
Oracle® Developer Studio 12.6:
Performance Library User's Guide

Part No: E77802
July 2017

Oracle Developer Studio 12.6: Performance Library User's Guide

Part No: E77802

Copyright © 2015, 2017, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except
as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform,
publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation,
delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the
hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous
applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of
SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products, and services from third parties. Oracle Corporation and its affiliates are
not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an applicable agreement
between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Référence: E77802

Copyright © 2015, 2017, Oracle et/ou ses affiliés. Tous droits réservés.

Ce logiciel et la documentation qui l'accompagne sont protégés par les lois sur la propriété intellectuelle. Ils sont concédés sous licence et soumis à des restrictions d'utilisation et
de divulgation. Sauf stipulation expresse de votre contrat de licence ou de la loi, vous ne pouvez pas copier, reproduire, traduire, diffuser, modifier, accorder de licence, transmettre,
distribuer, exposer, exécuter, publier ou afficher le logiciel, même partiellement, sous quelque forme et par quelque procédé que ce soit. Par ailleurs, il est interdit de procéder à toute
ingénierie inverse du logiciel, de le désassembler ou de le décompiler, excepté à des fins d'interopérabilité avec des logiciels tiers ou tel que prescrit par la loi.

Les informations fournies dans ce document sont susceptibles de modification sans préavis. Par ailleurs, Oracle Corporation ne garantit pas qu'elles soient exemptes d'erreurs et vous
invite, le cas échéant, à lui en faire part par écrit.

Si ce logiciel, ou la documentation qui l'accompagne, est livré sous licence au Gouvernement des Etats-Unis, ou à quiconque qui aurait souscrit la licence de ce logiciel pour le
compte du Gouvernement des Etats-Unis, la notice suivante s'applique :

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation,
delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the
hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

Ce logiciel ou matériel a été développé pour un usage général dans le cadre d'applications de gestion des informations. Ce logiciel ou matériel n'est pas conçu ni n'est destiné à être
utilisé dans des applications à risque, notamment dans des applications pouvant causer un risque de dommages corporels. Si vous utilisez ce logiciel ou ce matériel dans le cadre
d'applications dangereuses, il est de votre responsabilité de prendre toutes les mesures de secours, de sauvegarde, de redondance et autres mesures nécessaires à son utilisation dans
des conditions optimales de sécurité. Oracle Corporation et ses affiliés déclinent toute responsabilité quant aux dommages causés par l'utilisation de ce logiciel ou matériel pour des
applications dangereuses.

Oracle et Java sont des marques déposées d'Oracle Corporation et/ou de ses affiliés. Tout autre nom mentionné peut correspondre à des marques appartenant à d'autres propriétaires
qu'Oracle.

Intel et Intel Xeon sont des marques ou des marques déposées d'Intel Corporation. Toutes les marques SPARC sont utilisées sous licence et sont des marques ou des marques
déposées de SPARC International, Inc. AMD, Opteron, le logo AMD et le logo AMD Opteron sont des marques ou des marques déposées d'Advanced Micro Devices. UNIX est une
marque déposée de The Open Group.

Ce logiciel ou matériel et la documentation qui l'accompagne peuvent fournir des informations ou des liens donnant accès à des contenus, des produits et des services émanant de
tiers. Oracle Corporation et ses affiliés déclinent toute responsabilité ou garantie expresse quant aux contenus, produits ou services émanant de tiers, sauf mention contraire stipulée
dans un contrat entre vous et Oracle. En aucun cas, Oracle Corporation et ses affiliés ne sauraient être tenus pour responsables des pertes subies, des coûts occasionnés ou des
dommages causés par l'accès à des contenus, produits ou services tiers, ou à leur utilisation, sauf mention contraire stipulée dans un contrat entre vous et Oracle.

Accès aux services de support Oracle

Les clients Oracle qui ont souscrit un contrat de support ont accès au support électronique via My Oracle Support. Pour plus d'informations, visitez le site http://www.oracle.com/
pls/topic/lookup?ctx=acc&id=info ou le site http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs si vous êtes malentendant.

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Contents

Using This Documentation ...  9

1 Introduction to Oracle Developer Studio Performance Library ...................... 11
Libraries Included With Oracle Developer Studio Performance Library ...................  11

About Netlib ... 12
Related Documentation ... 13

Oracle Developer Studio Performance Library Features ..  14
Mathematical Routines ...  14
Compatibility With Previous LAPACK Versions ...  15
Getting Started With Oracle Developer Studio Performance Library ........................ 15

▼ Enabling Trap 6 on SPARC Platforms ..  17

2 Using Oracle Developer Studio Performance Library .................................... 19
Improving Application Performance ...  19

Replacing Routines With Oracle Developer Studio Performance Library
Routines ... 19
Improving Performance of Other Libraries ...  19
Using Tools to Restructure Code ..  20

Fortran Interfaces ..  20
Fortran SUNPERF Module for Use With Fortran 95 .......................................  21

Fortran Examples ..  22
C Interfaces ..  24
C Examples ..  26

3 Optimizing Applications ..  29
Comparison of 32-Bit and 64-Bit Environments ..  29
Using the Oracle Developer Studio Performance Library ......................................  29

Linking Fortran Programs ...  30

5

Contents

Linking C and C++ Programs ..  30
About Compiling ... 30

Compiling Code for a 64-Bit Enabled Operating Environments ......................  31
64-Bit Integer Arguments ...  31

4 Parallel Processing ...  35
Run-Time Issues ...  35
Degree of Parallelism ...  36
Synchronization Mechanisms ... 37
Parallel Processing Examples ..  38

5 Working With Matrices ..  41
Matrix Storage Schemes ...  41

Banded Storage ...  41
Packed Storage ...  42

Matrix Types ..  43
General Matrices ...  43
Triangular Matrices .. 44
Symmetric Matrices ...  45
Tridiagonal Matrices ..  45

6 Sparse Computation ...  47
Sparse Matrices ...  47

Symmetric Sparse Matrices ...  48
Structurally Symmetric Sparse Matrices ..  49
Unsymmetric Sparse Matrices .. 49

Sparse BLAS ..  50
Netlib Sparse BLAS ..  50
NIST Fortran Sparse BLAS ..  51

SPSOLVE Interface ...  52
SPSOLVE Routines ...  52
SPSOLVE Routine Calling Order ...  53
SPSOLVE Examples ..  54

SuperLU Interface ...  64
Calling SuperLU from C ..  66
Calling SuperLU from Fortran ...  70

6 Oracle Developer Studio 12.6: Performance Library User's Guide • July 2017

Contents

SuperLU Examples ..  71
References for Sparse BLAS and Solver .. 75

7 Using Oracle Developer Studio Performance Library Signal Processing
Routines ..  77

Forward and Inverse FFT Routines ... 78
Linear FFT Routines ..  80
Two-Dimensional FFT Routines ... 88
Three-Dimensional FFT Routines ...  93
Comments ..  99

Cosine and Sine Transforms ..  101
Fast Cosine and Sine Transform Routines ..  101
Fast Sine Transforms ..  103
Fast Cosine Transforms ..  103
Discrete Fast Cosine and Sine Transforms and Their Inverse ........................  104
Fast Cosine Transform Examples .. 109
Fast Sine Transform Examples ...  111

Convolution and Correlation ..  113
Convolution Operation .. 113
Correlation Operation ...  114
Oracle Developer Studio Performance Library Convolution and Correlation
Routines ...  115
Arguments for Convolution and Correlation Routines .................................  115
Work Array WORK for Convolution and Correlation Routines ........................  117
Sample Program: Convolution ...  119

References ..  123

A Oracle Developer Studio Performance Library Routines ............................  125
LAPACK Routines ...  126
BLAS1 Routines .. 151
BLAS2 Routines .. 152
BLAS3 Routines .. 153
Sparse BLAS Routines ...  154
Sparse Solver Routines ...  155
Signal Processing Library Routines ...  156

FFT Routines ..  157
Fast Cosine and Sine Transforms ..  159

7

Contents

Convolution and Correlation Routines ...  159
Miscellaneous Signal Processing Routines .. 160
Sort Routines ..  160

Index ..  163

8 Oracle Developer Studio 12.6: Performance Library User's Guide • July 2017

Using This Documentation

■ Overview – Describes how to use the unique extensions and features included with the
Oracle Developer Studio Performance Library subroutines that are supported by the Oracle
Developer Studio Fortran 95, C++, and C compilers.

■ Audience – Application developers, system developers, architects, support engineers.
■ Required knowledge – You should have a working knowledge of the Fortran or C

language, basic knowledge of numerical analysis, and some understanding of the base
LAPACK and BLAS libraries available from Netlib (http://www.netlib.org).

Product Documentation Library

Documentation and resources for this product and related products are available at http://www.
oracle.com/pls/topic/lookup?ctx=E77782-01

Feedback

Provide feedback about this documentation at http://www.oracle.com/goto/docfeedback.

Using This Documentation 9

http://www.netlib.org
http://www.oracle.com/pls/topic/lookup?ctx=E77782-01
http://www.oracle.com/pls/topic/lookup?ctx=E77782-01
http://www.oracle.com/goto/docfeedback

10 Oracle Developer Studio 12.6: Performance Library User's Guide • July 2017

 1 ♦ ♦ ♦ C H A P T E R 1

Introduction to Oracle Developer Studio
Performance Library

Oracle Developer Studio Performance Library is a set of optimized, high-speed mathematical
subroutines for solving linear algebra and other numerically intensive problems. Oracle
Developer Studio Performance Library is based on a collection of public domain applications
mostly available from Netlib at http://www.netlib.org. These public domain applications
have been enhanced and bundled together as the Oracle Developer Studio Performance Library.

This document explains the Oracle-specific enhancements to the base applications available
from Netlib. Reference material describing the base routines is available from Netlib and the
Society for Industrial and Applied Mathematics (SIAM). Additionally, the Oracle Developer
Studio 12.6 Performance Library's public functions and subroutines are documented in detail in
Section 3P of the Oracle Developer Studio manual pages. To see information about the 3P man
pages, type man -s 3p intro. For more information about adding the Oracle Developer Studio
man page path to your MANPATH variable, see “Setting Up Access to the Developer Tools and
Man Pages” in Oracle Developer Studio 12.6: Installation Guide.

Libraries Included With Oracle Developer Studio
Performance Library

The Performance Library contains enhanced versions of the following standard libraries:

■ LAPACK version 3.6.1 – For solving linear algebra problems.
■ BLAS1 (Basic Linear Algebra Subprograms) – For performing vector-vector operations.
■ BLAS2 – For performing matrix-vector operations.
■ BLAS3 – For performing matrix-matrix operations.
■ Netlib Sparse-BLAS - performing sparse vector operations
■ NIST Sparse-BLAS 0.5 - performing fundamental sparse matrix operations
■ SuperLU 3.0 - solving sparse linear systems of equations
■ Sparse Solver - direct sparse solver routines

Chapter 1 • Introduction to Oracle Developer Studio Performance Library 11

http://www.netlib.org
http://www.oracle.com/pls/topic/lookup?ctx=E77782-01&id=OSSIGgojel
http://www.oracle.com/pls/topic/lookup?ctx=E77782-01&id=OSSIGgojel

Libraries Included With Oracle Developer Studio Performance Library

■ FFTPACK - performing fast Fourier transform
■ VFFTPACK - performing vectorized fast Fourier transform
■ XBLAS - extra precise basic linear algebra subroutines
■ Other Routines - transpose, Convolution, correlation and sort

Note - LINPACK has been removed from Oracle Developer Studio Performance Library.
LAPACK version 3.6.1 supersedes LINPACK and all previous versions of LAPACK. If the
LINPACK routines are still needed, you can obtain the LINPACK library and documentation
from http://www.netlib.org.

Oracle Developer Studio Performance Library is available in both static and dynamic library
forms. There are optimized SPARC versions for sparcvis, sparcvis2, and sparcfmaf and
advanced architectures on the Oracle Solaris 11 and Oracle Linux operating systems. There
are also optimized versions for x86/x64 architectures on Oracle Solaris 11 systems, along with
Oracle Linux systems. All versions have support for parallel programming on multiprocessor
platforms. See the Oracle Developer Studio 12.6: Release Notes for details.

Oracle Developer Studio Performance Library LAPACK routines have been compiled with
a Fortran 95 compiler and remain compatible with the Netlib LAPACK version 3.6.1 library.
The Performance Library versions of these routines perform the same operations as the Fortran
callable routines and have the same interface as the standard Netlib versions.

LAPACK contains driver, computational, and auxiliary routines. The Performance Library does
not support the auxiliary routines, because auxiliary routines can be changed or be removed
from LAPACK without notice. Because the auxiliary routines are not supported, they are not
documented in this user guide or in the 3P section man pages.

Many auxiliary routines contain LA as the second and third characters in the routine name;
however, some do not. Appendix B of the LAPACK User's Guide, Third Edition (http://www.
netlib.org/lapack/lug/) contains a list of auxiliary routines.

About Netlib

Netlib is an online repository of mathematical software, papers, and databases maintained by
AT&T Bell Laboratories, the University of Tennessee, Oak Ridge National Laboratory, and
professionals from around the world.

Netlib provides many libraries, in addition to the libraries used in Oracle Developer Studio
Performance Library. While some of these libraries can appear similar to libraries used with
the Performance Library, they can be different from, and incompatible with the Performance
Library.

12 Oracle Developer Studio 12.6: Performance Library User's Guide • July 2017

http://www.netlib.org
http://www.oracle.com/pls/topic/lookup?ctx=E77782-01&id=OSSRN
http://www.netlib.org/lapack/lug/
http://www.netlib.org/lapack/lug/

Libraries Included With Oracle Developer Studio Performance Library

Using routines from other libraries can produce compatibility problems, not only with Oracle
Developer Studio Performance Library routines, but also with the base Netlib LAPACK
routines. When using routines from other libraries, refer to the documentation provided with
those libraries.

For example, Netlib provides a CLAPACK library, but the CLAPACK interfaces differ from
the C interfaces included with Oracle Developer Studio Performance Library. A LAPACK 90
library package is also available on Netlib. The LAPACK 90 library contains interfaces that
differ from the Oracle Developer Studio Performance Library Fortran 95 interfaces and the
Netlib LAPACK version 3.6.1 interfaces. If using LAPACK 90, refer to the documentation
provided with that library.

For the base libraries supported by Oracle Developer Studio Performance Library, Netlib
provides detailed information that can supplement this user's guide. The LAPACK User's
Guide, Third Edition (http://www.netlib.org/lapack/lug/) describes LAPACK algorithms
and how to use the routines, but it does not describe the Oracle Developer Studio Performance
Library extensions made to the base routines.

Related Documentation

The LAPACK User's Guide is the official reference for the base LAPACK version 3.6.1
routines. An online version of the LAPACK Users' Guide is available at http://www.netlib.
org/lapack/lug/, and the printed version is available from the Society for Industrial and
Applied Mathematics (SIAM) http://www.siam.org.

