Oracle® Data Mining
AP| Guide

12c¢ Release 2 (12.2)
E85759-02
March 2018

ORACLE"

Oracle Data Mining API Guide, 12c Release 2 (12.2)

E85759-02

Copyright © 2005, 2018, Oracle and/or its affiliates. All rights reserved.
Primary Author: Sarika Surampudi

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface
Audience XX
Documentation Accessibility XX
Conventions XX
Part | Introductions
1 Introduction to Oracle Data Mining
1.1 About Oracle Data Mining 1-1
1.2 Data Mining in the Database Kernel 1-1
1.3 Oracle Data Mining with R Extensibility 1-2
1.4 Data Mining in Oracle Exadata 1-3
1.5 About Partitioned Model 1-3
1.6 Interfaces to Oracle Data Mining 1-4
1.6.1 PL/SQL API 1-4
1.6.1.1 DBMS_DATA_MINING with R and Supported Subprograms 1-5
1.6.2 SQL Functions 1-5
1.6.3 Oracle Data Miner 1-6
1.6.4 Predictive Analytics 1-7
1.7 Overview of Database Analytics 1-8
2 Oracle Data Mining Basics
2.1 Mining Functions 2-1
2.1.1 Supervised Data Mining 2-1
2.1.1.1 Supervised Learning: Testing 2-2
2.1.1.2 Supervised Learning: Scoring 2-2
2.1.2 Unsupervised Data Mining 2-2
2.1.2.1 Unsupervised Learning: Scoring 2-3
2.2 Algorithms 2-3
2.2.1 Oracle Data Mining Supervised Algorithms 2-4

ORACLE"

2.2.2 Oracle Data Mining Unsupervised Algorithms 2-4
2.3 Data Preparation 2-6
2.3.1 Oracle Data Mining Simplifies Data Preparation 2-6
2.3.2 Case Data 2-6
2.3.2.1 Nested Data 2-7
2.3.3 TextData 2-7
2.4 In-Database Scoring 2-7
2.4.1 Parallel Execution and Ease of Administration 2-7
2.4.2 SQL Functions for Model Apply and Dynamic Scoring 2-8
Part Il Mining Functions
3 Regression
3.1 About Regression 3-1
3.1.1 How Does Regression Work? 3-1
3.1.1.1 Linear Regression 3-2
3.1.1.2 Multivariate Linear Regression 3-3
3.1.1.3 Regression Coefficients 3-3
3.1.1.4 Nonlinear Regression 3-3
3.1.1.5 Multivariate Nonlinear Regression 3-4
3.1.1.6 Confidence Bounds 3-4
3.2 Testing a Regression Model 3-4
3.2.1 Regression Statistics 3-4
3.2.1.1 Root Mean Squared Error 34
3.2.1.2 Mean Absolute Error 3-5
3.3 Regression Algorithms 3-5
4 Classification
4.1 About Classification 4-1
4.2 Testing a Classification Model 4-2
4.2.1 Confusion Matrix 4-2
422 Lift 4-3
4.2.2.1 Lift Statistics 4-3
4.2.3 Receiver Operating Characteristic (ROC) 4-4
4.2.3.1 The ROC Curve 4-4
4.2.3.2 Area Under the Curve 4-5
4.2.3.3 ROC and Model Bias 4-5
4.2.3.4 ROC Statistics 4-5
4.3 Biasing a Classification Model 4-6

ORACLE

4.3.1 Costs 4-6
4.3.1.1 Costs Versus Accuracy 4-6
4.3.1.2 Positive and Negative Classes 4-6
4.3.1.3 Assigning Costs and Benefits 4-7
4.3.2 Priors and Class Weights 4-8
4.4 Classification Algorithms 4-8
Anomaly Detection
5.1 About Anomaly Detection 5-1
5.1.1 One-Class Classification 5-1
5.1.2 Anomaly Detection for Single-Class Data 5-2
5.1.3 Anomaly Detection for Finding Outliers 5-2
5.2 Anomaly Detection Algorithm 5-3
Clustering
6.1 About Clustering 6-1
6.1.1 How are Clusters Computed? 6-1
6.1.2 Scoring New Data 6-2
6.1.3 Hierarchical Clustering 6-2
6.1.3.1 Rules 6-2
6.1.3.2 Support and Confidence 6-2
6.2 Evaluating a Clustering Model 6-2
6.3 Clustering Algorithms 6-2
Association
7.1 About Association 7-1
7.1.1 Association Rules 7-1
7.1.2 Market-Basket Analysis 7-1
7.1.3 Association Rules and eCommerce 7-2
7.2 Transactional Data 7-2
7.3 Association Algorithm 7-3
Feature Selection and Extraction
8.1 Finding the Best Attributes 8-1
8.2 About Feature Selection and Attribute Importance 8-2
8.2.1 Attribute Importance and Scoring 8-2
8.3 About Feature Extraction 8-2
8.3.1 Feature Extraction and Scoring 8-3

ORACLE"

8.4 Algorithms for Attribute Importance and Feature Extraction 8-3

Part Ill Algorithms

o Apriori
9.1 About Apriori 9-1
9.2 Association Rules and Frequent Itemsets 9-2
9.2.1 Antecedent and Consequent 9-2
9.2.2 Confidence 9-2
9.3 Data Preparation for Apriori 9-2
9.3.1 Native Transactional Data and Star Schemas 9-2
9.3.2 Items and Collections 9-2
9.3.3 Sparse Data 9-3
9.4 Calculating Association Rules 9-3
9.4.1 Itemsets 9-3
9.4.2 Frequent ltemsets 9-4
9.4.3 Example: Calculating Rules from Frequent ltemsets 9-4
9.4.4 Aggregates 9-6
9.4.5 Reverse Confidence 9-7
9.4.6 Minimum Support Count 9-7
9.4.7 Transaction Count 9-7
9.4.8 Including and Excluding Rules 9-7
9.4.9 Excluding Rules 9-8
9.4.10 Example: Calculating Aggregates 9-8
9.4.11 Performance Impact for Aggregates 9-9
9.5 Evaluating Association Rules 9-9
9.5.1 Support 9-9
9.5.2 Confidence 9-10
9.5.3 Lift 9-10

10 Decision Tree

10.1 About Decision Tree 10-1
10.1.1 Decision Tree Rules 10-1
10.1.1.1 Confidence and Support 10-2

10.1.2 Advantages of Decision Trees 10-3
10.1.3 XML for Decision Tree Models 10-3
10.2 Growing a Decision Tree 10-3
10.2.1 Splitting 10-4
10.2.2 Cost Matrix 10-5

ORACLE vi

10.2.3 Preventing Over-Fitting 10-5
10.3 Tuning the Decision Tree Algorithm 10-5
10.4 Data Preparation for Decision Tree 10-6

11 Expectation Maximization

11.1 About Expectation Maximization 11-1
11.1.1 Expectation Step and Maximization Step 11-1
11.1.2 Probability Density Estimation 11-1

11.2 Algorithm Enhancements 11-2
11.2.1 Scalability 11-2
11.2.2 High Dimensionality 11-3
11.2.3 Number of Components 11-3
11.2.4 Parameter Initialization 11-3
11.2.5 From Components to Clusters 11-3

11.3 Configuring the Algorithm 11-4

11.4 Data Preparation for Expectation Maximization 11-4

12 Explicit Semantic Analysis

12.1 About Explicit Semantic Analysis 12-1
12.1.1 Scoring with ESA 12-1
12.1.2 Scoring Large ESA Models 12-2

12.2 ESA for Text Mining 12-2

12.3 Data Preparation for ESA 12-2

13 Generalized Linear Models

13.1 About Generalized Linear Models 13-1
13.2 GLM in Oracle Data Mining 13-2
13.2.1 Interpretability and Transparency 13-2
13.2.2 Wide Data 13-2
13.2.3 Confidence Bounds 13-2
13.2.4 Ridge Regression 13-3
13.2.4.1 Configuring Ridge Regression 13-3
13.2.4.2 Ridge and Confidence Bounds 13-4
13.2.4.3 Ridge and Data Preparation 13-4

13.3 Scalable Feature Selection 13-4
13.3.1 Feature Selection 13-4
13.3.1.1 Configuring Feature Selection 13-4
13.3.1.2 Feature Selection and Ridge Regression 13-5

13.3.2 Feature Generation 13-5

ORACLE vii

13.3.2.1 Configuring Feature Generation 13-5
13.4 Tuning and Diagnostics for GLM 13-5
13.4.1 Build Settings 13-5
13.4.2 Diagnostics 13-6
13.4.2.1 Coefficient Statistics 13-6
13.4.2.2 Global Model Statistics 13-6
13.4.2.3 Row Diagnostics 13-7
13.5 Data Preparation for GLM 13-7
13.5.1 Data Preparation for Linear Regression 13-7
13.5.2 Data Preparation for Logistic Regression 13-8
13.5.3 Missing Values 13-8
13.6 Linear Regression 13-9
13.6.1 Coefficient Statistics for Linear Regression 13-9
13.6.2 Global Model Statistics for Linear Regression 13-9
13.6.3 Row Diagnostics for Linear Regression 13-10
13.7 Logistic Regression 13-11
13.7.1 Reference Class 13-11
13.7.2 Class Weights 13-11
13.7.3 Coefficient Statistics for Logistic Regression 13-11
13.7.4 Global Model Statistics for Logistic Regression 13-11
13.7.5 Row Diagnostics for Logistic Regression 13-12
14 k-Means
14.1 About k-Means 14-1
14.1.1 Oracle Data Mining Enhanced k-Means 14-1
14.1.2 Centroid 14-1
14.2 k-Means Algorithm Configuration 14-2
14.3 Data Preparation for k-Means 14-2
15 Minimum Description Length
15.1 About MDL 15-1
15.1.1 Compression and Entropy 15-1
15.1.1.1 Values of a Random Variable: Statistical Distribution 15-2
15.1.1.2 Values of a Random Variable: Significant Predictors 15-2
15.1.1.3 Total Entropy 15-2
15.1.2 Model Size 15-2
15.1.3 Model Selection 15-2
15.1.4 The MDL Metric 15-3
ORACLE viii

15.2 Data Preparation for MDL 15-3
16 Naive Bayes
16.1 About Naive Bayes 16-1
16.1.1 Advantages of Naive Bayes 16-3
16.2 Tuning a Naive Bayes Model 16-3
16.3 Data Preparation for Naive Bayes 16-3
17 Non-Negative Matrix Factorization
17.1 About NMF 17-1
17.1.1 Matrix Factorization 17-1
17.1.2 Scoring with NMF 17-2
17.1.3 Text Mining with NMF 17-2
17.2 Tuning the NMF Algorithm 17-2
17.3 Data Preparation for NMF 17-3
18 O-Cluster
18.1 About O-Cluster 18-1
18.1.1 Partitioning Strategy 18-1
18.1.1.1 Partitioning Numerical Attributes 18-2
18.1.1.2 Partitioning Categorical Attributes 18-2
18.1.2 Active Sampling 18-2
18.1.3 Process Flow 18-2
18.1.4 Scoring 18-3
18.2 Tuning the O-Cluster Algorithm 18-3
18.3 Data Preparation for O-Cluster 18-3
18.3.1 User-Specified Data Preparation for O-Cluster 18-4
19 Singular Value Decomposition
19.1 About Singular Value Decomposition 19-1
19.1.1 Matrix Manipulation 19-1
19.1.2 Low Rank Decomposition 19-2
19.1.3 Scalability 19-2
19.2 Configuring the Algorithm 19-3
19.2.1 Model Size 19-3
19.2.2 Performance 19-3
19.2.3 PCA scoring 19-3
ORACLE ix

19.3 Data Preparation for SVD 19-4

20 Support Vector Machines

20.1 About Support Vector Machines 20-1
20.1.1 Advantages of SVM 20-1
20.1.2 Advantages of SVM in Oracle Data Mining 20-2

20.1.2.1 Usability 20-2
20.1.2.2 Scalability 20-2
20.1.3 Kernel-Based Learning 20-2

20.2 Tuning an SVM Model 20-3

20.3 Data Preparation for SVM 20-3
20.3.1 Normalization 20-4
20.3.2 SVM and Automatic Data Preparation 20-4

20.4 SVM Classification 20-4
20.4.1 Class Weights 20-4

20.5 One-Class SVM 20-5

20.6 SVM Regression 20-5

Part IV Using the Data Mining API

21 Data Mining With SQL

21.1 Highlights of the Data Mining API 21-1
21.2 Example: Targeting Likely Candidates for a Sales Promotion 21-2
21.3 Example: Analyzing Preferred Customers 21-3
21.4 Example: Segmenting Customer Data 21-5
21.5 Example : Building an ESA Model with a Wiki Dataset 21-6

22 About the Data Mining API

22.1 About Mining Models 22-1
22.2 Data Mining Data Dictionary Views 22-2
22.2.1 ALL_MINING_MODELS 22-2
22.2.2 ALL_MINING_MODEL_ATTRIBUTES 22-3
22.2.3 ALL_MINING_MODEL_PARTITIONS 22-4
22.2.4 ALL_MINING_MODEL_SETTINGS 22-5
22.25 ALL_MINING_MODEL_VIEWS 22-5
22.2.6 ALL_MINING_MODEL_XFORMS 22-6
22.3 Data Mining PL/SQL Packages 22-7
22.3.1 DBMS_DATA_MINING 22-7

ORACLE X

22.3.2 DBMS_DATA_MINING_TRANSFORM 22-7
22.3.2.1 Transformation Methods in

DBMS_DATA_MINING_TRANSFORM 22-8
22.3.3 DBMS_PREDICTIVE_ANALYTICS 22-8
22.4 Data Mining SQL Scoring Functions 22-9

23 Preparing the Data

23.1 Data Requirements 23-1
23.1.1 Column Data Types 23-2
23.1.2 Data Sets for Classification and Regression 23-2
23.1.3 Scoring Requirements 23-2

23.2 About Attributes 23-3
23.2.1 Data Attributes and Model Attributes 23-3
23.2.2 Target Attribute 23-4
23.2.3 Numericals, Categoricals, and Unstructured Text 23-5
23.2.4 Model Signature 23-5
23.2.5 Scoping of Model Attribute Name 23-6
23.2.6 Model Details 23-6

23.3 Using Nested Data 23-7
23.3.1 Nested Object Types 23-7
23.3.2 Example: Transforming Transactional Data for Mining 23-9

23.4 Using Market Basket Data 23-10
23.4.1 Example: Creating a Nested Column for Market Basket Analysis 23-11

23.5 Using Retail Analysis Data 23-11

23.6 Handling Missing Values 23-12
23.6.1 Examples: Missing Values or Sparse Data? 23-12

23.6.1.1 Sparsity in a Sales Table 23-12
23.6.1.2 Missing Values in a Table of Customer Data 23-12
23.6.2 Missing Value Treatment in Oracle Data Mining 23-13
23.6.3 Changing the Missing Value Treatment 23-14

24 Transforming the Data

24.1 About Transformations 24-1
24.2 Preparing the Case Table 24-2
24.2.1 Creating Nested Columns 24-2
24.2.2 Converting Column Data Types 24-2
24.2.3 Text Transformation 24-2
24.2.4 About Business and Domain-Sensitive Transformations 24-3
24.3 Understanding Automatic Data Preparation 24-3
24.3.1 Binning 24-3

ORACLE Xi

24.3.2 Normalization

24-4

24.3.3 Outlier Treatment 24-4
24.3.4 How ADP Transforms the Data 24-4
24.4 Embedding Transformations in a Model 24-5
24.4.1 Specifying Transformation Instructions for an Attribute 24-5
24.41.1 Expression Records 24-6
24.4.1.2 Attribute Specifications 24-7
24.4.2 Building a Transformation List 24-7
24421 SET_TRANSFORM 24-7
24.4.2.2 The STACK Interface 24-8
24.4.2.3 GET_MODEL_TRANSFORMATIONS and
GET_TRANSFORM_LIST 24-8
24.4.3 Transformation Lists and Automatic Data Preparation 24-9
24.4.4 Oracle Data Mining Transformation Routines 24-9
24.4.4.1 Binning Routines 24-9
24.4.4.2 Normalization Routines 24-10
24.4.4.3 Routines for Outlier Treatment 24-11
24.5 Understanding Reverse Transformations 24-11
25 Creating a Model
25.1 Before Creating a Model 25-1
25.2 The CREATE_MODEL Procedure 25-1
25.2.1 Choosing the Mining Function 25-2
25.2.2 Choosing the Algorithm 25-3
25.2.3 Supplying Transformations 25-4
25.2.3.1 Creating a Transformation List 25-4
25.2.3.2 Transformation List and Automatic Data Preparation 25-5
25.2.4 About Partitioned Model 25-5
25.2.4.1 Partitioned Model Build Process 25-5
25.2.4.2 DDL in Partitioned model 25-6
25.2.4.3 Partitioned Model scoring 25-7
25.3 Specifying Model Settings 25-7
25.3.1 Specifying Costs 25-9
25.3.2 Specifying Prior Probabilities 25-9
25.3.3 Specifying Class Weights 25-10
25.3.4 Model Settings in the Data Dictionary 25-10
25.3.5 Specifying Mining Model Settings for R Model 25-11
25.35.1 ALGO_EXTENSIBLE_LANG 25-12
25.3.5.2 RALG_BUILD_FUNCTION 25-12
25.3.5.3 RALG_DETAILS FUNCTION 25-14
25.3.5.4 RALG_SCORE_FUNCTION 25-15
Xii

ORACLE

25.3.5.5 RALG_WEIGHT_FUNCTION 25-17
25.3.5.6 Registered R Scripts 25-18
25.3.5.7 R Model Demonstration Scripts 25-19

25.4 Model Detail Views 25-19
25.4.1 Model Detail Views for Association Rules 25-20
25.4.2 Model Detail View for Frequent Itemsets 25-25
25.4.3 Model Detail View for Transactional Itemsets 25-26
25.4.4 Model Detail View for Transactional Rule 25-26
25.45 Model Detail Views for Classification Algorithms 25-27
25.4.6 Model Detail Views for Decision Tree 25-28
25.4.7 Model Detail Views for Generalized Linear Model 25-31
25.4.8 Model Detail Views for Naive Bayes 25-38
25.4.9 Model Detail View for Support Vector Machine 25-39
25.4.10 Model Detail Views for Clustering Algorithms 25-40
25.4.11 Model Detail Views for Expectation Maximization 25-43
25.4.12 Model Detail Views for k-Means 25-46
25.4.13 Model Detail Views for O-Cluster 25-47
25.4.14 Model Detail Views for Explicit Semantic Analysis 25-49
25.4.15 Model Detail Views for Non-Negative Matrix Factorization 25-50
25.4.16 Model Detail Views for Singular Value Decomposition 25-52
25.4.17 Model Detail View for Minimum Description Length 25-54
25.4.18 Model Detail View for Binning 25-55
25.4.19 Model Detail Views for Global Information 25-56
25.4.20 Model Detail View for Normalization and Missing Value Handling 25-57

26 Scoring and Deployment

26.1 About Scoring and Deployment 26-1
26.2 Using the Data Mining SQL Functions 26-2
26.2.1 Choosing the Predictors 26-2
26.2.2 Single-Record Scoring 26-3
26.3 Prediction Details 26-4
26.3.1 Cluster Details 26-4
26.3.2 Feature Details 26-5
26.3.3 Prediction Details 26-5
26.3.4 GROUPING Hint 26-7
26.4 Real-Time Scoring 26-8
26.5 Dynamic Scoring 26-8
26.6 Cost-Sensitive Decision Making 26-10
26.7 DBMS_DATA_MINING.Apply 26-12

ORACLE

Xiii

27 Mining Unstructured Text
27.1 About Unstructured Text 27-1
27.2 About Text Mining and Oracle Text 27-1
27.3 Data Preparation for Text Features 27-2
27.4 Creating a Model that Includes Text Mining 27-2
27.5 Creating a Text Policy 27-4
27.6 Configuring a Text Attribute 27-5
28 Administrative Tasks for Oracle Data Mining
28.1 Installing and Configuring a Database for Data Mining 28-1
28.1.1 About Installation 28-1
28.1.2 Enabling or Disabling a Database Option 28-2
28.1.3 Database Tuning Considerations for Data Mining 28-2
28.2 Upgrading or Downgrading Oracle Data Mining 28-3
28.2.1 Pre-Upgrade Steps 28-3
28.2.1.1 Dropping Models Created in Java 28-3
28.2.1.2 Dropping Mining Activities Created in Oracle Data Miner Classic 28-3
28.2.2 Upgrading Oracle Data Mining 28-4
28.2.2.1 Using Database Upgrade Assistant to Upgrade Oracle Data
Mining 28-4
28.2.2.2 Using Export/Import to Upgrade Data Mining Models 28-5
28.2.3 Post Upgrade Steps 28-6
28.2.4 Downgrading Oracle Data Mining 28-7
28.3 Exporting and Importing Mining Models 28-7
28.3.1 About Oracle Data Pump 28-7
28.3.2 Options for Exporting and Importing Mining Models 28-8
28.3.3 Directory Objects for EXPORT_MODEL and IMPORT_MODEL 28-9
28.3.4 Using EXPORT_MODEL and IMPORT_MODEL 28-9
28.3.5 Importing From PMML 28-11
28.4 Controlling Access to Mining Models and Data 28-11
28.4.1 Creating a Data Mining User 28-12
28.4.1.1 Granting Privileges for Data Mining 28-13
28.4.2 System Privileges for Data Mining 28-13
28.4.3 Object Privileges for Mining Models 28-14
28.5 Auditing and Adding Comments to Mining Models 28-15
28.5.1 Adding a Comment to a Mining Model 28-15
28.5.2 Auditing Mining Models 28-16
ORACLE Xiv

29 The Data Mining Sample Programs

29.1 About the Data Mining Sample Programs 29-1
29.2 Installing the Data Mining Sample Programs 29-2
29.3 The Data Mining Sample Data 29-3
Part V. Oracle Data Mining API Reference
30 PL/SQL Packages
30.1 DBMS_DATA_MINING 30-1
30.1.1 Using DBMS_DATA_MINING 30-1
30.1.1.1 DBMS_DATA_MINING Overview 30-2
30.1.1.2 DBMS_DATA_MINING Security Model 30-3
30.1.1.3 DBMS_DATA_MINING — Mining Functions 30-3
30.1.1.4 DBMS_DATA_MINING Datatypes 30-4
30.1.2 DBMS_DATA_MINING — Model Settings 30-10
30.1.2.1 DBMS_DATA_MINING — Algorithm Names 30-10
30.1.2.2 DBMS_DATA_MINING — Automatic Data Preparation 30-11
30.1.2.3 DBMS_DATA_MINING — Mining Function Settings 30-12
30.1.2.4 DBMS_DATA_MINING — Global Settings 30-16
30.1.2.5 DBMS_DATA_MINING — Algorithm Settings:
ALGO_EXTENSIBLE_LANG 30-19
30.1.2.6 DBMS_DATA_MINING — Algorithm Settings: Decision Tree 30-21
30.1.2.7 DBMS_DATA_MINING — Algorithm Settings: Expectation
Maximization 30-22
30.1.2.8 DBMS_DATA_MINING — Algorithm Settings: Explicit Semantic
Analysis 30-25
30.1.2.9 DBMS_DATA_MINING — Algorithm Settings: Generalized
Linear Models 30-26
30.1.2.10 DBMS_DATA_MINING — Algorithm Settings: k-Means 30-28
30.1.2.11 DBMS_DATA_MINING — Algorithm Settings: Naive Bayes 30-30
30.1.2.12 DBMS_DATA_MINING — Algorithm Settings: Non-Negative
Matrix Factorization 30-30
30.1.2.13 DBMS_DATA_ MINING — Algorithm Settings: O-Cluster 30-31
30.1.2.14 DBMS_DATA_MINING — Algorithm Constants and Settings:
Singular Value Decomposition 30-31
30.1.2.15 DBMS_DATA_MINING — Algorithm Settings: Support Vector
Machine 30-33
30.1.3 Summary of DBMS_DATA_ MINING Subprograms 30-34
30.1.3.1 ADD_COST_MATRIX Procedure 30-36
30.1.3.2 ADD_PARTITION Procedure 30-39
30.1.3.3 ALTER_REVERSE_EXPRESSION Procedure 30-40

ORACLE

XV

30.1.3.4

30.1.3.5

30.1.3.6

30.1.3.7

30.1.3.8

30.1.3.9

30.1.3.10
30.1.3.11
30.1.3.12
30.1.3.13
30.1.3.14
30.1.3.15
30.1.3.16
30.1.3.17
30.1.3.18
30.1.3.19
30.1.3.20
30.1.3.21
30.1.3.22
30.1.3.23
30.1.3.24
30.1.3.25
30.1.3.26
30.1.3.27
30.1.3.28
30.1.3.29
30.1.3.30
30.1.3.31
30.1.3.32
30.1.3.33
30.1.3.34
30.1.3.35
30.1.3.36
30.1.3.37
30.1.3.38
30.1.3.39

APPLY Procedure
COMPUTE_CONFUSION_MATRIX Procedure
COMPUTE_CONFUSION_MATRIX_PART Procedure
COMPUTE_LIFT Procedure
COMPUTE_LIFT_PART Procedure
COMPUTE_ROC Procedure
COMPUTE_ROC_PART Procedure
CREATE_MODEL Procedure
CREATE_MODEL?2 Procedure
DROP_PARTITION Procedure
DROP_MODEL Procedure
EXPORT_MODEL Procedure
GET_ASSOCIATION_RULES Function
GET_FREQUENT_ITEMSETS Function
GET_MODEL_COST_MATRIX Function
GET_MODEL_DETAILS_Al Function
GET_MODEL_DETAILS_EM Function
GET_MODEL_DETAILS_EM_COMP Function
GET_MODEL_DETAILS_EM_PROJ Function
GET_MODEL_DETAILS_GLM Function
GET_MODEL_DETAILS GLOBAL Function
GET_MODEL_DETAILS_KM Function
GET_MODEL_DETAILS_NB Function
GET_MODEL_DETAILS NMF Function
GET_MODEL_DETAILS_OC Function
GET_MODEL_SETTINGS Function
GET_MODEL_SIGNATURE Function
GET_MODEL_DETAILS_SVD Function
GET_MODEL_DETAILS_SVM Function
GET_MODEL_DETAILS XML Function
GET_MODEL_TRANSFORMATIONS Function
GET_TRANSFORM_LIST Procedure
IMPORT_MODEL Procedure
RANK_APPLY Procedure
REMOVE_COST_MATRIX Procedure
RENAME_MODEL Procedure

30.2 DBMS_DATA_MINING_TRANSFORM
30.2.1 Using DBMS_DATA_MINING_TRANSFORM

30.2.1.1
30.2.1.2
30.2.1.3

ORACLE

DBMS_DATA_MINING_TRANSFORM Overview
DBMS_DATA_MINING_TRANSFORM Security Model
DBMS_DATA_MINING_TRANSFORM Datatypes

30-43
30-47
30-53
30-60
30-64
30-70
30-74
30-79
30-83
30-84
30-85
30-85
30-89
30-93
30-95
30-97
30-98
30-100
30-102
30-103
30-106
30-108
30-110
30-112
30-113
30-115
30-116
30-117
30-119
30-122
30-124
30-126
30-129
30-134
30-136
30-137
30-138
30-139
30-139
30-142
30-142

XVi

30.2.2

30.2.3 Summary of DBMS_DATA_MINING_TRANSFORM Subprograms

ORACLE

30.2.1.4

30.2.2.1

30.2.2.2

30.2.2.3

30.2.3.1

30.2.3.2

30.2.3.3

30.2.3.4

30.2.3.5

30.2.3.6

30.2.3.7

30.2.3.8

30.2.3.9

30.2.3.10
30.2.3.11
30.2.3.12
30.2.3.13
30.2.3.14
30.2.3.15
30.2.3.16
30.2.3.17
30.2.3.18
30.2.3.19
30.2.3.20
30.2.3.21
30.2.3.22
30.2.3.23
30.2.3.24
30.2.3.25
30.2.3.26
30.2.3.27
30.2.3.28
30.2.3.29
30.2.3.30
30.2.3.31
30.2.3.32
30.2.3.33

DBMS_DATA_MINING_TRANSFORM Constants

DBMS_DATA_MINING_TRANSFORM Operational Notes
DBMS_DATA_MINING_TRANSFORM — About Transformation

Lists

DBMS_DATA_MINING_TRANSFORM — About Stacking and

Stack Procedures

DBMS_DATA_MINING_TRANSFORM — Nested Data

Transformations

CREATE_BIN_CAT Procedure
CREATE_BIN_NUM Procedure
CREATE_CLIP Procedure
CREATE_COL_REM Procedure
CREATE_MISS CAT Procedure
CREATE_MISS_NUM Procedure
CREATE_NORM_LIN Procedure
DESCRIBE_STACK Procedure
GET_EXPRESSION Function
INSERT_AUTOBIN_NUM_EQWIDTH Procedure
INSERT_BIN_CAT_FREQ Procedure
INSERT_BIN_NUM_EQWIDTH Procedure
INSERT_BIN_NUM_QTILE Procedure
INSERT_BIN_SUPER Procedure
INSERT_CLIP_TRIM_TAIL Procedure
INSERT_CLIP_WINSOR_TAIL Procedure
INSERT_MISS_CAT_MODE Procedure
INSERT_MISS_NUM_MEAN Procedure
INSERT_NORM_LIN_MINMAX Procedure
INSERT_NORM_LIN_SCALE Procedure
INSERT_NORM_LIN_ZSCORE Procedure
SET_EXPRESSION Procedure
SET_TRANSFORM Procedure
STACK BIN_CAT Procedure
STACK_BIN_NUM Procedure
STACK_CLIP Procedure
STACK_COL_REM Procedure
STACK_MISS_CAT Procedure
STACK_MISS_NUM Procedure
STACK_NORM_LIN Procedure
XFORM_BIN_CAT Procedure
XFORM_BIN_NUM Procedure
XFORM_CLIP Procedure

30-144
30-145

30-147

30-149

30-151
30-154
30-156
30-158
30-159
30-161
30-162
30-164
30-165
30-167
30-168
30-169
30-173
30-177
30-181
30-183
30-187
30-190
30-193
30-195
30-197
30-199
30-201
30-204
30-206
30-207
30-209
30-211
30-213
30-215
30-217
30-219
30-221
30-223
30-226

XVii

30.2.3.34 XFORM_COL_REM Procedure 30-227
30.2.3.35 XFORM_EXPR_NUM Procedure 30-229
30.2.3.36 XFORM_EXPR_STR Procedure 30-231
30.2.3.37 XFORM_MISS_CAT Procedure 30-233
30.2.3.38 XFORM_MISS_NUM Procedure 30-235
30.2.3.39 XFORM_NORM_LIN Procedure 30-237
30.2.3.40 XFORM_STACK Procedure 30-239
30.3 DBMS_PREDICTIVE_ANALYTICS 30-242
30.3.1 Using DBMS_PREDICTIVE_ANALYTICS 30-242
30.3.1.1 DBMS_PREDICTIVE_ANALYTICS Overview 30-242
30.3.1.2 DBMS_PREDICTIVE_ANALYTICS Security Model 30-243
30.3.2 Summary of DBMS_PREDICTIVE_ANALYTICS Subprograms 30-243
30.3.2.1 EXPLAIN Procedure 30-243
30.3.2.2 PREDICT Procedure 30-246
30.3.2.3 PROFILE Procedure 30-248
31 Data Dictionary Views

31.1 ALL_MINING_MODELS 31-1
31.2 ALL_MINING_MODEL_ATTRIBUTES 31-2
31.3 ALL_MINING_MODEL_PARTITIONS 31-4
314 ALL_MINING_MODEL_SETTINGS 31-5
315 ALL_MINING_MODEL_VIEWS 31-6
31.6 ALL_MINING_MODEL_XFORMS 31-7

32 SQL Scoring Functions
32.1 CLUSTER_DETAILS 32-1
32.2 CLUSTER_DISTANCE 32-5
32.3 CLUSTER_ID 32-7
32.4 CLUSTER_PROBABILITY 32-10
325 CLUSTER_SET 32-12
32.6 FEATURE_COMPARE 32-15
32.7 FEATURE_DETAILS 32-17
32.8 FEATURE_ID 32-20
32.9 FEATURE_SET 32-22
32.10 FEATURE_VALUE 32-25
3211 ORA _DM_PARTITION_NAME 32-27
32.12 PREDICTION 32-29
32.13 PREDICTION_BOUNDS 32-33
32.14 PREDICTION_COST 32-35
ORACLE XViil

32.15 PREDICTION_DETAILS 32-38

32.16 PREDICTION_PROBABILITY 32-43
32.17 PREDICTION_SET 32-46
Index

ORACLE" XixX

Preface

Preface

This preface contains the following topics:
* Audience
e Documentation Accessibility

e Conventions

Audience

This guide is intended for application developers and database administrators who are
familiar with SQL programming and Oracle Database administration and who have a
basic understanding of data mining concepts.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

ORACLE XX

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Introductions

Part | presents an introduction to Oracle Data Mining. The first chapter is a general,
high-level overview for those who are new to data mining technology.

Part | contains the following chapters:

e Introduction to Oracle Data Mining

e Oracle Data Mining Basics

ORACLE

Introduction to Oracle Data Mining

Introduces Oracle Data Mining to perform a variety of mining tasks.

e About Oracle Data Mining

» Data Mining in the Database Kernel

e Oracle Data Mining with R Extensibility
» Data Mining in Oracle Exadata

* About Partitioned Model

* Interfaces to Oracle Data Mining

e Overview of Database Analytics

1.1 About Oracle Data Mining

Understand the uses of Oracle Data Mining and learn about different mining
techniques.

Oracle Data Mining provides a powerful, state-of-the-art data mining capability within
Oracle Database. You can use Oracle Data Mining to build and deploy predictive and
descriptive data mining applications, to add intelligent capabilities to existing
applications, and to generate predictive queries for data exploration.

Oracle Data Mining offers a comprehensive set of in-database algorithms for
performing a variety of mining tasks, such as classification, regression, anomaly
detection, feature extraction, clustering, and market basket analysis. The algorithms
can work on standard case data, transactional data, star schemas, and text and other
forms of unstructured data. Oracle Data Mining is uniquely suited to the mining of very
large data sets.

Oracle Data Mining is one of the two components of the Oracle Advanced Analytics
Option of Oracle Database Enterprise Edition. The other component is Oracle R
Enterprise, which integrates R, the open-source statistical environment, with Oracle
Database. Together, Oracle Data Mining and Oracle R Enterprise constitute a
comprehensive advanced analytics platform for big data analytics.

Related Topics

* Oracle R Enterprise Documentation Library

1.2 Data Mining in the Database Kernel

Learn about implementation of Data Mining.

Oracle Data Mining is implemented in the Oracle Database kernel. Data Mining
models are first class database objects. Oracle Data Mining processes use built-in

ORACLE 1-1

unilink:ore_lib

Chapter 1
Oracle Data Mining with R Extensibility

features of Oracle Database to maximize scalability and make efficient use of system
resources.

Data mining within Oracle Database offers many advantages:

No Data Movement: Some data mining products require that the data be exported
from a corporate database and converted to a specialized format for mining. With
Oracle Data Mining, no data movement or conversion is needed. This makes the
entire mining process less complex, time-consuming, and error-prone, and it
allows for the mining of very large data sets.

Security: Your data is protected by the extensive security mechanisms of Oracle
Database. Moreover, specific database privileges are needed for different data
mining activities. Only users with the appropriate privileges can define, manipulate,
or apply mining model objects.

Data Preparation and Administration: Most data must be cleansed, filtered,
normalized, sampled, and transformed in various ways before it can be mined. Up
to 80% of the effort in a data mining project is often devoted to data preparation.
Oracle Data Mining can automatically manage key steps in the data preparation
process. Additionally, Oracle Database provides extensive administrative tools for
preparing and managing data.

Ease of Data Refresh: Mining processes within Oracle Database have ready
access to refreshed data. Oracle Data Mining can easily deliver mining results
based on current data, thereby maximizing its timeliness and relevance.

Oracle Database Analytics: Oracle Database offers many features for advanced
analytics and business intelligence. Oracle Data Mining can easily be integrated
with other analytical features of the database, such as statistical analysis and
OLAP.

Oracle Technology Stack: You can take advantage of all aspects of Oracle's
technology stack to integrate data mining within a larger framework for business
intelligence or scientific inquiry.

Domain Environment: Data mining models have to be built, tested, validated,
managed, and deployed in their appropriate application domain environments.
Data mining results may need to be post-processed as part of domain specific
computations (for example, calculating estimated risks and response probabilities)
and then stored into permanent repositories or data warehouses. With Oracle Data
Mining, the pre- and post-mining activities can all be accomplished within the
same environment.

Application Programming Interfaces: The PL/SQL API and SQL language
operators provide direct access to Oracle Data Mining functionality in Oracle
Database.

Related Topics

Overview of Database Analytics

1.3 Oracle Data Mining with R Extensibility

Learn how you can use Oracle Data Mining to build, score, and view Oracle Data
Mining models as well as R models.

ORACLE

The Oracle Data Mining framework is enhanced extending the data mining algorithm
set with algorithms from the open source R ecosystem. Oracle Data Mining is
implemented in the Oracle Database kernel. The mining models are Database schema

1-2

Chapter 1
Data Mining in Oracle Exadata

objects. With the extensibility enhancement, the data mining framework can build,
score, and view both Oracle Data Mining models and R models.

Registration of R scripts

The R engine on the database server executes the R scripts to build, score, and view
R models. These R scripts must be registered with the database beforehand by a
privileged user with r gAdni n role. You must first install Oracle R Enterprise to register
the R scripts.

Functions of Oracle Data Mining with R Model
The following functions are supported for an R model:

* Oracle Data Mining DBMS_DATA_M NI NG package is enhanced to support R model.
For example, CREATE_MODEL and DROP_MODEL.

° MODEL VI EWto get the R model details about a single model and a partitioned
model.

e Oracle Data Mining SQL functions are enhanced to operate with the R model
functions. For example, PREDI CTI ON and CLUSTER | D.

R model extensibility supports the following data mining functions:
* Association

e Attribute Importance

* Regression

» Classification

e Clustering

* Feature Extraction

1.4 Data Mining in Oracle Exadata

Understand scoring in Oracle Exadata.

Scoring refers to the process of applying a data mining model to data to generate
predictions. The scoring process may require significant system resources. Vast
amounts of data may be involved, and algorithmic processing may be very complex.

With Oracle Data Mining, scoring can be off-loaded to intelligent Oracle Exadata
Storage Servers where processing is extremely performant.

Oracle Exadata Storage Servers combine Oracle's smart storage software and
Oracle's industry-standard Sun hardware to deliver the industry's highest database
storage performance. For more information about Oracle Exadata, visit the Oracle
Technology Network.

Related Topics

e http://lwww.oracle.com/us/products/database/exadata/index.htm

1.5 About Partitioned Model

Introduces partitioned model to organise and represent multiple models.

ORACLE 1-3

unilink:prod_db_exadata

Chapter 1
Interfaces to Oracle Data Mining

Oracle Data Mining supports building of a persistent Oracle Data Mining partitioned
model. A partitioned model organizes and represents multiple models as partitions in a
single model entity, enabling a user to easily build and manage models tailored to
independent slices of data. Persistent means that the partitioned model has an on-disk
representation. The product manages the organization of the partitioned model and
simplifies the process of scoring the partitioned model. You must include the partition
columns as part of the USI NG clause when scoring.

The partition names, key values, and the structure of the partitioned model are visible
in the ALL_M NI NG_MODEL_PARTI Tl ONS view.

Related Topics
e Oracle Database Reference

e Oracle Data Mining User’s Guide

1.6 Interfaces to Oracle Data Mining

The programmatic interfaces to Oracle Data Mining are PL/SQL for building and
maintaining models and a family of SQL functions for scoring. Oracle Data Mining also
supports a graphical user interface, which is implemented as an extension to Oracle
SQL Developer.

Oracle Predictive Analytics, a set of simplified data mining routines, is built on top of
Oracle Data Mining and is implemented as a PL/SQL package.

1.6.1 PL/SQL API

ORACLE

The Oracle Data Mining PL/SQL APl is implemented in the DBMS_DATA_M NI NG PL/SQL
package, which contains routines for building, testing, and maintaining data mining
models. A batch apply operation is also included in this package.

The following example shows part of a simple PL/SQL script for creating an SVM
classification model called SVMC_SH_Clas_sample. The model build uses weights,
specified in a weights table, and settings, specified in a settings table. The weights
influence the weighting of target classes. The settings override default behavior. The
model uses Automatic Data Preparation (prep_aut o_on setting). The model is trained
on the data in mining_data_build_v.

Example 1-1 Creating a Classification Model

----------------------- CREATE AND POPULATE A CLASS VEI GHTS TABLE ------------
CREATE TABLE svnt_sh_sanple_class_wt (
target val ue NUMBER
cl ass_wei ght NUMBER);
I NSERT | NTO svnc_sh_sanpl e_class_wt VALUES (0, 0. 35);
I NSERT | NTO svnc_sh_sanpl e_class_wt VALUES (1, 0.65);
COWM T;
----------------------- CREATE AND POPULATE A SETTINGS TABLE ------------------
CREATE TABLE svnt_sh_sanpl e_settings (
setting_name VARCHAR2(30),
setting_val ue VARCHAR2(4000));
I NSERT | NTO svnt_sh_sanpl e_settings (setting_nane, setting_ value) VALUES
(dbns_dat a_mi ni ng. al go_name, dbns_data_mi ni ng. al go_support _vect or_nachi nes);
I NSERT | NTO svnt_sh_sanpl e_settings (setting_nane, setting_ value) VALUES
(dbns_dat a_mi ni ng. svns_kernel _function, dbns_data_m ning.svns_linear);
I NSERT | NTO svnt_sh_sanpl e_settings (setting_nane, setting_ value) VALUES

0.
0.

1-4

Chapter 1
Interfaces to Oracle Data Mining

(dbns_dat a_mi ni ng. cl as_wei ghts_tabl e_name, 'svnt_sh_sanple_class_ w');
I NSERT | NTO svnt_sh_sanpl e_settings (setting_nane, setting_value) VALUES
(dbns_dat a_mi ni ng. prep_auto, dbns_data_mi ning. prep_auto_on);

END;
/
------------------------ CREATE THE MODEL -------mmmmmmmm e -
BEG N
DBVS_DATA M NI NG. CREATE_MODEL (

model _name => 'SVMC_SH Cl as_sanpl e',

m ni ng_function => dbns_data_nmi ning.classification,

data_t abl e_nane => "mining_data_build_v',

case_i d_col utm_nanme => 'cust __id",

target _colum_nanme => "affinity_card',

settings_tabl e_name => 'svnc_sh_sanpl e_settings');
END;

1.6.1.1 DBMS_DATA MINING with R and Supported Subprograms

When the ALGO EXTENSI BLE_LANGs set to R in the M NI NG_MODEL_SETTI NG table, the
mining model is built in the R language. All algorithm-independent DBVMS_DATA M NI NG
subprograms can operate on the R model for mining functions such as Classification,
Clustering, Feature Extraction, and Regression.

The supported DBMS_DATA M NI NG subprograms include, but are not limited, to the
following:

« ADD_COST_MATRIX Procedure

¢ COMPUTE_CONFUSION_MATRIX Procedure
e COMPUTE_LIFT Procedure

e COMPUTE_ROC Procedure

* CREATE_MODEL Procedure

» DROP_MODEL Procedure

* EXPORT_MODEL Procedure

e GET_MODEL_COST_MATRIX Function
 IMPORT_MODEL Procedure

* REMOVE_COST_MATRIX Procedure

* RENAME_MODEL Procedure

¢ See Also:
Oracle Database PL/SQL Packages and Types Reference

1.6.2 SQL Functions

ORACLE

The Data Mining SQL functions perform prediction, clustering, and feature extraction.

The functions score data by applying a mining model object or by executing an
analytic clause that performs dynamic scoring.

1-5

Chapter 1
Interfaces to Oracle Data Mining

The following example shows a query that applies the classification model

svnt_sh_cl as_sanpl e to the data in the view ni ni ng_dat a_appl y_v. The query returns the
average age of customers who are likely to use an affinity card. The results are broken
out by gender.

Example 1-2 The PREDICTION Function

SELECT cust _gender,
COUNT(*) AS cnt,
ROUND(AVG age)) AS avg_age
FROM mi ni ng_dat a_appl y_v
VHERE PREDI CTI ON(svic_sh_clas_sample USING *) =1
GROUP BY cust _gender
ORDER BY cust _gender;

C ONT AVG AGE
F 59 41
M 409 45

Related Topics

* In-Database Scoring

1.6.3 Oracle Data Miner

ORACLE

Oracle Data Miner is a graphical interface to Oracle Data Mining. Oracle Data Miner is
an extension to Oracle SQL Developer, which is available for download free of charge
on the Oracle Technology Network.

Oracle Data Miner uses a work flow paradigm to capture, document, and automate the
process of building, evaluating, and applying data mining models. Within a work flow,
you can specify data transformations, build and evaluate multiple models, and score
multiple data sets. You can then save work flows and share them with other users.

1-6

Chapter 1
Interfaces to Oracle Data Mining

Figure 1-1 An Oracle Data Miner Workflow

iy 2

Explore Data NEW_CUST_INSUR_LTV

& @ @

5 Response
Models

@m

Likely
Customers

CUST_INSUR_LTV Cleanse Data

o

-@

Customer
Segments
Cluster

For information about Oracle Data Miner, including installation instructions, visit Oracle
Technology Network.

Related Topics
e http://www.oracle.com/pls/topic/lookup?ctx=db122&id=datminGUI

1.6.4 Predictive Analytics

ORACLE

Predictive analytics is a technology that captures data mining processes in simple
routines.

Sometimes called "one-click data mining," predictive analytics simplifies and
automates the data mining process.

Predictive analytics uses data mining technology, but knowledge of data mining is not
needed to use predictive analytics. You can use predictive analytics simply by
specifying an operation to perform on your data. You do not need to create or use
mining models or understand the mining functions and algorithms summarized in
"Oracle Data Mining Basics ".

Oracle Data Mining predictive analytics operations are described in the following table:

Table 1-1 Oracle Predictive Analytics Operations

__|
Operation Description

EXPLAIN

Explains how individual predictors (columns) affect the variation of values in a
target column

1-7

http://www.oracle.com/pls/topic/lookup?ctx=db122&id=datminGUI

Chapter 1
Overview of Database Analytics

Table 1-1 (Cont.) Oracle Predictive Analytics Operations

__|
Operation Description

PREDI CT For each case (row), predicts the values in a target column

PROFI LE Creates a set of rules for cases (rows) that imply the same target value

The Oracle predictive analytics operations are implemented in the
DBMS_PREDI CTI VE_ANALYTI CS PL/SQL package. They are also available in Oracle Data
Miner.

Related Topics

* Oracle Data Mining Basics
Understand the basic concepts of Oracle Data Mining.

1.7 Overview of Database Analytics

Oracle Database supports an array of native analytical features that are independent
of the Oracle Advanced Analytics Option. Since all these features are part of a
common server it is possible to combine them efficiently. The results of analytical
processing can be integrated with Oracle Business Intelligence Suite Enterprise
Edition and other Bl tools and applications.

The possibilities for combining different analytics are virtually limitless. Example 1-3
shows data mining and text processing within a single SQL query. The query selects
all customers who have a high propensity to attrite (> 80% chance), are valuable
customers (customer value rating > 90), and have had a recent conversation with
customer services regarding a Checking Plus account. The propensity to attrite
information is computed using a Data Mining model called tree_nodel . The query uses
the Oracle Text CONTAI NS operator to search call center notes for references to
Checking Plus accounts.

Some of the native analytics supported by Oracle Database are described in the
following table:

Table 1-2 Oracle Database Native Analytics

Analytical Description Documented In...

Feature

Complex Data transformation is a key aspect of analytical applications Oracle Database PL/SQL Packages
data and ETL (extract, transform, and load). You can use SQL and Types Reference

transformatio expressions to implement data transformations, or you can

ns use the DBMS_DATA M NI NG_TRANSFORM package.

ORACLE

DBVS_DATA M NI NG_TRANSFORMis a flexible data
transformation package that includes a variety of missing
value and outlier treatments, as well as binning and
normalization capabilities.

1-8

Chapter 1
Overview of Database Analytics

Table 1-2 (Cont.) Oracle Database Native Analytics

Analytical
Feature

Description Documented In...

Statistical
functions

Window and
analytic SQL
functions

Linear

algebra

OLAP

Spatial
analytics

Text Mining

Oracle Database provides a long list of SQL statistical Oracle Database SQL Language
functions with support for: hypothesis testing (such as t-test, Reference and Oracle Database
F-test), correlation computation (such as pearson PL/SQL Packages and Types
correlation), cross-tab statistics, and descriptive statistics Reference

(such as median and mode). The DBVMS_STAT_FUNCS package

adds distribution fitting procedures and a summary procedure

that returns descriptive statistics for a column.

Oracle Database supports analytic and windowing functions Oracle Database Data Warehousing
for computing cumulative, moving, and centered aggregates. Guide

With windowing aggregate functions, you can calculate

moving and cumulative versions of SUM AVERAGE, COUNT, MAX,

M N, and many more functions.

The UTL_NLA package exposes a subset of the popular BLAS Oracle Database PL/SQL Packages
and LAPACK (Version 3.0) libraries for operations on vectors ~ and Types Reference

and matrices represented as VARRAYS. This package

includes procedures to solve systems of linear equations,

invert matrices, and compute eigenvalues and eigenvectors.

Oracle OLAP supports multidimensional analysis and can be Oracle OLAP User’s Guide
used to improve performance of multidimensional queries.

Oracle OLAP provides functionality previously found only in

specialized OLAP databases. Moving beyond drill-downs and

roll-ups, Oracle OLAP also supports time-series analysis,

modeling, and forecasting.

Oracle Spatial provides advanced spatial features to support Oracle Spatial and Graph
high-end GIS and LBS solutions. Oracle Spatial's analysis Developer's Guide

and mining capabilities include functions for binning,

detection of regional patterns, spatial correlation, colocation

mining, and spatial clustering.

Oracle Spatial also includes support for topology and network
data models and analytics. The topology data model of
Oracle Spatial allows one to work with data about nodes,
edges, and faces in a topology. It includes network analysis
functions for computing shortest path, minimum cost
spanning tree, nearest-neighbors analysis, traveling
salesman problem, among others.

Oracle Text uses standard SQL to index, search, and Oracle Text Application Developer's
analyze text and documents stored in the Oracle database, in Guide

files, and on the web. Oracle Text also supports automatic

classification and clustering of document collections. Many of

the analytical features of Oracle Text are layered on top of

Oracle Data Mining functionality.

Example 1-3 SQL Query Combining Oracle Data Mining and Oracle Text

SELECT A cust_nane, A contact_info

FROM custoners A
VWHERE PREDI CTI ON_PROBABI LI TY(tree_nodel,

"attrite' USING A *) > 0.8
AND A. cust _value > 90
AND A cust_id IN
(SELECT B.cust_id
FROM cal | _center B

ORACLE 1-9

Chapter 1
Overview of Database Analytics

VWHERE B. cal | _date BETWEEN ' 01- Jan- 2005'
AND ' 30- Jun- 2005'
AND CONTAI NS(B. notes, 'Checking Plus', 1) > 0);

ORACLE 1-10

Oracle Data Mining Basics

Understand the basic concepts of Oracle Data Mining.

e Mining Functions
e Algorithms
e Data Preparation

* In-Database Scoring

2.1 Mining Functions

Introduces the concept of data mining functions.

A basic understanding of data mining functions and algorithms is required for using
Oracle Data Mining.

Each data mining function specifies a class of problems that can be modeled and
solved. Data mining functions fall generally into two categories: supervised and
unsupervised. Notions of supervised and unsupervised learning are derived from the
science of machine learning, which has been called a sub-area of artificial intelligence.

Artificial intelligence refers to the implementation and study of systems that exhibit
autonomous intelligence or behavior of their own. Machine learning deals with
techniques that enable devices to learn from their own performance and modify their
own functioning. Data mining applies machine learning concepts to data.

Related Topics
e Algorithms

2.1.1 Supervised Data Mining

ORACLE

Supervised learning is also known as directed learning. The learning process is
directed by a previously known dependent attribute or target. Directed data mining
attempts to explain the behavior of the target as a function of a set of independent
attributes or predictors.

Supervised learning generally results in predictive models. This is in contrast to
unsupervised learning where the goal is pattern detection.

The building of a supervised model involves training, a process whereby the software
analyzes many cases where the target value is already known. In the training process,
the model "learns" the logic for making the prediction. For example, a model that seeks
to identify the customers who are likely to respond to a promotion must be trained by
analyzing the characteristics of many customers who are known to have responded or
not responded to a promotion in the past.

2-1

Chapter 2
Mining Functions

2.1.1.1 Supervised Learning: Testing

Separate data sets are required for building (training) and testing some predictive
models. The build data (training data) and test data must have the same column
structure. Typically, one large table or view is split into two data sets: one for building
the model, and the other for testing the model.

The process of applying the model to test data helps to determine whether the model,
built on one chosen sample, is generalizable to other data. In particular, it helps to
avoid the phenomenon of overfitting, which can occur when the logic of the model fits
the build data too well and therefore has little predictive power.

2.1.1.2 Supervised Learning: Scoring

Apply data, also called scoring data, is the actual population to which a model is
applied. For example, you might build a model that identifies the characteristics of
customers who frequently buy a certain product. To obtain a list of customers who
shop at a certain store and are likely to buy a related product, you might apply the
model to the customer data for that store. In this case, the store customer data is the
scoring data.

Most supervised learning can be applied to a population of interest. The principal
supervised mining techniques, Classification and Regression, can both be used for
scoring.

Oracle Data Mining does not support the scoring operation for Attribute Importance,
another supervised function. Models of this type are built on a population of interest to
obtain information about that population; they cannot be applied to separate data. An

attribute importance model returns and ranks the attributes that are most important in

predicting a target value.

Oracle Data Mining supports the supervised data mining functions described in the
following table:

Table 2-1 Oracle Data Mining Supervised Functions

Function Description Sample Problem

Attribute Importance Identifies the attributes that are most Given customer response to an affinity card
important in predicting a target attribute program, find the most significant predictors

Classification Assigns items to discrete classes and Given demographic data about a set of
predicts the class to which an item customers, predict customer response to an
belongs affinity card program

Regression

Approximates and forecasts continuous Given demographic and purchasing data
values about a set of customers, predict
customers' age

2.1.2 Unsupervised Data Mining

ORACLE

Unsupervised learning is non-directed. There is no distinction between dependent and
independent attributes. There is no previously-known result to guide the algorithm in
building the model.

2-2

Chapter 2
Algorithms

Unsupervised learning can be used for descriptive purposes. It can also be used to
make predictions.

2.1.2.1 Unsupervised Learning: Scoring

Introduces unsupervised learning, supported scoring operations, and unsupervised
Oracle Data Mining functions.

Although unsupervised data mining does not specify a target, most unsupervised
learning can be applied to a population of interest. For example, clustering models use
descriptive data mining techniques, but they can be applied to classify cases
according to their cluster assignments. Anomaly detection, although unsupervised, is
typically used to predict whether a data point is typical among a set of cases.

Oracle Data Mining supports the scoring operation for Clustering and Feature
Extraction, both unsupervised mining functions. Oracle Data Mining does not support
the scoring operation for Association Rules, another unsupervised function.
Association models are built on a population of interest to obtain information about that
population; they cannot be applied to separate data. An association model returns
rules that explain how items or events are associated with each other. The association
rules are returned with statistics that can be used to rank them according to their
probability.

Oracle Data Mining supports the unsupervised functions described in the following
table:

Table 2-2 Oracle Data Mining Unsupervised Functions

Function Description Sample Problem
Anomaly Detection Identifies items (outliers) that do not Given demographic data about a set of
satisfy the characteristics of "normal” customers, identify customer purchasing
data behavior that is significantly different from the
norm

Association Rules

Clustering

Feature Extraction

Finds items that tend to co-occur in the Find the items that tend to be purchased
data and specifies the rules that govern together and specify their relationship
their co-occurrence

Finds natural groupings in the data Segment demographic data into clusters and
rank the probability that an individual belongs to
a given cluster

Creates new attributes (features) using Given demographic data about a set of
linear combinations of the original customers, group the attributes into general
attributes characteristics of the customers

Related Topics

* Mining Functions
Part Il provides basic conceptual information about the mining functions that the
Oracle Data Mining supports.

* In-Database Scoring

2.2 Algorithms

ORACLE

An algorithm is a mathematical procedure for solving a specific kind of problem. Oracle
Data Mining supports at least one algorithm for each data mining function. For some

2-3

Chapter 2
Algorithms

functions, you can choose among several algorithms. For example, Oracle Data
Mining supports four classification algorithms.

Each data mining model is produced by a specific algorithm. Some data mining
problems can best be solved by using more than one algorithm. This necessitates the
development of more than one model. For example, you might first use a feature
extraction model to create an optimized set of predictors, then a classification model to
make a prediction on the results.

2.2.1 Oracle Data Mining Supervised Algorithms

Oracle Data Mining supports the supervised data mining algorithms described in the
following table. The algorithm abbreviations are used throughout this manual.

Table 2-3 Oracle Data Mining Algorithms for Supervised Functions

Algorithm Function

Description

Decision Tree Classification

Generalized Linear Classification
Models and Regression

Minimum Description Attribute

Length Importance
Naive Bayes Classification
Support Vector Classification
Machines and Regression

Decision trees extract predictive information in the form of human-
understandable rules. The rules are if-then-else expressions; they
explain the decisions that lead to the prediction.

Generalized Linear Models (GLM) implement logistic regression for
classification of binary targets and linear regression for continuous
targets. GLM classification supports confidence bounds for prediction
probabilities. GLM regression supports confidence bounds for
predictions.

Minimum Description Length (MDL) is an information theoretic model
selection principle. MDL assumes that the simplest, most compact
representation of data is the best and most probable explanation of the
data.

Naive Bayes makes predictions using Bayes' Theorem, which derives
the probability of a prediction from the underlying evidence, as observed
in the data.

Distinct versions of Support Vector Machines (SVM) use different kernel
functions to handle different types of data sets. Linear and Gaussian
(nonlinear) kernels are supported.

SVM classification attempts to separate the target classes with the
widest possible margin.

SVM regression tries to find a continuous function such that the
maximum number of data points lie within an epsilon-wide tube around
it.

2.2.2 Oracle Data Mining Unsupervised Algorithms

Learn about unsupervised algorithms that Oracle Data Mining supports.

Oracle Data Mining supports the unsupervised data mining algorithms described in the
following table. The algorithm abbreviations are used throughout this manual.

ORACLE

2-4

Chapter 2
Algorithms

Table 2-4 Oracle Data Mining Algorithms for Unsupervised Functions

Algorithm Function Description

Apriori Association Apriori performs market basket analysis by identifying co-occurring
items (frequent itemsets) within a set. Apriori finds rules with support
greater than a specified minimum support and confidence greater
than a specified minimum confidence.

Expectation Clustering Expectation Maximization (EM) is a density estimation algorithm that

Maximization performs probabilistic clustering. In density estimation, the goal is to

Explicit Semantic
Analysis

k-Means

Non-Negative Matrix
Factorization

One Class Support
Vector Machines

Orthogonal
Partitioning
Clustering

Singular Value
Decomposition and
Principal Component
Analysis

Feature Extraction

Clustering

Feature Extraction

Anomaly Detection

Clustering

Feature Extraction

construct a density function that captures how a given population is
distributed. The density estimate is based on observed data that
represents a sample of the population.

Oracle Data Mining supports probabilistic clustering and data
frequency estimates and other applications of Expectation
Maximization.

Explicit Semantic Analysis (ESA) uses existing knowledge base as
features. An attribute vector represents each feature or a concept.
ESA creates a reverse index that maps every attribute to the
knowledge base concepts or the concept-attribute association vector
value.

k-Means is a distance-based clustering algorithm that partitions the
data into a predetermined number of clusters. Each cluster has a
centroid (center of gravity). Cases (individuals within the population)
that are in a cluster are close to the centroid.

Oracle Data Mining supports an enhanced version of k-Means. It goes
beyond the classical implementation by defining a hierarchical parent-
child relationship of clusters.

Non-Negative Matrix Factorization (NMF) generates new attributes
using linear combinations of the original attributes. The coefficients of
the linear combinations are non-negative. During model apply, an
NMF model maps the original data into the new set of attributes
(features) discovered by the model.

One-class SVM builds a profile of one class. When the model is
applied, it identifies cases that are somehow different from that profile.
This allows for the detection of rare cases that are not necessarily
related to each other.

Orthogonal Partitioning Clustering (o-cluster) creates a hierarchical,
grid-based clustering model. The algorithm creates clusters that
define dense areas in the attribute space. A sensitivity parameter
defines the baseline density level.

Singular Value Decomposition (SVD) and Principal Component
Analysis (PCA) are orthogonal linear transformations that are optimal
at capturing the underlying variance of the data. This property is
extremely useful for reducing the dimensionality of high-dimensional
data and for supporting meaningful data visualization.

In addition to dimensionality reduction, SVD and PCA have a number
of other important applications, such as data de-noising (smoothing),
data compression, matrix inversion, and solving a system of linear
equations.

ORACLE

2-5

Chapter 2
Data Preparation

Related Topics

e Algorithms
Part Il provides basic conceptual information about the algorithms supported by
Oracle Data Mining. There is at least one algorithm for each of the mining
functions.

2.3 Data Preparation

The quality of a model depends to a large extent on the quality of the data used to
build (train) it. Much of the time spent in any given data mining project is devoted to
data preparation. The data must be carefully inspected, cleansed, and transformed,
and algorithm-appropriate data preparation methods must be applied.

The process of data preparation is further complicated by the fact that any data to
which a model is applied, whether for testing or for scoring, must undergo the same
transformations as the data used to train the model.

2.3.1 Oracle Data Mining Simplifies Data Preparation

Oracle Data Mining offers several features that significantly simplify the process of
data preparation:

e Embedded data preparation: The transformations used in training the model are
embedded in the model and automatically executed whenever the model is
applied to new data. If you specify transformations for the model, you only have to
specify them once.

e Automatic Data Preparation (ADP): Oracle Data Mining supports an automated
data preparation mode. When ADP is active, Oracle Data Mining automatically
performs the data transformations required by the algorithm. The transformation
instructions are embedded in the model along with any user-specified
transformation instructions.

e Automatic management of missing values and sparse data: Oracle Data Mining
uses consistent methodology across mining algorithms to handle sparsity and
missing values.

e Transparency: Oracle Data Mining provides model details, which are a view of the
attributes that are internal to the model. This insight into the inner details of the
model is possible because of reverse transformations, which map the transformed
attribute values to a form that can be interpreted by a user. Where possible,
attribute values are reversed to the original column values. Reverse
transformations are also applied to the target of a supervised model, thus the
results of scoring are in the same units as the units of the original target.

e Tools for custom data preparation: Oracle Data Mining provides many common
transformation routines in the DBVS_DATA M NI NG TRANSFORMPL/SQL package. You
can use these routines, or develop your own routines in SQL, or both. The SQL
language is well suited for implementing transformations in the database. You can
use custom transformation instructions along with ADP or instead of ADP.

2.3.2 Case Data

ORACLE

Most data mining algorithms act on single-record case data, where the information for
each case is stored in a separate row. The data attributes for the cases are stored in
the columns.

2-6

Chapter 2
In-Database Scoring

When the data is organized in transactions, the data for one case (one transaction) is

stored in many rows. An example of transactional data is market basket data. With the
single exception of Association Rules, which can operate on native transactional data,
Oracle Data Mining algorithms require single-record case organization.

2.3.2.1 Nested Data

Oracle Data Mining supports attributes in nested columns. A transactional table can be
cast as a nested column and included in a table of single-record case data. Similarly,
star schemas can be cast as nested columns. With nested data transformations,
Oracle Data Mining can effectively mine data originating from multiple sources and
configurations.

2.3.3 Text Data

Prepare and transform unstructured text data for data mining.

Oracle Data Mining interprets CLOB columns and long VARCHAR2 columns automatically
as unstructured text. Additionally, you can specify columns of short VARCHAR2, CHAR,
BLOB, and BFI LE as unstructured text. Unstructured text includes data items such as
web pages, document libraries, Power Point presentations, product specifications,
emails, comment fields in reports, and call center notes.

Oracle Data Mining uses Oracle Text utilities and term weighting strategies to
transform unstructured text for mining. In text transformation, text terms are extracted
and given numeric values in a text index. The text transformation process is
configurable for the model and for individual attributes. Once transformed, the text can
by mined with a data mining algorithm.

Related Topics
e Preparing the Data
e Transforming the Data

e Mining Unstructured Text

2.4 In-Database Scoring

Scoring is the application of a data mining algorithm to new data. In traditional data
mining, models are built using specialized software on a remote system and deployed
to another system for scoring. This is a cumbersome, error-prone process open to
security violations and difficulties in data synchronization.

With Oracle Data Mining, scoring is easy and secure. The scoring engine and the data
both reside within the database. Scoring is an extension to the SQL language, so the
results of mining can easily be incorporated into applications and reporting systems.

2.4.1 Parallel Execution and Ease of Administration

ORACLE

All Oracle Data Mining scoring routines support parallel execution for scoring large
data sets.

In-database scoring provides performance advantages. All Oracle Data Mining scoring
routines support parallel execution, which significantly reduces the time required for
executing complex queries and scoring large data sets.

2-7

Chapter 2
In-Database Scoring

In-database mining minimizes the IT effort needed to support data mining initiatives.
Using standard database techniques, models can easily be refreshed (re-created) on
more recent data and redeployed. The deployment is immediate since the scoring
guery remains the same; only the underlying model is replaced in the database.

Related Topics
* Oracle Database VLDB and Partitioning Guide

2.4.2 SQL Functions for Model Apply and Dynamic Scoring

In Oracle Data Mining, scoring is performed by SQL language functions. Understand
the different ways involved in SQL function scoring.

The functions perform prediction, clustering, and feature extraction. The functions can
be invoked in two different ways: By applying a mining model object (Example 2-1), or
by executing an analytic clause that computes the mining analysis dynamically and
applies it to the data (Example 2-2). Dynamic scoring, which eliminates the need for a
model, can supplement, or even replace, the more traditional data mining methodology
described in "The Data Mining Process".

In Example 2-1, the PREDI CTI ON_PROBABI LI TY function applies the model
svmc_sh_clas_sample, created in Example 1-1, to score the data in

m ni ng_dat a_appl y_v. The function returns the ten customers in Italy who are most
likely to use an affinity card.

In Example 2-2, the functions PREDI CTI ON and PREDI CTI ON_PRCBABI LI TY use the analytic
syntax (the OvER () clause) to dynamically score the data in mi ni ng_dat a_appl y_v. The
query returns the customers who currently do not have an affinity card with the
probability that they are likely to use.

Example 2-1 Applying a Mining Model to Score Data

SELECT cust _id FROM

(SELECT cust _i d,

rank() over (order by PREDI CTI ON_PROBABI LI TY(svnt_sh_clas_sanmple, 1
USING *) DESC, cust_id) rnk

FROM mi ni ng_dat a_appl y_v

VHERE country_name = 'ltaly")
WHERE rnk <= 10
ORDER BY rnk;

101445
100179
100662
100733
100554
100081
100344
100324
100185
101345

Example 2-2 Executing an Analytic Function to Score Data

SELECT cust _id, pred_prob FROM
(SELECT cust_id, affinity_card,
PREDI CTI ON(FOR TO CHAR(affinity_card) USING *) OVER () pred_card,

ORACLE 2-8

ORACLE

Chapter 2
In-Database Scoring

PREDI CTI ON_PROBABI LI TY(FOR TO CHAR(affinity card), 1 USING *) OVER () pred_prob

FROM ni ni ng_dat a_bui | d_v)
VWHERE affinity _card = 0

AND pred_card = 1

ORDER BY pred_prob DESC;

CUST_I D PRED PROB

102434
102365
102330
101733
102615
102686
102749

101656

.91

2-9

Mining Functions

ORACLE

Part Il provides basic conceptual information about the mining functions that the
Oracle Data Mining supports.

Mining functions represent a class of mining problems that can be solved using data
mining algorithms.

Part Il contains these chapters:

Regression
Classification
Anomaly Detection
Clustering
Association

Feature Selection and Extraction

" Note:

The term mining function has no relationship to a SQL language function.

Related Topics

Algorithms

Part Il provides basic conceptual information about the algorithms supported by
Oracle Data Mining. There is at least one algorithm for each of the mining
functions.

Oracle Database SQL Language Reference

Regression

Learn how to predict a continuous numerical target through Regression - the
supervised mining function.

* About Regression
* Testing a Regression Model

* Regression Algorithms

Related Topics

* Oracle Data Mining Basics
Understand the basic concepts of Oracle Data Mining.

3.1 About Regression

Regression is a data mining function that predicts numeric values along a continuum.
Profit, sales, mortgage rates, house values, square footage, temperature, or distance
can be predicted using Regression techniques. For example, a Regression model can
be used to predict the value of a house based on location, number of rooms, lot size,
and other factors.

A Regression task begins with a data set in which the target values are known. For
example, a Regression model that predicts house values can be developed based on
observed data for many houses over a period of time. In addition to the value, the data
can track the age of the house, square footage, number of rooms, taxes, school
district, proximity to shopping centers, and so on. House value can be the target, the
other attributes are the predictors, and the data for each house constitutes a case.

In the model build (training) process, a Regression algorithm estimates the value of
the target as a function of the predictors for each case in the build data. These
relationships between predictors and target are summarized in a model, which can
then be applied to a different data set in which the target values are unknown.

Regression models are tested by computing various statistics that measure the
difference between the predicted values and the expected values. The historical data
for a Regression project is typically divided into two data sets: one for building the
model, the other for testing the model.

Regression modeling has many applications in trend analysis, business planning,
marketing, financial forecasting, time series prediction, biomedical and drug response
modeling, and environmental modeling.

3.1.1 How Does Regression Work?

You do not need to understand the mathematics used in regression analysis to
develop and use quality regression models for data mining. However, it is helpful to
understand a few basic concepts.

ORACLE 3-1

Chapter 3
About Regression

Regression analysis seeks to determine the values of parameters for a function that
cause the function to best fit a set of data observations that you provide. The following
equation expresses these relationships in symbols. It shows that regression is the
process of estimating the value of a continuous target (y) as a function (F) of one or
more predictors (X1 , X5, ..., Xp), @ set of parameters (6, , 65, ..., 8,,), and a measure of
error (e).

y = Fx) +e

The predictors can be understood as independent variables and the target as a
dependent variable. The error, also called the residual, is the difference between the
expected and predicted value of the dependent variable. The regression parameters
are also known as regression coefficients.

The process of training a regression model involves finding the parameter values that
minimize a measure of the error, for example, the sum of squared errors.

There are different families of regression functions and different ways of measuring the
error.

3.1.1.1 Linear Regression

ORACLE

A linear regression technique can be used if the relationship between the predictors
and the target can be approximated with a straight line.

Regression with a single predictor is the easiest to visualize. Simple linear regression
with a single predictor is shown in the following figure:

Figure 3-1 Linear Regression With a Single Predictor

error

Linear regression with a single predictor can be expressed with the following equation.
y=2xx + 1 t€

The regression parameters in simple linear regression are:

3-2

Chapter 3
About Regression

* The slope of the line () — the angle between a data point and the regression line

* The y intercept (1) — the point where x crosses the y axis (x = 0)

3.1.1.2 Multivariate Linear Regression

The term multivariate linear regression refers to linear regression with two or more
predictors (Xq, X, ..., Xp). When multiple predictors are used, the regression line
cannot be visualized in two-dimensional space. However, the line can be computed
simply by expanding the equation for single-predictor linear regression to include the
parameters for each of the predictors.

y =1+t 2% *+ Xp t.... n Xp.1 t €

3.1.1.3 Regression Coefficients

In multivariate linear regression, the regression parameters are often referred to as
coefficients. When you build a multivariate linear regression model, the algorithm
computes a coefficient for each of the predictors used by the model. The coefficient is
a measure of the impact of the predictor x on the target y. Numerous statistics are
available for analyzing the regression coefficients to evaluate how well the regression
line fits the data.

3.1.1.4 Nonlinear Regression

Often the relationship between x and y cannot be approximated with a straight line. In
this case, a nonlinear regression technique can be used. Alternatively, the data can be
preprocessed to make the relationship linear.

Nonlinear regression models define y as a function of x using an equation that is more
complicated than the linear regression equation. In the following figure, x and y have a
nonlinear relationship.

Figure 3-2 Nonlinear Regression With a Single Predictor

O error
)
1
1

ORACLE 3-3

Chapter 3
Testing a Regression Model

3.1.1.5 Multivariate Nonlinear Regression

The term multivariate nonlinear regression refers to nonlinear regression with two
or more predictors (Xq, X, ..., Xp). When multiple predictors are used, the nonlinear
relationship cannot be visualized in two-dimensional space.

3.1.1.6 Confidence Bounds

A Regression model predicts a numeric target value for each case in the scoring data.
In addition to the predictions, some Regression algorithms can identify confidence
bounds, which are the upper and lower boundaries of an interval in which the
predicted value is likely to lie.

When a model is built to make predictions with a given confidence, the confidence
interval is produced along with the predictions. For example, a model predicts the
value of a house to be $500,000 with a 95% confidence that the value is

between $475,000 and $525,000.

3.2 Testing a Regression Model

A regression model is tested by applying it to test data with known target values and
comparing the predicted values with the known values.

The test data must be compatible with the data used to build the model and must be
prepared in the same way that the build data was prepared. Typically the build data
and test data come from the same historical data set. A percentage of the records is
used to build the model; the remaining records are used to test the model.

Test metrics are used to assess how accurately the model predicts these known
values. If the model performs well and meets the business requirements, it can then
be applied to new data to predict the future.

3.2.1 Regression Statistics

The Root Mean Squared Error and the Mean Absolute Error are commonly used
statistics for evaluating the overall quality of a regression model. Different statistics
may also be available depending on the regression methods used by the algorithm.

3.2.1.1 Root Mean Squared Error

ORACLE

The Root Mean Squared Error (RMSE) is the square root of the average squared
distance of a data point from the fitted line.

This SQL expression calculates the RMSE.

SQRT(AVE (predi cted_val ue - actual _value) * (predicted_value - actual _value)))

This formula shows the RMSE in mathematical symbols. The large sigma character
represents summation; j represents the current predictor, and n represents the number
of predictors.

3-4

Chapter 3
Regression Algorithms

Figure 3-3 Room Mean Squared Error

RMSE = %ZI: (yj_ﬁj)z
=

3.2.1.2 Mean Absolute Error

The Mean Absolute Error (MAE) is the average of the absolute value of the residuals
(error). The MAE is very similar to the RMSE but is less sensitive to large errors.

This SQL expression calculates the MAE.

AVG(ABS(predi ct ed_val ue - actual _val ue))

This formula shows the MAE in mathematical symbols. The large sigma character
represents summation; j represents the current predictor, and n represents the number
of predictors.

Figure 3-4 Mean Absolute Error

MAE= 1 < .
7; 1y, -7,

3.3 Regression Algorithms

ORACLE

Oracle Data Mining supports two algorithms for Regression Generalized Linear
Models (GLM) and Support Vector Machines (SVM).

Generalized Linear Models (GLM) and Support Vector Machines (SVM) algorithms are
particularly suited for mining data sets that have very high dimensionality (many
attributes), including transactional and unstructured data.

e Generalized Linear Models (GLM)

GLM is a popular statistical technigue for linear modeling. Oracle Data Mining
implements GLM for Regression and for binary classification. GLM provides
extensive coefficient statistics and model statistics, as well as row diagnostics.
GLM also supports confidence bounds.

e Support Vector Machines (SVM)

SVM is a powerful, state-of-the-art algorithm for linear and nonlinear Regression.
Oracle Data Mining implements SVM for Regression, classification, and anomaly
detection. SVM Regression supports two kernels: the Gaussian kernel for
nonlinear Regression, and the linear kernel for Linear Regression.

3-5

Chapter 3
Regression Algorithms

< Note:

Oracle Data Mining uses linear kernel SVM as the default Regression
algorithm.

Related Topics

* Generalized Linear Models

Learn how to use Generalized Linear Models (GLM) statistical technique for Linear
modeling.

e Support Vector Machines

Learn how to use Support Vector Machines, a powerful algorithm based on
statistical learning theory.

ORACLE 3-6

Classification

Learn how to predict a categorical target through Classification - the supervised mining
function.

* About Classification

» Testing a Classification Model
* Biasing a Classification Model
* Classification Algorithms
Related Topics

* Oracle Data Mining Basics
Understand the basic concepts of Oracle Data Mining.

4.1 About Classification

ORACLE

Classification is a data mining function that assigns items in a collection to target
categories or classes. The goal of classification is to accurately predict the target class
for each case in the data. For example, a classification model can be used to identify
loan applicants as low, medium, or high credit risks.

A classification task begins with a data set in which the class assignments are known.
For example, a classification model that predicts credit risk can be developed based
on observed data for many loan applicants over a period of time. In addition to the
historical credit rating, the data might track employment history, home ownership or
rental, years of residence, number and type of investments, and so on. Credit rating is
the target, the other attributes are the predictors, and the data for each customer
constitutes a case.

Classifications are discrete and do not imply order. Continuous, floating-point values
indicate a numerical, rather than a categorical, target. A predictive model with a
numerical target uses a regression algorithm, not a classification algorithm.

The simplest type of classification problem is binary classification. In binary
classification, the target attribute has only two possible values: for example, high credit
rating or low credit rating. Multiclass targets have more than two values: for example,
low, medium, high, or unknown credit rating.

In the model build (training) process, a classification algorithm finds relationships
between the values of the predictors and the values of the target. Different
classification algorithms use different techniques for finding relationships. These
relationships are summarized in a model, which can then be applied to a different data
set in which the class assignments are unknown.

Classification models are tested by comparing the predicted values to known target
values in a set of test data. The historical data for a classification project is typically
divided into two data sets: one for building the model; the other for testing the model.

4-1

Chapter 4
Testing a Classification Model

Applying a classification model results in class assignments and probabilities for each
case. For example, a model that classifies customers as low, medium, or high value
also predicts the probability of each classification for each customer.

Classification has many applications in customer segmentation, business modeling,
marketing, credit analysis, and biomedical and drug response modeling.

4.2 Testing a Classification Model

A classification model is tested by applying it to test data with known target values and
comparing the predicted values with the known values.

The test data must be compatible with the data used to build the model and must be
prepared in the same way that the build data was prepared. Typically the build data
and test data come from the same historical data set. A percentage of the records is
used to build the model; the remaining records are used to test the model.

Test metrics are used to assess how accurately the model predicts the known values.
If the model performs well and meets the business requirements, it can then be
applied to new data to predict the future.

4.2.1 Confusion Matrix

ORACLE

A confusion matrix displays the number of correct and incorrect predictions made by
the model compared with the actual classifications in the test data. The matrix is n-by-
n, where n is the number of classes.

The following figure shows a confusion matrix for a binary classification model. The
rows present the number of actual classifications in the test data. The columns present
the number of predicted classifications made by the model.

Figure 4-1 Confusion Matrix for a Binary Classification Model

PREDICTED CLASS

affinity_card =1 affinity_card = 0
ACTUAL CLASS| affinity_card = 1 516 25
affinity_card =0 10 725

In this example, the model correctly predicted the positive class for affinity_card 516
times and incorrectly predicted it 25 times. The model correctly predicted the negative
class for affinity_card 725 times and incorrectly predicted it 10 times. The following
can be computed from this confusion matrix:

4-2

4.2.2 Lift

Chapter 4
Testing a Classification Model

* The model made 1241 correct predictions (516 + 725).

* The model made 35 incorrect predictions (25 + 10).

e There are 1276 total scored cases (516 + 25 + 10 + 725).
e The error rate is 35/1276 = 0.0274.

* The overall accuracy rate is 1241/1276 = 0.9725.

Lift measures the degree to which the predictions of a classification model are better
than randomly-generated predictions.

Lift applies to binary classification only, and it requires the designation of a positive
class. If the model itself does not have a binary target, you can compute lift by
designating one class as positive and combining all the other classes together as one
negative class.

Numerous statistics can be calculated to support the notion of lift. Basically, lift can be
understood as a ratio of two percentages: the percentage of correct positive
classifications made by the model to the percentage of actual positive classifications in
the test data. For example, if 40% of the customers in a marketing survey have
responded favorably (the positive classification) to a promotional campaign in the past
and the model accurately predicts 75% of them, the lift is obtained by dividing .75 by .
40. The resulting lift is 1.875.

Lift is computed against quantiles that each contain the same number of cases. The
data is divided into quantiles after it is scored. It is ranked by probability of the positive
class from highest to lowest, so that the highest concentration of positive predictions is
in the top quantiles. A typical number of quantiles is 10.

Lift is commonly used to measure the performance of response models in marketing
applications. The purpose of a response model is to identify segments of the
population with potentially high concentrations of positive responders to a marketing
campaign. Lift reveals how much of the population must be solicited to obtain the
highest percentage of potential responders.

Related Topics

e Positive and Negative Classes
Discusses the importance of positive and negative classes in a confusion matrix.

4.2.2.1 Lift Statistics

ORACLE

Learn the different Lift statistics that Oracle Data Mining can compute.
Oracle Data Mining computes the following lift statistics:

* Probability threshold for a quantile n is the minimum probability for the positive
target to be included in this quantile or any preceding quantiles (quantiles n-1,
n-2,..., 1). If a cost matrix is used, a cost threshold is reported instead. The cost
threshold is the maximum cost for the positive target to be included in this quantile
or any of the preceding quantiles.

¢ Cumulative gain is the ratio of the cumulative number of positive targets to the
total number of positive targets.

4-3

Chapter 4
Testing a Classification Model

* Target density of a quantile is the number of true positive instances in that
guantile divided by the total number of instances in the quantile.

« Cumulative target density for quantile n is the target density computed over the
first n quantiles.

* Quantile lift is the ratio of the target density for the quantile to the target density
over all the test data.

* Cumulative percentage of records for a quantile is the percentage of all cases
represented by the first n quantiles, starting at the end that is most confidently
positive, up to and including the given quantile.

* Cumulative humber of targets for quantile n is the number of true positive
instances in the first n quantiles.

« Cumulative humber of hontargets is the number of actually negative instances
in the first n quantiles.

* Cumulative lift for a quantile is the ratio of the cumulative target density to the
target density over all the test data.

Related Topics

e Costs

4.2.3 Receiver Operating Characteristic (ROC)

ROC is a metric for comparing predicted and actual target values in a classification
model.

ROC, like Lift, applies to Binary Classification and requires the designation of a
positive class.

You can use ROC to gain insight into the decision-making ability of the model. How
likely is the model to accurately predict the negative or the positive class?

ROC measures the impact of changes in the probability threshold. The probability
threshold is the decision point used by the model for classification. The default
probability threshold for binary classification is 0.5. When the probability of a prediction
is 50% or more, the model predicts that class. When the probability is less than 50%,
the other class is predicted. (In multiclass classification, the predicted class is the one
predicted with the highest probability.)

Related Topics

e Positive and Negative Classes
Discusses the importance of positive and negative classes in a confusion matrix.

4.2.3.1 The ROC Curve

ROC can be plotted as a curve on an X-Y axis. The false positive rate is placed on
the X axis. The true positive rate is placed on the Y axis.

The top left corner is the optimal location on an ROC graph, indicating a high true
positive rate and a low false positive rate.

ORACLE 4-4

Chapter 4
Testing a Classification Model

4.2.3.2 Area Under the Curve

The area under the ROC curve (AUC) measures the discriminating ability of a binary
classification model. The larger the AUC, the higher the likelihood that an actual
positive case is assigned, and a higher probability of being positive than an actual
negative case. The AUC measure is especially useful for data sets with unbalanced
target distribution (one target class dominates the other).

4.2.3.3 ROC and Model Bias

The ROC curve for a model represents all the possible combinations of values in its
confusion matrix.

Changes in the probability threshold affect the predictions made by the model. For
instance, if the threshold for predicting the positive class is changed from 0.5 to 0.6,
then fewer positive predictions are made. This affects the distribution of values in the
confusion matrix: the number of true and false positives and true and false negatives
differ.

You can use ROC to find the probability thresholds that yield the highest overall
accuracy or the highest per-class accuracy. For example, if it is important to you to
accurately predict the positive class, but you don't care about prediction errors for the
negative class, then you can lower the threshold for the positive class. This can bias
the model in favor of the positive class.

A cost matrix is a convenient mechanism for changing the probability thresholds for
model scoring.

Related Topics

e Costs

4.2.3.4 ROC Statistics

ORACLE

Oracle Data Mining computes the following ROC statistics:

e Probability threshold: The minimum predicted positive class probability resulting
in a positive class prediction. Different threshold values result in different hit rates
and different false alarm rates.

* True negatives: Negative cases in the test data with predicted probabilities strictly
less than the probability threshold (correctly predicted).

e True positives: Positive cases in the test data with predicted probabilities greater
than or equal to the probability threshold (correctly predicted).

» False negatives: Positive cases in the test data with predicted probabilities strictly
less than the probability threshold (incorrectly predicted).

e False positives: Negative cases in the test data with predicted probabilities
greater than or equal to the probability threshold (incorrectly predicted).

e True positive fraction: Hit rate. (true positives/(true positives + false negatives))

» False positive fraction: False alarm rate. (false positives/(false positives + true
negatives))

4-5

Chapter 4
Biasing a Classification Model

4.3 Biasing a Classification Model

4.3.1 Costs

Costs, prior probabilities, and class weights are methods for biasing classification
models.

A cost matrix is a mechanism for influencing the decision making of a model. A cost
matrix can cause the model to minimize costly misclassifications. It can also cause the
model to maximize beneficial accurate classifications.

For example, if a model classifies a customer with poor credit as low risk, this error is
costly. A cost matrix can bias the model to avoid this type of error. The cost matrix can
also be used to bias the model in favor of the correct classification of customers who
have the worst credit history.

ROC is a useful metric for evaluating how a model behaves with different probability
thresholds. You can use ROC to help you find optimal costs for a given classifier given
different usage scenarios. You can use this information to create cost matrices to
influence the deployment of the model.

4.3.1.1 Costs Versus Accuracy

Compares Cost matrix and Confusion matrix for costs and accuracy to evaluate model
quality.

Like a confusion matrix, a cost matrix is an n-by-n matrix, where n is the number of
classes. Both confusion matrices and cost matrices include each possible combination
of actual and predicted results based on a given set of test data.

A confusion matrix is used to measure accuracy, the ratio of correct predictions to the
total number of predictions. A cost matrix is used to specify the relative importance of
accuracy for different predictions. In most business applications, it is important to
consider costs in addition to accuracy when evaluating model quality.

Related Topics

e Confusion Matrix

4.3.1.2 Positive and Negative Classes

ORACLE

Discusses the importance of positive and negative classes in a confusion matrix.

The positive class is the class that you care the most about. Designation of a positive
class is required for computing Lift and ROC.

In the confusion matrix, in the following figure, the value 1 is designated as the positive
class. This means that the creator of the model has determined that it is more
important to accurately predict customers who increase spending with an affinity card
(af finity_card=1) than to accurately predict non-responders (af fi ni ty_card=0). If you
give affinity cards to some customers who are not likely to use them, there is little loss
to the company since the cost of the cards is low. However, if you overlook the
customers who are likely to respond, you miss the opportunity to increase your
revenue.

4-6

Chapter 4
Biasing a Classification Model

Figure 4-2 Positive and Negative Predictions

PREDICTED CLASS

affinity_card =1 affinity_card =0
- 516 25

ACTUAL CLASS affinity_card =1 (true positive) (false negative)
- 10 725

G e = (false positive) (true negative)

The true and false positive rates in this confusion matrix are:

* False positive rate — 10/(10 + 725) =.01
e True positive rate — 516/(516 + 25) =.95

Related Topics

o Lift
Lift measures the degree to which the predictions of a classification model are
better than randomly-generated predictions.

* Receiver Operating Characteristic (ROC)
ROC is a metric for comparing predicted and actual target values in a classification
model.

4.3.1.3 Assigning Costs and Benefits

ORACLE

In a cost matrix, positive numbers (costs) can be used to influence negative outcomes.
Since negative costs are interpreted as benefits, negative numbers (benefits) can be
used to influence positive outcomes.

Suppose you have calculated that it costs your business $1500 when you do not give
an affinity card to a customer who can increase spending. Using the model with the
confusion matrix shown in Figure 4-2, each false negative (misclassification of a
responder) costs $1500. Misclassifying a non-responder is less expensive to your
business. You estimate that each false positive (misclassification of a non-responder)
only costs $300.

You want to keep these costs in mind when you design a promotion campaign. You
estimate that it costs $10 to include a customer in the promotion. For this reason, you
associate a benefit of $10 with each true negative prediction, because you can simply
eliminate those customers from your promotion. Each customer that you eliminate
represents a savings of $10. In your cost matrix, you specify this benefit as -10, a
negative cost.

The following figure shows how you would represent these costs and benefits in a cost
matrix:

4-7

Chapter 4
Classification Algorithms

Figure 4-3 Cost Matrix Representing Costs and Benefits

PREDICTED
affinity_card =1 affinity_card =0
ACTUAL affinity_card =1 0 1500
affinity_card =0 300 -10

With Oracle Data Mining you can specify costs to influence the scoring of any
classification model. Decision Tree models can also use a cost matrix to influence the
model build.

4.3.2 Priors and Class Weights

Learn about Priors and Class Weights in a Classification model to produce a useful
result.

With Bayesian models, you can specify Prior probabilities to offset differences in
distribution between the build data and the real population (scoring data). With other
forms of Classification, you are able to specify Class Weights, which have the same
biasing effect as priors.

In many problems, one target value dominates in frequency. For example, the positive
responses for a telephone marketing campaign is 2% or less, and the occurrence of
fraud in credit card transactions is less than 1%. A classification model built on historic
data of this type cannot observe enough of the rare class to be able to distinguish the
characteristics of the two classes; the result can be a model that when applied to new
data predicts the frequent class for every case. While such a model can be highly
accurate, it is not be very useful. This illustrates that it is not a good idea to rely solely
on accuracy when judging the quality of a Classification model.

To correct for unrealistic distributions in the training data, you can specify priors for the
model build process. Other approaches to compensating for data distribution issues
include stratified sampling and anomaly detection.

Related Topics

* Anomaly Detection
Learn how to detect rare cases in the data through Anomaly Detection - an
unsupervised function.

4.4 Classification Algorithms

Learn different Classification algorithms used in Oracle Data Mining.

ORACLE 4-8

Chapter 4
Classification Algorithms

Oracle Data Mining provides the following algorithms for classification:

 Decision Tree

Decision trees automatically generate rules, which are conditional statements that
reveal the logic used to build the tree.

* Naive Bayes

Naive Bayes uses Bayes' Theorem, a formula that calculates a probability by
counting the frequency of values and combinations of values in the historical data.

* Generalized Linear Models (GLM)

GLM is a popular statistical technigue for linear modeling. Oracle Data Mining
implements GLM for binary classification and for regression. GLM provides
extensive coefficient statistics and model statistics, as well as row diagnostics.
GLM also supports confidence bounds.

* Support Vector Machines (SVM)

SVM is a powerful, state-of-the-art algorithm based on linear and nonlinear
regression. Oracle Data Mining implements SVM for binary and multiclass
classification.

" Note:

Oracle Data Mining uses Naive Bayes as the default classification algorithm.

Related Topics

e Decision Tree
Learn how to use Decision Tree algorithm. Decision Tree is one of the
Classification algorithms that the Oracle Data Mining supports.

* Naive Bayes
Learn how to use Naive Bayes Classification algorithm that the Oracle Data Mining
supports.

* Generalized Linear Models
Learn how to use Generalized Linear Models (GLM) statistical technique for Linear
modeling.

e Support Vector Machines
Learn how to use Support Vector Machines, a powerful algorithm based on
statistical learning theory.

ORACLE 4-9

Anomaly Detection

Learn how to detect rare cases in the data through Anomaly Detection - an
unsupervised function.

e About Anomaly Detection

* Anomaly Detection Algorithm

Related Topics

* Oracle Data Mining Basics
Understand the basic concepts of Oracle Data Mining.

2 See Also:

e Campos, M.M., Milenova, B.L., Yarmus, J.S., "Creation and Deployment
of Data Mining-Based Intrusion Detection Systems in Oracle Database
10g"

http:// ww. oracl e. com pl s/topic/lookup?ct x=db122& d=dat mi n

5.1 About Anomaly Detection

The goal of anomaly detection is to identify cases that are unusual within data that is

seemingly homogeneous. Anomaly detection is an important tool for detecting fraud,

network intrusion, and other rare events that can have great significance but are hard
to find.

Anomaly detection can be used to solve problems like the following:

* Alaw enforcement agency compiles data about illegal activities, but nothing about
legitimate activities. How can a suspicious activity be flagged?

