
Oracle® Database
Oracle Database API for MongoDB

F44905-13
May 2024

Oracle Database Oracle Database API for MongoDB,

F44905-13

Copyright © 2021, 2024, Oracle and/or its affiliates.

Primary Author: Drew Adams

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software," "commercial computer software documentation," or "limited rights
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation
of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications of such
programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and
limitations specified in the license contained in the applicable contract. The terms governing the U.S.
Government's use of Oracle cloud services are defined by the applicable contract for such services. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle®, Java, MySQL and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names
may be trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience viii

Documentation Accessibility viii

Related Resources viii

Conventions viii

1 Overview of Oracle Database API for MongoDB

1.1 Purpose of Oracle Database API for MongoDB 1-2

1.2 Tools and Drivers for Oracle Database API for MongoDB 1-2

1.3 Terms and Concepts: MongoDB and Oracle Database 1-3

1.4 Default Naming of a Collection Table 1-5

1.5 Using the Mongo DB API with JSON-Relational Duality Views 1-6

2 Develop Applications with Oracle Database API for MongoDB

2.1 Indexing and Performance Tuning 2-1

2.2 Users, Authentication, and Authorization 2-7

2.3 Migrate Application Data from MongoDB to Oracle Database 2-9

2.4 MongoDB Aggregation Pipeline Support 2-12

2.5 MongoDB Documents and Oracle Database 2-14

2.6 Other Differences Between MongoDB and Oracle Database 2-18

2.7 Accessing Collections Owned By Other Users (Database Schemas) 2-19

3 Support for MongoDB APIs, Operations, and Data Types — Reference

3.1 Database Commands 3-1

3.2 Query and Projection Operators 3-10

3.3 Update Operators 3-13

3.4 Cursor Methods 3-15

3.5 Aggregation Pipeline Operators 3-16

3.5.1 $sql Aggregation Pipeline Stage 3-25

3.6 Data Types 3-35

iii

3.7 Indexes and Index Properties 3-35

Index

iv

List of Examples

1-1 Creating JSON Duality View RACE_DV Using GraphQL 1-7

2-1 Indexing a Singleton Scalar Field Using the JSON Page of Database Actions 2-2

2-2 Indexing a Singleton Scalar Field Using SODA 2-4

2-3 Indexing a Singleton Scalar Field Using SQL 2-4

2-4 Creating a Multivalue Index For Fields Within Elements of an Array 2-5

2-5 Creating a Materialized View And an Index For Fields Within Elements of an Array 2-5

2-6 Migrate JSON Data to Oracle Database Using mongoexport and mongoimport 2-10

2-7 Loading JSON Data Into a Collection Using DBMS_CLOUD.COPY_COLLECTION 2-11

2-8 Using SQL Code Instead of MongoDB Aggregation Pipeline Code 2-13

2-9 Creating a Collection in One Schema and Mapping a Collection To It in Another Schema 2-19

3-1 Result for SELECT Query that Returns a Single Column of JSON Data 3-32

3-2 Result for SELECT Query that Returns Data from Multiple Columns (Any Types) 3-33

3-3 Result for a DDL Statement — No Rows Are Modified 3-34

3-4 Result for a DML Statement That Modifies One Row 3-34

3-5 Result for a DML Statement That Modifies Three Rows 3-34

3-6 Result for a DML Statement That Modifies Two Rows 3-34

v

List of Tables

1-1 Application-User Terms 1-3

2-1 Conversion of BSON Field _id Value To Column ID VARCHAR2 Value 2-16

2-2 JSON Scalar Type Conversions: BSON to OSON Format 2-17

3-1 Administration Commands 3-2

3-2 Aggregation Commands 3-3

3-3 Authentication Commands 3-3

3-4 Diagnostic Commands 3-4

3-5 Query and Write Operation Commands 3-5

3-6 Role Management Commands 3-7

3-7 Replication Commands 3-7

3-8 Sessions Commands 3-8

3-9 User Management Commands 3-8

3-10 Sharding Commands 3-9

3-11 Array Query Operators 3-10

3-12 Bitwise Query Operators 3-10

3-13 Comment Query Operator 3-11

3-14 Comparison Query Operators 3-11

3-15 Element Query Operators 3-11

3-16 Evaluation Query Operators 3-12

3-17 Geospatial Query Operators 3-12

3-18 Logical Query Operators 3-12

3-19 Projection Operators 3-13

3-20 Array Update Operators 3-13

3-21 Bitwise Update Operator 3-14

3-22 Field Update Operators 3-14

3-23 Modifier Update Operators 3-14

3-24 Cursor Methods 3-15

3-25 Arithmetic Expression Operators 3-16

3-26 Array Expression Operators 3-16

3-27 Boolean Expression Operators 3-17

3-28 Comparison Expression Operators 3-18

3-29 Conditional Expression Operators 3-18

3-30 Date Expression Operators 3-18

3-31 Literal Expression Operator ($literal) 3-19

3-32 Object Expression Operators 3-19

vi

3-33 Set Expression Operators 3-20

3-34 String Expression Operators 3-20

3-35 Text Expression Operator ($meta) 3-21

3-36 Type Expression Operators 3-21

3-37 Stage Operators 3-21

3-38 Accumulator Expression Operators 3-23

3-39 Variable Expression Operator 3-23

3-40 System Variables 3-23

3-41 Miscellaneous Operators 3-24

3-42 $sql Fields 3-27

3-43 Fields of binds Object 3-30

3-44 Field datatype Values 3-31

3-45 SELECT: Mappings of Non-JSON SQL Columns to BSON 3-32

3-46 Data Types 3-35

3-47 Indexes 3-35

3-48 Index Properties 3-36

vii

Preface

This document provides a conceptual overview of Oracle Database API for MongoDB.

• Audience

• Documentation Accessibility

• Related Resources

• Conventions

Audience
This document is intended for users of Oracle Database API for MongoDB.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Related Resources
For more information, see these Oracle resources:

• Oracle Database API for MongoDB at Oracle Help Center for complete information
about this product

• Autonomous JSON Database

• Oracle Database JSON Developer’s Guide

• Oracle as a Document Store for general information about using JSON data in
Oracle Database, including with Simple Oracle Document Access (SODA) and
Oracle Database API for MongoDB

Conventions
The following text conventions are used in this document:

Preface

viii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
https://docs.oracle.com/en/database/oracle/mongodb-api/index.html
https://docs.oracle.com/en/cloud/paas/autonomous-json-database/index.html

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Preface

ix

1
Overview of Oracle Database API for
MongoDB

Oracle Database API for MongoDB lets applications interact with collections of JSON
documents in Oracle Database using MongoDB commands.

Oracle Database API for MongoDB is provided as part of Oracle Autonomous Database
Serverless. You can enable it there using the Oracle Cloud Infrastructure Console. See
Configure Access for MongoDB in Using Oracle Autonomous Database Serverless.

If you have release 22.3 or later of Oracle REST Data Services (ORDS), then you can use
the MongoDB API with any Oracle database, release 21c or later, as well as with any Oracle
Autonomous Database, release 19c (serverless, dedicated, and cloud@customer). See
Oracle API for MongoDB Support in Oracle REST Data Services Installation and
Configuration Guide for information about enabling the API.

• Purpose of Oracle Database API for MongoDB
Oracle Database understands Mongo-speak. That's the purpose of Oracle Database API
for MongoDB.

• Tools and Drivers for Oracle Database API for MongoDB
Oracle Database API for MongoDB supports a variety of MongoDB tools and drivers.

• Terms and Concepts: MongoDB and Oracle Database
Some application-user terms and concepts used by MongoDB are presented, together
with description of their relation to Oracle Database..

• Default Naming of a Collection Table
By default, the name of the database table that underlies a document collection is derived
from the collection name.

• Using the Mongo DB API with JSON-Relational Duality Views
You can use Oracle Database API for MongoDB with documents supported by a JSON-
relational duality view. Such documents are automatically generated, based on
underlying table data.

See Also:

Using the Oracle Database API for MongoDB in Using Oracle Autonomous
Database Serverless for information about using an Autonomous Database
(including an Autonomous JSON Database) with Oracle Database API for
MongoDB. This covers configuring the database for use with the API, including for
security and connection.

1-1

1.1 Purpose of Oracle Database API for MongoDB
Oracle Database understands Mongo-speak. That's the purpose of Oracle Database
API for MongoDB.

You have one or more applications that interact with a MongoDB NoSQL database,
and you want to migrate the data to Oracle Database. Or you have relatively simple
collections of JSON documents and you prefer not to learn and use SQL (Structured
Query Language). Or you're used to and prefer to use MongoDB commands,
particularly for the business logic of your applications (query by example) but also for
data definition (creating collections and indexes), data manipulation (CRUD
operations), and some database administration (status information). You appreciate
the flexibility of a JSON document store: no fixed data schemas, easy to use
document-centric APIs.

If you have applications that use MongoDB, you'd like to make them more robust by
providing advanced security; fully ACID transactions (atomicity, consistency, isolation,
durability); standardized JOINs with all sorts of data; and analytics, machine-learning,
and reporting capabilities.

Oracle Database API for MongoDB, or Mongo API for short, provides such
advantages to developers who speak MongoDB. It translates the MongoDB wire
protocol into SQL statements that are executed by Oracle Database. You can continue
to use the drivers, frameworks, and tools you're used to, to develop your JSON
document-store applications.

Oracle Database is a converged database. It's multi-model and polyglot — seemingly
different kinds of databases rolled into one, providing synergy across very different
features, supporting different workloads and data models.

Oracle Database is also multitenant, which means you can have both consolidation
and isolation, for different teams and purposes. And it provides a single, common
approach for security, upgrades, patching, and maintenance. But if you use an
Autonomous Oracle Database, such as Autonomous JSON Database, then Oracle
takes care of all such database administration responsibilities. And there's Always
Free access to an autonomous database.

The standard, declarative language SQL (Structured Query Language) underlies
processing on Oracle Database. You might develop applications using Mongo-speak
or Simple Oracle Document Access (SODA) with a popular application development
language, but SQL is behind it all, and it enables your app to play well with everything
else on Oracle Database.

1.2 Tools and Drivers for Oracle Database API for MongoDB
Oracle Database API for MongoDB supports a variety of MongoDB tools and drivers.

Oracle recommends that you use the following tool and driver versions, or higher, with
support for load-balanced connections.

• C 1.19.0

• C# 2.13.0

• Compass 1.28.1

• Database Tools 100.5.0 (includes mongoexport, mongorestore, and mongodump)

Chapter 1
Purpose of Oracle Database API for MongoDB

1-2

https://docs.mongodb.com/manual/reference/mongodb-wire-protocol/
https://docs.mongodb.com/manual/reference/mongodb-wire-protocol/

• Go 1.6.0

• Java 4.3.0

• MongoSH 0.15.6

• Node.js driver 4.1.0

• PyMongo 3.12.0 (for Python language)

• Ruby 2.16.0

• Rust 2.1.0

You can download these drivers from https://www.mongodb.com/docs/drivers/.

Note:

Examples in this documentation of input to, and output from, Oracle Database API
for MongoDB use the syntax of shell mongosh.

1.3 Terms and Concepts: MongoDB and Oracle Database
Some application-user terms and concepts used by MongoDB are presented, together with
description of their relation to Oracle Database..

Some of the same terms are also used in Oracle Database API for MongoDB. In general,
application developers need not be concerned with the Oracle Database concepts and
technologies that underlie such terms.

Table 1-1 Application-User Terms

Term Description

Database A set of collections.

On Oracle Database this corresponds to a database schema.

Because of this possible confusion over use of the word database, in this
documentation that word is used for Oracle Database, and the term schema, or
database schema, is used for what MongoDB calls a "database".

User For log-in purposes, a user of Oracle Database API for MongoDB is an Oracle
Database user, which is also called a database schema (see previous).

To use the collections in a given schema ("database") , you log in with the Oracle
Database API for MongoDB using the MongoDB PLAIN $external mechanism and
providing the credentials for that schema.

A root user, that is, a user who has MongoDB role root, can create additional
database schemas. And a root user can use the collections of any schema without
needing to log in separately for that schema.

Collection A collection contains a set of documents.

A collection name is unique for a given database schema: Different collections can
have the same name if they are in different schemas.

On Oracle Database, a table or a view underlies a collection. The table name is
derived from the collection name and is typically the same. (Exceptions include
collection names that use words reserved by Oracle Database.) Typically all
documents in a collection are JSON documents.

Chapter 1
Terms and Concepts: MongoDB and Oracle Database

1-3

https://www.mongodb.com/docs/drivers/

Table 1-1 (Cont.) Application-User Terms

Term Description

Document The basic unit of storage for data in a collection.

On Oracle Database a document corresponds roughly to a row in the table or view that
underlies the collection.

A document is typically a JSON document, that is, it contains only JSON data. On
Oracle Autonomous Database a document is always a JSON document.

On Oracle Autonomous Database the table column used to store documents is named
data.

Primary Key On Oracle Database a primary key is used to uniquely identify a table or view row.

MongoDB uses a unique _id field in a document to identify the document. On Oracle
Database the primary key for a JSON document is stored in a column named id. Its
value is automatically set to the value of the document's _id field. See Document Key:
Differences and Conversion (Oracle Database Prior to 23ai).

Query
Expression

A JSON object that is sent by an application client to the server (Oracle Database), to
query documents of a collection.

The object can contain query operator fields, whose names start with $. The
operators are interpreted, and their operations are invoked to act on the collection. The
server returns the action results to the client.

Query expressions are typically used to query a collection, but they can also be used
to project or update data in documents.

Oracle Database API for MongoDB translates query expressions into SQL (Structured
Query Language) queries.

Index Indexes enhance performance when acting on collections (querying, inserting,
updating, and deleting documents).

An index name is unique for a given database schema: Different indexes can have the
same name if they are in different schemas.

Note:

If Oracle Database parameter compatible is less than
23 then MongoDB commands to create or drop indexes
are ignored by Oracle Database API for MongoDB. You
must instead create Oracle Database indexes that are
relevant for your JSON data.

Pipeline MongoDB aggregation operations chain multiple operations together, invoking them
sequentially as a pipeline.

If Oracle Database parameter compatible is less than 23 then MongoDB aggregation
pipelines are not used; Oracle Database API for MongoDB carries out aggregation
operations differently. See MongoDB Aggregation Pipeline Support.

Related Topics

• MongoDB Documents and Oracle Database
Presented here is the relationship between a JSON document used by MongoDB
and the same content as a JSON document stored in, and used by, Oracle
Database.

Chapter 1
Terms and Concepts: MongoDB and Oracle Database

1-4

• Migrate Application Data from MongoDB to Oracle Database
Some ways to export your JSON data from MongoDB and then import it into Oracle
Database are described. Migration considerations are presented.