Oracle Developer Studio Performance Library routines contain performance enhancements,
extensions, and features not described in the LAPACK Users' Guide. However, because Oracle
Developer Studio Performance Library maintains compatibility with the base LAPACK
routines, the LAPACK Guide can be used as a reference for the LAPACK routines and the
Fortran interfaces.

Note - LINPACK has been removed from the Oracle Developer Studio Performance Library.
The LINPACK libraries and documentation are still available from http://www.netlib.org.

See the following locations for information describing the performance library routines that
form the basis of the Oracle Developer Studio Performance Library.

LAPACK version 3.6.1 http://www.netlib.org/lapack/

BLAS, levels 1 through 3 http://www.netlib.org/blas/

FFTPACK version 4 http://www.netlib.org/fftpack/

Chapter 1 • Introduction to Oracle Developer Studio Performance Library 13

http://www.netlib.org/lapack/lug/
http://www.netlib.org/lapack/lug/
http://www.netlib.org/lapack/lug/
http://www.netlib.org/lapack/lug/
http://www.siam.org
http://www.netlib.org
http://www.netlib.org/lapack/
http://www.netlib.org/blas/
http://www.netlib.org/fftpack/

Oracle Developer Studio Performance Library Features

VFFTPACK version 2.1 http://www.netlib.org/vfftpack/

Sparse BLAS http://www.netlib.org/sparse-blas/index.html

NIST (National Institute of
Standards and Technology)
Fortran Sparse BLAS

http://math.nist.gov/spblas/

SuperLU version 3.0 http://crd.lbl.gov/~xiaoye/SuperLU/

Oracle Developer Studio Performance Library Features

Oracle Developer Studio Performance Library routines can increase application performance on
both serial and multiprocessor (MP) platforms, because the serial speed of many Performance
Library routines has been increased, and many routines have been parallelized. Oracle
Developer Studio Performance Library routines also have SPARC, AMD, and Intel specific
optimizations that are not present in the base Netlib libraries.

Oracle Developer Studio Performance Library provides the following optimizations and
extensions to the base Netlib libraries:

■ Extensions that support Fortran 95 and C language interfaces
■ Fortran 95 language features, including type independence and compile time checking
■ Consistent API across the different libraries in the Performance Library
■ Compatibility with LAPACK 1.0, 2.0, 3.0, 3.1.1, 3.3.1, 3.4.2 and 3.5.0 libraries
■ Increased performance, and in some cases, greater accuracy
■ Optimizations for specific SPARC and x86/x64 instruction set architectures
■ Support for 64-bit enabled Oracle Solaris and Linux operating environments
■ Support for parallel processing compiler options for SPARC and x86/x64 platforms
■ Support for multiple processor hardware options

Mathematical Routines

Oracle Developer Studio Performance Library routines are used to solve the following types of
linear algebra and numerical problems:

■ Elementary vector and matrix operations – Vector and matrix products; plane rotations; 1,
2-, and infinity-norms; rank-1, 2, k, and 2k updates

14 Oracle Developer Studio 12.6: Performance Library User's Guide • July 2017

http://www.netlib.org/vfftpack/
http://www.netlib.org/sparse-blas/index.html
http://math.nist.gov/spblas/
http://crd.lbl.gov/~xiaoye/SuperLU/

Compatibility With Previous LAPACK Versions

■ Linear systems – Solve full-rank systems, compute error bounds, solve Sylvester equations,
refine a computed solution, equilibrate a coefficient matrix

■ Least squares – Full-rank, generalized linear regression, rank-deficient, linear equality
constrained

■ Eigenproblems – Eigenvalues, generalized eigenvalues, eigenvectors, generalized
eigenvectors, Schur vectors, generalized Schur vectors

■ Matrix factorizations or decompositions – SVD, generalized SVD, QL and LQ, QR and RQ,
Cholesky, LU, Schur, LDLT, UDUT, and CS Decomposition

■ Support operations – Condition number, in-place or out-of-place transpose, inverse,
determinant, inertia, extra-precise iterative refinement

■ Sparse matrices – Solve symmetric, structurally symmetric, and unsymmetric coefficient
matrices using direct methods and a choice of fill-reducing ordering algorithms, and user-
specified orderings

■ Convolution and correlation in one and two dimensions
■ Fast Fourier transforms, Fourier analysis and Fourier synthesis, cosine and quarter-wave

cosine transforms, cosine and quarter-wave sine transforms
■ Complex vector FFTs and FFTs in two and three dimensions
■ Sorting operations
■ CBLAS Interface

Compatibility With Previous LAPACK Versions
The Oracle Developer Studio Performance Library routines that are based on LAPACK support
the expanded capabilities and improved algorithms in LAPACK 3.6.1, but are completely
compatible with LAPACK 1.0, LAPACK 2.0, LAPACK 3.0, LAPACK 3.1.1, LAPACK
3.3.1, LAPACK 3.4.2 and LAPACK 3.5.0 libraries. Maintaining compatibility with previous
LAPACK versions:

■ Reduces linking errors due to changes in subroutine names or argument lists.
■ Ensures results are consistent with results generated with previous LAPACK versions.
■ Minimizes programs terminating due to differences between argument lists.

Getting Started With Oracle Developer Studio Performance
Library

This section shows the most basic compiler options used to compile an application that uses the
Oracle Developer Studio Performance Library routines.

Chapter 1 • Introduction to Oracle Developer Studio Performance Library 15

Getting Started With Oracle Developer Studio Performance Library

To use the Oracle Developer Studio Performance Library, type one of the following commands.

On x86/x64 and SPARC platforms:

my_system% f95 -dalign my_file.f -library=sunperf

On SPARC platforms:

my_system% cc -xmemalign=8s my_file.c -library=sunperf

my_system% CC -xmemalign=8s my_file.cpp -library=sunperf

On x86/64 platforms, -xmemalign=8s is ignored and therefore can be omitted:

my_system% cc my_file.c -library=sunperf

my_system% CC my_file.cpp -library=sunperf

To link with the Oracle Developer Studio Performance Library statically, add
-staticlib=sunperf to the command line.

Because Oracle Developer Studio Performance Library routines are compiled with -dalign,
this option should be used for compilation of all Fortran files if any routine in the program
makes an Oracle Developer Studio Performance Library call. On SPARC platforms, C and
C++ user code that calls Oracle Developer Studio Performance Library routines should be
compiled with option -xmemalign=8s. If -xmemalign=8s cannot be used, enabling trap 6 is a
low performance workaround that allows misaligned data. See “Enabling Trap 6 on SPARC
Platforms” on page 17 for more details.

While there are no data alignment restrictions on x86/x64 platforms, misaligned data might
require extra instructions to properly handle memory transfers, which in turn can cause poor
performance.

The -library=sunperf option includes additional compiler and system libraries such as the
Fortran run-time and micro-tasking library and sets run-time search paths for the resulting
executable or shared library.

To summarize, use the following options:

■ -dalign on all Fortran files at compile time.

-xmemalign=8s on SPARC platforms, or enable trap 6
■ The same command line options for compiling and linking
■ -library=sunperf or -library=sunperf -staticlib=sunperf

See “About Compiling” on page 30 and Chapter 4, “Parallel Processing” for additional
options that optimize application performance.

16 Oracle Developer Studio 12.6: Performance Library User's Guide • July 2017

Enabling Trap 6 on SPARC Platforms

Enabling Trap 6 on SPARC Platforms

On SPARC platforms where data misalignment can cause failure, if an application cannot be
compiled using -dalign or -xmemalign=8s, enable trap 6 to provide a handler for misaligned
data. To enable trap 6 on SPARC platforms, do the following:

1. Place this assembly code in a file called trap6_handler.s.

 .global trap6_handler_

 .text

 .align 4

trap6_handler_:

 retl

 ta 6

2. Assemble trap6_handler.s.

my_system% fbe trap6_handler.s

fbe is the command that will create object files from assembly language source files.

The first parallelizable subroutine invoked from Oracle Developer Studio Performance Library
will call a routine named trap6_handler_. If a trap6_handler_ is not specified, Oracle
Developer Studio Performance Library will call a default handler that does nothing. Not
supplying a handler for any misaligned data will cause a trap that will be fatal.

3. Include trap6_handler.o on the command line.

my_system% f95 any.f trap6_handler.o -library=sunperf

Chapter 1 • Introduction to Oracle Developer Studio Performance Library 17

18 Oracle Developer Studio 12.6: Performance Library User's Guide • July 2017

 2 ♦ ♦ ♦ C H A P T E R 2

Using Oracle Developer Studio Performance
Library

This chapter describes using the Oracle Developer Studio Performance Library to improve
the execution speed of applications written in Fortran 95 or C. The performance of many
applications can be increased by using Oracle Developer Studio Performance Library without
making source code changes or recompiling. However, some modifications to applications
might be required to gain peak performance with Oracle Developer Studio Performance
Library.

Improving Application Performance
The following sections describe ways of using Oracle Developer Studio Performance Library
routines without making source code changes or recompiling.

Replacing Routines With Oracle Developer Studio
Performance Library Routines
Many applications use one or more of the base Netlib libraries, such as LAPACK or BLAS.
Because Oracle Developer Studio Performance Library maintains the same interfaces and
functionality of these libraries, base Netlib routines can be replaced with Oracle Developer
Studio Performance Library routines. Application performance is increased, because Oracle
Developer Studio Performance Library routines can be faster than the corresponding Netlib
routines or similar routines provided by other vendors.

Improving Performance of Other Libraries
Many commercial math libraries are built around a core of generic BLAS and LAPACK
routines. When an application has a dependency on proprietary interfaces in another library that

Chapter 2 • Using Oracle Developer Studio Performance Library 19

Fortran Interfaces

prevents the library from being completely replaced, the BLAS and LAPACK routines used in
that library can be replaced with the Oracle Developer Studio Performance Library BLAS and
LAPACK routines. Because replacing the core routines does not require any code changes, the
proprietary library features can still be used, and the other routines in the library can remain
unchanged.

Using Tools to Restructure Code

Some libraries that do not directly use Oracle Developer Studio Performance Library routines
can be modified by using automatic code restructuring tools that replace existing code with
Oracle Developer Studio Performance Library code. For example, a source- to- source
conversion tool can replace existing BLAS code structures with calls to the Oracle Developer
Studio Performance Library BLAS routines. These conversion tools can also recognize many
user written matrix multiplications and replace them with calls to the matrix multiplication
subroutine in Oracle Developer Studio Performance Library.

Fortran Interfaces

Oracle Developer Studio Performance Library contains f95 interfaces and legacy f77 interfaces
for maintaining compatibility with the standard LAPACK and BLAS libraries and existing
codes. Oracle Developer Studio Performance Library f95 and legacy f77 interfaces use the
following conventions:

■ All arguments are passed by reference.
■ Types of arguments must be consistent within a call. For example, do not mix REAL*8 and

REAL*4 parameters in the same call.
■ Arrays are stored columnwise.
■ Indices are based at one, in keeping with standard Fortran practice.

Keep in mind the following information when calling Oracle Developer Studio Performance
Library routines:

■ Do not prototype the subroutines with the Fortran 95 INTERFACE statement. Use the USE
SUNPERF statement instead.

■ Do not use -ext_names=plain to compile routines that call routines from Oracle Developer
Studio Performance Library.

20 Oracle Developer Studio 12.6: Performance Library User's Guide • July 2017

Fortran Interfaces

Fortran SUNPERF Module for Use With Fortran 95

Oracle Developer Studio Performance Library provides a Fortran module for additional ease-of-
use features with Fortran 95 programs. To use this module, include the following line in Fortran
95 codes.

USE SUNPERF

USE statements must precede all other statements in the code, except for the PROGRAM or
SUBROUTINE statement.

The SUNPERF module contains interfaces that simplify the calling sequences and provides the
following features:

■ Type Independence – Oracle Developer Studio Performance Library supports interfaces
where the type of the data arguments will automatically be recognized, eliminating the
need for type-dependent prefixes (S, D, C, or Z). In the FORTRAN 77 routines, the type
must be specified as part of the routine name. For example, DGEMM is a double precision
matrix multiply and SGEMM is a single precision matrix multiply. When calling GEMM with the
Fortran 95 interfaces, Fortran will infer the type from the arguments that are passed. Passing
single-precision arguments to GEMM gets results that are equivalent to specifying SGEMM, and
passing double-precision arguments gets results that are equivalent to DGEMM. For example,
CALL DSCAL(20,5.26D0,X,1) could be changed to CALL SCAL(20, 5.26D0, X, 1).

■ Compile-Time Checking – In FORTRAN 77, it is generally impossible for the compiler to
determine what arguments should be passed to a particular routine. In Fortran 95, the USE
SUNPERF statement allows the compiler to determine the number, type, size, and shape of
each argument to each Oracle Developer Studio Performance Library routine. It can check
the calls against the expected value and display errors during compilation.

■ 64-bit Integer Support – When using the 64-bit interfaces provided with Oracle Developer
Studio Performance Library, integer arguments must be promoted to 64-bits, and the routine
name must be modified by appending _64 to the routine name. With the SUNPERF module,
64-bit integers will automatically be recognized, which eliminates the need for appending
_64 to the routine name, as shown in the following code example:

SUBROUTINE SUB(N,ALPHA,X,Y)

USE SUNPERF

INTEGER(8) N

REAL(8) ALPHA, X(N), Y(N)

! EQUIVALENT TO DAXPY_64(N,ALPHA,X,1_8,Y,1_8)

CALL DAXPY(N,ALPHA,X,1_8,Y,1_8)

Chapter 2 • Using Oracle Developer Studio Performance Library 21

Fortran Examples

END

For a detailed description of using the Oracle Developer Studio Performance Library 64-bit
interfaces, see “Compiling Code for a 64-Bit Enabled Operating Environments” on page 31.

Because the sunperf.mod file is compiled with -dalign, any code that contains the USE
SUNPERF statement must be compiled with -dalign. The following error occurs if the code is
not compiled with -dalign.

 use sunperf

 ^

 "test_code.f", Line = 2, Column = 11: ERROR: Procedure "SUNPERF" and this

 compilation must both be compiled with -dalign, or without -dalign.

Fortran Examples

To increase the performance of single processor applications, identify code constructs
in an application that can be replaced by calls to Oracle Developer Studio Performance
Library routines. Performance of multiprocessor applications can be increased by identifying
opportunities for parallelization.

To increase application performance by modifying code to use Oracle Developer Studio
Performance Library routines, identify blocks of code that exactly duplicate the capability of
a Oracle Developer Studio Performance Library routine. The following code example is the
matrix-vector product y ← Ax + y, which can be replaced with the DGEMV subroutine.

 DO I = 1, N

 DO J = 1, N

 Y(I) = Y(I) + A(I,J) * X(J)

 END DO

 END DO

In other cases, a block of code can be equivalent to several Oracle Developer Studio
Performance Library calls or contain portions of code that can be replaced with calls to Oracle
Developer Studio Performance Library routines. Consider the following code example.