The law enforcement data is all of one class. There are no counter-examples.

* Aninsurance agency processes millions of insurance claims, knowing that a very
small number are fraudulent. How can the fraudulent claims be identified?

The claims data contains very few counter-examples. They are outliers.

5.1.1 One-Class Classification

ORACLE

Learn about Anomaly Detection as one-class Classification in training data.

Anomaly detection is a form of Classification. Anomaly detection is implemented as
one-class Classification, because only one class is represented in the training data. An
anomaly detection model predicts whether a data point is typical for a given

5-1

http://www.oracle.com/pls/topic/lookup?ctx=db122&id=datmin

Chapter 5
About Anomaly Detection

distribution or not. An atypical data point can be either an outlier or an example of a
previously unseen class.

Normally, a Classification model must be trained on data that includes both examples
and counter-examples for each class so that the model can learn to distinguish
between them. For example, a model that predicts the side effects of a medication
must be trained on data that includes a wide range of responses to the medication.

A one-class classifier develops a profile that generally describes a typical case in the
training data. Deviation from the profile is identified as an anomaly. One-class
classifiers are sometimes referred to as positive security models, because they seek to
identify "good" behaviors and assume that all other behaviors are bad.

Note:

Solving a one-class classification problem can be difficult. The accuracy of
one-class classifiers cannot usually match the accuracy of standard
classifiers built with meaningful counterexamples.

The goal of anomaly detection is to provide some useful information where
no information was previously attainable. However, if there are enough of the
"rare" cases so that stratified sampling produce a training set with enough
counter examples for a standard classification model, then that is generally a
better solution.

Related Topics

» About Classification

5.1.2 Anomaly Detection for Single-Class Data

In single-class data, all the cases have the same classification. Counter-examples,
instances of another class, are hard to specify or expensive to collect. For instance, in
text document classification, it is easy to classify a document under a given topic.
However, the universe of documents outside of this topic can be very large and
diverse. Thus, it is not feasible to specify other types of documents as counter-
examples.

Anomaly detection can be used to find unusual instances of a particular type of
document.

5.1.3 Anomaly Detection for Finding Outliers

ORACLE

Outliers are cases that are unusual because they fall outside the distribution that is
considered normal for the data. For example, census data shows a median household
income of $70,000 and a mean household income of $80,000, but one or two
households have an income of $200,000. These cases can probably be identified as
outliers.

The distance from the center of a normal distribution indicates how typical a given
point is with respect to the distribution of the data. Each case can be ranked according
to the probability that it is either typical or atypical.

5-2

Chapter 5
Anomaly Detection Algorithm

The presence of outliers can have a deleterious effect on many forms of data mining.
You can use Anomaly Detection to identify outliners before mining the data.

5.2 Anomaly Detection Algorithm

ORACLE

Learn about One-Class Support Vector Machines (SVM) for Anomaly Detection.

Oracle Data Mining supports One-Class Support Vector Machines (SVM) for Anomaly
Detection. When used for Anomaly Detection, SVM classification does not use a
target.

Related Topics
e One-Class SVM

5-3

Clustering

Learn how to discover natural groupings in the data through Clustering - the
unsupervised mining function.

e About Clustering
* Evaluating a Clustering Model

e Clustering Algorithms

Related Topics

e Oracle Data Mining Basics
Understand the basic concepts of Oracle Data Mining.

6.1 About Clustering

Clustering analysis finds clusters of data objects that are similar to one another. The
members of a cluster are more like each other than they are like members of other
clusters. Different clusters can have members in common. The goal of clustering
analysis is to find high-quality clusters such that the inter-cluster similarity is low and
the intra-cluster similarity is high.

Clustering, like classification, is used to segment the data. Unlike classification,
clustering models segment data into groups that were not previously defined.
Classification models segment data by assigning it to previously-defined classes,
which are specified in a target. Clustering models do not use a target.

Clustering is useful for exploring data. You can use Clustering algorithms to find
natural groupings when there are many cases and no obvious groupings.

Clustering can serve as a useful data-preprocessing step to identify homogeneous
groups on which you can build supervised models.

You can also use Clustering for Anomaly Detection. Once you segment the data into
clusters, you find that some cases do not fit well into any clusters. These cases are
anomalies or outliers.

6.1.1 How are Clusters Computed?

There are several different approaches to the computation of clusters. Oracle Data
Mining supports the following methods:

e Density-based: This type of clustering finds the underlying distribution of the data
and estimates how areas of high density in the data correspond to peaks in the
distribution. High-density areas are interpreted as clusters. Density-based cluster
estimation is probabilistic.

e Distance-based: This type of clustering uses a distance metric to determine
similarity between data objects. The distance metric measures the distance

ORACLE 6-1

Chapter 6
Evaluating a Clustering Model

between actual cases in the cluster and the prototypical case for the cluster. The
prototypical case is known as the centroid.

» Grid-based: This type of clustering divides the input space into hyper-rectangular
cells and identifies adjacent high-density cells to form clusters.

6.1.2 Scoring New Data

Although clustering is an unsupervised mining function, Oracle Data Mining supports
the scoring operation for clustering. New data is scored probabilistically.

6.1.3 Hierarchical Clustering

The clustering algorithms supported by Oracle Data Mining perform hierarchical
clustering. The leaf clusters are the final clusters generated by the algorithm. Clusters
higher up in the hierarchy are intermediate clusters.

6.1.3.1 Rules

Rules describe the data in each cluster. A rule is a conditional statement that captures
the logic used to split a parent cluster into child clusters. A rule describes the
conditions for a case to be assigned with some probability to a cluster.

6.1.3.2 Support and Confidence

Support and confidence are metrics that describe the relationships between
clustering rules and cases. Support is the percentage of cases for which the rule
holds. Confidence is the probability that a case described by this rule is actually
assigned to the cluster.

6.2 Evaluating a Clustering Model

Since known classes are not used in clustering, the interpretation of clusters can
present difficulties. How do you know if the clusters can reliably be used for business
decision making?

Oracle Data Mining clustering models support a high degree of model transparency.
You can evaluate the model by examining information generated by the clustering
algorithm: for example, the centroid of a distance-based cluster. Moreover, because
the clustering process is hierarchical, you can evaluate the rules and other information
related to each cluster's position in the hierarchy.

6.3 Clustering Algorithms

Learn different Clustering algorithms used in Oracle Data Mining.
Oracle Data Mining supports these Clustering algorithms:

* Expectation Maximization

Expectation Maximization is a probabilistic, density-estimation Clustering
algorithm.

« k-Means

ORACLE 6-2

Chapter 6
Clustering Algorithms

k-Means is a distance-based Clustering algorithm. Oracle Data Mining supports an
enhanced version of k-Means.

Orthogonal Partitioning Clustering (O-Cluster)

O-Cluster is a proprietary, grid-based Clustering algorithm.

" See Also:

Campos, M.M., Milenova, B.L., "O-Cluster: Scalable Clustering of Large
High Dimensional Data Sets", Oracle Data Mining Technologies, 10 Van
De Graaff Drive, Burlington, MA 01803.

The main characteristics of the two algorithms are compared in the following table.

Table 6-1 Clustering Algorithms Compared

Feature

k-Means O-Cluster Expectation Maximization

Clustering methodolgy

Number of cases

Distance-based Grid-based Distribution-based

Handles data sets of any More appropriate for data sets Handles data sets of any
size that have more than 500 cases. size

Handles large tables through

active sampling

Number of attributes More appropriate for More appropriate for data sets ~ Appropriate for data sets
data sets with a low with a high number of attributes with many or few attributes
number of attributes

Number of clusters User-specified Automatically determined Automatically determined

Hierarchical clustering Yes Yes Yes

Probabilistic cluster Yes Yes Yes

assignment

Note:
Oracle Data Mining uses k-Means as the default Clustering algorithm.
Related Topics
e http://lwww.oracle.com/pls/topic/lookup?ctx=db122&id=datmin
e Expectation Maximization
Learn how to use Expectation Maximization Clustering algorithm.
* k-Means
Learn how to use enhanced k-Means Clustering algorithm that the Oracle Data
Mining supports.
e O-Cluster
Learn how to use Orthogonal Partitioning Clustering (O-Cluster), an Oracle-
proprietary Clustering algorithm.
ORACLE 6-3

http://www.oracle.com/pls/topic/lookup?ctx=db122&id=datmin

Association

Learn how to discover Association Rules through Association - an unsupervised
mining function.

* About Association
e Transactional Data

* Association Algorithm

Related Topics

e Oracle Data Mining Basics
Understand the basic concepts of Oracle Data Mining.

7.1 About Association

Association is a data mining function that discovers the probability of the co-
occurrence of items in a collection. The relationships between co-occurring items are
expressed as Association Rules.

7.1.1 Association Rules

The results of an Association model are the rules that identify patterns of association
within the data. Oracle Data Mining does not support the scoring operation for
association modeling.

Association Rules can be applied as follows:

Support: How often do these items occur together in the data?

Confidence: How frequently the consequent occurs in transactions that contain the
antecedent.

Value: How much business value is connected to item associations

7.1.2 Market-Basket Analysis

ORACLE

Association rules are often used to analyze sales transactions. For example, it is noted
that customers who buy cereal at the grocery store often buy milk at the same time. In
fact, association analysis find that 85% of the checkout sessions that include cereal
also include milk. This relationship can be formulated as the following rule:

Cereal inplies milk with 85% confidence

This application of association modeling is called market-basket analysis. It is
valuable for direct marketing, sales promotions, and for discovering business trends.
Market-basket analysis can also be used effectively for store layout, catalog design,
and cross-sell.

7-1

Chapter 7
Transactional Data

7.1.3 Association Rules and eCommerce

Learn about application of Association Rules in other domains.

Association modeling has important applications in other domains as well. For
example, in e-commerce applications, Association Rules may be used for Web page
personalization. An association model might find that a user who visits pages A and B
is 70% likely to also visit page C in the same session. Based on this rule, a dynamic
link can be created for users who are likely to be interested in page C. The association
rule is expressed as follows:

A and Binply Cwith 70% confidence

Related Topics

* Confidence
The confidence of a rule indicates the probability of both the antecedent and the
consequent appearing in the same transaction.

7.2 Transactional Data

Learn about transactional data, also known as market-basket data.

Unlike other data mining functions, Association is transaction-based. In transaction
processing, a case includes a collection of items such as the contents of a market
basket at the checkout counter. The collection of items in the transaction is an attribute
of the transaction. Other attributes might be a timestamp or user ID associated with
the transaction.

Transactional data, also known as market-basket data, is said to be in multi-record
case format because a set of records (rows) constitute a case. For example, in the
following figure, case 11 is made up of three rows while cases 12 and 13 are each
made up of four rows.

Figure 7-1 Transactional Data

case ID attribute1 attribute2

TRANS_ID ITEM ID OPER_ID

11 B m5203
11 D m5203
11 E m5203
12 A m5203
12 B m5203
12 c m5203
12 E m5203
13 B q5597
13 c q5597
13 D q5597
13 E q5597

Non transactional data is said to be in a single-record case format because a single
record (row) constitutes a case. In Oracle Data Mining, association models can be built

ORACLE 7-2

Chapter 7
Association Algorithm

using either transactional or non transactional or two-dimensional data formats. If the
data is non transactional, it is possible to transform to a nested column to make it
transactional before association mining activities can be performed. Transactional
format is the usual format but, the Association Rules model does accept two-
dimensional input format. For non transactional input format, each distinct combination
of the content in all columns other than the case ID column is treated as a unique item.

Related Topics
e Oracle Data Mining User’s Guide

o Data Preparation for Apriori

7.3 Association Algorithm

ORACLE

Oracle Data Mining uses the Apriori algorithm to calculate association rules for items
in frequent itemsets.

7-3

Feature Selection and Extraction

Learn how to perform Feature Selection, Feature Extraction, and Attribute Importance.

Oracle Data Mining supports attribute importance as a supervised mining function and
feature extraction as an unsupervised mining function.

* Finding the Best Attributes

* About Feature Selection and Attribute Importance
* About Feature Extraction

Related Topics

e Oracle Data Mining Basics
Understand the basic concepts of Oracle Data Mining.

8.1 Finding the Best Attributes

ORACLE

Sometimes too much information can reduce the effectiveness of data mining. Some
of the columns of data attributes assembled for building and testing a model do not
contribute meaningful information to the model. Some do actually detract from the
quality and accuracy of the model.

For example, you want to collect a great deal of data about a given population
because you want to predict the likelihood of a certain illness within this group. Some
of this information, perhaps much of it, has little or no effect on susceptibility to the
illness. It is possible that attributes such as the number of cars per household do not
have effect whatsoever.

Irrelevant attributes add noise to the data and affect model accuracy. Noise increases
the size of the model and the time and system resources needed for model building
and scoring.

Data sets with many attributes can contain groups of attributes that are correlated.
These attributes actually measure the same underlying feature. Their presence
together in the build data can skew the logic of the algorithm and affect the accuracy of
the model.

Wide data (many attributes) generally presents processing challenges for data mining
algorithms. Model attributes are the dimensions of the processing space used by the
algorithm. The higher the dimensionality of the processing space, the higher the
computation cost involved in algorithmic processing.

To minimize the effects of noise, correlation, and high dimensionality, some form of
dimension reduction is sometimes a desirable preprocessing step for data mining.
Feature selection and extraction are two approaches to dimension reduction.

* Feature selection: Selecting the most relevant attributes

* Feature extraction: Combining attributes into a new reduced set of features

8-1

Chapter 8
About Feature Selection and Attribute Importance

8.2 About Feature Selection and Attribute Importance

Finding the most significant predictors is the goal of some data mining projects. For
example, a model might seek to find the principal characteristics of clients who pose a
high credit risk.

Oracle Data Mining supports the Attribute Importance mining function, which ranks
attributes according to their importance in predicting a target. Attribute importance
does not actually perform feature selection since all the predictors are retained in the
model. In true feature selection, the attributes that are ranked below a given threshold
of importance are removed from the model.

Feature selection is useful as a preprocessing step to improve computational
efficiency in predictive modeling. Oracle Data Mining implements feature selection for
optimization within the Decision Tree algorithm and within Naive Bayes when
Automatic Data Preparation (ADP) is enabled. Generalized Linear Model (GLM) can
be configured to perform feature selection as a preprocessing step.

8.2.1 Attribute Importance and Scoring

Oracle Data Mining does not support the scoring operation for attribute importance.
The results of attribute importance are the attributes of the build data ranked according
to their predictive influence. The ranking and the measure of importance can be used
in selecting training data for classification models.

8.3 About Feature Extraction

ORACLE

Feature Extraction is an attribute reduction process. Unlike feature selection, which
selects and retains the most significant attributes, Feature Extraction actually
transforms the attributes. The transformed attributes, or features, are linear
combinations of the original attributes.

The Feature Extraction process results in a much smaller and richer set of attributes.
The maximum number of features can be user-specified or determined by the
algorithm. By default, the algorithm determines it.

Models built on extracted features can be of higher quality, because fewer and more
meaningful attributes describe the data.

Feature Extraction projects a data set with higher dimensionality onto a smaller
number of dimensions. As such it is useful for data visualization, since a complex data
set can be effectively visualized when it is reduced to two or three dimensions.

Some applications of Feature Extraction are latent semantic analysis, data
compression, data decomposition and projection, and pattern recognition. Feature
Extraction can also be used to enhance the speed and effectiveness of supervised
learning.

Feature Extraction can be used to extract the themes of a document collection, where
documents are represented by a set of key words and their frequencies. Each theme
(feature) is represented by a combination of keywords. The documents in the
collection can then be expressed in terms of the discovered themes.

8-2

Chapter 8
Algorithms for Attribute Importance and Feature Extraction

8.3.1 Feature Extraction and Scoring

Oracle Data Mining supports the scoring operation for feature extraction. As an
unsupervised mining function, feature extraction does not involve a target. When
applied, a feature extraction model transforms the input into a set of features.

8.4 Algorithms for Attribute Importance and Feature

Extraction

Understand the algorithms used for Attribute Importance and Feature Extraction.

Oracle Data Mining supports the Minimum Description Length algorithm for Attribute
Importance.

Oracle Data Mining supports these feature extraction algorithms:

Non-Negative Matrix Factorization (NMF).

Singular Value Decomposition (SVD) and Prediction Component Analysis
(PCA).

Explicit Semantic Analysis (ESA).

Note:

Oracle Data Mining uses NMF as the default feature extraction algorithm.

Related Topics

ORACLE

Minimum Description Length
Learn how to use Minimum Description Length, the supervised technique for
calculating Attribute Importance.

Non-Negative Matrix Factorization
Learn how to use Non-Negative Matrix Factorization (NMF), the unsupervised
algorithm, that the Oracle Data Mining uses for Feature Extraction.

Singular Value Decomposition
Learn how to use Singular Value Decomposition, an unsupervised algorithm for
Feature Extraction.

Explicit Semantic Analysis
Learn how to use Explicit Semantic Analysis (ESA) as an unsupervised algorithm
using Oracle Data Mining Feature Extraction mining function.

8-3

Algorithms

Part Il provides basic conceptual information about the algorithms supported by
Oracle Data Mining. There is at least one algorithm for each of the mining functions.

Part Ill contains these chapters:

e Apriori

* Decision Tree

* Expectation Maximization

* Explicit Semantic Analysis

* Generalized Linear Models

* k-Means

e Minimum Description Length

* Naive Bayes

* Non-Negative Matrix Factorization
e O-Cluster

e Singular Value Decomposition
e Support Vector Machines
Related Topics

* Mining Functions
Part Il provides basic conceptual information about the mining functions that the
Oracle Data Mining supports.

ORACLE

Apriori

Learn how to calculate Association Rules using Apriori algorithm.

e About Apriori

* Association Rules and Frequent Itemsets
» Data Preparation for Apriori

e Calculating Association Rules

» Evaluating Association Rules

Related Topics

» Association
Learn how to discover Association Rules through Association - an unsupervised
mining function.

9.1 About Apriori

ORACLE

Learn about Apriori.
An association mining problem can be decomposed into the following subproblems:

e Find all combinations of items in a set of transactions that occur with a specified
minimum frequency. These combinations are called frequent itemsets.

e Calculate rules that express the probable co-occurrence of items within frequent
itemsets.

Apriori calculates the probability of an item being present in a frequent itemset, given
that another item or items is present.

Assaociation rule mining is not recommended for finding associations involving rare
events in problem domains with a large number of items. Apriori discovers patterns
with frequencies above the minimum support threshold. Therefore, to find associations
involving rare events, the algorithm must run with very low minimum support values.
However, doing so potentially explodes the number of enumerated itemsets, especially
in cases with a large number of items. This increases the execution time significantly.
Classification or Anomaly Detection is more suitable for discovering rare events when
the data has a high number of attributes.

The build process for Apriori supports parallel execution.

Related Topics

* Example: Calculating Rules from Frequent Itemsets
Example to calculating rules from Frequent itemsets.

e Oracle Database VLDB and Partitioning Guide

9-1

Chapter 9
Association Rules and Frequent ltemsets

9.2 Association Rules and Frequent Itemsets

The Apriori algorithm calculates rules that express probabilistic relationships between
items in frequent itemsets. For example, a rule derived from frequent itemsets
containing A, B, and C might state that if A and B are included in a transaction, then C
is likely to also be included.

An association rule states that an item or group of items implies the presence of
another item with some probability. Unlike decision tree rules, which predict a target,
association rules simply express correlation.

9.2.1 Antecedent and Consequent

The IF component of an association rule is known as the antecedent. The THEN
component is known as the consequent. The antecedent and the consequent are
disjoint; they have no items in common.

Oracle Data Mining supports association rules that have one or more items in the
antecedent and a single item in the consequent.

9.2.2 Confidence

Rules have an associated confidence, which is the conditional probability that the
consequent occurs given the occurrence of the antecedent. You can specify the
minimum confidence for rules.

9.3 Data Preparation for Apriori

Association models are designed to use transactional data. In transactional data, there
is a one-to-many relationship between the case identifier and the values for each case.
Each case ID/value pair is specified in a separate record (row).

9.3.1 Native Transactional Data and Star Schemas

Learn about storage format of transactional data.

Transactional data may be stored in native transactional format, with a non-unique
case ID column and a values column, or it may be stored in some other configuration,
such as a star schema. If the data is not stored in native transactional format, it must
be transformed to a nested column for processing by the Apriori algorithm.

Related Topics

e Transactional Data
Learn about transactional data, also known as market-basket data.

e Oracle Data Mining User’s Guide

9.3.2 Items and Collections

In transactional data, a collection of items is associated with each case. The collection
theoretically includes all possible members of the collection. For example, all products
can theoretically be purchased in a single market-basket transaction. However, in

ORACLE 9-2

Chapter 9
Calculating Association Rules

actuality, only a tiny subset of all possible items are present in a given transaction; the
items in the market-basket represent only a small fraction of the items available for
sale in the store.

9.3.3 Sparse Data

Learn about missing items through sparsity.

Missing items in a collection indicate sparsity. Missing items may be present with a
null value, or they may simply be missing.

Nulls in transactional data are assumed to represent values that are known but not
present in the transaction. For example, three items out of hundreds of possible items
might be purchased in a single transaction. The items that were not purchased are
known but not present in the transaction.

Oracle Data Mining assumes sparsity in transactional data. The Apriori algorithm is
optimized for processing sparse data.

Note:

Apriori is not affected by Automatic Data Preparation.

Related Topics

* Oracle Data Mining User’s Guide

9.4 Calculating Association Rules

The first step in association analysis is the enumeration of itemsets. An itemset is any
combination of two or more items in a transaction.

9.4.1 Itemsets

Learn about itemsets.

The maximum number of items in an itemset is user-specified. If the maximum is two,
then all the item pairs are counted. If the maximum is greater than two, then all the
item pairs, all the item triples, and all the item combinations up to the specified
maximum are counted.

The following table shows the itemsets derived from the transactions shown in the
following example, assuming that maximum number of items in an itemset is set to 3.

Table 9-1 Itemsets
]

Transaction Itemsets

11 (B,D) (B,E) (D,E) (B,D,E)

12 (AB) (A.C) (AE) (B,C) (B,E) (C,E) (A,B,C) (A,B,E) (A,C,E) (B,C,E)
13 (B,C) (B,D) (B,E) (C,D) (C,E) (D,E) (B,C,D) (B,C,E) (B,D,E) (C,D,E)

ORACLE 9-3

Chapter 9
Calculating Association Rules

Example 9-1 Sample Transactional Data

11 B
11 D
11 E
12 A
12 B
12 C
12 E
13 B
13 C
13 D
13 E

9.4.2 Frequent ltemsets

Learn about Frequent Itemsets and Support.

Association rules are calculated from itemsets. If rules are generated from all possible
itemsets, there can be a very high number of rules and the rules may not be very
meaningful. Also, the model can take a long time to build. Typically it is desirable to
only generate rules from itemsets that are well-represented in the data. Frequent
itemsets are those that occur with a minimum frequency specified by the user.

The minimum frequent itemset Support is a user-specified percentage that limits the
number of itemsets used for association rules. An itemset must appear in at least this
percentage of all the transactions if it is to be used as a basis for rules.

The following table shows the itemsets from Table 9-1 that are frequent itemsets with
support > 66%.

Table 9-2 Frequent Itemsets
|

Frequent Iltemset Transactions Support
(B,C) 20f3 67%
(B,D) 20f3 67%
(B,E) 30f3 100%
(C,E) 20f3 67%
(D,E) 20f3 67%
(B,C,E) 20f3 67%
(B,.D,E) 20f3 67%

Related Topics

e Apriori
Learn how to calculate Association Rules using Apriori algorithm.

9.4.3 Example: Calculating Rules from Frequent Itemsets

Example to calculating rules from Frequent itemsets.

ORACLE 9-4

ORACLE

Chapter 9
Calculating Association Rules

The following tables show the itemsets and frequent itemsets that were calculated in
"Association". The frequent itemsets are the itemsets that occur with a minimum
support of 67%; at least 2 of the 3 transactions must include the itemset.

Table 9-3 Itemsets
]

Transaction Itemsets

11 (B,D) (B,E) (D,E) (B,D,E)

12 (A,B) (A,C) (AE) (B,C) (B,E) (C,E) (A,B,C) (A,B,E) (A,C,E) (B,C,E)
13 (B,C) (B,D) (B,E) (C,D) (C,E) (D,E) (B,C,D) (B,C,E) (B,D,E) (C,D,E)

Table 9-4 Frequent Itemsets with Minimum Support 67%
|

Itemset Transactions Support
(B,C) 12 and 13 67%
(B,D) 11 and 13 67%
(B,E) 11, 12, and 13 100%
(C,E) 12 and 13 67%
(D,E) 11 and 13 67%
(B,C,E) 12 and 13 67%
(B,D,E) 11 and 13 67%

A rule expresses a conditional probability. Confidence in a rule is calculated by
dividing the probability of the items occurring together by the probability of the
occurrence of the antecedent.

For example, if B (antecedent) is present, what is the chance that C (consequent) is
also present? What is the confidence for the rule "IF B, THEN C"?

As shown in Table 9-3:

» All 3 transactions include B (3/3 or 100%)
* Only 2 transactions include both B and C (2/3 or 67%)
e Therefore, the confidence of the rule "IF B, THEN C" is 67/100 or 67%.

The following table the rules that can be derived from the frequent itemsets in
Table 9-4.

Table 9-5 Frequent Itemsets and Rules

Frequent Itemset Rules prob(antecedent and Confidence
consequent) / prob(antecedent)

(B,C) (If B then C) 67/100 67%
(If C then B) 67/67 100%

(B,D) (If B then D) 67/100 67%
(If D then B) 67/67 100%

9-5

Chapter 9
Calculating Association Rules

Table 9-5 (Cont.) Frequent Itemsets and Rules

Frequent Itemset Rules prob(antecedent and Confidence
consequent) / prob(antecedent)

(B.E) (If B then E) 100/100 100%
(If E then B) 100/100 100%
(CE) (If C then E) 67/67 100%
(If E then C) 67/100 67%
(D.E) (If D then E) 67/67 100%
I(f E then D) 67/100 67%
(B.C.E) (If B and C then 67/67 100%
E) 67/100 67%
(If B and E then 67/67 100%
C)
(If C and E then
B)
(B.D,E) (If B and D then 67/67 100%
E) 67/100 67%
(If B and E then 67/67 100%
D)
(If D and E then
B)

If the minimum confidence is 70%, ten rules are generated for these frequent itemsets.
If the minimum confidence is 60%, sixteen rules are generated.

Tip:

Increase the minimum confidence if you want to decrease the build time for
the model and generate fewer rules.

Related Topics

* Association
Learn how to discover Association Rules through Association - an unsupervised
mining function.

9.4.4 Aggregates

ORACLE

Aggregates refer to the quantities associated with each item that the user opts for
Association Rules Model to aggregate.

There can be more than one aggregate. For example, the user can specify the model
to aggregate both profit and quantity.

9-6

Chapter 9
Calculating Association Rules

9.4.5 Reverse Confidence

The Reverse Confidence of a rule is defined as the number of transactions in which
the rule occurs divided by the number of transactions in which the consequent occurs.

Reverse Confidence eliminates rules that occur because the consequent is frequent.
The default is 0.

Related Topics
» Confidence

* Example: Calculating Rules from Frequent ltemsets
Example to calculating rules from Frequent itemsets.

e Oracle Data Mining User’s Guide

e Oracle Database PL/SQL Packages and Types Reference

9.4.6 Minimum Support Count

Minimum support Count defines minimum threshold in transactions that each rule must
satisfy.

When the number of transactions is unknown, the support percentage threshold
parameter can be tricky to set appropriately. For this reason, support can also be
expressed as a count of transactions, with the greater of the two thresholds being
used to filter out infrequent itemsets. The default is 1 indicating that this criterion is not
applied.

Related Topics
* Association Rules
e Oracle Data Mining User’s Guide

* Frequent Itemsets
Learn about Frequent Itemsets and Support.

9.4.7 Transaction Count

Transaction Count indicates the total number of transactions.

¢ See Also:

Oracle Data Mining User’s Guide

9.4.8 Including and Excluding Rules

ORACLE

Explains including rules and excluding rules used in Association.

Including rules enables a user to provide a list of items such that at least one item from
the list must appear in the rules that are returned. Excluding rules enables a user to
provide a list of items such that no item from the list can appear in the rules that are
returned.

9-7

Chapter 9
Calculating Association Rules

Note:

Since each association rule includes both antecedent and consequent, a set
of including or excluding rules can be specified for antecedent while another
set of including or excluding rules can be specified for consequent. Including
or excluding rules can also be defined for the association rule.

Related Topics
e Oracle Data Mining User’s Guide

e Oracle Database PL/SQL Packages and Types Reference

9.4.9 Excluding Rules

A user provides a list of items such that no item from the list can appear in the rules
that are returned.

Note:

Since each association rule includes both antecedent and consequent, a set
of including or excluding rules can be specified for antecedent while another
set of including or excluding rules can be specified for consequent. Including
or excluding rules can also be defined for the association rule.

" See Also:
Oracle Data Mining User’s Guide

Oracle Database PL/SQL Packages and Types Reference

9.4.10 Example: Calculating Aggregates

ORACLE

The following example shows the concept of Aggregates.
Calculating Aggregates for Grocery Store Data

Assume a grocery store has the following data:

Table 9-6 Grocery Store Data
|

Customer Item A Item B Item C Item D
Customer 1 Buys Buys Buys NA
(Profit $5.00) (Profit $3.20) (Profit $12.00)
Customer 2 Buys NA Buys NA
(Profit $4.00) (Profit $4.20)
Customer 3 Buys Buys Buys Buys
(Profit $3.00) (Profit $10.00) (Profit $14.00) (Profit $8.00)

9-8

Chapter 9
Evaluating Association Rules

Table 9-6 (Cont.) Grocery Store Data

Customer Item A Item B Item C Item D
Customer 4 Buys NA NA Buys
(Profit $2.00) (Profit $1.00)

The basket of each customer can be viewed as a transaction. The manager of the
store is interested in not only the existence of certain association rules, but also in the
aggregated profit if such rules exist.

In this example, one of the association rules can be (A, B)=>C for customer 1 and
customer 3. Together with this rule, the store manager may want to know the
following:

* The total profit of item A appearing in this rule
* The total profit of item B appearing in this rule
* The total profit for consequent C appearing in this rule

* The total profit of all items appearing in the rule

For this rule, the profit for item A is $5.00 + $3.00 = $8.00, for item B the profit is $3.20
+ $10.00 = $13.20, for consequent C, the profit is $12.00 + $14.00 = $26.00, for the
antecedent itemset (A, B) is $8.00 + $13.20 = $21.20. For the whole rule, the profit

is $21.20 + $26.00 = $47.40.

Related Topics
e Oracle Database PL/SQL Packages and Types Reference

9.4.11 Performance Impact for Aggregates

Aggregate function requires more memory usage and longer execution time.

For each item, the user may supply several columns to aggregate. It requires more
memory to buffer the extra data and more time to compute the aggregate values.

9.5 Evaluating Association Rules

Minimum support and confidence are used to influence the build of an association
model. Support and confidence are also the primary metrics for evaluating the quality
of the rules generated by the model. Additionally, Oracle Data Mining supports lift for
association rules. These statistical measures can be used to rank the rules and hence
the usefulness of the predictions.

9.5.1 Support

ORACLE

The support of a rule indicates how frequently the items in the rule occur together. For
example, cereal and milk might appear together in 40% of the transactions. If so, the
following rules each have a support of 40%:

cereal inplies mlk
mlk inplies cereal

9-9

Chapter 9
Evaluating Association Rules

Support is the ratio of transactions that include all the items in the antecedent and
consequent to the number of total transactions.

Support can be expressed in probability notation as follows:

support (A inplies B) = P(A B)

9.5.2 Confidence

9.5.3 Lift

ORACLE

The confidence of a rule indicates the probability of both the antecedent and the
consequent appearing in the same transaction.

Confidence is the conditional probability of the consequent given the antecedent. For
example, cereal appears in 50 transactions; 40 of the 50 might also include milk. The
rule confidence is:

cereal inplies mlk with 80% confidence

Confidence is the ratio of the rule support to the number of transactions that include
the antecedent.

Confidence can be expressed in probability notation as follows.

confidence (Ainplies B) = P (B/A), which is equal to P(A, B) / P(A)

Related Topics
» Confidence

e Frequent Itemsets
Learn about Frequent Itemsets and Support.

Both support and confidence must be used to determine if a rule is valid. However,
there are times when both of these measures may be high, and yet still produce a rule
that is not useful. For example:

Conveni ence store custoners who buy orange juice also buy nmilk with
a 75% confi dence.
The conbination of milk and orange juice has a support of 30%

This at first sounds like an excellent rule, and in most cases, it would be. It has high
confidence and high support. However, what if convenience store customers in
general buy milk 90% of the time? In that case, orange juice customers are actually
less likely to buy milk than customers in general.

A third measure is needed to evaluate the quality of the rule. Lift indicates the strength
of a rule over the random co-occurrence of the antecedent and the consequent, given
their individual support. It provides information about the improvement, the increase in
probability of the consequent given the antecedent. Lift is defined as follows.

(Rul e Support) /(Support(Antecedent) * Support(Consequent))

This can also be defined as the confidence of the combination of items divided by the
support of the consequent. So in our milk example, assuming that 40% of the
customers buy orange juice, the improvement would be:

30%/ (40%* 90%

9-10

ORACLE

Chapter 9
Evaluating Association Rules

which is 0.83 — an improvement of less than 1.

Any rule with an improvement of less than 1 does not indicate a real cross-selling
opportunity, no matter how high its support and confidence, because it actually offers
less ability to predict a purchase than does random chance.

) Tip:

Decrease the maximum rule length if you want to decrease the build time for
the model and generate simpler rules.

Tip:

Increase the minimum support if you want to decrease the build time for the
model and generate fewer rules.

9-11

Decision Tree

Learn how to use Decision Tree algorithm. Decision Tree is one of the Classification
algorithms that the Oracle Data Mining supports.

* About Decision Tree

e Growing a Decision Tree

e Tuning the Decision Tree Algorithm
» Data Preparation for Decision Tree
Related Topics

e Classification
Learn how to predict a categorical target through Classification - the supervised
mining function.

10.1 About Decision Tree

The Decision Tree algorithm, like Naive Bayes, is based on conditional probabilities.
Unlike Naive Bayes, decision trees generate rules. A rule is a conditional statement
that can be understood by humans and used within a database to identify a set of
records.

In some applications of data mining, the reason for predicting one outcome or another
may not be important in evaluating the overall quality of a model. In others, the ability
to explain the reason for a decision can be crucial. For example, a Marketing
professional requires complete descriptions of customer segments to launch a
successful marketing campaign. The Decision Tree algorithm is ideal for this type of
application.

Use Decision Tree rules to validate models. If the rules make sense to a subject
matter expert, then this validates the model.

10.1.1 Decision Tree Rules

ORACLE

Introduces Decision Treae rules.

Oracle Data Mining supports several algorithms that provide rules. In addition to
decision trees, clustering algorithms provide rules that describe the conditions shared
by the members of a cluster, and association rules provide rules that describe
associations between attributes.

Rules provide model transparency, a window on the inner workings of the model.
Rules show the basis for the model's predictions. Oracle Data Mining supports a high
level of model transparency. While some algorithms provide rules, all algorithms
provide model details. You can examine model details to determine how the
algorithm handles the attributes internally, including transformations and reverse

10-1

Chapter 10
About Decision Tree

transformations. Transparency is discussed in the context of data preparation and in
the context of model building in Oracle Data Mining User’s Guide.

The following figure shows a rule generated by a Decision Tree model. This rule
comes from a decision tree that predicts the probability that customers increase
spending if given a loyalty card. A target value of 0 means not likely to increase
spending; 1 means likely to increase spending.

Figure 10-1 Sample Decision Tree Rule

Predicted Target Walue: 0

Support: 0.0693

Confidence 0.7404

Cases: 104

Level: 3

Split Rules: (3) Full Rule. () Surrogate

YRS_RESIDEMCE = 3.5 AMD
EDUCATION is in{ Assoc-A Bach. Masters PhD Profsc Y AMD
CUST_MARITAL_STATUS iz in{ Divarc. Mahsent Mar-AF Beverhd Separ. Widowed }

The rule shown in the figure represents the conditional statement:

I F

(current residence > 3.5 and has col | ege degree and is single)
THEN

predicted target value = 0

This rule is a full rule. A surrogate rule is a related attribute that can be used at apply
time if the attribute needed for the split is missing.

Related Topics
* Understanding Reverse Transformations
* Viewing Model Details

e Clustering
Learn how to discover natural groupings in the data through Clustering - the
unsupervised mining function.

* Association
Learn how to discover Association Rules through Association - an unsupervised
mining function.

10.1.1.1 Confidence and Support

ORACLE

Confidence and support are properties of rules. These statistical measures can be
used to rank the rules and hence the predictions.

Support: The number of records in the training data set that satisfy the rule.

Confidence: The likelihood of the predicted outcome, given that the rule has been
satisfied.

For example, consider a list of 1000 customers (1000 cases). Out of all the customers,
100 satisfy a given rule. Of these 100, 75 are likely to increase spending, and 25 are

10-2

Chapter 10
Growing a Decision Tree

not likely to increase spending. The support of the rule is 100/1000 (10%). The
confidence of the prediction (likely to increase spending) for the cases that satisfy
the rule is 75/100 (75%).

10.1.2 Advantages of Decision Trees

Learn about the advantages of Decision Tree.

The Decision Tree algorithm produces accurate and interpretable models with
relatively little user intervention. The algorithm can be used for both binary and
multiclass classification problems.

The algorithm is fast, both at build time and apply time. The build process for Decision
Tree supports parallel execution. (Scoring supports parallel execution irrespective of
the algorithm.)

Decision Tree scoring is especially fast. The tree structure, created in the model build,
is used for a series of simple tests, (typically 2-7). Each test is based on a single
predictor. It is a membership test: either IN or NOT IN a list of values (categorical
predictor); or LESS THAN or EQUAL TO some value (numeric predictor).

Related Topics
e Oracle Database VLDB and Partitioning Guide

10.1.3 XML for Decision Tree Models

Learn about generating XML representation of Decision Tree models.

You can generate XML representing a Decision Tree model; the generated XML
satisfies the definition specified in the Data Mining Group Predictive Model Markup
Language (PMML) version 2.1 specification.

Related Topics
e http://www.dmg.org

10.2 Growing a Decision Tree

Predicting a target value by a sequence of questions to form or grow a Decision Tree.

A Decision Tree predicts a target value by asking a sequence of questions. At a given
stage in the sequence, the question that is asked depends upon the answers to the
previous questions. The goal is to ask questions that, taken together, uniquely identify
specific target values. Graphically, this process forms a tree structure.

ORACLE 10-3

unilink:dmg

Chapter 10
Growing a Decision Tree

Figure 10-2 Sample Decision Tree

0

0:1120
1:380

Marital status

1y y 3
0:382 0:738
1: 330 1: 50
Education Education
2y y 4 7Y y 8
0:315 0: 67 0: 143 0: 595
1: 151 1:179 1: 31 1:19
Residence Score = 1; Score = 0; Score = 0;
prob = 7276 prob = 8218 prob = 9690
5 y y 6
0:118 0:197
1:119 1:32
Score = 0; Score = 0;
prob = 8613 prob = 5988

The figure is a Decision Tree with nine nodes (and nine corresponding rules). The
target attribute is binary: 1 if the customer increases spending, 0O if the customer does
not increase spending. The first split in the tree is based on the CUST_MARI TAL_STATUS
attribute. The root of the tree (node 0) is split into nodes 1 and 3. Married customers
are in node 1; single customers are in node 3.

The rule associated with node 1 is:

Node 1 recordCount=712,0 Count=382, 1 Count=330
CUST_MARI TAL_STATUS isIN “Married", surrogate: HOUSEHOLD SI ZE isIn "3""4-5"

Node 1 has 712 records (cases). In all 712 cases, the CUST_MARI TAL_STATUS attribute
indicates that the customer is married. Of these, 382 have a target of 0 (not likely to
increase spending), and 330 have a target of 1 (likely to increase spending).

10.2.1 Splitting

ORACLE

During the training process, the Decision Tree algorithm must repeatedly find the most
efficient way to split a set of cases (records) into two child nodes. Oracle Data Mining
offers two homogeneity metrics, gini and entropy, for calculating the splits. The
default metric is gini.

Homogeneity metrics asses the quality of alternative split conditions and select the
one that results in the most homogeneous child nodes. Homogeneity is also called
purity; it refers to the degree to which the resulting child nodes are made up of cases
with the same target value. The objective is to maximize the purity in the child nodes.
For example, if the target can be either yes or no (does or does not increase
spending), the objective is to produce nodes where most of the cases either increase
spending or most of the cases do not increase spending.

10-4

Chapter 10
Tuning the Decision Tree Algorithm

10.2.2 Cost Matrix

Learn about Cost Matrix for Decision Tree.

All classification algorithms, including Decision Tree, support a cost-benefit matrix at
apply time. You can use the same cost matrix for building and scoring a Decision Tree
model, or you can specify a different cost/benefit matrix for scoring.

Related Topics
* Costs

e Priors and Class Weights
Learn about Priors and Class Weights in a Classification model to produce a
useful result.

10.2.3 Preventing Over-Fitting

In principle, Decision Tree algorithms can grow each branch of the tree just deeply
enough to perfectly classify the training examples. While this is sometimes a
reasonable strategy, in fact it can lead to difficulties when there is noise in the data, or
when the number of training examples is too small to produce a representative sample
of the true target function. In either of these cases, this simple algorithm can produce
trees that over-fit the training examples. Over-fit is a condition where a model is able to
accurately predict the data used to create the model, but does poorly on new data
presented to it.

To prevent over-fitting, Oracle Data Mining supports automatic pruning and
configurable limit conditions that control tree growth. Limit conditions prevent further
splits once the conditions have been satisfied. Pruning removes branches that have
insignificant predictive power.

10.3 Tuning the Decision Tree Algorithm

ORACLE

Fine tune the Decision Tree algorithm with various parameters.

The Decision Tree algorithm is implemented with reasonable defaults for splitting and
termination criteria. However several build settings are available for fine tuning.

You can specify a homogeneity metric for finding the optimal split condition for a tree.
The default metric is gini. The entropy metric is also available.

Settings for controlling the growth of the tree are also available. You can specify the
maximum depth of the tree, the minimum number of cases required in a child node,
the minimum number of cases required in a node in order for a further split to be
possible, the minimum number of cases in a child node, and the minimum number of
cases required in a node in order for a further split to be possible.

The training data attributes are binned as part of the algorithm's data preparation. You
can alter the number of bins used by the binning step. There is a trade-off between the
number of bins used and the time required for the build.

Related Topics
e Oracle Database PL/SQL Packages and Types Reference

10-5

Chapter 10
Data Preparation for Decision Tree

10.4 Data Preparation for Decision Tree

Learn how to prepare data for Decision Tree.

The Decision Tree algorithm manages its own data preparation internally. It does not
require pretreatment of the data. Decision Tree is not affected by Automatic Data
Preparation.

Related Topics
e Preparing the Data

e Transforming the Data

ORACLE 10-6

Expectation Maximization

Learn how to use Expectation Maximization Clustering algorithm.

* About Expectation Maximization

e Algorithm Enhancements

* Configuring the Algorithm

» Data Preparation for Expectation Maximization
Related Topics

e Clustering
Learn how to discover natural groupings in the data through Clustering - the
unsupervised mining function.

11.1 About Expectation Maximization

Expectation Maximization (EM) estimation of mixture models is a popular probability
density estimation technique that is used in a variety of applications. Oracle Data
Mining uses EM to implement a distribution-based clustering algorithm (EM-
clustering).

11.1.1 Expectation Step and Maximization Step

Expectation Maximization is an iterative method. It starts with an initial parameter
guess. The parameter values are used to compute the likelihood of the current model.
This is the Expectation step. The parameter values are then recomputed to maximize
the likelihood. This is the Maximization step. The new parameter estimates are used to
compute a new expectation and then they are optimized again to maximize the
likelihood. This iterative process continues until model convergence.

11.1.2 Probability Density Estimation

ORACLE

In density estimation, the goal is to construct a density function that captures how a
given population is distributed. In probability density estimation, the density estimate is
based on observed data that represents a sample of the population. Areas of high data
density in the model correspond to the peaks of the underlying distribution.

Density-based clustering is conceptually different from distance-based clustering (for
example k-Means) where emphasis is placed on minimizing inter-cluster and
maximizing the intra-cluster distances. Due to its probabilistic nature, density-based
clustering can compute reliable probabilities in cluster assignment. It can also handle
missing values automatically.

11-1

Chapter 11
Algorithm Enhancements

11.2 Algorithm Enhancements

Although Expectation Maximization (EM) is well established as a distribution-based
clustering algorithm, it presents some challenges in its standard form. The Oracle Data
Mining implementation includes significant enhancements, such as scalable
processing of large volumes of data and automatic parameter initialization. The
strategies that Oracle Data Mining uses to address the inherent limitations of EM
clustering are described further in this section.

" Note:

The EM abbreviation is used here to refer to EM-clustering.

Limitations of Standard Expectation Maximization:

» Scalability: EM has linear scalability with the number of records and attributes. The
number of iterations to convergence tends to increase with growing data size (both
rows and columns). EM convergence can be slow for complex problems and can
place a significant load on computational resources.

* High dimensionality: EM has limited capacity for modeling high dimensional (wide)
data. The presence of many attributes slows down model convergence, and the
algorithm becomes less able to distinguish between meaningful attributes and
noise. The algorithm is thus compromised in its ability to find correlations.

* Number of components: EM typically requires the user to specify the number of
components. In most cases, this is not information that the user can know in
advance.

» Parameter initialization: The choice of appropriate initial parameter values can
have a significant effect on the quality of the model. Initialization strategies that
have been used for EM have generally been computationally expensive.

* From components to clusters: EM model components are often treated as
clusters. This approach can be misleading since cohesive clusters are often
modeled by multiple components. Clusters that have a complex shape need to be
modeled by multiple components.

11.2.1 Scalability

ORACLE

Expectation Maximization (EM) in Oracle Data Mining, uses database parallel
processing to achieve excellent scalability.

The Oracle Data Mining implementation of Expectation Maximization (EM) uses
database parallel processing to achieve excellent scalability. EM computations
naturally lend themselves to row parallel processing, and the partial results are easily
aggregated. The parallel implementation efficiently distributes the computationally
intensive work across slave processes and then combines the partial results to
produce the final solution.

Related Topics
e Oracle Database VLDB and Partitioning Guide

11-2

Chapter 11
Algorithm Enhancements

11.2.2 High Dimensionality

The Oracle Data Mining implementation of Expectation Maximization (EM) can
efficiently process high-dimensional data with thousands of attributes. This is achieved
through a two-fold process:

* The data space of single-column (not nested) attributes is analyzed for pair-wise
correlations. Only attributes that are significantly correlated with other attributes
are included in the EM mixture model. The algorithm can also be configured to
restrict the dimensionality to the M most correlated attributes.

* High-dimensional (nested) numerical data that measures events of similar type is
projected into a set of low-dimensional features that are modeled by EM. Some
examples of high-dimensional, numerical data are: text, recommendations, gene
expressions, and market basket data.

11.2.3 Number of Components

Typical implementations of Expectation Maximization (EM) require the user to specify
the number of model components. This is problematic because users do not generally
know the correct number of components. Choosing too many or too few components
can lead to over-fitting or under-fitting, respectively.

When model search is enabled, the number of EM components is automatically
determined. The algorithm uses a held-aside sample to determine the correct number
of components, except in the cases of very small data sets when Bayesian Information
Criterion (BIC) regularization is used.

11.2.4 Parameter Initialization

Choosing appropriate initial parameter values can have a significant effect on the
quality of the solution. Expectation Maximization (EM) is not guaranteed to converge to
the global maximum of the likelihood function but may instead converge to a local
maximum. Therefore different initial parameter values can lead to different model
parameters and different model quality.

In the process of model search, the EM model is grown independently. As new
components are added, their parameters are initialized to areas with poor distribution
fit.

11.2.5 From Components to Clusters

ORACLE

Expectation Maximization (EM) model components are often treated as clusters.
However, this approach can be misleading. Cohesive clusters are often modeled by
multiple components. The shape of the probability density function used in EM
effectively predetermines the shape of the identified clusters. For example, Gaussian
density functions can identify single peak symmetric clusters. Clusters of more
complex shape need to be modeled by multiple components.

Ideally, high density areas of arbitrary shape must be interpreted as single clusters. To
accomplish this, the Oracle Data Mining implementation of EM builds a component
hierarchy that is based on the overlap of the individual components' distributions.
Oracle Data Mining EM uses agglomerative hierarchical clustering. Component
distribution overlap is measured using the Bhattacharyya distance function. Choosing

11-3

Chapter 11
Configuring the Algorithm

an appropriate cutoff level in the hierarchy automatically determines the number of
high-level clusters.

The Oracle Data Mining implementation of EM produces an assignment of the model
components to high-level clusters. Statistics like means, variances, modes,
histograms, and rules additionally describe the high-level clusters. The algorithm can
be configured to either produce clustering assignments at the component level or at
the cluster level.

11.3 Configuring the Algorithm

Configure Expectation Maximization (EM).

In Oracle Data Mining, Expectation Maximization (EM) can effectively model very large
data sets (both rows and columns) without requiring the user to supply initialization
parameters or specify the number of model components. While the algorithm offers
reasonable defaults, it also offers flexibility.

The following list describes some of the configurable aspects of EM:

* Whether or not independent non-nested column attributes are included in the
model. The choice is system-determined by default.

* Whether to use Bernoulli or Gaussian distribution for numerical attributes. By
default, the algorithm chooses the most appropriate distribution, and individual
attributes may use different distributions. When the distribution is user-specified, it
is used for all numerical attributes.

* Whether the convergence criterion is based on a held-aside data set or on
Bayesian Information Criterion (BIC). The convergence criterion is system-
determined by default.

» The percentage improvement in the value of the log likelihood function that is
required to add a new component to the model. The default percentage is 0.001.

* Whether to define clusters as individual components or groups of components.
Clusters are associated to groups of components by default.

e The maximum number of components in the model. If model search is enabled,
the algorithm determines the number of components based on improvements in
the likelihood function or based on regularization (BIC), up to the specified
maximum.

* Whether the linkage function for the agglomerative clustering step uses the
nearest distance within the branch (single linkage), the average distance within the
branch (average linkage), or the maximum distance within the branch (complete
linkage). By default the algorithm uses single linkage.

Related Topics
- DBMS_DATA_ MINING - Global Settings
e DBMS_DATA_ MINING - Algorithm Settings: Expectation Maximization

11.4 Data Preparation for Expectation Maximization

Learn how to prepare data for Expectation Maximization (EM).

If you use Automatic Data Preparation (ADP), you do not need to specify additional
data preparation for Expectation Maximization. ADP normalizes numerical attributes

ORACLE 11-4

ORACLE

Chapter 11
Data Preparation for Expectation Maximization

(in non-nested columns) when they are modeled with Gaussian distributions. ADP
applies a topN binning transformation to categorical attributes.

Missing value treatment is not needed since Oracle Data Mining algorithms handle
missing values automatically. The Expectation Maximization algorithm replaces
missing values with the mean in single-column numerical attributes that are modeled
with Gaussian distributions. In other single-column attributes (categoricals and
numericals modeled with Bernoulli distributions), NULLs are not replaced; they are
treated as a distinct value with its own frequency count. In nested columns, missing
values are treated as zeros.

Related Topics

e Oracle Data Mining User’s Guide

11-5

Explicit Semantic Analysis

Learn how to use Explicit Semantic Analysis (ESA) as an unsupervised algorithm
using Oracle Data Mining Feature Extraction mining function.

e About Explicit Semantic Analysis
e ESA for Text Mining
e Data Preparation for ESA

Related Topics

* Feature Selection and Extraction
Learn how to perform Feature Selection, Feature Extraction, and Attribute
Importance.

12.1 About Explicit Semantic Analysis

Explicit Semantic Analysis (ESA) is an unsupervised algorithm used by Oracle Data
Mining for feature extraction. ESA does not discover latent features but instead uses
explicit features based on an existing knowledge base.

An attribute vector consisting of numeric and/or categorical values represents each
feature (concept). The values quantify the strength of the association between
attributes and concepts. ESA creates a reverse index that list the most important
concepts for each attribute.

The input to ESA is a set of attributes vectors. The output of ESA is a sparse attribute-
concept matrix that contains the most important attribute-concept associations. The
strength of the association is captured by the weight value of each attribute-concept
pair.

Note:

The ESA algorithm does not project the original feature space and does not
reduce its dimensionality. ESA algorithm filters out features with limited or
uninformative set of attributes.

12.1.1 Scoring with ESA

ORACLE

Learn to score with Explicit Semantic Analysis (ESA).

A typical application of ESA is to identify the most relevant features of a given input
and score their relevance. Scoring an ESA model produces data projections in the

concept feature space. The SQL scoring function of the feature extraction supports
ESA model. If an ESA model is built from an arbitrary collection of documents, then
each one is treated as a feature. It is then easy to identify the most relevant

12-1

Chapter 12
ESA for Text Mining

documents in the collection. The feature extraction functions are: FEATURE_DETAI LS,
FEATURE | D, FEATURE_SET, FEATURE_VALUE, and FEATURE COVPARE.

Related Topics

e Oracle Data Mining User’s Guide

12.1.2 Scoring Large ESA Models

Building an Explicit Semantic Analysis (ESA) model on a large collection of text
documents can result in a model with many features or titles. The model information
for scoring is loaded into System Global Area (SGA) as a shared (shared pool size)
library cache object. Different SQL predictive queries can reference this object. When
the model size is large, it is necessary to set the SGA parameter in the database to a
sufficient size that accommodates large objects.

If the SGA is too small, the model may need to be re-loaded every time it is referenced
which is likely to lead to performance degradation.

12.2 ESA for Text Mining

Learn how Explicit Semantic Analysis (ESA) can be used for Text mining.

Explicit knowledge often exists in text form. Multiple knowledge bases are available as
collections of text documents. These knowledge bases can be generic, for example,
Wikipedia, or domain-specific. Data preparation transforms the text into vectors that
capture attribute-concept associations. ESA is able to quantify semantic relatedness of
documents even if they do not have any words in common. The function
FEATURE_COMPARE can be used to compute semantic relatedness.

Related Topics

* Oracle Database SQL Language Reference

12.3 Data Preparation for ESA

Automatic Data Preparation normalizes input vectors to a unit length for Explicit
Semantic Analysis (ESA).

When there are missing values in columns with simple data types (not nested), ESA
replaces missing categorical values with the mode and missing numerical values with
the mean. When there are missing values in nested columns, ESA interprets them as
sparse. The algorithm replaces sparse numeric data with zeros and sparse categorical
data with zero vectors. The Oracle Data Mining data preparation transforms the input
text into a vector of real numbers. These numbers represent the importance of the
respective words in the text.

ORACLE 12-2

Generalized Linear Models

Learn how to use Generalized Linear Models (GLM) statistical technique for Linear
modeling.

Oracle Data Mining supports GLM for Regression and Binary Classification.

* About Generalized Linear Models
* GLM in Oracle Data Mining

* Scalable Feature Selection

e Tuning and Diagnostics for GLM
» Data Preparation for GLM

* Linear Regression

* Logistic Regression

Related Topics

* Regression
Learn how to predict a continuous numerical target through Regression - the
supervised mining function.

» Classification
Learn how to predict a categorical target through Classification - the supervised
mining function.

13.1 About Generalized Linear Models

ORACLE

Introduces Generalized Linear Models (GLM).
GLM include and extend the class of linear models.

Linear models make a set of restrictive assumptions, most importantly, that the target
(dependent variable y) is normally distributed conditioned on the value of predictors
with a constant variance regardless of the predicted response value. The advantage of
linear models and their restrictions include computational simplicity, an interpretable
model form, and the ability to compute certain diagnostic information about the quality
of the fit.

Generalized linear models relax these restrictions, which are often violated in practice.
For example, binary (yes/no or 0/1) responses do not have same variance across
classes. Furthermore, the sum of terms in a linear model typically can have very large
ranges encompassing very negative and very positive values. For the binary response
example, we would like the response to be a probability in the range [0,1].

Generalized linear models accommodate responses that violate the linear model
assumptions through two mechanisms: a link function and a variance function. The link
function transforms the target range to potentially -infinity to +infinity so that the simple
form of linear models can be maintained. The variance function expresses the

13-1

Chapter 13
GLM in Oracle Data Mining

variance as a function of the predicted response, thereby accommodating responses
with non-constant variances (such as the binary responses).

Oracle Data Mining includes two of the most popular members of the GLM family of
models with their most popular link and variance functions:

e Linear regression with the identity link and variance function equal to the
constant 1 (constant variance over the range of response values).

e Logistic regression with the logit link and binomial variance functions.

Related Topics
* Linear Regression
* Linear Regression

* Logistic Regression

13.2 GLM in Oracle Data Mining

Generalized Linear Models (GLM) is a parametric modeling technique. Parametric
models make assumptions about the distribution of the data. When the assumptions
are met, parametric models can be more efficient than non-parametric models.

The challenge in developing models of this type involves assessing the extent to which
the assumptions are met. For this reason, quality diagnostics are key to developing
guality parametric models.

13.2.1 Interpretability and Transparency

Learn how to interpret, and understand data transparency through model details and
global details.

Oracle Data Mining Generalized Linear Models (GLM) are easy to interpret. Each
model build generates many statistics and diagnostics. Transparency is also a key
feature: model details describe key characteristics of the coefficients, and global
details provide high-level statistics.

Related Topics
* Tuning and Diagnostics for GLM

13.2.2 Wide Data

Oracle Data Mining Generalized Linear Model (GLM) is uniquely suited for handling
wide data. The algorithm can build and score quality models that use a virtually
limitless number of predictors (attributes). The only constraints are those imposed by
system resources.

13.2.3 Confidence Bounds

Predict confidence bounds through Generalized Linear Models (GLM).

GLM have the ability to predict confidence bounds. In addition to predicting a best
estimate and a probability (Classification only) for each row, GLM identifies an interval
wherein the prediction (Regression) or probability (Classification) lies. The width of the

ORACLE 13-2

Chapter 13
GLM in Oracle Data Mining

interval depends upon the precision of the model and a user-specified confidence
level.

The confidence level is a measure of how sure the model is that the true value lies
within a confidence interval computed by the model. A popular choice for confidence
level is 95%. For example, a model might predict that an employee's income is $125K,
and that you can be 95% sure that it lies between $90K and $160K. Oracle Data
Mining supports 95% confidence by default, but that value can be configured.

" Note:

Confidence bounds are returned with the coefficient statistics. You can also
use the PREDI CTI ON_BOUNDS SQL function to obtain the confidence bounds of a
model prediction.

Related Topics

e Oracle Database SQL Language Reference

13.2.4 Ridge Regression

Understand the use of Ridge regression for singularity (exact multicollinearity) in data.

The best regression models are those in which the predictors correlate highly with the
target, but there is very little correlation between the predictors themselves.
Multicollinearity is the term used to describe multivariate regression with correlated
predictors.

Ridge regression is a technique that compensates for multicollinearity. Oracle Data
Mining supports ridge regression for both Regression and Classification mining
functions. The algorithm automatically uses ridge if it detects singularity (exact
multicollinearity) in the data.

Information about singularity is returned in the global model details.

Related Topics
* Global Model Statistics for Linear Regression

* Global Model Statistics for Logistic Regression

13.2.4.1 Configuring Ridge Regression

ORACLE

Configure Ridge Regression through build settings.

You can choose to explicitly enable ridge regression by specifying a build setting for
the model. If you explicitly enable ridge, you can use the system-generated ridge
parameter or you can supply your own. If ridge is used automatically, the ridge
parameter is also calculated automatically.

The configuration choices are summarized as follows:

* Whether or not to override the automatic choice made by the algorithm regarding
ridge regression

13-3

Chapter 13
Scalable Feature Selection

* The value of the ridge parameter, used only if you specifically enable ridge
regression.

Related Topics

e Oracle Database SQL Language Reference

13.2.4.2 Ridge and Confidence Bounds

Models built with Ridge Regression do not support confidence bounds.

Related Topics

» Confidence Bounds
Predict confidence bounds through Generalized Linear Models (GLM).

13.2.4.3 Ridge and Data Preparation

Learn about preparing data for Ridge Regression.

When Ridge Regression is enabled, different data preparation is likely to produce
different results in terms of model coefficients and diagnostics. Oracle recommends
that you enable Automatic Data Preparation for Generalized Linear Models, especially
when Ridge Regression is used.

Related Topics

e Data Preparation for GLM
Learn about preparing data for Generalized Linear Models (GLM).

13.3 Scalable Feature Selection

Oracle Data Mining supports a highly scalable and automated version of feature
selection and generation for Generalized Linear Models. This capability can enhance
the performance of the algorithm and improve accuracy and interpretability. Feature
selection and generation are available for both Linear Regression and binary Logistic
Regression.

13.3.1 Feature Selection

Feature selection is the process of choosing the terms to be included in the model.
The fewer terms in the model, the easier it is for human beings to interpret its
meaning. In addition, some columns may not be relevant to the value that the model is
trying to predict. Removing such columns can enhance model accuracy.

13.3.1.1 Configuring Feature Selection

Feature selection is a build setting for Generalized Linear Models. It is not enabled by
default. When configured for feature selection, the algorithm automatically determines
appropriate default behavior, but the following configuration options are available:

* The feature selection criteria can be AIC, SBIC, RIC, or a-investing. When the
feature selection criteria is a-investing, feature acceptance can be either strict or
relaxed.

* The maximum number of features can be specified.

ORACLE 13-4

Chapter 13
Tuning and Diagnostics for GLM

» Features can be pruned in the final model. Pruning is based on t-statistics for
linear regression or wald statistics for logistic regression.

13.3.1.2 Feature Selection and Ridge Regression

Feature selection and ridge regression are mutually exclusive. When feature selection
is enabled, the algorithm can not use ridge.

Note:

If you configure the model to use both feature selection and ridge regression,
then you get an error.

13.3.2 Feature Generation

Feature generation is the process of adding transformations of terms into the model.
Feature generation enhances the power of models to fit more complex relationships
between target and predictors.

13.3.2.1 Configuring Feature Generation

Learn about configuring Feature Generation.

Feature generation is only possible when feature selection is enabled. Feature
generation is a build setting. By default, feature generation is not enabled.

The feature generation method can be either quadratic or cubic. By default, the
algorithm chooses the appropriate method. You can also explicitly specify the feature
generation method.

The following options for feature selection also affect feature generation:

Maximum number of features

e Model pruning

Related Topics
* Oracle Database PL/SQL Packages and Types Reference

13.4 Tuning and Diagnostics for GLM

The process of developing a Generalized Linear Model typically involves a number of
model builds. Each build generates many statistics that you can evaluate to determine
the quality of your model. Depending on these diagnostics, you may want to try
changing the model settings or making other modifications.

13.4.1 Build Settings

Specify the build settings for Generalized Linear Model (GLM).
You can use specify build settings.

Additional build settings are available to:

ORACLE 13-5

Chapter 13
Tuning and Diagnostics for GLM

» Control the use of ridge regression.
» Specify the handling of missing values in the training data.

» Specify the target value to be used as a reference in a logistic regression model.

Related Topics

* Ridge Regression
Understand the use of Ridge regression for singularity (exact multicollinearity) in
data.

e Data Preparation for GLM
Learn about preparing data for Generalized Linear Models (GLM).

* Logistic Regression

e Oracle Database PL/SQL Packages and Types Reference

13.4.2 Diagnostics

Generalized Linear Models generate many metrics to help you evaluate the quality of
the model.

13.4.2.1 Coefficient Statistics

Learn about coeffficient statistics for Linear and Logistic Regression.

The same set of statistics is returned for both linear and logistic regression, but
statistics that do not apply to the mining function are returned as NULL.

Coefficient statistics are returned by the GET_MODEL_DETAI LS_GLMfunction in
DBMS_DATA M NI NG.

Related Topics
» Coefficient Statistics for Linear Regression

e Coefficient Statistics for Logistic Regression

13.4.2.2 Global Model Statistics

ORACLE

Learn about high-level statistics describing the model.

Separate high-level statistics describing the model as a whole, are returned for linear
and logistic regression. When ridge regression is enabled, fewer global details are
returned.

Global statistics are returned by the GET_MODEL_DETAI LS_GLOBAL function in
DBMS_DATA M NI NG.

Related Topics
e Global Model Statistics for Linear Regression
e Global Model Statistics for Logistic Regression

* Ridge Regression
Understand the use of Ridge regression for singularity (exact multicollinearity) in
data.

13-6

Chapter 13
Data Preparation for GLM

13.4.2.3 Row Diagnostics

Generate row-statistics by configuring Generalized Linear Models (GLM).

GLM to generate per-row statistics by specifying the name of a diagnostics table in the
build setting GLV5_DI AGNOSTI CS_TABLE_NAME.

GLM requires a case ID to generate row diagnostics. If you provide the name of a
diagnostic table but the data does not include a case ID column, an exception is
raised.

Related Topics
* Row Diagnostics for Linear Regression

* Row Diagnostics for Logistic Regression

13.5 Data Preparation for GLM

Learn about preparing data for Generalized Linear Models (GLM).

Automatic Data Preparation (ADP) implements suitable data transformations for both
linear and logistic regression.

Note:

Oracle recommends that you use Automatic Data Preparation with GLM.

Related Topics

* Oracle Data Mining User’s Guide

13.5.1 Data Preparation for Linear Regression

ORACLE

Learn about Automatic Data Preparation (ADP) for Generalized Linear Model (GLM).

When Automatic Data Preparation (ADP) is enabled, the algorithm chooses a
transformation based on input data properties and other settings. The transformation
can include one or more of the following for numerical data: subtracting the mean,
scaling by the standard deviation, or performing a correlation transformation (Neter, et.
al, 1990). If the correlation transformation is applied to numeric data, it is also applied
to categorical attributes.

Prior to standardization, categorical attributes are exploded into N-1 columns where N
is the attribute cardinality. The most frequent value (mode) is omitted during the
explosion transformation. In the case of highest frequency ties, the attribute values are
sorted alpha-numerically in ascending order, and the first value on the list is omitted
during the explosion. This explosion transformation occurs whether or not ADP is
enabled.

In the case of high cardinality categorical attributes, the described transformations
(explosion followed by standardization) can increase the build data size because the
resulting data representation is dense. To reduce memory, disk space, and processing

13-7

Chapter 13
Data Preparation for GLM

requirements, use an alternative approach. Under these circumstances, the VIF
statistic must be used with caution.

Related Topics

* Ridge and Data Preparation
Learn about preparing data for Ridge Regression.

e Oracle Data Mining User’s Guide

¢ See Also:

e Neter, J., Wasserman, W., and Kutner, M.H., "Applied Statistical
Models", Richard D. Irwin, Inc., Burr Ridge, IL, 1990.

13.5.2 Data Preparation for Logistic Regression

Categorical attributes are exploded into N-1 columns where N is the attribute
cardinality. The most frequent value (mode) is omitted during the explosion
transformation. In the case of highest frequency ties, the attribute values are sorted
alpha-numerically in ascending order and the first value on the list is omitted during the
explosion. This explosion transformation occurs whether or not Automatic Data
Preparation (ADP) is enabled.

When ADP is enabled, numerical attributes are scaled by the standard deviation. This
measure of variability is computed as the standard deviation per attribute with respect
to the origin (not the mean) (Marquardt, 1980).

¢ See Also:

Marquardt, D.W., "A Critique of Some Ridge Regression Methods:
Comment", Journal of the American Statistical Association, Vol. 75, No. 369 ,
1980, pp. 87-91.

13.5.3 Missing Values

ORACLE

When building or applying a model, Oracle Data Mining automatically replaces missing
values of numerical attributes with the mean and missing values of categorical
attributes with the mode.

You can configure a Generalized Linear Models to override the default treatment of
missing values. With the ODM5_M SSI NG VALUE_TREATMENT setting, you can cause the
algorithm to delete rows in the training data that have missing values instead of
replacing them with the mean or the mode. However, when the model is applied,
Oracle Data Mining performs the usual mean/mode missing value replacement. As a
result, it is possible that the statistics generated from scoring does not match the
statistics generated from building the model.

If you want to delete rows with missing values in the scoring the model, you must
perform the transformation explicitly. To make build and apply statistics match, you

13-8

Chapter 13
Linear Regression

must remove the rows with NULLs from the scoring data before performing the apply
operation. You can do this by creating a view.

CREATE VI EW vi ewnane AS SELECT * fromtabl ename
VHERE col um_nanel is NOT NULL
AND colum_nane2 is NOT NULL
AND colum_nanme3 is NOT NULL

" Note:

In Oracle Data Mining, missing values in nested data indicate sparsity, not
values missing at random.

The value ODM5_M SSI NG VALUE_DELETE_ROwis only valid for tables without
nested columns. If this value is used with nested data, an exception is raised.

13.6 Linear Regression

Linear regression is the Generalized Linear Models’ Regression algorithm supported
by Oracle Data Mining. The algorithm assumes no target transformation and constant
variance over the range of target values.

13.6.1 Coefficient Statistics for Linear Regression

Generalized Linear Model Regression models generate the following coefficient
statistics:

* Linear coefficient estimate

» Standard error of the coefficient estimate
* t-value of the coefficient estimate

* Probability of the t-value

» Variance Inflation Factor (VIF)

» Standardized estimate of the coefficient

* Lower and upper confidence bounds of the coefficient

13.6.2 Global Model Statistics for Linear Regression

ORACLE

Generalized Linear Model Regression models generate the following statistics that
describe the model as a whole:

* Model degrees of freedom
* Model sum of squares

* Model mean square

* Model F statistic

* Model F value probability

* Error degrees of freedom

13-9

e Error sum of squares

e Error mean square

Chapter 13
Linear Regression

» Corrected total degrees of freedom

e Corrected total sum of squares

e Root mean square error

* Dependent mean

e Coefficient of variation

* R-Square

* Adjusted R-Square

» Akaike's information criterion

* Schwarz's Baysian information criterion

» Estimated mean square error of the prediction

* Hocking Sp statistic

» JP statistic (the final prediction error)

* Number of parameters (the number of coefficients, including the intercept)

* Number of rows

* Whether or not the model converged

* Whether or not a covariance matrix was computed

13.6.3 Row Diagnostics for Linear Regression

For Linear Regression, the diagnostics table has the columns described in the
following table. All the columns are NUMBER, except the CASE_I D column, which
preserves the type from the training data.

Table 13-1 Diagnostics Table for GLM Regression Models

Column Description

CASE_ID Value of the case ID column

TARGET _VALUE Value of the target column

PREDI CTED_VALUE Value predicted by the model for the target
HAT Value of the diagonal element of the hat matrix
RESI DUAL Measure of error

STD_ERR RESI DUAL
STUDENTI ZED_RES| DUAL
PRED_RES

COOKS D

Standard error of the residual
Studentized residual
Predicted residual

Cook's D influence statistic

ORACLE

13-10

Chapter 13
Logistic Regression

13.7 Logistic Regression

Binary Logistic Regression is the Generalized Linear Model Classification algorithm
supported by Oracle Data Mining. The algorithm uses the logit link function and the
binomial variance function.

13.7.1 Reference Class

You can use the build setting GLMS_REFERENCE_CLASS_NAME to specify the target value to
be used as a reference in a binary logistic regression model. Probabilities are
produced for the other (non-reference) class. By default, the algorithm chooses the
value with the highest prevalence. If there are ties, the attributes are sorted alpha-
numerically in an ascending order.

13.7.2 Class Weights

You can use the build setting CLAS WEI GHTS _TABLE_NAME to specify the name of a class
weights table. Class weights influence the weighting of target classes during the model
build.

13.7.3 Coefficient Statistics for Logistic Regression

Generalized Linear Model Classification models generate the following coefficient
statistics:

Name of the predictor

Coefficient estimate

Standard error of the coefficient estimate

Wald chi-square value of the coefficient estimate
Probability of the Wald chi-square value

Standardized estimate of the coefficient

Lower and upper confidence bounds of the coefficient
Exponentiated coefficient

Exponentiated coefficient for the upper and lower confidence bounds of the
coefficient

13.7.4 Global Model Statistics for Logistic Regression

Generalized Linear Model Classification models generate the following statistics that
describe the model as a whole:

ORACLE

Akaike's criterion for the fit of the intercept only model

Akaike's criterion for the fit of the intercept and the covariates (predictors) model
Schwarz's criterion for the fit of the intercept only model

Schwarz's criterion for the fit of the intercept and the covariates (predictors) model

-2 log likelihood of the intercept only model

13-11

Chapter 13
Logistic Regression

e -2log likelihood of the model

» Likelihood ratio degrees of freedom

» Likelihood ratio chi-square probability value

* Pseudo R-square Cox an Snell

* Pseudo R-square Nagelkerke

* Dependent mean

» Percent of correct predictions

* Percent of incorrect predictions

» Percent of ties (probability for two cases is the same)
* Number of parameters (the number of coefficients, including the intercept)
* Number of rows

* Whether or not the model converged

* Whether or not a covariance matrix was computed.

13.7.5 Row Diagnostics for Logistic Regression

For Logistic Regression, the diagnostics table has the columns described in the
following table. All the columns are NUMBER, except the CASE | D and TARGET_VALUE

ORACLE

columns, which preserve the type from the training data.

Table 13-2 Row Diagnostics Table for Logistic Regression

Column Description
CASE_ID Value of the case ID column
TARGET _VALUE Value of the target value

TARGET VALUE_PROB
HAT

WORKI NG_RES| DUAL
PEARSON_RES| DUAL

DEVI ANCE_RES! DUAL
Cc

CBAR

DI FDEV

DI FCH SQ

Probability associated with the target value
Value of the diagonal element of the hat matrix
Residual with respect to the adjusted dependent variable

The raw residual scaled by the estimated standard deviation of the
target

Contribution to the overall goodness of fit of the model
Confidence interval displacement diagnostic

Confidence interval displacement diagnostic

Change in the deviance due to deleting an individual observation

Change in the Pearson chi-square

13-12

k-Means

Learn how to use enhanced k-Means Clustering algorithm that the Oracle Data Mining
supports.

* About k-Means
* k-Means Algorithm Configuration

» Data Preparation for k-Means

Related Topics

e Clustering
Learn how to discover natural groupings in the data through Clustering - the
unsupervised mining function.

14.1 About k-Means

The k-Means algorithm is a distance-based clustering algorithm that partitions the data
into a specified number of clusters.

Distance-based algorithms rely on a distance function to measure the similarity
between cases. Cases are assigned to the nearest cluster according to the distance
function used.

14.1.1 Oracle Data Mining Enhanced k-Means

Oracle Data Mining implements an enhanced version of the k-Means algorithm with
the following features:

» Distance function: The algorithm supports Euclidean and Cosine distance
functions. The default is Euclidean.

* Scalable Parallel Model build: The algorithm uses a very efficient method of
initialization based on Bahmani, Bahman, et al. "Scalable k-means++."
Proceedings of the VLDB Endowment 5.7 (2012): 622-633.

» Cluster properties: For each cluster, the algorithm returns the centroid, a
histogram for each attribute, and a rule describing the hyperbox that encloses the
majority of the data assigned to the cluster. The centroid reports the mode for
categorical attributes and the mean and variance for numerical attributes.

This approach to k-Means avoids the need for building multiple k-Means models and
provides clustering results that are consistently superior to the traditional k-Means.

14.1.2 Centroid

The centroid represents the most typical case in a cluster. For example, in a data set
of customer ages and incomes, the centroid of each cluster would be a customer of

ORACLE 14-1

Chapter 14
k-Means Algorithm Configuration

average age and average income in that cluster. The centroid is a prototype. It does
not necessarily describe any given case assigned to the cluster.

The attribute values for the centroid are the mean of the numerical attributes and the
mode of the categorical attributes.

14.2 k-Means Algorithm Configuration

Learn about configuring k-means algorithm.

The Oracle Data Mining enhanced k-Means algorithm supports several build-time
settings. All the settings have default values. There is no reason to override the
defaults unless you want to influence the behavior of the algorithm in some specific
way.

You can configure k-Means by specifying the following considerations:
e Number of clusters
» Distance Function. The default distance function is Euclidean.

Related Topics
e Oracle Database PL/SQL Packages and Types Reference

14.3 Data Preparation for k-Means

Learn about preparing data for k-means algorithm.

Normalization is typically required by the k-Means algorithm. Automatic Data
Preparation performs normalization for k-Means. If you do not use ADP, you must
normalize numeric attributes before creating or applying the model.

When there are missing values in columns with simple data types (not nested), k-
Means interprets them as missing at random. The algorithm replaces missing
categorical values with the mode and missing numerical values with the mean.

When there are missing values in nested columns, k-Means interprets them as sparse.
The algorithm replaces sparse numerical data with zeros and sparse categorical data
with zero vectors.

Related Topics
* Oracle Database PL/SQL Packages and Types Reference
* Preparing the Data

* Transforming the Data

ORACLE 14-2

Minimum Description Length

Learn how to use Minimum Description Length, the supervised technique for
calculating Attribute Importance.

* About MDL
e Data Preparation for MDL

Related Topics

* About Feature Selection and Attribute Importance

15.1 About MDL

Introduces Minimum Description Length (MDL) algorithm.

MDL is an information theoretic model selection principle. It is an important concept in
information theory (the study of the quantification of information) and in learning theory
(the study of the capacity for generalization based on empirical data).

MDL assumes that the simplest, most compact representation of the data is the best
and most probable explanation of the data. The MDL principle is used to build Oracle
Data Mining attribute importance models.

The build process for attribute importance supports parallel execution.

Related Topics
e Oracle Database VLDB and Partitioning Guide

15.1.1 Compression and Entropy

ORACLE

Data compression is the process of encoding information using fewer bits than what
the original representation uses. The MDL Principle is based on the notion that the
shortest description of the data is the most probable. In typical instantiations of this
principle, a model is used to compress the data by reducing the uncertainty (entropy)
as discussed below. The description of the data includes a description of the model
and the data as described by the model.

Entropy is a measure of uncertainty. It quantifies the uncertainty in a random variable
as the information required to specify its value. Information in this sense is defined as
the number of yes/no questions known as bits (encoded as 0 or 1) that must be
answered for a complete specification. Thus, the information depends upon the
number of values that variable can assume.

For example, if the variable represents the sex of an individual, then the number of
possible values is two: female and male. If the variable represents the salary of
individuals expressed in whole dollar amounts, then the values can be in the

range $0-$10B, or billions of unique values. Clearly it takes more information to specify
an exact salary than to specify an individual's sex.

15-1

Chapter 15
About MDL

15.1.1.1 Values of a Random Variable: Statistical Distribution

Information (the number of bits) depends on the statistical distribution of the values of
the variable as well as the number of values of the variable. If we are judicious in the
choice of Yes/No questions, then the amount of information for salary specification
cannot be as much as it first appears. Most people do not have billion dollar salaries. If
most people have salaries in the range $32000-$64000, then most of the time, it
requires only 15 questions to discover their salary, rather than the 30 required, if every
salary from $0-$1000000000 were equally likely. In the former example, if the persons
were known to be pregnant, then their sex is known to be female. There is no
uncertainty, no Yes/No questions need be asked. The entropy is O.

15.1.1.2 Values of a Random Variable: Significant Predictors

Suppose that for some random variable there is a predictor that when its values are
known reduces the uncertainty of the random variable. For example, knowing whether
a person is pregnant or not, reduces the uncertainty of the random variable sex-of-
individual. This predictor seems like a valuable feature to include in a model. How
about name? Imagine that if you knew the name of the person, you would also know
the person's sex. If so, the name predictor would seemingly reduce the uncertainty to
zero. However, if names are unique, then what was gained? Is the person named
Sally? Is the person named George?... We would have as many Yes/No predictors in
the name model as there are people. Therefore, specifying the name model would
require as many bits as specifying the sex of each person.

15.1.1.3 Total Entropy

For a random variable, X, the total entropy is defined as minus the Probability(X)
multiplied by the log to the base 2 of the Probability(X). This can be shown to be the
variable's most efficient encoding.

15.1.2 Model Size

Minimum Description Length (MDL) takes into consideration the size of the model as
well as the reduction in uncertainty due to using the model. Both model size and
entropy are measured in bits. For our purposes, both numeric and categorical
predictors are binned. Thus the size of each single predictor model is the number of
predictor bins. The uncertainty is reduced to the within-bin target distribution.

15.1.3 Model Selection

ORACLE

Minimum Description Length (MDL) considers each attribute as a simple predictive
model of the target class. Model selection refers to the process of comparing and
ranking the single-predictor models.

MDL uses a communication model for solving the model selection problem. In the
communication model there is a sender, a receiver, and data to be transmitted.

These single predictor models are compared and ranked with respect to the MDL
metric, which is the relative compression in bits. MDL penalizes model complexity to
avoid over-fit. It is a principled approach that takes into account the complexity of the
predictors (as models) to make the comparisons fair.

15-2

Chapter 15
Data Preparation for MDL

15.1.4 The MDL Metric

Attribute importance uses a two-part code as the metric for transmitting each unit of
data. The first part (preamble) transmits the model. The parameters of the model are
the target probabilities associated with each value of the prediction.

For a target with j values and a predictor with k values, n; (i= 1,..., k) rows per value,
there are C;, the combination of j-1 things taken n;-1 at a time possible conditional
probabilities. The size of the preamble in bits can be shown to be Sum(log,(C;j)), where
the sum is taken over k. Computations like this represent the penalties associated with
each single prediction model. The second part of the code transmits the target values
using the model.

It is well known that the most compact encoding of a sequence is the encoding that
best matches the probability of the symbols (target class values). Thus, the model that
assigns the highest probability to the sequence has the smallest target class value
transmission cost. In bits, this is the Sum(log,(p;)), where the p; are the predicted
probabilities for row ; associated with the model.

The predictor rank is the position in the list of associated description lengths, smallest
first.

15.2 Data Preparation for MDL

ORACLE

Learn about preparing data for Minimum Description Length (MDL).

Automatic Data Preparation performs supervised binning for MDL. Supervised binning
uses decision trees to create the optimal bin boundaries. Both categorical and
numerical attributes are binned.

MDL handles missing values naturally as missing at random. The algorithm replaces
sparse numerical data with zeros and sparse categorical data with zero vectors.
Missing values in nested columns are interpreted as sparse. Missing values in
columns with simple data types are interpreted as missing at random.

If you choose to manage your own data preparation, keep in mind that MDL usually
benefits from binning. However, the discriminating power of an attribute importance
model can be significantly reduced when there are outliers in the data and external
equal-width binning is used. This technique can cause most of the data to concentrate
in a few bins (a single bin in extreme cases). In this case, quantile binning is a better
solution.

Related Topics
* Preparing the Data

* Transforming the Data

15-3

Naive Bayes

Learn how to use Naive Bayes Classification algorithm that the Oracle Data Mining
supports.

* About Naive Bayes

e Tuning a Naive Bayes Model

» Data Preparation for Naive Bayes
Related Topics

» Classification
Learn how to predict a categorical target through Classification - the supervised
mining function.

16.1 About Naive Bayes

Learn about Naive Bayes algorithm.

The Naive Bayes algorithm is based on conditional probabilities. It uses Bayes'
theorem, a formula that calculates a probability by counting the frequency of values
and combinations of values in the historical data.

Bayes' theorem finds the probability of an event occurring given the probability of
another event that has already occurred. If B represents the dependent event and A
represents the prior event, Bayes' theorem can be stated as follows.

" Note:
Prob(B given A) = Prob(A and B)/Prob(A)

To calculate the probability of B given A, the algorithm counts the number of cases
where A and B occur together and divides it by the number of cases where A occurs
alone.

Example 16-1 Use Bayes' Theorem to Predict an Increase in Spending

Suppose you want to determine the likelihood that a customer under 21 increases
spending. In this case, the prior condition (A) is "under 21," and the dependent
condition (B) is "increase spending."”

If there are 100 customers in the training data and 25 of them are customers under 21
who have increased spending, then:

Prob(A and B) = 25%

If 75 of the 100 customers are under 21, then:

ORACLE 16-1

Chapter 16
About Naive Bayes

Prob(A) = 75%

Bayes' theorem predicts that 33% of customers under 21 are likely to increase
spending (25/75).

The cases where both conditions occur together are referred to as pairwise. In
Example 16-1, 25% of all cases are pairwise.

The cases where only the prior event occurs are referred to as singleton. In
Example 16-1, 75% of all cases are singleton.

A visual representation of the conditional relationships used in Bayes' theorem is
shown in the following figure.

Figure 16-1 Conditional Probabilities in Bayes' Theorem

Aand B

T E AT
o rEnanen
o rrnARET
T EAAEET
RS efaRsrs
| 0
IS O o
IS i

faiaes

A
o
Y

IB) = P(AB) / P(B) = (1/4) / (2/4) = 1/2
A) A) = (1/4) / (3/4) = 1/3

For purposes of illustration, Example 16-1 and Figure 16-1 show a dependent event
based on a single independent event. In reality, the Naive Bayes algorithm must
usually take many independent events into account. In Example 16-1, factors such as
income, education, gender, and store location might be considered in addition to age.

Naive Bayes makes the assumption that each predictor is conditionally independent of
the others. For a given target value, the distribution of each predictor is independent of
the other predictors. In practice, this assumption of independence, even when violated,
does not degrade the model's predictive accuracy significantly, and makes the
difference between a fast, computationally feasible algorithm and an intractable one.

Sometimes the distribution of a given predictor is clearly not representative of the
larger population. For example, there might be only a few customers under 21 in the
training data, but in fact there are many customers in this age group in the wider
customer base. To compensate for this, you can specify prior probabilities when
training the model.

Related Topics

e Priors and Class Weights
Learn about Priors and Class Weights in a Classification model to produce a
useful result.

ORACLE 16-2

Chapter 16
Tuning a Naive Bayes Model

16.1.1 Advantages of Naive Bayes

Learn about the advantages of Naive Bayes.

The Naive Bayes algorithm affords fast, highly scalable model building and scoring. It
scales linearly with the number of predictors and rows.

The build process for Naive Bayes supports parallel execution. (Scoring supports
parallel execution irrespective of the algorithm.)

Naive Bayes can be used for both binary and multiclass classification problems.

Related Topics
* Oracle Database VLDB and Partitioning Guide

16.2 Tuning a Naive Bayes Model

Introduces about probability calculation of pairwise occurrences and percentage of
singleton occurrences.

Naive Bayes calculates a probability by dividing the percentage of pairwise
occurrences by the percentage of singleton occurrences. If these percentages are very
small for a given predictor, they probably do not contribute to the effectiveness of the
model. Occurrences below a certain threshold can usually be ignored.

The following build settings are available for adjusting the probability thresholds. You
can specify:

* The minimum percentage of pairwise occurrences required for including a
predictor in the model.

* The minimum percentage of singleton occurrences required for including a
predictor in the model .

The default thresholds work well for most models, so you need not adjust these
settings.

Related Topics
e Oracle Database PL/SQL Packages and Types Reference

16.3 Data Preparation for Naive Bayes

ORACLE

Learn about preparing the data for Naive Bayes.

Automatic Data Preparation performs supervised binning for Naive Bayes. Supervised
binning uses decision trees to create the optimal bin boundaries. Both categorical and
numeric attributes are binned.

Naive Bayes handles missing values naturally as missing at random. The algorithm
replaces sparse numerical data with zeros and sparse categorical data with zero
vectors. Missing values in nested columns are interpreted as sparse. Missing values in
columns with simple data types are interpreted as missing at random.

If you choose to manage your own data preparation, keep in mind that Naive Bayes
usually requires binning. Naive Bayes relies on counting techniques to calculate
probabilities. Columns must be binned to reduce the cardinality as appropriate.

16-3

Chapter 16
Data Preparation for Naive Bayes

Numerical data can be binned into ranges of values (for example, low, medium, and
high), and categorical data can be binned into meta-classes (for example, regions
instead of cities). Equi-width binning is not recommended, since outliers cause most of
the data to concentrate in a few bins, sometimes a single bin. As a result, the
discriminating power of the algorithms is significantly reduced

Related Topics
* Preparing the Data

* Transforming the Data

ORACLE 16-4

Non-Negative Matrix Factorization

Learn how to use Non-Negative Matrix Factorization (NMF), the unsupervised
algorithm, that the Oracle Data Mining uses for Feature Extraction.

* About NMF
e Tuning the NMF Algorithm
» Data Preparation for NMF

Related Topics

» Feature Selection and Extraction
Learn how to perform Feature Selection, Feature Extraction, and Attribute
Importance.

2 See Also:

Paper "Learning the Parts of Objects by Non-Negative Matrix Factorization
by D. D. Lee and H. S. Seung in Nature (401, pages 788-791, 1999)

17.1 About NMF

Non-Negative Matrix Factorization is a state of the art feature extraction algorithm.
NMF is useful when there are many attributes and the attributes are ambiguous or
have weak predictability. By combining attributes, NMF can produce meaningful
patterns, topics, or themes.

Each feature created by NMF is a linear combination of the original attribute set. Each
feature has a set of coefficients, which are a measure of the weight of each attribute
on the feature. There is a separate coefficient for each numerical attribute and for each
distinct value of each categorical attribute. The coefficients are all non-negative.

17.1.1 Matrix Factorization

ORACLE

Non-Negative Matrix Factorization uses techniques from multivariate analysis and
linear algebra. It decomposes the data as a matrix M into the product of two lower
ranking matrices W and H. The sub-matrix W contains the NMF basis; the sub-matrix
H contains the associated coefficients (weights).

The algorithm iteratively modifies of the values of W and H so that their product
approaches M. The technique preserves much of the structure of the original data and
guarantees that both basis and weights are non-negative. The algorithm terminates
when the approximation error converges or a specified number of iterations is
reached.

17-1

Chapter 17
Tuning the NMF Algorithm

The NMF algorithm must be initialized with a seed to indicate the starting point for the
iterations. Because of the high dimensionality of the processing space and the fact that
there is no global minimization algorithm, the appropriate initialization can be critical in
obtaining meaningful results. Oracle Data Mining uses a random seed that initializes
the values of W and H based on a uniform distribution. This approach works well in
most cases.

17.1.2 Scoring with NMF

Learn about scoring with Non-Negative Matrix Factorization (NMF).

NMF can be used as a pre-processing step for dimensionality reduction in
Classification, Regression, Clustering, and other mining tasks. Scoring an NMF model
produces data projections in the new feature space. The magnitude of a projection
indicates how strongly a record maps to a feature.

The SQL scoring functions for feature extraction support NMF models. When the
functions are invoked with the analytical syntax, the functions build and apply a
transient NMF model. The feature extraction functions are: FEATURE_DETAI LS,
FEATURE | D, FEATURE_SET, and FEATURE_VALUE.

Related Topics

* Oracle Data Mining User’s Guide

17.1.3 Text Mining with NMF

Learn about mining text with Non-Negative Matrix Factorization (NMF).

NMF is especially well-suited for text mining. In a text document, the same word can
occur in different places with different meanings. For example, "hike" can be applied to
the outdoors or to interest rates. By combining attributes, NMF introduces context,
which is essential for explanatory power:

e "hike" + "mountain” -> "outdoor sports"
e "hike" + "interest" -> "interest rates"
Related Topics

» Oracle Data Mining User’s Guide

17.2 Tuning the NMF Algorithm

ORACLE

Learn about configuring parameters for Non-Negative Matrix Factorization (NMF).

Oracle Data Mining supports five configurable parameters for NMF. All of them have
default values which are appropriate for most applications of the algorithm. The NMF
settings are:

e Number of features. By default, the number of features is determined by the
algorithm.

e Convergence tolerance. The default is .05.
e Number of iterations. The default is 50.

« Random seed. The default is -1.

17-2

Chapter 17
Data Preparation for NMF

* Non-negative scoring. You can specify whether negative numbers must be
allowed in scoring results. By default they are allowed.

Related Topics
e Oracle Database PL/SQL Packages and Types Reference

17.3 Data Preparation for NMF

ORACLE

Learn about preparing the date for Non-Negative Matrix Factorization (NMF).
Automatic Data Preparation normalizes numerical attributes for NMF.

When there are missing values in columns with simple data types (not nested), NMF
interprets them as missing at random. The algorithm replaces missing categorical
values with the mode and missing numerical values with the mean.

When there are missing values in nested columns, NMF interprets them as sparse.
The algorithm replaces sparse numerical data with zeros and sparse categorical data
with zero vectors.

If you choose to manage your own data preparation, keep in mind that outliers can
significantly impact NMF. Use a clipping transformation before binning or normalizing.
NMF typically benefits from normalization. However, outliers with min-max
normalization cause poor matrix factorization. To improve the matrix factorization, you
need to decrease the error tolerance. This in turn leads to longer build times.

