when the PDB was
plugged into the CDB, as locally granted privileges. For example, suppose you had
granted the user SYSTEM a role called hr_mgr in the non-CDB db1l. After the dbl database
has been added to a CDB, then SYSTEM can only use the hr_mgr role in the dbl PDB, and
not in any other PDBs.

The following two scenarios are possible when you plug a PDB (for example, pdb 1) from one
CDB (cdb_1) to a another CDB (cdb_2):

cdb 1 has the common user c##cdbl user. cdb 2 does not have this user.

c##cdbl user remains in PDB 1 but this account is locked. To resurrect this account, you
must close pdb_1, recreate common user c##cdbl user in the root of cdb_2, and then re-
open pdb 1.

cdb_1 and cdb_2 both have common user c##common_user.

Both c##common user accounts are merged. c##common user retains its password in
cdb_2. Any privileges assigned to it in cdb 2 but not in cdo_1 are retained locally in pdb 1.

2.2.1.3 About Local Users

In a multitenant environment, a local user is a database user that exists only in a single PDB.

ORACLE

Local users can have administrative privileges, but these privileges apply only in the PDB in
which the local user account was created. A local user account has the following
characteristics, which distinguishes it from common user accounts:

Local user accounts cannot create common user accounts or commonly grant them
privileges. A common user with the appropriate privileges can create and modify common
or local user accounts and grant and revoke privileges, commonly or locally. A local user
can create and modify local user accounts or locally grant privileges to common or local
users in a given PDB.

You can grant local user accounts common roles. However, the privileges associated with
the common role only apply to the local user's PDB.

The local user account must be unique only within its PDB.

With the appropriate privileges, a local user can access objects in a common user's
schema. For example, a local user can access a table within the schema of a common
user if the common user has granted the local user privileges to access it.

You can editions-enable a local user account but not a common user account.

Related Topics

About Creating Local User Accounts
Be aware of local user account restrictions such as where they can be created, nhaming
conventions, and objects stored in their schemas.

Oracle Database Concepts

2-5

Chapter 2
Creating User Accounts

2.2.2 Who Can Create User Accounts?

Users who has been granted the CREATE USER system privilege can create user accounts,
including user accounts to be used as proxy users.

Because the CREATE USER system privilege is a powerful privilege, a database administrator or
security administrator is usually the only user who has this system privilege.

If you want to create users who themselves have the privilege to create users, then include the
WITH ADMIN OPTION clause in the GRANT statement. For example:

GRANT CREATE USER TO lbrown WITH ADMIN OPTION;

As with all user accounts to whom you grant privileges, grant these privileges to trusted users
only.

In a multitenant environment, you must have the commonly granted CREATE USER System
privilege to create common user accounts. To create local user accounts, you must have a
commonly granted CREATE USER privilege or a locally granted CREATE USER privilege in the PDB
in which the local user account will be created.

Note:

As a security administrator, you should create your own roles and assign only those
privileges that are needed. For example, many users formerly granted the CONNECT
privilege did not need the additional privileges CONNECT used to provide. Instead, only
CREATE SESSION was actually needed. By default, the SET CONTAINER privilege is
granted to CONNECT role.

Creating organization-specific roles gives an organization detailed control of the
privileges it assigns, and protects it in case Oracle Database changes the roles that it
defines in future releases.

Related Topics

e Configuring Privilege and Role Authorization
Privilege and role authorization controls the permissions that users have to perform day-to-
day tasks.

2.2.3 Creating a New User Account That Has Minimum Database Privileges

ORACLE

When you create a new user account, you should enable this user to access the database.
1. Use the CREATE USER Statement to create a new user account.

For example:

CREATE USER jward
IDENTIFIED BY password
DEFAULT TABLESPACE example
QUOTA 10M ON example
TEMPORARY TABLESPACE temp
QUOTA 5M ON system
PASSWORD EXPIRE;

2-6

Chapter 2
Creating User Accounts

Follow the guidelines in Minimum Requirements for Passwords to replace password with a
password that is secure.

This example creates a local user account and specifies the user password, default
tablespace, temporary tablespace where temporary segments are created, tablespace
guotas, and profile.

At minimum, grant the user the CREATE SESSION privilege so that the user can access the
database instance.

GRANT CREATE SESSION TO jward;
A newly created user cannot connect to the database until he or she has the CREATE

SESSION privilege. If the user must access Oracle Enterprise Manager, then you should
also grant the user the SELECT ANY DICTIONARY privilege.

Related Topics

Restrictions on Creating the User Name for a New Account
When you specify a name for a user account, be aware of restrictions such as naming
conventions and whether the name is unique.

Assignment of User Passwords
The IDENTIFIED BY clause of the CREATE USER statement assigns the user a password.

Default Tablespace for the User
A default tablespace stores objects that users create.

Tablespace Quotas for a User
The tablespace quota defines how much space to provide for a user's tablespace.

Temporary Tablespaces for the User
A temporary tablespace contains transient data that persists only for the duration of a user
session.

Profiles for the User
A profile is a set of limits, defined by attributes, on database resources and password
access to the database.

Creation of a Common User or a Local User
The CREATE USER SQL statement can be used to create both common (CDB and
application) users and local users.

2.2.4 Restrictions on Creating the User Name for a New Account

When you specify a name for a user account, be aware of restrictions such as naming
conventions and whether the name is unique.

ORACLE

Uniqueness of User Names
Each user has an associated schema; within a schema, each schema object must have a
unigue name.

User Names in a Multitenant Environment
Within each PDB, a user name must be unique with respect to other user names and roles
in that PDB.

Case Sensitivity for User Names
How you create a user name controls the case sensitivity in which the user name is stored
in the database.

2-7

Chapter 2
Creating User Accounts

2.2.4.1 Uniqueness of User Names

Each user has an associated schema; within a schema, each schema object must have a
unigue name.

Oracle Database will prevent you from creating a user name if it is already exists. You can
check existing names by querying the USERNAME column of the DBA USERS data dictionary view.

2.2.4.2 User Names in a Multitenant Environment

Within each PDB, a user name must be unique with respect to other user names and roles in
that PDB.

Note the following restrictions:

e For common user names, names for user-created common users must begin with a
common user prefix. By default, for CDB common users, this prefix is C##. For application
common users, this prefix is an empty string. This means that there are no restrictions on
the name that can be assigned to an application common user other than that it cannot
start with the prefix reserved for CDB common users. For example, you could name a CDB
common user c##hr_admin and an application common user hr_admin.

The COMMON USER_PREFIX parameter in CDBSROOT defines the common user prefix. You can
change this setting, but do so only with great care.

e For local user names, the name cannot start with C## (or c##)

 Auser and a role cannot have the same name.

2.2.4.3 Case Sensitivity for User Names

ORACLE

How you create a user name controls the case sensitivity in which the user name is stored in
the database.

For example:

CREATE USER jward
IDENTIFIED BY password
DEFAULT TABLESPACE dataits
QUOTA 100M ON test ts
QUOTA 500K ON data ts
TEMPORARY TABLESPACE temp ts
PROFILE clerk
CONTAINER = CURRENT;

User jward is stored in the database in upper-case letters. For example:
SELECT USERNAME FROM ALL USERS;

USERNAME

However, if you enclose the user name in double quotation marks, then the name is stored
using the case sensitivity that you used for the name. For example:

CREATE USER "jward" IDENTIFIED BY password;

2-8

Chapter 2
Creating User Accounts

So, when you query the ALL USERS data dictionary view, you will find that the user account is
stored using the case that you used to create it.

SELECT USERNAME FROM ALL USERS;

USERNAME

User JWARD and user jward are both stored in the database as separate user accounts. Later
on, if you must modify or drop the user that you had created using double quotation marks,
then you must enclose the user name in double quotation marks.

For example:

DROP USER "jward";

2.2.5 Assignment of User Passwords

The IDENTIFIED BY clause of the CREATE USER statement assigns the user a password.
Ensure that you create a secure password.

In the example in Creating a New User Account That Has Minimum Database Privileges, the
new local user is authenticated using the database. In this case, the connecting user must
supply the correct password to the database to connect successfully.

CREATE USER jward

IDENTIFIED BY password
DEFAULT TABLESPACE data ts
QUOTA 100M ON test ts

QUOTA 500K ON data ts
TEMPORARY TABLESPACE temp ts
PROFILE clerk

CONTAINER = CURRENT;

Related Topics

e Minimum Requirements for Passwords
Oracle provides a set of minimum requirements for passwords.

e Guidelines for Securing Passwords
Oracle provides guidelines for securing passwords in a variety of situations.

2.2.6 Default Tablespace for the User

A default tablespace stores objects that users create.

e About Assigning a Default Tablespace for a User
Each user should have a default tablespace.

 DEFAULT TABLESPACE Clause for Assigning a Default Tablespace
The DEFAULT TABLESPACE clause in the CREATE USER statement assigns a default
tablespace to the user.

2.2.6.1 About Assigning a Default Tablespace for a User

Each user should have a default tablespace.

ORACLE 9

Chapter 2
Creating User Accounts

When a schema object is created in the user's schema and the DDL statement does not
specify a tablespace to contain the object, the Oracle Database stores the object in the user's
default tablespace.

Tablespaces enable you to separate user data from system data, such as the data that is
stored in the SYSTEM tablespace. You use the CREATE USER or ALTER USER statement to assign
a default tablespace to a user. The default setting for the default tablespaces of all users is the
SYSTEM tablespace. If a user does not create objects, and has no privileges to do so, then this
default setting is fine. However, if a user is likely to create any type of object, then you should
specifically assign the user a default tablespace, such as the USERS tablespace. Using a
tablespace other than sYSTEM reduces contention between data dictionary objects and user
objects for the same data files. In general, do not store user data in the SYSTEM tablespace.

You can use the CREATE TABLESPACE SQL statement to create a permanent default tablespace
other than SYSTEM at the time of database creation, to be used as the database default for
permanent objects. By separating the user data from the system data, you reduce the
likelihood of problems with the SYSTEM tablespace, which can in some circumstances cause the
entire database to become nonfunctional. This default permanent tablespace is not used by
system users, that is, SYS, SYSTEM, and OUTLN, whose default permanent tablespace is SYSTEM.
A tablespace designated as the default permanent tablespace cannot be dropped. To
accomplish this goal, you must first designate another tablespace as the default permanent
tablespace. You can use the ALTER TABLESPACE SQL statement to alter the default permanent
tablespace to another tablespace. Be aware that this will affect all users or objects created
after the ALTER DDL statement is executed.

You can also set a user default tablespace during user creation, and change it later with the
ALTER USER statement. Changing the user default tablespace affects only objects created after
the setting is changed.

When you specify the default tablespace for a user, also specify a quota on that tablespace.

2.2.6.2 DEFAULT TABLESPACE Clause for Assigning a Default Tablespace

The DEFAULT TABLESPACE clause in the CREATE USER statement assigns a default tablespace to
the user.

In the following CREATE USER statement, the default tablespace for local user jward is data ts:

CREATE USER jward

IDENTIFIED BY password
DEFAULT TABLESPACE data_ts
QUOTA 100M ON test ts

QUOTA 500K ON data ts
TEMPORARY TABLESPACE temp ts
PROFILE clerk

CONTAINER = CURRENT;

Related Topics

e Tablespace Quotas for a User
The tablespace quota defines how much space to provide for a user's tablespace.

2.2.7 Tablespace Quotas for a User

The tablespace quota defines how much space to provide for a user's tablespace.

ORACLE 510

Chapter 2
Creating User Accounts

* About Assigning a Tablespace Quota for a User
You can assign each user a tablespace quota for any tablespace, except a temporary
tablespace.

« CREATE USER Statement for Assigning a Tablespace Quota
The QUOTA clause of the CREATE USER statement assigns the quotas for a tablespace.

» Restriction of the Quota Limits for User Objects in a Tablespace
You can restrict the quota limits for user objects in a tablespace so that the current quota is
Zero.

e Grants to Users for the UNLIMITED TABLESPACE System Privilege
To permit a user to use an unlimited amount of any tablespace in the database, grant the
user the UNLIMITED TABLESPACE system privilege.

2.2.7.1 About Assigning a Tablespace Quota for a User

You can assign each user a tablespace quota for any tablespace, except a temporary
tablespace.

Assigning a quota accomplishes the following:

« Users with privileges to create certain types of objects can create those objects in the
specified tablespace.

* Oracle Database limits the amount of space that can be allocated for storage of a user's
objects within the specified tablespace to the amount of the quota.

By default, a user has no quota on any tablespace in the database. If the user has the privilege
to create a schema object, then you must assign a quota to allow the user to create objects. At
a minimum, assign users a quota for the default tablespace, and additional quotas for other
tablespaces in which they can create objects. The maximum amount of space that you can
assign for a tablespace is 2 TB. If you need more space, then specify UNLIMITED for the QUOTA
clause.

You can assign a user either individual quotas for a specific amount of disk space in each
tablespace or an unlimited amount of disk space in all tablespaces. Specific quotas prevent a
user's objects from using too much space in the database.

You can assign quotas to a user tablespace when you create the user, or add or change
quotas later. (You can find existing user quotas by querying the USER TS QUOTAS view.) If a new
quota is less than the old one, then the following conditions remain true:

e If auser has already exceeded a new tablespace quota, then the objects of a user in the
tablespace cannot be allocated more space until the combined space of these objects is
less than the new quota.

« If a user has not exceeded a new tablespace quota, or if the space used by the objects of
the user in the tablespace falls under a new tablespace quota, then the user's objects can
be allocated space up to the new quota.

2.2.7.2 CREATE USER Statement for Assigning a Tablespace Quota

ORACLE

The QUOTA clause of the CREATE USER statement assigns the quotas for a tablespace.

The following CREATE USER Statement assigns quotas for the test ts and data ts
tablespaces:

CREATE USER jward
IDENTIFIED BY password
DEFAULT TABLESPACE data ts

2-11

Chapter 2
Creating User Accounts

QUOTA 500K ON data_ts

QUOTA 100M ON test_ts
TEMPORARY TABLESPACE temp ts
PROFILE clerk

CONTAINER = CURRENT;

2.2.7.3 Restriction of the Quota Limits for User Objects in a Tablespace

You can restrict the quota limits for user objects in a tablespace so that the current quota is
Zero.

To restrict the quote limits, use the ALTER USER SQL statement.

After a quota of zero is assigned, the objects of the user in the tablespace remain, and the user
can still create new objects, but the existing objects will not be allocated any new space. For
example, you could not insert data into one of this user's existing tables. The operation will fail
with an ORA-1536 space quota exceeded for tablespace %s error.

2.2.7.4 Grants to Users for the UNLIMITED TABLESPACE System Privilege

To permit a user to use an unlimited amount of any tablespace in the database, grant the user
the UNLIMITED TABLESPACE system privilege.

The UNLIMITED TABLESPACE privilege overrides all explicit tablespace quotas for the user. If you
later revoke the privilege, then you must explicitly grant quotas to individual tablespaces. You
can grant this privilege only to users, not to roles.

Before granting the UNLIMITED TABLESPACE system privilege, consider the consequences of
doing so.

Advantage:
* You can grant a user unlimited access to all tablespaces of a database with one statement.
Disadvantages:

* The privilege overrides all explicit tablespace quotas for the user.

* You cannot selectively revoke tablespace access from a user with the UNLIMITED
TABLESPACE privilege. You can grant selective or restricted access only after revoking the
privilege.

2.2.8 Temporary Tablespaces for the User

A temporary tablespace contains transient data that persists only for the duration of a user
session.

* About Assigning a Temporary Tablespace for a User
You should assign each user a temporary tablespace.

« TEMPORARY TABLESPACE Clause for Assigning a Temporary Tablespace
The TEMPORARY TABLESPACE clause in the CREATE USER Statement assigns a user a
temporary tablespace.

2.2.8.1 About Assigning a Temporary Tablespace for a User

You should assign each user a temporary tablespace.

ORACLE 510

Chapter 2
Creating User Accounts

When a user executes a SQL statement that requires a temporary segment, Oracle Database
stores the segment in the temporary tablespace of the user. These temporary segments are
created by the system when performing sort or join operations. Temporary segments are
owned by sys, which has resource privileges in all tablespaces.

To create a temporary tablespace, you can use the CREATE TEMPORARY TABLESPACE SQL
statement.

If you do not explicitly assign the user a temporary tablespace, then Oracle Database assigns
the user the default temporary tablespace that was specified at database creation, or by an
ALTER DATABASE statement at a later time. If there is no default temporary tablespace explicitly
assigned, then the default is the sYSTEM tablespace or another permanent default established
by the system administrator. Assigning a tablespace to be used specifically as a temporary
tablespace eliminates file contention among temporary segments and other types of segments.

Note:

If your SYSTEM tablespace is locally managed, then users must be assigned a specific
default (locally managed) temporary tablespace. They may not be allowed to default
to using the SYSTEM tablespace because temporary objects cannot be placed in
locally managed permanent tablespaces.

You can set the temporary tablespace for a user at user creation, and change it later using the
ALTER USER statement. You can also establish tablespace groups instead of assigning
individual temporary tablespaces.

Related Topics

e Oracle Database Administrator’s Guide

2.2.8.2 TEMPORARY TABLESPACE Clause for Assigning a Temporary Tablespace

The TEMPORARY TABLESPACE clause in the CREATE USER Statement assigns a user a temporary
tablespace.

In the following example, the temporary tablespace of jward is temp ts, a tablespace created
explicitly to contain only temporary segments.

CREATE USER jward

IDENTIFIED BY password
DEFAULT TABLESPACE data ts
QUOTA 100M ON test ts

QUOTA 500K ON data ts
TEMPORARY TABLESPACE temp ts
PROFILE clerk

CONTAINER = CURRENT;

2.2.9 Profiles for the User

A profile is a set of limits, defined by attributes, on database resources and password access
to the database.

The profile can be applied to multiple users, enabling them to share these attributes.

ORACLE 513

Chapter 2
Creating User Accounts

You can specify a profile when you create a user. The PROFILE clause of the CREATE USER
statement assigns a user a profile. If you do not specify a profile, then Oracle Database
assigns the user a default profile.

For example:

CREATE USER jward

IDENTIFIED BY password
DEFAULT TABLESPACE data ts
QUOTA 100M ON test ts
QUOTA 500K ON data ts
TEMPORARY TABLESPACE temp ts
PROFILE clerk

CONTAINER = CURRENT;

In a multitenant environment, different profiles can be assigned to a common user in the root
and in a PDB. When the common user logs in to the PDB, a profile whose setting applies to
the session depends on whether the settings are password-related or resource-related.

» Password-related profile settings are fetched from the profile that is assigned to the
common user in the root. For example, suppose you assign a common profile c##prof (in
which FAILED LOGIN ATTEMPTS is set to 1) to common user c##admin in the root. In a PDB
that user is assigned a local profile local prof (in which FAILED LOGIN ATTEMPTS is set to
6.) Common user c##admin is allowed only one failed login attempt when he or she tries to
log in to the PDB where loc prof is assigned to him.

* Resource-related profile settings specified in the profile assigned to a user in a PDB get
used without consulting resource-related settings in a profile assigned to the common user
in the root. For example, if the profile local prof that is assigned to user c##admin in a
PDB has SESSIONS PER USER set to 2, then c##admin is only allowed only 2 concurrent
sessions when he or she logs in to the PDB loc prof is assigned to him, regardless of
value of this setting in a profile assigned to him in the root.

Related Topics

* Managing Resources with Profiles
A profile is a named set of resource limits and password parameters that restrict database
usage and instance resources for a user.

2.2.10 Creation of a Common User or a Local User

ORACLE

The CREATE USER SQL statement can be used to create both common (CDB and application)
users and local users.

e About Creating Common User Accounts
Be aware of common user account restrictions such as where they can be created, naming
conventions, and objects stored in their schemas.

e CREATE USER Statement for Creating a Common User Account
The CREATE USER statement CONTAINER=ALL clause can be used to create a common user
account.

e About Creating Local User Accounts
Be aware of local user account restrictions such as where they can be created, naming
conventions, and objects stored in their schemas.

e CREATE USER Statement for Creating a Local User Account
The CREATE USER Statement CONTAINER clause can be used to create a local user account.

2-14

Chapter 2
Creating User Accounts

2.2.10.1 About Creating Common User Accounts

Be aware of common user account restrictions such as where they can be created, naming
conventions, and objects stored in their schemas.

To create a common user account, follow these rules:

To create a CDB common user, you must be connected to the CDB root and have the
commonly granted CREATE USER system privilege.

To create an application common user, you must be connected to the application root and
have the commonly granted CREATE USER system privilege.

You can run the CREATE USER ... CONTAINER = ALL statement to create an application
common user in the application root. Afterward, you must synchronize the application so
that this user can be visible in the application PDB. For example, for an application named
saas_sales app:

ALTER PLUGGABLE DATABASE APPLICATION saas sales app SYNC;

The name that you give the common user who connects to the CDB root must begin with
the prefix that is defined in the COMMON USER PREFIX parameter in the CDB root, which by
default is c##. (You can modify this parameter, but only do so with great caution.) It must
contain only ASCII or EBCDIC characters. This naming requirement does not apply to the
names of existing Oracle-supplied user accounts, such as syS or SYSTEM. To find the
names of existing user accounts, query the ALL USERS, CDB_USERS, DBA_USERS, and

USER USERS data dictionary views.

The name that you give the common user who connects to the application root must follow
the naming conventions for standard user accounts. By default, the COMMON USER PREFIX
parameter in the application root is set to an empty string. In other words, you can create a
user named hr admin in the application root but not a user named c##hr_admin.

To explicitly designate a user account as a CDB or an application common user, in the
CREATE USER statement, specify the CONTAINER=ALL clause. If you are logged into the CDB
or application root, and if you omit the CONTAINER clause from your CREATE USER Statement,
then the CONTAINER=ALL clause is implied.

Do not create objects in the schemas of common users for a CDB. Instead, you can create
application common objects. These are objects whose metadata, and in case of data links
or extended data links, data, is shared between all application PDBs that belong to the
application container. You must create the application common object in the root of an
application container.

If you specify the DEFAULT TABLESPACE, TEMPORARY TABLESPACE, QUOTA...ON, and PROFILE
clauses in the CREATE USER statement for a CDB or an application common user account,

then you must ensure that these objects—tablespaces, tablespace groups, and profiles—
exist in all containers of the CDB for a CDB common user, or in the application root and all
PDBs of an application container for an application common user.

2.2.10.2 CREATE USER Statement for Creating a Common User Account

The CREATE USER statement CONTAINER=ALL clause can be used to create a common user
account.

ORACLE

You must be in the CDB root to create a CDB common user account and the application root to
create an application common user account.

2-15

Chapter 2
Creating User Accounts

The following example shows how to create a CDB common user account from the CDB root
by using the CONTAINER clause, and then granting the user the SET CONTAINER and CREATE
SESSION privileges. Common users must have the SET CONTAINER system privilege to navigate
between containers. When you create the account, there is a single common password for this
common user across all containers.

CONNECT SYSTEM
Enter password: password
Connected.

CREATE USER c##hr_admin
IDENTIFIED BY password
DEFAULT TABLESPACE data_ts
QUOTA 100M ON test ts

QUOTA 500K ON data ts
TEMPORARY TABLESPACE temp ts
CONTAINER = ALL;

GRANT SET CONTAINER, CREATE SESSION TO c##hr admin
CONTAINER = ALL;

The next example shows how to create an application common user in the application root
(app_root) by using the CONTAINER clause, and then granting the user the SET CONTAINER, and
CREATE SESSION system privileges. Finally, to synchronize this user so that it is visible in the
application PDBs, the ALTER PLUGGABLE DATABASE APPLICATION APPSCON SYNC statement is
run.

CONNECT SYSTEM@app root
Enter password: password
Connected.

CREATE USER app_admin
IDENTIFIED BY password
DEFAULT TABLESPACE dataits
QUOTA 100M ON temp ts

QUOTA 500K ON data ts
TEMPORARY TABLESPACE temp ts
CONTAINER = ALL;

GRANT SET CONTAINER, CREATE SESSION TO app_ admin CONTAINER = ALL;

CONNECT SYSTEM@app hr pdb
Enter password: password
Connected.

ALTER PLUGGABLE DATABASE APPLICATION APPS$SCON SYNC;

Related Topics

e About Common Users
Oracle provides two types of common users: CDB common users and application common
users.

e Creating a Common User Account in Enterprise Manager
A common user is a user that exists in the root and can access PDBs in the CDB.

2.2.10.3 About Creating Local User Accounts

Be aware of local user account restrictions such as where they can be created, naming
conventions, and objects stored in their schemas.

ORACLE 16

Chapter 2
Creating User Accounts

To create a local user account, follow these rules:

e To create a local user account, you must be connected to the PDB in which you want to
create the account, and have the CREATE USER privilege.

e The name that you give the local user must not start with a prefix that is reserved for
common users, which by default is c## for CDB common users.

* You can include CONTAINER=CURRENT in the CREATE USER statement to specify the user as a
local user. If you are connected to a PDB and omit this clause, then the
CONTAINER=CURRENT clause is implied.

* You cannot have common users and local users with the same name. However, you can
use the same name for local users in different PDBs. To find the names of existing user
accounts, query the ALL USERS, CDB_USERS, DBA USERS, and USER_USERS data dictionary
views.

« Both common and local users connected to a PDB can create local user accounts, as long
as they have the appropriate privileges.

2.2.10.4 CREATE USER Statement for Creating a Local User Account

The CREATE USER statement CONTAINER clause can be used to create a local user account.
You must create the local user account in the PDB where you want this account to reside.
The following example shows how to create a local user account using the CONTAINER clause.

CONNECT SYSTEM@hrpdb
Enter password: password
Connected.

CREATE USER kmurray
IDENTIFIED BY password
DEFAULT TABLESPACE data ts
QUOTA 100M ON test ts
QUOTA 500K ON data ts
TEMPORARY TABLESPACE temp ts
PROFILE hr profile
CONTAINER = CURRENT;

Related Topics

e Creating a Common User Account in Enterprise Manager
A common user is a user that exists in the root and can access PDBs in the CDB.

e About Local Users
In a multitenant environment, a local user is a database user that exists only in a single
PDB.

2.2.11 Creating a Default Role for the User

ORACLE

A default role is automatically enabled for a user when the user creates a session.

You can assign a user zero or more default roles. You cannot set default roles for a user in the
CREATE USER statement. When you first create a user, the default role setting for the user is
ALL, which causes all roles subsequently granted to the user to be default roles.

e Use the ALTER USER statement to change the default roles for the user.

For example:

2-17

Chapter 2
Altering User Accounts

GRANT USER rdale clerk mgr;

ALTER USER rdale DEFAULT ROLE clerk mgr;

Before a role can be made the default role for a user, that user must have been already
granted the role.

Related Topics

e Managing User Roles
A user role is a named collection of privileges that you can create and assign to other
users.

2.3 Altering User Accounts

The ALTER USER statement modifies user accounts, such their default tablespace or profile, or
changing a user's password.

* About Altering User Accounts
Changing user security settings affects the future user sessions, not the current session.

* Methods of Altering Common or Local User Accounts
You can use the ALTER USER statement or the PASSWORD command to alter both common
and local user accounts.

e Changing Non-SYS User Passwords
Users can change their own passwords but to change other users' passwords, they must
have the correct privileges.

e Changing the SYS User Password
To change the sYs user password, you can use the ALTER USER Statement, the PASSWORD
command, or the ORAPWD command line utility.

2.3.1 About Altering User Accounts

Changing user security settings affects the future user sessions, not the current session.

In most cases, you can alter user security settings with the ALTER USER SQL statement. Users
can change their own passwords. However, to change any other option of a user security
domain, you must have the ALTER USER system privilege. Security administrators are typically
the only users that have this system privilege, as it allows a modification of any user security
domain. This privilege includes the ability to set tablespace quotas for a user on any
tablespace in the database, even if the user performing the modification does not have a quota
for a specified tablespace.

In a multitenant environment, you must have the commonly granted ALTER USER system
privilege to alter common user accounts. To alter local user accounts, you must have a
commonly granted ALTER USER privilege or a locally granted ALTER USER privilege in the PDB in
which the local user account resides.

2.3.2 Methods of Altering Common or Local User Accounts

ORACLE

You can use the ALTER USER statement or the PASSWORD command to alter both common and
local user accounts.

You cannot change an existing common user account to be a local user account, or a local
user account to be made into a common user account. In this case, you must create a new
account, as either a common user account or a local user account.

2-18

Chapter 2
Altering User Accounts

The following example shows how to use the ALTER USER statement to restrict user
c##hr admin’s ability to view V$SESSION rows to those that pertain to sessions that are
connected to CDB$SROOT, and to the emp_db and hr_db PDBs.

CONNECT SYSTEM
Enter password: password
Connected.

ALTER USER c##hr admin

DEFAULT TABLESPACE data ts

TEMPORARY TABLESPACE temp ts

QUOTA 100M ON data ts

QUOTA 0 ON test ts

SET CONTAINER DATA = (emp db, hr db) FOR V$SESSION
CONTAINER = CURRENT;

The ALTER USER statement here changes the security settings for the user c##hr admin as
follows:

* DEFAULT TABLESPACE and TEMPORARY TABLESPACE are set explicitly to data ts and
temp_ts, respectively.

* QUOTA 100M gives the data_ts tablespace 100 MB.
* QUOTA 0 revokes the quota on the temp ts tablespace.

e SET CONTAINER DATA enables user c##hr admin to have access to data related to the
emp_db and hr_db PDBs as well as the root when he queries the V$SESSION view from the
root.

To change passwords, you can use ALTER USER, but Oracle recommends that you use the
PASSWORD command to change passwords, for both non-sys and sys user accounts.

Related Topics
e Oracle Database SQL Language Reference

* About Changing Non-SYS User Passwords
Users can use either the PASSWORD command or ALTER USER Statement to change a
password.

e About Changing the SYS User Password
The method of changing the sys password that you choose will depend on how your
database is configured (for example, how the REMOTE LOGIN PASSWORDFILE initialization
parameter is set).

2.3.3 Changing Non-SYS User Passwords

ORACLE

Users can change their own passwords but to change other users' passwords, they must have
the correct privileges.

e About Changing Non-SYS User Passwords
Users can use either the PASSWORD command or ALTER USER Statement to change a
password.

e Using the PASSWORD Command or ALTER USER Statement to Change a Password
Most users can change their own passwords with the SQL*Plus PASSWORD command or the
ALTER USER SQL statement.

2-19

Chapter 2
Altering User Accounts

2.3.3.1 About Changing Non-SYS User Passwords

Users can use either the PASSWORD command or ALTER USER Statement to change a password.

No special privileges (other than those to connect to the database and create a session) are
required for a user to change his or her own password. Encourage users to change their
passwords frequently. You can find existing users for the current database instance by
querying the ALL USERS view.

For better security, use the PASSWORD command to change the account's password. The ALTER
USER statement displays the new password on the screen, where it can be seen by any overly
curious coworkers. The PASSWORD command does not display the new password, so it is only
known to you, not to your co-workers. The PASSWORD command also encrypts the password on
the network. ALTER USER will send the password in clear text, so you should not use it unless
the network connection between the client and database is encrypted or the session is a local
session not routed over the network.

Users must have the PASSWORD and ALTER USER privilege to switch between methods of
authentication. Usually, only an administrator has this privilege.

Related Topics

* Minimum Requirements for Passwords
Oracle provides a set of minimum requirements for passwords.

e Guidelines for Securing Passwords
Oracle provides guidelines for securing passwords in a variety of situations.

e Configuring Authentication
Authentication means to verify the identity of users or other entities that connect to the
database.

2.3.3.2 Using the PASSWORD Command or ALTER USER Statement to Change a

Password

ORACLE

Most users can change their own passwords with the SQL*Plus PASSWORD command or the
ALTER USER SQL statement.

In a multitenant environment, a CDB common user must change his or her password in the
CDB root, and an application common user must change his or her password in the application
root.

« Use one of the following methods to change a user’s password:

— To use the SQL*Plus pASSWORD command to change a password, supply the user's
name, and when prompted, enter the new password.

For example:

PASSWORD andy

Changing password for andy
New password: password

Retype new password: password

— To use the ALTER USER SQL statement change a password, include the IDENTIFIED BY
clause.

For example:

ALTER USER andy IDENTIFIED BY password;

2-20

Chapter 2
Altering User Accounts

2.3.4 Changing the SYS User Password

To change the sYs user password, you can use the ALTER USER Statement, the PASSWORD
command, or the ORAPWD command line utility.

e About Changing the SYS User Password
The method of changing the sys password that you choose will depend on how your
database is configured (for example, how the REMOTE LOGIN PASSWORDFILE initialization
parameter is set).

* ORAPWD Utility for Changing the SYS User Password
The orRAPWD utility enables you to change the syS user password.

2.3.4.1 About Changing the SYS User Password

ORACLE

The method of changing the sys password that you choose will depend on how your database
is configured (for example, how the REMOTE LOGIN PASSWORDFILE initialization parameter is
set).

You an use the PASSWORD command, the ALTER USER statement, or the ORAPWD utility to change
Sys password.

As with non-sys user accounts, there are good reasons for using PASSWORD to change the SYs
user account. PASSWORD does not show the new password on the screen, and PASSWORD also
encrypts the password over the network. ALTER USER will send the password in clear text, so
you should not use it unless the network connection between the client and database is
encrypted or the session is a local session not routed over the network. Hence, you should use
PASSWORD for remote connections.

The ALTER USER statement has the following advantages over using ORAPWD:

* It enables you to change the syYs user password from within the Oracle database instance.

e In an Oracle Data Guard environment, it propagates the sys password change to Oracle
Data Guard instances.

Be aware that Oracle Real Application Clusters (Oracle RAC) databases using a shared
password file will have REMOTE LOGIN PASSWORDFILE = SHARED, which prevents ALTER USER
from updating sys password. If the password file is not shared and the password is changed,
then you must copy the password file to all the nodes in the Oracle RAC cluster.

If the REMOTE LOGIN PASSWORDFILE initialization parameter is set and you want to use ALTER
USER to change the sys password, then note the following:

* Ensure that the REMOTE LOGIN PASSWORDFILE initialization parameter is set to EXCLUSIVE.
Otherwise, the sYS user password change (or any administrative user password change)
attempt will fail.

* IfREMOTE LOGIN PASSWORDFILE is null or set to NONE, then the password change attempt
fails with an ORA-01994 error.

* IfREMOTE LOGIN PASSWORDFILE is set to SHARED, then using the ALTER USER Statement to
change the password fails with an ORA-28046 error.

If you want to use ORAPWD to change the sYs password, then note the following:

» Before you can change the password of the SYS user account, a password file must exist
for this account.

2-21

Chapter 2
Configuring User Resource Limits

» Ifthe instance initialization parameter REMOTE LOGIN PASSWORDFILE is set to SHARED or is
null, then you must use ORAPWD to change the Sys password.

The following applies to both the ALTER USER and ORAPWD methods of changing the sys user
password:

* New accounts are created with the SHA-2 (SHA-512) verifier. SYS user verifiers are
generated based on the sqlnet.ora parameter ALLOWED LOGON VERSION SERVER. You can
identify these accounts by querying the PASSWORD VERSIONS column of the DBA USERS data
dictionary view. (These verifiers are listed as 12C in the PASSWORD VERSIONS column of the
DBA_USERS view output.)

* In an Oracle Real Application Clusters (Oracle RAC) environment, store the password in
the ASM disk group so that it can be shared by multiple Oracle RAC instances.

Related Topics

* Ensuring Against Password Security Threats by Using the 12C Password Version
The 12¢C password version enables users to create complex passwords that meet
compliance standards.

e Oracle Database Administrator’s Guide

2.3.4.2 ORAPWD Utility for Changing the SYS User Password

The ORAPWD utility enables you to change the sys user password.

You can use the ORAPWD utility with the INPUT FILE parameter to change the Sys user
password. To migrate the password files to a specific format, include the FORMAT option. By
default, the format is 12.2 if you do not specify the FORMAT option.

To set a new password for the Sys user using the ORAPWD ultility, set the SYS option to Y (yes),
use the INPUT FILE parameter to specify the current password file name, and use the FILE
parameter to create the password file to which the original password file is migrated. For
example:

ORAPWD INPUT FILE='orapworcl' FILE='orapwd' SYS=Y
Enter password for SYS: new password

Replace new password with a password that is secure. If you do not want to migrate the
password file to a different format, then you can specify the same format as the input file.
For example, assuming that the input file orapworcl format is 12 and you want to change the
SYS user password:;

ORAPWD INPUT FILE='orapworcl' FILE='orapwd' FORMAT=12 SYS=Y
Enter password for SYS: new password

Related Topics
e Oracle Database Administrator’s Guide

e Guidelines for Securing Passwords
Oracle provides guidelines for securing passwords in a variety of situations.

2.4 Configuring User Resource Limits

A resource limit defines the amount of system resources that are available for a user.

ORACLE 599

Chapter 2
Configuring User Resource Limits

e About User Resource Limits
You can set limits on the amount of system resources available to each user as part of the
security domain of that user.

e Types of System Resources and Limits
You can limit several types of system resources, including CPU time and logical reads, at
the session level, call level, or both.

* Values for Resource Limits of Profiles
Before you create profiles and set resource limits, you should determine appropriate
values for each resource limit.

* Managing Resources with Profiles
A profile is a named set of resource limits and password parameters that restrict database
usage and instance resources for a user.

2.4.1 About User Resource Limits

You can set limits on the amount of system resources available to each user as part of the
security domain of that user.

By doing so, you can prevent the uncontrolled consumption of valuable system resources such
as CPU time.

This resource limit feature is very useful in large, multiuser systems, where system resources
are very expensive. Excessive consumption of these resources by one or more users can
detrimentally affect the other users of the database. In single-user or small-scale multiuser
database systems, the system resource feature is not as important, because user consumption
of system resources is less likely to have a detrimental impact.

You manage user resource limits by using Database Resource Manager. You can set
password management preferences using profiles, either set individually or using a default
profile for many users. Each Oracle database can have an unlimited number of profiles. Oracle
Database allows the security administrator to enable or disable the enforcement of profile
resource limits universally.

Setting resource limits causes a slight performance degradation when users create sessions,
because Oracle Database loads all resource limit data for each user upon each connection to
the database.

Related Topics

e Oracle Database Administrator’s Guide

2.4.2 Types of System Resources and Limits

ORACLE

You can limit several types of system resources, including CPU time and logical reads, at the
session level, call level, or both.

e Limits to the User Session Level
When a user connects to a database, a session is created. Sessions use CPU time and
memory, on which you can set limits.

e Limits to Database Call Levels
Each time a user runs a SQL statement, Oracle Database performs several steps to
process the statement.

e Limits to CPU Time
When SQL statements and other calls are made to an Oracle database, CPU time is
necessary to process the call.

2-23

Chapter 2
Configuring User Resource Limits

e Limits to Logical Reads
Input/output (1/O) is one of the most expensive operations in a database system.

e Limits to Other Resources
You can control limits for user concurrent sessions and idle time.

2.4.2.1 Limits to the User Session Level

When a user connects to a database, a session is created. Sessions use CPU time and
memory, on which you can set limits.

You can set several resource limits at the session level. If a user exceeds a session-level
resource limit, then Oracle Database terminates (rolls back) the current statement and returns
a message indicating that the session limit has been reached. At this point, all previous
statements in the current transaction are intact, and the only operations the user can perform
are COMMIT, ROLLBACK, or disconnect (in this case, the current transaction is committed). All
other operations produce an error. Even after the transaction is committed or rolled back, the
user cannot accomplish any more work during the current session.

2.4.2.2 Limits to Database Call Levels

Each time a user runs a SQL statement, Oracle Database performs several steps to process
the statement.

During the SQL statement processing, several calls are made to the database as a part of the
different execution phases. To prevent any one call from using the system excessively, Oracle
Database lets you set several resource limits at the call level.