 DO I = 1, N

 IF (V2(I,K) .LT. 0.0) THEN

 V2(I,K) = 0.0

 ELSE

 DO J = 1, M

 X(J,I) = X(J,I) + Vl(J,K) * V2(I,K)

 END DO

 END IF

22 Oracle Developer Studio 12.6: Performance Library User's Guide • July 2017

Fortran Examples

 END DO

The code example can be rewritten to use the Oracle Developer Studio Performance Library
routine DGER, as shown here.

 DO I = 1, N

 IF (V2(I,K) .LT. 0.0) THEN

 V2(I,K) = 0.0

 END IF

 END DO

 CALL DGER (M, N, 1.0D0, X, LDX, Vl(l,K), 1, V2(1,K), 1)

The same code example can also be rewritten using Fortran 95 specific statements, as shown
here.

WHERE (V(1:N,K) .LT. 0.0) THEN

 V(1:N,K) = 0.0

END WHERE

CALL DGER (M, N, 1.0D0, X, LDX, Vl(l,K), 1, V2(1,K), 1)

Because the code to replace negative numbers with zero in V2 has no natural analog in Oracle
Developer Studio Performance Library, that code is pulled out of the outer loop. With that code
removed to its own loop, the rest of the loop is a rank-1 update of the general matrix x that can
be replaced with the DGER routine from BLAS.

The amount of performance increase can also depend on the data the Oracle Developer Studio
Performance Library routine uses. For example, if V2 contains many negative or zero values,
the majority of the time might not be spent in the rank-1 update. In this case, replacing the code
with a call to DGER might not increase performance.

Evaluating other loop indexes can affect the Oracle Developer Studio Performance Library
routine used. For example, if the reference to K is a loop index, the loops in the code sample
shown above might be part of a larger code structure, where the loops over DGEMV or DGER could
be converted to some form of matrix multiplication. If so, a single call to a matrix multiplication
routine can increase performance more than using a loop with calls to DGER.

Because all Oracle Developer Studio Performance Library routines are MT-safe (multithread
safe), using the auto-parallelizing compiler to parallelize loops that contain calls to Oracle
Developer Studio Performance Library routines can increase performance on multiprocessor
platforms.

An example of combining a Oracle Developer Studio Performance Library routine with an
auto-parallelizing compiler parallelization directive is shown in the following code example.

 C$PAR DOALL

 DO I = 1, N

Chapter 2 • Using Oracle Developer Studio Performance Library 23

C Interfaces

 CALL DGBMV ('No transpose', N, N, ALPHA, A, LDA,

 $ B(l,I), 1, BETA, C(l,I), 1)

 END DO

Oracle Developer Studio Performance Library contains a routine named DGBMV to multiply
a banded matrix by a vector. By putting this routine into a properly constructed loop, Oracle
Developer Studio Performance Library routines can be used to multiply a banded matrix by a
matrix. The compiler will not parallelize this loop by default because the presence of subroutine
calls in a loop inhibits parallelization. However, Oracle Developer Studio Performance Library
routines are MT-safe, so you can use parallelization directives that instruct the compiler to
parallelize this loop.

Compiler directives can also be used to parallelize a loop with a subroutine call that ordinarily
would not be parallelizable. For example, it is ordinarily not possible to parallelize a loop
containing a call to some of the linear system solvers, because some vendors have implemented
those routines using code that is not MT-safe. Loops containing calls to the expert drivers of the
linear system solvers (routines whose names end in SVX or SVXX) are usually not parallelizable
with other implementations of LAPACK. Because the implementation of LAPACK in Oracle
Developer Studio Performance Library enables parallelization of loops containing such calls,
users of multiprocessor platforms can get additional performance by parallelizing these loops.

C Interfaces

The Oracle Developer Studio Performance Library routines can be called from within a
FORTRAN 77, Fortran 95, or C program. However, C programs must still use the FORTRAN
77 calling sequence.

Oracle Developer Studio Performance Library contains native C interfaces for each of the
routines contained in LAPACK, BLAS, FFTPACK, VFFTPACK, SPARSE BLAS, and
SPSOLVE. The Oracle Developer Studio Performance Library C interfaces have the following
features:

■ Function names have C names
■ Function interfaces follow C conventions
■ C interfaces do not contain redundant or unnecessary arguments for a C function

The following example compares the standard LAPACK Fortran interface and the Oracle
Developer Studio Performance Library C interfaces for the DGBCON routine.

CALL DGBCON (NORM, N, NSUB, NSUPER, DA, LDA, IPIVOT, DANORM,

 DRCOND, DWORK, IWORK2, INFO)

void dgbcon(char norm, int n, int nsub, int nsuper, double *da,

 int lda, int *ipivot, double danorm, double drcond,

24 Oracle Developer Studio 12.6: Performance Library User's Guide • July 2017

C Interfaces

 int *info)

Note that the names of the arguments are the same and that arguments with the same name have
the same base type. Scalar arguments that are used only as input values, such as NORM and N, are
passed by value in the C version. Arrays and scalars that will be used to return values are passed
by reference.

The Oracle Developer Studio Performance Library C interfaces improve on CLAPACK,
available on Netlib, which is an f2c translation of the standard libraries. For example, all of
the CLAPACK routines are followed by a trailing underscore to maintain compatibility with
Fortran compilers, which often postfix routine names in the object (.o) file with an underscore.
The Oracle Developer Studio Performance Library C interfaces do not require a trailing
underscore.

Oracle Developer Studio Performance Library C interfaces use the following conventions:

■ Input-only scalars are passed by value rather than by reference. Complex and double
complex arguments are not considered scalars because they are not implemented as a scalar
type by C.

■ Complex scalars can be passed as either structures or arrays of length 2.
■ Types of arguments must match even after C does type conversion. For example, be careful

when passing a single precision real value, because a C compiler can automatically promote
the argument to double precision.

■ Arrays are stored columnwise. For Fortran programmers, this is the natural order in which
arrays are stored. For C programmers, this is the transpose of the order in which they
usually work. In the documentation and man pages, references to rows refer to columns and
vice versa.

■ Array indices are based at one, in conformance with Fortran conventions, rather than being
zero as in C.

For example, the Fortran interface to IDAMAX, which C programs access as idamax_,
would return 1 to indicate the first element in a vector. The C interface to idamax, which C
programs access as idamax, would also return a 1 to indicate the first element of a vector.
This convention is observed in function return values, permutation vectors, and anywhere
else that vector or array indices are used.

Note - Some Oracle Developer Studio Performance Library routines use malloc internally,
so user codes that make calls to Oracle Developer Studio Performance Library and to sbrk
might not work correctly.

The SPARC version of the Oracle Developer Studio Performance Library uses global integer
registers %g2, %g3, and %g4 in 32-bit mode and %g2 through %g5 in 64-bit mode as scratch

Chapter 2 • Using Oracle Developer Studio Performance Library 25

C Examples

registers. User code should not use these registers for temporary storage, and then call a Oracle
Developer Studio Performance Library routine. The data will be overwritten when the Oracle
Developer Studio Performance Library routine uses these registers.

C Examples

Transforming user-written code sequences into calls to Oracle Developer Studio Performance
Library routines increases application performance. The following code example adapted from
LAPACK shows one example.

int i;

float a[n], b[n], largest;

largest = a[0];

for (i = 0; i < n; i++)

{

if (a[i] > largest)

 largest = a[i];

 if (b[i] > largest

 largest = b[i];

}

No Oracle Developer Studio Performance Library routine exactly replicates the functionality of
this code example. However, the code can be accelerated by replacing it with several calls to the
Oracle Developer Studio Performance Library routine isamax, as shown in the following code
example.

int i, large_index;

float a[n], b[n], largest;

large_index = isamax (n, a, l) - 1;

largest = a[large_index];

large_index = isamax (n, b, l) - 1;

if (b[large_index] > largest)

 largest = b[large_index];

Compare the differences between calling the native C isamax routine in Oracle Developer
Studio Performance Library, shown in the previous code example, with calling the isamax
routine in CLAPACK, shown in the following code example.

/* 1. Declare scratch variable to allow 1 to be passed by reference */

int one = l;

/* 2. Append underscore to conform to FORTRAN naming system */

/* 3. Pass all arguments, even scalar input-only, by reference */

/* 4. Subtract one to convert from FORTRAN indexing conventions */

26 Oracle Developer Studio 12.6: Performance Library User's Guide • July 2017

C Examples

large_index = isamax_ (&n, a, &one) - l;

largest = a[large_index]; large_index = isamax_ (&n, b, &one) - l;

if (b[large_index] > largest)

 largest = b[large_index];

Chapter 2 • Using Oracle Developer Studio Performance Library 27

28 Oracle Developer Studio 12.6: Performance Library User's Guide • July 2017

 3 ♦ ♦ ♦ C H A P T E R 3

Optimizing Applications

This chapter describes how to use compiler and linking options to optimize applications for the
following:

■ Specific instruction-set architectures
■ 32-bit and 64-bit enabled operating environments

Comparison of 32-Bit and 64-Bit Environments
The following table shows a comparison of the 32-bit and 64-bit operating environments. These
items are described in greater detail in the following sections.

TABLE 1 Comparison of 32-bit and 64-bit Operating Environments

32-bit (ILP 32) 64-bit (LP64)

-xarch on SPARC
platforms

sparcvis, sparcvis2,

sparcfmaf

sparcvis, sparcvis2, sparcfmaf

-xarch on x86 platforms generic, sse2 sse2

addressing -m32 -m64

Fortran Integers INTEGER, INTEGER*4 INTEGER*8

C Integers int long

Floating-point S/D/C/Z S/D/C/Z

API Names of routines Names of routines with _64 suffix

Using the Oracle Developer Studio Performance Library

The Oracle Developer Studio Performance Library was compiled using the f95 compiler
provided with this release. The Oracle Developer Studio Performance Library routines were
compiled using -dalign, -xparallel.

Chapter 3 • Optimizing Applications 29

About Compiling

Linking Fortran Programs

When linking the program, use -dalign -library=sunperf and the same command line
options that were used when compiling.

Oracle Developer Studio Performance Library is linked into an application with the -library
switch rather than the -l switch that is used to link in other libraries, as shown here.

my_system% f95 -dalign my_file.f -library=sunperf

Linking C and C++ Programs

When linking your program, use -library=sunperf and the same command line options
that were used when compiling. If you compile on a SPARC system, include the option -
xmemalign=8s as shown here. The -xmemalign=8s option is ignored on x86 and x64 platforms.

my_system% cc -xmemalign=8s my_file.c -library=sunperf

my_system% CC -xmemalign=8s my_file.cpp -library=sunperf

If -dalign or -xmemalign=8s cannot be used for compilation, supply a trap 6 handler as
described in “Enabling Trap 6 on SPARC Platforms” on page 17.

About Compiling

Compile with the most appropriate -xarch option for best performance. At link time, use the
same -xarch option that was used at compile time to select the version of the Oracle Developer
Studio Performance Library optimized for a specific instruction-set architecture.

Note - The use of optimization options that are specific to the instruction set improves
application performance on the selected instruction set architecture, but limits code portability.

For a detailed description of the different -xarch options, refer to the Oracle Developer Studio
12.6: Fortran User’s Guide or the Oracle Developer Studio 12.6: C User’s Guide.

The values for -xarch for SPARC and x86 instruction-set architectures are also listed in the
man pages for fbe, cc, CC, and f95.

30 Oracle Developer Studio 12.6: Performance Library User's Guide • July 2017

http://www.oracle.com/pls/topic/lookup?ctx=E77782-01&id=OSSFG
http://www.oracle.com/pls/topic/lookup?ctx=E77782-01&id=OSSFG
http://www.oracle.com/pls/topic/lookup?ctx=E77782-01&id=OSSCG

About Compiling

Compiling Code for a 64-Bit Enabled Operating
Environments

To compile code for a 64-bit enabled operating environment, use -m64 and convert all integer
arguments to 64-bit arguments. 64-bit routines require the use of 64-bit integers.

Oracle Developer Studio Performance Library provides 32-bit and 64-bit interfaces. To use the
64-bit interfaces:

■ Modify the Oracle Developer Studio Performance Library routine name. For C and
Fortran 95 code, append _64 to the names of Oracle Developer Studio Performance Library
routines (for example, rfftf_64 or CFFTB_64). For Fortran 95 code with the USE SUNPERF
statement, the _64 suffix is not strictly required for specific interfaces, such as DGEMM. The
_64 suffix is still required for the generic interfaces, such as GEMM.

■ Promote integers to 64 bits. Double precision variables and the real and imaginary parts of
double complex variables are already 64 bits. Only the integers are promoted to 64 bits.

64-Bit Integer Arguments

These additional 64-bit-integer interfaces are available only when linking with -m64. Codes
compiled for 32-bit operating environments (-m32) cannot call the 64-bit-integer interfaces.

To call the 64-bit-integer interfaces directly, append the suffix _64 to the standard library name.
For example, use daxpy_64() in place of daxpy().

However, if calling the 64-bit integer interfaces indirectly, do not append _64 to the name of the
Oracle Developer Studio Performance Library routine. Calls to the Performance Library routine
will access a 32-bit wrapper that promotes the 32-bit integers to 64-bit integers, calls the 64-bit
routine, and then demotes the 64-bit integers to 32-bit integers.

For best performance, call the routine directly by appending _64 to the routine name.

For C programs, use long instead of int arguments. The following code example shows calling
the 64-bit integer interfaces directly.

#include <sunperf.h>

long n, incx, incy;

double alpha, *x, *y;

daxpy_64(n, alpha, x, incx, y, incy);

The following code example shows calling the 64-bit integer interfaces indirectly.

Chapter 3 • Optimizing Applications 31

About Compiling

#include <sunperf.h>

int n, incx, incy;

double alpha, *x, *y;

daxpy (n, alpha, x, incx, y, incy);

For Fortran programs, use 64-bit integers for all integer arguments. The following methods can
be used to convert integer arguments to 64-bits:

■ To promote all integers that are declared without explicit byte sizes and literal integer
constants from 32 bits to 64 bits, compile with -xtypemap=integer:64.

■ To promote specific integer declarations, change INTEGER or INTEGER*4 to INTEGER*8.
■ To promote integer literal constants, append _8 to the constant.

Consider the following code example:

INTEGER*8 N

REAL*8 ALPHA, X(N), Y(N)

! _64 SUFFIX: N AND 1_8 ARE 64-BIT INTEGERS

CALL DAXPY_64(N,ALPHA,X,1_8,Y,1_8)

INTEGER*8 arguments cannot be used in a 32-bit environment. Routines in the 32-bit libraries
cannot be called with 64-bit arguments. However, routines in the 64-bit libraries can be called
with 32-bit arguments.

When passing constants in Fortran 95 code that have not been compiled with -xtypemap,
append _8 to literal constants to effect the promotion. For example, when using Fortran 95,
change CALL DSCAL(20,5.26D0,X,1) to CALL DSCAL(20_8,5.26D0,X,1_8). This example
assumes USE SUNPERF is included in the code, because the _64 has not been appended to the
routine name.

