
Oracle® Multimedia
User's Guide

12c Release 2 (12.2)
E85857-01
July 2017



Oracle Multimedia User's Guide, 12c Release 2 (12.2)

E85857-01

Copyright © 1999, 2017, Oracle and/or its affiliates. All rights reserved.

Primary Author: Sue Pelski

Contributors: Robert Abbott, Melliyal Annamalai, Susan Mavris, Valarie Moore, David Noblet, James Steiner,
Manjari Yalavarthy, Jie Zhang

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.



Contents

 Preface

Audience xi

Documentation Accessibility xi

Related Documents xii

Conventions xiii

 Changes in This Release for Oracle Multimedia User's Guide

Changes in Oracle Database 12c Release 2 (12.2) xiv

1   Introduction to Oracle Multimedia

1.1 Oracle Multimedia Architecture 1-2

1.2 Object Relational Technology 1-3

1.3 Oracle Multimedia Capabilities 1-4

1.3.1 Oracle Multimedia Support for CDBs 1-7

1.3.2 Data Guard Rolling Upgrade Support for Oracle Multimedia 1-7

1.4 Audio Concepts 1-8

1.4.1 Digitized Audio 1-8

1.4.2 Audio Components 1-8

1.5 ORDDoc or Heterogeneous Media Data Concepts 1-9

1.5.1 Digitized Heterogeneous Media Data 1-9

1.5.2 Heterogeneous Media Data Components 1-9

1.6 Image Concepts 1-10

1.6.1 Digitized Images 1-10

1.6.2 Image Components 1-10

1.6.3 Metadata in Images 1-11

1.6.4 Medical Imaging (Deprecated) 1-11

1.6.5 Metadata Extraction 1-12

1.6.6 Image Processing 1-12

1.7 Video Concepts 1-13

1.7.1 Digitized Video 1-13

1.7.2 Video Components 1-13

iii



1.8 Loading Multimedia Data 1-14

1.9 Multimedia Storage and Querying 1-14

1.9.1 Storing Multimedia Data 1-15

1.9.2 Querying Multimedia Data 1-16

1.10 Accessing Multimedia Data 1-16

2   Oracle Multimedia Application Development

2.1 Developing Multimedia Applications Using SQL Developer 2-2

2.2 Developing Multimedia Applications Using Application Express 2-2

2.3 Developing Multimedia Applications Using Java and JDBC 2-2

2.3.1 Setting Up Your Environment for Java 2-3

2.3.2 Media Upload in Java 2-5

2.3.3 Retrieval of Image Properties in Java 2-7

2.3.4 Thumbnail Image Creation in Java 2-8

2.3.5 Handling Oracle Multimedia Exceptions in Java 2-9

2.3.5.1 Handling the Setting of Properties for Unknown Image Formats in
Java 2-10

2.3.5.2 Handling Image Processing for Unknown Image Formats in Java 2-11

2.4 Developing Multimedia Applications Using PL/SQL 2-11

2.4.1 Setting Up Your Environment for PL/SQL 2-12

2.4.2 Media Upload in PL/SQL 2-12

2.4.3 Media Query in PL/SQL 2-13

2.4.4 Media Download in PL/SQL 2-14

2.4.5 Handling Oracle Multimedia Exceptions in PL/SQL 2-14

2.4.5.1 Handling the Setting of Properties for Unknown Image Formats in
PL/SQL 2-15

2.4.5.2 Handling Image Processing for Unknown Image Formats in
PL/SQL 2-16

2.5 Developing PL/SQL Web Applications 2-16

2.5.1 Using the PL/SQL Gateway and PL/SQL Web Toolkit 2-17

3   Oracle Multimedia PL/SQL Photo Album Sample Application

3.1 Overview of the PL/SQL Photo Album Sample Application 3-2

3.2 Running the PL/SQL Photo Album Sample Application 3-4

3.3 Description of the PL/SQL Photo Album Sample Application 3-5

3.3.1 Browsing the Photo Album 3-6

3.3.2 Adding Images to the Photo Album 3-10

3.3.3 Searching for Images by Keyword or Phrase 3-14

3.3.4 Viewing Full-Size Images 3-15

3.3.5 Examining Image Metadata 3-17

iv



3.3.6 Writing New XMP Metadata to Images 3-18

3.3.7 Searching for Images That Contain Specific Metadata Attributes 3-21

4   Oracle Multimedia Code Wizard Sample Application for the PL/SQL
Gateway

4.1 Running the Code Wizard Sample Application 4-1

4.2 Description of the Code Wizard Sample Application 4-2

4.2.1 Creating a New DAD or Choosing an Existing DAD 4-2

4.2.2 Authorizing a DAD 4-4

4.2.3 Creating and Testing Media Upload and Retrieval Procedures 4-6

4.2.4 Creating a Media Upload Procedure 4-8

4.2.5 Creating a Media Retrieval Procedure 4-13

4.2.6 Using the PL/SQL Gateway Document Table 4-17

4.2.7 How Time Zone Information Is Used to Support Browser Caching 4-18

4.3 Sample Session: Using Images 4-19

4.4 Known Restrictions of the Oracle Multimedia Code Wizard 4-28

5   Working with Metadata in Oracle Multimedia Images

5.1 Metadata Concepts 5-1

5.2 Oracle Multimedia Image Metadata Concepts 5-2

5.3 Image File Formats 5-2

5.4 Image Metadata Formats 5-2

5.4.1 EXIF 5-2

5.4.2 IPTC–IIM 5-3

5.4.3 XMP 5-3

5.5 Representing Metadata Outside Images 5-3

5.6 Oracle Multimedia Image Metadata Examples 5-4

5.6.1 Creating a Table for Metadata Storage 5-4

5.6.2 Extracting Image Metadata 5-5

5.6.3 Embedding Image Metadata 5-6

5.7 Metadata References 5-8

6   Oracle Multimedia Tuning Tips for DBAs

6.1 Understanding the Performance Profile of Oracle Multimedia Operations 6-1

6.2 Choosing LOB Storage Parameters for Multimedia LOBs 6-4

6.2.1 SecureFiles LOBs 6-5

6.2.2 TABLESPACE 6-5

6.2.3 CACHE, NOCACHE, and CACHE READS 6-5

v



6.2.4 LOGGING and NOLOGGING 6-5

6.2.5 Example of Setting LOB Storage Options 6-6

6.3 Setting Database Initialization Parameters 6-7

A   Managing Oracle Multimedia Installations

A.1 Oracle Multimedia Installed Users and Privileges A-1

A.2 Installing and Configuring Oracle Multimedia A-2

A.2.1 Preinstallation Steps A-3

A.2.2 Installation and Configuration Steps A-4

A.3 Verifying an Installed Version of Oracle Multimedia A-5

A.4 Upgrading an Installed Version of Oracle Multimedia A-5

A.5 Downgrading an Installed Version of Oracle Multimedia A-5

B   Extending Oracle Multimedia

B.1 Supporting Other External Sources B-1

B.1.1 External Source Packages B-2

B.1.1.1 ORDPLUGINS.ORDX_FILE_SOURCE Package B-2

B.1.1.2 ORDPLUGINS.ORDX_HTTP_SOURCE Package B-4

B.1.1.3 Extending Oracle Multimedia to Support a New Data Source B-6

B.2 Supporting Other Media Data Formats B-8

B.2.1 Supporting Other ORDAudio Data Formats B-9

B.2.1.1 ORDPLUGINS.ORDX_DEFAULT_AUDIO Package B-9

B.2.1.2 Extending Oracle Multimedia to Support a New Audio Data
Format B-10

B.2.2 Supporting Other ORDDoc Data Formats B-12

B.2.2.1 ORDPLUGINS.ORDX_DEFAULT_DOC Package B-12

B.2.2.2 Extending Oracle Multimedia to Support a New ORDDoc Data
Format B-12

B.2.3 Supporting Other Video Data Formats B-13

B.2.3.1 ORDPLUGINS.ORDX_DEFAULT_VIDEO Package B-13

B.2.3.2 Extending Oracle Multimedia to Support a New Video Data
Format B-15

B.2.4 Supporting Other Image Data Formats B-17

B.3 Supporting Media Data Processing B-17

B.3.1 Supporting Audio Data Processing B-17

B.3.2 Supporting Video Data Processing B-17

C   Oracle Multimedia Sample Applications

C.1 Oracle Multimedia ORDImage OCI C Sample Application C-1

vi



C.2 Oracle Multimedia PL/SQL Sample Applications C-2

Glossary

Index

vii



List of Examples

2-1 Image Query (Height, Width, and MimeType Attributes) 2-14

2-2 Audio Query (MimeType Attribute) 2-14

2-3 Video Query (MimeType Attribute) 2-14

2-4 URL Format to Invoke mod_plsql in a Web Browser 2-19

2-5 URL Format to Invoke mod_plsql for the Photo Album Application 2-19

3-1 Procedure view_album 3-8

3-2 Procedure print_album 3-8

3-3 Procedure print_image_link 3-9

3-4 Procedure deliver_media 3-9

3-5 Procedure print_upload_form 3-11

3-6 Procedure insert_new_photo 3-11

3-7 Procedure view_entry 3-16

3-8 Procedure view_metadata 3-18

3-9 Procedure print_metadata 3-18

3-10 Procedure write_metadata 3-20

3-11 Procedure search_metadata 3-22

B-1 Package Body for Extending Support to a New Data Source B-6

B-2 Package Body for Extending Support to a New Audio Data Format B-11

B-3 Package Body for Extending Support to a New ORDDoc Data Format B-13

B-4 Package Body for Extending Support to a New Video Data Format B-15

viii



List of Figures

1-1 Oracle Multimedia Architecture 1-2

2-1 Components of a PL/SQL Web Application 2-18

3-1 View album Page with Uploaded Images 3-7

3-2 Completed Upload photo Page 3-10

3-3 Search album Page Showing Results 3-15

3-4 View entry Page with a Full-Size Image 3-16

3-5 View metadata Page with Metadata for an Uploaded Image 3-17

3-6 Completed Write XMP metadata Page with XMP Metadata for an Uploaded Image 3-19

3-7 Completed Search metadata Page for an Uploaded Image 3-22

4-1 Main Menu for the Code Wizard 4-4

4-2 Authorize the SCOTTCW DAD 4-5

4-3 List of Authorized DADs 4-6

4-4 Use the SCOTTCW DAD 4-7

4-5 Create a Media Upload Procedure 4-8

4-6 Media Upload Step 1: Select Database Table and Procedure Type 4-8

4-7 Media Upload Step 2: Select PL/SQL Gateway Document Upload Table 4-9

4-8 Media Upload Step 3: Select Data Access and Media Column(s) 4-10

4-9 Media Upload Step 4: Select Additional Columns and Procedure Name 4-11

4-10 Media Upload Step 5: Review Selected Options 4-12

4-11 Compiled Upload Procedure with Success Message 4-12

4-12 Template Upload Form for the Code Wizard 4-13

4-13 Create a Media Retrieval Procedure 4-14

4-14 Media Retrieval Step 1: Select Database Table and Procedure Type 4-14

4-15 Media Retrieval Step 2: Select Media Column and Key Column 4-15

4-16 Media Retrieval Step 3: Select Procedure Name and Parameter Name 4-16

4-17 Media Retrieval Step 4: Review Selected Options 4-16

4-18 Compiled Retrieval Procedure with Success Message 4-17

ix



List of Tables

2-1 Java Archive Files for Oracle Multimedia 2-3

6-1 Performance Profile For All Multimedia Types 6-2

6-2 Performance Profile for ORD_IMAGE PL/SQL Package Functions and Procedures 6-2

6-3 Performance Profile For ORDImage Methods 6-3

6-4 Performance Profile for ORD_DICOM PL/SQL Package Functions and Procedures 6-3

6-5 Performance Profile For ORDDicom Methods 6-3

6-6 Performance Profile for ORD_AUDIO, ORD_DOC, and ORD_VIDEO PL/SQL

Package Procedures 6-4

6-7 Performance Profile For ORDAudio, ORDDoc, and ORDVideo Methods 6-4

A-1 Installed Database Users A-1

A-2 User Accounts and Default Passwords A-2

B-1 Methods Supported in the ORDPLUGINS.ORDX_FILE_SOURCE Package B-3

B-2 Methods Supported in the ORDPLUGINS.ORDX_HTTP_SOURCE Package B-5

B-3 Methods Supported in the ORDPLUGINS.ORDX_DEFAULT_AUDIO Package B-10

B-4 Method Supported in the ORDPLUGINS.ORDX_DEFAULT_DOC Package B-12

B-5 Methods Supported in the ORDPLUGINS.ORDX_DEFAULT_VIDEO Package B-14

C-1 Oracle Multimedia Sample Applications in Oracle Database Examples Media C-1

x



Preface

This guide describes how to use Oracle Multimedia, which ships with Oracle
Database. It describes the management and integration of audio, image, and video, or
other heterogeneous media data with other Oracle tools and software, and with third-
party tools and software.

In Oracle Database 11g Release 1 (11.1), the name Oracle interMedia was changed
to Oracle Multimedia. The feature remains the same, only the name has changed.

The sample code in this guide might not match the code shipped with Oracle
Database Examples media. To run examples that are shipped with Oracle Database
Examples media on your system, use the files provided with Oracle Database
Examples media. Do not attempt to compile and run the code in this guide.

See Oracle Database New Features Guide for information about Oracle Database and
the features and options that are available to you.

Audience
This guide is for application developers and database administrators who are
interested in storing, retrieving, and manipulating audio, image, video, and
heterogeneous media data in a database, including developers of audio,
heterogeneous media data, image, and video specialization options. After familiarizing
yourself with the concepts presented in this guide, consult Oracle Multimedia
Reference for API information.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

xi

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs


Related Documents

Note:

For information added after the release of this guide, see the online README.txt
file under your <ORACLE_HOME> directory. Depending on your operating system,
this file may be in

<ORACLE_HOME>/ord/im/admin/README.txt

See your operating system-specific installation guide for more information.

For more information about using Oracle Multimedia in a development environment,
see the following documents in the Oracle Database Online Documentation Library:

• Oracle Multimedia Reference

• Oracle Multimedia DICOM Developer's Guide (Deprecated)

• Oracle Call Interface Programmer's Guide

• Oracle Database Development Guide

• Oracle Database SecureFiles and Large Objects Developer's Guide

• Oracle Database Concepts

• Oracle Database PL/SQL Language Reference

• Oracle Database Java Developer's Guide

• Oracle Database Error Messages

For more information about using JDBC, see Oracle Database JDBC Developer's
Guide.

For more information about using XML, see Oracle XML DB Developer's Guide.

For reference information about Oracle Multimedia Java classes in Javadoc format,
see the following Oracle API documentation (also known as Javadoc) in the Oracle
Database Online Documentation Library:

• Oracle Multimedia Java API Reference (Deprecated)

• Oracle Multimedia Servlets and JSP Java API Reference (Deprecated)

• Oracle Multimedia DICOM Java API Reference (Deprecated)

• Oracle Multimedia Mid-Tier Java API Reference (Deprecated)

For more information about Java, see the API documentation provided by Oracle.

Many of the examples in this guide use the sample schemas. See Oracle Database
Sample Schemas for information about how these schemas were created and how
you can use them.

Preface

xii



Conventions
Although Boolean is a proper noun, it is presented as boolean in this guide when its
use in Java code requires case-sensitivity.

The following text conventions are also used in this guide:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Preface

xiii



Changes in This Release for Oracle
Multimedia User's Guide

This preface lists changes in Oracle Multimedia User's Guide.

Changes in Oracle Database 12c Release 2 (12.2)
The following are changes in Oracle Multimedia User's Guide for Oracle Database 12c
Release 2 (12.2).

New Features

The following feature is new in this release:

• Oracle Multimedia PL/SQL API

Oracle Multimedia now provides a simplified PL/SQL API with functions and
procedures for managing image, audio, and video media data stored in BLOBs
and BFILEs in Oracle Database. This API allows metadata extraction and image
processing operations to be more intuitively included in SQL and PL/SQL
applications.

The PL/SQL API enables developers to include many common operations in their
applications. Examples include creating thumbnail images, cropping images, and
converting images to Web-friendly formats, as well as extracting metadata. Using
this API along with a comprehensive set of database tools and features,
developers can consolidate multimedia data with other types of data in the
database, for easy display in reports and Web user interfaces. These advantages
enable rapid development and deployment of all database applications that
include multimedia data.

See Oracle Multimedia Reference for more information about the Oracle
Multimedia PL/SQL Packages.

Deprecated Features

The following features are deprecated in this release, and may be desupported in a
future release:

• Oracle Multimedia support for the SQL/MM Still Image standard

• These APIs:

– Oracle Multimedia Java API

– Oracle Multimedia Servlets and JSP Java API

– Oracle Multimedia DICOM Java API

– Oracle Multimedia Mid-Tier Java API

• Oracle Multimedia support for DICOM

Changes in This Release for Oracle Multimedia User's Guide

xiv



The following feature was deprecated in Oracle Database 12c Release 1 (12.1), and
may be desupported in a future release:

• The Oracle Multimedia DICOM support in ORDImage objects that was introduced
in Oracle Database 10g Release 2 (10.2)

See Also:

• Oracle Multimedia Reference for more information about deprecated API
components

• Oracle Multimedia DICOM Developer's Guide for more information about
the DICOM feature

Changes in This Release for Oracle Multimedia User's Guide

xv



1
Introduction to Oracle Multimedia

This chapter provides an overview of Oracle Multimedia.

Oracle Multimedia (formerly Oracle interMedia) enables Oracle Database to store,
manage, and retrieve images, DICOM format medical images and other objects,
audio, video, or other heterogeneous media data in an integrated fashion with other
enterprise information.

Oracle Multimedia extends Oracle Database reliability, availability, and data
management to multimedia content in traditional, medical, Internet, electronic
commerce, and media-rich applications. Oracle Multimedia does not control media
capture or output devices; this function is left to application software.

Oracle Multimedia provides these services and support:

• Image services for the storage, retrieval, metadata extraction, and processing of
two-dimensional, static, bit-mapped images. Images are stored efficiently using
popular compression schemes in industry-standard image formats for desktop
publishing.

• Digital Imaging and Communications in Medicine (DICOM) support for the storage,
retrieval, metadata extraction, processing, writing, conformance validation, and
making anonymous of medical images and other DICOM content. Note: DICOM
support is deprecated in Oracle Database 12c Release 2 (12.2), and may be
desupported in a future release.

• Audio and video services for the storage, retrieval, and metadata extraction of
popular audio and video file formats.

This chapter includes these sections:

• Oracle Multimedia Architecture

• Object Relational Technology

• Oracle Multimedia Capabilities

• Audio Concepts

• ORDDoc or Heterogeneous Media Data Concepts

• Image Concepts

• Video Concepts

• Loading Multimedia Data

• Multimedia Storage and Querying

• Accessing Multimedia Data

1-1



See Also:

• Oracle Multimedia Reference for detailed information about Oracle
Multimedia APIs and their components

• Oracle Multimedia DICOM Developer's Guide for more information about
Oracle Multimedia DICOM support

1.1 Oracle Multimedia Architecture
Oracle Multimedia is a single, integrated feature that extends the database by storing,
managing, and retrieving image, audio, and video data.

The Oracle Multimedia architecture defines the framework through which media-rich
content is supported in the database, along with traditional data. This content can then
be securely shared across multiple applications written with popular languages and
tools, easily managed and administered by relational database management and
administration technologies, and offered on a scalable database that supports
thousands of users.

The following figure illustrates the Oracle Multimedia architecture from the database
perspective.

Figure 1-1    Oracle Multimedia Architecture

Oracle Database

Image
Processor

JVM

Table

Media
Parser

External
File

Storage

JDBC OCI

Video

X-Ray

ImageAudio

Using Oracle Multimedia, Oracle Database holds rich content in tables along with
traditional data. As illustrated, rich content includes audio, image, video, and DICOM
content, such as X-rays. Through a database-embedded JVM, a server-side media

Chapter 1
Oracle Multimedia Architecture

1-2



parser and an image processor are supported. The media parser supports format and
application metadata parsing, and can be extended to support additional formats. The
image processor provides image processing for operations such as producing
thumbnail-size images, converting image formats, and image watermarking.

Using Oracle Multimedia procedures or methods enables import and export operations
between the database and external file storage systems. The double-sided arrow
connecting Oracle Database with External File Storage shows this data movement.

Using Oracle Multimedia enables Oracle Database to store, manage, process, and
retrieve DICOM content in database tables. DICOM content includes single-frame and
multiframe images, waveforms, slices of 3-D volumes, video segments, and structured
reports.

See Also:

• Oracle Multimedia DICOM Developer's Guide for a view and description of
the complete architecture for Oracle Multimedia DICOM

1.2 Object Relational Technology
Oracle Database is an object relational database management system that provides
support for multimedia data stored in BLOBs and BFILEs as well as in Oracle
Multimedia object types.

In addition to its traditional role in the safe and efficient management of relational data,
Oracle Database provides support for the safe and efficient storage and management
of large objects (LOBs) using SecureFiles LOBs.

Oracle Multimedia provides four PL/SQL packages, which contain functions and
procedures for managing image, audio, and video data stored in binary large objects
(BLOBs) and external large objects (BFILEs) in Oracle Database:

• ORD_AUDIO for audio data

• ORD_DOC for heterogeneous data

• ORD_IMAGE for image data

• ORD_VIDEO for video data

In addition, Oracle Multimedia provides the ORD_DICOM PL/SQL package to support
DICOM content produced by medical devices.

Developers can use the PL/SQL packages to include common operations, such as
these, in their applications:

• Creating thumbnail images

• Cropping images

• Converting images into Web-friendly formats

• Extracting information from multimedia data, either as an XML string or as XML
and individual attributes

• Loading multimedia data from operating system files into Oracle Database

Chapter 1
Object Relational Technology

1-3



• Exporting multimedia data from Oracle Database into operating system files

Oracle Database also supports the definition of object types, including the data
associated with objects and the operations (methods) that can be performed on them.
Complex objects include: digitized audio, image, video, and Digital Imaging and
Communications in Medicine (DICOM) format medical images and other data.

Oracle Multimedia provides four object relational types, which store data source
information in an object relational type known as ORDSource:

• ORDAudio, for audio data characteristics

• ORDDoc, for heterogeneous data characteristics

• ORDImage, for image data characteristics

• ORDVideo, for video data characteristics

In addition, Oracle Multimedia provides the ORDDicom object relational type, for
characteristics of DICOM content produced by medical devices.

See Also:

• Oracle Database SecureFiles and Large Objects Developer's Guide for
detailed information about using BLOBs and BFILEs

• Oracle Multimedia Reference for reference information about the PL/SQL
packages and object types and methods for audio, heterogeneous, image,
and video media, and for more information about the ORDSource object
type and methods

• Oracle Multimedia DICOM Developer's Guide for reference and other
information about the ORD_DICOM PL/SQL package and the ORDDicom
object type and methods for DICOM format medical images and other
data

1.3 Oracle Multimedia Capabilities
The capabilities of Oracle Multimedia include the storage, retrieval, management, and
manipulation of multimedia data managed by Oracle Database.

Multimedia applications have common and unique requirements. Oracle Multimedia
supports common application requirements and can be extended to address
application-specific requirements. With Oracle Multimedia, multimedia data can be
managed as easily as standard attribute data.

Database applications written in Java, C++, or traditional third-generation languages
(3GLs) can interact with Oracle Multimedia through modern class library interfaces, or
PL/SQL and Oracle Call Interface (OCI).

Oracle Multimedia supports storage of the popular file formats, including desktop
publishing images, and streaming audio and video formats in databases. Oracle
Multimedia provides the means to add audio, image, and video, or other
heterogeneous media columns or objects to existing tables, and insert and retrieve
multimedia data. This support enables database designers to extend existing
databases with multimedia data, or to build new end-user multimedia database

Chapter 1
Oracle Multimedia Capabilities

1-4



applications. Oracle Multimedia developers can use the basic functions provided here
to build specialized multimedia applications.

Oracle Multimedia defines PL/SQL packages and object types, similar to Java or C++
classes, to describe and process multimedia data. The PL/SQL packages are named
ORD_AUDIO, ORD_DOC, ORD_IMAGE, and ORD_VIDEO. The object types are
called ORDAudio, ORDDoc, ORDImage, and ORDVideo. Users who wish to store
media data directly in BLOBs or BFILEs can use the Oracle Multimedia PL/SQL
packages. Users who prefer media data and attributes to be encapsulated in a single
object type can use the Oracle Multimedia object types.

The Oracle Multimedia PL/SQL packages contain functions and procedures for
managing media data, including image, audio, and video data. The PL/SQL packages
operate on media data stored in BLOBs and BFILEs. BLOBs store media data in the
database under transaction control. Under transaction control, BFILEs store a pointer
to the media data stored in an external file that is not under transaction control. The
PL/SQL packages include procedures to extract metadata from media data. Metadata
is information about the media data, such as object length, compression type, or
format. Procedures are also provided to perform operations on the media data, such
as getProperties( ) and scale( ).

An instance of the Oracle Multimedia object types consists of attributes, including 
metadata and the media data, and methods. Media data is the actual audio, image, or
video, or other heterogeneous media data. Metadata is information about the data,
such as object length, compression type, or format. Methods are procedures that can
be performed on objects, such as getContent( ) and setProperties( ).

The Oracle Multimedia object types have a common media data storage model. The
media data component of these objects can be stored in the database, in a BLOB
under transaction control. The media data can also be stored outside the database,
without transaction control. In this case, a pointer is stored in the database under
transaction control, and the media data is stored in:

• File-based large object (BFILE)

• An HTTP server-based URL

• A user-defined source on a specialized media data server, or other server

Media data stored outside the database can provide a convenient mechanism for
managing large, existing or new, media repositories that reside as flat files on erasable
or read-only media. This data can be imported into BLOBs at any time for transaction
control.

When using Oracle Multimedia object types, media metadata is stored in the database
under transaction control. Whether media data is stored within or outside the
database, Oracle Multimedia manages metadata for all the media object types and
might automatically extract it for audio, image, and video. When storing media data in
BLOBs or BFILEs and using the Oracle Multimedia PL/SQL packages, it is up to the
application to decide how to manage metadata.

Media metadata includes these attributes:

• Storage information about audio, image, and video, or other heterogeneous media
data, including the source type, location, and source name, and whether the data
is stored locally (in the database) or externally

• Update time stamp information for audio, image, and video, or other
heterogeneous media data

Chapter 1
Oracle Multimedia Capabilities

1-5



• Audio and video data description

• Audio, image, and video, or other heterogeneous media data format

• MIME type of the audio, image, and video, or other heterogeneous media data

• Audio characteristics: encoding type, number of channels, sampling rate, sample
size, compression type, and play time (duration)

• Image characteristics: height and width, image content length, image content
format, and image compression format

• Video characteristics: frame width and height, frame resolution, frame rate, play
time (duration), number of frames, compression type, number of colors, and bit
rate

• Extracted metadata in XML, such as the director or producer of a movie

In addition to metadata extraction procedures and object methods, a set of image
manipulation procedures and object methods is provided. For images, this includes
format conversion, page selection, quantize operations, compression, scaling,
cropping, copying, flipping, mirroring, rotating, sharpening, adjusting the gamma
(brightness), adding watermarks to images, removing metadata from images, and
embedding metadata into images.

Oracle Multimedia is a building block for various multimedia applications, rather than
an end-user application. It consists of PL/SQL package procedures, and object types
and their respective methods, for managing and processing multimedia data. Some
example applications for Oracle Multimedia are:

• Repositories for digital check images

• Electronic health records, including DICOM medical images

• Call centers (for example, 911 and product call centers)

• Physical asset inventories

• Distance learning and online learning

• Real estate marketing

• Stock photography archives (for example, digital art galleries and professional
photographers)

• Document imaging archives

• Financial news service customer information

• Web publishing

• Audio and video Web stores

Related Topics:

• Loading Multimedia Data
Multimedia data can be managed best by Oracle Database. Load your multimedia
data into the database to take advantage of its reliability, scalability, availability,
and data management capabilities.

Chapter 1
Oracle Multimedia Capabilities

1-6



See Also:

Oracle Multimedia Reference for more information about image processing
operations

1.3.1 Oracle Multimedia Support for CDBs
Oracle Database 12c Release 1 (12.1) introduced multitenant container databases
(CDBs).

A CDB is a single, physical database that can contain zero, one, or many customer-
created pluggable databases (PDBs). A PDB is a portable collection of schemas,
schema objects, and nonschema objects that appears to an Oracle Net client as a
non-CDB. A non-CDB is a traditional Oracle database that cannot contain PDBs.
Oracle Multimedia is supported in both CDB and non-CDB architectures.

See Also:

• Oracle Database Concepts for information about the multitenant
architecture

• Oracle Database Administrator's Guide for information about managing
CDBs and PDBs

1.3.2 Data Guard Rolling Upgrade Support for Oracle Multimedia
During a rolling upgrade, you can run different releases of an Oracle database on the
primary and logical standby databases while you upgrade them, one at a time,
incurring minimal downtime on the primary database.

In addition to supporting media data stored in BLOBs and BFILEs, logical standby
databases support these Oracle Multimedia data types during database rolling
upgrades using Data Guard SQL Apply:

• ORDImage

• ORDSource

• ORDDicom

• ORDDataSource

Chapter 1
Oracle Multimedia Capabilities

1-7



See Also:

• Oracle Multimedia DICOM Developer's Guide for information about how
this feature impacts the DICOM data model

• Oracle Database Upgrade Guide for information about database rolling
upgrades

• Oracle Data Guard Concepts and Administration for information about
these and other Oracle Data Guard features

1.4 Audio Concepts
This section contains information about digitized audio concepts, and information
about using the ORD_AUDIO PL/SQL package and the ORDAudio object type to build
audio applications.

Topics include:

• Digitized Audio

• Audio Components

1.4.1 Digitized Audio
Using the ORD_AUDIO PL/SQL package or the ORDAudio object type, audio data
can be stored, retrieved, and managed in a database.

Audio may be produced by an audio recorder, an audio source such as a microphone,
digitized audio, other specialized audio recording devices, or even by program
algorithms. Audio recording devices take an analog or continuous signal, such as the
sound picked up by a microphone or sound recorded on magnetic media, and convert
it into digital values with specific audio characteristics such as format, encoding type,
number of channels, sampling rate, sample size, compression type, and audio
duration.

1.4.2 Audio Components
Digitized audio consists of the audio data (digitized bits) and attributes that describe
and characterize the audio data.

Audio applications sometimes associate application-specific information, such as the
description of the audio clip, date recorded, author or artist, and so on, with audio data
by storing descriptive text in an attribute or column in the database table.

The audio data can have different formats, encoding types, compression types,
numbers of channels, sampling rates, sample sizes, and playing times (duration)
depending upon how the audio data was digitally recorded. Oracle Multimedia can
store and retrieve audio data of any supported data format. Oracle Multimedia can
automatically extract metadata from audio data of a variety of popular audio formats.
Oracle Multimedia can also extract application attributes in XML form.

The size of digitized audio (number of bytes) tends to be large compared to traditional
computer objects, such as numbers and text. Therefore, several encoding schemes

Chapter 1
Audio Concepts

1-8



are used that squeeze audio data into fewer bytes, thus putting a smaller load on
storage devices and networks.

See Also:

Oracle Multimedia Reference for a list of supported data formats from which
ORDAudio can extract and store attributes and other audio features

1.5 ORDDoc or Heterogeneous Media Data Concepts
This section contains information about heterogeneous media data concepts, and
information about using the ORD_DOC PL/SQL package and the ORDDoc object type
to build applications.

Topics include:

• Digitized Heterogeneous Media Data

• Heterogeneous Media Data Components

1.5.1 Digitized Heterogeneous Media Data
Oracle Multimedia integrates the storage, retrieval, and management of
heterogeneous media data in a database.

Using the ORD_DOC PL/SQL package or the ORDDoc object type, any
heterogeneous media data including audio, image, and video, can be stored in a
database column. Instead of having separate columns for audio, image, text, and
video objects, you can use one column of type BLOB, BFILE, or ORDDoc to represent
all types of multimedia.

1.5.2 Heterogeneous Media Data Components
Heterogeneous media data components consist of the data (digitized bits) and
attributes that describe and characterize the heterogeneous media data.