See Also:

• Overview of SODA Document Collections in Oracle Database Introduction to
Simple Oracle Document Access (SODA) for information about collections

• Overview of SODA Documents in Oracle Database Introduction to Simple
Oracle Document Access (SODA) for information about documents

• Overview of SODA Filter Specifications (QBEs) in Oracle Database Introduction
to Simple Oracle Document Access (SODA) for information about QBEs

• Query JSON Data in Oracle Database JSON Developer’s Guide for information
about querying JSON data using SQL

1.4 Default Naming of a Collection Table
By default, the name of the database table that underlies a document collection is derived
from the collection name.

If you want a different table name from that provided by default then use custom collection
metadata to explicitly provide the name.

The default table name is derived from the collection name you provide, as follows:

1. Each ASCII control character and double quotation mark character (") in the collection
name is replaced by an underscore character (_).

2. If all of the following conditions apply, then all letters in the name are converted to
uppercase, to provide the table name. In this case, you need not quote the table name in
SQL code; otherwise, you must quote it.

• The letters in the name are either all lowercase or all uppercase.

• The name begins with an ASCII letter.

• Each character in the name is alphanumeric ASCII, an underscore (_), a dollar sign
($), or a number sign (#).

Note:

Oracle recommends that you do not use dollar-sign characters ($) or
number-sign characters (#) in Oracle identifier names.

For example:

• Collection names "col" and "COL" both result in a table named "COL". When used in
SQL, the table name is interpreted case-insensitively, so it need not be enclosed in
double quotation marks (").

Chapter 1
Default Naming of a Collection Table

1-5

• Collection name "myCol" results in a table named "myCol". When used in SQL,
the table name is interpreted case-sensitively, so it must be enclosed in double
quotation marks (").

1.5 Using the Mongo DB API with JSON-Relational Duality
Views

You can use Oracle Database API for MongoDB with documents supported by a
JSON-relational duality view. Such documents are automatically generated, based on
underlying table data.

JSON-relational duality views are supported only in Oracle Database Release 23ai or
later.

A JSON-relational duality view exposes data stored in relational database tables as
JSON documents. The documents are materialized on demand, not stored as such.
Duality views give data both a conceptual and an operational duality: it's organized
both relationally and hierarchically. You can base different duality views on data stored
in one or more of the same tables, providing different JSON hierarchies over the same,
shared data.

This means that applications can access (create, query, modify) the same data as a
collection of JSON documents or as a set of related database tables and columns, and
both approaches can be employed at the same time.

You can manipulate the documents realized by duality views in the ways you're used
to, using your usual drivers, frameworks, tools, and development methods. In
particular, applications can use any programming languages.

An application uses a document collection that's supported by a duality view as if the
documents were stored in a table column of JSON data type. You use the duality-view
name as collection-name argument in MongoDB API calls. (If the name wasn't quoted
when the view was created then, for a string argument, be sure to pass the name as
uppercase.)

As one important use case, a MongoDB API application can easily make use of any
existing database data — just create one or more duality views over that data, to
support JSON collections.

An important aspect of the JSON-relational duality is that it lets different kinds of JSON
document share common data (as well as share the same data in relational tables).
How you define a duality view determines what data gets shared, and how (who can
perform what kinds of updating operations on which document parts).

Creating JSON Duality Views for Use With the MongoDB API

You cannot create a JSON-relational view using the MongoDB API. You can use SQL
statement CREATE JSON RELATIONAL DUALITY VIEW to do that.

All duality views are compatible with the MongoDB API. They always have field _id as
their document identifier. The value of field _id specifies the document fields whose
values are the primary-key columns of the root table that underlies the duality view.

• If there is only one primary-key column, then you use that column as the value of
field _id when you define the duality view. For example: _id : race_id, as in
Example 1-1.

Chapter 1
Using the Mongo DB API with JSON-Relational Duality Views

1-6

• If there are multiple primary-key columns, then you use an object as the value of field _id
when you define the view. The members of the object specify document fields whose
values are the primary-key columns. For example, suppose you have a car-racing duality
view with two primary-key columns, race_id and race_year, which together uniquely
identify a root-table row, but neither of which does so alone. This _id field in the duality
view definition maps document fields raceId and year to primary-key columns race_id
and race_year, respectively:

_id : {raceId : race_id, year : race_year}

If there is only one primary-key column, you can nevertheless use an object value for
_id, if you like. Doing so lets you provide a meaningful field name. For example, here the
single primary-key column, race_id, provides the value of field raceId as well as the
value of field _id:

_id : {raceId : race_id}

The value(s) provided by field _id for the primary key column(s) it maps to must of course be
insertable into those columns, which means that their data types must be compatible with the
column types. For example, if field _id maps to a single primary-key column that is of SQL
type NUMBER, then the _id value of a document you insert must be numeric. Otherwise, an
error is raised for the insertion attempt.

If you don't explicitly include an _id field in a document that you insert, then it is added
automatically, with an ObjectId value. (You can also explicitly use an ObjectId value in an
_id field.) An ObjectId value can only be used for a field that the duality view maps to a
column of SQL type RAW.

Example 1-1 Creating JSON Duality View RACE_DV Using GraphQL

This example creates a duality view, race_dv, that supports car-racing race documents.

CREATE JSON RELATIONAL DUALITY VIEW race_dv AS
 race @insert @update @delete
 {_id : race_id
 name : name
 laps : laps @noupdate
 date : race_date
 podium : podium @nocheck
 result : driver_race_map @insert @update @delete
 [{driverRaceMapId : driver_race_map_id
 position : position
 driver @noinsert @update @nodelete
 @unnest {driverId : driver_id}")
 name : name}}]};

This definition is the same as the one in Creating Duality View RACE_DV Using GraphQL in
JSON-Relational Duality Developer's Guide. See that documentation for similar duality view
creations for driver and race documents. The SQL code in this example embeds Oracle
GraphQL code. Alternatively you can use only SQL code for the definition, as in Creating
Duality View RACE_DV, With Unnested Driver Information Using SQL.

Chapter 1
Using the Mongo DB API with JSON-Relational Duality Views

1-7

This duality view supports JSON documents where the race objects look like this —
they contain a result field whose value is an array of objects that specify the drivers
and their resulting positions in the given race:

{"_id" : 201,
"name" : "Bahrain Grand Prix",
"laps" : 57,
"date" : "2022-03-20T00:00:00",
"podium" : {...},
"result" : [{"driverRaceMapId" : 3,
 "position" : 1,
 "driverId" : 103,
 "name" : "Charles Leclerc"},...]}

The value of document identifier field _id is taken from the single primary-key column,
race_id of the root table, race. For example, the document identified by the _id field
whose value is 201 is generated from the row of data that has 201 in primary-key
column race_id of the root table (race) underlying the duality view.

Generation of the documents supported by the view automatically joins data from
columns driver_race_map_id, position and driver_id from table driver_race_map,
and column name from table driver.

The annotations (GraphQL directives) @insert, @update, and @delete are used to
specify that applications can insert, update, and delete documents supported by the
view, respectively, but that they can only perform update operations on the driver field
of the documents (a driver cannot be inserted or deleted when you modify a race
document) and you cannot update the laps field (you cannot change the number of
laps when you update a race document).

The @nocheck annotation applied to column podium specifies that updating field podium
in a race document does not contribute to checking the state/version of the document
(its ETAG value).

See Also:

• CREATE JSON RELATIONAL DUALITY VIEW in Oracle Database SQL
Language Reference

• Document-Identifier Fields for Duality Views in JSON-Relational Duality
Developer's Guide

• Annotations (NO)UPDATE, (NO)INSERT, (NO)DELETE, To Allow/
Disallow Updating Operations in JSON-Relational Duality Developer's
Guide

• Annotation (NO)CHECK, To Include/Exclude Fields for ETAG Calculation

Chapter 1
Using the Mongo DB API with JSON-Relational Duality Views

1-8

2
Develop Applications with Oracle Database
API for MongoDB

Considerations when developing or migrating applications — a combination of (1) how-to
information and (2) descriptions of differences and possible adjustments.

• Indexing and Performance Tuning
Oracle Database offers multiple technologies to accelerate queries over JSON data,
including indexes, materialized views, in-memory column storage, and Exadata storage-
cell pushdown. Which performance-tuning approaches you take depend on the needs of
your application.

• Users, Authentication, and Authorization
Oracle Database security differs significantly from that of MongoDB. The security model
of Oracle Database API for MongoDB is described: the creation of users, their
authentication, and their authorization to perform different operations.

• Migrate Application Data from MongoDB to Oracle Database
Some ways to export your JSON data from MongoDB and then import it into Oracle
Database are described. Migration considerations are presented.

• MongoDB Aggregation Pipeline Support
Oracle Database API for MongoDB supports MongoDB aggregation pipelines, that is,
MongoDB command aggregate. It lets you use pipeline code to execute a query as a
sequence of operations. You can also use SQL as a declarative alternative to this
procedural approach.

• MongoDB Documents and Oracle Database
Presented here is the relationship between a JSON document used by MongoDB and the
same content as a JSON document stored in, and used by, Oracle Database.

• Other Differences Between MongoDB and Oracle Database
Various differences between MongoDB and Oracle Database are described. These
differences are generally not covered in other topics. Consider these differences when
you migrate an application to Oracle Database or you develop a new application for
Oracle Database that uses MongoDB commands.

• Accessing Collections Owned By Other Users (Database Schemas)
You can directly access a MongoDB API collection owned by another user (database
schema) if you log into that schema. You can indirectly access a collection owned by
another user, without logging into that schema, if that collection has been mapped to a
collection in your schema.

2.1 Indexing and Performance Tuning
Oracle Database offers multiple technologies to accelerate queries over JSON data, including
indexes, materialized views, in-memory column storage, and Exadata storage-cell pushdown.
Which performance-tuning approaches you take depend on the needs of your application.

If your Oracle Database compatible parameter is 23 or greater, then you can use MongoDB
index operations createIndex and dropIndex to automatically create and drop the relevant

2-1

Oracle indexes. If parameter compatible parameter is less than 23, then such
MongoDB index operations are not supported; they are ignored.

Regardless of your database release you can create whatever Oracle Database
indexes you need directly, using (1) the JSON Page of Using Oracle Database Actions
(see Creating Indexes for JSON Collections), (2) Simple Oracle Document Access
(SODA), or (3) SQL — see Indexes for JSON Data in Oracle Database JSON
Developer’s Guide. Using the JSON page is perhaps the easiest approach to indexing
JSON data.

Note:

MongoDB allows different collections in the same "database" to have
indexes of the same name. This is not allowed in Oracle Database — the
name of an index must be unique across all collections of a given database
schema ("database").

Consider, for example, indexing a collection, named orders, of purchase-order
documents such as this one:

{ "PONumber" : 1600,
 "User" : "ABULL",
 "LineItems" : [{ "Part" : { "Description" : "One Magic Christmas",
 "UnitPrice" : 19.95,
 "UPCCode" : 13131092899 },
 "Quantity" : 9.0 },
 { "Part" : { "Description" : "Lethal Weapon",
 "UnitPrice" : 19.95,
 "UPCCode" : 85391628927
 },
 "Quantity" : 5.0 }]}

Two important use cases are (1) indexing a singleton scalar field, that is, a field that
occurs only once in a document (2) indexing a scalar field in objects within the
elements of an array. Indexing the value of field PONumber is an example of the first
case. Indexing the value of field UPCCode is an example of the second case.

Example 2-1, Example 2-2, and Example 2-3 illustrate the first case. Example 2-5
illustrates the second case.

You can also index GeoJSON (spatial) data, using a function-based SQL index that
returns SDO_GEOMETRY data. And for all JSON data you can create a JSON search
index, and then perform full-text queries using SQL/JSON condition
json_textcontains.

Example 2-1 Indexing a Singleton Scalar Field Using the JSON Page of
Database Actions

To create an index for field PONumber using the JSON Page, do the following.

1. Right-click the collection name (orders) and select Indexes from the popup menu.

Chapter 2
Indexing and Performance Tuning

2-2

2. In the New Index page:

• Type * in the Properties search box.

This populates the Properties list with paths to all scalar fields in your collection.
These paths are provided by sampling the collection data using a JSON data guide
— see JSON_DATAGUIDE in Oracle Database SQL Language Reference.

If you turn on option Advanced, by pushing its slider to the right, then the types of
the listed scalar fields are also shown. The types shown are those picked up by
sampling the collection. But you can change the type of a field for indexing purposes.

• Select the paths of the fields to be indexed. In this case we want only a single scalar
field indexed, PONumber, so select that.

Note: This dialog box lets you select multiple paths. If you select more than one path
then a composite index is created for the data at those paths.1 But if you want to
index two different fields separately then create two indexes, not one composite
index (which indexes both fields together).

The index data type is determined automatically by the types of the data at the
selected paths, but you can control this by turning on Automatic and changing the
data types. For example, JSON numbers in the collection data for a given field cause
a type of number to be listed, but you can edit this to VARCHAR2 to force indexing as a
string value.

The values of field PONumber are unique — the same numeric value is not used for the
field more than once in the collection, so select Unique index.

Select Index Nulls also. This is needed for queries that use ORDER BY to sort the results.
It causes every document to have an entry in the index.

The values in field PONumber are JSON numbers, which means the index can be used for
numerical comparison.

1 MongoDB calls a composite index a compound index. A composite index is also sometimes called a concatenated index.

Chapter 2
Indexing and Performance Tuning

2-3

Example 2-2 Indexing a Singleton Scalar Field Using SODA

Each SODA implementation (programming language or framework) that supports
indexing provides a way to create an index. They all use a SODA index specification to
define the index to be created. For example, with SODA for REST you use an HTTP
POST request, passing URI argument action=index, and providing the index
specification in the POST body.

This is a SODA index specification for a unique index named poNumIdx on field
PONumber:

{ "name" : "poNumIdx",
 "unique" : true,
 "fields" : [{ "path" : "PONumber",
 "dataType" : "NUMBER",
 "order" : "ASC" }] }

Example 2-3 Indexing a Singleton Scalar Field Using SQL

You can use Database Actions to create an index for field PONumber in column data of
tableorders with this SQL code. This uses SQL/JSON function json_value to extract
values of field PONumber.

The code uses ERROR ON ERROR handling, to raise an error if a document has no
PONumber field or it has more than one.

Item method numberOnly() is used in the path expression that identifies the field to
index, to ensure that the field value is numeric.

Method numberOnly() is used instead of method number(), because number() allows
also for conversion of non-numeric fields to numbers. For example, number() converts
a PONumber string value of "42" to the number 42.

Chapter 2
Indexing and Performance Tuning

2-4

Other such "only" item methods, which similarly provide strict type checking, include
stringOnly(), dateTimeOnly(), and binaryOnly(), for strings, dates, and binary values,
respectively.