If a user exceeds a call-level resource limit, then Oracle Database halts the processing of the
statement, rolls back the statement, and returns an error. However, all previous statements of
the current transaction remain intact, and the user session remains connected.

2.4.2.3 Limits to CPU Time

When SQL statements and other calls are made to an Oracle database, CPU time is
necessary to process the call.

Average calls require a small amount of CPU time. However, a SQL statement involving a
large amount of data or a runaway query can potentially use a large amount of CPU time,
reducing CPU time available for other processing.

To prevent uncontrolled use of CPU time, you can set fixed or dynamic limits on the CPU time
for each call and the total amount of CPU time used for Oracle Database calls during a
session. The limits are set and measured in CPU one-hundredth seconds (0.01 seconds) used
by a call or a session.

2.4.2.4 Limits to Logical Reads

ORACLE

Input/output (1/O) is one of the most expensive operations in a database system.

SQL statements that are I/O-intensive can monopolize memory and disk use and cause other
database operations to compete for these resources.

To prevent single sources of excessive I/O, you can limit the logical data block reads for each
call and for each session. Logical data block reads include data block reads from both memory
and disk. The limits are set and measured in number of block reads performed by a call or
during a session.

2-24

Chapter 2
Configuring User Resource Limits

2.4.2.5 Limits to Other Resources

You can control limits for user concurrent sessions and idle time.

Limits to other resources are as follows:

You can limit the number of concurrent sessions for each user. Each user can create
only up to a predefined number of concurrent sessions.

You can limit the idle time for a session. If the time between calls in a session reaches
the idle time limit, then the current transaction is rolled back, the session is terminated, and
the resources of the session are returned to the system. The next call receives an error
that indicates that the user is no longer connected to the instance. This limit is set as a
number of elapsed minutes.

Note:

Shortly after a session is terminated because it has exceeded an idle time limit,
the process monitor (PMON) background process cleans up after the terminated
session. Until PMON completes this process, the terminated session is still
counted in any session or user resource limit.

You can limit the elapsed connect time for each session. If the duration of a session
exceeds the elapsed time limit, then the current transaction is rolled back, the session is
dropped, and the resources of the session are returned to the system. This limit is set as a
number of elapsed minutes.

Note:

Oracle Database does not constantly monitor the elapsed idle time or elapsed
connection time. Doing so reduces system performance. Instead, it checks every
few minutes. Therefore, a session can exceed this limit slightly (for example, by 5
minutes) before Oracle Database enforces the limit and terminates the session.

You can limit the amount of private System Global Area (SGA) space (used for
private SQL areas) for a session. This limit is only important in systems that use the
shared server configuration. Otherwise, private SQL areas are located in the Program
Global Area (PGA). This limit is set as a number of bytes of memory in the SGA of an
instance. Use the characters K or M to specify kilobytes or megabytes.

2.4.3 Values for Resource Limits of Profiles

ORACLE

Before you create profiles and set resource limits, you should determine appropriate values for
each resource limit.

You can base the resource limit values on the type of operations a typical user performs. For
example, if one class of user does not usually perform a high number of logical data block
reads, then use the ALTER RESOURCE COST SQL statement to set the
LOGICAL READS PER SESSION setting conservatively.

Usually, the best way to determine the appropriate resource limit values for a given user profile
is to gather historical information about each type of resource usage. For example, the

2-25

Chapter 2
Configuring User Resource Limits

database or security administrator can use the AUDIT SESSION clause to gather information
about the limits CONNECT TIME, LOGICAL READS PER SESSION.

In an Oracle Data Guard environment, an active standby database is opened in read-only
mode. This allows user connections on it in the same way as on a primary database. Hence,
all the password resource-related limits of a given user profile will work independently between
them, except for the ones that imply or require a user password change in the standby
database; this task cannot be performed in a database that is opened in read-only mode.

You can gather statistics for other limits using the Monitor feature of Oracle Enterprise
Manager (or SQL*Plus), specifically the Statistics monitor.

2.4.4 Managing Resources with Profiles

A profile is a named set of resource limits and password parameters that restrict database
usage and instance resources for a user.

e About Profiles
A profile is a collection of attributes that apply to a user.

e ora_stig_profile User Profile
The ora_stig profile user profile is designed for Security Technical Implementation
Guide compliance.

e Creating a Profile
A profile can encompass limits for a specific category, such as limits on passwords or limits
on resources.

e Creating a CDB Profile or an Application Profile
The CREATE PROFILE Or ALTER PROFILE statement CONTAINER=ALL clause can create a
profile in a CDB or application root.

e Assigning a Profile to a User
After you create a profile, you can assign it to users.

e Dropping Profiles
You can drop a profile, even if it is currently assigned to a user.

2.4.4.1 About Profiles

ORACLE

A profile is a collection of attributes that apply to a user.

The profile is used to enable a single point of reference for multiple users who share these
attributes.

You should assign a profile to each user. Each user can have only one profile, and creating a
new one supersedes an earlier assignment.

You can create and manage user profiles only if resource limits are a requirement of your
database security policy. To use profiles, first categorize the related types of users in a
database. Just as roles are used to manage the privileges of related users, profiles are used to
manage the resource limits of related users. Determine how many profiles are needed to
encompass all categories of users in a database and then determine appropriate resource
limits for each profile.

User profiles in Oracle Internet Directory contain attributes pertinent to directory usage and
authentication for each user. Similarly, profiles in Oracle Label Security contain attributes useful
in label security user administration and operations management. Profile attributes can include
restrictions on system resources. You can use Database Resource Manager to set these types
of resource limits.

2-26

Chapter 2
Configuring User Resource Limits

In a multitenant environment, profiles are useful for the administration and operations
performed in the container databases (CDBs) and application containers, as well as their
associated pluggable databases (PDBs). For both CDB and application containers, if you
define a common profile, then the profile applies to the entire container and not outside this
container. If you create a local profile, then it applies to that PDB only.

Profile resource limits are enforced only when you enable resource limitation for the associated
database. Enabling this limitation can occur either before starting the database (using the
RESOURCE LIMIT initialization parameter) or while it is open (using the ALTER SYSTEM
statement).

Though password parameters reside in profiles, they are unaffected by RESOURCE LIMIT or
ALTER SYSTEM and password management is always enabled. In Oracle Database, Database
Resource Manager primarily handles resource allocations and restrictions.

Any authorized database user can create, assign to users, alter, and drop a profile at any time
(using the CREATE USER or ALTER USER statement). Profiles can be assigned only to users and
not to roles or other profiles. Profile assignments do not affect current sessions; instead, they

take effect only in subsequent sessions.

To find information about current profiles, query the DBA PROFILES view.

¢ See Also:

Oracle Database Administrator’s Guide for detailed information about managing
resources

2.4.4.2 ora_stig_profile User Profile

The ora_stig profile user profile is designed for Security Technical Implementation Guide
compliance.

The ora_stig profile user profile addresses STIG requirements such as the need for a
password complexity function, maximum failed login attempts, reuse time, and other
requirements. The definition for this profile is as follows:

CREATE PROFILE ora stig profile

password life time 60
password grace time 5
password reuse time 365
password reuse max 10

failed login attempts 3
password lock time unlimited
inactive account time 35

idle time 15

password verify function oral2c stig verify function;

2.4.4.3 Creating a Profile

ORACLE

A profile can encompass limits for a specific category, such as limits on passwords or limits on
resources.

To create a profile, you must have the CREATE PROFILE system privilege. To find all existing
profiles, you can query the DBA PROFILES view.

e Use the CREATE PROFILE Statement to create a profile.

2-27

Chapter 2
Configuring User Resource Limits

For example, to create a profile that defines password limits:

CREATE PROFILE password prof LIMIT
FAILED LOGIN ATTEMPTS 6
PASSWORD LIFE TIME 60
PASSWORD REUSE TIME 60
PASSWORD REUSE MAX 5
PASSWORD LOCK TIME 1/24
PASSWORD GRACE TIME 10
PASSWORD VERIFY FUNCTION DEFAULT;

The following example shows how to create a resource limits profile.

CREATE PROFILE app user LIMIT

SESSIONS PER USER UNLIMITED
CPU_PER_SESSION UNLIMITED
CPU_PER CALL 3500
CONNECT TIME 50
LOGICAL READS PER SESSION DEFAULT
LOGICAL READS PER CALL 1200
PRIVATE SGA 20K
COMPOSITE LIMIT 7500000;

Related Topics

e Oracle Database SQL Language Reference

2.4.4.4 Creating a CDB Profile or an Application Profile

The CREATE PROFILE or ALTER PROFILE Statement CONTAINER=ALL clause can create a profile in
a CDB or application root.

You cannot create local profiles in the CDB root or the application root. The profile that you
create will be applied to all PDBs that are associated with the CDB root or the application root.
Create the profile using the same parameters that you would in a non-multitenant environment.

» To create a profile in a CDB root or an application root, optionally include the
CONTAINER=ALL clause in the CREATE PROFILE Or ALTER PROFILE Statement.

The CONTAINER=ALL clause is optional because it is the default when the statement is
processed.

For example:

CREATE PROFILE password prof LIMIT
FAILED LOGIN ATTEMPTS 6
PASSWORD LIFE TIME 60
PASSWORD REUSE TIME 60
PASSWORD REUSE MAX 5
PASSWORD LOCK_TIME 1/24
PASSWORD GRACE TIME 10
PASSWORD VERIFY FUNCTION DEFAULT
CONTAINER=ALL;

2.4.4.5 Assigning a Profile to a User

After you create a profile, you can assign it to users.

You can assign a profile to a user who has already been assigned a profile, but the most
recently assigned profile takes precedence. When you assign a profile to an external user or a
global user, the password parameters do not take effect for that user.

ORACLE 508

Chapter 2
Dropping User Accounts

To find the profiles that are currently assigned to users, you can query the DBA USERS view.

e Use the ALTER USER statement to assign the profile to a user.
For example:

ALTER USER psmith PROFILE app user;

2.4.4.6 Dropping Profiles

You can drop a profile, even if it is currently assigned to a user.

When you drop a profile, the drop does not affect currently active sessions. Only sessions that
were created after a profile is dropped use the modified profile assignments. To drop a profile,
you must have the DROP PROFILE system privilege. You cannot drop the default profile.

e Use the SQL statement DROP PROFILE to drop a profile. To drop a profile that is currently
assigned to a user, use the CASCADE option.

For example:

DROP PROFILE clerk CASCADE;

Any user currently assigned to a profile that is dropped is automatically is assigned to the
DEFAULT profile. The DEFAULT profile cannot be dropped.

Related Topics

e Oracle Database SQL Language Reference

2.5 Dropping User Accounts

You can drop user accounts if the user is not in a session, and if the user has objects in the
user’s schema.

e About Dropping User Accounts
Before you drop a user account, you must ensure that you have the appropriate privileges
for doing so.

e Terminating a User Session
A user who is connected to a database cannot be dropped.

e About Dropping a User After the User Is No Longer Connected to the Database
After a user is disconnected from the database, you can use the DROP USER statement to
drop the user.

e Dropping a User Whose Schema Contains Objects
Before you drop a user whose schema contains objects, carefully investigate the
implications of dropping these schema objects.

2.5.1 About Dropping User Accounts

ORACLE

Before you drop a user account, you must ensure that you have the appropriate privileges for
doing so.

To drop a user account in any environment, you must have the DROP USER system privilege. In
a multitenant environment, you must have the commonly granted DROP USER system privilege
to drop common user accounts. To drop local user accounts, you must have a commonly
granted DROP USER privilege or a locally granted DROP USER privilege in the PDB in which the
local user account resides.

2-29

Chapter 2
Dropping User Accounts

When you drop a user account, Oracle Database removes the user account and associated
schema from the data dictionary. It also immediately drops all schema objects contained in the
user schema, if any.

Note:

» If a user schema and associated objects must remain but the user must be
denied access to the database, then revoke the CREATE SESSION privilege from
the user.

* Do not attempt to drop the Sys or SYSTEM user. Doing so corrupts your database.

2.5.2 Terminating a User Session

A user who is connected to a database cannot be dropped.

You must first terminate the user session (or the user can exit the session) before you can drop
the user.

1. Query the V$SESSION dynamic view to find the session ID of the user whose session you
want to terminate.

For example:

SELECT SID, SERIAL#, USERNAME FROM VS$SESSION;

SID SERIAL# USERNAME

127 55234 ANDY

2. Usethe ALTER SYSTEM SQL statement to stop the session for the user, based on the SID
and SERIAL# settings of the VSSESSION view.

For example:

ALTER SYSTEM KILL SESSION '127, 55234';

2.5.3 About Dropping a User After the User Is No Longer Connected to the

Database

ORACLE

After a user is disconnected from the database, you can use the DROP USER statement to drop
the user.

To drop a user and all the user schema objects (if any), you must have the DROP USER system
privilege. Because the DROP USER system privilege is powerful, a security administrator is
typically the only type of user that has this privilege.

If the schema of the user contains any dependent schema objects, then use the CASCADE
option to drop the user and all associated objects and foreign keys that depend on the tables of
the user successfully. If you do not specify CASCADE and the user schema contains dependent
objects, then an error message is returned and the user is not dropped.

2-30

Chapter 2
Predefined Schema User Accounts Provided by Oracle Database

2.5.4 Dropping a User Whose Schema Contains Objects

Before you drop a user whose schema contains objects, carefully investigate the implications
of dropping these schema objects.

1.

Query the DBA OBJECTS data dictionary view to find the objects that are owned by the user.
For example:

SELECT OWNER, OBJECT NAME FROM DBA OBJECTS WHERE OWNER LIKE 'ANDY';

Enter the user name in capital letters. Pay attention to any unknown cascading effects. For

example, if you intend to drop a user who owns a table, then check whether any views or
procedures depend on that particular table.

Use the DROP USER SQL statement with the CASCADE clause to drop the user and all
associated objects and foreign keys that depend on the tables that the user owns.

For example:

DROP USER andy CASCADE;

2.6 Predefined Schema User Accounts Provided by Oracle

Database

The Oracle Database installation process creates predefined administrative, non-
administrative, and sample schema user accounts in the database.

About the Predefined Schema User Accounts
The predefined schema accounts are either created automatically when you run standard
Oracle scripts or they are accounts that represent a fictional company.

Predefined Administrative Accounts
A default Oracle Database installation provides predefined administrative accounts to
manage commonly used features, such as auditing.

Predefined Non-Administrative User Accounts
A default Oracle Database installation provides non-administrative user accounts to
manage features such as Oracle Spatial.

Predefined Sample Schema User Accounts
Oracle Database creates a set of sample user accounts if you install the sample schemas.

2.6.1 About the Predefined Schema User Accounts

The predefined schema accounts are either created automatically when you run standard
Oracle scripts or they are accounts that represent a fictional company.

ORACLE

The predefined schema accounts are in two categories:

The predefined administrative and non-administrative schema accounts are created
automatically when you run standard scripts such as the various cat.*sql scripts. You can
find these accounts by querying the USERNAME and ORACLE_MAINTAINED columns of the

ALL USERS data dictionary view. If the output for ORACLE MAINTAINED is Y, then you must
not modify the user account except by running the script that was used to create it.

The HR sample schema user account is installed by default. A set of additional schema
user accounts (OE, PM, IX, and SH, along with HR) is available on GitHub. These schema

2-31

Chapter 2
Predefined Schema User Accounts Provided by Oracle Database

accounts represent different divisions of a fictional company that manufactures various
products. You can find the status of these accounts by querying the DBA USERS data
dictionary view. Because the ORACLE_MAINTAINED column output for these accounts is N,
you can modify these accounts without re-running the scripts that were used to create
them.

By default, most of these accounts are authenticated as schema only accounts, except for the
sample schema accounts, which are locked and expired during the database installation
process. When using these accounts, you can configure them to be authenticated in other
ways (such as with password authentication), but Oracle recommends that for better security,
to keep these accounts as schema only accounts.

Related Topics
e Oracle Database Sample Schemas

¢ Schema-Only Accounts
You can create schema-only accounts, that is, the schema user has no password.

2.6.2 Predefined Administrative Accounts

A default Oracle Database installation provides predefined administrative accounts to manage
commonly used features, such as auditing.

These are accounts that have special privileges required to administer areas of the database,
such as the CREATE ANY TABLE or ALTER SESSION privilege, or EXECUTE privileges on packages
owned by the sys schema. The default tablespace for administrative accounts is either SYSTEM
or SYSAUX. In a multitenant environment, the predefined administrative accounts reside in the
root database.

To protect these accounts from unauthorized access, the installation process expires and locks
most of these accounts, except where noted in the following table. As the database
administrator, you are responsible for unlocking and resetting these accounts.

Table 2-1 lists the predefined administrative user accounts, which Oracle Database
automatically creates when you run standard scripts (such as the various cat*. sql Scripts).
You can find a complete list of user accounts that are created and maintained by Oracle by
querying the USERNAME and ORACLE MAINTAINED columns of the ALL USERS data dictionary view.
If the output for ORACLE MAINTAINED is Y, then you must not modify the user account except by
running the script that was used to create it.

To find the status of an account, such as whether it is open, locked, or expired, query the
ACCOUNT_STATUS column of the DBA USERS data dictionary view. If the account is schema only,
then the status is NONE.

Table 2-1 Predefined Oracle Database Administrative User Accounts
]

User Account Description

ANONYMOUS An account that allows HTTP access to Oracle XML DB. It is used in place of the
APEX PUBLIC USER account when the Embedded PL/SQL Gateway (EPG) is installed in the
database.

EPG is a Web server that can be used with Oracle Database. It provides the necessary
infrastructure to create dynamic applications.

APPQOSSYS Used for storing and managing all data and metadata required by Oracle Quality of Service
Management.

ORACLE 539

Chapter 2
Predefined Schema User Accounts Provided by Oracle Database

Table 2-1 (Cont.) Predefined Oracle Database Administrative User Accounts

- ___|]
User Account Description

AUDSYS The internal account used by the unified audit feature to store unified audit trail records.
See When and Where Are Audit Records Created?.
CTXSYS The account used to administer Oracle Text. Oracle Text enables you to build text query

applications and document classification applications. It provides indexing, word and theme
searching, and viewing capabilities for text.

See Oracle Text Application Developer's Guide.

DBSNMP The account used by the Management Agent component of Oracle Enterprise Manager to
monitor and manage the database.

See Enterprise Manager Cloud Control Administrator's Guide.
DBSFWUSER The account used to run the DBMS SFEW ACL ADMIN package.
See Oracle Database PL/SQL Packages and Types Reference.

DVF The account owned by Oracle Database Vault that contains public functions to retrieve
Database Vault factor values.

See Oracle Database Vault Administrator's Guide

DVSYS Oracle Database Vault account that is associated with the DV_OWNER (for administrative
configurations) and DV_ACCTMGR (for account management) roles.
See Oracle Database Vault Administrator's Guide

GGSYS The internal account used by Oracle GoldenGate. It should not be unlocked or used for a
database login.
See Oracle Database Global Data Services Concepts and Administration Guide

GSMADMIN INTERNAL The internal account that owns the Global Data Services schema. It should not be unlocked or
used for a database login.
See Oracle Database Global Data Services Concepts and Administration Guide

GSMCATUSER The account used by Global Service Manager to connect to the Global Data Services catalog.
See Oracle Database Global Data Services Concepts and Administration Guide
GSMROOTUSER An account that is used to log into CDBSROOT for CDBs in a sharding configuration. This user is

not used in GDS configurations. Any connections to CDBSROOT in a CDB are with GSMROOTUSER.

GSMUSER The account used by Global Service Manager to connect to the database.
See Oracle Database Global Data Services Concepts and Administration Guide

LBACSYS The account used to administer Oracle Label Security (OLS). It is created only when you install
the Label Security custom option.
See Oracle Label Security Administrator's Guide.

MDSYS The Oracle Spatial and Oracle Multimedia Locator administrator account.
See Oracle Spatial and Graph Developer's Guide.

0JVMSYS The account that is used with the Java Naming and Directory Interface (JNDI) support with
Oracle JVM support. This account owns database tables that store the following details about

JVM objects: namespace metadata, bound names, attributes, permissions, and stored object
representations.

See Oracle Database Java Developer’'s Guide.

OLAPSYS The account that owns the OLAP Catalog (CWMLite). This account has been deprecated, but is
retained for backward compatibility.

ORDDATA This account contains the Oracle Multimedia DICOM data model. See Oracle Multimedia
DICOM Developer's Guide for more information.

ORACLE 533

Chapter 2
Predefined Schema User Accounts Provided by Oracle Database

Table 2-1 (Cont.) Predefined Oracle Database Administrative User Accounts

- ___|]
User Account Description

ORDPLUGINS The Oracle Multimedia user. Plug-ins supplied by Oracle and third-party, format plug-ins are
installed in this schema.

Oracle Multimedia enables Oracle Database to store, manage, and retrieve images, audio,
video, DICOM format medical images and other objects, or other heterogeneous media data
integrated with other enterprise information.

See Oracle Multimedia User's Guide .
ORDSYS The Oracle Multimedia administrator account.
See Oracle Multimedia User's Guide .

OUTLN The account that supports plan stability. Plan stability enables you to maintain the same
execution plans for the same SQL statements. OUTLN acts as a role to centrally manage
metadata associated with stored outlines.

REMOTE SCHEDULER AGE The account to disable remote jobs on a database. This account is created during the remote
NT scheduler agent configuration. You can disable the capability of a database to run remote jobs
by dropping this user.

See Oracle Database Administrator's Guide.
SI_INFORMIN SCHEMA The account that stores the information views for the SQL/MM Still Image Standard.
See Oracle Multimedia User's Guide .
Note: The ST INFORMTN SCHEMA account is deprecated in Oracle Database 12c release 2
(12.2).
SYS An account used to perform database administration tasks.
See Oracle Database 2 Day DBA.

SYSSUMF The account used to administer Remote Management Framework, including the remote
Automatic Workload Repository (AWR).

See Oracle Database Performance Tuning Guide.
SYSBACKUP The account used to perform Oracle Recovery Manager recovery and backup operations.
See Oracle Database Backup and Recovery User’s Guide.
SYSDG The account used to perform Oracle Data Guard operations.
See Oracle Data Guard Concepts and Administration.
SYSKM The account used to manage Transparent Data Encryption.
See Oracle Database Advanced Security Guide.
SYSRAC The account used to manage Oracle Real Application Clusters.
See Oracle Real Application Clusters Administration and Deployment Guide.
SYSTEM A default generic database administrator account for Oracle databases.

For production systems, Oracle recommends creating individual database administrator
accounts and not using the generic SYSTEM account for database administration operations.

See Oracle Database 2 Day DBA.
WMSYS The account used to store the metadata information for Oracle Workspace Manager.
See Oracle Database Workspace Manager Developer's Guide.

XDB The account used for storing Oracle XML DB data and metadata. For better security, never
unlock the XDB user account.

Oracle XML DB provides high-performance XML storage and retrieval for Oracle Database data.
See Oracle XML DB Developer’'s Guide.

ORACLE 534

Chapter 2
Predefined Schema User Accounts Provided by Oracle Database

Note:

If you create an Oracle Automatic Storage Management (Oracle ASM) instance, then
the ASMSNMP account is created. Oracle Enterprise Manager uses this account to
monitor ASM instances to retrieve data from ASM-related data dictionary views. The
ASMSNMP account status is set to OPEN upon creation, and it is granted the SYSDBA
administrative privilege.

2.6.3 Predefined Non-Administrative User Accounts

A default Oracle Database installation provides non-administrative user accounts to manage
features such as Oracle Spatial.

Table 2-2 lists the predefined non-administrative user accounts that Oracle Database
automatically creates when you run standard scripts (such as the various cat*.sql scripts).
You can find a complete list of user accounts that are created and maintained by Oracle by
querying the USERNAME and ORACLE MAINTAINED columns of the ALL USERS data dictionary view.
If the output for ORACLE MAINTAINED is Y, then you must not modify the user account except by
running the script that was used to create it.

Non-administrative user accounts only have the minimum privileges needed to perform their
jobs. Their default tablespace is USERS. In a multitenant environment, the predefined non-
administrative accounts reside in the root database

To protect these accounts from unauthorized access, the installation process locks and expires
these accounts immediately after installation, except where noted in the following table. As the
database administrator, you are responsible for unlocking and resetting these accounts.

To find the status of an account, such as whether it is open, locked, or expired, query the
ACCOUNT_STATUS column of the DBA USERS data dictionary view. If the account is schema only,
then the status is NONE.

Table 2-2 Predefined Oracle Database Non-Administrative User Accounts

|
User Account Description

DIP The Oracle Directory Integration and Provisioning (DIP) account that is installed with Oracle
Label Security. This profile is created automatically as part of the installation process for
Oracle Internet Directory-enabled Oracle Label Security.

See Oracle Label Security Administrator's Guide.

MDDATA The schema used by Oracle Spatial for storing Geocoder and router data.

Oracle Spatial provides a SQL schema and functions that enable you to store, retrieve,
update, and query collections of spatial features in an Oracle database.

See Oracle Spatial and Graph Developer's Guide.

ORACLE _OCM The account used with Oracle Configuration Manager. This feature enables you to
associate the configuration information for the current Oracle Database instance with My
Oracle Support. Then when you log a service request, it is associated with the database
instance configuration information.

See Oracle Database Installation Guide for your platform.
XSSNULL An internal account that represents the absence of database user in a session and the

actual session user is an application user supported by Oracle Real Application Security.
XS$SNULL has no privileges and does not own any database object. No one can authenticate

as XS$SNULL, nor can authentication credentials ever be assigned to XSSNULL.

ORACLE 535

Chapter 2
Database User and Profile Data Dictionary Views

2.6.4 Predefined Sample Schema User Accounts

Oracle Database creates a set of sample user accounts if you install the sample schemas.

The sample schema user accounts are all non-administrative accounts, and their tablespace is
USERS.

To protect these accounts from unauthorized access, the installation process locks and expires
these accounts immediately after installation. As the database administrator, you are
responsible for unlocking and resetting these accounts.

Table 2-3 lists the sample schema user accounts, which represent different divisions of a
fictional company that manufactures various products. You can find the status of these
accounts by querying the DBA USERS data dictionary view. Because the ORACLE MAINTAINED
column output for these accounts is N, you can modify these accounts without re-running the
scripts that were used to create them.

To find the status of an account, such as whether it is open, locked, or expired, query the
ACCOUNT_STATUS column of the DBA USERS data dictionary view. If the account is schema only,

then the status is NONE.

Table 2-3 Default Sample Schema User Accounts
|

User Account

Description

HR

OE

PM

IX

SH

The account used to manage the HR (Human Resources) schema. This schema stores information about
the employees and the facilities of the company.

The account used to manage the OE (Order Entry) schema. This schema stores product inventories and
sales of the company's products through various channels.

The account used to manage the PM (Product Media) schema. This schema contains descriptions and
detailed information about each product sold by the company.

The account used to manage the IX (Information Exchange) schema. This schema manages shipping
through business-to-business (B2B) applications.

The account used to manage the SH (Sales) schema. This schema stores business statistics to facilitate
business decisions.

In addition to the sample schema accounts, Oracle Database provides another sample schema
account, SCOTT. The SCOTT schema contains the tables EMP, DEPT, SALGRADE, and BONUS. The
SCOTT account is used in examples throughout the Oracle Database documentation set. When
you install Oracle Database, the SCOTT account is locked and expired.

Related Topics

e Oracle Database Sample Schemas

2.7 Database User and Profile Data Dictionary Views

ORACLE

Oracle Database provides a set of data dictionary views that provide information about the
settings that you used to create users and profiles.

« Data Dictionary Views That List Information About Users and Profiles
Oracle Database provides a set of data dictionary views that contain information about
database users and profiles.

2-36

Chapter 2
Database User and Profile Data Dictionary Views

e Query to Find All Users and Associated Information
The DBA USERS data dictionary view shows all users and their associated information as

defined in the database.

e Query to List All Tablespace Quotas
The DBA TS QUOTAS data dictionary view lists all tablespace quotas assigned to each user.

e Query to List All Profiles and Assigned Limits
The DBA PROFILE view lists all profiles in the database and associated settings for each

limit in each profile.

e Query to View Memory Use for Each User Session
The v$SESSION dynamic view lists the memory use for each user session.

2.7.1 Data Dictionary Views That List Information About Users and Profiles

Oracle Database provides a set of data dictionary views that contain information about

database users and profiles.

Table 2-4 lists these data dictionary views.

Table 2-4 Data Dictionary Views That Display Information about Users and Profiles

View

Description

ALL_OBJECTS

ALL_USERS

DBA PROFILES

DBA TS_QUOTAS

DBA OBJECTS

DBA USERS
DBA_USERS_WITH DEFPWD
PROXY USERS
RESOURCE_COST

USER_PASSWORD LIMITS

USER_RESOURCE_LIMITS
USER_TS_QUOTAS
USER_OBJECTS
USER_USERS

V$SESSION

VS$SESSTAT

V$STATNAME

Describes all objects accessible to the current user

Lists users visible to the current user, but does not describe them
Displays all profiles and their limits

Describes tablespace quotas for users

Describes all objects in the database

Describes all users of the database

Lists all user accounts that have default passwords

Describes users who can assume the identity of other users

Lists the cost for each resource in terms of CPUs for each session,
reads for each session, connection times, and SGA

Describes the password profile parameters that are assigned to the
user

Displays the resource limits for the current user
Describes tablespace quotas for users

Describes all objects owned by the current user
Describes only the current user

Lists session information for the current database session
Displays user session statistics

Displays decoded statistic names for the statistics shown in the
VS$SESSTAT view

The following sections present examples of using these views. These examples assume that
the following statements have been run. The users are all local users.

CREATE PROFILE clerk LIMIT

SESSIONS PER USER 1
IDLE TIME 30

ORACLE

2-37

Chapter 2
Database User and Profile Data Dictionary Views

CONNECT TIME 600;

CREATE USER jfee

IDENTIFIED BY password
DEFAULT TABLESPACE example
TEMPORARY TABLESPACE temp
QUOTA 500K ON example
PROFILE clerk

CONTAINER = CURRENT;

CREATE USER dcranney
IDENTIFIED BY password
DEFAULT TABLESPACE example
TEMPORARY TABLESPACE temp
QUOTA unlimited ON example
CONTAINER = CURRENT;

CREATE USER userscott
IDENTIFIED BY password
CONTAINER = CURRENT;

Related Topics

e QOracle Database Reference

2.7.2 Query to Find All Users and Associated Information

The DBA USERS data dictionary view shows all users and their associated information as
defined in the database.

For detailed information about the DBA USERS view, see Oracle Database Reference.

For example:

col username format all

col profile format all

col account status format al9

col authentication type format a29

SELECT USERNAME, PROFILE, ACCOUNT STATUS, AUTHENTICATION TYPE FROM DBA USERS;

USERNAME PROFILE ACCOUNT_STATUS AUTHENTICATION TYPE
SYS DEFAULT OPEN PASSWORD

SYSTEM DEFAULT OPEN PASSWORD

USERSCOTT DEFAULT OPEN PASSWORD

JFEE CLERK OPEN GLOBAL

DCRANNEY DEFAULT OPEN EXTERNAL

2.7.3 Query to List All Tablespace Quotas

The DBA TS QUOTAS data dictionary view lists all tablespace quotas assigned to each user.
For detailed information about this view, see Oracle Database Reference.
For example:

SELECT * FROM DBA TS QUOTAS;

TABLESPACE USERNAME BYTES MAX BYTES BLOCKS MAX BLOCKS

ORACLE 5 38

ORACLE

EXAMPLE JFEE

0 512000

EXAMPLE DCRANNEY 0 -1

Chapter 2

Database User and Profile Data Dictionary Views

250
-1

When specific quotas are assigned, the exact number is indicated in the MAX BYTES column.
This number is always a multiple of the database block size, so if you specify a tablespace

guota that is not a multiple of the database block size, then it is rounded up accordingly.

Unlimited quotas are indicated by -1.

2.7.4 Query to List All Profiles and Assigned Limits

The DBA PROFILE view lists all profiles in the database and associated settings for each limit in

each profile.

For example:

SELECT * FROM DBA PROFILES

ORDER BY PROFILE;

PROFILE

DEFAULT
DEFAULT
DEFAULT
DEFAULT
DEFAULT
DEFAULT
DEFAULT
DEFAULT
DEFAULT
DEFAULT
DEFAULT
DEFAULT
DEFAULT
DEFAULT
DEFAULT
DEFAULT
DEFAULT
DEFAULT

34 rows selected.

To find the default profile values, you can run the following query:

RESOURCE_NAME
COMPOSITE LIMIT
FAILED LOGIN ATTEMPTS
PASSWORD LIFE TIME
PASSWORD_REUSE_TIME
PASSWORD REUSE_MAX
PASSWORD_VERIFY FUNCTION
PASSWORD LOCK_TIME
PASSWORD_GRACE_TIME
PRIVATE SGA

CONNECT TIME

IDLE_TIME
LOGICAL READS PER CALL
LOGICAL READS PER SESSION
CPU_PER CALL

CPU_PER SESSION
SESSIONS PER USER
COMPOSITE LIMIT

PRIVATE SGA

SESSIONS PER_USER
CPU_PER CALL
LOGICAL READS PER CALL
CONNECT TIME

IDLE_TIME
LOGICAL READS PER SESSION
CPU_PER SESSION
FAILED LOGIN ATTEMPTS
PASSWORD LIFE_TIME
PASSWORD REUSE_MAX
PASSWORD LOCK_TIME
PASSWORD_GRACE_TIME
PASSWORD_VERIFY FUNCTION
PASSWORD_REUSE_TIME
INACTIVE ACCOUNT TIME
PASSWORD ROLLOVER TIME

RESOURCE TYPE
KERNEL
PASSWORD
PASSWORD
PASSWORD
PASSWORD
PASSWORD
PASSWORD
PASSWORD
KERNEL
KERNEL
KERNEL
KERNEL
KERNEL
KERNEL
KERNEL
KERNEL
KERNEL
KERNEL
KERNEL
KERNEL
KERNEL
KERNEL
KERNEL
KERNEL
KERNEL
PASSWORD
PASSWORD
PASSWORD
PASSWORD
PASSWORD
PASSWORD
PASSWORD
KERNEL
PASSWORD

SELECT * FROM DBA PROFILES WHERE PROFILE = 'DEFAULT';

LIMIT
DEFAULT
DEFAULT
DEFAULT
DEFAULT
DEFAULT
DEFAULT
DEFAULT
DEFAULT
DEFAULT
600
30
DEFAULT
DEFAULT
DEFAULT
DEFAULT
1
UNLIMITED
UNLIMITED
UNLIMITED
UNLIMITED
UNLIMITED
UNLIMITED
UNLIMITED
UNLIMITED
UNLIMITED
10
180
UNLIMITED
1
7
UNLIMITED
UNLIMITED
UNLIMITED
0

2-39

Chapter 2

Database User and Profile Data Dictionary Views

PROFILE RESOURCE_NAME RESOURCE _TYPE LIMIT
DEFAULT COMPOSITE LIMIT KERNEL UNLIMITED
DEFAULT SESSIONS PER USER KERNEL UNLIMITED
DEFAULT CPU_PER_SESSION KERNEL UNLIMITED
DEFAULT CPU_PER CALL KERNEL UNLIMITED
DEFAULT LOGICAL READS PER SESSION KERNEL UNLIMITED
DEFAULT LOGICAL READS PER CALL KERNEL UNLIMITED
DEFAULT IDLE TIME KERNEL UNLIMITED
DEFAULT CONNECT_TIME KERNEL UNLIMITED
DEFAULT PRIVATE SGA KERNEL UNLIMITED
DEFAULT FAILED LOGIN ATTEMPTS PASSWORD 10
DEFAULT PASSWORD LIFE TIME PASSWORD 180
DEFAULT PASSWORD REUSE TIME PASSWORD UNLIMITED
DEFAULT PASSWORD REUSE MAX PASSWORD UNLIMITED
DEFAULT PASSWORD VERIFY FUNCTION PASSWORD NULL
DEFAULT PASSWORD LOCK_TIME PASSWORD 1

DEFAULT PASSWORD GRACE TIME PASSWORD 7

16 rows selected.

Related Topics

e QOracle Database Reference

2.7.5 Query to View Memory Use for Each User Session

ORACLE

The v$SESSION dynamic view lists the memory use for each user session.

For detailed information on this view, see Oracle Database Reference.

The following query lists all current sessions, showing the Oracle Database user and current

User Global Area (UGA) memory use for each session:

SELECT USERNAME, VALUE || 'bytes' "Current UGA memory"
FROM VSSESSION sess, VS$SSESSTAT stat, VS$STATNAME name
WHERE sess.SID = stat.SID
AND stat.STATISTIC# = name.STATISTIC#
AND name.NAME = 'session uga memory';

USERNAME
18636bytes
17464bytes
19180bytes
18364bytes
39384bytes
35292bytes
17696bytes
15868bytes

USERSCOTT 42244bytes

SYS 98196bytes

SYSTEM 30648bytes

Current UGA memory

11 rows selected.

To see the maximum UGA memory allocated to each session since the instance started,
replace 'session uga memory' in the preceding query with 'session uga memory max"'.

2-40

Configuring Authentication

ORACLE

Authentication means to verify the identity of users or other entities that connect to the
database.

About Authentication
Authentication means verifying the identity of a user, device, or other entity who wants to
use data, resources, or applications.

Configuring Password Protection
You can secure user passwords in a variety of ways, such as controlling the password
creation requirements or using password management policies.

Authentication of Database Administrators
You can authenticate database administrators by using strong authentication, from the
operating system, or from the database using passwords.

Database Authentication of Users
Database authentication of users entails using information within the database itself to
perform the authentication.

Schema-Only Accounts
You can create schema-only accounts, that is, the schema user has no password.

Operating System Authentication of Users
Oracle Database can authenticate by using information that is maintained by the operating
system.

Network Authentication of Users
You can authenticate users over a network by using Transport Layer Security with third-
party services.

Configuring Operating System Users for a PDB
The DBMS_CREDENTIAL.CREATE CREDENTIAL procedure configures user accounts to be
operating system users for a PDB.

Global User Authentication and Authorization
Global user authentication and authorization enables you to centralize the management of
user-related information.

Configuring an External Service to Authenticate Users and Passwords
An external service (the operating system or the network) can administer passwords and
authenticate users.

Multitier Authentication and Authorization
Oracle Database secures middle-tier applications by limiting privileges, preserving client
identities through all tiers, and auditing actions by clients.

Administration and Security in Clients, Application Servers, and Database Servers
In a multitier environment, an application server provides data for clients and serves as an
interface to one or more database servers.

Preserving User Identity in Multitiered Environments
You can use middle tier servers for proxy authentication and client identifiers to identify
application users who are not known to the database.

3-1

Chapter 3
About Authentication

« User Authentication Data Dictionary Views
Oracle Database provides data dictionary views that list information about user
authentication, such as roles that users have or profiles they use.

3.1 About Authentication

Authentication means verifying the identity of a user, device, or other entity who wants to use
data, resources, or applications.

Validating this identity establishes a trust relationship for further interactions. Authentication
also enables accountability by making it possible to link access and actions to specific
identities. After authentication, authorization processes can allow or limit the levels of access
and action permitted to that entity.

You can authenticate both database and nondatabase users for an Oracle database. For
simplicity, the same authentication method is generally used for all database users, but Oracle
Database allows a single database instance to use any or all methods. Oracle Database
requires special authentication procedures for database administrators, because they perform
special database operations. Oracle Database also encrypts passwords during transmission to
ensure the security of network authentication.

After authentication, authorization processes can allow or limit the levels of access and action
permitted to that entity.

Related Topics

e Configuring Privilege and Role Authorization
Privilege and role authorization controls the permissions that users have to perform day-to-
day tasks.