Heterogeneous media data can have different formats, depending upon the application
generating the media data. Oracle Multimedia can store and retrieve media data of
any supported data format. The BLOB, BFILE, and ORDDoc types can be used in
applications that require you to store different types of heterogeneous media data
(such as audio, image, video, and any other type of media data) in the same column
so you can build a common metadata index on all the different types of media data.
Using this index, you can search across all the different types of heterogeneous media
data. You cannot use this same search technique if the different types of
heterogeneous media data are stored in different types of objects, in different columns
of relational tables.

ORDDoc can automatically extract metadata from data of a variety of popular audio,
image, and video data formats. ORDDoc can also extract application attributes and
store them in the comments attribute of the object in XML form. ORDDoc is extensible
and can be made to recognize and support other heterogeneous media data formats.

Chapter 1
ORDDoc or Heterogeneous Media Data Concepts

1-9



See Also:

• Oracle Multimedia Reference for a list of supported audio data formats
from which ORDDoc can extract and store attributes

• Oracle Multimedia Reference for a list of supported image data formats
from which ORDDoc can extract and store attributes

• Oracle Multimedia Reference for a list of supported video data formats
from which ORDDoc can extract and store attributes

1.6 Image Concepts
This section contains information about digitized image concepts, and information
about using the ORD_IMAGE PL/SQL package and the ORDImage object type to
build image applications.

Topics include:

• Digitized Images

• Image Components

• Metadata in Images

• Medical Imaging (Deprecated)

• Metadata Extraction

• Image Processing

1.6.1 Digitized Images
Using the ORD_IMAGE PL/SQL package or the ORDImage object type, digitized
images can be stored, retrieved, and managed in a database.

Oracle Multimedia supports two-dimensional, static, digitized raster images stored as
binary representations of real-world objects or scenes. Images may be produced by a
document or photograph scanner, a video source such as a digital camera or VCR
connected to a video digitizer or frame grabber, other specialized image capture
devices, or even by program algorithms. Capture devices take an analog or
continuous signal such as the light that falls onto the film in a camera, and convert it
into digital values on a two-dimensional grid of data points known as pixels. Devices
involved in the capture and display of images are under application control.

1.6.2 Image Components
Digitized images consist of the image data (digitized bits) and attributes that describe
and characterize the image data.

Image applications sometimes associate application-specific information, such as the
name of the person pictured in a photograph, description of the image, date
photographed, photographer, and so on, with image data by storing this descriptive
text in an attribute or column in the database table.

Chapter 1
Image Concepts

1-10



The image data (pixels) can have varying depths (bits per pixel) depending on how the
image was captured, and can be organized in various ways. The organization of the
image data is known as the data format. ORDImage can store and retrieve image data
of any data format. ORDImage can process and automatically extract properties of
images of a variety of popular data formats. In addition, certain foreign images
(formats not natively supported by ORDImage) have limited support for image
processing.

The storage space required for digitized images can be large compared to traditional
attribute data such as numbers and text. Many compression schemes are available to
squeeze an image into fewer bytes, thus reducing storage device and network load. 
Lossless compression schemes squeeze an image so that when it is decompressed,
the resulting image is bit-for-bit identical with the original. Lossy compression schemes
do not result in an identical image when decompressed, but rather, one in which the
changes may be imperceptible to the human eye. As compared with lossless
compression schemes, lossy compression schemes generally provide higher
compression.

The image interchange format describes a well-defined organization and use of image
attributes, data, and often compression schemes, enabling different applications to
create, exchange, and use images. Interchange formats are often stored as disk files.
They can also be exchanged in a sequential fashion over a network and be referred to
as protocols. There are many application subdomains within the digitized imaging
world and many applications that create or use digitized images within these.
ORDImage supports storage and retrieval of all image data formats, and processing
and attribute extraction of many image data formats.

See Also:

Oracle Multimedia Reference for a list of supported data formats from which
Oracle Multimedia can process, extract, and store attributes and other image
features

1.6.3 Metadata in Images
Oracle Database provides an image metadata feature in Oracle Multimedia. Metadata
can be stored in a database, indexed, searched, and made available to applications
using the standard mechanisms of Oracle Database.

The image metadata feature adds the ability to read (or extract) and write (or embed)
application metadata in images. In addition, this feature adopts a standard way to
represent metadata when it is separate from an image file.

Related Topics:

• Working with Metadata in Oracle Multimedia Images
Image files can contain information about the content of the images, the image
pixel data, and image metadata.

1.6.4 Medical Imaging (Deprecated)
Oracle Database includes medical imaging format and protocol support in Oracle
Multimedia DICOM.

Chapter 1
Image Concepts

1-11



Medical imaging format and protocol support comprises these Oracle Multimedia
DICOM features:

• Storage and retrieval of medical imaging data in the database to synchronize the
DICOM data with the associated business data

• Full PL/SQL and object interfaces to Oracle Multimedia DICOM services

• Extraction of DICOM metadata according to user-specifiable XML documents

• Querying using associated relational data and extracted metadata

• Image processing, such as thumbnail generation

• Creation of new DICOM objects

• Conformance validation based on a set of user-specified conformance rules

• Making DICOM objects anonymous based on user-defined rules that specify the
set of attributes to be made anonymous and how to make those attributes
anonymous

• The ability to update run-time behaviors, such as the version of the DICOM
standard supported, without installing a new release of Oracle Database

• A DICOM database network component for the DICOM protocol adapter

See Also:

Oracle Multimedia DICOM Developer's Guide for more information about
Oracle Multimedia DICOM

1.6.5 Metadata Extraction
Oracle Multimedia provides the ability to extract format metadata from media sources.

Once metadata has been extracted and stored, you can index the metadata to allow
media queries based on metadata.

See Also:

The setProperties( ) method in Oracle Multimedia Reference for more
information about metadata extraction

1.6.6 Image Processing
Oracle Multimedia supports several types of image processing.

Oracle Multimedia image processing support includes format transcoding, cutting,
scaling, generating thumbnail images, and applying watermarks. In addition, when the
destination image file format is RAW Pixel (RPIX) or Microsoft Windows Bitmap
(BMPF), Oracle Multimedia supports several operators for changing the format
characteristics.

Chapter 1
Image Concepts

1-12



See Also:

Oracle Multimedia Reference for more information about image processing

1.7 Video Concepts
This section contains information about digitized video concepts, and information
about using the ORD_VIDEO PL/SQL package and the ORDVideo object type to build
video applications.

Topics include:

• Digitized Video

• Video Components

1.7.1 Digitized Video
Using the ORD_VIDEO PL/SQL package or the ORDVideo object type, video data can
be stored, retrieved, and managed in a database.

Video may be produced by a video recorder, a video camera, digitized animation
video, other specialized video recording devices, or even by program algorithms.
Some video recording devices take an analog or continuous signal, such as the video
picked up by a video camera or video recorded on magnetic media, and convert it into
digital values with specific video characteristics such as format, encoding type, frame
rate, frame size (width and height), frame resolution, video length, compression type,
number of colors, and bit rate.

1.7.2 Video Components
Digitized video consists of the video data (digitized bits) and the attributes that
describe and characterize the video data.

Video applications sometimes associate application-specific information, such as the
description of the video training tape, date recorded, instructor's name, producer's
name, and so on, within the video data.

The video data can have different formats, compression types, frame rates, frame
sizes, frame resolutions, playing times, compression types, number of colors, and bit
rates depending upon how the video data was digitally recorded. Oracle Multimedia
can:

• Automatically extract metadata from video data of a variety of popular video
formats

• Extract application attributes and store them in the comments attribute of the
object in XML form

• Be made to recognize and support additional video formats (because it is
extensible)

The size of digitized video (number of bytes) tends to be large compared to traditional
computer objects, such as numbers and text. Therefore, several encoding schemes

Chapter 1
Video Concepts

1-13



are used that squeeze video data into fewer bytes, thus putting a smaller load on
storage devices and networks.

See Also:

Oracle Multimedia Reference for a list of supported data formats from which
Oracle Multimedia can extract and store attributes and other video features

1.8 Loading Multimedia Data
Multimedia data can be managed best by Oracle Database. Load your multimedia
data into the database to take advantage of its reliability, scalability, availability, and
data management capabilities.

To bulk load multimedia data into the database, you can use:

• SQL*Loader

SQL*Loader is an Oracle utility that lets you load data, and in this case,
multimedia data (LOB data), from external multimedia files into a table of a
database containing BLOB or Oracle Multimedia object type columns.

• PL/SQL

A procedural extension to SQL, PL/SQL is an advanced fourth-generation
programming language (4GL) of Oracle. You can write PL/SQL procedures to load
multimedia data from BLOB, file system, and URL media data sources into BLOB
or Oracle Multimedia object type columns.

An advantage of using SQL*Loader is that it is easy to create and test the control file
that controls your data loading operation.

An advantage of using PL/SQL scripts to load your data is that you can call
procedures or methods as you load data to generate thumbnail images, or extract
properties.

See Also:

• Oracle Database Utilities for more information about SQL*Loader

• Oracle Database PL/SQL Language Reference for more information about
PL/SQL procedures

1.9 Multimedia Storage and Querying
Media data can be stored directly in BLOBs or BFILEs, or in Oracle Multimedia object
types.

The features of Oracle Multimedia are available to media stored in BLOBs and BFILEs
using the Oracle Multimedia PL/SQL API. This PL/SQL API lets developers do the
following with media data stored in BLOBs and BFILEs: move data between the local
file system and the database; parse and extract the properties of the media data; and

Chapter 1
Loading Multimedia Data

1-14



store these properties in an XMLType or an XML formatted CLOB, and optionally, in
individual relational columns. Developers are not required to make changes to their
existing application schema or to instantiate Oracle Multimedia object types to take
advantage of the PL/SQL API. The Oracle Multimedia PL/SQL API can also be used to
perform image processing operations such as cut, scale, compress, and convert
format.

The ORDAudio, ORDDoc, ORDImage, and ORDVideo object types all contain an
attribute of type ORDSource and methods for multimedia data source manipulation.

Note:

Do not call ORDSource methods directly. Instead, invoke the wrapper method
of the media object corresponding to the ORDSource method. This information
is presented for users who want to write their own user-defined sources.

The following subsections briefly describe storage and querying:

• Storing Multimedia Data

• Querying Multimedia Data

See Also:

Oracle Multimedia Reference for reference information about the Oracle
Multimedia PL/SQL API and the Oracle Multimedia object types and methods
for audio, heterogeneous, image, and video media, and for more information
about the ORDSource object type and methods

1.9.1 Storing Multimedia Data
Oracle Multimedia can store multimedia data as an internal source within the
database, under transactional control as a BLOB. It can also externally reference
digitized multimedia data stored as an external source in an operating system-specific
file in a local file system, as a URL on an HTTP server, or as a user-defined source on
other servers, such as media servers. Although these external storage mechanisms
are particularly convenient for integrating existing sets of multimedia data with a
database, the multimedia data is not under transactional control if it is not stored in the
database.

BLOBs are stored in the database tablespaces in a way that optimizes space and
provides efficient access. Large BLOBs cannot be stored inline (BLOBs under 4
kilobytes can be stored inline) with other row data. Depending on the size of the
BLOB, a locator is stored in the row and the actual BLOB (up to 8 terabytes to 128
terabytes, depending on the block size) is stored in other tablespaces. The locator can
be considered a pointer to the actual location of the BLOB value. When you select a
BLOB, you are selecting the locator instead of the value, although this is done
transparently. An advantage of this design is that multiple BLOB locators can exist in a
single row. For example, you might want to store a short video clip of a training tape,
an audio recording containing a brief description of its contents, a syllabus of the

Chapter 1
Multimedia Storage and Querying

1-15



course, a picture of the instructor, and a set of maps and directions to each training
center all in the same row.

Because BFILEs are not under the transactional control of the database, users could
change the external source without updating the database, thus causing an
inconsistency with the BFILE locator.

Oracle Multimedia ORDAudio, ORDDoc, ORDImage, and ORDVideo object types
provide wrapper methods over BLOBs and BFILEs to perform these source related
functions:

• Set the source of the data as local or external

• Modify the time an object was last updated

• Set information about the external source type, location, and name of the data

• Transfer data into or out of the database

• Obtain information about the local data content such as its length, location, or its
handle to the BLOB, put the content into a temporary BLOB, or delete it

• Access source data by opening it, reading it, writing to it, trimming it, and closing it

See Also:

• Oracle Database SecureFiles and Large Objects Developer's Guide for
more information about BLOBs and BFILEs

• Oracle Call Interface Programmer's Guide for more information about
BLOB and BFILE operations

1.9.2 Querying Multimedia Data
Once stored within a database, multimedia data can be queried and retrieved by using
the various alphanumeric columns or object attributes of the table to find a row that
contains the desired data. For example, you can select a video clip from the Training
table where the course name is 'Oracle Database Concepts'.

Multimedia data can be queried by extracted metadata and by other relational table
columns.

1.10 Accessing Multimedia Data
Applications access and manipulate multimedia data using SQL, PL/SQL, OCI, or
Java.

SQL, PL/SQL, and OCI applications can manipulate and modify multimedia data by
accessing the PL/SQL packages ORD_AUDIO, ORD_DOC, ORD_IMAGE, and
ORD_VIDEO, or through the object relational types ORDAudio, ORDDoc, ORDImage,
and ORDVideo

Java applications on any tier (client, application server, or database) can access,
manipulate, and modify audio, image, and video data, or heterogeneous media data
stored in a database by using anonymous PL/SQL code blocks that access the Oracle
Multimedia PL/SQL packages or object relational types.

Chapter 1
Accessing Multimedia Data

1-16



2
Oracle Multimedia Application
Development

Oracle Multimedia enables you to develop either traditional client/server or two-tier
applications, or multitier applications. Either method can then deploy Web applications
to run on an application server tier, be tightly integrated with Oracle Database, and
enable users to access the application from their desktop through a Web browser.

You can create production quality Oracle Multimedia applications for use in a
production environment where users can interact with the application through either
the standalone client interface or a Web browser. For Web applications, which are
based on standards such as TCP/IP, HTTP, HTML, XML, and XHTML, this capability
is facilitated by rapid developments in the underlying technology. As key software
components become more tightly integrated, developers' tasks to design, create, and
manage Web applications become faster, easier, and simpler to implement.

Several tools and languages can be used for application development with multimedia
data. This chapter describes them in these sections:

• Developing Multimedia Applications Using SQL Developer

• Developing Multimedia Applications Using Application Express

• Developing Multimedia Applications Using Java and JDBC

• Developing Multimedia Applications Using PL/SQL

• Developing PL/SQL Web Applications

See Also:

• Oracle Multimedia PL/SQL Photo Album Sample Application for a
description of the Oracle Multimedia Photo Album sample Web
application, which uses PL/SQL scripts to demonstrate how to develop
Web applications to upload and retrieve media data stored in a database

• Oracle Multimedia Code Wizard Sample Application for the PL/SQL
Gateway for a description of the Oracle Multimedia Code Wizard
application, which lets you create PL/SQL stored procedures for the
PL/SQL Gateway for uploading and retrieving media data stored in a
database using Oracle Multimedia object types

2-1



2.1 Developing Multimedia Applications Using SQL
Developer

Oracle SQL Developer is a tool that allows standalone graphical browsing and
development of database schema objects.

Oracle SQL Developer supports the BLOB and BFILE data types. Developers who
store their multimedia data in BLOBs and BFILEs can use Oracle SQL Developer for
their multimedia applications.

See Also:

Oracle SQL Developer User's Guide for more information about using SQL
Developer with BLOBs and BFILEs and with multimedia data

2.2 Developing Multimedia Applications Using Application
Express

Oracle Application Express is a rapid development tool for Web applications on Oracle
Database.

Built-in features such as user interface themes, navigational controls, form handlers,
and flexible reports, enable users of Oracle Application Express to accelerate the
application development process.

Oracle Application Express provides support for BLOB and BFILE data types.
Developers who store their multimedia data in BLOBs or BFILEs can use Oracle
Application Express for rapid application development.

See Also:

Oracle Application Express App Builder User’s Guide for information about
building multimedia applications with Oracle Application Express

2.3 Developing Multimedia Applications Using Java and
JDBC

Using the Java database connectivity (JDBC) interface, Oracle Multimedia enables
users to embed anonymous PL/SQL code blocks to quickly develop Java applications
for use on any tier (client, application server, or database) to manipulate and modify
audio, image, and video data, or heterogeneous media data stored in a database.

The following subsections describe how to use Java and JDBC to develop multimedia
applications:

Chapter 2
Developing Multimedia Applications Using SQL Developer

2-2



• Setting Up Your Environment for Java

• Media Upload in Java

• Retrieval of Image Properties in Java

• Thumbnail Image Creation in Java

• Handling Oracle Multimedia Exceptions in Java

The examples in this section assume a table, with these two columns: a numeric
identifier (id), and a binary large object (BLOB) to hold the image itself (image_blob).

create table image_blob_table ( id number primary key, image_blob BLOB)
lob(image_blob) store as securefile;

See Also:

• Oracle Database JDBC Developer's Guide for more information about
using JDBC

• Oracle Multimedia Reference for more information about the Oracle
Multimedia PL/SQL packages and object interfaces

• Oracle Multimedia DICOM Developer's Guide for more information about
Oracle Multimedia DICOM features and enhancements

2.3.1 Setting Up Your Environment for Java
This topic describes how to set up your environment to use Oracle Multimedia with
Java.

Before you can begin using Oracle Multimedia with Java, you must set up your
environment to compile and run Java programs.

Follow these steps:

1. Specify the environment variable CLASSPATH, and ensure that this variable
includes the appropriate Oracle Java archive (JAR) files for the Oracle Multimedia
features and any other features that you intend to use.

For each Oracle JAR file, the following table lists the name of the file and its
contents, the Oracle Multimedia and other features that require it, and details
about the JDK version, the platform, and the path name under the <ORACLE_HOME>
directory where you can obtain it.

Table 2-1    Java Archive Files for Oracle Multimedia

Oracle JAR File and Contents Required By JDK Version, Platform, and Location

Name: ordim.jar

Description:

Oracle Multimedia Java proxy
classes

Deprecated

Multimedia Java proxy
classes

BLOB and BFILE streaming

JDK 8 or later, on Linux and UNIX:

<ORACLE_HOME>/ord/jlib/ordim.jar

JDK 8 or later, on Windows:

<ORACLE_HOME>\ord\jlib\ordim.jar

Chapter 2
Developing Multimedia Applications Using Java and JDBC

2-3



Table 2-1    (Cont.) Java Archive Files for Oracle Multimedia

Oracle JAR File and Contents Required By JDK Version, Platform, and Location

Name: ojdbc8.jar

Description:

Oracle JDBC library

All Oracle Multimedia
features

JDK 8 or later, on Linux and UNIX:

<ORACLE_HOME>/jdbc/lib/ojdbc8.jar

JDK 8 or later, on Windows:

<ORACLE_HOME>\jdbc\lib\ojdbc8.jar

Name: xdb.jar

Description:

Oracle XDB Java classes library

DICOM feature

Oracle Multimedia metadata
extraction

JDK 8 or later, on Linux and UNIX:

<ORACLE_HOME>/rdbms/jlib/xdb.jar

JDK 8 or later, on Windows:

<ORACLE_HOME>\rdbms\jlib\xdb.jar

Name: xmlparserv2.jar

Description:

Oracle XML Parser library

DICOM feature

Oracle Multimedia metadata
extraction

Mid-Tier Java API feature

JDK 8 or later, on Linux and UNIX:

<ORACLE_HOME>/lib/xmlparserv2.jar

JDK 8 or later, on Windows:

<ORACLE_HOME>\lib\xmlparserv2.jar

Name: orddcmmt.jar

Description:

Oracle Multimedia Mid-Tier Java
classes

Deprecated

Mid-Tier Java API feature JDK 8 or later, on Linux and UNIX:

<ORACLE_HOME>/ord/jlib/orddcmmt.jar

JDK 8 or later, on Windows:

<ORACLE_HOME>\ord\jlib\orddcmmt.jar

Name: ordimdcm.jar

Description:

Oracle Multimedia DICOM Java
library

Deprecated

Mid-Tier Java API feature JDK 8 or later, on Linux and UNIX:

<ORACLE_HOME>/ord/jlib/ordimdcm.jar

JDK 8 or later, on Windows:

<ORACLE_HOME>\ord\jlib\ordimdcm.jar

Name: orddicom.jar

Description:

Oracle Multimedia DICOM Java
proxy classes

Deprecated

DICOM Java proxy classes JDK 8 or later, on Linux and UNIX:

<ORACLE_HOME>/ord/jlib/orddicom.jar

JDK 8 or later, on Windows:

<ORACLE_HOME>\ord\jlib\orddicom.jar

Name: ordhttp.jar

Description:

Oracle Multimedia Servlets and JSP
Java HTTP classes

Deprecated

Java servlets and JavaServer
Pages (JSP) applications

JDK 8 or later, on Linux and UNIX:

<ORACLE_HOME>/ord/jlib/ordhttp.jar

JDK 8 or later, on Windows:

<ORACLE_HOME>\ord\jlib\ordhttp.jar

Name: orai18n.jar

Description:

NLS Character Set Conversion
library

(Optional)

NLS character set conversion JDK 8 or later, on Linux and UNIX:

<ORACLE_HOME>/jlib/orai18n.jar

JDK 8 or later, on Windows:

<ORACLE_HOME>\jlib\orai18n.jar

If NLS character set conversion is required between the client application and the
database, you must include the orai18n.jar file in the CLASSPATH variable. If
NLS character set conversion is required, but the appropriate library is not
specified, character-based metadata may be returned as hexadecimal-encoded
strings.

Chapter 2
Developing Multimedia Applications Using Java and JDBC

2-4



See Also:

Oracle Database JDBC Developer’s Guide for more information about NLS
character set conversion

Note:

If you are using the JDBC OCI driver, specify the location of the JDBC OCI
shared library in one of these variables:

• LD_LIBRARY_PATH (for Linux or UNIX)

• PATH (for Windows)

Depending on your platform, the JDBC OCI shared library can be found at one
of these locations under the <ORACLE_HOME> directory:

<ORACLE_HOME>/lib (for libocijdbc12.so on Linux and UNIX)
<ORACLE_HOME>\bin (for ocijdbc12.dll on Windows)

Because this library path is shared, it may have been specified previously to
enable the use of other client applications, such as SQL*Plus.

2. Add one or more of the following import statements to the Java program:

Along with the standard JDBC classes included in the java.sql package, you must
also import the Oracle JDBC extension class oracle.jdbc.OracleResultSet, as
follows:

import oracle.jdbc.OracleResultSet;

If you are using the deprecated Oracle Multimedia Java proxy classes, you might
also have to add one or more of the following import statements, depending on the
type of media to be handled:

import oracle.ord.im.OrdAudio;
import oracle.ord.im.OrdDoc;
import oracle.ord.im.OrdImage;
import oracle.ord.im.OrdVideo;

2.3.2 Media Upload in Java
This topic uses an example to show how to upload multimedia data in Java.

The following example shows how to import multimedia data from the file system into
the database in a Java application.

public void writeImageToDatabase(int id, String fileName )
            throws SQLException, IOException
                      {
       //Define the PL/SQL block to insert the new row.

       final String INSERT_BLOB = "DECLARE "
                    + "    src_id        NUMBER; "
                    + "BEGIN "
                    + "    src_id := ?;"

Chapter 2
Developing Multimedia Applications Using Java and JDBC

2-5



                    + "    DELETE FROM image_blob_table WHERE id=src_id; "
                    + "    INSERT INTO image_blob_table t (id, image_blob) "
                    + "           VALUES(src_id, empty_blob()) "
                    + "           RETURNING t.image_blob INTO ?; "
                    + "END;";
       try {

             //Create the statement object.
             final OracleCallableStatement pstmt =
                   (OracleCallableStatement)connection.prepareCall
                   (INSERT_BLOB);

             //Binding the variables to the statement.
             pstmt.setInt(1, id); //ID
             pstmt.registerOutParameter(2, OracleTypes.BLOB);
             pstmt.execute(); //Execute the PL/SQL statement.

             //Get the BLOB locator from the table.
             BLOB blob = pstmt.getBLOB(2);
             File binaryFile = new File(fileName);
             FileInputStream instream = new FileInputStream(binaryFile);

             //Retrieve the ideal buffer size to use in writing to the BLOB.
             int size = 1024*1024; // 1MB.
             byte[] buffer = new byte[size];
             int read = -1;
             long position =1;

             //Read the file to the byte array buffer, then write it to the BLOB.
             while ((read = instream.read(buffer)) != -1)

                {
                      blob.setBytes(position,buffer,0,read);
                      position+=read;
                }

                instream.close();
                connection.commit();

       } catch (FileNotFoundException e) {
               throw new FileNotFoundException("File " + fileName +" not Found.");
       } catch (IOException e) {
               throw new IOException("Error while reading " + fileName);

       }

           }

Call writeImageToDatabase( ) passing the row id and source file path:

//Write data from a local file into a BLOB in the database.
quickstart.writeImageToDatabase(1, "flowers.jpg");

Chapter 2
Developing Multimedia Applications Using Java and JDBC

2-6



Note:

If the autoCommit flag on the connection is set to true, or is not set (the default
is true), the following error is returned when you attempt to select a row with a
BLOB column for update:

java.sql.SQLException: ORA-22990: LOB locators cannot span transactions

You can set the autocommit flag to false as follows:

conn.setautoCommit(false);

2.3.3 Retrieval of Image Properties in Java
This topic uses an example to show how to retrieve the properties of image data in
Java.

After the image data is imported from the file system into the table image_blob_table,
the database does not know what the binary bytes in the BLOB column image_blob
represent. The following example shows how to use the
ORDSYS.ORD_IMAGE.getProperties( ) procedure of the Oracle Multimedia PL/SQL
package to extract the image properties into the Java application.

public HashMap <String, Object> getProperties_example_j(int id )
       throws SQLException
  {
//Define the PL/SQL block to extract the properties.
final String getPropertiesStmt = "DECLARE "
         + "    src                         BLOB; "
         + "    img_mimeType                VARCHAR2(32); "
         + "    img_width                   INTEGER; "
         + "    img_height                  INTEGER; "
         + "    img_contentLength           INTEGER; "
         + "    img_fileFormat             VARCHAR2(32); "
         + "    img_contentFormat           VARCHAR2(32); "
         + "    img_compressionFormat      VARCHAR2(32); "
         + "BEGIN "
         + "    SELECT image_blob INTO src FROM image_blob_table"
         + "           WHERE id=?; "
         + "    ORDSYS.ORD_IMAGE.getProperties(src, "
         + "                  img_mimeType, "
         + "                  img_width, "
         + "                  img_height, "
         + "                  img_fileFormat, "
         + "                  img_compressionFormat, "
         + "                  img_contentFormat, "
         + "                  img_contentLength); "
         + "    ? := img_mimeType; "
         + "    ? := img_width; "
         + "    ? := img_height; "
         + "    ? := img_contentLength; "
         + "    ? := img_fileFormat; "
         + "    ? := img_contentFormat;"
         + "    ? := img_compressionFormat; "
         + "END;";

//Create the statement object.

Chapter 2
Developing Multimedia Applications Using Java and JDBC

2-7



final OracleCallableStatement pstmt =
     (OracleCallableStatement)connection.prepareCall(getPropertiesStmt);

//Binding the variables to the statement.
pstmt.setInt(1, id);
pstmt.registerOutParameter(2, OracleTypes.VARCHAR);
pstmt.registerOutParameter(3, OracleTypes.INTEGER);
pstmt.registerOutParameter(4, OracleTypes.INTEGER);
pstmt.registerOutParameter(5, OracleTypes.INTEGER);
pstmt.registerOutParameter(6, OracleTypes.VARCHAR);
pstmt.registerOutParameter(7, OracleTypes.VARCHAR);
pstmt.registerOutParameter(8, OracleTypes.VARCHAR);

//Execute the statement.
pstmt.execute();

//Create a HashMap object and populate it with the properties.
HashMap<String, Object> map = new HashMap<String, Object>();
map.put("mimeType", pstmt.getString(2));
map.put("width", pstmt.getInt(3) );
map.put("height", pstmt.getInt(4));
map.put("contentLength", pstmt.getInt(5));
map.put("fileFormat", pstmt.getString(6));
map.put("contentFormat", pstmt.getString(7));
map.put("compressionFormat", pstmt.getString(8));

return map;
   }

Call getProperties_example_j( ) passing the id, then iterate over the HashMap to print
the properties.

System.out.println("Original image properties");
       HashMap<String, Object> attributesMap= quickstart.getProperties_example_j(1);
       //Iterate over the HashMap.
       for (Map.Entry<String, Object> entry : attributesMap.entrySet()) {
              System.out.println(entry.getKey() + " = " + entry.getValue());
       }

Note:

If the image data that is in the image_blob column is not a supported format for
Oracle Multimedia (for example: PSD), the following error is returned.

     Exception in thread "main" java.sql.SQLException: ORA-29400: data 
cartridge error

2.3.4 Thumbnail Image Creation in Java
This topic uses an example to show how to generate a thumbnail image from an
existing image in Java.

The Oracle Multimedia ORD_IMAGE PL/SQL package includes several image
processing operations that you can invoke within the database. To generate a
thumbnail image from an existing image, you can use the

Chapter 2
Developing Multimedia Applications Using Java and JDBC

2-8



ORDSYS.ORD_IMAGE.thumbnail( ) procedure of the Oracle Multimedia PL/SQL
package.

The following example shows how to create a thumbnail image from a source BLOB.

 public void thumbnail_example_j(int src_id, int dst_id ) throws SQLException
 {
      //Define the PL/SQL block to create a thumbnail.
      final String createThumbnailStmt  = "DECLARE "
               + "    src_blob      BLOB;"
               + "    dst_blob      BLOB;"
               + "    src_id        NUMBER;"
               + "    dst_id        NUMBER;"
               + "BEGIN"
               + "    src_id := ?;"
               + "    dst_id := ?;"
               + "    DELETE FROM image_blob_table WHERE id = dst_id;"
               + "    INSERT INTO image_blob_table(id, image_blob) "
               + "           VALUES (dst_id, empty_blob()) "
               + "           RETURNING image_blob INTO dst_blob;"
               + "    SELECT image_blob INTO src_blob FROM image_blob_table"
               + "           WHERE id = src_id;"
               + "    ORDSYS.ORD_IMAGE.thumbnail(src_blob,dst_blob);"
               + "    UPDATE image_blob_table SET image_blob = dst_blob"
               + "           WHERE id = dst_id; "
               + "END;";

      final OracleCallableStatement pstmt =
           (OracleCallableStatement)connection.prepareCall(createThumbnailStmt);

      //Binding the variables to the statement.
      pstmt.setInt(1, src_id);
      pstmt.setInt(2, dst_id);
      //Execute the statement.
      pstmt.execute();
      connection.commit();
 }

Call thumbnail_example_j( ) passing the source and destination ids.

      //Create a thumbnail.
   quickstart.thumbnail_example_j(1,2);

2.3.5 Handling Oracle Multimedia Exceptions in Java
This topic demonstrates proper error handling practices using code examples. These
examples show how to handle some common Oracle Multimedia errors and other
types of errors in Java programs.

Possible errors that can occur during run time should always be handled in your
application. This practice enables the program to continue its operation even when it
encounters a run-time error. This practice also enables users to know what went
wrong during program operation. Proper error handling practices ensure that,
whenever possible, you are always able to recover from an error while running an
application. In addition, proper error handling provides you with the information you
need so you always know what went wrong.

When handling exceptions, Java uses the try/catch block. For example, in Java, the
exception can appear as follows:

Chapter 2
Developing Multimedia Applications Using Java and JDBC

2-9



try {
    //<some program logic>)
}
catch (exceptionName a) {
//Exception logic
}
finally {
//Execute logic if try block is executed even if an exception is caught
}

When you design, code, and debug your application, you are aware of the places in
your program where processing might stop due to a failure to anticipate an error.
Those are the places in your program where you must add exception handling blocks
to handle the potential errors.

The examples in this section describe exception handling using the try/catch block.