CREATE UNIQUE INDEX "poNumIdx" ON orders
 (json_value(data, '$.PONumber.numberOnly()' ERROR ON ERROR))

See Also:

SQL/JSON Path Expression Item Methods in Oracle Database JSON Developer’s
Guide

Example 2-4 Creating a Multivalue Index For Fields Within Elements of an Array

Starting with Oracle Database 21c you can create a multivalue index for the values of fields
that can occur multiple times in a document because they are contained in objects within an
array (objects as elements or at lower levels within elements).

This example creates a multivalue index on collection orders for values of field UPCCode. It
example uses item method numberOnly(), so it applies only to numeric UPCCode fields.

CREATE MULTIVALUE INDEX mvi_UPCCode ON orders o
 (o.data.LineItems.Part.UPCCode.numberOnly());

See Also:

Creating Multivalue Function-Based Indexes for JSON_EXISTS in Oracle Database
JSON Developer’s Guide

Example 2-5 Creating a Materialized View And an Index For Fields Within Elements of
an Array

Prior to Oracle Database 21c you cannot create a multivalue index for fields such as UPCCode,
which can occur multiple times in a document because they are contained in objects within
an array (objects as elements or at lower levels within elements).

You can instead, as in this example, create a materialized view that extracts the data you
want to index, and then create a function-based index on that view data.

This example creates materialized view mv_UPCCode with column upccode, which is a
projection of field UPCCode from within the Part object in array LineItems of column data of
table orders. It then creates index mv_UPCCode_idx on column upccode of the materialized
view (mv_UPCCode).

CREATE MATERIALIZED VIEW mv_UPCCode
 BUILD IMMEDIATE
 REFRESH FAST ON STATEMENT WITH PRIMARY KEY
 AS SELECT o.id, jt.upccode
 FROM orders o,

Chapter 2
Indexing and Performance Tuning

2-5

 json_table(data, '$.LineItems[*]'
 ERROR ON ERROR NULL ON EMPTY
 COLUMNS (upccode NUMBER PATH '$.Part.UPCCode')) jt;

CREATE INDEX mv_UPCCode_idx ON mv_UPCCode(upccode);

The query optimizer is responsible for finding the most efficient method for a SQL
statement to access requested data. In particular, it determines whether to use an
index that applies to the queried data, and which index to use if more than one is
relevant. In most cases the best guideline is to rely on the optimizer.

In some cases, however, you might prefer to specify that a particular index be picked
up for a given query. You can do this with a MongoDB hint that names the index.
(Oracle does not support the use of MongoDB index specifications — just provide the
index name.)

For example, this query uses index poNumIdx on collection orders, created in
Example 2-1.

db.orders.find({"PONumber":1600}).hint("poNumIdx")

Alternatively, you can specify an index to use by passing an Oracle SQL hint, using
query-by-example (QBE) operator $native, which is an Oracle extension to the
MongoDB hint syntax.

The argument for $native has the same syntax as a SQL hint string (that is, the actual
hint text, without the enclosing SQL comment syntax /*+...*/). You can pass any
SQL hint using $native. In particular, you can turn on monitoring for the current SQL
statement using hint MONITOR. This code does that for a find() query:

db.orders.find().hint({"$native":"MONITOR"})

Related Topics

• MongoDB Aggregation Pipeline Support
Oracle Database API for MongoDB supports MongoDB aggregation pipelines, that
is, MongoDB command aggregate. It lets you use pipeline code to execute a
query as a sequence of operations. You can also use SQL as a declarative
alternative to this procedural approach.

Chapter 2
Indexing and Performance Tuning

2-6

See Also:

• The JSON Page in Using Oracle Database Actions

• Overview of SODA Indexing in Oracle Database Introduction to Simple Oracle
Document Access (SODA)

• Creating Multivalue Function-Based Indexes for JSON_EXISTS in Oracle
Database JSON Developer’s Guide

• Performance Tuning for JSON in Oracle Database JSON Developer’s Guide for
detailed information about improving performance when using JSON data

• JSON Search Index for Ad Hoc Queries and Full-Text Search in Oracle
Database JSON Developer’s Guide for information about JSON search indexes

• Creating a Spatial Index For Scalar GeoJSON Data in Oracle Database JSON
Developer’s Guide

• Influencing the Optimizer with Hints in Oracle Database SQL Tuning Guide

• Monitoring Database Operations in Oracle Database SQL Tuning Guide for
complete information about monitoring database operations

• MONITOR and NO_MONITOR Hints in Oracle Database SQL Tuning Guide for
information about the syntax and behavior of SQL hints MONITOR and
NO_MONITOR

2.2 Users, Authentication, and Authorization
Oracle Database security differs significantly from that of MongoDB. The security model of
Oracle Database API for MongoDB is described: the creation of users, their authentication,
and their authorization to perform different operations.

By default, MongoDB does not enable user authentication and authorization checks. Oracle
Database always requires authentication, and it always verifies that a connected user is
authorized to perform a requested operation. A valid username and password must be
provided for authentication.

Oracle Database API for MongoDB supports only the following connection-option values for
authentication:

• PLAIN value (plain-text authentication) for option authMechanism. In particular, the SCRAM-
SHA-* authentication methods are not supported.

• $external value for option authSource. (This is anyway required for MongoDB whenever
the authentication method is PLAIN.)

Oracle Database API for MongoDB relies on Oracle Database users, privileges, and roles.
You cannot add or modify these users and roles using MongoDB clients or drivers. You can
instead do this using SQL or the Oracle Autonomous Database console. The minimum
Oracle Database roles required to use the API are CONNECT, RESOURCE, and SODA_APP.

For MongoDB, a "database" is a set of collections. For Oracle Database API for MongoDB,
this corresponds to an Oracle Database schema.

Chapter 2
Users, Authentication, and Authorization

2-7

Note:

Using Oracle API for MongoDB to drop a "database" does not drop the
underlying database schema. Instead, it drops all collections within the
schema.

An administrative user can drop a schema using SQL (for example, using
Database Actions with an Autonomous Oracle Database).

For the API, a username must be a database schema name. The name is case-
insensitive, it cannot start with a nonalphabetic character (including a numeral), and it
must be provided with a secure password.

Normally, a user of the API can only perform operations within its schema (the
username is the schema name). Examples of such operations include creating new
collections, reading and writing documents, and creating indexes.

When an administrative user tries to insert data into a database schema (user) that
does not exist, that schema is created automatically as a schema-only account, which
means that it does not have a password and it cannot be logged into. The new
schema is granted these privileges: SODA_APP, CREATE SESSION, CREATE TABLE, CREATE
VIEW, CREATE SEQUENCE, CREATE PROCEDURE, and CREATE JOB. The schema is also
given an unlimited tablespace quota, and is enabled for using Oracle REST Data
Services (ORDS).

For an ordinary user of the API, a MongoDB shell command (such as use
<database>) that switches from the current MongoDB database to another one is
typically not supported — switching to another database schema raises an error.

However, an administrative user, which is one that has all of the following privileges,
can create new users (database schemas), and can access any schema as any user:
CREATE USER, ALTER USER, DROP USER. User admin is a predefined administrative user.

An administrative user can do the following:

• Use the schemas of other users.

Access to other schemas than that of the current user makes use of a proxied
connection. For example, someone connected as an administrative user can
perform operations in schema other_user using the same roles and privileges as
if connected directly as other_user.

• Create new users (schemas).

For example, if an administrative user tries to create a collection in a schema toto
that does not already exist, that schema (user) is automatically created.

Oracle recommends that you do not allow production applications to make use of an
administrative user. Applications should instead connect as ordinary users, with a
minimum of privileges. In particular, connect an application to the database using a
MongoClient that is specific to a particular schema (user).

Related Topics

• Terms and Concepts: MongoDB and Oracle Database
Some application-user terms and concepts used by MongoDB are presented,
together with description of their relation to Oracle Database..

Chapter 2
Users, Authentication, and Authorization

2-8

• Migrate Application Data from MongoDB to Oracle Database
Some ways to export your JSON data from MongoDB and then import it into Oracle
Database are described. Migration considerations are presented.

Related Topics

• MongoDB Documents and Oracle Database
Presented here is the relationship between a JSON document used by MongoDB and the
same content as a JSON document stored in, and used by, Oracle Database.

• Users, Authentication, and Authorization
Oracle Database security differs significantly from that of MongoDB. The security model
of Oracle Database API for MongoDB is described: the creation of users, their
authentication, and their authorization to perform different operations.

See Also:

• Create Users on Autonomous Database in Using Oracle Autonomous Database
Serverless

• Manage User Roles and Privileges on Autonomous Database in Using Oracle
Autonomous Database Serverless

• CREATE USER in Oracle Database SQL Language Reference for information
about using SQL to create database schemas (also called database users)

• GRANT in Oracle Database SQL Language Reference for information about
using SQL to grant roles to database schemas

• Using the Oracle Database API for MongoDB in Using Oracle Autonomous
Database Serverless for information about using an Autonomous Database
(including an Autonomous JSON Database) with Oracle Database API for
MongoDB. This covers configuring the database for use with the API, including
for security and connection.

• ORDS.ENABLE_SCHEMA in Oracle REST Data Services Developer's Guide
for information about enabling a database schema for ORDS

2.3 Migrate Application Data from MongoDB to Oracle Database
Some ways to export your JSON data from MongoDB and then import it into Oracle
Database are described. Migration considerations are presented.

You can migrate your application data in any of these ways:

• Use the MongoDB command-line tools mongoexport and mongoimport.

mongoexport exports data from a MongoDB instance to your file system, and
mongoimport imports the exported data from your file system to Oracle Database.
Provide your database connection information when using mongoimport. Example 2-6
illustrates this.

• Use a MongoDB tool such as Compass to import data into Oracle Database after
connecting that tool to the database. Select the name of your JSON collection, then
select ADD DATA.

Chapter 2
Migrate Application Data from MongoDB to Oracle Database

2-9

This displays a popup dialog box where you browse to and import the JSON file
containing your collection data. See MongoDB Compass.

• After exporting JSON data to your file system, import it to the Oracle Cloud Object
Store, then load it from there into a collection using PL/SQL procedure
DBMS_CLOUD.copy_collection. Example 2-7 illustrates this.

This processes the data in parallel, so it is typically faster than mongoimport.

• Write a program that reads JSON documents from a connection to MongoDB and
writes them to a connection to Oracle Database.

Example 2-6 Migrate JSON Data to Oracle Database Using mongoexport and mongoimport

This example exports collection sales from MongoDB to file-system file sales.json. It
then imports the data from that file to Oracle Database as collection sales. The user is
connected to host <host> as database schema <user> with password <password>.

mongoexport --collection=sales --out sales.json

mongoimport 'mongodb://<user>:<password>@<host>:27017/<user>?
authMechanism=PLAIN&authSource=$external&ssl=true' --collection=sales --
file=sales.json

Chapter 2
Migrate Application Data from MongoDB to Oracle Database

2-10

https://www.mongodb.com/products/compass

Note:

Use URI percent-encoding to replace any reserved characters in your connection-
string URI — in particular, characters in your username and password. These are
the reserved characters and their percent encodings:

! # $ % & ' () * +
%21 %23 %24 %25 %26 %27 %28 %29 %2A %2B

, / : ; = ? @ []
%2C %2F %3A %3B %3D %3F %40 %5B %5D

For example, if your username is RUTH and your password is @least1/2#? then your
MongoDB connection string to server <server> might look like this:

'mongodb://RUTH:%40least1%2F2%23%3F@<server>:27017/ruth/ ...'

Depending on the tools or drivers you use, you might be able to provide a
username and password as separate parameters, instead of as part of a URI
connection string. In that case you likely won't need to encode any reserved
characters they contain.

See also:

• Percent Encoding - Reserved Characters

• Uniform Resource Identifier (URI): Generic Syntax

See Also:

Using the Oracle Database API for MongoDB in Using Oracle Autonomous
Database Serverless for information about using an Autonomous Database
(including an Autonomous JSON Database) with Oracle Database API for
MongoDB. This covers configuring the database for use with the API, including for
security and connection.

Example 2-7 Loading JSON Data Into a Collection Using
DBMS_CLOUD.COPY_COLLECTION

This example loads data from the Oracle Cloud Object Store into a new collection,
newCollection, using PL/SQL procedure DBMS_CLOUD.copy_collection. It assumes that the
data was exported from MongoDB to your file system and then imported from there to the
object-store location that's passed as the value of parameter file_uri_list.

The value passed as copy_collection parameter FORMAT is a JSON object with fields
recorddelimiter and type:

Chapter 2
Migrate Application Data from MongoDB to Oracle Database

2-11

https://en.wikipedia.org/wiki/Percent-encoding#Reserved_characters
https://datatracker.ietf.org/doc/html/rfc3986#section-2.2

• Field recorddelimiter specifies that records in the input data are separated by
newline characters. A JSON document is created for each record, that is, for each
line in the newline-delimited input data.

• Field type specifies that the input JSON data can contain EJSON extended
objects, and that these should be interpreted.

See DBMS_CLOUD Package Format Options in Using Oracle Autonomous Database
Serverless for information about parameter FORMAT.

BEGIN
 DBMS_CLOUD.copy_collection(
 collection_name => 'newCollection',
 file_uri_list => 'https://objectstorage.../data.json',
 format => json_object(
 'recorddelimiter' : '''\n''',
 'type' : 'ejson'));
END;
/

Related Topics

• Users, Authentication, and Authorization
Oracle Database security differs significantly from that of MongoDB. The security
model of Oracle Database API for MongoDB is described: the creation of users,
their authentication, and their authorization to perform different operations.

• Terms and Concepts: MongoDB and Oracle Database
Some application-user terms and concepts used by MongoDB are presented,
together with description of their relation to Oracle Database..

See Also:

• mongoexport and mongoimport

• Load an Array of JSON Documents into a Collection in Using Oracle
Autonomous JSON Database for information about using PL/SQL
procedure DBMS_CLOUD.COPY_COLLECTION

2.4 MongoDB Aggregation Pipeline Support
Oracle Database API for MongoDB supports MongoDB aggregation pipelines, that is,
MongoDB command aggregate. It lets you use pipeline code to execute a query as a
sequence of operations. You can also use SQL as a declarative alternative to this
procedural approach.

MongoDB's aggregation pipeline is essentially a weak emulation of SQL capabilities.
With MongoDB you express operations such as sorting, grouping, and ordering as
separate steps in a pipeline. This approach is procedural: you specify how to execute
a query as a sequence of operations.

SQL on the other hand is declarative. You specify the query result you want, and the
optimizer picks an optimal execution plan based on available indexes, data statistics,

Chapter 2
MongoDB Aggregation Pipeline Support

2-12

https://docs.mongodb.com/database-tools/mongoexport/
https://docs.mongodb.com/database-tools/mongoimport/

cost estimate, and so on. In other words, you specify what you want done, and the optimizer,
not you, determines how it should be done.

Oracle Database SQL support of JSON data includes operating on documents and
collections, as well as joining JSON and non-JSON data (relational, spatial, graph, …). As a
user of Oracle Database API for MongoDB you can apply SQL directly to JSON data without
worrying about manually specifying and sequencing any specific operations.