Related Topics
* Preparing the Data

* Transforming the Data

17-3

O-Cluster

Learn how to use Orthogonal Partitioning Clustering (O-Cluster), an Oracle-proprietary
Clustering algorithm.

e About O-Cluster
e Tuning the O-Cluster Algorithm

» Data Preparation for O-Cluster

Related Topics

e Clustering
Learn how to discover natural groupings in the data through Clustering - the
unsupervised mining function.

" See Also:

Campos, M.M., Milenova, B.L., "Clustering Large Databases with Numeric
and Nominal Values Using Orthogonal Projections”, Oracle Data Mining
Technologies, Oracle Corporation.

http:// ww. oracl e. com pl s/ topic/| ookup?ct x=db122& d=dat mi n

18.1 About O-Cluster

O-Cluster is a fast, scalable grid-based clustering algorithm well-suited for mining
large, high-dimensional data sets. The algorithm can produce high quality clusters
without relying on user-defined parameters.

The objective of O-Cluster is to identify areas of high density in the data and separate
the dense areas into clusters. It uses axis-parallel uni-dimensional (orthogonal) data
projections to identify the areas of density. The algorithm looks for splitting points that
result in distinct clusters that do not overlap and are balanced in size.

O-Cluster operates recursively by creating a binary tree hierarchy. The number of leaf
clusters is determined automatically. The algorithm can be configured to limit the
maximum number of clusters.

18.1.1 Partitioning Strategy

ORACLE

Partitioning strategy refers to the process of discovering areas of density in the
attribute histograms. The process differs for numerical and categorical data. When
both are present in the data, the algorithm performs the searches separately and then
compares the results.

18-1

http://www.oracle.com/pls/topic/lookup?ctx=db122&id=datmin

Chapter 18
About O-Cluster

In choosing a partition, the algorithm balances two objectives: finding well separated
clusters, and creating clusters that are balanced in size. The following paragraphs
detail how partitions for numerical and categorical attributes are identified.

18.1.1.1 Partitioning Numerical Attributes

To find the best valid cutting plane, O-Cluster searches the attribute histograms for
bins of low density (valleys) between bins of high density (peaks). O-Cluster attempts
to find a pair of peaks with a valley between them where the difference between the
peak and valley histogram counts is statistically significant.

A sensitivity level parameter specifies the lowest density that may be considered a
peak. Sensitivity is an optional parameter for numeric data. It may be used to filter the
splitting point candidates.

18.1.1.2 Partitioning Categorical Attributes

Categorical values do not have an intrinsic order associated with them. Therefore it is
impossible to apply the notion of histogram peaks and valleys that is used to partition
numerical values.

Instead the counts of individual values form a histogram. Bins with large counts are
interpreted as regions with high density. The clustering objective is to separate these
high-density areas and effectively decrease the entropy (randomness) of the data.

O-Cluster identifies the histogram with highest entropy along the individual projections.
Entropy is measured as the number of bins above sensitivity level. O-Cluster places
the two largest bins into separate partitions, thereby creating a splitting predicate. The
remainder of the bins are assigned randomly to the two resulting partitions.

18.1.2 Active Sampling

The O-Cluster algorithm operates on a data buffer of a limited size. It uses an active
sampling mechanism to handle data sets that do not fit into memory.

After processing an initial random sample, O-Cluster identifies cases that are of no
further interest. Such cases belong to frozen partitions where further splitting is highly
unlikely. These cases are replaced with examples from ambiguous regions where
further information (additional cases) is needed to find good splitting planes and
continue partitioning. A partition is considered ambiguous if a valid split can only be
found at a lower confidence level.

Cases associated with frozen partitions are marked for deletion from the buffer. They
are replaced with cases belonging to ambiguous partitions. The histograms of the
ambiguous partitions are updated and splitting points are reevaluated.

18.1.3 Process Flow

ORACLE

The O-Cluster algorithm evaluates possible splitting points for all projections in a
partition, selects the best one, and splits the data into two new partitions. The
algorithm proceeds by searching for good cutting planes inside the newly created
partitions. Thus, O-Cluster creates a binary tree structure that divides the input space
into rectangular regions with no overlaps or gaps.

The main processing stages are:

18-2

Chapter 18
Tuning the O-Cluster Algorithm

1. Load the buffer. Assign all cases from the initial buffer to a single active root
partition.

2. Compute histograms along the orthogonal uni-dimensional projections for each
active partition.

3. Find the best splitting points for active partitions.
4. Flag ambiguous and frozen partitions.

5. When a valid separator exists, split the active partition into two new active
partitions and start over at step 2.

6. Reload the buffer after all recursive partitioning on the current buffer is completed.
Continue loading the buffer until either the buffer is filled again, or the end of the
data set is reached, or until the number of cases is equal to the data buffer size.

Note:

O-Cluster requires at most one pass through the data

18.1.4 Scoring

The clusters discovered by O-Cluster are used to generate a Bayesian probability
model that can be used to score new data. The generated probability model is a
mixture model where the mixture components are represented by a product of
independent normal distributions for numerical attributes and multinomial distributions
for categorical attributes.

18.2 Tuning the O-Cluster Algorithm

Learn about configuring build settings for O-Cluster.

The O-Cluster algorithm supports two build-time settings. Both settings have default
values. There is no reason to override the defaults unless you want to influence the
behavior of the algorithm in some specific way.

You can configure O-Cluster by specifying any of the following:

» Buffer size — Size of the processing buffer.

* Sensitivity factor — A fraction that specifies the peak density required for
separating a new cluster.

Related Topics

e Active Sampling

e Partitioning Strategy

e Oracle Database PL/SQL Packages and Types Reference

18.3 Data Preparation for O-Cluster

Learn about preparing the data for O-Cluster.

ORACLE 18-3

Chapter 18
Data Preparation for O-Cluster

Automatic Data Preparation bins numerical attributes for O-Cluster. It uses a
specialized form of equi-width binning that computes the number of bins per attribute
automatically. Numerical columns with all nulls or a single value are removed. O-
Cluster handles missing values naturally as missing at random.

Note:

O-Cluster does not support nested columns, sparse data, or unstructured
text.

Related Topics
* Preparing the Data

* Transforming the Data

18.3.1 User-Specified Data Preparation for O-Cluster

ORACLE

Learn about preparing the user-specified data for O-Cluster.
Keep the following in mind if you choose to prepare the data for O-Cluster:

e O-Cluster does not necessarily use all the input data when it builds a model. It
reads the data in batches (the default batch size is 50000). It only reads another
batch if it believes, based on statistical tests, that uncovered clusters can still exist.

e Binary attributes must be declared as categorical.

e Automatic equi-width binning is highly recommended. The bin identifiers are
expected to be positive consecutive integers starting at 1.

e The presence of outliers can significantly impact clustering algorithms. Use a
clipping transformation before binning or normalizing. Outliers with equi-width
binning can prevent O-Cluster from detecting clusters. As a result, the whole
population appears to fall within a single cluster.

Related Topics
* Oracle Database PL/SQL Packages and Types Reference

18-4

Singular Value Decomposition

Learn how to use Singular Value Decomposition, an unsupervised algorithm for
Feature Extraction.

e About Singular Value Decomposition
* Configuring the Algorithm

» Data Preparation for SVD

Related Topics

* Feature Selection and Extraction
Learn how to perform Feature Selection, Feature Extraction, and Attribute
Importance.

19.1 About Singular Value Decomposition

Singular Value Decomposition (SVD) and the closely-related Principal Component
Analysis (PCA) are well established feature extraction methods that have a wide range
of applications. Oracle Data Mining implements SVD as a feature extraction algorithm
and PCA as a special scoring method for SVD models.

SVD and PCA are orthogonal linear transformations that are optimal at capturing the
underlying variance of the data. This property is very useful for reducing the
dimensionality of high-dimensional data and for supporting meaningful data
visualization.

SVD and PCA have a number of important applications in addition to dimensionality
reduction. These include matrix inversion, data compression, and the imputation of
unknown data values.

19.1.1 Matrix Manipulation

ORACLE

Singular Value Decomposition (SVD) is a factorization method that decomposes a
rectangular matrix X into the product of three matrices:

Figure 19-1 Matrix Manipulation

X=USV'

The U matrix consists of a set of 'left' orthonormal bases
The S matrix is a diagonal matrix
The V matrix consists of set of 'right' orthonormal bases

19-1

Chapter 19
About Singular Value Decomposition

The values in S are called singular values. They are non-negative, and their
magnitudes indicate the importance of the corresponding bases (components). The
singular values reflect the amount of data variance captured by the bases. The first
basis (the one with largest singular value) lies in the direction of the greatest data
variance. The second basis captures the orthogonal direction with the second greatest
variance, and so on.

SVD essentially performs a coordinate rotation that aligns the transformed axes with
the directions of maximum variance in the data. This is a useful procedure under the
assumption that the observed data has a high signal-to-noise ratio and that a large
variance corresponds to interesting data content while a lower variance corresponds to
noise.

SVD makes the assumption that the underlying data is Gaussian distributed and can
be well described in terms of means and covariances.

19.1.2 Low Rank Decomposition

To reduce dimensionality, Singular Value Decomposition (SVD) keeps lower-order
bases (the ones with the largest singular values) and ignores higher-order bases (the
ones with the smallest singular values). The rationale behind this strategy is that the
low-order bases retain the characteristics of the data that contribute most to its
variance and are likely to capture the most important aspects of the data.

Given a data set X (nxm), where n is the number of rows and m is the number of
attributes, a low-rank SVD uses only kK components (k <= min(m, n)). In typical
implementations of SVD, the value of k requires a visual inspection of the ranked
singular values associated with the individual components. In Oracle Data Mining,
SVD automatically estimates the cutoff point, which corresponds to a significant drop
in the explained variance.

SVD produces two sets of orthonormal bases (U and V). Either of these bases can be
used as a new coordinate system. In Oracle Data Mining SVD, V is the new coordinate
system, and U represents the projection of X in this coordinate system. The algorithm
computes the projection of new data as follows:

Figure 19-2 Computing Projection of New Data

X=XV,S,"

where X (nxk) is the projected data in the reduced data space, defined by the first k
components, and Vi and S, define the reduced component set.

19.1.3 Scalability

ORACLE

In Oracle Data Mining, Singular Value Decomposition (SVD) can process data sets
with millions of rows and thousands of attributes. Oracle Data Mining automatically
recommends an appropriate number of features, based on the data, for dimensionality
reduction.

SVD has linear scalability with the number of rows and cubic scalability with the
number of attributes when a full decomposition is computed. A low-rank decomposition
is typically linear with the number of rows and linear with the number of columns. The

19-2

Chapter 19
Configuring the Algorithm

scalability with the reduced rank depends on how the rank compares to the number of
rows and columns. It can be linear when the rank is significantly smaller or cubic when
it is on the same scale.

19.2 Configuring the Algorithm

Learn about configuring Singular Value Decomposition (SVD).

Several options are available for configuring the SVD algorithm. Among them are
settings to control model size and performance, and whether to score with SVD
projections or Principal Component Analysis (PCA) projections.

Related Topics
e Oracle Database PL/SQL Packages and Types Reference

19.2.1 Model Size

The U matrix in Singular Value Decomposition has as many rows as the number of
rows in the build data. To avoid creating a large model, the U matrix persists only
when an algorithm-specific setting is enabled. By default the U matrix does not persist.

19.2.2 Performance

Singular Value Decomposition can use approximate computations to improve
performance. Approximation may be appropriate for data sets with many columns. An
approximate low-rank decomposition provides good solutions at a reasonable
computational cost. The quality of the approximation is dependent on the
characteristics of the data.

19.2.3 PCA scoring

ORACLE

Learn about configuring Singular Value Decomposition (SVD) to perform Principal
Component Analysis (PCA) projections.

SVD models can be configured to perform PCA projections. PCA is closely related to
SVD. PCA computes a set of orthonormal bases (principal components) that are
ranked by their corresponding explained variance. The main difference between SVD
and PCA is that the PCA projection is not scaled by the singular values. The PCA
projection to the new coordinate system is given by:

Figure 19-3 PCA Projection Calculation

where

X

(nxKk) is the projected data in the reduced data space, defined by the first k
components, and V| defines the reduced component set.

19-3

Chapter 19
Data Preparation for SVD

Related Topics
e Oracle Database PL/SQL Packages and Types Reference

19.3 Data Preparation for SVD

Learn about preparing the data for Singular Value Decomposition (SVD).
Oracle Data Mining implements SVD for numerical data and categorical data.

When the build data is scored with SVD, Automatic Data Preparation does nothing.
When the build data is scored with Principal Component Analysis (PCA), Automatic
Data Preparation shifts the numerical data by mean.

Missing value treatment is not needed, because Oracle Data Mining algorithms handle
missing values automatically. SVD replaces numerical missing values with the mean
and categorical missing values with the mode. For sparse data (missing values in
nested columns), SVD replaces missing values with zeros.

Related Topics
* Preparing the Data

e Transforming the Data

ORACLE 19-4

Support Vector Machines

Learn how to use Support Vector Machines, a powerful algorithm based on statistical

learning theory.

Oracle Data Mining implements Support Vector Machines for Classification,
Regression, and Anomaly Detection.

* About Support Vector Machines
e Tuning an SVM Model

e Data Preparation for SVM

* SVM Classification

* One-Class SVM

* SVM Regression

Related Topics

* Regression
Learn how to predict a continuous numerical target through Regression - the
supervised mining function.

* Anomaly Detection
Learn how to detect rare cases in the data through Anomaly Detection - an
unsupervised function.

* http://www.oracle.com/pls/topic/lookup?ctx=db122&id=datmin

¢ See Also:

Milenova, B.L., Yarmus, J.S., Campos, M.M., "Support Vector Machines in
Oracle Database 10g: Removing the Barriers to Widespread Adoption of
Support Vector Machines", Proceedings of the 31st VLDB Conference,
Trondheim, Norway, 2005.

20.1 About Support Vector Machines

Support Vector Machine (SVM) is a powerful, state-of-the-art algorithm with strong
theoretical foundations based on the Vapnik-Chervonenkis theory. SVM has strong

regularization properties. Regularization refers to the generalization of the model
new data.

20.1.1 Advantages of SVM

ORACLE

Oracle Data Mining SVM implementation includes two types of solvers, an Interior

to

Point Method (IPM) solver and a Sub-Gradient Descent (SGD) solver. The IPM solver

20-1

http://www.oracle.com/pls/topic/lookup?ctx=db122&id=datmin

Chapter 20
About Support Vector Machines

provides very stable and accurate solutions, however, it may not be able to handle
data of very high dimensionality. For high dimensional data, for example, text, ratings,
and so on, the SGD solver is a better choice. Both solvers have highly scalable
parallel implementations and can handle large volumes of data.

20.1.2 Advantages of SVM in Oracle Data Mining

Oracle Data Mining has its own proprietary implementation of Support Vector
Machines (SVM), which exploits the many benefits of the algorithm while
compensating for some of the limitations inherent in the SVM framework. Oracle Data
Mining SVM provides the scalability and usability that are needed in a production
quality data mining system.

20.1.2.1 Usability

Explains usability for Support Vector Machines (SVM) in Oracle Data Mining.

Usability is a major enhancement, because SVM has often been viewed as a tool for
experts. The algorithm typically requires data preparation, tuning, and optimization.
Oracle Data Mining minimizes these requirements. You do not need to be an expert to
build a quality SVM model in Oracle Data Mining. For example:

e Data preparation is not required in most cases.

e Default tuning parameters are generally adequate.

Related Topics
» Data Preparation for SVM

e Tuning an SVM Model
Learn about configuring settings for Support Vector Machines (SVM).

20.1.2.2 Scalability

Learn how to scale the data for Support Vector Machines (SVM).

When dealing with very large data sets, sampling is often required. However, sampling
is not required with Oracle Data Mining SVM, because the algorithm itself uses
stratified sampling to reduce the size of the training data as needed.

Oracle Data Mining SVM is highly optimized. It builds a model incrementally by
optimizing small working sets toward a global solution. The model is trained until
convergence on the current working set, then the model adapts to the new data. The
process continues iteratively until the convergence conditions are met. The Gaussian
kernel uses caching techniques to manage the working sets.

Related Topics

* Kernel-Based Learning
Learn about kernal-based functions to transform the input data for Support Vector
Machines (SVM).

20.1.3 Kernel-Based Learning

Learn about kernal-based functions to transform the input data for Support Vector
Machines (SVM).

ORACLE 20-2

Chapter 20
Tuning an SVM Model

SVM is a kernel-based algorithm. A kernel is a function that transforms the input data
to a high-dimensional space where the problem is solved. Kernel functions can be
linear or nonlinear.

Oracle Data Mining supports linear and Gaussian (nonlinear) kernels.

In Oracle Data Mining, the linear kernel function reduces to a linear equation on the
original attributes in the training data. A linear kernel works well when there are many
attributes in the training data.

The Gaussian kernel transforms each case in the training data to a point in an n-
dimensional space, where n is the number of cases. The algorithm attempts to
separate the points into subsets with homogeneous target values. The Gaussian
kernel uses nonlinear separators, but within the kernel space it constructs a linear
equation.

Note:

Active Learning is not relevant in Oracle Database 12c Release 2 and later.
A setting similar to Active Learning is ODM5_SAMPLI NG.

Related Topics
e Oracle Database PL/SQL Packages and Types Reference

20.2 Tuning an SVM Model

Learn about configuring settings for Support Vector Machines (SVM).

SVM have built-in mechanisms that automatically choose appropriate settings based
on the data. You may need to override the system-determined settings for some
domains.

Settings pertain to regression, classification, and anomaly detection unless otherwise
specified.

Related Topics
e Oracle Database PL/SQL Packages and Types Reference

20.3 Data Preparation for SVM

ORACLE

The Support Vector Machines (SVM) algorithm operates natively on numeric
attributes. SVM uses z-score normalization on numeric attributes. The normalization
occurs only for two-dimensional numeric columns (not nested). The algorithm
automatically "explodes" categorical data into a set of binary attributes, one per
category value. For example, a character column for marital status with values narri ed
or si ngl e is transformed to two numeric attributes: marri ed and si ngl e. The new
attributes can have the value 1 (true) or 0 (false).

When there are missing values in columns with simple data types (not nested), SVM
interprets them as missing at random. The algorithm automatically replaces missing
categorical values with the mode and missing numerical values with the mean.

20-3

Chapter 20
SVM Classification

When there are missing values in the nested columns, SVM interprets them as sparse.
The algorithm automatically replaces sparse numerical data with zeros and sparse
categorical data with zero vectors.

20.3.1 Normalization

Support Vector Machines require the normalization of numeric input. Normalization
places the values of numeric attributes on the same scale and prevents attributes with
a large original scale from biasing the solution. Normalization also minimizes the
likelihood of overflows and underflows.

20.3.2 SVM and Automatic Data Preparation

Learn about treating and transforming data manually or through Automatic Data
Preparation (ADP) for Support Vector Machines (SVM).

The SVM algorithm automatically handles missing value treatment and the
transformation of categorical data, but normalization and outlier detection must be
handled by Automatic Data Preparation (ADP) or prepared manually. ADP performs
min-max normalization for SVM.

Note:

Oracle recommends that you use Automatic Data Preparation with SVM. The
transformations performed by ADP are appropriate for most models.

Related Topics

e Oracle Data Mining User’s Guide

20.4 SVM Classification

Support Vector Machines (SVM) classification is based on the concept of decision
planes that define decision boundaries. A decision plane is one that separates
between a set of objects having different class memberships. SVM finds the vectors
("support vectors") that define the separators giving the widest separation of classes.

SVM classification supports both binary and multiclass targets.

20.4.1 Class Weights

ORACLE

Learn when to implement class weights to a data in Support Vector Machines (SVM).

In SVM classification, weights are a biasing mechanism for specifying the relative
importance of target values (classes).

SVM models are automatically initialized to achieve the best average prediction across
all classes. However, if the training data does not represent a realistic distribution, you
can bias the model to compensate for class values that are under-represented. If you
increase the weight for a class, then the percent of correct predictions for that class
must increase.

20-4

Chapter 20
One-Class SVM

Related Topics

* Priors and Class Weights
Learn about Priors and Class Weights in a Classification model to produce a
useful result.

20.5 One-Class SVM

Oracle Data Mining uses Support Vector Machines (SVM) as the one-class classifier
for anomaly detection. When SVM is used for anomaly detection, it has the
classification mining function but no target.

One-class SVM models, when applied, produce a prediction and a probability for each
case in the scoring data. If the prediction is 1, the case is considered typical. If the
prediction is 0, the case is considered anomalous. This behavior reflects the fact that
the model is trained with normal data.

You can specify the percentage of the data that you expect to be anomalous with the
SVMS_QUTLI ER_RATE build setting. If you have some knowledge that the number of
"suspicious” cases is a certain percentage of your population, then you can set the
outlier rate to that percentage. The model approximately identifies that many "rare"
cases when applied to the general population.

20.6 SVM Regression

ORACLE

Learn how to use epsilon-insensitivity loss function to solve regression problems in
Support Vector Machines (SVM).

SVM uses an epsilon-insensitive loss function to solve regression problems.

SVM regression tries to find a continuous function such that the maximum number of
data points lie within the epsilon-wide insensitivity tube. Predictions falling within
epsilon distance of the true target value are not interpreted as errors.

The epsilon factor is a regularization setting for SVM regression. It balances the
margin of error with model robustness to achieve the best generalization to new data.

Related Topics

e Tuning an SVM Model
Learn about configuring settings for Support Vector Machines (SVM).

20-5

Using the Data Mining API

Learn how to use Oracle Data Mining application programming interface.
e Data Mining With SQL

e About the Data Mining API

e Preparing the Data

e Transforming the Data

e Creating a Model

e Scoring and Deployment

* Mining Unstructured Text

e Administrative Tasks for Oracle Data Mining

e The Data Mining Sample Programs

ORACLE

Data Mining With SQL

Learn how to solve business problems using the Oracle Data Mining application
programming interface (API).

» Highlights of the Data Mining API

» Example: Targeting Likely Candidates for a Sales Promotion
* Example: Analyzing Preferred Customers

* Example: Segmenting Customer Data

* Example : Building an ESA Model with a Wiki Dataset

21.1 Highlights of the Data Mining API

ORACLE

Learn about the advantages of Data Mining application programming interface (API).

Data mining is a valuable technology in many application domains. It has become
increasingly indispensable in the private sector as a tool for optimizing operations and
maintaining a competitive edge. Data mining also has critical applications in the public
sector and in scientific research. However, the complexities of data mining application
development and the complexities inherent in managing and securing large stores of
data can limit the adoption of data mining technology.

Oracle Data Mining is uniquely suited to addressing these challenges. The data mining
engine is implemented in the Database kernel, and the robust administrative features
of Oracle Database are available for managing and securing the data. While
supporting a full range of data mining algorithms and procedures, the API also has
features that simplify the development of data mining applications.

The Oracle Data Mining API consists of extensions to Oracle SQL, the native
language of the Database. The API offers the following advantages:

e Scoring in the context of SQL queries. Scoring can be performed dynamically or
by applying data mining models.

e Automatic Data Preparation (ADP) and embedded transformations.

e Model transparency. Algorithm-specific queries return details about the attributes
that were used to create the model.

e Scoring transparency. Details about the prediction, clustering, or feature extraction
operation can be returned with the score.

e Simple routines for predictive analytics.

e A workflow-based graphical user interface (GUI) within Oracle SQL Developer.
You can download SQL Developer free of charge from the following site:

http://ww. oracl e. com pl s/topic/lookup?ct x=db122& d=dat m nGUI

21-1

http://www.oracle.com/pls/topic/lookup?ctx=db122&id=datminGUI

Chapter 21
Example: Targeting Likely Candidates for a Sales Promotion

< Note:

A set of sample data mining programs ship with Oracle Database. The
examples in this manual are taken from these samples.

Related Topics

e The Data Mining Sample Programs
Describes the data mining sample programs that ship with Oracle Database.

e Oracle Data Mining Concepts

21.2 Example: Targeting Likely Candidates for a Sales
Promotion

This example targets customers in Brazil for a special promotion that offers coupons
and an affinity card.

The query uses data on marital status, education, and income to predict the customers
who are most likely to take advantage of the incentives. The query applies a decision
tree model called dt _sh_cl as_sanpl e to score the customer data.

Example 21-1 Predict Best Candidates for an Affinity Card

SELECT cust _id
FROM mi ni ng_dat a_appl y_v
VHERE
PREDI CTI ON(dt _sh_cl as_sanpl e
USI NG cust _marital status, education, cust_incone_level) =1
AND country nane IN 'Brazil';

100404
100607
101113

The same query, but with a bias to favor false positives over false negatives, is shown
here.

SELECT cust id
FROM mi ni ng_dat a_appl y_v
WHERE
PREDI CTI ON(dt _sh_cl as_sanpl e COST MODEL
USI NG cust _marital status, education, cust_inconme_level) =1
AND country_nanme IN 'Brazil';

100139
100163
100275
100404
100607
101113

ORACLE 21-2

Chapter 21
Example: Analyzing Preferred Customers

101170
101463

The CcosT MODEL keywords cause the cost matrix associated with the model to be used
in making the prediction. The cost matrix, stored in a table called dt _sh_sanpl e_cost s,
specifies that a false negative is eight times more costly than a false positive.
Overlooking a likely candidate for the promotion is far more costly than including an
unlikely candidate.

SELECT * FROM dt _sh_sanpl e_cost;

ACTUAL_TARGET_VALUE PREDI CTED TARGET_VALUE COST

21.3 Example: Analyzing Preferred Customers

The examples in this section reveal information about customers who use affinity
cards or are likely to use affinity cards.

Example 21-2 Find Demographic Information About Preferred Customers

This query returns the gender, age, and length of residence of typical affinity card
holders. The anomaly detection model, SYMO SH d as_sanpl e, returns 1 for typical cases
and 0 for anomalies. The demographics are predicted for typical customers only;
outliers are not included in the sample.

SELECT cust _gender, round(avg(age)) age,
round(avg(yrs_residence)) yrs_residence,
count (*) cnt

FROM mi ni ng_dat a_one_cl ass_v

VHERE PREDI CTI ON(SVMD SH Cl as_sanple using *) =1

GROUP BY cust _gender

ORDER BY cust _gender;

CUST_GENDER AGE YRS_RES| DENCE ONT
F 40 4 36
M 45 5 304

Example 21-3 Dynamically Identify Customers Who Resemble Preferred
Customers

This query identifies customers who do not currently have an affinity card, but who
share many of the characteristics of affinity card holders. The PREDI CTI ON and

PREDI CTI ON_PROBABI LI TY functions use an OVER clause instead of a predefined model to
classify the customers. The predictions and probabilities are computed dynamically.

SELECT cust _id, pred_prob
FROM
(SELECT cust _id, affinity_card,
PREDI CTI ON(FOR TO CHAR(affinity _card) USING *) OVER () pred_card,
PREDI CTI ON_PROBABI LI TY(FOR TO CHAR(affinity card),1 USING *) OVER () pred_prob
FROM mi ni ng_dat a_bui 1 d_v)
VHERE affinity card = 0
AND pred_card = 1

ORACLE 21-3

ORACLE

Chapter 21
Example: Analyzing Preferred Customers

ORDER BY pred_prob DESC;

CUST_I D PRED_PROB

102434 .96
102365 .96
102330 .96
101733 .95
102615 .94
102686 .94
102749 .93
102580 .52
102269 .52
102533 .51
101604 .51
101656 .51

226 rows sel ected.

Example 21-4 Predict the Likelihood that a New Customer Becomes a
Preferred Customer

This query computes the probability of a first-time customer becoming a preferred
customer (an affinity card holder). This query can be executed in real time at the point
of sale.

The new customer is a 44-year-old American executive who has a bachelors degree
and earns more than $300,000/year. He is married, lives in a household of 3, and has
lived in the same residence for the past 6 years. The probability of this customer
becoming a typical affinity card holder is only 5.8%.

SELECT PREDI CTI ON_PROBABI LI TY(SVMD SH O as_sanmpl e, 1 USING
44 AS age,
6 AS yrs_residence,
"Bach.' AS education,
"Married" AS cust_narital _status,
"Exec.' AS occupation,
"United States of America' AS country_nane,
"M AS cust_gender,
"L: 300,000 and above' AS cust_incone_| evel,
'3 AS houshol d_si ze
) prob_typical
FROM DUAL

PROB_TYPI CAL

Example 21-5 Use Predictive Analytics to Find Top Predictors

The DBMS_PREDI CTI VE_ANALYTI CS PL/SQL package contains routines that perform simple
data mining operations without a predefined model. In this example, the EXPLAI N
routine computes the top predictors for affinity card ownership. The results show that
household size, marital status, and age are the top three predictors.

BEG N
DBMS_PREDI CTI VE_ANALYTI CS. EXPLAI N(

21-4

Chapter 21
Example: Segmenting Customer Data

data_tabl e_nane => 'mning_data_test_v',
expl ai n_colum_name => "affinity_card',
result _tabl e_nane => 'cust _explain_result');

END;
/

SELECT * FROM cust _expl ai n_resul t
VHERE rank < 4;

ATTRI BUTE_NAMVE ATTRI BUTE_SUBNAME ~ EXPLANATORY_VALUE RANK
HOUSEHOLD Sl ZE . 209628541 1
CUST_MARI TAL_STATUS . 199794636 2
AGE . 111683067 3

21.4 Example: Segmenting Customer Data

ORACLE

The examples in this section use an Expectation Maximization clustering model to
segment the customer data based on common characteristics.

Example 21-6 Compute Customer Segments

This query computes natural groupings of customers and returns the number of
customers in each group.

SELECT CLUSTER_| D(em sh_clus_sanple USING *) AS clus, COUNT(*) AS cnt
FROM i ni ng_dat a_appl y_v

GROUP BY CLUSTER_|I D(em sh_cl us_sanpl e USI NG *)

ORDER BY cnt DESC;

CLUS CNT
9 311
3 294
7 215

12 201
17 123
16 114
14 86
19 64
15 56
18 36

Example 21-7 Find the Customers Who Are Most Likely To Be in the Largest
Segment

The query in Example 21-6 shows that segment 9 has the most members. The
following query lists the five customers who are most likely to be in segment 9.

SELECT cust id
FROM (SELECT cust _i d, RANK() over (ORDER BY prob DESC, cust_id) rnk_clus2
FROM (SELECT cust _i d,
ROUND(CLUSTER_PROBABI LI TY(em sh_cl us_sanple, 9 USING *), 3) prob
FROM mi ni ng_dat a_appl y_v))
WHERE rnk clus2 <= 5
ORDER BY rnk_clus2;

100002

21-5

Chapter 21
Example : Building an ESA Model with a Wiki Dataset

100012
100016
100019
100021

Example 21-8 Find Key Characteristics of the Most Representative Customer in the Largest
Cluster

The query in Example 21-7 lists customer 100002 first in the list of likely customers for
segment 9. The following query returns the five characteristics that are most significant
in determining the assignment of customer 100002 to segments with probability > 20%
(only segment 9 for this customer).

SELECT S.cluster_id, probability prob,
CLUSTER _DETAI LS(em sh_clus_sanple, S.cluster_id, 5 using T.*) det
FROM
(SELECT v.*, CLUSTER SET(em sh_clus_sample, NULL, 0.2 USING *) pset
FROM mi ni ng_data_apply_v v
WHERE cust _id = 100002) T,
TABLE(T. pset) S
ORDER BY 2 desc;

CLUSTER_I D PROB DET

9 1.0000 <Details algorithm="Expectation Maxim zation" cluster="9">
<Attribute name="YRS_RESI DENCE" actual Val ue="4" wei ght="1" rank="1"/>
<Attribute name="EDUCATI ON' actual Val ue="Bach." wei ght="0" rank="2"/>
<Attribute name="AFFI NI TY_CARD' actual Val ue="0" wei ght="0" rank="3"/>
<Attribute name="BOOKKEEPI NG APPLI CATI ON' actual Val ue="1" wei ght="0" rank="4"/>
<Attribute name="Y_BOX_GAMES' actual Val ue="0" wei ght="0" rank="5"/>
</ Detail s>

21.5 Example : Building an ESA Model with a Wiki Dataset

The examples shows FEATURE COVPARE function with Explicit Semantic Analysis (ESA)
model, which compares a similar set of texts and then a dissimilar set of texts.

The example shows an ESA model built against a 2005 Wiki dataset rendering over
200,000 features. The documents are mined as text and the document titles are given
as the feature IDs.

Similar Texts

SELECT 1- FEATURE_COWPARE(esa_wi ki _nmod USING ' There are several PGA tour golfers from
South Africa’ text AND USING 'Nick Price won the 2002 Mastercard Col oni al Open'
text) sinilarity FROM DUAL;

SIMLARI TY

The output metric shows distance calculation. Therefore, smaller number represent
more similar texts. So, 1 minus the distance in the queries result in similarity.

Dissimilar Texts

SELECT 1- FEATURE_COWPARE(esa_wi ki _nmod USING ' There are several PGA tour golfers from
South Africa’ text AND USING 'John Elway played quarterback for the Denver Broncos'
text) simlarity FROM DUAL;

ORACLE 21-6

Chapter 21
Example : Building an ESA Model with a Wiki Dataset

SIMLARITY

ORACLE 21-7

About the Data Mining API

Overview of the Oracle Data Mining application programming interface (API)
components.

e About Mining Models

» Data Mining Data Dictionary Views
e Data Mining PL/SQL Packages

e Data Mining SQL Scoring Functions

22.1 About Mining Models

ORACLE

Mining models are database schema objects that perform data mining.

As with all schema objects, access to mining models is controlled by database
privileges. Models can be exported and imported. They support comments, and they
can be tracked in the Database auditing system.

Mining models are created by the CREATE_MODEL procedure in the DBVS_DATA_M NI NG
PL/SQL package. Models are created for a specific mining function, and they use a
specific algorithm to perform that function. Mining function is a data mining term that
refers to a class of mining problems to be solved. Examples of mining functions are:
regression, classification, attribute importance, clustering, anomaly detection, and
feature extraction. Oracle Data Mining supports one or more algorithms for each
mining function.

Note:

Most types of mining models can be used to score data. However, it is
possible to score data without applying a model. Dynamic scoring and
predictive analytics return scoring results without a user-supplied model.
They create and apply transient models that are not visible to you.

Related Topics
e Dynamic Scoring

¢ DBMS_PREDICTIVE_ANALYTICS
Understand the routines of DBMS_PREDI CTI VE_ANALYTI CS package.

e Creating a Model
Explains how to create data mining models and query model details.

* Administrative Tasks for Oracle Data Mining
Explains how to perform administrative tasks related to Oracle Data Mining.

22-1

Chapter 22
Data Mining Data Dictionary Views

22.2 Data Mining Data Dictionary Views

Lists Oracle Data Mining data dictionary views.

The data dictionary views for Oracle Data Mining are listed in the following table. A
database administrator (DBA) and USER versions of the views are also available.

Table 22-1 Data Dictionary Views for Oracle Data Mining

View Name

Description

ALL_M NI NG_MODELS
ALL_M NI NG_MODEL_ATTRI BUTES

ALL_M NI NG_MODEL_PARTI TI ONS

ALL_M NI NG MODEL_SETTI NGS

ALL_M NI NG_MODEL_VI EV8

ALL_M NI NG_MODEL_XFORVB

Provides information about all accessible mining models

Provides information about the attributes of all accessible
mining models

Provides information about the partitions of all accessible
partitioned mining models

Provides information about the configuration settings for all
accessible mining models

Provides information about the model views for all accessible
mining models

Provides the user-specified transformations embedded in all
accessible mining models.

22.2.1 ALL_MINING_MODELS

Describes an example of ALL_M NI NG MODELS and shows a sample query.

ORACLE

The following example describes ALL_M NI NG MODELS and shows a sample query.

Example 22-1 ALL_MINING_MODELS

describe ALL_M NI NG_MODELS
Name

MODEL_NAME
M NI NG_FUNCTI ON
ALGOR! THM
CREATI ON_DATE
BUI LD_DURATI ON
MODEL_SI ZE
PARTI TI ONED
COWVENTS

Nul I ? Type
NOT NULL VARCHAR2(128)
NOT NULL VARCHAR2(128)
VARCHAR2(30)
VARCHAR2(30)
NOT NULL DATE
NUMBER
NUMBER
VARCHAR2(3)
VARCHAR2(4000)

—_— ==

The following query returns the models accessible to you that use the Support Vector

Machine algorithm.

SELECT mining_function, nodel nane

FROM al | _mi ni ng_nodel s

WHERE al gorithm = ' SUPPORT_VECTOR MACHI NES

ORDER BY mining_function,

M NI NG_FUNCTI ON

PART2_CLAS_SANPLE

CLASSI FI CATI ON

nmodel _nane;

22-2

Chapter 22
Data Mining Data Dictionary Views

CLASSI FI CATI ON PART_CLAS_SAMNPLE
CLASSI FI CATI ON SVMC_SH CLAS_SANPLE
CLASSI FI CATI ON SVMD_SH CLAS_SANPLE
CLASSI FI CATI ON T_SVM CLAS_SAMPLE

REGRESSI ON SVMR SH REGR SANPLE

Related Topics

» Creating a Model
Explains how to create data mining models and query model details.

e Oracle Database Reference

22.2.2 ALL_MINING_MODEL_ATTRIBUTES

ORACLE

Describes an example of ALL_M NI NG MODEL_ATTRI BUTES and shows a sample query.

The following example describes ALL_M NI NG MODEL_ATTRI BUTES and shows a sample
query. Attributes are the predictors or conditions that are used to create models and
score data.

Example 22-2 ALL_MINING_MODEL_ATTRIBUTES

describe ALL_M NI NG_MODEL_ATTRI BUTES

Nanme Nul I ? Type

OMER NOT NULL VARCHAR2(128)
MODEL _NAME NOT NULL VARCHAR2(128)
ATTRI BUTE_NAME NOT NULL VARCHAR2(128)
ATTRI BUTE_TYPE VARCHAR2(11)
DATA TYPE VARCHAR2(106)
DATA_LENGTH NUMVBER

DATA _PRECI SI ON NUMBER
DATA_SCALE NUMBER
USAGE_TYPE VARCHAR2(8)
TARGET VARCHAR2(3)

ATTRI BUTE_SPEC VARCHAR2(4000)

The following query returns the attributes of an SVM classification model named
T_SVM CLAS_SAMPLE. The model has both categorical and numerical attributes and
includes one attribute that is unstructured text.

SELECT attribute_nane, attribute_type, target
FROM al | _mi ni ng_nodel _attributes
VHERE nodel _name = ' T_SVM CLAS_SAWPLE'
ORDER BY attribute_naneg;

ATTRI BUTE_NAME ATTRI BUTE_TYPE TAR
AFFI NI TY_CARD CATEGORI CAL YES
ACE NUVERI CAL NO
BOOKKEEPI NG_APPLI CATION NUMERI CAL NO
BULK_PACK_DI SKETTES NUVERI CAL NO
COMMENTS TEXT NO
COUNTRY_NAME CATEGORI CAL NO
CUST_CGENDER CATEGORI CAL NO
CUST_I NCOVE_LEVEL CATEGORI CAL NO
CUST_MARI TAL_STATUS CATEGORI CAL NO
EDUCATI ON CATEGORI CAL NO
FLAT_PANEL_MONI TOR NUVERI CAL NO
HOVE_THEATER _PACKAGE NUVERI CAL NO

22-3

Chapter 22
Data Mining Data Dictionary Views

HOUSEHOLD_SI ZE CATEGORI CAL NO
OCCUPATI ON CATEGORI CAL NO
0S_DOC_SET_KANJI NUMER! CAL NO
PRI NTER SUPPLI ES NUMER! CAL NO
YRS_RES| DENCE NUMER! CAL NO
Y_BOX_GAMES NUMER! CAL NO

Related Topics

* About the Data Mining API
Overview of the Oracle Data Mining application programming interface (API)
components.

e QOracle Database Reference

22.2.3 ALL_MINING_MODEL_PARTITIONS

ORACLE

Describes an example of ALL_M NI NG_MODEL_PARTI TI ONS and shows a sample query.

The following example describes ALL_M NI NG MODEL_PARTI TI ONS and shows a sample
query.
Example 22-3 ALL_MINING_MODEL_PARTITIONS

describe ALL_M NI NG_MODEL_PARTI TI ONS

Nane Nul I ? Type

OMER NOT NULL VARCHAR2(128)
MODEL _NAVE NOT NULL VARCHAR2(128)
PARTI TI ON_NAME VARCHAR2(128)
PCSI TI ON NUMBER
COLUMN_NAME NOT NULL VARCHAR2(128)
COLUMN_VALUE VARCHAR2(4000)

The following query returns the partition names and partition key values for two

partitioned models. Model PART2_CLAS SAMPLE has a two column partition key with
system-generated partition names.

SELECT nodel _nane, partition_nane, position, colum_name, colum_val ue
FROM al | _mi ni ng_nodel _partitions
ORDER BY nodel _name, partition_name, position;

PART2_CLAS_SAVPLE
PART2_CLAS_SAVPLE
PART2_CLAS_SAVPLE
PART2_CLAS_SAVPLE
PART2_CLAS_SAVPLE
PART2_CLAS_SAVPLE
PART2_CLAS_SAVPLE
PART2_CLAS_SAVPLE
PART2_CLAS_SAVPLE
PART2_CLAS_SAVPLE
PART2_CLAS_SAVPLE
PART2_CLAS_SAVPLE
PART_CLAS_SAVPLE

PART_CLAS_SAVPLE

PART_CLAS_SAVPLE

PARTI TI ON_ PQSI TI ON COLUMN_NAME

PP RPNERPNMNRPNNRPNERENERENRE

CUST_GENDER
CUST_| NOOVE_LEVEL
CUST_GENDER
CUST_| NOOVE_LEVEL
CUST_GENDER
CUST_| NCOVE_LEVEL
CUST_GENDER
CUST_| NCOVE_LEVEL
CUST_GENDER
CUST_| NCOVE_LEVEL
CUST_GENDER
CUST_| NOOVE_LEVEL
CUST_GENDER
CUST_GENDER
CUST_GENDER

COLUMN_VALUE

22-4

Chapter 22
Data Mining Data Dictionary Views

Related Topics

e Oracle Database Reference

22.2.4 ALL_MINING_MODEL_SETTINGS

Describes an example of ALL_M NI NG MODEL_SETTI NGS and shows a sample query.

The following example describes ALL_M NI NG MODEL_SETTI NGS and shows a sample
guery. Settings influence model behavior. Settings may be specific to an algorithm or
to a mining function, or they may be general.

Example 22-4 ALL_MINING_MODEL_SETTINGS
describe ALL_M NI NG_MODEL_SETTI NGS

Nanme Nul I ? Type

OMER NOT NULL VARCHAR2(128)
MODEL _NAME NOT NULL VARCHAR2(128)
SETTI NG_NAME NOT NULL VARCHAR2(30)
SETTI NG_VALUE VARCHAR2(4000)
SETTI NG TYPE VARCHAR2(7)

The following query returns the settings for a model named SVD_SH _SAMPLE. The model
uses the Singular Value Decomposition algorithm for feature extraction.

SELECT setting_name, setting_value, setting_type
FROM al | _mi ni ng_nodel _settings
VWHERE nodel _name = ' SVD_SH SAMPLE'
ORDER BY setting_nane;

SETTI NG_NAME SETTI NG VALUE SETTI NG
ALGO_NAVE ALGO S| NGULAR VALUE DECOMP | NPUT
ODVB_M SSI NG VALUE_TREATMENT ~ CDVS_M SSI NG VALUE_AUTO DEFAULT
CDVB_SAMPLI NG ODVB_SANPLI NG Di SABLE DEFAULT
PREP_AUTO OFF | NPUT
SVDS_SCORI NG_MODE SVDS_SCORI NG_SVD DEFAULT
SVDS_U_MATRI X_OUTPUT SVDS_U_MATRI X_ENABLE | NPUT

Related Topics

» Specifying Model Settings
Understand how to configure data mining models at build time.

e Oracle Database Reference

22.2.5 ALL_MINING_MODEL_VIEWS

ORACLE

Describes an example of ALL_M NI NG MODEL_VI EW6 and shows a sample query.

The following example describes ALL_M NI NG MODEL_VI EWs and shows a sample query.
Model views provide details on the models.

Example 22-5 ALL_MINING_MODEL_VIEWS
describe ALL_M NI NG MODEL_VI EV8

Nane Nul I ? Type
OMNER NOT NULL VARCHAR2(128)
MODEL _NAME NOT NULL VARCHAR2(128)

22-5

Chapter 22
Data Mining Data Dictionary Views

VI EW NAVE NOT NULL VARCHAR?(128)
VI EW TYPE VARCHAR?(128)

The following query returns the model views for a model SVD_SH_SAMPLE. The model
uses the Singular Value Decomposition algorithm for feature extraction.

SELECT vi ew_nane, view_type
FROM al | _mi ni ng_nodel _vi ews
WHERE nodel _nanme = ' SVD_SH SAMPLE'
ORDER BY vi ew_narne;

VI EW NAVE VI EW TYPE
DMBVESVD_SH SAMPLE Si ngul ar Val ue Decomposition S Matrix
DMBVGSVD_SH_SAMPLE QG obal Name- Val ue Pairs

DMBVNSVD_SH_SAMPLE Nor mal i zation and M ssing Val ue Handling
DMBVSSVD_SH_SAMPLE Conput ed Settings

DMBVUSVD_SH_SAMPLE Si ngul ar Val ue Deconposition U Matrix

DMBWSVD_SH SAMPLE Si ngul ar Val ue Deconposition V Matrix
DMBWABVD_SH_SAMPLE Model Build Alerts

Related Topics

e Oracle Database Reference

22.2.6 ALL_MINING_MODEL_XFORMS

ORACLE

Describes an example of ALL_M NI NG MODEL_XFORVS and provides a sample query.

The following example describes ALL_M NI NG MODEL_XFORMVS and provides a sample
query.
Example 22-6 ALL_MINING_MODEL_XFORMS

describe ALL_M NI NG_MODEL_XFORVB

Nane Nul I ? Type

OMNER NOT NULL VARCHAR2(128)
MODEL _NAME NOT NULL VARCHAR2(128)
ATTRI BUTE_NAME VARCHAR2(128)
ATTRI BUTE_SUBNANME VARCHAR2(4000)
ATTRI BUTE_SPEC VARCHAR2(4000)
EXPRESSI ON CLoB

REVERSE VARCHAR2(3)

The following query returns the embedded transformations for a model
PART2_CLAS_SAMPLE.

SELECT attribute_nane, expression
FROM al | _mi ni ng_nodel _xforns
VHERE model name = ' PART2_CLAS SAWPLE
ORDER BY attribute_naneg;

ATTRI BUTE_NAME

CUST_| NCOVE_LEVEL

CASE CUST | NCOVE_LEVEL WHEN ' A: Bel ow 30, 000' THEN ' LOW
WHEN ' L: 300,000 and above' THEN 'H GH
ELSE ' MEDIUM END

22-6

Chapter 22
Data Mining PL/SQL Packages

Related Topics

e Oracle Database Reference

22.3 Data Mining PL/SQL Packages

The PL/SQL interface to Oracle Data Mining is implemented in three packages.

The following table displays the PL/SQL packages.

Table 22-2 Data Mining PL/SQL Packages

Package Name Description

DBVS_DATA_M NI NG Routines for creating and managing mining models
DBMS_DATA M NI NG_TRANSFORM Routines for transforming the data for mining
DBVS_PREDI CTI VE_ANALYTI CS Routines that perform predictive analytics

Related Topics

- DBMS_DATA_MINING

e DBMS_DATA_MINING_TRANSFORM
e DBMS_PREDICTIVE_ANALYTICS

22.3.1 DBMS_DATA_MINING

Understand the routines of DBMS_DATA_M NI NG package.

The DBVS_DATA M NI NG package contains routines for creating mining models, for
performing operations on mining models, and for querying mining models. The
package includes routines for:

» Creating, dropping, and performing other DDL operations on mining models

* Obtaining detailed information about model attributes, rules, and other information
internal to the model (model details)

» Computing test metrics for classification models

* Specifying costs for classification models

» Exporting and importing models

» Building models using Oracle's native algorithms as well as algorithms written in R
Related Topics

e Oracle Database PL/SQL Packages and Types Reference

22.3.2 DBMS_DATA_MINING_TRANSFORM

ORACLE

Understand the routines of DBVS_DATA_M NI NG_TRANSFORM package.

The DBVS_DATA M NI NG_TRANSFORM package contains routines that perform data
transformations such as binning, normalization, and outlier treatment. The package
includes routines for:

22-7

Chapter 22
Data Mining PL/SQL Packages

* Specifying transformations in a format that can be embedded in a mining model.
» Specifying transformations as relational views (external to mining model objects).

» Specifying distinct properties for columns in the build data. For example, you can
specify that the column must be interpreted as unstructured text, or that the
column must be excluded from Automatic Data Preparation.

Related Topics

e Transforming the Data
Understand how to transform data for building a model or for scoring.

e Oracle Database PL/SQL Packages and Types Reference

22.3.2.1 Transformation Methods in DBMS_DATA_MINING_TRANSFORM

Summarizes the methods for transforming data in
DBMS_DATA_MINING_TRANSFORM package.

Table 22-3 DBMS_DATA_MINING_TRANSFORM Transformation Methods

___|
Transformation Method Description

XFORMinterface CREATE, | NSERT, and XFORMroutines specify transformations in
external views
STACK interface CREATE, | NSERT, and XFORMroutines specify transformations for

embedding in a model

SET_TRANSFORM Specifies transformations for embedding in a model

The statements in the following example create an Support Vector Machine (SVM)
Classification model called T_SVM O as_sanpl e with an embedded transformation that
causes the comments attribute to be treated as unstructured text data.

Example 22-7 Sample Embedded Transformation

DECLARE
xformist dbns_data_m ning_transform TRANSFORM LI ST;
BEG N
dbns_dat a_ni ni ng_t ransf orm SET_TRANSFORM
xformist, 'coments', null, 'comments', null, 'TEXT');
DBNVS_DATA M NI NG, CREATE_MODEL(
model _name => 'T_SWM O as_sanpl e',
m ni ng_function => dbns_data_mi ning.classification,
data_tabl e_nane => "mning_build text',

case_id_col um_nanme => 'cust __id",
target _colum_nane => "affinity_card',
settings_table_name => 't _svnt_sanpl e_settings',
xformlist => xfornist);

END,

22.3.3 DBMS_PREDICTIVE_ANALYTICS

Understand the routines of DBVS_PREDI CTI VE_ANALYTI CS package.

The DBVS_PREDI CTI VE_ANALYTI CS package contains routines that perform an automated
form of data mining known as predictive analytics. With predictive analytics, you do not

ORACLE 22-8

Chapter 22
Data Mining SQL Scoring Functions

need to be aware of model building or scoring. All mining activities are handled
internally by the procedure. The DBVS_PREDI CTI VE_ANALYTI CS package includes these
routines:

e EXPLAIN ranks attributes in order of influence in explaining a target column.
e PREDICT predicts the value of a target column based on values in the input data.
* PROFILE generates rules that describe the cases from the input data.

The EXPLAI N statement in the following example lists attributes in the view
mi ni ng_data_bui | d_v in order of their importance in predicting affinity_card.

Example 22-8 Sample EXPLAIN Statement

BEG N
DBMVS_PREDI CTI VE_ANALYTI CS. EXPLAI N(
data_tabl e_name => 'mning_data_build_v',
expl ain_colum_name => "affinity_card',
result _tabl e nane => "explain_results');
END;

/

Related Topics
e Oracle Database PL/SQL Packages and Types Reference

22.4 Data Mining SQL Scoring Functions

ORACLE

Understand the different data mining SQL scoring functions.

The Data Mining SQL language functions use Oracle Data Mining to score data. The
functions can apply a mining model schema object to the data, or they can dynamically
mine the data by executing an analytic clause. SQL functions are available for all the
data mining algorithms that support the scoring operation. All Data Mining SQL
functions, as listed in the following table can operate on R Mining Model with the
corresponding mining function. However, the functions are not limited to the ones
listed here.

Table 22-4 Data Mining SQL Functions

]
Function Description

CLUSTER I D Returns the ID of the predicted cluster
CLUSTER DETAI LS Returns detailed information about the predicted cluster
CLUSTER DI STANCE Returns the distance from the centroid of the predicted cluster

CLUSTER PROBABI LI Returns the probability of a case belonging to a given cluster
TY

CLUSTER_SET Returns a list of all possible clusters to which a given case belongs along
with the associated probability of inclusion

FEATURE_COVPARE Compares two similar and dissimilar set of texts from two different
documents or keyword phrases or a combination of both

FEATURE_I D Returns the ID of the feature with the highest coefficient value
FEATURE_DETAI LS Returns detailed information about the predicted feature

FEATURE_SET Returns a list of objects containing all possible features along with the
associated coefficients

22-9

ORACLE

Chapter 22
Data Mining SQL Scoring Functions

Table 22-4 (Cont.) Data Mining SQL Functions

__|
Function Description

FEATURE_VALUE Returns the value of the predicted feature

ORA DM PARTI TION_ Returns the partition names for a partitioned model
NAVE

PREDI CTI ON Returns the best prediction for the target

PREDI CTI ON_BOUNDS (GLM only) Returns the upper and lower bounds of the interval wherein
the predicted values (linear regression) or probabilities (logistic
regression) lie.

PREDI CTI ON_COST Returns a measure of the cost of incorrect predictions
PREDI CTI ON_DETAI L Returns detailed information about the prediction

S

PREDI CTI ON_PROBAB Returns the probability of the prediction

ILITY

PREDI CTI ON_SET Returns the results of a classification model, including the predictions

and associated probabilities for each case

The following example shows a query that returns the results of the CLUSTER | D
function. The query applies the model em sh_cl us_sanpl e, which finds groups of
customers that share certain characteristics. The query returns the identifiers of the
clusters and the number of customers in each cluster.

Example 22-9 CLUSTER_ID Function

-- -List the clusters into which the custonmers in this

-- -data set have been grouped.

SELECT CLUSTER_ | D{em sh_clus_sanple USING *) AS clus, COUNT(*) AS cnt
FROM mi ni ng_dat a_appl y_v

GROUP BY CLUSTER_|I D(em sh_cl us_sanpl e USING *)

ORDER BY cnt DESC,

SQL> -- List the clusters into which the custoners in this

SQ> -- data set have been grouped.

sQ> --

SQ> SELECT CLUSTER_ID(em sh_clus_sanple USING *) AS clus, COUNT(*) AS cnt
2 FROM mi ni ng_dat a_appl y_v
3 GROUP BY CLUSTER_I D(em sh_cl us_sanpl e USI NG *)
4 ORDER BY cnt DESC

CLUS CNT
9 311
3 294
7 215

12 201
17 123
16 114
14 86
19 64
15 56
18 36

22-10

Chapter 22
Data Mining SQL Scoring Functions

Related Topics

* Scoring and Deployment
Explains the scoring and deployment features of Oracle Data Mining.

e Oracle Database SQL Language Reference

ORACLE 22-11

Preparing the Data

Learn how to create a table or view that can be used to build a model.

« Data Requirements

* About Attributes

e Using Nested Data

e Using Market Basket Data
e Using Retail Analysis Data

e Handling Missing Values

23.1 Data Requirements

ORACLE

Understand how data is stored and viewed for data mining.

Data mining activities require data that is defined within a single table or view. The
information for each record must be stored in a separate row. The data records are
commonly called cases. Each case can optionally be identified by a unique case ID.
The table or view itself can be referred to as a case table.

The CUSTOMERS table in the SH schema is an example of a table that could be used for
mining. All the information for each customer is contained in a single row. The case ID
is the CUST I D column. The rows listed in the following example are selected from

SH. CUSTOMERS.

¢ Note:

Oracle Data Mining requires single-record case data for all types of models
except association models, which can be built on native transactional data.

Example 23-1 Sample Case Table

SQ.> sel ect cust_id, cust_gender, cust_year _of hirth,
cust _mai n_phone_nunber from sh. custoners where cust _id < 11;

CUST_I D CUST_GENDER CUST_YEAR OF Bl RTH CUST_MAI N_PHONE_NUMBER

1 M 1946 127-379- 8954
2 F 1957 680-327- 1419
3 M 1939 115-509- 3391
4 M 1934 577-104-2792
5 M 1969 563-667-7731
6 F 1925 682- 732- 7260
7 F 1986 648-272-6181
8 F 1964 234-693-8728

23-1

Chapter 23
Data Requirements

9 F 1936 697-702- 2618
10 F 1947 601-207- 4099

Related Topics
* Using Market Basket Data

23.1.1 Column Data Types

Understand the different types of column data in a case table.

The columns of the case table hold the attributes that describe each case. In
Example 23-1, the attributes are: CUST_GENDER, CUST_YEAR OF_BI RTH, and

CUST_MAI N_PHONE_NUMBER. The attributes are the predictors in a supervised model or the
descriptors in an unsupervised model. The case ID, CUST_I D, can be viewed as a
special attribute; it is not a predictor or a descriptor.

Oracle Data Mining supports standard Oracle data types as well as the following
collection types:

DM NESTED_CATEGOR! CALS
DM NESTED NUMERI CALS

DM NESTED Bl NARY DOUBLES
DM NESTED_ Bl NARY_FLOATS

Related Topics

* Using Nested Data
A join between the tables for one-to-many relationship is represented through
nested columns.

e Mining Unstructured Text
Explains how to use Oracle Data Mining to mine unstructured text.

e Oracle Database SQL Language Reference

23.1.2 Data Sets for Classification and Regression

Understand how data sets are used for training and testing the model.

You need two case tables to build and validate classification and regression models.
One set of rows is used for training the model, another set of rows is used for testing
the model. It is often convenient to derive the build data and test data from the same
data set. For example, you could randomly select 60% of the rows for training the
model; the remaining 40% could be used for testing the model.

Models that implement other mining functions, such as attribute importance, clustering,
association, or feature extraction, do not use separate test data.

23.1.3 Scoring Requirements

ORACLE

Most data mining models can be applied to separate data in a process known as
scoring. Oracle Data Mining supports the scoring operation for classification,
regression, anomaly detection, clustering, and feature extraction.

The scoring process matches column names in the scoring data with the names of the
columns that were used to build the model. The scoring process does not require all
the columns to be present in the scoring data. If the data types do not match, Oracle

23-2

Chapter 23
About Attributes

Data Mining attempts to perform type coercion. For example, if a column called
PRODUCT_RATI NG is VARCHAR? in the training data but NUMBER in the scoring data, Oracle
Data Mining effectively applies a TO CHAR() function to convert it.

The column in the test or scoring data must undergo the same transformations as the
corresponding column in the build data. For example, if the AGE column in the build
data was transformed from numbers to the values CH LD, ADULT, and SEN CR, then the
AGE column in the scoring data must undergo the same transformation so that the
model can properly evaluate it.

Note:

Oracle Data Mining can embed user-specified transformation instructions in
the model and reapply them whenever the model is applied. When the
transformation instructions are embedded in the model, you do not need to
specify them for the test or scoring data sets.

Oracle Data Mining also supports Automatic Data Preparation (ADP). When
ADP is enabled, the transformations required by the algorithm are performed
automatically and embedded in the model along with any user-specified
transformations.

See Also:

Transforming the Data for more information on automatic and embedded
data transformations

23.2 About Attributes

Attributes are the items of data that are used in data mining. In predictive models,
attributes are the predictors that affect a given outcome. In descriptive models,
attributes are the items of information being analyzed for natural groupings or
associations. For example, a table of employee data that contains attributes such as
job title, date of hire, salary, age, gender, and so on.

23.2.1 Data Attributes and Model Attributes

ORACLE

Data attributes are columns in the data set used to build, test, or score a model.
Model attributes are the data representations used internally by the model.

Data attributes and model attributes can be the same. For example, a column called

Sl ZE, with values S, M and L, are attributes used by an algorithm to build a model.
Internally, the model attribute SI ZE is most likely be the same as the data attribute from
which it was derived.

On the other hand, a nested column SALES_PROD, containing the sales figures for a
group of products, does not correspond to a model attribute. The data attribute can be
SALES_PROD, but each product with its corresponding sales figure (each row in the
nested column) is a model attribute.

23-3

Chapter 23
About Attributes

Transformations also cause a discrepancy between data attributes and model
attributes. For example, a transformation can apply a calculation to two data attributes
and store the result in a new attribute. The new attribute is a model attribute that has
no corresponding data attribute. Other transformations such as binning, normalization,
and outlier treatment, cause the model's representation of an attribute to be different
from the data attribute in the case table.

Related Topics

* Using Nested Data
A join between the tables for one-to-many relationship is represented through
nested columns.

e Transforming the Data
Understand how to transform data for building a model or for scoring.

¢ See Also:

23.2.2 Target Attribute

Understand what a target means in data mining and understand the different target
data types.

The target of a supervised model is a special kind of attribute. The target column in
the training data contains the historical values used to train the model. The target
column in the test data contains the historical values to which the predictions are
compared. The act of scoring produces a prediction for the target.

Clustering, Feature Extraction, Association, and Anomaly Detection models do not use
a target.

Nested columns and columns of unstructured data (such as BFI LE, CLOB, or BLOB)
cannot be used as targets. Target attributes must have a simple data type.

Table 23-1 Target Data Types
|

Mining Function Target Data Types
Classification VARCHAR2, CHAR

NUMBER, FLOAT

Bl NARY_DOUBLE, Bl NARY_FLOAT
Regression NUMBER, FLOAT

Bl NARY_DOUBLE, Bl NARY_FLOAT

You can query the *_M NI NG MODEL_ATTRI BUTES view to find the target for a given model.

Related Topics

 ALL_MINING_MODEL_ATTRIBUTES
Describes an example of ALL_M NI NG_MODEL_ATTRI BUTES and shows a sample query.

ORACLE 23-4

Chapter 23
About Attributes

23.2.3 Numericals, Categoricals, and Unstructured Text

Explains numeric, categorical, and unstructured text attributes.

Model attributes are numerical, categorical, or unstructured (text). Data attributes,
which are columns in a case table, have Oracle data types, as described in "Column
Data Types".

Numerical attributes can theoretically have an infinite number of values. The values
have an implicit order, and the differences between them are also ordered. Oracle
Data Mining interprets NUVBER, FLOAT, Bl NARY_DOUBLE, Bl NARY FLOAT,

DM _NESTED NUMERI CALS, DM NESTED Bl NARY_DOUBLES, and DM NESTED BI NARY_FLOATS as
numerical.

Categorical attributes have values that identify a finite number of discrete categories or
classes. There is no implicit order associated with the values. Some categoricals are
binary: they have only two possible values, such as yes or no, or male or female.
Other categoricals are multi-class: they have more than two values, such as small,
medium, and large.

Oracle Data Mining interprets CHAR and VARCHAR?2 as categorical by default, however
these columns may also be identified as columns of unstructured data (text). Oracle
Data Mining interprets columns of DM NESTED_CATEGORI CALS as categorical. Columns of
CLOB, BLOB, and BFI LE always contain unstructured data.

The target of a classification model is categorical. (If the target of a classification
model is numeric, it is interpreted as categorical.) The target of a regression model is
numerical. The target of an attribute importance model is either categorical or
numerical.

Related Topics

e Column Data Types
Understand the different types of column data in a case table.

e Mining Unstructured Text
Explains how to use Oracle Data Mining to mine unstructured text.

23.2.4 Model Signature

The model signature is the set of data attributes that are used to build a model. Some
or all of the attributes in the signature must be present for scoring. The model
accounts for any missing columns on a best-effort basis. If columns with the same
names but different data types are present, the model attempts to convert the data
type. If extra, unused columns are present, they are disregarded.

The model signature does not necessarily include all the columns in the build data.
Algorithm-specific criteria can cause the model to ignore certain columns. Other
columns can be eliminated by transformations. Only the data attributes actually used
to build the model are included in the signature.

The target and case ID columns are not included in the signature.

ORACLE 23-5

Chapter 23
About Attributes

23.2.5 Scoping of Model Attribute Name

The model attribute name consists of two parts: a column name, and a subcolumn
name.

col um_nane[. subcol umm_nane]

The col urm_nane component is the name of the data attribute. It is present in all model
attribute names. Nested attributes and text attributes also have a subcol urm_nane
component as shown in the following example.

Example 23-2 Model Attributes Derived from a Nested Column
The nested column SALESPROD has three rows.

SALESPROD(ATTRI BUTE_NAME, VALUE)
((PRODL, 300),

(PROD2, 245),

(PROD3, 679))

The name of the data attribute is SALESPROD. Its associated model attributes are:

SALESPROD. PRCD1
SALESPROD. PRCD2
SALESPROD. PRCD3

23.2.6 Model Details

ORACLE

Model details reveal information about model attributes and their treatment by the
algorithm. There is a separate GET_MODEL_DETAI LS routine for each algorithm. Oracle
recommends that users leverage the model detail views instead.

Transformation and reverse transformation expressions are associated with model
attributes. Transformations are applied to the data attributes before the algorithmic
processing that creates the model. Reverse transformations are applied to the model
attributes after the model has been built, so that the model details are expressed in the
form of the original data attributes, or as close to it as possible.

Reverse transformations support model transparency. They provide a view of the data
that the algorithm is working with internally but in a format that is meaningful to a user.

Example 23-3 shows the definition of the GET_MODEL_DETAI LS function for an Attribute
Importance model.

Example 23-3 Model Details for an Attribute Importance Model

The syntax of the GET_MODEL_DETAI LS function for Attribute Importance models is shown
as follows.

DBMS_DATA M NI NG GET_MODEL_DETAI LS Al (
model _nane VARCHAR2)
RETURN DM RANKED_ATTRI BUTES PI PELI NED;

The function returns DM_RANKED_ATTRI BUTES, a virtual table. The columns are the model

details. There is one row for each model attribute in the specified model. The columns
are described as follows.

23-6

Chapter 23
Using Nested Data

attribute_nane VARCHAR2(4000)
attribute_subnane VARCHAR2(4000)
i nportance_val ue NUVBER

rank NUMBER(38)

23.3 Using Nested Data

A join between the tables for one-to-many relationship is represented through nested
columns.

Oracle Data Mining requires a case table in single-record case format, with each
record in a separate row. What if some or all of your data is in multi-record case
format, with each record in several rows? What if you want one attribute to represent a
series or collection of values, such as a student's test scores or the products
purchased by a customer?

This kind of one-to-many relationship is usually implemented as a join between tables.
For example, you can join your customer table to a sales table and thus associate a
list of products purchased with each customer.

Oracle Data Mining supports dimensioned data through nested columns. To include
dimensioned data in your case table, create a view and cast the joined data to one of
the Data Mining nested table types. Each row in the nested column consists of an
attribute name/value pair. Oracle Data Mining internally processes each nested row as
a separate attribute.

Note:

O-Cluster is the only algorithm that does not support nested data.

Related Topics

* Example: Creating a Nested Column for Market Basket Analysis
The example shows how to define a nested column for market basket analysis.

23.3.1 Nested Object Types

ORACLE

Nested tables are object data types that can be used in place of other data types.

Oracle Database supports user-defined data types that make it possible to model real-
world entities as objects in the database. Collection types are object data types for
modeling multi-valued attributes. Nested tables are collection types. Nested tables can
be used anywhere that other data types can be used.

Oracle Data Mining supports the following nested object types:

DM NESTED Bl NARY_DOUBLES
DM NESTED_ Bl NARY_FLOATS
DM NESTED_NUMERI CALS

DM NESTED_CATEGOR! CALS

Descriptions of the nested types are provided in this example.

23-7

ORACLE

Chapter 23
Using Nested Data

Example 23-4 Oracle Data Mining Nested Data Types

describe dm_nested binary_double

Nare Nul | ? Type
ATTRI BUTE_NAME VARCHAR2(4000)
VALUE Bl NARY_DOUBLE

describe dm_nested_binary_doubles
DM NESTED_BI NARY_DOUBLES TABLE OF SYS. DM NESTED Bl NARY DOUBLE

Nare Nul | ? Type

ATTRI BUTE_NANME VARCHAR2(4000)

VALUE Bl NARY_DOUBLE
describe dm_nested_binary_float

Nare Nul | ? Type

ATTRI BUTE_NANME VARCHAR2(4000)

VALUE Bl NARY_FLOAT

describe dm_nested_binary_floats
DM NESTED_BI NARY FLOATS TABLE OF SYS. DM NESTED Bl NARY FLOAT

Nare Nul | ? Type

ATTRI BUTE_NAME VARCHAR2(4000)

VALUE Bl NARY_FLOAT
describe dm_nested_numerical

Nare Nul | ? Type

ATTRI BUTE_NAME VARCHAR2(4000)

VALUE NUMBER

describe dm _nested_numericals
DM NESTED NUMERI CALS TABLE OF SYS. DM NESTED_NUMERI CAL

Nare Nul | ? Type
ATTRI BUTE_NANME VARCHAR2(4000)
VALUE NUMBER

descri be dm_nested_categorical
Nare Nul | ? Type
ATTRI BUTE_NAME VARCHAR2(4000)
VALUE VARCHAR2(4000)

describe dm_nested_categoricals
DM NESTED CATEGOR! CALS TABLE OF SYS. DM NESTED CATEGOR! CAL

Nare Nul | ? Type
ATTRI BUTE_NAME VARCHAR2(4000)
VALUE VARCHAR2(4000)

Related Topics

* Oracle Database Object-Relational Developer's Guide

23-8

Chapter 23
Using Nested Data

23.3.2 Example: Transforming Transactional Data for Mining

ORACLE

Example 23-5 shows data from a view of a sales table. It includes sales for three of the
many products sold in four regions. This data is not suitable for mining at the product
level because sales for each case (product), is stored in several rows.

Example 23-6 shows how this data can be transformed for mining. The case ID
column is PRODUCT. SALES_PER REG ON, a nested column of type DM NESTED _NUMERI CALS, is
a data attribute. This table is suitable for mining at the product case level, because the
information for each case is stored in a single row.

Oracle Data Mining treats each nested row as a separate model attribute, as shown in
Example 23-7.

" Note:

The presentation in this example is conceptual only. The data is not actually
pivoted before being processed.

Example 23-5 Product Sales per Region in Multi-Record Case Format

PRODUCT REG ON SALES

Prodl NE 556432
Prod2 NE 670155
Prod3 NE 3111
Prodl NW 90887
Prod2 NW 100999
Prod3 NW 750437
Prodl SE 82153
Prod2 SE 57322
Prod3 SE 28938
Prodl SW 3297551
Prod2 SW 4972019
Prod3 SW 884923

Example 23-6 Product Sales per Region in Single-Record Case Format

PRODUCT SALES_PER REG ON
(ATTR BUTE_NAME, VALUE)

Prod1 ('NE 556432)
(N 90887)
('SE 82153)
("SW , 3297551)

Pr od2 ('NE 670155)
('NW 100999)
('SE 57322)

23-9

Chapter 23
Using Market Basket Data

("SW , 4972019)
Prod3 ('NE 3111)
('NW 750437)
('SE 28938)
('sw 884923)

Example 23-7 Model Attributes Derived From SALES_PER_REGION

SALES PER REGION.NE SALES PER REG ON.NW SALES PER REG ON.SE SALES_PER REG ON. SW

556432 90887 82153 3297551
670155 100999 57322 4972019
3111 750437 28938 884923

23.4 Using Market Basket Data

ORACLE

Market basket data identifies the items sold in a set of baskets or transactions. Oracle
Data Mining provides the association mining function for market basket analysis.

Association models use the Apriori algorithm to generate association rules that
describe how items tend to be purchased in groups. For example, an association rule
can assert that people who buy peanut butter are 80% likely to also buy jelly.

Market basket data is usually transactional. In transactional data, a case is a
transaction and the data for a transaction is stored in multiple rows. Oracle Data
Mining association models can be built on transactional data or on single-record case
data. The CDVS_| TEM | D_COLUMN_NAME and ODMVB_| TEM VALUE_COLUMN_NAME settings specify
whether the data for association rules is in transactional format.

Note:

Association models are the only type of model that can be built on native
transactional data. For all other types of models, Oracle Data Mining requires
that the data be presented in single-record case format.

The Apriori algorithm assumes that the data is transactional and that it has many
missing values. Apriori interprets all missing values as sparse data, and it has its own
native mechanisms for handling sparse data.

¢ See Also:

Oracle Database PL/SQL Packages and Types Reference for information on
the ODVS_I TEM | D_COLUMN_NAVE and ODVS_| TEM VALUE_COLUMN_NAME settings.

23-10

Chapter 23
Using Retail Analysis Data

23.4.1 Example: Creating a Nested Column for Market Basket

Analysis

The example shows how to define a nested column for market basket analysis.

Association models can be built on native transactional data or on nested data. The
following example shows how to define a nested column for market basket analysis.

The following SQL statement transforms this data to a column of type
DM NESTED NUVERI CALS in a view called SALES TRANS CUST_NESTED. This view can be used
as a case table for mining.

CREATE VIEW sal es_trans_cust _nested AS
SELECT trans_id,
CAST(COLLECT(DM_NESTED_NUMERICAL(
prod_nane, 1))
AS DM_NESTED_NUMERICALS) cust prods
FROM sal es_trans_cust
GROUP BY trans_id;

This query returns two rows from the transformed data.

SELECT * FROM sal es_trans_cust _nested
WHERE trans_id < 101000
AND trans_id > 100997,

TRANS_| D CUSTPRODS(ATTRI BUTE_NAME, VALUE)

100998 DM NESTED _NUMERI CALS
(DM_NESTED_NUMERI CAL(' O’ S Docunentation Set - English', 1)
100999 DM NESTED NUMERI CALS
(DM _NESTED _NUMERI CAL(' CD-RW Hi gh Speed Pack of 5', 1),
DM NESTED_NUMERI CAL(' External 8X CD-ROM, 1),
DM _NESTED NUMERI CAL(' SI MV 16MB PCMCI Al card', 1))

Example 23-8 Convert to a Nested Column

The view SALES_TRANS_CUST provides a list of transaction IDs to identify each market
basket and a list of the products in each basket.

describe sal es_trans_cust

Nane Nul I ? Type

TRANS_I D NOT NULL NUMBER
PROD_NAME NOT NULL VARCHAR2(50)
QUANTI TY NUMBER

Related Topics

* Handling Missing Values

23.5 Using Retail Analysis Data

ORACLE

Retail analysis often makes use of Association Rules and Association models.

The Association Rules are enhanced to calculate aggregates along with rules or
itemsets.

23-11

Chapter 23
Handling Missing Values

Related Topics

* Oracle Data Mining Concepts

23.6 Handling Missing Values

Oracle Data Mining distinguishes between sparse data and data that contains
random missing values. The latter means that some attribute values are unknown.
Sparse data, on the other hand, contains values that are assumed to be known,
although they are not represented in the data.

A typical example of sparse data is market basket data. Out of hundreds or thousands
of available items, only a few are present in an individual case (the basket or
transaction). All the item values are known, but they are not all included in the basket.
Present values have a quantity, while the items that are not represented are sparse
(with a known quantity of zero).

Oracle Data Mining interprets missing data as follows:

* Missing at random: Missing values in columns with a simple data type (not nested)
are assumed to be missing at random.

e Sparse: Missing values in nested columns indicate sparsity.

23.6.1 Examples: Missing Values or Sparse Data?

The examples in this section illustrate how Oracle Data Mining identifies data as either
sparse or missing at random.

23.6.1.1 Sparsity in a Sales Table

A sales table contains point-of-sale data for a group of products that are sold in
several stores to different customers over a period of time. A particular customer buys
only a few of the products. The products that the customer does not buy do not appear
as rows in the sales table.

If you were to figure out the amount of money a customer has spent for each product,
the unpurchased products have an inferred amount of zero. The value is not random
or unknown; it is zero, even though no row appears in the table.

Note that the sales data is dimensioned (by product, stores, customers, and time) and
are often represented as nested data for mining.

Since missing values in a nested column always indicate sparsity, you must ensure
that this interpretation is appropriate for the data that you want to mine. For example,
when trying to mine a multi-record case data set containing movie ratings from users
of a large movie database, the missing ratings are unknown (missing at random), but
Oracle Data Mining treats the data as sparse and infer a rating of zero for the missing
value.

23.6.1.2 Missing Values in a Table of Customer Data

ORACLE

A table of customer data contains demographic data about customers. The case ID
column is the customer ID. The attributes are age, education, profession, gender,
house-hold size, and so on. Not all the data is available for each customer. Any
missing values are considered to be missing at random. For example, if the age of

23-12

Chapter 23
Handling Missing Values

customer 1 and the profession of customer 2 are not present in the data, that
information is simply unknown. It does not indicate sparsity.

Note that the customer data is not dimensioned. There is a one-to-one mapping
between the case and each of its attributes. None of the attributes are nested.

23.6.2 Missing Value Treatment in Oracle Data Mining

Missing value treatment depends on the algorithm and on the nature of the data
(categorical or numerical, sparse or missing at random). Missing value treatment is
summarized in the following table.

Note:

Oracle Data Mining performs the same missing value treatment whether or
not Automatic Data Preparation is being used.

Table 23-2 Missing Value Treatment by Algorithm

Missing EM, GLM, NMF, k-Means, SVD, DT, MDL, NB, OC Apriori
Data SVM

NUMERICAL The algorithm replaces missing The algorithm handles The algorithm
missing at numerical values with the mean. missing values naturally interprets all
random For Expectation Maximization as missing at random. missing data as

(EM), the replacement only Sparse.

occurs in columns that are

modeled with Gaussian

distributions.

CATEGORIC Genelized Linear Models (GLM), The algorithm handles The algorithm

AL missing at Non-Negative Matrix missing values naturally interprets all
random Factorization (NMF), k-Means, as missing random. missing data as
and Support Vector Machine sparse.

(SVM) replaces missing
categorical values with the mode.

Singular Value Decomposition
(SVD) does not support
categorical data.

EM does not replace missing
categorical values. EM treats
NULLs as a distinct value with its
own frequency count.

NUMERICAL The algorithm replaces sparse O-Cluster does not The algorithm
sparse numerical data with zeros. support nested data and handles sparse
therefore does not data.

support sparse data.
Decision Tree (DT),
Minimum Description
Length (MDL), and Naive
Bayes (NB) and replace
sparse numerical data
with zeros.

ORACLE 23-13

Chapter 23
Handling Missing Values

Table 23-2 (Cont.) Missing Value Treatment by Algorithm
|

Missing EM, GLM, NMF, k-Means, SVD, DT, MDL, NB, OC Apriori
Data SVM
CATEGORIC All algorithms except SVD O-Cluster does not The algorithm
AL sparse replace sparse categorical data support nested data and handles sparse
with zero vectors. SVD does not therefore does not data.
support categorical data. support sparse data. DT,

MDL, and NB replace
sparse categorical data
with the special value
DMBSPARSE.

23.6.3 Changing the Missing Value Treatment

ORACLE

Transform the missing data as sparse or missing at random.

If you want Oracle Data Mining to treat missing data as sparse instead of missing at
random or missing at random instead of sparse, transform it before building the model.

If you want missing values to be treated as sparse, but Oracle Data Mining interprets
them as missing at random, you can use a SQL function like NVL to replace the nulls
with a value such as "NA". Oracle Data Mining does not perform missing value
treatment when there is a specified value.

If you want missing nested attributes to be treated as missing at random, you can
transform the nested rows into physical attributes in separate columns — as long as
the case table stays within the 1000 column limitation imposed by the Database. Fill in
all of the possible attribute names, and specify them as null. Alternatively, insert rows
in the nested column for all the items that are not present and assign a value such as
the mean or mode to each one.

Related Topics

* Oracle Database SQL Language Reference

23-14

Transforming the Data

Understand how to transform data for building a model or for scoring.

* About Transformations

* Preparing the Case Table

e Understanding Automatic Data Preparation
* Embedding Transformations in a Model

* Understanding Reverse Transformations

24.1 About Transformations

ORACLE

Understand how you can transform data by using Automatic Data Preparation (ADP)
and embedded data transformation.

A transformation is a SQL expression that modifies the data in one or more columns.
Data must typically undergo certain transformations before it can be used to build a
model. Many data mining algorithms have specific transformation requirements.
Before data can be scored, it must be transformed in the same way that the training
data was transformed.

Oracle Data Mining supports Automatic Data Preparation (ADP), which automatically
implements the transformations required by the algorithm. The transformations are
embedded in the model and automatically executed whenever the model is applied.

If additional transformations are required, you can specify them as SQL expressions
and supply them as input when you create the model. These transformations are
embedded in the model just as they are with ADP.

With automatic and embedded data transformation, most of the work of data
preparation is handled for you. You can create a model and score multiple data sets in
just a few steps:

1. Identify the columns to include in the case table.

2. Create nested columns if you want to include transactional data.

3. Write SQL expressions for any transformations not handled by ADP.
4,

Create the model, supplying the SQL expressions (if specified) and identifying any
columns that contain text data.

5. Ensure that some or all of the columns in the scoring data have the same name
and type as the columns used to train the model.

Related Topics

e Scoring Requirements

24-1

Chapter 24
Preparing the Case Table

24.2 Preparing the Case Table

Understand why you have to prepare a case table.

The first step in preparing data for mining is the creation of a case table. If all the data
resides in a single table and all the information for each case (record) is included in a
single row (single-record case), this process is already taken care of. If the data
resides in several tables, creating the data source involves the creation of a view. For
the sake of simplicity, the term "case table" is used here to refer to either a table or a
view.

Related Topics

e Preparing the Data
Learn how to create a table or view that can be used to build a model.

24.2.1 Creating Nested Columns

Learn when to create nested columns.

When the data source includes transactional data (multi-record case), the transactions
must be aggregated to the case level in nested columns. In transactional data, the
information for each case is contained in multiple rows. An example is sales data in a
star schema when mining at the product level. Sales is stored in many rows for a
single product (the case) since the product is sold in many stores to many customers
over a period of time.

See Also:

Using Nested Data for information about converting transactional data to
nested columns

24.2.2 Converting Column Data Types

You must convert the data type of a column if its type causes Oracle Data Mining to
interpret it incorrectly. For example, zip codes identify different postal zones; they do
not imply order. If the zip codes are stored in a numeric column, they are interpreted
as a numeric attribute. You must convert the data type so that the column data can be
used as a categorical attribute by the model. You can do this using the TO CHAR
function to convert the digits 1-9 and the LPAD function to retain the leading 0O, if there is
one.

LPAD(TO_CHAR(ZI PCODE) , 5, 0')

24.2.3 Text Transformation

ORACLE

You can use Oracle Data Mining to mine text. Columns of text in the case table can be
mined once they have undergone the proper transformation.

The text column must be in a table, not a view. The transformation process uses
several features of Oracle Text; it treats the text in each row of the table as a separate
document. Each document is transformed to a set of text tokens known as terms,

24-2

Chapter 24
Understanding Automatic Data Preparation

which have a numeric value and a text label. The text column is transformed to a
nested column of DM NESTED NUVERI CALS.

24.2.4 About Business and Domain-Sensitive Transformations

Understand why you need to transform data according to business problems.

Some transformations are dictated by the definition of the business problem. For
example, you want to build a model to predict high-revenue customers. Since your
revenue data for current customers is in dollars you need to define what "high-
revenue" means. Using some formula that you have developed from past experience,
you can recode the revenue attribute into ranges Low, Medium, and High before
building the model.

Another common business transformation is the conversion of date information into
elapsed time. For example, date of birth can be converted to age.

Domain knowledge can be very important in deciding how to prepare the data. For
example, some algorithms produce unreliable results if the data contains values that
fall far outside of the normal range. In some cases, these values represent errors or
abnormalities. In others, they provide meaningful information.

Related Topics

e Qutlier Treatment

24.3 Understanding Automatic Data Preparation

Understand data transformation using Automatic Data Preparation (ADP).

Most algorithms require some form of data transformation. During the model build
process, Oracle Data Mining can automatically perform the transformations required
by the algorithm. You can choose to supplement the automatic transformations with
additional transformations of your own, or you can choose to manage all the
transformations yourself.

In calculating automatic transformations, Oracle Data Mining uses heuristics that
address the common requirements of a given algorithm. This process results in
reasonable model quality in most cases.

Binning, normalization, and outlier treatment are transformations that are commonly
needed by data mining algorithms.

Related Topics
* Oracle Database PL/SQL Packages and Types Reference

24.3.1 Binning

ORACLE

Binning, also called discretization, is a technique for reducing the cardinality of
continuous and discrete data. Binning groups related values together in bins to reduce
the number of distinct values.

Binning can improve resource utilization and model build response time dramatically
without significant loss in model quality. Binning can improve model quality by
strengthening the relationship between attributes.

24-3

Chapter 24
Understanding Automatic Data Preparation

Supervised binning is a form of intelligent binning in which important characteristics of
the data are used to determine the bin boundaries. In supervised binning, the bin
boundaries are identified by a single-predictor decision tree that takes into account the
joint distribution with the target. Supervised binning can be used for both numerical
and categorical attributes.

24.3.2 Normalization

Normalization is the most common technique for reducing the range of numerical data.
Most normalization methods map the range of a single variable to another range (often
0,1).

24.3.3 Qutlier Treatment

A value is considered an outlier if it deviates significantly from most other values in the

column. The presence of outliers can have a skewing effect on the data and can
interfere with the effectiveness of transformations such as normalization or binning.

Outlier treatment methods such as trimming or clipping can be implemented to
minimize the effect of outliers.

Outliers represent problematic data, for example, a bad reading due to the abnormal
condition of an instrument. However, in some cases, especially in the business arena,
outliers are perfectly valid. For example, in census data, the earnings for some of the
richest individuals can vary significantly from the general population. Do not treat this
information as an outlier, since it is an important part of the data. You need domain
knowledge to determine outlier handling.

24.3.4 How ADP Transforms the Data

The following table shows how ADP prepares the data for each algorithm.

Table 24-1 Oracle Data Mining Algorithms With ADP

Algorithm Mining Function Treatment by ADP
Apriori Association Rules ADP has no effect on association rules.
Decision Classification ADP has no effect on Decision Tree. Data preparation is handled by the
Tree algorithm.
Expectation Clustering Single-column (not nested) numerical columns that are modeled with
Maximizatio Gaussian distributions are normalized with outlier-sensitive
n normalization. ADP has no effect on the other types of columns.
GLM Classification and Numerical attributes are normalized with outlier-sensitive normalization.
Regression
k-Means Clustering Numerical attributes are normalized with outlier-sensitive normalization.
MDL Attribute Importance All attributes are binned with supervised binning.
Naive Bayes Classification All attributes are binned with supervised binning.
NMF Feature Extraction Numerical attributes are normalized with outlier-sensitive normalization.
O-Cluster Clustering Numerical attributes are binned with a specialized form of equi-width
binning, which computes the number of bins per attribute automatically.
Numerical columns with all nulls or a single value are removed.
SVvD Feature Extraction Numerical attributes are normalized with outlier-sensitive normalization.
ORACLE 24-4

Chapter 24
Embedding Transformations in a Model

Table 24-1 (Cont.) Oracle Data Mining Algorithms With ADP
]

Algorithm

Mining Function Treatment by ADP

SVM

Classification, Anomaly Numerical attributes are normalized with outlier-sensitive normalization.
Detection, and
Regression

" See Also:

e Oracle Database PL/SQL Packages and Types Reference

e Part Il of Oracle Data Mining Concepts for more information about
algorithm-specific data preparation

24.4 Embedding Transformations in a Model

You can specify your own transformations and embed them in a model by creating a
transformation list and passing it to DBVS_DATA M NI NG. CREATE_MODEL.

PROCEDURE cr eat e_nodel (

model _nane I N VARCHARZ,
m ni ng_function I'N VARCHAR?,
data_tabl e_nane I'N VARCHAR,

case_i d_colum_name | N VARCHARZ,
target_colum_name | N VARCHAR2 DEFAULT NULL,
settings_table_name |N VARCHAR2 DEFAULT NULL,

dat a_schena_nane I'N VARCHAR2 DEFAULT NULL,
settings_schema_nane | N VARCHAR2 DEFAULT NULL,
xform_list IN TRANSFORM_LIST DEFAULT NULL);

24.4.1 Specifying Transformation Instructions for an Attribute

ORACLE

Learn what is a transformation instruction for an attribute and learn about the fields in
a transformation record.

A transformation list is defined as a table of transformation records. Each record
(transform rec) specifies the transformation instructions for an attribute.

TYPE transformrec |'S RECORD (

attribute_nane VARCHAR2(30) ,
attribute_subname VARCHAR2(4000),
expression EXPRESSI ON_REC,
reverse_expression EXPRESSI ON_REC,
attribute_spec VARCHAR2(4000));

The fields in a transformation record are described in this table.

24-5

24.4.1.1 Expression Records

ORACLE

Chapter 24
Embedding Transformations in a Model

Table 24-2 Fields in a Transformation Record for an Attribute

Field

Description

attribute_name and
attribute_subnane

expressi on

rever se_expression

attribute_spec

These fields identify the attribute, as described in "Scoping of Model
Attribute Name"

A SQL expression for transforming the attribute. For example, this
expression transforms the age attribute into two categories: child and
adult:[0,19) for ‘child' and [19,) for adult

CASE WHEN age < 19 THEN 'child'" ELSE 'adult'

Expression and reverse expressions are stored in expressi on_rec
objects. See "Expression Records" for details.

A SQL expression for reversing the transformation. For example, this
expression reverses the transformation of the age attribute:

DECODE(age, ' child',"' (-Inf,19)","'[19,Inf)")

Specifies special treatment for the attribute. The attri but e_spec field
can be null or it can have one or more of these values:

. FORCE_| N— For GLM, forces the inclusion of the attribute in the
model build when the ftr_sel ecti on_enabl e setting is enabled.
(ftr_sel ection_enabl e is disabled by default.) If the model is not
using GLM, this value has no effect. FORCE_| N cannot be
specified for nested attributes or text.

. NOPREP — When ADP is on, prevents automatic transformation of
the attribute. If ADP is not on, this value has no effect. You can
specify NOPREP for a nested attribute, but not for an individual
subname (row) in the nested attribute.

e TEXT — Indicates that the attribute contains unstructured text.
ADP has no effect on this setting. TEXT may optionally include
subsettings POLI CY_NAME, TOKEN_TYPE, and MAX_FEATURES.

See Example 24-1 and Example 24-2.

Related Topics

e Scoping of Model Attribute Name

* Expression Records

The transformation expressions in a transformation record are expr essi on_r ec objects.

TYPE expression_rec 1S RECORD (

I stnt DBMS_SQL. VARCHARZA,
I b BI NARY_| NTEGER DEFAULT 1,
ub BI NARY_| NTEGER DEFAULT 0);

TYPE varchar2a |'S TABLE OF VARCHAR2(32767)
I NDEX BY BI NARY_| NTEGER;

The I stnt field stores a VARCHAR2A, which allows transformation expressions to be very
long, as they can be broken up across multiple rows of VARCHAR2. Use the
DBMS_DATA M NI NG_TRANSFORM SET_EXPRESSI ON procedure to create an expr essi on_r ec.

24-6

Chapter 24
Embedding Transformations in a Model

24.4.1.2 Attribute Specifications

Learn how to define the characteristics specific to an attribute through attribute
specification.

The attribute specification in a transformation record defines characteristics that are
specific to this attribute. If not null, the attribute specification can include values
FORCE_I N, NOPREP, or TEXT, as described in Table 24-2.

Example 24-1 An Attribute Specification with Multiple Keywords

If more than one attribute specification keyword is applicable, you can provide them in
a comma-delimited list. The following expression is the specification for an attribute in
a GLM model. Assuming that the ftr_sel ecti on_enabl e setting is enabled, this
expression forces the attribute to be included in the model. If ADP is on, automatic
transformation of the attribute is not performed.

" FORCE_I N, NOPREP"

Example 24-2 A Text Attribute Specification

For text attributes, you can optionally specify subsettings POLI CY_NAME, TOKEN TYPE, and
MAX_FEATURES. The subsettings provide configuration information that is specific to text
transformation. In this example, the transformation instructions for the text content are
defined in a text policy named ny_pol i cy with token type is THEME. The maximum
number of extracted features is 3000.

"TEXT(POLI CY_NAME: ny_pol i cy) (TOKEN_TYPE: THEME) (MAX_FEATURES: 3000) "

Related Topics

e Configuring a Text Attribute
Learn how to identify a column as a text attribute and provide transformation
instructions for any text attribute.

24.4.2 Building a Transformation List

A transformation list is a collection of transformation records. When a new
transformation record is added, it is appended to the top of the transformation list. You
can use any of the following methods to build a transformation list:

+ The SET_TRANFORMprocedure in DBVS_DATA M NI NG_TRANSFORM
e The STACK interface in DBMS_DATA M NI NG TRANSFORM

« The GET_MODEL_TRANSFORMATI ONS and GET_TRANSFORM LI ST functions in
DBVS_DATA_M NI NG

24.4.2.1 SET_TRANSFORM

ORACLE

The SET_TRANSFORM procedure adds a single transformation record to a transformation
list.