The following subsections provide additional details and examples of exception
handling in Java:

• Handling the Setting of Properties for Unknown Image Formats in Java

• Handling Image Processing for Unknown Image Formats in Java

See Also:

• Oracle Database Java Developer's Guide for more information about
handling Java exceptions

• Oracle Database JDBC Developer's Guide for more information about
handling Java exceptions using JDBC

2.3.5.1 Handling the Setting of Properties for Unknown Image Formats in Java
This topic shows how to handle exceptions when setting properties for unknown image
formats in Java.

The following try/catch block shows how to handle exceptions on the setProperties( )
method:

    try
    {
      img.setProperties();
      return true;
    }
    catch (SQLException e)
    {
      return false;
    }

If an exception is thrown, the setProperties( ) method returns false to indicate failure;
otherwise it returns true.

Chapter 2
Developing Multimedia Applications Using Java and JDBC

2-10



2.3.5.2 Handling Image Processing for Unknown Image Formats in Java
This topic shows how to handle exceptions when processing images with unknown
formats in Java.

If an application tries to process an image in cases when the image format is
unknown, then when the application calls the processCopy( ) method, the application
always fails. To work around this potential problem, the application uses the following
try/catch block to catch any SQL exceptions:

        try
        {
            image.processCopy( "maxScale=50,50", thumb );
        }
        catch ( SQLException e )
        {
            thumb.deleteContent();
            thumb.setContentLength( 0 );
        }

In this example, when the image format is unknown and a thumbnail image cannot be
created, the application catches the SQL exception and calls the deleteContent( )
method to delete the content of the thumbnail image, and then calls the
setContentLength( ) method to set its length to zero.

2.4 Developing Multimedia Applications Using PL/SQL
Using the PL/SQL application programming interface, Oracle Multimedia enables
users to develop PL/SQL applications to manipulate audio, image, and video data, or
heterogeneous media data stored in a database.

PL/SQL is a completely portable, high-performance transaction processing language
that combines the data manipulation power of SQL with the data processing power of
procedural languages.

This topic briefly describes how to manipulate Oracle Multimedia database objects
with the PL/SQL application programming interface (API). The following Oracle
Multimedia object types are available for storing media in the database:

• ORDAudio

• ORDDicom

• ORDDoc

• ORDImage

• ORDVideo

Although this topic primarily discusses the Oracle Multimedia object types, the PL/SQL
API can also be used to manipulate multimedia data stored directly in BLOBs or
BFILEs. The following Oracle Multimedia PL/SQL packages are available for
manipulating multimedia data in the database:

• ORD_AUDIO

• ORD_DICOM

• ORD_DOC

Chapter 2
Developing Multimedia Applications Using PL/SQL

2-11



• ORD_IMAGE

• ORD_VIDEO

The examples in this section use the Oracle Database Sample Schemas, which are
available on GitHub.

The following subsections describe how to develop multimedia applications using PL/
SQL:

• Setting Up Your Environment for PL/SQL

• Media Upload in PL/SQL

• Media Query in PL/SQL

• Media Download in PL/SQL

• Handling Oracle Multimedia Exceptions in PL/SQL

See Also:

Oracle Multimedia Reference for details about the Oracle Multimedia PL/SQL
packages and object types

2.4.1 Setting Up Your Environment for PL/SQL
This topic describes how to set up your environment to use Oracle Multimedia with PL/
SQL.

To access files with PL/SQL, you must create a directory object in the database that
points to a directory that is accessible by the database server. For example, the
following command creates the MEDIA_DIR directory in the sample schema:

CREATE DIRECTORY MEDIA_DIR AS
    'c:\oracle\product\10.2.0\db_1\demo\schema\product_media';

To retrieve media data from the database to a file, you must grant the write permission
on the specified directory to the appropriate user. For example:

GRANT WRITE ON DIRECTORY MEDIA_DIR TO SCOTT;

To upload media data from a file to the database, you must grant the read permission
on the specified directory to the appropriate user. For example:

GRANT READ ON DIRECTORY MEDIA_DIR TO SCOTT;

2.4.2 Media Upload in PL/SQL
This topic uses an example to show how to upload multimedia data in PL/SQL.

Media upload means importing media data from the file system into the database
tablespaces. The following series of steps is typical:

1. Insert a new row into the table, creating new objects by using the object
constructor or the init method of the Oracle Multimedia object type.

Chapter 2
Developing Multimedia Applications Using PL/SQL

2-12



2. Call the import method of the Oracle Multimedia object to bring the data from the
file system into the database.

3. Call the setProperties method of the Oracle Multimedia object to determine and
populate the attributes of the object.

4. Update the table so that the Oracle Multimedia object in the table contains the
attribute values extracted in the previous step.

The PL/SQL code that implements these steps for inserting a new row in the
PM.ONLINE_MEDIA table is shown in this example:

DECLARE
  img ORDImage;
  aud ORDAudio;
  vid ORDVideo;
  ctx RAW(64) := NULL;
BEGIN
  -- Insert a new row into the pm.online_media table.
  DELETE FROM pm.online_media WHERE product_id = 3003;
  INSERT INTO pm.online_media 
         (product_id, 
          product_photo, 
          product_audio,
          product_video)
  VALUES (3003, 
          ORDImage.init('FILE', 'MEDIA_DIR', 'laptop.jpg'),
          ORDAudio.init('FILE', 'MEDIA_DIR', 'laptop.mpa'),
          ORDVideo.init('FILE', 'MEDIA_DIR', 'laptop.rm'))
  RETURNING product_photo, product_audio, product_video
  INTO img, aud, vid;
  
  -- Bring the media into the database and populate the attributes.

    -- ORDImage.import also calls ORDImage.setProperties.
  img.import(ctx); 
  
  aud.import(ctx);
  aud.setProperties(ctx);
 
  vid.import(ctx);
  vid.setProperties(ctx);
    
  -- Update the table with the properties we have extracted.
  UPDATE pm.online_media
  SET    product_photo = img,
         product_audio = aud,
         product_video = vid
  WHERE  product_id = 3003;
  
  COMMIT;
END;
/

2.4.3 Media Query in PL/SQL
This topic uses examples to show how to query multimedia data in PL/SQL.

You can include media attributes (for example: height, width, and MIME type) in
standard SQL queries by using accessor methods (for example: getHeight, getWidth,
and getMimeType). Example 2-1, Example 2-2, and Example 2-3 show how to use

Chapter 2
Developing Multimedia Applications Using PL/SQL

2-13



these accessor methods to query one or more object attributes for image, audio, and
video objects, respectively.

Example 2-1    Image Query (Height, Width, and MimeType Attributes)

SELECT t.product_id                  id,
       t.product_photo.getHeight()   height,
       t.product_photo.getWidth()    width,
       t.product_photo.getMimeType() mimetype
  FROM pm.online_media t;

Example 2-2    Audio Query (MimeType Attribute)

SELECT t.product_id                  id,
       t.product_audio.getMimeType() mimetype
  FROM pm.online_media t;

Example 2-3    Video Query (MimeType Attribute)

SELECT t.product_id                  id,
       t.product_video.getMimeType() mimetype
  FROM pm.online_media t;

2.4.4 Media Download in PL/SQL
This topic uses an example to show how to download multimedia data in PL/SQL.

To download media from the database into a file on the file system, call the export
method of the Oracle Multimedia object. The following code example exports the
image in the row with product_id 3117 to a file named 3117.jpg in the directory
MEDIA_DIR. This code example highlights in bold the PL/SQL statements where this
export operation takes place.

DECLARE
  img ORDImage;
  ctx RAW(64) := NULL;
BEGIN
  SELECT  product_photo 
    INTO  img 
    FROM  pm.online_media
    WHERE product_id = 3117;
  img.export(ctx, 'FILE', 'MEDIA_DIR', '3117.jpg');
END;
/

2.4.5 Handling Oracle Multimedia Exceptions in PL/SQL
This topic demonstrates proper error handling practices using code examples. These
examples show how to handle some common Oracle Multimedia errors and other
types of errors in PL/SQL programs.

Possible errors that can occur during run time should always be handled in your
application. This practice enables the program to continue its operation even when it
encounters a run-time error. This practice also enables users to know what went
wrong during program operation. Proper error handling practices ensure that,
whenever possible, you are always able to recover from an error while running an
application. In addition, proper error handling provides you with the information you
need so you always know what went wrong.

Chapter 2
Developing Multimedia Applications Using PL/SQL

2-14



When handling exceptions, PL/SQL uses exception blocks. For example, in PL/SQL,
the exception can appear as follows:

BEGIN
<some program logic>
EXCEPTION
     WHEN OTHERS THEN
     <some exception logic>
END;

When you design, code, and debug your application, you are aware of the places in
your program where processing might stop due to a failure to anticipate an error.
Those are the places in your program where you must add exception handling blocks
to handle the potential errors.

These examples are extracted from the PL/SQL sample applications that are
described in Oracle Multimedia PL/SQL Photo Album Sample Application and Oracle
Multimedia Code Wizard Sample Application for the PL/SQL Gateway .

The following subsections provide additional details and examples of exception
handling in PL/SQL:

• Handling the Setting of Properties for Unknown Image Formats in PL/SQL

• Handling Image Processing for Unknown Image Formats in PL/SQL

See Also:

Oracle Database PL/SQL Language Reference for more information about
handling PL/SQL exceptions

2.4.5.1 Handling the Setting of Properties for Unknown Image Formats in
PL/SQL

This topic shows how to handle exceptions when setting properties for unknown image
formats in PL/SQL.

If your program tries to set the properties of an uploaded image (it reads the image
data to get the values of the object attributes so it can store them in the appropriate
attribute fields) and the image format is not recognized, then the setProperties( )
method fails. To catch this exception and work around this potential problem, the
application uses the following exception block:

BEGIN
   new_image.setProperties();
EXCEPTION
   WHEN OTHERS THEN
         new_image.contentLength := upload_size;
         new_image.mimeType := upload_mime_type;
END;

In this example, this exception handler sets the MIME type and length of the image
based on the values from the upload table described at the beginning of the
insert_new_photo procedure. The browser sets a MIME type header when the file is
uploaded. The application reads this header to set the ORDImage field.

Chapter 2
Developing Multimedia Applications Using PL/SQL

2-15



2.4.5.2 Handling Image Processing for Unknown Image Formats in PL/SQL
This topic shows how to handle exceptions when setting properties for unknown image
formats in PL/SQL.

If your program tries to process an image in cases when the image format is unknown,
the processCopy( ) method always fails. To work around this potential problem, the
application uses the following exception block:

BEGIN
   new_image.processCopy( 'maxScale=50,50', new_thumb);
EXCEPTION
   WHEN OTHERS THEN
      new_thumb.deleteContent();
      new_thumb.contentLength := 0;
END;

In this example from the Oracle Multimedia PL/SQL Web Toolkit Photo Album
application, when the image format is unknown and a thumbnail image cannot be
created, this exception handler deletes the content of the thumbnail image and sets its
length to zero.

2.5 Developing PL/SQL Web Applications
You can use the PL/SQL Gateway and PL/SQL Web Toolkit to develop Web
applications in PL/SQL.

Note:

The use of the PL/SQL Gateway and PL/SQL Web Toolkit is suitable for
applications that require tight control of the HTTP communication and HTML
generation. For other applications, consider using Oracle Application Express,
which provides more features and a convenient graphical interface to ease
application development.

Developing Web applications using PL/SQL consists of developing one or more
PL/SQL packages consisting of sets of stored procedures that interact with Web
browsers through HTTP. Stored procedures can be executed in several ways:

• From a hypertext link that calls a stored procedure when it is selected

• By clicking Submit on an HTML form to denote the completion of a task such as
filling out a form supplied on the HTML page

• By passing parameters to a stored procedure based on user choices from a list

Information in the stored procedure, such as tagged HTML text, is displayed in the
Web browser as a Web page. These dynamic Web pages are generated by the
database and are based on the database contents and the input parameters passed in
to the stored procedure. Using PL/SQL stored procedures is especially efficient and
powerful for generating dynamic Web page content.

Use Oracle Multimedia when media data such as images, audio, video, or
combinations of all three are to be uploaded into and retrieved from database tables,

Chapter 2
Developing PL/SQL Web Applications

2-16



using the functions and procedures in the Oracle Multimedia PL/SQL packages or the
Oracle Multimedia object types and their respective sets of methods.

Media upload procedures first perform a SQL INSERT operation to insert a row of data
in the media table, which also initializes instances of the respective multimedia
columns with an empty BLOB. Next, a SQL SELECT FOR UPDATE operation selects
the multimedia columns for update. Finally a SQL UPDATE operation updates the
multimedia columns. Oracle Multimedia procedures or methods are called to perform
these tasks:

• Initialize the multimedia columns with an empty BLOB.

• Set attributes to indicate media data is stored internally in a BLOB, when using
Oracle Multimedia object types.

• Get values of the multimedia attributes and store them.

• When exceptions occur, determine the length of the BLOB content and its MIME
type.

Media retrieval operations involve these tasks:

• Retrieving the multimedia data from the database

• Checking the cache validity of the multimedia data based on its updated time in
contrast to that of the HTTP header time

• Determining where the media data is located: in the database, in a BFILE, or at a
URL location; then, getting the media, and downloading it for display on an HTML
page

See Also:

• Oracle Application Express App Builder User’s Guide for information about
using Oracle Application Express

• Oracle Database Development Guide for more information about using
PL/SQL Gateway and PL/SQL Web Toolkit

Related Topics:

• Oracle Multimedia PL/SQL Photo Album Sample Application
The Oracle Multimedia PL/SQL Web Toolkit Photo Album sample application is a
media upload and retrieval Web application using Oracle Multimedia object types.
This application uses the PL/SQL Gateway and PL/SQL Web Toolkit.

2.5.1 Using the PL/SQL Gateway and PL/SQL Web Toolkit
You can use the mod_plsql Gateway (a plug-in of Oracle HTTP Server) or the
embedded version of the PLSQL Gateway that runs in the XML DB HTTP Listener in
the database, to listen for browser requests, to execute stored PL/SQL procedures in
the database, and to generate an HTML page containing data and code for the
response returned to the Web browser for display.

Oracle HTTP Server serves mainly the static HTML files, images, and so on, that a
Web application uses, and is usually located in the file system where Oracle HTTP
Server is installed. Oracle HTTP Server contains modules or plug-ins that extend its

Chapter 2
Developing PL/SQL Web Applications

2-17



functions. One of these modules supplied by Oracle is the mod_plsql module, also
known as the PL/SQL Gateway. The PL/SQL Gateway serves data dynamically from
the database to Web browsers by calling PL/SQL stored procedures. The PL/SQL
Gateway receives requests from a Web browser that are mapped to PL/SQL stored
procedure calls. PL/SQL stored procedures retrieve data from the database and
generate an HTTP response containing the data and code from the PL/SQL Web
Toolkit to display the generated Web page in a Web browser. The PL/SQL Web
Toolkit contains a set of packages (including htp, htf, and owa ) that can be used in the
stored procedures to get information about the request, construct HTML tags, and
return header information to the client Web browser.

The following figure shows these main components: Oracle HTTP Server, the Web
browser, and the database.

Figure 2-1    Components of a PL/SQL Web Application

Oracle Database

Application
PL/SQL Stored

Procedures

PL/SQL
Gateway

mod_plsql

DAD
File

System
PL/SQL

Web Toolkit

5

4

6

3

7

1 2

Oracle HTTP Server

Web

Browser

The numbers in the preceding figure represent steps that describe how a client Web
browser request is turned into a Web page response from the execution of the PL/SQL
procedure:

1. A client Web browser sends a PL/SQL server page or servlet request to Oracle
HTTP Server.

2. Oracle HTTP Server routes the request to the PL/SQL Gateway (mod_plsql).

3. The PL/SQL Gateway forwards the request to the database using configuration
information stored in the database access descriptor (DAD) and connects to the
database.

4. The PL/SQL Gateway prepares the call parameters and invokes the PL/SQL
package and the PL/SQL stored procedure in the application.

5. The PL/SQL procedure generates an HTML page using data from the database
and special packages in the PL/SQL Web Toolkit accessed from the database.
The PL/SQL Web Toolkit contains a set of packages, including htp, htf, and owa,
which are used in the stored procedures to get information about the request,
construct HTML tags, and return header information to the client Web browser as
the response returned to the PL/SQL Gateway.

6. The PL/SQL Gateway sends the response to Oracle HTTP Server.

7. Oracle HTTP Server sends the response to the client Web browser for display as
a formatted Web page.

Chapter 2
Developing PL/SQL Web Applications

2-18



Example 2-4    URL Format to Invoke mod_plsql in a Web Browser

protocol://hostname[:port number]/DAD-name/[[!][schema name.]
 [package name.]procedure_name[?query_string]]

Example 2-5    URL Format to Invoke mod_plsql for the Photo Album Application

protocol://<hostname>[:<port-number>]/DAD-name/]procedure_name

Usually, the returned formatted Web page has one or more additional links, and each
link, when selected, sends another request to the database through the PL/SQL
Gateway to execute one or more stored procedures. The generated response displays
data on the client Web page usually with additional links, which, when selected,
execute more stored procedures that return the generated response for display as yet
another formatted Web page, and so on.

Web application developers who use the PL/SQL Gateway create a PL/SQL package
specification and body that describe procedures and functions that comprise the
application. The package specification defines the procedures and functions used by
the application, and the package body is the implementation of each procedure and
function. All packages are compiled and stored in the database to perform specific
operations for accessing data in the database and formatting HTML output for Web
page presentation.

Oracle HTTP Server maps a URL entered in a browser to a specific PL/SQL
procedure stored in the database. It does this by storing specific configuration
information in a DAD for each stored procedure. Thus, each DAD contains the
database connection information that the Web server requires to translate the URL
entered into a database connection to call the stored procedure.

Oracle HTTP Server listens for a request, routes the request to the PL/SQL Gateway,
which forwards it to the database. Configuration information values stored in a DAD
determine the database alias to use, the connection string to use for remote access,
the procedure to use for uploading or downloading documents, and the user name and
password information to enable access to the database. From the Web browser, the
user specifies the URL that invokes the PL/SQL Gateway. The URL has a defined
format for specifying all the required and optional parameters, including the location of
the DAD and the name of the PL/SQL stored procedure to run, as shown in 
Example 2-4.

To use the Oracle Multimedia Photo Album sample application and the PL/SQL Web
Toolkit, the URL can be simplified to the format shown in Example 2-5.

When the URL is entered in the Web browser, it includes the protocol (HTTP or
HTTPS), the name of the hosting Web server, and the port number on which it is
listening to handle requests. Next, the specified virtual path includes /pls/<DAD-name>
to indicate that the Web server is configured to invoke mod_plsql, and the location of
the DAD on the Web server.

In Example 2-4, the last five parameters include the exclamation point (!) character,
schema name, package name, procedure name, and query string. From the syntax,
the exclamation point, schema name, package name, and query string parameters are
optional; only the procedure name is required.

The exclamation point indicates that flexible parameter passing is being used. The
schema name, if omitted, is resolved based on the user name. The package name, if
omitted, means the procedure is standalone. The query string parameters are for the
stored procedure and follow a special format. Of these five parameters, the procedure

Chapter 2
Developing PL/SQL Web Applications

2-19



name must be specified in both the DAD and the URL. The other four parameters are
specified in either the DAD or the URL, or not at all, depending on the application.

The URL displays the home page for the specified DAD. When the URL is entered in
the address field of the Web browser page, it invokes either the specified DAD location
only, or the specified DAD location along with the procedure name, or the specified
DAD location along with the schema.package.procedure name. The response is returned
as an HTML page. The HTML page contains the requested data and any other
specified code for display in the client's Web browser. The Code Wizard demonstrates
how this operation works. For example, to invoke the Code Wizard administration
URL, enter the following URL:

http://<hostname>:<port-number>/pls/ordcwadmin

The virtual path includes pls to indicate that the Web server is configured to invoke
mod_plsql, followed by the name of the DAD used for the Code Wizard administrator,
ordcwadmin.

When the HTML page is displayed, it resolves to the following URL for the Code
Wizard administrator:

http://<hostname>:<port-number>/pls/ordcwadmin/ORDCWPKG.menu

ORDCWPKG.menu represents the package.procedure name, which is specified as the default
home page in the ordcwadmin DAD.

When the PL/SQL Gateway is invoked, it uses the stateless model and does not
permit a transaction to span across multiple HTTP requests. In this stateless model,
applications typically can create a session to maintain state by using one of these
techniques: HTTP cookies, a hidden HTML field as an HTML form element of the
HTML Form package, or storage of vital information in database tables for query.

Related Topics:

• Oracle Multimedia PL/SQL Photo Album Sample Application
The Oracle Multimedia PL/SQL Web Toolkit Photo Album sample application is a
media upload and retrieval Web application using Oracle Multimedia object types.
This application uses the PL/SQL Gateway and PL/SQL Web Toolkit.

• Oracle Multimedia Code Wizard Sample Application for the PL/SQL Gateway
The Oracle Multimedia Code Wizard sample application for the PL/SQL Gateway
creates PL/SQL procedures for the PL/SQL Gateway to upload and retrieve
multimedia data stored in a database using Oracle Multimedia object types.

Chapter 2
Developing PL/SQL Web Applications

2-20



3
Oracle Multimedia PL/SQL Photo Album
Sample Application

The Oracle Multimedia PL/SQL Web Toolkit Photo Album sample application is a
media upload and retrieval Web application using Oracle Multimedia object types. This
application uses the PL/SQL Gateway and PL/SQL Web Toolkit.

This application assumes the following:

• You are familiar with developing PL/SQL applications using the PL/SQL Gateway
and PL/SQL Web Toolkit.

• You have installed and configured the Oracle Multimedia PL/SQL Web Toolkit
Photo Album sample application.

You can install the Oracle Multimedia PL/SQL Web Toolkit Photo Album sample
application from the Oracle Database Examples media, which is available for
download from the Oracle Technology Network (OTN). After installing the Oracle
Database Examples media, the sample application files and README.txt file are
located at:

<ORACLE_HOME>/ord/http/demo/plsqlwtk (on Linux and UNIX)

<ORACLE_HOME>\ord\http\demo\plsqlwtk (on Windows)

This chapter describes how to run the PL/SQL Web Toolkit Photo Album sample
application. See the README.txt file for this sample application for additional
requirements and instructions on installing and configuring this sample application.

This chapter includes these sections:

• Overview of the PL/SQL Photo Album Sample Application

• Running the PL/SQL Photo Album Sample Application

• Description of the PL/SQL Photo Album Sample Application

See Also:

Oracle Multimedia Code Wizard Sample Application for the PL/SQL Gateway
for a sample application that creates media upload and retrieval procedures
for the PL/SQL Gateway

3-1



3.1 Overview of the PL/SQL Photo Album Sample
Application

This topic describes the setup process for the Oracle Multimedia PL/SQL Web Toolkit
Photo Album sample application.

The Oracle Multimedia PL/SQL Web Toolkit Photo Album sample application
demonstrates how to perform the following operations:

• Use the Oracle Multimedia image object type to upload, retrieve, and process
media data stored in Oracle Database.

• Combine the image metadata methods of Oracle Multimedia with the XML
document management capabilities of Oracle XML DB and the full-text indexing
and search features of Oracle Text to create a solution that can extract, store, and
search metadata that is embedded in binary image files.

• Collect new metadata from a user, format the metadata into an XML document,
and store the document in the binary image using the Oracle Multimedia image
object type.

When installed, this photo album application creates several schema objects that are
important to the following discussion. These objects include the photos table, which is
defined by the following CREATE TABLE statement:

CREATE TABLE photos( id           NUMBER PRIMARY KEY,
                     description  VARCHAR2(40) NOT NULL,
                     metaORDImage XMLTYPE,
                     metaEXIF     XMLTYPE,
                     metaIPTC     XMLTYPE,
                     metaXMP      XMLTYPE,
                     image        ORDSYS.ORDIMAGE,
                     thumb        ORDSYS.ORDIMAGE )
--
-- store full-size and thumbnail images as SecureFiles LOBS
--
LOB(image.source.localdata)  STORE AS SECUREFILE
LOB(thumb.source.localdata)  STORE AS SECUREFILE
--
-- and bind the XMLType columns to the Oracle Multimedia metadata schemas
XMLType COLUMN metaORDImage
  STORE AS SecureFile CLOB
  XMLSCHEMA "http://xmlns.oracle.com/ord/meta/ordimage"
  ELEMENT "ordImageAttributes"
XMLType COLUMN metaEXIF
  STORE AS SecureFile CLOB
  XMLSCHEMA "http://xmlns.oracle.com/ord/meta/exif"
  ELEMENT "exifMetadata"
XMLType COLUMN metaIPTC
  STORE AS SecureFile CLOB
  XMLSCHEMA "http://xmlns.oracle.com/ord/meta/iptc"
  ELEMENT "iptcMetadata"
XMLType COLUMN metaXMP
  STORE AS SecureFile CLOB
  XMLSCHEMA "http://xmlns.oracle.com/ord/meta/xmp"
  ELEMENT "xmpMetadata";

Chapter 3
Overview of the PL/SQL Photo Album Sample Application

3-2



The data types for the image and thumb columns are defined as Oracle Multimedia
image object types. These columns are used to store the full-size images and the
generated thumbnail images, respectively. The LOB storage clauses direct the
database to store the full-size and thumbnail images in SecureFiles LOBs, which are
the highest performing storage option for binary data.

The table also defines four columns of type XMLType to store XML documents that
contain four different kinds of image metadata. Each column is bound to a specific
Oracle Multimedia metadata schema. Each metadata schema defines precisely the
data model of the metadata document. These schemas are registered with Oracle
XML DB when the database is created. The column definitions specify that the
database uses unstructured storage to manage the XML metadata documents. Some
advantages of using unstructured storage to manage XML include fast retrieval of the
complete document and the ability to use XMLIndex indexes to improve the
performance of XPath-based queries.

When installed, this photo album application also creates other schema objects. These
schema objects include two types of indexes that accelerate metadata searches: a
CONTEXT text index and an XMLIndex index.

The CONTEXT type is a text index over all columns that contain descriptive information
about the image. These columns include PHOTOS.DESCRIPTION, which is a VARCHAR2
data type, and these four XMLType columns: PHOTOS.METAIPTC, PHOTOS.METAEXIF,
PHOTOS.METAXMP, and PHOTOS.METAORDIMAGE. The CONTEXT text index is used to accelerate
metadata searches by implementing the photo album search feature that enables
users to search for photographs by keyword or phrase.

The CONTEXT text index is created by the following statements. (This example assumes
that this photo album application has been installed in the SCOTT schema.)

-- Create preference PA_CTXIDX.
ctx_ddl.create_preference('SCOTT.PA_CTXIDX', 'MULTI_COLUMN_DATASTORE');
 
-- Create a multicolumn datastore.
ctxcols := 'description, '                   ||
            'SCOTT.photo_album.getClob(METAIPTC), ' ||
            'SCOTT.photo_album.getClob(METAEXIF), ' ||
            'SCOTT.photo_album.getClob(METAXMP), '  ||
            'SCOTT.photo_album.getClob(METAORDIMAGE)';
ctx_ddl.set_attribute( ctxpref, 'COLUMNS', ctxcols );
 
 
-- Create the CONTEXT text index.
create  index pa_ctx_idx on photos(description)
indextype is ctxsys.context
parameters ( 'DATASTORE SCOTT.PA_CTXIDX' );

The XMLIndex index is used to accelerate metadata searches by permitting users to
search only certain types of image metadata and limiting the search to specific
portions of an XML document. For example, the following statements create three
indexes of type XMLIndex to speed up existsNode( ) queries on columns of type
XMLType:

create index pa_path_iptc_idx  on photos( metaIptc )
 indextype is XDB.XMLIndex;
 
create index pa_path_exif_idx  on photos( metaExif )
 indextype is XDB.XMLIndex;
 

Chapter 3
Overview of the PL/SQL Photo Album Sample Application

3-3



create index pa_path_xmp_idx  on photos( metaXMP )
 indextype is XDB.XMLIndex;

During the installation, as prescribed by the PL/SQL Gateway, a document upload
table is defined by the following CREATE TABLE statement:

CREATE TABLE PHOTOS_UPLOAD( name           VARCHAR2(256) UNIQUE NOT NULL,
                            mime_type      VARCHAR2(128),
                            doc_size       NUMBER,
                            dad_charset    VARCHAR2(128),
                            last_updated   DATE,
                            content_type   VARCHAR2(128),
                            blob_content   BLOB )
-- 
-- store BLOBs as SecureFiles LOBs
-- 
LOB(blob_content)  STORE AS SECUREFILE;

Each image uploaded using the PL/SQL Gateway is stored in the PHOTOS_UPLOAD table.
An upload procedure (insert_new_photo) automatically moves the uploaded image from
the specified PHOTOS_UPLOAD table to the photo album applications table called photos.

See Also:

• Oracle XML DB Developer's Guide for more information about XML DB
and XMLIndex indexes

• Oracle Text Application Developer's Guide for more information about
creating and using text indexing

3.2 Running the PL/SQL Photo Album Sample Application
This topic describes how to run the PL/SQL Photo Album application.

After you have completed the setup tasks and have built the PL/SQL Photo Album
application, including creating a database access descriptor (DAD) entry (as described
in the README.txt file), you are ready to run this application.

In the address field of your Web browser, enter the following URL:

<protocol><hostname:port-number>/photoalbum

1. In the <protocol> field, enter http://.

2. In the <hostname:port-number> field, enter the host name and port number of the
system where your HTTP server is running.

When first invoked, this photo album application displays any images that are currently
stored in the album. By default, the photo album is empty when first installed. To
upload a new photograph, select Upload photo. Enter a description of the photograph
and the name of the image file, or browse to its directory location. Then, click Upload
photo.

The contents of the photo album are displayed, along with a picture of the new
photograph. Click the thumbnail image to view the full-size version of the photograph.
When this photo album application displays the text view image instead of its

Chapter 3
Running the PL/SQL Photo Album Sample Application

3-4



thumbnail image, the image format that was uploaded was not recognized by Oracle
Multimedia. Click view image to display the full-size image.

You can now begin to load your photo album application with your favorite
photographs.

3.3 Description of the PL/SQL Photo Album Sample
Application

The PL/SQL Photo Album application is implemented as a set of PL/SQL procedures
and functions, organized in a single PL/SQL package.

These PL/SQL procedures and functions combine several database features to create
the application. Oracle Multimedia is used to store and process image data. It is also
used to extract metadata from images and embed new metadata into images. The
XMLType feature is used to store and process the XML metadata documents. Oracle
Text indexes are used to accelerate two kinds of metadata searches. Finally, the
PL/SQL Web Toolkit is used to create HTML pages and deliver media content.

The user interface for the PL/SQL Photo Album application consists of a set of Web
pages. You can use these Web pages to perform a set of tasks. The tasks and the
Web pages are introduced in this topic and described in further detail in the following
sections.

You can explore this photo album application using the navigation bar near the top of
each Web task page. The leftmost entry of the navigation bar displays the name of the
current Web page. On the right, there are links to other Web pages you can access
from the current page. Each Web task page contains a link to the View album page,
which is the home page for the application.

Pages in the PL/SQL Photo Album Sample Application

The following topics, which are summarized here, describe each page in the PL/SQL
Photo Album application:

• Browsing the Photo Album

Use the View album page to display thumbnail-size versions of all the images in
the photo album and a description link positioned under each thumbnail image.
When you select a thumbnail image, the full-size image is displayed. When you
select the description link for an image, all the metadata for that image is
displayed. The View album page is the home page for the application.

• Adding Images to the Photo Album

Use the Upload photo page to display a simple form to collect a description for a
new image, and the directory path to the location of the image on the local
computer. When you click the Upload photo button, the browser sends the image
to the Web server and the image is stored in the database.

• Searching for Images by Keyword or Phrase

Use the Search album page to display a search album form to collect keywords or
phrases to initiate full-text searches through all image metadata. The application
queries the database for all images with metadata that contains the specified
keywords or phrases. The search results are displayed as a set of thumbnail
images. The search album form is also available from the View album page.

Chapter 3
Description of the PL/SQL Photo Album Sample Application

3-5



• Viewing Full-Size Images

Use the View entry page to display the full-size image of a specified photograph,
including any description text that was entered for that image when it was
uploaded.

• Examining Image Metadata

Use the View metadata page to display all the metadata that was extracted from
the image when it was uploaded. Up to four types of metadata can be displayed.