But if you do use MongoDB aggregation pipeline code then the MongoDB API automatically
translates the pipeline stages and operations into equivalent SQL code, and the optimizer
picks the best execution plan possible. The API supports a subset of the MongoDB
aggregation pipeline stages and operations — see Aggregation Pipeline Operators for
details.

Unlike MongoDB, Oracle Database does not limit the size of the data to be sorted, joined, or
grouped. You can use it for reporting or analytical work that spans millions of documents
across any number of collections.

You can use Oracle Database simplified dot notation for JSON data, or standard SQL/JSON
functions json_value, json_query, and json_table, to extract values from your JSON data
for reporting or analytic purposes. You can convert relational and other kinds of data
(including spatial and graph data) to JSON data using the SQL/JSON generation functions.
You can join JSON data from multiple tables and collections with a single SQL FROM clause.

A MongoDB aggregation pipeline performs operations on JSON documents from one or more
collections. It's composed of successive stages, each of which performs document operations
and passes the resulting documents to the next stage for further processing. The operations
for any stage can filter the documents passed from the previous stage, transform (update)
them, or even create new documents, for the next stage. Transformation can involve the use
of aggregate operators, also called accumulators, such as $avg (average), which can
combine field values from multiple documents.

Each stage in a pipeline is represented by an aggregation expression, which is a JSON
value. See the MongoDB Aggregation Pipeline documentation for more background.

You can use declarative SQL code to accomplish what you would otherwise use an
aggregation pipeline for. This is particularly relevant if your Oracle Database parameter
compatible is less than 23, in which case most MongoDB aggregation pipelines are not
supported. Example 2-8 illustrates this.

Example 2-8 Using SQL Code Instead of MongoDB Aggregation Pipeline Code

This example calculates average revenues by zip code. It first shows a MongoDB
aggregation pipeline expression to do this; then it shows equivalent SQL code.

MongoDB aggregation pipeline:

This code tells MongoDB how to calculate the result; it specifies the order of execution.

db.sales.aggregate(
 [{"$group" : {"_id" : "$address.zip",
 "avgRev" : {"$avg" : "$revenue"}}},
 {"$sort" : {"avgRev" : -1}}])

SQL:

This code specifies the grouping and order of the output presentation declaratively. It does
not specify how the computation is to be carried out, including the order of execution. It

Chapter 2
MongoDB Aggregation Pipeline Support

2-13

https://www.mongodb.com/docs/manual/core/aggregation-pipeline/

simply says that the results are to be grouped by zipcode and presented in descending
order of the average revenue figures. The query returns rows of two columns with
scalar values for zipcode (a string) and average revenue (a number).

SELECT s.data.address.zip.string(),
 avg(s.data.revenue.number())
 FROM sales s
 GROUP BY s.data.address.zip.string()
 ORDER BY 2 DESC;

The following query is similar, but it provides the result as rows of JSON objects, each
with a string field zip, for the zipcode, and a numeric field avgRev, for the average
revenue. SQL/JSON generation function json_object constructs JSON objects from
the results of evaluating its argument SQL expressions.

SELECT json_object('zip' : s.data.address.zip.string(),
 'avgRev' : avg(s.data.revenue.number()))
 FROM sales s
 GROUP BY s.data.address.zip.string()
 ORDER BY avg(s.data.revenue.number()) DESC;

Related Topics

• Aggregation Pipeline Operators
Support of MongoDB aggregation pipeline operators is described.

2.5 MongoDB Documents and Oracle Database
Presented here is the relationship between a JSON document used by MongoDB and
the same content as a JSON document stored in, and used by, Oracle Database.

Note:

This topic applies to JSON documents that you migrate from MongoDB and
store in Oracle Database. It does not apply to JSON documents that are
generated/supported by JSON-relational duality views. For information about
MongoDB-compatible duality views see Using the Mongo DB API with
JSON-Relational Duality Views.

You can migrate an existing application and its data from MongoDB to Oracle
Database, or you can develop new applications on Oracle Database, which use the
same or similar data as applications on MongoDB. JSON data in both cases is stored
in documents.

It's helpful to have a general understanding of the differences between the documents
used by MongoDB and those used by Oracle Database. In particular, it helps to
understand what happens to a MongoDB document that you import, to make it usable
with Oracle Database.

Chapter 2
MongoDB Documents and Oracle Database

2-14

Some of the information here presents details that you can ignore if you read this topic just to
get a high-level view. But it's good to be aware of what's involved; you may want to revisit this
at some point.

When you import a collection of MongoDB documents, the key and the content of each
document are converted to forms appropriate for Oracle Database.

A MongoDB document has a native binary JSON format called BSON. An Oracle Database
document has a native binary JSON format called OSON. So one change that's made to your
MongoDB document is to translate its binary format from BSON to OSON. This translation
applies to both the key and the content of a document

Note:

For Oracle Database API for MongoDB, as for MongoDB itself, a stage receives
input, and produces output, in the form of BSON data, that is, binary JSON data in
the MongoDB format.

Document Key: Differences and Conversion (Oracle Database Prior to 23ai)

This section applies only to Oracle Database releases prior to 23ai.

For MongoDB, the unique key of a document, which identifies it, is the value of mandatory
field _id, in the document itself. For Orace Database releases prior to 23ai, the unique key
that identifies a document is separate from the document; the key is stored in a separate
database column from the column that stores the document. The key column has is named
id, and it is the primary key column for the table that stores your collection data.

When you import a collection into Oracle Database prior to 23ai, Oracle Database API for
MongoDB creates id column values from the values of field _id in your MongoDB
documents. MongoDB field _id can have values of several different data types. The Oracle
Database id column that corresponds to that field is always of SQL data type VARCHAR2
(character data; in other words, a string).

The _id field in your imported documents is untouched during import or thereafter. Oracle
Database doesn't use it — it uses column id instead. But it also doesn't change it, so any use
your application might make of that field is still valid. Field _id in your documents is never
changed; even applications cannot change (delete or update) it.

If you need to work with your documents using SQL or Simplified Oracle Document Access
(SODA) then you can directly use column id. You can easily use that primary-key column to
join JSON data with other database data, for instance. The documents that result from
importing from MongoDB are SODA documents (with native binary OSON data).

Be aware of these considerations that result from the separation of document key from
document:

• Though all documents imported from MongoDB will continue to have their _id fields, for
Oracle Database prior to 23ai the documents in a JSON collection need not have an _id
field. And because, for Oracle Database prior to 23ai, a document and its key are
separate, a document other than one imported from MongoDB could have an _id field
that has no relation whatsoever with the document key.

• Because MongoDB allows _id values of different types, and these are all converted to
string values (VARCHAR2), if for some reason your collection has documents with _id

Chapter 2
MongoDB Documents and Oracle Database

2-15

https://bsonspec.org/
https://bsonspec.org/

values "123" (JSON string) and 123 (JSON number) then importing the collection
will raise a duplicate-key error, because those values would each be translated as
the same string value for column id.

BSON values of field _id are converted to VARCHAR2 column id values according to
Table 2-1. If an _id field value is any type not listed in the table then it is replaced by a
generated ObjectId value, which is then converted to the id column value.

Table 2-1 Conversion of BSON Field _id Value To Column ID VARCHAR2 Value

_id Field Type ID Column VARCHAR2 Value

Double Canonical numeric format string

32-bit integer Canonical numeric format string

64-bit integer Canonical numeric format string

Decimal128 Canonical numeric format string

String No conversion, including no character escaping

ObjectId Lowercase hexadecimal string

Binary data (UUID) Lowercase hexadecimal string

Binary data (non-UUID) Uppercase hexadecimal string

The canonical numeric format for a VARCHAR2 value is as follows:

• If the input number has no fractional part (it is integral), and if it can be rendered in
40 digits or less, then it is rendered as an integer. If necessary, trailing zeros are
used, to avoid notation with an exponent. For example, 1000000000 is used
instead of 1E+9.

• If the input number has a fractional part, the number is rendered in 40 digits or less
with a decimal point separator. If necessary, zeros are used to avoid notation with
an exponent. For example, 0.00001 is used instead of 1E-5.

• If conversion of the input number would result in a loss of digit precision in the 40-
digit format, the number is instead rendered with an exponent. This can happen for
a number whose absolute value is extremely small or extremely large, even if the
number is integral. For example, 1E100 is used, to avoid a 1 followed by 100 zeros.

In practice, this canonical numeric format means that in most cases the numeric _id
field value results in an obvious, or "pretty" VARCHAR2 value for column id. A format
that uses an exponent is used only when necessary, which generally means
infrequently.

Document Content Conversion

Two general considerations:

• BSON format allows duplicate field values in the same object. OSON format does
not. When converting to OSON, detection of duplicate fields in BSON data raises
an error.

• OSON format has no notion of the order of fields in an object; applications cannot
depend on or expect any particular order (in keeping with the JSON standard).
BSON format maintains the order of object fields; applications can depend on the
order not changing.

Chapter 2
MongoDB Documents and Oracle Database

2-16

Table 2-2 specifies the type mappings that are applied when converting scalar BSON data to
scalar OSON data. The OSON scalar types used are SQL data types, except as noted. Any
BSON types not listed are not converted; instead, an error is raised when they are
encountered. This includes BSON types regex, and JavaScript.

Table 2-2 JSON Scalar Type Conversions: BSON to OSON Format

BSON Type OSON Type1 Notes

Double BINARY_DOUBLE NA

32-bit integer NUMBER (Oracle number) Flagged as int.

64-bit integer NUMBER (Oracle number) Flagged as long.

Decimal128 NUMBER (Oracle number) Flagged as decimal. Note: This
conversion can be lossy.

Date TIMESTAMP WITH TIME ZONE Always UTC time zone.

String VARCHAR2 Always in character set AL32UTF8
(Unicode UTF-8).

Boolean BOOLEAN Supported only if initialization
parameter compatible has value
23 or larger. (There is no Oracle
SQL BOOLEAN type in releases
prior to 23ai.)

ObjectId ID (RAW(12)) NA

Binary data (UUID) ID (RAW(16)) NA

Binary data (non-UUID) RAW NA

Null NULL Used for JSON null.

1 These are SQL data types, except as noted.

Related Topics

• Other Differences Between MongoDB and Oracle Database
Various differences between MongoDB and Oracle Database are described. These
differences are generally not covered in other topics. Consider these differences when
you migrate an application to Oracle Database or you develop a new application for
Oracle Database that uses MongoDB commands.

• Users, Authentication, and Authorization
Oracle Database security differs significantly from that of MongoDB. The security model
of Oracle Database API for MongoDB is described: the creation of users, their
authentication, and their authorization to perform different operations.

See Also:

• Overview of SODA Documents in Oracle Database Introduction to Simple
Oracle Document Access (SODA)

• BSON types (MongoDB)

• Data Types (MongoDB shell)

Chapter 2
MongoDB Documents and Oracle Database

2-17

https://www.mongodb.com/docs/manual/reference/bson-types/
https://www.mongodb.com/docs/mongodb-shell/reference/data-types/

2.6 Other Differences Between MongoDB and Oracle
Database

Various differences between MongoDB and Oracle Database are described. These
differences are generally not covered in other topics. Consider these differences when
you migrate an application to Oracle Database or you develop a new application for
Oracle Database that uses MongoDB commands.

• With MongoDB, fields in a JSON object are ordered. With Oracle Database, they
are not ordered. For example, field _id is not necessarily the first field in an object.
Applications must not expect or rely on any particular field order. According to the
JSON language standard, object fields are not ordered; only array elements are
ordered. See JSON Syntax and the Data It Represents in Oracle Database JSON
Developer’s Guide.

• With MongoDB, the value of field _id can be a JSON object. Oracle Database API
for MongoDB supports only BSON types ObjectId, String, Double, 32-bit
integer, 64-bit integer, Decimal128, and Binary data (subtype for UUID) for
field _id; an error is raised for any other type. See BSON Types.

If you are migrating an existing application that expects object values for _id then
consider copying the values of field _id in your data to some new field and using a
string value for _id.

• Read and write concerns regarding MongoDB transactions do not apply to Oracle
Database. Oracle Database transactions are fully ACID-compliant, and thus
reliable — atomicity, consistency, isolation, and durability. ACID compliance
ensures that your data remains accurate and consistent despite any failure that
might occur while processing a transaction.

• Oracle API for MongoDB does not support the following MongoDB transaction
capabilities:

– Inclusion of DDL operations, such as createCollection, within a transaction.
Attempts to create a collection or an index within a transaction raise an error.

– Inclusion of operations across multiple databases. All operations within a
transaction must be confined to a single database (schema). Otherwise, an
error is raised.

• Retryable writes or commits when an error is raised.

MongoDB retryWrite operations raise an error. If you use a driver that has
retryWrite turned on by default, then set retryWrites=false in your connection
string to turn this off.

• Oracle Database and MongoDB have different read isolation and consistency
levels. Oracle Database API for MongoDB uses read-committed consistency as
described in Data Concurrency and Consistency of Oracle Database Concepts.

• Oracle Database API for MongoDB supports only the PLAIN (LDAP SASL)
authentication mechanism, and it relies on Oracle Database authentication and
authorization.

• Oracle Database does not support the MongoDB collation field for any
command (such as find). An error is raised if you use field collation. Oracle
collates values using the Unicode binary collation order.

Chapter 2
Other Differences Between MongoDB and Oracle Database

2-18

https://docs.mongodb.com/manual/reference/bson-types/

• MongoDB allows different collections in the same "database" to have indexes of the
same name. This is not allowed in Oracle Database — the name of an index must be
unique across all collections of a given database schema ("database").

• The maximum size of a document for MongoDB is 16 MB. The maximum size for Oracle
Database (and thus for the MongoDB API) is 32 MB.

Related Topics

• MongoDB Documents and Oracle Database
Presented here is the relationship between a JSON document used by MongoDB and the
same content as a JSON document stored in, and used by, Oracle Database.

• Users, Authentication, and Authorization
Oracle Database security differs significantly from that of MongoDB. The security model
of Oracle Database API for MongoDB is described: the creation of users, their
authentication, and their authorization to perform different operations.

See Also:

Unicode Collation Algorithm, Unicode® Technical Standard #10

2.7 Accessing Collections Owned By Other Users (Database
Schemas)

You can directly access a MongoDB API collection owned by another user (database
schema) if you log into that schema. You can indirectly access a collection owned by another
user, without logging into that schema, if that collection has been mapped to a collection in
your schema.

A MongoDB API collection of JSON documents consists of (1) a collection backing table,
which contains the JSON documents in the collection, and (2) some JSON-format collection
metadata, which is stored in the data dictionary and specifies various collection-configuration
properties. The backing table belongs to a given database user/schema. The metadata is
stored in the database data dictionary.

A mapped collection is a collection that is defined (mapped) on top of an existing table,
which can belong to any database schema and which could also back one or more other
collections.