The following code example shows calling CAXPY from Fortran 95 using 32-bit arguments.

 PROGRAM TEST

 COMPLEX ALPHA

 INTEGER,PARAMETER :: INCX=1, INCY=1, N=10

 COMPLEX X(N), Y(N)

 CALL CAXPY(N, ALPHA, X, INCX, Y, INCY)

The following code example shows calling CAXPY from Fortran 95 (without the USE SUNPERF
statement) using 64-bit arguments.

 PROGRAM TEST

 COMPLEX ALPHA

 INTEGER*8, PARAMETER :: INCX=1, INCY=1, N=10

 COMPLEX X(N), Y(N)

32 Oracle Developer Studio 12.6: Performance Library User's Guide • July 2017

About Compiling

 CALL CAXPY_64(N, ALPHA, X, INCX, Y, INCY)

When using 64-bit arguments, the _64 must be appended to the routine name if the USE SUNPERF
statement is not used.

The following Fortran 95 code example shows calling CAXPY using 64-bit arguments.

 PROGRAM TEST

 USE SUNPERF

 .

 .

 .

 COMPLEX ALPHA

 INTEGER*8, PARAMETER :: INCX=1, INCY=1, N=10

 COMPLEX X(N), Y(N)

 CALL CAXPY(N, ALPHA, X, INCX, Y, INCY)

In C routines, the size of long is 32 bits when compiling with -m32and 64 bits when compiling
with -m64. The following code example shows calling the dgbcon routine using 32-bit
arguments.

void dgbcon(char norm, int n, int nsub, int nsuper, double *da,

 int lda, int *ipivot, double danorm, double drcond,

 int *info)

The following code example shows calling the dgbcon routine using 64-bit arguments.

void dgbcon_64 (char norm, long n, long nsub, long nsuper,

 double *da, long lda, long *ipivot, double danorm,

 double *drcond, long *info)

Chapter 3 • Optimizing Applications 33

34 Oracle Developer Studio 12.6: Performance Library User's Guide • July 2017

 4 ♦ ♦ ♦ C H A P T E R 4

Parallel Processing

This chapter describes using the Oracle Developer Studio Performance Library in
multiprocessor environments with shared memory parallelism.

Run-Time Issues

At run time, if running with compiler parallelization, the Oracle Developer Studio Performance
Library uses the same pool of threads that the compiler does. The per-thread stack size must be
set to at least 8 Mbytes on all platforms. This is done with the STACKSIZE or the OMP_STACKSIZE
environment variable (units in Kbytes). You cannot use both. If you use the two environment
variables simultaneously and the two values are different, the program stops with an error
message.

To set the per-thread stack size to 8 Mbytes :

my_host% setenv STACKSIZE 8192

Setting the STACKSIZE environment variable is not required for programs running with POSIX
or Oracle Solaris threads. In this case, user-created threads that call Performance Library
routines must have a stack size of at least 8 Mbytes. Failure to supply an adequate stack size
for the Performance Library routines might result in stack overflow problems. Symptoms of
stack overflow problems include runtime failures that could be difficult to diagnose. For more
information on setting the stack size of user-created threads, see the pthread_create(3C),
pthread_attr_init(3C), and pthread_attr_setstacksize(3C) man pages for POSIX threads
or the thr_create(3C) for Oracle Solaris threads.

Tip - If you are having issues diagnosing a core dump, try increasing the stack size above the
minimum.

Chapter 4 • Parallel Processing 35

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Apthread-create-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Apthread-attr-init-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Apthread-attr-setstacksize-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Athr-create-3c

Degree of Parallelism

Degree of Parallelism

Selected routines in the Oracle Developer Studio Performance Library are parallelized using
compiler directives, library routines, and environment variables from the OpenMP Fortran
Application Program Interface. The number of threads these routines use in parallel is
controlled by the environment variable OMP_NUM_THREADS. You can also set the environment
variable PARALLEL, but if you set both they must have the same value or a fatal error will
occur upon execution. Both environment variables can be overridden by calling the Oracle
Developer Studio Performance Library routine USE_THREADS or the OpenMP routine
OMP_SET_NUM_THREADS in the user code.

A user code can be parallelized by doing the following:

■ Set environment variable OMP_NUM_THREADS to a value greater than 1
■ Use compiler parallel directives such as those from the OpenMP API

Use appropriate compiler flags: -xopenmp=parallel or -xautopar

The Oracle Developer Studio Performance Library routines execute in parallel if the following
conditions are met:

■ OMP_NUM_THREADS is set to a value greater than 1
■ The routines are not being called from a parallel region

The Oracle Developer Studio Performance Library employs OpenMP directives in its
parallelization and does not support nested parallelism. If the user code is parallelized as stated
above and calls a Oracle Developer Studio Performance Library routine, the routine executes in
serial if it detects that it is being called from a parallel region. Otherwise, the routine executes in
parallel.

POSIX or Oracle Solaris threads can also be created to execute in parallel selected regions
in the user code. When a Performance Library routine is called under this parallel model, the
routine cannot detect that it is being called from a parallel region. Therefore, the environment
variable OMP_NUM_THREADS must be set to 1 or unset, or a call to USE_THREADS(3P) must be made
in appropriate places in the user code. Otherwise, nested parallelism with undefined results will
occur.

For example, if the program containing the following code segment is linked with -
xopenmp=parallel and OMP_NUM_THREADS is set to 4, the loop will execute in parallel, and there
will be four instances of DGEMM running concurrently. However, each DGEMM instance will run in
serial since only one level of parallelization is supported.

!$OMP PARALLEL

 DO I = 1, N

 CALL DGEMM(...)

36 Oracle Developer Studio 12.6: Performance Library User's Guide • July 2017

Synchronization Mechanisms

 END DO

!$OMP END PARALLEL

In the following code example, if the program is not linked with -xautopar, the loop will not be
parallelized, but each instance of DGEMM will be executed by four threads.

 DO I = 1, N

 CALL DGEMM(...)

 END DO

If the program containing the following code segment is linked with -xopenmp=parallel and if
OMP_NUM_THREADS is set to a value greater than 1, the region shown will be executed by a single
thread. However, each DGEMM call will be executed by OMP_NUM_THREADS threads.

!$OMP SINGLE

 DO I = 1, N

 CALL DGEMM(...)

 END DO

!$OMP END SINGLE

In the following code example, there will be at most two-way parallelism, regardless of the
number of OpenMP threads available for execution. Only one level of parallelism exists, which
are the two sections. Further parallelism within a DGEMM call is suppressed.

!$OMP PARALLEL SECTIONS

!$OMP SECTION

 DO I = 1, N / 2

 CALL DGEMM(...)

 END DO

!$OMP SECTION

 DO I = N / 2 + 1, N

 CALL DGEMM(...)

 END DO

!$OMP END PARALLEL SECTIONS

Synchronization Mechanisms

One characteristic of the POSIX/Oracle Solaris threading model is that bound threads of a
running application relinquish the CPUs when they are idle, thus providing good throughput
and resource usage in a shared (over-subscribed) environment. By default, bound threads in
a compiler-parallelized code spin-wait when they are idle, which can result in suboptimal
throughput when there are other applications in the system competing for CPU resource. In this
case, environment variable SUNW_MP_THR_IDLE can be used to control the behavior of a thread
after it finishes its share of a parallel job:

Chapter 4 • Parallel Processing 37

Parallel Processing Examples

my_host% setenv SUNW_MP_THR_IDLE value

Here, value can either be spin or sleep n s or sleep n ms , and spin is the default.

sleep puts the thread to sleep after spin-waiting n units. The wait unit can be seconds (s, the
default unit) or milliseconds (ms). sleep with no arguments puts the thread to sleep immediately
after completing a parallel task. If SUNW_MP_THR_IDLE contains an illegal value or is not set,
spin is used as the default.

The following settings would cause threads to spin-wait (default behavior), spin for 2 seconds
before sleeping, or spin for 100 milliseconds before sleeping, respectively. Using Oracle
Developer Studio Performance Library routines does not change the spin-wait behavior of the
code.

% setenv SUNW_MP_THR_IDLE spin

% setenv SUNW_MP_THR_IDLE 2s

% setenv SUNW_MP_THR_IDLE 100ms

Parallel Processing Examples

This section demonstrates how to use the OMP_NUM_THREADS environment variable along with
compile and link options to create code that executes serially and in parallel.

To create a serial application:

■ Call one or more Oracle Developer Studio Performance Library routines
■ Link with -library=sunperf, placing the flag at the end of the command line. Do not

compile or link with -xopenmp=parallel, or -xautopar
■ Unset OMP_NUM_THREADS environment variable or set it to 1

The following examples show how to compile and link with the shared Oracle Developer
Studio Performance library libsunperf.so.

my_host% cc -xmemalign=8s -xarch=native any.c -library=sunperf

my_host% f95 -dalign -xarch=native any.f95 -library=sunperf

To create a parallel application that executes on multiple processors:

■ Call one or more Oracle Developer Studio Performance Library routines
■ Use the same parallelization option (-xopenmp=parallel or -xautopar) in the compile and

link commands
■ Link with -library=sunperf, placing the flag at the end of the command line

38 Oracle Developer Studio 12.6: Performance Library User's Guide • July 2017

Parallel Processing Examples

■ Set OMP_NUM_THREADS to the number of available processors before running the executable

For example, to use 24 processors, type the following commands:

my_host% f95 -dalign -xarch=native my_app.f -library=sunperf

my_host% setenv OMP_NUM_THREADS 24

my_host% ./a.out

The previous example enables Oracle Developer Studio Performance Library routines to run in
parallel, but no part of the user code my_app.f will run in parallel. For the compiler to attempt
to parallelize my_app.f, either -xopenmp=parallel or -xautopar is required on the compile
line:

my_host% f95 -dalign -xopenmp=parallel my_app.f -library=sunperf

my_host% setenv OMP_NUM_THREADS 24

my_host% ./a.out

Chapter 4 • Parallel Processing 39

40 Oracle Developer Studio 12.6: Performance Library User's Guide • July 2017

 5 ♦ ♦ ♦ C H A P T E R 5

Working With Matrices

Most matrices can be stored in ways that save both storage space and computation time. Oracle
Developer Studio Performance Library uses the following storage schemes:

■ Banded storage
■ Packed storage

The Oracle Developer Studio Performance Library processes matrices that are in one of four
forms:

■ General
■ Triangular
■ Symmetric
■ Tridiagonal

Storage schemes and matrix types are described in the following sections.

Matrix Storage Schemes

Some Oracle Developer Studio Performance Library routines that work with arrays stored
normally have corresponding routines that take advantage of these special storage forms. For
example, DGBMV will form the product of a general matrix in banded storage and a vector, and
DTPMV will form the product of a triangular matrix in packed storage and a vector.

Banded Storage

A banded matrix is stored so the jth column of the matrix corresponds to the jth column of the
Fortran array.

The following code copies a banded general matrix in a general array into banded storage mode.

Chapter 5 • Working With Matrices 41

Matrix Storage Schemes

 C Copy the matrix A from the array AG to the array AB. The

 C matrix is stored in general storage mode in AG and it will

 C be stored in banded storage mode in AB. The code to copy

 C from general to banded storage mode is taken from the

 C comment block in the original DGBFA by Cleve Moler.

 C

 NSUB = 1

 NSUPER = 2

 NDIAG = NSUB + 1 + NSUPER

 DO ICOL = 1, N

 I1 = MAX0 (1, ICOL - NSUPER)

 I2 = MIN0 (N, ICOL + NSUB)

 DO IROW = I1, I2

 IROWB = IROW - ICOL + NDIAG

 AB(IROWB,ICOL) = AG(IROW,ICOL)

 END DO

 END DO

This method of storing banded matrices is compatible with the storage method used by
LAPACK and BLAS.

Packed Storage

A packed vector is an alternative representation for a triangular, symmetric, or Hermitian
matrix. An array is packed into a vector by storing the elements sequentially column by column
into the vector. Space for the diagonal elements is always reserved, even if the values of the
diagonal elements are known, such as in a unit diagonal matrix.

An upper triangular matrix or a symmetric matrix whose upper triangle is stored in general
storage in the array A, can be transferred to packed storage in the array AP as shown below. This
code comes from the comment block of the LAPACK routine DTPTRI.

 JC = 1

 DO J = 1, N

 DO I = 1, J

 AP(JC+I-1) = A(I,J)

 END DO

 JC = JC + J

 END DO

Similarly, a lower triangular matrix or a symmetric matrix whose lower triangle is stored in
general storage in the array A, can be transferred to packed storage in the array AP as shown
below:

 JC = 1

42 Oracle Developer Studio 12.6: Performance Library User's Guide • July 2017

Matrix Types

 DO J = 1, N

 DO I = J, N

 AP(JC+I-1) = A(I,J)

 END DO

 JC = JC + N - J + 1

 END DO

Rectangular Full Packed Format

Rectangular Full Packed (RFP) matrices is a data format for storing triangular and symmetric
matrices. It combines the standard packed format arrays fully utilized storage with high
performance using level 3 BLAS. For information, see Rectangular Full Packed Format for
LAPACK Algorithms Timings on Several Computers (http://citeseerx.ist.psu.edu/
viewdoc/download?doi=10.1.1.456.7563&rep=rep1&type=pdf) and "Further Details" section
of the man pages for the routines that use Rectangular Full Packed Format.

Matrix Types

The general matrix is the most common type, and most operations in the Oracle Developer
Studio Performance Library operate on the general matrix. In many cases, there are routines that
will work with the other types of matrices. For example, DGEMM computes the product of two
general matrices, and DTRMM computes the product of a triangular matrix and a general matrix.

General Matrices

The storage of a general matrix is such that there is a one-to-one correspondence between
the elements of the matrix and the elements of the array. Element Aij of matrix A is stored in
element A(I,J) of the corresponding array A. The general matrix has no special storage scheme
since each of its elements is stored explicitly. In contrast, only the nonzero upper-diagonal,
diagonal, and lower-diagonal elements of a general band matrix are stored. The following
example shows how a general band matrix is stored in a two-dimensional array. Array locations
marked with x are not accessed.

Chapter 5 • Working With Matrices 43

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.456.7563&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.456.7563&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.456.7563&rep=rep1&type=pdf

Matrix Types

General Band Matrix General Band Matrix in Packed Storage

Triangular Matrices

Two storage schemes exist for a triangular matrix. In the unpacked scheme where the matrix is
stored in a two-dimensional array, there is a one-to-one correspondence between all elements
of the matrix and the elements of the array, but zero entries in the matrix are neither set nor
accessed in the array (denoted by x). In the packed storage scheme, nonzero elements of the
matrix are packed by column in a one-dimensional array.

A triangular matrix can be stored using packed storage.