• Writing New XMP Metadata to Images

Use the Write XMP metadata page to display a form to collect input for five
metadata attributes. These attributes are formatted into an XML document that is
embedded within the binary image. The new XMP metadata overwrites any
existing XMP metadata.

• Searching for Images That Contain Specific Metadata Attributes

Use the Search metadata page to collect input and perform advanced metadata
searches. You can specify the type of metadata to be searched. Optionally, you
can also limit the search to a specific XML tag within the specified document. The
search results are displayed as a set of thumbnail images.

See Also:

• Oracle XML DB Developer's Guide for more information about querying
and updating XML metadata

• Oracle Text Application Developer's Guide for more information about text
indexing

• Oracle Database Advanced Application Developer's Guide for more
information about developing PL/SQL Web applications

3.3.1 Browsing the Photo Album
You can use the View album page of the photo album application to browse the
contents of a photo album and to access other photo album capabilities.

The home page for this photo album application, View album, displays the contents of
the photo album as thumbnail images in four-column format. Each thumbnail image is
also a link to the View entry page. When you click a thumbnail image link, the
application displays the full-size image on a View entry page. Included under each
thumbnail image on the View album page is the image description that was entered
when the image was uploaded to the album. The description is also a link to the View
metadata page where all the metadata for this photograph can be examined.

Near the top of the View album page, there is a text entry field (in the shape of a
rectangular box) that accepts user input for a full-text search through all the photo
album metadata. The Search button to the right of the text field initiates the search.
The search results are displayed on the Search album page.

At the top of the View album page, there is a navigation bar, which includes links to
other photo album pages. From the View album page, you can navigate to the
Search metadata page or the Upload photo page.

Chapter 3
Description of the PL/SQL Photo Album Sample Application

3-6



Figure 3-1 shows the View album page for an album that contains several images.

Figure 3-1    View album Page with Uploaded Images

The PL/SQL procedures view_album, print_album, print_image_link, and deliver_media
are the primary application components that implement the View album page. The
view_album procedure is a public procedure that takes a single optional argument. By
default, the argument has a NULL value. Or, it can have the value of the string entered
in the text entry field on the Search album page. When the search argument is NULL,
the SELECT statement retrieves the id,description, and thumb columns for all entries
in the photos table. When the search string is not NULL, the SELECT statement uses
the CONTAINS operator to restrict the result set to only images with metadata that
matches the search string.

Example 3-1 contains some relevant lines of code in the view_album procedure.

The SELECT statement is bound to the cursor variable album_cur and passed to the
procedure print_album, which creates the HTML output.

The print_album procedure uses the HTP and HTF packages from the PL/SQL Web
Toolkit to create the HTML tags that format the output into a four-column table. Each
cell in the table contains two links or anchor tags. The first link is to the View entry
page, which displays the full-size version of the image. This anchor is implemented by
PHOTO_ALBUM.VIEW_ENTRY, and passes entry_id as a query string input
argument. If the thumbnail image has a nonzero length, then procedure
print_image_link is called to create an HTML <img> tag that is the content (the
thumbnail image) of the anchor link. The string thumb and the entry_id are passed to
procedure print_image_link, along with the image description, and the height and
width of the thumbnail image. These values are used to create the <img> tag.

If an image is in a format that Oracle Multimedia does not support, the application
cannot create a thumbnail version of the image. In this case, the content of the anchor
link is the text view image.

Example 3-2 contains some relevant lines of code in the print_album procedure.

The procedure print_image_link uses the height and width arguments to populate the
height and width attributes of the <img> tag. The description argument is used to
create text for the alt attribute. If the description argument is empty, a default string is
constructed. Finally, the src attribute is set to the URL

Chapter 3
Description of the PL/SQL Photo Album Sample Application

3-7



PHOTO_ALBUM.DELIVER_MEDIA with two query string arguments, media and
entry_id. The media argument controls whether the thumbnail or full-size version of the
image is delivered. The entry_id argument identifies the image to be delivered.

Example 3-3 contains some relevant lines of code in the print_image_link procedure.

The procedure deliver_media fetches the image content from the database. The If-
Modified-Since HTTP request header is compared to the last modification time of the
image. If the image has not been modified, a response is sent that the browser can
display the image from its cache. Otherwise, the image MIME type and last modified
time are sent to the Web server, along with the image content.

Example 3-4 contains some relevant lines of code in the deliver_media procedure.

Example 3-1    Procedure view_album

   --
   -- no search criteria so fetch all entries
   --
   IF search IS NULL THEN
     OPEN album_cur FOR
       SELECT id, description, thumb
       FROM photos
       ORDER BY id;
     print_album( album_cur, 'The photo album is empty.' );
     CLOSE album_cur;
   ELSE
   --    -- use the full-text index to select entries matching the search criteria
   --
     OPEN album_cur FOR
       SELECT id, description, thumb
       FROM photos
       WHERE CONTAINS( description, trim(search) ) > 0
       ORDER BY id;
     print_album( album_cur, 'No photos were found.' );
     CLOSE album_cur;
   END IF; 

Example 3-2    Procedure print_album

       -- escape the description text
       sc_description := htf.escape_sc( entry.description );
 
       --
       -- Display the thumbnail image as an anchor tag which can be used
       -- to display the full-size image. If the image format is not
       -- supported by Oracle Multimedia, then a thumbnail would not have been
       -- produced when the image was uploaded, so use the text '[view
       -- image]' instead of the thumbnail.
       --
 
       htp.print( '<td headers="c' || colIdx || '" align="center" >
                   <a href="PHOTO_ALBUM.VIEW_ENTRY?entry_id=' ||
                   entry.id || '">' );
       IF entry.thumb.contentLength > 0
       THEN
           print_image_link( 'thumb', entry.id, sc_description,
                             entry.thumb.height, entry.thumb.width );
       ELSE
           htp.prn( '[view image]' );
       END IF;

Chapter 3
Description of the PL/SQL Photo Album Sample Application

3-8



       htp.print( '</a>' );
 
       -- Create link to the metadata
       htp.prn('<br>');
       htp.anchor( curl=>'PHOTO_ALBUM.VIEW_METADATA?entry_id=' || entry.id,
                   ctext=>sc_description );
       htp.prn('</td>');

Example 3-3    Procedure print_image_link

 -- add height and width to tag if non zero
 IF height > 0 AND width > 0 THEN
   attributes := attributes || ' height=' || height || ' width=' || width;
 END IF;
 
 -- create an alt text if none given
 IF alt IS NULL THEN
   IF type = 'thumb' THEN
     alt2 := 'thumb-nail image ';
   ELSE
     alt2 := 'full-size image ';
   END IF;
   alt2 := alt2 || 'for album entry ' || entry_id;
 ELSE
   alt2 := alt;
 END IF;
 
 htp.img( curl=>'PHOTO_ALBUM.DELIVER_MEDIA?media=' || type ||
                  ampersand || 'entry_id=' || entry_id,
            calt=>alt2, cattributes=>attributes ); 

Example 3-4    Procedure deliver_media

   --
   -- Fetch the thumbnail or full-size image from the database.
   --
   IF media = 'thumb'
   THEN
       SELECT thumb INTO local_image FROM photos WHERE id = entry_id;
   ELSE
       SELECT image INTO local_image FROM photos WHERE id = entry_id;
   END IF;
 
   --
   -- Check update time if browser sent If-Modified-Since header
   --
   IF ordplsgwyutil.cache_is_valid( local_image.getUpdateTime() )
   THEN
     owa_util.status_line( ordplsgwyutil.http_status_not_modified );
     RETURN;
   END IF;
 
   --
   -- Set the MIME type and deliver the image to the browser.
   --
   owa_util.mime_header( local_image.mimeType, FALSE );
   ordplsgwyutil.set_last_modified( local_image.getUpdateTime() );
   owa_util.http_header_close();
 
   IF owa_util.get_cgi_env( 'REQUEST_METHOD' ) <> 'HEAD' THEN

Chapter 3
Description of the PL/SQL Photo Album Sample Application

3-9



     wpg_docload.download_file( local_image.source.localData );
   END IF; 

Related Topics:

• Overview of the PL/SQL Photo Album Sample Application
This topic describes the setup process for the Oracle Multimedia PL/SQL Web
Toolkit Photo Album sample application.

3.3.2 Adding Images to the Photo Album
You can use the Upload photo page of the photo album application to add more
content to a photo album.

The Upload photo page is used to add new images to the photo album. The page
displays a form with two text entry fields. In the Description: field, you can optionally
enter a word or short phrase that describes the image. In the File name: field, enter
the name of the image file or click Browse... to locate the image file to be uploaded.
The Upload photo button under the File name: field starts the upload operation.
When the image is successfully uploaded, the View album page appears. From that
page, you can display the contents of the photo album.

At the top of the Upload photo page, there is a navigation bar, which includes links to
other photo album pages. From the Upload photo page, you can return to the View
album page or select the Search metadata page.

Figure 3-2 shows an Upload photo page with all the entry fields completed.

Figure 3-2    Completed Upload photo Page

The PL/SQL procedures view_upload_form, print_upload_form, and insert_new_photo
are the primary application components that implement the Upload photo page.
Together, view_upload_form and print_upload_form create the HTML page that is
displayed. The page contains a form tag, a portion of which is shown in Example 3-5.
The target of the form is PHOTO_ALBUM.INSERT_NEW_PHOTO.

Example 3-5 contains some relevant lines of code in the print_upload_form procedure.

Procedure insert_new_photo receives the form, processes the inputs, and stores the
new image in the database.

First, the insert_new_photo procedure checks that a file name was entered into the
upload form. The image size, MIME type, and BLOB locator for the image content are
selected from the document upload table, and the size is checked to ensure that the

Chapter 3
Description of the PL/SQL Photo Album Sample Application

3-10



image is not of zero length. If the description field is blank, a description is created
using the file name.

Next, the ORDSYS.ORDIMAGE.INIT( ) function is called to initialize the thumb and
image ORDImage object type columns with an empty BLOB for the new row to be
stored in the photos table. A SQL SELECT FOR UPDATE statement fetches the newly
initialized thumbnail image and full-size image object type columns for updating. A
DBMS_LOB.COPY operation loads the image from the upload table into the image
ORDImage object type column.

The ORDImage object method setProperties( ) reads the image and sets the image
object attributes. Because some browsers cannot display some image formats inline,
in this sample application, BMP formatted images are converted to a JPEG image
format (for images with more than 8 bits of color), or a GIFF image format (for images
with less than 9 bits of color) by calling the get_preferred_format function. A
processCopy( ) operation is performed on the full-size image to create the thumbnail
image.

The ORDImage object getMetadata( ) method is called to extract all supported types
of image metadata. The root element of each XML document in the return vector is
examined to discover the metadata type so that the documents can be stored in the
correct columns.

Then, a SQL UPDATE statement stores the full-size image, the thumbnail image, and
the image metadata documents in the database. Procedure sync_indexes is called to
force an update of the text indexes. Finally, the form data input is deleted from the
document upload table. A success message is returned to the browser, and the
browser is redirected to the View album page.

Example 3-6 contains some relevant lines of code in the insert_new_photo procedure.

Example 3-5    Procedure print_upload_form

<form action="PHOTO_ALBUM.INSERT_NEW_PHOTO"
method="post"
enctype="multipart/form-data">
database. 

Example 3-6    Procedure insert_new_photo

   --
   -- Make sure a file name has been provided. If not, display an error
   -- message, then re-display the form.
   --
   IF new_photo IS NULL OR LENGTH( new_photo ) = 0
   THEN
       print_page_header;
       print_error( 'Please supply a file name.' );
       print_upload_form;
       print_page_trailer( TRUE );
       return;
   END IF;
 
   --
   -- Get the length, MIME type and the BLOB of the new photo from the
   -- upload table.
   --
   SELECT doc_size,
          mime_type,
          blob_content

Chapter 3
Description of the PL/SQL Photo Album Sample Application

3-11



   INTO   upload_size,
          upload_mime_type,
          upload_blob
   FROM photos_upload
   WHERE name = new_photo;
 
   --
   -- Make sure we have a valid file. 
   --
   IF upload_size = 0
   THEN
       print_page_header;
       print_heading( 'Error message' );
       htp.print( '<hr size="-1"><p>Please supply a valid image file.</p>' );
       print_upload_form;
       print_page_trailer( TRUE );
       return;
   END IF;
 
   --
   -- If the description is blank, then use the file name.
   --
   IF c_description IS NULL
   THEN
       c_description := new_photo;
       pos := INSTR( c_description, '/', -1 );
       IF pos > 0
       THEN
           c_description := SUBSTR( c_description, pos + 1 );
       END IF;
       c_description := SUBSTR( 'Image from file: ' ||
                        c_description || '.', 1, 40 );
   END IF;
   --
   -- Insert a new row into the table, returning the newly allocated sequence
   -- number.
   INSERT INTO photos ( id, description, metaExif, metaIPTC, metaXMP,
                        image, thumb )
   VALUES ( photos_sequence.nextval, c_description, NULL, NULL, NULL,
                ORDSYS.ORDIMAGE.INIT(), ORDSYS.ORDIMAGE.INIT() )
   RETURN id
   INTO new_id;
 
   --
   -- Fetch the newly initialized full-size and thumbnail image objects.
   --
   SELECT image,
          thumb
   INTO new_image,
        new_thumb
   FROM photos
   WHERE id = new_id
   FOR UPDATE;
 
   --
   -- Load the photo from the upload table into the image object.
   --
   DBMS_LOB.COPY( new_image.source.localData, upload_blob, upload_size );
   new_image.setLocal(); 
   --
   -- Set the properties. If the image format is not recognized, then

Chapter 3
Description of the PL/SQL Photo Album Sample Application

3-12



   -- the exception handler will set the MIME type and length from the
   -- upload table.
   --
   BEGIN
       new_image.setProperties();
   EXCEPTION
       WHEN OTHERS THEN
            new_image.contentLength := upload_size;
            new_image.mimeType := upload_mime_type;
   END;
 
   --
   -- Some image formats are supported by Oracle Multimedia but cannot be 
   -- displayed inline by a browser. The BMP format is one example.
   -- Convert the image to a GIF or JPEG based on number of colors in the
   -- image.
   --
   IF new_image.contentFormat IS NOT NULL AND
      ( new_image.mimeType = 'image/bmp' OR
        new_image.mimeType = 'image/x-bmp' )
   THEN
       BEGIN
           new_image.process(
                        'fileFormat=' ||
                        get_preferred_format( new_image.contentFormat ) ); 
       EXCEPTION
           WHEN OTHERS THEN
               NULL;
       END;
   END IF;
 
   --
   -- Try to copy the full-size image and process it to create the thumbnail.
   -- This may not be possible if the image format is not recognized.
   --
   BEGIN
       new_image.processCopy( thumb_scale, new_thumb );
   EXCEPTION
       WHEN OTHERS THEN
           new_thumb.deleteContent();
           new_thumb.contentLength := 0;
   END;
  --
   -- fetch the metadata and sort the results
   --
   BEGIN
     metav := new_image.getMetadata( 'ALL' );
     FOR i IN 1..metav.count() LOOP
       meta_root := metav(i).getRootElement();
       CASE meta_root
         WHEN 'ordImageAttributes' THEN xmlORD := metav(i);
         WHEN 'xmpMetadata'  THEN xmlXMP  := metav(i);
         WHEN 'iptcMetadata' THEN xmlIPTC := metav(i);
         WHEN 'exifMetadata' THEN xmlEXIF := metav(i);
         ELSE NULL;
       END CASE;
     END LOOP;
   EXCEPTION
     WHEN OTHERS THEN
       NULL;
   END;

Chapter 3
Description of the PL/SQL Photo Album Sample Application

3-13



 
   --
   -- Update the full-size and thumbnail images in the database.
   -- Update metadata columns 
   --
   UPDATE photos
   SET image = new_image,
       thumb = new_thumb,
       metaORDImage = xmlORD,
       metaEXIF = xmlEXIF,
       metaIPTC = xmlIPTC,
       metaXMP = xmlXMP
   WHERE id = new_id;
 
   --    -- update the text indexes
   --    sync_indexes;
 
   --
   -- Delete the row from the upload table.
   --
   DELETE FROM photos_upload WHERE name = new_photo;
   COMMIT;
 
   --
   -- Redirect browser to display full album.
   --    print_page_header(
       '<meta http-equiv="refresh" content="2;url=PHOTO_ALBUM.VIEW_ALBUM">' );
   print_heading( 'Photo successfully uploaded into photo album' );

3.3.3 Searching for Images by Keyword or Phrase
You can use the View album and Search album pages of the photo album
application to search for content in a photo album.

You can use the View album and Search album pages to perform a keyword or
phrase search of the metadata stored in the photo album. On either of these pages,
enter the keyword or phrase in the Full text search: text entry field and click Search.
This photo album application uses the CONTEXT text index to locate images that have
metadata containing the text you entered. If the search is successful, the thumbnail
versions of the matching images are displayed in a four-column table. Select the
thumbnail image to view the full-size version, or select the description link below the
thumbnail image to view the metadata for the image. If the search fails, the message
"No photos were found" is displayed.

At the top of the Search album page, there is a navigation bar, which includes links to
other photo album pages. From the Search album page, you can return to the View
album page or select the Search metadata or Upload photo pages.

Figure 3-3 shows a Search album page that contains the results of a successful
search operation.

Chapter 3
Description of the PL/SQL Photo Album Sample Application

3-14



Figure 3-3    Search album Page Showing Results

Full-text searching of the photo album is implemented by the view_album procedure.

Related Topics:

• Browsing the Photo Album
You can use the View album page of the photo album application to browse the
contents of a photo album and to access other photo album capabilities.

3.3.4 Viewing Full-Size Images
You can use the View entry page of the photo album application to display full-size
images and their descriptions in a photo album.

When you select a thumbnail image, the application directs you to the View entry
page. This page displays the description of the image and the full-size version of the
image.

At the top of the View entry page, there is a navigation bar, which includes links to
other photo album pages. From the View entry page, you can return to the View
album page, or select any of the View metadata, Write metadata, Search metadata,
or Upload photo pages.

Figure 3-4 shows a View entry page that contains the description and the full-size
version of an image.

Chapter 3
Description of the PL/SQL Photo Album Sample Application

3-15



Figure 3-4    View entry Page with a Full-Size Image

The PL/SQL procedures view_entry, print_image_link, and deliver_media are the
primary application components that implement the View entry page. The procedure
view_entry takes a single parameter, entry_id, which uniquely locates the image in the
photos table. The description and image object are fetched from the photos table. The
procedure print_image_link creates the HTML <img> tag, and then calls procedure
deliver_media to fetch the image content.

Example 3-7 contains some relevant lines of code in the view_entry procedure.

Example 3-7    Procedure view_entry

   --
   -- Fetch the row.
   --
   BEGIN
     SELECT htf.escape_sc(description), image
     INTO sc_description, photo
     FROM photos
     WHERE id = entry_id;
     EXCEPTION
     WHEN no_data_found THEN
       print_error( 'Image <b>' || htf.escape_sc(entry_id) ||
                    '</b> was not found.</p>' );
       print_page_trailer( TRUE );
       return;
   END;
 
   print_image_link( 'image', entry_id, sc_description,
                      photo.height, photo.width );

Chapter 3
Description of the PL/SQL Photo Album Sample Application

3-16



Related Topics:

• Browsing the Photo Album
You can use the View album page of the photo album application to browse the
contents of a photo album and to access other photo album capabilities.

3.3.5 Examining Image Metadata
You can use the View metadata page of the photo album application to display the
metadata for images in a photo album.

You can use the View metadata page to examine all the metadata for a specific
image. Typically, you access this page from the View album page by selecting the
description link below a thumbnail image. You can also access this page by selecting
the View metadata link from the navigation bar. The View metadata page displays
the thumbnail version of the image. To the right of the thumbnail image, there is a list
of the metadata documents for this image. Each entry in the list is a link that takes you
to the metadata document on the View metadata page.

At the top of the View metadata page, there is a navigation bar, which includes links
to other photo album pages. From the View metadata page, you can return to the
View album page, or select any of the View entry, Write metadata, Search
metadata, or Upload photo pages.

Figure 3-5 shows a View metadata page that contains two types of metadata (XMP
and ORDIMAGE) for an image.

Figure 3-5    View metadata Page with Metadata for an Uploaded Image

The PL/SQL procedures view_metadata and print_metadata are the primary application
components that implement the View metadata page. The procedure view_metadata is

Chapter 3
Description of the PL/SQL Photo Album Sample Application

3-17



passed the argument entry_id, which uniquely identifies the image in the photos table.
A SELECT statement retrieves all the XMLtype metadata columns for the specified
entry. If the metadata column is not NULL, procedure print_metadata is called to display
the XML document inside an HTML <pre> tag.

Example 3-8 contains some relevant lines of code in the view_metadata procedure.

The print_metadata procedure accepts an XMLType document as an argument. It uses
the getClobVal( ) method to access the document as a CLOB. The content of the
CLOB is read in a loop and formatted in the HTML page using the htp.prints
procedure. The htp.prints procedure escapes the '<' and '>' characters so that they
are rendered properly by the Web browser.

Example 3-9 contains some relevant lines of code in the print_metadata procedure.

Example 3-8    Procedure view_metadata

   --
   -- Fetch the row.
   --
   SELECT metaOrdImage, metaEXIF, metaIPTC, metaXMP
   INTO   metaO, metaE, metaI, metaX
   FROM   photos
   WHERE  id = entry_id;
 
   -- display the EXIF metadata
   IF metaE IS NOT NULL THEN
     htp.print( '<span class="bigBlue" id="exifMetadata">EXIF</span>' );
     htp.print( '<br><pre>' );
     print_metadata( metaE );      htp.print( '</pre>' );
   END IF;

Example 3-9    Procedure print_metadata

   metaClob := meta.getClobVal();
   len := dbms_lob.getLength( metaClob );
   IF bufSize > len THEN
     bufSize := len;
   END IF;
   WHILE len > 0 LOOP
     dbms_lob.read( metaClob, bufSize, pos, buf );
     htp.prints( buf );
     pos := pos + bufSize;
     len := len - bufSize;
   END LOOP;

3.3.6 Writing New XMP Metadata to Images
You can use the Write XMP metadata page of the photo album application to add or
revise the XMP metadata for images in a photo album.

You can use the Write XMP metadata page to write new or replace existing XMP
metadata in an image. Oracle Multimedia provides support for writing XMP metadata
only. You can access the Write XMP metadata page by selecting the Write metadata
link in the navigation bar from either the View entry page or the View metadata page.

The Write XMP metadata page displays the thumbnail version of the image to be
modified. The page also displays an input form to collect metadata attributes in these
five text entry fields:

Chapter 3
Description of the PL/SQL Photo Album Sample Application

3-18



• Title: Specify a title for the photograph.

• Creator: Enter the name of the person who took the photograph. This field is
optional.

• Date: Enter the date the photograph was taken. This field is optional.

• Description: Enter a description, such as the subject of the photograph. This field
is optional.

• Copyright: Enter the month and year when the photograph was taken. This field
is optional.

Click Write it! to send the form to the application and embed the metadata in XMP
format in the image.

At the top of the Write XMP metadata page, there is a navigation bar, which includes
links to other photo album pages. From the Write XMP metadata page, you can return
to the View album page, or select any of the View entry, View metadata, Search
metadata, or Upload photo pages.

Figure 3-6 shows a Write XMP metadata page with completed entries for an image.

Figure 3-6    Completed Write XMP metadata Page with XMP Metadata for an
Uploaded Image

The PL/SQL procedure write_metadata receives the form input fields from the browser.
The procedure creates an XML document (as a string buffer) that is valid to the Oracle
Multimedia XMP schema http://xmlns.oracle.com/ord/meta/xmp. The string buffer is
used to create an XMLType object.

A SELECT FOR UPDATE statement retrieves the image to be modified. The Oracle
Multimedia method putMetadata( ) is called to embed the XML document into the
image. The modified image is stored back to the photos table. Finally, procedure
sync_indexes is called to update the text indexes.

Example 3-10 contains some relevant lines of code in the write_metadata procedure.

The input data shown in Example 3-10 would result in the storage of the following
metadata in the image:

<xmpMetadata xmlns="http://xmlns.oracle.com/ord/meta/xmp"
            xsi:schemaLocation="http://xmlns.oracle.com/ord/meta/xmp

Chapter 3
Description of the PL/SQL Photo Album Sample Application

3-19



            http://xmlns.oracle.com/ord/meta/xmp"
            xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
   <rdf:Description about="" xmlns:dc="http://purl.org/dc/elements/1.1/">
     <dc:title>Story time</dc:title>
     <dc:creator>father</dc:creator>
     <dc:date>July 4, 2001</dc:date>
     <dc:description>family reading</dc:description>
     <dc:copyright>mother</dc:copyright>
   </rdf:Description>
 </rdf:RDF>
</xmpMetadata> 

Example 3-10    Procedure write_metadata

   -- Create the XMP packet it must be schema valid
   -- to "http://xmlns.oracle.com/ord/meta/xmp"
   -- and contain an <RDF> element. This example uses
   -- the Dublin Core schema as implemented by Adobe XMP
   buf := '<xmpMetadata xmlns="http://xmlns.oracle.com/ord/meta/xmp"
            xsi:schemaLocation="http://xmlns.oracle.com/ord/meta/xmp
            http://xmlns.oracle.com/ord/meta/xmp"
            xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" >
     <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
     <rdf:Description about="" xmlns:dc="http://purl.org/dc/elements/1.1/">
     <dc:title>' || htf.escape_sc(title) || '</dc:title>';

   IF c_creator IS NOT NULL THEN
     buf := buf || '<dc:creator>' || htf.escape_sc(c_creator)
                || '</dc:creator>';
   END IF;
   IF c_date IS NOT NULL THEN
     buf := buf || '<dc:date>' || htf.escape_sc(c_date)
                || '</dc:date>';
   END IF;
   IF c_description IS NOT NULL THEN
     buf := buf || '<dc:description>' || htf.escape_sc(c_description)
                || '</dc:description>';
   END IF;
   IF c_copyright IS NOT NULL THEN
     buf := buf || '<dc:copyright>' || htf.escape_sc(c_copyright)
                || '</dc:copyright>';
   END IF;
   buf := buf || '
     </rdf:Description>
     </rdf:RDF>
     </xmpMetadata>';
 
   xmp := XMLType.createXML(buf, 'http://xmlns.oracle.com/ord/meta/xmp'); 

   --    -- select image for update
   -- description is selected to force update of CTX index
   --
   SELECT image, description
   INTO img, des
   FROM photos
   WHERE id = entry_id
   FOR UPDATE;
 
   --
   -- write the metadata

Chapter 3
Description of the PL/SQL Photo Album Sample Application

3-20



   --
   img.putMetadata( xmp, 'XMP' );
 
   --
   -- save updated image and new metadata to table
   -- description updated to force update of CTX index
   --
   UPDATE photos
   SET image = img,
       metaXMP = xmp,
       description = des
   WHERE id = entry_id;
 
   -- update the text indexes
   sync_indexes;

3.3.7 Searching for Images That Contain Specific Metadata Attributes
You can use the Search metadata page of the photo album application to search for
specific metadata for images in a photo album.

You can use the Search metadata page to search a specific metadata type and to
limit your search to a specific tag within a metadata document. You can access the
Search metadata page by selecting the Search metadata link in the navigation bar of
any photo album application Web page.

The Search metadata page displays a form with four fields to define how the search is
to be performed. Use the menu in the Search in metadata: field to select the type of
metadata (EXIF, IPTC, or XMP) to be searched. When this field is changed, the fields
Search in tag: and Search method: are initialized with values that are appropriate to
the type of metadata search.

Use the drop-down list in the Search in tag: field to limit the search to a specific XML
element within a metadata document. The list is populated with element names that
are appropriate for the selected metadata type. When the value --Any tag-- is
showing, the search looks at all elements within the document type. When the XMP
metadata type is selected, searches are limited to Description elements within the
parent RDF element. If the metadata document is properly constructed, selecting RDF/
Description in this field searches all relevant metadata within XMP documents.

In the Search method: field, select Contains to specify a search where an element
contains the search string. Select Equals to specify a search where element values
are matched exactly to the search string. For searches in XMP metadata, only the
Contains search method is available.

Finally, enter a keyword or phrase in the Search string: field and click Search. If the
search is successful, the thumbnail versions of the matching images are displayed in a
four-column table. Select the thumbnail image to view the full-size version of an image.
Or, select the description link below the thumbnail image to view the metadata for the
image. If the search fails, the message "No photos matched the search criteria." is
displayed.

At the top of the Search metadata page, there is a navigation bar, which includes
links to other photo album pages. From the Search metadata page, you can return to
the View album page or select the Upload photo page.

Figure 3-7 shows a Search metadata page that contains sample search criteria and
results from a successful search operation.

Chapter 3
Description of the PL/SQL Photo Album Sample Application

3-21



Figure 3-7    Completed Search metadata Page for an Uploaded Image

The PL/SQL procedure search_metadata receives the form input fields from the Web
browser. The search parameters are used to build a query to find images that contain
the desired metadata. The search is accomplished using the SQL function XMLExists.
The XMLExists function is used to search an XML document for content that matches
a given XQuery expression. The function returns TRUE if the document matched the
search, and FALSE otherwise.

For example, assume that the search_metadata procedure receives input that specifies
to search the caption tag in IPTC metadata for an exact match of the word "farm". The
query to accomplish this search is as follows:

 SELECT id, description, thumb
 FROM photos
 WHERE xmlexists('declare default element namespace ' ||
                 ' "http://xmlns.oracle.com/ord/meta/iptc"; $x' ||
                 '/iptcMetadata[//caption="farm"]' passing metaIptc as "x");

The XPath component of the XQuery expression, '/iptcMetadata[//caption="farm"]',
specifies a search for all <caption> elements under the root element <iptcMetadata>
where the <caption> content is "farm".

See Also:

Oracle XML DB Developer's Guide for more information about the XMLExists
function

Example 3-11 contains some relevant lines of code in the search_metadata procedure.

Example 3-11    Procedure search_metadata

    -- Set up search variables for EXIF documents.
    IF mtype = 'exif' THEN

Chapter 3
Description of the PL/SQL Photo Album Sample Application

3-22



      IF op = 'equals' THEN
        xpath  := '/exifMetadata[//' || tag || '="' || c_search || '"]';
      ELSE  -- default to contains
        xpath  := '/exifMetadata//' || tag ||
                  '[contains(., "' || c_search || '")]';
      END IF;
 
      xquery := 'declare default element namespace ' ||
                ' "http://xmlns.oracle.com/ord/meta/exif"; $x' || xpath;
 
      OPEN album_cur FOR
        SELECT id, description, thumb
        FROM photos
        WHERE xmlexists(xquery passing metaExif as "x");
 
    -- Set up search variables for IPTC documents.
    ELSIF mtype = 'iptc' THEN
      IF op = 'equals' THEN
        xpath  := '/iptcMetadata[//' || tag || '="' || c_search || '"]';
      ELSE  -- default to contains
        xpath  := '/iptcMetadata//' || tag ||
                  '[contains(., "' || c_search || '")]';
      END IF;
 
      xquery := 'declare default element namespace ' ||
            ' "http://xmlns.oracle.com/ord/meta/iptc"; $x' || xpath;
 
      OPEN album_cur FOR
        SELECT id, description, thumb
        FROM photos
        WHERE xmlexists(xquery passing metaIptc as "x");
 
    -- Set up search variables for XMP documents.
    ELSIF mtype = 'xmp' THEN
      -- default to contains
      xpath  := '//rdf:Description//*[contains(., "'
                || c_search || '")]';
 
      -- Add rdf namespace prefix.
      xquery := 'declare namespace rdf = ' ||
             ' "http://www.w3.org/1999/02/22-rdf-syntax-ns#"; ' ||
             'declare default element namespace ' ||
             ' "http://xmlns.oracle.com/ord/meta/xmp"; $x' || xpath;
 
      OPEN album_cur FOR
        SELECT id, description, thumb
        FROM photos
        WHERE xmlexists(xquery passing metaXMP as "x");
 
    ELSE
      errorMsg := 'Search domain is invalid: ' || htf.escape_sc(mtype);
    END IF;
 
    print_search_form( mtype, tag, op, c_search );
    htp.print('<hr size="-1">');
    print_album( album_cur, 'No photos matched the search criteria.' );

Chapter 3
Description of the PL/SQL Photo Album Sample Application

3-23



4
Oracle Multimedia Code Wizard Sample
Application for the PL/SQL Gateway

The Oracle Multimedia Code Wizard sample application for the PL/SQL Gateway
creates PL/SQL procedures for the PL/SQL Gateway to upload and retrieve
multimedia data stored in a database using Oracle Multimedia object types.