3.2 Configuring Password Protection

ORACLE

You can secure user passwords in a variety of ways, such as controlling the password creation
requirements or using password management policies.

* What Are the Oracle Database Built-in Password Protections?
Oracle Database provides a set of built-in password protections designed to protect your
users' passwords.

* Minimum Requirements for Passwords
Oracle provides a set of minimum requirements for passwords.

* Creating a Password by Using the IDENTIFIED BY Clause
SQL statements that accept the IDENTIFIED BY clause also enable you to create
passwords.

e Using a Password Management Policy
A password management policy can create and enforce a set of restrictions that can better
secure user passwords.

* Managing Gradual Database Password Rollover for Applications
A gradual database password rollover enables the database password of an application to
be updated while avoiding application downtime while the new password is propagated to
application clients, by allowing the older password to remain valid for a specified period.

* Managing the Complexity of Passwords
Oracle Database provides a set of functions that you can use to manage the complexity of
passwords.

3-2

Chapter 3
Configuring Password Protection

Managing Password Case Sensitivity
You can manage the password case sensitivity for passwords from user accounts from
previous releases.

Ensuring Against Password Security Threats by Using the 12C Password Version
The 12¢C password version enables users to create complex passwords that meet
compliance standards.

Managing the Secure External Password Store for Password Credentials
The secure external password store is a client-side wallet that is used to store password
credentials.

Managing Passwords for Administrative Users
The passwords of administrative users have special protections, such as password files
and password complexity functions.

3.2.1 What Are the Oracle Database Built-in Password Protections?

Oracle Database provides a set of built-in password protections designed to protect your users'
passwords.

ORACLE

These password protections are as follows:

Password encryption. Oracle Database automatically and transparently encrypts
passwords during network (client-to-server and server-to-server) connections, using
Advanced Encryption Standard (AES) before sending them across the network. However,
a password that is specified within a SQL statement (such as CREATE USER user name
IDENTIFIED BY password;) is still transmitted across the network in clear text in the
network trace files. For this reason, you should have native network encryption enabled or
configure Transport Layer Security (TLS) encryption.

Password complexity checking. In a default installation, Oracle Database provides the
oral2c verify function and oral2c strong verify function password verification
functions to ensure that new or changed passwords are sufficiently complex to prevent
intruders who try to break into the system by guessing passwords. You must manually
enable password complexity checking. You can further customize the complexity of your
users' passwords.

Preventing passwords from being broken. If a user tries to log in to Oracle Database
multiple times using an incorrect password, Oracle Database delays each login by one
second. This protection applies for attempts made from different IP addresses or multiple
client connections. This feature significantly decreases the number of passwords that an
intruder would be able to try within a fixed time period when attempting to log in. The failed
login delay slows down each failed login attempt, increasing the overall time that is
required to perform a password-guessing attack, because such attacks usually require a
very large number of failed login attempts.

For non-administrative logins, Oracle Database protects against concurrent password
guessing attacks by setting an exclusive lock for the failed login delay. This prevents an
intruder from attempting to sidestep the failed login delay when the intruder tries the next
concurrent guess in a different database session as soon as the first guess fails and is
delayed.

By holding an exclusive lock on the account that is being attacked, Oracle Database
mitigates concurrent password guessing attacks, but this can simultaneously leave the
account vulnerable to denial-of-service (DoS) attacks. To remedy this problem, you should
create a password profile where the FAILED LOGIN ATTEMPTS parameter is set to
UNLIMITED, and then apply this password profile to the user account. The value UNLIMITED
for the FAILED LOGIN ATTEMPTS parameter setting disables failed login delays and does not

3-3

Chapter 3
Configuring Password Protection

limit the number of failed login attempts. For these types of accounts, Oracle recommends
that you use a long random password.

The concurrent password-guessing attack protection does not apply to administrative user
connections, because these kinds of connections must remain available at all times and be
immune to denial-of-service attacks. Hence, Oracle recommends that you choose long
passwords for any administrative privileged account.

Enforced case sensitivity for passwords. Passwords are case sensitive. For example,
the password hPP5620qr fails if it is entered as hpp5620QR or hPp5620Qr. Case sensitivity
affects password files and database links.

Passwords hashed using the 12C password version. To verify the user's password and
enforce case sensitivity in password creation, Oracle Database uses the 12¢ password
version, which is based on a de-optimized algorithm that involves Password-Based Key
Derivation Function (PBKDF2) and the SHA-512 cryptographic hash functions.

Related Topics

Guidelines for Securing Passwords
Oracle provides guidelines for securing passwords in a variety of situations.

3.2.2 Minimum Requirements for Passwords

Oracle provides a set of minimum requirements for passwords.

Passwords can be at most 30 bytes long. There are a variety of ways that you can secure
passwords, ranging from requiring passwords to be of a sensible length to creating custom
password complexity verification scripts that enforce the password complexity policy
requirements that apply at your site.

Related Topics

Guidelines for Securing Passwords
Oracle provides guidelines for securing passwords in a variety of situations.

3.2.3 Creating a Password by Using the IDENTIFIED BY Clause

SQL statements that accept the IDENTIFIED BY clause also enable you to create passwords.

To create passwords for users, use the CREATE USER, ALTER USER, GRANT CREATE SESSION,
or CREATE DATABASE LINK SQL statement.

The following SQL statements create passwords with the IDENTIFIED BY clause.

CREATE USER psmith IDENTIFIED BY password;

GRANT CREATE SESSION TO psmith IDENTIFIED BY password;

ALTER USER psmith IDENTIFIED BY password;

CREATE DATABASE LINK AUTHENTICATED BY psmith IDENTIFIED BY password;

Related Topics

About Password Complexity Verification
Complexity verification checks that each password is complex enough to protect against
intruders who try to guess user passwords.

3.2.4 Using a Password Management Policy

A password management policy can create and enforce a set of restrictions that can better
secure user passwords.

ORACLE

3-4

Chapter 3
Configuring Password Protection

e About Managing Passwords
Database security systems that depend on passwords require that passwords be kept
secret at all times.

* Finding User Accounts That Have Default Passwords
The DBA USERS WITH DEFPWD data dictionary view can find user accounts that use default
passwords.

« Password Settings in the Default Profile
A profile is a collection of parameters that sets limits on database resources.

e Using the ALTER PROFILE Statement to Set Profile Limits
You can modify profile limits such as failed login attempts, password lock times, password
reuse, and several other settings.

« Disabling and Enabling the Default Password Security Settings
Oracle provides scripts that you can use to disable and enable the default password
security settings.

* Automatically Locking Inactive Database User Accounts
The INACTIVE ACCOUNT TIME profile parameter locks a user account that has not logged in
to the database instance in a specified number of days.

e Automatically Locking User Accounts After a Specified Number of Failed Log-in Attempts
Oracle Database can lock a user's account after a specified number of consecutive failed
log-in attempts.

e Example: Locking an Account with the CREATE PROFILE Statement
The CREATE PROFILE statement can lock user accounts if a user’s attempt to log in violates
the CREATE PROFILE settings.

» Explicitly Locking a User Account
When you explicitly lock a user account, the account cannot be unlocked automatically.
Only a security administrator can unlock the account.

e Controlling the User Ability to Reuse Previous Passwords
You can ensure that users do not reuse previous passwords for an amount of time or for a
number of password changes.

* About Controlling Password Aging and Expiration
You can specify a password lifetime, after which the password expires.

* Using the CREATE PROFILE or ALTER PROFILE Statement to Set a Password Lifetime
When you set a lifetime for a password, the user must create a new password when this
lifetime ends.

* Checking the Status of a User Account
You can check the status of any account, whether it is open, in grace, or expired.

* Password Change Life Cycle
After a password is created, it follows a life cycle and grace period in four phases.

e PASSWORD_LIFE_TIME Profile Parameter Low Value
Be careful if you set the PASSWORD LIFE TIME parameter of CREATE PROFILE Of ALTER
PROFILE to a low value (for example, 1 day).

3.2.4.1 About Managing Passwords

Database security systems that depend on passwords require that passwords be kept secret at
all times.

ORACLE .

Chapter 3
Configuring Password Protection

Because passwords are vulnerable to theft and misuse, Oracle Database uses a password
management policy. Database administrators and security officers control this policy through
user profiles, enabling greater control of database security.

You can use the CREATE PROFILE statement to create a user profile. The profile is assigned to a
user with the CREATE USER or ALTER USER Statement.

3.2.4.2 Finding User Accounts That Have Default Passwords

The DBA USERS WITH DEFPWD data dictionary view can find user accounts that use default
passwords.

When you create a database, most of the default accounts are locked with the passwords
expired. If you have upgraded from an earlier release of Oracle Database, then you may have
user accounts that have default passwords. These are default accounts that are created when
you create a database, such as the HR, OE, and SCOTT accounts.

For greater security, you should change the passwords for these accounts. Using a default
password that is commonly known can make your database vulnerable to attacks by intruders.

1. Log in to the database instance using SQL*Plus with the SYSDBA administrative privilege.

For example:

sglplus sys as sysdba
Enter password: password

2. Query the DBA USERS_WITH DEFPWD data dictionary view.

For example, to find both the names of accounts that have default passwords and the
status of the account:

SELECT d.username, u.account status

FROM DBA USERS WITH DEFPWD d, DBA USERS u
WHERE d.username = u.username

ORDER BY 2,1;

USERNAME ACCOUNT_STATUS

SCOTT EXPIRED & LOCKED
3. Change the passwords for any accounts that the DBA USERS WITH DEFPWD view lists.

Oracle recommends that you do not assign these accounts passwords that they may have
had in previous releases of Oracle Database.

For example:
ALTER USER SCOTT ACCOUNT UNLOCK IDENTIFIED BY password;

Follow the guidelines in Minimum Requirements for Passwords to replace password with a
password that is secure.

3.2.4.3 Password Settings in the Default Profile

ORACLE

A profile is a collection of parameters that sets limits on database resources.

If you assign the profile to a user, then that user cannot exceed these limits. You can use
profiles to configure database settings such as sessions per user, logging and tracing features,
and so on. Profiles can also control user passwords. To find information about the current
password settings in the profile, you can query the DBA PROFILES data dictionary view.

3-6

Chapter 3
Configuring Password Protection

Table 3-1 lists the password-specific parameter settings in the default profile.

Table 3-1 Password-Specific Settings in the Default Profile

__|
Parameter Default Setting Description

INACTIVE ACCOUNT TIME UNLIMITED Locks the account of a database user who has
not logged in to the database instance in a
specified number of days.

FAILED LOGIN ATTEMPTS 10 Sets the maximum times a user try to log in and
to fail before locking the account.

Notes:

* When you set this parameter, take into
consideration users who may log in using the
CONNECT THROUGH privilege.

e You can set limits on the number of times an
unauthorized user (possibly an intruder)
attempts to log in to Oracle Call Interface
(OCI) applications by using the
SEC_MAX FAILED LOGIN ATTEMPTS
initialization parameter.

PASSWORD GRACE TIME 7 Sets the number of days that a user has to
change their password before it expires.

PASSWORD LIFE TIME 180 Sets the number of days the user can use their
current password.

PASSWORD LOCK TIME 1 Sets the number of days an account will be
locked after the specified number of consecutive
failed login attempts. After the time passes, then
the account becomes unlocked. This user's profile
parameter is useful to help prevent brute force
attacks on user passwords but not to increase the
maintenance burden on administrators.

Even after the value set by
PASSWORD LOCK TIME shows that the password
has expired, the DBA_ USERS data dictionary view
will show that the account is locked. However,
after the user connects, the information in

DBA USERS is updated with the correct OPEN
status.

PASSWORD REUSE MAX UNLIMITED Sets the number of password changes required
before the current password can be reused.

PASSWORD REUSE TIME UNLIMITED Sets the number of days before which a password
cannot be reused.

PASSWORD ROLLOVER TIME 0 Enables the gradual database password rollover
time.

Related Topics

* Managing Resources with Profiles
A profile is a named set of resource limits and password parameters that restrict database
usage and instance resources for a user.

e Automatically Locking Inactive Database User Accounts
The INACTIVE ACCOUNT TIME profile parameter locks a user account that has not logged in
to the database instance in a specified number of days.

ORACLE .

Chapter 3
Configuring Password Protection

« Configuration of the Maximum Number of Authentication Attempts
The SEC MAX FAILED LOGIN ATTEMPTS initialization parameter sets the number of
authentication attempts before the database will drop a failed connection.

e Automatically Locking User Accounts After a Specified Number of Failed Log-in Attempts
Oracle Database can lock a user's account after a specified number of consecutive failed
log-in attempts.

e About Controlling Password Aging and Expiration
You can specify a password lifetime, after which the password expires.

e Controlling the User Ability to Reuse Previous Passwords
You can ensure that users do not reuse previous passwords for an amount of time or for a
number of password changes.

* Managing Resources with Profiles
A profile is a named set of resource limits and password parameters that restrict database
usage and instance resources for a user.

* Managing Resources with Profiles
A profile is a named set of resource limits and password parameters that restrict database
usage and instance resources for a user.

3.2.4.4 Using the ALTER PROFILE Statement to Set Profile Limits

You can modify profile limits such as failed login attempts, password lock times, password
reuse, and several other settings.

These settings are described in Table 3-1. For greater security, use the default settings that are
described in this table, based on your needs.

* Usethe ALTER PROFILE statement to modify a user's profile limits.
For example:

ALTER PROFILE prof LIMIT
FAILED LOGIN ATTEMPTS 9
PASSWORD LOCK TIME 10
INACTIVE ACCOUNT TIME 21;

3.2.4.5 Disabling and Enabling the Default Password Security Settings

ORACLE

Oracle provides scripts that you can use to disable and enable the default password security
settings.

If your applications use the default password security settings from Oracle Database 10g
release 2 (10.2), then you can revert to these settings until you modify the applications to use
the default password security settings from Oracle Database 11g or later.

1. Modify your applications to conform to the password security settings from Oracle
Database 11g or later.

2. Update your database to use the security configuration that suits your business needs,
using one of the following methods:

e Manually update the database security configuration.

* Run the secconf.sql script to apply the default password settings from Oracle
Database 11g or later. You can customize this script to have different security settings
if you like, but remember that the settings listed in the original script are Oracle-
recommended settings.

3-8

Chapter 3
Configuring Password Protection

If you created your database manually, then you should run the secconf.sqgl script to apply the
Oracle default password settings to the database. Databases that have been created with
Database Configuration Assistant (DBCA) will have these settings, but manually created
databases do not.

The secconf.sql scriptis in the SORACLE HOME/rdbms/admin directory. The secconf.sql script
affects both password and audit settings. It has no effect on other security settings.

3.2.4.6 Automatically Locking Inactive Database User Accounts

The INACTIVE ACCOUNT TIME profile parameter locks a user account that has not logged in to
the database instance in a specified number of days.

Users are considered active users if they log in periodically. The INACTIVE ACCOUNT TIME
timing is based on the number of days after the last time a user successfully logs in.

e To lock user accounts automatically after a specified number of days, set the
INACTIVE ACCOUNT TIME profile parameter in the CREATE PROFILE Of ALTER PROFILE
statement.

Note the following:

The default value for INACTIVE ACCOUNT TIME iS UNLIMITED.

You must specify a whole number for the number of days. The minimum setting is 15
and the maximum is 24855.

To set the user’s account to have an unlimited inactivity time, set the
INACTIVE ACCOUNT TIME tO UNLIMITED.

To set the user’s account to use the time specified by the default profile, set
INACTIVE ACCOUNT TIME tO DEFAULT.

You can set this parameter for all database authenticated users, including
administrative users, but not for external or global authenticated users.

In a read-only database, the last successful login is not considered in the

INACTIVE ACCOUNT TIME timing. It is not possible to lock a user account in a read-only
database (except by performing consecutive failed logins equal in number to the
account’s FAILED LOGIN ATTEMPTS password profile setting).

For a newly created user account, the timing begins at account creation time. When
this user logs out and then logs again, the timing starts when the user successfully
logs in.

In a multitenant environment, the INACTIVE ACCOUNT TIME setting applies to the last
time a common user logs in to the root. A common user is considered active if this user
logs in to any of the PDBs or the root.

For a proxy user account login, the INACTIVE ACCOUNT TIME begins the timing when
the proxy user logs in successfully.

For example, to create a profile that locks an account after 60 days of being inactive:

CREATE PROFILE time limit LIMIT
INACTIVE ACCOUNT TIME 60;

ORACLE

3-9

Chapter 3
Configuring Password Protection

3.2.4.7 Automatically Locking User Accounts After a Specified Number of Failed Log-

in Attempts

Oracle Database can lock a user's account after a specified number of consecutive failed log-in
attempts.

To lock user accounts automatically after a specified time interval or to require database
administrator intervention to be unlocked, set the PASSWORD LOCK TIME profile parameter in
the CREATE PROFILE or ALTER PROFILE statement.

For example, to set the time interval to 10 days:

PASSWORD LOCK TIME = 10

Note the following:

You can lock accounts manually, so that they must be unlocked explicitly by a database
administrator.

You can specify the permissible number of failed login attempts by using the CREATE
PROFILE statement. You can also specify the amount of time an account remains locked.

Each time the user unsuccessfully logs in, Oracle Database increases the delay
exponentially with each login failure.

If you do not specify a time interval for unlocking the account, then PASSWORD LOCK TIME
assumes the value specified in a default profile. (The recommended value is 1 day.) If you
specify PASSWORD _LOCK_TIME as UNLIMITED, then you must explicitly unlock the account by
using an ALTER USER statement. For example, assuming that PASSWORD LOCK TIME
UNLIMITED is specified for johndoe, then you use the following statement to unlock the
johndoe account:

ALTER USER johndoe ACCOUNT UNLOCK;

After a user successfully logs into an account, Oracle Database resets the unsuccessful
login attempt count for the user. If it is non-zero, then the count is set to zero.

In a multitenant environment, a locked CDB common user account will be locked across all
PDBs in the CDB. A locked application common user account will be locked across all
PDBs that are associated with the application root.

3.2.4.8 Example: Locking an Account with the CREATE PROFILE Statement

The CREATE PROFILE statement can lock user accounts if a user’s attempt to log in violates the
CREATE PROFILE settings.

ORACLE

Example 3-1 sets the maximum number of failed login attempts for the user johndoe to 10 (the
default), and the amount of time the account locked to 30 days. The account will unlock
automatically after 30 days.

Example 3-1 Locking an Account with the CREATE PROFILE Statement

CREATE PROFILE prof LIMIT

FAILED LOGIN ATTEMPTS 10
PASSWORD LOCK TIME 30

ALTER USER johndoe PROFILE prof;

3-10

Chapter 3
Configuring Password Protection

3.2.4.9 Explicitly Locking a User Account

When you explicitly lock a user account, the account cannot be unlocked automatically. Only a
security administrator can unlock the account.

In a multitenant environment, after you have locked a CDB common user account in the CDB
root, this user cannot log in to any PDB that is associated with this root, nor can this account
be unlocked in a PDB. In addition, you can lock a CDB common account locally in a PDB,
which will prevent the CDB common user from logging in to that PDB. Similarly, an application
common user account that is locked in the application root cannot log in to any PDB
associated with the application root, nor can the application common user be unlocked in an
application PDB. You can explicitly lock an application common user locally in an application
PDB.

e To explicitly lock a user account, use the CREATE USER or ALTER USER Statement.
For example, the following statement locks the user account, susan:

ALTER USER susan ACCOUNT LOCK;

3.2.4.10 Controlling the User Ability to Reuse Previous Passwords

You can ensure that users do not reuse previous passwords for an amount of time or for a
number of password changes.

e To ensure that users cannot reuse their passwords for a specified period of time, configure
the rules for password reuse with the CREATE PROFILE Or ALTER PROFILE Statements.

The following table lists the CREATE PROFILE and ALTER PROFILE parameters that control ability
of a user to reuse a previous password.

Table 3-2 Parameters Controlling Reuse of a Previous Password
|

Parameter Name

Description and Use

PASSWORD REUSE TIME Requires either of the following:

* A number specifying how many days (or a fraction of a day) between
the earlier use of a password and its next use

. The word UNLIMITED

PASSWORD REUSE MAX Requires either of the following:

* Aninteger to specify the number of password changes required
before a password can be reused

. The word UNLIMITED

ORACLE

If you do not specify a parameter, then the user can reuse passwords at any time, which is not
a good security practice.

If neither parameter is UNLIMITED, then password reuse is allowed, but only after meeting both
conditions. The user must have changed the password the specified number of times, and the
specified number of days must have passed since the previous password was last used.

For example, suppose that the profile of user A had PASSWORD REUSE MAX set to 10 and
PASSWORD REUSE TIME setto 30. User A cannot reuse a password until he or she has reset the
password 10 times, and until 30 days had passed since the password was last used.

If either parameter is specified as UNLIMITED, then the user can never reuse a password.

3-11

Chapter 3
Configuring Password Protection

If you set both parameters to UNLIMITED, then Oracle Database ignores both, and the user can
reuse any password at any time.

Note:

If you specify DEFAULT for either parameter, then Oracle Database uses the value
defined in the DEFAULT profile, which sets all parameters to UNLIMITED. Oracle
Database thus uses UNLIMITED for any parameter specified as DEFAULT, unless you
change the setting for that parameter in the DEFAULT profile.

Related Topics

e Oracle Database SQL Language Reference

3.2.4.11 About Controlling Password Aging and Expiration

You can specify a password lifetime, after which the password expires.

This means that the next time the user logs in with the current, correct password, he or she is
prompted to change the password. By default, there are no complexity or password history
checks, so users can still reuse any previous or weak passwords. You can control these factors
by setting the PASSWORD REUSE TIME, PASSWORD REUSE MAX, and PASSWORD VERIFY FUNCTION
parameters.

In addition, you can set a grace period, during which each attempt to log in to the database
account receives a warning message to change the password. If the user does not change it
by the end of that period, then Oracle Database expires the account.

As a database administrator, you can manually set the password state to be expired, which
sets the account status to EXPIRED. The user must then follow the prompts to change the
password before the logon can proceed.

For example, in SQL*Plus, suppose user SCOTT tries to log in with the correct credentials, but
his password has expired. User SCOTT will then see the ORA-28001: The password has
expired error and be prompted to change his password, as follows:

Changing password for scott

New password: new password
Retype new password: new password
Password changed.

Related Topics

e Controlling the User Ability to Reuse Previous Passwords
You can ensure that users do not reuse previous passwords for an amount of time or for a
number of password changes.

e About Password Complexity Verification
Complexity verification checks that each password is complex enough to protect against
intruders who try to guess user passwords.

ORACLE 310

Chapter 3
Configuring Password Protection

3.2.4.12 Using the CREATE PROFILE or ALTER PROFILE Statement to Set a
Password Lifetime

When you set a lifetime for a password, the user must create a new password when this
lifetime ends.

e Use the CREATE PROFILE Or ALTER PROFILE statement to specify a lifetime for passwords.

The following example demonstrates how to create and assign a profile to user johndoe, and
the PASSWORD LIFE TIME clause specifies that johndoe can use the same password for 180
days before it expires.

CREATE PROFILE prof LIMIT
FAILED LOGIN ATTEMPTS 4
PASSWORD GRACE TIME 3
PASSWORD LIFE TIME 180;

ALTER USER johndoe PROFILE prof;

Related Topics

e Password Change Life Cycle
After a password is created, it follows a life cycle and grace period in four phases.

3.2.4.13 Checking the Status of a User Account

You can check the status of any account, whether it is open, in grace, or expired.

» To check the status of a user account, query the ACCOUNT STATUS column of the DBA USERS
data dictionary view.

For example:

SELECT ACCOUNT STATUS FROM DBA USERS WHERE USERNAME = 'username';

3.2.4.14 Password Change Life Cycle

ORACLE

After a password is created, it follows a life cycle and grace period in four phases.

The following diagram shows the life cycle of the password lifetime and grace period.

3-13

ORACLE

Figure 3-1 Password Change Life Cycle

Chapter 3

Configuring Password Protection

Last Password Change First Login After Password Expires
Password Lifetime
Ends
\4 \4
PASSWORD_LIFE_TIME User makes no PASSWORD_GRACE_TIME | [User is prompted
Password Profile authentication Password Profile to change his
Setting (180 days attempts during Setting (7 days password during
by default) this time. by default) this time
Phase number: 1 2 3 4
DBA_USERS.
ACCOUNT_STATUS : OPEN EXPIRED (GRACE) EXPIRED
Errors during ORA-28002: ORA-28001:
phase: None The .pass_word will The pass_word
expire in n days has expired
Prompted for new
password? e i Yes
In this figure:

Phase 1: After the user account is created, or the password of an existing account is
changed, the password lifetime period begins.

Phase 2: This phase represents the period of time after the password lifetime ends but
before the user logs in again with the correct password. The correct credentials are
needed for Oracle Database to update the account status. Otherwise, the account status
will remain unchanged. Oracle Database does not have any background process to update
the account status. All changes to the account status are driven by the Oracle Database
server process on behalf of authenticated users.

Phase 3: When the user finally does log in, the grace period begins. Oracle Database then
updates the DBA USERS.EXPIRY DATE column to a new value using the current time plus the
value of the PASSWORD GRACE TIME setting from the account's password profile. At this
point, the user receives an ORA-28002 warning message about the password expiring in
the near future (for example, ORA-28002 The password will expire within 7 days if
PASSWORD GRACE TIME is setto 7 days), but the user can still log in without changing the
password. The DBA USERS.EXPIRY DATE column shows the time in the future when the user
will be prompted to change their password.

Phase 4: After the grace period (Phase 3) ends, the ORA-28001: The password has
expired error appears, and the user is prompted to change the password after entering the
current, correct password before the authentication can proceed. If the user has an Oracle
Active Data Guard configuration, where there is a primary and a stand-by database, and
the authentication attempt is made on the standby database (which is a read-only
database), then the ORA-28032: Your password has expired and the database is set
to read-only error appears. The user should log into the primary database and change
the password there.

During any of these four phases, you can query the DBA USERS data dictionary view to find the
user's account status in the DBA USERS.ACCOUNT STATUS column.

In the following example, the profile assigned to johndoe includes the specification of a grace

period: PASSWORD GRACE TIME =

3 (the recommended value). The first time johndoe tries to log

3-14

Chapter 3
Configuring Password Protection

in to the database after 90 days (this can be any day after the 90th day, that is, the 91st day,
100th day, or another day), he receives a warning message that his password will expire in 3
days. If 3 days pass, and if he does not change his password, then the password expires. After
this, he receives a prompt to change his password on any attempt to log in.

CREATE PROFILE prof LIMIT
FAILED LOGIN ATTEMPTS 4
PASSWORD LIFE TIME 90
PASSWORD GRACE TIME 3;

ALTER USER johndoe PROFILE prof;

A database administrator or a user who has the ALTER USER system privilege can explicitly
expire a password by using the CREATE USER and ALTER USER Sstatements. The following
statement creates a user with an expired password. This setting forces the user to change the
password before the user can log in to the database.

CREATE USER jbrown
IDENTIFIED BY password

PASSWORD EXPIRE;

There is no "password unexpire” clause for the CREATE USER statement, but an account can be
"unexpired" by changing the password on the account.

3.2.4.15 PASSWORD _LIFE_TIME Profile Parameter Low Value

ORACLE

Be careful if you set the PASSWORD LIFE TIME parameter of CREATE PROFILE Of ALTER PROFILE
to a low value (for example, 1 day).

The PASSWORD LIFE TIME limit of a profile is measured from the last time that an account's
password is changed, or the account creation time if the password has never been changed.
These dates are recorded in the PTIME (password change time) and CTIME (account creation
time) columns of the SYS.USERS system table. The PASSWORD LIFE TIME limit is not measured
starting from the timestamp of the last change to the PASSWORD LIFE TIME profile parameter, as
may be initially thought. Therefore, any accounts affected by the changed profile whose last
password change time was more than PASSWORD LIFE TIME days ago immediately expire and
enter their grace period on their next connection, issuing the ORA-28002: The password will
expire within n days warning.

As a database administrator, you can find an account's last password change time as follows:
ALTER SESSION SET NLS DATE FORMAT='DD-MON-YYYY HH24:MI:SS';
SELECT PTIME FROM SYS.USER$ WHERE NAME = 'user name'; -- Password change time

To find when the account was created and the password expiration date, issue the following
query:

SELECT CREATED, EXPIRY DATE FROM DBA USERS WHERE USERNAME = 'user_name‘;

If the user who is assigned this profile is currently logged in when you set the
PASSWORD LIFE TIME parameter and remains logged in, then Oracle Database does not
change the user's account status from OPEN to EXPIRED (GRACE) when the currently listed

expiration date passes. The timing begins only when the user logs into the database. You can
check the user's last login time as follows:

SELECT LAST LOGIN FROM DBA USERS WHERE USERNAME = 'user name';

3-15

Chapter 3
Configuring Password Protection

When making changes to a password profile, a database administrator must be aware that if
some of the users who are subject to this profile are currently logged in to the Oracle database
while their password profile is being updated by the administrator, then those users could
potentially remain logged in to the system even beyond the expiration date of their password.
You can find the currently logged in users by querying the USERNAME column of the V$SESSION
view.

This is because the expiration date of a user's password is based on the timestamp of the last
password change on their account plus the value of the PASSWORD LIFE TIME password profile
parameter set by the administrator. It is not based on the timestamp of the last change to the
password profile itself.

Note the following:

» If the user is not logged in when you set PASSWORD LIFE TIME to alow value, then the
user's account status does not change until the user logs in.

* You can set the PASSWORD LIFE TIME parameter to UNLIMITED, but this only affects
accounts that have not entered their grace period. After the grace period expires, the user
must change the password.

3.2.5 Managing Gradual Database Password Rollover for Applications

ORACLE

A gradual database password rollover enables the database password of an application to be
updated while avoiding application downtime while the new password is propagated to
application clients, by allowing the older password to remain valid for a specified period.

e About Managing Gradual Database Password Rollover for Applications
You can configure a gradual database password rollover process to begin for database
application clients when the database administrator changes the database password for
the application.

e Password Change Life Cycle During a Gradual Database Password Rollover
After a password is created or changed, it follows a life cycle and grace period in four
phases.

e Enabling the Gradual Database Password Rollover
To enable the gradual database password rollover, you must configure the
PASSWORD ROLLOVER TIME user profile parameter.

e Changing a Password to Begin the Gradual Database Password Rollover Period
After you have set a non-zero PASSWORD ROLLOVER TIME value, change the user's
password and update the password with all the applications.

¢ Changing a Password During the Gradual Database Password Rollover Period
After the rollover period has begun, you can still change the password.

¢ Ending the Password Rollover Period
There are multiple ways in which you can end the password rollover period.

« Database Behavior During the Gradual Password Rollover Period
Users can perform their standard password changes and logins during the password
rollover period.

» Database Server Behavior After the Password Rollover Period Ends
Oracle Database performs clean-up operations after the gradual database password
rollover period ends.

3-16

Chapter 3
Configuring Password Protection

e Guideline for Handling Compromised Passwords
If a database account password is suspected of being compromised, then you should
change the password immediately.

* How Gradual Database Password Rollover Works During Oracle Data Pump Exports
When a user is exported while they are in the password rollover period, only the verifier
corresponding to their new password is exported.

e Using Gradual Database Password Rollover in an Oracle Data Guard Environment
In an Oracle Data Guard environment, you must set the ADG ACCOUNT INFO TRACKING
environment variable to GLOBAL to use gradual database password rollover.

e Finding Users Who Still Use Their Old Passwords
You can perform a query that makes use of the AUTHENTICATION TYPE field for a LOGIN
audit record to find users who still use their old passwords.

3.2.5.1 About Managing Gradual Database Password Rollover for Applications

ORACLE

You can configure a gradual database password rollover process to begin for database
application clients when the database administrator changes the database password for the
application.

When the database or application administrator changes the password for the application in
the database, the applications must be updated with the new database password. Setting the
PASSWORD ROLLOVER TIME parameter in the user's profile enables a password change to take
place without having to risk downtime or application outages that could occur as a result of an
application attempting to use an outdated password. The password rollover takes place
seamlessly from the server and works with all existing supported client versions.

The gradual database password rollover feature is designed for database accounts (service
accounts) for applications. The application could be a single server (database client) or scaled
out to multiple servers with multiple database clients. It is not designed for administrative

users; hence, administrative users are restricted from using this feature, no matter which
profile they are associated with. You cannot grant administrative privileges to users who have a
password rollover-enabled profile.

You can configure the gradual database password rollover for native password-authenticated
user connections. If you convert a password database account to a NO AUTHENTICATION
account, then Oracle Database deletes the password and verifiers that are associated with this
account. When a password-authenticated user account is converted to a GLOBAL, an EXTERNAL
or a NO AUTHENTICATION account, then the user implicitly exits the password rollover period.
Gradual password rollover supports the 11g password version and later.

You also can configure the gradual database password rollover for environments that use
connected user database links. In this case, when you configure the gradual database
password rollover, ensure that you also put the target account into rollover on the target of the
connected user database link, and then roll over the target accounts on these links as well. To
put the target account into rollover, you would use this syntax:

ALTER USER username IDENTIFIED BY same new rollover password;

You cannot configure the gradual database password rollover for the following kinds of
connections:

« Direct logins for Oracle Real Application Security users
» Kerberos-, certificate-, or RADIUS-based externally authenticated connections

e Centrally managed user (CMU) connections

3-17

Chapter 3
Configuring Password Protection

« Administrative connections that use external password files

e The Oracle Data Guard connection between the primary and the standby

3.2.5.2 Password Change Life Cycle During a Gradual Database Password Rollover

ORACLE

After a password is created or changed, it follows a life cycle and grace period in four phases.

The following diagram shows the life cycle of the password lifetime and grace period.

Figure 3-2 Password Change Life Cycle During a Gradual Database Password Rollover

Last Password First Login After Password Password
Change Lifetime Ends Expires
PASSWORD_LIFE_TIME User makes no PASSWORD_GRACE_TIME User is
Password Profile Setting authentication Password Profile Setting prompted
(180 days by default) akt]tempts during (7 days by default) to chang; his
this time. passwor
during this
time.
Expiration of
Password Rollover Period
PASSWORD_
ROLLOVER_
TIME
IHHHHHHHHHHIIIIIIIIIII=IIIIIIIIIIIIIIIIIIIIIII!IIIIIIIIIIIIIIiIIIIIIIIIIIIIIHIIIII
DBA_USERS. OPEN & IN
ACCOUNT_STATUS : ROLLOVER OPEN EXPIRED (GRACE) EXPIRED
. ORA-28002: ORA-28001:
Errors during None The password will The password
phase: expire in n days has expired
Prompted for new
passv?ord? No No Yes
In this figure:

* Phase 1: The password lifetime begins after the user account is created or when the
password has been changed. When the password of an existing account is changed, and
the user's profile has a non-zero PASSWORD ROLLOVER TIME value, then the password
lifetime is composed of two phases, 1la and 1b:

— Phase 1a begins with the password change. During Phase 1a, the user can log in
using either the old password or the new password. The duration of phase 1a is
normally PASSWORD ROLLOVER_TIME, but if the administrator was able to update the
password in all client applications sooner than this, they can decide to end the
password rollover period sooner by issuing the following command, which makes the
new password the only one that is accepted.

ALTER USER username EXPIRE PASSWORD ROLLOVER PERIOD;

— Phase 1b corresponds to the time remaining after the password rollover period expires
until the end of PASSWORD LIFE TIME. During Phase 1b, the user can log in using only
the new password.

« Phase 2: This phase represents the period of time after the password lifetime ends but

before the user logs in again with the correct password. The correct credentials are
needed for Oracle Database to update the account status. Otherwise, the account status
will remain unchanged. Oracle Database does not have any background process to update

3-18

Chapter 3
Configuring Password Protection

the account status. All changes to the account status are driven by the Oracle Database
server process on behalf of authenticated users.

* Phase 3: When the user finally does log in, the grace period begins. Oracle Database then
updates the DBA USERS.EXPIRY DATE column to a new value using the current time plus the
value of the PASSWORD GRACE TIME setting from the account's password profile. At this
point, the user receives an ORA-28002 warning message about the password expiring in
the near future (for example, ORA-28002 The password will expire within 7 days if
PASSWORD GRACE TIME is set to 7 days), but the user can still log in without changing the
password. The DBA USERS.EXPIRY DATE column shows the time in the future when the user
will be prompted to change their password.

* Phase 4: After the grace period (Phase 3) ends, the ORA-28001: The password has
expired error appears, and the user is prompted to change the password after entering the
current, correct password before the authentication can proceed. If the user has an Oracle
Active Data Guard configuration, where there is a primary and a stand-by database, and
the authentication attempt is made on the standby database (which is a read-only
database), then the ORA-28032: Your password has expired and the database is set
to read-only error appears. The user should log into the primary database and change
the password there.

During any of these four phases, you can query the DBA USERS data dictionary view to find the
user's account status in the DBA USERS.ACCOUNT STATUS column.

In the following example, the profile assigned to johndoe includes the specification of a grace
period: PASSWORD GRACE TIME = 3 (the recommended value). The first time johndoe tries to log
in to the database after 90 days (this can be any day after the 90th day, that is, the 91st day,
100th day, or another day), he receives a warning message that his password will expire in 3
days. If 3 days pass, and if he does not change his password, then the password expires. After
this, he receives a prompt to change his password on any attempt to log in.

CREATE PROFILE prof LIMIT
FAILED LOGIN ATTEMPTS 4
PASSWORD LIFE TIME 90
PASSWORD GRACE TIME 3;

ALTER USER johndoe PROFILE prof;

A database administrator or a user who has the ALTER USER system privilege can explicitly
expire a password by using the CREATE USER and ALTER USER Statements. The following
statement creates a user with an expired password. This setting forces the user to change the
password before the user can log in to the database.

CREATE USER jbrown
IDENTIFIED BY password

PASSWORD EXPIRE;

There is no "password unexpire" clause for the CREATE USER statement, but an account can be
"unexpired" by changing the password on the account.

3.2.5.3 Enabling the Gradual Database Password Rollover

To enable the gradual database password rollover, you must configure the
PASSWORD ROLLOVER TIME user profile parameter.

» To configure the gradual database password rollover, set the PASSWORD ROLLOVER TIME
parameter in the CREATE PROFILE Or ALTER PROFILE Statement.

ORACLE 319

Chapter 3
Configuring Password Protection

For example, to set the gradual password rollover time period to 1 day:

CREATE PROFILE prof LIMIT

PASSWORD ROLLOVER TIME 1;

Note the following:

You specify the rollover time period in days, but you can specify hours if you want. For
example, enter 1/24 to specify 1 hour, or 6/24 (or 1/4) to specify 6 hours.

The minimum value for an active rollover time is 1 hour. The maximum value is 60
days or the lower value of the PASSWORD LIFE TIME Of PASSWORD GRACE TIME
parameter. If PASSWORD GRACE TIME is set to 0 (zero), then it will be ignored with
respect to any limits with PASSWORD ROLLOVER TIME. The following table describes
these limits:

Table 3-3 Password Rollover Time Limits

I
Profile Name PASSWORD_LIFE_TI PASSWORD_GRACE PASSWORD_ROLLO

ME _TIME VER_TIME
Default 180 7 * Minimum: 1/24 (1
hour)
* Maximum: 7
(days)
ORA STIG PROFILE 60 5 * Minimum: 1/24 (1
hour)
* Maximum: 5
(days)
User Custom Profile 365 90 * Minimum: 1/24 (1
hour)
* Maximum: 60
(days)

The default setting for PASSWORD ROLLOVER TIME is 0 or NULL, which disables it.

To find database accounts that are currently in the password rollover process, query
the ACCOUNT STATUS column of the DBA USERS data dictionary view. The status will be
IN ROLLOVER.

The password rollover period begins the moment the administrator changes the
password for the database account.