Triangular Band Matrix Triangular Matrix in
Unpacked Storage

Triangular Matrix in Packed
Storage

A triangular band matrix can be stored in packed storage using a two-dimensional array as
shown below. Elements marked with x are not accessed.

44 Oracle Developer Studio 12.6: Performance Library User's Guide • July 2017

Matrix Types

Triangular Band Matrix Triangular Band Matrix in
Packed Storage

Symmetric Matrices

A real symmetric or complex Hermitian matrix is similar to a triangular matrix in that only
elements in its upper or lower triangle are explicitly stored in the corresponding elements of a
two-dimensional array. The remaining elements of the array (denoted by x below) are neither
set nor accessed. The active upper or lower triangle can also be packed by column into a one-
dimensional array.

Symmetric Matrix Symmetric Matrix in
Unpacked Storage

Symmetric Matrix in
Packed Storage

Tridiagonal Matrices

A tridiagonal matrix has nonzero elements only on the main diagonal, the first superdiagonal,
and the first subdiagonal. It is stored using three one-dimensional arrays.

Chapter 5 • Working With Matrices 45

Matrix Types

Tridiagonal Matrix Storage for Tridiagonal
Matrix

46 Oracle Developer Studio 12.6: Performance Library User's Guide • July 2017

 6 ♦ ♦ ♦ C H A P T E R 6

Sparse Computation

The Oracle Developer Studio Performance Library has two software packages, SPSOLVE and
SuperLU, that can be used to factor and solve sparse linear systems of equations.

SPSOLVE is a collection of routines that solve symmetric, structurally symmetric, and
unsymmetric coefficient matrices using one of several ordering methods, including a user-
specified ordering. In previous releases, SPSOLVE was referred to as the sparse solver package.
It is written mainly in Fortran and contains interfaces for FORTRAN 77 only. Fortran 95 and
C interfaces are not currently provided. To use SPSOLVE routines from Fortran 95, use the
FORTRAN 77 interfaces. To call SPSOLVE from C, append an underscore to the routine name
(dgssin_(), dgssor_(), and so on), pass arguments by reference, and use one-based array
indexing. See “Unsymmetric Sparse Matrices” on page 49 for an example of one-based and
zero-based array indexing.

The SuperLU package in the Oracle Developer Studio Performance Library is the sequential
version (version 3.0) of the public domain application that solves general unsymmetric sparse
systems. While it is sequential, SuperLU does make use of several level 2 and level 3 BLAS
routines that are parallelized. For detailed documentation of SuperLU algorithm, routines and
data structures, see items 5, 6, 7 in “References for Sparse BLAS and Solver” on page 75.
SuperLU is written in C, which requires array indexing to be zero-based regardless of whether
SuperLU routines are being called from Fortran-based SPSOLVE or a C driver program. See
“SuperLU Interface” on page 64 for more detail and examples.

Sparse Matrices
Sparse matrices are usually represented in formats that minimize storage requirements. By
taking advantage of the sparsity and not storing zeros, considerable storage space can be saved.
The storage format used by SPSOLVE and SuperLU is the compressed sparse column (CSC)
format, also called the Harwell-Boeing format.

The CSC format represents a sparse matrix with two integer arrays and one floating point array.
The integer arrays (colptr and rowind) specify the location of the nonzeros of the sparse matrix,
and the floating point array (values) is used for the nonzero values.

Chapter 6 • Sparse Computation 47

Sparse Matrices

The column pointer (colptr) array consists of n+1 elements where colptr(i) points to the
beginning of the ith column, and colptr(i+1)-1 points to the end of the ith column. The row
indices (rowind) array contains the row indices of the nonzero values. The values arrays
contains the corresponding nonzero numerical values.

The following matrix data formats exist for a sparse matrix of neqns equations and nnz
nonzeros:

■ Symmetric
■ Structurally symmetric
■ Unsymmetric

Currently, SuperLU only supports unsymmetric matrices. The most efficient data representation
often depends on the specific problem. The following sections show examples of sparse matrix
data formats.

Symmetric Sparse Matrices

A symmetric sparse matrix is a matrix where a(i, j) = a(j, i) for all i and j. Because of this
symmetry, only the lower triangular values need to be passed to the solver routines. The upper
triangle can be determined from the lower triangle.

An example of a symmetric matrix is shown below. This example is derived from A. George
and J. W-H. Liu. “Computer Solution of Large Sparse Positive Definite Systems.”

To represent A in CSC format:

■ colptr: 1, 6, 7, 8, 9, 10
■ rowind: 1, 2, 3, 4, 5, 2, 3, 4, 5
■ values: 4.0, 1.0, 2.0, 0.5, 2.0, 0.5, 3.0, 0.625, 16.0

48 Oracle Developer Studio 12.6: Performance Library User's Guide • July 2017

Sparse Matrices

Structurally Symmetric Sparse Matrices
A structurally symmetric sparse matrix has nonzero values with the property that if a(i, j) ≠ 0,
then a(j, i) ≠ 0 for all i and j. When solving a structurally symmetric system, the entire matrix
must be passed to the solver routines.

An example of a structurally symmetric matrix is shown below.

To represent A in CSC format:

■ colptr: 1, 3, 6, 7, 9
■ rowind: 1, 2, 1, 2, 4, 3, 2, 4
■ values: 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0

Unsymmetric Sparse Matrices
An unsymmetric sparse matrix does not have a(i, j) = a(j, i) for all i and j. The structure of the
matrix does not have an apparent pattern. When solving an unsymmetric system, the entire
matrix must be passed to the solver routines. An example of an unsymmetric matrix is shown
below.

To represent A in CSC format:

Chapter 6 • Sparse Computation 49

Sparse BLAS

■ One-based indexing:
■ colptr: 1, 6, 7, 8, 9, 11
■ rowind: 1, 2, 3, 4, 5, 2, 3, 4, 2, 5
■ values: 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0

■ Zero-based indexing:
■ colptr: 0, 5, 6, 7, 8, 10
■ rowind: 0, 1, 2, 3, 4, 1, 2, 3, 1, 4
■ values: 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0

Sparse BLAS

The Oracle Developer Studio Performance Library Sparse BLAS package is based on the
following two packages:

■ Netlib Sparse BLAS package, by Dodson, Grimes, and Lewis consists of sparse extensions
to the Basic Linear Algebra Subroutines that operate on sparse vectors.

■ NIST (National Institute of Standards and Technology) Fortran Sparse BLAS Library
consists of routines that perform matrix products and solution of triangular systems for
sparse matrices in a variety of storage formats.

Refer to the following sources for additional Sparse BLAS information.

■ For information on the Sparse BLAS routines, refer to the section 3P man pages for the
individual routines.

■ For more information on the Netlib Sparse BLAS package refer to http://www.netlib.
org/sparse-blas/index.html.

■ For more information on the NIST Fortran Sparse BLAS routines, refer to http://math.
nist.gov/spblas/.

The Netlib Sparse BLAS and NIST Fortran Sparse BLAS Library routines each use their own
naming conventions, as described in the following sections.

Netlib Sparse BLAS

Each Netlib Sparse BLAS routine has a name of the form Prefix-Root-Suffix:

■ Prefix represents the data type.
■ Root represents the operation.

50 Oracle Developer Studio 12.6: Performance Library User's Guide • July 2017

http://www.netlib.org/sparse-blas/index.html
http://www.netlib.org/sparse-blas/index.html
http://math.nist.gov/spblas/
http://math.nist.gov/spblas/

Sparse BLAS

■ Suffix represents whether or not the routine is a direct extension of an existing dense BLAS
routine.

The following table lists the naming conventions for the Netlib Sparse BLAS vector routines.

TABLE 2 Netlib Sparse BLAS Naming Conventions

Operation Root of Name Prefix and Suffix

Dot product -DOT- S-I D-I C-UI Z-UI C-CI Z-CI

Scalar times a vector added
to a vector

-AXPY- S-I D-I C-I Z-I

Apply Givens rotation -ROT- S-I D-I

Gather x into y -GTHR- S- D- C- Z- S-Z D-Z C-Z Z-Z

Scatter x into y -SCTR- S- D- C- Z-

The prefix can be one of the following data types:

■ S: SINGLE
■ D: DOUBLE
■ C: COMPLEX
■ Z: COMPLEX*16 or DOUBLE COMPLEX

The I, CI, and UI suffixes denote sparse BLAS routines that are direct extensions to dense
BLAS routines.

NIST Fortran Sparse BLAS
Each NIST Fortran Sparse BLAS routine has a six-character name of the form XYYYZZ where:

■ X represents the data type.
■ YYY represents the sparse storage format.
■ ZZ represents the operation.

The following table shows the possible values for X, YYY, and ZZ.

TABLE 3 NIST Fortran Sparse BLAS Routine Naming Conventions

Variables for a Routine Name Acceptable Values and Meaning

X – Specifies the data type using one character S: single precision
D: double precision
C: complex
Z: double complex

Chapter 6 • Sparse Computation 51

SPSOLVE Interface

Variables for a Routine Name Acceptable Values and Meaning

YYY – Specifies the sparse storage format using three
characters

Single entry formats:

CSC: compressed sparse column
COO: coordinate
CSR: compressed sparse row
DIA: diagonal
ELL: ellpack
JAD: jagged diagonal
SKY: skyline

Block entry formats:

BCO: block coordinate
BSC: block compressed sparse column
BSR: block compressed sparse row
BDI: block diagonal
BEL: block ellpack
VBR: block compressed sparse row

ZZ – Specifies the operation using two characters MM: matrix-matrix product
SM: solution of triangular system (supported for all
formats except COO)
RP: right permutation (for JAD format only)

SPSOLVE Interface
SPSOLVE computes the solution of a sparse system through a sequence of steps: Initialization,
ordering to reduce fill-in, symbolic factorization, numeric factorization, and triangular solve. A
user code can call individual routines or make use of a one-call interface to perform these steps.

SPSOLVE Routines
Listed in the table below are user-accessible routines in SPSOLVE and their purposes.

TABLE 4 SPSOLVE Sparse Solver Routines

Routine Name Description

DGSSFS() One-call interface to sparse solver

DGSSIN() Sparse solver initialization

DGSSOR() Fill reducing ordering and symbolic factorization

DGSSUO() Sets user-specified ordering permutation and performs
symbolic factorization (called in place of DGSSOR)

52 Oracle Developer Studio 12.6: Performance Library User's Guide • July 2017

SPSOLVE Interface

Routine Name Description

DGSSFA() Matrix value input and numeric factorization

DGSSSL() Triangular solve

DGSSRP() Returns permutation used by solver

DGSSCO() Returns condition number estimate of coefficient matrix

DGSSDA() De-allocates sparse solver

DGSSPS() Prints solver statistics

Matrices with the same structure but with different numerical values can be solved by calling
SPSOLVE routines in the following order shown:

call dgssin() ! initialization, input coefficient matrix structure

call dgssor() ! fill-reducing ordering, symbolic factorization

 ! (or call dgssuo() to specify a user ordering,

 ! and perform symbolic factorization)

do m = 1, number_of_structurally_identical_matrices

 call dgssfa() ! input coefficient matrix values, numeric !

 factorization

 do r = 1, number_of_right_hand_sides

 call dgsssl() ! triangular solve

 enddo

enddo

The one-call interface is not as flexible as the regular interface, but it covers the most common
case of factoring a single matrix and solving some number of right-hand sides. Additional
calls to dgsssl() are used to solve for additional right-hand sides, as shown in the following
example.

call dgssfs() ! initialization, input coefficient matrix structure

 ! fill-reducing ordering, symbolic factorization

 ! input coefficient matrix values, numeric factorization

 ! triangular solve

do r = 1, number_of_right_hand_sides

 call dgsssl() ! triangular solve

enddo

SPSOLVE Routine Calling Order
To use SPSOLVE, you must call its routines in the following order shown:

1. One-Call Interface: For solving single matrix

a. DGSSFS() - Initialize, order, factor, solve

Chapter 6 • Sparse Computation 53

SPSOLVE Interface

b. DGSSSL() - Additional solves (optional): repeat DGSSSL() as needed
c. DGSSDA() - Deallocate working storage

2. Regular Interface: For solving multiple matrices with the same structure

a. DGSSIN() - Initialize
b. DGSSOR() or DGSSUO() - Order and symbolically factor
c. DGSSFA() - Factor
d. DGSSSL() - Solve: repeat DGSSFA() or DGSSSL() as needed
e. DGSSDA() - Deallocate working storage

SPSOLVE Examples

The following examples show solving a symmetric system using the one-call interface, and
solving a symmetric system using the regular interface.

In Example 1, “Solving a Symmetric System-One-Call Interface,” on page 54, the one-call
interface is used to solve a symmetric system, and in Example 2, “Solving a Symmetric System
– Regular Interface,” on page 56, individual routines are called to solve a symmetric
system.

Example 5, “Calling SPSOLVE Routines from C,” on page 63 shows how the Fortran
SPSOLVE interface can be called from a C program. For more information on how to call
Fortran routines from C programs, see the Oracle Solaris Studio 12.4: Fortran Programming
Guide.