This application assumes the following:

• You are familiar with developing PL/SQL applications using the PL/SQL Gateway.

• You have installed and configured the Oracle Multimedia Code Wizard sample
application.

You can install the Oracle Multimedia Code Wizard sample application from the Oracle
Database Examples media, which is available for download from the Oracle
Technology Network (OTN). After installing the Oracle Database Examples media, the
sample application files and README.txt file are located at:

<ORACLE_HOME>/ord/http/demo/plsgwycw (on Linux and UNIX)

<ORACLE_HOME>\ord\http\demo\plsgwycw (on Windows)

This chapter describes how to run the Code Wizard sample application. See the
README.txt file for additional requirements and instructions on installing and configuring
this sample application.

This chapter includes these sections:

• Running the Code Wizard Sample Application

• Description of the Code Wizard Sample Application

• Sample Session: Using Images

• Known Restrictions of the Oracle Multimedia Code Wizard

See Also:

Oracle Multimedia PL/SQL Photo Album Sample Application for a Photo
Album sample Web application that uses PL/SQL scripts to upload and
retrieve media using Oracle Multimedia object types

4.1 Running the Code Wizard Sample Application
This topic describes how to run the Code Wizard application.

To use the Code Wizard sample application to create and test media access
procedures, you must perform these steps:

4-1



1. Create a new database access descriptor (DAD) or choose an existing DAD for
use with the Code Wizard.

2. Authorize use of the DAD using the Code Wizard's administration function.

3. Create and test media upload and retrieval procedures.

4.2 Description of the Code Wizard Sample Application
You can use the Code Wizard sample application to create PL/SQL stored procedures
for the PL/SQL Gateway to upload and retrieve media data (images, audio, video, and
general media) stored in a database.

The Oracle Multimedia Code Wizard sample application uses these Oracle Multimedia
object types and their respective methods:

• ORDImage

• ORDAudio

• ORDVideo

• ORDDoc

The Code Wizard guides you through a series of self-explanatory steps to create
either a media retrieval procedure or a media upload procedure. You can create and
compile standalone media access procedures. Or, you can create the source of media
access procedures for inclusion in a PL/SQL package. Finally, after creating media
access procedures, you can customize them to meet your specific application
requirements.

These processes are similar to how the Oracle Multimedia PL/SQL Web Toolkit Photo
Album application uses the insert_new_photo procedure as the image upload
procedure, and the deliver_media procedure as the image retrieval procedure.

The following subsections describe how to use the Code Wizard application:

• Creating a New DAD or Choosing an Existing DAD

• Authorizing a DAD

• Creating and Testing Media Upload and Retrieval Procedures

• Creating a Media Upload Procedure

• Creating a Media Retrieval Procedure

• Using the PL/SQL Gateway Document Table

• How Time Zone Information Is Used to Support Browser Caching

Related Topics:

• Overview of the PL/SQL Photo Album Sample Application
This topic describes the setup process for the Oracle Multimedia PL/SQL Web
Toolkit Photo Album sample application.

4.2.1 Creating a New DAD or Choosing an Existing DAD
To create media upload or retrieval procedures, you must select one or more database
access descriptors (DADs) for use with the Code Wizard. To prevent the unauthorized
browsing of schema tables and to prevent the unauthorized creation of media access

Chapter 4
Description of the Code Wizard Sample Application

4-2



procedures, you must authorize each DAD using the Code Wizard administration
function.

Depending on your database and application security requirements, you can create
and authorize one or more new DADs specifically for use with the Code Wizard. Or,
you can authorize the use of one or more existing DADs.

Oracle recommends that any DAD authorized for use with the Code Wizard employ
some form of user authentication mechanism. The simplest approach is to create or
use a DAD that uses database authentication. To use this approach, select Basic
Authentication Mode and omit the password in the DAD specification. Alternatively,
you can use a DAD that specifies an existing application-specific authentication
mechanism.

The following example describes how to create a DAD that enables you to create and
test media upload and retrieval procedures in the SCOTT schema.

Note:

To test media upload procedures, you must specify the name of a document
table in the DAD. When testing an upload procedure, you can choose either
the DAD you used to create the procedure or the DAD you used to access the
application. You can choose a document table name when you create a DAD,
edit a DAD to specify the document table name at a later time, or use an
existing DAD that specifies a document table name. This example shows how
to specify the document table name when you create the DAD.

1. Set your Web browser to the Oracle HTTP Server Home page. Select PL/SQL
Properties in the Administration page to open the mod_plsql Services page.

2. Scroll to the DAD Status section on the mod_plsql Services page. Then, click
Create to open the DAD Type page.

3. Select the DAD type to be General. Then, click Next to open the Database
Connection page.

4. Enter /scottcw in the DAD Name field. Enter SCOTT for the database account, and
leave the password blank. Enter the connection information in the Database
Connectivity Information section. Enter ORDCWPKG.MENU in the Default page field, and
leave the other fields blank. Then, click Next to open the Document, Alias, and
Session page.

5. Enter MEDIA_UPLOAD_TABLE for the Document Table on the Document, Alias, and
Session page. Then, click Apply.

6. Restart Oracle HTTP Server for the changes to take effect.

See Also:

Oracle Database Development Guide for more information about configuring
DADs

Chapter 4
Description of the Code Wizard Sample Application

4-3



4.2.2 Authorizing a DAD
To use the Code Wizard, you must first authorize a database access descriptor (DAD).

To authorize a DAD for use with the Code Wizard, perform these steps:

1. Enter the Code Wizard's administration URL into the location bar for your browser.
For example:

http://<host-name>:<port-number>/ordcwadmin

2. Enter the user name and password when prompted by the browser.

3. Select DAD authorization from the Main menu, as shown in the following figure.
Then, click Next.

Figure 4-1    Main Menu for the Code Wizard

4. Enter the name of the DAD you want to authorize along with the user name, as
shown in the following figure. Then, click Apply.

Chapter 4
Description of the Code Wizard Sample Application

4-4



Figure 4-2    Authorize the SCOTTCW DAD

Note:

Duplicate DADs are not permitted, and each authorized DAD must indicate
which database schema the user is authorized to access with the Code
Wizard, using the DAD. Use this same page to delete the authorization for any
existing DADs that no longer require the Code Wizard.

5. Review the updated list of DADs that are authorized to use the Oracle Multimedia
Code Wizard, as shown in the following figure. Then, click Done.

Chapter 4
Description of the Code Wizard Sample Application

4-5



Figure 4-3    List of Authorized DADs

6. Select Logout from the Main menu to log out (clear HTTP authentication
information), then click Next. The log out operation redirects the request to the
PL/SQL Gateway built-in logmeoff function.

See Also:

Oracle Database Development Guide for more information about configuring
DADs

4.2.3 Creating and Testing Media Upload and Retrieval Procedures
After you specify and authorize a database access descriptor (DAD), you are ready to
run this application to create media upload and retrieval procedures.

To start the Code Wizard after completing all the setup tasks, follow these steps:

1. Enter the appropriate URL into the address field of your Web browser.

For example:

http://<hostname>:<port-number>/scottcw

or

http://<hostname>:<port-number>/mediadad/ordcwpkg.menu

2. Enter the user name and password when prompted by the browser. The Main
menu page of the Oracle Multimedia Code Wizard for the PL/SQL Gateway is
displayed, as shown in the following figure.

Chapter 4
Description of the Code Wizard Sample Application

4-6



Figure 4-4    Use the SCOTTCW DAD

3. If the DAD is configured specifically for use with the Code Wizard, enter the DAD
name. To use another DAD, enter the DAD name along with the Code Wizard
package name and Main menu procedure name (ORDCWPKG.MENU) after the DAD
name.

4. After logging in, you can log out (clear HTTP authentication information) at any
time by selecting Logout from the Main menu, then clicking Next. The logout
operation redirects the request to the PL/SQL Gateway built-in logmeoff function.

To create a media upload procedure or a media retrieval procedure, select the
appropriate option from the Main menu page, then click Next. The Code Wizard then
guides you through a series of self-explanatory steps to create the procedure.

If you create a standalone media upload or retrieval procedure, you will have the
opportunity to view the contents of the procedure and test it.

See Also:

Oracle Database Development Guide for more information about using the
embedded PL/SQL Gateway

Related Topics:

• Sample Session: Using Images
This sample session uses the SCOTT schema to demonstrate the creation of image
media upload and retrieval procedures. To use a different schema, substitute a

Chapter 4
Description of the Code Wizard Sample Application

4-7



different schema name and password. Or, if you have changed the password for
the SCOTT schema, use your new password.

• Creating a Media Upload Procedure
Follow this process to create a media upload procedure using the Oracle
Multimedia Code Wizard for the PL/SQL Gateway.

• Creating a Media Retrieval Procedure
Follow this process to create a media retrieval procedure using the Oracle
Multimedia Code Wizard for the PL/SQL Gateway.

4.2.4 Creating a Media Upload Procedure
Follow this process to create a media upload procedure using the Oracle Multimedia
Code Wizard for the PL/SQL Gateway.

1. Select Create media upload procedure from the Main menu page, as shown in 
Figure 4-5. Then, click Next.

Figure 4-5    Create a Media Upload Procedure

2. Select PHOTOS and Standalone procedure from Step 1: Select database table
and procedure type, as shown in Figure 4-6. Then, click Next.

Figure 4-6    Media Upload Step 1: Select Database Table and Procedure
Type

Chapter 4
Description of the Code Wizard Sample Application

4-8



3. Select Use existing document table from Step 2: Select PL/SQL Gateway
document upload table, as shown in Figure 4-7, because the SCOTTCW DAD is
configured to use this document table. Then, click Next.

Figure 4-7    Media Upload Step 2: Select PL/SQL Gateway Document Upload
Table

4. Check PHOTO (ORDIMAGE), select ID (Primary key), and select Conditional
insert or update from Step 3: Select data access and media column(s), as
shown in Figure 4-8. Then, click Next.

Chapter 4
Description of the Code Wizard Sample Application

4-9



Figure 4-8    Media Upload Step 3: Select Data Access and Media Column(s)

5. Check DESCRIPTION, accept the default procedure name,
UPLOAD_PHOTOS_PHOTO, and select Create procedure in the database
from Step 4: Select additional columns and procedure name, as shown in 
Figure 4-9. Then, click Next.

Chapter 4
Description of the Code Wizard Sample Application

4-10



Figure 4-9    Media Upload Step 4: Select Additional Columns and Procedure
Name

6. Review the options you selected from Step 5: Review selected options, as
shown in Figure 4-10. If the options selected are correct, click Finish.

Chapter 4
Description of the Code Wizard Sample Application

4-11



Figure 4-10    Media Upload Step 5: Review Selected Options

7. The message Procedure created successfully: UPLOAD_PHOTOS_PHOTO is displayed
on the Compile procedure and review generated source page, as shown in 
Figure 4-11.

Figure 4-11    Compiled Upload Procedure with Success Message

Chapter 4
Description of the Code Wizard Sample Application

4-12



To review the compiled PL/SQL source code in another window, click View.
Assuming you have configured the SCOTTCW DAD and specified MEDIA_UPLOAD_TABLE
as the document table, in the DAD: field, the DAD name scottcw is displayed by
default.

To test the PL/SQL procedure created, click Test.

The Oracle Multimedia Code Wizard: Template Upload Form is displayed in
another window.

8. Enter the value 1 in the ID field on the Oracle Multimedia Code Wizard:
Template Upload Form window. Click Browse... to find and select the image you
want to upload in the PHOTO field, and enter a brief description of the image to be
uploaded in the DESCRIPTION field, as shown in Figure 4-12. Then, click Upload
media.

Figure 4-12    Template Upload Form for the Code Wizard

The image is uploaded into the table row, and this message is displayed:

Media uploaded successfully.

9. Return to the Compile procedure and review generated source page. If you are
finished testing, click Done to return to the Main menu page.

Related Topics:

• Sample Session: Using Images
This sample session uses the SCOTT schema to demonstrate the creation of image
media upload and retrieval procedures. To use a different schema, substitute a
different schema name and password. Or, if you have changed the password for
the SCOTT schema, use your new password.

4.2.5 Creating a Media Retrieval Procedure
Follow this process to create a media retrieval procedure using the Oracle Multimedia
Code Wizard for the PL/SQL Gateway.

1. Select Create media retrieval procedure from the Main menu page, as shown in 
Figure 4-13. Then, click Next.

Chapter 4
Description of the Code Wizard Sample Application

4-13



Figure 4-13    Create a Media Retrieval Procedure

2. Select PHOTOS and Standalone procedure from Step 1: Select database table
and procedure type, as shown in Figure 4-14. Then, click Next.

Figure 4-14    Media Retrieval Step 1: Select Database Table and Procedure
Type

3. Select PHOTO (ORDIMAGE) and ID (Primary key) from Step 2: Select media
column and key column, as shown in Figure 4-15. Then, click Next.

Chapter 4
Description of the Code Wizard Sample Application

4-14



Figure 4-15    Media Retrieval Step 2: Select Media Column and Key Column

4. Accept the default procedure name, GET_PHOTOS_PHOTO, the default parameter
name, MEDIA_ID, and Create procedure in the database from Step 3: Select
procedure name and parameter name, as shown in Figure 4-16. Then, click
Next.

Chapter 4
Description of the Code Wizard Sample Application

4-15



Figure 4-16    Media Retrieval Step 3: Select Procedure Name and Parameter
Name

5. Review the options you selected from Step 4: Review Selected Options, as
shown in Figure 4-17. If the options selected are correct, click Finish.

Figure 4-17    Media Retrieval Step 4: Review Selected Options

Chapter 4
Description of the Code Wizard Sample Application

4-16



6. The message Procedure created successfully: GET_PHOTOS_PHOTO is displayed in
the Compile procedure and review generated source page, as shown in 
Figure 4-18.

Figure 4-18    Compiled Retrieval Procedure with Success Message

To review the compiled PL/SQL source code in another window, click View.

To test the PL/SQL procedure created, assuming you have an image loaded in the
database with an ID value of 1, enter the value 1 for the Key parameter (MEDIA_ID),
then click Test.

The image is retrieved from the table row and displayed in another window.

7. Click Done to return to the Main menu page.

Related Topics:

• Sample Session: Using Images
This sample session uses the SCOTT schema to demonstrate the creation of image
media upload and retrieval procedures. To use a different schema, substitute a
different schema name and password. Or, if you have changed the password for
the SCOTT schema, use your new password.

4.2.6 Using the PL/SQL Gateway Document Table
All files uploaded using the PL/SQL Gateway are stored in a document table. Media
upload procedures created by the Code Wizard automatically move uploaded media

Chapter 4
Description of the Code Wizard Sample Application

4-17



from the specified document table to the application's table. To avoid transient files
from appearing temporarily in a document table used by another application
component, use a document table that is not being used to store documents
permanently.

Specify the selected document table in the application's database access descriptor
(DAD). If the DAD specifies a different document table, create a new DAD for media
upload procedures. If you choose to create a new document table, the Code Wizard
creates a table with the following format:

CREATE TABLE document-table-name
  ( name           VARCHAR2(256) UNIQUE NOT NULL,
    mime_type      VARCHAR2(128),
    doc_size       NUMBER,
    dad_charset    VARCHAR2(128),
    last_updated   DATE,
    content_type   VARCHAR2(128),
    blob_content   BLOB )
-- 
-- store BLOBs as SecureFiles LOBs
-- 
LOB(blob_content)  STORE AS SECUREFILE;

See Also:

Oracle Database Development Guide for more information about file upload
and document tables

4.2.7 How Time Zone Information Is Used to Support Browser Caching
User response times are improved and network traffic is reduced if a browser can
cache resources received from a Web server and subsequently use those cached
resources to satisfy future requests. This section describes, at a very high level, how
the browser caching mechanism works and how the Code Wizard utility package is
used to support that mechanism. Within this discussion, all HTTP date and time
stamps are expressed in Coordinated Universal Time (UTC).

All HTTP responses include a Date header, which indicates the date and time when
the response was generated. When a Web server sends a resource in response to a
request from a browser, it can also include the Last-Modified HTTP response header,
which indicates the date and time when the requested resource was last modified. The
Last-Modified header must not be later than the Date header.

After receiving and caching a resource, if a browser must retrieve the same resource
again, it sends a request to the Web server with the If-Modified-Since request header
specified as the value of the Last-Modified date, which was returned by the application
server when the resource was previously retrieved and cached. When the Web server
receives the request, it compares the date in the If-Modified-Since request header with
the last update time of the resource. Assuming the resource still exists, if the resource
has not changed since it was cached by the browser, the Web server responds with an
HTTP 304 Not Modified status with no response body, which indicates that the browser
can use the resource currently stored in its cache. Assuming again that the resource
still exists, if the request does not include an If-Modified-Since header or if the

Chapter 4
Description of the Code Wizard Sample Application

4-18



resource has been updated since it was cached by the browser, the Web server
responds with an HTTP 200 OK status and sends the resource to the browser.

The ORDImage, ORDAudio, ORDVideo, and ORDDoc objects all possess an
updateTime attribute stored as a DATE in the embedded ORDSource object. Although
the DATE data type has no support for time zones or daylight savings time, Oracle
Database does support time zones and also provides functions for converting a DATE
value stored in a database to UTC.

When a response is first returned to a browser, a media retrieval procedure sets the
Last-Modified HTTP response header based on the updateTime attribute. If a request
for media data includes an If-Modified-Since header, the media retrieval procedure
compares the value with the updateTime attribute and returns an appropriate
response. If the resource in the browser's cache is still valid, an HTTP 304 Not
Modified status is returned with no response body. If the resource has been updated
since it was cached by the browser, then an HTTP 200 OK status is returned with the
media resource as the response body. Media retrieval procedures created by the
Code Wizard call the utility package to convert a DATE value stored in the database to
UTC. The utility package uses the time zone information stored with Oracle Database
and the date and time functions to convert database date and time stamps to UTC. To
ensure that the resulting date conforms to the rule for the Last-Modified date described
previously, the time zone information must be specified correctly.

See Also:

• W3C HTTP- Hypertext Transfer Protocol for more information about the
HTTP specification

• Oracle Database Administrator's Guide for more information about how to
set a time zone for a database

• Oracle Database SQL Language Reference for more information about
date and time functions

4.3 Sample Session: Using Images
This sample session uses the SCOTT schema to demonstrate the creation of image
media upload and retrieval procedures. To use a different schema, substitute a
different schema name and password. Or, if you have changed the password for the
SCOTT schema, use your new password.

Perform these steps:

Step 1. Create a table to store images for the application after connecting to a
schema with privileges to create a table.
For example:

SQL> CREATE TABLE cw_images_table( id NUMBER PRIMARY KEY,
                                  description VARCHAR2(30) NOT NULL,
                                  location VARCHAR2(30),
                                  image ORDSYS.ORDIMAGE )
--
-- store media as SecureFiles LOBs

Chapter 4
Sample Session: Using Images

4-19



--
LOB(image.source.localdata)  STORE AS SECUREFILE;

Step 2. Create the SCOTTCW DAD to be used to create the procedures.

1. Set your Web browser to the Oracle HTTP Server Home page. Select PL/SQL
Properties in the Administration page to open the mod_plsql Services page.

2. On the mod_plsql Services page, scroll to the DAD Status section. Then, click
Create to open the DAD Type page.

3. Select the DAD type to be General. Then, click Next to open the Database
Connection page.

4. Enter /scottcw in the DAD Name field. Enter SCOTT for the database account, and
leave the password blank. Enter the connection information in the Database
Connectivity Information section. Enter ORDCWPKG.MENU in the Default page field,
and leave the other fields blank. Then, click Next to open the Document, Alias,
and Session page.

5. On the Document, Alias, and Session page, enter MEDIA_UPLOAD_TABLE for the
Document Table. Then, click Apply.

6. Restart Oracle HTTP Server for the changes to take effect.

Step 3. Authorize the use of the SCOTTCW DAD and SCOTT schema with the Code
Wizard.

1. Enter the Code Wizard's administration URL into your browser's location bar, then
enter the ORDSYS user name and password when prompted by the browser, for
example:

http://<hostname>:<port-number>/ordcwadmin

2. Select the DAD authorization function from the Code Wizard's Main menu and
click Next. Enter the name of the demonstration DAD, SCOTTCW, and the user name
SCOTT, then click Apply. Click Done when the confirmation window is displayed.

Step 4. Change DADs to the SCOTTCW DAD.

1. Click Change DAD from the Code Wizard's Main menu.

2. Click Change to SCOTTCW, if it is not already selected, then click Next.

3. Enter the user name SCOTT and the password for the user SCOTT when prompted
for the user name and password, then click OK.

The Main menu now displays the current DAD as SCOTTCW and the current
schema as SCOTT.

Step 5. Create and test the media upload procedure.
Click Create media upload procedure from the Main menu, then click Next.

1. Select the database table and procedure type.

a. Click the CW_IMAGES_TABLE database table.

b. Click Standalone procedure.

c. Click Next.

2. Select the PL/SQL document upload table.

Chapter 4
Sample Session: Using Images

4-20



If there are no document tables in the SCOTT schema, the Code Wizard displays a
message indicating this situation. In this case, accept the default table name
provided, CW_SAMPLE_UPLOAD_TABLE, then click Next.

If there are existing document tables, but the CW_SAMPLE_UPLOAD_TABLE is not among
them, click Create new document table, accept the default table name provided,
CW_SAMPLE_UPLOAD_TABLE, then click Next.

If the CW_SAMPLE_UPLOAD_TABLE document table already exists, ensure that the Use
existing document table and the CW_SAMPLE_UPLOAD_TABLE options are
selected. Click Next.

3. Select the data access and media columns.

a. Click IMAGE (ORDIMAGE).

b. Click ID (Primary key).

c. Click Conditional insert or update.

d. Click Next.

4. Select additional columns and procedure names.

a. Ensure that DESCRIPTION checkmarked because this column has a NOT
NULL constraint. (The LOCATION column is not checkmarked by default as
there are no constraints on this column.)

b. Accept the procedure name provided, UPLOAD_CW_IMAGES_TABLE_IMAGE.

c. Click Create procedure in the database.

d. Click Next.

5. Review the following selected procedure creation options that are displayed:

Procedure type:        Standalone
Table name:            CW_IMAGES_TABLE
Media column(s):       IMAGE (ORDIMAGE)
Key column:            ID
Additional column(s):  DESCRIPTION
Table access mode:     Conditional update or insert
Procedure name:        UPLOAD_CW_IMAGES_TABLE_IMAGE
Function:              Create procedure in the database

Click Finish.

6. Compile the procedure and review the generated source information.

The Code Wizard displays this message:

Procedure created successfully: UPLOAD_CW_IMAGES_TABLE_IMAGE

a. At the option Click to display generated source:, click View to view the
generated source in another window. A copy of the generated source is
shown at the end of Step 5, substep 6g.

b. Close the window after looking at the generated source.

c. Accept the DAD: name provided, SCOTTCW, then click Test to produce another
window that displays a template file upload form that you can use to test the
generated procedure.

Chapter 4
Sample Session: Using Images

4-21



d. To customize the template file upload form, select Save As... from your
browser's File menu to save the HTML source for editing.

e. To test the template upload form, enter this information:

• For the ID: column, enter the number 1 as the row's primary key.

• For the IMAGE column, click Browse... and choose an image file to
upload to the database.

• For the DESCRIPTION column, enter a brief description of the image.

• Click Upload media.

The Code Wizard displays a template completion window with the heading
Oracle Multimedia Code Wizard: Template Upload Procedure, and, if the
procedure is successful, the message: Media uploaded successfully.

f. Close the window.

g. Click Done on the Compile procedure and review generated source
window to return to the Main menu of the Code Wizard.

A copy of the generated image upload procedure follows:

CREATE OR REPLACE PROCEDURE UPLOAD_CW_IMAGES_TABLE_IMAGE
  ( in_ID IN VARCHAR2,
    in_IMAGE IN VARCHAR2 DEFAULT NULL,
    in_DESCRIPTION IN VARCHAR2 DEFAULT NULL )
AS
  local_IMAGE ORDSYS.ORDIMAGE := ORDSYS.ORDIMAGE.init();
  local_ID CW_IMAGES_TABLE.ID%TYPE := NULL;
  upload_size     INTEGER;
  upload_mimetype VARCHAR2( 128 );
  upload_blob     BLOB;
BEGIN
  --
  -- Update the existing row.
  --
  UPDATE CW_IMAGES_TABLE mtbl
    SET mtbl.IMAGE = local_IMAGE,
        mtbl.DESCRIPTION = in_DESCRIPTION
    WHERE mtbl.ID = in_ID
    RETURN mtbl.ID INTO local_ID;
  --
  -- Conditionally insert a new row if no existing row is updated.
  --
  IF local_ID IS NULL
  THEN
    --
    -- Insert the new row into the table.
    --
    INSERT INTO CW_IMAGES_TABLE ( ID, IMAGE, DESCRIPTION )
      VALUES ( in_ID, local_IMAGE, in_DESCRIPTION );
  END IF;
  --
  -- Select Oracle Multimedia object(s) for update.
  --
  SELECT mtbl.IMAGE INTO local_IMAGE
    FROM CW_IMAGES_TABLE mtbl WHERE mtbl.ID = in_ID FOR UPDATE;
  --

Chapter 4
Sample Session: Using Images

4-22



  -- Store media data for the column in_IMAGE.
  --
  IF in_IMAGE IS NOT NULL
  THEN
    SELECT dtbl.doc_size, dtbl.mime_type, dtbl.blob_content INTO
           upload_size, upload_mimetype, upload_blob
      FROM CW_IMAGE_UPLOAD_TABLE dtbl WHERE dtbl.name = in_IMAGE;
    IF upload_size &gt; 0
    THEN
      dbms_lob.copy( local_IMAGE.source.localData, 
                     upload_blob, 
                     upload_size );
      local_IMAGE.setLocal();
      BEGIN
        local_IMAGE.setProperties();
      EXCEPTION
        WHEN OTHERS THEN
          local_IMAGE.contentLength := upload_size;
          local_IMAGE.mimeType := upload_mimetype;
      END;
    END IF;
    DELETE FROM CW_IMAGE_UPLOAD_TABLE dtbl WHERE dtbl.name = in_IMAGE;
  END IF;
  --
  -- Update Oracle Multimedia objects in the table.
  --
  UPDATE CW_IMAGES_TABLE mtbl
    SET mtbl.IMAGE = local_IMAGE
    WHERE mtbl.ID = in_ID;
  --
  -- Display the template completion message.
  --
  htp.print( '&lt;html&gt;' );
  htp.print( '&lt;title&gt;Oracle Multimedia Code Wizard: Template Upload
Procedure&lt;/title&gt;' );
  htp.print( '&lt;body&gt;' );
  htp.print( '&lt;h2&gt; Oracle Multimedia Code Wizard:
Template Upload Procedure&lt;/h2&gt;' );
  htp.print( 'Media uploaded successfully.' );
  htp.print( '&lt;/body&gt;' );
  htp.print( '&lt;/html&gt;' );
END UPLOAD_CW_IMAGES_TABLE_IMAGE;

The previous image upload procedure declares these input parameters and
variables:

a. In the declaration section, the procedure declares three input parameters:
in_ID, in_IMAGE, and in_DESCRIPTION, then initializes the latter two to NULL.

b. In the subprogram section, the following variables are declared:

• The variable local_IMAGE is assigned the data type ORDSYS.ORDIMAGE
and initialized with an empty BLOB using the ORDIMAGE.init( ) method.

• The variable local_ID takes the same data type as the ID column in the
table CW_IMAGES_TABLE and is initialized to NULL.

Chapter 4
Sample Session: Using Images

4-23



• Three additional variables are declared upload_size, upload_mimetype, and
upload_blob, which are later given values from comparable column names
doc_size, mime_type, and blob_content from the document table
CW_IMAGE_UPLOAD_TABLE, using a SELECT statement in preparation for
copying the content of the image BLOB data to the
ORDSYS.ORDIMAGE.source.localData attribute.

Within the outer BEGIN...END executable statement section, the following
operations are executed:

a. Update the existing row in the table CW_IMAGES_TABLE for the IMAGE and
DESCRIPTION columns and return the value of local_ID where the value of the
ID column is the value of the in_ID input parameter.

b. If the value returned of local_ID is NULL, conditionally insert a new row into the
table CW_IMAGES_TABLE and initialize the instance of the ORDImage object type
in the image column with an empty BLOB.

c. Select the ORDImage object column IMAGE in the table CW_IMAGES_TABLE for
update where the value of the ID column is the value of the in_ID input
parameter.

d. Select a row for the doc_size, mime_type, and blob_content columns from the
document table and pass the values to the upload_size, upload_mimetype, and
upload_blob variables where the value of the document table Name column is
the value of the in_IMAGE input parameter.

e. Perform a DBMS_LOB copy of the BLOB data from the table
CW_IMAGE_UPLOAD_TABLE into the ORDSYS.ORDIMAGE.source.localData
attribute, then call the setLocal( ) method to indicate that the image data is
stored locally in the BLOB, and ORDImage methods are to look for
corresponding data in the source.localData attribute.

f. In the inner executable block, call the ORDImage setProperties( ) method to
read the image data to get the values of the object attributes and store them
in the image object attributes for the ORDImage object.

g. If the setProperties( ) call fails, catch the exception and call the
contentLength( ) method to get the size of the image and call the mimeType( )
method to get the MIME type of the image.

h. Delete the row of data from the document table CW_IMAGE_UPLOAD_TABLE that
was copied to the row in the table CW_IMAGES_TABLE where the value of the Name
column is the value of the in_IMAGE input parameter.

i. Update the ORDImage object IMAGE column in the table CW_IMAGES_TABLE with
the content of the variable local_IMAGE where the value of the ID column is the
value of the in_ID input parameter.

j. Display a completion message on the HTML page to indicate that the media
uploaded successfully using the htp.print function from the PL/SQL Web
Toolkit.

Step 6. Create and test a media retrieval.
Select Create media retrieval procedure from the Main menu, then click Next.

1. Select the database table and procedure type.

Chapter 4
Sample Session: Using Images

4-24



a. Click CW_IMAGES_TABLE.

b. Click Standalone procedure.

c. Click Next.

2. Select the media column and key column.

a. Click IMAGE (ORDIMAGE).

b. Click ID (Primary key).

c. Click Next.

3. Select the procedure name and parameter name.

a. Accept the procedure name provided, GET_CW_IMAGES_TABLE_IMAGE.

b. Accept the parameter name provided, MEDIA_ID.

c. Click Create procedure in the database.

d. Click Next.

4. Review the following selected procedure creation options:

5. Procedure type:        Standalone
Table name:            CW_IMAGES_TABLE
Media column(s):       IMAGE (ORDIMAGE)
Key column:            ID
Procedure name:        GET_CW_IMAGES_TABLE_IMAGE
Parameter Name:        MEDIA_ID
Function:              Create procedure in the database

Click Next.

6. Compile the procedure and review the generated source.

The Code Wizard displays this message:

Procedure created successfully: GET_CW_IMAGES_TABLE_IMAGE

a. Click View to view the generated source in another window. Close the
window after looking at the generated source. A copy of the generated source
is shown at the end of Step 6, substep 5e.

b. Review the URL format used to retrieve images using the
GET_CW_IMAGES_TABLE_IMAGE procedure.

c. Enter the number 1 as the Key parameter, then click Test to test the
procedure by retrieving the image uploaded previously.

The retrieved image is displayed in another window.

d. Close the window.

e. Click Done to return to the Main menu.