3.2.5.4 Changing a Password to Begin the Gradual Database Password Rollover

Period

ORACLE

After you have set a non-zero PASSWORD ROLLOVER TIME value, change the user's password
and update the password with all the applications.

Use the ALTER USER statement to provision a new rollover password for the application. After
the user's new password is provisioned in the database, you can update the password on the
application servers. You must complete the password updates before the

PASSWORD ROLLOVER TIME period ends.

3-20

Chapter 3
Configuring Password Protection

You can check the user's password rollover status by querying the ACCOUNT STATUS column of
the DBA USERS data dictionary view. A user account that is within the rollover period will have a
status of IN ROLLOVER.

e Use the CREATE USER and ALTER USER statements to configure the user, the associated
profile, and the password rollover period. CREATE USER allows the administrator to create a
new application service account that is associated with a profile with password rollover.
ALTER USER is more likely where an existing user is associated with a new or modified
profile. To alter the profile, use the ALTER PROFILE Statement.

The following example CREATE USER creates a new user ul with password pl and a profile
profl, with PASSWORD ROLLOVER TIME configured. The ALTER USER statement changes the
user's password to begin password rollover period. To check the user status, query the
DBA_USERS data dictionary view.

1. Create the profile profl.
CREATE PROFILE profl
LIMIT
PASSWORD ROLLOVER TIME 1;
2. Create the user ul and associate this user with the prof1 profile.

CREATE USER ul IDENTIFIED BY pl PROFILE profl;

3. Alter the user's password.

ALTER USER ul IDENTIFIED BY p2;

4. Query the DBA_USER data dictionary view to check the user's rollover status.
SELECT USERNAME, ACCOUNT STATUS FROM DBA USERS WHERE USERNAME = 'Ul';
USERNAME ACCOUNT STATUS

Ul OPEN & IN ROLLOVER

3.2.5.5 Changing a Password During the Gradual Database Password Rollover

Period

ORACLE

After the rollover period has begun, you can still change the password.

For example, suppose you inadvertently mistype the password. The following procedure
enables you to correct the password even though the rollover process has already begun.

» To change a password after the rollover process has begun, use the ALTER USER
statement, with or without the REPLACE clause.

For example, suppose user ul has the original password p1, p2 is the new password that
started the rollover process, and you want to switch to using another password p3 instead
of password p2. Any of the following statements work:

ALTER USER ul IDENTIFIED BY p3;

ALTER USER ul IDENTIFIED BY p3 REPLACE pl;

3-21

Chapter 3
Configuring Password Protection

ALTER USER ul IDENTIFIED BY p3 REPLACE p2;

After you have changed the password to p3, the user can log in using either p1 or p3. An
attempt to log in using p2 returns an ORA-1017 Invalid Username/Password error, and is
recorded as a failed login attempt. Similarly, after a subsequent password change from p3 to p4
during the rollover period, the user can log in using either p1 or p4. Attempts to log in using
either p2 or p3 will return an ORA-1017 Invalid Username/Password error, and are recorded as
failed login attempts.

The rollover start time is fixed the first time a user changes their password. The start time is not
affected by further password changes during the password rollover period. This design limits
the length of time the old password can be used to the PASSWORD ROLLOVER TIME period after
the password is changed outside of the password rollover period.

3.2.5.6 Ending the Password Rollover Period

There are multiple ways in which you can end the password rollover period.

For example, suppose p1 is the original password for user ul, and p2 is the new password that
has been updated to all clients.

e Use one of the following methods to end the password rollover period:

— Let the password rollover period expire on its own. For example, if the password
rollover period is 1 day, wait for 1 day and the password rollover period will expire
automatically.

— As either the user or an administrator, execute the following statement to manually end
the password rollover period:

ALTER USER ul EXPIRE PASSWORD ROLLOVER PERIOD;

— As an administrator, expire the password by executing the ALTER USER username
PASSWORD EXPIRE statement. The next time the user logs in, he or she will be required
to change their password.

Beginning with the first connection attempt after the password rollover period expires, Oracle
Database drops the earlier password p1. Any attempt to login using the old password p1
returns an ORA-1017 Invalid Username/Password error, and is recorded as a failed login
attempt. In effect, connections after the rollover period are authenticated with only the new
password, and connections that are attempted with the old password are recorded as failed
login attempts. The failed login attempts could lock an account after a sufficient number of
consecutive logon attempts with the old password.

Connection attempts to read-only database servers after PASSWORD ROLLOVER TIME expires will
require new password (p2). The password change to p2 will be made effective for all database
clients.

3.2.5.7 Database Behavior During the Gradual Password Rollover Period

ORACLE

Users can perform their standard password changes and logins during the password rollover
period.

The following database behavior is implemented during the rollover period:

e The user can log in to the database using either the new or the old password. This
effectively increases the lifetime of the old password by the time set with
PASSWORD ROLLOVER TIME.

3-22

Chapter 3
Configuring Password Protection

« Passwords can be changed by using the following methods:

— An administrator or the user changes his or her own password by using the ALTER
USER statement.

— The user changes his or her own password by using the SQL*Plus password
command.

— The user's password is programmatically changed when the Oracle Call Interface
(Oracle OCI) ocIpasswordChange function is executed.

* Oracle Database does not send any special messages to the database clients that indicate
that the user account is in the password rollover period. This design avoids any errors from
applications that may not be equipped to handle error and warning messages when a user
logs in.

* Too many failed login attempts move the user account into a timed lock state, depending
on the value of profile limit PASSWORD LOCK TIME. After the timed lock period expires, the
state of the password rollover period determines what happens when the user attempts to
log in.

e User administrators can perform other password lifecyle related actions as usual, such as
ACCOUNT LOCK, ACCOUNT UNLOCK, EXPIRE PASSWORD operations.

* The password limits that have been set by the PASSWORD REUSE TIME and
PASSWORD REUSE MAX in the user profile continue to be honored during the rollover period.
Any password changes during the rollover period are validated against password change
history and added into the password change history.

e Expiring a user account does not affect the password rollover status. As with locked
accounts, Oracle Database maintains the password verifiers in their current state. The user
can log in using either old or new password (p1 or p2). However, after the user successfully
changes their password (to p3), the user is allowed to log in only using the newest
password (p3). Both the old passwords are treated as expired.

e Oracle Data Pump exports the password hashes (also known as verifiers) for the latest
password for user accounts in the password rollover period. For example, if a user ul has
an old password p1 and new password p2, then Oracle Data Pump exports password
hashes for password p2 only.

3.2.5.8 Database Server Behavior After the Password Rollover Period Ends

Oracle Database performs clean-up operations after the gradual database password rollover
period ends.

After the password rollover period expires, only the new password is allowed and the old
password stops working. Attempting to use the old password returns an ORA-1017 Invalid
Username/Password error, and is recorded as a failed login attempt. Connections after the
password rollover period will only use the new password, and attempts to use the previous
passwords will fail for both read-only and read-write databases. Failed login attempts could
lock the user account depending on how many consecutive login attempts have been made to
use the old password, based on the FAILED LOGIN ATTEMPTS limit in the password profile.

3.2.5.9 Guideline for Handling Compromised Passwords

ORACLE

If a database account password is suspected of being compromised, then you should change
the password immediately.

You can perform this change without going through a password rollover period by using the
ALTER USER statement in one execution to both change and expire the old password, instead of

3-23

Chapter 3
Configuring Password Protection

executing two commands sequentially. This option is preferred over changing the
PASSWORD ROLLOVER TIME in the associated user profile, because other accounts will then be
affected.

Use the following syntax to change and expire the old password:

ALTER USER user name IDENTIFIED BY new password EXPIRE PASSWORD ROLLOVER
PERIOD;

3.2.5.10 How Gradual Database Password Rollover Works During Oracle Data Pump
Exports

When a user is exported while they are in the password rollover period, only the verifier
corresponding to their new password is exported.

The verifier that corresponds to their old password is not included in the Oracle Data Pump
dump file. After the user is imported, only the new password can be used to authenticate.

3.2.5.11 Using Gradual Database Password Rollover in an Oracle Data Guard
Environment

In an Oracle Data Guard environment, you must set the ADG_ACCOUNT INFO TRACKING
environment variable to GLOBAL to use gradual database password rollover.

ADG_ACCOUNT INFO TRACKING=GLOBAL

Otherwise, any initial logons that are performed on the Oracle Data Guard standby by a user
who is using the rolled over password after the PASSWORD ROLLOVER_TIME expiration will result
in an ORA-16000: database or pluggable database open for read-only access €rror.

3.2.5.12 Finding Users Who Still Use Their Old Passwords

You can perform a query that makes use of the AUTHENTICATION TYPE field for a LOGIN audit
record to find users who still use their old passwords.

The unified audit trail can identify which users are still connecting to the database using an old
password. The AUTHENTICATION TYPE field for a LOGON audit record can show if the old verifier
was used. This information enables you to find applications that have not been updated with
gradual database password rollover to use the new password. The LoGON audit record
indicates which application server must be updated.

1. Connect to the database as a user who has the AUDIT VIEWER or AUDIT MGMT role.

2. Execute the following query:

SELECT DBUSERNAME, AUTHENTICATION TYPE, OS USERNAME, USERHOST,
EVENT TIMESTAMP

FROM UNIFIED AUDIT TRAIL

WHERE ACTION NAME='LOGON' AND EVENT TIMESTAMP > SYSDATE-1

AND REGEXP LIKE (AUTHENTICATION TYPE, '\ (VERIFIER=.*?\-OLD\)');

ORACLE 304

Chapter 3
Configuring Password Protection

If there are users who are still using their old password, then output similar to the following
appears:

DBUSERNAME
AUTHENTICATION TYPE

OS_USERNAME USERHOST EVENT TIMESTAMP

APP USER (TYPE= (DATABASE)) ; (CLIENT ADDRESS=((PROTOCOL=tcp)

(HOST=192.0.2.225) (PORT=24938))) ; (LOGON INFO=((VERIFIER=12C-OLD)
(CLIENT CAPABILITIES=05L NP,07L MR,08L LI))); oracle

db211 14-JAN-21 08.56.34.724172000 PM

APP USER (TYPE= (DATABASE)) ; (CLIENT ADDRESS=((PROTOCOL=tcp)

(HOST=192.0.2.225) (PORT=24983))) ; (LOGON INFO=((VERIFIER=12C-OLD)
(CLIENT CAPABILITIES=05L NP,07L MR,08L LI))); oracle

db211 14-JAN-21 09.01.18.938008000 PM

APP USER (TYPE= (DATABASE)) ; (CLIENT ADDRESS=((PROTOCOL=tcp)

(HOST=192.0.2.226) (PORT=48727))) ; (LOGON INFO=((VERIFIER=12C-OLD)
(CLIENT CAPABILITIES=05L NP,07L MR,08L LI))); oracle

db212 14-JAN-21 10.10.48.042817000 PM

APP USER (TYPE=(DATABASE)) ; (CLIENT ADDRESS=((PROTOCOL=tcp)

(HOST=192.0.2.226) (PORT=48745))) ; (LOGON INFO=((VERIFIER=12C-OLD)
(CLIENT CAPABILITIES=05L NP,07L MR,08L LI))); oracle

db212 14-JAN-21 10.12.53.609965000 PM

APP USER (TYPE= (DATABASE)) ; (CLIENT ADDRESS=((PROTOCOL=tcp)

(HOST=192.0.2.226) (PORT=48751))); (LOGON INFO=((VERIFIER=12C-OLD)
(CLIENT CAPABILITIES=05L NP,07L MR,08L LI))); oracle

db212 14-JAN-21 10.13.41.112194000 PM

3.2.6 Managing the Complexity of Passwords

ORACLE

Oracle Database provides a set of functions that you can use to manage the complexity of
passwords.

e About Password Complexity Verification
Complexity verification checks that each password is complex enough to protect against
intruders who try to guess user passwords.

* How Oracle Database Checks the Complexity of Passwords
Oracle Database provides four password verification functions to check password
complexity.

* Who Can Use the Password Complexity Functions?
The password complexity functions enable you to customize how users access your data.

« verify_function_11G Function Password Requirements
The verify function 116G function originated in Oracle Database Release 11g.

e oral2c_verify function Password Requirements
The oral2c verify function function fulfills the Department of Defense Database
Security Technical Implementation Guide requirements.

e oral2c_strong_verify_function Function Password Requirements
The oral2c strong verify function function is a stringent password verify function.

3-25

Chapter 3
Configuring Password Protection

e oral2c_stig_verify_function Password Requirements
The oral2c stig verify function function fulfills the Security Technical Implementation
Guides (STIG) requirements.

* About Customizing Password Complexity Verification
Oracle Database enables you to customize password complexity for your site.

* Enabling Password Complexity Verification
The catpvf.sgl script can be customized to enable password complexity verification.

3.2.6.1 About Password Complexity Verification

Complexity verification checks that each password is complex enough to protect against
intruders who try to guess user passwords.

Using a complexity verification function forces users to create strong, secure passwords for
database user accounts. You must ensure that the passwords for your users are complex
enough to provide reasonable protection against intruders who try to break into the system by
guessing passwords.

3.2.6.2 How Oracle Database Checks the Complexity of Passwords

Oracle Database provides four password verification functions to check password complexity.

These functions are in the catpvf.sql PL/SQL script (located in $ORACLE HOME/rdbms/admin).
When these functions are enabled, they can check whether users are correctly creating or
modifying their passwords. When enabled, password complexity checking is not enforced for
user sYs; it only applies to non-sys users. For better security of passwords, Oracle
recommends that you associate the password verification function with the default profile.
About Customizing Password Complexity Verification provides an example of how to
accomplish this.

3.2.6.3 Who Can Use the Password Complexity Functions?

The password complexity functions enable you to customize how users access your data.

Before you can use the password complexity verification functions in the CREATE PROFILE or
ALTER PROFILE statement, you must be granted the EXECUTE privilege on them.

The password verification functions are located in the sys schema.

3.2.6.4 verify_function_11G Function Password Requirements

The verify function 11G function originated in Oracle Database Release 11g.

< Note:

The verify function 11G function has been deprecated because it enforces the
weaker password restrictions from earlier releases of Oracle Database. Instead, you
should use the ORA12C VERIFY FUNCTION, ORA12C STRONG VERIFY FUNCTION,
ORA12C STIG VERIFY FUNCTION functions, which enforce stronger, more up-to-date
password verification restrictions.

This function checks for the following requirements when users create or modify passwords:

ORACLE 396

Chapter 3
Configuring Password Protection

* The password contains no fewer than 8 characters and includes at least one numeric and
one alphabetic character.

e The password is not the same as the user name, nor is it the user name reversed or with
the numbers 1-100 appended.

e The password is not the same as the server name or the server name with the numbers 1—
100 appended.

e The password does not contain oracle (for example, oracle with the numbers 1-100
appended).

e The password is not too simple (for example, welcomel, databasel, accountl, user1234,
passwordl, oraclel23, computerl, abcdefgl, Or change_on_install).

e The password differs from the previous password by at least 3 characters.

The following internal check is also applied:

* The password does not contain the double-quotation character ("). However, it can be
surrounded by double-quotation marks.

3.2.6.5 oral2c_verify_function Password Requirements

The oral2c verify function function fulfills the Department of Defense Database Security
Technical Implementation Guide requirements.

This function checks for the following requirements when users create or modify passwords:

* The password contains no fewer than 8 characters and includes at least one numeric and
one alphabetic character.

e The password is not the same as the user name or the user name reversed.
e The password is not the same as the database name.

* The password does not contain the word oracle (such as oraclel23).

e The password differs from the previous password by at least 3 characters.

* The password contains at least 1 special character.

The following internal check is also applied:

e The password does not contain the double-quotation character ("). However, it can be
surrounded by double-quotation marks.

3.2.6.6 oral2c_strong_verify_function Function Password Requirements

ORACLE

The oral2c strong verify function function is a stringent password verify function.
This function checks for the following requirements when users create or modify passwords:

e The password contains no fewer than 9 characters.

e The password contains at least 2 upper case letters.
e The password contains at least 2 lower case letters.

e The password contains at least 2 numeric characters.

e The password contains at least 2 special characters. These special characters are as
follows:

Ve LR ES SN et () -+={} [1N/ <>, ;2" | (space)

3-27

Chapter 3
Configuring Password Protection

e The password differs from the previous password by at least 4 characters.

The following internal check is also applied:

e The password does not contain the double-quotation character ("). It can be surrounded
by double-quotation marks, however.

3.2.6.7 oral2c_stig_verify function Password Requirements

The oral2c stig verify function function fulfills the Security Technical Implementation
Guides (STIG) requirements.

This function checks for the following requirements when users create or modify passwords:

e The password has at least 15 characters.

e The password has at least 1 lower case character and at least 1 upper case character.
e The password has at least 1 digit.

e The password has at least 1 special character.

e The password differs from the previous password by at least 8 characters.

The following internal check is also applied:

* The password does not contain the double-quotation character ("). However, it can be
surrounded by double-quotation marks.

The oral2c stig verify function function is the default handler for the ORA STIG PROFILE
profile, which is available in a newly-created or upgraded Oracle database.

3.2.6.8 About Customizing Password Complexity Verification

ORACLE

Oracle Database enables you to customize password complexity for your site.

You can create your own password complexity verification function in the sys schema, similar
to the functions that are defined in admin/catpvf.sql. In fact, Oracle recommends that you do
so to further secure your site’s passwords.

Note the following:

Do not include Data Definition Language (DDL) statements in the custom password
complexity verification function. DDLs are not allowed during the execution of password
complexity verification functions.

e Do not modify the admin/catpvf.sql script or the Oracle-supplied password complexity
functions. You can create your own functions based on the contents of these files.

e If you make no modifications to the ut1lpwdmg.sql script, then it uses the
oral2c verify function function as the default function.

See Also:

Guideline 1 in Guidelines for Securing Passwords for general advice on creating
passwords

3-28

Chapter 3
Configuring Password Protection

3.2.6.9 Enabling Password Complexity Verification

ORACLE

The catpvf.sgl script can be customized to enable password complexity verification.

To enable password complexity verification, you must edit the catpvf.sql script to use the
password verification function that you want, and then run the script to enable it.

1.

Log in to SQL*Plus with administrative privileges.
For example:

CONNECT SYSTEM
Enter password: password

Run the catpvf.sql script (or your modified version of this script) to create the password
complexity functions in the sys schema.

@SORACLE HOME/rdbms/admin/catpvf.sql

Grant any users who must use this function the EXECUTE privilege on it.
For example:

GRANT pmsith EXECUTE ON oral2c strong verify function;

In the default profile or the user profile, set the PASSWORD VERIFY FUNCTION setting to either
the sample password complexity function in the catpvf.sql script, or to your customized
function. Use one of the following methods:

e Log in to SQL*Plus with administrator privileges and use the CREATE PROFILE Or ALTER
PROFILE statement to enable the function. Ensure that you have the EXECUTE privilege
on the function.

For example, to update the default profile to use the oral2c_strong verify function
function:

ALTER PROFILE default LIMIT
PASSWORD VERIFY FUNCTION oral2c strong verify function;

e In Oracle Enterprise Manager Cloud Control, from the Administration menu, select
Security, and then Profiles. Select the Password tab. Under Complexity, from the
Complexity function list, select the name of the complexity function that you want.
Click Apply.

After you have enabled password complexity verification, it takes effect immediately. If you
must disable it, then run the following statement:

ALTER PROFILE DEFAULT LIMIT PASSWORD VERIFY FUNCTION NULL;

3-29

Chapter 3
Configuring Password Protection

Note:

The ALTER USER statement has a REPLACE clause. With this clause, users can change
their own unexpired passwords by supplying the previous password to authenticate
themselves.

If the password has expired, then the user cannot log in to SQL to issue the ALTER
USER command. Instead, the 0CIPasswordChange () function must be used, which
also requires the previous password.

A database administrator with ALTER ANY USER privilege can change any user
password (force a new password) without supplying the old one.

3.2.7 Managing Password Case Sensitivity

You can manage the password case sensitivity for passwords from user accounts from
previous releases.

SEC_CASE_SENSITIVE_LOGON Parameter and Password Case Sensitivity
The SEC_CASE SENSITIVE LOGON initialization parameter controls the use of case sensitivity
in passwords.

Using the ALTER SYSTEM Statement to Enable Password Case Sensitivity
If password case sensitivity has been disabled, then you can enable it by setting the
SEC_CASE SENSITIVE LOGON parameter to TRUE.

Management of Case Sensitivity for Secure Role Passwords
For better security, you should ensure that the passwords for secure roles are case
sensitive.

Management of Password Versions of Users
By default, Oracle Database uses Exclusive Mode, which does not permit case-insensitive
passwords, to manage password versions.

Finding and Resetting User Passwords That Use the 10G Password Version
For better security, find and reset passwords for user accounts that use the 106 password
version so that they use later, more secure password versions.

How Case Sensitivity Affects Password Files
By default, password files are case sensitive. The IGNORECASE argument in the ORAPWD
command line utility controls the case sensitivity of password files.

How Case Sensitivity Affects Passwords Used in Database Link Connections
When you create a database link connection, you must define a user name and password
for the connection.

3.2.7.1 SEC_CASE_SENSITIVE_LOGON Parameter and Password Case Sensitivity

The SEC_CASE SENSITIVE LOGON initialization parameter controls the use of case sensitivity in
passwords.

ORACLE

Only users who have the ALTER SYSTEM privilege can set the SEC_CASE SENSITIVE LOGON
parameter. You should ensure that this parameter is set to TRUE so that case sensitivity is
enforced when a user enters a password. However, you should be aware that the

SEC_CASE SENSITIVE LOGON parameter is deprecated, but is currently retained for backward
compatibility.

3-30

Chapter 3
Configuring Password Protection

When you create or modify user accounts, by default, passwords are case sensitive. Case
sensitivity affects not only passwords that users enter manually, but it affects password files as
well.

Ensure that the SEC_CASE SENSITIVE LOGON parameter is not set to FALSE if the
SQLNET.ALLOWED LOGON VERSION SERVER parameter is setto 12 or 12a. This is because the
more secure password versions used for this mode only support case-sensitive password
checking. For compatibility reasons, Oracle Database does not prevent the use of FALSE for
SEC CASE SENSITIVE LOGON when SQLNET.ALLOWED LOGON VERSION SERVER is setto 12 or 12a.
Setting SEC_CASE SENSITIVE LOGON to FALSE when SQLNET.ALLOWED LOGON VERSION SERVER is
set to 12 or 12a causes all accounts to become inaccessible. If
SQLNET.ALLOWED LOGON VERSION SERVER is setto 11 or a lower value, then Oracle
recommends that you set SEC_CASE SENSITIVE LOGON to TRUE, because the more secure
password versions used in Exclusive Mode (when SQLNET.ALLOWED LOGON VERSION SERVER iS
12 or 12a) in Oracle Database 12c¢ do not support case insensitive password matching.

In addition to the server-side settings, you should ensure that the client software with which the
users are connecting has the 05L_NP capability flag. All Oracle Database release 11.2.0.3 and
later clients have the 05L_NP capability. If you have an earlier client, then you must install the
CPUOCct2012 patch.

3.2.7.2 Using the ALTER SYSTEM Statement to Enable Password Case Sensitivity

If password case sensitivity has been disabled, then you can enable it by setting the
SEC_CASE SENSITIVE LOGON parameter to TRUE.

1. If you are using a password file, then ensure that it was created with the ORAPWD utility
IGNORECASE parameter set to N and the FORMAT parameter set to 12.

The IGNORECASE parameter overrides the SEC_CASE SENSITIVE LOGON parameter. By
default, IGNORECASE is set to N, which means that passwords are treated as case sensitive.

Note that the IGNORECASE parameter and the SEC_CASE SENSITIVE LOGON system
parameter are deprecated. Oracle strongly recommends that you set IGNORECASE to N or
omit the IGNORECASE setting entirely.

2. Enter the following ALTER SYSTEM statement:
ALTER SYSTEM SET SEC CASE SENSITIVE LOGON = TRUE;
Related Topics

e Oracle Database Administrator’s Guide

3.2.7.3 Management of Case Sensitivity for Secure Role Passwords

ORACLE

For better security, you should ensure that the passwords for secure roles are case sensitive.

If before upgrading to Oracle Database 12c release 2 (12.2), you created secure roles by using
the IDENTIFIED BY clause of the CREATE ROLE statement, and if upon upgrading to Oracle
Database 12c release 12.2, you set the SQLNET.ALLOWED LOGON VERSION SERVER parameter to
one of the Exclusive Modes 12 or 12a, then you must change the password for these secure
roles in order for them to remain usable. Because Exclusive Mode is now the default, secure
roles that were created in earlier releases (such as Oracle Database 10g, in which the 10G
password version was the default) will need to have their passwords changed.

3-31

Chapter 3
Configuring Password Protection

You can query the PASSWORD REQUIRED and AUTHENTICATION TYPE columns of the DBA ROLES
data dictionary view to find any secure roles that must have their password changed after
upgrade to Oracle Database 12c, in order to become usable again.

Otherwise, the password version for these secure roles cannot be used, unless you set the
SQLNET.ALLOWED LOGON VERSION SERVER parameter to 8. If this parameter is set to 12 or 12a,
then you must run the following SQL statement to ensure that case sensitivity is enabled. If
not, then secure roles will remain unusable even after their passwords have been changed.

ALTER SYSTEM SET SEC CASE SENSITIVE LOGON = "TRUE";

3.2.7.4 Management of Password Versions of Users

ORACLE

By default, Oracle Database uses Exclusive Mode, which does not permit case-insensitive
passwords, to manage password versions.

In a default installation, the SQLNET.ALLOWED LOGON VERSION SERVER parameter is set to 12 to
enable Exclusive Mode. Exclusive Mode requires that the password-based authentication
protocol use one of the case-sensitive password versions (116 or 12¢) for the account that is
being authenticated. Exclusive Mode excludes the use of the 10G password version that was
used in earlier releases. After you upgrade to Oracle Database 12c release 2 (12.2), accounts
that use the 10G password version become inaccessible. This occurs because the server runs
in Exclusive Mode by default, and Exclusive Mode cannot use the old 10G password version to
authenticate the client. The server is left with no password version with which to authenticate
the client.

The user accounts from Release 10g use the 10G password version. Therefore, you should find
the user accounts that use the 106 password version, and then reset the passwords for these
accounts. This generates the appropriate password version based on the setting of the
SQLNET.ALLOWED LOGON VERSION SERVER parameter, as follows:

* SQLNET.ALLOWED LOGON VERSION SERVER=8 generates all three password versions 10G,
11G, and 12C.

* SQLNET.ALLOWED LOGON VERSION SERVER=12 generates both 11G and 12C password
versions, and removes the 10G password version.

* SQLNET.ALLOWED LOGON VERSION SERVER=12a generates only the 12C password version.

If you first relax the SQLNET.ALLOWED LOGON VERSION SERVER Setting to a more permissive
value (such as SQLNET.ALLOWED LOGON VERSION SERVER=8) and then import the user accounts
from an Oracle Database release 10g (or earlier) release into the current database release,
then because the 10G password version (used in the older release) is not case sensitive, these
users will still be able to log into the database using any case for their password. But when
such a user changes their password, the new 116 and 12C password versions are generated
automatically, and their password will automatically become case sensitive, because the
default value for the instance initialization parameter SEC_CASE SENSITIVE LOGON is TRUE. (Be
aware that SEC_CASE SENSITIVE LOGON is deprecated, but is currently retained for backward
compatibility.)

The following example demonstrates the effect of setting the SEC CASE SENSITIVE LOGON
parameter to TRUE. In this scenario, user rtaylor has been imported from Oracle Database
release 10g, and therefore this account only has the 10G password version. On the server, the
SQLNET.ALLOWED LOGON VERSION SERVER is set to 8 because otherwise rtaylor would not be
able to log in. In addition, the SEC CASE SENSITIVE LOGON parameter is set to TRUE to enable
case sensitivity for the 116 and 12C password versions.

1. Check the password versions for user rtaylor:

3-32

ORACLE

Chapter 3
Configuring Password Protection

SELECT PASSWORD VERSIONS FROM DBA USERS WHERE USERNAME='RTAYLOR';

PASSWORD VERSIONS

Connect as user rtaylor.

CONNECT rtaylor
Enter password: "MaresEatOats"

Connected.

User rtaylor can connect to the database because his password still uses the 106
password version, which is case insensitive. Here, he enters his password in mixed case,
though his actual password is all lower case: mareseatoats.

Check the password versions for one of the default users, SCOTT.

SELECT PASSWORD VERSIONS FROM DBA USERS WHERE USERNAME='SCOTT';

PASSWORD VERSIONS

11G 12C

Try connecting as user SCOTT using a mixed case for the password, even though his actual
password is all lowercase: 1uv2walkmyk9.

CONNECT SCOTT
Enter password: "LuvToWalkMyK9"

ERROR: ORA-01017: invalid username/password; logon denied
Warning: You are no longer connected to ORACLE.

Because user SCOTT’s password versions are 11G and 12G, the password is case sensitive.
The password entered in this example is correct, but the case is incorrect.
Alter rtaylor's password to grumble mumble2work.

ALTER USER rtaylor IDENTIFIED BY grumble mumble2work;

User altered.

Connect with the sYSDBA administrative privilege.
CONNECT / AS SYSDBA

Find the password versions for user rtaylor.

SELECT PASSWORD VERSIONS FROM DBA USERS WHERE USERNAME='RTAYLOR';

PASSWORD VERSIONS

10G 11G 12C

The authentication protocol that was configured with the
SQLNET.ALLOWED LOGON VERSION SERVER and SEC CASE SENSITIVE LOGON settings will
enforce the case sensitivity of rtaylor’s password, now that he has changed this
password.

Try connecting as rtaylor using a mixed case for the password.

CONNECT rtaylor
Enter password: "Grumble Mumble2Work"

3-33

Chapter 3
Configuring Password Protection

ERROR: ORA-01017: invalid username/password; logon denied
Warning: You are no longer connected to ORACLE.

The password entered fails because it was not entered using the case in which the
password was created.

9. Try connecting as rtaylor again but with the password using the correct case

CONNECT rtaylor
Enter password: "grumble mumble2work"

Connected.

User rtaylor can connect.

The case sensitivity of the rtaylor account is a result of the server's default setting for
SEC_CASE_SENSITIVE LOGON, which is TRUE. If this setting is FALSE, then case-insensitive
matching can be restored because the rtaylor account still has the 10G password version.
However, Oracle does not recommend this setting. The SEC_CASE SENSITIVE LOGON parameter
is deprecated for this reason. For greater security, Oracle strongly recommends that you keep
case-sensitive password authentication enabled.

3.2.7.5 Finding and Resetting User Passwords That Use the 10G Password Version

ORACLE

For better security, find and reset passwords for user accounts that use the 106 password
version so that they use later, more secure password versions.

Finding All Password Versions of Current Users

You can query the DBA USERS data dictionary view to find a list of all the password versions
configured for user accounts.

For example:

SELECT USERNAME, PASSWORD VERSIONS FROM DBA USERS;

USERNAME PASSWORD_VERSIONS
JONES 10G 116G 12C

ADAMS 10G 11G

CLARK 10G 11G

PRESTON 11G

BLAKE 10G

The PASSWORD VERSIONS column shows the list of password versions that exist for the account.
10G refers to the earlier case-insensitive Oracle password version, 116G refers to the SHA-1-
based password version, and 12cC refers to the SHA-2-based SHA-512 password version.

e User jones: The password for this user was reset in Oracle Database 12c¢ Release 12.1
when the SQLNET.ALLOWED LOGON VERSION SERVER parameter setting was 8. This enabled
all three password versions to be created.

e Users adams and clark: The passwords for these accounts were originally created in
Oracle Database 10g and then reset in Oracle Database 11g. The Oracle Database 11g
software was using the default SQLNET.ALLOWED LOGON VERSION setting of 8 at that time.
Because case insensitivity is enabled by default, their passwords are now case sensitive,
as is the password for preston.

3-34

ORACLE

Chapter 3
Configuring Password Protection

User preston: This account was imported from an Oracle Database 11g database that was
running in Exclusive Mode (SQLNET.ALLOWED LOGON VERSION = 12).

User blake: This account still uses the Oracle Database 10g password version. At this
stage, user blake is prevented from logging in.

Resetting User Passwords That Use the 10G Password Version

For better security, remove the 10G password version from the accounts of all users. In the
following procedure, to reset the passwords of users who have the 10G password version, you
must temporarily relax the SQLNET . ALLOWED LOGON VERSION SERVER setting, which controls the
ability level required of clients before login can be allowed. Relaxing the setting enables these
users to log in and change their passwords, and hence generate the newer password versions
in addition to the 10G password version. Afterward, you can set the database to use Exclusive
Mode and ensure that the clients have the 051 NP capability. Then the users can reset their
passwords again, so that their password versions no longer include 106, but only have the
more secure 116 and 12C password versions.

1.

Query the DBA USERS view to find users who only use the 10G password version.

SELECT USERNAME FROM DBA USERS
WHERE (PASSWORD VERSIONS = '10G '
OR PASSWORD VERSIONS = '10G HTTP ')
AND USERNAME <> 'ANONYMOUS';

Configure the database so that it does not run in Exclusive Mode, as follows:

a. Edit the SQLNET.ALLOWED LOGON VERSION SERVER setting in the sqlnet.ora file so that
it is more permissive than the default. For example:

SQLNET.ALLOWEDiLOGON7VERSIONisERVER=1l
b. Restart the database.

Expire the users that you found when you queried the DBA USERS view to find users who
only use the 10G password version.

You must expire the users who have only the 10G password version, and do not have one
or both of the 11G or 12C password versions.

For example:
ALTER USER username PASSWORD EXPIRE;

Ask the users whose passwords you expired to log in.

When the users log in, they are prompted to change their passwords. The database
generates the missing 116 and 12¢C password versions for their account, in addition to the
10G password version. The 10G password version continues to be present, because the
database is running in the permissive mode.

Ensure that the client software with which the users are connecting has the 051 NP ability.

All Oracle Database release 11.2.0.3 and later clients have the 051 NP ability. If you have
an earlier Oracle Database client, then you must install the CPUOCct2012 patch.

After all clients have the 05L_NP capability, set the security for the server back to Exclusive
Mode, as follows:

a. Remove the SEC CASE SENSITIVE LOGON parameter setting from the instance
initialization file, or set SEC_CASE_SENSITIVE LOGON to TRUE.

SEC CASE SENSITIVE LOGON = TRUE

3-35

Chapter 3
Configuring Password Protection

b. Remove the SQLNET.ALLOWED LOGON VERSION SERVER parameter from the server
sqlnet.ora file, or set the value of SQLNET.ALLOWED LOGON VERSION SERVER in the
server sqlnet.ora file back to 12, to set it to an Exclusive Mode.

SQLNET.ALLOWED LOGON VERSION SERVER = 12
c. Restart the database.
7. Find the accounts that still have the 10G password version.

SELECT USERNAME FROM DBA USERS
WHERE PASSWORD VERSIONS LIKE '%10G%'
AND USERNAME <> 'ANONYMOUS';

8. Expire the accounts that still have the 10G password version.
ALTER USER username PASSWORD EXPIRE;
9. Ask these users to log in to their accounts.

When the users log in, they are prompted to reset their passwords. The database then
generates only the 116 and 12C password versions for their accounts. Because the
database is running in Exclusive Mode, the 10G password version is no longer generated.

10. Rerun the following query:

SELECT USERNAME FROM DBA USERS
WHERE PASSWORD VERSIONS LIKE '%10G%'
AND USERNAME <> 'ANONYMOUS';

If this query does not return any results, then it means that no user accounts have the 106
password version. Hence, the database is running in a more secure mode than in previous
releases.

3.2.7.6 How Case Sensitivity Affects Password Files

ORACLE

By default, password files are case sensitive. The IGNORECASE argument in the ORAPWD
command line utility controls the case sensitivity of password files.

The default value for IGNORECASE is N (no), which enforces case sensitivity. For better security,
set IGNORECASE to N or omit the ignorecase argument entirely. Note that IGNORECASE is
deprecated.

The following example shows how to enable case sensitivity in password files.

orapwd file=orapw entries=100
Enter password for SYS: password

This command creates a case sensitive password file called orapw. By default, passwords are
case sensitive. Afterward, if you connect using this password, it succeeds—as long as you
enter it using the exact case in which it was created. If you enter the same password but with a
different case, then the authentication attempt that uses the password fails.

Alternatively, you can turn the IGNORECASE parameter off by using password file migration from
one format to another format. For example:

orapwd input file=input password file file=output password file

If you imported user accounts from a previous release and these accounts were created with
SYSDBA or SYSOPER administrative privilege, then they will be included in the password file. The
passwords for these accounts are case insensitive. The next time these users change their
passwords, and assuming case sensitivity is enabled, the passwords become case sensitive.
For greater security, have these users change their passwords.

3-36

Chapter 3
Configuring Password Protection

Related Topics

e Oracle Database Administrator’s Guide

3.2.7.7 How Case Sensitivity Affects Passwords Used in Database Link Connections

When you create a database link connection, you must define a user name and password for
the connection.

When you create the database link connection, the password is case sensitive. How a user
enters his or her password for connections depends on the release in which the database link
was created:

* Users can connect from a pre-Oracle Database 12c database to a Oracle Database 12c
database. Because case sensitivity is enabled, then the user must enter the password
using the case that was used when the account was created.

» If the user connects from a Oracle Database 12c database to a pre-Oracle Database 12c
database, and if the SEC_CASE SENSITIVE LOGON parameter in the pre-Release 12¢
database had been set to FALSE, then the password for this database link can be specified
using any case.

You can find the user accounts for existing database links by querying the V$DBLINK view. For
example:

SELECT DB LINK, OWNER ID FROM VS$DBLINK;

See Oracle Database Reference for more information about the VSDBLINK view.

3.2.8 Ensuring Against Password Security Threats by Using the 12C
Password Version

The 12C password version enables users to create complex passwords that meet compliance
standards.

e About the 12C Version of the Password Hash
The 12¢ password hash protects against password-based security threats by including
support for mixed case passwords.

e Oracle Database 12C Password Version Configuration Guidelines
By default, Oracle Database generates two versions of the password hash: 116 and 12c.

e Configuring Oracle Database to Use the 12C Password Version Exclusively
You should set the SQLNET .ALLOWED LOGON VERSION SERVER parameter to 12a so that only
the 12¢ password hash version is used.

* How Server and Client Logon Versions Affect Database Links
The SQLNET.ALLOWED LOGON VERSION SERVER and
SQLNET.ALLOWED LOGON VERSION CLIENT parameters can accommodate connections
between databases and clients of different releases.

e Configuring Oracle Database Clients to Use the 12C Password Version Exclusively
An intruder may try to provision a fake server to downgrade authentication and trick the
client into using a weaker password hash version.

3.2.8.1 About the 12C Version of the Password Hash

The 12¢ password hash protects against password-based security threats by including support
for mixed case passwords.

ORACLE 3-37

Chapter 3
Configuring Password Protection

The cryptographic hash function used for generating the 12¢ version of the password hash is
based on a de-optimized algorithm involving Password-Based Key Derivation Function 2
(PBKDF2) and the SHA-512 cryptographic hash functions. The PBKDF2 algorithm introduces
computational asymmetry in the challenge that faces an intruder who is trying to recover the
original password when in possession of the 12¢ version of the password hash. The 12C
password generation performs a SHA-512 hash of the PBKDF2 output as its last step. This
two-step approach used in the 12¢ password version generation allows server CPU resources
to be conserved when the client has the O7L_MR capability. This is because during the
password verification phase of the O5LOGON authentication, the server only needs to perform
a single SHA-512 hash of a value transmitted by the O7L_MR capable client, rather than
having to repeat the entire PBKDF2 calculation on the password itself.