EXAMPLE 1 Solving a Symmetric System-One-Call Interface

my_system% cat example_1call.f

 program example_1call

c

c This program is an example driver that calls the sparse solver.

c It factors and solves a symmetric system, by calling the

c one-call interface.

c

 implicit none

 integer neqns, ier, msglvl, outunt, ldrhs, nrhs

 character mtxtyp*2, pivot*1, ordmthd*3

 double precision handle(150)

 integer colstr(6), rowind(9)

 double precision values(9), rhs(5), xexpct(5)

 integer i

54 Oracle Developer Studio 12.6: Performance Library User's Guide • July 2017

SPSOLVE Interface

c

c Sparse matrix structure and value arrays. From George and Liu,

c page 3.

c Ax = b, (solve for x) where:

c

c 4.0 1.0 2.0 0.5 2.0 2.0 7.0

c 1.0 0.5 0.0 0.0 0.0 2.0 3.0

c A = 2.0 0.0 3.0 0.0 0.0 x = 1.0 b = 7.0

c 0.5 0.0 0.0 0.625 0.0 -8.0 -4.0

c 2.0 0.0 0.0 0.0 16.0 -0.5 -4.0

c

 data colstr / 1, 6, 7, 8, 9, 10 /

 data rowind / 1, 2, 3, 4, 5, 2, 3, 4, 5 /

 data values / 4.0d0, 1.0d0, 2.0d0, 0.5d0, 2.0d0, 0.5d0, 3.0d0,

 & 0.625d0, 16.0d0 /

 data rhs / 7.0d0, 3.0d0, 7.0d0, -4.0d0, -4.0d0 /

 data xexpct / 2.0d0, 2.0d0, 1.0d0, -8.0d0, -0.5d0 /

c

c set calling parameters

c

 mtxtyp= 'ss'

 pivot = 'n'

 neqns = 5

 nrhs = 1

 ldrhs = 5

 outunt = 6

 msglvl = 0

 ordmthd = 'mmd'

c

c call single call interface

c

 call dgssfs (mtxtyp, pivot, neqns , colstr, rowind,

 & values, nrhs , rhs, ldrhs , ordmthd,

 & outunt, msglvl, handle, ier)

 if (ier .ne. 0) goto 110

c

c deallocate sparse solver storage

c

 call dgssda (handle, ier)

 if (ier .ne. 0) goto 110

c

c print values of sol

c

 write(6,200) 'i', 'rhs(i)', 'expected rhs(i)', 'error'

 do i = 1, neqns

 write(6,300) i, rhs(i), xexpct(i), (rhs(i)-xexpct(i))

 enddo

Chapter 6 • Sparse Computation 55

SPSOLVE Interface

 stop

 110 continue

c

c call to sparse solver returns an error

c

 write (6 , 400)

 & ' example: FAILED sparse solver error number = ', ier

 stop

 200 format(a5,3a20)

 300 format(i5,3d20.12) ! i/sol/xexpct values

 400 format(a60,i20) ! fail message, sparse solver error number

 end

my_system% f95 -dalign example_1call.f -library=sunperf

my_system% a.out

 i rhs(i) expected rhs(i) error

 1 0.200000000000D+01 0.200000000000D+01 -0.528466159722D-13

 2 0.200000000000D+01 0.200000000000D+01 0.105249142734D-12

 3 0.100000000000D+01 0.100000000000D+01 0.350830475782D-13

 4 -0.800000000000D+01 -0.800000000000D+01 0.426325641456D-13

 5 -0.500000000000D+00 -0.500000000000D+00 0.660582699652D-14

EXAMPLE 2 Solving a Symmetric System – Regular Interface

my_system% cat example_ss.f

 program example_ss

c

c This program is an example driver that calls the sparse solver.

c It factors and solves a symmetric system.

 implicit none

 integer neqns, ier, msglvl, outunt, ldrhs, nrhs

 character mtxtyp*2, pivot*1, ordmthd*3

 double precision handle(150)

 integer colstr(6), rowind(9)

 double precision values(9), rhs(5), xexpct(5)

 integer i

c

c Sparse matrix structure and value arrays. From George and Liu,

c page 3.

c Ax = b, (solve for x) where:

c

56 Oracle Developer Studio 12.6: Performance Library User's Guide • July 2017

SPSOLVE Interface

c 4.0 1.0 2.0 0.5 2.0 2.0 7.0

c 1.0 0.5 0.0 0.0 0.0 2.0 3.0

c A = 2.0 0.0 3.0 0.0 0.0 x = 1.0 b = 7.0

c 0.5 0.0 0.0 0.625 0.0 -8.0 -4.0

c 2.0 0.0 0.0 0.0 16.0 -0.5 -4.0

c

 data colstr / 1, 6, 7, 8, 9, 10 /

 data rowind / 1, 2, 3, 4, 5, 2, 3, 4, 5 /

 data values / 4.0d0, 1.0d0, 2.0d0, 0.5d0, 2.0d0, 0.5d0,

 & 3.0d0, 0.625d0, 16.0d0 /

 data rhs / 7.0d0, 3.0d0, 7.0d0, -4.0d0, -4.0d0 /

 data xexpct / 2.0d0, 2.0d0, 1.0d0, -8.0d0, -0.5d0 /

c

c initialize solver

c

 mtxtyp= 'ss'

 pivot = 'n'

 neqns = 5

 outunt = 6

 msglvl = 0

c

c call regular interface

c

 call dgssin (mtxtyp, pivot, neqns , colstr, rowind,

 & outunt, msglvl, handle, ier)

 if (ier .ne. 0) goto 110

c

c ordering and symbolic factorization

c

 ordmthd = 'mmd'

 call dgssor (ordmthd, handle, ier)

 if (ier .ne. 0) goto 110

c

c numeric factorization

c

 call dgssfa (neqns, colstr, rowind, values, handle, ier)

 if (ier .ne. 0) goto 110

c

c solution

c

 nrhs = 1

 ldrhs = 5

 call dgsssl (nrhs, rhs, ldrhs, handle, ier)

 if (ier .ne. 0) goto 110

c

c deallocate sparse solver storage

c

Chapter 6 • Sparse Computation 57

SPSOLVE Interface

 call dgssda (handle, ier)

 if (ier .ne. 0) goto 110

c

c print values of sol

c

 write(6,200) 'i', 'rhs(i)', 'expected rhs(i)', 'error'

 do i = 1, neqns

 write(6,300) i, rhs(i), xexpct(i), (rhs(i)-xexpct(i))

 enddo

 stop

 110 continue

c

c call to sparse solver returns an error

c

 write (6 , 400)

 & ' example: FAILED sparse solver error number = ', ier

 stop

 200 format(a5,3a20)

 300 format(i5,3d20.12) ! i/sol/xexpct values

 400 format(a60,i20) ! fail message, sparse solver error number

 end

my_system% f95 -dalign example_ss.f -library=sunperf

my_system% a.out

 i rhs(i) expected rhs(i) error

 1 0.200000000000D+01 0.200000000000D+01 -0.528466159722D-13

 2 0.200000000000D+01 0.200000000000D+01 0.105249142734D-12

 3 0.100000000000D+01 0.100000000000D+01 0.350830475782D-13

 4 -0.800000000000D+01 -0.800000000000D+01 0.426325641456D-13

 5 -0.500000000000D+00 -0.500000000000D+00 0.660582699652D-14

EXAMPLE 3 Solving a Structurally Symmetric System With Unsymmetric Values – Regular
Interface

my_system% cat example_su.f

 program example_su

c

c This program is an example driver that calls the sparse solver.

c It factors and solves a structurally symmetric system

c (w/unsymmetric values).

c

 implicit none

58 Oracle Developer Studio 12.6: Performance Library User's Guide • July 2017

SPSOLVE Interface

 integer neqns, ier, msglvl, outunt, ldrhs, nrhs

 character mtxtyp*2, pivot*1, ordmthd*3

 double precision handle(150)

 integer colstr(5), rowind(8)

 double precision values(8), rhs(4), xexpct(4)

 integer i

c

c Sparse matrix structure and value arrays. Coefficient matrix

c has a symmetric structure and unsymmetric values.

c Ax = b, (solve for x) where:

c

c 1.0 3.0 0.0 0.0 1.0 7.0

c 2.0 4.0 0.0 7.0 2.0 38.0

c A = 0.0 0.0 6.0 0.0 x = 3.0 b = 18.0

c 0.0 5.0 0.0 8.0 4.0 42.0

c

 data colstr / 1, 3, 6, 7, 9 /

 data rowind / 1, 2, 1, 2, 4, 3, 2, 4 /

 data values / 1.0d0, 2.0d0, 3.0d0, 4.0d0, 5.0d0, 6.0d0, 7.0d0,

 & 8.0d0 /

 data rhs / 7.0d0, 38.0d0, 18.0d0, 42.0d0 /

 data xexpct / 1.0d0, 2.0d0, 3.0d0, 4.0d0 /

c

c initialize solver

c

 mtxtyp= 'su'

 pivot = 'n'

 neqns = 4

 outunt = 6

 msglvl = 0

c

c call regular interface

c

 call dgssin (mtxtyp, pivot, neqns , colstr, rowind,

 & outunt, msglvl, handle, ier)

 if (ier .ne. 0) goto 110

c

c ordering and symbolic factorization

c

 ordmthd = 'mmd'

 call dgssor (ordmthd, handle, ier)

 if (ier .ne. 0) goto 110

c

c numeric factorization

c

 call dgssfa (neqns, colstr, rowind, values, handle, ier)

Chapter 6 • Sparse Computation 59

SPSOLVE Interface

 if (ier .ne. 0) goto 110

c

c solution

c

 nrhs = 1

 ldrhs = 4

 call dgsssl (nrhs, rhs, ldrhs, handle, ier)

 if (ier .ne. 0) goto 110

c

c deallocate sparse solver storage

c

 call dgssda (handle, ier)

 if (ier .ne. 0) goto 110

c

c print values of sol

c

 write(6,200) 'i', 'rhs(i)', 'expected rhs(i)', 'error'

 do i = 1, neqns

 write(6,300) i, rhs(i), xexpct(i), (rhs(i)-xexpct(i))

 enddo

 stop

 110 continue

c

c call to sparse solver returns an error

c

 write (6 , 400)

 & ' example: FAILED sparse solver error number = ', ier

 stop

 200 format(a5,3a20)

 300 format(i5,3d20.12) ! i/sol/xexpct values

 400 format(a60,i20) ! fail message, sparse solver error number

 end

my_system% f95 -dalign example_su.f -library=sunperf

my_system% a.out

 i rhs(i) expected rhs(i) error

 1 0.100000000000D+01 0.100000000000D+01 0.000000000000D+00

 2 0.200000000000D+01 0.200000000000D+01 0.000000000000D+00

 3 0.300000000000D+01 0.300000000000D+01 0.000000000000D+00

 4 0.400000000000D+01 0.400000000000D+01 0.000000000000D+00

60 Oracle Developer Studio 12.6: Performance Library User's Guide • July 2017

SPSOLVE Interface

EXAMPLE 4 Solving an Unsymmetric System – Regular Interface

my_system% cat example_uu.f

 program example_uu

c

c This program is an example driver that calls the sparse solver.

c It factors and solves an unsymmetric system.

c

 implicit none

 integer neqns, ier, msglvl, outunt, ldrhs, nrhs

 character mtxtyp*2, pivot*1, ordmthd*3

 double precision handle(150)

 integer colstr(6), rowind(10)

 double precision values(10), rhs(5), xexpct(5)

 integer i

c

c Sparse matrix structure and value arrays. Unsummetric matrix A.

c Ax = b, (solve for x) where:

c

c 1.0 0.0 0.0 0.0 0.0 1.0 1.0

c 2.0 6.0 0.0 0.0 9.0 2.0 59.0

c A = 3.0 0.0 7.0 0.0 0.0 x = 3.0 b = 24.0

c 4.0 0.0 0.0 8.0 0.0 4.0 36.0

c 5.0 0.0 0.0 0.0 10.0 5.0 55.0

c

 data colstr / 1, 6, 7, 8, 9, 11 /

 data rowind / 1, 2, 3, 4, 5, 2, 3, 4, 2, 5 /

 data values / 1.0d0, 2.0d0, 3.0d0, 4.0d0, 5.0d0, 6.0d0, 7.0d0,

 & 8.0d0, 9.0d0, 10.0d0 /

 data rhs / 1.0d0, 59.0d0, 24.0d0, 36.0d0, 55.0d0 /

 data xexpct / 1.0d0, 2.0d0, 3.0d0, 4.0d0, 5.0d0 /

c

c initialize solver

c

 mtxtyp= 'uu'

 pivot = 'n'

 neqns = 5

 outunt = 6

 msglvl = 3

 call dgssin (mtxtyp, pivot, neqns , colstr, rowind,

 & outunt, msglvl, handle, ier)

 if (ier .ne. 0) goto 110

c

c ordering and symbolic factorization

c

 ordmthd = 'mmd'

Chapter 6 • Sparse Computation 61

SPSOLVE Interface

 call dgssor (ordmthd, handle, ier)

 if (ier .ne. 0) goto 110

c

c numeric factorization

c

 call dgssfa (neqns, colstr, rowind, values, handle, ier)

 if (ier .ne. 0) goto 110

c

c solution

c

 nrhs = 1

 ldrhs = 5

 call dgsssl (nrhs, rhs, ldrhs, handle, ier)

 if (ier .ne. 0) goto 110

c

c deallocate sparse solver storage

c

 call dgssda (handle, ier)

 if (ier .ne. 0) goto 110

c

c print values of sol

c

 write(6,200) 'i', 'rhs(i)', 'expected rhs(i)', 'error'

 do i = 1, neqns

 write(6,300) i, rhs(i), xexpct(i), (rhs(i)-xexpct(i))

 enddo

 stop

 110 continue

c

c call to sparse solver returns an error

c

 write (6 , 400)

 & ' example: FAILED sparse solver error number = ', ier

 stop

 200 format(a5,3a20)

 300 format(i5,3d20.12) ! i/sol/xexpct values

 400 format(a60,i20) ! fail message, sparse solver error number

 end

my_system% f95 -dalign example_uu.f -library=sunperf

my_system% a.out

 i rhs(i) expected rhs(i) error

 1 0.100000000000D+01 0.100000000000D+01 0.000000000000D+00

 2 0.200000000000D+01 0.200000000000D+01 0.000000000000D+00

 3 0.300000000000D+01 0.300000000000D+01 0.000000000000D+00

62 Oracle Developer Studio 12.6: Performance Library User's Guide • July 2017

SPSOLVE Interface

 4 0.400000000000D+01 0.400000000000D+01 0.000000000000D+00

 5 0.500000000000D+01 0.500000000000D+01 0.000000000000D+00

EXAMPLE 5 Calling SPSOLVE Routines from C

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include <sys/time.h>

#include <sunperf.h>

int main() {

/*

 Sparse matrix structure and value arrays. Coefficient matrix

 is a general unsymmetric sparse matrix.

 Ax = b, (solve for x) where:

 1.0 0.0 7.0 9.0 0.0 1.0 17.0

 2.0 4.0 0.0 0.0 0.0 1.0 6.0

 A = 0.0 5.0 8.0 0.0 0.0 x = 1.0 b = 13.0

 0.0 0.0 0.0 10.0 11.0 1.0 21.0

 3.0 6.0 0.0 0.0 12.0 1.0 21.0

*/

/* Array indices must be one-based for calling SPSOLVE routines */

int colstr[] = {1, 4, 7, 9, 11, 13};

int rowind[] = {1, 2, 5, 2, 3, 5, 1, 3, 1, 4, 4, 5};

double values[] = {1.0, 2.0, 3.0, 4.0, 5.0, 6.0,

 7.0, 8.0, 9.0, 10.0, 11.0, 12.0};

double rhs[] = {17.0, 6.0, 13.0, 21.0, 21.0};

double xexpct[] = {1.0, 1.0, 1.0, 1.0, 1.0};

 int n = 5, nnz = 12, nrhs = 1, msglvl = 0, outunt = 6, ierr,

 i,j,k, int_ierr;

 double t[4], handle[150];

 char type[] = "uu", piv = 'n';

/* Last two parameters in argument list indicate lengths of

 * character arguments type and piv

 */

 dgssin_(type, &piv, &n, colstr, rowind, &outunt, &msglvl,

 handle, &ierr,2,1);

 if (ierr != 0) {

 int_ierr = ierr;

 printf("dgssin err = %d\n", int_ierr);

 return -1;

Chapter 6 • Sparse Computation 63

SuperLU Interface

 }

 char ordmth[] = "mmd";

 dgssor_(ordmth, handle, &ierr, 3);

 if (ierr != 0) {

 int_ierr = ierr;

 printf("dgssor err = %d\n", int_ierr);

 return -1;

 }

 dgssfa_(&n, colstr, rowind, values, handle, &ierr);

 if (ierr != 0) {

 int_ierr = ierr;

 printf("dgssfa err = %d\n", int_ierr);

 return -1;

 }

 dgsssl_(&nrhs, rhs, &n, handle, &ierr);

 if (ierr != 0) {

 int_ierr = ierr;

 printf("dgsssl err = %d\n", int_ierr);

 return -1;

 }

 printf("i computed solution expected solution\n");

 for (i=0; i<n; i++)

 printf("%d %lf %lf\n", i,rhs[i], 1.0);

}

my_system% cc -m32 -xmemalign=8s dr.c -library=sunperf

my_system% ./a.out

i computed solution expected solution

0 1.000000 1.000000

1 1.000000 1.000000

2 1.000000 1.000000

3 1.000000 1.000000

4 1.000000 1.000000

SuperLU Interface

SuperLU has two driver routines, simple and expert, that can be called to completely solve a
general unsymmetric sparse system in a similar manner to the one-call interface in SPSOLVE.
These and other SuperLU user-callable routines are available in single precision, double
precision, complex and double complex data types. Single precision names of all external
routines are listed in the following tables. Man pages (section 3P) are available for these

64 Oracle Developer Studio 12.6: Performance Library User's Guide • July 2017

SuperLU Interface

routines. Also see the man page of SuperMatrix(3P) for a description of the sparse matrix data
structure that is used in the application.