A copy of the generated image retrieval procedure follows:

CREATE OR REPLACE PROCEDURE GET_CW_IMAGES_TABLE_IMAGE (
 MEDIA_ID IN VARCHAR2 )
AS
  localObject ORDSYS.ORDIMAGE;
  localBlob  BLOB;

Chapter 4
Sample Session: Using Images

4-25



  localBfile BFILE;
  httpStatus NUMBER;
  lastModDate VARCHAR2(256);
BEGIN
  --
  -- Retrieve the object from the database into a local object.
  --
  BEGIN
    SELECT mtbl.IMAGE INTO localObject FROM CW_IMAGES_TABLE mtbl
      WHERE mtbl.ID = MEDIA_ID;
  EXCEPTION
    WHEN NO_DATA_FOUND THEN
      ordplsgwyutil.resource_not_found( 'MEDIA_ID', MEDIA_ID );
      RETURN;
  END;

  --
  -- Check the update time if the browser sent an If-Modified-Since header.
  --
  IF ordplsgwyutil.cache_is_valid( localObject.getUpdateTime() )
  THEN
    owa_util.status_line( ordplsgwyutil.http_status_not_modified );
    RETURN;
  END IF;

  --
  -- Figure out where the image is.
  --
  IF localObject.isLocal() THEN
    --
    -- Data is stored locally in the localData BLOB attribute.
    --
    localBlob := localObject.getContent();
    owa_util.mime_header( localObject.getMimeType(), FALSE );
    ordplsgwyutil.set_last_modified( localObject.getUpdateTime() );
    owa_util.http_header_close();
    IF owa_util.get_cgi_env( 'REQUEST_METHOD' ) &lt;&gt; 'HEAD' THEN
      wpg_docload.download_file( localBlob );
    END IF;
  ELSIF UPPER( localObject.getSourceType() ) = 'FILE' THEN

    --
    -- Data is stored as a file from which ORDSource creates 
    -- a BFILE.
    --
    localBfile  := localObject.getBFILE();
    owa_util.mime_header( localObject.getMimeType(), FALSE );
    ordplsgwyutil.set_last_modified( localObject.getUpdateTime() );
    owa_util.http_header_close();
    IF owa_util.get_cgi_env( 'REQUEST_METHOD' ) &lt;&gt; 'HEAD' THEN
      wpg_docload.download_file( localBfile );
    END IF;

  ELSIF UPPER( localObject.getSourceType() ) = 'HTTP' THEN    --
    -- The image is referenced as an HTTP entity, so we have to 
    -- redirect the client to the URL that ORDSource provides.
    --
    owa_util.redirect_url( localObject.getSource() );

Chapter 4
Sample Session: Using Images

4-26



  ELSE
    --
    -- The image is stored in an application-specific data
    -- source type for which no default action is available.
    --
    NULL;
  END IF;
END GET_CW_IMAGES_TABLE_IMAGE;

The image retrieval procedure shown previously declares these input parameters
and variables:

a. In the declaration section, the procedure declares one input parameter:
MEDIA_ID.

b. In the subprogram section, the following variables are declared:

• The variable localObject is assigned the data type
ORDSYS.ORDIMAGE.

• The variable localBlob is a BLOB data type, the variable localBfile is a
BFILE data type, httpStatus is a NUMBER, and lastModDate is a
VARCHAR2 with a maximum size of 256 characters.

Within the outer BEGIN...END executable statement section, the following
operations are executed:

a. Select the ORDImage object column IMAGE in the table CW_IMAGES_TABLE where
the value of the ID column is the value of the MEDIA_ID input parameter.

b. In the inner executable block, when no data is found, raise an exception and
call the resource_not_found function of the PL/SQL Gateway and get the value
of the MEDIA_ID input parameter.

c. Check the update time if the browser sent an If-Modified-Since header by
calling the getUpdateTime( ) method passed into the cache_is_valid function
of the PL/SQL Gateway.

d. If the cache is valid, send an HTTP status code to the client using the PL/SQL
Web Toolkit owa_util package status_line procedure passing in the call to
the http_status_not_modified function.

e. Determine where the image data is stored; call the ORDImage isLocal( )
method, which returns a Boolean expression of true if the image data is
stored locally in the BLOB, then get the handle to the local BLOB.

• If the value is true, assign the variable localBlob the ORDImage
getContent( ) method to get the handle of the local BLOB containing the
image data.

• Call the ORDImage getMimeType( ) method to determine the image's
MIME type and pass this to the owa_util.mime_header procedure and keep
the HTTP header open.

• Call the ORDImage getUpdateTime( ) method to get the time the image
was last modified and pass this to the ordplsgwyutil.set_last_modified
procedure.

Chapter 4
Sample Session: Using Images

4-27



• Close the HTTP header by calling the owa_util.http_header_close( )
procedure.

• Call the owa_util.get_cgi_env procedure and if the value of the request
method is not HEAD, then use the wpg_docload.download_file procedure to
pass in the value of localBlob that contains the LOB locator of the BLOB
containing the image data to download the image from the database.

f. If the ORDImage isLocal( ) method returns false, call the ORDImage
getSourceType( ) method to determine if the value is FILE; if so, then the
image data is stored as an external file on the local file system. Then, get the
LOB locator of the BFILE containing the image data.

• Assign the variable localBfile the ORDImage getBfile( ) method to get
the LOB locator of the BFILE containing the image data.

• Call the ORDImage getMimeType( ) method to determine the image's
MIME type and pass this to the owa_util.mime_header procedure and keep
the HTTP header open.

• Call the ORDImage getUpdateTime( ) method to get the time the image
was last modified and pass this to the ordplsgwyutil.set_last_modified
procedure.

• Close the HTTP header by calling the owa_util.http_header_close()
procedure.

• Call the owa_util.get_cgi_env procedure and if the value of the request
method is not HEAD, then use the wpg_docload.download_file procedure to
pass in the value of localBfile that contains the LOB locator of the BFILE
containing the image data to download the image from the file.

g. If the ORDImage isLocal( ) method returns false, call the ORDImage
getSourceType( ) method to determine if the value is HTTP; if so, then the
image data is stored at an HTTP URL location, which then redirects the client
to the URL that ORDSource provides using the owa_util.redirect_url
procedure.

h. If the ORDImage isLocal( ) method returns false, call the ORDImage
getSourceType( ) method to determine if the value is FILE or HTTP; if it is
neither, then the image is stored in an application-specific data source type
that is not recognized or supported by Oracle Multimedia.

See Also:

Oracle Database Security Guide for more information about creating secure
passwords

4.4 Known Restrictions of the Oracle Multimedia Code
Wizard

The Code Wizard supports the features of Oracle Multimedia, with a few known
restrictions.

The following restrictions are known for the Oracle Multimedia Code Wizard:

Chapter 4
Known Restrictions of the Oracle Multimedia Code Wizard

4-28



• Tables with composite primary keys are not supported.

To use a table with a composite primary key, create an upload or download
procedure, then edit the generated source to support all the primary key columns.
For example, for a media retrieval procedure, this might involve adding an
additional parameter, then specifying that parameter in the where clause of the
SELECT statement.

• User object types containing embedded Oracle Multimedia object types are not
recognized by the Oracle Multimedia Code Wizard.

Chapter 4
Known Restrictions of the Oracle Multimedia Code Wizard

4-29



5
Working with Metadata in Oracle
Multimedia Images

Image files can contain information about the content of the images, the image pixel
data, and image metadata.

In general, data about data is referred to as metadata. In this case, metadata refers to
additional information about the actual images, which is stored in the image files along
with the images.

This chapter includes these sections:

• Metadata Concepts

• Oracle Multimedia Image Metadata Concepts

• Image File Formats

• Image Metadata Formats

• Representing Metadata Outside Images

• Oracle Multimedia Image Metadata Examples

• Metadata References

5.1 Metadata Concepts
Several types of metadata can be stored in an image file, and each type can serve a
different purpose.

One type, technical metadata, is used to describe an image in a technical sense. For
example, technical metadata can include attributes about an image, such as its height
and width, in pixels, or the type of compression used to store it.

Another type, content metadata, can further describe the content of an image, the
name of the photographer, and the date and time when a photograph was taken.

Metadata is stored in image files using a variety of mechanisms. Digital cameras and
scanners automatically insert metadata into the images they create. Digital photograph
processing applications like Adobe Photoshop enable users to add or edit metadata to
be stored with the image. Annotating digital images with additional metadata is a
common practice in photographic and news gathering applications, for image archiving
usages, and at the consumer level.

Storing metadata with image data in the same containing file provides encapsulation.
With encapsulation, both types of data can be shared and exchanged reliably as one
unit. Metadata that is stored in the image file format is referred to as embedded
metadata.

5-1



5.2 Oracle Multimedia Image Metadata Concepts
For a number of image file formats, Oracle Multimedia can extract and manage a
limited set of metadata attributes. These attributes include: height, width,
contentLength, fileFormat, contentFormat, compressionFormat, and mimeType. For a
limited number of image file formats, Oracle Multimedia can extract a rich set of
metadata attributes. This metadata is represented in schema-based XML documents.
These XML documents can be stored in a database, indexed, searched, updated, and
made available to applications using the standard mechanisms of Oracle Database.

Oracle Multimedia can also write or embed metadata supplied by users into a limited
number of image file formats. The application provides the metadata as a schema-
based XML document. Oracle Multimedia processes the XML document and writes the
metadata into the image file.

5.3 Image File Formats
Oracle Multimedia supports metadata extraction and metadata embedding for the GIF,
TIFF, and JPEG file formats.

See Also:

Oracle Multimedia Reference for information about the image file formats
supported by Oracle Multimedia

5.4 Image Metadata Formats
The term image metadata format refers to the standard protocols and techniques used
to store image metadata within an image file.

The following subsections describe the embedded image metadata formats supported
by Oracle Multimedia:

• EXIF

• IPTC–IIM

• XMP

5.4.1 EXIF
Oracle Multimedia supports the extraction of EXIF metadata from TIFF and JPEG file
formats.

The Exchangeable Image File Format (EXIF) is the standard for image file storage for
digital still cameras. It was developed by the Japan Electronic Industry Development
Association (JEIDA) as a standard way of storing images created by digital cameras
and metadata about the images. EXIF image metadata can be stored in TIFF and
JPEG format images.

Chapter 5
Oracle Multimedia Image Metadata Concepts

5-2



5.4.2 IPTC–IIM
Oracle Multimedia supports the extraction of IPTC metadata from TIFF and JPEG file
formats.

The International Press Telecommunications Council-Information Interchange Model
(IPTC-IIM) Version 4 is a standard developed jointly by the International Press
Telecommunications Council and the Newspaper Association of America. This
metadata standard is designed to capture information that is important to the activities
of news gathering, reporting, and publishing. These information records are commonly
referred to as IPTC tags.

The use of embedded IPTC tags in image file formats became widespread with the
use of the Adobe Photoshop tool for image editing. IPTC metadata can be stored in
TIFF and JPEG format images.

5.4.3 XMP
Oracle Multimedia supports the extraction of XMP metadata from GIF, TIFF, and
JPEG file formats. Oracle Multimedia also supports writing XMP data packets into GIF,
TIFF, and JPEG file formats.

The Extensible Metadata Platform (XMP) is a standard metadata format, developed by
Adobe, for the creation, processing, and interchange of metadata in a variety of
applications. XMP uses Resource Description Framework (RDF) technology for data
modeling. XMP also defines how the data model is serialized (converted to a byte
stream), and embedded within an image file.

5.5 Representing Metadata Outside Images
After metadata has been extracted from the binary image file, the next step is to
represent the metadata in a form that can be easily stored, indexed, queried, updated,
and presented.

Oracle Multimedia returns image metadata in XML documents. These documents are
based on XML schemas that Oracle Multimedia registers with the database. Each type
of image metadata has a separate XML schema. These XML schemas are used by
the metadata procedures and methods of the ORD_IMAGE PL/SQL package and the
ORDImage object type, respectively.

The XML documents can be stored in XMLType columns within the database. These
documents are easily searched and processed using the wide range of standards-
based XML technologies provided by Oracle XML DB.

See Also:

• Oracle Multimedia Reference for complete definitions of the XML schemas
supported by Oracle Multimedia

• Oracle XML DB Developer's Guide for more information about the XML
technologies provided by Oracle XML DB

Chapter 5
Representing Metadata Outside Images

5-3



5.6 Oracle Multimedia Image Metadata Examples
This topic introduces a set of examples that show how to extract and embed image
metadata using a table from the Oracle Multimedia PL/SQL Web Toolkit Photo Album
sample application.

The following examples of metadata extraction and embedding use the photos table,
which is defined by the Photo Album sample application. The implementation of the
Photo Album sample application is defined in the PL/SQL package PHOTO_ALBUM.

The photos table stores two instances of an image: the full-size photograph and a
thumbnail image. This table can also store up to four different image metadata
documents. These documents are stored in the columns named metaORDImage,
metaEXIF, metaIPTC, and metaXMP, and represent image metadata from the ORDImage,
EXIF, IPTC, and XMP metadata formats, respectively. The metadata columns are of
type XMLType, and they are bound to the corresponding metadata XML schemas that
Oracle Multimedia provides.

The following subsections describe some operations you can perform with image
metadata using the ORDImage object type:

• Creating a Table for Metadata Storage

• Extracting Image Metadata

• Embedding Image Metadata

Note:

These examples could have used BLOBs to store the image and thumbnail
image, and the ORD_IMAGE PL/SQL package instead of ORDImage object
methods.

Related Topics:

• Oracle Multimedia PL/SQL Photo Album Sample Application
The Oracle Multimedia PL/SQL Web Toolkit Photo Album sample application is a
media upload and retrieval Web application using Oracle Multimedia object types.
This application uses the PL/SQL Gateway and PL/SQL Web Toolkit.

5.6.1 Creating a Table for Metadata Storage
Before you can extract or embed metadata, you must create the table and columns
where the metadata is to be stored.

The following PL/SQL code segment creates the photos table with four XMLTYPE
columns (metaORDImage, metaEXIF, metaIPTC, and metaXMP) to store each type of image
metadata, and two ORDIMAGE columns (image and thumb) for the original image and
the thumbnail image, respectively. Although this example shows the use of the
ORDImage object type, the columns image and thumb could be of type BLOB rather
than ORDImage.

Chapter 5
Oracle Multimedia Image Metadata Examples

5-4



Each metadata column is bound to its corresponding metadata schema. For example,
the column metaEXIF is bound to the XML schema with namespace http://
xmlns.oracle.com/ord/meta/exif, and is defined as the XML element exifMetadata.

The code statements where the image metadata columns are defined and bound to
XML schemas are highlighted in bold.

--
-- Create the PHOTOS table
--
CREATE TABLE photos( id           NUMBER PRIMARY KEY,
                     description  VARCHAR2(40) NOT NULL,
                     metaORDImage XMLTYPE,
                     metaEXIF     XMLTYPE,
                     metaIPTC     XMLTYPE,
                     metaXMP      XMLTYPE,
                     image        ORDSYS.ORDIMAGE,
                     thumb        ORDSYS.ORDIMAGE )
--
-- store full-size images and thumbnail images as SecureFiles LOBs
--
LOB(image.source.localdata) STORE AS SECUREFILE
LOB(thumb.source.localdata) STORE AS SECUREFILE
-- and bind the XMLType columns to the Oracle Multimedia metadata schemas
XMLType COLUMN metaORDImage
  XMLSCHEMA "http://xmlns.oracle.com/ord/meta/ordimage"
  ELEMENT "ordImageAttributes"
XMLType COLUMN metaEXIF
  XMLSCHEMA "http://xmlns.oracle.com/ord/meta/exif"
  ELEMENT "exifMetadata"
XMLType COLUMN metaIPTC
  XMLSCHEMA "http://xmlns.oracle.com/ord/meta/iptc"
  ELEMENT "iptcMetadata"
XMLType COLUMN metaXMP
  XMLSCHEMA "http://xmlns.oracle.com/ord/meta/xmp"
  ELEMENT "xmpMetadata";

5.6.2 Extracting Image Metadata
This topic uses an example to show how to extract image metadata.

The following PL/SQL procedure extracts metadata from an image and stores it in the
specified columns in the photos table you created. This procedure demonstrates the
getMetadata( ) method, which returns an array of XML documents. The root element
of each document is examined to determine the metadata type. The UPDATE
statement stores the documents in the corresponding columns in the photos table.

The code statement where the getMetadata( ) method is called is highlighted in bold.

--
-- fetch the metadata and sort the results
--
PROCEDURE extractMetadata(inID IN INTEGER)
IS
  img ORDSYS.ORDIMAGE;
  metav XMLSequenceType;
  meta_root VARCHAR2(40);
  xmlORD XMLType;
  xmlXMP XMLType;
  xmlEXIF XMLType;

Chapter 5
Oracle Multimedia Image Metadata Examples

5-5



  xmlIPTC XMLType;
 
BEGIN
 
-- select the image
SELECT image
INTO img
FROM PHOTOS
WHERE id = inID;

-- extract all the metadata
metav := img.getMetadata( 'ALL' );
 
-- process the result array to discover what types of metadata were
returned
FOR i IN 1..metav.count() LOOP
  meta_root := metav(i).getRootElement();
  CASE meta_root
    WHEN 'ordImageAttributes' THEN xmlORD := metav(i);
    WHEN 'xmpMetadata' THEN xmlXMP := metav(i);
    WHEN 'iptcMetadata' THEN xmlIPTC := metav(i);
    WHEN 'exifMetadata' THEN xmlEXIF := metav(i);
    ELSE NULL;
  END CASE;
END LOOP;

-- Update metadata columns
--
UPDATE photos
SET metaORDImage = xmlORD,
    metaEXIF = xmlEXIF,
    metaIPTC = xmlIPTC,
    metaXMP = xmlXMP
WHERE id = inID;
 
END extractMetadata;

5.6.3 Embedding Image Metadata
This topic uses an example to show how to embed image metadata.

The following PL/SQL procedure demonstrates the putMetadata( ) method. This
procedure accepts six arguments. The entry_id argument identifies the image in the
photos table to be updated. The remaining arguments (title, creator, date,
description, and copyright) are strings to be formatted into an XMP packet and
embedded within the target image.

This example creates an XML document instance based on the Oracle Multimedia
XML schema for XMP metadata. (This schema is preregistered with Oracle XML DB. )
The schema for XMP metadata defines a single, global element <xmpMetadata>. The
<xmpMetadata> element contains a single, well-formed RDF document. The RDF
document contains a single <RDF> element, which is derived from the rdf namespace.
This RDF document is constructed using elements defined by the Dublin Core
schema.

The call to the putMetadata( ) method embeds the metadata document into the image
file. The UPDATE statement stores the new image and the new metadata back in the
photos table.

Chapter 5
Oracle Multimedia Image Metadata Examples

5-6



The code statement where the putMetadata( ) method is called is highlighted in bold.

--
-- write the metadata to the image
--
PROCEDURE write_metadata( entry_id IN VARCHAR2,
                          title IN VARCHAR2,
                          creator IN VARCHAR2,
                          date IN VARCHAR2,
                          description IN VARCHAR2,
                          copyright IN VARCHAR2 )
IS
  img ORDSYS.ORDImage;
  xmp XMLType;
  buf VARCHAR2(5000);
BEGIN
-- select the image
SELECT image
INTO img
FROM PHOTOS
WHERE id = entry_id FOR UPDATE;

-- Create the XMP packet it must be schema valid
-- to "http://xmlns.oracle.com/ord/meta/xmp"
-- and contain an <RDF> element. This example uses
-- the Dublin Core schema.

/* An example XML instance document
 
<xmpMetadata xmlns="http://xmlns.oracle.com/ord/meta/xmp" 
              xsi:schemaLocation="http://xmlns.oracle.com/ord/meta/xmp 
              http://xmlns.oracle.com/ord/meta/xmp" 
              xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 
  <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
    <rdf:Description about="" xmlns:dc="http://purl.org/dc/elements/1.1/">
      <dc:title>A Winter Day</dc:title>
      <dc:creator>Frosty S. Man</dc:creator>
      <dc:date>21-Dec-2004</dc:date>
      <dc:description>a sleigh ride</dc:description>
      <dc:copyright>North Pole Inc.</dc:copyright>
    </rdf:Description>
  </rdf:RDF>
</xmpMetadata>
 
*/
 
buf := '<xmpMetadata xmlns="http://xmlns.oracle.com/ord/meta/xmp"
         xsi:schemaLocation="http://xmlns.oracle.com/ord/meta/xmp
         http://xmlns.oracle.com/ord/meta/xmp"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" >
  <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
  <rdf:Description about="" xmlns:dc="http://purl.org/dc/elements/1.1/">';
 
IF title IS NOT NULL THEN
  buf := buf || '<dc:title>' || htf.escape_sc(title) || '</dc:title>';
END IF;
 
IF creator IS NOT NULL THEN
  buf := buf || '<dc:creator>' || htf.escape_sc(creator)
             || '</dc:creator>';

Chapter 5
Oracle Multimedia Image Metadata Examples

5-7



END IF;
IF date IS NOT NULL THEN
  buf := buf || '<dc:date>' || htf.escape_sc(date)
             || '</dc:date>';
END IF;
IF description IS NOT NULL THEN
  buf := buf || '<dc:description>' || htf.escape_sc(description)
             || '</dc:description>';
END IF;
IF copyright IS NOT NULL THEN
  buf := buf || '<dc:copyright>' || htf.escape_sc(copyright)
             || '</dc:copyright>';
END IF;
 
buf := buf || '
  </rdf:Description>
  </rdf:RDF>
  </xmpMetadata>';

-- create the XML document
xmp := XMLType.createXML(buf, 'http://xmlns.oracle.com/ord/meta/xmp');
 
-- write the metadata
img.putMetadata( xmp, 'XMP' );
 
-- update the image
UPDATE photos
SET image = img,
    metaXMP = xmp
WHERE id = entry_id;
 
END write_Metadata;

5.7 Metadata References
This topic includes a list of references for more information about working with image
metadata.

The following Web sites provide information about standards and technologies related
to working with metadata in images.

• Dublin Core, a standard schema for Dublin core elements

Dublin Core Metadata Initiative

• Extensible Metadata Platform (XMP), an open source file labeling technology for
embedding metadata into files

Extensible Metadata Platform

• Resource Description Framework (RDF), a standard model for interchanging data
on the Web (See RDF Primer)

Resource Description Framework

Chapter 5
Metadata References

5-8



6
Oracle Multimedia Tuning Tips for DBAs

This chapter provides information and advice for Oracle DBAs who want to achieve
more efficient storage and management of multimedia data in the database when
using Oracle Multimedia.

The goals of your Oracle Multimedia application determine the resource requirements
and how to allocate those resources. Because application development and design
decisions have the greatest effect on performance, standard tuning methods must be
applied to the system planning, design, and development phases of the project to
achieve optimal results for your Oracle Multimedia application in a production
environment.

Multimedia data consists of a variety of media types including images, audio clips,
video clips, line drawings, and so on. All these media types are typically stored in
LOBs. LOBs can be either internal BLOBs (stored in an internal database tablespace)
or BFILEs (external LOBs in operating system files outside of the database
tablespaces). This chapter discusses the management of audio, image, and video
data stored in BLOBs only.

This chapter includes these sections:

• Understanding the Performance Profile of Oracle Multimedia Operations

• Choosing LOB Storage Parameters for Multimedia LOBs

• Setting Database Initialization Parameters

See Also:

Oracle Database SecureFiles and Large Objects Developer's Guide for more
information about performance tuning when using LOBs in Oracle Database

6.1 Understanding the Performance Profile of Oracle
Multimedia Operations

Multimedia data, and the operations that can be performed on that data, differs
significantly from traditional types of data commonly stored in relational databases. A
basic understanding of the performance profile of Oracle Multimedia operations can
help you make better decisions when tuning your database for media performance.

The tables in this section summarize the general performance profiles for a set of
commonly performed operations. There are two primary components to each profile.
The I/O pattern is a general characterization of the primary type of I/O access and of
how much of the media data the operation reads or writes. Because some operations
involve two media objects, the I/O pattern is described for both the source and
destination media objects. The second component is a general characterization of the
level of CPU usage for the operation.

6-1



Note:

The information in these tables describes general characterizations and I/O
patterns, thus CPU usage may vary considerably for some media formats.

The following table shows the profile for loading and retrieving data, which applies to
all Oracle Multimedia media types.

Table 6-1    Performance Profile For All Multimedia Types

Operation I/O Pattern
(Source)

I/O Pattern
(Destination)

I/O Pattern
(Amount)

CPU Usage

Load new media
data into a database

N/A Sequential write All Low

Retrieve media from
a database

Sequential read N/A All Low

The following table shows the profile for commonly used functions and procedures of
the ORD_IMAGE PL/SQL package.

Table 6-2    Performance Profile for ORD_IMAGE PL/SQL Package Functions and
Procedures

Package
Procedure

I/O Pattern
(Source)

I/O Pattern
(Destination)

I/O
Pattern
(Amou
nt)

CPU Usage

getProperti
es( )

Sequential
read

N/A Media
header

Low to medium

getMetadat
a( )

Sequential
read

N/A Media
header

Low to medium

putMetadat
a( )

Sequential
read

Sequential
write

All Low to medium

process( ) Sequential
read

Sequential
write

All High

processCo
py( )

Sequential
read

Sequential
write

All High

convert( ) Sequential
read

Sequential
write

All High

crop( ) Sequential
read

Sequential
write

All High

scale( ) Sequential
read

Sequential
write

All High

thumbnail(
)

Sequential
read

Sequential
write

All High

The following table shows the profile for commonly used methods of the ORDImage
type.

Chapter 6
Understanding the Performance Profile of Oracle Multimedia Operations

6-2



Table 6-3    Performance Profile For ORDImage Methods

Object Method I/O Pattern
(Source)

I/O Pattern
(Destination)

I/O Pattern
(Amount)

CPU Usage

setProperties( ) Sequential read N/A Media
header

Low to medium

getMetadata( ) Sequential read N/A Media
header

Low to medium

putMetadata( ) Sequential read Sequential write All Low to medium

process( ) Sequential read Sequential write All High

processCopy( ) Sequential read Sequential write All High

The following table shows the profile for commonly used functions and procedures of
the ORD_DICOM PL/SQL package.

Table 6-4    Performance Profile for ORD_DICOM PL/SQL Package Functions and
Procedures

Package
Procedure

I/O Pattern
(Source)

I/O Pattern
(Destination)

I/O
Pattern
(Amou
nt)

CPU Usage

extractMeta
data( )

Sequential
read

N/A Media
header

Low to medium

writeMetad
ata( )

Sequential
read

Sequential
write

All Low to medium

makeAnon
ymous( )

Sequential
read

Sequential
write

All Low to medium

process( ) Sequential
read

Sequential
write

All High

processCo
py( )

Sequential
read

Sequential
write

All High

The following table shows the profile for commonly used methods of the ORDDicom
type.

Table 6-5    Performance Profile For ORDDicom Methods

Object Method I/O Pattern
(Source)

I/O Pattern
(Destination)

I/O Pattern
(Amount)

CPU Usage

setProperties( ) Sequential read N/A Media
header

Low to medium

extractMetadata( ) Sequential read N/A Media
header

Low to medium

writeMetadata( ) Sequential read Sequential write All Low to medium

makeAnonymous( ) Sequential read Sequential write All Low to medium

process( ) Sequential read Sequential write All High

processCopy( ) Sequential read Sequential write All High

Chapter 6
Understanding the Performance Profile of Oracle Multimedia Operations

6-3



The following table shows the profile for commonly used procedures of the
ORD_AUDIO, ORD_DOC, and ORD_VIDEO PL/SQL packages.

Table 6-6    Performance Profile for ORD_AUDIO, ORD_DOC, and ORD_VIDEO
PL/SQL Package Procedures

Package
Procedure

I/O Pattern
(Source)

I/O Pattern
(Destination)

I/O
Pattern
(Amou
nt)

CPU Usage

getProperti
es( )

Sequential
read

N/A Media
header

Low

The following table shows the profile for commonly used methods of the ORDAudio,
ORDDoc, and ORDVideo types.

Table 6-7    Performance Profile For ORDAudio, ORDDoc, and ORDVideo
Methods

Object Method I/O Pattern
(Source)

I/O Pattern
(Destination)

I/O Pattern
(Amount)

CPU Usage

setProperties( ) Sequential read N/A Media
header

Low

getProperties( ) Sequential read N/A Media
header

Low

6.2 Choosing LOB Storage Parameters for Multimedia LOBs
The choices you make for specifying LOB storage attributes during table creation can
significantly affect the performance of media load, retrieval, and processing
operations.

This section describes the most important options to consider and shows how the
performance profile of Oracle Multimedia operations can affect the choice of LOB
storage parameters.

The following subsections describe the LOB storage parameters and include examples
of how to use them:

• SecureFiles LOBs

• TABLESPACE

• CACHE, NOCACHE, and CACHE READS

• LOGGING and NOLOGGING

• Example of Setting LOB Storage Options

See Also:

Oracle Database SecureFiles and Large Objects Developer's Guide for
detailed information about LOBs

Chapter 6
Choosing LOB Storage Parameters for Multimedia LOBs

6-4



6.2.1 SecureFiles LOBs
Store your media data with SecureFiles LOBs.

Oracle recommends using SecureFiles LOBs for storing media data whenever
possible. SecureFiles LOBs are identified by specifying the SQL parameter
SECUREFILE.

6.2.2 TABLESPACE
You can achieve the best performance for LOBs by specifying storage for LOBs in a
different tablespace than the one used for the table that contains the LOB.

If many different LOBs are to be accessed frequently, you can also specify a separate
tablespace for each LOB column or attribute to reduce device contention.

6.2.3 CACHE, NOCACHE, and CACHE READS
The cache option is a part of the STORE AS clause, and determines whether LOB
pages are stored in the buffer cache.

These are the possible values for the cache option:

• For the value CACHE, Oracle places LOB pages in the buffer cache where they can
be shared among multiple users. Over time and if the LOB pages are no longer
accessed, the pages are eventually removed from the buffer cache.

• For the value NOCACHE, LOB pages are not placed in the buffer cache.

• For the value CACHE READS, LOB pages are placed in the cache for read operations
only.

If your application performs multiple read operations on a media object (for example:
invoking the getProperties( ) procedure or the setProperties( ) method and then
generating a thumbnail image), enable read caching for the source media LOB.

6.2.4 LOGGING and NOLOGGING
The logging option is a part of the STORE AS clause, and determines if REDO data is
logged when a LOB is updated.

If the [NO]LOGGING clause is omitted, neither NOLOGGING nor LOGGING is
specified and the logging attribute of the table or table partition defaults to the logging
attribute of the tablespace in which it resides.

There is another alternative depending on how the cache option is specified.

• If CACHE is specified and [NO]LOGGING is omitted, LOGGING is automatically
implemented (because you cannot have CACHE NOLOGGING).

• If CACHE is not specified and [NO]LOGGING is omitted, the [NO]LOGGING value
is obtained from the tablespace in which the LOB segment resides.

Specify NOLOGGING only when you do not care about media recovery. However, if
the disk, tape, or storage media fails, you will not be able to recover your changes
from the log because those changes were not logged.

Chapter 6
Choosing LOB Storage Parameters for Multimedia LOBs

6-5



NOLOGGING can be useful for bulk loading of media data. For instance, when loading
data into the LOB, if you do not care about the redo operation and you can start the
load over if it fails, set the LOB data segment storage characteristics to NOCACHE
NOLOGGING. This option provides good performance for the initial loading of data.

After you finish loading data, if necessary, you can use the ALTER TABLE statement
to modify the LOB storage characteristics for the LOB data segment for normal LOB
operations (for example: to CACHE or NOCACHE LOGGING).

Note:

Oracle Data Guard Redo Apply technology uses logging to populate the
standby database. Thus, do not specify NOLOGGING when using this Data
Guard technology.

6.2.5 Example of Setting LOB Storage Options
This section describes a simple example that shows how to use the performance
profiles of Oracle Multimedia operations to guide your usage of LOB storage options.

In this example, Company X wants to build an archive for digital images. The archive
stores a full resolution copy of the original image, and two Web-ready, JPEG format
versions of the original at reduced scales, one at 50% of the original size and another
at 25% of the original size. The database team plans to use the SQL*Loader utility to
bulk load all the initial images. Then, they can use a PL/SQL program to initialize the
image data. Initialization consists of setting the properties for the original image and
generating the scaled images. After initialization, the table is prepared for the primary
application, which retrieves images for Web-based users.