In addition, the 12¢ password version adds a salt to the password when it is hashed, which
provides additional protection. The 12C password version enables your users to create far
more complex passwords. The 12C password version's use of salt, its use of PBKDF2 de-
optimization, and its support for mixed-case passwords makes it more expensive for an
intruder to perform dictionary or brute force attacks on the 12¢ password version in an attempt
to recover the user's password. Oracle recommends that you use the 12C version of the
password hash.

The password hash values are considered to be extremely sensitive, because they are used
as a "shared secret" between the server and person who is logging in. If an intruder learns this
secret, then the protection of the authentication is immediately and severely compromised.
Remember that administrative users who have account management privileges, administrative
users who have the sYSDBa administrative privilege, or even users who have the

EXP_FULL DATABASE role can immediately access the password hash values. Therefore, this
type of administrative user must be trustworthy if the integrity of the database password-based
authentication is to be preserved. If you cannot trust these administrators, then it is better to
deploy a directory server (such as Oracle Database Enterprise User Security) so that the
password hash values remain within the Enterprise User Security directory and are never
accessible to anyone except the Enterprise User Security administrator.

Related Topics

e Oracle Database Net Services Reference

3.2.8.2 Oracle Database 12C Password Version Configuration Guidelines

ORACLE

By default, Oracle Database generates two versions of the password hash: 116 and 12cC.

The version of the password hash that Oracle Database uses to authenticate a given client
depends on the client’s ability, and the settings for the SQLNET . ALLOWED LOGON VERSION CLIENT
and SOLNET.ALLOWED LOGON VERSION SERVER parameters. See the column “Ability Required of
the Client” in the “SQLNET.ALLOWED_ LOGON_VERSION_SERVER Settings” table in the
SQLNET.ALLOWED LOGON VERSION SERVER parameter description in Oracle Database Net
Services Reference for detailed information about how the client authentication works with
password versions.

The 106G password version, which was generated in Oracle Database 10g, is not case
sensitive. Both the 116 and 12¢ password versions are case sensitive.

In Oracle Database 12g release 2 (12.2), the sglnet.ora parameter
SQLNET.ALLOWED LOGON VERSION SERVER defaults to 12, which is Exclusive Mode and prevents
the use of the 10G password version, and the SQLNET .ALLOWED LOGON VERSION CLIENT
parameter defaults to 11. For new accounts, when the client is Oracle Database 12c, then
Oracle Database uses the 12¢ password version exclusively with clients that are running the
Oracle Database 12c release software. For accounts that were created before Oracle

3-38

ORACLE

Chapter 3
Configuring Password Protection

Database release 12c, logins will succeed as long as the client has the O5L_NP ability,
because an 116 password version normally exists for accounts created in earlier releases such
as Oracle Database release 11g. For a very old account (for example, from Oracle Database
release 10q), the user’s password may need to be reset, in order to create a SHA-1 password
version for the account. To configure this server to generate only the 12¢ password version
whenever a new account is created or an existing account password is changed, then set the
SQLNET.ALLOWED LOGON VERSION SERVER parameter to 12a. However, if you want your
applications to be compatible with older clients, then ensure that
SQLNET.ALLOWED LOGON VERSION SERVER is set to 12, which is the default.

How you set the SQLNET.ALLOWED LOGON VERSION SERVER parameter depends on the balance
of security and interoperability with older clients that your system requires. You can control the
levels of security as follows:

* Greatest level of compatibility: To configure the server to generate all three versions of
the password hash (the 12¢ password version, the 116 password version, and the DES-
based 10G password version), whenever a new account is created or an existing account
password is changed, set the SQLNET.ALLOWED LOGON VERSION SERVER parameter to the
value 11 or lower. (Be aware that earlier releases used the value 8 as the default.)

- Recommended level of security: To configure the server to generate both the 12¢
password version and the 11G password version (but not the 10G password version),
whenever a new account is created or an existing account password is changed, set the
SQLNET.ALLOWED LOGON VERSION SERVER parameter to the value 12.

* Highest level of security: To configure the server to generate only the 12C password
version whenever a new account is created or an existing account password is changed,
set the SQLNET.ALLOWED LOGON VERSION SERVER parameter to the value 12a.

During authentication, the following scenarios are possible, based on the kinds of password
versions that exist for the account, and on the version of the client software being used:

e Accounts with only the 10G version of the password hash: If you want to force the
server to generate the newer versions of the password hash for older accounts, an
administrator must expire the password for any account that has only the 106 password
version (and none of the more secure password versions, 11G or 12¢). You must generate
these password versions because the database depends on using these password
versions to provide stronger security. You can find these users as follows.

SELECT USERNAME FROM DBA USERS
WHERE PASSWORD VERSIONS LIKE '%10G%
AND USERNAME <> 'ANONYMOUS';

And then expire each account as follows:

ALTER USER username PASSWORD EXPIRE;

After you have expired each account, notify these users to log in, in which case they will be
prompted to change their password. The version of the client determines the password
version that is used. The setting of the SQLNET.ALLOWED LOGON VERSION SERVER parameter
determines the password versions that are generated. If the client has the O7L_MR ability
(Oracle Database release 12c), then the 12C password version is used to authenticate. If
the client has the O5L_NP ability but not the O7L_MR ability (such as Oracle Database
release 119 clients), then the 116 password version is used to authenticate. You should
upgrade all clients to Oracle Database release 12c¢ so that the 12¢ password version can
be used exclusively to authenticate. (By default, Oracle Database release 11.2.0.3 and
later clients have the 05L_NP ability, which enables the 11G password version to be used
exclusively. If you have an earlier Oracle Database client, then you must install the
CPUOCt2012 patch.)

3-39

Chapter 3
Configuring Password Protection

When an account password is expired and the ALLOWED LOGON VERSION SERVER parameter
is setto 12 or 12a, then the 10G password version is removed and only one or both of the
new password versions are created, depending on how the parameter is set, as follows:

— IfALLOWED LOGON VERSION SERVER is set to 12 (the default), then both the 11G and 12¢
versions of the password hash are generated.

— IfALLOWED LOGON VERSION SERVER is setto 12a, then only the 12¢C version of the
password hash is generated.

For more details, see the "Generated Password Version" column in the table in the "Usage
Notes" section for the SQLNET.ALLOWED LOGON VERSION SERVER parameter in Oracle
Database Net Services Reference.

* Accounts with both 10G and 11G versions of the password hash: For users who are
using a Release 10g or later client, the user logins will succeed because the 116 version of
the password hash is used. However, to use the latest version, expire these passwords, as
described in the previous bulleted item for accounts.

* Accounts with only the 11G version of the password hash: The authentication uses
the 11G version of the password hash. To use the latest version, expire the passwords, as
described in the first bulleted item.

The Oracle Database 12c¢ default configuration for SQLNET . ALLOWED LOGON_VERSION SERVER is
12, which means that it is compatible with Oracle Database 12c release 2 (12.2) authentication
protocols and later products that use OCl-based drivers, including SQL*Plus, ODBC,

Oracle .NET, Oracle Forms, and various third-party Oracle Database adapters. It is also
compatible with JDBC type-4 (thin) versions that have had the CPUOct2012 bundle patch
applied or starting with Oracle Database 11g, and Oracle Database Client interface (OCI)-
based drivers starting in Oracle Database 10g release 10.2. Be aware that earlier releases of
the OCI client drivers cannot authenticate to an Oracle database using password-based
authentication.

3.2.8.3 Configuring Oracle Database to Use the 12C Password Version Exclusively

ORACLE

You should set the SQLNET .ALLOWED LOGON VERSION SERVER parameter to 12a so that only the
12¢ password hash version is used.

The 12C password version is the most restrictive and secure of the password hash versions,
and for this reason, Oracle recommends that you use only this password version. By default,
SQLNET.ALLOWED LOGON VERSION SERVER is set to 12, which enables both the 11G and 12¢
password versions to be used. (Both the SQLNET.ALLOWED LOGON VERSION SERVER values 12
and 12a are considered Exclusive Mode, which prevents the use of the earlier 10G password
version.) If you have upgraded from a previous release, or if
SQLNET.ALLOWED LOGON VERSION SERVER is setto 12 or another setting that was used in
previous releases, then you should reconfigure this parameter, because intruders will attempt
to downgrade the authentication to use weaker password versions. The table later in this topic
shows the effect of the SQLNET.ALLOWED LOGON VERSION SERVER setting on password version
generation.

Be aware that you can use the 12¢C password version exclusively only if you use Oracle
Database 12c release 12.1.0.2 or later clients. Before you change the
SQLNET.ALLOWED LOGON VERSION SERVER parameter to 12a, check the versions of the database
clients that are connected to the server.

1. Loginto SQL*Plus as an administrative user who has the ALTER USER system privilege.

2. Perform the following SQL query to find the password versions of your users.

SELECT USERNAME, PASSWORD VERSIONS FROM DBA USERS;

3-40

ORACLE

Chapter 3
Configuring Password Protection

3. Expire the account of each user who does not have the 12¢ password version.
For example, assuming user blake is still using a 106G password version:

ALTER USER blake PASSWORD EXPIRE;

The next time that these users log in, they will be forced to change their passwords, which
enables the server to generate the password versions required for Exclusive Mode.

4. Remind users to log in within a reasonable period of time (such as 30 days).

When they log in, they will be prompted to change their password, ensuring that the
password versions required for authentication in Exclusive Mode are generated by the
server. (For more information about how Exclusive Mode works, see the usage notes for
the SQLNET.ALLOWED LOGON VERSION SERVER parameter in Oracle Database Net Services
Reference.)

5. Manually change the passwords for accounts that are used in test scripts or batch jobs so
that they exactly match the passwords used by these test scripts or batch jobs, including
the password's case.

6. Enable the Exclusive Mode configuration as follows:
a. Create a back up copy of the sqlnet.ora parameter file.

By default, this file is located in the $ORACLE HOME/network/admin directory on UNIX
operating systems and the $ORACLE HOME%\network\admin directory on Microsoft
Windows operating systems.

Be aware that in a Multitenant environment, the settings in the sqlnet.ora file apply to
all PDBs.

b. Setthe SQLNET.ALLOWED LOGON VERSION SERVER parameter, using Table 3-4 for
guidance.

c. Save the sqglnet.ora file.

The following table shows the effect of the SQLNET.ALLOWED LOGON VERSION SERVER setting on
password version generation.

Table 3-4 Effect of SQLNET.ALLOWED_LOGON_VERSION_SERVER on Password
Version Generation

SQLNET.ALLOWED_LOGON_VERSION_SE 8 11 12 12a
RVER Setting

Server runs in Exclusive Mode? No No Yes Yes
Generate the 10G password version? Yes Yes No No
Generate the 11G password version? Yes Yes Yes No
Generate the 12C password version? Yes Yes Yes Yes

If you only use Oracle Database 12c release 12.1.0.2 or later clients, then set
SQLNET.ALLOWED LOGON VERSION SERVER tO 12a.

The higher the setting, the more restrictive the use of password versions, as follows:

e A setting of 12a, the most restrictive and secure setting, only permits the 12¢ password
version.

e A setting of 12 permits both the 116 and 12¢ password versions to be used for
authentication.

3-41

Chapter 3
Configuring Password Protection

e A setting of 8 permits the most password versions: 106G, 11G, and 12C.

For detailed information about the SQLNET .ALLOWED LOGON VERSION SERVER parameter, see
Oracle Database Net Services Reference.

Note:

If your system hosts a fixed database link to a target database that runs an earlier
release, then you can set the SQLNET.ALLOWED LOGON VERSION CLIENT parameter, as
described in How Server and Client Logon Versions Affect Database Links.

3.2.8.4 How Server and Client Logon Versions Affect Database Links

ORACLE

The SQLNET.ALLOWED LOGON VERSION SERVER and SQLNET.ALLOWED LOGON VERSION CLIENT
parameters can accommodate connections between databases and clients of different
releases.

The following diagram illustrates how connections between databases and clients of different
releases work. The SQLNET.ALLOWED LOGON VERSION CLIENT parameter affects the "client
allowed logon version" aspect of a server that hosts the database link H. This setting enables
H to connect through database links to older servers, such as those running Oracle 9i (T), yet
still refuse connections from older unpatched clients (U). When this happens, the Oracle Net
Services protocol negotiation fails, which raises an ORA-28040: No matching authentication
protocol error message in this client, which is attempting to authenticate using the Oracle 9/
software. The Oracle Net Services protocol negotiation for Oracle Database 10g release 10.2
client E succeeds because this release incorporates the critical patch update CPUOct2012.
The Oracle Net Services protocol negotiation for Release 11.2.0.3 client C succeeds because it
uses a secure password version.

Oracle Net Services
protocol negotiation

9i Client fails
(Unpatched)
|
Fixed Database Database Link
Link (Host) (Target)

Oracle Net Services b
protocol negotiation 12g 9i

10g Client succeeds R))
€ & L E

—>
Oracle Net Services T uses
protocol negotiation SQLNET.ALLOWED_LOGON_VERSION=8
11.2.0.3 Client _succeeds
C H acts as client to T by using

SQLNET.ALLOWED_LOGON_VERSION_CLIENT =8

H also acts as server for C, E, and U by using
SQLNET.ALLOWED_LOGON_VERSION_SERVER = 12

This scenario uses the following settings for the system that hosts the database link H:

SQLNET.ALLOWED LOGON VERSION CLIENT=8
SQLNET.ALLOWED LOGON VERSION SERVER=12

Note that the remote Oracle Database T has the following setting:

3-42

Chapter 3
Configuring Password Protection

SQLNET.ALLOWED LOGON_ VERSION=8

If the release of the remote Oracle Database T does not meet or exceed the value defined by
the SQLNET.ALLOWED LOGON VERSION CLIENT parameter set for the host H, then queries over
the fixed database link would fail during authentication of the database link user, resulting in an
ORA-28040: No matching authentication protocol error when an end-user attempts to
access a table over the database link.

Note:

If you are using an older Oracle Database client (such as Oracle Database 11g
release 11.1.0.7), then Oracle strongly recommends that you upgrade to use the
critical patch update CPUOct2012.

See Also:
» Oracle Database Net Services Reference for more information about the
SQLNET.ALLOWED LOGON VERSION CLIENT parameter

°* http://www.oracle.com/technetwork/topics/security/
cpuoct2012-1515893.html for more information about CPUOCct2012

3.2.8.5 Configuring Oracle Database Clients to Use the 12C Password Version

Exclusively

ORACLE

An intruder may try to provision a fake server to downgrade authentication and trick the client
into using a weaker password hash version.

e To prevent the use of the 106 password version, or both the 106 and 116 password
versions, after you configure the server, configure the clients to run in Exclusive Mode, as
follows:

— To use the client Exclusive Mode setting to permit both the 116 and 12C password
versions:

SQLNET.ALLOWED LOGON VERSION CLIENT = 12

— To use the more restrictive client Exclusive Mode setting to permit only the 12¢
password version (this setting permits the client to connect only to Oracle Database
12c release 1 (12.1.0.2) and later servers):

SQLNET.ALLOWED LOGON VERSION CLIENT = 12a

If the server and the client are both installed on the same computer, then ensure that the
TNS_ADMIN environment variable for each points to the correct directory for its respective Oracle
Net Services configuration files. If the variable is the same for both, then the server could use
the client's SQLNET.ALLOWED LOGON VERSION CLIENT setting instead.

If you are using older Oracle Database clients (such as Oracle Database 11g release 11.1.0.7),
then you should apply CPU Oct2012 or later to these clients. This patch provides the 05L NP
ability. Unless you apply this patch, users will be unable to log in.

3-43

http://www.oracle.com/technetwork/topics/security/cpuoct2012-1515893.html
http://www.oracle.com/technetwork/topics/security/cpuoct2012-1515893.html

Chapter 3
Configuring Password Protection

¢ See Also:
« Oracle Database Net Services Reference for more information about the
SQLNET.ALLOWED LOGON VERSION CLIENT parameter

* The following Oracle Technology Network site for more information about
CPUOCct2012:

http://www.oracle.com/technetwork/topics/security/
cpuoct2012-1515893.html

3.2.9 Managing the Secure External Password Store for Password

Credentials

The secure external password store is a client-side wallet that is used to store password
credentials.

About the Secure External Password Store
You can store password credentials database connections by using a client-side Oracle
wallet.

How Does the Secure External Password Store Work?
Users (and applications, batch jobs, and scripts) connect to databases by using a standard
CONNECT statement that specifies a database connection string.

About Configuring Clients to Use the Secure External Password Store
If your client is configured to use external authentication, such as Windows native
authentication or SSL, then Oracle Database uses that authentication method.

Configuring a Client to Use the Secure External Password Store
You can configure a client to use the secure external password store feature by using the
mkstore command-line utility.

Example: Sample sginet.ora File with Wallet Parameters Set
You can set special parameters in the sglnet.ora file to control how wallets are
managed.

Managing External Password Store Credentials
The mkstore command-line utility manages credentials from an external password store.

3.2.9.1 About the Secure External Password Store

You can store password credentials database connections by using a client-side Oracle wallet.

An Oracle wallet is a secure software container that stores authentication and signing
credentials. This wallet usage can simplify large-scale deployments that rely on password
credentials for connecting to databases. When this feature is configured, application code,
scripts no longer need embedded user names and passwords. This reduces risk because the
passwords are no longer exposed, and password management policies are more easily
enforced without changing application code whenever user names or passwords change.

ORACLE

3-44

http://www.oracle.com/technetwork/topics/security/cpuoct2012-1515893.html
http://www.oracle.com/technetwork/topics/security/cpuoct2012-1515893.html

Chapter 3
Configuring Password Protection

Note:

The external password store of the wallet is separate from the area where public key
infrastructure (PKI) credentials are stored. Consequently, you cannot use Oracle
Wallet Manager to manage credentials in the external password store of the wallet.
Instead, use the command-line utility mkstore to manage these credentials.

Related Topics

* Using Proxy Authentication with the Secure External Password Store
Use a secure external password store if you are concerned about the password used in
proxy authentication being obtained by a malicious user.

e Oracle Database Enterprise User Security Administrator's Guide

3.2.9.2 How Does the Secure External Password Store Work?

ORACLE

Users (and applications, batch jobs, and scripts) connect to databases by using a standard
CONNECT statement that specifies a database connection string.

This string can include a user name and password, and an Oracle Net service name identifying
the database on an Oracle Database network. If the password is omitted, the connection
prompts the user for the password.

For example, the service name could be the URL that identifies that database, or a TNS alias
you entered in the tnsnames.ora file in the database. Another possibility is a host:port:sid
string.

The following examples are standard CONNECT statements that could be used for a client that is
not configured to use the external password store:

CONNECT salesappsales db.us.example.com
Enter password: password

CONNECT salesapp@orasales
Enter password: password

CONNECT salesapp@ourhost37:1527:DB17
Enter password: password

In these examples, salesapp is the user name, with the unique connection string for the
database shown as specified in three different ways. You could use its URL

sales db.us.example.com, Or its TNS alias orasales from the tnsnames.ora file, or its
host:port:sid string.

However, when clients are configured to use the secure external password store, applications
can connect to a database with the following CONNECT statement syntax, without specifying
database login credentials:

CONNECT /@db _connect string
CONNECT /@db_connect string AS SYSDBA

CONNECT /@db_connect_string AS SYSOPER

In this specification, db_connect stringis a valid connection string to access the intended
database, such as the service name, URL, or alias as shown in the earlier examples. Each

3-45

Chapter 3
Configuring Password Protection

user account must have its own unigue connection string; you cannot create one connection
string for multiple users.

In this case, the database credentials, user name and password, are securely stored in an
Oracle wallet created for this purpose. The autologin feature of this wallet is turned on, so the
system does not need a password to open the wallet. From the wallet, it gets the credentials to
access the database for the user they represent.

Related Topics

e Oracle Database Enterprise User Security Administrator's Guide

3.2.9.3 About Configuring Clients to Use the Secure External Password Store

If your client is configured to use external authentication, such as Windows native
authentication or SSL, then Oracle Database uses that authentication method.

The same credentials used for this type of authentication are typically also used to log in to the
database. For clients not using such authentication methods or wanting to override them for
database authentication, you can set the SQLNET.WALLET OVERRIDE parameter in sqlnet.ora to
TRUE. The default value for SQLNET.WALLET OVERRIDE is FALSE, allowing standard use of
authentication credentials as before.

3.2.9.4 Configuring a Client to Use the Secure External Password Store

ORACLE

You can configure a client to use the secure external password store feature by using the
mkstore command-line utility.

1. Create a wallet on the client by using the following syntax at the command line:

mkstore -wrl wallet location -create

For example:

mkstore -wrl c:\oracle\product\19.1.0\db_l\wallets -create
Enter password: password

wallet location is the path to the directory where you want to create and store the wallet.
This command creates an Oracle wallet with the autologin feature enabled at the location
you specify. The autologin feature enables the client to access the wallet contents without
supplying a password.

The mkstore utility -create option uses password complexity verification. See About
Password Complexity Verification for more information.

2. Create database connection credentials in the wallet by using the following syntax at the
command line:

mkstore -wrl wallet location -createCredential db connect string username
Enter password: password

For example:

mkstore -wrl c:\oracle\product\19.1.0\db 1\wallets -createCredential orcl system
Enter password: password

In this specification:
* wallet locationis the path to the directory where you created the wallet in Step 1.

* db connect stringisthe TNS alias you use to specify the database in the
tnsnames.ora file or any service name you use to identify the database on an Oracle

3-46

Chapter 3
Configuring Password Protection

network. By default, tnsnames.ora is located in the SORACLE HOME/network/admin
directory on UNIX systems and in ORACLE HOME\network\admin on Windows.

e username is the database login credential. When prompted, enter the password for this
user.

Repeat this step for each database you want accessible using the CONNECT /
@db_connect string syntax. The db_connect string used in the CONNECT /

@db _connect string statement must be identical to the db_connect string specified in
the -createCredential command.

In the client sqlnet.ora file, enter the WALLET LOCATION parameter and set it to the
directory location of the wallet you created in Step 1.

For example, if you created the wallet in $ORACLE HOME/network/admin and your Oracle
home is set to /private/orall, then you need to enter the following into your client
sqlnet.ora file:

WALLET LOCATION =
(SOURCE =
(METHOD = FILE)
(METHOD DATA =
(DIRECTORY = /private/orall/network/admin)

)
)

In the client sqlnet.ora file, enter the SQLNET.WALLET OVERRIDE parameter and set it to
TRUE as follows:

SQLNET.WALLET OVERRIDE = TRUE

This setting causes all CONNECT /@db connect string statements to use the information in
the wallet at the specified location to authenticate to databases.

When external authentication is in use, an authenticated user with such a wallet can use
the CONNECT /@db_connect string Syntax to access the previously specified databases
without providing a user name and password. However, if a user fails that external
authentication, then these connect statements also fail.

< Note:

If an application uses SSL for encryption, then the sqlnet.ora parameter,
SQLNET.AUTHENTICATION SERVICES, specifies SSL and an SSL wallet is created.
If this application wants to use secret store credentials to authenticate to
databases (instead of the SSL certificate), then those credentials must be stored
in the SSL wallet. After SSL authentication, if SQLNET.WALLET OVERRIDE = TRUE,
then the user names and passwords from the wallet are used to authenticate to
databases. If SQLNET.WALLET OVERRIDE = FALSE, then the SSL certificate is
used.

3.2.9.5 Example: Sample sqginet.ora File with Wallet Parameters Set

ORACLE

You can set special parameters in the sglnet.ora file to control how wallets are managed.

Example 3-2 shows a sample sqlnet.ora file with the WALLET LOCATION and the
SQLNET.WALLET OVERRIDE parameters set as described in Steps 3 and 4 of Configuring a Client
to Use the Secure External Password Store.

3-47

Chapter 3
Configuring Password Protection

Example 3-2 Sample sqlnet.ora File with Wallet Parameters Set

WALLET LOCATION =
(SOURCE =
(METHOD = FILE)
(METHODiDATA =
(DIRECTORY = /private/ora db/network/admin)

)

SQLNET.WALLET OVERRIDE = TRUE
SSL CLIENT AUTHENTICATION = FALSE
SSL_VERSION = 0

3.2.9.6 Managing External Password Store Credentials

The mkstore command-line utility manages credentials from an external password store.

» Listing External Password Store Contents
You can view the contents, including specific credentials, of a client wallet external
password store.

e Adding Credentials to an External Password Store
You can store multiple credentials in one client wallet.

* Modifying Credentials in an External Password Store
You can modify the database login credentials that are stored in the wallet if the database
connection strings change.

* Deleting Credentials from an External Password Store
You can delete login credentials for a database from a wallet if the database no longer
exists or to disable connections to a specific database.

3.2.9.6.1 Listing External Password Store Contents

You can view the contents, including specific credentials, of a client wallet external password
store.

Listing the external password store contents provides information you can use to decide
whether to add or delete credentials from the store.

e To list the contents of the external password store, enter the following command at the
command line:

mkstore -wrl wallet location -listCredential
For example:

mkstore -wrl c:\oracle\product\19.1.0\db I\wallets -listCredential

wallet location specifies the path to the directory where the wallet, whose external password
store contents you want to view, is located. This command lists all of the credential database
service names (aliases) and the corresponding user name (schema) for that database.
Passwords are not listed.

3.2.9.6.2 Adding Credentials to an External Password Store
You can store multiple credentials in one client wallet.

For example, if a client batch job connects to hr _database and a script connects to
sales database, then you can store the login credentials in the same client wallet. You cannot,

ORACLE 348

Chapter 3
Configuring Password Protection

however, store multiple credentials (for logging in to multiple schemas) for the same database
in the same wallet. If you have multiple login credentials for the same database, then they must
be stored in separate wallets.

- To add database login credentials to an existing client wallet, enter the following command
at the command line:

mkstore -wrl wallet location -createCredential db alias username
For example:
mkstore -wrl c:\oracle\product\19.1.0\db I1\wallets -createCredential orcl system

Enter password: password

In this specification:

* wallet locationis the path to the directory where the client wallet to which you want to
add credentials is stored.

* db alias can be the TNS alias you use to specify the database in the tnsnames.ora file or
any service name you use to identify the database on an Oracle network.

e username is the database login credential for the schema to which your application
connects. When prompted, enter the password for this user.

3.2.9.6.3 Modifying Credentials in an External Password Store

You can modify the database login credentials that are stored in the wallet if the database
connection strings change.

* To modify database login credentials in a wallet, enter the following command at the
command line:

mkstore -wrl wallet location -modifyCredential db alias username
For example:

mkstore -wrl c:\oracle\product\19.1.0\db I1\wallets -modifyCredential sales db
Enter password: password

In this specification:
* wallet location is the path to the directory where the wallet is located.

* db aliasis anew or different alias you want to use to identify the database. It can be a
TNS alias you use to specify the database in the tnsnames.ora file or any service name
you use to identify the database on an Oracle network.

* username is the new or different database login credential. When prompted, enter the
password for this user.

3.2.9.6.4 Deleting Credentials from an External Password Store

ORACLE

You can delete login credentials for a database from a wallet if the database no longer exists or
to disable connections to a specific database.

e To delete database login credentials from a wallet, enter the following command at the
command line:

mkstore -wrl wallet Iocation -deleteCredential db alias
For example:

mkstore -wrl c:\oracle\product\19.1.0\db l\wallets -deleteCredential orcl

3-49

Chapter 3
Configuring Password Protection

In this specification:
* wallet location is the path to the directory where the wallet is located.

* db aliasisthe TNS alias you use to specify the database in the tnsnames.ora file, or any
service name you use to identify the database on an Oracle Database network.

3.2.10 Managing Passwords for Administrative Users

The passwords of administrative users have special protections, such as password files and
password complexity functions.

e About Managing Passwords for Administrative Users
The passwords of administrative users are stored outside of the database so that the users
can be authenticated even when the database is not open.

e Setting the LOCK and EXPIRED Status of Administrative Users
Administrative users whose accounts have been locked cannot connect to the database.

e Password Profile Settings for Administrative Users
There are several user profile password settings that are enforced for administrative users.

e Last Successful Login Time for Administrative Users
The last successful login time of administrative user connections that use password file-
based authentication is captured.

* Management of the Password File of Administrative Users
Setting the ORAPWD utility FORMAT parameter to 12.2 enables you to manage the password
profile parameters for administrative users.

* Migration of the Password File of Administrative Users
The ORAPWD utility input file parameter or DBUA can be used to migrate from earlier
password file formats to the 12 or 12.2 format.

e How the Multitenant Option Affects Password Files for Administrative Users
In a multitenant environment, the password information for the local and common
administrative users is stored in different locations.

e Password Complexity Verification Functions for Administrative Users
For better security, use password complexity verification functions for the passwords of
administrative users.

3.2.10.1 About Managing Passwords for Administrative Users

The passwords of administrative users are stored outside of the database so that the users
can be authenticated even when the database is not open.

There is no special protection with the password file. The password verifiers must be stored
outside of the database so that authentication can be performed even when the database is
not open. In previous releases, password complexity functions were available for non-
administrative users only. Starting with Oracle Database release 12¢ (12.2), password
complexity functions can be used for both non-administrative users and administrative users.

3.2.10.2 Setting the LOCK and EXPIRED Status of Administrative Users

Administrative users whose accounts have been locked cannot connect to the database.

* To unlock locked or expired administrative accounts, use the ALTER USER Statement.

ORACLE 350

Chapter 3
Configuring Password Protection

For example:

ALTER USER hr admin ACCOUNT UNLOCK;

If the administrative user’s password has expired, then the next time the user attempts to log
in, the user will be prompted to create a new password.

3.2.10.3 Password Profile Settings for Administrative Users

There are several user profile password settings that are enforced for administrative users.
These password profile parameters are as follows:

* FAILED LOGIN ATTEMPT

e INACTIVE ACCOUNT TIME

* PASSWORD LOCK TIME

* PASSWORD LIFE TIME

* PASSWORD GRACE TIME

Related Topics

* Managing Resources with Profiles
A profile is a named set of resource limits and password parameters that restrict database
usage and instance resources for a user.

3.2.10.4 Last Successful Login Time for Administrative Users

The last successful login time of administrative user connections that use password file-based
authentication is captured.

To find this login time, query the LAST LOGIN column of the V$PWFILE USERS dynamic
performance view.

3.2.10.5 Management of the Password File of Administrative Users

ORACLE

Setting the ORAPWD utility FORMAT parameter to 12.2 enables you to manage the password
profile parameters for administrative users.

The password file is particularly important for administrative users because it stores the
administrative user’s credentials in an external file, not in the database itself. This enables the
administrative user to log in to a database that is not open and perform tasks such as querying
the data dictionary views. To create the password file, you must use the ORAPWD utility.

The FORMAT parameter setting of 12.2, which is the default setting, enables the password file to
accommodate the password profile information for the administrative user.

For example:

orapwd file=orapworcl input file=orapwold format=12.2
Setting FORMAT to 12.2 enforces the following rules:

* The password contains no fewer than 8 characters and includes at least one numeric and
one alphabetic character.

3-51

Chapter 3
Configuring Password Protection

e The password does not contain the user name or the user name reversed.
e The password does not contain the word oracle (such as oraclel23).

e The password contains at least 1 special character.

FORMAT=12.2 also applies the following internal checks:

e The password does not exceed 30 bytes.

* The password does not contain the double-quotation character ("). However, it can be
surrounded by double-quotation marks.

The following user profile password settings are enforced for administrative users:
* FAILED LOGIN ATTEMPT

* INACTIVE ACCOUNT TIME

* PASSWORD GRACE TIME

* PASSWORD LIFE TIME

* PASSWORD LOCK TIME

You can find the administrative users who have been included in the password file and their
administrative privileges by querying the V$PWFILE USERS dynamic view.

3.2.10.6 Migration of the Password File of Administrative Users

The ORAPWD utility input file parameter or DBUA can be used to migrate from earlier
password file formats to the 12 or 12.2 format.

You can migrate from earlier password file formats to the 12 or 12.2 format by using either the
ORAPWD utility file and input file parameters, or by using Oracle Database Upgrade Assistant
(DBUA).

e The ORAPWD FILE and INPUT_FILE parameters: To migrate using the ORAPWD ultility, set
the FILE parameter to a name for the new password file and the INPUT FILE parameter to
the name of the earlier password file.

For example:
orapwd file=orapworcl input file=orapwold format=12.2

« DBUA: To migrate from the earlier formats of password files (FORMAT = LEGACY and FORMAT
= 12), you can use the DBUA when you upgrade an earlier database to the current
release. However, ensure that the database is open in read-only mode. You can check the
database read-only status by querying the 0OPEN MODE column of the V$DATABASE dynamic
view.

Related Topics

e Oracle Database Administrator’s Guide

3.2.10.7 How the Multitenant Option Affects Password Files for Administrative Users

ORACLE

In a multitenant environment, the password information for the local and common
administrative users is stored in different locations.

* For CDB administrative users: The password information (hashes of the password) for
the CDB common administrative users to whom administrative privileges were granted in
the CDB root is stored in the password file.

3-52

Chapter 3
Authentication of Database Administrators

For all users in a CDB to whom administrative privileges were granted outside the
CDB root: To view information about the password hash information of these users, query
the $PWFILE USERS dynamic view.

3.2.10.8 Password Complexity Verification Functions for Administrative Users

For better security, use password complexity verification functions for the passwords of
administrative users.

Note the following:

Profiles: You can specify a password complexity verification function for the Sys user by
using the PASSWORD VERIFY FUNCTION clause of the CREATE PROFILE Of ALTER PROFILE
statement. Oracle recommends that you use password verification functions to better
protect the passwords of administrative users.

ORAPWD password files: If you created a password file using the orRAPWD utility, then
Oracle Database enforces password complexity checking for the sys user and for
administrative users who have logged in using the SYSDBA, SYSBACKUP, SYSDG, and SYSKM
administrative privileges.

The password checks for the following requirements:

— The password contains no fewer than 8 characters and includes at least one numeric
character, one alphabetic character, and one special character.

— The password is not the same as the user name or the user name reversed.
— The password does not contain the word oracle (such as oraclel23).

— The password differs from the previous password by at least three characters.
The following internal checks are also applied:

— The password does not exceed 30 bytes.

— The password does not contain the double-quotation character ("). However, it can be
surrounded by double-quotation marks.

Related Topics

Managing the Complexity of Passwords
Oracle Database provides a set of functions that you can use to manage the complexity of
passwords.

3.3 Authentication of Database Administrators

You can authenticate database administrators by using strong authentication, from the
operating system, or from the database using passwords.

ORACLE

About Authentication of Database Administrators
Database administrators perform special administrative operations, such as shutting down
or starting databases.

Strong Authentication, Centralized Management for Administrators
Strong authentication methods for centrally managed databases include directory
authentication, Kerberos authentication, and SSL authentication.

Authentication of Database Administrators by Using the Operating System
For both Windows and UNIX systems, you use DBA-privileged groups to authenticate for
the operating system.

3-53

Chapter 3
Authentication of Database Administrators

e Authentication of Database Administrators by Using Their Passwords
Password files are used to authenticate database administrators.

* Risks of Using Password Files for Database Administrator Authentication
Be aware that using password files may pose security risks.

3.3.1 About Authentication of Database Administrators

Database administrators perform special administrative operations, such as shutting down or
starting databases.

Oracle Database provides methods to secure the authentication of database administrators
who have the SYSDBA, SYSOPER, SYSBACKUP, SYSDG, or SYSKM administrative privilege.

3.3.2 Strong Authentication, Centralized Management for Administrators

Strong authentication methods for centrally managed databases include directory
authentication, Kerberos authentication, and SSL authentication.

* About Strong Authentication for Database Administrators
Strong authentication lets you centrally control SYSDBA and SYSOPER access to multiple
databases.

e Configuring Directory Authentication for Administrative Users
Oracle Internet Directory configures directory authentication for administrative users.

e Configuring Kerberos Authentication for Administrative Users
Oracle Internet Directory can be used to configure Kerberos authentication for
administrative users.

e Configuring User Authentication with Transport Layer Security
Both the client and server side can authenticate administrative users with Transport Layer
Security (TLS).

3.3.2.1 About Strong Authentication for Database Administrators

Strong authentication lets you centrally control SYSDBA and SYSOPER access to multiple
databases.

Consider using this type of authentication for database administration for the following
situations:

* You have concerns about password file vulnerability.
* Your site has very strict security requirements.

* You want to separate the identity management from your database. By using a directory
server such as Oracle Internet Directory (OID), for example, you can maintain, secure, and
administer that server separately.

To enable the Oracle Internet Directory server to authorize SYSDBA and SYSOPER connections,
use one of the following methods described in this section, depending on your environment.

3.3.2.2 Configuring Directory Authentication for Administrative Users

Oracle Internet Directory configures directory authentication for administrative users.

1. Configure the administrative user by using the same procedures you would use to
configure a typical user.

ORACLE .

Chapter 3
Authentication of Database Administrators

In Oracle Internet Directory, grant the SYSDBA or SYSOPER administrative privilege to the
user for the database that this user will administer.

Grant SYSDBA or SYSOPER only to trusted users.
Set the LDAP DIRECTORY SYSAUTH initialization parameter to YES:

ALTER SYSTEM SET LDAP DIRECTORY SYSAUTH = YES;

When set to YES, the LDAP DIRECTORY SYSAUTH parameter enables SYSDBA and SYSOPER
users to authenticate to the database by using a strong authentication method.

Set the LDAP DIRECTORY ACCESS parameter to either PASSWORD or SSL. For example:

ALTER SYSTEM SET LDAP DIRECTORY ACCESS = PASSWORD;

Ensure that the LDAP DIRECTORY ACCESS initialization parameter is not set to NONE. Setting
this parameter to PASSWORD or SSL ensures that users can be authenticated using the
SYSDBA or SYSOPER administrative privileges through Oracle Internet Directory.

In an Oracle Real Application Clusters (Oracle RAC) environment, ensure that all
instances have the same LDAP DIRECTORY ACCESS setting, either through the ALTER
SYSTEM statement or through the init.ora file.

In an Oracle Data Guard or Active Data Guard environment, ensure that the standby
database has the same LDAP DIRECTORY ACCESS setting as the primary database. In this
environment, the ALTER SYSTEM Statement propagates its settings from the primary
database to the standby database. If you choose to update the init.ora file, remember
that the init.ora parameters are used by both the primary database and the standby
database, so you do not need to manually propagate this setting from one database to the
other.

Afterward, this user can log in by including the net service name in the CONNECT statement in
SQL*Plus. For example, to log on as sYSDBA if the net service name is orcl:

CONNECT someuser@orcl AS SYSDBA
Enter password: password

If the database is configured to use a password file for remote authentication, Oracle Database
checks the password file first.

Related Topics

Guidelines for Securing User Accounts and Privileges
Oracle provides guidelines to secure user accounts and privileges.

Oracle Database Reference

Oracle Database Reference

3.3.2.3 Configuring Kerberos Authentication for Administrative Users

ORACLE

Oracle Internet Directory can be used to configure Kerberos authentication for administrative
users.

1.

Configure the administrative user by using the same procedures you would use to
configure a typical user.

See Configuring Kerberos Authentication , for more information.
Configure Oracle Internet Directory for Kerberos authentication.

See Oracle Database Enterprise User Security Administrator's Guide for more information.

3-55

Chapter 3
Authentication of Database Administrators

In Oracle Internet Directory, grant the SYSDBA or SYSOPER administrative privilege to the
user for the database that this user will administer.

Grant SYSDBA or SYSOPER only to trusted users. See Guidelines for Securing User Accounts
and Privileges for advice on this topic.

Set the LDAP DIRECTORY SYSAUTH initialization parameter to YES:

ALTER SYSTEM SET LDAP DIRECTORY SYSAUTH = YES;

When set to YES, the LDAP DIRECTORY SYSAUTH parameter enables SYSDBA and SYSOPER
users to authenticate to the database by using strong authentication methods. See Oracle
Database Reference for more information about LDAP DIRECTORY SYSAUTH.