DBMVS_DATA_M NI NG_TRANSFORM SET_TRANSFORM (

xformlist IN OUT NOCOPY TRANSFORM LI ST,
attribute_name VARCHAR?,
attribute_subnane VARCHAR?,
expression VARCHAR2,

24-7

Chapter 24
Embedding Transformations in a Model

reverse_expression VARCHAR?,
attribute_spec VARCHAR2 DEFAULT NULL);

SQL expressions that you specify with SET_TRANSFORM must fit within a VARCHAR2. To
specify a longer expression, you can use the SET_EXPRESSI ON procedure, which builds
an expression by appending rows to a VARCHAR? array.

24.4.2.2 The STACK Interface

The STACK interface creates transformation records from a table of transformation
instructions and adds them to a transformation list.

The STACK interface specifies that all or some of the attributes of a given type must be
transformed in the same way. For example, STACK_BI N_CAT appends binning
instructions for categorical attributes to a transformation list. The STACK interface
consists of three steps:

1. A CREATE procedure creates a transformation definition table. For example,
CREATE_BI N_CAT creates a table to hold categorical binning instructions. The table
has columns for storing the name of the attribute, the value of the attribute, and
the bin assignment for the value.

2. An I NSERT procedure computes the bin boundaries for one or more attributes and
populates the definition table. For example, | NSERT_BI N_CAT_FREQ performs
frequency-based binning on some or all of the categorical attributes in the data
source and populates a table created by CREATE BI N_CAT.

3. A STACK procedure creates transformation records from the information in the
definition table and appends the transformation records to a transformation list.
For example, STACK_BIN_CAT creates transformation records for the information
stored in a categorical binning definition table and appends the transformation
records to a transformation list.

24.4.2.3 GET_MODEL_TRANSFORMATIONS and GET_TRANSFORM_LIST

ORACLE

Use the functions to create a new transformation list.

These two functions can be used to create a new transformation list from the
transformations embedded in an existing model.

The GET_MODEL_TRANSFORMATI ONS function returns a list of embedded transformations.

DBMS_DATA M NI NG GET_MODEL_TRANSFORMATI ONS (
nmodel _nane I'N VARCHAR2)
RETURN DM TRANSFORMS PI PELI NED;

GET_MODEL_TRANSFORMATI ONS returns a table of dm t ransf or mobjects. Each dm t ransform
has these fields

attribute_nane VARCHAR2(4000)
attribute_subnane VARCHAR2(4000)
expression cLoB

reverse_expression CLOB

The components of a transformation list are transform rec, not dm transform The fields
of atransformrec are described in Table 24-2. You can call GET_MODEL_TRANSFORMATI ONS
to convert a list of dm t r ansf or mobjects to t ransf orm rec objects and append each
transformrec to a transformation list.

24-8

Chapter 24
Embedding Transformations in a Model

DBVS_DATA M NI NG GET_TRANSFORM LI ST (

xformlist QUT NOCOPY TRANSFORM LI ST,
model _xfor ms IN DM TRANSFORMS) ;
2 See Also:

"DBMS_DATA_MINING_TRANSFORM Operational Notes",
"SET_TRANSFORM Procedure", "CREATE_MODEL Procedure", and
"GET_MODEL_TRANSFORMATIONS Function" in Oracle Database
PL/SQL Packages and Types Reference

24.4.3 Transformation Lists and Automatic Data Preparation

If you enable ADP and you specify a transformation list, the transformation list is
embedded with the automatic, system-generated transformations. The transformation
list is executed before the automatic transformations.

If you enable ADP and do not specify a transformation list, only the automatic
transformations are embedded in the model.

If ADP is disabled (the default) and you specify a transformation list, your custom
transformations are embedded in the model. No automatic transformations are
performed.

If ADP is disabled (the default) and you do not specify a transformation list, no
transformations is embedded in the model. You have to transform the training, test,
and scoring data sets yourself if necessary. You must take care to apply the same
transformations to each data set.

24.4.4 Oracle Data Mining Transformation Routines

Learn about transformation routines.

Oracle Data Mining provides routines that implement various transformation
techniques in the DBVS_DATA M NI NG_TRANSFORM package.

Related Topics

e Oracle Database SQL Language Reference

24.4.4.1 Binning Routines

ORACLE

Explains Binning techniques in Oracle Data Mining.

A number of factors go into deciding a binning strategy. Having fewer values typically
leads to a more compact model and one that builds faster, but it can also lead to some
loss in accuracy.

Model quality can improve significantly with well-chosen bin boundaries. For example,
an appropriate way to bin ages is to separate them into groups of interest, such as
children 0-13, teenagers 13-19, youth 19-24, working adults 24-35, and so on.

The following table lists the binning techniques provided by Oracle Data Mining:

24-9

Chapter 24
Embedding Transformations in a Model

Table 24-3 Binning Methods in DBMS_DATA_MINING_TRANSFORM
|

Binning Method

Description

Top-N Most Frequent Items

Supervised Binning

Equi-Width Binning

Quantile Binning

You can use this technique to bin categorical attributes. You
specify the number of bins. The value that occurs most
frequently is labeled as the first bin, the value that appears with
the next frequency is labeled as the second bin, and so on. All
remaining values are in an additional bin.

Supervised binning is a form of intelligent binning, where bin
boundaries are derived from important characteristics of the
data. Supervised binning builds a single-predictor decision tree
to find the interesting bin boundaries with respect to a target. It
can be used for numerical or categorical attributes.

You can use equi-width binning for numerical attributes. The
range of values is computed by subtracting the minimum value
from the maximum value, then the range of values is divided into
equal intervals. You can specify the number of bins or it can be
calculated automatically. Equi-width binning must usually be
used with outlier treatment.

Quantile binning is a numerical binning technique. Quantiles are
computed using the SQL analytic function NTI LE. The bin
boundaries are based on the minimum values for each quantile.
Bins with equal left and right boundaries are collapsed, possibly
resulting in fewer bins than requested.

Related Topics

e Routines for Outlier Treatment

24.4.4.2 Normalization Routines

ORACLE

Learn about Normalization routines in Oracle Data Mining.

Most normalization methods map the range of a single attribute to another range,

typically O to 1 or -1 to +1.

Normalization is very sensitive to outliers. Without outlier treatment, most values are
mapped to a tiny range, resulting in a significant loss of information.

Table 24-4 Normalization Methods in DBMS_DATA_MINING_TRANSFORM
]

Transformation

Description

Min-Max Normalization

Scale Normalization

Z-Score Normalization

This technigue computes the normalization of an attribute using
the minimum and maximum values. The shift is the minimum
value, and the scale is the difference between the maximum and
minimum values.

This normalization technique also uses the minimum and
maximum values. For scale normalization, shift = 0, and scale =
max{abs(max), abs(min)}.

This technique computes the normalization of an attribute using
the mean and the standard deviation. Shift is the mean, and
scale is the standard deviation.

24-10

Chapter 24
Understanding Reverse Transformations

Related Topics

e Routines for Outlier Treatment

24.4.4.3 Routines for Outlier Treatment

Outliers are extreme values, typically several standard deviations from the mean. To
minimize the effect of outliers, you can Winsorize or trim the data.

Winsorizing involves setting the tail values of an attribute to some specified value. For
example, for a 90% Winsorization, the bottom 5% of values are set equal to the
minimum value in the 5th percentile, while the upper 5% of values are set equal to the
maximum value in the 95th percentile.

Trimming sets the tail values to NULL. The algorithm treats them as missing values.
Ouitliers affect the different algorithms in different ways. In general, outliers cause

distortion with equi-width binning and min-max normalization.

Table 24-5 Outlier Treatment Methods in DBMS_DATA_MINING_TRANSFORM

__|
Transformation Description

Trimming This technique trims the outliers in numeric columns by sorting
the non-null values, computing the tail values based on some
fraction, and replacing the tail values with nulls.

Windsorizing This technique trims the outliers in numeric columns by sorting
the non-null values, computing the tail values based on some
fraction, and replacing the tail values with some specified value.

24.5 Understanding Reverse Transformations

ORACLE

Understand why you need reverse transformations.

Reverse transformations ensure that information returned by the model is expressed in
a format that is similar to or the same as the format of the data that was used to train
the model. Internal transformation are reversed in the model details and in the results
of scoring.

Some of the attributes used by the model correspond to columns in the build data.
However, because of logic specific to the algorithm, nested data, and transformations,
some attributes donot correspond to columns.

For example, a nested column in the training data is not interpreted as an attribute by
the model. During the model build, Oracle Data Mining explodes nested columns, and
each row (an attribute name/value pair) becomes an attribute.

Some algorithms, for example Support Vector Machines (SVM) and Generalized
Linear Models (GLM), only operate on numeric attributes. Any non-numeric column in
the build data is exploded into binary attributes, one for each distinct value in the
column (SVM). GLM does not generate a new attribute for the most frequent value in
the original column. These binary attributes are set to one only if the column value for
the case is equal to the value associated with the binary attribute.

Algorithms that generate coefficients present challenges in regards to interpretability of
results. Examples are SVM and Non-Negative Matrix Factorization (NMF). These
algorithms produce coefficients that are used in combination with the transformed

24-11

Chapter 24
Understanding Reverse Transformations

attributes. The coefficients are relevant to the data on the transformed scale, not the
original data scale.

For all these reasons, the attributes listed in the model details donot resemble the
columns of data used to train the model. However, attributes that undergo embedded
transformations, whether initiated by Automatic Data Preparation (ADP) or by a user-
specified transformation list, appear in the model details in their pre-transformed state,
as close as possible to the original column values. Although the attributes are
transformed when they are used by the model, they are visible in the model details in a
form that can be interpreted by a user.

ORACLE 24-12

Creating a Model

Explains how to create data mining models and query model details.
- Before Creating a Model

e The CREATE_MODEL Procedure

e Specifying Model Settings

e Model Detail Views

25.1 Before Creating a Model

Explains the preparation steps before creating a model.

Models are database schema objects that perform data mining. The DBVS_DATA M NI NG
PL/SQL package is the API for creating, configuring, evaluating, and querying mining
models (model details).

Before you create a model, you must decide what you want the model to do. You must
identify the training data and determine if transformations are required. You can
specify model settings to influence the behavior of the model behavior. The
preparation steps are summarized in the following table.

Table 25-1 Preparation for Creating a Mining Model

Preparation Step Description

Choose the mining function See "Choosing the Mining Function"

Choose the algorithm See "Choosing the Algorithm"

Identify the build (training) data See "Preparing the Data"

For classification models, identify the test data See "Data Sets for Classification and Regression"
Determine your data transformation strategy See " Transforming the Data"

Create and populate a settings tables (if needed) See "Specifying Model Settings"

Related Topics

e About Mining Models
Mining models are database schema objects that perform data mining.

- DBMS_DATA_MINING
Understand the routines of DBMS_DATA M NI NG package.

25.2 The CREATE_MODEL Procedure

The CREATE_MODEL procedure in the DBVS_DATA M NI NG package uses the specified data
to create a mining model with the specified name and mining function. The model can
be created with configuration settings and user-specified transformations.

ORACLE 25-1

Chapter 25
The CREATE_MODEL Procedure

PROCEDURE CREATE_MODEL (

model _nane I N VARCHARZ,
m ni ng_function I'N VARCHAR?,
data_tabl e_nane I'N VARCHAR?,

case_id_colum_name | N VARCHAR?,
target_colum_name | N VARCHAR2 DEFAULT NULL,
settings_table_name | N VARCHAR2 DEFAULT NULL,

dat a_schena_nane IN VARCHAR2 DEFAULT NULL,
settings_schema_nane | N VARCHAR2 DEFAULT NULL,
xformlist I N TRANSFORM LI ST DEFAULT NULL);

25.2.1 Choosing the Mining Function

ORACLE

Explains about providing mining function to CREATE_MODEL.

The mining function is a required argument to the CREATE_MOXDEL procedure. A data
mining function specifies a class of problems that can be modeled and solved.

Data mining functions implement either supervised or unsupervised learning.
Supervised learning uses a set of independent attributes to predict the value of a
dependent attribute or target. Unsupervised learning does not distinguish between
dependent and independent attributes. Supervised functions are predictive.
Unsupervised functions are descriptive.

¢ Note:

In data mining terminology, a function is a general type of problem to be
solved by a given approach to data mining. In SQL language terminology, a
function is an operator that returns a value.

In Oracle Data Mining documentation, the term function, or mining
function refers to a data mining function; the term SQL function or SQL
Data Mining function refers to a SQL function for scoring (applying data
mining models).

You can specify any of the values in the following table for the ni ni ng_f uncti on
parameter to CREATE_MODEL.

Table 25-2 Mining Model Functions

___|
Mining_Function Value Description

ASSOCI ATI ON Association is a descriptive mining function. An association
model identifies relationships and the probability of their
occurrence within a data set. (association rules)

Association models use the Apriori algorithm.

ATTRI BUTE_| MPORTANCE Attribute Importance is a predictive mining function. An attribute
importance model identifies the relative importance of attributes
in predicting a given outcome.

Attribute Importance models use the Minimum Description
Length algorithm.

25-2

Table 25-2 (Cont.) Mining Model Functions

Chapter 25
The CREATE_MODEL Procedure

Mining_Function Value Description

CLASSI FI CATI ON

Classification is a predictive mining function. A classification

model uses historical data to predict a categorical target.

Classification models can use Naive Bayes, Decision Tree,
Logistic Regression, or Support Vector Machines. The default is

Naive Bayes.

The classification function can also be used for anomaly
detection. In this case, the SVM algorithm with a null target is

used (One-Class SVM).

Clustering is a descriptive mining function. A clustering model

CLUSTERI NG

identifies natural groupings within a data set.

Clustering models can use k-Means, O-Cluster, or Expectation
Maximization. The default is k-Means.

FEATURE_EXTRACTI ON

Feature Extraction is a descriptive mining function. A feature

extraction model creates a set of optimized attributes.

Feature extraction models can use Non-Negative Matrix
Factorization, Singular Value Decomposition (which can also be
used for Principal Component Analysis) or Explicit Semantic
Analysis. The default is Non-Negative Matrix Factorization.

REGRESSI ON

Regression is a predictive mining function. A regression model

uses historical data to predict a numerical target.

Regression models can use Support Vector Machines or Linear
Regression. The default is Support Vector Machine.

Related Topics

e Oracle Data Mining Concepts

25.2.2 Choosing the Algorithm

Learn about providing the algorithm settings for a model.

The ALGO NAME setting specifies the algorithm for a model. If you use the default
algorithm for the mining function, or if there is only one algorithm available for the
mining function, you do not need to specify the ALGO NAME setting. Instructions for
specifying model settings are in "Specifying Model Settings".

Table 25-3 Data Mining Algorithms

___|]
Default? Mining Model Function

ALGO_NAME Value Algorithm

ALGO Al _MDL
ALGO_APRI ORI _ASSOCI ATI ON_RULES Apriori
ALGO DEC! SI ON_TREE
ALGO_EXPECTATI ON_MAXI M ZATI ON Expectation Maximization
ALGO EXPLI CI T_SEMANTI C_ANALYS Explicit Semantic Analysis
ALGO_EXTENSI BLE_LANG

Minimum Description Length

Decision Tree

Language used for extensible
algorithm

ALGO _GENERALI ZED LI NEAR_ MXDEL Generalized Linear Model

ORACLE

attribute importance
association

classification

feature extraction

All mining functions are
supported

classification and regression

25-3

Chapter 25
The CREATE_MODEL Procedure

Table 25-3 (Cont.) Data Mining Algorithms
]

ALGO_NAME Value Algorithm Default? Mining Model Function
ALGO_KMEANS k-Means yes clustering

ALGO_NAI VE_BAYES Naive Bayes yes classification
ALGO_NONNEGATI VE_MATRI X_FACTOR Non-Negative Matrix Factorization yes feature extraction
ALGO_O CLUSTER O-Cluster — clustering

ALGO_SI NGULAR VALUE_DECOWP Singular Value Decomposition (can — feature extraction

also be used for Principal
Component Analysis)

ALGO_SUPPORT_VECTOR MACHINES Support Vector Machine yes default regression algorithm

regression, classification,
and anomaly detection
(classification with no target)

Related Topics

Specifying Model Settings
Understand how to configure data mining models at build time.

Oracle Data Mining Concepts

25.2.3 Supplying Transformations

You can optionally specify transformations for the build data in the xf orm | i st
parameter to CREATE_MOXDEL. The transformation instructions are embedded in the model
and reapplied whenever the model is applied to new data.

25.2.3.1 Creating a Transformation List

ORACLE

The following are the ways to create a transformation list:

The STACK interface in DBMS_DATA M NI NG_TRANSFORM

The STAK interface offers a set of pre-defined transformations that you can apply
to an attribute or to a group of attributes. For example, you can specify supervised
binning for all categorical attributes.

The SET_TRANSFORM procedure in DBMS_DATA M NI NG_TRANSFCRM

The SET_TRANSFORM procedure applies a specified SQL expression to a specified
attribute. For example, the following statement appends a transformation
instruction for count ry_i d to a list of transformations called ny_xforns. The
transformation instruction divides country_i d by 10 before algorithmic processing
begins. The reverse transformation multiplies country_i d by 10.

dbns_dat a_mini ng_t ransf orm SET_TRANSFORM (ny_xf or ns,
"country_id, NULL, 'country_id/10", 'country_id*10");

The reverse transformation is applied in the model details. If country_i d is the
target of a supervised model, the reverse transformation is also applied to the
scored target.

25-4

Chapter 25
The CREATE_MODEL Procedure

25.2.3.2 Transformation List and Automatic Data Preparation

Understand the interaction between transformation list and Automatic Data
Preparation (ADP).

The transformation list argument to CREATE_MODEL interacts with the PREP_AUTO setting,
which controls ADP:

* When ADP is on and you specify a transformation list, your transformations are
applied with the automatic transformations and embedded in the model. The
transformations that you specify are executed before the automatic
transformations.

* When ADP is off and you specify a transformation list, your transformations are
applied and embedded in the model, but no system-generated transformations are
performed.

* When ADP is on and you do not specify a transformation list, the system-
generated transformations are applied and embedded in the model.

* When ADP is off and you do not specify a transformation list, no transformations
are embedded in the model; you must separately prepare the data sets you use
for building, testing, and scoring the model.

Related Topics
* Embedding Transformations in a Model

e Oracle Database PL/SQL Packages and Types Reference

25.2.4 About Partitioned Model

Oracle Data Mining supports building of a persistent Oracle Data Mining partitioned
model. A partitioned model organizes and represents multiple models as partitions in a
single model entity, enabling a user to easily build and manage models tailored to
independent slices of data.

Persistent means that the partitioned model has an on-disk representation. The
product manages the organization of the partitioned model and simplifies the process
of scoring the partitioned model. You must include the partition columns as part of the
USI NG clause when scoring.

The partition names, key values, and the structure of the partitioned model are visible
in the ALL_M NI NG_MODEL_PARTI Tl ONS view.

¢ See Also:

e Oracle Database Reference

e Oracle Data Mining User’s Guide

25.2.4.1 Partitioned Model Build Process

To build a Partitioned Model, Oracle Data Mining requires a partitioning key. The
partition key is set through a build setting in the settings table.

ORACLE 25-5

Chapter 25
The CREATE_MODEL Procedure

The partitioning key is a comma-separated list of one or more columns (up to 16) from
the input data set. The partitioning key horizontally slices the input data based on
discrete values of the partitioning key. That is, partitioning is performed as list values
as opposed to range partitioning against a continuous value. The partitioning key
supports only columns of the data type NUMBER and VARCHAR?.

During the build process the input data set is partitioned based on the distinct values
of the specified key. Each data slice (unique key value) results in its own model
partition. This resultant model partition is not separate and is not visible to you as a
standalone model. The default value of the maximum number of partitions for
partitioned models is 1000 partitions. You can also set a different maximum partitions
value. If the number of partitions in the input data set exceed the defined maximum,
Oracle Data Mining throws an exception.

The Partitioned Model organizes features common to all partitions and the partition
specific features. The common features consist of the following metadata:

e The model name

e The mining function

e The mining algorithm

* A super set of all mining model attributes referenced by all partitions (signature)
* A common set of user-defined column transformations

* Any user-specified or default build settings that are interpreted as global. For
example, the Auto Data Preparation (ADP) setting

25.2.4.2 DDL in Partitioned model

Partitioned models are maintained through the following DDL operations:
* Drop model or drop partition

e Add partition

25.2.4.2.1 Drop Model or Drop Partition

Oracle Data Mining supports dropping a single model partition for a given partition
name.

If only a single partition remains, you cannot explicitly drop that partition. Instead, you
must either add additional partitions prior to dropping the partition or you may choose
to drop the model itself. When dropping a partitioned model, all partitions are dropped
in a single atomic operation. From a performance perspective, Oracle recommends
DROP_PARTI TI ON followed by an ADD_PARTI TI ON instead of leveraging the REPLACE option
due to the efficient behavior of the DROP_PARTI TI ON option.

25.2.4.2.2 Add Partition

ORACLE

Oracle Data Mining supports adding a single partition or multiple partitions to an
existing partitioned model.

The addition occurs based on the input data set and the name of the existing
partitioned model. The operation takes the input data set and the existing partitioned
model as parameters. The partition keys are extracted from the input data set and the
model partitions are built against the input data set. These partitions are added to the
partitioned model. In the case where partition keys for new partitions conflict with the

25-6

Chapter 25
Specifying Model Settings

existing partitions in the model, you can select from the following three approaches to
resolve the conflicts:

* ERROR Terminates the ADD operation without adding any partitions.
* REPLACE: Replaces the existing partition for which the conflicting keys are found.
* | G\CRE: Eliminates the rows having the conflicting keys.

If the input data set contains multiple keys, then the operation creates multiple
partitions. If the total number of partitions in the model increases to more than the
user-defined maximum specified when the model was created, then you get an error.
The default threshold value for the number of partitions is 1000.

25.2.4.3 Partitioned Model scoring

Learn about scoring of a partitioned model.

The scoring of the partitioned model is the same as that of the non-partitioned model.
The syntax of the data mining function remains the same but is extended to provide an
optional hint to you. The optional hint can impact the performance of a query which
involves scoring a partitioned model.

For scoring a partitioned model, the signature columns used during the build for the
partitioning key must be present in the scoring data set. These columns are combined
to form a unique partition key. The unigue key is then mapped to a specific underlying
model partition, and the identified model partition is used to score that row.

The partitioned objects that are necessary for scoring are loaded on demand during
the query execution and are aged out depending on the System Global Area (SGA)
memory.

Related Topics

e Oracle Database SQL Language Reference

25.3 Specifying Model Settings

ORACLE

Understand how to configure data mining models at build time.

Numerous configuration settings are available for configuring data mining models at
build time. To specify settings, create a settings table with the columns shown in the
following table and pass the table to CREATE_MODEL.

Table 25-4 Settings Table Required Columns

Column Name Data Type
setting_nane VARCHAR2(30)
setting_val ue VARCHAR2(4000)

Example 25-1 creates a settings table for an Support Vector Machine (SVM)
Classification model. Since SVM is not the default classifier, the ALGO_NAME setting is
used to specify the algorithm. Setting the SVMS_KERNEL_FUNCTI ON to SVMS_LI NEAR causes
the model to be built with a linear kernel. If you do not specify the kernel function, the
algorithm chooses the kernel based on the number of attributes in the data.

25-7

Chapter 25
Specifying Model Settings

Some settings apply generally to the model, others are specific to an algorithm. Model
settings are referenced in Table 25-5 and Table 25-6.

Table 25-5 General Model Settings
]

Settings Description
Mining function settings See "Mining Function Settings" in Oracle Database PL/SQL Packages and Types
Reference

Algorithm names

See "Algorithm Names" in Oracle Database PL/SQL Packages and Types
Reference

Global model characteristics See "Global Settings" in Oracle Database PL/SQL Packages and Types Reference

Automatic Data Preparation See "Automatic Data Preparation” in Oracle Database PL/SQL Packages and

Types Reference

Table 25-6 Algorithm-Specific Model Settings
]

Algorithm

Description

Decision Tree

See "Algorithm Settings: Decision Tree" in Oracle Database PL/SQL Packages
and Types Reference

Expectation Maximization See "Algorithm Settings: Expectation Maximization" in Oracle Database PL/SQL

Packages and Types Reference

Explicit Semantic Analysis See “Algorithm Settings: Explicit Semantic Analysis” in Oracle Database PL/SQL

Packages and Types Reference

Generalized Linear Models See "Algorithm Settings: Generalized Linear Models" in Oracle Database PL/SQL

Packages and Types Reference

k-Means See "Algorithm Settings: k-Means" in Oracle Database PL/SQL Packages and
Types Reference

Naive Bayes See "Algorithm Settings: Naive Bayes" in Oracle Database PL/SQL Packages and
Types Reference

Non-Negative Matrix See "Algorithm Settings: Non-Negative Matrix Factorization" in Oracle Database

Factorization PL/SQL Packages and Types Reference

O-Cluster See "Algorithm Settings: O-Cluster" in Oracle Database PL/SQL Packages and

Types Reference

Singular Value Decomposition See "Algorithm Settings: Singular Value Decomposition” in Oracle Database

PL/SQL Packages and Types Reference

Support Vector Machine See "Algorithm Settings: Support Vector Machine" in Oracle Database PL/SQL

Packages and Types Reference

ORACLE

Example 25-1 Creating a Settings Table for an SVM Classification Model

CREATE TABLE svnt_sh_sanpl e_settings (
setting_nanme VARCHAR2(30),
setting_val ue VARCHAR2(4000));

BEG N
I NSERT | NTO svnt_sh_sanpl e_settings (setting_nanme, setting_value) VALUES
(dbns_dat a_mi ni ng. al go_nane, dbns_dat a_mi ni ng. al go_support _vect or _machi nes);
I NSERT | NTO svnt_sh_sanpl e_settings (setting_nanme, setting_value) VALUES
(dbns_dat a_mi ni ng. svs_kernel _function, dbns_data_nining. svns_linear);
COWM T,
END;
/

25-8

Chapter 25
Specifying Model Settings

Related Topics
e Oracle Database PL/SQL Packages and Types Reference

25.3.1 Specifying Costs

Specify a cost matrix table to build a Decision Tree model.

The CLAS_COST_TABLE_NAME setting specifies the name of a cost matrix table to be used
in building a Decision Tree model. A cost matrix biases a classification model to
minimize costly misclassifications. The cost matrix table must have the columns shown
in the following table:

Table 25-7 Cost Matrix Table Required Columns
|

Column Name Data Type

actual _target _val ue valid target data type
predicted_target_val ue valid target data type
cost NUMBER

Decision Tree is the only algorithm that supports a cost matrix at build time. However,
you can create a cost matrix and associate it with any classification model for scoring.

If you want to use costs for scoring, create a table with the columns shown in

Table 25-7, and use the DBVS_DATA M NI NG ADD_COST_MATRI X procedure to add the cost
matrix table to the model. You can also specify a cost matrix inline when invoking a
PREDI CTI ON function. Table 23-1 has details for valid target data types.

Related Topics

e Oracle Data Mining Concepts

25.3.2 Specifying Prior Probabilities

ORACLE

Prior probabilities can be used to offset differences in distribution between the build
data and the actual population.

The CLAS PRI ORS_TABLE_NAME setting specifies the name of a table of prior probabilities
to be used in building a Naive Bayes model. The priors table must have the columns
shown in the following table.

Table 25-8 Priors Table Required Columns
|

Column Name Data Type
target _val ue valid target data type
prior_probability NUMBER

Related Topics

e Target Attribute
Understand what a target means in data mining and understand the different
target data types.

e Oracle Data Mining Concepts

25-9

Chapter 25
Specifying Model Settings

25.3.3 Specifying Class Weights

Specify class weights table settings in Logistic Regression or Support Vector Machine
(SVM) Classification to favour higher weighted classes.

The CLAS WEI GHTS_TABLE_NAME setting specifies the name of a table of class weights to
be used to bias a logistic regression (Generalized Linear Model Classification) or SVM
Classification model to favor higher weighted classes. The weights table must have
the columns shown in the following table.

Table 25-9 Class Weights Table Required Columns
|

Column Name Data Type
target val ue valid target data type
cl ass_wei ght NUMBER

Related Topics

e Target Attribute
Understand what a target means in data mining and understand the different
target data types.

e Oracle Data Mining Concepts

25.3.4 Model Settings in the Data Dictionary

ORACLE

Explains about ALL/ USER/ DBA_M NI NG MODEL_SETTI NGS in data dictionary view.

Information about mining model settings can be obtained from the data dictionary view
ALL/ USER/ DBA_M NI NG_MODEL_SETTI NGS. When used with the ALL prefix, this view returns
information about the settings for the models accessible to the current user. When
used with the USER prefix, it returns information about the settings for the models in the
user's schema. The DBA prefix is only available for DBAs.

The columns of ALL_M NI NG MODEL_SETTI NGS are described as follows and explained in
the following table.

SQL> describe al |l _mining_nodel _settings

Name Nul I ? Type

OWNER NOT NULL VARCHAR2(30)
MODEL _NAVE NOT NULL VARCHAR2(30)
SETTI NG_NAME NOT NULL VARCHAR2(30)
SETTI NG_VALUE VARCHAR2(4000)
SETTI NG_TYPE VARCHAR2(7)

Table 25-10 ALL_MINING_MODEL_SETTINGS
L

Column Description

owner Owner of the mining model.
model _name Name of the mining model.
setting_nane Name of the setting.

25-10

Chapter 25
Specifying Model Settings

Table 25-10 (Cont.) ALL_MINING_MODEL_SETTINGS

___|
Column Description

setting_val ue Value of the setting.

setting_type I NPUT if the value is specified by a user. DEFAULT if the value is system-
generated.

The following query lists the settings for the Support Vector Machine (SVM)
Classification model SYMC_SH CLAS_SAMPLE. The ALGO NAME, CLAS VE| GHTS TABLE NAME, and
SVMS_KERNEL_FUNCTI ON settings are user-specified. These settings have been specified
in a settings table for the model.

Example 25-2 ALL_MINING_MODEL_SETTINGS

SQ> COLUWN setting_val ue FORMAT A35

SQL> SELECT setting_name, setting_value, setting_type
FROM al | _mi ni ng_nodel _settings
WHERE model _name in ' SYMC_SH CLAS_SAMPLE';

SETTI NG_NAME SETTI NG_VALUE SETTI NG
SVMS_ACTI VE_LEARNI NG SVMS_AL_ENABLE DEFAULT
PREP_AUTO OFF DEFAULT
SVMS_COWPLEXI TY_FACTOR 0.244212 DEFAULT
SVMS_KERNEL_FUNCTI ON SVMS_LI NEAR | NPUT
CLAS_VEI GHTS_TABLE_NAME svnc_sh_sanpl e_cl ass_wt | NPUT
SVMS_CONV_TOLERANCE . 001 DEFAULT
ALGO_NANE ALGO_SUPPORT_VECTOR_MACHI NES | NPUT

Related Topics
* Oracle Database PL/SQL Packages and Types Reference

25.3.5 Specifying Mining Model Settings for R Model

ORACLE

The mining model settings for R model determine the characteristics of the model. You
can specify the mining model settings in the ni ni ng_rodel _t abl e.

You can build R models with the mining model settings by combining together generic
settings that do not require an algorithm, such as ODM5_PARTI TI ON_COLUWNS and
ODMB_SAMPLI NG. The following settings are exclusive to R mining model, and they allow
you to specify the R Mining model:

* ALGO_EXTENSIBLE_LANG
* RALG_BUILD_FUNCTION

* RALG_BUILD_PARAMETER
* RALG_DETAILS_FORMAT

* RALG_DETAILS_FUNCTION
* RALG_SCORE_FUNCTION

* RALG_WEIGHT_FUNCTION

25-11

Chapter 25
Specifying Model Settings

Related Topics

* Registered R Scripts
The RALG *_FUNCTI ON must specify R scripts that exist in the R script repository.
You can register the R scripts using Oracle R Enterprise.

25.3.5.1 ALGO_EXTENSIBLE_LANG

Use the ALGO EXTENSI BLE_LANG setting to specify the Oracle Data Mining framework with
extensible algorithms.

Currently, Ris the only valid value for ALGO EXTENSI BLE_LANG. When the value for
ALGO EXTENSI BLE_LANG is set to R, the mining models are built using the R language.
You can use the following settings in the nodel _setting_t abl e to specify the build,
score, and view of the R model.

- RALG_BUILD_FUNCTION

- RALG_BUILD_PARAMETER
- RALG_DETAILS_FUNCTION
- RALG_DETAILS_FORMAT

- RALG_SCORE_FUNCTION
- RALG_WEIGHT_FUNCTION

Related Topics

e Registered R Scripts
The RALG *_FUNCTI ON must specify R scripts that exist in the R script repository.
You can register the R scripts using Oracle R Enterprise.

25.3.5.2 RALG_BUILD_FUNCTION

ORACLE

Use the RALG BUI LD_FUNCTI ON to specify the name of an existing registered R script for
R algorithm mining model build.

You must specify both RALG BUI LD_FUNCTI ON and ALGO EXTENSI BLE_LANG in the

nodel _setting_tabl e. The R script defines an R function that has the first input
argument of dat a. f rame for training data, and it returns an R model object. The first
data argument is mandatory. The RALG BUI LD_FUNCTI ON can accept additional model
build parameters.

" Note:

The valid inputs for input parameters are numeric and string scalar data
types.

Example 25-3 Example of RALG_BUILD_FUNCTION

This example shows how to specify the name of the R script M/_LM BUI LD_SCRI PT that is
used to build the model in the nodel _setting_table.

Begi n

insert into nodel _setting_table values
(dbms_dat a_mi ning. ral g_buil d_function," MY_LM BU LD_SCRI PT");

25-12

Chapter 25
Specifying Model Settings

End;
/

The R script \v_LM BU LD SCRI PT defines an R function that builds the LM model. You
must register the script Mr_LM BUI LD_SCRI PT in the R script repository which uses the
existing ORE security restrictions. You can use Oracle R Enterprise API

sys.rgScri pt Creat e to register the script. Oracle R Enterprise requires the RQADM N role
to register R scripts.

For example:

Begin

sys.rqScriptCreate(' W_LM BU LD SCRIPT', 'function(data, formula, nodel.frane)
{Imformula = fornul a, data=data, nodel = as.l|ogical (nmodel.frame)}");

End;

/

For Clustering and Feature Extraction mining function model build, the R attributes
dnncl us and dnnf eat must be set on the return R model to indicate the number of
clusters and features respectively.

The R script M\v_KM BU LD _SCRI PT defines an R function that builds the k-Means model
for Clustering. R attribute dnsncl us is set with the number of clusters for the return
Clustering model.

"function(dat) {dat.scaled <- scal e(dat)
set.seed(6543); mod <- list()
fit <- kmeans(dat.scal ed, centers = 3L)
md[[1L]] < fit
mod[[2L]] <- attr(dat.scaled, "scaled:center")
mod[[3L]] <- attr(dat.scaled, "scaled:scale")
attr(nod, "dnBnclus") <- nrow(fit$centers)
mod}'

The R script M¢_PCA BU LD_SCRI PT defines an R function that builds the PCA model. R
attribute dnsnf eat is set with the number of features for the return feature extraction
model.

"function(dat) {
mod <- prconp(dat, retx = FALSE)
attr(nod, "dn$nfeat") <- ncol (nod$rotation)
mod}'

Related Topics

e RALG BUILD PARAMETER
The RALG BU LD _FUNCTI ON input parameter specifies a list of numeric and string
scalar values in SQL SELECT query statement format.

* Registered R Scripts
The RALG_*_FUNCTI ON must specify R scripts that exist in the R script repository.
You can register the R scripts using Oracle R Enterprise.

25.3.5.2.1 RALG_BUILD_PARAMETER

The RALG BU LD _FUNCTI ON input parameter specifies a list of numeric and string scalar
values in SQL SELECT query statement format.

ORACLE 25-13

Chapter 25
Specifying Model Settings

Example 25-4 Example of RALG_BUILD_PARAMETER

The RALG BU LD_FUNCTI ON input parameters must be a list of numeric and string scalar
values. The input parameters are optional.

The syntax of the parameter is:

' SELECT val ue paranmeter name ...FROM dual’

This example shows how to specify a formula for the input argument ' fornul a' and a
numeric value zero for input argument ' nodel . frame’ using the RALG BUI LD _PARAVETER.
These input arguments must match with the function signature of the R script used in
RALG_BUI LD_FUNCTI ON Parameter.

Begi n

insert into nodel _setting_table values

(dbms_dat a_mi ning.ral g_build_paraneter, 'select ''AGE ~.'' as "formula", 0 as
"nodel . frame" fromdual');

End,;

/

Related Topics

* RALG_BUILD_FUNCTION
Use the RALG BUI LD_FUNCTI ON to specify the name of an existing registered R script
for R algorithm mining model build.

25.3.5.3 RALG_DETAILS_FUNCTION

ORACLE

The RALG DETAI LS_FUNCTI ON specifies the R model metadata that is returned in the
dat a. frane.

Use the RALG DETAI LS_FUNCTI ON to specify an existing registered R script that generates
model information. The specified R script defines an R function that contains the first
input argument for the R model object. The output of the R function must be a

dat a. frane. The columns of the dat a. frame are defined by RALG DETAI LS_FORMAT, and
can contain only numeric or string scalar types.

Example 25-5 Example of RALG_DETAILS_FUNCTION

This example shows how to specify the name of the R script My_LM DETAI LS_SCRI PT in
the nodel _setting_tabl e. This script defines the R function that is used to provide the
model information.

Begin

insert into nodel _setting_table val ues

(dbms_data_mining.ral g_details_function, 'M_LMDETAILS SCRI PT");
End;

/

In the R script repository, the script Mv_LM DETAI LS _SCRI PT is registered as:

"function(nod) data.franme(name=names(nod$coefficients),
coef =nod$coefficients)'

Related Topics

* Registered R Scripts
The RALG_*_FUNCTI ON must specify R scripts that exist in the R script repository.
You can register the R scripts using Oracle R Enterprise.

25-14

Chapter 25
Specifying Model Settings

e RALG_DETAILS_FORMAT
Use the RALG DETAI LS_FORMAT parameter to specify the names and column types in
the model view. It is a string that contains a SELECT query to specify a list of
numeric and string scalar data types for the name and type of the model view
columns.

25.3.5.3.1 RALG_DETAILS_FORMAT

Use the RALG DETAI LS_FORMAT parameter to specify the names and column types in the
model view. It is a string that contains a SELECT query to specify a list of numeric and
string scalar data types for the name and type of the model view columns.

When RALG DETAI LS_FORMAT and RALG DETAI LS _FUNCTI ON are both specified, a model view
by the name DMSVD <nodel _nane> is created along with an R model in the current
schema. The first column of the model view is PARTI TI ON_NAME. It has NULL value for
non-partitioned models. The other columns of the model view are defined by

RALG DETATLS FORMAT.

Example 25-6 Example of RALG_DETAILS_FORMAT

This example shows how to specify the name and type of the columns for the
generated model view. The model view contains var char 2 column attr_nanme and
number column coef _val ue after the first column partition_nane.

Begin

insert into nodel _setting_table val ues

(dbrms_data_mining.ral g_details _format, 'select cast(''a ' as varchar2(20)) as
attr_name, 0 as coef_value fromdual');

End;

/

Related Topics

* RALG_DETAILS_FUNCTION
The RALG DETAI LS_FUNCTI ON specifies the R model metadata that is returned in the
dat a. frane.

25.3.5.4 RALG_SCORE_FUNCTION

ORACLE

Use the RALG_SCORE_FUNCTI ON to specify an existing registered R script for R algorithm
mining model score in the ni ni ng_nodel _t abl e.

The specified R script defines an R function. The first input argument defines the
model object. The second input argument defines the dat a. f r ane that is used for
scoring data.

Example 25-7 Example of RALG_SCORE_FUNCTION

This example shows how the function takes the R model and scores the data in the
data.frane. The argument object is the R Linear Model. The argument newdat a
contains scoring data in the dat a. fr ane.

function(object, newdata) {res <- predict.ln{object, newdata = newdata, se.fit =
TRUE); data.frame(fit=res$fit, se=res$se.fit, df=summary(object)3$df[1L])}

In this example,

e object indicates the LM model

* newdat a indicates the scoring data.frame

25-15

ORACLE

Chapter 25
Specifying Model Settings

The output of the specified R function must be a dat a. f rane. Each row represents the
prediction for the corresponding scoring data from the input dat a. f rane. The columns
of the dat a. f rame are specific to mining functions, such as:

Regression: A single numeric column for predicted target value, with two optional
columns containing standard error of model fit, and the degrees of freedom number.
The optional columns are needed for query function PREDI CTI ON_BOUNDS to work.

Example 25-8 Example of RALG_SCORE_FUNCTION for Regression

This example shows how to specify the name of the R script MY_LM PREDI CT_SCRI PT that
is used to score the model in the nodel _setting table.

Begin

insert into nodel _setting_table val ues

(dbms_dat a_mini ng. ral g_score_function, "MY_LM PREDI CT_SCRI PT");
End;

/

In the R script repository, the script Mv_LM PREDI CT_SCRI PT is registered as:

function(object, newdata) {data.frame(pre = predict(object, newdata = newdata))}

Classification: Each column represents the predicted probability of one target class.
The column name is the target class name.

Example 25-9 Example of RALG_SCORE_FUNCTION for Classification

This example shows how to specify the name of the R script
MY_LOG TGM PREDI CT_SCRI PT that is used to score the logit Classification model in the
model _setting_table.

Begi n

insert into nodel _setting_table values

(dbms_dat a_mi ning.ral g_score_function, 'MY_LOG TGLM PREDI CT_SCRI PT");
End;

/

In the R script repository, MY_LOG TGLM PREDI CT_SCRI PT is registered as follows. It is a
logit Classification with two target class "0" and "1".

"function(object, newdata) {
pred <- predict(object, newdata = newdata, type="response");
res <- data.frame(l-pred, pred);
names(res) <- c("0", "1");
res}’

Clustering: Each column represents the predicted probability of one cluster. The
columns are arranged in order of cluster ID. Each cluster is assigned a cluster ID, and
they are consecutive values starting from 1. To support CLUSTER DI STANCE in the R
model, the output of R score function returns extra column containing the value of the
distance to each cluster in order of cluster ID after the columns for the predicted
probability.

Example 25-10 Example of RALG_SCORE_FUNCTION for Clustering

This example shows how to specify the name of the R script
MY_CLUSTER PREDI CT_SCRI PT that is used to score the model in the nodel _setting_tabl e.

Begin
insert into nodel _setting_table values

25-16

Chapter 25
Specifying Model Settings

(dbns_dat a_mini ng. ral g_score_function, 'MY_CLUSTER PREDI CT_SCRI PT');
End;
/

In the R script repository, the script M_CLUSTER _PREDI CT_SCRI PT is registered as:

"function(object, dat){
mod <- object[[1L]]; ce <- object[[2L]]; sc <- object[[3L]];
newdata = scal e(dat, center = ce, scale = sc);
centers <- nod$centers;
ss <- sapply(as.data.frame(t(centers)),
function(v) rowSuns(scal e(newdata, center=v, scal e=FALSE)"2));
if ('is.mtrix(ss)) ss <- matrix(ss, ncol =l ength(ss));
disp <- -1/ (2* mod$tot.withinss/length(nod$cluster));
distr <- exp(disp*ss);
prob <- distr / rowSuns(distr);
as. data. frame(chind(prob, sqrt(ss)))}

Feature Extraction: Each column represents the coefficient value of one feature. The
columns are arranged in order of feature ID. Each feature is assigned a feature ID,
and they are consecutive values starting from 1.

Example 25-11 Example of RALG_SCORE_FUNCTION for Feature Extraction

This example shows how to specify the name of the R script
MY_FEATURE_EXTRACTI ON_SCRI PT that is used to score the model in the
model _setting_table.

Begin

insert into nodel _setting_table val ues

(dbms_dat a_mini ng. ral g_score_function, "MY_FEATURE_EXTRACTI ON_SCRI PT");
End;

/

In the R script repository, the script MY_FEATURE_EXTRACTI ON_SCRI PT is registered as:

"function(object, dat) { as.data.franme(predict(object, dat)) }'

The function fetches the centers of the features from the R model, and computes the
feature coefficient based on the distance of the score data to the corresponding
feature center.

Related Topics

* Registered R Scripts
The RALG_*_FUNCTI ON must specify R scripts that exist in the R script repository.
You can register the R scripts using Oracle R Enterprise.

25.3.5.5 RALG_WEIGHT_FUNCTION

ORACLE

Use the RALG WEI GHT_FUNCTI ON to specify the name of an existing registered R script
that computes weight or contribution for each attribute in scoring. The specified R
script is used in the query function PREDI CTI ON_DETAI LS to evaluate attribute
contribution.

The specified R script defines an R function containing the first input argument for
model object, and the second input argument of dat a. f rane for scoring data. When the
mining function is Classification, Clustering, or Feature Extraction, the target class
name or cluster ID or feature ID is passed by the third input argument to compute the
weight for that particular class or cluster or feature. The script returns a dat a. f r ame

25-17

Chapter 25
Specifying Model Settings

containing the contributing weight for each attribute in a row. Each row corresponds to
that input scoring dat a. f r ane.

Example 25-12 Example of RALG_WEIGHT_FUNCTION

This example shows how to specify the name of the R script Mv_PREDI CT_WEI GHT_SCRI PT
that computes weight or contribution of R model attributes in the nodel _setting_table.

Begin

insert into nodel setting table values

(dbnms_data_mini ng. ral g_wei ght _function, ' MY_PREDI CT_WEI GHT_SCRI PT');
End,;

/

In the R script repository, the script My_PREDI CT_WEI GHT_SCRI PT for Regression is
registered as:

"function(nod, data) { coef(nod)[-1L]*data }'

In the R script repository, the script MY_PREDI CT_WEI GHT_SCRI PT for logit Classification is
registered as:

"function(mod, dat, clas) {
v <- predict(md, newdata=dat, type = "response");
v0 <- data.frame(v, 1-v); nanmes(v0) <- c("0", "1");
res <- data.franme(lapply(seq_al ong(dat),
function(x, dat) {
if(is.numeric(dat[[x]])) dat[,x] <- as.numeric(0)
el se dat[,x] <- as.factor(NA);
vv <- predict(md, newdata = dat, type = "response");
vv = data.frame(vv, 1-vv); names(vv) <- c("0", "1");
vO[[clas]] / vv[[clas]]}, dat = dat));
nanes(res) <- names(dat);
res}’

Related Topics

* Registered R Scripts
The RALG_*_FUNCTI ON must specify R scripts that exist in the R script repository.
You can register the R scripts using Oracle R Enterprise.

25.3.5.6 Registered R Scripts

ORACLE

The RALG *_FUNCTI ON must specify R scripts that exist in the R script repository. You
can register the R scripts using Oracle R Enterprise.

The RALG *_FUNCTI ON includes the following functions:

- RALG_BUILD_FUNCTION

- RALG_DETAILS_FUNCTION
- RALG_SCORE_FUNCTION
« RALG_WEIGHT_FUNCTION

Note:

The R scripts must exist in the R script repository for an R model to function.

25-18

Chapter 25
Model Detail Views

You can register the R scripts through Oracle Enterprise R (ORE). To register R
scripts, you must have the RQADM N role. After an R model is built, the names of these
specified R scripts become model settings. These R scripts must exist in the R script
repository for an R model to remain functional.

You can manage the R memory that is used to build, score, and view the R models
through Oracle Enterprise R as well.

25.3.5.7 R Model Demonstration Scripts

You can access R model demonstration scripts under r dbrs/ deno

dnrai deno. sql dnr gl ndeno. sql dnr pcadeno. sql
dnrardeno. sql dnrkndeno. sql dnrrfdeno. sql
dnr dt dermo. sql dnrnndeno. sql

25.4 Model Detalil Views

ORACLE

The GET_* interfaces are replaced by model views, and Oracle recommends that users
leverage the views instead.

The following are the new model views:
Association:

* Model Detail Views for Association Rules

* Model Detail View for Frequent Itemsets

* Model Detail View for Transactional Itemsets

* Model Detail View for Transactional Rule
Classification, Regression, and Anomaly Detection:
e Model Detail Views for Classification Algorithms

* Model Detail Views for Decision Tree

* Model Detail Views for Generalized Linear Model

e Model Detail Views for Naive Bayes

e Model Detail View for Support Vector Machine

Clustering:

* Model Detail Views for Clustering Algorithms

* Model Detail Views for Expectation Maximization

* Model Detail Views for k-Means

* Model Detail Views for O-Cluster

Feature Extraction:

* Model Detail Views for Explicit Semantic Analysis

* Model Detail Views for Non-Negative Matrix Factorization
* Model Detail Views for Singular Value Decomposition

Feature Selection:

25-19

Chapter 25
Model Detail Views

* Model Detail View for Minimum Description Length

Data Preparation and Other:

* Model Detail View for Binning
e Model Detail Views for Global Information

* Model Detail View for Normalization and Missing Value Handling

25.4.1 Model Detail Views for Association Rules

Model detail views for Association Rules describes the rule view for Association Rules.
Oracle recommends that users leverage the model details views instead of the
GET_ASSOCI ATI ON_RULES function.

The rule view DMSVRmodel_name describes the generated rules for Association Rules.
Depending on the settings of the model, the rule has different set of columns. The
following views are displayed when different Global settings are applied without
aggregates for transactional and 2—-Dimensional inputs.

Transactional Input Without ASSO_AGGREGATES Setting

When ODVS_| TEM | D_COLUMN_NANE is set and | TEM VALUE (CDVS_| TEM VALUE_COLUMN_NAME) is
not set, the following is the transactional view:

Nane Type
PARTI TI ON_NAME VARCHAR2(128)
RULE_I D NUMBER
RULE_SUPPORT NUMBER
RULE_CONFI DENCE NUMBER
RULE_LI FT NUMBER
RULE_REVCONFI DENCE NUMBER
ANTECEDENT _SUPPORT NUMBER
NUMBER_COF_| TEMS NUMBER
CONSEQUENT_SUPPORT NUMBER
CONSEQUENT_NAME VARCHAR2(14000)
ANTECEDENT SYS. XMLTYPE

Table 25-11 Rule View Columns for Transactional Inputs
|

Column Name

Description

PARTI TI ON_NAMVE
RULE_I D
RULE_SUPPORT
RULE_CONFI DENCE
RULE LI FT

RULE_REVCONFI DENCE

ANTECEDENT _SUPPORT

NUVBER OF | TEMB

ORACLE

A partition in a partitioned model to retrieve details
Name or identifier of the target

The number of transactions that satisfy the rule.
The likelihood of a transaction satisfying the rule.

The degree of improvement in the prediction over random chance when the
rule is satisfied.

The number of transactions in which the rule occurs divided by the number of
transactions in which the consequent occurs.

The ratio of the number of transactions that satisfy the antecedent to the total
number of transactions.

The total number of attributes referenced in the antecedent and consequent of
the rule.

25-20

Chapter 25
Model Detail Views

Table 25-11 (Cont.) Rule View Columns for Transactional Inputs
]

Column Name

Description

CONSEQUENT _SUPPORT

CONSEQUENT_NANE
CONSEQUENT_SUBNAME

ORACLE

The ratio of the number of transactions that satisfy the consequent to the total
number of transactions.

Name of the consequent

For two-dimensional inputs, CONSEQUENT_SUBNAME is used for nested column in
the input data table. See, Example: Creating a Nested Column for Market
Basket Analysis. In this example, there is a nested column. The
CONSEQUENT_SUBNAME is the ATTRI BUTE_NAME part of the nested column. That
is," O S Docurmentation Set - English' and CONSEQUENT VALLUE is the value
part of the nested column, which is, 1.

For two-dimensional inputs, when ODVS_| TEM | D_COLUMN_NAME is not set, each
item consists of three parts: NAVE, SUBNAME and VALUE.

The view uses three columns for consequent. The rule view has the following
columns:

Name Type
PARTI TI ON_NAME VARCHAR2(128)
RULE_I D NUMBER
RULE_SUPPORT NUMBER
RULE_CONFI DENCE NUMBER
RULE_LI FT NUMBER
RULE_REVCONFI DENCE NUMBER
ANTECEDENT _SUPPORT NUMBER
NUVBER_COF_| TEMS NUMBER
CONSEQUENT_SUPPCORT NUMBER
CONSEQUENT_NAME VARCHAR2(4000)
CONSEQUENT_SUBNAMVE VARCHAR2(4000)
CONSEQUENT_VALUE VARCHAR2(4000)
ANTECEDENT SYS. XMLTYPE

Note:

All the types for three parts are VARCHAR2. This
column is not applicable when ASSO AGGREGATES
is set.

25-21

Table 25-11 (Cont.) Rule View Columns for Transactional Inputs

Chapter 25
Model Detail Views

Column Name

Description

CONSEQUENT_VALUE

ORACLE

Value of the consequent when ODMVS_| TEM | D COLUWN_NAME is set and
I'tem val ue (ODVS_I| TEM VALUE_COLUMN_NAME) is set with TYPE as numerical,

the view has a CONSEQUENT _VALUE column.

In the following view, the TYPE of the CONSEQUENT _VALUE is NUMBER.

Nane
PARTI TI ON_NAME
RULE_I D

RULE_SUPPORT
RULE_CONFI DENCE
RULE_LIFT
RULE_REVCONFI DENCE
ANTECEDENT SUPPORT
NUMBER OF | TEMB
CONSEQUENT _SUPPORT
CONSEQUENT _NAVE
CONSEQUENT VAL UE
ANTECEDENT

VARCHAR?(4000)
NUMBER
SYS. XMLTYPE

When ODMS_| TEM | D COLUWN_NAME is set and | t em val ue
(OCDVS_I TEM VALUE_COLUWN_NAME) is set with TYPE as categorical, the view has

a CONSEQUENT _VALUE column.

In the following view, the TYPE of the CONSEQUENT_VALUE is VARCHAR.

Narre
PARTI TI ON_NAME
RULE_ID

RULE_SUPPORT
RULE_CONFI DENCE
RULE_LIFT
RULE_REVCONFI DENCE
ANTECEDENT _SUPPORT
NUMBER OF | TEMB
CONSEQUENT _SUPPORT
CONSEQUENT _NAVE
CONSEQUENT VAL UE
ANTECEDENT

VARCHAR2(128)
NUMBER

NUMBER

NUMBER

NUMBER

NUMBER

NUMBER

NUMBER

NUMBER
VARCHAR2(4000)
VARCHAR2(4000)
SYS. XMLTYPE

25-22

Chapter 25
Model Detail Views

Table 25-11 (Cont.) Rule View Columns for Transactional Inputs

Column Name

Description

ANTECEDENT

The independent condition in the rule. When this condition exists, the
dependent condition in the consequent also exists. The condition is a
combination of attribute values called a predicate (DM PREDI CATE). The
predicate specifies a condition for each attribute. The condition can specify
equality (=), inequality (<>), greater than (>), less than (<), greater than or
equal to (>=), or less than or equal to (<=) a given value. Support and
confidence for each attribute condition in the antecedent is returned in the
predicate. Support is the number of transactions that satisfy the antecedent.
Confidence is the likelihood that a transaction satisfies the antecedent.

ANTECEDENT also contains the | TEM VALUE (type number) part for each
antecedent item.

¢ Note:

The occurrence of the attribute as a

DM _PREDI CATE indicates the presence of the item
in the transaction. The actual value for

attribute numvalueorattribute str_val ue
is meaningless. For example, the following
predicate indicates that ‘Mouse Pad' is present
in the transaction even though the attribute
value is NULL.

DM PREDI CATE(' PROD_NAME' , ' Mouse Pad', '=
", NULL, NULL, NULL, NULL))

ORACLE

Transactional Input With ASSO_AGGREGATES Setting

Similar to the view without aggregates setting, there are three transactional cases. The
following are the cases:

Rule view when ODVS_| TEM | D_COLUMN_NAME is set and | t em val ue
(ODVB_I TEM VALUE_COLUVN_NAME) is not set.

Rule view when ODVS_| TEM | D_COLUMN_NAME is set and | t em val ue
(ODVB_I TEM VALUE_COLUWN_NAME) is set with TYPE as numerical, the view has a
CONSEQUENT_VALUE column.

Rule view when ODVS_| TEM | D_COLUMN_NAME is set and |t em val ue
(ODVB_I TEM VALUE_COLUWN_NAME) is set with TYPE as categorical, the view has a
CONSEQUENT_VALUE column.

The view with ASSO AGGREGATES has columns for the aggregates output (four columns
per aggregate). The 2-Dimensional input does not allow aggregates setting.

Example 25-13 Examples

The following example shows profit and sales set to be aggregated:

PARTI TI ON_NAMVE

25-23

ORACLE

RULE_SUPPORT
RULE_CONFI DENCE
RULE LI FT
RULE_REVCONFI DENCE
ANTECEDENT _SUPPORT
NUMBER OF | TEMS
CONSEQUENT_SUPPORT
CONSEQUENT _NAME
ANTECEDENT
ANT_RULE_PROFI T
CON_RULE_PROFI T
ANT_PROFI T
CON_PROFI T
ANT_RULE_SALES
CON_RULE_SALES
ANT_SALES
CON_SALES

NUMBER
NUMBER

NUMBER

NUMBER

NUMBER

NUMBER

NUMBER
VARCHAR2(4000)
SYS. XMLTYPE

BI NARY_DOUBLE
BI NARY_DOUBLE
BI NARY_DOUBLE
BI NARY_DOUBLE
BI NARY_DOUBLE
BI NARY_DOUBLE
BI NARY_DOUBLE
BI NARY_DOUBLE

Rule view when ODVS_| TEM | D_COLUMN_NAME is set and |t em val ue
(ODVB_I TEM VALUE_COLUWN_NAME) is set with TYPE as numerical, the view has a

CONSEQUENT_VALUE column.

Chapter 25
Model Detail Views

PARTI TI ON_NAME
RULE_I D
RULE_SUPPORT
RULE_CONFI DENCE
RULE_LIFT
RULE_REVCONFI DENCE
ANTECEDENT SUPPORT
NUMBER OF | TEMB
CONSEQUENT _SUPPORT
CONSEQUENT _NAVE
CONSEQUENT VALUE
ANTECEDENT
ANT_RULE_PROFI T
CON_RULE_PROFI T
ANT_PROFI T
CON_PROFI T
ANT_RULE_SALES
CON_RULE_SALES
ANT_SALES
CON_SALES

VARCHAR?(128)
NUMBER
NUMBER
NUMBER
NUMBER
NUMBER
NUMBER
NUMBER
NUMBER
VARCHAR?(4000)
NUMBER

SYS. XMLTYPE
BI NARY_DOUBLE
BI NARY_DOUBLE
BI NARY_DOUBLE
BI NARY_DOUBLE
BI NARY_DOUBLE
BI NARY_DOUBLE
BI NARY_DOUBLE
BI NARY_DOUBLE

Rule view when ODVS_| TEM | D_COLUMN_NAME is set and | t em val ue
(ODVB_I TEM VALUE_COLUWN_NAME) is set with TYPE as categorical, the view has a

CONSEQUENT_VALUE column.

PARTI TI ON_NANE
RULE | D
RULE_SUPPORT
RULE_CONFI DENCE
RULE LI FT
RULE_REVCONFI DENCE
ANTECEDENT _SUPPORT
NUVBER OF | TEMS
CONSEQUENT _SUPPCRT
CONSEQUENT _NANME

VARCHAR?(128)
NUMBER
NUMBER
NUMBER
NUMBER
NUMBER
NUMBER
NUMBER
NUMBER
VARCHAR?(4000)

25-24

Chapter 25
Model Detail Views

CONSEQUENT_VALUE VARCHAR2(4000)
ANTECEDENT SYS. XM.TYPE

ANT_RULE_PROFI T BI NARY_DOUBLE
CON_RULE_PROFI T BI NARY_DOUBLE
ANT_PROFI T BI NARY_DOUBLE
CON_PROFI T BI NARY_DOUBLE
ANT_RULE_SALES BI NARY_DOUBLE
CON_RULE_SALES BI NARY_DOUBLE
ANT_SALES BI NARY_DOUBLE
CON_SALES BI NARY_DOUBLE

Global Detail for Association Rules

A single global detail is produced by an Association model. The following table
describes a global detail returned for Association Rules model.

Table 25-12 Global Detail for Association Rules
]

Name Description

| TEMSET_COUNT The number of itemsets generated

MAX_SUPPCORT The maximum support

NUM_ROAS The total number of rows used in the build

RULE_COUNT The number of association rules in the model generated
TRANSACTI ON_COUNT The number of the transactions in input data

25.4.2 Model Detalil View for Frequent ltemsets

ORACLE

Model detail view for Frequent Itemsets describes the frequent itemsets view. Oracle
recommends that you leverage model details view instead of the
GET_FREQUENT _| TEMBETS function.

The frequent itemsets view DMsVI model_name has the following schema:

Name Type
PARTI TION_NAME ~ VARCHAR? (128)
| TEVSET_I D NUMBER
SUPPORT NUMBER
NUMBER OF | TEMS NUMBER
| TENBET SYS. XMLTYPE

Table 25-13 Frequent Itemsets View
|

Column Name Description

PARTI TI ON_NAMVE A partition in a partitioned model
| TEMSET_I D Itemset identifier

SUPPORT Support of the itemset
NUMBER OF | TEMS Number of items in the itemset

| TEMSET Frequent itemset

The structure of the SYS. XMLTYPE column itemset is the
same as the corresponding Antecedent column of the
rule view.

25-25

Chapter 25
Model Detail Views

25.4.3 Model Detail View for Transactional ltemsets

Model detail view for Transactional ltemsets describes the transactional itemsets view.
Oracle recommends that users leverage the model details views.

For the very common case of transactional data without aggregates,
DMVTmodel_name view provides the itemsets information in transactional format. This
view can help improve performance for some queries as compared to the view with the
XML column. The transactional itemsets view has the following schema:

Name Type
PARTI TI ON_NANE VARCHAR?(128)
| TEVSET_I D NUVBER
| TEM | D NUVBER
SUPPORT NUVBER
NUMBER OF | TEMS NUVBER
| TEM NAVE VARCHAR2(4000)

Table 25-14 Transactional Itemsets View
]

Column Name Description

PARTI TI ON_NAMVE A partition in a partitioned model
| TEMSET_I D Itemset identifier

| TEM I D Item identifier

SUPPORT Support of the itemset
NUMBER OF | TEMS Number of items in the itemset

| TEM_NAMVE The name of the item

25.4.4 Model Detail View for Transactional Rule

ORACLE

Model detail view for Transactional Rule describes the transactional rule view and
transactional itemsets view. Oracle recommends that you leverage model details
views.

Transactional data without aggregates also has a transactional rule view
DMsVAmodel_name. This view can improve performance for some queries as compared
to the view with the XML column. The transactional rule view has the following
schema:

Nane Type

PARTI TI ON_NANE VARCHAR2(128)
RULE I D NUMBER
ANTECEDENT_PREDI CATE VARCHAR2(4000)
CONSEQUENT _PREDI CATE VARCHAR2(4000)
RULE_SUPPORT NUMBER
RULE_CONFI DENCE NUMBER

RULE LI FT NUMBER
RULE_REVCONFI DENCE NUMBER

RULE_| TEMSET | D NUMBER
ANTECEDENT _SUPPORT NUMBER
CONSEQUENT_SUPPORT NUMBER
NUMBER OF | TEMS NUMBER

25-26

ORACLE

Chapter 25
Model Detail Views

Table 25-15 Transactional Rule View
]

Column Name

Description

PARTI TI ON_NAMVE

RULE I D

ANTECEDENT _PREDI CATE
CONSEQUENT_PREDI CATE
RULE_SUPPORT
RULE_CONFI DENCE

RULE_LI FT

RULE_REVCONFI DENCE

RULE_| TEMSET_I D

ANTECEDENT_SUPPORT

CONSEQUENT _SUPPORT

NUVBER OF | TEMB

A partition in a partitioned model
Rule identifier

Name of the Antecedent item.
Name of the Consequent item
Support of the rule

The likelihood a transaction satisfies the rule when it
contains the Antecedent.

The degree of improvement in the prediction over
random chance when the rule is satisfied

The number of transactions in which the rule occurs
divided by the number of transactions in which the
consequent occurs

Itemset identifier

The ratio of the number of transactions that satisfy the
antecedent to the total number of transactions

The ratio of the number of transactions that satisfy the
consequent to the total number of transactions

Number of items in the rule

25.4.5 Model Detail Views for Classification Algorithms

Model detail view for Classification algorithms describe target map view and scoring
cost view which are applicable to all Classification algorithms. Oracle recommends
that users leverage the model details views instead of the GET_* function.

The target map view DMsVTmodel _name describes the target distribution for
Classification models. The view has the following schema:

PARTI TI ON_NAME
TARGET VALUE
TARGET_COUNT
TARGET_VEI GHT

Table 25-16 Target Map View

VARCHAR?(128)
NUMBER! VARCHAR?
NUMBER

NUMBER

Column Name

Description

PARTI TI ON_NAMVE
TARGET VALUE
TARGET_COUNT
TARGET_VEI GHT

Partition name in a partitioned model
Target value, numerical or categorical
Number of rows for a given TARGET_VALUE
Weight for a given TARGET_VALUE

The scoring cost view DMVCmodel_name describes the scoring cost matrix for
Classification models. The view has the following schema:

25-27

PARTI TI ON_NAME
ACTUAL_TARGET VALUE
PREDI CTED_TARGET VALUE
oosT

Chapter 25
Model Detail Views

VARCHAR?(128)
NUVBER/ VARCHAR?
NUVBER/ VARCHAR?
NUMBER

Table 25-17 Scoring Cost View
|

Column Name

Description

PARTI TI ON_NAMVE
ACTUAL_TARGET VALUE
PREDI CTED TARGET VALUE
oosT

Partition name in a partitioned model
A valid target value
Predicted target value

Associated cost for the actual and predicted target value
pair

25.4.6 Model Detail Views for Decision Tree

Model detail view for Decision Tree describes the split information view, node statistics
view, node description view, and the cost matrix view. Oracle recommends that users
leverage the model details views instead of GET_MODEL_DETAI LS_XM. function.

ORACLE

The split information view DMsVPmodel_name describes the decision tree hierarchy and
the split information for each level in the Decision Tree. The view has the following

schema:

PARTI TI ON_NAMVE
PARENT

SPLIT_TYPE

NCDE

ATTRI BUTE_NAME
ATTRI BUTE_SUBNAVE
OPERATOR

VALUE

VARCHAR?(128)
NUMBER
VARCHAR?
NUMBER
VARCHAR?(128)
VARCHAR?(4000)
VARCHAR?

SYS. XMLTYPE

Table 25-18 Split Information View
|

Column Name

Description

PARTI TI ON_NAME
PARENT

SPLI T_TYPE
NCDE

ATTRI BUTE_NAME

ATTRI BUTE_SUBNAME

OPERATOR

Partition name in a partitioned model
Node ID of the parent

The main or surrogate split

The node ID

The attribute used as the splitting criterion at the parent
node to produce this node.

Split attribute subname. The value is null for non-nested
columns.

Split operator

25-28

Chapter 25
Model Detail Views

Table 25-18 (Cont.) Split Information View

___|
Column Name Description

VALUE Value used as the splitting criterion. This is an XML
element described using the <El enent > tag.
For example, <El enent >W ndy</
El ement ><El enent >Hot </ El ement >.

The node statistics view DMBVI model_name describes the statistics associated with
individual tree nodes. The statistics include a target histogram for the data in the node.
The view has the following schema:

Nane Type
PARTI TI ON_NAME VARCHAR2(128)
NODE NUVBER
NODE_SUPPORT NUVBER
PREDI CTED _TARGET_VALUE NUMBER/ VARCHAR2
TARGET_VALUE NUMBER/ VARCHAR2
TARGET_SUPPORT NUVBER

Table 25-19 Node Statistics View
]

Parameter Description

PARTI TI ON_NAME Partition name in a partitioned model

NCDE The node ID

NCDE_SUPPORT Number of records in the training set that belong to the
node

PREDI CTED TARGET VALUE Predicted Target value

TARGET_VALUE A target value seen in the training data

TARGET_SUPPORT The number of records that belong to the node and have

the value specified in the TARGET_VALUE column

Higher level node description can be found in DvMfVOmodel_name view. The
DMVOmodel_name has the following schema:

ame Type
PARTI TI ON_NANE VARCHAR?(128)
NODE NUMBER
NODE_SUPPORT NUMBER
PREDI CTED_TARGET VALUE NUMBER/ VARCHAR?
PARENT NUMBER
ATTR! BUTE_NAVE VARCHAR?(128)
ATTR! BUTE_SUBNAME VARCHAR?(4000)
OPERATOR VARCHAR?
VALUE SYS. XMLTYPE

ORACLE 25-29

Chapter 25
Model Detail Views

Table 25-20 Node Description View
|

Parameter Description

PARTI TI ON_NAME Partition name in a partitioned model

NCDE The node ID

NCODE_SUPPORT Number of records in the training set that belong to the
node

PREDI CTED_TARGET_VALUE Predicted Target value

PARENT The ID of the parent

ATTRI BUTE_NAME Specifies the attribute name

ATTRI BUTE_SUBNAME Specifies the attribute subname

OPERATOR Attribute predicate operator - a conditional operator

taking the following values:
IN, =, <>, <,> <= and >=

VALUE Value used as the description criterion. This is an XML
element described using the <El enent > tag.

For example, <El enent >W ndy</
El enent ><El enent >Hot </ El enent >.

The DMbVMmModel _name view describes the cost matrix used by the Decision Tree build.
The DMbVMmModel_name view has the following schema:

Name Type
PARTI TI ON_NAVE VARCHAR2(128)
ACTUAL_TARGET VALUE NUVBER/ VARCHAR?
PREDI CTED_TARGET VALUE NUVBER/ VARCHAR?
oosT NUMBER

Table 25-21 Cost Matrix View
]

Parameter Description

PARTI TI ON_NAMVE Partition name in a partitioned model

ACTUAL_TARGET_VALUE Valid target value

PREDI CTED_TARGET_VALUE Predicted Target value

CosT Associated cost for the actual and predicted target value
pair

The following table describes the global view for Decision Tree.

Table 25-22 Decision Tree Statistics Information In Model Global View

__|
Name Description

NUM_ROAS The total number of rows used in the build

ORACLE 25-30

25.4.7 Model Detail Views for Generalized Linear Model

Model details views for Generalized Linear Model (GLM) describes the model details
view and row diagnostic view for Linear and Logistic Regression. Oracle recommends
that users leverage model details views than the GET_MODEL_DETAI LS_G.Mfunction.

Table 25-23 Model View for Linear and Logistic Regression Models

PARTI TI ON_NAMVE
ATTRI BUTE_NAME

ATTRI BUTE_SUBNANE
ATTRI BUTE_VALUE
FEATURE_EXPRESSI ON

COEFFI Ol ENT
STD_ERROR
TEST_STATISTIC
P_VALUE

VIF

STD_COEFFI Cl ENT
LOAER COEFF LIM T
UPPER COEFF LIM T

PARTI TI ON_NAMVE
TARGET_VALUE
ATTRI BUTE_NAME

ATTRI BUTE_SUBNAVE
ATTRI BUTE_VALUE
FEATURE_EXPRESSI ON

COEFFI Ol ENT
STD_ERROR
TEST_STATISTIC
P_VALUE
STD_COEFFI Cl ENT

LOAER COEFF LIM T
UPPER COEFF LIM T

EXP_COEFFI Cl ENT

EXP_LOWER COEFF_LIM T
EXP_UPPER COEFF_LIM T

VARCHAR?(128)

VARCHAR?(128)

VARCHAR?(4000)
VARCHAR?(4000)
VARCHAR?(4000)
BI NARY_DOUBLE
BI NARY_DOUBLE
BI NARY_DOUBLE
BI NARY_DOUBLE
BI NARY_DOUBLE
BI NARY_DOUBLE
BI NARY_DOUBLE
BI NARY_DOUBLE

VARCHAR?(128)
NUVBER! VARCHAR?
VARCHAR?(128)
VARCHAR?(4000)
VARCHAR?(4000)
VARCHAR?(4000)
BI NARY_DOUBLE
BI NARY_DOUBLE
BI NARY_DOUBLE
BI NARY_DOUBLE
BI NARY_DOUBLE
BI NARY_DOUBLE
BI NARY_DOUBLE
BI NARY_DOUBLE
BI NARY_DOUBLE
BI NARY_DOUBLE

Chapter 25
Model Detail Views

The model details view DMVDmModel_name describes the final model information for
both Linear Regression models and Logistic Regression models.

For Linear Regression, the view DMgvDmodel_name has the following schema:

For Logistic Regression, the view DMsvVDmodel_name has the following schema:

Column Name

Description

PARTI TI ON_NAME

TARGET_VALUE

ORACLE

The name of a feature in the model

Valid target value

25-31

Chapter 25
Model Detail Views

Table 25-23 (Cont.) Model View for Linear and Logistic Regression Models

Column Name

Description

ATTRI BUTE_NAME

ATTRI BUTE_SUBNAME

ATTRI BUTE_VALUE

FEATURE_EXPRESSI ON

CCEFFI CI ENT
STD_ERROR
TEST_STATI STIC

ORACLE

The attribute name when there is no subname, or first part of the
attribute name when there is a subname. ATTRI BUTE_NAME is the
name of a column in the source table or view. If the column is a non-
nested, numeric column, then ATTRI BUTE_NAME is the name of the
mining attribute. For the intercept, ATTRI BUTE_NAME is null. Intercepts
are equivalent to the bias term in SVM models.

Nested column subname. The value is null for non-nested columns.

When the nested column is numeric, the mining attribute is identified
by the combination ATTRI BUTE_NAME - ATTRI BUTE_SUBNAME. If the
column is not nested, ATTRI BUTE_SUBNAME is null. If the attribute is an
intercept, both the ATTRI BUTE_NAME and the ATTRI BUTE_SUBNAME are
null.

A unique value that can be assumed by a categorical column or
nested categorical column. For categorical columns, a mining
attribute is identified by a unique ATTRI BUTE_NAME. ATTRI BUTE_VALUE
pair. For nested categorical columns, a mining attribute is identified
by the combination:

ATTRI BUTE_NAME. ATTRI BUTE_SUBNAVME. ATTRI BUTE_VALUE. For
numerical attributes, ATTRI BUTE_VALUE is null.

The feature name constructed by the algorithm when feature
selection is enabled. If feature selection is not enabled, the feature
name is simply the fully-qualified attribute name
(attribute_name.attribute_subname if the attribute is in a nested
column). For categorical attributes, the algorithm constructs a feature
name that has the following form:

fully-qualified_attribute_name.attribute_value

When feature generation is enabled, a term in the model can be a
single mining attribute or the product of up to 3 mining attributes.
Component mining attributes can be repeated within a single term. If
feature generation is not enabled or, if feature generation is enabled,
but no multiple component terms are discovered by the CREATE
model process, then FEATURE_EXPRESSI ON is null.

" Note:

In Oracle Database 12c¢ Release 2, the
algorithm does not subtract the mean
from numerical components.

The estimated coefficient.
Standard error of the coefficient estimate.

For Linear Regression, the t-value of the coefficient estimate.

For Logistic Regression, the Wald chi-square value of the coefficient
estimate.

25-32

Chapter 25
Model Detail Views

Table 25-23 (Cont.) Model View for Linear and Logistic Regression Models

Column Name

Description

P_VALUE

VI F

STD_COEFFI Cl ENT
LOAER COEFF_LIM T
UPPER COEFF_LIM T
EXP_COEFFI Cl ENT

EXP_LOAER COEFF_LIM T

EXP_UPPER COEFF LIMT

Probability of the TEST_STATI STI C under the (NULL) hypothesis that
the term in the model is not statistically significant. A low probability
indicates that the term is significant, while a high probability indicates
that the term can be better discarded. Used to analyze the
significance of specific attributes in the model.

Variance Inflation Factor. The value is zero for the intercept. For
Logistic Regression, VI F is null.

Standardized estimate of the coefficient.
Lower confidence bound of the coefficient.
Upper confidence bound of the coefficient.

Exponentiated coefficient for Logistic Regression. For linear
regression, EXP_COEFFI Cl ENT is null.

Exponentiated coefficient for lower confidence bound of the
coefficient for Logistic Regression. For Linear Regression,
EXP_LOAER_CCEFF_LIM T is null.

Exponentiated coefficient for upper confidence bound of the
coefficient for Logistic Regression. For Linear Regression,
EXP_UPPER_CCEFF_LI M T is null.

The row diagnostic view DMVAmodel_name describes row level information for both
Linear Regression models and Logistic Regression models. For Linear Regression,
the view DMVAmodel _name has the following schema:

PARTI TI ON_NAME
CASE I D

TARGET VALUE

PREDI CTED TARGET VALUE
Hat

RESI DUAL

STD ERR RESI DUAL
STUDENTI ZED_RES| DUAL
PRED RES

COKS_D

VARCHAR2(128)
NUMBER/ VARHCAR2
Bl NARY_DOUBLE
Bl NARY_DOUBLE
Bl NARY_DOUBLE
Bl NARY_DOUBLE
Bl NARY_DOUBLE
Bl NARY_DOUBLE
Bl NARY_DOUBLE
Bl NARY_DOUBLE

Table 25-24 Row Diagnostic View for Linear Regression

Column Name

Description

PARTI TI ON_NAMVE
CASE_I D

TARGET VALUE

PREDI CTED TARGET VALUE

ORACLE

Partition name in a partitioned model
Name of the case identifier
The actual target value as taken from the input row

The model predicted target value for the row

25-33

Chapter 25
Model Detail Views

Table 25-24 (Cont.) Row Diagnostic View for Linear Regression

Column Name

Description

HAT

RESI DUAL

STD_ERR RESI DUAL

STUDENTI ZED_RESI DUAL

PRED_RES

COOKS_D

The diagonal element of the n*n (n=number of rows) that the Hat
matrix identifies with a specific input row. The model predictions for
the input data are the product of the Hat matrix and vector of input
target values. The diagonal elements (Hat values) represent the
influence of the it row on the it fitted value. Large Hat values are
indicators that the it row is a point of high leverage, a potential
outlier.

The difference between the predicted and actual target value for a
specific input row.

The standard error residual, sometimes called the Studentized
residual, re-scales the residual to have constant variance across all
input rows in an effort to make the input row residuals comparable.
The process multiplies the residual by square root of the row weight
divided by the product of the model mean square error and 1 minus
the Hat value.

Studentized deletion residual adjusts the standard error residual for
the influence of the current row.

The predictive residual is the weighted square of the deletion
residuals, computed as the row weight multiplied by the square of the
residual divided by 1 minus the Hat value.

Cook's distance is a measure of the combined impact of the it" case
on all of the estimated regression coefficients.

For Logistic Regression, the view DMVAmodel_name has the following schema:

PARTI TI ON_NAME
CASE I D

TARGET VALUE
TARGET_VALUE_PROB
Hat

WORKI NG_RES| DUAL
PEARSON_RES| DUAL
DEVI ANCE_RES| DUAL
c

CBAR

DI FDEV

DI FCH SQ

VARCHAR?(128)
NUVBER! VARHCAR?
NUVBER! VARCHAR?
BI NARY_DOUBLE
BI NARY_DOUBLE
BI NARY_DOUBLE
BI NARY_DOUBLE
BI NARY_DOUBLE
BI NARY_DOUBLE
BI NARY_DOUBLE
BI NARY_DOUBLE
BI NARY_DOUBLE

Table 25-25 Row Diagnostic View for Logistic Regression

Column Name

Description

PARTI TI ON_NAMVE
CASE_I D

TARGET VALUE
TARGET VALUE_PROB

ORACLE

Partition name in a partitioned model
Name of the case identifier
The actual target value as taken from the input row

Model estimate of the probability of the predicted target value.

25-34

Chapter 25
Model Detail Views

Table 25-25 (Cont.) Row Diagnostic View for Logistic Regression

Column Name

Description

Hat

WORKI NG_RESI DUAL

PEARSON_RESI| DUAL

DEVI ANCE_RESI DUAL

CBAR

DI FDEV

DI FCH SQ

The Hat value concept from Linear Regression is extended to
Logistic Regression by multiplying the Linear Regression Hat value
by the variance function for Logistic Regression, the predicted
probability multiplied by 1 minus the predicted probability.

The working residual is the residual of the working response. The
working response is the response on the linearized scale. For
Logistic Regression it has the form: the it" row residual divided by the
variance of the it" row prediction. The variance of the prediction is the
predicted probability multiplied by 1 minus the predicted probability.

WORKI NG_RESI DUAL is the difference between the working response
and the linear predictor at convergence.

The Pearson residual is a re-scaled version of the working residual,
accounting for the weight. For Logistic Regression, the Pearson
residual multiplies the residual by a factor that is computed as square
root of the weight divided by the variance of the predicted probability
for the it row.

RESI DUAL is 1 minus the predicted probability of the actual target
value for the row.

The DEVI ANCE_RESI DUAL is the contribution to the model deviance of
the it" observation. For Logistic Regression it has the form the square
root of 2 times the | og(1 + e”eta) - eta for the non-reference
class and -square root of 2 time the | og (1 + eta) for the reference
class, where et a is the linear prediction (the prediction as if the
model were a Linear Regression).

Measures the overall change in the fitted logits due to the deletion of
the it" observation for all points including the one deleted (the it
point). It is computed as the square of the Pearson residual multiplied
by the Hat value divided by the square of 1 minus the Hat value.

Confidence interval displacement diagnostics that provides scalar
measure of the influence of individual observations.

C and CBAR are extensions of Cooks’ distance for Logistic
Regression. CBAR measures the overall change in the fitted logits due
to the deletion of the i" observation for all points excluding the one
deleted (the it" point). It is computed as the square of the Pearson
residual multiplied by the Hat value divided by (1 minus the Hat
value)

Confidence interval displacement diagnostic which measures the
influence of deleting an individual observation.

A statistic that measures the change in deviance that occurs when an
observation is deleted from the input. It is computed as the square of
the deviance residual plus CBAR.

A statistic that measures the change in the Pearson chi-square
statistic that occurs when an observation is deleted from the input. It
is computed as CBAR divided by the Hat value.

Global Details for GLM: Linear Regression

The following table describes global details returned by a Linear Regression model.

ORACLE

25-35

ORACLE

Chapter 25
Model Detail Views

Table 25-26 Global Details for Linear Regression

Name

Description

ADJUSTED_R_SQUARE
AlC

COEFF_VAR
CONVERGED

CORRECTED_TOTAL_DF
CORRECTED_TOT_SS
DEPENDENT MEAN
ERROR_DF
ERROR_MEAN SQUARE
ERROR_SUM SQUARES
F_VALUE

GVBEP

HOCKI NG_SP
| TERATI ONS

JP
MODEL_DF
MODEL_F_P_VALUE
MODEL_MEAN_SQUARE
MODEL_SUM SQUARES
NUM_PARAVS

NUM_ROS
R SQ
RANK_DEFI Ol ENCY

ROOT_MEAN_SQ
SBI C

Adjusted R-Square
Akaike's information criterion
Coefficient of variation

Indicates whether the model build process has converged to
specified tolerance. The following are the possible values:
e YES

« NO

Corrected total degrees of freedom
Corrected total sum of squares
Dependent mean

Error degrees of freedom

Error mean square

Error sum of squares

Model F value statistic

Estimated mean square error of the prediction, assuming
multivariate normality

Hocking Sp statistic

Tracks the number of SGD iterations. Applicable only when
the solver is SGD.

JP statistic (the final prediction error)
Model degrees of freedom

Model F value probability

Model mean square error

Model sum of square errors

Number of parameters (the number of coefficients, including
the intercept)

Number of rows
R-Square

The number of predictors excluded from the model due to
multi-collinearity

Root mean square error

Schwarz's Bayesian information criterion

Global Details for GLM: Logistic Regression

The following table returns global details returned by a Logistic Regression model.

25-36

ORACLE

Chapter 25
Model Detail Views

Table 25-27 Global Details for Logistic Regression

Name Description

Al C_| NTERCEPT Akaike's criterion for the fit of the baseline, intercept-only,
model

Al C_MODEL Akaike's criterion for the fit of the intercept and the
covariates (predictors) mode

CONVERGED Indicates whether the model build process has converged to

DEPENDENT_MEAN
| TERATI ONS

LR DF
LR CH _SQ

LR CH _SQ P VALUE
NEG2_LL_| NTERCEPT
NEG2_LL_MODEL

NUM PARANS

NUM ROVS
PCT_CORRECT
PCT_| NCORRECT
PCT_TI ED

PSEUDO R SQ CS
PSEUDO R SQ N
RANK_DEFI CI ENCY

specified tolerance. The following are the possible values:
. YES

« NO
Dependent mean

Tracks the number of SGD iterations (number of IRLS
iterations). Applicable only when the solver is SGD.

Likelihood ratio degrees of freedom

Likelihood ratio chi-square value

Likelihood ratio chi-square probability value

-2 log likelihood of the baseline, intercept-only, model
-2 log likelihood of the model

Number of parameters (the number of coefficients, including
the intercept)

Number of rows
Percent of correct predictions
Percent of incorrectly predicted rows

Percent of cases where the estimated probabilities are equal
for both target classes

Pseudo R-square Cox and Snell
Pseudo R-square Nagelkerke

The number of predictors excluded from the model due to
multi-collinearity

SC_| NTERCEPT Schwarz's Criterion for the fit of the baseline, intercept-only,
model
SC_MODEL Schwarz's Criterion for the fit of the intercept and the
covariates (predictors) model
Note:

* When Ridge Regression is enabled, fewer global details are returned.
For information about ridge, see Oracle Data Mining Concepts.

* When the value is NULL for a partitioned model, an exception is thrown.
When the value is not null, it must contain the desired partition name.

25-37

Related Topics

Chapter 25
Model Detail Views

* Model Detail Views for Global Information
Model detail views for Global Information describes global statistics view, alert
view, and computed settings view. Oracle recommends that users leverage the
model details views instead of GET_MODEL_DETAI LS _GLOBAL function.

25.4.8 Model Detail Views for Naive Bayes

Model Detail Views for Naive Bayes describes prior view and result view. Oracle
recommends that users leverage the model details views instead of the

ORACLE

GET_MODEL_DETAI LS_NB function.

The prior view DMVPmodel_name describes the priors of the targets for Naive Bayes.
The view has the following schema:

PARTI TI ON_NANE
TARGET_NAVE
TARGET VALUE

PRI OR_PROBABI LI TY
COUNT

VARCHAR?(128)
VARCHARY(128)
NUVBER/ VARCHAR?
BI NARY_DOUBLE
NUVBER

Table 25-28 Prior View for Naive Bayes

Column Name

Description

PARTI TI ON_NAMVE
TARGET_NAME
TARGET_VALUE

PRI OR_PROBABI LI TY
COUNT

The name of a feature in the model

Name of the target column

Target value, numerical or categorical
Prior probability for a given TARGET_VALUE
Number of rows for a given TARGET_VALUE

The Naive Bayes result view DMWmodel_view describes the conditional probabilities
of the Naive Bayes model. The view has the following schema:

PARTI TI ON_NANE
TARGET_NAVE

TARGET VALUE

ATTRI BUTE_NAVE

ATTR! BUTE_SUBNAME

ATTRI BUTE_VALUE

CONDI TI ONAL_PROBABI LI TY
COUNT

VARCHAR?(128)
VARCHAR?(128)
NUVBER/ VARCHAR?
VARCHAR?(128)
VARCHAR2(4000)
VARCHAR2(4000)
BI NARY_DOUBLE
NUVBER

Table 25-29 Result View for Naive Bayes

Column Name

Description

PARTI TI ON_NAME
TARGET_NAME
TARGET_VALUE

The name of a feature in the model
Name of the target column

Target value, numerical or categorical

25-38

Chapter 25
Model Detail Views

Table 25-29 (Cont.) Result View for Naive Bayes
|

Column Name Description

ATTRI BUTE_NAMVE Column name

ATTRI BUTE_SUBNAME Nested column subname. The value is null for non-
nested columns.

ATTRI BUTE_VALUE Mining attribute value for the column ATTRI BUTE_NAME or
the nested column ATTRI BUTE_SUBNAME (if any).

CONDI TI ONAL_PROBABI LI TY Conditional probability of a mining attribute for a given
target

COUNT Number of rows for a given mining attribute and a given
target

The following table describes the global view for Naive Bayes.

Table 25-30 Naive Bayes Statistics Information In Model Global View

__|
Name Description

NUM ROWS The total number of rows used in the build

25.4.9 Model Detail View for Support Vector Machine

Model Detail View for Support Vector Machine describes linear coefficient view. Oracle
recommends that users leverage the model details views instead of the
GET_MODEL_DETAI LS_SvMfunction.

The linear coefficient view DMbVLmodel _name describes the coefficients of a linear
SVM algorithm. The target_value field in the view is present only for Classification and
has the type of the target. Regression models do not have a target_value field.

The reversed_coefficient field shows the value of the coefficient after reversing the
automatic data preparation transformations. If data preparation is disabled, then
coefficient and reversed_coefficient have the same value. The view has the following

schema:

Nane Type
PARTI TI ON_NAME VARCHAR2(128)
TARGET_VALUE NUMBER/ VARCHAR2
ATTRI BUTE_NAMVE VARCHAR2(128)
ATTRI BUTE_SUBNAME VARCHAR2(4000)
ATTRI BUTE_VALUE VARCHAR2(4000)
COEFFI Cl ENT Bl NARY_DOUBLE
REVERSED_COEFFI Cl ENT Bl NARY_DOUBLE

Table 25-31 Linear Coefficient View for Support Vector Machine
|

Column Name Description
PARTI TI ON_NAME Partition name in a partitioned model
TARGET _VALUE Target value, numerical or categorical

ORACLE 25-39

Chapter 25
Model Detail Views

Table 25-31 (Cont.) Linear Coefficient View for Support Vector Machine

Column Name

Description

ATTRI BUTE_NAME
ATTRI BUTE_SUBNAME

ATTRI BUTE_VALUE
COEFFI CI ENT
REVERSED_COEFFI Cl ENT

Column name

Nested column subname. The value is null for non-
nested columns.

Value of a categorical attribute
Projection coefficient value

Coefficient transformed on the original scale

The following table describes the Support Vector statistics global view.

Table 25-32 Support Vector Statistics Information In Model Global View

Name Description
CONVERGED Indicates whether the model build process has
converged to specified tolerance:
. YES
. NO
| TERATI ONS Number of iterations performed during build
NUM_ROWS Number of rows used for the build

REMOVED_ROAS_ZERO NORM

Number of rows removed due to 0 norm. This
applies to one-class linear models only.

25.4.10 Model Detail Views for Clustering Algorithms

Oracle Data Mining supports these clustering algorithms: Expectation Maximization, k-
Means, and Orthogonal Partitioning Clustering (O-Cluster).

ORACLE

All clustering algorithms share the following views:

Cluster description DMVDmodel_name

Attribute statistics DMVAmodel _name

Histogram statistics DMbVHmodel _name

Rule statistics DMVRmodel_name

The cluster description view DMsVDmodel_name describes cluster level information
about a clustering model. The view has the following schema:

PARTI TI ON_NAME
CLUSTER | D
CLUSTER NAME
RECORD_COUNT
PARENT
TREE_LEVEL
LEFT CH LD ID
RIGHT CHILD ID

VARCHAR2(128)
NUMBER

NUMBER/ VARCHAR2
NUMBER

NUMBER

NUMBER

NUMBER

NUMBER

25-40

ORACLE

Chapter 25
Model Detail Views

Table 25-33 Cluster Description View for Clustering Algorithm

Column Name

Description

PARTI TI ON_NAMVE
CLUSTER | D
CLUSTER NAME
RECORD_COUNT
PARENT
TREE_LEVEL
LEFT_CHILD_ID
RIGHT_CHILD ID

Partition name in a partitioned model

The ID of a cluster in the model

Specifies the label of the cluster

Specifies the number of records

The ID of the parent

Specifies the number of splits from the root

The ID of the child cluster on the left side of the split
The ID of the child cluster on the right side of the split

The attribute view DMsVAmModel_name describes attribute level information about a
Clustering model. The values of the mean, variance, and mode for a particular cluster
can be obtained from this view. The view has the following schema:

PARTI TI ON_NAME
CLUSTER | D
CLUSTER NAVE
ATTRI BUTE_NAME
ATTRI BUTE_SUBNAME
VEAN

VAR ANCE
MODE_VALUE

VARCHAR?(128)
NUMBER

NUMBER/ VARCHAR?
VARCHAR?(128)
VARCHAR2(4000)
Bl NARY_DOUBLE
Bl NARY_DOUBLE
VARCHAR2(4000)

Table 25-34 Attribute View for Clustering Algorithm
|

Column Name

Description

PARTI TI ON_NAMVE
CLUSTER | D
CLUSTER NAME
ATTRI BUTE_NAME
ATTRI BUTE_SUBNAVE
VEAN

VAR ANCE
MODE_VALUE

A partition in a partitioned model

The ID of a cluster in the model

Specifies the label of the cluster

Specifies the attribute name

Specifies the attribute subname

The field returns the average value of a numeric attribute
The variance of a numeric attribute

The mode is the most frequent value of a categorical
attribute

The histogram view DMsVHmodel _name describes histogram level information about a
Clustering model. The bin information as well as bin counts can be obtained from this
view. The view has the following schema:

PARTI TI ON_NAVE
CLUSTER | D
CLUSTER NAME

VARCHAR?(128)
NUMBER
NUVBER/ VARCHAR?