The following example shows a table definition for storing the images. The table stores
the binary image data using SecureFiles in tablespace tbs2. All the other table data is
stored in tablespace tbs1. Although this example uses the ORDImage object type for
storing the images, the concepts apply to images stored directly in BLOB columns.

create table images(id        integer primary key,
                    original  ordsys.ordimage,
                    scale50   ordsys.ordimage,
                    scale25   ordsys.ordimage)
tablespace tbs1
lob(original.source.localdata)store as secureFile (tablespace tbs2)
lob(scale50.source.localdata)store as secureFile (tablespace tbs2)
lob(scale25.source.localdata)store as secureFile (tablespace tbs2);

After the table is created, the image data can be loaded. Loading image data
generates a sequential write pattern to the LOB. Because no applications are reading
the data during the load operation, caching it is not required. You can also improve
load performance by disabling logging for the column that is loaded. The following
command dynamically alters the table to prepare the original image column LOB for
loading.

alter table images modify lob(original.source.localdata) (nocache nologging);

After loading, the next step is to set the image properties for the original column and
generate the scaled versions to be stored in the scale50 and scale25 columns. In this
step, the source images are fully read twice to generate the scaled versions. The

Chapter 6
Choosing LOB Storage Parameters for Multimedia LOBs

6-6



scaled images that are generated are written but not read. The following command
dynamically alters the table to enable read caching for the source image, and disables
caching and logging for the destination images.

alter table images modify lob(original.source.localdata) (cache reads);
alter table images modify lob(scale50.source.localdata) (nocache nologging);
alter table images modify lob(scale25.source.localdata) (nocache nologging);

After running the program to set the properties of the original image and generate the
scaled versions, the LOB storage attributes can be optimized for the main application
that retrieves images for users to view in a Web browser. Because the archive
contains millions of images, users are not expected to view the same image
simultaneously. Thus, there is little benefit to caching the image data. The following
command reenables logging for the LOBs and disables caching.

alter table images modify lob(original.source.localdata) (nocache logging);
alter table images modify lob(scale50.source.localdata) (nocache logging);
alter table images modify lob(scale25.source.localdata) (nocache logging);

See Also:

Table 6-1 through Table 6-7 for more information about Oracle Multimedia
performance profiles

6.3 Setting Database Initialization Parameters
You can disable logging of LOB data at the column level to reduce the amount of I/O
to the redo log. If logging cannot be disabled, additional database tuning may be
required. For example, you may have to increase the size of the redo log buffer to
prevent load processes from waiting.

The initialization parameter LOG_BUFFER specifies the amount of memory (in bytes)
that Oracle uses when buffering redo entries to a redo log file. Redo log entries
contain a record of the changes that have been made to the database block buffers.
The LGWR process writes redo log entries from the log buffer to a redo log file.

See Also:

• Oracle Database Performance Tuning Guide for more information about
configuring the database redo log buffer

• Oracle Database Reference for comprehensive information about setting
database initialization parameters

• Oracle Database Administrator's Guide for more information about
managing initialization parameters

Chapter 6
Setting Database Initialization Parameters

6-7



A
Managing Oracle Multimedia Installations

This appendix describes how to manage Oracle Multimedia installations.

This appendix includes these sections:

• Oracle Multimedia Installed Users and Privileges

• Installing and Configuring Oracle Multimedia

• Verifying an Installed Version of Oracle Multimedia

• Upgrading an Installed Version of Oracle Multimedia

• Downgrading an Installed Version of Oracle Multimedia

Note:

See the Oracle Multimedia README.txt file located in <ORACLE_HOME>/ord/im/
admin for the latest information

A.1 Oracle Multimedia Installed Users and Privileges
This topic summarizes the database user accounts created by the Oracle Multimedia
installation procedure.

The Oracle Multimedia installation procedure performs these functions:

• Creates the database users shown in Table A-1 with the privileges required by
Oracle Multimedia.

Table A-1    Installed Database Users

Name of User Type of User

ORDSYS Oracle Multimedia

ORDPLUGINS Oracle Multimedia

SI_INFORMTN_SCHEMA Oracle Multimedia

ORDDATA Oracle Multimedia

MDSYS Oracle Spatial and Graph/Oracle Locator

• Creates the default passwords shown in Table A-2 for the Oracle Multimedia and
MDSYS user accounts, and then locks the accounts and marks their default
passwords as expired.

A-1



Table A-2    User Accounts and Default Passwords

User Account Installation Password

ORDSYS ORDSYS

ORDPLUGINS ORDPLUGINS

SI_INFORMTN_SCHEMA SI_INFORMTN_SCHEMA

ORDDATA ORDDATA

MDSYS MDSYS

Caution:

Oracle does not recommend logging in directly to the user accounts shown in 
Table A-2.

• Grants the EXECUTE privilege to the user group PUBLIC for the Oracle
Multimedia packages and objects installed in these schemas:

– ORDSYS

– ORDPLUGINS

– SI_INFORMTN_SCHEMA

– MDSYS

A.2 Installing and Configuring Oracle Multimedia
Oracle Multimedia is automatically installed and configured with Oracle Database.

The following subsections describe the steps to perform before manual installation and
configuration of Oracle Multimedia, and the steps for manually installing and
configuring it:

• Preinstallation Steps

• Installation and Configuration Steps

Appendix A
Installing and Configuring Oracle Multimedia

A-2



Caution:

Performing any of these unsupported and prohibited actions could cause
internal errors and security violations in the database management system.

These users are created during database installation, and might change in
future releases:

• Users in which Oracle-supplied Oracle Multimedia is installed: ORDSYS,
ORDPLUGINS, SI_INFORMTN_SCHEMA, and ORDDATA

• User in which Oracle Multimedia Locator is installed if Oracle Spatial and
Graph is not installed: MDSYS

Do not delete any of these users.

Do not connect to, modify, or change the privileges of any of these users or
their contents (which are supplied by Oracle Multimedia and reserved by
Oracle), with these exceptions:

• You can add user-defined packages to the user ORDPLUGINS.

• DICOM administrators can store user-defined DICOM data model
configuration documents in the user ORDDATA, using the DICOM data model
repository API.

Related Topics:

• Extending Oracle Multimedia
This appendix describes various methods for extending the Oracle Multimedia
object types.

See Also:

Oracle Multimedia DICOM Developer's Guide for more information about
inserting documents into the data model repository

A.2.1 Preinstallation Steps
Installing Oracle Multimedia manually requires a few preliminary tasks.

Before installing and configuring Oracle Multimedia manually, perform these steps:

1. Install Oracle Database, including PL/SQL, Oracle JVM, Oracle XML Database,
and Oracle XDK.

2. Create the database.

3. Start the database.

4. Verify that the required software is correctly installed and valid, as follows:

a. Run SQL*Plus, connect as SYSDBA, and enter these queries:

Appendix A
Installing and Configuring Oracle Multimedia

A-3



SQL> select version, status from dba_registry where comp_id='JAVAVM';
SQL> select version, status from dba_registry where comp_id='XDB';
SQL> select version, status from dba_registry where comp_id='XML';

b. Examine the results of the queries to ensure that each version value is
identical to the version of Oracle Multimedia that you are installing and each
status value is VALID.

See Also:

Oracle Database Installation Guide for your operating system for more
detailed information

A.2.2 Installation and Configuration Steps
Installing and configuring Oracle Multimedia manually requires a few setup tasks.

These steps are not required if you use the Database Configuration Assistant.

To install and configure Oracle Multimedia manually, perform these steps:

Note:

In these steps, <ORACLE_HOME> is replaced with the location of the Oracle home
directory.

1. Use Oracle Universal Installer to install the files that comprise Oracle Multimedia
on your system.

2. Decide which tablespace to use for the Oracle Multimedia users, and which
tablespace to use for the Oracle Spatial and Graph/Oracle Multimedia Location
Services user (see Table A-1). Oracle recommends using the SYSAUX tablespace
for all these users.

3. Use the Perl script catcon.pl to run the Oracle Multimedia installation scripts. The
catcon.pl script is in the directory <ORACLE_HOME>/rdbms/admin.

a. Run the script to create the users and grant the appropriate privileges.

If you are using a tablespace other than SYSAUX, replace the SYSAUX
parameters with the tablespaces you have chosen. The first parameter is the
tablespace for Oracle Multimedia; the second parameter is the tablespace for
Oracle Spatial and Graph.

perl catcon.pl -u SYS -d <ORACLE_HOME>/ord/admin -b ordinst ordinst.sql '--
pSYSAUX' '--pSYSAUX' 

b. Run the script to install the Oracle Multimedia types and packages.

perl catcon.pl -u SYS -d <ORACLE_HOME>/ord/im/admin -b catim catim.sql 

Now Oracle Multimedia is ready for use.

Appendix A
Installing and Configuring Oracle Multimedia

A-4



A.3 Verifying an Installed Version of Oracle Multimedia
After installing or upgrading Oracle Multimedia, you can verify the Oracle Multimedia
installation by calling the Oracle Multimedia validation procedure.

To run the Oracle Multimedia validation procedure, perform these steps:

1. Start SQL*Plus and connect as SYSDBA.

2. Execute the procedure sys.validate_ordim:

SQL> execute sys.validate_ordim;

If the validation procedure detects invalid objects, it lists the first few invalid objects
and sets the registry entry to INVALID; otherwise, it silently sets the Oracle
Multimedia registry entry to VALID.

3. Verify that the registry entry for Oracle Multimedia is correct, as follows:

a. Enter this query from SQL*Plus, while you are connected as SYSDBA:

SQL> select version, status from dba_registry where comp_id='ORDIM';

b. Examine the result of the query to ensure that the version value is correct and
the status value is VALID.

A.4 Upgrading an Installed Version of Oracle Multimedia
Oracle Multimedia is automatically upgraded when you upgrade a database with the
Oracle Multimedia feature installed.

See Also:

Oracle Database Upgrade Guide for detailed upgrading instructions

A.5 Downgrading an Installed Version of Oracle Multimedia
Oracle Multimedia is automatically downgraded when you downgrade a database with
the Oracle Multimedia feature installed.

Caution:

Do not modify your DICOM data model repository until you are sure that you
are not going to downgrade from the new release of Oracle Database back to
the source release.

Changes to the Oracle Multimedia DICOM data model repository (such as
document insertions or deletions) that you make after a database upgrade are
lost after a database downgrade.

Appendix A
Verifying an Installed Version of Oracle Multimedia

A-5



See Also:

Oracle Database Upgrade Guide for detailed downgrading instructions

Appendix A
Downgrading an Installed Version of Oracle Multimedia

A-6



B
Extending Oracle Multimedia

This appendix describes various methods for extending the Oracle Multimedia object
types.

Oracle Multimedia object types can be extended to support:

• Other external sources of media data not currently supported

• Other media data formats not currently supported

• Media (audio and video) data processing

For each unique external media data source or each unique ORDAudio, ORDDoc, or
ORDVideo data format you want to support, you must:

1. Design your new data source or new ORDAudio, ORDDoc, or ORDVideo data
format.

2. Implement your new data source or new ORDAudio, ORDDoc, or ORDVideo data
format.

3. Install your new source package into the ORDPLUGINS schema.

4. Grant EXECUTE privileges on your new source package to PUBLIC.

This appendix includes these sections:

• Supporting Other External Sources

• Supporting Other Media Data Formats

• Supporting Media Data Processing

B.1 Supporting Other External Sources
You can extend the Oracle Multimedia object types to support new external data
sources by implementing a new source package.

To implement your new data source, you must implement the required interfaces in the
ORDX_<srcType>_SOURCE package in the ORDPLUGINS schema (where <srcType> represents
the name of the new external source type). Use the package body example described
in "Extending Oracle Multimedia to Support a New Data Source" as a template to
create the package body. Then, set the source type parameter in the
setSourceInformation( ) call to the appropriate source value to indicate to the
ORDAudio, ORDImage, ORDDoc, or ORDVideo object that package
ORDPLUGINS.ORDX_<srcType>_SOURCE should be used. Use the
ORDPLUGINS.ORDX_FILE_SOURCE and ORDPLUGINS.ORDX_HTTP_SOURCE packages as guides
when you extend support to other external audio, image, video, or other
heterogeneous media data sources.

The following subsection presents reference information about predefined and user-
defined packages:

• External Source Packages

B-1



Related Topics:

• Extending Oracle Multimedia to Support a New Data Source
Extending Oracle Multimedia to support a new data source requires a series of
tasks.

B.1.1 External Source Packages
Name your PL/SQL package as ORDX_<name>_<module_name>, where the
<module_name> is SOURCE for ORDSource. Use the ORDPLUGINS.ORDX_FILE_SOURCE
and ORDPLUGINS.ORDX_HTTP_SOURCE packages as a guide in developing your new source
type package.

For example, the FILE source type package described in
"ORDPLUGINS.ORDX_FILE_SOURCE Package" is named ORDX_FILE_SOURCE
and the HTTP source type package described in
"ORDPLUGINS.ORDX_HTTP_SOURCE Package" is named
ORDX_HTTP_SOURCE, and <name> is the source type. Both source type names,
FILE and HTTP, are reserved to Oracle.

The following subsections provide examples and more information about extending the
supported external sources of audio, image, video, or other heterogeneous media
data:

• ORDPLUGINS.ORDX_FILE_SOURCE Package

• ORDPLUGINS.ORDX_HTTP_SOURCE Package

• Extending Oracle Multimedia to Support a New Data Source

B.1.1.1 ORDPLUGINS.ORDX_FILE_SOURCE Package
The ORDPLUGINS.ORDX_FILE_SOURCE package provides support for multimedia stored in
the local file system external to the database.

The ORDPLUGINS.ORDX_FILE_SOURCE package is defined as follows:

CREATE OR REPLACE PACKAGE ORDX_FILE_SOURCE AS
  -- functions/procedures
  FUNCTION processCommand(obj     IN OUT NOCOPY ORDSYS.ORDSource,
                          ctx     IN OUT RAW,
                          cmd     IN VARCHAR2,
                          arglist IN VARCHAR2,
                          result  OUT RAW)
           RETURN RAW;
  PROCEDURE import(obj      IN OUT NOCOPY ORDSYS.ORDSource,
                   ctx      IN OUT RAW,
                   mimetype OUT VARCHAR2,
                   format   OUT VARCHAR2);
  PROCEDURE import(obj      IN OUT NOCOPY ORDSYS.ORDSource,
                   ctx      IN OUT RAW,
                   dlob     IN OUT NOCOPY BLOB,
                   mimetype OUT VARCHAR2,
                   format   OUT VARCHAR2);
  PROCEDURE importFrom(obj      IN OUT NOCOPY ORDSYS.ORDSource,
                       ctx      IN OUT RAW,
                       mimetype OUT VARCHAR2,
                       format   OUT VARCHAR2,
                       loc      IN VARCHAR2,
                       name     IN VARCHAR2);

Appendix B
Supporting Other External Sources

B-2



  PROCEDURE importFrom(obj      IN OUT NOCOPY ORDSYS.ORDSource,
                       ctx      IN OUT RAW,
                       dlob     IN OUT NOCOPY BLOB,
                       mimetype OUT VARCHAR2,
                       format   OUT VARCHAR2,
                       loc      IN VARCHAR2,
                       name     IN VARCHAR2);
  PROCEDURE export(obj  IN OUT NOCOPY ORDSYS.ORDSource,
                   ctx  IN OUT RAW,
                   slob IN OUT NOCOPY BLOB,
                   loc  IN VARCHAR2,
                   name IN VARCHAR2);
  FUNCTION  getContentLength(obj  IN ORDSYS.ORDSource,
                             ctx  IN OUT RAW),
            RETURN INTEGER;
  PRAGMA RESTRICT_REFERENCES(getContentLength, WNDS, WNPS, RNDS, RNPS);
  FUNCTION  getSourceAddress(obj  IN ORDSYS.ORDSource,
                             ctx  IN OUT RAW,
                             userData IN VARCHAR2)
            RETURN VARCHAR2;
  PRAGMA RESTRICT_REFERENCES(getSourceAddress, WNDS, WNPS, RNDS, RNPS);
  
  FUNCTION open(obj IN OUT NOCOPY ORDSYS.ORDSource, 
           userArg IN RAW, 
           ctx OUT RAW) RETURN INTEGER;
  FUNCTION close(obj IN OUT NOCOPY ORDSYS.ORDSource, ctx IN OUT RAW) 
         RETURN INTEGER;
  FUNCTION trim(obj IN OUT NOCOPY ORDSYS.ORDSource, 
                ctx IN OUT RAW,
                newlen IN INTEGER) RETURN INTEGER;
PROCEDURE read(obj     IN OUT NOCOPY ORDSYS.ORDSource,
               ctx      IN OUT RAW,
               startPos IN INTEGER,
               numBytes IN OUT INTEGER,
               buffer   OUT RAW);
PROCEDURE write(obj      IN OUT NOCOPY ORDSYS.ORDSource,
                ctx      IN OUT RAW,
                startPos IN INTEGER,
                numBytes IN OUT INTEGER,
                buffer   OUT RAW);
END ORDX_FILE_SOURCE;
/

Table B-1 shows the methods that are supported in the ORDX_FILE_SOURCE package and
the exception that is raised if you call a method that is not supported.

Table B-1    Methods Supported in the ORDPLUGINS.ORDX_FILE_SOURCE
Package

Name of Method Level of Support

processCommand Not supported - raises exception: METHOD_NOT_SUPPORTED

import Supported

import Supported

importFrom Supported

importFrom Supported

export Supported

Appendix B
Supporting Other External Sources

B-3



Table B-1    (Cont.) Methods Supported in the
ORDPLUGINS.ORDX_FILE_SOURCE Package

Name of Method Level of Support

getContentLength Supported

getSourceAddress Supported

open Supported

close Supported

trim Not supported - raises exception: METHOD_NOT_SUPPORTED

read Supported

write Not supported - raises exception: METHOD_NOT_SUPPORTED

B.1.1.2 ORDPLUGINS.ORDX_HTTP_SOURCE Package
The ORDPLUGINS.ORDX_HTTP_SOURCE package provides support for multimedia stored in
any HTTP server and accessed through a URL.

The ORDPLUGINS.ORDX_HTTP_SOURCE package is defined as follows:

CREATE OR REPLACE PACKAGE ORDX_HTTP_SOURCE AS
  -- functions/procedures
  FUNCTION processCommand(obj     IN OUT NOCOPY ORDSYS.ORDSource,
                          ctx     IN OUT RAW,
                          cmd     IN VARCHAR2,
                          arglist IN VARCHAR2,
                          result  OUT RAW)
           RETURN RAW;
  PROCEDURE import(obj      IN OUT NOCOPY ORDSYS.ORDSource,
                   ctx      IN OUT RAW,
                   mimetype OUT VARCHAR2,
                   format   OUT VARCHAR2);
  PROCEDURE import(obj      IN OUT NOCOPY ORDSYS.ORDSource,
                   ctx      IN OUT RAW,
                   dlob     IN OUT NOCOPY BLOB,
                   mimetype OUT VARCHAR2,
                   format   OUT VARCHAR2);
  PROCEDURE importFrom(obj      IN OUT NOCOPY ORDSYS.ORDSource,
                       ctx      IN OUT RAW,
                       mimetype OUT VARCHAR2,
                       format   OUT VARCHAR2,
                       loc      IN VARCHAR2,
                       name     IN VARCHAR2);
  PROCEDURE importFrom(obj      IN OUT NOCOPY ORDSYS.ORDSource,
                       ctx      IN OUT RAW,
                       dlob     IN OUT NOCOPY BLOB,
                       mimetype OUT VARCHAR2,
                       format   OUT VARCHAR2,
                       loc      IN VARCHAR2,
                       name     IN VARCHAR2);
  PROCEDURE export(obj  IN OUT NOCOPY ORDSYS.ORDSource,
                   ctx  IN OUT RAW,
                   dlob IN OUT NOCOPY BLOB,
                   loc  IN VARCHAR2,
                   name IN VARCHAR2);
  FUNCTION  getContentLength(obj  IN ORDSYS.ORDSource,

Appendix B
Supporting Other External Sources

B-4



                             ctx  IN OUT RAW)
            RETURN INTEGER;
  PRAGMA RESTRICT_REFERENCES(getContentLength, WNDS, WNPS, RNDS, RNPS, TRUST);
  FUNCTION  getSourceAddress(obj  IN ORDSYS.ORDSource,
                             ctx  IN OUT RAW,
                             userData IN VARCHAR2) 
            RETURN VARCHAR2;
  PRAGMA RESTRICT_REFERENCES(getSourceAddress, WNDS, WNPS, RNDS, RNPS);
  FUNCTION open(obj IN OUT NOCOPY ORDSYS.ORDSource, userArg IN RAW,
           ctx OUT RAW) RETURN INTEGER;
  FUNCTION close(obj IN OUT NOCOPY ORDSYS.ORDSource, ctx IN OUT RAW) 
           RETURN INTEGER;
  FUNCTION trim(obj IN OUT NOCOPY ORDSYS.ORDSource, 
           ctx IN OUT RAW,
           newlen IN INTEGER) RETURN INTEGER;
  PROCEDURE read(obj      IN OUT NOCOPY ORDSYS.ORDSource,
                 ctx      IN OUT RAW,
                 startPos IN INTEGER,
                 numBytes IN OUT INTEGER,
                 buffer   OUT RAW);
  PROCEDURE write(obj      IN OUT NOCOPY ORDSYS.ORDSource,
                  ctx      IN OUT RAW,
                  startPos IN INTEGER,
                  numBytes IN OUT INTEGER,
                  buffer   OUT RAW);
END ORDX_HTTP_SOURCE;
/

Table B-2 shows the methods that are supported in the ORDX_HTTP_SOURCE package and
the exception that is raised if you call a method that is not supported.

Table B-2    Methods Supported in the ORDPLUGINS.ORDX_HTTP_SOURCE
Package

Name of Method Level of Support

processCommand Not supported - raises exception: METHOD_NOT_SUPPORTED

import Supported

import Supported

importFrom Supported

importFrom Supported

export Not supported - raises exception: METHOD_NOT_SUPPORTED

getContentLength Supported

getSourceAddress Supported

open Supported

close Supported

trim Not supported - raises exception: METHOD_NOT_SUPPORTED

read Not supported - raises exception: METHOD_NOT_SUPPORTED

write Not supported - raises exception: METHOD_NOT_SUPPORTED

Appendix B
Supporting Other External Sources

B-5



B.1.1.3 Extending Oracle Multimedia to Support a New Data Source
Extending Oracle Multimedia to support a new data source requires a series of tasks.

Follow these steps to extend Oracle Multimedia to support a new data source:

1. Design your new data source.

2. Implement your new data source and name it, for example, ORDX_MY_SOURCE.SQL.

3. Install your new ORDX_MY_SOURCE.SQL package into the ORDPLUGINS schema.

4. Grant EXECUTE privileges on your new package, for example,
ORDX_MY_SOURCE.SQL, to PUBLIC.

5. Set the srctype to my to cause your package to be invoked.

Example B-1    Package Body for Extending Support to a New Data Source

CREATE OR REPLACE PACKAGE BODY ORDX_MY_SOURCE
AS
  -- functions/procedures
  FUNCTION processCommand(
                    obj  IN OUT NOCOPY ORDSYS.ORDSource,
                    ctx  IN OUT RAW,
                    cmd  IN VARCHAR2,
                    arglist IN VARCHAR2,
                    result OUT RAW)
  RETURN RAW
  IS
   --Your variables go here.
  BEGIN
  --Your code goes here.
  END processCommand;
  PROCEDURE import( obj  IN OUT NOCOPY ORDSYS.ORDSource,
                    ctx  IN OUT RAW,
                    mimetype OUT VARCHAR2,
                    format   OUT VARCHAR2)
  IS
  --Your variables go here.
  BEGIN
  --Your code goes here.
  END import;
  PROCEDURE import( obj  IN OUT NOCOPY ORDSYS.ORDSource,
                    ctx  IN OUT RAW,
                    dlob IN OUT NOCOPY BLOB,
                    mimetype OUT VARCHAR2,
                    format   OUT VARCHAR2)
  IS
  --Your variables go here.
  BEGIN
  --Your code goes here.
  END import;
  PROCEDURE importFrom( obj      IN OUT NOCOPY ORDSYS.ORDSource,
                        ctx      IN OUT RAW,
                        mimetype OUT VARCHAR2,
                        format   OUT VARCHAR2,
                        loc      IN VARCHAR2,
                        name     IN VARCHAR2)
  IS
  --Your variables go here.
  BEGIN

Appendix B
Supporting Other External Sources

B-6



  --Your code goes here.
  END importFrom;
  PROCEDURE importFrom( obj      IN OUT NOCOPY ORDSYS.ORDSource,
                        ctx      IN OUT RAW,
                        dlob     IN OUT NOCOPY BLOB,
                        mimetype OUT VARCHAR2,
                        format   OUT VARCHAR2,
                        loc      IN VARCHAR2,
                        name     IN VARCHAR2)
  IS
  --Your variables go here.
  BEGIN
  --Your code goes here.
  END importFrom;
  PROCEDURE export( obj  IN OUT NOCOPY ORDSYS.ORDSource,
                    ctx  IN OUT RAW,
                    slob IN OUT NOCOPY BLOB,
                    loc  IN VARCHAR2,
                    name IN VARCHAR2)
  IS
  --Your variables go here.
  BEGIN
  --Your code goes here.
  END export;
  
  FUNCTION  getContentLength( obj  IN ORDSYS.ORDSource,
                              ctx  IN OUT RAW)
  RETURN INTEGER
  IS
  --Your variables go here.
  BEGIN
  --Your code goes here.
  END getContentLength;
  FUNCTION  getSourceAddress(obj  IN ORDSYS.ORDSource,
                             ctx  IN OUT RAW,
                             userData IN VARCHAR2)
  RETURN VARCHAR2
  IS
  --Your variables go here.
  BEGIN
  --Your code goes here.
  END getSourceAddress;
  FUNCTION open(obj IN OUT NOCOPY ORDSYS.ORDSource, userArg IN RAW, ctx OUT RAW)
  RETURN INTEGER
  IS
  --Your variables go here.
  BEGIN
  --Your code goes here.
  END open;
  FUNCTION close(obj IN OUT NOCOPY ORDSYS.ORDSource, ctx IN OUT RAW)
  RETURN INTEGER
  IS
  --Your variables go here.
  BEGIN
  --Your code goes here.
  END close;
  FUNCTION trim(obj    IN OUT NOCOPY ORDSYS.ORDSource,
                       ctx    IN OUT RAW,
                       newlen IN INTEGER)
  RETURN INTEGER
  IS

Appendix B
Supporting Other External Sources

B-7



  --Your variables go here.
  BEGIN
  --Your code goes here.
  END trim;
  PROCEDURE read(obj      IN OUT NOCOPY ORDSYS.ORDSource,
                 ctx      IN OUT RAW,
                 startPos IN INTEGER,
                 numBytes IN OUT INTEGER,
                 buffer   OUT RAW)
  IS
  --Your variables go here.
  BEGIN
  --Your code goes here.
  END read;
  PROCEDURE write(obj      IN OUT NOCOPY ORDSYS.ORDSource,
                  ctx      IN OUT RAW,
                  startPos IN INTEGER,
                  numBytes IN OUT INTEGER,
                  buffer   OUT RAW)
  IS
  --Your variables go here.
  BEGIN
  --Your code goes here.
  END write;
END ORDX_MY_SOURCE;
/
show errors;

A package body listing is provided in Example B-1 to assist you in this operation. Add
your variables to the places that say "--Your variables go here" and add your code to
the places that say "--Your code goes here".

B.2 Supporting Other Media Data Formats
You can extend support for the ORDAudio, ORDDoc, and ORDVideo object types to
include new media data formats by defining new format packages.

To implement your new ORDAudio, ORDDoc, or ORDVideo data format, you must
implement the required interfaces in the ORDPLUGINS.ORDX_<format>_<media> package in
the ORDPLUGINS schema (where <format> represents the name of the new audio or
video, or other heterogeneous media data format and <media> represents the type of
media ("AUDIO" or "VIDEO", or "DOC"). Use the ORDPLUGINS.ORDX_DEFAULT_<media>
package as a guide when you extend support to other audio or video data formats or
other heterogeneous media data formats. Use the package body examples described
in "Extending Oracle Multimedia to Support a New Audio Data Format", "Extending
Oracle Multimedia to Support a New ORDDoc Data Format", and "Extending Oracle
Multimedia to Support a New Video Data Format" as templates to create the audio or
video, or other heterogeneous media data package body, respectively. Then, set the
new format parameter in the setFormat( ) call to the appropriate format value to
indicate to the ORDAudio, ORDDoc, or ORDVideo object that the package
ORDPLUGINS.ORDX_<format>_<media> must be used for method invocation.

The following subsections describe how to extend Oracle Multimedia to support other
data formats:

• Supporting Other ORDAudio Data Formats

• Supporting Other ORDDoc Data Formats

Appendix B
Supporting Other Media Data Formats

B-8



• Supporting Other Video Data Formats

• Supporting Other Image Data Formats

B.2.1 Supporting Other ORDAudio Data Formats
The following subsections describe how to extend ORDAudio to support other data
formats:

• ORDPLUGINS.ORDX_DEFAULT_AUDIO Package

• Extending Oracle Multimedia to Support a New Audio Data Format

B.2.1.1 ORDPLUGINS.ORDX_DEFAULT_AUDIO Package
Use the ORDPLUGINS.ORDX_DEFAULT_AUDIO package as a guide in developing your own
ORDPLUGINS.ORDX_<format>_AUDIO audio format package. This package sets the mimeType
field in the setProperties( ) method with a MIME type value that is dependent on the
file format.

The ORDPLUGINS.ORDX_DEFAULT_AUDIO package is defined as follows:

CREATE OR REPLACE PACKAGE ORDX_DEFAULT_AUDIO
authid current_user
AS 
--AUDIO ATTRIBUTES ACCESSORS

PROCEDURE setProperties(ctx IN OUT RAW, 
                        obj IN OUT NOCOPY ORDSYS.ORDAudio,
                        setComments IN NUMBER := 0);
FUNCTION checkProperties(ctx IN OUT RAW, obj IN OUT ORDSYS.ORDAudio)
                RETURN NUMBER;
FUNCTION getAttribute(ctx IN OUT RAW,
                      obj IN ORDSYS.ORDAudio,
                      name IN VARCHAR2) RETURN VARCHAR2;
PROCEDURE getAllAttributes(ctx IN OUT RAW, 
                           obj IN ORDSYS.ORDAudio, 
                           attributes IN OUT NOCOPY CLOB);
--AUDIO PROCESSING METHODS
FUNCTION processCommand(ctx       IN OUT RAW,
                        obj       IN OUT NOCOPY ORDSYS.ORDAudio,
                        cmd       IN VARCHAR2,
                        arguments IN VARHAR2,
                        result    OUT RAW)
         RETURN RAW;

END;
/

Table B-3 shows the methods that are supported in the ORDPLUGINS.ORDX_DEFAULT_AUDIO
package and the exceptions that are raised if you call a method that is not supported.

Appendix B
Supporting Other Media Data Formats

B-9



Table B-3    Methods Supported in the ORDPLUGINS.ORDX_DEFAULT_AUDIO
Package

Name of Method Level of Support

setProperties Supported; if the source is local, extract attributes from the local data
and set the properties, but if the source is NULL, raise an
ORDSYS.ORDSourceExceptions.EMPTY_SOURCE exception; if
the source is a BFILE, then extract attributes from the BFILE and set
the properties; if the source is neither local nor a BFILE, get the
media content into a temporary LOB, extract attributes from the data,
and set the properties.

checkProperties Supported; if the source is local, extract the attributes from the local
data and compare them with the attribute values of the object, but if
the source is NULL, raise an
ORDSYS.ORDSourceExceptions.EMPTY_SOURCE exception; if
the source is a BFILE, extract the attributes from the BFILE and
compare them with the attribute values of the object; if the source is
neither local nor a BFILE, get the media content into a temporary
LOB, extract the attributes from the media content and compare
them with the attribute values of the object.

getAttribute Not supported - raises exceptions: METHOD_NOT_SUPPORTED
and AUDIO_PLUGIN_EXCEPTION.

getAllAttributes Supported; if the source is local, get the attributes and return them,
but if the source is NULL, raise an
ORDSYS.ORDSourceExceptions.EMPTY_SOURCE exception;
otherwise, if the source is external, raise an
ORDSYS.ORDAudioExceptions.LOCAL_DATA_SOURCE_REQUIR
ED exception.

processCommand Not supported - raises exceptions: METHOD_NOT_SUPPORTED
and AUDIO_PLUGIN_EXCEPTION.