TABLE 5 SuperLU Computational Routines

Routine Description

sgstrf Computes factorization

sgssvx Factorizes and solves (expert driver)

sgssv Factorizes and solves (simple driver)

sgstrs Computes triangular solve

sgsrfs Improves computed solution; provides error bounds

slangs Computes one-norm, Frobenius-norm, or infinity-norm

sgsequ Computes row and column scalings

sgscon Estimates reciprocal of condition number

slaqgs Equilibrates a general sparse matrix

TABLE 6 SuperLU Utility Routines

Routine Description

LUSolveTime Returns time spent in solve stage

LUFactTime Returns time spent in factorization stage

LUFactFlops Returns number of floating point operations in factorization stage

LUSolveFlops Returns number of floating point operations in solve stage

sQuerySpace Returns information on the memory statistics

sp_ienv Returns specified machine dependent parameter

sPrintPerf Prints statistics collected by the computational routines

set_default_options Sets parameters that control solver behavior to default options

StatInit Allocates and initializes structure that stores performance statistics

StatFree Frees structure that stores performance statistics

Destroy_Dense_Matrix Deallocates a SuperMatrix in dense format

Destroy_SuperNode_Matrix Deallocates a SuperMatrix in supernodal format

Destroy_CompCol_Matrix Deallocates a SuperMatrix in compressed sparse column format

Destroy_CompCol_Permuted Deallocates a SuperMatrix in permuted compressed sparse column
format

Destroy_SuperMatrix_Store Deallocates actual storage that stores matrix in a SuperMatrix

sCopy_CompCol_Matrix Copies a SuperMatrix in compressed sparse column format

sCreate_CompCol_Matrix Allocates a SuperMatrix in compressed sparse column format

sCreate_Dense_Matrix Allocates a SuperMatrix in dense format

sCreate_CompRow_Matrix Allocates a SuperMatrix in compressed sparse row format

Chapter 6 • Sparse Computation 65

SuperLU Interface

Routine Description

sCreate_SuperNode_Matrix Allocates a SuperMatrix in supernodal format

sp_preorder Permutes columns of original sparse matrix

sp_sgemm Multiplies a SuperMatrix by a dense matrix

Calling SuperLU from C

SuperLU routines are written in C. Therefore, column- and row-related indices must be zero-
based. In the following example, double precision simple driver dgssv() is called to compute
factors L and U and to solve for the solution matrix.

EXAMPLE 6 SuperLU Simple Driver

#include <stdio.h>

#include <sunperf.h>

#define M 5

#define N 5

int main(int argc, char *argv[])

{

 SuperMatrix A, L, U, B1, B2;

 int perm_r[M]; /* row permutations from partial pivoting */

 int perm_c[N]; /* column permutation vector */

 int info, i;

 superlu_options_t options;

 SuperLUStat_t stat;

 trans_t trans = NOTRANS;

 printf("Example code calling SuperLU simple driver to factor a \n");

 printf("general unsymmetric matrix and solve two right-hand-side matrices\n");

 /* the matrix in Harwell-Boeing format. */

 int m = M;

 int n = M;

 int nnz = 12;

 double *dp;

 /* nonzeros of A, column-wise */

 double a[] = {1.0, 2.0, 3.0, 4.0, 5.0, 6.0,

 7.0, 8.0, 9.0, 10.0, 11.0, 12.0};

 /* row index of nonzeros */

 int asub[] = {0, 1, 4, 1, 2, 4, 0, 2, 0, 3, 3, 4};

 /* column pointers */

 int xa[] = {0, 3, 6, 8, 10, 12};

66 Oracle Developer Studio 12.6: Performance Library User's Guide • July 2017

SuperLU Interface

 /* Create Matrix A in the format expected by SuperLU */

 dCreate_CompCol_Matrix(&A, m, n, nnz, a, asub, xa, SLU_NC, SLU_D, SLU_GE);

 int nrhs = 1;

 double rhs1[] = {17.0, 6.0, 13.0, 21.0, 21.0};

 double rhs2[] = {17*.3, 6*.3, 13*.3, 21*.3, 21*.3};

 /* right-hand side matrix B1, B2 */

 dCreate_Dense_Matrix(&B1, m, nrhs, rhs1, m, SLU_DN, SLU_D, SLU_GE);

 dCreate_Dense_Matrix(&B2, m, nrhs, rhs2, m, SLU_DN, SLU_D, SLU_GE);

 /* set options that control behavior of solver to default parameters */

 set_default_options(&options);

 options.ColPerm = NATURAL;

 /* Initialize the statistics variables. */

 StatInit(&stat);

 /* factor input matrix and solve the first right-hand-side matrix */

 dgssv(&options, &A, perm_c, perm_r, &L, &U, &B1, &stat, &info);

 printf("\nsolution matrix B1:\n");

 dp = (double *) (((NCformat *)B1.Store)->nzval);

 printf(" i rhs[i] expected\n");

 for (i=0; i<M; i++)

 printf("%5d %7.4lf %7.4lf\n", i, dp[i], 1.0);

 printf("Factor time = %8.2e sec\n", stat.utime[FACT]);

 printf("Solve time = %8.2e sec\n\n\n", stat.utime[SOLVE]);

 /* solve the second right-hand-side matrix */

 dgstrs(trans, &L, &U, perm_c, perm_r, &B2, &stat, &info);

 printf("solution matrix B2:\n");

 dp = (double *) (((NCformat *)B2.Store)->nzval);

 printf(" i rhs[i] expected\n");

 for (i=0; i<M; i++)

 printf("%5d %7.4lf %7.4lf\n", i, dp[i], 0.3);

 printf("Solve time = %8.2e sec\n", stat.utime[SOLVE]);

 StatFree(&stat);

 Destroy_CompCol_Matrix(&A);

 Destroy_SuperMatrix_Store(&B1);

 Destroy_SuperMatrix_Store(&B2);

 Destroy_SuperNode_Matrix(&L);

 Destroy_CompCol_Matrix(&U);

}

Running the above example:

Chapter 6 • Sparse Computation 67

SuperLU Interface

my_system% cc -xmemalign=8s simple.c -library=sunperf

my_system% a.out

Example code calling SuperLU simple driver to factor a

general unsymmetric matrix and solve two right-hand-side matrices

solution matrix B1:

 i rhs[i] expected

 0 1.0000 1.0000

 1 1.0000 1.0000

 2 1.0000 1.0000

 3 1.0000 1.0000

 4 1.0000 1.0000

Factor time = 5.43e-02 sec

Solve time = 6.76e-03 sec

solution matrix B2:

 i rhs[i] expected

 0 0.3000 0.3000

 1 0.3000 0.3000

 2 0.3000 0.3000

 3 0.3000 0.3000

 4 0.3000 0.3000

Solve time = 6.76e-03 sec

EXAMPLE 7 SuperLU Expert Driver

#include <stdio.h>

#include <sunperf.h>

#define M 5

#define N 5

#define NRHS 1

int main(int argc, char *argv[])

{

 SuperMatrix A, L, U, B, X;

 int perm_r[M]; /* row permutations from partial pivoting */

 int perm_c[N]; /* column permutation vector */

 int etree[N]; /* elimination tree */

 double ferr[NRHS]; /* estimated forward error bound */

 double berr[NRHS]; /* component-wise relative backward error */

 double C[N], R[M]; /* column and row scale factors */

 double rpg, rcond;

 char equed[1]; /* Specifies the form of equilibration that was done */

 double *work, *dp; /* user-supplied workspace */

68 Oracle Developer Studio 12.6: Performance Library User's Guide • July 2017

SuperLU Interface

 int lwork = 0; /* 0 for workspace to be allocated by system malloc */

 int info, i;

 superlu_options_t options;

 SuperLUStat_t stat;

 mem_usage_t mem_usage;

 printf("Example code calling SuperLU expert driver\n\n");

 /* the matrix in Harwell-Boeing format. */

 int m = M;

 int n = M;

 int nnz = 12;

 /* nonzeros of A, column-wise */

 double a[] = {1.0, 2.0, 3.0, 4.0, 5.0, 6.0,

 7.0, 8.0, 9.0, 10.0, 11.0, 12.0};

 /* row index of nonzeros */

 int asub[] = {0, 1, 4, 1, 2, 4, 0, 2, 0, 3, 3, 4};

 /* column pointers */

 int xa[] = {0, 3, 6, 8, 10, 12};

 int nrhs = NRHS;

 double rhs[] = {17.0, 6.0, 13.0, 21.0, 21.0};

 /* Create Matrix A in the format expected by SuperLU */

 dCreate_CompCol_Matrix(&A, m, n, nnz, a, asub, xa, SLU_NC, SLU_D, SLU_GE);

 /* right-hand-side matrix B */

 dCreate_Dense_Matrix(&B, m, nrhs, rhs, m, SLU_DN, SLU_D, SLU_GE);

 /* solution matrix X */

 dCreate_Dense_Matrix(&X, m, nrhs, rhs, m, SLU_DN, SLU_D, SLU_GE);

 set_default_options(&options);

 options.ColPerm = NATURAL;

 /* Initialize the statistics variables. */

 StatInit(&stat);

 dgssvx(&options, &A, perm_c, perm_r, etree, equed, R, C, &L, &U, work, lwork,

 &B, &X, &rpg, &rcond, ferr, berr, &mem_usage, &stat, &info);

 dp = (double *) (((NCformat *)X.Store)->nzval);

 printf(" i rhs[i] expected\n");

 for (i=0; i<M; i++)

 printf("%5d %7.4lf %7.4lf\n",

 i, dp[i], 1.0);

 printf("Factor time = %8.2e sec\n", stat.utime[FACT]);

 printf("Solve time = %8.2e sec\n", stat.utime[SOLVE]);

 StatFree(&stat);

 Destroy_CompCol_Matrix(&A);

Chapter 6 • Sparse Computation 69

SuperLU Interface

 Destroy_SuperMatrix_Store(&B);

 Destroy_SuperNode_Matrix(&L);

 Destroy_CompCol_Matrix(&U);

}

Running the above example:

my_system% cc -xmemalign=8s expert.c -library=sunperf

my_system% a.out

Example code calling SuperLU expert driver

 i rhs[i] expected

 0 1.0000 1.0000

 1 1.0000 1.0000

 2 1.0000 1.0000

 3 1.0000 1.0000

 4 1.0000 1.0000

Factor time = 1.25e-03 sec

Solve time = 1.70e-04 sec

Calling SuperLU from Fortran
The simplest way to call SuperLU from Fortran is through the SPSOLVE interface. SuperLU
can be selected to solve an unsymmetric coefficient matrix through input argument MTXTYP of
routine DGSSIN(), which is the initialization routine in SPSOLVE. The same argument also
exists in the one-call interface routine DGSSFS().

Valid options for MTXTYP are listed in the following table. To invoke SuperLU, select 's0' or 'S0'
as matrix type. Since SPSOLVE is Fortran-based, all column and row indices associated with
the input matrix should be one-based. However, if SuperLU is invoked through DGSSIN() or
DGSSFS() (by setting MTXTYP = 's0' or 'S0'), these indices must be zero-based.

TABLE 7 Matrix Type Options for DGSSIN() and DGSSFS()

Option Type of Matrix Solver

'sp' or 'SP' symmetric structure, positive-definite values SPSOLVE

'ss' or 'SS' symmetric structure, symmetric values SPSOLVE

'su' or 'SU' symmetric structure, unsymmetric values SPSOLVE

'uu' or 'UU' unsymmetric structure, unsymmetric values SPSOLVE

's0' or 'S0' unsymmetric structure, unsymmetric values SuperLU

A call to routine DGSSOR() must follow DGSSIN() to perform fill-reduce ordering and symbolic
factorization. A character argument (ORDMTHD) is used to select the desired ordering method.

70 Oracle Developer Studio 12.6: Performance Library User's Guide • July 2017

SuperLU Interface

This argument also exists in the one-call interface routine DGSSFS(). Valid ordering methods
for SPSOLVE and SuperLU are listed in the following table. You can also provide a particular
ordering to the solver by calling DGSSUO() in place of DGSSOR(). The input permutation array
must be zero-based.

TABLE 8 Matrix Ordering Options for DGSSOR() and DGSSFS()

Option Ordering Method Solver

'nat' or 'NAT' natural ordering (no ordering) SPSOLVE, SuperLU

'mmd' or 'MMD' minimum degree on A'*A (default) SPSOLVE, SuperLU

'gnd' or 'GND' general nested dissection SPSOLVE

'spm' or 'SPM' Minimum degree ordering on A'+A SuperLU

'sam' or 'SAM' Approximate minimum degree column SuperLU

As shown above, the general nested dissection method is not available in SuperLU. On the
other hand, the minimum degree ordering on A'+A and approximate minimum degree column
ordering are not available in SPSOLVE.

SuperLU Examples
The following code examples show how SuperLU can be selected through the regular interface
and the one-call interface of SPSOLVE to factorize and solve a general unsymmetric system of
equations.