25-41

ORACLE

ATTRI BUTE_NAME
ATTRI BUTE_SUBNANE
BIN.ID

LOAER Bl N_BOUNDARY
UPPER Bl N_BOUNDARY
ATTRI BUTE_VALUE
COUNT

Chapter 25
Model Detail Views

VARCHAR?(128)
VARCHARZ(4000)
NUMBER

BI NARY_DOUBLE
BI NARY_DOUBLE
VARCHAR2(4000)
NUMBER

Table 25-35 Histogram View for Clustering Algorithm

Column Name

Description

PARTI TI ON_NAMVE
CLUSTER | D

CLUSTER NAME

ATTRI BUTE_NAME
ATTRI BUTE_SUBNAVE
BINID

LOAER Bl N_BOUNDARY
UPPER_BI N_BOUNDARY
ATTRI BUTE_VALUE
COUNT

A partition in a partitioned model
The ID of a cluster in the model
Specifies the label of the cluster
Specifies the attribute name
Specifies the attribute subname
Bin ID

Numeric lower bin boundary
Numeric upper bin boundary
Categorical attribute value

Histogram count

The rule view DMVRmodel_name describes the rule level information about a
Clustering model. The information is provided at attribute predicate level. The view has

the following schema:

PARTI TI ON_NAVE
CLUSTER | D
CLUSTER_NAME
ATTR! BUTE_NAVE
ATTRI BUTE_SUBNAME
OPERATOR

NUMER! C_VALUE
ATTRI BUTE_VALUE
SUPPORT

CONFI DENCE
RULE_SUPPORT
RULE_CONFI DENCE

VARCHAR?(128)
NUVBER

NUVBER/ VARCHAR?
VARCHAR?(128)
VARCHAR?(4000)
VARCHAR?(2)
NUVBER
VARCHAR?(4000)
NUVBER

BI NARY_DOUBLE
NUVBER

BI NARY_DOUBLE

Table 25-36 Rule View for Clustering Algorithm

Column Name

Description

PARTI TI ON_NAMVE
CLUSTER | D
CLUSTER NAME
ATTRI BUTE_NAME
ATTRI BUTE_SUBNAMVE

A partition in a partitioned model
The ID of a cluster in the model

Specifies the label of the cluster
Specifies the attribute name

Specifies the attribute subname

25-42

Chapter 25
Model Detail Views

Table 25-36 (Cont.) Rule View for Clustering Algorithm
|

Column Name Description

OPERATOR Attribute predicate operator - a conditional operator
taking the following values: IN, =, <>, <, >, <=, and >=

NUMERI C_VALUE Numeric lower bin boundary

ATTRI BUTE_VALUE Categorical attribute value

SUPPORT Attribute predicate support

CONFI DENCE Attribute predicate confidence

RULE_SUPPORT Rule level support

RULE_CONFI DENCE Rule level confidence

25.4.11 Model Detalil Views for Expectation Maximization

ORACLE

Model detail views for Expectation Maximization (EM) describes the differences in the
views for EM against those of Clustering views. Oracle recommends that user
leverage the model details views instead of the GET_MODEL_DETAI LS_EMfunction.

The following views are the differences in the views for Expectation Maximization
against Clustering views. For an overview of the different Clustering views, refer to
"Model Detail Views for Clustering Algorithms".

The component view DMVOmodel_name describes the EM components. The
component view contains information about their prior probabilities and what cluster
they map to. The view has the following schema:

Nane Type
PARTI TI ON_NAME VARCHAR2(128)
COVPONENT_I D NUMBER
CLUSTER_ I D NUMBER
PRI OR_PROBABI LI TY BI NARY_DOUBLE

Table 25-37 Component View
|

Column Name Description

PARTI TI ON_NAME Partition name in a partitioned model
COMPONENT _I D Unique identifier of a component
CLUSTER I D The ID of a cluster in the model

PRI OR_PROBABI LI TY Component prior probability

The mean and variance component view DMfVMmodel_name provides information
about the mean and variance parameters for the attributes by Gaussian distribution
models. The view has the following schema:

Name Type
PARTI TI ON_NANE VARCHAR?(128)
COVPONENT _| D NUMBER
ATTRI BUTE_NAVE VARCHAR2(4000)

25-43

ORACLE

Chapter 25
Model Detail Views

MEAN Bl NARY_DOUBLE
VARl ANCE Bl NARY_DOUBLE

The frequency component view DMVFmodel_name provides information about the
parameters of the multi-valued Bernoulli distributions used by the EM model. The view
has the following schema:

Nane Type
PARTI TI ON_NAME VARCHAR2(128)
COVPONENT_I D NUMBER
ATTRI BUTE_NAME VARCHAR2(4000)
ATTRI BUTE_VALUE VARCHAR2(4000)
FREQUENCY Bl NARY_DOUBLE

Table 25-38 Frequency Component View
|

Column Name Description

PARTI TI ON_NAMVE Partition name in a partitioned model

COMPONENT_I D Unique identifier of a component

ATTRI BUTE_NAME Column name

ATTRI BUTE_VALUE Categorical attribute value

FREQUENCY The frequency of the multivalued Bernoulli distribution for

the attribute/value combination specified by
ATTRI BUTE_NAME and ATTRI BUTE_VALUE.

For 2-Dimensional columns, EM provides an attribute ranking similar to that of
Attribute Importance. This ranking is based on a rank-weighted average over
Kullback—-Leibler divergence computed for pairs of columns. This unsupervised
Attribute Importance is shown in the DMVI model_name view and has the following
schema:

Nane Type
PARTI TI ON_NAME VARCHAR2(128)
ATTRI BUTE_NAME VARCHAR2(128)
ATTRI BUTE_| MPORTANCE_VALUE Bl NARY_DOUBLE
ATTRI BUTE_RANK NUMBER

Table 25-39 2-Dimensional Attribute Ranking for Expectation Maximization
|

Column Name Description

PARTI TI ON_NAMVE Partition name in a partitioned model

ATTRI BUTE_NAME Column name

ATTRI BUTE_| MPORTANCE_VALUE Importance value

ATTRI BUTE_RANK An attribute rank based on the importance value

The pai r wi se Kullback—Leibler divergence is reported in the Dv6VBmodel_name view.
This metric evaluates how much the observed joint distribution of two attributes
diverges from the expected distribution under the assumption of independence. That
is, the higher the value, the more dependent the two attributes are. The dependency
value is scaled based on the size of the grid used for each pairwise computation. That

25-44

Chapter 25
Model Detail Views

ensures that all values fall within the [0; 1] range and are comparable. The view has

the following schema:

PARTI TI ON_NANE
ATTRI BUTE_NAME_1
ATTRI BUTE_NAME_2
DEPENDENCY

VARCHARY(128)
VARCHARY(128)
VARCHARY(128)
BI NARY_DOUBLE

Table 25-40 Kullback-Leibler Divergence for Expectation Maximization
|

Column Name

Description

PARTI TI ON_NAMVE
ATTRI BUTE_NAME_1
ATTRI BUTE_NAME 2
DEPENDENCY

Partition name in a partitioned model
Name of an attribute 1
Name of an attribute 2

Scaled pairwise Kullback-Leibler divergence

The projection table DvsvVPmodel_name shows the coefficients used by random
projections to map nested columns to a lower dimensional space. The view has rows
only when nested or text data is present in the build data. The view has the following

schema:

PARTI TI ON_NAME
FEATURE_NAMVE
ATTRI BUTE_NAME
ATTRI BUTE_SUBNANE
ATTRI BUTE_VALUE
COEFFI CI ENT

VARCHAR?(128)
VARCHARZ(4000)
VARCHAR?(128)
VARCHARZ(4000)
VARCHAR?(4000)
NUMBER

Table 25-41 Projection table for Expectation Maximization
|

Column Name

Description

PARTI TI ON_NAME
FEATURE_NAME
ATTRI BUTE_NAME
ATTRI BUTE_SUBNAME

ATTRI BUTE_VALUE
CCEFFI CI ENT

Partition name in a partitioned model
Name of feature
Column name

Nested column subname. The value is null for non-
nested columns.

Categorical attribute value

Projection coefficient. The representation is sparse; only
the non-zero coefficients are returned.

Global Details for Expectation Maximization

The following table describes global details for Expectation Maximization.

ORACLE

25-45

Chapter 25
Model Detail Views

Table 25-42 Global Details for Expectation Maximization
|

Name Description
CONVERGED Indicates whether the model build process has converged to
specified tolerance. The possible values are:
e YES
« NO
LOGLI KELI HOOD Loglikelihood on the build data
NUM_COVPONENTS Number of components produced by the model
NUM_CLUSTERS Number of clusters produced by the model
NUM_ROWS Number of rows used in the build
RANDOM SEED The random seed value used for the model build
REMOVED_COMPONENTS The number of empty components excluded from the model

Related Topics

e Model Detail Views for Clustering Algorithms
Oracle Data Mining supports these clustering algorithms: Expectation
Maximization, k-Means, and Orthogonal Partitioning Clustering (O-Cluster).

25.4.12 Model Detalil Views for k-Means

ORACLE

Model detail views for k-Means (KM) describes cluster description view and scoring
view. Oracle recommends that you leverage model details view instead of
GET_MODEL_DETAI LS_KMfunction.

This section describes the differences in the views for k-Means against the Clustering
views. For an overview of the different views, refer to "Model Detail Views for
Clustering Algorithms". For k-Means, the cluster description view DMsVDmodel_name
has an additional column:

DI SPERSI ON BI NARY_DOUBLE

Table 25-43 Cluster Description for k-Means

]
Column Name Description

Dl SPERSI ON A measure used to quantify whether a set of observed
occurrences are dispersed compared to a standard
statistical model.

The scoring view DMVCmodel _name describes the centroid of each leaf clusters:

Nane Type
PARTI TI ON_NAMVE VARCHAR2(128)
CLUSTER_ I D NUMBER
CLUSTER_NAME NUMBER/ VARCHAR2
ATTRI BUTE_NAME VARCHAR2(128)
ATTRI BUTE_SUBNAVE VARCHAR2(4000)

25-46

Chapter 25
Model Detail Views

ATTRI BUTE_VALUE VARCHAR?(4000)
VALUE Bl NARY_DOUBLE

Table 25-44 Scoring View for k-Means
|

Column Name Description

PARTI TI ON_NAME Partition name in a partitioned model

CLUSTER I D The ID of a cluster in the model

CLUSTER_NAME Specifies the label of the cluster

ATTRI BUTE_NAME Column name

ATTRI BUTE_SUBNAME Nested column subname. The value is null for non-
nested columns.

ATTRI BUTE_VALUE Categorical attribute value

VALUE Specifies the centroid value

The following table describes global view for k-Means.

Table 25-45 k-Means Statistics Information In Model Global View

__|
Name Description
CONVERGED Indicates whether the model build process has

converged to specified tolerance. The
following are the possible values:

. YES

« NO
NUM_RONS Number of rows used in the build
REMOVED_ROWS_ZERO NORM Number of rows removed due to 0 norm. This

applies only to models using cosine distance.

Related Topics

* Model Detail Views for Clustering Algorithms
Oracle Data Mining supports these clustering algorithms: Expectation
Maximization, k-Means, and Orthogonal Partitioning Clustering (O-Cluster).

25.4.13 Model Detail Views for O-Cluster

ORACLE

Model Detail Views for O-Cluster describes the statistics views. Oracle recommends
that user leverage the model details views instead of the GET_MODEL_DETAI LS OC
function.

The following are the differences in the views for O-Cluster against Clustering views.
For an overview of the different clustering views, refer to "Model Detail Views for
Clustering Algorithms". The OC algorithm uses the same descriptive statistics views as
Expectation Maximization (EM) and k-Means (KM). The following are the statistics
views:

» Cluster description DMsVDmodel_name
» Attribute statistics DMVAmodel_name

¢ Rule statistics DMMVRmodel _name

25-47

Chapter 25
Model Detail Views

» Histogram statistics DMVHmodel _name

The Cluster description view DMsVDmodel_name describes the O-Cluster components.
The cluster description view has additional fields that specify the split predicate. The
view has the following schema:

Nane Type
ATTRI BUTE_NAMVE VARCHAR2(128)
ATTRI BUTE_SUBNAVE VARCHAR2(4000)
OPERATOR VARCHAR2(2)
VALUE SYS. XMLTYPE

Table 25-46 Description View
|

Column Name Description

ATTRI BUTE_NAME Column name

ATTRI BUTE_SUBNAME Nested column subname. The value is null for non-
nested columns.

OPERATOR Split operator

VALUE List of split values

The structure of the SYS. XMLTYPE is as follows:

<El ement >spl i t val 1</ El enent >

The OC algorithm uses a histogram view DMsVHmodel_name with a different schema
than EM and k-Means (KM). The view has the following schema:

Name Type

PARTI TON_NAVE VARCHAR?(128)
CLUSTER I D NUMBER

ATTR! BUTE_NAVE VARCHAR?(128)
ATTRI BUTE_SUBNAMVE VARCHAR?(4000)
BIN.ID NUMBER

LABEL VARCHAR2(4000)
COUNT NUMBER

Table 25-47 Histogram Component View

Column Name Description

PARTI TI ON_NAMVE Partition name in a partitioned model

CLUSTER_I D Unique identifier of a component

ATTRI BUTE_NAME Column name

ATTRI BUTE_SUBNANMVE Nested column subname. The value is null for non-nested
columns.

BINID Unique identifier

LABEL Bin label

COUNT Bin histogram count

The following table describes the global view for O-Cluster.

ORACLE 25-48

Chapter 25
Model Detail Views

Table 25-48 O-Cluster Statistics Information In Model Global View

__|
Name Description

NUM_ROWS The total number of rows used in the build

Related Topics

* Model Detail Views for Clustering Algorithms
Oracle Data Mining supports these clustering algorithms: Expectation
Maximization, k-Means, and Orthogonal Partitioning Clustering (O-Cluster).

25.4.14 Model Detail Views for Explicit Semantic Analysis

ORACLE

Model Detail Views for Explicit Semantic Analysis (ESA) describes attribute statistics
view and feature view. Oracle recommends that users leverage the model details
views.

ESA algorithm has the following descriptive statistics views:
» Attribute statistics DMVAmodel_name
* Features DMVFmodel_name

The view DMsVAmodel_name has the following schema:

PARTI TI ON_NAME VARCHAR?(128)
FEATURE_| D NUVBER! VARCHAR?
ATTRI BUTE_NAME VARCHAR?(128)
ATTRI BUTE_SUBNAMVE VARCHAR?(4000)
ATTR BUTE_VALUE VARCHAR?(4000)
COEFFI Cl ENT BI NARY_DOUBLE

Table 25-49 Attribute View for Explicit Semantic Analysis
|

Column Name Description

PARTI TI ON_NAME Partition name in a partitioned model

FEATURE_I D Unique identifier of a feature as it appears in the training
data

ATTRI BUTE_NAME Column name

ATTRI BUTE_SUBNANMVE Nested column subname. The value is null for non-
nested columns.

ATTRI BUTE_VALUE Categorical attribute value

COEFFI Cl ENT A measure of the weight of the attribute with respect to

the feature

The view DMBVFmodel_name has a unique row for every feature in one view. This
feature is helpful if the model was pre-built and the source training data are not
available. The view has the following schema:

Nane Type
PARTI TI ON_NAME VARCHAR2(128)
FEATURE_I D NUMBER/ VARCHAR2

25-49

Chapter 25
Model Detail Views

Table 25-50 Feature View for Explicit Semantic Analysis
|

Column Name Description

PARTI TI ON_NAME Partition name in a partitioned model

FEATURE_I D Unique identifier of a feature as it appears in the training
data

The following table describes the global view for Explicit Semantic Analysis.

Table 25-51 Explicit Semantic Analysis Statistics Information In Model Global
View
|

Name Description
NUM_ROWS The total number of input rows
REMOVED ROWS BY FI LTERS Number of rows removed by filters

25.4.15 Model Detail Views for Non-Negative Matrix Factorization

ORACLE

Model detail views for Non-Negative Matrix Factorization (NMF) describes encoding H
matrix view and H inverse matrix view. Oracle recommends that users leverage the
model details views instead of the GET_MODEL_DETAI LS _NVF function.

The NMF algorithm has two matrix content views:
* Encoding (H) matrix DMMVEmodel_name

* Hinverse matrix DMVI model _name

The view DMVEmodel_name describes the encoding (H) matrix of an NMF model. The
FEATURE_NAME column type may be either NUMBER or VARCHAR2. The view has the following
schema definition.

Nane Type

PARTI TI ON_NANE VARCHAR?(128)
FEATURE_| D NUMBER
FEATURE_NAME NUVBER/ VARCHAR?
ATTRI BUTE_NAVE VARCHAR?(128)
ATTR BUTE_SUBNAME VARCHAR2(4000)
ATTRI BUTE_VALUE VARCHAR2(4000)
COEFFI Ol ENT BI NARY_DOUBLE

Table 25-52 Encoding H Matrix View for Non-Negative Matrix Factorization
|

Column Name Description

PARTI TI ON_NAMVE Partition name in a partitioned model

FEATURE_I D The ID of a feature in the model

FEATURE_NAME The name of a feature in the model

ATTRI BUTE_NAME Column name

ATTRI BUTE_SUBNAMVE Nested column subname. The value is null for non-

nested columns.

25-50

ORACLE

Chapter 25
Model Detail Views

Table 25-52 (Cont.) Encoding H Matrix View for Non-Negative Matrix
Factorization

Column Name Description
ATTRI BUTE_VALUE Specifies the value of attribute
COEFFI Cl ENT The attribute encoding that represents its contribution to

the feature

The view DMVI model_view describes the inverse H matrix of an NMF model. The
FEATURE_NAME column type may be either NUMBER or VARCHAR2. The view has the following
schema:

Nane Type

PARTI TION.NAVE ~ VARCHARZ(128)
FEATURE_| D NUMBER
FEATURE_NAME NUMBER/ VARCHAR?

ATTRIBUTE_NAME VARCHAR2(128)

ATTRI BUTE_SUBNAME VARCHAR2(4000)
ATTRIBUTE_VALUE VARCHAR2(4000)
COEFFI Ol ENT BI NARY_DOUBLE

Table 25-53 Inverse H Matrix View for Non-Negative Matrix Factorization
|

Column Name Description

PARTI TI ON_NAMVE Partition name in a partitioned model

FEATURE_I D The ID of a feature in the model

FEATURE_NAME The name of a feature in the model

ATTRI BUTE_NAME Column name

ATTRI BUTE_SUBNAME Nested column subname. The value is null for non-
nested columns.

ATTRI BUTE_VALUE Specifies the value of attribute

COEFFI CI ENT The attribute encoding that represents its contribution to

the feature

The following table describes the global statistics for Non-Negative Matrix
Factorization.

Table 25-54 Non-Negative Matrix Factorization Statistics Information In Model
Global View

Name Description
CONV_ERROR Convergence error
CONVERGED Indicates whether the model build process has

converged to specified tolerance. The
following are the possible values:

e YES
« NO
| TERATI ONS Number of iterations performed during build

25-51

Chapter 25
Model Detail Views

Table 25-54 (Cont.) Non-Negative Matrix Factorization Statistics Information In
Model Global View

Name Description
NUM_ROAS Number of rows used in the build input dataset
SAMPLE_SI ZE Number of rows used by the build

25.4.16 Model Detalil Views for Singular Value Decomposition

Model detail views for Singular Value Decomposition (SVD) describes S Matrix view,
right-singular vectors view, and left-singular vector view. Oracle recommends that
users leverage the model details views instead of the GET_MODEL_DETAI LS_SVD function.

The DMBVEmModel_name view leverages the fact that each singular value in the SVD
model has a corresponding principal component in the associated Principal
Components Analysis (PCA) model to relate a common set of information for both
classes of models. For a SVD model, it describes the content of the S matrix. When
PCA scoring is selected as a build setting, the variance and percentage cumulative
variance for the corresponding principal components are shown as well. The view has
the following schema:

Nane Type

PARTI TI ON_NAME VARCHAR2(128)
FEATURE_I D NUMBER
FEATURE_NAVE NUMBER/ VARCHAR2
VALUE BI NARY_DOUBLE
VARI ANCE BI NARY_DOUBLE
PCT_CUM_VARI ANCE BI NARY_DOUBLE

Table 25-55 S Matrix View
]

Column Name Description

PARTI TI ON_NAMVE Partition name in a partitioned model

FEATURE_I D The ID of a feature in the model

FEATURE_NAME The name of a feature in the model

VALUE The matrix entry value

VARI ANCE The variance explained by a component. This column is

only present for SVD models with setting

dbns_dat a_mi ni ng. svds_scori ng_node set to

dbrs_dat a_nmi ni ng. svds_scoring_pca

This column is non-null only if the build data is centered,
either manually or because of the following
setting:dbns_dat a_mi ni ng. prep_aut o is set to

dbrs_dat a_ni ni ng. prep_aut o_on.

ORACLE 25-52

ORACLE

Chapter 25
Model Detail Views

Table 25-55 (Cont.) S Matrix View
|

Column Name

Description

PCT_CUM VAR ANCE

The percent cumulative variance explained by the
components thus far. The components are ranked by the
explained variance in descending order.

This column is only present for SVD models with setting
dbrs_dat a_ni ni ng. svds_scori ng_node set to
dbrs_dat a_mi ni ng. svds_scoring_pca

This column is non-null only if the build data is centered,
either manually or because of the following
setting:dbns_dat a_mi ni ng. prep_aut o is set to

dbrs_dat a_ni ni ng. prep_aut o_on.

The SVD bMswmodel_view describes the right-singular vectors of SVD model. For a
PCA model it describes the principal components (eigenvectors). The view has the

following schema:

PARTI TI ON_NAME
FEATURE_I D
FEATURE_NAME
ATTRI BUTE_NAME
ATTRI BUTE_SUBNAME
ATTRI BUTE_VALUE
VALUE

VARCHAR?(128)
NUVBER

NUVBER/ VARCHAR?
VARCHAR?(128)
VARCHAR2(4000)
VARCHAR2(4000)
BI NARY_DOUBLE

Table 25-56 Right-singular Vectors of Singular Value Decomposition

Column Name

Description

PARTI TI ON_NAMVE
FEATURE_| D
FEATURE_NAMVE
ATTRI BUTE_NAME
ATTRI BUTE_SUBNAVE

ATTRI BUTE_VALUE

VALUE

Partition name in a partitioned model

The ID of a feature in the model
The name of a feature in the model

Column name

Nested column subname. The value is null for non-
nested columns.

Categorical attribute value. For numerical attributes,
ATTRI BUTE_VALUE is null.

The matrix entry value

The view DMsVUmodel_name describes the left-singular vectors of a SVD model. For a
PCA model, it describes the projection of the data in the principal components. This
view does not exist unless the settings dbrms_dat a_ni ni ng. svds_u_mat ri x_out put is set to
dbns_dat a_ni ni ng. svds_u_natri x_enabl e. The view has the following schema:

PARTI TI ON_NAME
CASE_I D
FEATURE_| D

VARCHAR?(128)
NUVBER/ VARHCAR?
NUMBER

25-53

Chapter 25
Model Detail Views

FEATURE_NAVE NUMBER/ VARCHAR2
VALUE Bl NARY_DOUBLE

Table 25-57 Left-singular Vectors of Singular Value Decomposition or
Projection Data in Principal Components

Column Name Description

PARTI TI ON_NAME Partition name in a partitioned model

CASE_I D Unique identifier of the row in the build data described by
the U matrix projection.

FEATURE | D The ID of a feature in the model

FEATURE_NAME The name of a feature in the model

VALUE The matrix entry value

Global Details for Singular Value Decomposition

The following table describes a global detail for Singular Value Decomposition.

Table 25-58 Global Details for Singular Value Decomposition
|

Name Description

NUM_COVPONENTS Number of features (components) produced by the model
NUM_RONS The total number of rows used in the build

SUGGESTED_CUTOFF Suggested cutoff that indicates how many of the top computed

features capture most of the variance in the model. Using only
the features below this cutoff would be a reasonable strategy for
dimensionality reduction.

Related Topics
e Oracle Database PL/SQL Packages and Types Reference

25.4.17 Model Detail View for Minimum Description Length

Model detail view for Minimum Description Length (for calculating Attribute
Importance) describes Attribute Importance view. Oracle recommends that users
leverage the model details views instead of the GET_MODEL_DETAI LS_Al function.

The Attribute Importance view DMsVAmModel_name describes the Attribute Importance
as well as the Attribute Importance rank. The view has the following schema:

Nane Type
PARTI TI ON_NAME VARCHAR2(128)
ATTRI BUTE_NAME VARCHAR2(128)
ATTRI BUTE_SUBNAVE VARCHAR2(4000)
ATTRI BUTE_| MPORTANCE_VALUE Bl NARY_DOUBLE
ATTRI BUTE_RANK NUMBER

ORACLE 25-54

Chapter 25
Model Detail Views

Table 25-59 Attribute Importance View for Minimum Description Length

Column Name

Description

PARTI TI ON_NAME
ATTRI BUTE_NAME
ATTRI BUTE_SUBNAME

ATTRI BUTE_| MPORTANCE_VALUE
ATTRI BUTE_RANK

Partition name in a partitioned model
Column name

Nested column subname. The value is null for non-
nested columns.

Importance value

Rank based on importance

The following table describes the global view for Minimum Description Length.

Table 25-60 Minimum Description Length Statistics Information In Model

Global View
__|
Name Description
NUM_ROAS The total number of rows used in the build

25.4.18 Model Detail View for Binning

The binning view DMVB describes the bin boundaries used in the automatic data

ORACLE

preparation.

The view has the following schema:

PARTI TI ON_NAVE
ATTRI BUTE_NAVE
ATTR! BUTE_SUBNAME
BIN.ID

LOAER Bl N_BOUNDARY
UPPER Bl N_BOUNDARY
ATTRI BUTE_VALUE

VARCHAR?(128)
VARCHAR?(128)
VARCHAR2(4000)
NUVBER

BI NARY_DOUBLE
BI NARY_DOUBLE
VARCHAR2(4000)

Table 25-61 Model Details View for Binning

Column Name

Description

PARTI TI ON_NAMVE
ATTRI BUTE_NAME
ATTRI BUTE_SUBNAVE
BINID

LOAER Bl N_BOUNDARY
UPPER Bl N_BOUNDARY
ATTRI BUTE_VALUE

Partition name in a partitioned model
Specifies the attribute name
Specifies the attribute subname

Bin ID (or bin identifier)

Numeric lower bin boundary
Numeric upper bin boundary

Categorical value

25-55

Chapter 25
Model Detail Views

25.4.19 Model Detail Views for Global Information

ORACLE

Model detail views for Global Information describes global statistics view, alert view,
and computed settings view. Oracle recommends that users leverage the model
details views instead of GET_MODEL_DETAI LS_GLOBAL function.

The global statistics view DMsVGmodel _name describes global statistics related to the
model build. Examples include the number of rows used in the build, the convergence
status, and the model quality metrics. The view has the following schema:

Nane Type
PARTI TI ON_NAMVE VARCHAR2(128)
NAVE VARCHAR2(30)
NUMERI C_VALUE NUMBER
STRING_VALUE VARCHAR2(4000)

Table 25-62 Global Statistics View

|
Column Name Description

PARTI TI ON_NAME Partition name in a partitioned model
NAVE Name of the statistic

NUMERI C_VALUE Numeric value of the statistic
STRING_VALUE Categorical value of the statistic

The alert view DMsWmodel_name lists alerts issued during the model build. The view
has the following schema:

Nane Type
PARTI TI ON_NAME VARCHAR2(128)
ERROR_NUMBER BI NARY_DOUBLE
ERROR_TEXT VARCHAR2(4000)

Table 25-63 Alert View

__|
Column Name Description

PARTI TI ON_NAME Partition name in a partitioned model
ERROR_NUMBER Error number (valid when event is Error)
ERROR_TEXT Error message

The computed settings view DMVSmodel_name lists the algorithm computed settings.
The view has the following schema:

Nane Type
PARTI TI ON_NAME VARCHAR2(128)
SETTI NG_NAME VARCHAR2(30)
SETTI NG_VALUE VARCHAR2(4000)

25-56

Chapter 25
Model Detail Views

Table 25-64 Computed Settings View

Column Name

Description

PARTI TI ON_NAME
SETTI NG_NAME
SETTI NG_VALUE

Partition name in a partitioned model
Name of the setting

Value of the setting

25.4.20 Model Detail View for Normalization and Missing Value

Handling

The Normalization and Missing Value Handling View DMsVN describes the normalization
parameters used in Automatic Data Preparation (ADP) and the missing value
replacement when a NULL value is encountered. Missing value replacement applies
only to the twodimensional columns and does not apply to the nested columns.
The view has the following schema:

Nane Type

PARTI TI ON_NAVE VARCHAR2(128)

ATTRI BUTE_NAME VARCHAR2(128)

ATTRI BUTE_SUBNAMVE VARCHAR2(4000)

NUMERI C_M SSI NG_VALUE Bl NARY_DOUBLE

CATEGORI CAL_M SSI NG_VALUE VARCHAR2(4000)

NORVALI ZATI ON_SHI FT Bl NARY_DOUBLE

NORVALI ZATI ON_SCALE Bl NARY_DOUBLE
Table 25-65 Normalization and Missing Value Handling View
__|
Column Name Description

PARTI TI ON_NAMVE A partition in a partitioned model

ATTRI BUTE_NAME Column name

ATTRI BUTE_SUBNAME Nested column subname. The value is null for non-

nested columns.

NUMERI C_M SSI NG_VALUE Numeric missing value replacement

CATEGORI CAL_M SSI NG_VALUE Categorical missing value replacement

NORMALI ZATI ON_SHI FT Normalization shift value

NORMAL| ZATI ON_SCALE Normalization scale value

ORACLE

25-57

Scoring and Deployment

Explains the scoring and deployment features of Oracle Data Mining.

e About Scoring and Deployment

e Using the Data Mining SQL Functions
* Prediction Details

* Real-Time Scoring

e Dynamic Scoring

» Cost-Sensitive Decision Making

- DBMS_DATA_MINING.Apply

26.1 About Scoring and Deployment

Scoring is the application of models to new data. In Oracle Data Mining, scoring is
performed by SQL language functions.

Predictive functions perform Classification, Regression, or Anomaly detection.
Clustering functions assign rows to clusters. Feature Extraction functions transform the
input data to a set of higher order predictors. A scoring procedure is also available in
the DBMS_DATA_M NI NG PL/SQL package.

Deployment refers to the use of models in a target environment. Once the models
have been built, the challenges come in deploying them to obtain the best results, and
in maintaining them within a production environment. Deployment can be any of the
following:

* Scoring data either for batch or real-time results. Scores can include predictions,
probabilities, rules, and other statistics.

» Extracting model details to produce reports. For example: clustering rules,
decision tree rules, or attribute rankings from an Attribute Importance model.

» Extending the business intelligence infrastructure of a data warehouse by
incorporating mining results in applications or operational systems.

* Moving a model from the database where it was built to the database where it
used for scoring (export/import)

Oracle Data Mining supports all of these deployment scenarios.

ORACLE 26-1

Chapter 26
Using the Data Mining SQL Functions

Note:

Oracle Data Mining scoring operations support parallel execution. When
parallel execution is enabled, multiple CPU and I/O resources are applied to
the execution of a single database operation.

Parallel execution offers significant performance improvements, especially
for operations that involve complex queries and large databases typically
associated with decision support systems (DSS) and data warehouses.

Related Topics
e Oracle Database VLDB and Partitioning Guide
e Oracle Data Mining Concepts

* Exporting and Importing Mining Models
You can export data mining models to flat files to back up work in progress or to
move models to a different instance of Oracle Database Enterprise Edition (such
as from a development database to a test database).

26.2 Using the Data Mining SQL Functions

Learn about the benefits of SQL functions in data mining.
The data mining SQL functions provide the following benefits:

e Models can be easily deployed within the context of existing SQL applications.

e Scoring operations take advantage of existing query execution functionality. This
provides performance benefits.

e Scoring results are pipelined, enabling the rows to be processed without requiring
materialization.

The data mining functions produce a score for each row in the selection. The functions
can apply a mining model schema object to compute the score, or they can score
dynamically without a pre-defined model, as described in "Dynamic Scoring".

Related Topics

e Dynamic Scoring

* Scoring Requirements
* Table 22-4

* Oracle Database SQL Language Reference

26.2.1 Choosing the Predictors

ORACLE

The data mining functions support a USI NG clause that specifies which attributes to use
for scoring. You can specify some or all of the attributes in the selection and you can
specify expressions. The following examples all use the PREDI CTI ON function to find the
customers who are likely to use an affinity card, but each example uses a different set
of predictors.

The query in Example 26-1 uses all the predictors.

26-2

Chapter 26
Using the Data Mining SQL Functions

The query in Example 26-2 uses only gender, marital status, occupation, and income
as predictors.

The query in Example 26-3 uses three attributes and an expression as predictors. The
prediction is based on gender, marital status, occupation, and the assumption that all
customers are in the highest income bracket.

Example 26-1 Using All Predictors

SELECT cust _gender, COUNT(*) AS cnt, ROUND(AVE age)) AS avg_age
FROM ni ni ng_dat a_appl y_v
VWHERE PREDI CTI ON(dt _sh_clas_sanple USING *) =1
GROUP BY cust _gender
ORDER BY cust _gender;

Cc CNT AVG AGE
F 25 38
M 213 43

Example 26-2 Using Some Predictors

SELECT cust _gender, COUNT(*) AS cnt, ROUND(AVG age)) AS avg_age
FROM mi ni ng_dat a_appl y_v
VHERE PREDI CTI ON(dt _sh_cl as_sanpl e USI NG
cust _gender, cust_marital _status,
occupation, cust_income_level) =1
GROUP BY cust _gender
ORDER BY cust _gender;

C ONT AVG AGE
F 30 38
M 186 43

Example 26-3 Using Some Predictors and an Expression

SELECT cust _gender, COUNT(*) AS cnt, ROUND(AVE age)) AS avg_age
FROM mi ni ng_dat a_appl y_v
VHERE PREDI CTI ON(dt _sh_cl as_sanpl e USI NG
cust _gender, cust_narital _status, occupation,
"L: 300,000 and above' AS cust_incone_level) =1
GROUP BY cust _gender
ORDER BY cust _gender;

C CNT AVG_AGE
F 30 38
M 186 43

26.2.2 Single-Record Scoring

ORACLE

The data mining functions can produce a score for a single record, as shown in
Example 26-4 and Example 26-5.

Example 26-4 returns a prediction for customer 102001 by applying the classification
model NB_SH O as_sanpl e. The resulting score is 0, meaning that this customer is
unlikely to use an affinity card.

26-3

Chapter 26
Prediction Details

Example 26-5 returns a prediction for 'Affinity card is great' as the comments attribute
by applying the text mining model T_SVM O as_sanpl e. The resulting score is 1, meaning
that this customer is likely to use an affinity card.

Example 26-4 Scoring a Single Customer or a Single Text Expression

SELECT PREDI CTI ON (NB_SH Cl as_Sanpl e USI NG *)
FROM sh. cust oners where cust_id = 102001,

PREDI CTI ON(NB_SH_CLAS_SANPLEUSI NG*)

Example 26-5 Scoring a Single Text Expression

SELECT
PREDI CTI ON(T_SVM Cl as_sanpl e USING "Affinity card is great’ AS comments)
FROM DUAL;

PREDI CTI ON(T_SVM CLAS_SAMPLEUSI NG AFFI NI TYCARDI SGREAT' ASCOMVENTS)

26.3 Prediction Details

Prediction details are XML strings that provide information about the score. Details are
available for all types of scoring: clustering, feature extraction, classification,
regression, and anomaly detection. Details are available whether scoring is dynamic or
the result of model apply.

The details functions, CLUSTER DETAI LS, FEATURE DETAI LS, and PREDI CTI ON_DETAI LS return
the actual value of attributes used for scoring and the relative importance of the
attributes in determining the score. By default, the functions return the five most
important attributes in descending order of importance.

26.3.1 Cluster Detalls

For the most likely cluster assignments of customer 100955 (probability of assignment
> 20%), the query in the following example produces the five attributes that have the
most impact for each of the likely clusters. The clustering functions apply an
Expectation Maximization model named em sh_cl us_sanpl e to the data selected from
mi ni ng_dat a_appl y_v. The "5" specified in CLUSTER _DETAI LS is not required, because five
attributes are returned by default.

Example 26-6 Cluster Details

SELECT S.cluster_id, probability prob,
CLUSTER _DETAI LS(em sh_clus_sanple, S.cluster_id, 5 USING T.*) det

FROM

(SELECT v.*, CLUSTER SET(emsh_clus_sample, NULL, 0.2 USING *) pset

FROM mi ni ng_data_apply_v v

WHERE cust_id = 100955) T,

TABLE(T. pset) S
ORDER BY 2 DESC;

CLUSTER ID PROB DET

14 . 6761 <Details al gorithm="Expectation Maxinization" cluster="14">

ORACLE 26-4

Chapter 26
Prediction Details

<Attribute name="AGE" actual Val ue="51" wei ght=".676" rank="1"/>

<Attribute name="HOMVE_THEATER PACKAGE" actual Val ue="1" wei ght=".557" rank="2"/>

<Attribute name="FLAT_PANEL_MONI TOR' actual Val ue="0" wei ght=".412" rank="3"/>

<Attribute name="Y_BOX_GAMES' actual Val ue="0" weight=".171" rank="4"/>

<Attribute name="BOOKKEEPI NG _APPL| CATI ON'act ual Val ue="1" wei ght="-.003"
rank="5"/>

</ Detail s>

3 .3227 <Details algorithn"Expectation Maxim zation" cluster="3">
<Attribute name="YRS_RESI DENCE" actual Val ue="3" wei ght=".323" rank="1"/>
<Attribute name="BULK _PACK DI SKETTES" actual Val ue="1" wei ght=".265" rank="2"/>
<Attribute name="EDUCATI ON' actual Val ue="HS-grad" wei ght=".172" rank="3"/>
<Attribute name="AFFI NI TY_CARD' actual Val ue="0" wei ght=".125" rank="4"/>
<Attribute name="O0CCUPATI ON' actual Val ue="Crafts" wei ght=".055" rank="5"/>
</ Detail s>

26.3.2 Feature Details

The query in the following example returns the three attributes that have the greatest
impact on the top Principal Components Analysis (PCA) projection for customer
101501. The FEATURE_DETAI LS function applies a Singular Value Decomposition model
named svd_sh_sanpl e to the data selected from svd_sh_sanpl e_bui | d_num

Example 26-7 Feature Details

SELECT FEATURE_DETAI LS(svd_sh_sanple, 1, 3 USING *) proj ldet
FROM svd_sh_sanpl e_bui | d_num
VWHERE CUST_I D = 101501,

<Details algorithme"Singul ar Val ue Deconposition" feature="1">

<Attribute name="HOME_THEATER PACKAGE" actual Val ue="1" wei ght=".352" rank="1"/>
<Attribute name="Y_BOX GAMES' actual Val ue="0" wei ght=".249" rank="2"/>
<Attribute name="AGE" actual Val ue="41" wei ght=".063" rank="3"/>

</ Detail s>

26.3.3 Prediction Details

The query in the following example returns the attributes that are most important in
predicting the age of customer 100010. The prediction functions apply a Generalized
Linear Model Regression model named GLMR_SH_Regr _sanpl e to the data selected from
m ni ng_data_appl y_v.

Example 26-8 Prediction Details for Regression

SELECT cust _id,
PREDI CTI ON(GLMR_SH_Regr _sanpl e USING *) pr,
PREDI CTI ON_DETAI LS(GLMR_SH Regr _sanpl e USING *) pd
FROM ni ni ng_dat a_appl y_v
VWHERE CUST_I D = 100010;

CUST_ID PR PD

100010 25.45 <Details algorithm="GCeneralized Linear Mdel">
<Attribute name="FLAT_PANEL_MONI TOR' actual Val ue="1" wei ght=".025" rank="1"/>
<Attribute name="(0OCCUPATI ON' actual Val ue="Crafts" wei ght=".019" rank="2"/>
<Attribute name="AFFI NI TY_CARD" actual Val ue="0" wei ght=".01" rank="3"/>
<Attribute name="0S_DOC SET_KANJI" actual Val ue="0" wei ght="0" rank="4"/>

ORACLE 26-5

Chapter 26
Prediction Details

<Attribute name="BOOKKEEPI NG APPL| CATI ON' actual Val ue="1" wei ght="-.004" rank="5"/>
</ Details>

The query in the following example returns the customers who work in Tech Support
and are likely to use an affinity card (with more than 85% probability). The prediction
functions apply an Support Vector Machine (SVM) Classification model named
svnt_sh_cl as_sanpl e. to the data selected from ni ni ng_dat a_appl y_v. The query
includes the prediction details, which show that education is the most important

predictor.

Example 26-9 Prediction Details for Classification

SELECT cust _id, PREDI CTI ON_DETAILS(svnt_sh_clas_sanple, 1 USING *) PD
FROM mi ni ng_dat a_appl y_v
VHERE PREDI CTI ON_PROBABI LI TY(svnt_sh_clas_sanple, 1 USING *) > 0.85
AND occupation = ' TechSup'
ORDER BY cust _i d;

CUST_ID PD

100029

100378

100508

100980

<Details algorit
<Attribute name=
<Attribute name=

rank="2"/>
<Attribute name=
<Attribute name=
<Attribute name=
</ Detail s>

<Details algorit
<Attribute name=
<Attribute name=

rank="2"/>
<Attribute name=
<Attribute name=
<Attribute name=
</ Details>

<Details algorit
<Attribute name=
<Attribute name=

rank="2"/>
<Attribute name=
<Attribute name=
<Attribute name=
</ Detail s>

<Details algorit
<Attribute name=
<Attribute name=
<Attribute name=
<Attribute name=
<Attribute name=
</ Detail s>

hme" Support Vector Machines" class="1">
" EDUCATI ON' act ual Val ue="Assoc- A" wei ght=".199" rank="1"/>
" CUST_I NCOME_LEVEL" actual Val ue="1: 170\,000 - 189\, 999" wei ght=". 044"

" HOVE_THEATER _PACKAGE" act ual Val ue="1" wei ght=".028" rank="3"/>
"BULK_PACK DI SKETTES" actual Val ue="1" wei ght=".024" rank="4"/>
" BOOKKEEPI NG_APPLI CATI ON' act ual Val ue="1" wei ght=".022" rank="5"/>

hme" Support Vector Machines" class="1">
" EDUCATI ON' act ual Val ue="Assoc-A" wei ght=".21" rank="1"/>
" CUST_I NCOME_LEVEL" actual Val ue="B: 30\,000 - 49\,999" weight=".047"

"FLAT_PANEL_MONI TOR' act ual Val ue="0" wei ght =". 043" rank="3"/>
" HOVE_THEATER _PACKAGE" actual Val ue="1" wei ght=".03" rank="4"/>
" BOOKKEEPI NG_APPLI CATI ON' act ual Val ue="1" wei ght=".023" rank="5"/>

hme" Support Vector Machines" class="1">
" EDUCATI ON' act ual Val ue="Bach." wei ght=".19" rank="1"/>
" CUST_I NCOVE_LEVEL" actual Val ue="L: 300\, 000 and above" wei ght=". 046"

" HOVE_THEATER PACKAGE" act ual Val ue="1" wei ght=".031" rank="3"/>
"BULK_PACK DI SKETTES" act ual Val ue="1" wei ght=".026" rank="4"/>
" BOOKKEEPI NG_APPLI CATI ON' act ual Val ue="1" wei ght=".024" rank="5"/>

hme" Support Vector Machines" class="1">

" EDUCATI ON' act ual Val ue="Assoc-A" wei ght=".19" rank="1"/>
"FLAT_PANEL_MONI TOR' actual Val ue="0" wei ght =". 038" rank="2"/>

" HOVE_THEATER PACKAGE" act ual Val ue="1" wei ght=".026" rank="3"/>
"BULK_PACK DI SKETTES" actual Val ue="1" wei ght=".022" rank="4"/>

" BOOKKEEPI NG_APPLI CATI ON' act ual Val ue="1" wei ght=".02" rank="5"/>

ORACLE

The query in the following example returns the two customers that differ the most from
the rest of the customers. The prediction functions apply an anomaly detection model
named SVMO SH d as_sanpl e to the data selected from ni ni ng_dat a_appl y_v. Anomaly
Detection uses a one-class SVM classifier.

26-6

Chapter 26
Prediction Details

Example 26-10 Prediction Details for Anomaly Detection

SELECT cust_id, pd FROM
(SELECT cust _id,
PREDI CTI ON_DETAI LS(SVMD SH C as_sanple, 0 USING *) pd,
RANK() OVER (ORDER BY prediction_probability(

SVMD SH Cl as_sanple, 0 USING *) DESC, cust_id) rnk

FROM ni ni ng_dat a_one_cl ass_v)

WHERE rnk <= 2
ORDER BY rnk;

CUST_ID PD

102366 <Details al gorithne"Support Vector Machines" class="0">
<Attribute name="COUNTRY_NAME' actual Val ue="United Ki ngdont weight=".078" rank="1"/>
<Attribute name="CUST_MARI TAL_STATUS' actual Val ue="Divorc." wei ght=".027" rank="2"/>
<Attribute name="CUST_CGENDER' actual Val ue="F" wei ght=".01" rank="3"/>
<Attribute name="HOUSEHOLD S| ZE" actual Val ue="9+" wei ght=".009" rank="4"/>
<Attribute name="ACE" actual Val ue="28" wei ght=".006" rank="5"/>
</ Detail s>

101790 <Details al gorithne"Support Vector Machines" class="0">
<Attribute name="COUNTRY_NAME' actual Val ue="Canada" wei ght=".068" rank="1"/>
<Attribute name="HOUSEHOLD SI ZE" actual Val ue="4-5" wei ght=".018" rank="2"/>
<Attribute name="EDUCATI ON' actual Val ue="7th-8th" weight=".015" rank="3"/>
<Attribute name="CUST_CGENDER' actual Val ue="F" wei ght=".013" rank="4"/>
<Attribute name="ACGE" actual Val ue="38" wei ght=".001" rank="5"/>
</ Detail s>

26.3.4 GROUPING Hint

ORACLE

Data mining functions consist of SQL functions such as PREDI CTI ON*, CLUSTERY,
FEATURE*, and ORA_DM *. The GROUPI NG hint is an optional hint which applies to data
mining scoring functions when scoring partitioned models.

This hint results in partitioning the input data set into distinct data slices so that each
partition is scored in its entirety before advancing to the next partition. However,
parallelism by partition is still available. Data slices are determined by the partitioning
key columns used when the model was built. This method can be used with any data
mining function against a partitioned model. The hint may yield a query performance
gain when scoring large data that is associated with many partitions but may
negatively impact performance when scoring large data with few partitions on large
systems. Typically, there is no performance gain if you use the hint for single row
queries.

Enhanced PREDICTION Function Command Format

<prediction function> ::=
PREDI CTI ON <l eft paren> /*+ GROUPI NG */ <prediction nodel >
[<comma> <class value> [<comma> <top N>]]
USING <nmining attribute list> <right paren>

The syntax for only the PREDI CTI ON function is given but it is applicable to any Data
mining function where PREDI CTI ON, CLUSTERI NG, and FEATURE_EXTRACTI ON scoring
functions occur.

Example 26-11 Example

SELECT PREDI CTI ON(/*+ GROUPI NG */ my_nodel USING *) pred FROM <input table>;

26-7

Chapter 26
Real-Time Scoring

Related Topics

e Oracle Database SQL Language Reference

26.4 Real-Time Scoring

Oracle Data Mining SQL functions enable prediction, clustering, and feature extraction
analysis to be easily integrated into live production and operational systems. Because
mining results are returned within SQL queries, mining can occur in real time.

With real-time scoring, point-of-sales database transactions can be mined. Predictions
and rule sets can be generated to help front-line workers make better analytical
decisions. Real-time scoring enables fraud detection, identification of potential
liabilities, and recognition of better marketing and selling opportunities.

The query in the following example uses a Decision Tree model named

dt _sh_cl as_sanpl e to predict the probability that customer 101488 uses an affinity card.
A customer representative can retrieve this information in real time when talking to this
customer on the phone. Based on the query result, the representative can offer an
extra-value card, since there is a 73% chance that the customer uses a card.

Example 26-12 Real-Time Query with Prediction Probability

SELECT PREDI CTI ON_PROBABI LI TY(dt _sh_clas_sanple, 1 USING *) cust_card_prob
FROM mi ni ng_dat a_appl y_v
WHERE cust _id = 101488;

CUST_CARD_PROB

26.5 Dynamic Scoring

The Data Mining SQL functions operate in two modes: by applying a pre-defined
model, or by executing an analytic clause. If you supply an analytic clause instead of a
model name, the function builds one or more transient models and uses them to score
the data.

The ability to score data dynamically without a pre-defined model extends the
application of basic embedded data mining techniques into environments where
models are not available. Dynamic scoring, however, has limitations. The transient
models created during dynamic scoring are not available for inspection or fine tuning.
Applications that require model inspection, the correlation of scoring results with the
model, special algorithm settings, or multiple scoring queries that use the same model,
require a predefined model.

The following example shows a dynamic scoring query. The example identifies the
rows in the input data that contain unusual customer age values.

Example 26-13 Dynamic Prediction

SELECT cust _id, age, pred_age, age-pred_age age diff, pred_det FROM
(SELECT cust _id, age, pred_age, pred_det,
RANK() OVER (ORDER BY ABS(age-pred_age) DESC) rnk FROM
(SELECT cust_id, age,
PREDI CTI ON(FOR age USING *) OVER () pred_age,
PREDI CTI ON_DETAI LS(FOR age ABS USING *) OVER () pred_det
FROM mi ni ng_dat a_appl y_v))

ORACLE 26-8

WHERE rnk <= 5;

CUST_ID ACGE PRED_AGE AGE_DI FF

Chapter 26
Dynamic Scoring

PRED DET

100910 80 40. 6686505

101285 79 42.1753571

100694 77 41.0396722

100308 81 45.3252491

101256 90 54.3862214

ORACLE

36. 82

35.96

35. 67

35.61

<Details al gorithme"Support Vector Machines">
<Attribute name="HOVE_THEATER PACKAGE" actual Val ue="1"
wei ght=". 059" rank="1"/>
<Attribute name="Y_BOX_GAMES' actual Val ue="0"
wei ght=". 059" rank="2"/>
<Attribute name="AFFI NI TY_CARD" actual Val ue="0"
wei ght=". 059" rank="3"/>
<Attribute name="FLAT_PANEL_MONI TOR' actual Val ue="1"
wei ght =". 059" rank="4"/>
<Attribute name="YRS_RESI DENCE" act ual Val ue="4"
wei ght=". 059" rank="5"/>
</ Detail s>

<Details al gorithm="Support Vector Machines">

<Attribute nanme="HOVE_THEATER PACKAGE" actual Val ue="1"

wei ght =". 059" rank="1"/>

<Attribute name="HOUSEHOLD SI ZE' actual Val ue="2" wei ght=". 059"
rank="2"/>

<Attribute name="CUST_MARI TAL_STATUS" actual Val ue="Mabsent"
wei ght =". 059" rank="3"/>

<Attribute name="Y_BOX_GAMES' actual Val ue="0" wei ght=". 059"
rank="4"/>

<Attribute name="O0CCUPATI ON' actual Val ue="Prof." wei ght=".059"
rank="5"/>

</ Detail s>

<Details al gorithme"Support Vector Machines">

<Attribute nanme="HOVE_THEATER PACKAGE" actual Val ue="1"

wei ght =". 059" rank="1"/>

<Attribute name="EDUCATI ON' actual Val ue="& t; Bach."

wei ght =". 059" rank="2"/>

<Attribute name="Y_BOX_GAMES' actual Val ue="0" wei ght=".059"
rank="3"/>

<Attribute name="CUST_I D' actual Val ue="100694" wei ght=".059"
rank="4"/>

<Attribute name="COUNTRY_NAME" actual Val ue="United States of
Anerica" weight=".059" rank="5"/>

</ Detail s>

<Details al gorithme"Support Vector Machines">
<Attribute nanme="HOVE_THEATER PACKAGE" actual Val ue="1"
wei ght =". 059" rank="1"/>
<Attribute name="Y_BOX_GAMES' actual Val ue="0" wei ght=".059"
rank="2"/>
<Attribute name="HOUSEHOLD SI ZE' actual Val ue="2" wei ght=". 059"
rank="3"/>
<Attribute name="FLAT_PANEL_MONI TOR' act ual Val ue="1"
wei ght =". 059" rank="4"/>
<Attribute name="CUST_CGENDER' actual Val ue="F" wei ght=".059"
rank="5"/>
</ Detail s>

<Details al gorithme"Support Vector Machines">

<Attribute name="YRS_RESI DENCE" actual Val ue="9" wei ght=". 059"
rank="1"/>

<Attribute nanme="HOVE_THEATER PACKAGE" actual Val ue="1"

wei ght =". 059" rank="2"/>

26-9

Chapter 26
Cost-Sensitive Decision Making

<Attribute name="EDUCATI ON' actual Val ue="& t; Bach."

wei ght =". 059" rank="3"/>

<Attribute name="Y_BOX_GAMES' actual Val ue="0" wei ght=".059"
rank="4"/>

<Attribute name="COUNTRY_NAME" actual Val ue="United States of
Anerica" weight=".059" rank="5"/>

</ Detail s>

26.6 Cost-Sensitive Decision Making

ORACLE

Costs are user-specified numbers that bias Classification. The algorithm uses positive
numbers to penalize more expensive outcomes over less expensive outcomes. Higher
numbers indicate higher costs.

The algorithm uses negative numbers to favor more beneficial outcomes over less
beneficial outcomes. Lower negative numbers indicate higher benefits.

All classification algorithms can use costs for scoring. You can specify the costs in a
cost matrix table, or you can specify the costs inline when scoring. If you specify costs
inline and the model also has an associated cost matrix, only the inline costs are used.
The PREDI CTI ON, PREDI CTI ON_SET, and PREDI CTI ON_COST functions support costs.

Only the Decision Tree algorithm can use costs to bias the model build. If you want to
create a Decision Tree model with costs, create a cost matrix table and provide its
name in the CLAS_COST_TABLE_NAME setting for the model. If you specify costs when
building the model, the cost matrix used to create the model is used when scoring. If
you want to use a different cost matrix table for scoring, first remove the existing cost
matrix table then add the new one.

A sample cost matrix table is shown in the following table. The cost matrix specifies
costs for a binary target. The matrix indicates that the algorithm must treat a
misclassified 0 as twice as costly as a misclassified 1.

Table 26-1 Sample Cost Matrix

I
ACTUAL_TARGET_VALUE PREDICTED_TARGET_VALUE COST

0 0 0

o B N

0 1
1 0
1 1

Example 26-14 Sample Queries With Costs
The table nbnodel _cost's contains the cost matrix described in Table 26-1.

SELECT * from nbnodel _costs;

ACTUAL_TARGET_VALUE PREDI CTED TARGET_VALUE COST

The following statement associates the cost matrix with a Naive Bayes model called
nbnodel .

26-10

Chapter 26
Cost-Sensitive Decision Making

BEG N

dbns_dat a_ni ni ng. add_cost _matri x(' nbnodel ', ' nbrodel _costs');
END;
/

The following query takes the cost matrix into account when scoring
mi ni ng_dat a_appl y_v. The output is restricted to those rows where a prediction of 1 is
less costly then a prediction of 0.

SELECT cust _gender, COUNT(*) AS cnt, ROUND(AVG age)) AS avg_age
FROM mi ni ng_dat a_appl y_v
WHERE PREDI CTI ON (nbnodel COST MODEL
USI NG cust _marital _status, education, househol d_size) =1
GROUP BY cust _gender
ORDER BY cust _gender;

¢ CNT AVG AGE
F 25 38
M 208 43

You can specify costs inline when you invoke the scoring function. If you specify costs
inline and the model also has an associated cost matrix, only the inline costs are used.
The same query is shown below with different costs specified inline. Instead of the "2"
shown in the cost matrix table (Table 26-1), "10" is specified in the inline costs.

SELECT cust_gender, COUNT(*) AS cnt, ROUND(AVG age)) AS avg_age

FROM mi ni ng_dat a_appl y_v
VHERE PREDI CTI ON (nbrodel

COST (0,1) values ((0, 10),

(1, 0))

USI NG cust_narital _status, education, household size) =1
GROUP BY cust _gender
ORDER BY cust _gender;

C ONT AVG AGE
F 74 39
M 581 43

The same query based on probability instead of costs is shown below.

SELECT cust _gender, COUNT(*) AS cnt, ROUND(AVE age)) AS avg_age
FROM mi ni ng_dat a_apply_v
WHERE PREDI CTI ON (nbnodel
USI NG cust _marital _status, education, household_size) =1
GROUP BY cust _gender
ORDER BY cust _gender;

C CNT AVG_AGE
F 73 39
M 577 44

Related Topics
* Example 21-1

ORACLE 26-11

Chapter 26
DBMS_DATA_MINING.Apply

26.7 DBMS_DATA_MINING.Apply

ORACLE

The APPLY procedure in DBVMS_DATA_M NI NG is a batch apply operation that writes the
results of scoring directly to a table.

The columns in the table are mining function-dependent.

Scoring with APPLY generates the same results as scoring with the SQL scoring
functions. Classification produces a prediction and a probability for each case;
clustering produces a cluster ID and a probability for each case, and so on. The
difference lies in the way that scoring results are captured and the mechanisms that
can be used for retrieving them.

APPLY creates an output table with the columns shown in the following table:

Table 26-2 APPLY Output Table

|
Mining Function Output Columns

CASE_I D

PREDI CTI ON

PROBABI LI TY

CASE_ID

PREDI CTI ON

CASE_ID
PREDI CTI ON
PROBABI LI TY

CASE_ID
CLUSTER | D
PROBABI LI TY

CASE_ID
FEATURE_| D
MATCH QUALI TY

classification

regression

anomaly detection

clustering

feature extraction

Since APPLY output is stored separately from the scoring data, it must be joined to the
scoring data to support queries that include the scored rows. Thus any model that is
used with APPLY must have a case ID.

A case ID is not required for models that is applied with SQL scoring functions.
Likewise, storage and joins are not required, since scoring results are generated and
consumed in real time within a SQL query.

The following example illustrates Anomaly Detection with APPLY. The query of the APPLY
output table returns the ten first customers in the table. Each has a a probability for
being typical (1) and a probability for being anomalous (0).

Example 26-15 Anomaly Detection with DBMS_DATA_MINING.APPLY

EXEC dbns_dat a_ni ni ng. appl y
(' SVMO_SH O as_sanpl e', ' svimo_sh_sanpl e_prepared',
‘cust_id', 'one_class_output');

SELECT * from one_cl ass_out put where rownum < 11;

26-12

ORACLE

Related Topics

CUST_I D PREDI CTI ON PROBABI LI TY

101798
101798
102276
102276
102404
102404
101891
101891
102815
102815

Oracle Database PL/SQL Packages and Types Reference

P OOFrRPORFORF OF

. 567389309
. 432610691
. 564922469
. 435077531

. 51213544
. 48786456

. 563474346
. 436525654
. 500663683
. 499336317

Chapter 26
DBMS_DATA MINING.Apply

26-13

Mining Unstructured Text

Explains how to use Oracle Data Mining to mine unstructured text.

* About Unstructured Text

e About Text Mining and Oracle Text

e Data Preparation for Text Features

e Creating a Model that Includes Text Mining
e Creating a Text Policy

e Configuring a Text Attribute

27.1 About Unstructured Text

Data mining algorithms act on data that is numerical or categorical. Numerical data is
ordered. It is stored in columns that have a numeric data type, such as NUVBER or FLOAT.
Categorical data is identified by category or classification. It is stored in columns that
have a character data type, such as VARCHAR2 or CHAR.

Unstructured text data is neither numerical nor categorical. Unstructured text includes
items such as web pages, document libraries, Power Point presentations, product
specifications, emails, comment fields in reports, and call center notes. It has been
said that unstructured text accounts for more than three quarters of all enterprise data.
Extracting meaningful information from unstructured text can be critical to the success
of a business.

27.2 About Text Mining and Oracle Text

ORACLE

Understand what is text mining and oracle text.

Text mining is the process of applying data mining techniques to text terms, also called
text features or tokens. Text terms are words or groups of words that have been
extracted from text documents and assigned numeric weights. Text terms are the
fundamental unit of text that can be manipulated and analyzed.

Oracle Text is a Database technology that provides term extraction, word and theme
searching, and other utilities for querying text. When columns of text are present in the
training data, Oracle Data Mining uses Oracle Text utilities and term weighting
strategies to transform the text for mining. Oracle Data Mining passes configuration
information supplied by you to Oracle Text and uses the results in the model creation
process.

Related Topics

* Oracle Text Application Developer's Guide

27-1

Chapter 27
Data Preparation for Text Features

27.3 Data Preparation for Text Features

The model details view for text features is DMVXmodel _name.

The text feature view DMsVXnodel _nane describes the extracted text features if there are
text attributes present. The view has the following schema:

Name Type
PARTI TI ON_NAMVE VARCHAR2(128)
COLUMN_NAME VARCHAR2(128)
TOKEN VARCHAR2(4000)
DOCUMENT _FREQUENCY NUMBER

Table 27-1 Text Feature View for Extracted Text Features

Column Name Description

PARTI TI ON_NAME A partition in a partitioned model to retrieve details
COLUWN_NAMVE Name of the identifier column

TOKEN Text token which is usually a word or stemmed word
DOCUMENT _FREQUENCY A measure of token frequency in the entire training set

27.4 Creating a Model that Includes Text Mining

Learn how to create a model that includes text mining.

Oracle Data Mining supports unstructured text within columns of VARCHAR2, CHAR, CLOB,
BLOB, and BFI LE, as described in the following table:

Table 27-2 Column Data Types That May Contain Unstructured Text

Data Type Description
BFI LEand Oracle Data Mining interprets BLOB and BFI LE as text only if you identify the

BLOB columns as text when you create the model. If you do not identify the columns as
text, then CREATE_MODEL returns an error.

CLOB Oracle Data Mining interprets CLOB as text.

CHAR Oracle Data Mining interprets CHAR as categorical by default. You can identify

columns of CHAR as text when you create the model.

VARCHAR2 Oracle Data Mining interprets VARCHAR2 with data length > 4000 as text.

Oracle Data Mining interprets VARCHAR2 with data length <= 4000 as categorical by
default. You can identify these columns as text when you create the model.

" Note:

Text is not supported in nested columns or as a target in supervised data
mining.

ORACLE 27-2

Chapter 27
Creating a Model that Includes Text Mining

The settings described in the following table control the term extraction process for text
attributes in a model. Instructions for specifying model settings are in "Specifying
Model Settings".

Table 27-3 Model Settings for Text
]

Setting Name

Data Type Setting Value Description

ODMVB_TEXT_POLI CY_NAME ~ VARCHAR2(4000 Name of an Oracle Text Affects how individual tokens are
) policy object created with extracted from unstructured text. See

CTX_DDL. CREATE_PQLI CY "Creating a Text Policy".

CDVS_TEXT_MAX_FEATURES | NTEGER 1 <= value <= 100000 Maximum number of features to use from
the document set (across all documents

of each text column) passed to
CREATE_MCDEL.

Default is 3000.

A model can include one or more text attributes. A model with text attributes can also
include categorical and numerical attributes.

To create a model that includes text attributes:

1.
2.

Create an Oracle Text policy object..
Specify the model configuration settings that are described in "Table 27-3".

Specify which columns must be treated as text and, optionally, provide text
transformation instructions for individual attributes.

Pass the model settings and text transformation instructions to
DBMVS_DATA M NI NG CREATE_MODEL.

Note:

All algorithms except O-Cluster can support columns of unstructured
text.

The use of unstructured text is not recommended for association rules
(Apriori).

Related Topics

ORACLE

Specifying Model Settings
Understand how to configure data mining models at build time.

Creating a Text Policy

An Oracle Text policy specifies how text content must be interpreted. You can
provide a text policy to govern a model, an attribute, or both the model and
individual attributes.

Configuring a Text Attribute
Learn how to identify a column as a text attribute and provide transformation
instructions for any text attribute.

Embedding Transformations in a Model

27-3

Chapter 27
Creating a Text Policy

27.5 Creating a Text Policy

ORACLE

An Oracle Text policy specifies how text content must be interpreted. You can provide
a text policy to govern a model, an attribute, or both the model and individual
attributes.

If a model-specific policy is present and one or more attributes have their own policies,
Oracle Data Mining uses the attribute policies for the specified attributes and the
model-specific policy for the other attributes.

The CTX _DDL. CREATE_PQLI CY procedure creates a text policy.

CTX_DDL. CREATE_PQLI CY(
pol i cy_name I'N VARCHAR?,

filter I'N VARCHAR2 DEFAULT NULL,
section_group |N VARCHAR2 DEFAULT NULL,
| exer I'N VARCHAR2 DEFAULT NULL,
stopli st I'N VARCHAR2 DEFAULT NULL,
wor dl i st I'N VARCHAR2 DEFAULT NULL);

The parameters of CTX_DDL. CREATE PQLI CY are described in the following table.

Table 27-4 CTX_DDL.CREATE_POLICY Procedure Parameters

___|
Parameter Name Description

pol i cy_nane Name of the new policy object. Oracle Text policies and text indexes share
the same namespace.

filter Specifies how the documents must be converted to plain text for indexing.
Examples are: CHARSET_FI LTER for character sets and NULL_FI LTER for
plain text, HTML and XML.

For filter values, see "Filter Types" in Oracle Text Reference.
section_group Identifies sections within the documents. For example,
HTM._SECTI ON_GROUP defines sections in HTML documents.

For secti on_group values, see "Section Group Types" in Oracle Text
Reference.

Note: You can specify any section group that is supported by CONTEXT
indexes.

| exer Identifies the language that is being indexed. For example, BASI C_LEXER is
the lexer for extracting terms from text in languages that use white space
delimited words (such as English and most western European languages).

For | exer values, see "Lexer Types" in Oracle Text Reference.

stopli st Specifies words and themes to exclude from term extraction. For example,
the word "the" is typically in the stoplist for English language documents.
The system-supplied stoplist is used by default.
See "Stoplists" in Oracle Text Reference.

wor dl i st Specifies how stems and fuzzy queries must be expanded. A stem defines
a root form of a word so that different grammatical forms have a single
representation. A fuzzy query includes common misspellings in the
representation of a word.

See "BASI C_ WORDLI ST" in Oracle Text Reference.

27-4

Chapter 27
Configuring a Text Attribute

Related Topics

e Oracle Text Reference

27.6 Configuring a Text Attribute

ORACLE

Learn how to identify a column as a text attribute and provide transformation
instructions for any text attribute.

As shown in Table 27-2, you can identify columns of CHAR, shorter VARCHAR2 (<=4000),
BFI LE, and BLOB as text attributes. If CHAR and shorter VARCHAR2 columns are not explicitly
identified as unstructured text, then CREATE_MODEL processes them as categorical
attributes. If BFI LE and BLOB columns are not explicitly identified as unstructured text,
then CREATE_MODEL returns an error.

To identify a column as a text attribute, supply the keyword TEXT in an Attribute
specification. The attribute specification is a field (attri but e_spec) in a transformation
record (transform rec). Transformation records are components of transformation lists
(xform list) that can be passed to CREATE_MODEL.

Note:

An attribute specification can also include information that is not related to
text. Instructions for constructing an attribute specification are in "Embedding
Transformations in a Model".

You can provide transformation instructions for any text attribute by qualifying the TEXT
keyword in the attribute specification with the subsettings described in the following
table.

Table 27-5 Attribute-Specific Text Transformation Instructions
|

Subsetting Description Example
Name
PCLI CY_NAME Name of an Oracle Text policy object created (POLI CY_NAME: ny_pol i cy)
with CTX_DDL. CREATE_PCLI CY
TOKEN_TYPE The following values are supported: (TOKEN_TYPE: THEME)
NORMAL (the default)
STEM
THEME
See "Token Types in an Attribute
Specification”
MAX_FEATURES Maximum number of features to use from the (MAX_FEATURES: 3000)
attribute.

27-5

Chapter 27
Configuring a Text Attribute

Note:

The TEXT keyword is only required for CLOB and longer VARCHAR2 (>4000) when
you specify transformation instructions. The TEXT keyword is always required
for CHAR, shorter VARCHAR?2, BFI LE, and BLOB — whether or not you specify
transformation instructions.

Tip:

You can view attribute specifications in the data dictionary view
ALL_M NI NG_MODEL_ATTRI BUTES, as shown in Oracle Database Reference.

Token Types in an Attribute Specification

When stems or themes are specified as the token type, the lexer preference for the
text policy must support these types of tokens.

The following example adds themes and English stems to BASI C_LEXER.

BEG N
CTX_DDL. CREATE_PREFERENCE(' my_| exer', ' BASI C LEXER);
CTX_DDL. SET_ATTRI BUTE(' ny_l exer', "index_stens', 'ENGLISH);
CTX_DDL. SET_ATTRI BUTE(' ny_l exer', "index_thenes', 'YES);
END,

Example 27-1 A Sample Attribute Specification for Text

This expression specifies that text transformation for the attribute must use the text
policy named ny_pol i cy. The token type is THEME, and the maximum number of features
is 3000.

"TEXT(POLI CY_NAME: ny_pol i ¢y) (TOKEN_TYPE: THEME) (MAX_FEATURES: 3000) "

Related Topics
* Embedding Transformations in a Model

» Specifying Transformation Instructions for an Attribute
Learn what is a transformation instruction for an attribute and learn about the fields
in a transformation record.

e Oracle Database PL/SQL Packages and Types Reference
e ALL_M NI NG_MODEL_ATTRI BUTES

ORACLE 27-6

Administrative Tasks for Oracle Data
Mining

Explains how to perform administrative tasks related to Oracle Data Mining.

» Installing and Configuring a Database for Data Mining
e Upgrading or Downgrading Oracle Data Mining

e Exporting and Importing Mining Models

e Controlling Access to Mining Models and Data

e Auditing and Adding Comments to Mining Models

28.1 Installing and Configuring a Database for Data Mining

Learn how to install and configure a database for Data Mining.
e About Installation
» Enabling or Disabling a Database Option

» Database Tuning Considerations for Data Mining

28.1.1 About Installation

Oracle Data Mining is a component of the Oracle Advanced Analytics option to Oracle
Database Enterprise Edition.

To install Oracle Database, follow the installation instructions for your platform.
Choose a Data Warehousing configuration during the installation.

Oracle Data Miner, the graphical user interface to Oracle Data Mining, is an extension
to Oracle SQL Developer. Instructions for downloading SQL Developer and installing
the Data Miner repository are available on the Oracle Technology Network.

To perform data mining activities, you must be able to log on to the Oracle database,
and your user ID must have the database privileges described in Example 28-7.

Related Topics
e http://www.oracle.com/pls/topic/lookup?ctx=db122&id=datminGUI

¢ See Also:

Install and Upgrade page of the Oracle Database online documentation
library for your platform-specific installation instructions: http://docs.oracle.com/en/
database/database.html

ORACLE 28-1

http://www.oracle.com/pls/topic/lookup?ctx=db122&id=datminGUI
http://docs.oracle.com/en/database/database.html
http://docs.oracle.com/en/database/database.html
http://docs.oracle.com/en/database/database.html
http://docs.oracle.com/en/database/database.html

Chapter 28
Installing and Configuring a Database for Data Mining

28.1.2 Enabling or Disabling a Database Option

Learn how you can enable or disable Oracle Advanced Analytics option after the
installation.

The Oracle Advanced Analytics option is enabled by default during installation of
Oracle Database Enterprise Edition. After installation, you can use the command-line
utility chopt to enable or disable a database option. For instructions, see "Enabling and
Disabling Database Options After Installation" in the installation guide for your
platform.

Related Topics
e Oracle Database Installation Guide for Linux

* Oracle Database Installation Guide for Microsoft Windows

28.1.3 Database Tuning Considerations for Data Mining

ORACLE

Understand the Database tuning considerations for Data Mining.

DBAs managing production databases that support Oracle Data Mining must follow
standard administrative practices as described in Oracle Database Administrator’s
Guide.

Building data mining models and batch scoring of mining models tend to put a DSS-
like workload on the system. Single-row scoring tends to put an OLTP-like workload on
the system.

Database memory management can have a major impact on data mining. The correct
sizing of Program Global Area (PGA) memory is very important for model building,
complex queries, and batch scoring. From a data mining perspective, the System
Global Area (SGA) is generally less of a concern. However, the SGA must be sized to
accommodate real-time scoring, which loads models into the shared cursor in the
SGA. In most cases, you can configure the database to manage memory
automatically. To do so, specify the total maximum memory size in the tuning
parameter MEMORY_TARGET. With automatic memory management, Oracle Database
dynamically exchanges memory between the SGA and the instance PGA as needed
to meet processing demands.

Most data mining algorithms can take advantage of parallel execution when it is
enabled in the database. Parameters in | NI T. ORA control the behavior of parallel
execution.

Related Topics
e Oracle Database Administrator’s Guide

* Scoring and Deployment
Explains the scoring and deployment features of Oracle Data Mining.

e Oracle Database Administrator’s Guide
e Part | Database Performance Fundamentals
e Tuning Database Memory

* Oracle Database VLDB and Partitioning Guide

28-2

Chapter 28
Upgrading or Downgrading Oracle Data Mining

28.2 Upgrading or Downgrading Oracle Data Mining

Understand how to upgrade and downgrade Oracle Data Mining.
* Pre-Upgrade Steps

* Upgrading Oracle Data Mining

e Post Upgrade Steps

» Downgrading Oracle Data Mining

28.2.1 Pre-Upgrade Steps

Before upgrading, you must drop any data mining models that were created in Java
and any mining activities that were created in Oracle Data Miner Classic (the earlier
version of Oracle Data Miner).

Caution:

In Oracle Database 12¢, Oracle Data Mining does not support a Java API,
and Oracle Data Miner Classic cannot run against Oracle Database 12c .

28.2.1.1 Dropping Models Created in Java

If your 10g or 11g database contains models created in Java, use the
DBVS_DATA M NI NG. DROP_MODEL routine to drop the models before upgrading the
database.

28.2.1.2 Dropping Mining Activities Created in Oracle Data Miner Classic

ORACLE

If your database contains mining activities from Oracle Data Miner Classic, delete the
mining activities and drop the repository before upgrading the database. Follow these
steps:

1. Use the Data Miner Classic user interface to delete the mining activities.
2. In SQL*Plus or SQL Developer, drop these tables:

DMAJS$ACTI VI TI ES
DVAJSRESULTS
DMVAJ $TRANSFORVS

and these views:

DVIJ$MODEL_RESULTS V
DVIJSRESULTS_STATE V

There must be no tables or views with the prefix DMiJ$ in any schema in the database
after you complete these steps.

28-3

Chapter 28
Upgrading or Downgrading Oracle Data Mining

28.2.2 Upgrading Oracle Data Mining

Learn how to upgrade Oracle Data Mining.

After you complete the "Pre-Upgrade Steps", all models and mining metadata are fully
integrated with the Oracle Database upgrade process whether you are upgrading
from 11g or from 10g releases.

Upgraded models continue to work as they did in prior releases. Both upgraded
models and new models that you create in the upgraded environment can make use of
the new mining functionality introduced in the new release.

To upgrade a database, you can use Database Upgrade Assistant (DBUA) or you can
perform a manual upgrade using export/import utilities.

Related Topics
* Pre-Upgrade Steps
* Oracle Database Upgrade Guide

28.2.2.1 Using Database Upgrade Assistant to Upgrade Oracle Data Mining

Oracle Database Upgrade Assistant provides a graphical user interface that guides
you interactively through the upgrade process.

On Windows platforms, follow these steps to start the Upgrade Assistant:

1. Go to the Windows Start menu and choose the Oracle home directory.
2. Choose the Configuration and Migration Tools menu.
3. Launch the Upgrade Assistant.

On Linux platforms, run the DBUA utility to upgrade Oracle Database.

28.2.2.1.1 Upgrading from Release 10g

In Oracle Data Mining 10g, data mining metadata and PL/SQL packages are stored in
the DMBYS schema. In Oracle Data Mining 11g and 12¢, DVBYS no longer exists; data
mining metadata objects are stored in SYS.

When Oracle Database 10g is upgraded to 12c, all data mining metadata objects and
PL/SQL packages are migrated from DVSYS to SYS. The DVBYS schema and its
associated objects are removed after a successful migration. When DVSYS is removed,
the SYS. DBA_REG STRY view no longer lists Oracle Data Mining as a component.

After upgrading to Oracle Database 12c, you can no longer switch to the Data Mining
Scoring Engine (DVSE). The Scoring Engine does not exist in Oracle Database 11g or
12c.

28.2.2.1.2 Upgrading from Release 119

If you upgrade Oracle Database 11g to Oracle Database 12c, and the database was
previously upgraded from Oracle Database 10g, then theDMSYS schema may still be
present. If the upgrade process detects DVBYS, it displays a warning message and
drops DVBYS during the upgrade.

ORACLE 28-4

Chapter 28
Upgrading or Downgrading Oracle Data Mining

28.2.2.2 Using Export/Import to Upgrade Data Mining Models

If required, you can you can use a less automated approach to upgrading data mining
models. You can export the models created in a previous version of Oracle Database
and import them into an instance of Oracle Database 12c.

Caution:

Do not import data mining models that were created in Java. They are not
supported in Oracle Database 12c.

28.2.2.2.1 Export/Import Release 10g Data Mining Models

ORACLE

Follow the instructions for exporting and importing Data Mining models.

To export models from an instance of Oracle Database 10g to a dump file, follow the
instructions in "Exporting and Importing Mining Models". Before importing the models
from the dump file, run the DVEI DVBYS script to create the DVSYS schema in Oracle
Database 12c.

SQL>CONNECT / as sysdba;
SQL>@RACLE_HOVE\ RDBMS\ adni n\ dnei dnsys. sql
SQL>EXIT,

Note:

The TEWP tablespace must already exist in the Oracle Database 12g
database. The DVEI DVBYS script uses the TEMP and SYSAUX tablespaces to
create the DVMSYS schema.

To import the dump file into the Oracle Database 12¢ database:

Y%ORACLE_HOMVE\ bi n\'i npdp syst em <passwor d>

dunpfi | e=<dunpfil e_name>

di rect ory=<di rect ory_nane>

| ogfile=<logfile_name>
SQL>CONNECT / as sysdba;
SQL>EXECUTE dnp_sys. upgr ade_nodel s();
SQ>ALTER SYSTEM FLUSH SHARED POQOL;
SQL>ALTER SYSTEM FLUSH BUFFER_CACHE;
SQL>EXIT,

The upgrade_nodel s script migrates all data mining metadata objects and PL/SQL
packages from DMSYS to SYS and then drops DVSYS before upgrading the models.

ALTER SYSTEM Statement

You can flush the Database Smart Flash Cache by issuing an ALTER SYSTEM FLUSH
FLASH_CACHE statement. Flushing the Database Smart Flash Cache can be useful if you
need to measure the performance of rewritten queries or a suite of queries from
identical starting points.

28-5

Chapter 28
Upgrading or Downgrading Oracle Data Mining

Related Topics

* Exporting and Importing Mining Models
You can export data mining models to flat files to back up work in progress or to
move models to a different instance of Oracle Database Enterprise Edition (such
as from a development database to a test database).

28.2.2.2.2 Export/Import Release 11g Data Mining Models

To export models from an instance of Oracle Database 11g to a dump file, follow the
instructions in Exporting and Importing Mining Models.

Caution:

Do not import data mining models that were created in Java. They are not
supported in Oracle Database 12c.

To import the dump file into the Oracle Database 12¢ database:

Y%ORACLE_HOME\ bi n\'i npdp syst em <passwor d>

dunpfi | e=<dunpfil e_name>

di rect ory=<di rect ory_nane>

| ogfile=<logfile_name>
SQL>CONNECT / as sysdba;
SQL>EXECUTE dnp_sys. upgr ade_nodel s();
SQL>ALTER SYSTEM f | ush shared_pool ;
SQL>ALTER SYSTEM fl ush buffer_cache;
SQL>EXIT,

ALTER SYSTEM Statement

You can flush the Database Smart Flash Cache by issuing an ALTER SYSTEM FLUSH
FLASH_CACHE statement. Flushing the Database Smart Flash Cache can be useful if you
need to measure the performance of rewritten queries or a suite of queries from
identical starting points.

28.2.3 Post Upgrade Steps

Perform steps to view the upgraded database.

After upgrading the database, check the DBA_ M NI NG_MODELS view in the upgraded
database. The newly upgraded mining models must be listed in this view.

After you have verified the upgrade and confirmed that there is no need to downgrade,
you must set the initialization parameter COVPATI BLE to 12. 1.

" Note:

The CREATE M NI NG MODEL privilege must be granted to Data Mining user
accounts that are used to create mining models.

ORACLE 28-6

Chapter 28
Exporting and Importing Mining Models

Related Topics

» Creating a Data Mining User
Explains how to create a Data Mining user.

» Controlling Access to Mining Models and Data
Understand how to create a Data Mining user and grant necessary privileges.

28.2.4 Downgrading Oracle Data Mining

Before downgrading the Oracle Database 12¢ database back to the previous version,
ensure that no Singular Value Decomposition models or Expectation Maximization
models are present. These algorithms are only available in Oracle Database 12c. Use
the DBVS_DATA M NI NG DROP_MODEL routine to drop these models before downgrading. If
you do not do this, the database downgrade process terminates.

Issue the following SQL statement in SYS to verify the downgrade:

SQL>SELECT o. nane FROM sys. nodel $ m sys.obj$ o
VWHERE m obj #=0. obj # AND m ver si on=2;

28.3 Exporting and Importing Mining Models

You can export data mining models to flat files to back up work in progress or to move
models to a different instance of Oracle Database Enterprise Edition (such as from a
development database to a test database).

All methods for exporting and importing models are based on Oracle Data Pump
technology.

The DBVS_DATA M NI NG package includes the EXPORT_MODEL and | MPORT_MODEL procedures
for exporting and importing individual mining models. EXPORT_MODEL and | MPORT_MODEL
use the export and import facilities of Oracle Data Pump.

* About Oracle Data Pump

* Options for Exporting and Importing Mining Models

» Directory Objects for EXPORT_MODEL and IMPORT_MODEL
* Using EXPORT_MODEL and IMPORT_MODEL

* Importing From PMML

Related Topics

* EXPORT_MODEL

e | MPORT MODEL

28.3.1 About Oracle Data Pump

ORACLE

Oracle Data Pump consists of two command-line clients and two PL/SQL packages.
The command-line clients, expdp and i npdp, provide an easy-to-use interface to the
Data Pump export and import utilities. You can use expdp and i npdp to export and
import entire schemas or databases.

The Data Pump export utility writes the schema objects, including the tables and
metadata that constitute mining models, to a dump file set. The Data Pump import

28-7

Chapter 28
Exporting and Importing Mining Models

utility retrieves the schema objects, including the model tables and metadata, from the
dump file set and restores them in the target database.

expdp and i npdp cannot be used to export/import individual mining models.

" See Also:

Oracle Database Ultilities for information about Oracle Data Pump and the
expdp and i mpdp utilities

28.3.2 Options for Exporting and Importing Mining Models

Lists options for exporting and importing mining models.

Options for exporting and importing mining models are described in the following table.

Table 28-1 Export and Import Options for Oracle Data Mining

__|]
Task Description

Export or import (DBA only) Use expdp to export a full database and i npdp to import a full database. All mining
a full database models in the database are included.

Export or import Use expdp to export a schema and i npdp to import a schema. All mining models in the schema
a schema are included.

Export or import Use DBMS_DATA_M NI NG EXPORT_MODEL to export individual models and

individual models DBMS_DATA M NI NG | MPORT_MODEL to import individual models. These procedures can export

within a database and import a single mining model, all mining models, or mining models that match specific
criteria.

By default, | MPORT_MODEL imports models back into the schema from which they were exported.
You can specify the schenma_r emap parameter to import models into a different schema. You can
specify t abl espace_r emap with schena_r enap to import models into a schema that uses a
different tablespace.

You may need special privileges in the database to import models into a different schema.
These privileges are granted by the EXP_FULL_DATABASE and | MP_FULL_DATABASE roles, which
are only available to privileged users (such as SYS or a user with the DBA role). You do not need
these roles to export or import models within your own schema.

To import models, you must have the same database privileges as the user who created the
dump file set. Otherwise, a DBA with full system privileges must import the models.

Export or import Use a database link to export individual models to a remote database or import individual
individual models models from a remote database. A database link is a schema object in one database that

to or from a enables access to objects in a different database. The link must be created before you execute
remote database EXPORT_MODEL or | MPORT _MODEL.

To create a private database link, you must have the CREATE DATABASE LI NK system privilege.
To create a public database link, you must have the CREATE PUBLI C DATABASE LI NK system
privilege. Also, you must have the CREATE SESSI ON system privilege on the remote Oracle
Database. Oracle Net must be installed on both the local and remote Oracle Databases.

Related Topics
e IMPORT_MODEL Procedure
e EXPORT_MODEL Procedure

e Oracle Database SQL Language Reference

ORACLE 28-8

Chapter 28
Exporting and Importing Mining Models

28.3.3 Directory Objects for EXPORT _MODEL and IMPORT_MODEL

Learn how to use directory objects to identify the location of the dump file set.

EXPORT_MODEL and | MPORT_MODEL use a directory object to identify the location of the
dump file set. A directory object is a logical name in the database for a physical
directory on the host computer.

To export data mining models, you must have write access to the directory object and
to the file system directory that it represents. To import data mining models, you must
have read access to the directory object and to the file system directory. Also, the
database itself must have access to file system directory. You must have the CREATE
ANY DI RECTQRY privilege to create directory objects.

The following SQL command creates a directory object named dnuser _di r. The file
system directory that it represents must already exist and have shared read/write
access rights granted by the operating system.

CREATE OR REPLACE DI RECTORY dnuser _dir AS '/dm path/dmmining';

The following SQL command gives user dnuser both read and write access to
drruser _dir.

GRANT READ, VRI TE ON DI RECTORY dnuser _dir TO dnuser;

Related Topics

e Oracle Database SQL Language Reference

28.3.4 Using EXPORT_MODEL and IMPORT_MODEL

ORACLE

The examples illustrate various export and import scenarios with EXPORT_MODEL and
| MPORT_MODEL.

The examples use the directory object dndi r shown in Example 28-1 and two
schemas, dnl and dn2. Both schemas have data mining privileges. dnt has two models.
dn2 has one model.

SELECT owner, nodel _name, mining_function, algorithmFROM all _ni ni ng_nodel s;

OMER MODEL_NAME M NI NG_FUNCTI ON ALGOR! THM

DML EM SH CLUS_SAVPLE CLUSTERI NG EXPECTATI ON_MAXI M ZATI ON
DML DT_SH CLAS SAVPLE CLASSI FI CATI ON DECI S| ON_TREE

D\VP SVD_SH_SAMPLE FEATURE_EXTRACTION S NGULAR VALUE_DECOMP

Example 28-1 Creating the Directory Object

- connect as system user

CREATE OR REPLACE DI RECTORY dndir AS '/scratch/dnuser/expinp';
GRANT READ, WRI TE ON DI RECTORY dndir TO dnt;

GRANT READ, WRI TE ON DI RECTORY dndir TO dn2;

SELECT * FROM al | _directories WHERE directory_name IN 'DVMDIR ;

OMNER DI RECTORY_NAME DI RECTORY_PATH

SYS DVDI R /' scrat ch/ dnuser/ expi nmp

28-9

ORACLE

Chapter 28
Exporting and Importing Mining Models

Example 28-2 Exporting All Models From DM1

- connect as dnl
BEG N
dbns_dat a_mi ni ng. export _nodel (
filename => ‘'all _dntl',
directory => ‘dmdir');
END;
/

A log file and a dump file are created in / scrat ch/ dnuser/ expi np, the physical directory
associated with dndi r. The name of the log file is dml_exp_11. | og. The name of the
dump file is al | _dnt01. dnp.

Example 28-3 Importing the Models Back Into DM1

The models that were exported in Example 28-2 still exist in dnl. Since an import does
not overwrite models with the same name, you must drop the models before importing
them back into the same schema.

BEG N
dbns_dat a_ni ni ng. drop_nodel (* EM SH CLUS_SAMPLE') ;
dbns_dat a_ni ni ng. drop_nodel (* DT_SH CLAS_SAMPLE') ;
dbns_dat a_ni ni ng. i nport _nodel (
filename => "all_dmlO1. dnp',
directory => 'DMDIR);
END;
/
SELECT nodel _nanme FROM user _ni ni ng_nodel s;

DT_SH CLAS_SAVPLE
EM SH CLUS_SAVPLE

Example 28-4 Importing Models Into a Different Schema

In this example, the models that were exported from dnt in Example 28-2 are imported
into dn2. The dnl schema uses the exanpl e tablespace; the dn2 schema uses the sysaux
tablespace.

- CONNECT as sysdba
BEG N
dbns_dat a_nini ng. i nport_nodel (
filename => "all _d101. dnp',
directory => 'DMDIR,
schena_renmap => ' DML: D\V2'
tabl espace_remap => ' EXAMPLE: SYSAUX');
END,
/
- CONNECT as dn?
SELECT nodel _nane from user_mini ng_nodel s;

SVD_SH_SAMPLE
EM SH CLUS_SAVPLE
DT_SH CLAS_SAVPLE

28-10

Chapter 28
Controlling Access to Mining Models and Data

Example 28-5 Exporting Specific Models

You can export a single model, a list of models, or a group of models that share
certain characteristics.

- Export the nodel named dt_sh_cl as_sanpl e
EXECUTE dbns_dat a_mi ni ng. export _nodel (
filename => 'one_nodel ',
directory =>'DMDI R,
model _filter => 'name in ("' DT_SH CLAS SAMPLE ')');
- one_nodel 01. dnp and dml_exp_37.1o0g are created in /scratch/dnuser/expi np

- Export Decision Tree nodel s
EXECUTE dbns_dat a_mi ni ng. export _nodel (
filename => "al go_nodel s',
directory => 'DMD R,
model _filter => 'ALGORI THVM NAME IN ("' DECI SION.TREE ')");
- al go_nodel 01. dnp and dml_exp_410.10g are created in /scratch/dmuser/expinp

- Export clustering nodels
EXECUTE dbns_dat a_mi ni ng. export _nodel (
filename =>'func_nodel s',
directory => 'DMD R,
model _filter => 'FUNCTION_NAME = '' CLUSTERING '');
- func_nodel 01. dnp and dml_exp_513.10g are created in /scratch/dmuser/expinp

Related Topics
e Oracle Database PL/SQL Packages and Types Reference

28.3.5 Importing From PMML

You can import Regression models represented in Predictive Model Markup Language
(PMML).

PMML is an XML-based standard specified by the Data Mining Group (http://
wwv. dng. or g). Applications that are PMML-compliant can deploy PMML-compliant
models that were created by any vendor. Oracle Data Mining supports the core
features of PMML 3.1 for regression models.

You can import regression models represented in PMML. The models must be of type
Regr essi onhbdel , either linear regression or binary logistic regression.

Related Topics
* Oracle Database PL/SQL Packages and Types Reference

28.4 Controlling Access to Mining Models and Data

Understand how to create a Data Mining user and grant necessary privileges.

e Creating a Data Mining User
e System Privileges for Data Mining

e Object Privileges for Mining Models

ORACLE 28-11

Chapter 28
Controlling Access to Mining Models and Data

28.4.1 Creating a Data Mining User

Explains how to create a Data Mining user.

A Data Mining user is a database user account that has privileges for performing data
mining activities. Example 28-6 shows how to create a database user. Example 28-7
shows how to assign data mining privileges to the user.

Note:

To create a user for the Data Mining sample programs, you must run two
configuration scripts as described in "The Data Mining Sample Programs”.

Example 28-6 Creating a Database User in SQL*Plus

1. Log in to SQL*Plus with system privileges.

Enter user-name: sys as sysdba
Enter password: password

2. To create a user named dnuser , type these commands. Specify a password of your
choosing.

CREATE USER drmruser | DENTI FI ED BY passwor d
DEFAULT TABLESPACE USERS
TEMPORARY TABLESPACE TEMP
QUOTA UNLI M TED ON USERS;

Commi t;

The USERS and TEMP tablespace are included in the pre-configured database that
Oracle ships with the database media. USERS is used mostly by demo users; it is
appropriate for running the sample programs described in "The Data Mining
Sample Programs". TEMP is the temporary tablespace that is shared by most
database users.