You can control which operations on a collection — including a mapped collection — are
allowed for various users (schemas), by granting those users different privileges or roles on
the backing table.

Example 2-9 illustrates this.

Example 2-9 Creating a Collection in One Schema and Mapping a Collection To It in Another Schema

In this example user john creates collection john_coll (in database schema john), and adds
a document to it. User john then grants user janet some access privileges to the backing
table of collection john_coll.

Chapter 2
Accessing Collections Owned By Other Users (Database Schemas)

2-19

https://www.unicode.org/reports/tr10/

User janet then maps a new collection, janet_coll (in schema janet) to collection
john_coll in schema john. (The original and mapped collections need not have
different names, such as john_coll and janet_coll; they could both have the same
name.)

User janet then lists the collections available to schema janet, and reads the content
of mapped collection janet_coll, which is the same as the content of collection
john_coll.

(The commands submitted to mongosh are each a single line (string), but they are
shown here continued across multiple lines for clarity.)

Note:

Examples in this documentation of input to, and output from, Oracle
Database API for MongoDB use the syntax of shell mongosh.

1. When connected to the database as user john, run PL/SQL code to create
collection john_coll backed by table john_coll. The second argument to
create_collection is the metadata needed for a MongoDB-compatible collection.
(The backing table name is derived from the collection name — see Default Naming of
a Collection Table.)

DECLARE
 col SODA_COLLECTION_T;
BEGIN
 col := DBMS_SODA.create_collection(
 'john_coll',
 '{"contentColumn" : {"name" : "DATA",
 "sqlType" : "BLOB",
 "jsonFormat" : "OSON"},
 "keyColumn" : {"name" : "ID",
 "assignmentMethod" : "EMBEDDED_OID",
 "sqlType" : "VARCHAR2"},
 "versionColumn" : {"name" : "VERSION", "method" : "UUID"},
 "lastModifiedColumn" : {"name" : "LAST_MODIFIED"},
 "creationTimeColumn" : {"name" : "CREATED_ON"}}');
END;

2. Connect to the database using shell mongosh as user john, list the collections in that
schema (John's collections), insert a document into collection john_coll, and show
the result of the insertion.

mongosh 'mongodb://john:...
@MQSSYOWMQVGAC1Y-CTEST.adb.us-ashburn-1.oraclecloudapps.com:27017/john
?
authMechanism=PLAIN&authSource=$external&ssl=true&retryWrites=false&loa
dBalanced=true'

john> show collections;

Chapter 2
Accessing Collections Owned By Other Users (Database Schemas)

2-20

Output:

john_coll

john> db.john_coll.insert({"hello" : "world"});
john> db.john_coll.find()

Output:

[{ _id: ObjectId("6318b0060a51240e4bf3b001"), hello: 'world' }]

3. In schema john, grant user janet access privileges to collection john_coll and its backing
table of the same name, john_coll.

GRANT SELECT, INSERT, UPDATE, DELETE ON john.john_coll TO janet;

4. When connected to the database as user (schema) janet, Create a new collection
janet_coll in schema janet that's mapped to collection john_coll in schema john.

The second argument to method create_collection() is the collection metadata. Among
the things it specifies here are the schema and backing-table names of the collection to be
mapped to. The last argument, CREATE_MODE_MAP, specifies that the new collection is to be
mapped on top of the table that backs the original collection.

DECLARE
 col SODA_COLLECTION_T;
BEGIN
 col := DBMS_SODA.create_collection(
 'janet_coll',
 '{"schemaName" : "JOHN",
 "tableName" : "JOHN_COLL",
 "contentColumn" : {"name" : "DATA",
 "sqlType" : "BLOB",
 "jsonFormat" : "OSON"},
 "keyColumn" : {"name" : "ID",
 "assignmentMethod" : "EMBEDDED_OID",
 "sqlType" : "VARCHAR2"},
 "versionColumn" : {"name" : "VERSION", "method" : "UUID"},
 "lastModifiedColumn" : {"name" : "LAST_MODIFIED"},
 "creationTimeColumn" : {"name" : "CREATED_ON"}}',
 DBMS_SODA.CREATE_MODE_MAP);
END;

Chapter 2
Accessing Collections Owned By Other Users (Database Schemas)

2-21

Note:

The schema and table names used in the collection metadata argument
must be as they appear in the data dictionary, which in this case means they
must be uppercase. You can use these queries to obtain the correct schema
and table names for collection <collection> (when connected as the owner
of <collection>):

SELECT c.json_descriptor.schemaName FROM USER_SODA_COLLECTIONS
c
 WHERE uri_name = '<collection>';

SELECT c.json_descriptor.tableName FROM USER_SODA_COLLECTIONS c
 WHERE uri_name = '<collection>';

5. Connect to the database using shell mongosh as user janet, list the available
collections, and show the content of collection janet_coll (which is the same as the
content of John's collection john_coll).

mongosh 'mongodb://janet:...
@MQSSYOWMQVGAC1Y-CTEST.adb.us-ashburn-1.oraclecloudapps.com:27017/janet
?
authMechanism=PLAIN&authSource=$external&ssl=true&retryWrites=false&loadBalanced=true'

janet> show collections;

janet_coll

janet> db.janet_coll.find()

[{ _id: ObjectId("6318b0060a51240e4bf3b001"), hello: 'world' }]

Chapter 2
Accessing Collections Owned By Other Users (Database Schemas)

2-22

3
Support for MongoDB APIs, Operations, and
Data Types — Reference

MongoDB APIs, operations, and data types supported by Oracle Database are listed,
together with information about their support.

Unsupported MongoDB constructs raise an error. A construct that is ignored is listed in this
documentation as a no-op (it does not raise an error). A construct can be ignored because it
makes no sense or is not needed on Oracle architecture.

Note:

Only server commands are covered, not client-side wrapper functions. Client-side
wrapper functions such as deleteMany() and updateMany() use server commands
delete() and update() internally.

• Database Commands
Support of MongoDB database commands is described. This includes commands for
administration, aggregation, authentication, diagnostic, query and write operations, role
management, replication, sessions, user management, and sharding.

• Query and Projection Operators
Support of MongoDB query and projection operators is described. This includes array,
bitwise, comment, comparison, element, evaluation, geospatial, and logical query
operators, as well as projection operators.

• Update Operators
Support of MongoDB update operators is described. This includes array, bitwise, field,
and modifier update operators.

• Cursor Methods
Support of MongoDB cursor methods is described.

• Aggregation Pipeline Operators
Support of MongoDB aggregation pipeline operators is described.

• Data Types
Support of MongoDB data types is described.

• Indexes and Index Properties
Support of MongoDB indexes and index properties is described.

3.1 Database Commands
Support of MongoDB database commands is described. This includes commands for
administration, aggregation, authentication, diagnostic, query and write operations, role
management, replication, sessions, user management, and sharding.

3-1

See Also:

Database Commands in the MongoDB Reference manual

Table 3-1 Administration Commands

Command Support
(Since)

Notes

Capped Collections No None.

cloneCollectionAs
Capped

No None.

collMod No None.

collMod,
expireAfterSecond
s

No None.

convertToCapped No None.

create 19c Creates a collection in the current Oracle Database
schema. If the specified collection already exists then
this is a no-op.

createView No None.

createIndexes 19c None.

currentOp No None.

drop 19c None.

dropDatabase 19c Deletes all collections in the current Oracle Database
schema. Does not delete (drop) the schema itself.

The command is available only to a user who is logged
in with role root.

dropIndexes 19c None.

filemd5 No None.

getParameter 19c Parameter supported: authenticationMechanisms
killCursors 19c Supported field: cursors.

killOp No None.

listCollections 19c Lists collections in the current Oracle Database schema.

listDatabases 19c Lists Oracle Database schemas enabled for access by
Oracle Database API for MongoDB and for Simple
Oracle Document Access (SODA).

listIndexes 19c Lists Oracle Database indexes relevant for the specified
collection.

reIndex 19c None.

renameCollection No None.

setParameter No-op Ignored (no error).

validate 19c None.

repairDatabase No-op Ignored (no error).

Chapter 3
Database Commands

3-2

https://www.mongodb.com/docs/upcoming/reference/command/

Note:

Besides creating a collection with explicit use of command create, a collection is
automatically created upon its first insertion of a document. That is, to create a
collection it is sufficient to refer to it by name when inserting a document into it.

See Also:

Administration Commands in the MongoDB Reference manual

Table 3-2 Aggregation Commands

Command Support
(Since)

Notes

aggregate 19c None.

count 19c Supported field: query.

distinct 19c Supported fields: key, query.

Returns the distinct scalar values targeted by the path
specified by key, as an array. Unlike MongoDB, nonscalar
values targeted by the path are not included.

mapReduce No None.

See Also:

Aggregation Commands in the MongoDB Reference manual

Table 3-3 Authentication Commands

Command Support
(Since)

Notes

logout 19c Logs out the current user of an Oracle Database schema on
a specific port.

Chapter 3
Database Commands

3-3

https://www.mongodb.com/docs/upcoming/reference/command/nav-administration/
https://www.mongodb.com/docs/upcoming/reference/command/nav-aggregation/

See Also:

Authentication Commands in the MongoDB Reference manual

Table 3-4 Diagnostic Commands

Command Support
(Since)

Notes

buildInfo 19c Returns information about current build of
Oracle Database API for MongoDB.

collStats 19c None.

compact No-op Ignored (no error).

connPoolStats No None.

connectionSta
tus

19c None.

dataSize 23ai Supported fields: estimate, keyPattern,
min, max.

dbHash No None.

dbStats 19c Supported field: scale.

Lists statistics about an Oracle Database
schema: its collections and relevant indexes.

explain 19c None.

explain,
executionStat
s

19c None.

features No None.

getLog No-op Ignored (no error).

hostInfo 19c None.

listCommands 19c None.

ping 19c None.

profiler No None.

serverStatus 19c None.

top No None.

whatsmyuri 19c None.

See Also:

Diagnostic Commands in the MongoDB Reference manual

Chapter 3
Database Commands

3-4

https://www.mongodb.com/docs/upcoming/reference/command/nav-authentication/
https://www.mongodb.com/docs/upcoming/reference/command/nav-diagnostic/

Table 3-5 Query and Write Operation Commands

Command Support
(Since)

Notes

Change Streams No None.

delete 19c • Supported fields: deletes, ordered.

• Supported deletes array operators: q, limit.

See Supported query operators for commands delete,
find, findAndModify, and update.

find 19c See Support for command find.

findAndModify 19c • Supported fields: arrayFilters, fields, new, query,
remove, sort, update, upsert.

• Supported field update
operators: $bit, $currentDate, $inc, $min, $max, $m
ul, $rename, $set, $setOnInsert, $unset.

• Supported array update operators: $, $[], $
[<identifier>], $addToOffset, $pop, $pull, $pullAl
l, $push.

• Supported array update-operator modifiers
supported: $each, $position, $slice, $sort.

See Supported query operators for commands delete,
find, findAndModify, and update.

getLastError 19c None.

getMore 19c Supported fields: batchSize, collection.

getPrevError No None.

GridFS 19c None.

insert 19c Supported field: documents.

parallelCollectionS
can

No None.

ReplaceOne No None.

resetError 19c None.

update 19c • Supported fields: ordered, updates.

• Supported fields in elements of array updates:
arrayFilters, multi, q, u, upsert.

Returned response contains fields n, nModified,
upserted, and writeErrors. Array upserted contains
only the document _id values, no index.

Chapter 3
Database Commands

3-5

Note:

Support for command find.

• Supported operators: see Supported query operators for commands
delete, find, findAndModify, and update.

• Supported fields: batchSize, filter, limit, projection, returnKey,
singleBatch, skip, sort.

Field returnKey can only return the primary key (e.g. the ObjectID)
associated with the documents found. You cannot use it to return only
the index key if an index is used to support the query.

• $ cannot be used in a projection specification. Only simple field
selections or omissions can be performed.

• The JSON scalar types you can specify with $type are as follows:

– string (default)

– number
– date — A date with no time component.

– dateTime — A timestamp: a date with a time component.

Sorting JSON values:

• Oracle Database 23ai or later: JSON values are sorted using a canonical
sort order — see Comparison and Sorting of JSON Data Type Values.

• Oracle Database 19c: By default, sorting is lexicographical: JSON values
are serialized to obtain strings, which are then compared.

To request a numeric ordering, date ordering, or timestamp ordering, you
use a hint, providing the relevant JSON scalar type with $type.

For example, the following code requests an ascending lexicographical
sort on field name, then an ascending numeric sort on field age, and then
a descending date-time (that is, reverse chronological) sort on field
birthday. (A positive number, such as 1, means ascending; a negative
number, such as -1, means descending.)

find().sort({"name":1, "age":1,
"birthday":-1}).hint({"$type":{"age":"number",
"birthday":"dateTime"}})

Chapter 3
Database Commands

3-6

Note:

Supported query operators for commands delete, find, findAndModify, and
update.

• Comparison and
logical: $eq, $gt, $gte, $in, $lt, $lte, $ne, $nin, $and, $not, $nor, and $or.

• Element and evaluation: $type, $regex, and $text.

• Geospatial: $geoIntersects, $geoWithin, $near, $nearSphere.

• Array: $all, $elemMatch.

See Also:

Query and Write Operation Commands in the MongoDB Reference manual

Table 3-6 Role Management Commands

Command Support
(Since)

Notes

createRole No None.

dropRole No None.

dropAllRolesFromDat
abase

No None.

grantRolesToRole No None.

revokePrivilegesFro
mRole

No None.

updateRole No None.

rolesInfo No None.

See Also:

Role Management Commands in the MongoDB Reference manual

Table 3-7 Replication Commands

Command Support
(Since)

Notes

hello 19c None.

isMaster 19c None.

replSetGetStatus No-op Ignored (no error).

Chapter 3
Database Commands

3-7

https://www.mongodb.com/docs/upcoming/reference/command/nav-crud/
https://www.mongodb.com/docs/upcoming/reference/command/nav-role-management/

See Also:

Replication Commands in the MongoDB Reference manual

Table 3-8 Sessions Commands

Command Support
(Since)

Notes

abortTransaction 19c None.

commitTransaction 19c None.

endSessions 19c None.

killAllSessions 19c None.

killAllSessionsBy
Pattern

19c None.

killSessions 19c None.

refreshSessions 19c None.

startSession 19c Starts a server-side session. Uses a UUID created by
the client, if provided, or a secure random UUID.
Returns the UUID used.

See Also:

Sessions Commands in the MongoDB Reference manual

Table 3-9 User Management Commands

Command Support
(Since)

Notes

createUser No None.

dropAllUsersFromD
atabase

No None.

dropUser No None.

grantRolesToUser No None.

revokeRolesFromUs
er

No None.

updateUser No None.

userInfo No None.