Set the LDAP DIRECTORY ACCESS parameter to either PASSWORD or SSL. For example:

ALTER SYSTEM SET LDAP DIRECTORY ACCESS = SSL;

Ensure that the LDAP DIRECTORY ACCESS initialization parameter is not set to NONE. Setting
this parameter to PASSWORD Or SSL ensures that users can be authenticated using SYSDBA or
SYSOPER through Oracle Internet Directory. See Oracle Database Reference for more
information about LDAP DIRECTORY ACCESS.

In an Oracle Real Application Clusters (Oracle RAC) environment, ensure that all
instances have the same LDAP DIRECTORY ACCESS setting, either through the ALTER
SYSTEM statement or through the init.ora file.

In an Oracle Data Guard or Active Data Guard environment, ensure that the standby
database has the same LDAP DIRECTORY ACCESS setting as the primary database. In this
environment, the ALTER SYSTEM Statement propagates its settings from the primary
database to the standby database. If you choose to update the init.ora file, remember
that the init.ora parameters are used by both the primary database and the standby
database, so you do not need to manually propagate this setting from one database to the
other.

Afterward, this user can log in by including the net service name in the CONNECT Statement in
SQL*Plus. For example, to log on as sYSDBA if the net service name is orcl:

CONNECT /@orcl AS SYSDBA

3.3.2.4 Configuring User Authentication with Transport Layer Security

ORACLE

Both the client and server side can authenticate administrative users with Transport Layer
Security (TLS).

1.

For both the client and the server, get user certificates signed by the same root Certificate
Authority (CA) certificate, either public or self-signed.

Configure the client to use TLS:

a. Add the signed user certificate to the client wallet. The CA root trust certificate should
already be in the client wallet. Ensure that any intermediate certificates that are
required for the user certificate are added to the wallet before you add the user
certificate.

You can use orapki to configure the client wallet and user certificate.

b. Set TLS as an authentication service in the sqlnet.ora file.

SSL CLIENT AUTHENTICATION=TRUE

3-56

ORACLE

Chapter 3
Authentication of Database Administrators

Optionally, for better security, set the client to use full or partial DN matching.

When DN matching is enabled, the client will check the server certificate to ensure that
host names will match what the client is configured to match. You perform this step
when you enable Oracle Internet Directory to use TLS.

Note:

The database client and server will use the strongest TLS protocol and
cipher suite to establish a connection. Therefore, you do not need to specify
the TLS version and cipher suites unless you have specific security
requirements that require it. Be aware that if you set specific TLS versions
and cipher suites, you will need to update the configuration when the older
versions are no longer used.

3. Configure the listener for TLS on the client, the listener, and server.

a.

Create a separate listener entry for TLS connections using the secure database port
1522.

For example:

LISTENER =
(DESCRIPTION LIST =
(DESCRIPTION =
(ADDRESS = (PROTOCOL = TCP) (HOST = example.com) (PORT = 1521))
(ADDRESS (PROTOCOL TCPS) (HOST = example.com) (PORT = 1522))

)

Comment out the non-TLS listener entry (for example, the line with PROTOCOL = TCP) or
leave it in for non-TLS required connections.

Add SSL CLIENT AUTHENTICATION = FALSE to the sqlnet.ora file so the database
server authenticates the client, not the listener.

The same wallet that the server uses can be used by the listener, along with the same
server certificate. The listener will look for the wallet using the standard Oracle
Database wallet search order. Alternatively, you can specify the wallet location in the
listener by setting the WALLET LOCATION parameter. (You cannot use the WALLET ROOT
parameter for this purpose, because the listener cannot use it.)

4. Configure the server to use TLS:

a.

In the sqlnet.ora file, set SSL_CLIENT AUTHENTICATION to FALSE (Or OFF) to enable
one-way TLS.

For the TLS server wallet, do the following:

* Setthe WALLET ROOT parameter to a location for the TLS server.

* Create the t1s directory under WALLET ROOT/pdb guid.

* Move the TLS server wallet to the WALLET ROOT/pdb guid/tls directory.

In the sqlnet.ora file, add the following parameter:

SSL _CLIENT AUTHENTICATION=TRUE

3-57

Chapter 3
Authentication of Database Administrators

If you want to restrict authentication to only TCPS, then set AUTHENTICATION SERVICES
to TCPS.

5. Create a new schema or alter an existing schema to map to the user.
CREATE USER user name IDENTIFIED EXTERNALLY AS 'user DN on certificate';
6. Grant the database schema to appropriate administrative privileges, such as SYSDBA,

SYSOPER, and so on.

Administrative users with TLS authentication can authenticate with TLS. To enable these
users, grant the appropriate administrative privilege to the user schema. The administrative
user must log in using this administrative privilege. For example, for a user who was
granted the SYSOPER administrative privilege:

CONNNECT /@pdb name AS SYSOPER

Afterward, this user can log in by including the net service name in the CONNECT statement in
SQL*Plus. For example, to log on as sYSDBA if the net service name is orcl:

CONNECT /@Qorcl AS SYSDBA

3.3.3 Authentication of Database Administrators by Using the Operating
System

For both Windows and UNIX systems, you use DBA-privileged groups to authenticate for the
operating system.

Operating system authentication for a database administrator typically involves establishing a
group on the operating system, granting DBA privileges to that group, and then adding the
names of persons who should have those privileges to that group. (On UNIX systems, the
group is the dba group.)

¢ Note:

In a multitenant environment, you can use operating system authentication for a
database administrator only for the CDB root. You cannot use it for for PDBs, the
application root, or application PDBs.

On Microsoft Windows systems:

* Users who connect with the SYSDBA administrative privilege can take advantage of the
Windows native authentication. If these users work with Oracle Database using their
domain accounts, then you must explicitly grant them local administrative privileges and
ORA_DBA membership.

e Oracle recommends that you run Oracle Database services using a low privileged
Microsoft Windows user account rather than a Microsoft Windows built-in account.

ORACLE -

Chapter 3
Authentication of Database Administrators

See Also:

Your Oracle Database operating system-specific documentation for information about
configuring operating system authentication of database administrators

3.3.4 Authentication of Database Administrators by Using Their Passwords

Password files are used to authenticate database administrators.

That is, Oracle Database users who have been granted the SYSDBA, SYSOPER, SYSASM,
SYSBACKUP, SYSDG, and SYSKM administrative privileges are first authenticated using database-
specific password files.

These privileges enable the following activities:

e The SYSOPER system privilege lets database administrators perform STARTUP, SHUTDOWN,
ALTER DATABASE OPEN/MOUNT, ALTER DATABASE BACKUP, ARCHIVE LOG, and RECOVER
operations. SYSOPER also includes the RESTRICTED SESSION privilege.

* The SYsDBA administrative privilege has all system privileges with ADMIN OPTION, including
the SYSOPER administrative privilege, and permits CREATE DATABASE and time-based
recovery.

* A password file containing users who have the SYSDBA, SYSOPER, SYSASM, SYSBACKUP,
SYSDG, and SYSKM administrative privileges can be shared between different databases. In
addition, this type of password file authentication can be used in a Transport Layer
Security (TLS) or Kerberos configuration, and for common administrative users in a
multitenant environment. You can have a shared password file that contains users in
addition to the sys user. To share a password file among different databases, set the
REMOTE LOGIN PASSWORDFILE parameter inthe init.ora file to SHARED.

If you set the REMOTE_LOGIN PASSWORDFILE initialization parameter to EXCLUSIVE Or SHARED
from NONE, then ensure that the password file is synchronized with the dictionary
passwords. See Oracle Database Administrator’s Guide for more information.

e For Automatic Storage Management (ASM) environments, you can create shared ASM
password files. Remember that you must have the sYSASM system privilege to create an
ASM password file. See Oracle Automatic Storage Management Administrator's Guide for
more information.

e The syspG administrative privilege must be included in a password file for sharding
administrators to perform tasks that involve file transfer and Oracle Recovery Manager
(RMAN) activities.

e Password file-based authentication is enabled by default. This means that the database is
ready to use a password file for authenticating users that have SYSDBA, SYSOPER, SYSASM,
SYSBACKUP, SYSDG, and SYSKM administrative privileges. Password file-based authentication
is activated as soon as you create a password file by using the ORAPWD utility.

Anyone who has EXECUTE privileges and write privileges to the SORACLE HOME/dbs directory
can run the ORAPWD utility.

» Password limits such as FAILED LOGIN ATTEMPTS and PASSWORD LIFE_TIME are enforced
for administrative logins, if the password file is created in the Oracle Database 12c release
2 (12.2) format.

ORACLE 350

Chapter 3
Database Authentication of Users

Note:
« To find a list of users who are included in the password file, you can query the
VSPWFILE USERS data dictionary view.

e Connections requested AS SYSDBA or AS SYSOPER must use these phrases.
Without them, the connection fails.

3.3.5 Risks of Using Password Files for Database Administrator
Authentication

Be aware that using password files may pose security risks.

For this reason, consider using the authentication methods described in Strong Authentication,
Centralized Management for Administrators.

Examples of password security risks are as follows:

An intruder could steal or attack the password file.

Many users do not change the default password.

The password could be easily guessed.

The password is vulnerable if it can be found in a dictionary.

Passwords that are too short, chosen perhaps for ease of typing, are vulnerable if an
intruder obtains the cryptographic hash of the password.

Note:

Oracle Database Administrator’s Guide for information about creating and
maintaining password files

3.4 Database Authentication of Users

Database authentication of users entails using information within the database itself to perform
the authentication.

ORACLE

About Database Authentication of Users
Oracle Database can authenticate users attempting to connect to a database by using
information stored in that database itself.

Advantages of Database Authentication
There are three advantages of using the database to authenticate users.

Creating Users Who Are Authenticated by the Database
When you create a user who is authenticated by the database, you assign this user a
password.

3-60

Chapter 3
Database Authentication of Users

3.4.1 About Database Authentication of Users

ORACLE

Oracle Database can authenticate users attempting to connect to a database by using
information stored in that database itself.

To configure Oracle Database to use database authentication, you must create each user with
an associated password. User names can use the National Language Support (NLS) character
format, but you cannot include double quotation mark characters in the password. The user
must provide this user name and password when attempting to establish a connection.

Oracle Database generates a one-way hash of the user's password and stores it for use when
verifying the provided login password. In order to support older clients, Oracle Database can
be configured to generate the one-way hash of the user's password using a variety of different
hashing algorithms. The resulting password hashes are known as password versions, which
have the short names 106G, 116G, and 12C. The short names 106G, 11G, and 12C serve as
abbreviations for the details of the one-way password hashing algorithms, which are described
in more detail in the documentation for the PASSWORD VERSIONS column of the DBA USERS view.
To find the list of password versions for any given user, query the PASSWORD VERSIONS column
of the DBA_USERS view.

By default, there are currently two versions of the one-way hashing algorithm in use in Oracle
Database: the salted SHA-1 hashing algorithm, and the salted PKBDF2 SHA-2 SHA-512
hashing algorithm. The salted SHA-1 hashing algorithm generates the hash that is used for the
116G password version. The salted PKBDF2 SHA-2 SHA-512 hashing algorithm generates the
hash that is used for the 12C password version. This hash generation takes place for the same
password; that is, both algorithms run for the same password. Oracle Database records these
password versions in the DBA USERS data dictionary view. When you query this view, you will
see two password versions. For example:

SELECT USERNAME, PASSWORD VERSIONS FROM DBA USERS;

USERNAME PASSWORD VERSIONS

ADAMS 11G6, 12C
SYS 11G6, 12C

To specify which authentication protocol to allow during authentication of a client or of a
database server acting as a client, you can explicitly set the
SQLNET.ALLOWED LOGON VERSION SERVER parameter in the server sqlnet.ora file. (The client
version of this parameter is SQLNET.ALLOWED LOGON VERSION CLIENT.) Each connection
attempt is tested, and if the client or server does not meet the client ability requirements
specified by its partner, authentication fails with an ORA-28040 No matching authentication
protocol error in the “Ability Required of the Client” in the

“SQLNET.ALLOWED_ LOGON_VERSION_SERVER Settings” table under the description of
the SQLNET.ALLOWED LOGON VERSION SERVER parameter in Oracle Database Net Services
Reference. The parameter can take the values 12a, 12, 11, 10, 9, or 8. The default value is 12,
which is Exclusive Mode. These values represent the version of the authentication protocol.
Oracle recommends the value 12. However, be aware that if you set
SQLNET.ALLOWED LOGON VERSION SERVER and SQLNET.ALLOWED LOGON VERSION CLIENT to 11,
then pre-Oracle Database Release 11.1 client applications including JDBC thin clients cannot
authenticate to the Oracle database using password-based authentication.

To enhance security when using database authentication, Oracle recommends that you use
password management, including account locking, password aging and expiration, password
history, and password complexity verification.

3-61

Chapter 3
Database Authentication of Users

If you are not using external authentication and only using local database password
authentication, then set AUTHENTICATION SERVICES=(none) in the client sqlnet.ora file. This
setting improves performance because the default for this value is ALL, which forces the client
to check external authentication as well as database password authentication.

Related Topics

e SQLNET.ALLOWED_LOGON_VERSION_CLIENT
e SQLNET.ALLOWED_LOGON_VERSION_SERVER
e SQLNET.AUTHENTICATION_SERVICES

e About Password Complexity Verification
Complexity verification checks that each password is complex enough to protect against
intruders who try to guess user passwords.

e Using a Password Management Policy
A password management policy can create and enforce a set of restrictions that can better
secure user passwords.

* Management of Password Versions of Users
By default, Oracle Database uses Exclusive Mode, which does not permit case-insensitive
passwords, to manage password versions.

3.4.2 Advantages of Database Authentication

There are three advantages of using the database to authenticate users.
These advantages are as follows:

e User accounts and all authentication are controlled by the database. There is no reliance
on anything outside of the database.

e Oracle Database provides strong password management features to enhance security
when using database authentication.

e |tis easier to administer when there are small user communities.

3.4.3 Creating Users Who Are Authenticated by the Database

When you create a user who is authenticated by the database, you assign this user a
password.

* To create a user who is authenticated by the database, include the IDENTIFIED BY clause
when you create the user.

For example, the following SQL statement creates a user who is identified and authenticated
by Oracle Database. User sebastian must specify the assigned password whenever he
connects to Oracle Database.

CREATE USER sebastian IDENTIFIED BY password;

Related Topics

e Creating User Accounts
A user account can have restrictions such as profiles, a default role, and tablespace
restrictions.

ORACLE 360

Chapter 3
Schema-Only Accounts

3.5 Schema-Only Accounts

You can create schema-only accounts, that is, the schema user has no password.

e About Schema-Only Accounts
A schema-only account cannot log in to the database but can proxy in a single session

proxy.

e Creating a Schema-Only Account
The CREATE USER SQL statement creates schema-only accounts.

e Altering a Schema-Only Account
The ALTER USER SQL statement can be used to modify schema-only accounts.

3.5.1 About Schema-Only Accounts

A schema-only account cannot log in to the database but can proxy in a single session proxy.

This type of account, designed for some Oracle-provided schemas along with some user-
created schemas, can be created without the specification of a password or an authentication
type. It cannot be authenticated unless an authentication method is assigned by using the
ALTER USER statement. A schema-only account does not contain an entry in the

DBA USERS WITH DEFPWD data dictionary view.

By default, most of the predefined schema user accounts that are available with Oracle
Database, such as the sample schema user accounts (for example, HR), are schema-only
accounts. You can assign these accounts passwords if you want to, but for better security,
Oracle recommends that you set them back to being schema-only afterwards. To check if a
schema user account is schema only, query the AUTHENTICATION TYPE column of the

DBA USERS data dictionary view. NONE indicates that the account is schema only.

Note the following rules about using schema only accounts:

* Schema only accounts can be used for both administrator and non-administrator accounts.

* Schema only accounts must be created on the database instance only, not in Oracle
Automatic Storage Management (ASM) environments.

* You can grant system privileges (such as CREATE ANY TABLE) and administrator roles (such
as DB2) to schema only accounts. Schema only accounts can create objects such as tables
or procedures, assuming they have had to correct privileges granted to them.

* You can configure schema only accounts to be used as client users in a proxy
authentication in a single session proxy. This is because in a single session proxy, only the
credentials of the proxy user are verified, not the credentials of the client user. Therefore, a
schema only account can be a client user. However, you cannot configure schema only
accounts for a two-proxy scenario, because the client credentials must be verified. Hence,
the authentication for a schema only account will fail.

e Schema only accounts cannot connect through database links, either with connected user
links, fixed user links, or current user links.

Related Topics

e Predefined Sample Schema User Accounts
Oracle Database creates a set of sample user accounts if you install the sample schemas.

ORACLE 263

Chapter 3
Operating System Authentication of Users

3.5.2 Creating a Schema-Only Account

The CREATE USER SQL statement creates schema-only accounts.

You can run the CREATE USER statement with the NO AUTHENTICATION clause only on a
database instance. You cannot run it on an Oracle Automatic Storage Management (ASM)
instance.

Use the CREATE USER statement with the NO AUTHENTICATION clause.
For example:

CREATE USER psmith NO AUTHENTICATION;

3.5.3 Altering a Schema-Only Account

The ALTER USER SQL statement can be used to modify schema-only accounts.

1.

Check if the schema user has administrative privileges.
You can query the VSPWFILE USERS to find if the schema user has administrative privileges.

If the schema user has administrative privileges, then use the REVOKE statement to revoke
these privileges.

Use the ALTER USER SQL statement with the NO AUTHENTICATION clause to modify the
schema account to have no authentication.

For example:

ALTER USER psmith NO AUTHENTICATION;

You can use ALTER USER to enable authentication for a schema-only account.

3.6 Operating System Authentication of Users

Oracle Database can authenticate by using information that is maintained by the operating
system.

ORACLE

Using the operating system to authenticate users has both advantages and disadvantages.

This functionality has the following benefits:

Once authenticated by the operating system, users can connect to Oracle Database more
conveniently, without specifying a user name or password. For example, an operating
system-authenticated user can invoke SQL*Plus and omit the user name and password
prompts by entering the following command at the command line:

SQLPLUS /

Within SQL*Plus, you enter:
CONNECT /

With control over user authentication centralized in the operating system, Oracle Database
does not need to store or manage the cryptographic hashes (also called verifiers) of the
user passwords, although it still maintains user names in the database.

The audit trail captures the operating system user name and the database user name,
where the database user name is the value of the 0S_AUTHENT PREFIX instance
initialization parameter prefixed to the operating system user name. For example, if

3-64

Chapter 3
Network Authentication of Users

0S_AUTHENT PREFIX is setto OPS$ and the operating system user name is psmith, then the
database user name will be 0OPS$PSMITH.

* You can authenticate both operating system and non-operating system users in the same
system. For example:

— Authenticate users by the operating system. You create the user account using the
IDENTIFIED EXTERNALLY clause of the CREATE USER statement, and then you set the
0S_AUTHENT PREFIX initialization parameter to specify a prefix that Oracle Database
uses to authenticate users attempting to connect to the server.

— Authenticate non-operating system users. These are users who are assigned
passwords and authenticated by the database.

— Authenticate Oracle Database Enterprise User Security users. These user
accounts where created using the IDENTIFIED GLOBALLY clause of the CREATE USER
statement, and then authenticated by Oracle Internet Directory (OID) currently in the
same database.

However, you should be aware of the following drawbacks to using the operating system to
authenticate users:

e A user must have an operating system account on the computer that must be accessed.
Not all users have operating system accounts, particularly non-administrative users.

« If auser has logged in using this method and steps away from the terminal, another user
could easily log in because this user does not need any passwords or credentials. This
could pose a serious security problem.

* When an operating system is used to authenticate database users, managing distributed
database environments and database links requires special care. Operating system-
authenticated database links can pose a security weakness. For this reason, Oracle
recommends that you do not use them.

* In a multitenant environment, you can use operating system authentication for a database
administrator only for the CDB root. You cannot use it for PDBs, the application root, or
application PDBs.

¢ See Also:

e Oracle Database Administrator’s Guide for more information about
authentication, operating systems, distributed database concepts, and distributed
data management

* Operating system-specific documentation by Oracle Database for more
information about authenticating by using your operating system

3.7 Network Authentication of Users

You can authenticate users over a network by using Transport Layer Security with third-party
services.

e Authentication with Transport Layer Security
The Transport Layer Security (TLS) protocol is an application layer protocol.

ORACLE B

Chapter 3
Network Authentication of Users

e Authentication with Third-Party Services
The third-party services Kerberos, RADIUS, directory-based services, and public key
infrastructure can authenticate Oracle Database over a network.

3.7.1 Authentication with Transport Layer Security

The Transport Layer Security (TLS) protocol is an application layer protocol.

You can use TLS for user authentication to a database, and it is independent of global user
management in Oracle Internet Directory. That is, users can use TLS to authenticate to the
database without a directory server in place.

Related Topics

* Configuring Transport Layer Security Authentication
You can configure Oracle Database to use Transport Layer Security authentication.

3.7.2 Authentication with Third-Party Services

The third-party services Kerberos, RADIUS, directory-based services, and public key
infrastructure can authenticate Oracle Database over a network.

e About Authentication Using Third-Party Services
You must use third-party network authentication services if you want to authenticate Oracle
Database users over a network.

e Authentication with Kerberos
Kerberos is a trusted third-party authentication system that relies on shared secrets.

e Authentication with RADIUS
Remote Authentication Dial-In User Service (RADIUS) is a standard lightweight protocol
used for user authentication, authorization, and accounting.

e Authentication with Directory-Based Services
Using a central directory can make authentication and its administration efficient.

e Authentication with Public Key Infrastructure
Authentication systems based on public key infrastructure (PKI) issue digital certificates to
user clients.

3.7.2.1 About Authentication Using Third-Party Services

You must use third-party network authentication services if you want to authenticate Oracle
Database users over a network.

Prominent examples include Kerberos, PKI (public key infrastructure), the RADIUS (Remote
Authentication Dial-In User Service), and directory-based services.

If network authentication services are available to you, then Oracle Database can accept
authentication from the network service. If you use a network authentication service, then
some special considerations arise for network roles and database links.

3.7.2.2 Authentication with Kerberos

Kerberos is a trusted third-party authentication system that relies on shared secrets.

Kerberos presumes that the third party is secure, and provides single sign-on capabilities,
centralized password storage, database link authentication, and enhanced PC security. It does

ORACLE 366

Chapter 3
Network Authentication of Users

this through a Kerberos authentication server, or through Cybersafe Active Trust, a commercial
Kerberos-based authentication server.

Related Topics

e Configuring Kerberos Authentication
Kerberos is a trusted third-party authentication system that relies on shared secrets and
presumes that the third party is secure.

3.7.2.3 Authentication with RADIUS

Remote Authentication Dial-In User Service (RADIUS) is a standard lightweight protocol used
for user authentication, authorization, and accounting.

RADIUS also enables users to use the RSA One-Time Password Specifications (OTPS) to
authenticate to the Oracle database.

¢ See Also:

e Configuring RADIUS Authentication for information about configuring RADIUS
* RSA documentation about OTPS

3.7.2.4 Authentication with Directory-Based Services

Using a central directory can make authentication and its administration efficient.
Directory-based services include the following:

« Oracle Internet Directory, which uses the Lightweight Directory Access Protocol (LDAP),
uses a central repository to store and manage information about users (called enterprise
users) whose accounts were created in a distributed environment. Although database
users must be created (with passwords) in each database that they need to access,
enterprise user information is accessible centrally in the Oracle Internet Directory. You can
also integrate this directory with Microsoft Active Directory and SunOne.

* Oracle Enterprise Security Manager lets you store and retrieve roles from Oracle
Internet Directory, which provides centralized privilege management to make
administration easier and increase security levels.

3.7.2.5 Authentication with Public Key Infrastructure

ORACLE

Authentication systems based on public key infrastructure (PKI) issue digital certificates to user
clients.

These clients can use these certificates to authenticate directly to servers in the enterprise
without directly involving an authentication. Oracle Database provides a PKI for using public
keys and certificates, consisting of the following components:

e Authentication and secure session key management using SSL. See Authentication
with Transport Layer Security for more information.

e Trusted certificates. These are used to identify third-party entities that are trusted as
signers of user certificates when an identity is being validated. When the user certificate is
being validated, the signer is checked by using trust points or a trusted certificate chain of
certificate authorities stored in the validating system. If there are several levels of trusted

3-67

Chapter 3
Configuring Operating System Users for a PDB

certificates in this chain, then a trusted certificate at a lower level is simply trusted without
needing to have all its higher-level certificates reverified.

e Oracle Wallet Manager. An Oracle wallet is a data structure that contains the private key
of a user, a user certificate, and the set of trust points of a user (trusted certificate
authorities). See Oracle Database Enterprise User Security Administrator's Guide for
information about managing Oracle wallets.

You can use Oracle Wallet Manager to manage Oracle wallets. This is a standalone Java
application used to manage and edit the security credentials in Oracle wallets. It performs
the following operations:

— Generates a public-private key pair and creates a certificate request for submission to
a certificate authority, and creates wallets

— Installs a certificate for the entity

— Manages X.509 version 3 certificates on Oracle Database clients and servers
— Configures trusted certificates for the entity

— Opens a wallet to enable access to PKlI-based services

* X.509 version 3 certificates obtained from (and sighed by) a trusted entity, a
certificate authority. Because the certificate authority is trusted, these certificates verify
that the requesting entity's information is correct and that the public key on the certificate
belongs to the identified entity. The certificate is loaded into an Oracle wallet to enable
future authentication.

3.8 Configuring Operating System Users for a PDB

The DBMS CREDENTIAL.CREATE CREDENTIAL procedure configures user accounts to be
operating system users for a PDB.

e About Configuring Operating System Users for a PDB
Instead the oracle operating system user, you can set a specific user account to be the
operating system user for that PDB.

* Configuring an Operating System User for a PDB
The DBMS CREDENTIAL.CREATE CREDENTIAL procedure can set an operating system user
for a PDB.

3.8.1 About Configuring Operating System Users for a PDB

ORACLE

Instead the oracle operating system user, you can set a specific user account to be the
operating system user for that PDB.

If you do not set a specific user to be the operating system user for the PDB, then by default
the PDB uses the oracle operating system user. For the root, you can use the oracle
operating system user when you must interact with the operating system.

For better security, Oracle recommends that you set a unique operating system user for each
PDB in a multitenant environment. Doing so helps to ensure that operating system interactions
are performed as a less powerful user than the oracle operating system user, and helps to
protect data that belongs to one PDB from being accessed by users who are connected to
other PDBs.

3-68

Chapter 3
Configuring Operating System Users for a PDB

3.8.2 Configuring an Operating System User for a PDB

The DBMS CREDENTIAL.CREATE CREDENTIAL procedure can set an operating system user for a
PDB.

1. Log in to the database instance root as a user who has the EXECUTE privilege for the
DBMS CREDENTIAL PL/SQL package and the ALTER SYSTEM system privilege.

For example:

sqlplus c##sec_admin
Enter password: password

2. Runthe DBMS CREDENTIAL.CREATE CREDENTIAL procedure to create an Oracle credential
for the operating system user.

For example, to set the credential for a user named os_admin:

BEGIN
DBMS CREDENTIAL.CREATE CREDENTIAL (
credential name => 'PDB1 OS USER',
username => 'os admin',
password => 'password') ;
END;
/
3. Connect to the PDB for which the operating system user will be used.
For example:

CONNECT cc#f#sec admin@hrpdb
Enter password: password

To find the available PDBs, run the show pdbs command. To check the current PDB, run
the show con_name command.

4. Setthe PDB 0S CREDENTIAL initialization parameter for the user whose credential was set
in Step 2.

For example:

ALTER SYSTEM SET PDB OS CREDENTIAL = PDB1 OS USER SCOPE = SPFILE;

The PDB_0S_CREDENTIAL parameter is a static parameter, so you must set it using the
SCOPE = SPFILE clause.

5. Restart the database instance.
SHUTDOWN IMMEDIATE
STARTUP

Related Topics

e Minimum Requirements for Passwords
Oracle provides a set of minimum requirements for passwords.

ORACLE 360

Chapter 3
Global User Authentication and Authorization

3.9 Global User Authentication and Authorization

Global user authentication and authorization enables you to centralize the management of
user-related information.

e About Configuring Global User Authentication and Authorization
An LDAP-based directory service centralizes the management of user-related information,
including authorizations.

e Configuration of Users Who Are Authorized by a Directory Service
You can configure either a global user or multiple enterprise users to be authorized by a
directory service.

« Advantages of Global Authentication and Global Authorization
There are several advantages of global user authentication and authorization.

3.9.1 About Configuring Global User Authentication and Authorization

ORACLE

An LDAP-based directory service centralizes the management of user-related information,
including authorizations.

This enables users and administrators to be identified in the database as global users,
meaning that they are authenticated by TLS and that the management of these users is
handled outside of the database by the centralized directory service. Global roles are defined
in a database and are known only to that database, but the directory service handles
authorizations for global roles.

Note:

You can also have users authenticated by Transport Layer Security (TLS), whose
authorizations are not managed in a directory, that is, they have local database roles
only.

This centralized management enables the creation of enterprise users and enterprise roles.
Enterprise users are defined and managed in the directory. They have unique identities across
the enterprise and can be assigned enterprise roles that determine their access privileges
across multiple databases. An enterprise role consists of one or more global roles, and might
be thought of as a container for global roles.

You also can use centrally managed users to authenticate and authorize users through a
directory service such as Microsoft Active Directory.

Related Topics

e Configuring Transport Layer Security Authentication
You can configure Oracle Database to use Transport Layer Security authentication.

e Strong Authentication, Centralized Management for Administrators
Strong authentication methods for centrally managed databases include directory
authentication, Kerberos authentication, and SSL authentication.

e Configuring Centrally Managed Users with Microsoft Active Directory
Oracle Database can authenticate and authorize Microsoft Active Directory users with the
database directly without intermediate directories or Oracle Enterprise User Security.

3-70

Chapter 3
Global User Authentication and Authorization

3.9.2 Configuration of Users Who Are Authorized by a Directory Service

You can configure either a global user or multiple enterprise users to be authorized by a
directory service.

Creating a Global User Who Has a Private Schema
You can create a user account who has a private schema by providing an identifier
(distinguished name, or DN) meaningful to the enterprise directory.

Creating Multiple Enterprise Users Who Share Schemas
Multiple enterprise users can share a single schema in the database.

3.9.2.1 Creating a Global User Who Has a Private Schema

You can create a user account who has a private schema by providing an identifier
(distinguished name, or DN) meaningful to the enterprise directory.

However, be aware that you must create this user in every database that the user must
access, plus the directory.

To create a global user who has a private schema, use the CREATE USER ... IDENTIFIED
GLOBALLY SQL statement.

You can include standard LDAP Data Interchange Format (LDIF) fields. For example, to
create a global user (psmith gl with a private schema, authenticated by SSL, and
authorized by the enterprise directory service:

CREATE USER psmith gl IDENTIFIED GLOBALLY AS 'CN=psmith,OU=divisionl,O=example,C=US';

In this specification:

— CN refers to the common name of this user, psmith gl.
— ou refers to the user’s organizational unit, divisionl.
— orefers to the user’s organization, Example.

— Crefers to the country in which the organization Example is located, the Us.

3.9.2.2 Creating Multiple Enterprise Users Who Share Schemas

ORACLE

Multiple enterprise users can share a single schema in the database.

These users are authorized by the enterprise directory service but do not own individual private
schemas in the database. These users are not individually created in the database. They
connect to a shared schema in the database.

1.

Create a shared schema in the database using the following example:
CREATE USER appschema IDENTIFIED GLOBALLY AS '';
In the directory, create multiple enterprise users and a mapping object.

The mapping object tells the database how you want to map the DNs for the users to the
shared schema. You can either create a full distinguished name (DN) mapping (one
directory entry for each unique DN), or you can map, for each user, multiple DN
components to one schema. For example:

OU=divisionl, O=Example, C=US

3-71

Chapter 3
Configuring an External Service to Authenticate Users and Passwords

See Also:

Oracle Database Enterprise User Security Administrator's Guide for an
explanation of these mappings

Most users do not need their own schemas, and implementing schema-independent users
separates users from databases. You create multiple users who share the same schema in a
database, and as enterprise users, they can also access shared schemas in other databases.

3.9.3 Advantages of Global Authentication and Global Authorization

There are several advantages of global user authentication and authorization.

Provides strong authentication using SSL, Kerberos, or Windows native authentication.
Enables centralized management of users and privileges across the enterprise.

Is easy to administer: You do not have to create a schema for every user in every
database in the enterprise.

Facilitates single sign-on: Users need to sign on once to only access multiple databases
and services. Further, users using passwords can have a single password to access
multiple databases accepting password-authenticated enterprise users.

Because global user authentication and authorization provide password-based access, you
can migrate previously defined password-authenticated database users to the directory
(using the User Migration Utility) to be centrally administered. This makes global
authentication and authorization available for earlier Oracle Database release clients that
are still supported.

CURRENT USER database links connect as a global user. A local user can connect as a
global user in the context of a stored procedure, that is, without storing the global user
password in a link definition.

Related Topics

Oracle Database Enterprise User Security Administrator's Guide

3.10 Configuring an External Service to Authenticate Users and

Passwords

ORACLE

An external service (the operating system or the network) can administer passwords and
authenticate users.

About External Authentication
With external authentication, Oracle Database maintains the user account, but an external
service performs the password administration and user authentication.

Advantages of External Authentication
External authentication provides several advantages.

Enabling External Authentication
To enable external authentication, you can set the initialization parameter
0S_AUTHENT PREFIX, and use this prefix in Oracle Database user names.

3-72

Chapter 3
Configuring an External Service to Authenticate Users and Passwords

e Creating a User Who Is Authenticated Externally
Externally authenticated users are authenticated by the operating system or network
service.

* Authentication of User Logins By Using the Operating System
Oracle Database allows operating system-authenticated logins only over secure
connections, which precludes using Oracle Net and a shared server configuration.

* Authentication of User Logins Using Network Authentication
Oracle strong authentication performs network authentication, which you can configure to
use a third-party service such as Kerberos.

3.10.1 About External Authentication

With external authentication, Oracle Database maintains the user account, but an external
service performs the password administration and user authentication.

This external service can be the operating system or a network service, such as Oracle Net. If
you are authenticating users through a password file, then you can configure external
authentication for users who have been granted the SYSDBA, SYSOPER, SYSASM, SYSBACKUP,
SYSDG, and SYSKM administrative privileges.

With external authentication, your database relies on the underlying operating system or
network authentication service to restrict access to database accounts. A database password
is not used for this type of login. If your operating system or network service permits, then it
can authenticate users before they can log in to the database.

You also can use centrally managed users to authenticate and authorize users through a
directory service such as Microsoft Active Directory.

Related Topics

« Management of the Password File of Administrative Users
Setting the ORAPWD utility FORMAT parameter to 12.2 enables you to manage the password
profile parameters for administrative users.

* Configuring Centrally Managed Users with Microsoft Active Directory
Oracle Database can authenticate and authorize Microsoft Active Directory users with the
database directly without intermediate directories or Oracle Enterprise User Security.

3.10.2 Advantages of External Authentication

External authentication provides several advantages.
These advantages are as follows:

* More choices of authentication mechanisms are available, such as smart cards,
fingerprints, Kerberos, or the operating system.

e Many network authentication services, such as Kerberos support single sign-on, enabling
users to have fewer passwords to remember.

e If you are already using an external mechanism for authentication, such as one of those
listed earlier, then there may be less administrative overhead to use that mechanism with
the database.

ORACLE 373

Chapter 3
Configuring an External Service to Authenticate Users and Passwords

3.10.3 Enabling External Authentication

To enable external authentication, you can set the initialization parameter 0S_AUTHENT PREFIX,
and use this prefix in Oracle Database user names.

The 0s_AUTHENT PREFIX parameter defines a prefix that Oracle Database adds to the
beginning of the operating system account name of every user. Oracle Database compares the
prefixed user name with the Oracle Database user names in the database when a user
attempts to connect.

1. SetOS AUTHENT PREFIX to a null string (an empty set of double quotation marks: ""). Using
a null string eliminates the addition of any prefix to operating system account names, so
that Oracle Database user names exactly match operating system user names.

For example:
0S_AUTHENT PREFIX=""

2. Ensure that the 0S_AUTHENT PREFIX remains the same for the life of a database. If you
change the prefix, then any database user name that includes the old prefix cannot be
used to establish a connection, unless you alter the user name to have it use password
authentication.

The default value of the 0S_AUTHENT PREFIX parameter is OPS$ for backward compatibility with
previous versions of Oracle Database. For example, assume that you set 0S_AUTHENT PREFIX
as follows:

OS_AUTHENT PREFIX=0PS$

If a user with an operating system account named tsmith is to connect to an Oracle database
installation and be authenticated by the operating system, then Oracle Database checks that
there is a corresponding database user 0PSStsmith and, if so, lets the user connect. All
references to a user authenticated by the operating system must include the prefix, 0ps$, as
seen in OPSS$tsmith.

Note:

The text of the 0S_AUTHENT PREFIX initialization parameter is case-sensitive on some
operating systems. See your operating system-specific Oracle Database
documentation for more information about this initialization parameter.

3.10.4 Creating a User Who Is Authenticated Externally

ORACLE

Externally authenticated users are authenticated by the operating system or network service.

You can create users who are authenticated externally. Oracle Database then relies on this
external login authentication when it provides that specific operating system user with access
to the database resources of a specific user.

e Use the IDENTIFIED EXTERNALLY clause of the CREATE USER statement to create users who
are authenticated externally.

The following example creates a user who is identified by Oracle Database and authenticated
by the operating system or a network service. This example assumes that the
0S_AUTHENT PREFIX parameter has been set to a blank space (" ").

3-74

Chapter 3
Multitier Authentication and Authorization

CREATE USER psmith IDENTIFIED EXTERNALLY;

3.10.5 Authentication of User Logins By Using the Operating System

Oracle Database allows operating system-authenticated logins only over secure connections,
which precludes using Oracle Net and a shared server configuration.

This type of operating system authentication is the default. This restriction prevents a remote
user from impersonating another operating system user over a network connection.

Setting the REMOTE OS AUTHENT parameter to TRUE in the database initialization parameter file
forces the database to accept the client operating system user name received over an
unsecure connection and use it for account access. Because clients, in general, such as PCs,
are not trusted to perform operating system authentication properly, it is very poor security
practice to turn on this feature.

The default setting, REMOTE_OS_AUTHENT = FALSE, creates a more secure configuration that
enforces proper, server-based authentication of clients connecting to an Oracle database.

Be aware that the REMOTE_0S_AUTHENT parameter was deprecated in Oracle Database 11g
Release 1 (11.1), and is retained only for backward compatibility.

Any change to this parameter takes effect the next time you start the instance and mount the

database. Generally, user authentication through the host operating system offers faster and

more convenient connection to Oracle Database without specifying a separate database user
name or password. Also, user entries correspond in the database and operating system audit
trails.

3.10.6 Authentication of User Logins Using Network Authentication

Oracle strong authentication performs network authentication, which you can configure to use
a third-party service such as Kerberos.

If you are using Oracle strong authentication as your only external authentication service, then
the REMOTE 0S AUTHENT parameter setting is irrelevant, because Oracle strong authentication
permits only secure connections.

3.11 Multitier Authentication and Authorization

ORACLE

Oracle Database secures middle-tier applications by limiting privileges, preserving client
identities through all tiers, and auditing actions by clients.

In applications that use a very busy middle tier, such as a transaction processing monitor, the
identity of the clients connecting to the middle tier must be preserved. One advantage of using
a middle tier is connection pooling, which allows multiple users to access a data server
without each of them needing a separate connection. In such environments, you need to be
able to set up and break down connections very quickly.