Note:

Tablespaces for Data Mining users must be assigned according to
standard DBA practices, depending on system load and system
resources.

3. Tologin as dnuser, type the following.
CONNECT dnuser
Enter password: password

Related Topics

e The Data Mining Sample Programs
Describes the data mining sample programs that ship with Oracle Database.

ORACLE 28-12

Chapter 28
Controlling Access to Mining Models and Data

¢ See Also:

Oracle Database SQL Language Reference for the complete syntax of the
CREATE USER statement

28.4.1.1 Granting Privileges for Data Mining

You must have the CREATE M NI NG MODEL privilege to create models in your own
schema. You can perform any operation on models that you own. This includes
applying the model, adding a cost matrix, renaming the model, and dropping the
model.

The GRANT statements in the following example assign a set of basic data mining
privileges to the dnuser account. Some of these privileges are not required for all
mining activities, however it is prudent to grant them all as a group.

Additional system and object privileges are required for enabling or restricting specific
mining activities.

Example 28-7 Privileges Required for Data Mining

GRANT CREATE M NI NG MODEL TO dnuser ;

GRANT CREATE SESSI ON TO dmuser ;

GRANT CREATE TABLE TO dnuser;

CGRANT CREATE VI EW TO drnuser ;

GRANT EXECUTE ON CTXSYS. CTX DDL TO dnuser;

READ or SELECT privileges are required for data that is not in your schema. For example,
the following statement grants SELECT access to the sh. cust ormer s table.

GRANT SELECT ON sh. custoners TO dmuser;

28.4.2 System Privileges for Data Mining

Learn different privileges to control operations on mining models.

A system privilege confers the right to perform a particular action in the database or to
perform an action on a type of schema objects. For example, the privileges to create
tablespaces and to delete the rows of any table in a database are system privileges.

You can perform specific operations on mining models in other schemas if you have
the appropriate system privileges. For example, CREATE ANY M NI NG MODEL enables you
to create models in other schemas. SELECT ANY M NI NG MODEL enables you to apply
models that reside in other schemas. You can add comments to models if you have
the COMMENT ANY M NI NG MODEL privilege.

To grant a system privilege, you must either have been granted the system privilege
with the ADM N OPTI ON or have been granted the GRANT ANY PRI VI LEGE system privilege.

The system privileges listed in the following table control operations on mining models.

ORACLE 28-13

Chapter 28
Controlling Access to Mining Models and Data

Table 28-2 System Privileges for Data Mining

System Privilege Allows you to....

CREATE M NI NG MODEL Create mining models in your own schema.

CREATE ANY M NI NG MODEL Create mining models in any schema.

ALTER ANY M NI NG MODEL Change the name or cost matrix of any mining model in any
schema.

DROP ANY M NI NG MODEL Drop any mining model in any schema.

SELECT ANY M NI NG MODEL Apply a mining model in any schema, also view model
details in any schema.

COMMENT ANY M NI NG MODEL Add a comment to any mining model in any schema.)

AUDI T_ADM Nrole Generate an audit trail for any mining model in any schema.

(See Oracle Database Security Guide for details.)

Example 28-8 Grant System Privileges for Data Mining

The following statements allow dnuser to score data and view model details in any
schema as long as SELECT access has been granted to the data. However, druser can
only create models in the dnuser schema.

GRANT CREATE M NI NG MCDEL TO dnuser;
GRANT SELECT ANY M NI NG MODEL TO dnuser;

The following statement revokes the privilege of scoring or viewing model details in
other schemas. When this statement is executed, druser can only perform data mining
activities in the dnuser schema.

REVOKE SELECT ANY M NI NG MODEL FROM dmuser ;

Related Topics
* Adding a Comment to a Mining Model

* Oracle Database Security Guide

28.4.3 Object Privileges for Mining Models

An object privilege confers the right to perform a particular action on a specific schema
object. For example, the privilege to delete rows from the SH. PRODUCTS table is an
example of an object privilege.

You automatically have all object privileges for schema objects in your own schema.
You can grant object privilege on objects in your own schema to other users or roles.

The object privileges listed in the following table control operations on specific mining
models.

Table 28-3 Object Privileges for Mining Models

__|
Object Privilege Allows you to....

ALTER M NING MDEL Change the name or cost matrix of the specified mining model object.
SELECT M NING MODEL Apply the specified mining model object and view its model details.

ORACLE 28-14

Chapter 28
Auditing and Adding Comments to Mining Models

Example 28-9 Grant Object Privileges on Mining Models

The following statements allow dnuser to apply the model t est model to the sal es table,
specifying different cost matrixes with each apply. The user dnuser can also rename
the model t est nodel . The test model model and sal es table are in the sh schema, not in
the dnuser schema.

GRANT SELECT ON M NI NG MODEL sh. testmodel TO dnuser;
GRANT ALTER ON M NI NG MDEL sh.testnodel TO dmuser;
GRANT SELECT ON sh. sal es TO dnuser;

The following statement prevents dnuser from renaming or changing the cost matrix of
t est model . However, dnuser can still apply t est nodel to the sal es table.

REVOKE ALTER ON M NI NG MCDEL sh. t est nodel FROM dnuser;

28.5 Auditing and Adding Comments to Mining Models

Mining model objects support SQL COWENT and AUDI T statements.

28.5.1 Adding a Comment to a Mining Model

Comments can be used to associate descriptive information with a database object.
You can associate a comment with a mining model using a SQL COMVENT statement.

COWENT ON M NI NG MDEL schema_nane. nodel _nanme |S string;

Note:

To add a comment to a model in another schema, you must have the COWENT
ANY M NI NG MODEL system privilege.

To drop a comment, set it to the empty ' ' string.

The following statement adds a comment to the model DT_SH CLAS SAMPLE in your own
schema.

COWENT ON M NI NG MODEL dt _sh_clas_sanple IS
"Decision Tree nodel predicts pronotion response';

You can view the comment by querying the catalog view USER M NI NG_MODELS.
SELECT nodel _nane, mning_function, algorithm coments FROM user_ni ning_nodels;
MODEL_NAVE M NI NG_FUNCTI ON ALGORI THM COMMENTS

DT_SH CLAS SAVPLE CLASSI FI CATION DECI SION_TREE Decision Tree nodel predicts pronotion response

To drop this comment from the database, issue the following statement:

COWENT ON M NI NG MODEL dt _sh_clas_sanple '";

ORACLE 28-15

Chapter 28
Auditing and Adding Comments to Mining Models

" See Also:

e Table 28-2

e Oracle Database SQL Language Reference for details about SQL
COWENT statements

28.5.2 Auditing Mining Models

The Oracle Database auditing system is a powerful, highly configurable tool for
tracking operations on schema objects in a production environment. The auditing
system can be used to track operations on data mining models.

" Note:

To audit mining models, you must have the AUDI T_ADM Nrole.

Unified auditing is documented in Oracle Database Security Guide. However, the full
unified auditing system is not enabled by default. Instructions for migrating to unified
auditing are provided in Oracle Database Upgrade Guide.

See Also:

e "Auditing Oracle Data Mining Events" in Oracle Database Security Guide
for details about auditing mining models

* "Monitoring Database Activity with Auditing” in Oracle Database Security
Guide for a comprehensive discussion of unified auditing in Oracle
Database

e "About the Unified Auditing Migration Process for Oracle Database" in
Oracle Database Upgrade Guide for information about migrating to
unified auditing

e Oracle Database Upgrade Guide

ORACLE 28-16

The Data Mining Sample Programs

Describes the data mining sample programs that ship with Oracle Database.

e About the Data Mining Sample Programs
e Installing the Data Mining Sample Programs

e The Data Mining Sample Data

29.1 About the Data Mining Sample Programs

ORACLE

You can learn a great deal about the Oracle Data Mining application programming
interface (API) from the data mining sample programs. The programs illustrate typical
approaches to data preparation, algorithm selection, algorithm tuning, testing, and
scoring.

The programs are easy to use. They include extensive inline comments to help you
understand the code. They delete all temporary objects on exit; you can run the
programs repeatedly without setup or cleanup.

The data mining sample programs are installed with Oracle Database Examples in the
demo directory under Oracle Home. The demo directory contains sample programs
that illustrate many features of Oracle Database. You can locate the data mining files
by doing a directory listing of dnt. sqgl . The following example shows this directory
listing on a Linux system.

Note that the directory listing in the following example includes one file, dnhpdeno. sql ,
that is not a data mining program.

Example 29-1 Directory Listing of the Data Mining Sample Programs
> c¢d $ORACLE_HOVE/ r dbns/ deno

> |'s dnt. sql

dmai deno. sql dnkmdeno. sql dnsvddeno. sql
dmar deno. sql dmbdeno. sql dnsvodem sql
dndt deno. sql dmndeno. sql dnsvrdem sql
dndt xvl ddeno. sql dnocdeno. sql dnt xt nnf . sql
dnmemdeno. sql dnsh. sql dnt xt svm sql
dngl cdem sq|l dmshgrants. sql

dngl rdem sql dnst ar deno. sql

dmhpdeno. sql dnsvcdem sql

The data mining sample programs create a set of mining models in the user's schema.
After executing the programs, you can list the models with a query like the one in the
following example.

Example 29-2 Models Created by the Sample Programs

SELECT mining_function, algorithm nodel _name FROM user _mi ni ng_nodel s
ORDER BY mi ni ng_functi on;

29-1

M NI NG_FUNCTI ON

Chapter 29

Installing the Data Mining Sample Programs

ALGORI THM

ASSOCI ATI ON_RULES
CLASSI FI CATI ON
CLASSI FI CATI ON
CLASSI FI CATI ON
CLASSI FI CATI ON
CLASSI FI CATI ON
CLASSI FI CATI ON
CLUSTER NG
CLUSTER NG
CLUSTER NG
CLUSTER NG
FEATURE_EXTRACTI ON
FEATURE_EXTRACTI ON
FEATURE_EXTRACTI ON
REGRESSI ON

REGRESSI ON

APRI ORI _ASSOC! ATl ON_RULES
GENERALI ZED LI NEAR MODEL
SUPPORT_VECTOR MACHI NES
SUPPORT_VECTOR MACHI NES
SUPPORT_VECTOR MACHI NES
NAI VE_BAYES

DECI SI ON_TREE

EXPECTATI ON_MAXI M ZATI ON
0 CLUSTER

KVEANS

KVEANS

SI NGULAR_VALUE_DECOVP
NONNEGATI VE_MATRI X_FACTOR
NONNEGATI VE_MATRI X_FACTOR
SUPPORT_VECTOR MACHI NES
GENERALI ZED LI NEAR MODEL

AR SH_SAMPLE
GLMC_SH CLAS SAWPLE
T_SVM CLAS_SAMPLE
SVMC_SH CLAS SANPLE
SVMD_SH CLAS SANPLE
NB_SH CLAS_SANPLE
DT_SH CLAS_SAMPLE
EM SH_CLUS_SAMPLE
OC_SH CLUS_SAMPLE
KM SH_CLUS_SANPLE
DM STAR CLUSTER
SVD_SH_SANPLE
NVF_SH_SANPLE
T_NVF_SAMPLE

SVMR SH REGR SANPLE
GLMR SH REGR SANPLE

29.2 Installing the Data Mining Sample Programs

Learn how to install Data Mining sample programs.

ORACLE

The data mining sample programs require:

e Oracle Database Enterprise Edition with the Advanced Analytics option

e Oracle Database sample schemas

e Oracle Database Examples
e A data mining user account

e Execution of dnshgrants. sql by a system administrator

» Execution of dnsh. sgl by the data mining user

Follow these steps to install the data mining sample programs:

1. Install or obtain access to Oracle Database 12c¢ Enterprise Edition with the
Advanced Analytics option. To install the Database, see the installation
instructions for your platform at Oracl e Database 12c Rel ease 2.

2. Ensure that the sample schemas are installed in the database. The sample
schemas are installed by default with Oracle Database. See Oracle Database

Sample Schemasfor details about the sample schemas.

Verify that Oracle Database Examples has been installed with the database, or
install it locally. Oracle Database Examples loads the Database sample programs
into the r dbms/ deno directory under Oracle home. See Oracle Database Examples
Installation Guidefor installation instructions.

Verify that a data mining user account has been created, or create it yourself if you
have administrative privileges. See "Creating a Data Mining User".

Ask your system administrator to run dnshgrant s. sgl , or run it yourself if you have
administrative privileges. dmshgr ant s grants the privileges that are required for
running the sample programs. These include SELECT access to tables in the SH
schema as described in "The Data Mining Sample Data" and the system privileges
listed in the following table.

Pass the name of the data mining user to dnshgrants.

29-2

Chapter 29
The Data Mining Sample Data

SQ> CONNECT sys / as sysdba

Enter password: sys_password

Connect ed.

SQL> @ $ORACLE_HOVE/ r dbns/ deno/ dnshgr ant s dnruser

Table 29-1 System Privileges Granted by dmshgrants.sql to the Data
Mining User

Privilege Allows the data mining user to

CREATE SESSI ON log in to a database session

CREATE TABLE create tables, such as the settings tables for CREATE_MODEL
CREATE VI EW create views, such as the views of tables in the SH schema
CREATE M NI NG MODEL create data mining models

EXECUTE ON execute procedures in the ct xsys. ctx_ddl PL/SQL
ctxsys. ctx_ddl package; required for text mining

6. Connect to the database as the data mining user and run dnsh. sgl . This script
creates views of the sample data in the schema of the data mining user.

SQL> CONNECT dnuser

Enter password: dnuser_password
Connect ed.

SQ.> @ $ORACLE_HOVE/ r dbns/ dero/ dnsh

Related Topics
e Oracle Database Sample Schemas
e Oracle Database Examples Installation Guide

e Creating a Data Mining User
Explains how to create a Data Mining user.

29.3 The Data Mining Sample Data

ORACLE

The data used by the sample data mining programs is based on these tables in the SH
schema:

SH. CUSTOVERS

SH. SALES

SH. PRODUCTS

SH. SUPPLEMENTARY_DEMOGRAPHI CS
SH. COUNTRI ES

The dmshgrant s script grants SELECT access to the tables in SH. The dnsh. sql script
creates views of the SH tables in the schema of the data mining user. The views are
described in the following table:

Table 29-2 The Data Mining Sample Data
|

View Name Description

M NI NG_DATA Joins and filters data

M NI NG_DATA BU LD V Data for building models
M NI NG _DATA TEST V Data for testing models

29-3

Chapter 29
The Data Mining Sample Data

Table 29-2 (Cont.) The Data Mining Sample Data

View Name Description

M NI NG_DATA APPLY_V Data to be scored

M NI NG BUI LD TEXT Data for building models that include text
M NI NG_TEST_TEXT Data for testing models that include text
M NI NG_APPLY_TEXT Data, including text columns, to be scored

M NI NG_DATA ONE_CLASS V Data for anomaly detection

The association rules program creates its own transactional data.

ORACLE 29-4

Oracle Data Mining API Reference

Learn about Oracle Data Mining PL/SQL packages, data dictionary views, and data
mining SQL scoring functions.

e PL/SQL Packages
e Data Dictionary Views

e SQL Scoring Functions

ORACLE

PL/SQL Packages

Learn how to create, evaluate, and query data mining models through Data Mining
PL/SQL packages.

- DBMS_DATA_MINING
- DBMS_DATA_MINING_TRANSFORM
- DBMS_PREDICTIVE_ANALYTICS

30.1 DBMS_DATA_MINING

The DBVS_DATA M NI NG package is the application programming interface for creating,
evaluating, and querying data mining models.

This chapter contains the following topics:

* Overview

e Security Model

e Mining Functions

e Model Settings

* Datatypes

e Summary of DBMS_DATA_MINING Subprograms

See Also:

e Oracle Data Mining Concepts

e Oracle Data Mining User’s Guide

- DBMS_DATA_MINING_TRANSFORM
e DBMS_PREDICTIVE_ANALYTICS

30.1.1 Using DBMS_DATA_MINING

ORACLE

This section contains topics that relate to using the DBVMS_DATA M NI NG package.

* Overview

e Security Model

e Mining Functions
e Model Settings

* Datatypes

30-1

Chapter 30
DBMS_DATA_MINING

30.1.1.1 DBMS_DATA_MINING Overview

Oracle Data Mining supports both supervised and unsupervised data mining.
Supervised data mining predicts a target value based on historical data. Unsupervised
data mining discovers natural groupings and does not use a target. You can use
Oracle Data Mining to mine structured data and unstructured text.

Supervised data mining functions include:

» Classification

* Regression

* Feature Selection (Attribute Importance)
Unsupervised data mining functions include:
e Clustering

» Association

* Feature Extraction

* Anomaly Detection

The steps you use to build and apply a mining model depend on the data mining
function and the algorithm being used. The algorithms supported by Oracle Data
Mining are listed in Table 30-1.

Table 30-1 Oracle Data Mining Algorithms

Algorithm Abbreviation Function

Apriori AR Association

Decision Tree DT Classification

Expectation Maximization EM Clustering

Generalized Linear Model GLM Classification, Regression

k-Means KM Clustering

Minimum Descriptor Length MDL Attribute Importance

Naive Bayes NB Classification

Non-Negative Matrix Factorization NMF Feature Extraction

Orthogonal Partitioning Clustering O-Cluster Clustering

Singular Value Decomposition and SVD and Feature Extraction

Principal Component Analysis PCA

Support Vector Machine SVM Classification, Regression, Anomaly
Detection

Explicit Semantic Analysis ESA Feature Extraction

Oracle Data Mining supports more than one algorithm for the classification, regression,
clustering, and feature extraction mining functions. Each of these mining functions has
a default algorithm, as shown in Table 30-2.

ORACLE 30-2

Chapter 30
DBMS_DATA_MINING

Table 30-2 Oracle Data Mining Default Algorithms

Mining Function Default Algorithm

Classification Naive Bayes

Clustering k-Means

Feature Extraction Non-Negative Matrix Factorization
Feature Selection Minimum Descriptor Length
Regression Support Vector Machine

30.1.1.2 DBMS_DATA_MINING Security Model

The DBVS_DATA M NI NG package is owned by user SYS and is installed as part of
database installation. Execution privilege on the package is granted to public. The
routines in the package are run with invokers' rights (run with the privileges of the
current user).

The DBVS_DATA M NI NG package exposes APIs that are leveraged by the Oracle Data
Mining component of the Advanced Analytics Option. Users who wish to create mining
models in their own schema require the CREATE M NI NG MODEL system privilege. Users
who wish to create mining models in other schemas require the CREATE ANY M NI NG
MODEL system privilege.

Users have full control over managing models that exist within their own schema.
Additional system privileges necessary for managing data mining models in other
schemas include ALTER ANY M NI NG MODEL, DROP ANY M NI NG MODEL, SELECT ANY M NI NG
MODEL, COMVENT ANY M NI NG MODEL, and AUDI T ANY.

Individual object privileges on mining models, ALTER M NING MODEL and SELET M NI NG
MODEL, can be used to selectively grant privileges on a model to a different user.

¢ See Also:

Oracle Data Mining User's Guide for more information about the security
features of Oracle Data Mining

30.1.1.3 DBMS_DATA_MINING — Mining Functions

A data mining function refers to the methods for solving a given class of data mining
problems.

The mining function must be specified when a model is created. (See
CREATE_MODEL Procedure.)

ORACLE 30-3

Chapter 30
DBMS_DATA_MINING

Table 30-3 Mining Functions

Value

Description

ASSCCI ATI ON

ATTRI BUTE_| MPORTANCE

CLASSI FI CATI ON

CLUSTERI NG

FEATURE_EXTRACTI ON

Association is a descriptive mining function. An association model
identifies relationships and the probability of their occurrence
within a data set.

Association models use the Apriori algorithm.

Attribute importance is a predictive mining function, also known as
feature selection. An attribute importance model identifies the
relative importance of an attribute in predicting a given outcome.

Attribute importance models use Minimum Description Length.

Classification is a predictive mining function. A classification
model uses historical data to predict a categorical target.

Classification models can use: Naive Bayes, Decision Tree,
Logistic Regression, or Support Vector Machine. The default is
Naive Bayes.

The classification function can also be used for anomaly
detection. In this case, the SVM algorithm with a null target is
used (One-Class SVM).

Clustering is a descriptive mining function. A clustering model
identifies natural groupings within a data set.

Clustering models can use k-Means, O-Cluster, or Expectation
Maximization. The default is k-Means.

Feature Extraction is a descriptive mining function. A feature
extraction model creates an optimized data set on which to base
a model.

Feature extraction models can use Explicit Semantic Analysis,
Non-Negative Matrix Factorization, Singular Value
Decomposition, or Principal Component Analysis. Non-Negative
Matrix Factorization is the default.

REGRESSI ON Regression is a predictive mining function. A regression model
uses historical data to predict a numerical target.
Regression models can use Support Vector Machine or Linear
Regression. The default is Support Vector Machine.
¢ See Also:

Oracle Data Mining Concepts for more information about mining functions

30.1.1.4 DBMS_DATA_MINING Datatypes

The DBVS_DATA M NI NG package defines object datatypes for storing information about
model attributes. Most of these types are returned by the table functions GET_n, where
n identifies the type of information to return. These functions take a model name as
input and return the requested information as a collection of rows.

ORACLE

For a list of the GET functions, see "Summary of DBMS_DATA_MINING Subprograms".

The DBMS_DATA M NI NG package also defines object datatypes for mining transactional
data. These types are called DM NESTED n, where n identifies the Oracle datatype of the

30-4

ORACLE

Chapter 30
DBMS_DATA_MINING

nested attributes. For more information about mining nested data, see Oracle Data

Mining User's Guide.

All the table functions use pipelining, which causes each row of output to be
materialized as it is read from model storage, without waiting for the generation of the
complete table object. For more information on pipelined, parallel table functions,
consult the Oracle Database PL/SQL Language Reference.

The Data Mining object datatypes are described in the following table:

Table 30-4 DBMS_DATA_MINING Summary of Datatypes
|

Datatype Description

DM CENTRO D The centroid of a cluster.

DM _CENTRO DS A collection of DM CENTRA D. A member of DM CLUSTER.

DM CHI LD A child node of a cluster.

DM CHI LDREN A collection of DM CHI LD. A member of DM _CLUSTER.

DM CLUSTER A cluster. A cluster includes DM PREDI CATES, DM CHI LDREN,
DM CENTRO DS, and DM HI STOGRAMS. It also includes a
DM RULE.
See also, Table 30-6.

DM CLUSTERS A collection of DM CLUSTER. Returned by
GET_MODEL_DETAILS_KM Function,
GET_MODEL_DETAILS_OC Function, and
GET_MODEL_DETAILS_EM Function.
See also, Table 30-6.

DM _CONDI TI ONAL The conditional probability of an attribute in a Naive Bayes

DM _CONDI Tl ONALS

DM COST_ELENENT
DM COST_MATRI X

DM _EM COVPONENT
DM EM COVPONENT _SET

DM EM PROJECTI ON
DM _EM PROJECTI ON_SET

DM GLM COEFF

DM GLM COEFF_SET

DM HI STOGRAM BI N
DM H STOGRAMG

DM | TEM
DM | TEMB

model.

A collection of DM_CONDI Tl ONAL. Returned by
GET_MODEL_DETAILS_NB Function.

The actual and predicted values in a cost matrix.

A collection of DM_COST_ELEMENT. Returned by
GET_MODEL_COST_MATRIX Function.

A component of an Expectation Maximization model.

A collection of DM_EM COVPONENT. Returned by
GET_MODEL_DETAILS _EM_COMP Function.

A projection of an Expectation Maximization model.

A collection of DM_EM PRQIECTI ON. Returned by
GET_MODEL_DETAILS_EM_PROJ Function.

The coefficient and associated statistics of an attribute in a
Generalized Linear Model.

A collection of DM_GLM _COEFF. Returned by
GET_MODEL_DETAILS_GLM Function.

A histogram associated with a cluster.

A collection of DM H STOGRAM BI N. A member of DM CLUSTER.
See also, Table 30-6.

An item in an association rule.
A collection of DM | TEM

30-5

Chapter 30
DBMS_DATA_MINING

Table 30-4 (Cont.) DBMS_DATA_MINING Summary of Datatypes
|

Datatype Description
DM | TEMSET A collection of DM | TEMS.
DM | TEMSETS A collection of DM | TEMSET. Returned by

DM MODEL_GLOBAL_DETAI L
DM MODEL_GLOBAL_DETAI LS

DM NB_DETAI L
DM NB_DETAI LS

DM NESTED Bl NARY_DOUBLE

DM NESTED_BI NARY_DOUBLES
DM NESTED Bl NARY_FLOAT

DM NESTED Bl NARY_FLOATS
DM NESTED CATEGOR! CAL

DM NESTED_CATEGORI CALS
DM _NESTED_NUMERI CAL

DM NESTED NUMVERI CALS
DM NVF_ATTRI BUTE

DM NVF_ATTRI BUTE_SET

DM NVF_FEATURE
DM NVF_FEATURE_SET

DM _PREDI CATE
DM PREDI CATES

DM _RANKED_ATTRI BUTE

DM _RANKED_ATTRI BUTES

ORACLE

GET_FREQUENT_ITEMSETS Function.
High-level statistics about a model.

A collection of DM_MODEL_G.OBAL_DETAI L. Returned by
GET_MODEL_DETAILS GLOBAL Function.

Information about an attribute in a Naive Bayes model.

A collection of DM DB_DETAI L. Returned by
GET_MODEL_DETAILS_NB Function.

The name and value of a numerical attribute of type
Bl NARY_DCUBLE.

A collection of DM NESTED Bl NARY_DOUBLE.

The name and value of a numerical attribute of type
Bl NARY_FLOAT.

A collection of DM_NESTED Bl NARY_FLQAT.

The name and value of a categorical attribute of type CHAR,
VARCHAR, or VARCHAR2.

A collection of DM_NESTED_CATEGORI CAL.

The name and value of a numerical attribute of type NUMBER
or FLOAT.

A collection of DM NESTED NUMERI CAL.

An attribute in a feature of a Non-Negative Matrix
Factorization model.

A collection of DM_NVF_ATTRI BUTE. A member of
DM _NWVF_FEATURE.

A feature in a Non-Negative Matrix Factorization model.

A collection of DM_NVF_FEATURE. Returned by
GET_MODEL_DETAILS_NMF Function.

Antecedent and consequent in a rule.

A collection of DM _PREDI CATE. A member of DM RULE and
DM CLUSTER. Predicates are returned by
GET_ASSOCIATION_RULES Function,
GET_MODEL_DETAILS_EM Function,
GET_MODEL_DETAILS_KM Function, and
GET_MODEL_DETAILS_OC Function.

See also, Table 30-6.

An attribute ranked by its importance in an Attribute
Importance model.

A collection of DM RANKED _ATTRI BUTE. Returned by
GET_MODEL_DETAILS_Al Function.

30-6

ORACLE

Chapter 30
DBMS_DATA_MINING

Table 30-4 (Cont.) DBMS_DATA_MINING Summary of Datatypes
|

Datatype

Description

DM RULE

DM RULES

DM SVD_MATRI X

DM SVD_MATRI X_SET

DM SVM ATTRI BUTE

DM SVM ATTRI BUTE_SET

DM SVM LI NEAR_COEFF

DM SVM LI NEAR_COEFF_SET

DM _TRANSFORM

DM _TRANSFORVS

TRANSFORM LI ST

A rule that defines a conditional relationship.

The rule can be one of the association rules returned by
GET_ASSOCIATION_RULES Function, or it can be a rule
associated with a cluster in the collection of clusters
returned by GET_MODEL_DETAILS_KM Function and
GET_MODEL_DETAILS_OC Function.

See also, Table 30-6.

A collection of DM RULE. Returned by
GET_ASSOCIATION_RULES Function.

See also, Table 30-6.

A factorized matrix S, V, or U returned by a Singular Value
Decomposition model.

A collection of DM_SVD_MATRI X. Returned by
GET_MODEL_DETAILS_SVD Function.

The name, value, and coefficient of an attribute in a Support
Vector Machine model.

A collection of DM_SVM ATTRI BUTE. Returned by
GET_MODEL_DETAILS_SVM Function. Also a member of
DM SVM LI NEAR_COEFF.

The linear coefficient of each attribute in a Support Vector
Machine model.

A collection of DM SVM LI NEAR_CCEFF. Returned by
GET_MODEL_DETAILS_SVM Function for an SVM model
built using the linear kernel.

The transformation and reverse transformation expressions
for an attribute.

A collection of DM_TRANSFORM Returned by
GET_MODEL_TRANSFORMATIONS Function.

A list of user-specified transformations for a model.
Accepted as a parameter by the CREATE_MODEL
Procedure.

This collection type is defined in the
DBMS_DATA_MINING_TRANSFORM package.

30-7

Return Values for Clustering Algorithms

Chapter 30
DBMS_DATA_MINING

Table 30-5 DM_CLUSTER Return Values for Clustering Algorithms
|

Return Value

Description

DM CLUSTERS

DM _PREDI CATE

A set of rows of type DM _CLUSTER. The rows have the following columns:

(id NUMVBER,
cluster_id VARCHAR2(4000) ,
record_count NUMBER,
par ent NUVBER,
tree_| evel NUMBER,

di spersion NUMBER,
split_predicate DM PREDI CATES,
child DM _CHI LDREN,
centroid DM _CENTRQ DS,
hi st ogram DM _HI STOGRAMS,
rule DM _RULE)

The ant ecedent and consequent columns each return nested tables of
type DM PREDI CATES. The rows, of type DM PREDI CATE, have the following

columns:

(attribute_nane
attribute_subnane
condi ti onal _oper at or
attribute_numval ue
attribute_str_val ue
attribute_support

attribute_confidence

VARCHAR2(14000) ,
VARCHAR2(14000) ,
CHAR(2)/*=, <>, <, >, <=, >=*/
NUVBER,

VARCHAR2(14000) ,

NUVBER,

NUVBER)

DM_CLUSTER Fields

The following table describes the DM_CLUSTER fields.

Table 30-6 DM_CLUSTER Fields

Column Name

Description

id

cluster _id
record_count
par ent
tree_l evel

di spersion

ORACLE

Cluster identifier

The ID of a cluster in the model

Specifies the number of records

Parent ID

Specifies the number of splits from the root

A measure used to quantify whether a set of observed
occurrences are dispersed compared to a standard

statistical model.

30-8

Table 30-6 (Cont.) DM_CLUSTER Fields

Column Name

Description

Chapter 30
DBMS_DATA_MINING

split_predicate

child

centroid

hi st ogram

rule

The split_predicate column of DM CLUSTER returns a
nested table of type DM PREDI CATES. Each row, of type
DM PREDI CATE, has the following columns:

(attribute_nane
attribute_subnanme
condi tional _operator

*z <> < >, <3 >
attribute_numval ue
attribute_str_val ue
attribute_support
attribute_confidence

VARCHAR?(4000) ,
VARCHAR? (4000) ,
CHAR(2) |

NUMBER
VARCHAR2 (4000) ,
NUMBER
NUNBER)

Note: The Expectation Maximization algorithm uses all the
fields except di spersi on and split_predicate.

The chi | d column of DM CLUSTER returns a nested table of
type DM _CHI LDREN. The rows, of type DM CHI LD, have a
single column of type NUMBER, which contains the identifiers
of each child.

The centroi d column of DM CLUSTER returns a nested table
of type DM _CENTRO DS. The rows, of type DM _CENTRO D, have

the following columns:

(attribute_name

VARCHAR2(4000) ,

attribute_subname VARCHAR2(4000),

mean NUMBER,
mode_val ue VARCHAR2(4000) ,
variance NUMBER)

The hi st ogr amcolumn of DM _CLUSTER returns a nested
table of type DM _HI STOGRAMS. The rows, of type
DM HI STOGRAM BI N, have the following columns:

(attribute_nane VARCHAR2(4000) ,

attribute_subname VARCHAR2(4000),
bin_id NUMBER,
| ower _bound NUMBER,
upper _bound NUVBER,
| abel VARCHAR2(4000),
count NUVBER)

The rul e column of DM _CLUSTER returns a single row of type

DM RULE. The columns are:

(rule_id | NTEGER,
ant ecedent DM _PREDI CATES,
consequent DM _PREDI CATES,
rul e_support NUMBER,
rul e_confidence NUMBER,
rule_lift NUMBER,
ant ecedent _support NUMBER,
consequent _support NUMVBER,
nunmber _of _itens | NTEGER)

ORACLE

30-9

Chapter 30
DBMS_DATA_MINING

Usage Notes

* The table function pipes out rows of type DM CLUSTER. For information on Data
Mining datatypes and piped output from table functions, see "Datatypes".

e For descriptions of predicates (DM PREDI CATE) and rules (DM RULE), see
GET_ASSOCIATION_RULES Function.

30.1.2 DBMS_DATA_MINING — Model Settings

Oracle Data Mining uses settings to specify the algorithm and other characteristics of a
model. Some settings are general, some are specific to a mining function, and some
are specific to an algorithm.

All settings have default values. If you want to override one or more of the settings for
a model, you must create a settings table. The settings table must have the column
names and datatypes shown in the following table.

Table 30-7 Required Columns in the Model Settings Table
|

Column Name Datatype
SETTI NG_NAMVE VARCHAR2(30)
SETTI NG_VALUE VARCHAR2(4000)

The information you provide in the settings table is used by the model at build time.
The name of the settings table is an optional argument to the CREATE_MODEL
Procedure.

You can find the settings used by a model by querying the data dictionary view
ALL_M NI NG MODEL_SETTI NGS. This view lists the model settings used by the mining
models to which you have access. All the setting values are included in the view,
whether default or user-specified.

See Also:

e ALL_M N NG _MXDEL_SETTINGS in Oracle Database Reference

e Oracle Data Mining User's Guide for information about specifying model
settings

30.1.2.1 DBMS_DATA_MINING — Algorithm Names

The ALGO NAME setting specifies the model algorithm.

The values for the ALGO_NAME setting are listed in the following table.

Table 30-8 Algorithm Names

___|]
ALGO_NAME Value Description Mining Function

ALGO Al _MDL Minimum Description Length Attribute Importance

ORACLE 30-10

Chapter 30
DBMS_DATA _MINING

Table 30-8 (Cont.) Algorithm Names
]

ALGO_NAME Value Description Mining Function

ALGO_APRI ORI _ASSOCI ATI ON_RULES Apriori Association Rules

ALGO DECI SI ON_TREE Decision Tree Classification

ALGO_EXPECTATI ON_MAXI M ZATI ON Expectation Maximization Clustering

ALGO EXPLI CI T_SEMANTI C_ANALYS Explicit Semantic Analysis Feature Extraction

ALGO_EXTENSI BLE_LANG Language used for extensible All mining functions supported
algorithm

ALGO_GENERALI ZED LI NEAR_MODEL Generalized Linear Model Classification, Regression; also Feature

Selection and Generation

ALGO_KMEANS Enhanced k_Means Clustering

ALGO_NAI VE_BAYES Naive Bayes Classification

ALGO_NONNEGATI VE_MATRI X _FACTOR Non-Negative Matrix Feature Extraction
Factorization

ALGO O CLUSTER O-Cluster Clustering

ALGO_SI NGULAR_VALUE_DECOWP Singular Value Decomposition Feature Extraction

ALGO_SUPPORT_VECTOR_MACHI NES Support Vector Machine Classification and Regression

" See Also:

Oracle Data Mining Concepts for information about algorithms

30.1.2.2 DBMS_DATA_MINING — Automatic Data Preparation

ORACLE

Oracle Data Mining supports fully Automatic Data Preparation (ADP), user-directed
general data preparation, and user-specified embedded data preparation. The PREP_*
settings enable the user to request fully automated or user-directed general data
preparation. By default, fully Automatic Data Preparation (PREP_AUTO ON) is enabled.

When you enable Automatic Data Preparation, the model uses heuristics to transform
the build data according to the requirements of the algorithm. Instead of fully
Automatic Data Preparation, the user can request that the data be shifted and/or
scaled with the PREP_SCALE* and PREP_SHI FT* settings. The transformation instructions
are stored with the model and reused whenever the model is applied. Refer to Model
Detail Views, Oracle Data Mining User’s Guide.

You can choose to supplement Automatic Data Preparations by specifying additional
transformations in the xform | i st parameter when you build the model. (See
"CREATE_MODEL Procedure".)

If you do not use Automatic Data Preparation and do not specify transformations in the
xform |ist parameter to CREATE_MODEL, you must implement your own transformations
separately in the build, test, and scoring data. You must take special care to
implement the exact same transformations in each data set.

If you do not use Automatic Data Preparation, but you do specify transformations in
the xform | i st parameter to CREATE_MODEL, Oracle Data Mining embeds the

30-11

Chapter 30
DBMS_DATA_MINING

transformation definitions in the model and prepares the test and scoring data to

match the build data.

The values for the PREP_* setting are described in the following table.

Table 30-9 PREP_* Setting

Setting Name Setting Value Description
PREP_AUTO e PREP_AUTO ON This setting enables fully automated data
« PREP_AUTO OFF preparation.

PREP_SCALE_2DNUM *

PREP_SCALE_NNUM PREP_SCALE_MAXABS

PREP_SH FT_2DNUM -«

PREP_SCALE_STDDEV
PREP_SCALE_RANGE

PREP_SHI FT_NEAN
PREP_SH FT_M N

The default is PREP_AUTO_ON.

This setting enables scaling data preparation
for two-dimensional numeric columns.
PREP_AUTO must be OFF for this setting to
take effect. The following are the possible
values:

e PREP_SCALE STDDEV: A request to divide
the column values by the standard
deviation of the column and is often
provided together with PREP_SH FT_MEAN
to yield z-score normalization.

e PREP_SCALE RANGE: A request to divide
the column values by the range of
values and is often provided together
with PREP_SH FT_M N to yield a range of
[0,1].

This setting enables scaling data preparation

for nested numeric columns. PREP_AUTO must

be OFF for this setting to take effect. If
specified, then the valid value for this setting
is PREP_SCALE_MAXABS, which yields data in
the range of [-1,1].

This setting enables centering data
preparation for two-dimensional numeric
columns. PREP_AUTO must be OFF for this
setting to take effect. The following are the
possible values:

e PREP_SH FT_MEAN: Results in subtracting
the average of the column from each
value.

e PREP_SH FT_M N: Results in subtracting
the minimum of the column from each
value.

¢ See Also:

Oracle Data Mining User's Guide for information about data transformations

30.1.2.3 DBMS_DATA_MINING — Mining Function Settings

The settings described in this table apply to a mining function.

ORACLE

30-12

Table 30-10 Mining Function Settings

Chapter 30
DBMS_DATA_MINING

___|]
Mining Function Setting Name

Setting Value

Description

Association

Association

Association

Association

Association

Association

Association

Association

ORACLE

ASSO MAX_RULE_LENGTH

ASSO_M N_CONFI DENCE

ASSO M N_SUPPORT

ASSO M N_SUPPCRT | NT

ASSO M N_REV_CONFI DENCE

ASSO | N_RULES

ASSO EX_RULES

ASSO ANT_ | N_RULES

TO CHAR(2<=
nuneri c_expr
<=20)
TO CHAR(0<=
nuneri c_expr
<=1)
TO CHAR(0<=
nuneri c_expr
<=1)
TO CHAR(0<=
numeri c_expr
<=1)

TO CHAR(0<=
nuneri c_expr
<=1)

NULL

NULL

NULL

Maximum rule length for Association Rules.
Default is 4.

Minimum confidence for Association Rules.
Default is 0. 1.

Minimum support for Association Rules
Default is 0. 1.

Minimum absolute support that each rule must
satisfy. The value must be an integer.

Default is 1.

Sets the Minimum Reverse Confidence that each
rule should satisfy.

The Reverse Confidence of a rule is defined as
the number of transactions in which the rule
occurs divided by the number of transactions in
which the consequent occurs.

The value is real number between 0 and 1.
The default is 0.

Sets Including Rules applied for each association
rule: it specifies the list of items that at least one
of them must appear in each reported association
rule, either as antecedent or as consequent. It is
a comma separated string containing the list of
including items.

If not set, the default behavior is, the filtering is
not applied.

Sets Excluding Rules applied for each association
rule: it specifies the list of items that none of them
can appear in each reported Association Rules. It
is a comma separated string containing the list of
excluding items. No rule can contain any item in
the list.

The default is NULL.

Sets Including Rules for the antecedent: it
specifies the list of items that at least one of them
must appear in the antecedent part of each
reported association rule. It is a comma
separated string containing the list of including
items. The antecedent part of each rule must
contain at least one item in the list.

The default is NULL.

30-13

Table 30-10 (Cont.) Mining Function Settings

Chapter 30
DBMS_DATA_MINING

___|]
Setting Value Description

Mining Function Setting Name

Association ASSO ANT_EX_ RULES
Association ASSO _CONS_I N_RULES
Association ASSO_CONS_EX_RULES
Association ASSO_AGGREGATES
ORACLE

NULL

NULL

NULL

NULL

Sets Excluding Rules for the antecedent: it
specifies the list of items that none of them can
appear in the antecedent part of each reported
association rule. It is a comma separated string
containing the list of excluding items. No rule can
contain any item in the list in its antecedent part.

The default is NULL.

Sets Including Rules for the consequent: it
specifies the list of items that at least one of them
must appear in the consequent part of each
reported association rule. It is a comma
separated string containing the list of including
items. The consequent of each rule must be an
item in the list.

The default is NULL.

Sets Excluding Rules for the consequent: it
specifies the list of items that none of them can
appear in the consequent part of each reported
association rule. It is a comma separated string
containing the list of excluding items. No rule can
have any item in the list as its consequent.

The excluding rule can be used to reduce the
data that must be stored, but the user may be
required to build extra model for executing
different including or Excluding Rules.

The default is NULL.

Specifies the columns to be aggregated. Itis a
comma separated string containing the names of
the columns for aggregation. Number of columns
in the list must be <= 10.

You can set ASSO_AGGREGATES if

CDVS_| TEM | D_COLUWMN_NAME is set indicating
transactional input data. See
DBMS_DATA_MINING - Global Settings. The
data table must have valid column names such as
| TEM | Dand CASE_| D which are derived from
CDVS_| TEM | D_COLUMN_NAME and

case_i d_col unn_nane respectively.

| TEM VALUE is not a mandatory value.
The default is NULL.

For each item, the user may supply several
columns to aggregate. It requires more memory
to buffer the extra data. Also, the performance
impact can be seen because of the larger input
data set and more operation.

30-14

Table 30-10 (Cont.) Mining Function Settings

Chapter 30
DBMS_DATA_MINING

___|]
Mining Function Setting Name Setting Value Description

Classification CLAS_COST_TABLE_NAME table_name

Classification CLAS_PRI ORS_TABLE_NAME table_name

Classification CLAS_VEI GHTS_TABLE_NAME table_name

Classification CLAS_WEI GHTS_BALANCED N
OFF

ORACLE

(Decision Tree only) Name of a table that stores a
cost matrix to be used by the algorithm in building
the model. The cost matrix specifies the costs
associated with misclassifications.

Only Decision Tree models can use a cost matrix
at build time. All classification algorithms can use
a cost matrix at apply time.

The cost matrix table is user-created. See
"ADD_COST_MATRIX Procedure" for the column
requirements.

See Oracle Data Mining Concepts for information
about costs.

(Naive Bayes) Name of a table that stores prior
probabilities to offset differences in distribution
between the build data and the scoring data.

The priors table is user-created. See Oracle Data
Mining User's Guide for the column requirements.
See Oracle Data Mining Concepts for additional
information about priors.

(GLM and SVM only) Name of a table that stores
weighting information for individual target values
in SVM classification and GLM logistic regression
models. The weights are used by the algorithm to
bias the model in favor of higher weighted
classes.

The class weights table is user-created. See
Oracle Data Mining User's Guide for the column
requirements. See Oracle Data Mining Concepts
for additional information about class weights.

This setting indicates that the algorithm must
create a model that balances the target
distribution. This setting is most relevant in the
presence of rare targets, as balancing the
distribution may enable better average accuracy
(average of per-class accuracy) instead of overall
accuracy (which favors the dominant class). The
default value is OFF.

30-15

Table 30-10 (Cont.) Mining Function Settings
]

Mining Function Setting Name

Chapter 30
DBMS_DATA_MINING

Setting Value Description

Clustering

Feature
Extraction

CLUS_NUM CLUSTERS TO CHAR(num Maximum number of leaf clusters generated by a

eric_expr
>=1)

FEAT_NUM FEATURES TO_CHAR(
nuneri c_expr
>=1)

clustering algorithm. The algorithm may return
fewer clusters, depending on the data.

Enhanced k-Means usually produces the exact
number of clusters specified by

CLUS_NUM CLUSTERS, unless there are fewer
distinct data points.

Expectation Maximization (EM) may return fewer
clusters than the number specified by

CLUS_NUM CLUSTERS depending on the data. The
number of clusters returned by EM cannot be
greater than the number of components, which is
governed by algorithm-specific settings. (See
Expectation Maximization Settings for Learning
table) Depending on these settings, there may be
fewer clusters than components. If component
clustering is disabled, the number of clusters
equals the number of components.

For EM, the default value of CLUS_NUM CLUSTERS

is system-determined. For k-Means and O-
Cluster, the default is 10.

Number of features to be extracted by a feature
extraction model.

The default is estimated from the data by the
algorithm. If the matrix rank is smaller than this
number, fewer features will be returned.

¢ See Also:

Oracle Data Mining Concepts for information about mining functions

30.1.2.4 DBMS_DATA_MINING — Global Settings

ORACLE

The configuration settings in this table are applicable to any type of model, but are
currently only implemented for specific algorithms.

30-16

Table 30-11 Global Settings

Chapter 30
DBMS_DATA_MINING

Setting Name Setting Value

Description

ODVS_| TEM | D_COLUWN_NAME column_name

CDVS_| TEM VALUE_COLUWN_NAM column_name
E

ORACLE

(Association Rules only) Name of a column that
contains the items in a transaction. When this setting
is specified, the algorithm expects the data to be
presented in native transactional format, consisting of
two columns:

e Case ID, either categorical or numeric

« Item ID, either categorical or numeric

A typical example of transactional data is market
basket data, wherein a case represents a basket that
may contain many items. Each item is stored in a
separate row, and many rows may be needed to
represent a case. The case ID values do not uniquely
identify each row. Transactional data is also called
multi-record case data.

Association Rules is normally used with transactional
data, but it can also be applied to single-record case
data (similar to other algorithms).

For more information about single-record and multi-
record case data, see Oracle Data Mining User's
Guide.

(Association Rules only) Name of a column that

contains a value associated with each item in a

transaction. This setting is only used when a value

has been specified for COVS_| TEM | D_COLUWN_NAME

indicating that the data is presented in native

transactional format.

If ASSO_AGCGREGATES is used, then the build data must

include the following three columns and the columns

specified in the AGGREGATES setting.

* Case ID, either categorical or numeric

* Item ID, either categorical or numeric, specified
by CDVS_I TEM | D_COLUMN_NAME

e Item value, either categorical or numeric,
specified by ODVS_| TEM VALUE_COLUWN_NAME

If ASSO_AGGREGATES, Case ID, and Item ID column are

present, then the Item Value column may or may not

appear.

The Item Value column may specify information such

as the number of items (for example, three apples) or

the type of the item (for example, macintosh apples).

For details on ASSO AGGREGATES, see

DBMS_DATA_MINING - Mining Function Settings.

30-17

Table 30-11 (Cont.) Global Settings
]

Setting Name

Setting Value

Chapter 30
DBMS_DATA_MINING

Description

ODMVS_M SSI NG VALUE_TREATME ODMS_M SSI NG VALUE_NEAN

NT

MODE

ODVS_M SSI NG VALUE_DELE

TE_ROW

ODVB_M SSI NG VALUE_AUTO

CDVS_ROW WEI GHT_COLUMN_NAM column_name

E

ODVS_TEXT_POLI CY_NAVE

ODVB_TEXT_MAX_FEATURES

ODVB_TEXT_M N_DOCUMENTS

ODVS_PARTI TI ON_COLUWNS

CDVS_MAX_PARTI Tl ONS

ORACLE

The name of an Oracle
Text POLICY created
using

CTX_DDL. CREATE_PQLI CY.

1 <= value

Non-negative value

Comma separated list of
mining attributes

1 <= 1000000

Indicates how to treat missing values in the training
data. This setting does not affect the scoring data.
The default value is CDM5_M SSI NG_VALUE_AUTOQ.

ODM_M SSI NG_VALUE_MEAN_MODE replaces missing
values with the mean (numeric attributes) or the mode
(categorical attributes) both at build time and apply
time where appropriate. COM5_M SSI NG_VALUE_AUTO
performs different strategies for different algorithms.

When CDMS_M SSI NG VALUE_TREATMENT is set to
CDVS_M SSI NG_VALUE_DELETE_ROW the rows in the
training data that contain missing values are deleted.
However, if you want to replicate this missing value
treatment in the scoring data, then you must perform
the transformation explicitly.

The value ODM5_M SSI NG_VALUE_DELETE_ROWis
applicable to all algorithms.

(GLM only) Name of a column in the training data that
contains a weighting factor for the rows. The column
datatype must be NUMBER.

Row weights can be used as a compact
representation of repeated rows, as in the design of
experiments where a specific configuration is
repeated several times. Row weights can also be
used to emphasize certain rows during model
construction. For example, to bias the model towards
rows that are more recent and away from potentially
obsolete data.

Affects how individual tokens are extracted from
unstructured text.

For details about CTX_DDL. CREATE_PQLI CY, see Oracle
Text Reference.

Maximum number of distinct features, across all text
attributes, to use from a document set passed to
CREATE_MOXDEL. The default is 3000. ESA has the
default value of 300000.

This is a text processing setting the controls how in
how many documents a token needs to appear to be
used as a feature.

The default is 1. ESA has default of 3.

This setting indicates a request to build a partitioned
model. The setting value is a comma-separated list of
the mining attributes to be used to determine the in-list
partition key values. These mining attributes are taken
from the input columns, unless an XFORM LI ST
parameter is passed to CREATE_MODEL. If XFORM LI ST
parameter is passed to CREATE_MODEL, then the mining
attributes are taken from the attributes produced by
these transformations.

New setting that indicates the maximum number of
partitions allowed for the model. Default is 1000.

30-18

Table 30-11 (Cont.) Global Settings

Chapter 30
DBMS_DATA _MINING

Setting Name Setting Value

Description

ODMVS_SAMPLI NG ODM _SAMPLI NG_ENABLE

ODMVS_SAVPLI NG DI SABLE

ODVS_SAMPLE_SI ZE 0 < Val ue

CDVS_PARTI TI ON_BUI LD_TYPE
TRA

ODVB_PARTI TI ON_BUI LD_I N

TER

ODVS_PARTI TI ON_BUI LD_HY

BRI D

ODMB_PARTI TI ON_BUI LD | N

This setting allows the user to request sampling of the
build data. The default is ODVM5_SAVPLI NG DI SABLE.

This setting determines how many rows will be
sampled (approximately). It can be set only if
CDMS_SAMPLI NGis enabled. The default value is
system determined.

This setting controls the parallel build of partitioned
models.

CDVS_PARTI TI ON_BUI LD_| NTRA — Each patrtition is
built in parallel using all slaves.

CDVS_PARTI TI ON_BUI LD_| NTER — Each partition is
built entirely in a single slave, but multiple partitions
may be built at the same time since multiple slaves
are active.

CDVS_PARTI TI ON_BUI LD_HYBRI D— It is a combination
of the other two types and is recommended for most
situations to adapt to dynamic environments.

The default mode is ODMS_PARTI TI ON_BUI LD_HYBRI D

¢ See Also:

text

Oracle Data Mining Concepts for information about GLM
Oracle Data Mining Concepts for information about Association Rules

Oracle Data Mining User's Guide for information about mining unstructured

30.1.2.5 DBMS_DATA_MINING — Algorithm Settings:

ALGO_EXTENSIBLE_LANG

The settings listed in the following table configure the behavior of the mining model
with an Extensible algorithm. The mining model is built in R language.

The RALG *_FUNCTI ON specifies the R script that is used to build, score, and view R
model and must be registered in ORACLR Script repository. The R scripts are
registered through Oracle Enterprise R product with special privilege. When

ALGO EXTENSI BLE_LANG s set to R in the M NI NG_MODEL_SETTI NG table, the mining model is
built in the R language. After the R model is built, the names of the R scripts are
recorded in M NI NG_MODEL_ SETTI NGtable in the SYS schema. The scripts must exist
in the repository for the R model to function. The amount of R memory used to build,
score, and view the R model through these R scripts can be controlled by Oracle

Enterprise R.

ORACLE

30-19

Chapter 30
DBMS_DATA_MINING

All algorithm-independent DBMS_DATA_M NI NG subprograms can operate on the R model
for mining functions such as Association, Attribute Importance, Classification,
Clustering, Feature Extraction, and Regression.

The

supported DBM5_DATA_M NI NG subprograms include, but are not limited, to the

following:

ADD_COST_MATRIX Procedure
COMPUTE_CONFUSION_MATRIX Procedure
COMPUTE_LIFT Procedure
COMPUTE_ROC Procedure
CREATE_MODEL Procedure
DROP_MODEL Procedure
EXPORT_MODEL Procedure
GET_MODEL_COST_MATRIX Function
IMPORT_MODEL Procedure
REMOVE_COST_MATRIX Procedure
RENAME_MODEL Procedure

Table 30-12 ALGO_EXTENSIBLE_LANG Settings

Setting Name Setting Value Description
RALG_BUI LD_FUNCTI ON R_BUI LD_FUNCTI ON_SCRI PT_NAM Specifies the name of an existing registered R
E script for R algorithm mining model build

RALG_BUI LD_PARAMETER

RALG_SCORE_FUNCTI ON

ORACLE

function. The R script defines an R function for
the first input argument for training data and
returns an R model object. For Clustering and
Feature Extraction mining function model
build, the R attributes drbncl us and

dnfnf eat must be set on the R model to
indicate the number of clusters and features
respectively. The RALG BUI LD_FUNCTI ON must
be set along with ALGO_EXTENSI BLE_LANGin
the nodel _setting_table.

SELECT value Specifies a list of numeric and string scalar for
par am nane, ...FROM optional input parameters of the model build
DUAL function.

R_SCORE_FUNCTI ON_SCRI PT_NAM Specifies the name of an existing registered R
E script to score data. The script returns a

dat a. frane containing the corresponding
prediction results. The setting is used to score
data for mining functions such as Regression,
Classification, Clustering, and Feature
Extraction. This setting does not apply to
Association and Attribute Importance functions

30-20

Chapter 30
DBMS_DATA_MINING

Table 30-12 (Cont.) ALGO_EXTENSIBLE_LANG Settings
]

Setting Name Setting Value

Description

RALG VEI GHT_FUNCTI ON
ME

RALG DETAI LS_FUNCTI ON
AVE

RALG _DETAI LS_FORVAT SELECT type_value

R_VEI GHT_FUNCTI ON_SCRI PT_NA Specifies the name of an existing registered R

script for R algorithm that computes the weight
(contribution) for each attribute in scoring. The
script returns a dat a. f r ame containing the
contributing weight for each attribute in a row.
This function setting is needed for

PREDI CTI ON_DETAI LS SQL function.

R_DETAI LS_FUNCTI ON_SCRI PT_N Specifies the name of an existing registered R

script for R algorithm that produces the model
information. This setting is required to
generate a model view.

Specifies the SELECT query for the list of

column_name, ... FROM DUAL numeric and string scalars for the output

column type and the column name of the
generated model view. This setting is required
to generate a model view.

See Also:

Oracle Data Mining User’s Guide

30.1.2.6 DBMS_DATA_MINING — Algorithm Settings: Decision Tree

These settings configure the behavior of the Decision Tree algorithm.

Table 30-13 Decision Tree Settings

Setting Name Setting Value

Description

TREE_| MPURI TY_METRI C TREE_| MPURI TY_ENTROPY

TREE_ IMPURITY_G N

TREE_TERM MAX_DEPTH TO CHAR(2<=

nuneric_expr <=20)

TREE_TERM M NPCT_NODE ~ TO CHAR(0O<=

nuneri c_expr <=10)

ORACLE

Tree impurity metric for Decision Tree.

Tree algorithms seek the best test question for splitting
data at each node. The best splitter and split value are
those that result in the largest increase in target value
homogeneity (purity) for the entities in the node. Purity
is measured in accordance with a metric. Decision
trees can use either gini (TREE_I MPURI TY_G NI) or
entropy (TREE_I MPURI TY_ENTROPY) as the purity metric.
By default, the algorithm uses TREE_| MPURI TY_G NI .

Criteria for splits: maximum tree depth (the maximum
number of nodes between the root and any leaf node,
including the leaf node).

Defaultis 7.
No child shall have fewer records than this number,

which is expressed as a percentage of the training
rows.

Default is 0. 05, indicating 0.05%.

30-21

Table 30-13 (Cont.) Decision Tree Settings

Setting Name

Setting Value

Chapter 30
DBMS_DATA_MINING

Description

TREE_TERM M NPCT_SPLIT TO CHAR(0 <=

numeri c_expr <=20)

TREE_TERM M NREC_NODE TO_CHAR(numeri c_expr

>=0)

TREE_TERM M NREC SPLIT TO CHAR(numeric_expr

CLAS_MAX_SUP_BI NS

>=0)

TO_CHAR(nuneri c_expr >

Criteria for splits: minimum number of records in a
parent node expressed as a percent of the total
number of records used to train the model. No split is
attempted if number of records is below this value.

Default is 0. 1, indicating 0.1%.
No child shall have fewer records than this number.
Default is 10.

Criteria for splits: minimum number of records in a
parent node expressed as a value. No split is
attempted if number of records is below this value.

Default is 20.

This parameter specifies the maximum number of bins

1) for each attribute.
Default value is 32.
See, DBMS_DATA_MINING — Automatic Data
Preparation
" See Also:

Oracle Data Mining Concepts for information about Decision Tree

30.1.2.7 DBMS_DATA_MINING — Algorithm Settings: Expectation

Maximization

These algorithm settings configure the behavior of the Expectation Maximization
algorithm.

ORACLE

Table 30-14
Table 30-15
Table 30-16
Table 30-17

" See Also:

Oracle Data Mining Concepts for information about Expectation Maximization

30-22

Chapter 30
DBMS_DATA_MINING

Table 30-14 Expectation Maximization Settings for Data Preparation and Analysis

Setting Name

Setting Value

Description

EMCS_ATTRI BUTE_FI LTER

EMCS_MAX_NUM ATTR 2D

EMCS_NUM DI STRI BUTI ON

EMCS_NUM_EQUI W DTH_BI NS

EMCS_NUM_PRQJECTI ONS

EMCS_NUM_QUANTI LE_BI NS

EMCS_NUM TOPN_BI NS

EMCS_ATTR_FI LTER ENABLE

EMCS_ATTR_FI LTER DI SABL
E

TO_CHAR(nuneric_expr
>=1)

EMCS_NUM DI STR_BERNOULL
|

EMCS_NUM DI STR_GAUSSI AN
EMCS_NUM DI STR_SYSTEM

TO CHAR(1 <nuneri c_expr
<=255)

TO_CHAR(nuneri c_expr
>=1)

TO_CHAR(1 <nuneri c_expr
<=255)

TO CHAR(1 <nuneric_expr
<=255)

Whether or not to include uncorrelated attributes in the
model. When EMCS_ATTRI BUTE_FI LTERis enabled,
uncorrelated attributes are not included.

Note:

This setting applies only
to attributes that are not
nested.

Default is system-determined.

Maximum number of correlated attributes to include in
the model.

Note: This setting applies only to attributes that are not
nested (2D).

Default is 50.

The distribution for modeling numeric attributes.
Applies to the input table or view as a whole and does
not allow per-attribute specifications.

The options include Bernoulli, Gaussian, or system-
determined distribution. When Bernoulli or Gaussian
distribution is chosen, all numeric attributes are
modeled using the same type of distribution. When the
distribution is system-determined, individual attributes
may use different distributions (either Bernoulli or
Gaussian), depending on the data.

Default is EMCS_NUM DI STR_SYSTEM

Number of equi-width bins that will be used for
gathering cluster statistics for numeric columns.

Default is 11.

Specifies the number of projections that will be used
for each nested column. If a column has fewer distinct
attributes than the specified number of projections, the
data will not be projected. The setting applies to all
nested columns.

Default is 50.
Specifies the number of quantile bins that will be used

for modeling humeric columns with multivalued
Bernoulli distributions.

Default is system-determined.

Specifies the number of top-N bins that will be used for
modeling categorical columns with multivalued
Bernoulli distributions.

Default is system-determined.

ORACLE

30-23

Chapter 30
DBMS_DATA_MINING

Table 30-15 Expectation Maximization Settings for Learning
]

Setting Name Setting Value Description
EMCS_CONVERGENCE_CRI TERI O EMCS_CONV_CRI T_HELDASI DE The convergence criterion for EM. The convergence
N EMCS CONV CRIT BIC criterion may be based on a held-aside data set, or it

may be Bayesian Information Criterion.
Default is system determined.

EMCS_LOG.I KE_| MPROVEMENT TO CHAR(0 < When the convergence criterion is based on a held-
nuneric_expr < 1) aside data set (EMCS_CONVERGENCE_CRI TERI ON =
EMCS_CONV_CRI T_HELDASI DE), this setting specifies the
percentage improvement in the value of the log
likelihood function that is required for adding a new
component to the model.

Default value is 0. 001.

EMCS_NUM_COVPONENTS TO_CHAR(numer i c_expr Maximum number of components in the model. If
>=1) model search is enabled, the algorithm automatically
determines the number of components based on
improvements in the likelihood function or based on
regularization, up to the specified maximum.

The number of components must be greater than or
equal to the number of clusters.

Default is 20.
EMCS_NUM | TERATI ONS TO_CHAR(nuneri c_expr Specifies the maximum number of iterations in the EM
>=1) algorithm.
Default is 100.
EMCS_MODEL_ SEARCH EMCS_MODEL_SEARCH ENABLE This setting enables model search in EM where
EMCS MODEL SEARCH Di sapL different model sizes are explored and a best size is
E (default). selected.

The default is EMCS_MODEL_SEARCH DI SABLE.
EMCS_REMOVE_COVPONENTS EMCS_REMOVE_COMPS_ENABLE This setting allows the EM algorithm to remove a

(default) small component from the solution.
EMCS_REMOVE_COVPS DI SABL The default is EMCS_REMOVE_COMPS_ENABLE.
E

EMCS_RANDOM SEED Non-negative integer This setting controls the seed of the random generator

used in EM. The default is 0.

Table 30-16 Expectation Maximization Settings for Component Clustering
|

Setting Name Setting Value Description

EMCS_CLUSTER_COMPONENTS EMCS__CLUSTER _COVP_EN Enables or disables the grouping of EM components
ABLE into high-level clusters. When disabled, the
EMCS CLUSTER COVP DI'S components themselves are treated as clusters.
ABLE - - When component clustering is enabled, model scoring

through the SQL CLUSTER function will produce
assignments to the higher level clusters. When
clustering is disabled, the CLUSTER function will
produce assignments to the original components.

Default is EMCS_CLUSTER COVP_ENABLE.

ORACLE 30-24

Chapter 30
DBMS_DATA_MINING

Table 30-16 (Cont.) Expectation Maximization Settings for Component Clustering
]

Setting Name Setting Value Description
EMCS_CLUSTER_THRESH TO _CHAR(nuneric_expr Dissimilarity threshold that controls the clustering of
>=1) EM components. When the dissimilarity measure is

less than the threshold, the components are combined
into a single cluster.

A lower threshold may produce more clusters that are
more compact. A higher threshold may produce fewer
clusters that are more spread out.

Default is 2.

EMCS LI NKAGE _FUNCTI ON EMCS_LI NKAGE_SINGLE ~ Allows the specification of a linkage function for the
EMCS LI NKAGE AVERAGE adglomerative clustering step.
EMCS LI NKAGE COMPLETE EMCS_LINKAGE_SI NGLE uses the nearest distance
- - within the branch. The clusters tend to be larger and

have arbitrary shapes.
EMCS_LI NKAGE_AVERAGE uses the average distance
within the branch. There is less chaining effect and the
clusters are more compact.
EMCS_LI NKAGE_COVPLETE uses the maximum distance
within the branch. The clusters are smaller and require
strong component overlap.

Default is EMCS_LI NKAGE_SI NGLE.

Table 30-17 Expectation Maximization Settings for Cluster Statistics
]

Setting Name Setting Value Description
EMCS_CLUSTER_STATI STI CS EMCS_CLUS_STATS ENABL Enables or disables the gathering of descriptive
E statistics for clusters (centroids, histograms, and

EMCS CLUS STATS DI sag ules). When statistics are disabled, model size is
- - - reduced, and GET_MODEL_DETAI LS_EMonly returns

LE
taxonomy (hierarchy) and cluster counts.
Default is EMCS_CLUS_STATS_ENABLE.
EMCS_M N_PCT_ATTR_SUPPORT TO CHAR(0 < Minimum support required for including an attribute in
nuneri c_expr < 1) the cluster rule. The support is the percentage of the

data rows assigned to a cluster that must have non-
null values for the attribute.

Default is 0. 1.

30.1.2.8 DBMS_DATA_MINING — Algorithm Settings: Explicit Semantic
Analysis

Explicit Semantic Analysis (ESA) is a useful technique for extracting meaningful and
interpretable features.

The settings listed in the following table configure the ESA values.

ORACLE 30-25

Table 30-18 Explicit Semantic Analysis Settings

Chapter 30
DBMS_DATA_MINING

Setting Name

Setting Value

Description

ESAS_VALUE THRESHOLD Non-negative number

ESAS M N_| TEMB

ESAS_TOPN_FEATURES

Text input 100
Non-text input is 0

A positive integer

This setting thresholds a small value for
attribute weights in the transformed build
data. The default is 1le- 8.

This setting determines the minimum
number of non-zero entries that need to be
present in an input row. The default is 100
for text input and 0 for non-text input.

This setting controls the maximum number
of features per attribute. The default is 1000.

¢ See Also:

Oracle Data Mining Concepts for information about Explicit Semantic

Analysis.

30.1.2.9 DBMS_DATA_MINING — Algorithm Settings: Generalized Linear

Models

The settings listed in the following table configure the behavior of Generalized Linear

Mo

Table 30-19 DBMS_DATA_MINING GLM Settings

dels

Setting Name

Setting Value

Description

GLMS_CONF_LEVEL

GLMS_FTR_GEN_METHOD

GLMS_FTR_GENERATI ON

GLMS_FTR SEL_CRI T

GLMS_FTR SELECTI ON

ORACLE

TO _CHAR(0< numeri c_expr
<1)

GLMS_FTR_GEN_QUADRATI C
GLMS_FTR_GEN_CUBI C

GLMS_FTR_GENERATI ON_ENAB
LE

GLMS_FTR GENERATI ON_DI SA
BLE

GLMS_FTR SEL_AIC
GLMS_FTR SEL_SBI C
GLMS_FTR SEL_RIC
GLMS_FTR SEL_ALPHA | NV

GLMB_FTR SELECTI ON_ENABL
E

GLMS_FTR_SELECTI ON_DI SAB
LE

The confidence level for coefficient confidence
intervals.

The default confidence level is 0. 95.

Whether feature generation is quadratic or cubic.

When feature generation is enabled, the algorithm
automatically chooses the most appropriate feature
generation method based on the data.

Whether or not feature generation is enabled for GLM.
By default, feature generation is not enabled.

Note: Feature generation can only be enabled when
feature selection is also enabled.

Feature selection penalty criterion for adding a feature
to the model.

When feature selection is enabled, the algorithm
automatically chooses the penalty criterion based on
the data.

Whether or not feature selection is enabled for GLM.
By default, feature selection is not enabled.

30-26

Chapter 30
DBMS_DATA_MINING

Table 30-19 (Cont.) DBMS_DATA_MINING GLM Settings

Setting Name

Setting Value

Description

GLMS_MAX_FEATURES

GLMS_PRUNE_MODEL

GLMS_REFERENCE_CLASS_NAM
E

GLMB_RI DGE_REGRESS| ON

GLMS_RI DGE_VALUE

GLMS_ROW DI AGNOSTI CS

GLMS_CONV._TOLERANCE

GLMS_NUM | TERATI ONS

GLMB_BATCH_RO/S

ORACLE

TO CHAR(O < nuneric_expr
<= 2000)

GLMS_PRUNE_MODEL_ENABLE
GLMS_PRUNE_MODEL_DI SABLE

target_value

GLMS_RI DGE_REG ENABLE
GLMS_RI DGE_REG DI SABLE

TO CHAR (numeric_expr >
0)

GLMS_ROW DI AG ENABLE

GLMS_ROW DI AG DI SABLE
(default).

The range is (0, 1) non-
inclusive.

Positive integer

0 or Positive integer

When feature selection is enabled, this setting
specifies the maximum number of features that can be
selected for the final model.

By default, the algorithm limits the number of features
to ensure sufficient memory.

Prune enable or disable for features in the final model.
Pruning is based on T-Test statistics for linear
regression, or Wald Test statistics for logistic
regression. Features are pruned in a loop until all
features are statistically significant with respect to the
full data.

When feature selection is enabled, the algorithm
automatically performs pruning based on the data.

The target value used as the reference class in a
binary logistic regression model. Probabilities are
produced for the other class.

By default, the algorithm chooses the value with the
highest prevalence (the most cases) for the reference
class.

Enable or disable Ridge Regression. Ridge applies to
both regression and Classification mining functions.
When ridge is enabled, prediction bounds are not
produced by the PREDI CTI ON_BOUNDS SQL function.
Note: Ridge may only be enabled when feature
selection is not specified, or has been explicitly
disabled. If Ridge Regression and feature selection are
both explicitly enabled, then an exception is raised.

The value of the ridge parameter. This setting is only
used when the algorithm is configured to use Ridge
Regression.

If Ridge Regression is enabled internally by the
algorithm, then the ridge parameter is determined by
the algorithm.

Enable or disable row diagnostics.

Convergence Tolerance setting of the GLM algorithm
The default value is system-determined.

Maximum number of iterations for the GLM algorithm.
The default value is system-determined.

Number of rows in a batch used by the SGD solver.
The value of this parameter sets the size of the batch
for the SGD solver. An input of 0 triggers a data driven
batch size estimate.

The default is 2000

30-27

Chapter 30
DBMS_DATA_MINING

Table 30-19 (Cont.) DBMS_DATA_MINING GLM Settings
]

Setting Name Setting Value Description

GLM5_SOLVER G.M5_SOLVER_SGD This setting allows the user to choose the GLM solver.
(StochasticG adi ent The solver cannot be selected if GLMS_FTR_SELECTI ON
Descent) setting is enabled. The default value is system
GLMS SOLVER CHOL determined.
(Chol esky)
G.M5_SOLVER R

GLM5_SPARSE_SCLVER GLM5S_SPARSE_SOLVER ENABL This setting allows the user to use sparse solver if it is
E available. The default value is
GLMS_SPARSE_SOLVER DI SAB GLMS_SPARSE_SOLVER DI SABLE.
LE (default).

¢ See Also:

Oracle Data Mining Concepts for information about GLM.

30.1.2.10 DBMS_DATA_ MINING — Algorithm Settings: k-Means

The settings listed in the following table configure the behavior of the k-Means
algorithm.

Table 30-20 k-Means Settings

L ___]
Setting Name Setting Value Description

KMNS_CONV_TCOLERANCE TO _CHAR(O<nuneri c_expr<1) Minimum Convergence Tolerance for k-Means.
The algorithm iterates until the minimum
Convergence Tolerance is satisfied or until the
maximum number of iterations, specified in
KMNS_| TERATI ONS, is reached.

Decreasing the Convergence Tolerance produces
a more accurate solution but may result in longer
run times.

The default Convergence Tolerance is 0. 001.

KMNS_DI STANCE KIMNS_COSI NE Distance function for k-Means.

KMNS_EUCLI DEAN The default distance function is KMNS_EUCLI DEAN.
KIMNS_| TERATI ONS TO _CHAR(posi tive_nuneric_expr Maximum number of iterations for k-Means. The

) algorithm iterates until either the maximum number

of iterations is reached or the minimum
Convergence Tolerance, specified in
KIMNS_CONV_TCOLERANCE, is satisfied.

The default number of iterations is 20.

ORACLE 30-28

Table 30-20 (Cont.) k-Means Settings

Chapter 30
DBMS_DATA_MINING

Setting Name Setting Value

Description

KMNS_M N_PCT_ATTR SUPP TO CHAR(O<=nureri ¢_expr <=1)
ORT

KMNS_NUM BI NS TO_CHAR(numeri ¢_expr >0)

KMNS_SPLIT CRITERION KWNS_SI ZE

KMNS_VARI ANCE
KIMNS_RANDOM_SEED Non-negative integer
KWNS_DETAI LS KWNS_DETAI LS_NONE

KMNS_DETAI LS_HI ERARCHY
KMNS_DETAI LS_ALL

Minimum percentage of attribute values that must
be non-null in order for the attribute to be included
in the rule description for the cluster.

If the data is sparse or includes many missing
values, a minimum support that is too high can
cause very short rules or even empty rules.

The default minimum support is 0. 1.

Number of bins in the attribute histogram produced
by k-Means. The bin boundaries for each attribute
are computed globally on the entire training data
set. The binning method is equi-width. All attributes
have the same number of bins with the exception
of attributes with a single value that have only one
bin.

The default number of histogram bins is 11.

Split criterion for k-Means. The split criterion
controls the initialization of new k-Means clusters.
The algorithm builds a binary tree and adds one
new cluster at a time.

When the split criterion is based on size, the new
cluster is placed in the area where the largest
current cluster is located. When the split criterion is
based on the variance, the new cluster is placed in
the area of the most spread-out cluster.

The default split criterion is the KMNS_VARI ANCE.

This setting controls the seed of the random
generator used during the k-Means initialization. It
must be a non-negative integer value.

The default is 0.

This setting determines the level of cluster detall
that are computed during the build.

KMNS_DETAI LS_NONE: No cluster details are
computed. Only the scoring information is
persisted.

KMNS_DETAI LS_HI ERARCHY: Cluster hierarchy and
cluster record counts are computed. This is the
default value.

KMNS_DETAI LS_ALL: Cluster hierarchy, record
counts, descriptive statistics (means, variances,
modes, histograms, and rules) are computed.

" See Also:

Oracle Data Mining Concepts for information about k-Means

ORACLE

30-29

Chapter 30
DBMS_DATA_MINING

30.1.2.11 DBMS_DATA_MINING — Algorithm Settings: Naive Bayes

The settings listed in the following table configure the behavior of the Naive Bayes

Algorithm.

Table 30-21 Naive Bayes Settings

Setting Name

Setting Value

Description

NABS_PAI RW SE_THRESHOLD TO_CHAR(0<=

nuneri c_expr <=1)

NABS_SI NGLETON_THRESHOL TO CHAR(0<=

D

numeric_expr <=1)

Value of pairwise threshold for NB algorithm
Default is 0.

Value of singleton threshold for NB algorithm
Default value is 0.

" See Also:

Oracle Data Mining Concepts for information about Naive Bayes

30.1.2.12 DBMS_DATA_MINING — Algorithm Settings: Non-Negative Matrix

Factorization

The settings listed in the following table configure the behavior of the Non-Negative

Matrix Factorization algorithm.

You can query the data dictionary view *_M NI NG_MODEL_SETTI NGS (using the ALL, USER, or
DBA prefix) to find the setting values for a model. See Oracle Database Reference for
information about * M NI NG MODEL_SETTI NGS.

Table 30-22 NMF Settings

Setting Name

Setting Value

Description

NVFS_CONV_TOLER
ANCE

NVFS_NONNEGATI V
E_SCORI NG

NVFS_NUM | TERAT
| ONS

NVFS_RANDOM SEE
D

TO _CHAR(0< nureric_expr <=0.5)

NVFS_NONNEG_SCOR! NG_ENABLE
NVFS_NONNEG_SCOR! NG DI SABLE

TO CHAR(1 <=nuneric_expr <=500)

TO_CHAR(nuneri c_expr)

Convergence tolerance for NMF algorithm

Default is 0. 05

Whether negative numbers should be allowed in scoring
results. When set to NVFS_NONNEG_SCORI NG_ENABLE,
negative feature values will be replaced with zeros.

When set to NVFS_NONNEG_SCORI NG_DI SABLE, negative
feature values will be allowed.

Default is NVFS_NONNEG_SCORI NG_ENABLE
Number of iterations for NMF algorithm
Default is 50

Random seed for NMF algorithm.
Default is -1.

ORACLE

30-30

Chapter 30
DBMS_DATA_MINING

¢ See Also:

Oracle Data Mining Concepts for information about NMF

30.1.2.13 DBMS_DATA_MINING — Algorithm Settings: O-Cluster

The settings in the table configure the behavior of the O-Cluster algorithm.

Table 30-23 O-CLuster Settings

Setting Name Setting Value Description
CCLT_SENSI TIM TY TO CHAR(0 A fraction that specifies the peak density required for
<=nuneric_expr <=1) separating a new cluster. The fraction is related to the global
uniform density.
Default is 0. 5.
" See Also:

Oracle Data Mining Concepts for information about O-Cluster

30.1.2.14 DBMS_DATA_MINING — Algorithm Constants and Settings:
Singular Value Decomposition

The following constant affects the behavior of the Singular Value Decomposition
algorithm.

Table 30-24 Singular Value Decomposition Constant

__|]
Constant Name Constant Value Description

SVDS_MAX_NUM_FEATURES 2500 The maximum number of features supported by SVD.

The following settings configure the behavior of the Singular Value Decomposition
algorithm.

ORACLE 30-31

Chapter 30
DBMS_DATA_MINING

Table 30-25 Singular Value Decomposition Settings

Setting Name Setting Value Description

SVDS_U_MATRI X_QUTPUT SVDS_U MATRI X_ENABL Indicates whether or not to persist the U Matrix produced by
E SVD.
SVDS_U MATRI X_DI SAB The U matrix in SVD has as many rows as the number of rows in
LE the build data. To avoid creating a large model, the U matrix is

SVDS SCORING MODE ~ SVDS_SCORI NG_SVD
SVDS_SCORI NG_PCA

SVDS_SOLVER svds_sol ver _tssvd
svds_sol ver _tseigen
svds_sol ver _ssvd
svds_sol ver_stei gen

SVDS_TOLERANCE Range [0, 1]
SVDS_RANDOM SEED Range [0 -

4,294,967, 296]

SVDS_OVER SAMPLING ~ Range [1, 5000].

ORACLE

persisted only when SVDS_U_MATRI X_OUTPUT is enabled.

When SVDS_U_MATRI X_QUTPUT is enabled, the build data must
include a case ID. If no case ID is present and the U matrix is
requested, then an exception is raised.

Default is SVDS_U_MATRI X_DI SABLE.

Whether to use SVD or PCA scoring for the model.

When the build data is scored with SVD, the projections will be
the same as the U matrix. When the build data is scored with
PCA, the projections will be the product of the U and S matrices.

Default is SVDS_SCORI NG_SVD.

This setting indicates the solver to be used for computing SVD of
the data. In the case of PCA, the solver setting indicates the type
of SVD solver used to compute the PCA for the data. When this
setting is not specified the solver type selection is data driven. If
the number of attributes is greater than 3240, then the default
wide solver is used. Otherwise, the default narrow solver is
selected.

The following are the group of solvers:

» Narrow data solvers: for matrices with up to 11500 attributes
(TSEI GEN) or up to 8100 attributes (TSSVD).

* Wide data solvers: for matrices up to 1 million attributes.

For narrow data solvers:

e Tall-Skinny SVD uses QR computation TSVD
(svds_sol ver _tssvd)

e Tall-Skinny SVD uses eigenvalue computation, TSEIGEN
(svds_sol ver _t sei gen), is the default solver for narrow data.

For wide data solvers:

e Stochastic SVD uses QR computation SSVD
(svds_sol ver _ssvd), is the default solver for wide data
solvers.

e Stochastic SVD uses eigenvalue computations, STEIGEN
(svds_sol ver _steigen).

This setting is used to prune features. Define the minimum value
the eigenvalue of a feature as a share of the first eigenvalue to
not to prune. Default value is data driven.

The random seed value is used for initializing the sampling matrix
used by the Stochastic SVD solver. The default is 0. The SVD
Solver must be set to SSVD or STEI GEN.

This setting is configures the number of columns in the sampling
matrix used by the Stochastic SVD solver. The number of
columns in this matrix is equal to the requested number of
features plus the oversampling setting. The SVD Solver must be
set to SSVD or STEI GEN.

30-32

Chapter 30
DBMS_DATA_MINING

Table 30-25 (Cont.) Singular Value Decomposition Settings
]

Setting Name Setting Value Description
SVDS_POVWER | TERATI ON Range [0, 20]. The power iteration setting improves the accuracy of the SSVD
S solver. The default is 2. The SVD Solver must be set to SSVD or
STEI GEN.
" See Also:

Oracle Data Mining Concepts

30.1.2.15 DBMS_DATA MINING — Algorithm Settings: Support Vector

Machine

The settings listed in the following table configure the behavior of the Support Vector

Machine algorithm.

Table 30-26 SVM Settings

Setting Name Setting Value Description
SVMS_COWPLEXI TY_FACTOR TO CHAR(nuneric_expr Regularization setting that balances the complexity of the
>0) model against model robustness to achieve good

SVMS_CONV_TOLERANCE TO _CHAR(nurmeri c_expr
>0)

SVMS_EPSI LON TO_CHAR(nuneri c_expr
>0)

SVMS_KERNEL_FUNCTI ON svm gaussi an
svns_l i near

ORACLE

generalization on new data. SVM uses a data-driven
approach to finding the complexity factor.

Value of complexity factor for SVM algorithm (both
Classification and Regression).
Default value estimated from the data by the algorithm.

Convergence tolerance for SVM algorithm.
Default is 0. 0001.

Regularization setting for regression, similar to complexity
factor. Epsilon specifies the allowable residuals, or noise, in
the data.

Value of epsilon factor for SVM regression.
Default is 0. 1.

Kernel for Support Vector Machine. Linear or Gaussian. The
algorithm automatically uses the kernel function that is most
appropriate to the data.

SVM uses the linear kernel when there are many attributes
(more than 100) in the training data, otherwise it uses the
Gaussian kernel.

The number of attributes does not correspond to the number
of columns in the training data. SVM explodes categorical
attributes to binary, numeric attributes. In addition, Oracle
Data Mining interprets each row in a nested column as a
separate attribute.

The default value is SYMS_LI NEAR.

30-33

Table 30-26 (Cont.) SVM Settings
]

Setting Name

Setting Value

Chapter 30
DBMS_DATA_MINING

Description

SVMS_OUTLI ER_RATE

SVMs_STD DEV

SVMS_NUM | TERATI ONS

SVMS_NUM Pl VOTS

SVMS_BATCH ROVS

SVMS_REGULARI ZER

SVM5_SOLVER

TO_CHAR(0<
nuneric_expr <1)

TO_CHAR(nuneri c_expr
>0)

Positive integer

Range [1; 10000]

Positive integer

SVMS_REGULARI ZER L1
SVMS_REGULARI ZER_ L2

SVMS_SOLVER SGD
(Sub-Gradient
Descend)
SVMS_SCOLVER | PM
(Interior Point Method)

The desired rate of outliers in the training data. Valid for One-
Class SVM models only (Anomaly Detection).

Default is 0. 01.

Controls the spread of the Gaussian kernel function. SVM
uses a data-driven approach to find a standard deviation
value that is on the same scale as distances between typical
cases.

Value of standard deviation for SVM algorithm.
This is applicable only for Gaussian kernel.
Default value estimated from the data by the algorithm.

This setting sets an upper limit on the number of SVM
iterations. The default is system determined because it
depends on the SVM solver.

This setting sets an upper limit on the number of pivots used
in the Incomplete Cholesky decomposition. It can be set only
for non-linear kernels. The default value is 200.

This setting applies to SVM models with linear kernel. This
setting sets the size of the batch for the SGD solver. An input
of O triggers a data driven batch size estimate. The default is
20000.

This setting controls the type of regularization that the SGD
SVM solver uses. The setting can be used only for linear
SVM models. The default is system determined because it
depends on the potential model size.

This setting allows the user to choose the SVM solver. The
SGD solver cannot be selected if the kernel is non-linear.
The default value is system determined.

¢ See Also:

Oracle Data Mining Concepts for information about SVM

30.1.3 Summary of DBMS_DATA_MINING Subprograms

This table summarizes the subprograms included in the DBMS_DATA_M NI NG package.

The GET_* interfaces are replaced by model views. Oracle recommends that users
leverage the views instead. For more information, refer to Oracle Data Mining User’s

Guide.

ORACLE

30-34

ORACLE

Chapter 30
DBMS_DATA MINING

Table 30-27 DBMS_DATA_MINING Package Subprograms

Subprogram

Purpose

ADD_COST_MATRIX Procedure
ADD_PARTITION Procedure

ALTER_REVERSE_EXPRESSION
Procedure

APPLY Procedure

COMPUTE_CONFUSION_MATRIX
Procedure

COMPUTE_CONFUSION_MATRIX
_PART Procedure

COMPUTE_LIFT Procedure
COMPUTE_LIFT_PART Procedure
COMPUTE_ROC Procedure

COMPUTE_ROC_PART Procedure

CREATE_MODEL Procedure
CREATE_MODEL2 Procedure
DROP_PARTITION Procedure
DROP_MODEL Procedure
EXPORT_MODEL Procedure

GET_ASSOCIATION_RULES
Function

GET_FREQUENT_ITEMSETS
Function

GET_MODEL_COST_MATRIX
Function

GET_MODEL_DETAILS_Al
Function

GET_MODEL_DETAILS_EM
Function

GET_MODEL_DETAILS_EM_COM
P Function

GET_MODEL_DETAILS EM_PROJ
Function

GET_MODEL_DETAILS _GLM
Function

GET_MODEL_DETAILS_GLOBAL
Function

GET_MODEL_DETAILS_KM
Function

GET_MODEL_DETAILS_NB
Function

Adds a cost matrix to a classification model

Adds single or multiple partitions in an existing partition
model

Changes the reverse transformation expression to an
expression that you specify

Applies a model to a data set (scores the data)

Computes the confusion matrix for a classification model

Computes the evaluation matrix for partitioned models

Computes lift for a classification model
Computers lift for partitioned models

Computes Receiver Operating Characteristic (ROC) for
a classification model

Computes Receiver Operating Characteristic (ROC) for
a partitioned model

Creates a model

Creates a model without extra persistent stages
Drops a single partition

Drops a model

Exports a model to a dump file

Returns the rules from an association model

Returns the frequent itemsets for an association model
Returns the cost matrix for a model

Returns details about an Attribute Importance model
Returns details about an Expectation Maximization

model

Returns details about the parameters of an Expectation
Maximization model

Returns details about the projects of an Expectation
Maximization model

Returns details about a Generalized Linear Model
Returns high-level statistics about a model

Returns details about a k-Means model

Returns details about a Naive Bayes model

30-35

Chapter 30
DBMS_DATA_MINING

Table 30-27 (Cont.) DBMS_DATA_MINING Package Subprograms

Subprogram Purpose

GET_MODEL_DETAILS _NMF Returns details about a Non-Negative Matrix

Function Factorization model

GET_MODEL_DETAILS_OC Returns details about an O-Cluster model

Function

GET_MODEL_SETTINGS Function Returns the settings used to build the given model.

GET_MODEL_SIGNATURE Returns the list of columns from the build input table that

Function were used by the build process to train the model.

GET_MODEL_DETAILS_SVD Returns details about a Singular Value Decomposition

Function model

GET_MODEL_DETAILS_SVM Returns details about a Support Vector Machine model

Function with a linear kernel

GET_MODEL_DETAILS XML Returns details about a Decision Tree model

Function

GET_MODEL_TRANSFORMATION Returns the transformations embedded in a model

S Function

GET_TRANSFORM_LIST Converts between two different transformation

Procedure specification formats

IMPORT_MODEL Procedure Imports a model into a user schema

RANK_APPLY Procedure Ranks the predictions from the APPLY results for a
classification model

REMOVE_COST_MATRIX Removes a cost matrix from a model

Procedure

RENAME_MODEL Procedure Renames a model

30.1.3.1 ADD_COST_MATRIX Procedure

The ADD_COST_MATRI X procedure associates a cost matrix table with a Classification
model. The cost matrix biases the model by assigning costs or benefits to specific
model outcomes.

The cost matrix is stored with the model and taken into account when the model is
scored.

You can also specify a cost matrix inline when you invoke a Data Mining SQL function
for scoring. To view the scoring matrix for a model, query the DVBVC prefixed model
view. Refer to Model Detail View for Classification Algorithm.

To obtain the default scoring matrix for a model, query the DVBVC prefixed model view.
To remove the default scoring matrix from a model, use the REMOVE_COST_MATRI X
procedure. See "GET_MODEL_COST_MATRIX Function" and
"REMOVE_COST_MATRIX Procedure".

ORACLE 30-36

Chapter 30
DBMS_DATA MINING

¢ See Also:

e "Biasing a Classification Model" in Oracle Data Mining Concepts for
more information about costs

e Oracle Database SQL Language Reference for syntax of inline cost
matrix

e Oracle Data Mining User’s Guide

Syntax

DBVS_DATA M NI NG. ADD_COST_MATRI X (
model _name I N VARCHARZ,
cost_matrix_tabl e_nanme I'N VARCHAR?,
cost_matrix_schema_name | N VARCHAR2 DEFAULT NULL);
partition_name N VARCHAR2 DEFAULT NULL);

Parameters

Table 30-28 ADD_COST_MATRIX Procedure Parameters

__|
Parameter Description

model _name Name of the model in the form [schema_name.Jmodel_name. If
you do not specify a schema, then your own schema is assumed.

cost_matrix_table_name Name of the cost matrix table (described in Table 30-29).

cost _matrix_schema_name Schema of the cost matrix table. If no schema is specified, then
the current schema is used.

partition_nane Name of the partition in a partitioned model

Usage Notes

1. If the model is not in your schema, then ADD COST_MATRI X requires the ALTER ANY
M NI NG MODEL system privilege or the ALTER object privilege for the mining model.

2. The cost matrix table must have the columns shown in Table 30-29.

Table 30-29 Required Columns in a Cost Matrix Table
]

Column Name Datatype

ACTUAL_TARGET_VALUE Valid target data type

PREDI CTED_TARGET_VALUE Valid target data type

CcosT NUMBER, FLOAT, Bl NARY_DOUBLE, or Bl NARY_FLOAT
" See Also:

Oracle Data Mining User's Guide for valid target datatypes

ORACLE 30-37

ORACLE

Chapter 30
DBMS_DATA_MINING

3. The types of the actual and predicted target values must be the same as the type
of the model target. For example, if the target of the model is Bl NARY_DOUBLE, then
the actual and predicted values must be Bl NARY_DOUBLE. If the actual and predicted
values are CHAR or VARCHAR, then ADD_COST_MATRI X treats them as VARCHAR? internally.

If the types do not match, or if the actual or predicted value is not a valid target
value, then the ADD COST_MATRI X procedure raises an error.

" Note:

If a reverse transformation is associated with the target, then the actual
and predicted values must be consistent with the target after the reverse
transformation has been applied.

See “Reverse Transformations and Model Transparency” under the
“About Transformation Lists” section in
DBMS_DATA_MINING_TRANSFORM Operational Notes for more
information.

4. Since a benefit can be viewed as a negative cost, you can specify a benefit for a
given outcome by providing a negative number in the costs column of the cost
matrix table.

5. All Classification algorithms can use a cost matrix for scoring. The Decision Tree
algorithm can also use a cost matrix at build time. If you want to build a Decision
Tree model with a cost matrix, specify the cost matrix table name in the
CLAS_COST_TABLE_NAME setting in the settings table for the model. See Table 30-10.

The cost matrix used to create a Decision Tree model becomes the default scoring
matrix for the model. If you want to specify different costs for scoring, use the
REMOVE_COST_MATRI X procedure to remove the cost matrix and the ADD_COST_MATRI X
procedure to add a new one.

6. Scoring on a partitioned model is partition-specific. Scoring cost matrices can be
added to or removed from an individual partition in a partitioned model. If
PARTI TI ON_NAME is NOT NULL, then the model must be a partitioned model. The
COST_MATRI X is added to that partition of the partitioned model.

If the PARTI TI ON_NAME is NULL, but the model is a partitioned model, then the
COST_MATRI X table is added to every partition in the model.

Example

This example creates a cost matrix table called COSTS_NB and adds it to a Naive Bayes
model called NB_SH CLAS SAMPLE. The model has a binary target: 1 means that the
customer responds to a promotion; 0 means that the customer does not respond. The
cost matrix assigns a cost of .25 to misclassifications of customers who do not
respond and a cost of .75 to misclassifications of customers who do respond. This
means that it is three times more costly to misclassify responders than it is to
misclassify non-responders.