See Also:

User Management Commands in the MongoDB Reference manual

Chapter 3
Database Commands

3-8

https://www.mongodb.com/docs/manual/reference/command/nav-replication/
https://www.mongodb.com/docs/upcoming/reference/command/nav-sessions/
https://www.mongodb.com/docs/upcoming/reference/command/nav-user-management/

Table 3-10 Sharding Commands

Command Support
(Since)

Notes

abortReshardCollect
ion

No None.

addShard No None.

addShardZone No None.

balancerCollectionS
tatus

No None.

balancerStart No None.

balancerStatus No None.

balancerStop No None.

checkShardingIndex No None.

clearJumboFlag No None.

cleanupOrphaned No None.

cleanupReshardColle
ction

No None.

commitReshardCollec
tion

No None.

enableSharding No None.

flushRouterConfig No None.

getShardMap No None.

getShardVersion No None.

isdbGrid No None.

listShards No None.

medianKey No None.

moveChunk No None.

movePrimary No None.

mergeChunks No None.

refineCollectionSha
rdKey

No None.

removeShard No None.

removeShardFromZone No None.

reshardCollection No None.

setAllowMigrations No None.

setShardVersion No None.

shardCollection No None.

shardingState No None.

split No None.

splitVector No None.

unsetSharding No None.

updateZoneKeyRange No None.

Chapter 3
Database Commands

3-9

See Also:

Sharding Commands in the MongoDB Reference manual

3.2 Query and Projection Operators
Support of MongoDB query and projection operators is described. This includes array,
bitwise, comment, comparison, element, evaluation, geospatial, and logical query
operators, as well as projection operators.

See Also:

Query and Projection Operators in the MongoDB Reference manual

Table 3-11 Array Query Operators

Operator Support (Since) Notes

$all 19c None.

$elemMatch 19c None.

$size 19c None.

See Also:

Array Query Operators in the MongoDB Reference manual

Table 3-12 Bitwise Query Operators

Operator Support (Since) Notes

$bitsAllSet No None.

$bitsAnySet No None.

$bitsAllClear No None.

$bitsAnyClear No None.

Note:

Bitwise Query Operators in the MongoDB Reference manual

Chapter 3
Query and Projection Operators

3-10

https://www.mongodb.com/docs/upcoming/reference/command/nav-sharding/
https://www.mongodb.com/docs/manual/reference/operator/query/
https://www.mongodb.com/docs/manual/reference/operator/query-array/
https://www.mongodb.com/docs/manual/reference/operator/query-bitwise/

Table 3-13 Comment Query Operator

Operator Support (Since) Notes

$comment No None.

See Also:

$comment in the MongoDB Reference manual

Table 3-14 Comparison Query Operators

Operator Support (Since) Notes

$eq 19c None.

$gt 19c None.

$gte 19c None.

$lt 19c None.

$lte 19c None.

$ne 19c None.

$in 19c None.

$nin 19c None.

See Also:

Comparison Query Operators in the MongoDB Reference manual

Table 3-15 Element Query Operators

Operator Support (Since) Notes

$exists 19c None.

$type 19c None.

See Also:

Element Query Operators in the MongoDB Reference manual

Chapter 3
Query and Projection Operators

3-11

https://www.mongodb.com/docs/manual/reference/operator/query/comment/
https://www.mongodb.com/docs/manual/reference/operator/query/comment/
https://www.mongodb.com/docs/manual/reference/operator/query-element/

Table 3-16 Evaluation Query Operators

Operator Support (Since) Notes

$expr No None.

$jsonSchema No None.

$mod No None.

$regex 19c None.

$text 19c None.

$where No None.

See Also:

Evaluation Query Operators in the MongoDB Reference manual

Table 3-17 Geospatial Query Operators

Operator Support (Since) Notes

$box No None.

$center No None.

$centerSphere No None.

$geoIntersects 19c None.

$geometry No None.

$geoWithin 19c None.

$maxDistance No None.

$near 19c None.

$nearSphere 19c None.

$polygon No None.

$uniqueDocs No None.

Table 3-18 Logical Query Operators

Operator Support (Since) Notes

$and 19c None.

$nor 19c None.

$not 19c None.

$or 19c None.

Chapter 3
Query and Projection Operators

3-12

https://www.mongodb.com/docs/manual/reference/operator/query-evaluation/

See Also:

Logical Query Operators in the MongoDB Reference manual

Table 3-19 Projection Operators

Operator Support (Since) Notes

$elemMatch 19c None.

$meta No None.

$slice No None.

See Also:

Projection Operators in the MongoDB Reference manual

3.3 Update Operators
Support of MongoDB update operators is described. This includes array, bitwise, field, and
modifier update operators.

Table 3-20 Array Update Operators

Operator Support (Since) Notes

$ 19c None.

$[] 19c None.

$[<identifier>] 19c None.

$addToSet 19c None.

$pop 19c None.

$pull 19c None.

$pullAll 19c None.

$push 19c None.

See Also:

Update Array

Chapter 3
Update Operators

3-13

https://www.mongodb.com/docs/manual/reference/operator/query-logical/
https://www.mongodb.com/docs/manual/reference/operator/projection/
https://www.mongodb.com/docs/manual/reference/operator/update-array/

Table 3-21 Bitwise Update Operator

Operator Support (Since) Notes

$bit 19c None.

Note:

Update Bitwise in the MongoDB Reference manual

Table 3-22 Field Update Operators

Operator Support (Since) Notes

$currentDate 19c None.

$inc 19c None.

$max 19c None.

$min 19c None.

$mul 19c None.

$rename 19c None.

$set 19c None.

$setOnInsert 19c None.

$unset 19c None.

See Also:

Update Field in the MongoDB Reference manual

Table 3-23 Modifier Update Operators

Operator Support (Since) Notes

$each 19c None.

$position 19c None.

$slice 19c None.

$sort 19c None.

See Also:

Update Operators in the MongoDB Reference manual

Chapter 3
Update Operators

3-14

https://www.mongodb.com/docs/manual/reference/operator/update-bitwise/
https://www.mongodb.com/docs/manual/reference/operator/update-field/
https://www.mongodb.com/docs/manual/reference/operator/update/

3.4 Cursor Methods
Support of MongoDB cursor methods is described.

Table 3-24 Cursor Methods

Method Support (Since) Notes

$cursor.batchSize() 19c None.

$cursor.close() 19c None.

$cursor.collation() No None.

$cursor.comment() 19c None.

$cursor.count() 19c None.

$cursor.explain() 19c None.

$cursor.forEach() 19c None.

$cursor.hasNext() 19c None.

$cursor.hint() 19c None.

$cursor.isClosed() 19c None.

$cursor.isExhausted() 19c None.

$cursor.itcount() 19c None.

$cursor.limit() 19c None.

$cursor.map() 19c None.

$cursor.max() 19c None.

$cursor.maxScan() No None.

$cursor.maxTimeMS() 19c None.

$cursor.min() 19c None.

$cursor.next() 19c None.

$cursor.noCursorTimeout() 19c None.

$cursor.objsLeftInBatch() 19c None.

$cursor.pretty() 19c None.

$cursor.readConcern() 19c None.

$cursor.readPref() 19c None.

$cursor.returnKey() 19c None.

$cursor.showRecordId() 19c None.

$cursor.size() 19c None.

$cursor.skip() 19c None.

$cursor.sort() 19c None.

$cursor.tailable() 19c None.

$cursor.toArray() 19c None.

Chapter 3
Cursor Methods

3-15

See Also:

Cursor Methods in the MongoDB Reference manual

3.5 Aggregation Pipeline Operators
Support of MongoDB aggregation pipeline operators is described.

See Also:

Aggregation Pipeline Operators in the MongoDB Reference manual

Table 3-25 Arithmetic Expression Operators

Operator Support (Since) Notes

$abs 23ai None.

$add 23ai None.

$ceil 23ai None.

$divide 23ai None.

$exp 23ai None.

$floor 23ai None.

$ln 23ai None.

$log No None.

$log10 No None.

$mod 23ai None.

$multiply 23ai None.

$pow 23ai None.

$round 23ai None.

$sqrt 23ai None.

$subtract 23ai None.

$trunc 23ai None.

See Also:

Arithmetic Expression Operators in the MongoDB Reference manual

Table 3-26 Array Expression Operators

Operator Support (Since) Notes

$arrayElemAt 23ai None.

Chapter 3
Aggregation Pipeline Operators

3-16

https://www.mongodb.com/docs/manual/reference/method/js-cursor/
https://www.mongodb.com/docs/manual/reference/operator/aggregation/
https://www.mongodb.com/docs/v4.0/reference/operator/aggregation/#arithmetic-expression-operators

Table 3-26 (Cont.) Array Expression Operators

Operator Support (Since) Notes

$arrayToObject 23ai None.

$concatArrays 23ai None.

$filter 23ai None.

$first 23ai None.

$firstN 23ai None.

$in 23ai None.

$indexOfArray No None.

$isArray 23ai None.

$last 23ai None.

$lastN 23ai None.

$objectToArray 23ai None.

$range No None.

$reduce 23ai None.

$reverseArray 23ai None.

$size 23ai None.

$slice 23ai None.

$sortArray 23ai None.

$zip 23ai None.

See Also:

Array Expression Operators in the MongoDB Reference manual

Table 3-27 Boolean Expression Operators

Operator Support (Since) Notes

$and 23ai None.

$not 23ai None.

$or 23ai None.

See Also:

Boolean Expression Operators in the MongoDB Reference manual

Chapter 3
Aggregation Pipeline Operators

3-17

https://www.mongodb.com/docs/v4.0/reference/operator/aggregation/#array-expression-operators
https://www.mongodb.com/docs/v4.0/reference/operator/aggregation/#boolean-expression-operators

Table 3-28 Comparison Expression Operators

Operator Support (Since) Notes

$cmp 23ai None.

$eq 23ai None.

$gt 23ai None.

$gte 23ai None.

$lt 23ai None.

$lte 23ai None.

$ne 23ai None.

See Also:

Comparison Expression Operators in the MongoDB Reference manual

Table 3-29 Conditional Expression Operators

Operator Support (Since) Notes

$cond 23ai None.

$ifNull 23ai None.

$switch No None.

See Also:

Conditional Expression Operators in the MongoDB Reference manual

Table 3-30 Date Expression Operators

Operator Support (Since) Notes

$dateAdd No None.

$dateDiff No None.

$dateFromParts No None.

$dateFromString 23ai None.

$dateSubtract No None.

$dateToParts No None.

$dateToString 23ai None.

$dateTrunc No None.

$dayOfMonth No None.

$dayOfWeek No None.

$dayOfYear No None.

Chapter 3
Aggregation Pipeline Operators

3-18

https://www.mongodb.com/docs/v4.0/reference/operator/aggregation/#comparison-expression-operators
https://www.mongodb.com/docs/v4.0/reference/operator/aggregation/#conditional-expression-operators

Table 3-30 (Cont.) Date Expression Operators

Operator Support (Since) Notes

$hour No None.

$isoDayOfWeek No None.

$isoWeek No None.

$isoWeekYear No None.

$millisecond No None.

$minute No None.

$month No None.

$second No None.

$week No None.

$year No None.

See Also:

Date Expression Operators in the MongoDB Reference manual

Table 3-31 Literal Expression Operator ($literal)

Operator Support (Since) Notes

$literal 23ai None.

See Also:

Literal Expression Operator in the MongoDB Reference manual

Table 3-32 Object Expression Operators

Operator Support (Since) Notes

$mergeObjects 23ai None.

$objectToArray No None.

$setField No None.

See Also:

Object Expression Operators in the MongoDB Reference manual

Chapter 3
Aggregation Pipeline Operators

3-19

https://www.mongodb.com/docs/v4.0/reference/operator/aggregation/#date-expression-operators
https://www.mongodb.com/docs/v4.0/reference/operator/aggregation/#literal-expression-operator
https://www.mongodb.com/docs/v4.0/reference/operator/aggregation/#object-expression-operators

Table 3-33 Set Expression Operators

Operator Support (Since) Notes

$anyElementFalse No None.

$anyElementTrue No None.

$setDifference No None.

$setEquals No None.

$setIntersection No None.

$setIsSubset No None.

$setUnion 23ai None.

See Also:

Set Expression Operators in the MongoDB Reference manual

Table 3-34 String Expression Operators

Operator Support (Since) Notes

$concat 23ai None.

$indexOfBytes No None.

$indexOfCP No None.

$ltrim 23ai None.

$regexFind No None.

$regexFindAll No None.

$regexMatch No None.

$replaceAll No None.

$replaceOne No None.

$rtrim 23ai None.

$split No None.

$strcasecmp 23ai None.

$strLenBytes No None.

$strLenCP No None.

$substr No None.

$substrBytes No None.

$substrCP No None.

$toLower 23ai None.

$toUpper 23ai None.

$trim 19c None.

Chapter 3
Aggregation Pipeline Operators

3-20

https://www.mongodb.com/docs/v4.0/reference/operator/aggregation/#set-expression-operators

See Also:

String Expression Operators in the MongoDB Reference manual

Table 3-35 Text Expression Operator ($meta)

Operator Support (Since) Notes

$meta No None.

See Also:

Text Expression Operator in the MongoDB Reference manual

Table 3-36 Type Expression Operators

Operator Support (Since) Notes

$convert No None.

$isNumber 23ai None.

$toBool No None.

$toDate No None.

$toDecimal No None.

$toDouble No None.

$toInt No None.

$toLong No None.

$toObjectId No None.

$toString 23ai None.

$type 19c None.

See Also:

Type Expression Operators in the MongoDB Reference manual

Table 3-37 Stage Operators

Operator Support (Since) Notes

$addFields 23ai None.

$bucket 23ai None.

$bucketAuto No None.

Chapter 3
Aggregation Pipeline Operators

3-21

https://www.mongodb.com/docs/v4.0/reference/operator/aggregation/#string-expression-operators
https://www.mongodb.com/docs/v4.0/reference/operator/aggregation/#text-expression-operator
https://www.mongodb.com/docs/v4.0/reference/operator/aggregation/#type-expression-operators

Table 3-37 (Cont.) Stage Operators

Operator Support (Since) Notes

$collStats 19c Lists statistics about the
specified collection and the
Oracle Database indexes
relevant for it.

Supported fields: scale.

$count 19c None.

$currentOp No None.

$facet 23ai None.

$geoNear No None.

$graphLookup No None.

$group 23ai None.

$indexStats No None.

$limit 19c None.

$listLocalSessions No None.

$listSessions No None.

$lookup No None.

$match 19c None.

$merge No None.

$out 23ai None.

$planCacheStats No None.

$project 19c None.

$redact No None.

$replaceRoot 23ai None.

$sample No None.

$setWindowFields No None.

$skip 19c None.

$sort 23ai None.

$sortByCount 23ai None.

$sql 19c See $sql Aggregation Pipeline
Stage.

$unionWith 23ai None.

$unset 19c None.

$unwind 23ai None.