For these environments, you can use the Oracle Call Interface to create lightweight
sessions, which enable database password authentication for each user. This method
preserves the identity of the real user through the middle tier without the overhead of a
separate database connection for each user.

You can create lightweight sessions with or without passwords. However, if a middle tier is
outside of or on a firewall, then security is better when each lightweight session has its own
password. For an internal application server, lightweight sessions without passwords might be
appropriate.

3-75

Chapter 3
Administration and Security in Clients, Application Servers, and Database Servers

3.12 Administration and Security in Clients, Application Servers,
and Database Servers

ORACLE

In a multitier environment, an application server provides data for clients and serves as an
interface to one or more database servers.

The application server can validate the credentials of a client, such as a Web browser, and the
database server can audit operations performed by the application server. These auditable
operations include actions performed by the application server on behalf of clients, such as
requests that information be displayed on the client. A request to connect to the database
server is an example of an application server operation not related to a specific client.

Authentication in a multitier environment is based on trust regions. Client authentication is the
domain of the application server. The application server itself is authenticated by the database
server. The following operations take place:

e The end user provides proof of authenticity to the application server, typically, by using a
password or an X.509 certificate.

* The application server authenticates the end user and then authenticates itself to the
database server.

e The database server authenticates the application server, verifies that the end user exists,
and verifies that the application server has the privilege to connect for the end user.

Application servers can also enable roles for an end user on whose behalf they connect. The
application server can obtain these roles from a directory, which serves as an authorization
repository. The application server can only request that these roles be enabled. The database
verifies the following requirements:

e That the client has these roles by checking its internal role repository

e That the application server has the privilege to connect on behalf of the user and thus to
use these roles as the user could

The following diagram shows an example of multitier authentication.

3-76

Chapter 3
Preserving User Identity in Multitiered Environments

Figure 3-3 Multitier Authentication

User

<=’ SSL to login Proxies user identity

Application
Server

Get roles
from LDAP
and log in
user

Oracle
Internet
Directory

The following actions take place:

1. The user logs on using a password or Transport Layer Security. The authentication
information is passed through Oracle Application Server.

2. Oracle Internet Directory authenticates the user, gets the roles associated with that user
from the wallet, and then passes this information back to Oracle Application Server.

3. Oracle Application Server checks the identity of the user in Oracle Database, which
contains a wallet that stores this information, and then sets the role for that user.

Security for middle-tier applications must address the following key issues:

* Accountability. The database server must be able to distinguish between the actions of
the application and the actions an application takes on behalf of a client. It must be
possible to audit both kinds of actions.

* Least privilege. Users and middle tiers should be given the fewest privileges necessary to
perform their actions, to reduce the danger of inadvertent or malicious unauthorized
activities.

3.13 Preserving User Identity in Multitiered Environments

You can use middle tier servers for proxy authentication and client identifiers to identify
application users who are not known to the database.

* Middle Tier Server Use for Proxy Authentication
Oracle Call Interface (OCI), JDBC/OCI, or JDBC Thin Driver supports the middle tier for
proxy authentication for database users or enterprise users.

ORACLE 3-77

Chapter 3
Preserving User Identity in Multitiered Environments

Using Client Identifiers to Identify Application Users Unknown to the Database
Client identifiers preserve user identity in middle tier systems; they also can be used
independently of the global application context.

3.13.1 Middle Tier Server Use for Proxy Authentication

Oracle Call Interface (OCI), JDBC/OCI, or JDBC Thin Driver supports the middle tier for proxy
authentication for database users or enterprise users.

ORACLE

About Proxy Authentication
Oracle Database provides proxy authentication in Oracle Call Interface (OCI), JDBC/OCI,
or JDBC Thin Driver for database users or enterprise users.

Advantages of Proxy Authentication
In multitier environments, proxy authentication preserves client identities and privileges
through all tiers in middle-tier applications and by auditing client actions.

Who Can Create Proxy User Accounts?
To create proxy user accounts, users must have special privileges.

Guidelines for Creating Proxy User Accounts
Oracle provides special guidelines for when you create proxy user accounts.

Creating Proxy User Accounts and Authorizing Users to Connect Through Them
The CREATE USER and ALTER USER Statements can be used to create a proxy user and
authorize users to connect through it.

Proxy User Accounts and the Authorization of Users to Connect Through Them
The CREATE USER statement enables you to create the several types of user accounts, all
of which can be used as proxy accounts.

Using Proxy Authentication with the Secure External Password Store
Use a secure external password store if you are concerned about the password used in
proxy authentication being obtained by a malicious user.

How the Identity of the Real User Is Passed with Proxy Authentication
You can use Oracle Call Interface, JDBC/OCI, or Thin drivers for enterprise users or
database users.

Limits to the Privileges of the Middle Tier
Least privilege is the principle that users should have the fewest privileges necessary to
perform their duties and no more.

Authorizing a Middle Tier to Proxy and Authenticate a User
You can authorize a middle-tier server to connect as a user.

Authorizing a Middle Tier to Proxy a User Authenticated by Other Means
You can authorize a middle tier to proxy a user that has been authenticated by other
means.

Reauthenticating a User Through the Middle Tier to the Database
You can specify that authentication is required by using the AUTHENTICATION REQUIRED
proxy clause with the ALTER USER SQL statement.

Using Password-Based Proxy Authentication
When you use password-based proxy authentication, Oracle Database passes the
password of the client to the middle-tier server.

Using Proxy Authentication with Enterprise Users
How the middle-tier responds for proxy authentication depends on how the user is
authenticated, either as an enterprise user or a password-authenticated user.

3-78

Chapter 3
Preserving User Identity in Multitiered Environments

3.13.1.1 About Proxy Authentication

Oracle Database provides proxy authentication in Oracle Call Interface (OCI), JDBC/OCI, or
JDBC Thin Driver for database users or enterprise users.

Enterprise users are those who are managed in Oracle Internet Directory and who access a
shared schema in the database.

You can design a middle-tier server to authenticate clients in a secure fashion by using the
following three forms of proxy authentication:

e The middle-tier server authenticates itself with the database server and a client, in this
case an application user or another application, authenticates itself with the middle-tier
server. Client identities can be maintained all the way through to the database.

e The client, in this case a database user, is not authenticated by the middle-tier server. The
clients identity and database password are passed through the middle-tier server to the
database server for authentication.

e The client, in this case a global user, is authenticated by the middle-tier server, and passes
one of the following through the middle tier for retrieving the client's user name.

— Distinguished name (DN)

— Certificate
In all cases, an administrator must authorize the middle-tier server to act on behalf of the client.
Related Topics

e Auditing SQL Statements and Privileges in a Multitier Environment
You can create a unified audit policy to audit the activities of a client in a multitier
environment.

e Oracle Database JDBC Developer’s Guide

3.13.1.2 Advantages of Proxy Authentication

ORACLE

In multitier environments, proxy authentication preserves client identities and privileges through
all tiers in middle-tier applications and by auditing client actions.

For example, this feature allows the identity of a user using a Web application (which acts as a
proxy) to be passed through the application to the database server.

Three-tier systems provide the following benefits to organizations:

e Organizations can separate application logic from data storage, partitioning the former in
application servers and the latter in databases.

« Application servers and Web servers enable users to access data stored in databases.
e Users like using a familiar, easy-to-use browser interface.

e Organizations can also lower their cost of computing by replacing many thick clients with
numerous thin clients and an application server.

In addition, Oracle Database proxy authentication provides the following security benefits:

e Alimited trust model, by controlling the users on whose behalf middle tiers can connect
and the roles that the middle tiers can assume for the user

e Scalability, by supporting user sessions through OCI, JDBC/OCI, or JDBC Thin driver and
eliminating the overhead of reauthenticating clients

3-79

Chapter 3
Preserving User Identity in Multitiered Environments

Accountability, by preserving the identity of the real user through to the database, and
enabling auditing of actions taken on behalf of the real user

Flexibility, by supporting environments in which users are known to the database, and in
which users are merely application users of which the database has no awareness

Note:

Oracle Database supports this proxy authentication functionality in three tiers
only. It does not support it across multiple middle tiers.

3.13.1.3 Who Can Create Proxy User Accounts?

To create proxy user accounts, users must have special privileges.

These privileges are as follows:

The CREATE USER System privilege to create a database user account that will be used as a
proxy user account

The DvV_ACCTMGR role if Oracle Database Vault is enabled, to create the proxy user account
The ability to grant the CREATE SESSION system privilege to the proxy user account

The ALTER USER system privilege to enable existing user accounts to connect to the
database through the proxy account

3.13.1.4 Guidelines for Creating Proxy User Accounts

ORACLE

Oracle provides special guidelines for when you create proxy user accounts.

For better security and to adhere to the principle of least privilege, only grant the proxy
user account the CREATE SESSION privilege. Do not grant this user any other privileges. The
proxy user account is designed to only enable another user to connect using the proxy
account. Any privileges that must be exercised during the connection should belong to the
connecting user, not to the proxy account.

As with all passwords, ensure that the password you create for the proxy user is strong
and not easily guessed. Remember that multiple users will be connecting as the proxy
user, so it is especially important that this password be strong.

Consider using the Oracle strong authentication network connection features, to prevent
network eavesdropping.

For further fine-tuning of the amount of control that the connecting user has, consider
restricting the roles used by the connecting user when he or she is connected through the
proxy account. The ALTER USER statement WITH ROLE clause enables you to configure the
user to connect using specified roles, any role except a specified role, or with no roles at
all. Be aware that the proxy user can only activate those roles that are included in the WITH
ROLE clause. The proxy user session will have all the privileges that were directly granted
to the client (that is, current) user.

A proxy user in a proxy session can enable a password-protected role or secure
application role only if the role has been allowed to be enabled with the WITH ROLE or WITH
ROLE ALL clause. (If this clause is not specified, then WITH ROLE ALL is the default.) If WITH
ROLE does not specify the secure roles, then those roles cannot be enabled, even with the
correct password.

3-80

Chapter 3
Preserving User Identity in Multitiered Environments

Related Topics

e Guidelines for Securing Passwords
Oracle provides guidelines for securing passwords in a variety of situations.

3.13.1.5 Creating Proxy User Accounts and Authorizing Users to Connect Through
Them

The CREATE USER and ALTER USER Statements can be used to create a proxy user and
authorize users to connect through it.

A proxy user in a proxy session can enable a password-protected role or secure application
role only if the role has been allowed to be enabled with the WITH ROLE or WITH ROLE ALL
clause. (If this clause is not specified, then WITH ROLE ALL is the default.) If WITH ROLE does
not specify the secure roles, then those roles cannot be enabled, even with the correct
password.

1. Use the CREATE USER statement to create the proxy user account.
For example:
CREATE USER appuser IDENTIFIED BY password;

2. Use the GRANT CONNECT THROUGH clause of the ALTER USER statement to enable an existing
user to connect through the proxy user account.

For example:

ALTER USER preston GRANT CONNECT THROUGH appuser;

Be aware that the user name and proxy combination must not exceed 250 characters.

Suppose user preston has a large number of roles, but you only want this user to use one
role (for example, the appuser role) when this user is connected to the database through
the appuser proxy account. You can use the following ALTER USER Statement:

ALTER USER preston GRANT CONNECT THROUGH appuser WITH ROLE appuser role;

Any other roles that user preston has will not be available to her as long as this user is
connecting as the appuser proxy.

After you complete these steps, user preston can connect using the appuser proxy user as
follows:

CONNECT appuser [preston]
Enter password: appuser password

Related Topics
e Oracle Database SQL Language Reference

e Oracle Database SQL Language Reference

3.13.1.6 Proxy User Accounts and the Authorization of Users to Connect Through
Them

The CREATE USER Statement enables you to create the several types of user accounts, all of
which can be used as proxy accounts.

These accounts are as follows:

ORACLE 281

Chapter 3
Preserving User Identity in Multitiered Environments

» Database user accounts, which are authenticated by passwords

« External user accounts, which are authenticated by external sources, such as Secure
Socket Layer (SSL) or Kerberos

* Global user accounts, which are authenticated by an enterprise directory service (Oracle
Internet Directory).

Note the following:

e The proxy user can only perform activities that the user preston has privileges to
perform. Remember that the proxy user itself, appuser, only has the minimum privileges
(CREATE SESSION).

* Using roles with middle-tier clients. You can also specify roles that the middle tier is
permitted to activate when connecting as the client. Operations performed on behalf of a
client by a middle-tier server can be audited.

* Finding proxy users. To find the users who are currently authorized to connect through a
middle tier, query the PROXY USERS data dictionary view, for example:

SELECT * FROM PROXY USERS;

* Removing proxy connections. Use the REVOKE CONNECT THROUGH clause of ALTER USER
to disallow a proxy connection. For example, to revoke user preston from connecting
through the proxy user appuser, enter the following statement:

ALTER USER preston REVOKE CONNECT THROUGH appuser;

- Password expiration and proxy connections. Middle-tier use of password expiration
does not apply to accounts that are authenticated through a proxy. Instead, lock the
account rather than expire the password.

Related Topics

e Auditing SQL Statements and Privileges in a Multitier Environment
You can create a unified audit policy to audit the activities of a client in a multitier
environment.

e Oracle Database Enterprise User Security Administrator's Guide

3.13.1.7 Using Proxy Authentication with the Secure External Password Store

ORACLE

Use a secure external password store if you are concerned about the password used in proxy
authentication being obtained by a malicious user.

To accomplish this, you use the secure external password store with the proxy authentication
to store the password credentials in a wallet.

Connecting to Oracle Database using proxy authentication and the secure external password
store is ideal for situations such as running batch files. When a proxy user connects to the
database and authenticates using a secure external password, the password is not exposed in
the event that a malicious user tries to obtain the password.

To use proxy authentication with the secure external password store:

1. Configure the proxy authentication account, as shown in the procedure in Proxy User
Accounts and the Authorization of Users to Connect Through Them.

2. Configure the secure external password store, as described in About Configuring Clients to
Use the Secure External Password Store.

Afterward, the user can connect using the proxy but without having to specify a password. For
example:

3-82

Chapter 3
Preserving User Identity in Multitiered Environments

sqlplus [preston]/@db alias

When you use the secure external password store, the user logging in does not need to supply
the user name and password. Only the SERVICE NAME value (that is, db_alias) from the
tnsnames.ora file must be specified.

3.13.1.8 How the Identity of the Real User Is Passed with Proxy Authentication

ORACLE

You can use Oracle Call Interface, JDBC/OCI, or Thin drivers for enterprise users or database
users.

These tools enable a middle tier to set up several user sessions within a single database
connection, each of which uniquely identifies a connected user (connection pooling)

These sessions reduce the network overhead of creating separate network connections from
the middle tier to the database.

If you want to authenticate from clients through a middle tier to the database, then the full
authentication sequence from the client to the middle tier to the database occurs as follows:

1. The client authenticates to the middle tier, using whatever form of authentication the middle
tier will accept. For example, the client could authenticate to the middle tier by using a user
name and password or an X.509 certificate by means of SSL.

2. The middle tier authenticates itself to the database by using whatever form of
authentication the database accepts. This could be a password or an authentication
mechanism supported by Oracle Database, such as a Kerberos ticket or an X.509
certificate (SSL).

3. The middle tier then creates one or more sessions for users using OCI, JDBC/OCI, or Thin
driver.

e If the user is a database user, then the session must, as a minimum, include the
database user name. If the database requires it, then the session can include a
password (which the database verifies against the password store in the database).
The session can also include a list of database roles for the user.

* If the user is an enterprise user, then the session may provide different information
depending on how the user is authenticated.

Example 1: If the user authenticates to the middle tier using SSL, then the middle tier
can provide the DN from the X.509 certificate of the user, or the certificate itself in the
session. The database uses the DN to look up the user in Oracle Internet Directory.

Example 2: If the user is a password-authenticated enterprise user, then the middle
tier must provide, as a minimum, a globally unigue name for the user. The database
uses this name to look up the user in Oracle Internet Directory. If the session also
provides a password for the user, then the database will verify the password against
Oracle Internet Directory. User roles are automatically retrieved from Oracle Internet
Directory after the session is established.

e The middle tier may optionally provide a list of database roles for the client. These
roles are enabled if the proxy is authorized to use the roles on behalf of the client.

4. The database verifies that the middle tier has the privilege to create sessions on behalf of
the user.

The 0CISessionBegin call fails if the application server cannot perform a proxy
authentication on behalf of the client by the administrator, or if the application server is not
allowed to activate the specified roles.

3-83

Chapter 3
Preserving User Identity in Multitiered Environments

3.13.1.9 Limits to the Privileges of the Middle Tier

ORACLE

Least privilege is the principle that users should have the fewest privileges necessary to
perform their duties and no more.

As applied to middle tier applications, this means that the middle tier should not have more
privileges than it needs.

Oracle Database enables you to limit the middle tier such that it can connect only on behalf of
certain database users, using only specific database roles. You can limit the privilege of the
middle tier to connect on behalf of an enterprise user, stored in an LDAP directory, by granting
to the middle tier the privilege to connect as the mapped database user. For instance, if the
enterprise user is mapped to the APPUSER schema, then you must at least grant to the middle
tier the ability to connect on behalf of APPUSER. Otherwise, attempts to create a session for the
enterprise user will fail.

However, you cannot limit the ability of the middle tier to connect on behalf of enterprise users.
For example, suppose that user Sarah wants to connect to the database through a middle tier,
appsrv (which is also a database user). Sarah has multiple roles, but it is desirable to restrict
the middle tier to use only the clerk role on her behalf.

An administrator can grant permission for appsrv to initiate connections on behalf of Sarah
using her clerk role only by using the following SQL statement:

ALTER USER sarah GRANT CONNECT THROUGH appsrv WITH ROLE clerk;

By default, the middle tier cannot create connections for any client. The permission must be
granted for each user.

To enable appsrv to use all of the roles granted to the client Sarah, you can use the following
statement:

ALTER USER sarah GRANT CONNECT THROUGH appsrv;

Each time a middle tier initiates an OCI, JDBC/OCI, or Thin driver session for another
database user, the database verifies that the middle tier is authorized to connect for that user
by using the role specified.

Note:

Instead of using default roles, create your own roles and assign only necessary
privileges to them. Creating your own roles enables you to control the privileges
granted by them and protects you if Oracle Database changes or removes default
roles. For example, the CONNECT role now has only the CREATE SESSION privilege, the
one most directly needed when connecting to a database. However, CONNECT formerly
provided several additional privileges, often not needed or appropriate for most
users. Extra privileges can endanger the security of your database and applications.
These have now been removed from CONNECT.

A proxy user in a proxy session can enable a password-protected role or secure
application role only if the role has been allowed to be enabled with the WITH ROLE or
WITH ROLE ALL clause. (If this clause is not specified, then WITH ROLE ALL is the
default.) If WITH ROLE does not specify the secure roles, then those roles cannot be
enabled, even with the correct password.

3-84

Chapter 3
Preserving User Identity in Multitiered Environments

Related Topics

e Configuring Privilege and Role Authorization
Privilege and role authorization controls the permissions that users have to perform day-to-
day tasks.

3.13.1.10 Authorizing a Middle Tier to Proxy and Authenticate a User

You can authorize a middle-tier server to connect as a user.

A proxy user in a proxy session can enable a password-protected role or secure application
role only if the role has been allowed to be enabled with the WITH ROLE or WITH ROLE ALL
clause. (If this clause is not specified, then WITH ROLE ALL is the default.) If WITH ROLE does
not specify the secure roles, then those roles cannot be enabled, even with the correct
password.

» To authorize a middle-tier server to connect as a user, use the ALTER USER statement.

The following statement authorizes the middle-tier server appserve to connect as user bill. It
uses the WITH ROLE clause to specify that appserve activate all roles associated with bill,
except payroll.

ALTER USER bill
GRANT CONNECT THROUGH appserve
WITH ROLE ALL EXCEPT payroll;

To revoke the middle-tier server (appserve) authorization to connect as user bill, you can use
the REVOKE CONNECT THROUGH clause. For example:

ALTER USER bill REVOKE CONNECT THROUGH appserve;

3.13.1.11 Authorizing a Middle Tier to Proxy a User Authenticated by Other Means

You can authorize a middle tier to proxy a user that has been authenticated by other means.
Currently, PASSWORD is the only means supported.

e Use the AUTHENTICATION REQURED clause of the ALTER USER ... GRANT CONNECT THROUGH
statement to authorize a user to be proxied, but not authenticated, by a middle tier.

For example:

ALTER USER mary
GRANT CONNECT THROUGH midtier
AUTHENTICATION REQUIRED;

In the preceding statement, middle-tier server midtier is authorized to connect as user mary,
and midtier must also pass the user password to the database server for authorization.

3.13.1.12 Reauthenticating a User Through the Middle Tier to the Database

ORACLE

You can specify that authentication is required by using the AUTHENTICATION REQUIRED pProxy
clause with the ALTER USER SQL statement.

In this case, the middle tier must provide user authentication credentials.

For example, suppose that user Sarah wants to connect to the database through a middle tier,
appsrv.

3-85

Chapter 3
Preserving User Identity in Multitiered Environments

e To require that appsrv provides authentication credentials for the user Sarah, use the
following syntax:

ALTER USER sarah GRANT CONNECT THROUGH appsrv AUTHENTICATION REQUIRED;

The AUTHENTICATION REQUIRED clause ensures that authentication credentials for the user
must be presented when the user is authenticated through the specified proxy.

Note:

For backward compatibility, if you use the AUTHENTICATED USING PASSWORD proxy
clause, then Oracle Database transforms it to AUTHENTICATION REQUIRED.

3.13.1.13 Using Password-Based Proxy Authentication

When you use password-based proxy authentication, Oracle Database passes the password
of the client to the middle-tier server.

The middle-tier server then passes the password as an attribute to the data server for
verification.

The main advantage to this type of authentication is that the client computer does not have to
have Oracle software installed on it to perform database operations.

* To pass the password of the client, configure the the middle-tier server to call the
OCIAttrSet () function as follows, passing OCI_ATTR PASSWORD as the type of the attribute

being set.
OCIAttrSet(
session handle, /* Pointer to a handle whose attribute gets modified. */
OCI_HTYPE SESSION, /* Handle type: OCI user session handle. */
password ptr, /* Pointer to the value of the password attribute. */
0, /* The size of the password attribute value is already

known by the OCI library. */

OCI_ATTR PASSWORD, /* The attribute type. */

error_handle) ; /* An error handle used to retrieve diagnostic
information in the event of an error. */

3.13.1.14 Using Proxy Authentication with Enterprise Users

ORACLE

How the middle-tier responds for proxy authentication depends on how the user is
authenticated, either as an enterprise user or a password-authenticated user.

If the middle tier connects to the database as a client who is an enterprise user, then either the
distinguished name, or the X.509 certificate containing the distinguished name is passed over
instead of the database user name. If the user is a password-authenticated enterprise user,
then the middle tier must provide, as a minimum, a globally uniqgue name for the user. The
database uses this name to look up the user in Oracle Internet Directory.

» To configure proxy authentication with enterprise users, configure the application server
and the middle tier to use the appropriate Oracle Call Interface settings:

— To pass over the distinguished name of the client, configure the application server to
call the Oracle Call Interface method 0CIAttrSet () with
OCI ATTR DISTINGUISHED NAME as the attribute type, as follows:

3-86

Chapter 3
Preserving User Identity in Multitiered Environments

OCIAttrSet(session handle,
OCI_HTYPE SESSION,
distinguished name,
OI
OCI_ATTR DISTINGUISHED NAME,
error handle);

— To pass over the entire certificate, configure the middle tier to call OCIAttrSet () with
OCI_ATTR CERTIFICATE as the attribute type, as follows:

OCIAttrSet(session handle,
OCIiHTYPEisESSION,
certificate,
certificate length,
OCIiATTR7CERTIFICATE,
error handle);

If the type is not specified, then the database uses its default certificate type of X.509.

< Note:

* OCI_ATTR CERTIFICATE is Distinguished Encoding Rules (DER) encoded.

» Certificate based proxy authentication using 0OCI_ATTR CERTIFICATE will not be
supported in future Oracle Database releases. Use the
OCI ATTR DISTINGUISHED NAME Oor OCI ATTR USERNAME attribute instead

If you are using proxy authentication for password-authenticated enterprise users, then use the
same OCI attributes as for database users authenticated by password (OCI_ATTR USERNAME).
Oracle Database first checks the user name against the database. If it finds no user, then the
database checks the user name in the directory. This user name must be globally unique.

3.13.2 Using Client Identifiers to Identify Application Users Unknown to the

Database

Client identifiers preserve user identity in middle tier systems; they also can be used
independently of the global application context.

ORACLE

About Client Identifiers
Oracle Database provides the CLIENT IDENTIFIER attribute of the built-in USERENV
application context namespace for application users.

How Client Identifiers Work in Middle Tier Systems
Many applications use session pooling to set up several sessions to be reused by multiple
application users.

Use of the CLIENT_IDENTIFIER Attribute to Preserve User Identity
The CLIENT IDENTIFIER predefined attribute of the built-in application context namespace,
USERENV, captures the application user name for use with a global application context.

Use of the CLIENT_IDENTIFIER Independent of Global Application Context
Using the CLIENT IDENTIFIER attribute is especially useful for those applications in which
the users are unknown to the database.

3-87

Chapter 3
Preserving User Identity in Multitiered Environments

e Setting the CLIENT_IDENTIFIER Independent of Global Application Context
You can set the CLIENT IDENTIFIER Setting with Oracle Call Interface to be independent of
the global application context.

« Use of the DBMS_SESSION PL/SQL Package to Set and Clear the Client Identifier
The DBMS_SESSION PL/SQL package manages client identifiers on both the middle tier and
the database itself.

e Enabling the CLIENTID_OVERWRITE Event System-Wide
The ALTER SYSTEM Statement can enable the CLIENTID OVERWRITE event system-wide.

e Enabling the CLIENTID_OVERWRITE Event for the Current Session
The ALTER SESSION statement can enable the CLIENTID OVERWRITE event for the current
session only.

» Disabling the CLIENTID_OVERWRITE Event
The ALTER SYSTEM statement can disable the CLIENTID OVERWRITE event.

3.13.2.1 About Client Identifiers

Oracle Database provides the CLIENT IDENTIFIER attribute of the built-in USERENV application
context namespace for application users.

These application users are known to an application but unknown to the database. The
CLIENT IDENTIFIER attribute can capture any value that the application uses for identification
or access control, and passes it to the database. The CLIENT IDENTIFIER attribute is
supported in OCI, JDBC/OCI, or Thin driver.

3.13.2.2 How Client Identifiers Work in Middle Tier Systems

Many applications use session pooling to set up several sessions to be reused by multiple
application users.

Users authenticate themselves to a middle-tier application, which uses a single identity to log
in to the database and maintains all the user connections. In this model, application users are
users who are authenticated to the middle tier of an application, but who are not known to the
database. You can use a CLIENT IDENTIFIER attribute, which acts like an application user
proxy for these types of applications.

In this model, the middle tier passes a client identifier to the database upon the session
establishment. The client identifier could actually be anything that represents a client
connecting to the middle tier, for example, a cookie or an IP address. The client identifier,
representing the application user, is available in user session information and can also be
accessed with an application context (by using the USERENV naming context). In this way,
applications can set up and reuse sessions, while still being able to keep track of the
application user in the session. Applications can reset the client identifier and thus reuse the
session for a different user, enabling high performance.

3.13.2.3 Use of the CLIENT _IDENTIFIER Attribute to Preserve User Identity

ORACLE

The CLIENT IDENTIFIER predefined attribute of the built-in application context namespace,
USERENV, captures the application user name for use with a global application context.

You also can use the CLIENT IDENTIFIER attribute independently.

When you use the CLIENT IDENTIFIER attribute independently from a global application
context, you can set CLIENT IDENTIFIER with the DBMS SESSION interface. The ability to pass a

3-88

Chapter 3
Preserving User Identity in Multitiered Environments

CLIENT IDENTIFIER to the database is supported in Oracle Call Interface (OCI), JDBC/OCI, or
Thin driver.

When you use the CLIENT IDENTIFIER attribute with global application context, it provides
flexibility and high performance for building applications. For example, suppose a Web-based
application that provides information to business partners has three types of users: gold
partner, silver partner, and bronze partner, representing different levels of information available.
Instead of each user having his or her own session set up with individual application contexts,
the application could set up global application contexts for gold partners, silver partners, and
bronze partners. Then, use the CLIENT IDENTIFIER to point the session at the correct context
to retrieve the appropriate type of data. The application need only initialize the three global
contexts once and use the CLIENT IDENTIFIER to access the correct application context to limit
data access. This provides performance benefits through session reuse and through accessing
global application contexts set up once, instead of having to initialize application contexts for
each session individually.

Related Topics

e Global Application Contexts
You can use a global application context to access application values across database
sessions, including an Oracle Real Application Clusters environment.

e Tutorial: Creating a Global Application Context That Uses a Client Session ID
This tutorial demonstrates how you can create a global application context that uses a
client session ID.

3.13.2.4 Use of the CLIENT _IDENTIFIER Independent of Global Application Context

ORACLE

Using the CLIENT IDENTIFIER attribute is especially useful for those applications in which the
users are unknown to the database.

In these situations, the application typically connects as a single database user and all actions
are taken as that user.

Because all user sessions are created as the same user, this security model makes it difficult
to achieve data separation for each user. These applications can use the CLIENT IDENTIFIER
attribute to preserve the real application user identity through to the database.

With this approach, sessions can be reused by multiple users by changing the value of the
CLIENT IDENTIFIER attribute, which captures the name of the real application user. This avoids
the overhead of setting up a separate session and separate attributes for each user, and
enables reuse of sessions by the application. When the CLIENT IDENTIFIER attribute value
changes, the change is added to the next OCI, JDBC/OCI, or Thin driver call for additional
performance benefits.

For example, the user Daniel connects to a Web Expense application. Daniel is not a database
user; he is a typical Web Expense application user. The application accesses the built-in
application context namespace and sets DANIEL as the CLIENT IDENTIFIER attribute value.
Daniel completes his Web Expense form and exits the application. Then, Ajit connects to the
Web Expense application. Instead of setting up a new session for Ajit, the application reuses
the session that currently exists for Daniel, by changing the CLIENT IDENTIFIER to AJIT. This
avoids the overhead of setting up a new connection to the database and the overhead of
setting up a global application context. The CLIENT IDENTIFIER attribute can be setto any
value on which the application bases access control. It does not have to be the application
user name.

3-89

Chapter 3
Preserving User Identity in Multitiered Environments

3.13.2.5 Setting the CLIENT _IDENTIFIER Independent of Global Application Context

You can set the CLIENT IDENTIFIER setting with Oracle Call Interface to be independent of the
global application context.

* To setthe CLIENT IDENTIFIER attribute with OCI, use the OCI ATTR CLIENT IDENTIFIER
attribute in the call to 0CIAttrSet (). Then, on the next request to the server, the
information is propagated and stored in the server sessions.

For example:

OCIAttrSet (session,

OCI_HTYPE SESSION,

(dvoid *) "appuserl",
(ub4)strlen("appuserl"),
OCI_ATTR CLIENT IDENTIFIER,
*error handle);

For applications that use JDBC, be aware that JDBC does not set the client identifier. To set
the client identifier in a connection pooling environment, use Dynamic Monitoring Service
(DMS) metrics. If DMS is not available, then use the connection.setClientInfo method. For
example:

connection.setClientInfo ("E2E CONTEXT.CLIENT IDENTIFIER", "appuser");

See Also:

e Oracle Call Interface Programmer's Guide about how the
OCI_ATTR CLIENT IDENTIFIER user session handle attribute is used in middle-tier
applications

e Oracle Database JDBC Developer’s Guide for more information about
configuring client connections using JDBC and DMS metrics

e Oracle Database JDBC Developer’s Guide for more information about the
setClientInfo method

3.13.2.6 Use of the DBMS_SESSION PL/SQL Package to Set and Clear the Client

|dentifier

ORACLE

The DBMS_SESSION PL/SQL package manages client identifiers on both the middle tier and the
database itself.

To use the DBMS SESSION package to set and clear the CLIENT IDENTIFIER value on the middle
tier, you must use the SET IDENTIFIER and CLEAR IDENTIFIER procedures.

The middle tier uses SET IDENTIFIER to associate the database session with a particular user
or group. Then, the CLIENT IDENTIFIER is an attribute of the session and can be viewed in
session information.

If you plan to use the DBMS SESSION.SET IDENTIFIER procedure, then be aware of the
following:

3-90

Chapter 3
Preserving User Identity in Multitiered Environments

The maximum number of bytes for the client id parameter of

DBMS_SESSION.SET IDENTIFIER is 64 bytes. If it exceeds 64, then the additional bytes are

truncated.

The DBMS APPLICATION INFO.SET CLIENT INFO procedure can overwrite the value of t

he

client identifier. Typically, these values should be the same, so if SET CLIENT INFO is set,
then its value can be automatically propagated to the value set by SET IDENTIFIER if the

CLIENTID OVERWRITE eventis set to ON. You can check the status of the
CLIENTID OVERWRITE event by running the SHOW PARAMETER command for the EVENT
parameter.

For example, assuming that CLIENTID OVERWRITE is enabled:

SHOW PARAMETER EVENT

event string clientid overwrite

3.13.2.7 Enabling the CLIENTID_OVERWRITE Event System-Wide

The ALTER SYSTEM Statement can enable the CLIENTID OVERWRITE event system-wide.

1.

Enter the following ALTER SYSTEM statement:

ALTER SYSTEM SET EVENTS 'CLIENTID OVERWRITE';

Or, enter the following line in your init.ora file:
event="clientid overwrite"

Restart the database.

For example:

SHUTDOWN IMMEDIATE
STARTUP

¢ See Also:

* Global Application Contexts for information about using client identifiers in a
global application context

e Oracle Database PL/SQL Packages and Types Reference for more information
about the DBMS SESSION package

3.13.2.8 Enabling the CLIENTID_OVERWRITE Event for the Current Session

The ALTER SESSION statement can enable the CLIENTID OVERWRITE event for the current
session only.

ORACLE

1.

Use the ALTER SESSION statement to set the CLIENTID OVERWRITE value for the session

only.
For example:

ALTER SESSION SET EVENTS 'CLIENTID OVERWRITE OFF';

3-91

Chapter 3
User Authentication Data Dictionary Views

If you set the client identifier by using the DBMS APPLICATION INFO.SET CLIENT INFO
procedure, then run DBMS SESSION.SET IDENTIFIER So that the client identifier settings are
the same.

For example:

DBMS SESSION.SET IDENTIFIER(session _id p);

3.13.2.9 Disabling the CLIENTID _OVERWRITE Event

The ALTER SYSTEM statement can disable the CLIENTID OVERWRITE event.

1.

Enter the following ALTER SYSTEM Statement:

ALTER SYSTEM SET EVENTS 'CLIENTID OVERWRITE OFF';
Restart the database.

For example:

SHUTDOWN IMMEDIATE
STARTUP

3.14 User Authentication Data Dictionary Views

Oracle Database provides data dictionary views that list information about user authentication,
such as roles that users have or profiles they use.

ORACLE

Table 3-5 lists the data dictionary views.

Table 3-5 Data Dictionary Views That Describe User Authentication
|

View Description
DBA PROFILES Displays information about profiles, including their settings and limits
DBA ROLES Displays the kind of authentication used for a database role to log in to

the database, such as NONE or GLOBAL (query the
AUTHENTICATION TYPE column)

DBA USERS Among other user information, displays the following:

« The kind of authentication the user used to log in to the database,
such as PASSWORD or EXTERNAL (AUTHENTICATION_TYPE
column)

e The list of versions of password versions (also known as hashes)
that exist for the user account (PASSWORD VERSIONS column)

DBA USERS WITH DEFPWD Displays whether the user account password is a default password

PROXY USERS Displays users who are currently authorized to connect through a
middle tier

VSDBLINK Displays user accounts for existing database links (DB_LINK,

OWNER _ID columns); applies to the current pluggable database (PDB)

VSPWFILE Lists the names and granted administrative privileges of the

administrative users who are included in the password file

VSSESSION Querying the USERNAME column displays concurrently logged in users

to the current PDB

Related Topics

Oracle Database Reference

3-92

Configuring Privilege and Role Authorization

ORACLE

Privilege and role authorization controls the permissions that users have to perform day-to-day
tasks.

About Privileges and Roles
Authorization permits only certain users to access, process, or alter data; it also creates
limitations on user access or actions.

Who Should Be Granted Privileges?
You grant privileges to users so they can accomplish tasks required for their jobs.

How the Oracle Multitenant Option Affects Privileges
In a multitenant environment, all users, including common users, can exercise their
privileges only within the current container.

Managing Administrative Privileges
Administrative privileges can be used for both general and specific database operations.

Managing System Privileges
To perform actions on schema objects, you must be granted the appropriate system
privileges.

Managing Commonly and Locally Granted Privileges
In a multitenant environment, privileges can be granted commonly for an entire CDB or
application container, or granted locally to a specific PDB.

Managing Common Roles and Local Roles
A common role is a role that is created in the root; a local role is created in a PDB.

Managing User Roles
A user role is a named collection of privileges that you can create and assign to other
users.

Restricting Operations on PDBs Using PDB Lockdown Profiles
You can use PDB lockdown profiles in a multitenant environment to restrict sets of user
operations in pluggable databases (PDBS).

Managing Object Privileges
Object privileges enable you to perform actions on schema objects, such as tables or
indexes.

Table Privileges
Object privileges for tables enable table security at the DML or DDL level of operation.

View Privileges
You can apply DML obiject privileges to views, similar to tables.

Procedure Privileges
The EXECUTE privilege enables users to run procedures and functions, either standalone or
in packages.

Type Privileges
You can control system and object privileges for types, methods, and objects.

Grants of User Privileges and Roles
The GRANT statement provides privileges for a user to perform specific actions, such as
executing a procedure.

4-1

Chapter 4
About Privileges and Roles

Revokes of Privileges and Roles from a User
When you revoke system or object privileges, be aware of the cascading effects of
revoking a privilege.

Grants and Revokes of Privileges to and from the PUBLIC Role
You can grant and revoke privileges and roles from the role PUBLIC.

Grants of Roles Using the Operating System or Network
Using the operating system or network to manage roles can help centralize the role
management in a large enterprise.

How Grants and Revokes Work with SET ROLE and Default Role Settings
Privilege grants and the SET ROLE statement affect when and how grants and revokes take
place.

User Privilege and Role Data Dictionary Views
You can use special queries to find information about various types of privilege and role
grants.

4.1 About Privileges and Roles

Authorization permits only certain users to access, process, or alter data; it also creates
limitations on user access or actions.

ORACLE

The limitations placed on (or removed from) users can apply to objects such as schemas,
entire tables, or table rows.

A user privilege is the right to run a particular type of SQL statement, or the right to access an
object that belongs to another user, run a PL/SQL package, and so on. The types of privileges
are defined by Oracle Database.

Roles are created by users (usually administrators) to group together privileges or other roles.
They are a way to facilitate the granting of multiple privileges or roles to users.

Privileges can fall into the following general categories:

System privileges. These privileges allow the grantee to perform standard administrator
tasks in the database. Restrict them only to trusted users. See the following sections
describe privileges:

— Managing Administrative Privileges
— Managing System Privileges
— Managing Commonly and Locally Granted Privileges

Roles. A role groups several privileges and roles, so that they can be granted to and
revoked from users simultaneously. You must enable the role for a user before the user
can use it. See the following sections for more information:

— Managing Common Roles and Local Roles
— Managing User Roles

Object privileges. Each type of object has privileges associated with it. Managing Object
Privileges describes how to manage privileges for different types of objects.

Table privileges. These privileges enable security at the DML (data manipulation
language) or DDL (data definition language) level.Table Privileges describes how to
manage table privileges.

View privileges. You can apply DML object privileges to views, similar to tables. See View
Privileges for more information.