CREATE TABLE costs_nb (

actual _target_val ue NUMBER,
predicted_target_val ue NUMBER,
cost NUMVBER) ;

I NSERT | NTO costs_nb values (0, 0, 0);
I NSERT | NTO costs_nb values (0, 1, .25);

30-38

Chapter 30
DBMS_DATA_MINING

I NSERT | NTO costs_nb values (1, 0, .75);
I NSERT | NTO costs_nb values (1, 1, 0);
COWM T;

EXEC dbns_data_mi ni ng. add_cost _matrix(' nb_sh_clas_sanple', 'costs_nb');

SELECT cust _gender, COUNT(*) AS cnt, ROUND(AVG age)) AS avg_age
FROM mi ni ng_dat a_appl y_v
VWHERE PREDI CTI ON(nb_sh_cl as_sanpl e COST MODEL
USING cust _marital _status, education, household_size) =1
GROUP BY cust _gender
ORDER BY cust _gender;

C ONT AVG AGE
F 72 39
M 555 44

30.1.3.2 ADD_PARTITION Procedure

ADD_PARTI TI ON procedure supports a single or multiple partition addition to an existing
partitioned model.

The ADD_PARTI TI ON procedure derives build settings and user-defined expressions from
the existing model. The target column must exist in the input data query when adding
partitions to a supervised model.

Syntax
DBMS_DATA_M NI NG ADD_PARTI TI ON (

model _name I N VARCHAR?2,

data_query IN CLOB,

add_options IN VARCHAR2 DEFAULT ERROR);
Parameters

Table 30-30 ADD_PARTITION Procedure Parameters
]

Parameter Description

model _name Name of the model in the form [schema_name.Jmodel_name. If you do not
specify a schema, then your own schema is used.

dat a_query An arbitrary SQL statement that provides data to the model build. The user must
have privilege to evaluate this query.

ORACLE 30-39

Chapter 30
DBMS_DATA_MINING

Table 30-30 (Cont.) ADD_PARTITION Procedure Parameters

__|]
Description

Parameter

add_opti ons

Allows users to control the conditional behavior of ADD for cases where rows in

the input dataset conflict with existing partitions in the model. The following are

the possible values:

e REPLACE: Replaces the existing partition for which the conflicting keys are
found.

* ERROR Terminates the ADD operation without adding any partitions.

« | GNORE: Eliminates the rows having the conflicting keys.

Note:

For better performance, Oracle recommends using
DROP_PARTI Tl ON followed by the ADD_PARTI TI ON
instead of using the REPLACE option.

30.1.3.3 ALTER_REVERSE_EXPRESSION Procedure

This procedure replaces a reverse transformation expression with an expression that
you specify. If the attribute does not have a reverse expression, the procedure creates
one from the specified expression.

ORACLE

You can also use this procedure to customize the output of clustering, feature
extraction, and anomaly detection models.

Syntax
DBMS_DATA M NI NG ALTER_REVERSE_EXPRESSI ON (
model _name VARCHAR2,
expression CLOB,
attribute_name VARCHAR2 DEFAULT NULL,
attribute_subnanme VARCHAR2 DEFAULT NULL);
Parameters

Table 30-31 ALTER_REVERSE_EXPRESSION Procedure Parameters
L

Parameter Description

model _name Name of the model in the form [schema_name.Jmodel_name. If you
do not specify a schema, your own schema is used.

expressi on An expression to replace the reverse transformation associated with

attribute_name

attribute_subnane

the attribute.

Name of the attribute. Specify NULL if you wish to apply expr essi on to
a cluster, feature, or One-Class SVM prediction.

Name of the nested attribute if at t ri but e_name is a nested column,
otherwise NULL.

30-40

Chapter 30
DBMS_DATA_MINING

Usage Notes

1. For purposes of model transparency, Oracle Data Mining provides reverse
transformations for transformations that are embedded in a model. Reverse
transformations are applied to the attributes returned in model details
(GET_MODEL_DETAI LS _* functions) and to the scored target of predictive models.

¢ See Also:

“About Transformation Lists” under
DBMS_DATA_MINING_TRANSFORM Operational Notes

2. If you alter the reverse transformation for the target of a model that has a cost
matrix, you must specify a transformation expression that has the same type as
the actual and predicted values in the cost matrix. Also, the reverse transformation
that you specify must result in values that are present in the cost matrix.

¢ See Also:

"ADD_COST_MATRIX Procedure" and Oracle Data Mining Concepts for
information about cost matrixes.

3. To prevent reverse transformation of an attribute, you can specify NULL for
expressi on.

4. The reverse transformation expression can contain a reference to a PL/SQL
function that returns a valid Oracle datatype. For example, you could define a
function like the following for a categorical attribute named bl ood_pr essur e that has
values 'Low', 'Medium' and 'High'.

CREATE OR REPLACE FUNCTI ON numx(c¢ char) RETURN NUMBER IS
BEG N
CASE ¢ WHEN ' ' Low ' THEN RETURN 1;
VHEN ' ' Medi um ' THEN RETURN 2;
VHEN ' ' High'' THEN RETURN 3;
ELSE RETURN nul | ;
END CASE;
END nunx;

Then you could invoke ALTER REVERSE_EXPRESI ON for bl ood_pr essur e as follows.

EXEC dbns_dat a_ni ni ng. al ter _reverse_expressi on(
' <nodel _name>', ' NUMX(bl ood_pressure)', 'blood_pressure');

5. You can use ALTER REVERSE_EXPRESSI ON to label clusters produced by clustering
models and features produced by feature extraction.

You can use ALTER REVERSE_EXPRESSI ON to replace the zeros and ones returned by
anomaly-detection models. By default, anomaly-detection models label anomalous
records with 0 and all other records with 1.

ORACLE 30-41

ORACLE

Chapter 30
DBMS_DATA_MINING

" See Also:

Oracle Data Mining Concepts for information about anomaly detection

Examples

1.

In this example, the target (af fi ni ty_car d) of the model CLASS_MODEL is manipulated
internally as yes or no instead of 1 or 0 but returned as 1s and 0s when scored. The
ALTER REVERSE_EXPRESSI ON procedure causes the target values to be returned as
TRUE Or FALSE.

The data sets M NI NG DATA BUI LD and M NI NG DATA TEST are included with the Oracle
Data Mining sample programs. See Oracle Data Mining User's Guide for
information about the sample programs.

DECLARE
v_xl st dbns_dat a_ni ni ng_t ransf or m TRANSFORM LI ST;
BEG N
dbns_dat a_mi ni ng_t ransf orm SET_TRANSFORM v_xI st ,
"affinity_card', NULL,
"decode(affinity _card, 1, ''yes'', ''no'')",
"decode(affinity _card, ''yes'', 1, 0)');
dbms_dat a_ni ni ng. CREATE_MODEL(

model _nane => ' CLASS_MODEL',

m ni ng_function => dbns_data_nmi ning. cl assification,
data_tabl e_nane => 'nining_data_build",

case_i d_col um_name = 'cust_id',

target _col um_name => "affinity_card',

settings_tabl e_name => NULL,

dat a_schena_nane => 'dnuser',

settings_schema_name => NULL,

xformlist => v_xlst);

END;
/
SELECT cust _i ncome_| evel , occupati on,
PREDI CTI ON(CLASS_MODEL USING *) predi ct _response
FROM mi ni ng_dat a_test WHERE age = 60 AND cust_gender IN'M
ORDER BY cust _i ncone_| evel ;

CUST_I NCOVE_LEVEL COCCUPATI ON PREDI CT_RESPONSE
A Bel ow 30, 000 Transp. 1
E: 90,000 - 109, 999 Transp. 1
E: 90,000 - 109, 999 Sal es 1
G 130,000 - 149,999 Handl er 0
G 130,000 - 149,999 Crafts 0
H. 150,000 - 169, 999 Prof. 1
J: 190,000 - 249,999 Prof . 1
J: 190,000 - 249,999 Sal es 1
BEG N
dbns_dat a_ni ni ng. ALTER REVERSE_EXPRESSI ON (

model _nane => ' CLASS_MODEL',

expression => 'decode(affinity_card, ''yes'', '"'TRUE'"', ''FALSE')",

attribute_name => 'affinity_card');
END;

/
col um predict_response on

30-42

Chapter 30
DBMS_DATA_MINING

col um predict_response fornmat a20
SELECT cust _i ncone_l evel , occupati on,
PREDI CTI ON(CLASS_MODEL USI NG *) predi ct _response
FROM mi ni ng_dat a_test WHERE age = 60 AND cust_gender IN'M
ORDER BY cust _i ncone_| evel ;

CUST_I NCOVE_LEVEL OCCUPATI ON PREDI CT_RESPONSE
A Bel ow 30, 000 Transp. TRUE
E: 90,000 - 109,999 Transp. TRUE
E: 90,000 - 109, 999 Sal es TRUE
G 130,000 - 149,999 Handl er FALSE
G 130,000 - 149,999 Crafts FALSE
H. 150,000 - 169, 999 Prof . TRUE
J: 190,000 - 249,999 Prof . TRUE
J: 190,000 - 249,999 Sal es TRUE

2. This example specifies labels for the clusters that result from the sh_cl us model.
The labels consist of the word "Cluster" and the internal numeric identifier for the
cluster.

BEG N

dbns_dat a_ni ni ng. ALTER_REVERSE EXPRESSI ON('sh_clus', '"'Custer ''||value');
END;
/

SELECT cust _id, cluster_id(sh_clus using *) cluster_id
FROM sh_aprep_num
WHERE cust _id < 100011
ORDER by cust _i d;

CUST_I D CLUSTER | D

100001 Custer 18
100002 Custer 14
100003 Custer 14
100004 Custer 18
100005 Cluster 19
100006 O uster 7
100007 Custer 18
100008 Cluster 14
100009 duster 8
100010 G uster 8

30.1.3.4 APPLY Procedure

The APPLY procedure applies a mining model to the data of interest, and generates the
results in a table. The APPLY procedure is also referred to as scoring.

For predictive mining functions, the APPLY procedure generates predictions in a target
column. For descriptive mining functions such as Clustering, the APPLY process assigns
each case to a cluster with a probability.

In Oracle Data Mining, the APPLY procedure is not applicable to Association models and
Attribute Importance models.

ORACLE 30-43

ORACLE

Chapter 30
DBMS_DATA_MINING

Note:

Scoring can also be performed directly in SQL using the Data Mining
functions. See

< "Data Mining Functions" in Oracle Database SQL Language Reference

e "Scoring and Deployment" in Oracle Data Mining User's Guide

Syntax

DBNMS_DATA M NI NG APPLY (
model _nane I'N VARCHAR?,
data_tabl e_nane I'N VARCHAR,

case_i d_colum_name | N VARCHARZ,
result_tabl e_nane I'N VARCHAR?,
data_schena_nane IN VARCHAR2 DEFAULT NULL);

Parameters

Table 30-32 APPLY Procedure Parameters
]

Parameter Description

model _nane Name of the model in the form [schema_name.Jmodel_name. If
you do not specify a schema, then your own schema is used.

dat a_t abl e_nane Name of table or view containing the data to be scored

case_i d_col unm_nane Name of the case identifier column

resul t _tabl e_name Name of the table in which to store apply results

dat a_schema_name Name of the schema containing the data to be scored

Usage Notes

1. The data provided for APPLY must undergo the same preprocessing as the data
used to create and test the model. When you use Automatic Data Preparation, the
preprocessing required by the algorithm is handled for you by the model: both at
build time and apply time. (See "Automatic Data Preparation".)

2. APPLY creates a table in the user's schema to hold the results. The columns are
algorithm-specific.

The columns in the results table are listed in Table 30-33 through Table 30-37.
The case ID column name in the results table will match the case ID column name
provided by you. The type of the incoming case ID column is also preserved in
APPLY output.

Note:

Make sure that the case ID column does not have the same name as
one of the columns that will be created by APPLY. For example, when
applying a Classification model, the case ID in the scoring data must not
be PREDI CTI ON or PROBABI LI TY (See Table 30-33).

30-44

ORACLE

Chapter 30
DBMS_DATA_MINING

3. The datatype for the PREDI CTI ON, CLUSTER_I D, and FEATURE_| D output columns is
influenced by any reverse expression that is embedded in the model by the user. If
the user does not provide a reverse expression that alters the scored value type,
then the types will conform to the descriptions in the following tables. See
"ALTER_REVERSE_EXPRESSION Procedure".

4. If the model is partitioned, the resul t _t abl e_nane can contain results from different
partitions depending on the data from the input data table. An additional column
called PARTI TI ON_NAME is added to the result table indicating the partition name that
is associated with each row.

For a non-partitioned model, the behavior does not change.

Classification

The results table for Classification has the columns described in Table 30-33. If the
target of the model is categorical, the PREDI CTI ON column will have a VARCHAR? datatype.
If the target has a binary type, the PREDI CTI ON column will have the binary type of the
target.

Table 30-33 APPLY Results Table for Classification

Column Name Datatype

Case I D col um nane Type of the case ID
PREDI CTI ON Type of the target
PROBABI LI TY Bl NARY_DCOUBLE

Anomaly Detection

The results table for Anomaly Detection has the columns described in Table 30-34.

Table 30-34 APPLY Results Table for Anomaly Detection

Column Name Datatype

Case I D colum nane Type of the case ID
PREDI CTI ON NUMBER

PROBABI LI TY Bl NARY_DQOUBLE
Regression

The results table for Regression has the columns described in APPLY Procedure.

Table 30-35 APPLY Results Table for Regression

Column Name Datatype

Case I D colum nane Type of the case ID
PREDI CTI ON Type of the target
Clustering

Clustering is an unsupervised mining function, and hence there are no targets. The
results of an APPLY procedure will contain simply the cluster identifier corresponding to

30-45

ORACLE

Chapter 30
DBMS_DATA_MINING

a case, and the associated probability. The results table has the columns described in
Table 30-36.

Table 30-36 APPLY Results Table for Clustering
|

Column Name Datatype

Case I D col um name Type of the case ID
CLUSTER_I D NUMBER

PROBABI LI TY Bl NARY_DQUBLE

Feature Extraction

Feature Extraction is also an unsupervised mining function, and hence there are no
targets. The results of an APPLY procedure will contain simply the feature identifier
corresponding to a case, and the associated match quality. The results table has the
columns described in Table 30-37.

Table 30-37 APPLY Results Table for Feature Extraction
]

Column Name Datatype

Case I D col um name Type of the case ID
FEATURE_I D NUMBER

MATCH QUALI TY Bl NARY_DOUBLE
Examples

This example applies the GLM Regression model GLMR_SH REGR _SAMPLE to the data in
the M NI NG_DATA_APPLY_V view. The APPLY results are output of the table
REGRESSI ON_APPLY_RESULT.

SQL> BEG N
DBVS_DATA_M NI NG APPLY (
model _name => "glnmr_sh_regr_sanple',
data_tabl e_nane => 'nining_data_apply_v',

case_i d_colum_name => 'cust _id",

result _table_name => 'regression_apply_result');
END;
/

SQ.> SELECT * FROM regression_apply_result WHERE cust _id > 101485;

CUST_I D PREDI CTI ON
101486 22.8048824
101487 25.0261101
101488 48.6146619
101489 51.82595
101490 22. 6220714
101491 61. 3856816
101492 24.1400748
101493 58.034631
101494 45. 7253149
101495 26.9763318
101496 48.1433425
101497 32.0573434

30-46

Chapter 30
DBMS_DATA_MINING

101498 49. 8965531
101499 56. 270656
101500 21. 1153047

30.1.3.5 COMPUTE_CONFUSION_MATRIX Procedure

This procedure computes a confusion matrix, stores it in a table in the user's schema,
and returns the model accuracy.

ORACLE

A confusion matrix is a test metric for classification models. It compares the
predictions generated by the model with the actual target values in a set of test data.
The confusion matrix lists the number of times each class was correctly predicted and
the number of times it was predicted to be one of the other classes.

COVPUTE_CONFUSI ON_MATRI X accepts three input streams:

The predictions generated on the test data. The information is passed in three
columns:

— Case ID column
— Prediction column
— Scoring criterion column containing either probabilities or costs

The known target values in the test data. The information is passed in two
columns:

— Case ID column
— Target column containing the known target values

(Optional) A cost matrix table with predefined columns. See the Usage Notes for
the column requirements.

¢ See Also:
Oracle Data Mining Concepts for more details about confusion matrixes and
other test metrics for classification
"COMPUTE_LIFT Procedure"
"COMPUTE_ROC Procedure"

Syntax

DBMVS_DATA M NI NG COVPUTE_CONFUSI ON_MATRI X (
accuracy OUT NUMBER,
apply_result _tabl e_nane IN VARCHAR?,
target_tabl e_name IN VARCHAR?,
case_i d_col um_name IN VARCHAR?,
target _col um_nane IN VARCHARZ,
confusion_matrix_table_name |IN VARCHAR?2,
score_col um_nane IN VARCHAR2 DEFAULT ' PREDI CTION ,
score_criterion_colum_name |N VARCHAR2 DEFAULT ' PROBABILITY',
cost_matrix_table_name IN VARCHAR2 DEFAULT NULL,
appl y_result _schema_nane IN VARCHAR2 DEFAULT NULL,
target_schema_name IN VARCHAR2 DEFAULT NULL,

30-47

cost _matri x_schema_name

score_criterion_type

Parameters

Chapter 30
DBMS_DATA_MINING

IN VARCHAR2 DEFAULT NULL,
IN VARCHAR2 DEFAULT ' PROBABILITY');

Table 30-38 COMPUTE_CONFUSION_MATRIX Procedure Parameters
]

Parameter

Description

accur acy

apply_result_tabl e_name

target _table_name

case_i d_col unm_nane

target _col utm_nane

confusi on_matrix_tabl e_nanme

score_col um_nane

score_criterion_col unm_nane

cost_matrix_table_nane

appl y_resul t _schema_narme

target _schema_name

ORACLE

Output parameter containing the overall percentage
accuracy of the predictions.

Table containing the predictions.

Table containing the known target values from the test
data.

Case ID column in the apply results table. Must match
the case identifier in the targets table.

Target column in the targets table. Contains the known
target values from the test data.

Table containing the confusion matrix. The table will be
created by the procedure in the user's schema.

The columns in the confusion matrix table are
described in the Usage Notes.

Column containing the predictions in the apply results
table.

The default column name is PREDI CTI ON, which is the
default name created by the APPLY procedure (See
"APPLY Procedure").

Column containing the scoring criterion in the apply
results table. Contains either the probabilities or the
costs that determine the predictions.

By default, scoring is based on probability; the class
with the highest probability is predicted for each case. If
scoring is based on cost, the class with the lowest cost
is predicted.

The score_criterion_type parameter indicates
whether probabilities or costs will be used for scoring.
The default column name is 'PROBABI LI TY' , which is
the default name created by the APPLY procedure (See
"APPLY Procedure").

See the Usage Notes for additional information.
(Optional) Table that defines the costs associated with
misclassifications. If a cost matrix table is provided and
the score_criterion_type parameter is set to

' COSTS', the costs in this table will be used as the
scoring criteria.

The columns in a cost matrix table are described in the
Usage Notes.

Schema of the apply results table.
If null, the user's schema is assumed.

Schema of the table containing the known targets.
If null, the user's schema is assumed.

30-48

ORACLE

Chapter 30
DBMS_DATA_MINING

Table 30-38 (Cont.) COMPUTE_CONFUSION_MATRIX Procedure Parameters
|

Parameter Description

cost_matrix_schema_name Schema of the cost matrix table, if one is provided.

If null, the user's schema is assumed.

score_criterion_type Whether to use probabilities or costs as the scoring

criterion. Probabilities or costs are passed in the
column identified in the score_criterion_col um_nane
parameter.

The default value of score_criterion_typeis

' PROBABI LI TY' . To use costs as the scoring criterion,
specify ' COST' .

If score_criterion_type is setto 'COST' but no cost
matrix is provided and if there is a scoring cost matrix
associated with the model, then the associated costs
are used for scoring.

See the Usage Notes and the Examples.

Usage Notes

The predictive information you pass to COVPUTE_CONFUSI ON_MATRI X may be
generated using SQL PREDI CTI ON functions, the DBMS_DATA_M NI NG APPLY procedure,
or some other mechanism. As long as you pass the appropriate data, the
procedure can compute the confusion matrix.

Instead of passing a cost matrix to COMPUTE_CONFUSI ON_MATRI X, you can use a
scoring cost matrix associated with the model. A scoring cost matrix can be
embedded in the model or it can be defined dynamically when the model is
applied. To use a scoring cost matrix, invoke the SQL PREDI CTI ON_COST function to
populate the score criterion column.

The predictions that you pass to COWPUTE_CONFUSI ON_MATRI X are in a table or view
specified in appl y_resul t _tabl e_nane.

CREATE TABLE apply_result_table_nane AS (
case_i d_col um_narme VARCHAR2,
score_col um_nane VARCHAR?,
score_criterion_col um_nane VARCHAR?) ;

A cost matrix must have the columns described in Table 30-39.

Table 30-39 Columns in a Cost Matrix

___|
Column Name Datatype

actual _target_val ue Type of the target column in the build data

predicted_target _valu Type of the predicted target in the test data. The type of the

e predicted target must be the same as the type of the actual
target unless the predicted target has an associated reverse
transformation.

cost Bl NARY_DCUBLE

30-49

ORACLE

Chapter 30
DBMS_DATA_MINING

¢ See Also:

Oracle Data Mining User's Guide for valid target datatypes

Oracle Data Mining Concepts for more information about cost matrixes

e The confusion matrix created by COVPUTE_CONFUSI ON_MATRI X has the columns

described in Table 30-40.

Table 30-40 Columns in a Confusion Matrix

|
Column Name Datatype

actual _target_val ue Type of the target column in the build data

predicted_target_valu Type of the predicted target in the test data. The type of the

e predicted target is the same as the type of the actual target
unless the predicted target has an associated reverse
transformation.

val ue Bl NARY_DOUBLE

¢ See Also:

Oracle Data Mining Concepts for more information about confusion
matrixes

Examples

These examples use the Naive Bayes model nb_sh_cl as_sanpl e, which is created by
one of the Oracle Data Mining sample programs.

Compute a Confusion Matrix Based on Probabilities

The following statement applies the model to the test data and stores the predictions
and probabilities in a table.

CREATE TABLE nb_apply_results AS
SELECT cust _id,
PREDI CTI ON(nb_sh_cl as_sanpl e USING *) prediction,
PREDI CTI ON_PROBABI LI TY(nb_sh_cl as_sanpl e USING *) probability
FROM mi ni ng_dat a_test _v;

Using probabilities as the scoring criterion, you can compute the confusion matrix as
follows.

DECLARE
v_accuracy NUVBER;
BEG N
DBVS_DATA_M NI NG COVMPUTE_CONFUSI ON_MATRI X (
accuracy => v_accuracy,
appl y_resul t _tabl e_nane => 'nb_apply_results',
target _tabl e_name => 'nmining_data_test_v',
case_i d_col um_nane => 'cust _id",
target _col um_nanme => "affinity_card',

confusion_matrix_table nanme => 'nb_confusion_matrix',

30-50

ORACLE

Chapter 30
DBMS_DATA_MINING

score_col um_nane => ' PREDI CTION',
score_criterion_colum_name =>'PROBABILITY

cost _matrix_tabl e_nane = null,

appl y_resul t _schenma_nane = null,

target _schema_name = null,

cost _matri x_schema_nane = null,

score_criterion_type => ' PROBABI LI TY");

DBMS_QUTPUT. PUT_LI NE(" **** NMODEL ACCURACY ****: ' || ROUND(v_accuracy,4)):

END;
/

The confusion matrix and model accuracy are shown as follows.

xx MODEL ACCURACY **: | 7847

SQL>SELECT * from nb_confusi on_matrix;

ACTUAL_TARGET_VALUE PREDI CTED TARGET_VALUE VALUE
1 0 60
0 0 891
1 1 286
0 1 263

Compute a Confusion Matrix Based on a Cost Matrix Table

The confusion matrix in the previous example shows a high rate of false positives. For
263 cases, the model predicted 1 when the actual value was 0. You could use a cost
matrix to minimize this type of error.

The cost matrix table nb_cost _mat ri x specifies that a false positive is 3 times more
costly than a false negative.

SQ.> SELECT * fromnb_cost_matrix;

ACTUAL_TARGET_VALUE PREDI CTED TARGET_VALUE CosT
0 0 0
0 1 .75
1 0 .25
1 1 0

This statement shows how to generate the predictions using APPLY.

BEG N
DBVS_DATA M NI NG. APPLY(
model _name => 'nb_sh_cl as_sanpl e',
data_tabl e_name => 'mning_data_test_v',
case_id_colum_nane => 'cust _id',
result _table_nanme => 'nb_apply_results');
END;

/

This statement computes the confusion matrix using the cost matrix table. The score
criterion column is named 'PROBABI LI TY', which is the name generated by APPLY.

DECLARE
v_accuracy NUVBER;
BEG N
DBVS_DATA M NI NG COMPUTE_CONFUSI ON_MATRI X (
accuracy => v_accuracy,
appl y_result _tabl e_nanme => 'nb_apply_results',
target _tabl e_name => 'mning_data_test_v',
case_i d_col um_nane => 'cust_id",

30-51

ORACLE

Chapter 30
DBMS_DATA_MINING

target _col urm_nane => "affinity_card',
confusion_matrix_table_name => 'nb_confusion_matrix',
score_col um_nane => ' PREDI CTION ,
score_criterion_colum_name => 'PROBABILITY',
cost_matrix_tabl e_name => 'nb_cost_matrix',
appl y_resul t _schema_nane => nul I,
target _schema_nane = null,
cost_matrix_schema_nanme = null,
score_criterion_type = 'COST');
DBVS_QUTPUT. PUT_LI NE("' **** MODEL ACCURACY ****. ' || ROUND(v_accuracy,4));

END;
/

The resulting confusion matrix shows a decrease in false positives (212 instead of
263).

¥**% MODEL ACCURACY ****: 798

SQ.> SELECT * FROM nb_confusi on_nmatri x;

ACTUAL_TARGET_VALUE PREDI CTED TARGET_VALUE VALUE
1 0 91
0 0 942
1 1 255
0 1 212

Compute a Confusion Matrix Based on Embedded Costs

You can use the ADD COST_MATRI X procedure to embed a cost matrix in a model. The
embedded costs can be used instead of probabilities for scoring. This statement adds
the previously-defined cost matrix to the model.

BEG N DBVS_DATA M NI NG ADD_COST_MATRI X (' nb_sh_cl as_sanpl e',
"nb_cost_matrix'); END;/

The following statement applies the model to the test data using the embedded costs
and stores the results in a table.

CREATE TABLE nb_apply_results AS
SELECT cust _id,
PREDI CTI ON(nb_sh_cl as_sanpl e COST MODEL USING *) prediction,
PREDI CTI ON_COST(nb_sh_cl as_sanpl e COST MODEL USI NG *) cost
FROM ni ni ng_dat a_t est _v;

You can compute the confusion matrix using the embedded costs.

DECLARE
v_accuracy NUMBER;
BEG N
DBMS_DATA M NI NG COMPUTE_CONFUSI ON_MATRI X (

accuracy => v_accuracy,
appl y_resul t _tabl e_nanme => 'nb_apply_results',
target _tabl e_name => 'mning_data_test_v',
case_i d_col utm_nane => 'cust_id',
target _col urm_nane => "affinity_card',
confusion_matrix_table_name => 'nb_confusion_matrix',
score_col um_nane => ' PREDI CTION ,
score_criterion_colum_name =>'COST',
cost_matrix_tabl e_name = null,
appl y_resul t _schema_nane => nul I,
target _schema_nane = null,

30-52

Chapter 30
DBMS_DATA_MINING

cost_matri x_schema_nanme = null,
score_criterion_type = 'C0ST');
END;
/

The results are:

**** MODEL ACCURACY ****:. 798

SQ.> SELECT * FROM nb_confusi on_nmatri x;

ACTUAL_TARGET_VALUE PREDI CTED TARGET_VALUE VALUE
1 0 91
0 0 942
1 1 255
0 1 212

30.1.3.6 COMPUTE_CONFUSION_MATRIX_PART Procedure

The COVPUTE_CONFUSI ON_MATRI X_PART procedure computes a confusion matrix, stores it in
a table in the user's schema, and returns the model accuracy.

COVPUTE_CONFUSI ON_MATRI X_PART provides support to computation of evaluation metrics
per-partition for partitioned models. For non-partitioned models, refer to
COMPUTE_CONFUSION_MATRIX Procedure.

A confusion matrix is a test metric for Classification models. It compares the
predictions generated by the model with the actual target values in a set of test data.
The confusion matrix lists the number of times each class was correctly predicted and
the number of times it was predicted to be one of the other classes.

COVPUTE_CONFUSI ON_MATRI X_PART accepts three input streams:

* The predictions generated on the test data. The information is passed in three
columns:

— Case ID column
— Prediction column
— Scoring criterion column containing either probabilities or costs

* The known target values in the test data. The information is passed in two
columns:

— Case ID column
— Target column containing the known target values

* (Optional) A cost matrix table with predefined columns. See the Usage Notes for
the column requirements.

ORACLE 30-53

¢ See Also:

Syntax

Chapter 30
DBMS_DATA_MINING

Oracle Data Mining Concepts for more details about confusion matrixes and
other test metrics for classification

"COMPUTE_LIFT_PART Procedure"
"COMPUTE_ROC_PART Procedure”

DBMS_DATA M NI NG conput e_conf usi on_mat ri x_part (

accuracy
apply_result _tabl e_name
target tabl e_name
case_i d_col uim_name
target _col um_name
confusion_matrix_tabl e_name
score_col um_nane
score_criterion_col um_name
score_partition_col um_name
cost_matrix_tabl e_nanme

appl y_result _schema_nane
target _schema_name

cost _matri x_schema_name
score_criterion_type

Parameters

OUT DM NESTED_NUMERI CALS,

IN VARCHARZ,

I'N VARCHARZ,

IN VARCHARZ,

I'N VARCHARZ,

I'N VARCHARZ,

IN VARCHAR2 DEFAULT ' PREDI CTION,
IN VARCHAR2 DEFAULT ' PROBABILITY',
N VARCHAR2 DEFAULT ' PARTI TI ON_NAME',
IN VARCHAR2 DEFAULT NULL,

IN VARCHAR2 DEFAULT NULL,

IN VARCHAR2 DEFAULT NULL,

IN VARCHAR2 DEFAULT NULL,

IN VARCHAR2 DEFAULT NULL);

Table 30-41 COMPUTE_CONFUSION_MATRIX_PART Procedure Parameters
]

Parameter

Description

accuracy

apply_result_tabl e_name

target _table_name

case_i d_col unmm_nane

target _col utm_narme

confusion_matrix_tabl e_name

score_col um_nane

ORACLE

Output parameter containing the overall percentage
accuracy of the predictions

The output argument is changed from NUVBER to
DM _NESTED _NUMERI CALS
Table containing the predictions

Table containing the known target values from the test
data

Case ID column in the apply results table. Must match
the case identifier in the targets table.

Target column in the targets table. Contains the known
target values from the test data.

Table containing the confusion matrix. The table will be
created by the procedure in the user's schema.

The columns in the confusion matrix table are
described in the Usage Notes.

Column containing the predictions in the apply results
table.

The default column name is PREDI CTI ON, which is the
default name created by the APPLY procedure (See
"APPLY Procedure").

30-54

Chapter 30
DBMS_DATA_MINING

Table 30-41 (Cont.) COMPUTE_CONFUSION_MATRIX_PART Procedure

Parameters

Parameter

Description

score_criterion_col um_nane

score_partition_col um_nane

cost_matrix_table_nane

appl y_resul t _schema_narme

target _schenma_name

cost _matrix_schema_nanme

score_criterion_type

Column containing the scoring criterion in the apply
results table. Contains either the probabilities or the
costs that determine the predictions.

By default, scoring is based on probability; the class
with the highest probability is predicted for each case. If
scoring is based on cost, then the class with the lowest
cost is predicted.

The score_criterion_type parameter indicates
whether probabilities or costs will be used for scoring.

The default column name is PROBABI LI TY, which is the
default name created by the APPLY procedure (See
"APPLY Procedure").

See the Usage Notes for additional information.

(Optional) Parameter indicating the column which
contains the name of the partition. This column slices
the input test results such that each partition has
independent evaluation matrices computed.

(Optional) Table that defines the costs associated with
misclassifications. If a cost matrix table is provided and
the score_criterion_type parameter is set to COSTS,
the costs in this table will be used as the scoring
criteria.

The columns in a cost matrix table are described in the
Usage Notes.

Schema of the apply results table.

If null, then the user's schema is assumed.

Schema of the table containing the known targets.
If null, then the user's schema is assumed.

Schema of the cost matrix table, if one is provided.
If null, then the user's schema is assumed.

Whether to use probabilities or costs as the scoring
criterion. Probabilities or costs are passed in the
column identified in the score_criterion_col unm_nane
parameter.

The default value of score_criterion_typeis
PROBABI LI TY. To use costs as the scoring criterion,
specify COST.

If score_criterion_type is setto COST but no cost
matrix is provided and if there is a scoring cost matrix
associated with the model, then the associated costs
are used for scoring.

See the Usage Notes and the Examples.

Usage Notes

* The predictive information you pass to COWPUTE_CONFUSI ON_MATRI X_PART may be
generated using SQL PREDI CTI ON functions, the DBMS_DATA_M NI NG. APPLY procedure,

ORACLE

30-55

Chapter 30
DBMS_DATA_MINING

or some other mechanism. As long as you pass the appropriate data, the
procedure can compute the confusion matrix.

* Instead of passing a cost matrix to COVPUTE_CONFUSI ON_MATRI X_PART, you can use a
scoring cost matrix associated with the model. A scoring cost matrix can be
embedded in the model or it can be defined dynamically when the model is
applied. To use a scoring cost matrix, invoke the SQL PREDI CTI ON_COST function to
populate the score criterion column.

e The predictions that you pass to COVPUTE_CONFUSI ON_MATRI X_PART are in a table or
view specified in appl y_result _tabl e_nane.

CREATE TABLE apply_result_table_nane AS (
case_i d_col um_nare VARCHAR2,
score_col um_nane VARCHAR?,
score_criterion_col um_nane VARCHAR?) ;

* A cost matrix must have the columns described in Table 30-39.

Table 30-42 Columns in a Cost Matrix

___|
Column Name Datatype

actual _target_val ue Type of the target column in the test data

predicted_target_valu Type of the predicted target in the test data. The type of the

e predicted target must be the same as the type of the actual
target unless the predicted target has an associated reverse
transformation.

cost Bl NARY_DQOUBLE

¢ See Also:

Oracle Data Mining User's Guide for valid target datatypes

Oracle Data Mining Concepts for more information about cost matrixes

* The confusion matrix created by COVPUTE_CONFUSI ON_MATRI X_PART has the columns
described in Table 30-40.

Table 30-43 Columns in a Confusion Matrix Part

|
Column Name Datatype

actual _target_val ue Type of the target column in the test data

predicted_target_valu Type of the predicted target in the test data. The type of the

e predicted target is the same as the type of the actual target
unless the predicted target has an associated reverse
transformation.

val ue Bl NARY_DOUBLE

ORACLE 30-56

ORACLE

Chapter 30
DBMS_DATA_MINING

¢ See Also:

Oracle Data Mining Concepts for more information about confusion
matrixes

Examples

These examples use the Naive Bayes model nb_sh_cl as_sanpl e, which is created by
one of the Oracle Data Mining sample programs.

Compute a Confusion Matrix Based on Probabilities

The following statement applies the model to the test data and stores the predictions
and probabilities in a table.

CREATE TABLE nb_apply_results AS
SELECT cust _id,
PREDI CTI ON(nb_sh_cl as_sanpl e USING *) prediction,
PREDI CTI ON_PROBABI LI TY(nb_sh_cl as_sanpl e USING *) probability
FROM mi ni ng_dat a_t est _v;

Using probabilities as the scoring criterion, you can compute the confusion matrix as
follows.

DECLARE
v_accuracy NUMBER;
BEG N

DBMS_DATA M NI NG COVPUTE_CONFUSI ON_MATRI X_PART (
accuracy => y_accuracy,
apply_resul t _tabl e_nane => 'nb_apply_results',
target _tabl e_nanme => '"mining_data_test_v',
case_i d_col um_name = 'cust_id',
target _col um_name => "affinity_card',
confusion_matrix_table_name =>"'nb_confusion_matrix",
score_col um_name => ' PREDI CTI ON ,
score_criterion_colum_name => 'PROBABILITY
score_partition_colum_name => "PARTI TI ON_NAME
cost _matrix_tabl e_nanme = null,
appl y_resul t _schenma_nane = null,
target _schema_name = null,
cost _matri x_schema_name = null,
score_criterion_type => ' PROBABI LI TY");

DBMS_QUTPUT. PUT_LI NE(' **** NODEL ACCURACY ****: ' || ROUND(v_accuracy,4));

END;

/

The confusion matrix and model accuracy are shown as follows.

xx MODEL ACCURACY **: | 7847

SELECT * FROM NB_CONFUSI ON_MATRI X;

ACTUAL_TARGET_VALUE PREDI CTED TARGET_VALUE VALUE
1 0 60
0 0 891
1 1 286
0 1 263

Compute a Confusion Matrix Based on a Cost Matrix Table

30-57

ORACLE

Chapter 30
DBMS_DATA_MINING

The confusion matrix in the previous example shows a high rate of false positives. For
263 cases, the model predicted 1 when the actual value was 0. You could use a cost
matrix to minimize this type of error.

The cost matrix table nb_cost _mat ri x specifies that a false positive is 3 times more
costly than a false negative.

SELECT * from NB_COST_MATRI X;

ACTUAL_TARCGET_VALUE PREDI CTED TARGET_VALUE COosT
0 0 0
0 1 .75
1 0 .25
1 1 0

This statement shows how to generate the predictions using APPLY.

BEG N
DBMS_DATA M NI NG. APPLY(
model _nane => 'nb_sh_cl as_sanple',
data_tabl e_nane => 'mning_data_test_v',
case_i d_col um_name => 'cust _id',
result_table_name => "nb_apply_results');
END;

/

This statement computes the confusion matrix using the cost matrix table. The score
criterion column is named 'PROBABI LI TY', which is the name generated by APPLY.

DECLARE
v_accuracy NUMBER,;
BEG N
DBMS_DATA M NI NG. COMPUTE_CONFUSI ON_MATRI X_PART (
accuracy => v_accuracy,
appl y_resul t _tabl e_nanme => '"nb_apply_results',
target _tabl e_name => 'mning_data_test_v',
case_i d_col utm_nane => 'cust_id',
target _col urm_nane => "affinity_card',
confusion_matrix_table_name => 'nb_confusion_matrix',
score_col urm_name => "' PREDI CTI ON ,
score_criterion_colum_name => 'PROBABILITY',
score_partition_colum_name => ' PARTI TI ON_NAME
cost_matrix_tabl e_name => 'nb_cost_matrix',
appl y_resul t _schema_nane = nul I,
target _schema_nane = null,
cost_matrix_schema_nane = null,
score_criterion_type => ' COST');
DBMS_QUTPUT. PUT_LI NE("' **** MODEL ACCURACY ****: ' || ROUND(v_accuracy,4));
END;

/

The resulting confusion matrix shows a decrease in false positives (212 instead of
263).

¥**% MODEL ACCURACY ****: 798

SELECT * FROM NB_CONFUSI ON_MATRI X;

ACTUAL_TARCGET_VALUE PREDI CTED TARGET_VALUE VALUE
1 0 91
0 0 942

30-58

ORACLE

Chapter 30
DBMS_DATA_MINING

1 1 255
0 1 212

Compute a Confusion Matrix Based on Embedded Costs

You can use the ADD_COST_MATRI X procedure to embed a cost matrix in a model. The
embedded costs can be used instead of probabilities for scoring. This statement adds
the previously-defined cost matrix to the model.

BEG N
DBVS_DATA M NI NG ADD_COST_MATRI X (' nb_sh_clas_sanple', 'nb_cost_matrix');
END; /

The following statement applies the model to the test data using the embedded costs
and stores the results in a table.

CREATE TABLE nb_apply_results AS
SELECT cust _id,
PREDI CTI ON(nb_sh_cl as_sanpl e COST MODEL USING *) prediction,
PREDI CTI ON_COST(nb_sh_cl as_sanpl e COST MODEL USI NG *) cost
FROM mi ni ng_dat a_t est _v;

You can compute the confusion matrix using the embedded costs.

DECLARE
v_accuracy NUVBER,;
BEG N
DBMS_DATA M NI NG COMPUTE_CONFUSI ON_MATRI X_PART (
accur acy => v_accuracy,
appl y_result _tabl e_nanme => 'nb_apply_results',
target_tabl e_nanme => 'nining_data_test_v',
case_i d_col utm_nane => 'cust_id",
target _col urm_nane => "affinity_card',
confusion_matrix_table_name => 'nb_confusion_matrix',
score_col um_nane => ' PREDI CTION ,
score_criterion_colum_name =>'COST',
score_partition_colum_name => 'PARTI TI ON_NAME
cost_matrix_tabl e_name = null,
appl y_resul t _schema_nane = null,
target _schema_nane = null,
cost_matri x_schema_nane = null,
score_criterion_type = 'C0ST');
END;

/

The results are:

¥**% MODEL ACCURACY ****: 798

SELECT * FROM NB_CONFUSI ON_MATR! X;

ACTUAL_TARGET_VALUE PREDI CTED_TARGET_VALUE VALUE
1 0 91
0 0 942
1 1 255
0 1 212

30-59

Chapter 30
DBMS_DATA_MINING

30.1.3.7 COMPUTE_LIFT Procedure

ORACLE

This procedure computes lift and stores the results in a table in the user's schema.

Lift is a test metric for binary classification models. To compute lift, one of the target
values must be designated as the positive class. COMPUTE_LI FT compares the
predictions generated by the model with the actual target values in a set of test data.
Lift measures the degree to which the model's predictions of the positive class are an
improvement over random chance.

Lift is computed on scoring results that have been ranked by probability (or cost) and
divided into quantiles. Each quantile includes the scores for the same number of
cases.

COWPUTE_LI FT calculates quantile-based and cumulative statistics. The number of
guantiles and the positive class are user-specified. Additionally, COVPUTE_LI FT accepts
three input streams:

» The predictions generated on the test data. The information is passed in three
columns:

— Case ID column
— Prediction column

— Scoring criterion column containing either probabilities or costs associated
with the predictions

* The known target values in the test data. The information is passed in two
columns:

— Case ID column
— Target column containing the known target values

* (Optional) A cost matrix table with predefined columns. See the Usage Notes for
the column requirements.

See Also:
Oracle Data Mining Concepts for more details about lift and test metrics for
classification
"COMPUTE_CONFUSION_MATRIX Procedure"
"COMPUTE_ROC Procedure"

Syntax
DBVS_DATA M NI NG COMPUTE_LI FT (
apply_result _tabl e_name I'N VARCHAR?,
target _table_name I'N VARCHAR?,
case_i d_col um_name I'N VARCHAR?,
target _col um_name I'N VARCHAR?,
lift_table_name I'N VARCHAR?,
positive_target_val ue I'N VARCHAR?,
score_col um_nane I N VARCHAR2 DEFAULT ' PREDI CTI ON

30-60

score_criterion_col unm_nane
num quantil es
cost_matrix_tabl e_nanme

appl y_resul t _schema_nane
target _schema_name

cost _matri x_schema_name
score_criterion_type

Parameters

Chapter 30
DBMS_DATA_MINING

IN VARCHAR2 DEFAULT ' PROBABI LI TY",
I'N NUMBER DEFAULT 10,

I'N VARCHAR2 DEFAULT NULL,

I'N VARCHAR2 DEFAULT NULL,

I'N VARCHAR2 DEFAULT NULL,

I'N VARCHAR2 DEFAULT NULL

I'N VARCHAR2 DEFAULT ' PROBABILITY');

Table 30-44 COMPUTE_LIFT Procedure Parameters
]

Parameter

Description

apply_result_tabl e_name

target _tabl e_nanme

case_i d_col unmm_nane

target _col urm_narme

lift_table_name

positive_target val ue

score_col utm_nane

score_criterion_col urm_nane

num quantil es

ORACLE

Table containing the predictions.

Table containing the known target values from the test
data.

Case ID column in the apply results table. Must match
the case identifier in the targets table.

Target column in the targets table. Contains the known
target values from the test data.

Table containing the lift statistics. The table will be
created by the procedure in the user's schema.

The columns in the lift table are described in the Usage
Notes.

The positive class. This should be the class of interest,
for which you want to calculate lift.

If the target column is a NUMBER, you can use the
TO _CHAR() operator to provide the value as a string.

Column containing the predictions in the apply results
table.

The default column name is 'PREDI CTI ON, which is the

default name created by the APPLY procedure (See
"APPLY Procedure").

Column containing the scoring criterion in the apply
results table. Contains either the probabilities or the
costs that determine the predictions.

By default, scoring is based on probability; the class
with the highest probability is predicted for each case. If
scoring is based on cost, the class with the lowest cost
is predicted.

The score_criterion_type parameter indicates
whether probabilities or costs will be used for scoring.
The default column name is 'PROBABI LI TY', which is the
default name created by the APPLY procedure (See
"APPLY Procedure").

See the Usage Notes for additional information.

Number of quantiles to be used in calculating lift. The
default is 10.

30-61

Chapter 30
DBMS_DATA_MINING

Table 30-44 (Cont.) COMPUTE_LIFT Procedure Parameters

___|
Parameter Description

cost_matrix_tabl e_name (Optional) Table that defines the costs associated with

misclassifications. If a cost matrix table is provided and
the score_criterion_type parameter is set to 'COST',
the costs will be used as the scoring criteria.

The columns in a cost matrix table are described in the
Usage Notes.

appl y_resul t _schema_nane Schema of the apply results table.

If null, the user's schema is assumed.

target _schema_name Schema of the table containing the known targets.

If null, the user's schema is assumed.

cost _matrix_schema_nanme Schema of the cost matrix table, if one is provided.

If null, the user's schema is assumed.

score_criterion_type Whether to use probabilities or costs as the scoring

criterion. Probabilities or costs are passed in the
column identified in the score_criterion_col unm_nane
parameter.

The default value of score_criterion_typeis
'PROBABI LI TY'. To use costs as the scoring criterion,
specify 'COST".

If score_criterion_type is setto 'COST' but no cost
matrix is provided and if there is a scoring cost matrix
associated with the model, then the associated costs
are used for scoring.

See the Usage Notes and the Examples.

Usage Notes

ORACLE

The predictive information you pass to COWUTE_LI FT may be generated using SQL
PREDI CTI ON functions, the DBMS_DATA_M NI NG APPLY procedure, or some other
mechanism. As long as you pass the appropriate data, the procedure can compute
the lift.

Instead of passing a cost matrix to COWPUTE_LI FT, you can use a scoring cost matrix
associated with the model. A scoring cost matrix can be embedded in the model or
it can be defined dynamically when the model is applied. To use a scoring cost
matrix, invoke the SQL PREDI CTI ON_COST function to populate the score criterion
column.

The predictions that you pass to COWUTE_LI FT are in a table or view specified in
appl y_resul ts_tabl e_nane.

CREATE TABLE apply_result_table_name AS (
case_i d_col um_nare VARCHAR?,
score_col um_nane VARCHAR?,
score_criterion_col um_nane VARCHAR?) ;

A cost matrix must have the columns described in Table 30-45.

30-62

ORACLE

Table 30-45 Columns in a Cost Matrix

Chapter 30
DBMS_DATA_MINING

Column Name Datatype

actual _target_value Type of the target column in the build data

predi cted_target _val u Type of the predicted target in the test data. The type of the
e predicted target must be the same as the type of the actual
target unless the predicted target has an associated reverse

transformation.
cost NUMBER

" See Also:

Oracle Data Mining Concepts for more information about cost matrixes

The table created by COVPUTE_LI FT has the columns described in Table 30-46

Table 30-46 Columns in a Lift Table

Column Name Datatype
quanti | e_nunber NUMBER
probability_threshol d NUMBER
gai n_cumul ative NUMBER
quantile_total _count NUMBER
quantil e_target_count NUMBER
percent _records_cunul ative NUMBER
l[ift_cumulative NUMBER
target _density_cunul ative NUMBER
targets_cunul ative NUMBER
non_targets_cunul ative NUMBER
lift_quantile NUMBER
target _density NUMBER

¢ See Also:

table

Oracle Data Mining Concepts for details about the information in the lift

When a cost matrix is passed to COVPUTE_LI FT, the cost threshold is returned in the

probabi lity_threshol d column of the lift table.

Examples

This example uses the Naive Bayes model nb_sh_cl as_sanpl e, which is created by one
of the Oracle Data Mining sample programs.

30-63

Chapter 30
DBMS_DATA_MINING

The example illustrates lift based on probabilities. For examples that show
computation based on costs, see "COMPUTE_CONFUSION_MATRIX Procedure".

The following statement applies the model to the test data and stores the predictions
and probabilities in a table.

CREATE TABLE nb_apply_results AS
SELECT cust _id, t.prediction, t.probability
FROM mi ni ng_dat a_test v, TABLE(PREDI CTI ON_SET(nb_sh_cl as_sanple USING *)) t;

Using probabilities as the scoring criterion, you can compute lift as follows.

BEG N
DBMS_DATA M NI NG, COMPUTE_LI FT (
appl y_resul t _tabl e_nanme => 'nb_apply_results',
target _tabl e_name => 'mning_data_test_v',
case_i d_col utm_nane => 'cust_id",
target _col urm_nane => 'affinity_card",
lift_table_nane => "nb_lift",
positive_target_val ue => to_char(1),
score_col urm_nane => ' PREDI CTI ON',
score_criterion_col um_name => ' PROBABI LI TY',
num quantil es = 10,
cost_matrix_tabl e_name = null,
appl y_resul t_schema_nane = null,
target _schema_nane = null,
cost_matri x_schema_nane = null,
score_criterion_type => ' PROBABILITY");
END;

/

This query displays some of the statistics from the resulting lift table.

SQL>SELECT quantile_nunber, probability_threshold, gain_cunulative,
quantile_total _count
FROM nb_lift;

QUANTI LE_NUVBER PROBABI LI TY_THRESHOLD GAI N_CUMULATI VE QUANTI LE_TOTAL_COUNT

1 . 989335775 . 15034965 55
2 . 980534911 . 26048951 55
3 . 968506098 . 374125874 55
4 . 958975196 . 493006993 55
5 . 946705997 . 587412587 55
6 . 927454174 . 66958042 55
7 . 904403627 . 748251748 55
8 . 836482525 . 839160839 55
10 . 500184953 1 54

30.1.3.8 COMPUTE_LIFT_PART Procedure

ORACLE

The COVPUTE_LI FT_PART procedure computes Lift and stores the results in a table in the
user's schema. This procedure provides support to the computation of evaluation
metrics per-partition for partitioned models.

Lift is a test metric for binary Classification models. To compute Lift, one of the target
values must be designated as the positive class. COWPUTE_LI FT_PART compares the
predictions generated by the model with the actual target values in a set of test data.
Lift measures the degree to which the model's predictions of the positive class are an
improvement over random chance.

30-64

ORACLE

Chapter 30
DBMS_DATA_MINING

Lift is computed on scoring results that have been ranked by probability (or cost) and
divided into quantiles. Each quantile includes the scores for the same number of
cases.

COVPUTE_LI FT_PART calculates quantile-based and cumulative statistics. The number of
guantiles and the positive class are user-specified. Additionally, COPUTE_LI FT_PART
accepts three input streams:

The predictions generated on the test data. The information is passed in three
columns:

Case ID column
Prediction column

Scoring criterion column containing either probabilities or costs associated
with the predictions

The known target values in the test data. The information is passed in two
columns:

Case ID column

Target column containing the known target values

(Optional) A cost matrix table with predefined columns. See the Usage Notes for
the column requirements.

¢ See Also:

Oracle Data Mining Concepts for more details about Lift and test metrics for
classification

"COMPUTE_LIFT Procedure"
"COMPUTE_CONFUSION_MATRIX Procedure"
"COMPUTE_CONFUSION_MATRIX_PART Procedure”
"COMPUTE_ROC Procedure"
"COMPUTE_ROC_PART Procedure"

Syntax

DBVS_DATA M NI NG COVPUTE_LI FT_PART (
apply_result _tabl e_name I'N VARCHARZ,
target _tabl e_name I'N VARCHARZ,
case_i d_col um_nane I'N VARCHARZ,
target _col um_name I'N VARCHARZ,
lift_table_nane I'N VARCHARZ,
positive_target_val ue I'N VARCHARZ,
score_col utm_nane I'N VARCHAR2 DEFAULT ' PREDI CTI ON',

score_criterion_colum_nane | N VARCHAR2 DEFAULT ' PROBABI LITY',
score_partition_col um_name | N VARCHAR2 DEFAULT ' PARTI TI ON_NAME',

num quantil es I'N NUMBER DEFAULT 10,

cost_matrix_tabl e nane I'N VARCHAR2 DEFAULT NULL,
appl y_result _schema_nane I'N VARCHAR2 DEFAULT NULL,
target _schema_name I'N VARCHAR2 DEFAULT NULL,

30-65

cost _matri x_schema_name

score_criterion_type

Parameters

Chapter 30
DBMS_DATA_MINING

I'N VARCHAR2 DEFAULT NULL,
I'N VARCHAR2 DEFAULT NULL);

Table 30-47 COMPUTE_LIFT PART Procedure Parameters
]

Parameter

Description

apply_result_tabl e_name

target _tabl e_nanme

case_i d_col unmm_nane

target _col urm_narme

lift_table_name

positive_target _val ue

score_col utm_nane

score_criterion_col utm_nane

score_partition_col um_name

num quantil es

ORACLE

Table containing the predictions

Table containing the known target values from the test
data

Case ID column in the apply results table. Must match
the case identifier in the targets table.

Target column in the targets table. Contains the known
target values from the test data.

Table containing the Lift statistics. The table will be
created by the procedure in the user's schema.

The columns in the Lift table are described in the
Usage Notes.

The positive class. This should be the class of interest,
for which you want to calculate Lift.

If the target column is a NUMBER, then you can use the
TO _CHAR() operator to provide the value as a string.

Column containing the predictions in the apply results
table.

The default column name is PREDI CTI ON, which is the
default name created by the APPLY procedure (See
"APPLY Procedure").

Column containing the scoring criterion in the apply
results table. Contains either the probabilities or the
costs that determine the predictions.

By default, scoring is based on probability; the class
with the highest probability is predicted for each case. If
scoring is based on cost, then the class with the lowest
cost is predicted.

The score_criterion_type parameter indicates
whether probabilities or costs will be used for scoring.
The default column name is PROBABI LI TY, which is the
default name created by the APPLY procedure (See
"APPLY Procedure").

See the Usage Notes for additional information.
Optional parameter indicating the column containing
the name of the partition. This column slices the input

test results such that each partition has independent
evaluation matrices computed.

Number of quantiles to be used in calculating Lift. The
default is 10.

30-66

Chapter 30
DBMS_DATA_MINING

Table 30-47 (Cont.) COMPUTE_LIFT_PART Procedure Parameters

___|
Parameter Description

cost_matrix_tabl e_nanme (Optional) Table that defines the costs associated with

misclassifications. If a cost matrix table is provided and
the score_criterion_type parameter is set to COST,
then the costs will be used as the scoring criteria.

The columns in a cost matrix table are described in the
Usage Notes.

appl y_resul t _schema_nane Schema of the apply results table

If null, then the user's schema is assumed.

target _schema_name Schema of the table containing the known targets

If null, then the user's schema is assumed.

cost _matrix_schema_name Schema of the cost matrix table, if one is provided

If null, then the user's schema is assumed.

score_criterion_type Whether to use probabilities or costs as the scoring

criterion. Probabilities or costs are passed in the
column identified in the score_criterion_col unm_nane
parameter.

The default value of score_criterion_typeis
PROBABI LI TY. To use costs as the scoring criterion,
specify COST.

If score_criterion_type is setto COST but no cost
matrix is provided and if there is a scoring cost matrix
associated with the model, then the associated costs
are used for scoring.

See the Usage Notes and the Examples.

Usage Notes

ORACLE

The predictive information you pass to COWPUTE_LI FT_PART may be generated using
SQL PREDI CTI ON functions, the DBMS_DATA M NI NG APPLY procedure, or some other
mechanism. As long as you pass the appropriate data, the procedure can compute
the Lift.

Instead of passing a cost matrix to COWPUTE_LI FT_PART, you can use a scoring cost
matrix associated with the model. A scoring cost matrix can be embedded in the
model or it can be defined dynamically when the model is applied. To use a
scoring cost matrix, invoke the SQL PREDI CTI ON_COST function to populate the score
criterion column.

The predictions that you pass to COWUTE_LI FT_PART are in a table or view specified
in appl y_resul ts_t abl e_nane.

CREATE TABLE apply_result_table_name AS (
case_i d_col um_nare VARCHAR?,
score_col um_nane VARCHAR?,
score_criterion_col um_nane VARCHAR?) ;

A cost matrix must have the columns described in Table 30-45.

30-67

ORACLE

Chapter 30
DBMS_DATA_MINING

Table 30-48 Columns in a Cost Matrix

__|
Column Name Datatype

actual _target_value Type of the target column in the test data

predi cted_target _val u Type of the predicted target in the test data. The type of the

e predicted target must be the same as the type of the actual
target unless the predicted target has an associated reverse
transformation.

cost NUMBER

" See Also:

Oracle Data Mining Concepts for more information about cost matrixes

The table created by COVPUTE_LI FT_PART has the columns described in Table 30-46

Table 30-49 Columns in a COMPUTE_LIFT_PART Table

Column Name Datatype
quanti | e_nunber NUMBER
probability_threshol d NUMBER
gai n_cumul ative NUMBER
quantile_total _count NUMBER
quantil e_target_count NUMBER
percent _records_cunul ative NUMBER
l[ift_cumulative NUMBER
target _density_cunul ative NUMBER
targets_cunul ative NUMBER
non_targets_cunul ative NUMBER
lift_quantile NUMBER
target _density NUMBER
See Also:

Oracle Data Mining Concepts for details about the information in the Lift
table

When a cost matrix is passed to COVPUTE_LI FT_PART, the cost threshold is returned
in the probabi | ity_threshol d column of the Lift table.

Examples

This example uses the Naive Bayes model nb_sh_cl as_sanpl e, which is created by one
of the Oracle Data Mining sample programs.

30-68

Chapter 30
DBMS_DATA_MINING

The example illustrates Lift based on probabilities. For examples that show
computation based on costs, see "COMPUTE_CONFUSION_MATRIX Procedure".

For a partitioned model example, see "COMPUTE_CONFUSION_MATRIX_PART
Procedure”.

The following statement applies the model to the test data and stores the predictions
and probabilities in a table.

CREATE TABLE nb_apply_results AS
SELECT cust _id, t.prediction, t.probability
FROM mi ni ng_dat a_test v, TABLE(PREDI CTI ON_SET(nb_sh_cl as_sanple USING *)) t;

Using probabilities as the scoring criterion, you can compute Lift as follows.

BEG N
DBMS_DATA M NI NG COMPUTE_LI FT_PART (

apply_result _tabl e_name => 'nb_apply_results',
target _tabl e_name => 'mning_data_test_v',
case_i d_col um_name => 'cust_id',
target _col utm_nane => "affinity_card',
lift_table_name = 'nb_lift',
positive_target_val ue => to_char(1),
score_col um_nane => ' PREDI CTION ,
score_criterion_col um_name => ' PROBABILITY',
score_partition_colum_name => ' PARTI TI TON_NAME',
num quantiles = 10,
cost_matrix_tabl e_name = qnull,
apply_result_schema_nane = qnull,
target _schema_nane = qnull,
cost_matri x_schema_name = qnull,
score_criterion_type => 'PROBABILITY');

END;

/

This query displays some of the statistics from the resulting Lift table.

SELECT quantile_nunber, probability_threshold, gain_cumulative,
quantile_total _count
FROM nb_lift;

QUANTI LE_NUMBER PROBABI LI TY_THRESHOLD GAI N_CUMULATI VE QUANTI LE_TOTAL_COUNT

1 . 989335775 . 15034965 55
2 . 980534911 . 26048951 55
3 . 968506098 . 374125874 55
4 . 958975196 . 493006993 55
5 . 946705997 . 587412587 55
6 . 927454174 . 66958042 55
7 . 904403627 . 748251748 55
8 . 836482525 . 839160839 55
10 . 500184953 1 54

ORACLE 30-69

Chapter 30
DBMS_DATA_MINING

30.1.3.9 COMPUTE_ROC Procedure

ORACLE

This procedure computes the receiver operating characteristic (ROC), stores the
results in a table in the user's schema, and returns a measure of the model accuracy.

ROC is a test metric for binary classification models. To compute ROC, one of the
target values must be designated as the positive class. COWPUTE_ROC compares the
predictions generated by the model with the actual target values in a set of test data.

ROC measures the impact of changes in the probability threshold. The probability
threshold is the decision point used by the model for predictions. In binary
classification, the default probability threshold is 0.5. The value predicted for each
case is the one with a probability greater than 50%.

ROC can be plotted as a curve on an X-Y axis. The false positive rate is placed on the
X axis. The true positive rate is placed on the Y axis. A false positive is a positive
prediction for a case that is negative in the test data. A true positive is a positive
prediction for a case that is positive in the test data.

COVPUTE_RCC accepts two input streams:

e The predictions generated on the test data. The information is passed in three
columns:

— Case ID column
— Prediction column
— Scoring criterion column containing probabilities

e The known target values in the test data. The information is passed in two
columns:

— Case ID column

— Target column containing the known target values

¢ See Also:
Oracle Data Mining Concepts for more details about ROC and test metrics
for classification
"COMPUTE_CONFUSION_MATRIX Procedure”
"COMPUTE_LIFT Procedure"

Syntax
DBNVB_DATA M NI NG COVPUTE_RCC (
roc_area_under _curve OUT NUMBER,
apply_result _tabl e_name IN VARCHAR?,
target _tabl e_name IN VARCHAR?,
case_i d_col um_name IN VARCHAR?,
target _col um_name IN VARCHAR?,
roc_tabl e_nanme IN VARCHAR?,
positive_target_val ue IN VARCHAR?,
score_col um_nane IN VARCHAR2 DEFAULT ' PREDI CTION ,

30-70

ORACLE

score_criterion_col unm_nane
appl y_result _schema_nane

target _schema_name

Parameters

Chapter 30
DBMS_DATA_MINING

IN VARCHAR2 DEFAULT ' PROBABILITY',
IN VARCHAR2 DEFAULT NULL,
IN VARCHAR2 DEFAULT NULL);

Table 30-50 COMPUTE_ROC Procedure Parameters
]

Parameter

Description

roc_area_under _the_curve

apply_resul t _tabl e_name

target _table_name

case_i d_col um_nane

target _col utm_narme

roc_tabl e_name

posi tive_target_val ue

score_col utm_nane

score_criterion_col um_name

appl y_resul t _schema_nane

target _schema_narme

Output parameter containing the area under the ROC
curve (AUC). The AUC measures the likelihood that an
actual positive will be predicted as positive.

The greater the AUC, the greater the flexibility of the
model in accommodating trade-offs between positive
and negative class predictions. AUC can be especially
important when one target class is rarer or more
important to identify than another.

Table containing the predictions.

Table containing the known target values from the test
data.

Case ID column in the apply results table. Must match
the case identifier in the targets table.

Target column in the targets table. Contains the known
target values from the test data.

Table containing the ROC output. The table will be
created by the procedure in the user's schema.

The columns in the ROC table are described in the
Usage Notes.

The positive class. This should be the class of interest,
for which you want to calculate ROC.

If the target column is a NUMBER, you can use the

TO CHAR() operator to provide the value as a string.
Column containing the predictions in the apply results
table.

The default column name is 'PREDI CTI ON, which is the
default name created by the APPLY procedure (See
"APPLY Procedure").

Column containing the scoring criterion in the apply
results table. Contains the probabilities that determine
the predictions.

The default column name is 'PROBABI LI TY', which is the
default name created by the APPLY procedure (See
"APPLY Procedure").

Schema of the apply results table.

If null, the user's schema is assumed.

Schema of the table containing the known targets.
If null, the user's schema is assumed.

Usage Notes

e The predictive information you pass to COWPUTE_RCC may be generated using SQL
PREDI CTI ON functions, the DBVS_DATA_M NI NG APPLY procedure, or some other

30-71

ORACLE

Chapter 30
DBMS_DATA_MINING

mechanism. As long as you pass the appropriate data, the procedure can compute
the receiver operating characteristic.

The predictions that you pass to COWPUTE_RCC are in a table or view specified in
appl y_resul ts_tabl e_nane.

CREATE TABLE apply_result_table_nane AS (
case_i d_col um_nare VARCHAR2,
score_col um_nane VARCHAR?,
score_criterion_col um_nane VARCHAR?) ;

The table created by COMPUTE_RCC has the columns shown in Table 30-51.

Table 30-51 COMPUTE_ROC Output
L |

Column Datatype
probability Bl NARY_DOUBLE
true_positives NUMBER

fal se_negatives NUMBER

fal se_positives NUMBER
true_negatives NUMBER
true_positive_fraction NUMBER

fal se_positive_fraction NUMBER

" See Also:

Oracle Data Mining Concepts for details about the output of COVPUTE_ROC

ROC is typically used to determine the most desirable probability threshold. This
can be done by examining the true positive fraction and the false positive fraction.
The true positive fraction is the percentage of all positive cases in the test data
that were correctly predicted as positive. The false positive fraction is the
percentage of all negative cases in the test data that were incorrectly predicted as
positive.

Given a probability threshold, the following statement returns the positive
predictions in an apply result table ordered by probability.

SELECT case_id_col utm_name
FROM appl y_resul t _tabl e_name
VHERE probability > probability_threshol d
ORDER BY probability DESC

There are two approaches to identifying the most desirable probability threshold.
Which approach you use depends on whether or not you know the relative cost of
positive versus negative class prediction errors.

If the costs are known, you can apply the relative costs to the ROC table to
compute the minimum cost probability threshold. Suppose the relative cost ratio is:
Positive Class Error Cost / Negative Class Error Cost = 20. Then execute a query
like this.

WTH cost AS (
SELECT probability_threshold, 20 * fal se_negatives + fal se_positives cost
FROM RCC t abl e

30-72

ORACLE

Chapter 30
DBMS_DATA_MINING

GROUP BY probability_threshold),
m nCost AS (
SELECT min(cost) mi nCost
FROM cost)
SELECT max(probability_threshol d)probability_threshold
FROM cost, mi nCost
WHERE cost = minCost;

If relative costs are not well known, you can simply scan the values in the ROC
table (in sorted order) and make a determination about which of the displayed
trade-offs (misclassified positives versus misclassified negatives) is most
desirable.

SELECT * FROM ROC_tabl e
ORDER BY probability_threshold;

Examples

This example uses the Naive Bayes model nb_sh_cl as_sanpl e, which is created by one
of the Oracle Data Mining sample programs.

The following statement applies the model to the test data and stores the predictions
and probabilities in a table.

CREATE TABLE nb_apply_results AS
SELECT cust _id, t.prediction, t.probability
FROM mi ni ng_dat a_test v, TABLE(PREDI CTI ON_SET(nb_sh_cl as_sanple USING *)) t;

Using the predictions and the target values from the test data, you can compute ROC
as follows.

DECLARE
v_area_under _curve NUMBER;
BEG N
DBVS_DATA M NI NG COVPUTE_ROC (
roc_area_under_curve => v_area_under _curve,
apply_result _tabl e_name => 'nb_apply_results',
target _tabl e_name => 'mning_data_test_v',
case_i d_col um_nane => 'cust_id",
target _col utm_nane => 'mning_data_test_v',
roc_tabl e _nane => 'nb_roc',
positive_target_val ue ='1",
score_col um_nane => 'PREDI CTION ,

score_criterion_col um_name => ' PROBABILITY');
DBMS_QUTPUT. PUT_LI NE(' **** AREA UNDER ROC CURVE ****: ' ||
ROUND(v_ar ea_under _curve, 4));
END;
/

The resulting AUC and a selection of columns from the ROC table are shown as
follows.

% AREA UNDER ROC CURVE *: 8212

SELECT PROBABI LI TY, TRUE_PCSI TI VE_FRACTI ON, FALSE_PCSI TI VE_FRACTI ON
FROM NB_RCC;

PROBABI LI TY TRUE_PGSI Tl VE_FRACTI ON FALSE_POSI Tl VE_FRACTI ON

.50018 . 826589595 . 227902946

30-73

Chapter 30
DBMS_DATA_MINING

. 53851 . 823699422 . 221837088
. 54991 . 820809249 . 217504333
. 55628 . 815028902 . 215771231
. 55628 . 817919075 . 215771231
. 57563 . 800578035 . 214904679
. 57563 . 812138728 . 214904679

30.1.3.10 COMPUTE_ROC_PART Procedure

The COVPUTE_ROC_PART procedure computes Receiver Operating Characteristic (ROC),
stores the results in a table in the user's schema, and returns a measure of the model
accuracy. This procedure provides support to computation of evaluation metrics per-

partition for partitioned models.

ROC is a test metric for binary classification models. To compute ROC, one of the
target values must be designated as the positive class. COMPUTE_ROC_PART compares the
predictions generated by the model with the actual target values in a set of test data.

ROC measures the impact of changes in the probability threshold. The probability
threshold is the decision point used by the model for predictions. In binary
classification, the default probability threshold is 0. 5. The value predicted for each
case is the one with a probability greater than 50%.

ROC can be plotted as a curve on an x-y axis. The false positive rate is placed on the
x-axis. The true positive rate is placed on the y-axis. A false positive is a positive
prediction for a case that is negative in the test data. A true positive is a positive
prediction for a case that is positive in the test data.

COVPUTE_ROC_PART accepts two input streams:

e The predictions generated on the test data. The information is passed in three
columns:

— Case ID column
— Prediction column
— Scoring criterion column containing probabilities

e The known target values in the test data. The information is passed in two
columns:

— Case ID column

— Target column containing the known target values

ORACLE 30-74

ORACLE

¢ See Also:

for Classification

Syntax

DBMS_DATA M NI NG conput e_roc_part (
roc_area_under _curve
apply_result _tabl e_name
target _tabl e_name
case_i d_col um_nane
target _col um_name
roc_tabl e _nane
positive_target_val ue
score_col utm_nane
score_criterion_col um_nane
score_partition_col um_name
appl y_resul t _schema_nane
target _schema_name

Parameters

Chapter 30
DBMS_DATA_MINING

Oracle Data Mining Concepts for more details about ROC and test metrics

"COMPUTE_ROC Procedure"
"COMPUTE_CONFUSION_MATRIX Procedure"
"COMPUTE_LIFT_PART Procedure"
"COMPUTE_LIFT Procedure"

OUT DM NESTED _NUMERI CALS,

I'N VARCHARZ,

I'N VARCHARZ,

I'N VARCHARZ,

I'N VARCHARZ,

I'N VARCHARZ,

I'N VARCHARZ,

IN VARCHAR2 DEFAULT ' PREDI CTI ON,
IN VARCHAR2 DEFAULT ' PROBABILITY',
N VARCHAR2 DEFAULT ' PARTI TI ON_NAMVE',
IN VARCHAR2 DEFAULT NULL,

IN VARCHAR2 DEFAULT NULL);

Table 30-52 COMPUTE_ROC_PART Procedure Parameters
]

Parameter

Description

roc_area_under _the_curve

appl y_resul t _tabl e_nanme

target _table_name

case_i d_col um_nane

target _col utm_narme

Output parameter containing the area under the ROC
curve (AUC). The AUC measures the likelihood that an
actual positive will be predicted as positive.

The greater the AUC, the greater the flexibility of the
model in accommodating trade-offs between positive
and negative class predictions. AUC can be especially
important when one target class is rarer or more
important to identify than another.

The output argument is changed from NUVBER to
DM NESTED_NUVERI CALS.

Table containing the predictions.

Table containing the known target values from the test
data.

Case ID column in the apply results table. Must match
the case identifier in the targets table.

Target column in the targets table. Contains the known
target values from the test data.

30-75

ORACLE

Chapter 30
DBMS_DATA_MINING

Table 30-52 (Cont.) COMPUTE_ROC_PART Procedure Parameters

Parameter Description

roc_tabl e_nane Table containing the ROC output. The table will be

created by the procedure in the user's schema.

The columns in the ROC table are described in the
Usage Notes.

positive_target _val ue The positive class. This should be the class of interest,

for which you want to calculate ROC.

If the target column is a NUMBER, then you can use the
TO CHAR() operator to provide the value as a string.

score_col um_nane Column containing the predictions in the apply results

table.

The default column name is PREDI CTI ON, which is the
default name created by the APPLY procedure (See
"APPLY Procedure").

score_criterion_col um_name Column containing the scoring criterion in the apply

results table. Contains the probabilities that determine
the predictions.

The default column name is PROBABI LI TY, which is the
default name created by the APPLY procedure (See
"APPLY Procedure").

score_partition_col unm_nane Optional parameter indicating the column which

contains the name of the partition. This column slices
the input test results such that each partition has
independent evaluation matrices computed.

appl y_resul t _schema_name Schema of the apply results table.

If null, then the user's schema is assumed.

target _schema_name Schema of the table containing the known targets.

If null, then the user's schema is assumed.

Usage Notes

The predictive information you pass to COWPUTE_ROC PART may be generated using
SQL PREDI CTI ON functions, the DBMS_DATA M NI NG APPLY procedure, or some other
mechanism. As long as you pass the appropriate data, the procedure can compute
the receiver operating characteristic.

The predictions that you pass to COWPUTE_ROC PART are in a table or view specified
in apply_resul ts_tabl e_nane.

CREATE TABLE apply_resul t _tabl e_nanme AS (
case_i d_col um_nare VARCHAR?,
score_col um_nane VARCHAR?,
score_criterion_col um_nane VARCHAR?) ;

The COVPUTE_RCC PART table has the following columns:

Table 30-53 COMPUTE_ROC_PART Output

___|
Column Datatype

probability Bl NARY_DOUBLE

30-76

ORACLE

Chapter 30
DBMS_DATA _MINING

Table 30-53 (Cont.) COMPUTE_ROC_PART Output
L

Column Datatype
true_positives NUMBER
fal se_negatives NUMBER
fal se_positives NUVBER
true_negatives NUMBER
true_positive_fraction NUMBER
fal se_positive_fraction NUMBER
" See Also:

Oracle Data Mining Concepts for details about the output of
COVPUTE_ROC_PART

ROC is typically used to determine the most desirable probability threshold. This
can be done by examining the true positive fraction and the false positive fraction.
The true positive fraction is the percentage of all positive cases in the test data
that were correctly predicted as positive. The false positive fraction is the
percentage of all negative cases in the test data that were incorrectly predicted as
positive.

Given a probability threshold, the following statement returns the positive
predictions in an apply result table ordered by probability.

SELECT case_i d_col um_nane
FROM appl y_resul t _tabl e_name
VHERE probability > probability_threshold
ORDER BY probability DESC

There are two approaches to identify the most desirable probability threshold. The
approach you use depends on whether you know the relative cost of positive
versus negative class prediction errors.

If the costs are known, then you can apply the relative costs to the ROC table to
compute the minimum cost probability threshold. Suppose the relative cost ratio is:
Positive Class Error Cost / Negative Class Error Cost = 20. Then execute a query
as follows:

WTH cost AS (
SELECT probability_threshold, 20 * fal se_negatives + fal se_positives cost
FROM RCC t abl e
GROUP BY probability_threshold),
m nCost AS (
SELECT min(cost) mi nCost
FROM cost)
SELECT max(probability_threshol d)probability_threshold
FROM cost, mi nCost
WHERE cost = minCost;

If relative costs are not well known, then you can simply scan the values in the
ROC table (in sorted order) and make a determination about which of the
displayed trade-offs (misclassified positives versus misclassified negatives) is
most desirable.

30-77

Chapter 30
DBMS_DATA_MINING

SELECT * FROM ROC_tabl e
ORDER BY probability_threshold;

Examples

This example uses the Naive Bayes model nb_sh_cl as_sanpl e, which is created by one
of the Oracle Data Mining sample programs.

The following statement applies the model to the test data and stores the predictions
and probabilities in a table.

CREATE TABLE nb_apply_results AS
SELECT cust _id, t.prediction, t.probability
FROM mi ni ng_data_test v, TABLE(PREDI CTI ON_SET(nb_sh_cl as_sanple USING *)) t;

Using the predictions and the target values from the test data, you can compute ROC

as follows.
DECLARE
v_area_under _curve NUMBER;
BEG N
DBVS_DATA M NI NG COVPUTE_ROC_PART (
roc_area_under_curve => v_area_under _curve,
apply_result _tabl e_name => 'nb_apply_results',
target _tabl e_name => 'mning_data_test_v',
case_i d_col um_nane => 'cust_id",
target _col utm_nane => "affinity_card",
roc_tabl e nane => 'nb_roc',
positive_target_val ue ='1",
score_col um_namne => 'PREDI CTION ,

score_criterion_col um_name => ' PROBABILITY');
score_partition_col um_name => ' PARTI TI ON_NAME'
DBMS_CQUTPUT. PUT_LI NE(' **** AREA UNDER ROC CURVE ****: ' ||
ROUND(v_ar ea_under _curve, 4));
END;
/

The resulting AUC and a selection of columns from the ROC table are shown as
follows.

% AREA UNDER ROC CURVE *: 8212

SELECT PROBABI LI TY, TRUE_PCSI TI VE_FRACTI ON, FALSE_POSI TI VE_FRACTI ON
FROM NB_RCC;

PROBABI LI TY TRUE_PGSI Tl VE_FRACTI ON FALSE_POSI Tl VE_FRACTI ON

00000 1 1
.50018 . 826589595 . 227902946
. 53851 . 823699422 . 221837088
. 54991 . 820809249 . 217504333
. 55628 . 815028902 . 215771231
. 55628 . 817919075 . 215771231
. 57563 . 800578035 . 214904679
. 57563 . 812138728 . 214904679

ORACLE 30-78

Chapter 30
DBMS_DATA_MINING

30.1.3.11 CREATE_MODEL Procedure

This procedure creates a mining model with a given mining function.

ORACLE

Syntax

DBMVS_DATA M NI NG CREATE_MODEL (

model _nane

m ni ng_function
data_tabl e_nane
case_i d_col um_name
target _col um_name
settings_table_nane
data_schena_nane
settings_schena_nane
xformlist

Parameters

I'N VARCHAR?,

I'N VARCHAR?,

I'N VARCHAR?,

I'N VARCHAR?,

I'N VARCHAR2 DEFAULT NULL,

I'N VARCHAR2 DEFAULT NULL,

I'N VARCHAR2 DEFAULT NULL,

I'N VARCHAR2 DEFAULT NULL,

I N TRANSFORM LI ST DEFAULT NULL);

Table 30-54 CREATE_MODEL Procedure Parameters
]

Parameter

Description

model _nane

m ni ng_function
dat a_t abl e_nane
case_i d_col unm_nane

target _col um_nane

settings_tabl e_nane

dat a_schena_nane

settings_schena_nane

Name of the model in the form [schema_name.Jmodel_name. If
you do not specify a schema, then your own schema is used.

See the Usage Notes for model naming restrictions.
The mining function. Values are listed in Table 30-3.
Table or view containing the build data
Case identifier column in the build data.

For supervised models, the target column in the build data. NULL
for unsupervised models.

Table containing build settings for the model. NULL if there is no
settings table (only default settings are used).

Schema hosting the build data. If NULL, then the user's schema is
assumed.

Schema hosting the settings table. If NULLthen the user's schema
is assumed.

30-79

ORACLE

Chapter 30
DBMS_DATA_MINING

Table 30-54 (Cont.) CREATE_MODEL Procedure Parameters

___|
Parameter Description

xformlist A list of transformations to be used in addition to or instead of

automatic transformations, depending on the value of the
PREP_AUTO setting. (See "Automatic Data Preparation”.)

The datatype of xform | i st is TRANSFORM LI ST, which consists of
records of type TRANSFORM _REC. Each TRANSFORM REC specifies the
transformation information for a single attribute.

TYPE
TRANFORM _REC I'S RECORD (
attribute_nane VARCHAR2(4000) ,
attribute_subnane VARCHAR2(4000) ,
expression EXPRESSI ON_REC,
reverse_expression EXPRESSI ON_REC,
attribute_spec VARCHAR2(4000));

The expr essi on field stores a SQL expression for transforming
the attribute. The rever se_expr essi on field stores a SQL
expression for reversing the transformation in model details and, if
the attribute is a target, in the results of scoring. The SQL
expressions are manipulated by routines in the

DBVS_DATA_M NI NG_TRANSFORM package:

e SET_EXPRESSION Procedure

o GET_EXPRESSION Function

e SET_TRANSFORM Procedure

The attribut e_spec field identifies individualized treatment for
the attribute. See the Usage Notes for details.

See Table 30-101for details about the TRANSFORM_REC type.

Usage Notes

1.

You can use the attribute_spec field of the xform | i st argument to identify an
attribute as unstructured text or to disable Automatic Data Preparation for the
attribute. The attribut e_spec can have the following values:

e TEXT: Indicates that the attribute contains unstructured text. The TEXT value
may optionally be followed by POLI CY_NAME, TOKEN_TYPE, MAX_FEATURES, and
M N_DOCUMENTS parameters.

TOKEN_TYPE has the following possible values: NORMAL, STEM, THEME, SYNONYM,
Bl GRAM, STEM BI GRAM SYNONYM may be optionally followed by a thesaurus name
in square brackets.

MAX_FEATURES specifies the maximum number of tokens extracted from the text.

M N_DOCUMENTS specifies the minimal number of documents in which every
selected token shall occur. (For information about creating a text policy, see
CTX_DDL. CREATE_PQLI CY in Oracle Text Reference).

Oracle Data Mining can process columns of VARCHAR2/CHAR, CLOB, BLOB, and

BFI LE as text. If the column is VARCHAR2 or CHAR and you do not specify TEXT,
Oracle Data Mining will process the column as categorical data. If the column
is CLOB, then Oracle Data Mining will process it as text by default (You do not
need to specify it as TEXT. However, you do need to provide an Oracle Text

30-80

ORACLE

Chapter 30
DBMS_DATA_MINING

Policy in the settings). If the column is BLOB or BFI LE, you must specify it as
TEXT, otherwise CREATE_MODEL will return an error.

If you specify TEXT for a nested column or for an attribute in a nested column,
CREATE_MODEL will return an error.

* NOPREP: Disables ADP for the attribute. When ADP is OFF, the NOPREP value is
ignored.

You can specify NOPREP for a nested column, but not for an attribute in a nested
column. If you specify NOPREP for an attribute in a nested column when ADP is
on, CREATE_MODEL will return an error.

You can obtain information about a model by querying the Data Dictionary views.

ALL/ USER/ DBA_M NI NG_MODELS

ALL/ USER/ DBA_M NI NG_MODEL_ATTRI BUTES
ALL/ USER/ DBA_M NI NG_MODEL_SETTI NGS
ALL/ USER/ DBA_M NI NG_MODEL_VI EV8

ALL/ USER/ DBA_M NI NG_MODEL_PARTI TI ONS
ALL/ USER/ DBA_M NI NG_MODEL_XFORMS

You can obtain information about model attributes by querying the model details
through model views. Refer to Oracle Data Mining User’s Guide.

The naming rules for models are more restrictive than the naming rules for most
database schema objects. A model name must satisfy the following additional
requirements:

* It must be 123 or fewer characters long.

* It must be a nonquoted identifier. Oracle requires that nonquoted identifiers
contain only alphanumeric characters, the underscore (_), dollar sign ($), and
pound sign (#); the initial character must be alphabetic. Oracle strongly
discourages the use of the dollar sign and pound sign in nonquoted literals.

Naming requirements for schema objects are fully documented in Oracle
Database SQL Language Reference.

To build a partitioned model, you must provide additional settings.
The setting for partitioning columns are as follows:

I NSERT | NTO settings_table VALUES (‘ OCDMS_PARTI TI ON_COLUMNS' , ‘ GENDER, ACE');

To set user-defined partition number for a model, the setting is as follows:

I NSERT | NTO settings_table VALUES (' CDMS_MAX_PARTITIONS', '10');

The default value for maximum number of partitions is 1000.

By passing an xform | i st to CREATE_MODEL, you can specify a list of transformations
to be performed on the input data. If the PREP_AUTO setting is ON, the transformations
are used in addition to the automatic transformations. If the PREP_AUTO setting is
CFF, the specified transformations are the only ones implemented by the model. In
both cases, transformation definitions are embedded in the model and executed
automatically whenever the model is applied. See "Automatic Data Preparation”.
Other transforms that can be specified with xform | i st include FORCE_I N. Refer to
Oracle Data Mining User’s Guide.

30-81

ORACLE

Chapter 30
DBMS_DATA_MINING

Examples

The first example builds a Classification model using the Support Vector Machine
algorithm.

-- Create the settings table

CREATE TABLE svm nmodel _settings (
setting_name VARCHAR2(30),
setting_val ue VARCHAR2(30));

-- Populate the settings table
-- Specify SYM By default, Naive Bayes is used for classification.
-- Specify ADP. By default, ADP is not used.
BEG N
I NSERT | NTO svm nodel _settings (setting_name, setting_value) VALUES
(dbns_dat a_ni ni ng. al go_nane, dbnms_dat a_mi ni ng. al go_support _vect or _machi nes);
I NSERT | NTO svm nodel _settings (setting_name, setting_value) VALUES
(dbms_dat a_ni ni ng. prep_aut o, dbns_dat a_mi ni ng. prep_aut o_on);
COWM T,
END;
/
-- Create the nodel using the specified settings

BEG N
DBVS_DATA M NI NG CREATE_MODEL (
model _name => 'svm nodel ",
m ni ng_function => dbns_data_ni ni ng. cl assification,
data_t abl e_name => "mining_data_build_v',

case_id_col um_nanme => 'cust_id',
target_colum_pane =>"affinity_card',
settings_table name => 'svm nmodel _settings');
END;
/

You can display the model settings with the following query:

SELECT * FROM user _ni ni ng_model _settings
VWHERE nodel _name I N ' SVM_MODEL' ;

MODEL _NAMVE SETTI NG_NAME SETTI NG_VALUE SETTI NG
SVM_MODEL ALGO_NAME ALGO_SUPPORT_VECTOR_MACHI NES | NPUT
SVM_MODEL SVMS_STD DEV 3. 004524 DEFAULT
SVM_MODEL PREP_AUTO N [NPUT
SVM_MODEL SVMS_COMPLEXI TY_FACTOR 1.887389 DEFAULT
SVM_MODEL SVMS_KERNEL_FUNCTI ON SVMS_LI NEAR DEFAULT
SVM_MODEL SVMS_CONV_TOLERANCE .001 DEFAULT

The following is an example of querying a model view instead of the older
GEL_MODEL_DETAI LS_SVMroutine.

SELECT target_value, attribute_name, attribute_value, coefficient FROM
DMVBVLSVM MODEL;

The second example creates an Anomaly Detection model. Anomaly Detection uses
SVM Classification without a target. This example uses the same settings table
created for the SVM Classification model in the first example.

BEGI N
DBMS_DATA M NI NG. CREATE_MODEL(

30-82

Chapter 30
DBMS_DATA_MINING

model _name => "anomal y_det ect _nodel ',
m ni ng_function => dbns_data_nmi ning.classification,
data_tabl e_nane => "mining_data_build_v',

case_i d_col utm_nanme => 'cust _id",
target _colum_name => null,
settings_table_name => 'svm nodel _settings');
END;
/

This query shows that the models created in these examples are the only ones in your
schema.

SELECT nodel _nane, mning_function, algorithm FROM user_ni ni ng_nodel s;

MODEL_NAVE M NI NG_FUNCTI ON ALGOR! THM
SVM MODEL CLASS| FI CATI ON SUPPORT_VECTOR MACHI NES
ANOVALY DETECT MODEL CLASSI FI CATI ON SUPPORT_VECTOR MACHI NES

This query shows that only the SVM Classification model has a target.

SELECT nodel _nane, attribute_nanme, attribute_type, target
FROM user _m ni ng_nodel _attributes
VWHERE target = 'VES ;

MODEL _NAVE ATTRI BUTE_NAME ATTRI BUTE_TYPE TARGET

SVM_MODEL AFFI NI TY_CARD CATEGCORI CAL YES

30.1.3.12 CREATE_MODEL2 Procedure

ORACLE

The CREATE_MODEL2 procedure is an alternate procedure to the CREATE_MODEL procedure,
which enables creating a model without extra persistence stages. In the CREATE_MODEL
procedure, the input is a table or a view and if such an object is not already present,
the user must create it. By using the CREATE_MODEL2 procedure, the user does not need
to create such transient database objects.

Syntax

DBVS_DATA M NI NG CREATE_MODEL2 (
model _nane I N VARCHARZ,
m ni ng_function I N VARCHARZ,
data_query IN CLOB,
set_|ist IN SETTING LI ST,

case_id _colum_name | N VARCHAR2 DEFAULT NULL,
target _col um_nane I'N VARCHAR2 DEFAULT NULL,
xformlist I'N TRANSFORM LI ST DEFAULT NULL);

Parameters

Table 30-55 CREATE_MODEL2 Procedure Parameters

___|
Parameter Description

model _nane Name of the model in the form [schema_nane.]Jnodel _nane. If you
do not specify a schema, then the current schema is used.

See the Usage Notes, CREATE_MODEL Procedure for model
naming restrictions.

30-83

Chapter 30
DBMS_DATA_MINING

Table 30-55 (Cont.) CREATE_MODEL2 Procedure Parameters

___|
Parameter Description

The mining function. Values are listed in DBMS_DATA_MINING
— Mining Function Settings.

m ni ng_function

data_query A query which provides training data for building the model.

Specifies the SETTI NG_LI ST

SETTI NG_LI ST is a table of CLOB index by VARCHAR2(30) ; Where
the index is the setting name and the CLOB is the setting value
for that name.

Case identifier column in the build data.

set |ist

case_i d_col unm_nane

target _col utm_narme For supervised models, the target column in the build data. NULL

for unsupervised models.

xformlist Refer to CREATE_MODEL Procedure.

Usage Notes

Refer to CREATE_MODEL Procedure for Usage Notes.

Examples
The following example uses the Support Vector Machine algorithm.

decl are
v_set|st DBVS_DATA M NI NG SETTING LI ST;

BEG N
v_set| st (dbnms_data_mining.al go_nanme) :=
dbns_dat a_mi ni ng. al go_support _vect or _machi nes;
v_set| st (dbnms_data_m ning. prep_auto) := dbns_data_mi ning. prep_auto_on;

DBMVS_DATA M NI NG, CREATE_MODEL2(

model _name => 'svm nodel ',
m ni ng_function => dbns_data_mi ning. cl assification,
data_query => 'select * frommning data build v',

data_tabl e_nanme =
case_i d_col utm_nane=>
target _col unm_nane =>
set |ist =
case_i d_col utm_nane=>
target _col unm_nane =>

"mning_data build_v',
"cust_id",
"affinity_card',
v_setlst,

"cust_id",

"affinity _card');

END;

30.1.3.13 DROP_PARTITION Procedure

ORACLE

The DROP_PARTI TI ON procedure drops a single partition that is specified in the parameter
partition_name.

Syntax
DBNMS_DATA M NI NG, DROP_PARTI TI ON (

model _name
partition_name

I'N VARCHAR?,
I'N VARCHAR?) ;

30-84

Chapter 30
DBMS_DATA_MINING

Parameters

Table 30-56 DROP_PARTITION Procedure Parameters

Parameters

Description

model _nane

partition_nanme

Name of the mining model in the form [schema_name.Jmodel_name. If you
do not specify a schema, then your own schema is used.

Name of the partition that must be dropped.

30.1.3.14 DROP_MODEL Procedure

This procedure deletes the specified mining model.

Syntax

DBMVS_DATA_M NI NG, DROP_MODEL (nodel _name | N VARCHAR?,
force | N BOOLEAN DEFAULT FALSE);

Parameters

Table 30-57 DROP_MODEL Procedure Parameters

|
Parameter Description

model _nane Name of the mining model in the form [schema_name.lmodel_name. If you do
not specify a schema, your own schema is used.

force Forces the mining model to be dropped even if it is invalid. A mining model
may be invalid if a serious system error interrupted the model build process.

Usage Note

To drop a mining model, you must be the owner or you must have the DROP ANY M NI NG
MODEL privilege. See Oracle Data Mining User's Guide for information about privileges
for data mining.

Example

You can use the following command to delete a valid mining model named
nb_sh_cl as_sanpl e that exists in your schema.

BEG N

DBVS_DATA M NI NG DROP_MCDEL(model _name => ' nb_sh_cl as_sanpl e');
END;
/

30.1.3.15 EXPORT_MODEL Procedure

ORACLE

This procedure exports the specified data mining models to a dump file set.