See Also:

Aggregation Pipeline Stages in the MongoDB Reference manual

Chapter 3
Aggregation Pipeline Operators

3-22

https://www.mongodb.com/docs/manual/reference/operator/aggregation-pipeline/

Table 3-38 Accumulator Expression Operators

Operator Support (Since) Notes

$accumulator No None.

$addToSet 23ai None.

$avg No None.

$bottom 23ai None.

$bottomN No None.

$count 23ai None.

$first 23ai None.

$firstN No None.

$last 23ai None.

$lastN No None.

$max No None.

$maxN No None.

$min No None.

$push 23ai None.

$stdDevPop 23ai None.

$stdDevSamp 23ai None.

$sum No None.

$top 23ai None.

$topN No None.

See Also:

Accumulators ($group) and Accumulators ($project)in the MongoDB Reference
manual

Table 3-39 Variable Expression Operator

Operator Support (Since) Notes

$let 23ai None.

See Also:

Variable Expression Operators in the MongoDB Reference manual

Table 3-40 System Variables

Variable Support (Since) Notes

$$CURRENT 23ai None.

Chapter 3
Aggregation Pipeline Operators

3-23

https://www.mongodb.com/docs/v4.0/reference/operator/aggregation/#accumulators-group
https://www.mongodb.com/docs/v4.0/reference/operator/aggregation/#accumulators-project
https://www.mongodb.com/docs/v4.0/reference/operator/aggregation/#variable-expression-operators

Table 3-40 (Cont.) System Variables

Variable Support (Since) Notes

$$DESCEND No None.

$$KEEP No None.

$$PRUNE No None.

$$REMOVE No None.

$$ROOT 23ai None.

See Also:

Variables in Aggregation Expressions in the MongoDB Reference manual

Table 3-41 Miscellaneous Operators

Operator Support (Since) Notes

$getField No None.

$rand 23ai None.

$sampleRate No None.

$map No None.

Hint $service: Application-Connection Service (Consumer Group)

You can use any of the following application-connection services (consumer groups)
with any aggregation pipeline expression, by adding a $service hint to the expression.
Service LOW is used by default. LOW, MEDIUM, and HIGH are typically used for reporting
and batch processing; TP and TPURGENT are typically used for transaction processing.

• LOW — Low-priority service for reporting and batch processing. Operations are not
run in parallel.

• MEDIUM — Medium-priority service for reporting and batch operations. All
operations run in parallel and are subject to queuing.

• HIGH — High-priority service for reporting and batch operations. All operations run
in parallel and are subject to queuing.

• TP — Typical service for transaction processing. Operations are not run in parallel.

• TPURGENT — Highest-priority service, for time-critical transaction processing.
Supports manual parallelism.

For example, the hint here specifies that operator $count should use service HIGH.

db.foo.aggregate([{"$count":"cnt"}], {"hint":{"$service":"HIGH"}}});

• $sql Aggregation Pipeline Stage
You can use a $sql stage to execute Oracle SQL and PL/SQL code.

Chapter 3
Aggregation Pipeline Operators

3-24

https://www.mongodb.com/docs/manual/reference/aggregation-variables/

Related Topics

• MongoDB Aggregation Pipeline Support
Oracle Database API for MongoDB supports MongoDB aggregation pipelines, that is,
MongoDB command aggregate. It lets you use pipeline code to execute a query as a
sequence of operations. You can also use SQL as a declarative alternative to this
procedural approach.

3.5.1 $sql Aggregation Pipeline Stage
You can use a $sql stage to execute Oracle SQL and PL/SQL code.

Here is an example that uses shell mongosh to execute, as user user100, an aggregation
pipeline with a simple $sql stage from a MongoDB client.

insertMany is used to create a collection called emps and inserts three employee documents
into it.1

user100> db.emps.insertMany([
 {"ename" : "SMITH", "job" : "CLERK", "sal" : 800},
 {"ename" : "ALLEN", "job" : "SALESMAN", "sal" : 1600},
 {"ename" : "WARD", "job" : "SALESMAN", "sal" : 1250}
]);

Result shown by mongosh:

{
 acknowledged: true,
 insertedIds: {
 '0': ObjectId("6595eb06e0fc41db6de93a6d"),
 '1': ObjectId("6595eb06e0fc41db6de93a6e"),
 '2': ObjectId("6595eb06e0fc41db6de93a6f")
 }
}

A SQL SELECT query is used to compute the average of the employee salaries for each job.
The average is computed using SQL function AVG.

user100> db.aggregate([{$sql :
 `SELECT e.data.job, AVG(e.data.sal) average
 FROM emps e
 GROUP BY e.data.job`
 }]);

The query returns two JSON objects with fields JOB and AVERAGE.

[
 { JOB: 'CLERK', AVERAGE: 800 },

1 In Oracle Database the collection is table emps with a single JSON-type column data.

Chapter 3
Aggregation Pipeline Operators

3-25

 { JOB: 'SALESMAN', AVERAGE: 1425 }
]

A $sql stage has the following syntax. The fields other than $sql are described in
Table 3-42.

{$sql : {statement : <SQL statement>,
 binds : <variables>,
 dialect : <dialect>,
 format : <format>}}

The abbreviated syntax {$sql : <SQL statement>} is equivalent to this syntax
{$sql : {statement : <SQL statement>}}.

<SQL statement> is the Oracle SQL statement to execute.

• If $sql is the only stage in the pipeline and the pipeline has no starting collection,
then <SQL statement> can be any Oracle SQL or PL/SQL code, including SQL
data definition language (DDL) and data manipulation language (DML) code.

For example, this code uses a SQL UPDATE statement to increase the salaries of
all employees,by 10 percent:

db.aggregate([{$sql :
 {statement :
 "UPDATE employees SET salary = salary * 0.1"}}]);

• Otherwise, either the pipeline is executed on a collection or it has multiple stages.
In this case:

– <SQL statement> must be a SELECT statement that projects a single JSON-type
column.

– The SELECT statement can refer to the output from the input collection or the
previous stage using the database view (row source) named INPUT, which has
a single JSON-type column DATA containing the input documents.

See also Query JSON Data in Oracle Database JSON Developer’s Guide.

For example, the following code acts on starting collection orders. It has three
stages:

– Stage $match filters collection orders, choosing only the documents with a
status field that has value closed.

– Stage $sql takes as input the filtered documents output from stage $match. It
obtains them from column data of view input (alias v). While selecting the
documents, it uses Oracle SQL Function JSON_MERGEPATCH to add a
system timestamp to them as the value of new field updated. The resulting
timestamped documents are returned as the output from stage $sql.

– Stage $out creates a new collection, closed_orders, using the output of
stage $sql, that is, the documents returned as the result of the SQL SELECT
statement.

db.orders.aggregate([{$match : {status : "closed"}},
 {$sql :

Chapter 3
Aggregation Pipeline Operators

3-26

 `SELECT json_mergepatch(
 v.data,
 JSON {'updated' : SYSTIMESTAMP})
 FROM input v`},
 {$out : "closed_orders"}]);

This query returns a document from the new collection, closed_orders:

db.closed_orders.findOne()

{
 _id: ObjectId('65e8b973ca4d0a3a255794c8'),
 order_id: 12382,
 product: 'Autonomous Database',
 status: 'closed',
 updated: ISODate('2024-03-06T18:44:23.275Z')
}

These SQL statements are not supported by stage $sql:

• Statements that use OUT parameters or invoke stored procedures directly (see
Subprogram Parameter Modes and SQL Statements for Stored PL/SQL Units)

• Data Manipulation Language (DML) statements that use a returning clause and return
variables (see DML Returning)

All stages return zero or more JSON objects as their result. The result for a $sql stage
depends on whether or not the SQL statement executed is a SELECT statement.

• For a SELECT statement, each row in the query result set is mapped to a JSON object in
the $sql stage result. See $sql Stage Result for a SELECT Statement.

• For a non-SELECT statement, the $sql stage result is a JSON object with the single field
result, whose value indicates the number of table rows that the statement changed.
See $sql Stage Result for a Non-SELECT Statement.

Table 3-42 $sql Fields

Field Type Description Required?

statement string The SQL statement to execute. Yes.

binds Any type SQL variable bindings, each being a variable and
its value. See binds Field.

No.

dialect string The dialect of the SQL statement (statement).
The value must be "oracle" (otherwise, an error
is raised).

No.

format string The format of the output documents for
stage $sql. The value must be "oracle"
(otherwise, an error is raised).

No.

Chapter 3
Aggregation Pipeline Operators

3-27

Table 3-42 (Cont.) $sql Fields

Field Type Description Required?

resetSession boolean • true means that the database session in
which the $sql statement is executed is not
reused. Changes in session state are thus not
visible to commands subsequent to the $sql
command.

If the $sql statement is part of a transaction,
then the session is not reset until that
transaction ends.

• false means that the current session is
reused after the $sql command. The
sessions state might be visible to subsequent
commands.

No. Default: false.

binds Field

The optional binds field in a $sql stage specifies one or more sets of SQL variable
bindings (placeholder expressions). Each binding specifies a variable used in the SQL
statement and the value to replace it with. When multiple binding sets are specified,
the statement is executed once for each set.

There are three ways to specify a single set of bindings:

• Specify a set of bindings as an object, each of whose members has a variable's
name as its field name and the variable's value as field value.

For example, here variable empno is bound to value "E123", and variable ename is
bound to value "Abdul J.".

db.aggregate([{$sql :
 {statement :
 `INSERT INTO emp(empno, ename)
 VALUES(:empno, :ename)`,
 binds : {"empno" : "E123",
 "ename" : "Abdul J."}}}]);

• Specify a set of bindings as an array, each of whose elements is an object with
any of these fields: index, name, value, dataType. Each object represents a
binding.

For example, here the bind variable :empno has value "E123", and
variable :ename, has value "Abdul J.":

db.aggregate([{$sql :
 {statement :
 `INSERT INTO emp(empno, ename)
 VALUES (:empno, :ename)`,
 binds : [{name : empno,
 value : "E123"},
 {name : "ename",
 value : "Abdul J."}] }}]);

Chapter 3
Aggregation Pipeline Operators

3-28

• Specify a set of bindings as an array, each of whose elements is a bind-variable value.
Each value is bound according to its position in the array: the first array element ("E123",
here) is the value of the first bind variable, :empno, and the second element is the value
of the second variable. (The array elements need not be of the same type.)

db.aggregate([{$sql :
 {statement :
 `INSERT INTO emp(empno, ename)
 VALUES (:empno, :ename)`,
 binds : ["E123", "Abdul J."] }}]);

To specify multiple sets of bindings you just use an array of values that each specify a single
set of bindings. Each of the array elements can specify a binding set using any of the ways
described above: (1) an object whose members are variable name–value pairs, (2) an array
of objects with optional fields index, name, value, and dataType, (3) an array of variable
values whose array positions correspond to the variable indexes in the VALUES clause.

The following three examples illustrate this. They are semantically equivalent. The INSERT
statement of each example is executed three times:

• Once for the first set of bindings: variable :empno as "E123", and variable :ename as
"Abdul J."

• Once for the second set of bindings: variable :empno as "E456" and variable :ename as
"Elena H."

• Once for the third set of bindings: variable :empno as "E789" and variable :ename as
"Francis K."

In the first example, the array elements are objects, each of which specifies a set of bindings.
Each element of an object specifies the value of an individual (positional) binding.

db.aggregate([{$sql :
 {statement :
 `INSERT INTO emp(empno, ename)
 VALUES (:empno, :ename)`,
 binds :
 [{"empno" : "E123", "ename" : "Abdul J."},
 {"empno" : "E456", "ename" : "Elena H."},
 {"empno" : "E789", "ename" : "Francis K."}]}}]);

In the second example, the array elements are themselves arrays, each of which specifies a
set of variable bindings. But in this case each element of the inner arrays is an object with the
fields: name and value, specifying the value of an individual (positional) binding.

db.aggregate([{$sql :
 {statement :
 `INSERT INTO emp(empno, ename)
 VALUES (:empno, :ename)`,
 binds : [[{name : empno,
 value : "E123"},
 {name : ename,
 value : "Abdul J."}],
 [{name : empno,
 value : "E456"},

Chapter 3
Aggregation Pipeline Operators

3-29

 {name : ename,
 value : "Elena H."}],
 [{name : empno,
 value : "E789"},
 {name : ename,
 value : "Francis K."}]]}}]);

In the third example, the array elements are themselves arrays, each of which
specifies a set of variable bindings. Each element of the inner arrays specifies the
value of an individual (positional) binding.

db.aggregate([{$sql :
 {statement :
 `INSERT INTO emp(empno, ename)
 VALUES (:empno, :ename)`,
 binds : [["E123", "Abdul J."],
 ["E456", "Elena H."],
 ["E789", "Francis K."]]}}]);

See also Example 3-5.

Table 3-43 Fields of binds Object

Field JSON
(BSON)
Type

Description Required?

index number The index (one-based
position) of the given
variable binding in the SQL
statement.

No. If absent, it is inferred from the value's
position in the array.

Fields index and name are mutually
exclusive: if one is present the other must
be absent (otherwise an error is raised).

name string The name of the bind
variable.

No.

Fields index and name are mutually
exclusive: if one is present the other must
be absent (otherwise an error is raised).

value Any type The value of the bind
variable.

No. If absent, the object itself is the bind
value.

For example,

{binds:[{"foo":123},...]}
is equivalent to

{binds:[{value:
{"foo":123}},...]}

dataTy
pe

string The SQL data type to use
for a given variable binding.

No. If absent, the default type for the
given BSON value is used. See
Supported SQL Data Types for Field
dataType.

Supported SQL Data Types for Field dataType

The allowed values for field dataType are described.

BSON types not listed are not supported; their use raises an error.

Chapter 3
Aggregation Pipeline Operators

3-30

Starting with Oracle Database 23ai, JSON type is supported for each of the supported BSON
types. Prior to release 23ai, an error is raised if field dataType has value JSON.

Table 3-44 Field datatype Values

Input BSON Type Supported SQL Type Default SQL Type

String JSON, VARCHAR2 VARCHAR2
Double JSON, BINARY_DOUBLE BINARY_DOUBLE
Decimal128, Int32, or Int64 JSON, NUMBER NUMBER
Boolean JSON, VARCHAR2, BOOLEAN Oracle Database 23ai: BOOLEAN

Oracle Database 19c: Error —
no default type

ObjectId or Binary JSON, RAW RAW
DateTime JSON, TIMESTAMP WITH TIME

ZONE
TIMESTAMP WITH TIME ZONE

Object JSON, VARCHAR2 Oracle Database 23ai: JSON
Oracle Database 19c: Error (no
default type)

Array JSON, VARCHAR2 Oracle Database 23ai: JSON
Oracle Database 19c: Error (no
default type)

Null Any SQL type mentioned above.

For JSON type, BSON null
maps to JSON null. For all
other types it maps to SQL NULL.