B.2.1.2 Extending Oracle Multimedia to Support a New Audio Data Format
Extending Oracle Multimedia to support a new audio data format requires a series of
tasks.

Follow these steps to extend Oracle Multimedia to support a new audio data format:

1. Design your new audio data format.

a. To support a new audio data format, implement the required interfaces in the
ORDX_<format>_AUDIO package in the ORDPLUGINS schema (where <format>
represents the name of the new audio data format). Use the package body
example in Example B-2 as a template to create the audio package body.

b. Then, set the new format parameter in the setFormat( ) call to the appropriate
format value to indicate to the audio object that package
ORDPLUGINS.ORDX_<format>_AUDIO should be called.

2. Implement your new audio data format and name it, for example,
ORDX_MY_AUDIO.SQL.

3. Install your new ORDX_MY_AUDIO.SQL package into the ORDPLUGINS schema.

4. Grant EXECUTE privileges on your new package, for example, ORDX_MY_AUDIO, to
PUBLIC.

Appendix B
Supporting Other Media Data Formats

B-10



5. In an application, set the format attribute to my to cause your package to be
invoked.

A package body listing is provided in Example B-2 to assist you in this operation. Add
your variables to the places that say "--Your variables go here" and add your code to
the places that say "--Your code goes here".

Example B-2    Package Body for Extending Support to a New Audio Data Format

CREATE OR REPLACE PACKAGE BODY ORDX_MY_AUDIO
AS
  --AUDIO ATTRIBUTES ACCESSORS
  PROCEDURE setProperties(ctx IN OUT RAW,
                          obj IN OUT NOCOPY ORDSYS.ORDAudio,
                          setComments IN NUMBER :=0)
  IS
--Your variables go here.
  BEGIN
--Your code goes here.
  END;
  FUNCTION checkProperties(ctx IN OUT RAW, obj IN OUT ORDSYS.ORDAudio)
  RETURN NUMBER
  IS
--Your variables go here.
  BEGIN
--Your code goes here.
  END;
  FUNCTION  getAttribute(ctx IN OUT RAW,
                         obj IN ORDSYS.ORDAudio,
                         name IN VARCHAR2)
  RETURN VARCHAR2
  IS
--Your variables go here.
  BEGIN
--Your code goes here.
  END;
  PROCEDURE getAllAttributes(ctx IN OUT RAW,
                             obj IN ORDSYS.ORDAudio,
                             attributes IN OUT NOCOPY CLOB)
  IS
--Your variables go here.
  BEGIN
--Your code goes here.
  END;
  -- AUDIO PROCESSING METHODS
  FUNCTION  processCommand(
                                 ctx       IN OUT RAW,
                                 obj       IN OUT NOCOPY ORDSYS.ORDAudio,
                                 cmd       IN VARCHAR2,
                                 arguments IN VARCHAR2,
                                 result    OUT RAW)
  RETURN RAW
  IS
--Your variables go here.
  BEGIN
--Your code goes here.
  END;
END;
/
show errors;

Appendix B
Supporting Other Media Data Formats

B-11



Related Topics:

• ORDPLUGINS.ORDX_DEFAULT_AUDIO Package
Use the ORDPLUGINS.ORDX_DEFAULT_AUDIO package as a guide in developing your
own ORDPLUGINS.ORDX_<format>_AUDIO audio format package. This package sets the
mimeType field in the setProperties( ) method with a MIME type value that is
dependent on the file format.

B.2.2 Supporting Other ORDDoc Data Formats
The following subsections describe how to extend ORDDoc to support other data
formats:

• ORDPLUGINS.ORDX_DEFAULT_DOC Package

• Extending Oracle Multimedia to Support a New ORDDoc Data Format

B.2.2.1 ORDPLUGINS.ORDX_DEFAULT_DOC Package
Use the ORDPLUGINS.ORDX_DEFAULT_DOC package as a guide in developing your own
ORDPLUGINS.ORDX_<format>_DOC media format package.

The ORDPLUGINS.ORDX_DEFAULT_DOC package is defined as follows:

CREATE OR REPLACE PACKAGE ORDX_DEFAULT_DOC
authid current_user
AS 

PROCEDURE setProperties(ctx IN OUT RAW, 
                        obj IN OUT NOCOPY ORDSYS.ORDDoc,
                        setComments IN NUMBER := 0);

END;
/

Table B-4 shows the method that is supported in the ORDPLUGINS.ORDX_DEFAULT_DOC
package and the exception that is raised if the source is NULL.

Table B-4    Method Supported in the ORDPLUGINS.ORDX_DEFAULT_DOC
Package

Name of Method Level of Support

setProperties Supported; if the source is local, extract attributes from the local data
and set the properties, but if the source is NULL, raise an
ORDSYS.ORDSourceExceptions.EMPTY_SOURCE exception; if the
source is a BFILE, then extract attributes from the BFILE and set the
properties; if the source is neither local nor a BFILE, get the media
content into a temporary LOB, extract attributes from the data, and set
the properties.

B.2.2.2 Extending Oracle Multimedia to Support a New ORDDoc Data Format
Extending Oracle Multimedia to support a new media data format requires a series of
tasks.

Follow these steps to extend Oracle Multimedia to support a new ORDDoc data
format:

Appendix B
Supporting Other Media Data Formats

B-12



1. Design your new media data format.

a. To support a new media data format, implement the required interfaces in the
ORDX_<format>_DOC package in the ORDPLUGINS schema (where <format>
represents the name of the new media data format). Use the package body
example in Example B-3 as a template to create the package body.

b. Then, set the new format parameter in the setFormat( ) call to the appropriate
format value to indicate to the media object that package
ORDPLUGINS.ORDX_<format>_DOC should be called.

2. Implement your new media data format and name it, for example, ORDX_MY_DOC.SQL.

3. Install your new ORDX_MY_DOC.SQL package into the ORDPLUGINS schema.

4. Grant EXECUTE privileges on your new package, for example, ORDX_MY_DOC, to
PUBLIC.

5. In an application, set the format to my to cause your package to be invoked.

A package body listing is provided in Example B-3 to assist you in this operation. Add
your variables to the places that say "--Your variables go here" and add your code to
the places that say "--Your code goes here".

Example B-3    Package Body for Extending Support to a New ORDDoc Data
Format

CREATE OR REPLACE PACKAGE BODY ORDX_MY_DOC
AS
  --DOCUMENT ATTRIBUTES ACCESSORS
  PROCEDURE setProperties(ctx IN OUT RAW,
                          obj IN OUT NOCOPY ORDSYS.ORDDoc,
                          setComments IN NUMBER :=0)
  IS
--Your variables go here.
  BEGIN
--Your code goes here.
  END;
END;
/
show errors;

Related Topics:

• ORDPLUGINS.ORDX_DEFAULT_DOC Package
Use the ORDPLUGINS.ORDX_DEFAULT_DOC package as a guide in developing your own
ORDPLUGINS.ORDX_<format>_DOC media format package.

B.2.3 Supporting Other Video Data Formats
The following subsections describe how to extend ORDVideo to support other data
formats:

• ORDPLUGINS.ORDX_DEFAULT_VIDEO Package

• Extending Oracle Multimedia to Support a New Video Data Format

B.2.3.1 ORDPLUGINS.ORDX_DEFAULT_VIDEO Package
Use the ORDPLUGINS.ORDX_DEFAULT_VIDEO package as a guide in developing your own
ORDPLUGINS.ORDX_<format>_VIDEO video format package. This package sets the mimeType

Appendix B
Supporting Other Media Data Formats

B-13



field in the setProperties( ) method with a MIME type value that is dependent on the
file format.

The ORDPLUGINS.ORDX_DEFAULT_VIDEO package is defined as follows:

CREATE OR REPLACE PACKAGE ORDX_DEFAULT_VIDEO
authid current_user
AS
--VIDEO ATTRIBUTES ACCESSORS
FUNCTION  getAttribute(ctx IN OUT RAW,
                       obj IN ORDSYS.ORDVideo,
                       name IN VARCHAR2) 
          RETURN VARCHAR2;
PROCEDURE setProperties(ctx IN OUT RAW, 
                        obj IN OUT NOCOPY ORDSYS.ORDVideo,
                        setComments IN NUMBER := 0);
FUNCTION checkProperties(ctx IN OUT RAW,obj IN ORDSYS.ORDVideo) RETURN NUMBER;

-- must return name=value; name=value; ...  pairs
PROCEDURE getAllAttributes(ctx IN OUT RAW,
                           obj IN ORDSYS.ORDVideo,
                           attributes IN OUT NOCOPY CLOB);
-- VIDEO PROCESSING METHODS
FUNCTION  processCommand(
                         ctx       IN OUT RAW,
                         obj       IN OUT NOCOPY ORDSYS.ORDVideo,
                         cmd       IN VARCHAR2,
                         arguments IN VARCHAR2,
                         result    OUT RAW)
         RETURN RAW;

END;
/

Table B-5 shows the methods that are supported in the ORDPLUGINS.ORDX_DEFAULT_VIDEO
package and the exceptions that are raised if you call a method that is not supported.

Table B-5    Methods Supported in the ORDPLUGINS.ORDX_DEFAULT_VIDEO
Package

Name of Method Level of Support

getAttribute Not supported - raises exceptions: METHOD_NOT_SUPPORTED
and VIDEO_PLUGIN_EXCEPTION

setProperties Supported; if the source is local, extract attributes from the local data
and set the properties, but if the source is NULL, raise an
ORDSYS.ORDSourceExceptions.EMPTY_SOURCE exception; if the
source is a BFILE, then extract attributes from the BFILE and set the
properties; if the source is neither local nor a BFILE, get the media
content into a temporary LOB, extract attributes from the data, and set
the properties.

Appendix B
Supporting Other Media Data Formats

B-14



Table B-5    (Cont.) Methods Supported in the
ORDPLUGINS.ORDX_DEFAULT_VIDEO Package

Name of Method Level of Support

checkProperties Supported; if the source is local, extract attributes from the local data
and compare them with the attribute values of the object, but if the
source is NULL, raise an
ORDSYS.ORDSourceExceptions.EMPTY_SOURCE exception; if the
source is a BFILE, then extract attributes from the BFILE data and
compare them with the attribute values of the object; if the source is
neither local nor a BFILE, get the media content into a temporary
LOB, extract attributes from the media content and compare them
with the attribute values of the object.

getAllAttributes Supported; if the source is local, get the attributes and return them,
but if the source is NULL, raise an
ORDSYS.ORDSourceExceptions.EMPTY_SOURCE exception;
otherwise, if the source is external, raise an
ORDSYS.ORDVideoExceptions.LOCAL_DATA_SOURCE_REQUIRE
D exception.

processCommand Not supported - raises exceptions: METHOD_NOT_SUPPORTED
and VIDEO_PLUGIN_EXCEPTION

B.2.3.2 Extending Oracle Multimedia to Support a New Video Data Format
Extending Oracle Multimedia to support a new video data format requires a series of
tasks.

Follow these steps to extend Oracle Multimedia to support a new video data format:

1. Design your new video data format.

a. To support a new video data format, implement the required interfaces in the
ORDX_<format>_VIDEO package in the ORDPLUGINS schema (where <format>
represents the name of the new video data format). Use the package body
example in Example B-4 as a template to create the video package body.

b. Then, set the new format parameter in the setFormat( ) call to the appropriate
format value to indicate to the video object that package
ORDPLUGINS.ORDX_<format>_VIDEO should be called.

2. Implement your new video data format and name it, for example,
ORDX_MY_VIDEO.SQL.

3. Install your new ORDX_MY_VIDEO.SQL package into the ORDPLUGINS schema.

4. Grant EXECUTE privileges on your new package, for example, ORDX_MY_VIDEO, to
PUBLIC.

5. In an application, set the video format to my to cause your package to be invoked.

A package body listing is provided in Example B-4 to assist you in this operation. Add
your variables to the places that say "--Your variables go here" and add your code to
the places that say "--Your code goes here".

Example B-4    Package Body for Extending Support to a New Video Data Format

CREATE OR REPLACE PACKAGE BODY ORDX_MY_VIDEO
AS

Appendix B
Supporting Other Media Data Formats

B-15



  --VIDEO ATTRIBUTES ACCESSORS
  FUNCTION  getAttribute(ctx IN OUT RAW,
                         obj IN ORDSYS.ORDVideo,
                         name IN VARCHAR2)
  RETURN VARCHAR2
  IS
--Your variables go here.
  BEGIN
--Your code goes here.
  END;
  PROCEDURE setProperties(ctx IN OUT RAW, 
          obj IN OUT NOCOPY ORDSYS.ORDVideo,
          setComments IN NUMBER :=0)
  IS
--Your variables go here.
  BEGIN
--Your code goes here.
  END;
  FUNCTION checkProperties(ctx IN OUT RAW, obj IN ORDSYS.ORDVideo) RETURN NUMBER
  IS
--Your variables go here.
  BEGIN
--Your code goes here.
  END;
  PROCEDURE getAllAttributes(ctx IN OUT RAW,
                             obj IN ORDSYS.ORDVideo,
                             attributes IN OUT NOCOPY CLOB)
  IS
--Your variables go here.
  BEGIN
--Your code goes here.
  END;
  -- VIDEO PROCESSING METHODS
  FUNCTION  processCommand(
                                 ctx       IN OUT RAW,
                                 obj       IN OUT NOCOPY ORDSYS.ORDVideo,
                                 cmd       IN VARCHAR2,
                                 arguments IN VARCHAR2,
                                 result OUT RAW)
  RETURN RAW
  IS
--Your variables go here.
  BEGIN
--Your code goes here.
  END;
END;
/
show errors;

Related Topics:

• ORDPLUGINS.ORDX_DEFAULT_VIDEO Package
Use the ORDPLUGINS.ORDX_DEFAULT_VIDEO package as a guide in developing your
own ORDPLUGINS.ORDX_<format>_VIDEO video format package. This package sets the
mimeType field in the setProperties( ) method with a MIME type value that is
dependent on the file format.

Appendix B
Supporting Other Media Data Formats

B-16



B.2.4 Supporting Other Image Data Formats
Oracle Multimedia supports certain other image formats through the setProperties( )
method for foreign images.

This method enables other image formats to be recognized by writing the values
supplied to the setProperties( ) method for foreign images to the existing ORDImage
data attributes.

See Also:

The setProperties( ) for foreign images method in Oracle Multimedia
Reference for more information, and to determine the type of images that are
supported this way

B.3 Supporting Media Data Processing
You can extend support for the Oracle Multimedia audio and video object types to
include audio and video data processing.

Oracle Multimedia allows the audio and video object types to be extended to support
the processing of audio and video data, as described in the following subsections:

• Supporting Audio Data Processing

• Supporting Video Data Processing

B.3.1 Supporting Audio Data Processing
Audio data processing is the passing of an audio processing command and a set of
arguments to a format package for processing.

To support audio data processing, use the processAudioCommand( ) method. This
method is available only for user-defined formats.

See Also:

The processAudioCommand( ) method in Oracle Multimedia Reference for a
description

B.3.2 Supporting Video Data Processing
Video data processing is the passing of a command and a set of arguments to a
format package for processing.

To support video data processing, use the processVideoCommand( ) method. This
method is only available for user-defined formats.

Appendix B
Supporting Media Data Processing

B-17



See Also:

The processVideoCommand( ) method in Oracle Multimedia Reference for a
description

Appendix B
Supporting Media Data Processing

B-18



C
Oracle Multimedia Sample Applications

This appendix summarizes the Oracle Multimedia scripts and sample applications,
which are written in C, SQL, and PL/SQL.

Most of the Oracle Multimedia scripts and sample applications are available after you
install the Oracle Database Examples media, which you can download from the Oracle
Technology Network (OTN), in the locations shown in the following table.

Table C-1    Oracle Multimedia Sample Applications in Oracle Database Examples Media

Name Location

ORDImage OCI C Linux and UNIX: <ORACLE_HOME>/ord/img/demo

Windows: <ORACLE_HOME>\ord\img\demo

PL/SQL Web Toolkit Photo
Album

Linux and UNIX: <ORACLE_HOME>/ord/http/demo/plsqlwtk

Windows: <ORACLE_HOME>\ord\http\demo\plsqlwtk

Code Wizard for the
PL/SQL Gateway

Linux and UNIX: <ORACLE_HOME>/ord/http/demo/plsgwycw

Windows: <ORACLE_HOME>\ord\http\demo\plsgwycw

This appendix includes these sections:

• Oracle Multimedia ORDImage OCI C Sample Application

• Oracle Multimedia PL/SQL Sample Applications

See Also:

Oracle Multimedia on the Oracle Technology Network Web site for additional
sample applications that are available for download

C.1 Oracle Multimedia ORDImage OCI C Sample
Application

The Oracle Multimedia ORDImage OCI C sample application is written in C.

The Oracle Multimedia ORDImage OCI C sample application shows how to use the
Oracle Call Interface (OCI) to access the database and process images.

See Also:

The README.txt file in the demo directory for requirements and instructions for
running the Oracle Multimedia ORDImage OCI C sample application

C-1



C.2 Oracle Multimedia PL/SQL Sample Applications
The Oracle Multimedia PL/SQL Web Toolkit Photo Album sample application and the
Oracle Multimedia Code Wizard sample application for the PL/SQL Gateway are
written in SQL and PL/SQL.

The Oracle Multimedia PL/SQL Web Toolkit Photo Album sample application shows
how to upload and retrieve media data using the PL/SQL Web Toolkit and PL/SQL
Gateway.

The Oracle Multimedia Code Wizard sample application for the PL/SQL Gateway lets
you create PL/SQL procedures for the PL/SQL Gateway to upload and retrieve media
data stored in the database using the Oracle Multimedia object types.

See Also:

• Oracle Multimedia PL/SQL Photo Album Sample Application for more
information about installing and using the Oracle Multimedia PL/SQL Web
Toolkit Photo Album sample application

• Oracle Multimedia Code Wizard Sample Application for the PL/SQL
Gateway for more information about installing and using the Oracle
Multimedia Code Wizard sample application for the PL/SQL Gateway

• The README.txt file in the demo directory for requirements and instructions
for running these Oracle Multimedia sample applications

Appendix C
Oracle Multimedia PL/SQL Sample Applications

C-2



Glossary

audio data
Media data produced by an audio recorder, an audio source, or by program
algorithms. Audio recording devices take analog or continuous signals and convert
them into digital values with specific audio characteristics.

codecs
Digital compression and decompression schemes.

content metadata
Data that describes the content of image media, such as the name of the
photographer, and the date and time when a photograph was taken.

embedded metadata
Metadata that is stored with image data in the image file format.

heterogeneous media data
Assorted media data, such as audio data, image data, video data, and other types of
media data. The data can have a variety of formats, depending upon the application
that generated it.

image data
Media data produced by a document or photograph scanner, a video source, other
specialized image capture devices, or by program algorithms. Image capture devices
take analog or continuous signals and convert them into digital values on a two-
dimensional grid of data points known as pixels. Devices involved in the capture and
display of images are under application control.

image interchange format
A well-defined organization and use of image attributes, data, and often compression
schemes that enables different applications to create, exchange, and use images.
Interchange formats are often stored as disk files.

image metadata format
Standard protocols and techniques used to store image metadata within an image file.
Formats include EXIF, IPTC-IIM, and XMP.

Glossary-1



lossless compression schemes
Compression schemes that squeeze an image so that when it is decompressed, the
resulting image is bit-for-bit identical with the original.

lossy compression schemes
Compression schemes that do not result in an identical image when decompressed,
but rather, one in which the changes may be imperceptible to the human eye. Lossy
schemes generally provide higher compression than lossless compression schemes.

media data
Data from audio, image, DICOM format medical images and other objects, video, or
other heterogeneous media.

metadata
Information about media data, such as object length, compression type, or format.

methods
Procedures that can be performed on objects, such as getContent( ) or
setProperties( ).

Oracle interMedia
In Oracle Database 11g Release 1 (11.1), the name Oracle interMedia was changed
to Oracle Multimedia.

protocols
Image interchange formats exchanged in a sequential fashion over a network.

technical metadata
Data that describes image media in a technical sense, such as the height and width of
an image, in pixels, or the type of compression used to store the image.

video data
Media data produced by a video recorder, a video camera, digitized animation video,
other specialized video recording devices, or by program algorithms. Some video
recording devices take analog or continuous signals and convert them into digital
values with specific video characteristics.

Glossary

Glossary-2



Index

A
application development

PL/SQL Gateway feature, 2-17

C
C sample applications

ORDImage OCI C, C-1
Code Wizard for the PL/SQL Gateway sample

application, C-2
Code Wizard sample application, 4-2
compression formats

audio, 1-4
image, 1-4
video, 1-13

compression schemes, 1-11
content metadata, 5-1

D
data

loading multimedia, 1-14
data formats, 1-11
database users

default passwords, A-1
DBA tuning tips, 6-1
digital camera images, 5-2
downgrading an installed version of Oracle

Multimedia, A-5

E
embedded metadata, 5-1
embedding metadata, 1-11
exception handling

Java, 2-9
PL/SQL, 2-14

EXIF standard, 5-2
extending Oracle Multimedia

audio default format, B-9
document default format, B-12
new audio format, B-10
new data source, B-6

extending Oracle Multimedia (continued)
new media data format, B-12
new video format, B-15
video default format, B-13

I
image file storage standards

EXIF, 5-2
IPTC-IIM, 5-3
XMP, 5-3

image metadata format
defined, 5-2

image watermarking, 1-12
installing Oracle Multimedia, A-2
interchange formats, 1-11
interchanging metadata, 5-3
IPTC-IIM standard, 5-3

J
Java

configuring your environment, 2-3
exception handling, 2-9
retrieving image properties, 2-7
uploading media, 2-5

L
loading data

multimedia, 1-14
using PL/SQL, 1-14
using SQL*Loader, 1-14

lossless compression, 1-11
lossy compression, 1-11

M
media queries

PL/SQL, 2-13
medical imaging, 1-11
metadata, 5-1

embedding, 5-2
extracting metadata, 1-11

Index-1



metadata (continued)
embedding in XML, 3-2
embedding metadata, 5-6
extracting, 1-11, 3-2, 5-2
extracting metadata, 5-5
information about, 5-8
searching, 3-2
storing, 3-2
XML DB, 5-3, 5-6
XML documents, 5-3

metadata examples
creating a table, 5-4
embedding metadata, 5-6
extracting metadata, 5-5

N
news media images, 5-3

O
object relational technology, 1-3
Oracle interMedia See Oracle Multimedia, 1-1
Oracle Multimedia, 1-1

media data storage model, 1-4
objects types, 1-4

ORDImage OCI C sample application, C-1
ORDPLUGINS.ORDX_DEFAULT_AUDIO

package, B-9
ORDPLUGINS.ORDX_DEFAULT_DOC

package, B-12
ORDPLUGINS.ORDX_DEFAULT_VIDEO

package, B-13
ORDPLUGINS.ORDX_FILE_SOURCE package,

B-2
ORDPLUGINS.ORDX_HTTP_SOURCE

package, B-4

P
packages

ORDPLUGINS.ORDX_DEFAULT_AUDIO,
B-9

ORDPLUGINS.ORDX_DEFAULT_DOC,
B-12

ORDPLUGINS.ORDX_DEFAULT_VIDEO,
B-13

ORDPLUGINS.ORDX_FILE_SOURCE, B-2
ORDPLUGINS.ORDX_HTTP_SOURCE, B-4

packages or PL/SQL plug-ins, B-2
passwords

installation defaults, A-1
PL/SQL

client applications, 2-11

PL/SQL (continued)
configuring your environment, 2-12
exception handling, 2-14
loading data, 1-14
media queries, 2-13
retrieving media, 2-14, 2-16
uploading media, 2-12, 2-16

PL/SQL Gateway feature, 2-17
PL/SQL packages, 2-16
PL/SQL sample applications

Code Wizard for the PL/SQL Gateway, C-2
PL/SQL Web Toolkit Photo Album, C-2

PL/SQL Web Toolkit Photo Album sample
application, 3-2, C-2

protocols, 1-11

R
related documents, xii
retrieving media

PL/SQL, 2-14, 2-16

S
sample applications

Code Wizard, 4-2
downloading from Oracle Technology

Network, C-1
Oracle Multimedia directory locations, C-1
PL/SQL Web Toolkit Photo Album, 3-2

SQL*Loader
loading data, 1-14

T
technical metadata, 5-1

U
upgrading an Oracle Multimedia installation, A-5
uploading media

PL/SQL, 2-12, 2-16

V
verifying an Oracle Multimedia installation, A-5

X
XML

representing metadata, 5-3
XML schemas

registering with Oracle XML DB, 3-2, 5-6
XMP standard, 5-3

Index

Index-2


	Contents
	List of Examples
	List of Figures
	List of Tables
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	Changes in This Release for Oracle Multimedia User's Guide
	Changes in Oracle Database 12c Release 2 (12.2)

	1  Introduction to Oracle Multimedia
	1.1 Oracle Multimedia Architecture
	1.2 Object Relational Technology
	1.3 Oracle Multimedia Capabilities
	1.3.1 Oracle Multimedia Support for CDBs
	1.3.2 Data Guard Rolling Upgrade Support for Oracle Multimedia

	1.4 Audio Concepts
	1.4.1 Digitized Audio
	1.4.2 Audio Components

	1.5 ORDDoc or Heterogeneous Media Data Concepts
	1.5.1 Digitized Heterogeneous Media Data
	1.5.2 Heterogeneous Media Data Components

	1.6 Image Concepts
	1.6.1 Digitized Images
	1.6.2 Image Components
	1.6.3 Metadata in Images
	1.6.4 Medical Imaging (Deprecated)
	1.6.5 Metadata Extraction
	1.6.6 Image Processing

	1.7 Video Concepts
	1.7.1 Digitized Video
	1.7.2 Video Components

	1.8 Loading Multimedia Data
	1.9 Multimedia Storage and Querying
	1.9.1 Storing Multimedia Data
	1.9.2 Querying Multimedia Data

	1.10 Accessing Multimedia Data

	2  Oracle Multimedia Application Development
	2.1 Developing Multimedia Applications Using SQL Developer
	2.2 Developing Multimedia Applications Using Application Express
	2.3 Developing Multimedia Applications Using Java and JDBC
	2.3.1 Setting Up Your Environment for Java
	2.3.2 Media Upload in Java
	2.3.3 Retrieval of Image Properties in Java
	2.3.4 Thumbnail Image Creation in Java
	2.3.5 Handling Oracle Multimedia Exceptions in Java
	2.3.5.1 Handling the Setting of Properties for Unknown Image Formats in Java
	2.3.5.2 Handling Image Processing for Unknown Image Formats in Java


	2.4 Developing Multimedia Applications Using PL/SQL
	2.4.1 Setting Up Your Environment for PL/SQL
	2.4.2 Media Upload in PL/SQL
	2.4.3 Media Query in PL/SQL
	2.4.4 Media Download in PL/SQL
	2.4.5 Handling Oracle Multimedia Exceptions in PL/SQL
	2.4.5.1 Handling the Setting of Properties for Unknown Image Formats in PL/SQL
	2.4.5.2 Handling Image Processing for Unknown Image Formats in PL/SQL


	2.5 Developing PL/SQL Web Applications
	2.5.1 Using the PL/SQL Gateway and PL/SQL Web Toolkit


	3 Oracle Multimedia PL/SQL Photo Album Sample Application
	3.1 Overview of the PL/SQL Photo Album Sample Application
	3.2 Running the PL/SQL Photo Album Sample Application
	3.3 Description of the PL/SQL Photo Album Sample Application
	3.3.1 Browsing the Photo Album
	3.3.2 Adding Images to the Photo Album
	3.3.3 Searching for Images by Keyword or Phrase
	3.3.4 Viewing Full-Size Images
	3.3.5 Examining Image Metadata
	3.3.6 Writing New XMP Metadata to Images
	3.3.7 Searching for Images That Contain Specific Metadata Attributes


	4  Oracle Multimedia Code Wizard Sample Application for the PL/SQL Gateway
	4.1 Running the Code Wizard Sample Application
	4.2 Description of the Code Wizard Sample Application
	4.2.1 Creating a New DAD or Choosing an Existing DAD
	4.2.2 Authorizing a DAD
	4.2.3 Creating and Testing Media Upload and Retrieval Procedures
	4.2.4 Creating a Media Upload Procedure
	4.2.5 Creating a Media Retrieval Procedure
	4.2.6 Using the PL/SQL Gateway Document Table
	4.2.7 How Time Zone Information Is Used to Support Browser Caching

	4.3 Sample Session: Using Images
	4.4 Known Restrictions of the Oracle Multimedia Code Wizard

	5  Working with Metadata in Oracle Multimedia Images
	5.1 Metadata Concepts
	5.2 Oracle Multimedia Image Metadata Concepts
	5.3 Image File Formats
	5.4 Image Metadata Formats
	5.4.1 EXIF
	5.4.2 IPTC–IIM
	5.4.3 XMP

	5.5 Representing Metadata Outside Images
	5.6 Oracle Multimedia Image Metadata Examples
	5.6.1 Creating a Table for Metadata Storage
	5.6.2 Extracting Image Metadata
	5.6.3 Embedding Image Metadata

	5.7 Metadata References

	6  Oracle Multimedia Tuning Tips for DBAs
	6.1 Understanding the Performance Profile of Oracle Multimedia Operations
	6.2 Choosing LOB Storage Parameters for Multimedia LOBs
	6.2.1 SecureFiles LOBs
	6.2.2 TABLESPACE
	6.2.3 CACHE, NOCACHE, and CACHE READS
	6.2.4 LOGGING and NOLOGGING
	6.2.5 Example of Setting LOB Storage Options

	6.3 Setting Database Initialization Parameters

	A  Managing Oracle Multimedia Installations
	A.1 Oracle Multimedia Installed Users and Privileges
	A.2 Installing and Configuring Oracle Multimedia
	A.2.1 Preinstallation Steps
	A.2.2 Installation and Configuration Steps

	A.3 Verifying an Installed Version of Oracle Multimedia
	A.4 Upgrading an Installed Version of Oracle Multimedia
	A.5 Downgrading an Installed Version of Oracle Multimedia

	B  Extending Oracle Multimedia
	B.1 Supporting Other External Sources
	B.1.1 External Source Packages
	B.1.1.1 ORDPLUGINS.ORDX_FILE_SOURCE Package
	B.1.1.2 ORDPLUGINS.ORDX_HTTP_SOURCE Package
	B.1.1.3 Extending Oracle Multimedia to Support a New Data Source


	B.2 Supporting Other Media Data Formats
	B.2.1 Supporting Other ORDAudio Data Formats
	B.2.1.1 ORDPLUGINS.ORDX_DEFAULT_AUDIO Package
	B.2.1.2 Extending Oracle Multimedia to Support a New Audio Data Format

	B.2.2 Supporting Other ORDDoc Data Formats
	B.2.2.1 ORDPLUGINS.ORDX_DEFAULT_DOC Package
	B.2.2.2 Extending Oracle Multimedia to Support a New ORDDoc Data Format

	B.2.3 Supporting Other Video Data Formats
	B.2.3.1 ORDPLUGINS.ORDX_DEFAULT_VIDEO Package
	B.2.3.2 Extending Oracle Multimedia to Support a New Video Data Format

	B.2.4 Supporting Other Image Data Formats

	B.3 Supporting Media Data Processing
	B.3.1 Supporting Audio Data Processing
	B.3.2 Supporting Video Data Processing


	C Oracle Multimedia Sample Applications
	C.1 Oracle Multimedia ORDImage OCI C Sample Application
	C.2 Oracle Multimedia PL/SQL Sample Applications

	Glossary
	audio data
	codecs
	content metadata
	embedded metadata
	heterogeneous media data
	image data
	image interchange format
	image metadata format
	lossless compression schemes
	lossy compression schemes
	media data
	metadata
	methods
	Oracle interMedia
	protocols
	technical metadata
	video data

	Index