To import the models from the dump file set, use the IMPORT_MODEL Procedure.
EXPORT_MODEL and | MPORT_MODEL use Oracle Data Pump technology.

30-85

ORACLE

Chapter 30
DBMS_DATA_MINING

When Oracle Data Pump is used to export/import an entire schema or database, the
mining models in the schema or database are included. However, EXPORT_MODEL and
| MPORT_MODEL are the only utilities that support the export/import of individual models.

¢ See Also:
Oracle Database Utilities for information about Oracle Data Pump

Oracle Data Mining User's Guide for more information about exporting and
importing mining models

Syntax
DBVS_DATA M NI NG EXPORT_MODEL (
fil enane I N VARCHAR2,
directory I N VARCHARZ,
model _filter I N VARCHAR2 DEFAULT NULL,
filesize I N VARCHAR2 DEFAULT NULL,
operation I N VARCHAR2 DEFAULT NULL,
remote_l ink I N VARCHAR2 DEFAULT NULL,
j obname IN VARCHAR2 DEFAULT NULL);
Parameters

Table 30-58 EXPORT_MODEL Procedure Parameters
]

Parameter

Description

filename

directory

model _filter

Name of the dump file set to which the models should be exported. The
name must be unique within the schema.

The dump file set can contain one or more files. The number of files in a
dump file set is determined by the size of the models being exported (both
metadata and data) and a specified or estimated maximum file size. You can
specify the file size in the fi | esi ze parameter, or you can use the oper ati on
parameter to cause Oracle Data Pump to estimate the file size. If the size of
the models to export is greater than the maximum file size, one or more
additional files are created.

When the export operation completes successfully, the name of the dump file
set is automatically expanded to fi | enane01. dmp, even if there is only one
file in the dump set. If there are additional files, they are named sequentially
as fil enane02. dnp, fil ename03. dnp, and so forth.

Name of a pre-defined directory object that specifies where the dump file set
should be created.

The exporting user must have read/write privileges on the directory object
and on the file system directory that it identifies.

See Oracle Database SQL Language Reference for information about
directory objects.

Optional parameter that specifies which model or models to export. If you do
not specify a value for nodel _fil ter, all models in the schema are exported.
You can also specify NULL (the default) or ' ALL"' to export all models.

You can export individual models by name and groups of models based on
mining function or algorithm. For instance, you could export all regression
models or all Naive Bayes models. Examples are provided in Table 30-59.

30-86

ORACLE

Chapter 30
DBMS_DATA_MINING

Table 30-58 (Cont.) EXPORT_MODEL Procedure Parameters
|

Parameter

Description

filesize

operation

renote_| i nk

j obname

Optional parameter that specifies the maximum size of a file in the dump file
set. The size may be specified in bytes, kilobytes (K), megabytes (M), or
gigabytes (G). The default size is 50 MB.

If the size of the models to export is larger than fi | esi ze, one or more
additional files are created within the dump set. See the description of the
fil ename parameter for more information.

Optional parameter that specifies whether or not to estimate the size of the
files in the dump set. By default the size is not estimated and the value of the
fil esi ze parameter determines the size of the files.

You can specify either of the following values for oper at i on:

e "EXPORT" — Export all or the specified models. (Default)
e '"ESTIMATE — Estimate the size of the exporting models.

Optional parameter that specifies the name of a database link to a remote
system. The default value is NULL. A database link is a schema object in a
local database that enables access to objects in a remote database. When
you specify a value for renot e_| i nk, you can export the models in the
remote database. The EXP_FULL_DATABASE role is required for exporting the
remote models. The EXP_FULL_DATABASE privilege, the CREATE DATABASE

LI NK privilege, and other privileges may also be required.

Optional parameter that specifies the name of the export job. By default, the
name has the form user nane_exp_nnnn, where nnnn is a number. For
example, a job name in the SCOTT schema might be SCOTT_exp_134.

If you specify a job name, it must be unique within the schema. The
maximum length of the job name is 30 characters.

A log file for the export job, named j obnane. | 0g, is created in the same
directory as the dump file set.

Usage Notes

The nodel _filter parameter specifies which models to export. You can list the models

by name, or you

can specify all models that have the same mining function or

algorithm. You can query the USER_ M NI NG MODELS view to list the models in your

schema.

SQL> describe user_nini ng_rodel s

Nane

Nul I ? Type

MODEL_NAVE
M NI NG_FUNCTI ON
ALGOR! THM
CREATI ON_DATE
BUI LD_DURATI ON
MODEL_SI ZE
COMMVENTS

NOT NULL VARCHAR2(30)
VARCHAR?(30)
VARCHAR?(30)

NOT NULL DATE
NUMBER
NUMBER
VARCHAR?(4000)

Examples of model filters are provided in Table 30-59.

30-87

Chapter 30
DBMS_DATA_MINING

Table 30-59 Sample Values for the Model Filter Parameter

Sample Value Meaning

' nyrmodel ' Export the model named nynodel

‘nane= "' mynmodel ' "' Export the model named mynodel

"nane IN ("' nynmodel 2''," ' nynodel 3'")" Export the models named nynodel 2 and
mynodel 3

" ALGORI THM _NAME = ' ' NAI VE_BAYES "' Export all Naive Bayes models. See
Table 30-8 for a list of algorithm names.

" FUNCTI ON_NAME ="' CLASSI FI CATION "' Export all classification models. See

Table 30-3 for a list of mining functions.

Examples

1. The following statement exports all the models in the DMJSER3 schema to a dump
file set called nodel s_out in the directory $ORACLE_HOVE/ r dbns/ | og. This directory is
mapped to a directory object called DATA_PUMP_DI R. The DMUSER3 user has read/write
access to the directory and to the directory object.

SQ.>execut e dbnms_dat a_ni ni ng. export _model (' nodel s_out', 'DATA PUW_DIR);

You can exit SQL*Plus and list the resulting dump file and log file.

SQ>EXIT

>cd $ORACLE_HOVE/ r dbms/ | og

>|'s

>DMUSER3_exp_1027.10g nodel s_out 01. dnp

2. The following example uses the same directory object and is executed by the
same user.This example exports the models called NvF_SH SAMPLE and
SVMR_SH_REGR SAMPLE to a different dump file set in the same directory.

SQL>EXECUTE DBMS_DATA M NI NG EXPORT_MODEL (' nodel s2_out', ' DATA PUMP_DIR

"name in ("' NVF_SH SAMPLE' ', '' SVMR_SH REGR SAWPLE ')');
SQ>EXIT
>cd $ORACLE_HOVE/ r dbns/ | og
>ls

>DMUSER3_exp_1027.10g nodel s_out 01. dnp
DMUSER3_exp_924.10g nodel s2_out 01. dnp

3. The following examples show how to export models with specific algorithm and
mining function names.

SQL>EXECUTE DBMS_DATA_M NI NG EXPORT _MODEL(" al go. dnp' , ' DM DUVP',
" ALGOR THV NAME I N (' O CLUSTER ', ' GENERALI ZED LI NEAR MODEL' ',
' * SUPPORT_VECTOR_MACHI NES' ', "' NAI VE_BAYES ')');

SQL>EXECUTE DBMS_DATA_M NI NG EXPORT_MODEL("' func. dnp', ' DM DUMP'
' FUNCTI ON_NAME | N (CLASSI FI CATI ON, CLUSTER! NG, FEATURE_EXTRACTI ON) ') ;

ORACLE 30-88

Chapter 30
DBMS_DATA_MINING

30.1.3.16 GET_ASSOCIATION_RULES Function

The GET_ASSOCI ATI ON_RULES function returns the rules produced by an Association

model.

You can specify filteri

ng criteria to GET_ASSOCI ATI ON_RULES to return a subset of the

rules. Filtering criteria can improve the performance of the table function. If the number

of rules is large, then
the t opn parameter.

Syntax

the greatest performance improvement will result from specifying

DBMS_DATA M NI NG get _associ ation_rul es(

model _nane

topn

rule_id

m n_confi dence
m n_support
max_rul e_|l ength
mn_rule_length
sort_order

I N VARCHAR,

I N NUVBER DEFAULT NULL,

IN I NTEGER DEFAULT NULL,

I N NUVBER DEFAULT NULL,

I N NUVBER DEFAULT NULL,

IN I NTEGER DEFAULT NULL,

IN I NTEGER DEFAULT NULL,

IN ORA_M NI NG VARCHAR2_NT DEFAULT NULL,

antecedent _itens | N DM | TEMS DEFAULT NULL,
consequent _itens | N DM | TEMS DEFAULT NULL,

mn_lift
partition_name

I'N NUMBER DEFAULT NULL,
I'N VARCHAR2 DEFAULT NULL)

RETURN DM Rul es PI PELI NED;

Parameters

Table 30-60 GET_ASSOCIATION_RULES Function Parameters

Parameter

Description

model _nane

topn

rule_id

m n_confidence

m n_support

ORACLE

Name of the model in the form [schema_name.Jmodel_name. If you do
not specify a schema, then your own schema is used.

This is the only required parameter of GET_ASSCCI ATI ON_RULES. All other
parameters specify optional filters on the rules to return.

Returns the n top rules ordered by confidence and then support, both
descending. If you specify a sort order, then the top n rules are derived
after the sort is performed.

If t opn is specified and no maximum or minimum rule length is
specified, then the only columns allowed in the sort order are
RULE_CONFI DENCE and RULE_SUPPCRT. If t opn is specified and a
maximum or minimum rule length is specified, then RULE_CONFI DENCE,
RULE_SUPPORT, and NUMBER_OF_| TEMS are allowed in the sort order.

Identifier of the rule to return. If you specify a value for rul e_i d, do not
specify values for the other filtering parameters.

Returns the rules with confidence greater than or equal to this number.

Returns the rules with support greater than or equal to this number.

30-89

ORACLE

Chapter 30
DBMS_DATA_MINING

Table 30-60 (Cont.) GET_ASSOCIATION_RULES Function Parameters

Parameter

Description

max_rul e_l ength

mn_rule_length

sort_order

antecedent _itens
consequent _i tens
mn_|ift

partition_name

Returns the rules with a length less than or equal to this number.

Rule length refers to the number of items in the rule (See

NUMBER_OF_I TEMS in Table 30-61). For example, in the rule A=>B (if A,
then B), the number of items is 2.

If max_rul e_| engt h is specified, then the NUMBER_OF_| TEMS column is
permitted in the sort order.

Returns the rules with a length greater than or equal to this number.
See max_rul e_| engt h for a description of rule length.

If m n_rul e_| engt h is specified, then the NUMBER_OF_| TEMS column is
permitted in the sort order.

Sorts the rules by the values in one or more of the returned columns.
Specify one or more column names, each followed by ASC for ascending
order or DESC for descending order. (See Table 30-61 for the column

names.)

For example, to sort the result set in descending order first by the
NUMBER_OF_| TEMS column, then by the RULE_CONFI DENCE column, you

must specify:

ORA_M NI NG_VARCHAR?_NT(' NUMBER OF | TEMS DESC ,
" RULE_CONFI DENCE DESC)

If you specify t opn, the results will vary depending on the sort order.

By default, the results are sorted by Confidence in descending order,
then by Support in descending order.

Returns the rules with these items in the antecedent.

Returns the rules with this item in the consequent.

Returns the rules with lift greater than or equal to this number.

Specifies a partition in a partitioned model.

Return Values

The object type returned by GET_ASSOCI ATI ON_RULES is described in Table 30-61. For
descriptions of each field, see the Usage Notes.

Table 30-61 GET_ASSOCIATION RULES Function Return Values

Return Value

Description

DM RULES
(

rule_id

ant ecedent
consequent

rul e_support

rul e_confidence
rule_lift

ant ecedent _support
consequent _support
nunber _of _itens

A set of rows of type DM RULE. The rows have the following columns:

| NTEGER

DM PREDI CATES,
DM PREDI CATES,
NUMBER

NUMBER

NUMBER

NUMBER

NUMBER

| NTEGER)

30-90

Chapter 30
DBMS_DATA_MINING

Table 30-61 (Cont.) GET_ASSOCIATION RULES Function Return Values

__|
Return Value Description

DM PREDI CATES The ant ecedent and consequent columns each return nested tables of type
DM _PREDI CATES. The rows, of type DM _PREDI CATE, have the following columns:

(attribute_name VARCHAR2(4000) ,
attribute_subnanme VARCHAR2(4000) ,
condi ti onal _operator CHAR(2)/*=, <>, <, >, <=, >=*[|
attribute_numval ue NUMBER,
attribute_str_val ue VARCHAR2(4000) ,
attribute_support NUMBER,
attribute_confidence NUVBER)

Usage Notes

1. This table function pipes out rows of type DM RULES. For information on Data Mining
data types and piped output from table functions, see "Datatypes".

2. ORA M NI NG VARCHAR2_NT is defined as a table of VARCHAR2(4000) .

3. The columns returned by GET_ASSCOCI ATI ON_RULES are described as follows:

Column in Description

DM_RULES

rule_id Unique identifier of the rule

ant ecedent The independent condition in the rule. When this condition exists,

the dependent condition in the consequent also exists.

The condition is a combination of attribute values called a
predicate (DM _PREDI CATE). The predicate specifies a condition for
each attribute. The condition may specify equality (=), inequality
(<>), greater than (>), less than (<), greater than or equal to (>=),
or less than or equal to (<=) a given value.

Support and Confi dence for each attribute condition in the
antecedent is returned in the predicate. Support is the number of
transactions that satisfy the antecedent. Confidence is the
likelihood that a transaction will satisfy the antecedent.

Note: The occurence of the attribute as a DM_PREDI CATE indicates
the presence of the item in the transaction. The actual value for
attribute_numvalueorattribute_str_val ue is meaningless.
For example, the following predicate indicates that 'Mouse Pad' is
present in the transaction even though the attribute value is NULL.

DM _PREDI CATE(' PROD_NAME'
"Mouse Pad', '=', NULL, NULL, NULL,
NULL))

consequent The dependent condition in the rule. This condition exists when
the antecedent exists.

The consequent, like the antecedent, is a predicate
(DM_PREDI CATE).

Support and confidence for each attribute condition in the
consequent is returned in the predicate. Support is the number of
transactions that satisfy the consequent. Confidence is the
likelihood that a transaction will satisfy the consequent.

ORACLE 30-91

Chapter 30
DBMS_DATA_MINING

Column in Description

DM_RULES

rul e_support The number of transactions that satisfy the rule.

rul e_confidence The likelihood of a transaction satisfying the rule.

rule_lift The degree of improvement in the prediction over random chance

when the rule is satisfied.

ant ecedent _support The ratio of the number of transactions that satisfy the
antecedent to the total number of transactions.

consequent _support The ratio of the number of transactions that satisfy the
consequent to the total number of transactions.

nunber _of _itens The total number of attributes referenced in the antecedent and
consequent of the rule.

Examples

The following example demonstrates an Association model build followed by several
invocations of the GET_ASSQCI ATI ON_RULES table function:

-- prepare a settings table to override default settings
CREATE TABLE mar ket _settings AS
SELECT *
FROM TABLE(DBVS_DATA M NI NG GET_DEFAULT_SETTI NGS)
VHERE setting_name LIKE "ASSO % ;
BEG N
-- update the value of the mninum confidence
UPDATE narket _settings
SET setting_value = TO CHAR(0. 081)
VHERE setting_name = DBVMS_DATA M NI NG asso_ni n_confi dence;

-- build an AR nodel
DBMS_DATA M NI NG, CREATE_MCDEL(
nodel _nane => ' market _nodel ',
function => DBVS_DATA M NI NG ASSOCI ATI ON,
data_tabl e_name => 'market _build",
case_id_colum_name => "itemid',
target _col um_name => NULL,
settings_table_nane => 'market_settings');
END;
/
-- Viewthe (unformatted) rules
SELECT rule_id, antecedent, consequent, rule_support,
rul e_confidence
FROM TABLE(DBVS_DATA M NI NG GET_ASSOCI ATI ON_RULES(" mar ket _nodel '));

In the previous example, you view all rules. To view just the top 20 rules, use the
following statement.

-- Viewthe top 20 (unformatted) rules
SELECT rule_id, antecedent, consequent, rule_support,
rul e_confidence
FROM TABLE(DBVS_DATA M NI NG. GET_ASSQOCI ATI ON_RULES(' mar ket _nodel ', 20));

The following query uses the Association model AR SH SAVPLE, which is created from
one of the Oracle Data Mining sample programs:

SELECT * FROM TABLE (
DBVS_DATA M NI NG GET_ASSOCI ATl ON_RULES (
'AR SH SAMPLE', 10, NULL, 0.5, 0.01, 2, 1,

ORACLE 30-92

Chapter 30
DBMS_DATA_MINING

ORA M NI NG_VARCHAR2_NT (
" NUMBER_OF | TEMS DESC , ' RULE_CONFI DENCE DESC , ' RULE_SUPPORT DESC),
DM | TEMS(DM | TEM' CUSTPRODS', ' Mbuse Pad', 1, NULL),
DM | TEM' CUSTPRCDS', ' Standard Muse', 1, NULL)),
DM | TEMS(DM | TEM ' CUSTPRODS', ' Extension Cable', 1, NULL))));

The query returns three rules, shown as follows:

13 DM PREDI CATES(

DM PREDI CATE(' CUSTPRCDS , ' Mbuse Pad', "= ', 1, NULL, NULL, NULL),
DM_PREDI CATE(' CUSTPRCDS , ' Standard Mbuse', '= ', 1, NULL, NULL, NULL))
DM_PREDI CATES(
DM PREDI CATE(' CUSTPRCDS , ' Extension Cable', '= ', 1, NULL, NULL, NULL))
15532 .84393 2.7075 .18404 3117 2
11 DM PREDI CATES(
DM _PREDI CATE(' CUSTPRCDS , ' Standard Mbuse', '= ', 1, NULL, NULL, NULL))
DM_PREDI CATES(
DM PREDI CATE(' CUSTPRCDS , ' Extension Cable', '= ', 1, NULL, NULL, NULL))
18085 .56291 1.8059 .32128 .3117 1
9 DM PREDI CATES(
DM _PREDI CATE(' CUSTPRCDS , ' Mbuse Pad', "= ', 1, NULL, NULL, NULL))
DM_PREDI CATES(
DM PREDI CATE(' CUSTPRCDS , ' Extension Cable', '= ', 1, NULL, NULL, NULL))
(17766 .55116 1.7682 .32234 .3117 1
¢ See Also:

Table 30-61 for the DM RULE column data types.
Oracle Data Mining User's Guide for information about the sample programs.

Oracle Data Mining User’s Guide for Model Detail Views.

30.1.3.17 GET_FREQUENT _ITEMSETS Function

The GET_FREQUENT_| TEMSETS function returns a set of rows that represent the frequent
itemsets from an Association model.

For a detailed description of frequent itemsets, consult Oracle Data Mining Concepts.

Syntax

DBMS_DATA M NI NG get _frequent _itenset s(
model _name | N VARCHAR?,
topn I N NUVBER DEFAULT NULL,
max_itenmset _| ength | N NUVMBER DEFAULT NULL,
partition_name N VARCHAR2 DEFAULT NULL)
RETURN DM | t enfSet s PI PELI NED;

ORACLE 30-93

Chapter 30
DBMS_DATA_MINING

Parameters

Table 30-62 GET_FREQUENT_ITEMSETS Function Parameters
|

Parameter Description

model _nane Name of the model in the form [schema_name.Jmodel_name. If you
do not specify a schema, then your own schema is used.

topn When not NULL, return the top n rows ordered by support in
descending order

max_itenset _|ength Maximum length of an item set.

partition_name Specifies a partition in a partitioned model.

Note:

The partition_name columns applies
only when the model is partitioned.

Return Values

Table 30-63 GET_FREQUENT_ITEMSETS Function Return Values

. ___|
Return Value Description

DM | TEMSETS A set of rows of type DM | TEMSET. The rows have the following columns:

(partition_name VARCHAR2(128)

itemsets id NUMBER,
itens DM | TEMS,
support NUMBER,

nunber _of _items NUMBER)

Note:

The partition_nanme columns applies only
when the model is partitioned.

The i t ens column returns a nested table of type DM | TEMS. The rows have
type DM | TEM

(attribute_nane VARCHAR2(4000) ,
attribute_subnane VARCHAR2(4000) ,
attribute_numval ue NUMBER

attribute_str_value VARCHAR2(4000))

Usage Notes

This table function pipes out rows of type DM | TEVSETS. For information on Data Mining
datatypes and piped output from table functions, see "Datatypes".

ORACLE 30-94

Chapter 30
DBMS_DATA_MINING

Examples

The following example demonstrates an Association model build followed by an
invocation of GET_FREQUENT_| TEMSETS table function from Oracle SQL.

- prepare a settings table to override default settings
CREATE TABLE mar ket _settings AS

SELECT *

FROM TABLE(DBVS_DATA M NI NG GET_DEFAULT_SETTI NGS)
VWHERE setting_name LIKE ' ASSO % ;
BEG N
- update the value of the nininum confidence
UPDATE narket _settings
SET setting_val ue = TO CHAR(0. 081)
VWHERE setting_name = DBMS_DATA M NI NG asso_mi n_confi dence;

/* build a AR nodel */
DBMS_DATA M NI NG. CREATE_MCDEL(

nodel _nane => ' market _nodel ',
function => DBMS_DATA_M NI NG ASSCCI ATI ON,
data_t abl e_nane => 'market _build',

case_id_colum_name =>‘'itemid',
target _colum_name => NULL,
settings_table_name => 'market_settings');
END;
/

- Viewthe (unformatted) Itemsets from SQL*PIus
SELECT itenset _id, itenms, support, number_of _itens
FROM TABLE(DBMS_DATA M NI NG. GET_FREQUENT _| TEMSETS(' mar ket _nodel '));

In the example above, you view all itemsets. To view just the top 20 itemsets, use the
following statement:

- Viewthe top 20 (unformatted) Itensets from SQ*Pl us
SELECT itenset _id, items, support, nunber_of itens
FROM TABLE(DBVS_DATA M NI NG GET_FREQUENT | TEMSETS(' mar ket _nodel ', 20));

¢ See Also:

Oracle Data Mining User’s Guide

30.1.3.18 GET_MODEL_COST_MATRIX Function

ORACLE

The GET_* interfaces are replaced by model views, and Oracle recommends that users
leverage the views instead. The GET_MODEL_COST_MATRIX function is replaced
by the DMBVC prefixed view, Scoring Cost Matrix. The cost matrix used when building a
Decision Tree is made available by the DMsVM prefixed view, Decision Tree Build Cost
Matrix.

Refer to Model Detail View for Classification Algorithm.

The GET_MODEL_COST_MATRI X function returns the rows of a cost matrix associated with
the specified model.

30-95

ORACLE

Chapter 30
DBMS_DATA_MINING

By default, this function returns the scoring cost matrix that was added to the model
with the ADD_COST_MATRI X procedure. If you wish to obtain the cost matrix used to create
a model, specify cost _matrix_type_create as the matrix_type. See Table 30-64.

See also ADD_COST_MATRIX Procedure.

Syntax

DBMS_DATA_M NI NG GET_MODEL_COST_MATRI X (
model _name I N VARCHAR?2,
matrix_type IN VARCHAR2 DEFAULT cost_matrix_type_score)
partition_name IN VARCHAR2 DEFAULT NULL);

RETURN DM COST_MATRI X PI PELI NED;

Parameters

Table 30-64 GET_MODEL_COST_MATRIX Function Parameters
]

Parameter Description

model _nane Name of the model in the form [schema_name.Jmodel_name. If
you do not specify a schema, then your own schema is used.

matrix_type The type of cost matrix.
COST_MATRI X_TYPE_SCORE — cost matrix used for scoring.
(Default.)

COST_MATRI X_TYPE_CREATE — cost matrix used to create the
model (Decision Tree only).

partition_name Name of the partition in a partitioned model

Return Values

Table 30-65 GET_MODEL_COST_ MATRIX Function Return Values
]

Return Value Description

DM COST_MATRI X A set of rows of type DM _COST_ELEMENT. The rows have the
following columns:
act ual VARCHAR2(4000), NUMBER, predicted
VARCHAR2(4000), cost NUMBER)

Usage Notes

Only Decision Tree models can be built with a cost matrix. If you want to build a
Decision Tree model with a cost matrix, specify the cost matrix table name in the
CLAS_COST_TABLE_NAME setting in the settings table for the model. See Table 30-10.

The cost matrix used to create a Decision Tree model becomes the default scoring
matrix for the model. If you want to specify different costs for scoring, you can use the
REMOVE_COST_MATRI X procedure to remove the cost matrix and the ADD_COST_MATRI X
procedure to add a new one.

The GET_MODEL_COST_MATRI X may return either the build or scoring cost matrix defined
for a model or model partition.

If you do not specify a partitioned model name, then an error is displayed.

30-96

Chapter 30
DBMS_DATA_MINING

Example

This example returns the scoring cost matrix associated with the Naive Bayes model
NB_SH CLAS SANPLE.

colum actual format al0

colum predicted format al0

SELECT *
FROM TABLE(dbns_dat a_mi ni ng. get _nodel _cost _matri x(' nb_sh_cl as_sanple'))
ORDER BY predicted, actual;

ACTUAL PREDI CTED COST

30.1.3.19 GET_MODEL _DETAILS_Al Function

ORACLE

The GET_MODEL_DETAI LS_Al function returns a set of rows that provide the details of an
Attribute Importance model.

Syntax

DBMS_DATA M NI NG get _nodel _details_ai(
model _name | N VARCHARZ,
partition_name | N VARCHAR2 DEFAULT NULL)
RETURN dm ranked_attributes pipelined;

Parameters

Table 30-66 GET_MODEL_DETAILS_ Al Function Parameters

__|
Parameter Description

model _name Name of the model in the form [schema_name.Jmodel_name. If
you do not specify a schema, then your own schema is used.

partition_name Specifies a partition in a partitioned model.

Return Values

Table 30-67 GET_MODEL_DETAILS_Al Function Return Values

__|
Return Value Description

DM _RANKED_ATTRI BUTES A set of rows of type DM_RANKED _ATTRI BUTE. The rows have the
following columns:

(attribute_name VARCHAR2(4000,
attribute_subnane VARCHAR2(4000),
i mportance_val ue NUVBER,
rank NUVBER(38))

30-97

ORACLE

Examples

Chapter 30

DBMS_DATA_MINING

The following example returns model details for the Attribute Importance model
Al _SH sanpl e, which was created by the sample program dnai derm. sqgl . For information
about the sample programs, see Oracle Data Mining User's Guide.

SELECT attribute_nane, inportance_value, rank

ATTRI BUTE_NAME

| MPORTANCE_VALUE

FROM TABLE(DBMS_DATA_M NI NG GET_MODEL_DETAI LS Al (* Al _SH sanple'))
ORDER BY RANK;

HOUSEHOLD_SI ZE
CUST_MARI TAL_STATUS
YRS_RES| DENCE

ACGE

Y_BOX_GAMES

EDUCATI ON
HOVE_THEATER PACKAGE
OCCUPATI ON
CUST_GENDER

BOOKKEEP! NG_APPLI CATI ON
PRI NTER_SUPPLI ES
0S_DOC_SET_KANJI
FLAT_PANEL_MONI TOR
BULK_PACK_DI SKETTES
COUNTRY_NANE

CUST_| NCOVE_LEVEL

30.1.3.20 GET_MODEL_DETAILS_EM Function

The GET_MODEL_DETAI LS_EMfunction returns a set of rows that provide statistics about

the clusters produced by an Expectation Maximization model.

By default, the EM algorithm groups components into high-level clusters, and
GET_MODEL_DETAI LS _EMreturns only the high-level clusters with their hierarchies.

. 151685183
. 145294546
. 07838928
. 075027496
. 063039952
. 059605314
. 056458722
. 054652937
. 035264741
. 019204751
0
-.00050013
-. 00509564
-. 00540822
-. 01201116
-. 03951311

O N Ol WN B

Tl el T e S S
O U WN P O ©

Alternatively, you can configure EM model to disable the grouping of components into

high-level clusters. In this case, GET_MODEL_DETAI LS_EMreturns the components
themselves as clusters with their hierarchies. See Table 30-14.

Syntax

DBVS_DATA M NI NG get _nodel _details_en

model _nanme VARCHAR?,

cluster_id NUMBER DEFAULT NULL
attribute VARCHAR2 DEFAULT NULL
centroid NUMBER DEFAULT 1,

hi stogram NUMBER DEFAULT 1,

rul es NUMBER DEFAULT 2
attribute_subname VARCHAR2 DEFAULT NULL,
topn_attributes NUMBER DEFAULT NULL,
partition_name | N VARCHAR2 DEFAULT NULL)

RETURN dm cl usters Pl PELI NED;

30-98

ORACLE

Parameters

Chapter 30
DBMS_DATA_MINING

Table 30-68 GET_MODEL_DETAILS EM Function Parameters
]

Parameter

Description

model _nane

cluster_id

attribute

centroid

hi st ogram

rul es

attribute_subnane

topn_attributes

partition_name

Name of the model in the form [schema_name.Jmodel_name. If
you do not specify a schema, then your own schema is used.

The ID of a cluster in the model. When a valid cluster ID is
specified, only the details of this cluster are returned. Otherwise,
the details for all clusters are returned.

The name of an attribute. When a valid attribute name is specified,
only the details of this attribute are returned. Otherwise, the details
for all attributes are returned

This parameter accepts the following values:

e 1: Details about centroids are returned (default)

e 0: Details about centroids are not returned

This parameter accepts the following values:

* 1: Details about histograms are returned (default)
* 0: Details about histograms are not returned

This parameter accepts the following values:

e 2: Details about rules are returned (default)

e 1: Rule summaries are returned

e 0: No information about rules is returned

The name of a nested attribute. The full name of a nested attribute
has the form:

attribute_nane.attribute_subnane

where attri but e_nane is the name of the column and
attribute_subnane is the name of the nested attribute in that
column. If the attribute is not nested, then attri but e_subnane is
null.

Restricts the number of attributes returned in the centroid,
histogram, and rules objects. Only the n attributes with the highest
confidence values in the rules are returned.

If the number of attributes included in the rules is less than t opn,
then, up to n additional attributes in alphabetical order are
returned.

If both the attribut e and t opn_attri but es parameters are
specified, then topn_at tri but es is ignored.

Specifies a partition in a partitioned model.

Usage Notes

1. Forinformation on Data Mining datatypes and Return Values for Clustering
Algorithms piped output from table functions, see "Datatypes".

2. GET_MODEL_DETAI LS functions preserve model transparency by automatically
reversing the transformations applied during the build process. Thus the attributes
returned in the model details are the original attributes (or a close approximation of
the original attributes) used to build the model.

30-99

Chapter 30
DBMS_DATA_MINING

3. When cluster statistics are disabled (EMCS_CLUSTER STATI STI CS is set to
EMCS_CLUS_STATS DI SABLE), GET_MODEL_DETAI LS _EMdoes not return centroids,
histograms, or rules. Only taxonomy (hierarchy) and cluster counts are returned.

4. When the partition_nanme is NULL for a partitioned model, an exception is thrown.
When the value is not null, it must contain the desired partition name.

30.1.3.21 GET_MODEL_DETAILS_EM_COMP Function

ORACLE

The GET_MODEL_DETAI LS_EM COVP table function returns a set of rows that provide details
about the parameters of an Expectation Maximization model.

Syntax

DBMS_DATA M NI NG get _nodel _detai | s_em conp(
nmodel _nanme | N VARCHAR?,
partition_name |N VARCHAR2 DEFAULT NULL)
RETURN DM EM COVPONENT _SET PI PELI NED;

Parameters

Table 30-69 GET_MODEL_DETAILS_EM_COMP Function Parameters

___|
Parameter Description

model _nane Name of the model in the form [schema_name.Jmodel_name. If
you do not specify a schema, your own schema is used.

partition_name Specifies a partition in a partitioned model to retrieve details for.

Return Values

Table 30-70 GET_MODEL_DETAILS_EM_COMP Function Return Values
]

Return Value Description
DM EM COVPONENT_SET A set of rows of type DM_EM COVPONENT. The rows have the
following columns:
(info_type VARCHAR2(30) ,
conponent _i d NUVBER,
cluster_id NUMBER,
attribute_nane VARCHAR2(4000) ,
covari ate_nane VARCHAR2(4000) ,
attribute_val ue VARCHAR2(4000) ,
val ue NUMVBER)

Usage Notes

1. This table function pipes out rows of type DM EM COVMPONENT. For information on Data
Mining datatypes and piped output from table functions, see "Datatypes".

The columns in each row returned by GET_MODEL_DETAI LS_EM COMWP are described as
follows:

30-100

Chapter 30
DBMS_DATA_MINING

Column in
DM_EM_COMPONENT

Description

info_type

conponent _i d

cluster_id

attribute_nane

covari at e_nane

attribute_val ue

val ue

The type of information in the row. The following
information types are supported:

e cluster
e prior
e mean

e covariance
- frequency
Unique identifier of a component

Unique identifier of the high-level leaf cluster for each
component

Name of an original attribute or a derived feature ID.
The derived feature ID is used in models built on data
with nested columns. The derived feature definitions
can be obtained from the
GET_MODEL_DETAILS_EM_PROJ Function.

Name of an original attribute or a derived feature ID
used in variance/covariance definition

Categorical value or bin interval for binned numerical
attributes

Encodes different information depending on the value

of i nfo_type, as follows:

e cluster — The value field is NULL

e prior — The value field returns the component
prior

* nmean — The value field returns the mean of the
attribute specified in at tri but e_nane

e covariance — The value field returns the
covariance of the attributes specified in
attribute_nanme and covari at e_nane. Using the
same attribute in at t ri but e_name and
covari at e_nane, returns the variance.

o frequency— The value field returns the
multivalued Bernoulli frequency parameter for the
attribute/value combination specified by
attribute_name and attribute_val ue

See Usage Note 2 for details.

2. The following table shows which fields are used for each i nf o_t ype. The blank

cells represent NULLS.

info_type component_ cluster_i attribute covariate_ attribute_v value
id d _hame name alue

cluster X X

prior X X X

mean X X X X

covariance X X X X X

frequency X X X X X

3. GET_MODEL_DETAI LS functions preserve model transparency by automatically
reversing the transformations applied during the build process. Thus the attributes

ORACLE

30-101

Chapter 30
DBMS_DATA_MINING

returned in the model details are the original attributes (or a close approximation of
the original attributes) used to build the model.

4. When the value is NULL for a partitioned model, an exception is thrown. When the
value is not null, it must contain the desired partition name.

30.1.3.22 GET_MODEL_DETAILS_EM_PROJ Function

The GET_MODEL_DETAI LS_EM PRQJ function returns a set of rows that provide statistics
about the projections produced by an Expectation Maximization model.

Syntax

DBVS_DATA M NI NG get _nodel _details_em proj (
model _nanme | N VARCHAR?,
partition_nanme | N VARCHAR2 DEFAULT NULL)
RETURN DM EM PRQIECTI ON_SET PI PELI NED;

Parameters

Table 30-71 GET_MODEL_DETAILS _EM_PROJ Function Parameters

___|
Parameter Description

model _name Name of the model in the form [schema_name.Jmodel_name. If
you do not specify a schema, then your own schema is used.

partition_name Specifies a partition in a partitioned model

Return Values

Table 30-72 GET_MODEL_DETAILS EM_PROJ Function Return Values

]
Return Value Description

DM _EM PRQJECTI ON_SET A set of rows of type DM _EM PRQIECTI ON. The rows have the
following columns:

(feature_name VARCHAR2(4000) ,
attribute_nane VARCHAR2(4000) ,
attribute_subnanme VARCHAR2(4000) ,
attribute_val ue VARCHAR2(4000) ,
coefficient NUVBER)

See Usage Notes for details.

Usage Notes

1. This table function pipes out rows of type DM EM PRQJIECTI ON. For information on
Data Mining datatypes and piped output from table functions, see "Datatypes".

The columns in each row returned by GET_MODEL_DETAI LS _EM PRQJ are described as
follows:

ORACLE 30-102

Chapter 30
DBMS_DATA_MINING

Column in DM_EM_PROJECTION Description

feature_nane Name of a derived feature. The feature maps to the
attribute_name returned by the
GET_MODEL_DETAILS_EM Function.

attribute_name Name of a column in the build data
attribute_subnane Subname in a nested column

attribute_val ue Categorical value

coefficient Projection coefficient. The representation is sparse;

only the non-zero coefficients are returned.

2. GET_MODEL_DETAI LS functions preserve model transparency by automatically
reversing the transformations applied during the build process. Thus the attributes
returned in the model details are the original attributes (or a close approximation of
the original attributes) used to build the model.

The coefficients are related to the transformed, not the original, attributes. When
returned directly with the model details, the coefficients may not provide
meaningful information.

3. When the value is NULL for a partitioned model, an exception is thrown. When the
value is not null, it must contain the desired partition name.

30.1.3.23 GET_MODEL_DETAILS_GLM Function

The GET_MODEL_DETAI LS_G Mfunction returns the coefficient statistics for a Generalized
Linear Model.

The same set of statistics is returned for both linear and Logistic Regression, but
statistics that do not apply to the mining function are returned as NULL. For more
details, see the Usage Notes.

Syntax

DBMS_DATA M NI NG get _nodel _details_gl n{
model _name | N VARCHARZ,
partition_name | N VARCHAR2 DEFAULT NULL)
RETURN DM GLM Coef f _Set PI PELI NED;

Parameters

Table 30-73 GET_MODEL_DETAILS_GLM Function Parameters

__|
Parameter Description

model _name Name of the model in the form [schema_name.Jmodel_name. If
you do not specify a schema, then your own schema is used.

partition_name Specifies a partition in a partitioned model

ORACLE 30-103

ORACLE

Return Values

Chapter 30
DBMS_DATA_MINING

Table 30-74 GET_MODEL_DETAILS GLM Return Values
]

Return Value

DM GLM COEFF_SET

Description

A set of rows of type DM_GLM CCEFF. The rows have the following

columns:

(class VARCHAR2(4000) ,
attribute_name VARCHAR2(4000) ,
attribute_subnanme VARCHAR2(4000) ,
attribute_val ue VARCHAR2(4000) ,
f eat ure_expression VARCHAR2(4000) ,
coefficient NUMBER,
std_error NUMBER,
test_statistic NUMBER,
p_val ue NUVBER,

VIF NUMBER,
std_coefficient NUMBER,
| ower _coeff lint NUVBER,
upper _coeff _linmt NUVBER,
exp_coef ficient Bl NARY_DOUBLE,
exp_l ower _coeff _linit Bl NARY_DOUBLE,
exp_upper_coeff _init Bl NARY_DOUBLE)

GET_MODEL_DETAI LS_GLMreturns a row of statistics for each attribute and one extra row
for the intercept, which is identified by a null value in the attribute name. Each row has
the DM_GLM CCEFF datatype. The statistics are described in Table 30-75.

Table 30-75 DM_GLM_COEFF Datatype Description
|

Column

Description

class

attribute_name

attribute_subnane

The non-reference target class for Logistic Regression. The

model is built to predict the probability of this class.

The other class (the reference class) is specified in the model
setting GLM5_REFERENCE_CLASS NAME. See Table 30-19.

For Linear Regression, cl ass is null.

The attribute name when there is no subname, or first part of the
attribute name when there is a subname. The value of

attribut e_name is also the name of the column in the case table
that is the source for this attribute.

For the intercept, at t ri but e_nane is null. Intercepts are
equivalent to the bias term in SVM models.

The name of an attribute in a nested table. The full name of a
nested attribute has the form:

attribute_nane.attribute_subnane

where attri but e_nane is the name of the nested column in the
case table that is the source for this attribute.

If the attribute is not nested, then at t ri but e_subnane is null. If
the attribute is an intercept, then both the attri but e_nane and
the attri but e_subnane are null.

30-104

ORACLE

Chapter 30
DBMS_DATA_MINING

Table 30-75 (Cont.) DM_GLM_COEFF Datatype Description

Column

Description

attribute_val ue

feature_expression

coefficient
std _error

test_statistic

p-val ue

VI F
std_coefficient

[ower_coeff_limt

upper _coeff _limt

exp_coefficient

exp_| ower _coeff_limt

exp_upper _coeff_linit

The value of the attribute (categorical attribute only).

For numeric attributes, attri but e_val ue is null.

The feature name constructed by the algorithm when feature
generation is enabled and higher-order features are found. If
feature selection is not enabled, then the feature name is simply
the fully-qualified attribute name
(attribute_nane.attribute_subnane if the attribute is in a
nested column).

For categorical attributes, the algorithm constructs a feature
name that has the following form:

fully-qualified_attribute_name.attribute_value

For numeric attributes, the algorithm constructs a name for the
higher-order feature by taking the product of the resulting values:

(attribl)*(attrib2))*......

where attri bl and attri b2 are fully-qualified attribute names.
The linear coefficient estimate.

Standard error of the coefficient estimate.

For Linear Regression, the t-value of the coefficient estimate.
For Logistic Regression, the Wald chi-square value of the
coefficient estimate.

Probability of the t est _stati stic. Used to analyze the
significance of specific attributes in the model.

Variance Inflation Factor. The value is zero for the intercept. For
Logistic Regression, VI F is null. VIF is not computed if the solver
is Cholesky.

Standardized estimate of the coefficient.
Lower confidence bound of the coefficient.
Upper confidence bound of the coefficient.

Exponentiated coefficient for Logistic Regression. For Linear
Regression, exp_coef fici ent is null.

Exponentiated coefficient for lower confidence bound of the
coefficient for Logistic Regression. For Linear Regression,
exp_| ower _coeff_limt is null.

Exponentiated coefficient for upper confidence bound of the
coefficient for Logistic Regression. For Linear Regression,
exp_l ower _coeff_limt isnull.

Usage Notes

Not all statistics are necessarily returned for each coefficient. Statistics will be null if:

* They do not apply to the mining function. For example, exp_coeffi ci ent does not
apply to Linear Regression.

e They cannot be computed from a theoretical standpoint. For information on ridge
regression, see Table 30-19.

e They cannot be computed because of limitations in system resources.

30-105

Chapter 30
DBMS_DATA_MINING

e Their values would be infinity.

* When the value is NULL for a partitioned model, an exception is thrown. When the
value is not null, it must contain the desired partition name.

Examples

The following example returns some of the model details for the GLM Regression
model GLMR_SH Regr _sanpl e, which was created by the sample program dngl r dem sq! .
For information about the sample programs, see Oracle Data Mining User's Guide.

SET line 120

SET pages 99

colum attribute_nanme format a30

colum attribute_subnane formt a20

colum attribute_value format a20

col coefficient format 990. 9999

col std_error format 990.9999

SQ.> SELECT * FROM

(SELECT attribute_name, attribute_value, coefficient, std_error
FROM DMBVDGLMR_SH REGR_SAMPLE order by 1, 2)

WHERE rownum < 11;

ATTRI BUTE_NAMVE ATTRI BUTE_VALUE COEFFI Cl ENT STD_ERROR
AFFI'NI TY_CARD -0.5797 0.5283
BOOKKEEPI NG_APPLI CATI ON -0. 4689 3.8872
BULK_PACK_DI SKETTES -0.9819 2.5430
COUNTRY_NAME Argentina -1.2020 1.1876
COUNTRY_NAME Australia -0.0071 5.1146
COUNTRY_NAME Brazil 5.2931 1.9233
COUNTRY_NAME Canada 4.0191 2.4108
COUNTRY_NAME China 0.8706 3.5889
COUNTRY_NAME Denmar k -2.9822 3.1803
COUNTRY_NAME France -1.1044 7.1811

30.1.3.24 GET_MODEL_DETAILS_GLOBAL Function

The GET_MODEL_DETAI LS G.OBAL function returns statistics about the model as a whole.

Global details are available for Generalized Linear Models, Association Rules,
Singular Value Decomposition, and Expectation Maximization. There are new Global
model views which show global information for all algorithms. Oracle recommends that
users leverage the views instead. Refer to Model Details View Global.

Syntax

DBMS_DATA_M NI NG get _nodel _det ai | s_gl obal (
model _nanme | N VARCHAR?,
partition_nane | N VARCHAR2 DEFAULT NULL)
RETURN DM nodel _gl obal _detail s Pl PELI NED;

ORACLE 30-106

ORACLE

Chapter 30

DBMS_DATA_MINING

Parameters

Table 30-76 GET_MODEL_DETAILS GLOBAL Function Parameters

Parameter Description

model _nane Name of the model in the form [schema_name.Jmodel_name. If
you do not specify a schema, then your own schema is used.

partition_name Specifies a partition in a partitioned model.

Return Values

Table 30-77 GET_MODEL_DETAILS GLOBAL Function Return Values

Return Value Description

DM MODEL_GLOBAL_DETAI LS A collection of rows of type DM _MODEL_GLOBAL_DETAI L.

The rows have the following columns:

(gl obal _detail _name VARCHAR2(30),
gl obal _detail _value NUMBER)

Examples

The following example returns the global model details for the GLM Regression model
GLMR_SH Regr_sanpl e, which was created by the sample program dngl r dem sql . For

information about the sample programs, see Oracle Data Mining User's Guide.

SELECT *
FROM TABLE(dbns_dat a_mi ni ng. get _nodel _det ai | s_gl obal (
" GLMR_SH Regr _sanple'))
ORDER BY gl obal _detail _nane;

GLOBAL_DETAI L_NAMVE GLOBAL_DETAI L_VALUE
ADJUSTED R SQUARE . 731412557
AC 5931. 814
COEFF_VAR 18. 1711243
CORRECTED TOTAL_DF 1499
CORRECTED TOT_SS 278740. 504
DEPENDENT _MEAN 38. 892
ERROR DF 1433
ERROR_MEAN_SQUARE 49. 9440956
ERROR_SUM SQUARES 71569. 8891
F_VALUE 62. 8492452
GVBEP 52. 280819
HOCKI NG_SP . 034877162
P 52. 1749319
MODEL_CONVERGED 1
MODEL_DF 66
MODEL_F_P_VALUE 0
MODEL_MEAN_SQUARE 3138. 94871
MODEL_SUM SQUARES 207170. 615
NUM_PARANB 67
NUM_ROAS 1500
ROOT_MEAN_SQ 7.06711367
R SQ . 743238288

30-107

SBI C

Chapter 30
DBMS_DATA_MINING

6287. 79977

VALI D_COVARI ANCE_MATRI X 1

30.1.3.25 GET_MODEL_DETAILS_KM Function

The GET_MODEL_DETAI LS_KMfunction returns a set of rows that provide the details of a k-
Means clustering model.

You can provide input to GET_MODEL_DETAI LS KMto request specific information about the
model, thus improving the performance of the query. If you do not specify filtering
parameters, then GET_MODEL_DETAI LS _KMreturns all the information about the model.

Syntax

DBVS_DATA M NI NG get _nodel _detai | s_kn(
model _nanme VARCHAR?,
cluster_id NUMBER DEFAULT NULL,
attribute VARCHAR2 DEFAULT NULL,

centroid

NUVBER DEFAULT 1,

hi stogram NUMBER DEFAULT 1,

rul es

NUVBER DEFAULT 2,

attribute_subname VARCHAR2 DEFAULT NULL,

topn_attributes NUMBER DEFAULT NULL,

partition_name VARCHAR2 DEFAULT NULL)
RETURN dm cl usters Pl PELI NED;

Parameters

Table 30-78 GET_MODEL_DETAILS KM Function Parameters
]

Parameter

Description

model _nane

cluster_id

attribute

centroid

hi st ogram

rul es

ORACLE

Name of the model in the form [schema_name.Jmodel_name. If you do
not specify a schema, then your own schema is used.

The ID of a cluster in the model. When a valid cluster ID is specified,
only the details of this cluster are returned. Otherwise the details for all
clusters are returned.

The name of an attribute. When a valid attribute name is specified, only
the details of this attribute are returned. Otherwise, the details for all
attributes are returned

This parameter accepts the following values:

» 1: Details about centroids are returned (default)
e 0: Details about centroids are not returned

This parameter accepts the following values:

* 1: Details about histograms are returned (default)
* 0: Details about histograms are not returned

This parameter accepts the following values:

e 2: Details about rules are returned (default)
e 1: Rule summaries are returned
e 0: No information about rules is returned

30-108

Chapter 30
DBMS_DATA_MINING

Table 30-78 (Cont.) GET_MODEL_DETAILS_KM Function Parameters

__|
Parameter Description

attribute_subnane The name of a nested attribute. The full name of a nested attribute has
the form:

attribute_nane. attribute_subnane

where attri but e_nane is the name of the column and
attribut e_subnane is the name of the nested attribute in that column.

If the attribute is not nested, attri but e_subnane is null.
topn_attributes Restricts the number of attributes returned in the centroid, histogram,

and rules objects. Only the n attributes with the highest confidence
values in the rules are returned.

If the number of attributes included in the rules is less than t opn, then
up to n additional attributes in alphabetical order are returned.

If both the attribute and topn_attri but es parameters are specified,
then topn_attributes is ignored.

partition_nane Specifies a partition in a partitioned model.

Usage Notes

1. The table function pipes out rows of type DM CLUSTERS. For information on Data
Mining datatypes and Return Value for Clustering Algorithms piped output from
table functions, see "Datatypes".

2. When the value is NULL for a partitioned model, an exception is thrown. When the
value is not null, it must contain the desired partition name.

Examples

The following example returns model details for the k-Means clustering model
KM SH_d us_sanpl e, which was created by the sample program dnkndeno. sql . For
information about the sample programs, see Oracle Data Mining User's Guide.

SELECT T.id clu_id,
T.record_count rec_cnt,
T. parent parent,

T.tree_level tree_|level,
T.dispersion dispersion
FROM (SELECT *
FROM TABLE(DBMS_DATA M NI NG. GET_MODEL_DETAI LS _KM
"KM SH Cl us_sanpl e'))
ORDER BY id) T
VHERE ROMNUM < 6;

1 1500 1 5.9152211
2 638 1 2 3.98458982
3 862 1 2 5.83732097
4 376 3 3 5.05192137
5 486 3 3 5.42901522

ORACLE 30-109

Chapter 30
DBMS_DATA_MINING

30.1.3.26 GET_MODEL_DETAILS_NB Function

ORACLE

The GET_MODEL_DETAI LS_NB function returns a set of rows that provide the details of a
Naive Bayes model.

Syntax

DBMS_DATA M NI NG get _nodel _detai | s_nb(
model _name | N VARCHAR?,
partition_name | N VARCHAR2 DEFAULT NULL)
RETURN DM _NB_Det ai | s PI PELI NED;

Parameters

Table 30-79 GET_MODEL_DETAILS NB Function Parameters

__|
Parameter Description

model _name Name of the model in the form [schema_name.Jmodel_name. If
you do not specify a schema, then your own schema is used.

partition_name Specifies a patrtition in a partitioned model

Return Values

Table 30-80 GET_MODEL_DETAILS NB Function Return Values
]

Return Value Description

DM NB_DETAI LS A set of rows of type DM _NB_DETAI L. The rows have the following
columns:
(target _attribute_nane VARCHAR2(30) ,

target _attribute str_value VARCHAR2(4000) ,

target attribute _numval ue NUVBER,
prior_probability NUVBER,

condi tionals DM _CONDI TI ONALS)

The condi tional s column of DM_NB_DETAI L returns a nested table of
type DM_CONDI TI ONALS. The rows, of type DM _CONDI TI ONAL, have the
following columns:

(attribute_nane VARCHAR2(4000) ,
attribute_subnane VARCHAR2(4000) ,
attribute_str_val ue VARCHAR2(4000) ,
attribute_numval ue NUVBER,

condi tional _probability NUVBER)

Usage Notes

e The table function pipes out rows of type DM NB_DETAI LS. For information on Data
Mining datatypes and piped output from table functions, see "Datatypes".

e When the value is NULL for a partitioned model, an exception is thrown. When the
value is not null, it must contain the desired partition name.

30-110

Chapter 30
DBMS_DATA_MINING

Examples

The following query is from the sample program dmbdeno. sql . It returns model details
about the model NB_SH O as_sanpl e. For information about the sample programs, see
Oracle Data Mining User's Guide.

The query creates labels from the bin boundary tables that were used to bin the
training data. It replaces the attribute values with the labels. For numeric bins, the
labels are (| ower _boundary,upper _boundary] ; for categorical bins, the label matches the
value it represents. (This method of categorical label representation will only work for
cases where one value corresponds to one bin.) The target was not binned.

WTH
bi n_l abel _view AS (
SELECT col, bin, (DECODE(bin,"21",'["," (") || Iv[] *," |] val || "]") Ilabel
FROM (SELECT col ,
bin,
LAST VALUE(val) OVER (
PARTI TI ON BY col ORDER BY val
ROAS BETVEEN UNBOUNDED PRECEDI NG AND 1 PRECEDI NG | v,
val
FROM nb_sh_sanpl e_num
UNION ALL

SELECT col, bin, val |abel
FROM nb_sh_sanpl e_cat
)
model _details AS (
SELECT T.target_attribute_name t nane,
NVL(TO CHAR(T.target _attribute_numvalue, T.target _attribute_str_val ue))

tval,
C.attribute_nane pnane,
NVL(L.label, NVL(C attribute_str_value, C attribute_numvalue)) pval,
T.prior_probability priorp,
C.conditional _probability condp

FROM TABLE(DBVS_DATA M NI NG GET_MODEL_DETAI LS NB(' NB_SH Cl as_sanple')) T,
TABLE(T. conditionals) C,
bin_label view L
WHERE C. attribute_name = L.col (+) AND
(NVL(C attribute_str_value, C attribute_numvalue) = L.bin(+))
ORDER BY 1,2,3,4,5,6
)
SELECT tname, tval, pnane, pval, priorp, condp
FROM model _detail's
VHERE ROMNUM < 11;

TNAMVE TVAL PNAME PVAL PRIORP CONDP
AFFINITY_CARD 0 ACE (24, 30] . 6500 1714
AFFINITY_CARD 0 ACE (130, 35] . 6500 1509
AFFINITY_CARD 0 ACE (135, 40] . 6500 1125
AFFINITY_CARD 0 ACE (40, 46] . 6500 1134
AFFINITY_CARD 0 ACE (46, 53] . 6500 1071
AFFINITY_CARD 0 ACE (53,90] 6500 1312
AFFINITY_CARD 0 ACE [17, 24] . 6500 2134
AFFINITY_CARD 0 BOOKKEEPI NG_APPLI CATION 0 6500 1500
AFFINITY_CARD 0 BOOKKEEPI NG_APPLI CATION 1 6500 8500
AFFINITY_CARD 0 BULK_PACK_DI SKETTES 0 6500 3670

ORACLE 30-111

Chapter 30
DBMS_DATA_MINING

30.1.3.27 GET_MODEL_DETAILS_NMF Function

ORACLE

The GET_MODEL_DETAI LS_NVF function returns a set of rows that provide the details of a
Non-Negative Matrix Factorization model.

Syntax

DBVS_DATA M NI NG get _nodel _detai | s_nnf(
model _name | N VARCHAR?,
partition_name VARCHAR2 DEFAULT NULL)

RETURN DM NMF_Feat ure_Set Pl PELI NED;

Parameters

Table 30-81 GET_MODEL_DETAILS NMF Function Parameters

L ___|
Parameter Description

model _nane Name of the model in the form [schema_name.Jmodel_name. If you do
not specify a schema, then your own schema is used.

partition_name Specifies a partition in a partitioned model

Return Values

Table 30-82 GET_MODEL_DETAILS NMF Function Return Values

__|
Return Value Description

DM NVF_FEATURE_SET A set of rows of DM NVF_FEATURE. The rows have the following columns:

(feature_id NUVBER,
mapped_feature id VARCHAR2(4000),
attribute_set DM NVF_ATTRI BUTE_SET)

The attribute_set column of DM NVF_FEATURE returns a nested table
of type DM_NMF_ATTRI BUTE_SET. The rows, of type DM_NVF_ATTRI BUTE,
have the following columns:

(attribute_nane VARCHAR2(4000) ,
attribute_subnane VARCHAR2(4000),
attribute_val ue VARCHAR2(4000),
coefficient NUVBER)

Usage Notes

* The table function pipes out rows of type DM NVF_FEATURE_SET. For information on
Data Mining datatypes and piped output from table functions, see "Datatypes".

e When the value is NULL for a partitioned model, an exception is thrown. When the
value is not null, it must contain the desired partition name.

Examples

The following example returns model details for the feature extraction model
NMF_SH Sanpl e, which was created by the sample program dmndenv. sql . For
information about the sample programs, see Oracle Data Mining User's Guide.

30-112

Chapter 30
DBMS_DATA_MINING

SELECT * FROM (

SELECT F.feature_id,
A attribute_nane,
A attribute_val ue,
A. coefficient

FROM TABLE(DBMS_DATA M NI NG GET_MODEL_DETAI LS_NVF(' NVF_SH Sanpl e')) F,

TABLE(F. attribute_set) A

ORDER BY feature_id,attribute_nane, attribute_val ue

) VWHERE ROMNUM < 11;

FEATURE_I D ATTRI BUTE_NAME ATTRI BUTE_VALUE COEFFI CI ENT
1 AFFI NI TY_CARD .051208078859308
1 AGE . 0390513260041573
1 BOOKKEEPI NG_APPLI| CATI ON . 0512734004239326
1 BULK_PACK_DI SKETTES . 232471260895683
1 COUNTRY_NAME Argentina .00766817464479959
1 COUNTRY_NAME Australia .000157637881096675
1 COUNTRY_NAME Brazi | .0031409632415604
1 COUNTRY_NAME Canada .00144213099311427
1 COUNTRY_NAME Chi na .000102279310968754
1 COUNTRY_NAME Denmar k .000242424084307513

30.1.3.28 GET_MODEL_DETAILS_OC Function

ORACLE

The GET_MODEL_DETAI LS_COC function returns a set of rows that provide the details of an
O-Cluster clustering model. The rows are an enumeration of the Clustering patterns
generated during the creation of the model.

You can provide input to GET_MODEL_DETAI LS COC to request specific information about the
model, thus improving the performance of the query. If you do not specify filtering
parameters, then GET_MODEL_DETAI LS_QC returns all the information about the model.

Syntax

DBVS_DATA M NI NG get _nodel _details_oc(
model _nanme VARCHAR?,
cluster_id NUMBER DEFAULT NULL,
attribute VARCHAR2 DEFAULT NULL,
centroid NUMBER DEFAULT 1,
hi stogram NUMBER DEFAULT 1,
rul es NUMBER DEFAULT 2,
topn_attributes NUMBER DEFAULT NULL,
partition_name VARCHAR2 DEFAULT NULL)

RETURN dm cl usters Pl PELI NED;

Parameters

Table 30-83 GET_MODEL_DETAILS OC Function Parameters

|
Parameter Description

model _nane Name of the model in the form [schema_name.Jmodel_name. If
you do not specify a schema, then your own schema is used.

cluster_id The ID of a cluster in the model. When a valid cluster ID is
specified, only the details of this cluster are returned. Otherwise
the details for all clusters are returned.

30-113

Chapter 30
DBMS_DATA_MINING

Table 30-83 (Cont.) GET_MODEL_DETAILS_OC Function Parameters

Parameter

Description

attribute

centroid

hi st ogram

rul es

topn_attributes

partition_name

The name of an attribute. When a valid attribute name is specified,
only the details of this attribute are returned. Otherwise, the details
for all attributes are returned

This parameter accepts the following values:

e 1: Details about centroids are returned (default)

e 0: Details about centroids are not returned

This parameter accepts the following values:

e 1: Details about histograms are returned (default)

e 0: Details about histograms are not returned

This parameter accepts the following values:

e 2: Details about rules are returned (default)

e 1: Rule summaries are returned

e 0: No information about rules is returned

Restricts the number of attributes returned in the centroid,

histogram, and rules objects. Only the n attributes with the highest
confidence values in the rules are returned.

If the number of attributes included in the rules is less than t opn,
then up to n additional attributes in alphabetical order are
returned.

If both the attri bute and t opn_attri but es parameters are
specified, then topn_at tri but es is ignored.

Specifies a partition in a partitioned model.

Usage Notes

1. Forinformation about Data Mining datatypes and Return Values for Clustering
Algorithms piped output from table functions, see "Datatypes".

2. When the value is NULL for a partitioned model, an exception is thrown. When the
value is not null, it must contain the desired partition name.

Examples

The following example returns model details for the clustering model
OC SH d us_sanpl e, which was created by the sample program dmocdeno. sql . For
information about the sample programs, see Oracle Data Mining User's Guide.

For each cluster in this example, the split predicate indicates the attribute and the
condition used to assign records to the cluster's children during model build. It
provides an important piece of information on how the population within a cluster can
be divided up into two smaller clusters.

SELECT clu_id, attribute_nanme, op, s_value
FROM (SELECT a.id clu_id, sp.attribute_nanme, sp.conditional _operator op,

sp.attribute_str_value s_val ue

FROM TABLE(DBMS_DATA M NI NG GET_MODEL_DETAI LS_OQ(

"OC_SH Cus_sanple')) a,
TABLE(a. split_predicate) sp

ORDER BY a.id, op, s_value)

VHERE ROMNUM < 11;

ORACLE

30-114

Chapter 30
DBMS_DATA_MINING

CLU_I D ATTRI BUTE_NAME OP S_VALUE
1 OCCUPATI ON IN?
1 OCCUPATI ON IN Arnmed-F
1 OCCUPATI ON INderic.
1 OCCUPATI ON IN Crafts
2 OCCUPATI ON IN?
2 OCCUPATI ON IN Arned-F
2 OCCUPATI ON INderic.
3 OCCUPATI ON IN Exec.
3 OCCUPATI ON I'N Farning
3 OCCUPATI ON I N Handl er

30.1.3.29 GET_MODEL_SETTINGS Function

ORACLE

The GET_MODEL_SETTI NGS function returns the settings used to build the given model.

Syntax

FUNCTI ON get _nodel _settings(nmodel _name |N VARCHAR2)
RETURN DM Mbdel _Settings Pl PELI NED;

Parameters

Table 30-84 GET_MODEL_SETTINGS Function Parameters

|
Parameter Description

model _name Name of the model in the form [schema_name.Jmodel_name. If
you do not specify a schema, then your own schema is used.

Return Values

Table 30-85 GET_MODEL_SETTINGS Function Return Values

__|
Return Value Description

DM _MODEL_SETTI NGS A set of rows of type DM MODEL_SETTI NGS. The rows have the
following columns:

DM MODEL_SETTI NGS TABLE OF SYS. DM MODEL_SETTI NG

Name Type
SETTI NG_NAME VARCHAR2(30)
SETTI NG_VALUE VARCHAR2(4000)

Usage Notes

1. This table function pipes out rows of type DM MODEL_SETTI NGS. For information on
Data Mining datatypes and piped output from table functions, see
"DBMS_DATA_MINING Datatypes".

N

The setting names/values include both those specified by the user and any
defaults assigned by the build process.

30-115

Chapter 30
DBMS_DATA_MINING

Examples

The following example returns model model settings for an example Naive Bayes
model.

SETTI NG_NAME SETTI NG_VALUE
ALGO_NAVE ALGO_NAI VE_BAYES

PREP_AUTO oN

ODVS_MAX_PARTI TI ONS 1000

NABS_SI NGLETON_ THRESHOLD 0

CLAS_ WEI GHTS_BALANCED OFF

NABS_PAl RW SE_THRESHOLD 0

ODVS_PARTI TI ON_COLUMNS GENDER, Y_BOX_GAMES

ODVB_M SSI NG VALUE_TREATMENT ~ CDMS_M SSI NG VALUE_AUTO
ODVS_SAMPLI NG ODVE_SAMPLI NG_Di SABLE

9 rows selected.

30.1.3.30 GET_MODEL_SIGNATURE Function

ORACLE

The GET_MODEL_SI GNATURE function returns the list of columns from the build input table
that were used by the build process to train the model.

Syntax

FUNCTI ON get _rmodel _si gnature (nmodel _name | N VARCHAR?)
RETURN DM Mbdel _Si gnat ure Pl PELI NED;

Parameters

Table 30-86 GET_MODEL_SIGNATURE Function Parameters

___|
Parameter Description

model _nane Name of the model in the form [schema_name.Jmodel_name. If
you do not specify a schema, then your own schema is used.

Return Values

Table 30-87 GET_MODEL_SIGNATURE Function Return Values

|
Return Value Description

DM _MODEL_SI GNATURE A set of rows of type DM_MODEL_SI GNATURE. The rows have the
following columns:

DM MODEL_SI GNATURE TABLE OF
SYS. DM MODEL_SI GNATURE_ATTRI BUTE

Nane Type
ATTRI BUTE_NAME VARCHAR2('130)
ATTRI BUTE_TYPE VARCHAR2(106)

30-116

Usage Notes

Chapter 30
DBMS_DATA_MINING

1. This table function pipes out rows of type DM MODEL_SI GNATURE. For information on
Data Mining datatypes and piped output from table functions, see
"DBMS_DATA_MINING Datatypes".

2. The signature names or types include only those attributes used by the build

process.

Examples

The following example returns model settings for an example Naive Bayes model.

ATTRI BUTE_NAMVE

AGE

ANNUAL_| NCOVE
AVERAGE___| TEMS_PURCHASED
BOOKKEEPI NG_APPLI CATI ON
BULK_PACK_DI SKETTES
BULK_PURCH_AVE_AMT

DI SABLE_COOKI ES

EDUCATI ON
FLAT_PANEL_MONI TOR
GENDER

HOVE_THEATER PACKAGE
HOUSEHOLD_SI ZE

MAI LI NG LI ST

MARI TAL_STATUS

NO_DI FFERENT_KI ND_| TEMS
OCCUPATI ON
0S_DOC_SET_KANJI

PETS

PRI NTER_SUPPLI ES
PROVD_RESPOND

SHI PPI NG ADDRESS_COUNTRY
SR CI TI ZEN
TOP_REASON FOR SHOPPI NG
WKS_SI NCE_LAST_PURCH
WORKCLASS

YRS_RES| DENCE
Y_BOX_GAMES

27 rows sel ected.

ATTRI BUTE_TYPE

NUMBER
NUMBER
NUMBER
NUMBER
NUMBER
NUMBER
VARCHAR2
NUMBER
VARCHAR2
NUMBER
VARCHAR2
NUMBER
VARCHAR2
NUMBER
VARCHAR2
NUMBER
NUMBER
NUMBER
NUMBER
VARCHAR2
NUMBER
VARCHAR2
NUMBER
VARCHAR2
NUMBER
NUMBER

30.1.3.31 GET_MODEL_DETAILS_SVD Function

The GET_MODEL_DETAI LS_SVD function returns a set of rows that provide the details of a
Singular Value Decomposition model. Oracle recommends to use model details view

ORACLE

settings.

Refer to Model Details View for Singular Value Decomposition.

Syntax

DBVS_DATA M NI NG get _nodel _detai | s_svd(

model _nanme | N VARCHAR?,

matrix_type | N VARCHAR2 DEFAULT NULL,
partition_name VARCHAR2 DEFAULT NULL)
RETURN DM SVD_MATRI X_Set Pl PELI NED;

30-117

ORACLE

Parameters

Chapter 30
DBMS_DATA_MINING

Table 30-88 GET_MODEL_DETAILS SVD Function Parameters
]

Parameter Description

model _nane Name of the model in the form [schema_name.Jmodel_name. If you do
not specify a schema, then your own schema is used.

matrix_type Specifies which of the three SVD matrix types to return. Values are: U, S,

partition_nanme

V, and NULL. When mat ri x_t ype is null (default), all matrices are
returned.

The U matrix is only computed when the SVDS_U_MATRI X_CUTPUT setting
is enabled. It is not computed by default. If the model does not contain U
matrices and you set matri x_t ype to U, an empty set of rows is returned.
See Table 30-25.

A partition in a partitioned model.

Return Values

Table 30-89 GET_MODEL_DETAILS SVD Function Return Values
]

Return Value

Description

DM SVD_MATRI X_SET

A set of rows of type DM _SVD_MATRI X. The rows have the
following columns:

(matrix_type CHAR(1),
feature_id NUMBER,
mapped_feature_id VARCHAR2(4000),
attribute_nanme VARCHAR2(4000) ,
attribute_subname VARCHAR2(4000),
case_id VARCHAR2(4000) ,
val ue NUMBER,
vari ance NUMBER,
pct _cumvariance NUVBER)

See Usage Notes for details.

Usage Notes

1. This table function pipes out rows of type DM SVD_MATRI X. For information on Data
Mining datatypes and piped output from table functions, see "Datatypes”.

The columns in each row returned by GET_MODEL_DETAI LS SVD are described as

follows:

Column in

Description

DM_SVD_MATRIX_SET

matri x_type

feature_id

mapped_feature_id

attribute_nane

The type of matrix. Possible values are S, V, and U.
This field is never null.

The feature that the matrix entry refers to.
A descriptive name for the feature.

Column name in the V matrix component bases. This
field is null for the S and U matrices.

30-118

Chapter 30
DBMS_DATA_MINING

Column in Description
DM_SVD_MATRIX_SET
attribute_subnane Subname in the V matrix component bases. This is

relevant only in the case of a nested column. This
field is null for the S and U matrices.

case_id Unique identifier of the row in the build data
described by the U matrix projection. This field is null
for the S and V matrices.

val ue The matrix entry value.

vari ance The variance explained by a component. It is non-
null only for S matrix entries. This column is non-null
only for S matrix entries and for SVD models with
setting dbrs_dat a_mi ni ng. svds_scori ng_node set to
dbrs_dat a_ni ni ng. svds_scoring_pca and the build
data is centered, either manually or because the
setting dbns_dat a_mi ni ng. prep_aut o is set to
dbrs_dat a_ni ni ng. prep_aut o_on.

pct _cumvari ance The percent cumulative variance explained by the
components thus far. The components are ranked by
the explained variance in descending order.

This column is non-null only for S matrix entries and
for SVD models with setting

dbms_dat a_ni ni ng. svds_scori ng_node set to
dbrs_dat a_ni ni ng. svds_scoring_pca and the build
data is centered, either manually or because the
setting dbns_dat a_mi ni ng. prep_aut o is set to
dbrs_dat a_ni ni ng. prep_aut o_on.

2. The output of GET_MODEL_DETAI LS is in sparse format. Zero values are not returned.
Only the diagonal elements of the S matrix, the non-zero coefficients in the V
matrix bases, and the non-zero U matrix projections are returned.

There is one exception: If the data row does not produce non-zero U Matrix
projections, the case ID for that row is returned with NULL for the feature_id and
val ue. This is done to avoid losing any records from the original data.

3. GET_MODEL_DETAI LS functions preserve model transparency by automatically
reversing the transformations applied during the build process. Thus the attributes
returned in the model details are the original attributes (or a close approximation of
the original attributes) used to build the model.

4. When the value is NULL for a partitioned model, an exception is thrown. When the
value is not null, it must contain the preferred partition name.

30.1.3.32 GET_MODEL_DETAILS_SVM Function

ORACLE

The GET_MODEL_DETAI LS_SvMfunction returns a set of rows that provide the details of a
linear Support Vector Machine (SVM) model. If invoked for nonlinear SVM, it returns
ORA- 40215.

In linear SVM models, only nonzero coefficients are stored. This reduces storage and
speeds up model loading. As a result, if an attribute is missing in the coefficient list
returned by GET_MODEL_DETAI LS_SVM then the coefficient of this attribute should be
interpreted as zero.

30-119

ORACLE

Chapter 30
DBMS_DATA_MINING

Syntax

DBVS_DATA M NI NG get _nodel _details_svn{
model _name VARCHARZ,
reverse_coef NUMBER DEFAULT 0,
partition_name VARCHAR2 DEFAULT NULL)
RETURN DM SVM Li near _Coeff Set PI PELI NED;

Parameters

Table 30-90 GET_MODEL_DETAILS SVM Function Parameters
]

Parameter Description

model _nane Name of the model in the form [schema_name.lmodel_name. If you do
not specify a schema, then your own schema is used.

rever se_coef Whether or not GET_MODEL_DETAI LS_SVMshould transform the attribute

coefficients using the original attribute transformations.

When rever se_coef is set to O (default), GET_MODEL_DETAI LS _SVMreturns
the coefficients directly from the model without applying transformations.

When reverse_coef is setto 1, GET_MODEL_DETAI LS _SVMtransforms the
coefficients and bias by applying the normalization shifts and scales that
were generated using automatic data preparation.

See Usage Note 4.

partition_name Specifies a partition in a partitioned model.

Return Values

Table 30-91 GET_MODEL_DETAILS_ SVM Function Return Values

__|
Return Value Description

DM SVM LI NEAR_COEFF_S A set of rows of type DM SVM LI NEAR_COEFF. The rows have the
ET following columns:

(class VARCHAR2(4000),
attribute_set DM SVM ATTRI BUTE_SET)

The attribute_set column returns a nested table of type
DM _SVM ATTRI BUTE_SET. The rows, of type DM SVM ATTRI BUTE, have
the following columns:

(attribute_name VARCHAR2(4000) ,
attribute_subnane VARCHAR2(4000),
attribute_val ue VARCHAR2(4000) ,
coefficient NUVBER)

See Usage Notes.

Usage Notes

1. This table function pipes out rows of type DM SVM LI NEAR _COEFF. For information on
Data Mining datatypes and piped output from table functions, see "Datatypes".

2. The cl ass column of DM SVM LI NEAR_COEFF contains Classification target values. For
SVM Regression models, cl ass is null. For each Classification target value, a set

30-120

Chapter 30
DBMS_DATA_MINING

of coefficients is returned. For Binary Classification, one-class Classification, and
Regression models, only a single set of coefficients is returned.

3. Theattribute_val ue column in DM SVM ATTRI BUTE_SET is used for categorical
attributes.

4. GET_MODEL_DETAI LS functions preserve model transparency by automatically
reversing the transformations applied during the build process. Thus the attributes
returned in the model details are the original attributes (or a close approximation of
the original attributes) used to build the model.

The coefficients are related to the transformed, not the original, attributes. When
returned directly with the model details, the coefficients may not provide
meaningful information. If you want GET_MODEL_DETAI LS_SVMto transform the
coefficients such that they relate to the original attributes, set the reverse_coef
parameter to 1.

5. When the value is NULL for a partitioned model, an exception is thrown. When the
value is not null, it must contain the desired partition name.

Examples

The following example returns model details for the SVM Classification model
SVMC _SH O as_sanpl e, which was created by the sample program dnsvcdem sql . For
information about the sample programs, see Oracle Data Mining User's Guide.

W TH
mod_dtls AS (
SELECT *
FROM TABLE(DBVMS_DATA M NI NG GET_MCDEL_DETAI LS SVM' SVMC SH O as_sanpl e'))
)
model _details AS (
SELECT D.class, A attribute_name, A attribute_value, A coefficient
FROM nod_dt|s D,
TABLE(D. attribute_set) A
ORDER BY D.class, ABS(A. coefficient) DESC
)
SELECT cl ass, attribute_name anane, attribute_value aval, coefficient coeff
FROM nmodel _details
WHERE ROMNUM < 11;

CLASS ANAVE AVAL COEFF
1 -2.85
1 BOOKKEEPI NG_APPLI CATI ON 1.11
1 OCCUPATI ON O her -.94
1 HOUSEHOLD _SI ZE 4-5 . 88
1 CUST_MARI TAL_STATUS Married .82
1 YRS_RESI DENCE .76
1 HOUSEHOLD _SI ZE 6-8 -.74
1 OCCUPATI ON Exec. .71
1 EDUCATI ON 11th -.71
1 EDUCATI ON Mast ers .63

ORACLE 30-121

Chapter 30
DBMS_DATA_MINING

30.1.3.33 GET_MODEL_DETAILS_XML Function

ORACLE

This function returns an XML object that provides the details of a Decision Tree model.

Syntax

DBVS_DATA M NI NG get _nodel _details_xn (
model _nanme | N VARCHAR?,
partition_nanme | N VARCHAR2 DEFAULT NULL)
RETURN XMLType;

Parameters

Table 30-92 GET_MODEL_DETAILS XML Function Parameters

]
Parameter Description

model _nane Name of the model in the form [schema_name.Jmodel_name. If you
do not specify a schema, then your own schema is used.

partition_nanme Specifies a partition in a partitioned model.

Return Values

Table 30-93 GET _MODEL_DETAILS XML Function Return Value
]

Return Value Description
XMLTYPE The XML definition for the Decision Tree model. See "XMLTYPE" for
details.

The XML definition conforms to the Data Mining Group Predictive
Model Markup Language (PMML) version 2.1 specification. The
specification is available at ht t p: / / www. dnyg. or g.

If a nested attribute is used as a splitter, the attribute will appear in
the XML document as field="'<column_name>'.<subname>", as
opposed to the non-nested attributes which appear in the document
as field="<column_name>".

Note:

The column names are surrounded by
single quotes and a period separates
the column_name from the subname.

The rest of the document style remains unchanged.

Usage Notes

Special characters that cannot be displayed by Oracle XML are converted to '#'.

30-122

http://www.dmg.org

ORACLE

Chapter 30
DBMS_DATA_MINING

Examples

The following statements in SQL*Plus return the details of the Decision Tree model
dt _sh_cl as_sanpl e. This model is created by the program dndt deno. sgl , one of the
sample data mining programs provided with Oracle Database Examples.

Note: The """ characters you will see in the XML output are a result of SQL*Plus
behavior. To display the XML in proper format, cut and past it into a file and open the
file in a browser.

colum dt _details format a320

SELECT
dbns_dat a_mi ni ng. get _nmodel _details_xnl (' dt _sh_clas_sanple')
AS DT_DETAILS

FROM dual ;

DT_DETAI LS
<PM\L version="2.1">
<Header copyright="Copyright (c) 2004, Oracle Corporation. Al rights
reserved."/>
<Dat aDi cti onary nunber O Fi el ds="9">
<Dat aFi el d nanme="AFFI NI TY_CARD" optype="categorical"/>
<Dat aFi el d nanme="AGE" optype="conti nuous"/>
<Dat aFi el d nanme="BOOKKEEPI NG_APPLI CATI ON' opt ype="continuous"/>
<Dat aFi el d nanme="CUST_MARI TAL_STATUS" optype="categorical"/>
<Dat aFi el d name="EDUCATI ON' opt ype="cat egori cal "/>
<Dat aFi el d name="HOUSEHOLD SI ZE' optype="categorical"/>
<Dat aFi el d nanme="OCCUPATI ON' optype="categorical"/>
<Dat aFi el d name="YRS_RES|I DENCE" opt ype="conti nuous"/>
<Dat aFi el d nane="Y_BOX_GAMES" optype="conti nuous"/>
</ Dat aDi cti onary>
<TreeMdel nodel Nane="DT_SH CLAS_SAMPLE" functionName="cl assification"
splitCharacteristic="hinarySplit">
<Ext ensi on nane="bui | dSettings">
<Setting name="TREE_| MPURI TY_METRI C' val ue="TREE | MPURI TY_G NI "/ >
<Setting name="TREE_TERM MAX_DEPTH' val ue="7"/>
<Setting name="TREE_TERM M NPCT_NODE" val ue=". 05"/ >
<Setting name="TREE_TERM M NPCT_SPLIT" val ue=".1"/>
<Setting name="TREE_TERM M NREC_NODE" val ue="10"/>
<Setting name="TREE_TERM M NREC SPLIT" val ue="20"/>
<cost Matri x>
<cost El enent >
<act ual Val ue>0</ act ual Val ue>
<predi ct edVal ue>0</ predi ct edVal ue>
<cost >0</ cost >
</ cost El ement >
<cost El ement >
<act ual Val ue>0</ act ual Val ue>
<predi ct edVal ue>1</ predi ct edval ue>
<cost >1</ cost >
</ cost El ement >
<cost El enent >
<act ual Val ue>1</ act ual Val ue>
<predi ct edVal ue>0</ predi ct edVal ue>
<cost >8</ cost >
</ cost El ement >
<cost El ement >
<act ual Val ue>1</ act ual Val ue>

30-123

<predi ct edVal ue>1</ predi ct edVal ue>
<cost >0</ cost >
</ cost El enent >
</ cost Matri x>
</ Ext ensi on>
<M ni ngSchema>

</ Node>
</ Node>
</ Tr eeModel >
</ PMML>

Related Topics

e Oracle Database PL/SQL Packages and Types Reference

30.1.3.34 GET_MODEL_TRANSFORMATIONS Function

Chapter 30
DBMS_DATA_MINING

This function returns the transformation expressions embedded in the specified model.

All GET_* interfaces are replaced by model views, and Oracle recommends that users

reference the model views to retrieve the relevant information. The

GET_MODEL_ TRANSFORMATI ONS function is replaced by the following:
e USER(/DBA/ALL)_MINING_MODEL_XFORMS: provides the user-embedded

transformations

* DMB$VX prefixed model view: provides text feature extraction information

* DS$VN prefixed mode view: provides normalization and missing value information

* DMS$VB: provides binning information

¢ See Also:

Operational Notes

"CREATE_MODEL Procedure"

Model Details View for Binning

Data Preparation for Text Features

ORACLE

"GET_TRANSFORM_LIST Procedure"

Normalization and Missing Value Handling

“About Transformation Lists” in DBMS_DATA_MINING_TRANSFORM

"ALL_MINING_MODEL_XFORMS" in Oracle Database Reference
"DBA_MINING_MODEL_XFORMS" in Oracle Database Reference
"USER_MINING_MODEL_XFORMS" in Oracle Database Reference

30-124

ORACLE

Chapter 30
DBMS_DATA_MINING

Syntax

DBVS_DATA M NI NG get _nodel _transformations(
model _nanme | N VARCHAR?,
partition_name | N VARCHAR2 DEFAULT NULL)
RETURN DM Transforms PI PELI NED,

Parameters

Table 30-94 GET_MODEL_TRANSFORMATIONS Function Parameters

|
Parameter Description

model _nane Indicates the name of the model in the form
[schema_name.Jmodel_name. If you do not specify a schema, then your
own schema is used.

partition_nanme Specifies a partition in a partitioned model

Return Values

Table 30-95 GET_MODEL_TRANSFORMATIONS Function Return Value

|
Return Value Description

DM TRANSFORVS The transformation expressions embedded in nodel _nane.

The DM _TRANSFORMS type is a table of DM TRANSFORMobjects. Each
DM TRANSFORMhas these fields:

attribute_name VARCHAR2(4000)
attribute_subnane VARCHAR2(4000)
expression CLOB

reverse_expression CLOB

Usage Notes

When Automatic Data Preparation (ADP) is enabled, both automatic and user-defined
transformations may be associated with an attribute. In this case, the user-defined
transformations are evaluated before the automatic transformations.

When invoked for a partitioned model, the partition_name parameter must be
specified.

Examples

In this example, several columns in the SH. CUSTOMERS table are used to create a Naive
Bayes model. A transformation expression is specified for one of the columns. The
model does not use ADP.

CREATE OR REPLACE VI EWni ning_data AS
SELECT cust _id, cust_year_of _birth, cust_incone_|l evel,cust_credit_limt
FROM sh. cust oners;

describe nining_data
Name Nul | ? Type

CUST_ID NOT NULL NUMBER

30-125

Chapter 30
DBMS_DATA_MINING

CUST_YEAR OF_BI RTH NOT NULL NUVBER(4)
CUST_| NCOVE_LEVEL VARCHAR?(30)
CUST CREDIT LIMT NUVBER

CREATE TABLE settings_nb(
setting_nane VARCHAR2(30),
setting_val ue VARCHAR2(30));
BEG N
I NSERT | NTO settings_nb (setting_nane, setting_value) VALUES
(dbns_dat a_mi ni ng. al go_name, dbns_dat a_mi ni ng. al go_nai ve_bayes);
I NSERT | NTO settings_nb (setting_nane, setting_value) VALUES
(dbns_dat a_mi ni ng. prep_auto, dbns_data_m ning. prep_auto_off);

COWM T,
END;
/
DECLARE
m ning_data_xforns dbns_data_mi ning_transform TRANSFORM LI ST;
BEG N
dbns_dat a_mi ni ng_t ransf or m SET_TRANSFORM (
xformlist => mning_data_xforns,
attribute_name => 'cust _year_of hirth',
attribute_subnane = null,
expression => 'cust _year_of hirth + 10",

reverse_expression => 'cust_year_of birth - 10');
dbns_dat a_mi ni ng. CREATE_MODEL (

model _name => 'new_nodel ',
m ni ng_function => dbns_dat a_mi ni ng. cl assi fication,
data_t abl e_nane => 'nining_data',

case_id_colum_name => ‘'cust_id',
target _colum_name => 'cust_incone_level',
settings_table_name => 'settings_nb',

dat a_schena_nane = nulL,
settings_schema_nanme => null,
xformlist => nining_data xfornms);

END;
/
SELECT attribute_nane, TO CHAR(expression), TO CHAR(reverse_expression)
FROM TABLE (dbns_dat a_mi ni ng. GET_MODEL_TRANSFORMATI ONS(' new_nodel ")) ;

ATTRI BUTE_NAME TO_CHAR(EXPRESSI ON) TO_CHAR(REVERSE_EXPRESSI ON)

CUST_YEAR OF BIRTH cust_year _of birth + 10 cust_year_of _hirth - 10

30.1.3.35 GET_TRANSFORM_LIST Procedure

This procedure converts transformation expressions specified as DM TRANSFORVS to a
transformation list (TRANSFORM LI ST) that can be used in creating a model. DM TRANSFORMS
is returned by the GET_MODEL_TRANSFORMATI ONS function.

You can also use routines in the DBVS_DATA M NI NG_TRANSFORM package to construct a
transformation list.

ORACLE 30-126

Chapter 30
DBMS_DATA_MINING

¢ See Also:
“About Transformation Lists” in DBMS_DATA_MINING_TRANSFORM
"GET_MODEL_TRANSFORMATIONS Function"
"CREATE_MODEL Procedure"

Syntax
DBMS_DATA_M NI NG GET_TRANSFORM LI ST (
xformlist OUT NOCOPY TRANSFORM LI ST,
model _xf or ms IN DM TRANSFORMS) ;
Parameters

Table 30-96 GET_TRANSFORM_LIST Procedure Parameters

]
Parameter Description

xformlist A list of transformation specifications that can be embedded in a model.
Accepted as a parameter to the CREATE_MODEL Procedure.
The TRANSFORM LI ST type is a table of TRANSFORM _REC objects. Each
TRANSFORM REC has these fields:

attribute_name VARCHAR2(30)

attribute_subname VARCHAR2(4000)
expression EXPRESSI ON_REC
reverse_expressi on EXPRESSI ON_REC
attribute_spec VARCHAR2(4000)

For details about the TRANSFORM LI ST collection type, see Table 30-101.
model _xforms A list of embedded transformation expressions returned by the
GET_MODEL_TRANSFORMATIONS Function for a specific model.

The DM_TRANSFORMS type is a table of DM_TRANSFORMobjects. Each
DM TRANSFORM has these fields:

attribute_name VARCHAR2(4000)
attribute_subnane VARCHAR2(4000)
expression CLOB

reverse_expression CLOB

Examples

In this example, a model nod1 is trained using several columns in the SH. CUSTOMERS
table. The model uses ADP, which automatically bins one of the columns.

A second model nod2 is trained on the same data without ADP, but it uses a
transformation list that was obtained from nod1. As a result, both nod1 and nod2 have
the same embedded transformation expression.

CREATE OR REPLACE VI EWni ni ng_data AS
SELECT cust _id, cust_year_of birth, cust_income_level, cust_credit_linit
FROM sh. cust oners;

describe nmining_data

ORACLE 30-127

Chapter 30
DBMS_DATA_MINING

Nanme Nul I ? Type

CUST_I D NOT NULL NUMBER
CUST_YEAR OF BI RTH NOT NULL NUMBER(4)
CUST_I NCOVE_LEVEL VARCHAR2(30)
CUST CREDIT LIMT NUMVBER

CREATE TABLE setnodl(setting_name VARCHAR2(30),setting_val ue VARCHAR2(30));

BEG N
I NSERT | NTO set nodl VALUES (dbns_data_mini ng. al go_nane, dbns_data_m ni ng. al go_nai ve_bayes);
I NSERT | NTO set nodl VALUES (dbns_dat a_mi ni ng. prep_aut o, dbns_dat a_mi ni ng. prep_auto_on);
dbns_dat a_ni ni ng. CREATE_MODEL (

model _name => 'nmodl',
m ni ng_function => dbns_data_nmi ning.classification,
data_tabl e_nane => 'mning_data',
case_id_colum_name => 'cust_id',
target _col um_name => 'cust _incone_| evel ',
settings_table_name => 'setnodl');
COWM T,
END;

/
CREATE TABLE setnod2(setting_name VARCHAR2(30),setting_val ue VARCHAR2(30));
BEG N
| NSERT | NTO set nod2
VALUES (dbns_dat a_mini ng. al go_name, dbns_dat a_mi ni ng. al go_nai ve_bayes);
COWM T,
END;
/
DECLARE
v_xformlist dbns_dat a_mi ni ng_t ransf or m TRANSFORM LI ST;
dmxf DM_TRANSFORVE;
BEG N
EXECUTE | MVEDI ATE
" SELECT dmtransforn(attribute_name, attribute_subname, expression, reverse_expression)
FROM TABLE(dbrs_dat a_rmi ni ng. GET_MODEL_TRANSFORMATI ONS (' ' mod1' '))"
BULK COLLECT I NTO dnxf;
dbms_dat a_mi ni ng. GET_TRANSFORM LI ST (

xformlist => v _xformlist,
model _xforns => dmxf);
dbms_dat a_m ni ng. CREATE_MODEL(

model _name => 'mod2',
m ni ng_function => dbns_data_m ning.classification,
data_tabl e_nane => 'mining_data',
case_id_colum_name => 'cust_id',
target _col utm_nane => 'cust _i ncome_| evel ',
settings_table_name => 'setnod2',
xformlist => v _xformlist);

END;
/

-- Transformation expression embedded in modl
SELECT TO_CHAR(expressi on) FROM TABLE (dbns_data_ni ni ng. GET_MODEL_TRANSFORMATI ONS(' nod1'));

TO_CHAR(EXPRESSI ON)

CASE VHEN " CUST_YEAR OF Bl RTH'<1915 THEN 0 WHEN "CUST_YEAR OF Bl RTH'<=1915 THEN 0
WHEN " CUST_YEAR OF BI RTH'<=1920.5 THEN 1 WHEN "CUST_YEAR OF BI RTH'<=1924.5 THEN 2

.5 THEN 29 WHEN "CUST_YEAR OF_BI RTH' IS NOT NULL THEN 30 END

ORACLE 30-128

Chapter 30
DBMS_DATA_MINING

-- Transformation expression embedded in mod2
SELECT TO_CHAR(expressi on) FROM TABLE (dbns_data_mi ni ng. GET_MODEL_TRANSFORMATI ONS(' nod2')) ;

TO_CHAR(EXPRESSI ON)

CASE VHEN " CUST_YEAR OF Bl RTH'<1915 THEN 0 WHEN "CUST_YEAR OF BI RTH'<=1915 THEN 0
WHEN " CUST_YEAR OF BI RTH'<=1920.5 THEN 1 WHEN "CUST_YEAR OF BI RTH'<=1924.5 THEN 2

.5 THEN 29 WHEN "CUST_YEAR OF_BI RTH' IS NOT NULL THEN 30 END

-- Reverse transformation expression embedded in modl
SELECT TO_CHAR(reverse_expressi on) FROM TABLE (dbns_dat a_mi ni ng. GET_MODEL_TRANSFORMATI ONS(' mod1')) ;

TO_CHAR(REVERSE_EXPRESSI ON)

DECODE(" CUST_YEAR OF BIRTH',0,' (; 1915), [1915; 1915]',1,'(1915; 1920.5]',2,' (1
920.5; 1924.5]',3,'(1924.5; 1928.5]',4,' (1928.5; 1932.5]',5,' (1932.5; 1936.5]',6

8,' (1987.5; 1988.5]', 29, (1988.5; 1989.5]',30," (1989.5;)', NULL,' NULL')

-- Reverse transformation expression embedded in mod2
SELECT TO_CHAR(reverse_expression) FROM TABLE (dbns_data_m ni ng. GET_MODEL_TRANSFORMATI ONS(' nod2')) ;

TO_CHAR(REVERSE_EXPRESSI ON)

DECODE(" CUST_YEAR OF BIRTH',0,' (; 1915), [1915; 1915]',1,'(1915; 1920.5]',2,' (1
920.5; 1924.5]',3,'(1924.5; 1928.5]',4,' (1928.5; 1932.5]',5,'(1932.5; 1936.5]',6

8,' (1987.5; 1988.5]',29," (1988.5; 1989.5]',30," (1989.5;)', NULL,' NULL')

30.1.3.36 IMPORT_MODEL Procedure

This procedure imports one or more data mining models. The procedure is
overloaded. You can call it to import mining models from a dump file set, or you can
call it to import a single mining model from a PMML document.

Import from a dump file set

You can import mining models from a dump file set that was created by th