4-2

Chapter 4
Who Should Be Granted Privileges?

* Procedure privileges. Procedures, including standalone procedures and functions, can
be granted the EXECUTE privilege. See Procedure Privileges for more information.

e Type privileges. You can grant system privileges to named types (object types, VARRAYS,
and nested tables). See Type Privileges for more information.

¢ See Also:

Oracle Database Vault Administrator's Guide for information about how you can
create policies that analyze privilege use

4.2 Who Should Be Granted Privileges?

You grant privileges to users so they can accomplish tasks required for their jobs.

You should grant a privilege only to a user who requires that privilege to accomplish the
necessary work. Excessive granting of unnecessary privileges can compromise security. For
example, you never should grant SYSDBA or SYSOPER administrative privilege to users who do
not perform administrative tasks.

You can grant privileges to a user in two ways:

* You can grant privileges to users explicitly. For example, you can explicitly grant to
user psmith the privilege to insert records into the employees table.

* You can grant privileges to a role (a named group of privileges), and then grant the
role to one or more users. For example, you can grant the privileges to select, insert,
update, and delete records from the employees table to the role named clerk, which in
turn you can grant to users psmith and robert.

Because roles allow for easier and better management of privileges, you should usually grant
privileges to roles and not to specific users.

¢ See Also:

* Guidelines for Securing User Accounts and Privileges for best practices to follow
when granting privileges

* Oracle Database Vault Administrator’s Guide if you are concerned about
excessive privilege grants

* Oracle Database SQL Language Reference for the complete list of system
privileges and their descriptions

4.3 How the Oracle Multitenant Option Affects Privileges

ORACLE

In a multitenant environment, all users, including common users, can exercise their privileges
only within the current container.

However, a user connected to the root can perform certain operations that affect other
pluggable databases (PDBs). These operations include ALTER PLUGGABLE DATABASE, CREATE
USER, CREATE ROLE, and ALTER USER. The common user must possess the commonly granted

4-3

Chapter 4
Managing Administrative Privileges

privileges that enable these operations. A common user connected to the root can see
metadata pertaining to PDBs by way of the container data objects (for example, multitenant
container database (CDB) views and v$ views) in the root, provided that the common user has
been granted privileges required to access these views and his CONTAINER DATA attribute has
been set to allow seeing data about various PDBs. The common user cannot query tables or
views in a PDB.

Common users cannot exercise their privileges across other PDBs. They must first switch to
the PDB that they want, and then exercise their privileges from there. To switch to a different
container, the common user must have the SET CONTAINER privilege. The SET CONTAINER
privilege must be granted either commonly or in the container to which the user is attempting to
switch. Alternatively, the common user can start a new database session whose initial current
container is the container this user wants, relying on the CREATE SESSION privilege in that PDB.

Be aware that commonly granted privileges may interfere with the security configured for
individual PDBs. For example, suppose an application PDB database administrator wants to
prevent any user in the PDB from modifying a particular application common object. A privilege
(such as UPDATE) granted commonly to PUBLIC or to a common user or common role on the
object would circumvent the PDB database administrator’s intent.

Related Topics

* Enabling Common Users to View CONTAINER_DATA Object Information
Common users can view information about CONTAINER DATA objects in the root or for data
in specific PDBs.

4.4 Managing Administrative Privileges

ORACLE

Administrative privileges can be used for both general and specific database operations.

e About Administrative Privileges
For better separation of duty, Oracle Database provides administrative privileges that are
tailored for commonly performed specific administrative tasks.

e Grants of Administrative Privileges to Users
As with all powerful privileges, only grant administrative privileges to trusted users.

e SYSDBA and SYSOPER Privileges for Standard Database Operations
The sysDBA and SYSOPER administrative privileges enable you to perform standard
database operations.

e Forcing oracle Users to Enter a Password When Logging in as SYSDBA
You can force an oracle user to enter a password when the user logs in to an Oracle
database using the sYSDBA administrative privilege.

* SYSBACKUP Administrative Privilege for Backup and Recovery Operations
The SYSBACKUP administrative privilege is used to perform backup and recovery operations
from either Oracle Recovery Manager (RMAN) and or through SQL*Plus.

e SYSDG Administrative Privilege for Oracle Data Guard Operations
You can log in as user sYSDG with the sYspG administrative privilege to perform Data Guard
operations.

* SYSKM Administrative Privilege for Transparent Data Encryption
The syskM administrative privilege enables the SYSKM user to manage Transparent Data
Encryption (TDE) wallet operations.

e SYSRAC Administrative Privilege for Oracle Real Application Clusters
The SYSRAC administrative privilege is used by the Oracle Real Application Clusters (Oracle
RAC) Clusterware agent.

4-4

Chapter 4
Managing Administrative Privileges

4.4.1 About Administrative Privileges

For better separation of duty, Oracle Database provides administrative privileges that are
tailored for commonly performed specific administrative tasks.

These tasks include operations for backup and recovery, Oracle Data Guard, and encryption
key management for Transparent Data Encryption (TDE).

You can find the administrative privileges that a user has by querying the VSPWFILE USERS
dynamic view, which lists users in the password file.

In previous releases, you needed to have the SYSDBA administrative privilege to perform these
tasks. To support backward compatibility, you still can use the sYSDBA privilege for these tasks,
but Oracle recommends that you use the administrative privileges described in this section.

Users who have been granted administrative privileges can be altered to be schema-only
accounts.

The use of administrative privileges is mandatorily audited.

Related Topics

e Auditing Administrative Users
You can create unified audit policies to capture the actions of administrative user accounts,
such as Svs.

4.4.2 Grants of Administrative Privileges to Users

As with all powerful privileges, only grant administrative privileges to trusted users.

However, be aware that there is a restriction for users whose names have non-ASCI|
characters (for example, the umlaut in the name HUBER). You can grant administrative
privileges to these users, but if the Oracle database instance is down, the authentication using
the granted privilege is not supported if the user name has non-ASCII characters. If the
database instance is up, then the authentication is supported.

4.4.3 SYSDBA and SYSOPER Privileges for Standard Database Operations

The sysDBA and sYSOPER administrative privileges enable you to perform standard database
operations.

These database operations can include tasks such as database startups and shutdowns,
creating the server parameter file (SPFILE), or altering the database archive log. In a
multitenant environment, you can grant the SYSDBA and SYSOPER administrative privileges to
application common users (but not to CDB common users).

You can find if a user has been granted an administrative privilege on a local (PDB) level, for a
CDB root, or for an application root by querying the SCOPE column of the V$PWFILE USERS
dynamic view.

You can grant the SYSDBA or SYSOPER administrative privilege to users who have been created
with no authentication.

ORACLE s

Chapter 4
Managing Administrative Privileges

4.4.4 Forcing oracle Users to Enter a Password When Logging in as

SYSDBA

Operations

ORACLE

You can force an oracle user to enter a password when the user logs in to an Oracle database
using the sYspBA administrative privilege.

1.
2

Edit the SORACLE HOME/network/admin/sqlnet.ora file.

Set the SQLNET.AUTHENTICATION SERVICES parameter as follows:

sqglnet.authentication services=none

If SQLNET . AUTHENTICATION SERVICES is not set, then it defaults to ALL.

4.4.5 SYSBACKUP Administrative Privilege for Backup and Recovery

The SYSBACKUP administrative privilege is used to perform backup and recovery operations
from either Oracle Recovery Manager (RMAN) and or through SQL*Plus.

To connect to the database as SYSBACKUP using a password, you must create a password file
for it. See Oracle Database Administrator’s Guide for more information about creating
password files.

You cannot grant the SYSBACKUP administrative privilege to users who have been created with
no authentication.

This privilege enables you to perform the following operations:

STARTUP

SHUTDOWN

ALTER DATABASE

ALTER SYSTEM

ALTER SESSION

ALTER TABLESPACE

CREATE

CREATE

CREATE

CREATE

CREATE

CREATE

CREATE

CREATE

CONTROLFILE

ANY DIRECTORY

ANY TABLE

ANY CLUSTER

PFILE

RESTORE POINT (including GUARANTEED restore points)
SESSION

SPFILE

DROP DATABASE

DROP TABLESPACE

4-6

Chapter 4
Managing Administrative Privileges

° DROP RESTORE POINT (including GUARANTEED restore points)
e FLASHBACK DATABASE

° RESUMABLE

° UNLIMITED TABLESPACE

* SELECT ANY DICTIONARY

* SELECT ANY TRANSACTION

e SELECT

X$ tables (that is, the fixed tables)

v$ and Gvs views (that is, the dynamic performance views)

APPQOSSYS.WLM CLASSIFIER PLAN

SYSTEM.LOGSTDBYS$PARAMETERS

* DELETE/INSERT
— SYS.APPLY$ SOURCE_SCHEMA
— SYSTEM.LOGSTDBY$PARAMETERS
¢ EXECUTE
— SYS.DBMS_BACKUP_RESTORE
— SYS.DBMS RCVMAN
— SYS.DBMS DATAPUMP
— SYS.DBMS IR
— SYS.DBMS PIPE
— SYS.SYS_ERROR
— SYS.DBMS_TTS
— SYS.DBMS TDB
— SYS.DBMS PLUGTS
— SYS.DBMS_ PLUGTSP
¢ SELECT CATALOG ROLE

In addition, the SYSBACKUP privilege enables you to connect to the database even if the
database is not open.

See Also:

Oracle Database Backup and Recovery User’s Guide for more information about
backup and recovery operations

4.4.6 SYSDG Administrative Privilege for Oracle Data Guard Operations

You can log in as user sYSDG with the sYspG administrative privilege to perform Data Guard
operations.

ORACLE 4.7

Chapter 4
Managing Administrative Privileges

You can use this privilege with either Data Guard Broker or the DGMGRL command-line interface.
In order to connect to the database as SYSDG using a password, you must create a password
file for it.

You cannot grant the SYSYSDG administrative privilege to users who have been created with no
authentication.

The sYsSDG privilege enables the following operations:

STARTUP

SHUTDOWN

ALTER DATABASE

ALTER SESSION

ALTER SYSTEM

CREATE RESTORE POINT (including GUARANTEED restore points)
CREATE SESSION

DROP RESTORE POINT (including GUARANTEED restore points)
FLASHBACK DATABASE

SELECT ANY DICTIONARY

SELECT

— x$ tables (that is, the fixed tables)

— Vs and Gvs views (that is, the dynamic performance views)
— APPQOSSYS.WLM CLASSIFIER PLAN

DELETE

— APPQOSSYS.WLM CLASSIFIER PLAN

EXECUTE

— SYS.DBMS DRS

In addition, the sYSDG privilege enables you to connect to the database even if it is not open.

¢ See Also:

e Oracle Database Administrator’s Guide for more information about creating
password files

e Oracle Data Guard Concepts and Administration for more information about
Oracle Data Guard

4.4,7 SYSKM Administrative Privilege for Transparent Data Encryption

The sySkM administrative privilege enables the SYSKM user to manage Transparent Data
Encryption (TDE) wallet operations.

ORACLE

4-8

Chapter 4
Managing Administrative Privileges

In order to connect to the database as SYSKM using a password, you must create a password
file for it.

You cannot grant the sYSKM administrative privilege to users who have been created with no
authentication.

The syskM administrative privilege enables the following operations:
e ADMINISTER KEY MANAGEMENT
e CREATE SESSION
* SELECT (only when database is open)
— SYS.VSENCRYPTED TABLESPACES
— SYS.VSENCRYPTION WALLET
— SYS.VSWALLET
— SYS.VSENCRYPTION KEYS
— SYS.VSCLIENT SECRETS
— SYS.DBA ENCRYPTION KEY USAGE

In addition, the sYskM privilege enables you to connect to the database even if it is not open.

¢ See Also:

* Oracle Database Administrator’s Guide for more information about creating
password files

* Oracle Database Advanced Security Guide for more information about
Transparent Data Encryption

4.4.8 SYSRAC Administrative Privilege for Oracle Real Application Clusters

ORACLE

The sYSRAC administrative privilege is used by the Oracle Real Application Clusters (Oracle
RAC) Clusterware agent.

The sYSRAC administrative privilege provides only the minimal privileges necessary for
performing day-to-day Oracle RAC operations. For example, this privilege is used for Oracle
RAC utilities such as SRVCTL.

You cannot grant the SYSRAC administrative privilege to users who have been created with no
authentication.

The SYSRAC administrative privilege enables the following operations:
e STARTUP

* SHUTDOWN

e ALTER DATABASE MOUNT

e ALTER DATABASE OPEN

e ALTER DATABASE OPEN READ ONLY

4-9

Chapter 4
Managing System Privileges

ALTER DATABASE CLOSE NORMAL
ALTER DATABASE DISMOUNT
ALTER SESSION SET EVENTS
ALTER SESSION SET NOTIFY CRS
ALTER SESSION SET CONTAINER
ALTER SYSTEM REGISTER

ALTER SYSTEM SET local listener|remote listener|listener networks

In addition to these privileges, the sYSRAC user will have access to the following views:

V$PARAMETER
VS$DATABASE

VS$PDBS
CDB_SERVICES

DBA SERVICES
VSACTIVE SERVICES

VS$SERVICES

The SYSRAC user is also granted the EXECUTE privilege for the following PL/SQL packages:

DBMS_DRS
DBMS_SERVICE

DBMS SERVICE PRVT
DBMS_SESSION
DBMS HA ALERTS PRVT

Dequeue messaging SYS.SYS$SERVICE METRICS

Related Topics

Oracle Real Application Clusters Administration and Deployment Guide

4.5 Managing System Privileges

To perform actions on schema objects, you must be granted the appropriate system privileges.

ORACLE

About System Privileges
A system privilege is the right to perform an action or to perform actions on schema
objects.

Why Is It Important to Restrict System Privileges?
System privileges are very powerful, so only grant them to trusted users. You should also
secure the data dictionary and syS schema objects.

Grants and Revokes of System Privileges
You can grant or revoke system privileges to users and roles.

Who Can Grant or Revoke System Privileges?
Only two types of users can grant system privileges to other users or revoke those
privileges from them.

4-10

Chapter 4
Managing System Privileges

e About ANY Privileges and the PUBLIC Role
System privileges that use the ANY keyword enable you to set privileges for an entire
category of objects in the database.

4.5.1 About System Privileges

A system privilege is the right to perform an action or to perform actions on schema objects.

For example, the privileges to create tablespaces and to delete the rows of any table in a
database are system privileges.

There are over 100 distinct system privileges. Each system privilege allows a user to perform a
particular database operation or class of database operations. Remember that system
privileges are very powerful. Only grant them when necessary to roles and trusted users of the
database. To find the system privileges that have been granted to a user, you can query the
DBA SYS PRIVS data dictionary view.

System privileges such as SELECT ANY TABLE do not work on SYsS objects or other objects that
are protected by the SELECT ANY DICTIONARY privilege.

Related Topics

* How Commonly Granted System Privileges Work
Users can exercise system privileges only within the PDB in which they were granted.

e Oracle Database SQL Language ReferenceGRANT

4.5.2 Why Is It Important to Restrict System Privileges?

System privileges are very powerful, so only grant them to trusted users. You should also
secure the data dictionary and SYs schema objects.

e About the Importance of Restricting System Privileges
System privileges are very powerful, so by default the database is configured to prevent
typical (non-administrative) users from exercising the ANY system privileges.

e User Access to Objects in the SYS Schema
Users with explicit object privileges or those who connect with administrative privileges
(sYsDB&) can access objects in the sYs schema.

4.5.2.1 About the Importance of Restricting System Privileges

System privileges are very powerful, so by default the database is configured to prevent typical
(non-administrative) users from exercising the ANY system privileges.

For example, users are prevented from exercising ANY system privileges such as UPDATE ANY
TABLE on the data dictionary.

Related Topics

e Guidelines for Securing User Accounts and Privileges
Oracle provides guidelines to secure user accounts and privileges.

4.5.2.2 User Access to Objects in the SYS Schema

Users with explicit object privileges or those who connect with administrative privileges
(sYsDBR) can access objects in the sys schema.

ORACLE 411

Chapter 4
Managing System Privileges

The following table lists roles that you can grant to users who need access to objects in the Sys
schema.

Table 4-1 Roles to Allow Access to SYS Schema Objects

Role Description

SELECT CATALOG_ROLE Grant this role to allow users SELECT privileges on data dictionary
views.

EXECUTE _CATALOG_ROLE Grant this role to allow users EXECUTE privileges for packages and

procedures in the data dictionary.

Additionally, you can grant the SELECT ANY DICTIONARY system privilege to users who require
access to tables created in the SYs schema. This system privilege allows query access to any
object in the sYs schema, including tables created in that schema. It must be granted
individually to each user requiring the privilege. It is not included in GRANT ALL PRIVILEGES, but
it can be granted through a role.

Note:

You should grant these roles and the SELECT ANY DICTIONARY system privilege with
extreme care, because the integrity of your system can be compromised by their
misuse.

4.5.3 Grants and Revokes of System Privileges

You can grant or revoke system privileges to users and roles.

If you grant system privileges to roles, then you can use the roles to exercise system
privileges. For example, roles permit privileges to be made selectively available. Ensure that
you follow the separation of duty guidelines described in Guidelines for Securing Roles.

Use either of the following methods to grant or revoke system privileges to or from users and
roles:

° GRANT and REVOKE SQL statements
e Oracle Enterprise Manager Cloud Control

Related Topics

e User Privilege and Role Data Dictionary Views
You can use special queries to find information about various types of privilege and role
grants.

4.5.4 Who Can Grant or Revoke System Privileges?

ORACLE

Only two types of users can grant system privileges to other users or revoke those privileges
from them.

These users are as follows:

« Users who were granted a specific system privilege with the ADMIN OPTION

e Users with the system privilege GRANT ANY PRIVILEGE

4-12

Chapter 4
Managing Commonly and Locally Granted Privileges

For this reason, only grant these privileges to trusted users.

4.5.5 About ANY Privileges and the PUBLIC Role

System privileges that use the ANY keyword enable you to set privileges for an entire category
of objects in the database.

For example, the CREATE ANY PROCEDURE system privilege permits a user to create a procedure
anywhere in the database. The behavior of an object created by users with the ANY privilege is
not restricted to the schema in which it was created. For example, if user JSMITH has the
CREATE ANY PROCEDURE privilege and creates a procedure in the schema JoNnEs, then the
procedure will run as JONES. However, JONES may not be aware that the procedure JSMITH
created is running as him (JONES). If JONES has DBA privileges, letting JSMITH run a procedure
as JONES could pose a security violation.

The PUBLIC role is a special role that every database user account automatically has when the
account is created. By default, it has no privileges granted to it, but it does have numerous
grants, mostly to Java objects. You cannot drop the PUBLIC role, and a manual grant or revoke
of this role has no meaning, because the user account will always assume this role. Because
all database user accounts assume the PUBLIC role, it does not appear in the DBA ROLES and
SESSION ROLES data dictionary views.

You can grant privileges to the PUBLIC role, but remember that this makes the privileges
available to every user in the Oracle database. For this reason, be careful about granting
privileges to the PUBLIC role, particularly powerful privileges such as the ANY privileges and
system privileges. For example, if JSMITH has the CREATE PUBLIC SYNONYM system privilege, he
could redefine an interface that he knows everyone else uses, and then point to it with the
PUBLIC SYNONYM that he created. Instead of accessing the correct interface, users would
access the interface of JsSMITH, which could possibly perform illegal activities such as stealing
the login credentials of users.

These types of privileges are very powerful and could pose a security risk if given to the wrong
person. Be careful about granting privileges using ANY or PUBLIC. As with all privileges, you
should follow the principles of "least privilege" when granting these privileges to users.

Related Topics

e Guidelines for Securing a Database Installation and Configuration
Oracle provides guidelines to secure the database installation and configuration.

4.6 Managing Commonly and Locally Granted Privileges

ORACLE

In a multitenant environment, privileges can be granted commonly for an entire CDB or
application container, or granted locally to a specific PDB.

e About Commonly and Locally Granted Privileges
In a multitenant environment, both common users and local users can grant privileges to
one another.

* How Commonly Granted System Privileges Work
Users can exercise system privileges only within the PDB in which they were granted.

* How Commonly Granted Object Privileges Work
Object privileges on common objects applies to the object as well as all associated links on
this common object.

e Granting or Revoking Privileges to Access a PDB
You can grant and revoke privileges for PDB access in a multitenant environment.

4-13

Chapter 4
Managing Commonly and Locally Granted Privileges

Example: Granting a Privilege in a Multitenant Environment
You can use the GRANT statement to grant privileges in a multitenant environment.

Enabling Common Users to View CONTAINER_DATA Obiject Information
Common users can view information about CONTAINER DATA objects in the root or for data
in specific PDBs.

4.6.1 About Commonly and Locally Granted Privileges

In a multitenant environment, both common users and local users can grant privileges to one
another.

Privileges by themselves are neither common nor local. How the privileges are applied
depends on whether the privilege is granted commonly or granted locally.

For

Fo

=

commonly granted privileges:

A privilege that is granted commonly can be used in every existing and future container.
Only common users can grant privileges commonly, and only if the grantee is common.
A common user can grant privileges to another common user or to a common role.

The grantor must be connected to the root and must specify CONTAINER=ALL in the GRANT
statement.

Both system and object privileges can be commonly granted. (Object privileges become
actual only with regard to the specified object.)

When a common user connects to or switches to a given container, this user's ability to
perform various activities (such as creating a table) is controlled by privileges granted
commonly as well as privileges granted locally in the given container.

Do not grant privileges to PUBLIC commonly.
locally granted privileges:

A privilege granted locally can be used only in the container in which it was granted. When
the privilege is granted in the root, it applies only to the root.

Both common users and local users can grant privileges locally.
A common user and a local user can grant privileges to other common or local roles.

The grantor must be connected to the container and must specify CONTAINER=CURRENT in
the GRANT statement.

Any user can grant a privilege locally to any other user or role (both common and local) or
to the PUBLIC role.

Related Topics

Oracle Multitenant Administrator's Guide

How the PUBLIC Role Works in a Multitenant Environment
All privileges that Oracle grants to the PUBLIC role are granted locally.

4.6.2 How Commonly Granted System Privileges Work

Users can exercise system privileges only within the PDB in which they were granted.

For

example, if a system privilege is locally granted to a common user 2 in a PDB B, user & can

exercise that privilege only while connected to PDB B.

ORACLE

4-14

Chapter 4
Managing Commonly and Locally Granted Privileges

System privileges can apply in the root and in all existing and future PDBs if the following
requirements are met:

e The system privilege grantor is a common user and the grantee is a common user, a
common role, or the PUBLIC role. Do not commonly grant system privileges to the PUBLIC
role, because this in effect makes the system privilege available to all users.

e The system privilege grantor possesses the ADMIN OPTION for the commonly granted
privilege

¢ The GRANT statement must contain the CONTAINER=ALL clause.

The following example shows how to commonly grant a privilege to the common user
c##hr admin.

CONNECT SYSTEM
Enter password: password
Connected.

GRANT CREATE ANY TABLE TO c##hr admin CONTAINER=ALL;

4.6.3 How Commonly Granted Object Privileges Work

Object privileges on common objects applies to the object as well as all associated links on this
common object.

These links include all metadata links, data links (previously called object links), or extended
data links that are associated with it in the root and in all PDBs belonging to the container
(including future PDBS) if certain requirements are met.

These requirements are as follows:

e The object privilege grantor is a common user and the grantee is a common user, a
common role, or the PUBLIC role.

* The object privilege grantor possesses the commonly granted GRANT OPTION for the
privilege

* The GRANT statement contains the CONTAINER=ALL clause.

The following example shows how to grant an object privilege to the common user
c##hr admin so that he can select from the DBA PDBS view in the CDB root or in any of the
associated PDBs that he can access.

CONNECT SYSTEM
Enter password: password
Connected.

GRANT SELECT ON DBA OBJECTS TO c##hr admin
CONTAINER=ALL;

Related Topics
* Oracle Multitenant Administrator's Guide

e How the PUBLIC Role Works in a Multitenant Environment
All privileges that Oracle grants to the PUBLIC role are granted locally.

ORACLE o

Chapter 4
Managing Commonly and Locally Granted Privileges

4.6.4 Granting or Revoking Privileges to Access a PDB

You can grant and revoke privileges for PDB access in a multitenant environment.

To grant a privilege in a multitenant environment:
* Include the CONTAINER clause in the GRANT or REVOKE Statement.

Setting CONTAINER to ALL applies the privilege to all existing and future containers; setting it to

CURRENT applies the privilege to the local container only. Omitting the CONTAINER clause applies
the privilege to the local container. If you issue the GRANT statement from the root and omit the

CONTAINER clause, then the privilege is applied locally.

Related Topics

e Oracle Database SQL Language Reference

4.6.5 Example: Granting a Privilege in a Multitenant Environment

You can use the GRANT statement to grant privileges in a multitenant environment.

Example 4-1 shows how to commonly grant the CREATE TABLE privilege to common user
c##hr admin so that this user can use this privilege in all existing and future containers.

Example 4-1 Granting a Privilege in a Multitenant Environment

CONNECT SYSTEM
Enter password: password
Connected.

GRANT CREATE TABLE TO c##hr admin CONTAINER=ALL;

4.6.6 Enabling Common Users to View CONTAINER_DATA Object

Information

Common users can view information about CONTAINER DATA objects in the root or for data in
specific PDBs.

e Viewing Data About the Root, CDB, and PDBs While Connected to the Root
You can restrict view information for the xs table and the v$, Gv$ and CDB_* views when
common users perform queries.

* Enabling Common Users to Query Data in Specific PDBs
You can enable common users to access data pertaining to specific PDBs by adjusting the
users’ CONTAINER DATA attribute.

4.6.6.1 Viewing Data About the Root, CDB, and PDBs While Connected to the Root

ORACLE

You can restrict view information for the x$ table and the v$, Gv$ and CDB_* views when
common users perform queries.

The x$ table and these views contain information about the application root and its associated
application PDBs or, if you are connected to the CDB root, the entire CDB.

4-16

Chapter 4
Managing Commonly and Locally Granted Privileges

Restricting this information is useful when you do not want to expose sensitive information
about other PDBs. To enable this functionality, Oracle Database provides these tables and
views as container data objects. You can find if a specific table or view is a container data

object by querying the TABLE NAME, VIEW NAME, and CONTAINER DATA columns of the USER |
DBA |ALL VIEWS|TABLES dictionary views.

To find information about the default (user-level) and object-specific CONTAINER DATA

attributes:

1. In SQL*Plus or SQL Developer, log in to the root.

2. Query the CDB_CONTAINER DATA data dictionary view.

For example:

COLUMN
COLUMN
COLUMN
COLUMN
COLUMN
COLUMN
COLUMN

SELECT

FROM

USERNAME FORMAT Al5
DEFAULT ATTR FORMAT A7
OWNER FORMAT Al5

OBJECT NAME FORMAT AlS5
ALL CONTAINERS FORMAT A3
CONTAINER NAME FORMAT Al10Q
CON_ID FORMAT A6

USERNAME, DEFAULT ATTR, OWNER, OBJECT NAME,
ALL CONTAINERS, CONTAINER NAME, CON ID
CDB_CONTAINER DATA

ORDER BY OBJECT NAME;

USERNAME DEFAULT OWNER OBJECT NAME ALL CONTAINERS

C##HR ADMIN
CDB$ROOT
C##HR ADMIN
SALESPDB
C##HR ADMIN

HRPDB

C##HR ADMIN
CDB$ROOT

DBSNMP
Y
SYSTEM
Y

SYS VSSESSION N

SYS VSSESSION N

I I e e I = -
=

Related Topics

e Oracle Database Reference

4.6.6.2 Enabling Common Users to Query Data in Specific PDBs

You can enable common users to access data pertaining to specific PDBs by adjusting the
users’ CONTAINER DATA attribute.

To enable common users to access data about specific PDBs:

e Issue the ALTER USER Statement in the root.

ORACLE

4-17

Chapter 4
Managing Common Roles and Local Roles

Example 4-2 Setting the CONTAINER_DATA Attribute

This example shows how to issue the ALTER USER statement to enable the common user
c##hr admin to view information pertaining to the CDBSROOT, SALES_PDB, and HRPDB containers
in the V$SESSION view (assuming this user can query that view).

CONNECT SYSTEM
Enter password: password
Connected.

ALTER USER c##hr admin
SET CONTAINER_DATA = (CDBSROOT, SALESPDB, HRPDB)
FOR VSSESSION CONTAINER=CURRENT;

In this specification:

* SET CONTAINER DATA lists containers, data pertaining to which can be accessed by the
user.

* FOR V$SESSION specifies the CONTAINER DATA dynamic view, which common user
c##hr admin will query.

e CONTAINER = CURRENT must be specified because when you are connected to the root,
CONTAINER=ALL is the default for the ALTER USER statement, but modification of the
CONTAINER DATA attribute must be restricted to the root.

If you want to enable user c##hr admin to view information that pertains to the CDBSR0OOT,
SALES_PDB, HRPDB containers in all CONTAINER DATA objects that this user can access, then omit
FOR V$SESSION. For example:

ALTER USER c##hr admin
SET CONTAINER_DATA = (CDBSROOT, SALESPDB, HRPDB)
CONTAINER=CURRENT;

Related Topics

e Oracle Database SQL Language Reference

4.7 Managing Common Roles and Local Roles

ORACLE

A common role is a role that is created in the root; a local role is created in a PDB.

* About Common Roles and Local Roles
In a multitenant environment, database roles can be specific to a PDB or used throughout
the entire system container or application container.

* How Common Roles Work
Common roles are visible in the root and in every PDB of a container within which they are
defined in a multitenant environment.

* How the PUBLIC Role Works in a Multitenant Environment
All privileges that Oracle grants to the PUBLIC role are granted locally.

* Privileges Required to Create, Modify, or Drop a Common Role
Only common users who have the commonly granted CREATE ROLE, ALTER ROLE, and DROP
ROLE privileges can create, alter, or drop common roles.

4-18

Chapter 4
Managing Common Roles and Local Roles

* Rules for Creating Common Roles
When you create a common role, you must follow special rules.

e Creating a Common Role
You can use the CREATE ROLE statement to create a common role.

e Rules for Creating Local Roles
To create a local role, you must follow special rules.

e Creating a Local Role
You can use the CREATE ROLE statement to create a role.

* Role Grants and Revokes for Common Users and Local Users
Role grants and revokes apply only to the scope of access of the common user or the local
user.

4.7.1 About Common Roles and Local Roles

In a multitenant environment, database roles can be specific to a PDB or used throughout the
entire system container or application container.

A common role is a role whose identity and (optional) password are created in the root of a
container and will be known in the root and in all existing and future PDBs belonging to that
container.

A local role exists in only one PDB and can only be used within this PDB. It does not have any
commonly granted privileges.

Note the following:

« Common users can both create and grant common roles to other common and local users.
* You can grant a role (local or common) to a local user or role only locally.

e If you grant a common role locally, then the privileges of that common role apply only in the
container where the role is granted.

e Local users cannot create common roles, but they can grant them to common and other
local users.

e The CONTAINER = ALL clause is the default when you create a common role in the CDB
root or an application root.

Related Topics

* Predefined Roles in an Oracle Database Installation
Oracle Database provides a set of predefined roles to help in database administration.

4.7.2 How Common Roles Work

ORACLE

Common roles are visible in the root and in every PDB of a container within which they are
defined in a multitenant environment.

A privilege can be granted commonly to a common role if:

e The grantor is a common user.

e The grantor possesses the commonly granted ADMIN OPTION for the privilege that is being
granted.

* The GRANT statement contains the CONTAINER=ALL clause.

4-19

Chapter 4
Managing Common Roles and Local Roles

If the common role contains locally granted privileges, then these privileges apply only within
the PDB in which they were granted to the common role. A local role cannot be granted
commonly.

For example, suppose the CDB common user c##hr mgr has been commonly granted the DBA
role. This means that user c##hr mgr can use the privileges associated with the DB role in the
root and in every PDB in the multitenant environment. However, if the CDB common user
c##hr mgr has only been locally granted the DBA role for the hr pdb PDB, then this user can
only use the DBA role's privileges in the hr pdb PDB.

4.7.3 How the PUBLIC Role Works in a Multitenant Environment

All privileges that Oracle grants to the PUBLIC role are granted locally.

This feature enables you to revoke privileges or roles that have been granted to the PUBLIC
role individually in each PDB as needed. If you must grant any privileges to the PUBLIC role,
then grant them locally. Never grant privileges to PUBLIC commonly.

Related Topics

e About Commonly and Locally Granted Privileges
In a multitenant environment, both common users and local users can grant privileges to
one another.

4.7.4 Privileges Required to Create, Modify, or Drop a Common Role

Only common users who have the commonly granted CREATE ROLE, ALTER ROLE, and DROP
ROLE privileges can create, alter, or drop common roles.

Common users can also create local roles, but these roles are available only in the PDB in
which they were created.

4.7.5 Rules for Creating Common Roles

ORACLE

When you create a common role, you must follow special rules.
The rules are as follows:

* Ensure that you are in the correct root. For the creation of common roles, you must be
in the correct root, either the CDB root or the application root. You cannot create common
roles from a PDB. To check if you are in the correct root, run one of the following:

— To confirm that you are in the CDB root, you can issue the show_con_name command.
The output should be CDBSROOT.

— To confirm that you are in an application root, verify that the following query returns
YES:

SELECT APPLICATION ROOT FROM VSPDBS WHERE CON ID=SYS CONTEXT ('USERENV',
'CON ID');

— Ensure that the name that you give the common role starts with the value of the
COMMON_USER_PREFIX parameter (which defaults to C##). Note that this
requirement does not apply to the names of existing Oracle-supplied roles, such as
DBA OF RESOURCE.

4-20

Chapter 4
Managing Common Roles and Local Roles

* Optionally, set the CONTAINER clause to ALL. As long as you are in the root, if you omit
the CONTAINER = ALL clause, then by default the role is created as a common role for the
CDB root or the application root.

4.7.6 Creating a Common Role

You can use the CREATE ROLE statement to create a common role.

1. Connect to the root of the CDB or the application container in which you want to create the
common role.

For example:
CONNECT SYSTEM
Enter password: password
Connected.
2. Runthe CREATE ROLE statement with the CONTAINER clause set to ALL.

For example:
CREATE ROLE c##sec_admin IDENTIFIED BY password CONTAINER=ALL;

Related Topics

e Creating a Role
You can create a role that is authenticated with or without a password. You also can create
external or global roles.

* Creating a Common Role in Enterprise Manager
Common roles can be used to assign common privileges to common users.

4.7.7 Rules for Creating Local Roles

To create a local role, you must follow special rules.
These rules are as follows:

e You must be connected to the PDB in which you want to create the role, and have the
CREATE ROLE privilege.

* The name that you give the local role must not start with the value of the
COMMON USER PREFIX parameter (which defaults to C##).

* You can include CONTAINER=CURRENT in the CREATE ROLE statement to specify the role as a
local role. If you are connected to a PDB and omit this clause, then the CONTAINER=CURRENT
clause is implied.

* You cannot have common roles and local roles with the same name. However, you can
use the same name for local roles in different PDBs. To find the names of existing roles,
query the CDB_ROLES and DBA ROLES data dictionary views.

4.7.8 Creating a Local Role

You can use the CREATE ROLE statement to create a role.

1. Connect to the PDB in which you want to create the local role.

ORACLE 401

Chapter 4
Managing Common Roles and Local Roles

For example:
CONNECT SYSTEM@hrpdb
Enter password: password

Connected.

2. Runthe CREATE ROLE statement with the CONTAINER clause set to CURRENT.

For example:

CREATE ROLE sec_admin CONTAINER=CURRENT;

4.7.9 Role Grants and Revokes for Common Users and Local Users

ORACLE

Role grants and revokes apply only to the scope of access of the common user or the local
user.

Common users can grant and revoke common roles to and from other common users. A local
user can grant a common role to any user in a PDB, including common users, but this grant
applies only within the PDB.

The following example shows how to grant the common user c##sec_admin the AUDIT ADMIN
common role for use in all containers.

CONNECT SYSTEM
Enter password: password
Connected.

GRANT AUDIT ADMIN TO c##sec_admin CONTAINER=ALL;

Similarly, the next example shows how local user aud_admin can grant the common user
c##sec_admin the AUDIT ADMIN common role for use within the hrpdo PDB.

CONNECT aud_admin@hrpdb
Enter password: password
Connected.

GRANT AUDIT ADMIN TO c##sec_admin CONTAINER=CURRENT;

This example shows how a local user aud_admin can revoke a role from another user in a
PDB. If you omit the CONTAINER clause, then CURRENT is implied.

CONNECT aud_admin@hrpdb
Enter password: password
Connected.

REVOKE sec_admin FROM psmith CONTAINER=CURRENT;

Related Topics

e Revoking Common Privilege Grants in Enterprise Manager
You can revoke common privilege grants from the root.

4-22

Chapter 4
Managing User Roles

4.8 Managing User Roles

A user role is a named collection of privileges that you can create and assign to other users.

About User Roles
User roles are useful in a variety of situations, such as restricting DDL usage.

Predefined Roles in an Oracle Database Installation
Oracle Database provides a set of predefined roles to help in database administration.

Creating a Role
You can create a role that is authenticated with or without a password. You also can create
external or global roles.

Specifying the Type of Role Authorization
You can configure a role to be authorized through different sources, such the database or
an external source.

Granting and Revoking Roles
You can grant or revoke privileges to and from roles, and then grant these roles to users or
to other roles.

Dropping Roles
Dropping a role affects the security domains of users or roles who had been granted the
role.

Restricting SQL*Plus Users from Using Database Roles
You should restrict SQL*Plus users from using database roles, which helps to safeguard
the database from intruder attacks.

Role Privileges and Secure Application Roles
A secure application role can be enabled only by an authorized PL/SQL package or
procedure.

4.8.1 About User Roles

User roles are useful in a variety of situations, such as restricting DDL usage.

ORACLE

What Are User Roles?
A user role is a named group of related privileges that you can grant as a group to users or
other roles.

The Functionality of Roles
Roles are useful for quickly and easily granting permissions to users.

Properties of Roles and Why They Are Advantageous
Roles have special properties that make their management very easy, such reduced
privilege administration.

Typical Uses of Roles
In general, you create a role to manage privileges.

Common Uses of Application Roles
You can use application roles to control privileges to use applications.

Common Uses of User Roles
You can create a user role for a group of database users with common privilege grant
requirements.

How Roles Affect the Scope of a User's Privileges
Each role and user has its own unique security domain.

4-23

Chapter 4
Managing User Roles

* How Roles Work in PL/SQL Blocks
Role behavior in a PL/SQL block is determined by the type of block and by definer's rights
or invoker's rights.

* How Roles Aid or Restrict DDL Usage
A user requires one or more privileges to successfully execute a DDL statement,
depending on the statement.

¢ How Operating Systems Can Aid Roles
In some environments, you can administer database security using the operating system.

* How Roles Work in a Distributed Environment
In a distributed database environment, all necessary roles must be set as the default role
for a distributed (remote) session.

4.8.1.1 What Are User Roles?

A user role is a named group of related privileges that you can grant as a group to users or
other roles.

Managing and controlling privileges is easier when you use roles.

Within a database, each role name must be unique, different from all user names and all other
role names. Unlike schema objects, roles are not contained in any schema. Therefore, a user
who creates a role can be dropped with no effect on the role.

Related Topics

e Managing Common Roles and Local Roles
A common role is a role that is created in the root; a local role is created in a PDB.

¢ See Also:

Managing Common Roles and Local Roles

4.8.1.2 The Functionality of Roles

ORACLE

Roles are useful for quickly and easily granting permissions to users.

Although you can use Oracle Database-defined roles, you have more control and continuity if
you create your own roles that contain only the privileges pertaining to your requirements.
Oracle m