VARCHAR2

$sql Stage Result for a SELECT Statement

For a SELECT statement, each row in the query result set is mapped to a JSON object in
the $sql stage result. (The MongoDB shell output encloses the objects in brackets ([,]); the
result is not a JSON array.)

The query can return a single column of JSON data, or it can return data from multiple
columns, each of which can be of any type.

• In the former case, the JSON object in the $sql-stage result is the JSON data returned
by the SQL query. This is illustrated in Example 3-1.

• In the latter case, the JSON object in the result is constructed from the multiple column
values. The column aliases in the query are used as the object field names. This is
illustrated in Example 3-2.

For the second case (query returning multiple columns), the query results are mapped to new
BSON documents. If a given SQL column is known to be JSON data (because it is JSON type
or it has an IS JSON constraint) then it is used directly, as a BSON (JSON) value. Otherwise,
the SQL-to-BSON type mappings for the column values are as shown in Table 3-45.
Selection of a value from a column of any other type raises an error.

Chapter 3
Aggregation Pipeline Operators

3-31

Table 3-45 SELECT: Mappings of Non-JSON SQL Columns to BSON

SQL Column Type BSON (JSON Scalar) Type

BINARY_DOUBLE, BINARY_FLOAT double

BLOB raw

RAW binary

CLOB, VARCHAR2 string

DATE, TIMESTAMP, TIMESTAMP WITH TIME
ZONE

date

(UTC is assumed for DATE and TIMESTAMP.)

NUMBER If scale is zero then int32 or int64, depending
on the precision. Otherwise, double.

Example 3-1 Result for SELECT Query that Returns a Single Column of JSON
Data

This example shows two queries that select columns from table dept and return a
single column of JSON data. They both use SQL construction JSON{…} to produce a
JSON-type object.

This first query uses a wildcard (*) to select all columns from table dept. The column
names are used as the resulting object field names.

Query:

SELECT JSON{*} data FROM dept2

Result:

[{DEPTNO : 10, DNAME : 'ACCOUNTING', LOC : 'NEW YORK'},
 {DEPTNO : 20, DNAME : 'RESEARCH', LOC : 'DALLAS'},
 {DEPTNO : 30, DNAME : 'SALES', LOC : 'CHICAGO'},
 {DEPTNO : 40, DNAME : 'OPERATIONS', LOC : 'BOSTON'}]

This second query selects columns deptno and dname from table dept. It uses
JSON{…} to produce a JSON-type object with the column names as the values of fields
_id and name, respectively.

Query:

SELECT JSON{'_id' : deptno, 'name', dname} data FROM dept3

Result:

[{_id : 10, name : 'ACCOUNTING'},
 {_id : 20, name : 'RESEARCH'},

2 On Oracle Database 19c use this query instead: SELECT json_object(*) data FROM dept;
3 On Oracle Database 19c use this query instead: SELECT json_object('_id':deptno, 'name', dname)
data FROM dept;

Chapter 3
Aggregation Pipeline Operators

3-32

 {_id : 30, name : 'SALES'},
 {_id : 40, name : 'OPERATIONS'}]

Example 3-2 Result for SELECT Query that Returns Data from Multiple Columns (Any
Types)

This example shows two queries that select columns from table dept and construct a JSON
object. (These queries do not use construction JSON{…}.)

This first query selects columns deptno, dname, and loc. The field names of the resulting
object are the aliases of the selected columns and the field values are the corresponding
column values.

Query:

SELECT deptno, dname, loc FROM dept

Result:

[{DEPTNO : 10, DNAME : 'ACCOUNTING', LOC : 'NEW YORK'},
 {DEPTNO : 20, DNAME : 'RESEARCH', LOC : 'DALLAS'},
 {DEPTNO : 30, DNAME : 'SALES', LOC : 'CHICAGO'},
 {DEPTNO : 40, DNAME : 'OPERATIONS', LOC : 'BOSTON' }]

This second query selects columns deptno and loc, and it uses SQL function SYSTIMESTAMP
to produce a timestamp. The query provides field names id, location, and ts for the
resulting object, instead of using the column aliases. mongosh wraps the ISO timestamp value
with the ISODate helper.

Query:

SELECT deptno "id", loc "location", SYSTIMESTAMP "ts" FROM dept

Result:

[{id : 10,
 location : 'NEW YORK',
 ts : ISODate("2023-12-01T20:44:17.118Z")},
 {id : 20,
 location : 'DALLAS',
 ts : ISODate("2023-12-01T20:44:17.118Z")},
 {id : 30,
 location : 'CHICAGO',
 ts : ISODate("2023-12-01T20:44:17.118Z")},
 {id : 40,
 location : 'BOSTON',
 ts : ISODate("2023-12-01T20:44:17.118Z")}]

$sql Stage Result for a Non-SELECT Statement

The result of a $sql stage whose statement is not a SELECT statement is a JSON object with
the single field result, whose value indicates the number of rows of data that were changed

Chapter 3
Aggregation Pipeline Operators

3-33

by the statement (that is, inserted, deleted, or updated). When such a stage uses
multiple sets of bind variables, the result is an array of such numbers (of rows
changed).

Example 3-3, Example 3-4, Example 3-5, and Example 3-6 illustrate the result for non-
SELECT statements.

Example 3-3 Result for a DDL Statement — No Rows Are Modified

A DDL statement, such as this CREATE TABLE statement, changes no rows.

db.aggregate([{$sql:`CREATE TABLE employee (name VARCHAR2(4000), job
 VARCHAR2(4000))`}])

[{result : 0}]

Example 3-4 Result for a DML Statement That Modifies One Row

The INSERT statement in this $sql stage inserts one row, so result is 1.

db.aggregate([{$sql : "INSERT INTO employee VALUES ('Bob',
'Programmer')"}]);

[{result : 1}]

Example 3-5 Result for a DML Statement That Modifies Three Rows

The INSERT statement in this $sql stage inserts three rows, one for each of the three
sets of bind variables.

db.aggregate([{$sql :
 {statement : "INSERT INTO employee VALUES
(:name, :job)",
 binds : [{"name" : "John", "job" :
"Programmer"},
 {"name" : "Jane", "job" :
"Manager"},
 {"name" : "Francis", "job" :
"CEO"}]}}]);

[{result : [1, 1, 1]}]

Example 3-6 Result for a DML Statement That Modifies Two Rows

This DELETE statement deletes two rows, so result is 2.

db.aggregate([{$sql : `DELETE FROM employee e WHERE e.job =
'Programmer'`}])

[{result : 2}]

Chapter 3
Aggregation Pipeline Operators

3-34

3.6 Data Types
Support of MongoDB data types is described.

Table 3-46 Data Types

Data Type and Alias Support (Since) Notes

32-Bit Integer (int) 19c None.

64-Bit Integer (long) 19c None.

Array (array) 19c None.

Binary Data (binData) 19c None.

Boolean (bool) 19c None.

Date (date) 19c None.

DBPointer (dbPointer) No None.

Decimal128 (decimal) 19c None.

Double (double) 19c None.

JavaScript (javascript) No None.

MaxKey (maxKey) No None.

MinKey (minKey) No None.

Null (null) 19c None.

Object (object) 19c None.

ObjectId (objectId) 19c None.

Regular Expression (regex) No None.

String (string) 19c None.

Symbol (symbol) No None.

Timestamp (timestamp) No None.

Undefined (undefined) No None.

See Also:

$type in the MongoDB Reference manual

3.7 Indexes and Index Properties
Support of MongoDB indexes and index properties is described.

Table 3-47 Indexes

Index Type Support (Since) Notes

2d Index No (23ai). No-op (19c) None.

Chapter 3
Data Types

3-35

https://www.mongodb.com/docs/v4.4/reference/operator/query/type/

Table 3-47 (Cont.) Indexes

Index Type Support (Since) Notes

2dsphere Index No (23ai). No-op (19c) You can create an Oracle
Database spatial index using
SQL CREATE INDEX on the
backing table of the collection.

Compound Multikey Index No (23ai). No-op (19c) See Note, below.

Hashed Index No (23ai). No-op (19c) None.

Single Field Multikey Index 23ai. No-op (19c) See Note, below.

Text Index 19c None.

Note:

You can create a suitable Oracle Database index using SQL CREATE INDEX
on the backing table of the collection. See Indexes for JSON Data.

If the field cannot ever have an array value then create a json_value
function-based index. Otherwise, use an index over a materialized view. See
JSON Query Rewrite To Use a Materialized View Over JSON_TABLE.

See Also:

Index Types in the MongoDB Reference manual

Table 3-48 Index Properties

Index Property Support (Since) Notes

Background No (23ai); No-op (19c) None.

Case Insensitive No (23ai); No-op (19c) None.

Partial No (23ai); No-op (19c) None.

Sparse No (23ai); No-op (19c) None.

TTL No (23ai); No-op (19c) When creating the equivalent
of a MongoDB compound or
single field index using SQL,
the index can have property
TTL.

Unique 23ai (No-op in 19c) When creating the equivalent
of a MongoDB compound or
single field index using SQL,
the index can be unique.

Chapter 3
Indexes and Index Properties

3-36

https://www.mongodb.com/docs/manual/core/indexes/index-types/

See Also:

Index Properties in the MongoDB Reference manual

Chapter 3
Indexes and Index Properties

3-37

https://www.mongodb.com/docs/manual/core/indexes/index-properties/

Index

Symbols
_id field (document identifier)

and primary key, 1-3, 2-14
duality views, 1-6
supported types, 2-18

$sql stage, 3-25

A
aggregation pipeline

and SQL, 2-12
definition, 1-3
operators, 3-16

application migration from MongoDB, 2-9
authentication and authorization, 2-7
autonomous database, 1-2

B
binds field, $sql stage, 3-25
BSON

conversion of document, 2-14
conversion of field _id, 2-14, 2-18

C
C driver version, 1-2
C# driver version, 1-2
collation field, 2-18
collection

definition, 1-3
mapped, 2-19
supported by a duality view, 1-6

collection table name, 1-5
commands, database, 3-1
Compass version, 1-2
connection URI, encoding reserved characters,

2-9
converged database, 1-2
conversion

BSON field _id, 2-14
BSON scalar types, 2-14

cursor methods, 3-15

D
data migration from MongoDB, 2-9
data types, 3-35
database commands, 3-1
database schema, 1-3, 2-7
Database Tools version, 1-2
database, definition, 1-3, 2-7
datatype field of binds value, 3-25
dialect field, $sql stage, 3-25
document

conversion from BSON, 2-14
definition, 1-3
id, 2-14
key, 2-14
maximum size, 2-18

document identifier field, 2-14
and primary key, 1-3
duality views, 1-6
supported types, 2-18

drivers, supported, 1-2
duality views, 1-6

E
encoding characters in a URI, 2-9
escaping characters in a URI, 2-9

F
field order in an object, 2-18
format field, $sql stage, 3-25

G
Go driver version, 1-2

H
hint

index, 2-1
SQL monitoring, 2-1

Index-1

I
id column (document identifier, 1-3, 2-14
identifier field, 2-14

and primary key, 1-3
duality views, 1-6
supported types, 2-18

in-memory column storage, 2-1
index field of binds value, 3-25
index names, unique, 2-18
INDEX SQL hint, 2-1
indexes, 1-3, 2-1, 3-35

J
Java driver version, 1-2
JSON database, autonomous, 1-2
JSON Page, Database Actions, 2-1
JSON scalar type conversion from BSON, 2-14
JSON-relational duality views, 1-6

K
key

document, 2-14
primary, 1-3

L
load JSON data, 2-9

M
mapped collections, 2-19
materialized views, 2-1
maximum document size, 2-18
methods, cursor, 3-15
migration from MongoDB, 2-9
MongoDB wire protocol, 1-2
MongoDB, differences from Oracle Database,

2-18
mongodump, 1-2
mongoexport, 1-2
mongoimport, 1-2
mongorestore, 1-2
MongoSH version, 1-2
MONITOR SQL hint, 2-1
monitoring performance, 2-1
multitenant database, 1-2

N
name field of binds value, 3-25
Node.js driver version, 1-2

O
operators

aggregation pipeline, 3-16
query and projection, 3-10
update, 3-13

optimizer, 2-12
Oracle Database, differences from MongoDB,

2-18
order of fields in an object, 2-18
OSON format, 2-14

P
password, in connection URI, 2-9
performance improvement, 2-1
pipeline, aggregation, definition, 1-3
primary key, 1-3, 2-14
projection operators, 3-10
protocol, MongoDB, 1-2
purpose of Oracle Database API for MongoDB,

1-2
PyMongo (Python) driver version, 1-2

Q
query expression, definition, 1-3
query operation, definition, 1-3
query operators, 3-10
query with SQL/JSON functions, 2-12

R
read and write concerns, 2-18
reserved characters in connection URI, 2-9
resetSession field, $sql stage, 3-25
roles, 2-7
Ruby driver version, 1-2
Rust driver version, 1-2

S
scalar type conversion from BSON, 2-14
schema, database, 1-3, 2-7

accessing collection in different, 2-19
security, 2-7
SQL (Structured Query Language), 1-2
SQL statement, executing with $sql stage, 3-25
SQL/JSON, 2-12
statement field, $sql stage, 3-25
Structured Query Language (SQL), 1-2

Index

Index-2

T
table name, collection, 1-5
tools, supported, 1-2
transactions, 2-18
type conversion from BSON, 2-14
types, 3-35

U
update operators, 3-13
URI reserved characters, encoding, 2-9

username, in connection URI, 2-9
users, 1-3, 2-7

accessing collection of different, 2-19

V
value field of binds value, 3-25

W
wire protocol, MongoDB, 1-2

Index

Index-3

	Contents
	List of Examples
	List of Tables
	Preface
	Audience
	Documentation Accessibility
	Related Resources
	Conventions

	1 Overview of Oracle Database API for MongoDB
	1.1 Purpose of Oracle Database API for MongoDB
	1.2 Tools and Drivers for Oracle Database API for MongoDB
	1.3 Terms and Concepts: MongoDB and Oracle Database
	1.4 Default Naming of a Collection Table
	1.5 Using the Mongo DB API with JSON-Relational Duality Views

	2 Develop Applications with Oracle Database API for MongoDB
	2.1 Indexing and Performance Tuning
	2.2 Users, Authentication, and Authorization
	2.3 Migrate Application Data from MongoDB to Oracle Database
	2.4 MongoDB Aggregation Pipeline Support
	2.5 MongoDB Documents and Oracle Database
	2.6 Other Differences Between MongoDB and Oracle Database
	2.7 Accessing Collections Owned By Other Users (Database Schemas)

	3 Support for MongoDB APIs, Operations, and Data Types — Reference
	3.1 Database Commands
	3.2 Query and Projection Operators
	3.3 Update Operators
	3.4 Cursor Methods
	3.5 Aggregation Pipeline Operators
	3.5.1 $sql Aggregation Pipeline Stage

	3.6 Data Types
	3.7 Indexes and Index Properties

	Index