EXAMPLE 8 Invoking SuperLU Through SPSOLVE Regular Interface

 program SLU

c This program is an example driver that calls the regular interface of SPSOLVE

c to invoke SuperLU to factor and solve a general unsymmetric system.

 implicit none

 integer neqns, ier, msglvl, outunt, ldrhs, nrhs, i

 character mtxtyp*2, pivot*1, ordmthd*3

 double precision handle(150)

 integer colstr(6), rowind(12)

 double precision values(12), rhs(5), xexpct(5)

c Sparse matrix structure and value arrays. Coefficient matrix

c is a general unsymmetric sparse matrix.

c Ax = b, (solve for x) where:

Chapter 6 • Sparse Computation 71

SuperLU Interface

c 1.0 0.0 7.0 9.0 0.0 1.0 17.0

c 2.0 4.0 0.0 0.0 0.0 1.0 6.0

c A = 0.0 5.0 8.0 0.0 0.0 x = 1.0 b = 13.0

c 0.0 0.0 0.0 10.0 11.0 1.0 21.0

c 3.0 6.0 0.0 0.0 12.0 1.0 21.0

c Array indices must be zero-based for calling SuperLU

 data colstr / 0, 3, 6, 8, 10, 12 /

 data rowind / 0, 1, 4, 1, 2, 4, 0, 2, 0, 3, 3, 4 /

 data values / 1.0, 2.0, 3.0, 4.0, 5.0, 6.0,

 $ 7.0, 8.0, 9.0, 10.0, 11.0, 12.0 /

 data rhs / 17.0, 6.0, 13.0, 21.0, 21.0 /

 data xexpct / 1.0d0, 1.0d0, 1.0d0, 1.0d0, 1.0d0 /

c initialize solver

 mtxtyp= 's0'

 pivot = 'n'

 neqns = 5

 outunt = 6

 msglvl = 0

c call regular interface

 call dgssin(mtxtyp, pivot, neqns , colstr, rowind,outunt, msglvl,

 & handle, ier)

 if (ier .ne. 0) goto 110

c ordering and symbolic factorization

 ordmthd = 'mmd'

 call dgssor(ordmthd, handle, ier)

 if (ier .ne. 0) goto 110

c numeric factorization

 call dgssfa (neqns, colstr, rowind, values, handle, ier)

 if (ier .ne. 0) goto 110

c solution

 nrhs = 1

 ldrhs = 5

 call dgsssl (nrhs, rhs, ldrhs, handle, ier)

 if (ier .ne. 0) goto 110

c deallocate sparse solver storage

 call dgssda (handle, ier)

 if (ier .ne. 0) goto 110

c print values of sol

 write(6,200) 'i', 'rhs(i)', 'expected rhs(i)', 'error'

 do i = 1, neqns

72 Oracle Developer Studio 12.6: Performance Library User's Guide • July 2017

SuperLU Interface

 write(6,300) i, rhs(i), xexpct(i), (rhs(i)-xexpct(i))

 enddo

 stop

 110 continue

c call to sparse solver returns an error

 write (6 , 400)

 & ' example: FAILED sparse solver error number = ', ier

 stop

 200 format(4x,a1,3x,a6,3x,a15,4x,a6)

 300 format(i5,3x,f5.2,7x,f5.2,8x,e10.2) ! i/sol/xexpct values

 400 format(a60,i20) ! fail message, sparse solver error number

 end

Running the above example:

my_system% f95 -dalign slu.f -library=sunperf

my_system% a.out

 i rhs(i) expected rhs(i) error

 1 1.00 1.00 0.00E+00

 2 1.00 1.00 -0.33E-15

 3 1.00 1.00 0.22E-15

 4 1.00 1.00 -0.11E-15

 5 1.00 1.00 0.22E-15

EXAMPLE 9 Invoking SuperLU through One-Call SPSOLVE Interface

program SLU_SINGLE

c This program is an example driver that calls the regular interface of SPSOLVE

c to invoke SuperLU to factor and solve a general unsymmetric system.

 implicit none

 integer neqns, ier, msglvl, outunt, ldrhs, nrhs, i

 character mtxtyp*2, pivot*1, ordmthd*3

 double precision handle(150)

 integer colstr(6), rowind(12)

 double precision values(12), rhs(5), xexpct(5)

c Sparse matrix structure and value arrays. Coefficient matrix

c is a general unsymmetric sparse matrix.

c Ax = b, (solve for x) where:

c 1.0 0.0 7.0 9.0 0.0 1.0 17.0

c 2.0 4.0 0.0 0.0 0.0 1.0 6.0

c A = 0.0 5.0 8.0 0.0 0.0 x = 1.0 b = 13.0

Chapter 6 • Sparse Computation 73

SuperLU Interface

c 0.0 0.0 0.0 10.0 11.0 1.0 21.0

c 3.0 6.0 0.0 0.0 12.0 1.0 21.0

c Array indices must be zero-based for calling SuperLU

 data colstr / 0, 3, 6, 8, 10, 12 /

 data rowind / 0, 1, 4, 1, 2, 4, 0, 2, 0, 3, 3, 4 /

 data values / 1.0, 2.0, 3.0, 4.0, 5.0, 6.0,

 $ 7.0, 8.0, 9.0, 10.0, 11.0, 12.0 /

 data rhs / 17.0, 6.0, 13.0, 21.0, 21.0 /

 data xexpct / 1.0d0, 1.0d0, 1.0d0, 1.0d0, 1.0d0 /

c initialize solver

 mtxtyp= 's0'

 pivot = 'n'

 neqns = 5

 outunt = 6

 msglvl = 0

 ordmthd = 'mmd'

 nrhs = 1

 ldrhs = 5

c One-call routine of SPSOLVE

 call dgssfs (mtxtyp, pivot, neqns , colstr, rowind,

 & values, nrhs , rhs, ldrhs , ordmthd,

 & outunt, msglvl, handle, ier)

 if (ier .ne. 0) goto 110

c deallocate sparse solver storage

 call dgssda (handle, ier)

 if (ier .ne. 0) goto 110

c print values of sol

 write(6,200) 'i', 'rhs(i)', 'expected rhs(i)', 'error'

 do i = 1, neqns

 write(6,300) i, rhs(i), xexpct(i), (rhs(i)-xexpct(i))

 enddo

 stop

 110 continue

c call to sparse solver returns an error

 write (6 , 400)

 & ' example: FAILED sparse solver error number = ', ier

 stop

 200 format(4x,a1,3x,a6,3x,a15,4x,a6)

 300 format(i5,3x,f5.2,7x,f5.2,8x,e10.2) ! i/sol/xexpct values

 400 format(a60,i20) ! fail message, sparse solver error number

 end

74 Oracle Developer Studio 12.6: Performance Library User's Guide • July 2017

References for Sparse BLAS and Solver

Running the above example:

my_system% f95 -dalign slu_single.f -library=sunperf

my_system% a.out

 i rhs(i) expected rhs(i) error

 1 1.00 1.00 0.00E+00

 2 1.00 1.00 -0.33E-15

 3 1.00 1.00 0.22E-15

 4 1.00 1.00 -0.11E-15

 5 1.00 1.00 0.22E-15

References for Sparse BLAS and Solver

The following books and papers provide additional information for the sparse BLAS and sparse
solver routines.

1. D.S. Dodson, R.G. Grimes, and J.G. Lewis, Sparse Extensions to the Fortran Basic Linear
Algebra Subprograms, ACM Transactions on Mathematical Software, June 1991, Vol 17,
No. 2.

2. A. George and J. W-H. Liu, Computer Solution of Large Sparse Positive Definite Systems,
Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1981.

3. E. Ng and B. W. Peyton, Block Sparse Cholesky Algorithms on Advanced Uniprocessor
Computers, SIAM M. Sci Comput., 14:1034-1056, 1993.

4. Ian S. Duff, Roger G. Grimes and John G. Lewis, User's Guide for the Harwell-Boeing
Sparse Matrix Collection (Release I), Technical Report TR/PA/92/86, CERFACS, Lyon,
France, October 1992.

5. J. W. Demmel, J. R. Gilbert, and X. S. Li, SuperLU User's Guide, Technical report LBNL-
44289.

6. X. S. Li, An Overview of SuperLU: Algorithms, Implementation, and User Interface, ACM
Transactions on Mathematical Software, 2004.

7. 7. J. W. Demmel, S. C. Eisenstat, J. R. Gilbert, X. S. Li, J. W. H. Liu, A supernodal
approach to sparse partial pivoting, SIAM J. Matrix Analysis and Applications, Vol 20, No.
3, 1999, pp. 720-755.

Chapter 6 • Sparse Computation 75

76 Oracle Developer Studio 12.6: Performance Library User's Guide • July 2017

 7 ♦ ♦ ♦ C H A P T E R 7

Using Oracle Developer Studio Performance
Library Signal Processing Routines

The discrete Fourier transform (DFT) has always been an important analytical tool in many
areas of science and engineering. However, it was not until the development of the fast Fourier
transform (FFT) that the DFT became widely used. This is because the DFT requires O(N2)
computations, while the FFT only requires O(Nlog2N) operations.

Oracle Developer Studio Performance Library contains a set of routines that computes the FFT,
related FFT operations, such as convolution and correlation, and trigonometric transforms.

This chapter is divided into the following three sections.

■ Forward and Inverse FFT Routines
■ Sine and Cosine Transforms
■ Convolution and Correlation

Each section includes examples that show how the routines might be used.

Tip - For information on the Fortran 95 and C interfaces and types of arguments used in each
routine, see the section 3P man pages for the individual routines. Routine names for man pages
must be lowercase.

For example, to display the man page for the SFFTC routine, use the following command
specifying the routine name in lowercase:

% man -s 3P sfftc

For an overview of the FFT routines:

% man -s 3P fft

Chapter 7 • Using Oracle Developer Studio Performance Library Signal Processing Routines 77

Forward and Inverse FFT Routines

Forward and Inverse FFT Routines
The following tables list the names of the FFT routines and their calling sequence. Double
precision routine names are in square brackets. See the individual man pages for detailed
information on the data type and size of the arguments.

■ Table 9, “FFT Linear Routines and Their Arguments,” on page 78
■ Table 10, “FFT Two-Dimensional Routines and Their Arguments,” on page 78
■ Table 11, “FFT Three-Dimensional Routines and Their Arguments,” on page 78

TABLE 9 FFT Linear Routines and Their Arguments

Routine Name
Arguments

CFFTS [ZFFTD] (OPT, N1, SCALE, X, Y, TRIGS, IFAC, WORK, LWORK,
ERR)

SFFTC [DFFTZ] (OPT, N1, SCALE, X, Y, TRIGS, IFAC, WORK, LWORK,
ERR)

CFFTSM [ZFFTDM] (OPT, N1, N2, SCALE, X, LDX1, Y, LDY1, TRIGS, IFAC,
WORK, LWORK, ERR)

SFFTCM [DFFTZM] (OPT, N1, N2, SCALE, X, LDX1, Y, LDY1, TRIGS, IFAC,
WORK, LWORK, ERR)

CFFTC [ZFFTZ] (OPT, N1, SCALE, X, Y, TRIGS, IFAC, WORK, LWORK,
ERR)

CFFTCM [ZFFTZM] (OPT, N1, N2, SCALE, X, LDX1, Y, LDY1, TRIGS, IFAC,
WORK, LWORK, ERR)

TABLE 10 FFT Two-Dimensional Routines and Their Arguments

Routine Name
Arguments

CFFTS2 [ZFFTD2] (OPT, N1, N2, SCALE, X, LDX1, Y, LDY1, TRIGS, IFAC,
WORK, LWORK, ERR)

SFFTC2 [DFFTZ2] (OPT, N1, N2, SCALE, X, LDX1, Y, LDY1, TRIGS, IFAC,
WORK, LWORK, ERR)

CFFTC2 [ZFFTZ2] (OPT, N1, N2, SCALE, X, LDX1, Y, LDY1, TRIGS, IFAC,
WORK, LWORK, ERR)

TABLE 11 FFT Three-Dimensional Routines and Their Arguments

Routine Name
Arguments

CFFTS3 [ZFFTD3] (OPT, N1, N2, N3, SCALE, X, LDX1, LDX2, Y, LDY1,
LDY2, TRIGS, IFAC, WORK, LWORK, ERR)

78 Oracle Developer Studio 12.6: Performance Library User's Guide • July 2017

Forward and Inverse FFT Routines

Routine Name
Arguments

SFFTC3 [DFFTZ3] (OPT, N1, N2, N3, SCALE, X, LDX1, LDX2, Y, LDY1,
LDY2, TRIGS, IFAC, WORK, LWORK, ERR)

CFFTC3 [ZFFTZ3] (OPT, N1, N2, N3, SCALE, X, LDX1, LDX2, Y, LDY1,
LDY2, TRIGS, IFAC, WORK, LWORK, ERR)

Oracle Developer Studio Performance Library FFT routines use the following arguments.

■ OPT: Flag indicating whether the routine is called to initialize or to compute the transform.
■ N1, N2, N3: Problem dimensions for one, two, and three dimensional transforms.
■ X: Input array where X is of type COMPLEX if the routine is a complex-to-complex transform

or a complex-to-real transform. X is of type REAL for a real-to-complex transform.
■ Y: Output array where Y is of type COMPLEX if the routine is a complex-to-complex transform

or a real-to-complex transform. Y is of type REAL for a complex-to-real transform.
■ LDX1, LDX2 and LDY1, LDY2: LDX1 and LDX2 are the leading dimensions of the input array, and

LDY1 and LDY2 are the leading dimensions of the output array. The FFT routines allow the
output to overwrite the input, which is an in-place transform, or to be stored in a separate
array apart from the input array, which is an out‐of‐place transform. In complex-to-
complex transforms, the input data is of the same size as the output data. However, real-
to-complex and complex-to-real transforms have different memory requirements for
input and output data. Care must be taken to ensure that the input array is large enough to
accommodate the transform results when computing an in-place transform.

■ TRIGS: Array containing the trigonometric weights.
■ IFAC: Array containing factors of the problem dimensions. The problem sizes are as

follows:
■ Linear FFT: Problem size of dimension N1
■ Two-dimensional FFT: Problem size of dimensions N1 and N2
■ Three-dimensional FFT: Problem size of dimensions N1, N2, and N3

While N1, N2, and N3 can be of any size, a real-to-complex or a complex-to-real transform
can be computed most efficiently when

,
and a complex-to-complex transform can be computed most efficiently when

,
where p, q, r, s, t, u, and v are integers and p, q, r, s, t, u, v ≥ 0.

Chapter 7 • Using Oracle Developer Studio Performance Library Signal Processing Routines 79

Forward and Inverse FFT Routines

■ WORK: Workspace whose size depends on the routine and the number of threads that are
being used to compute the transform if the routine is parallelized.

■ LWORK: Size of workspace. If LWORK is zero, the routine will allocate a workspace with the
required size.

■ SCALE: A scalar with which the output is scaled. Occasionally in literature, the inverse
transform is defined with a scaling factor of 1/N1 for one-dimensional transforms, 1/
(N1 × N2) for two-dimensional transforms, and 1/(N1 × N2 × N3) for three-dimensional
transforms. In such case, the inverse transform is said to be normalized. If a normalized FFT
is followed by its inverse FFT, the result is the original input data. The Oracle Developer
Studio Performance Library FFT routines are not normalized. However, normalization can
be done easily by calling the inverse FFT routine with the appropriate scaling factor stored
in SCALE.

■ ERR: A flag returning a nonzero value if an error is encountered in the routine and zero
otherwise.

Linear FFT Routines
Linear FFT routines compute the FFT of real or complex data in one dimension only.
The data can be one or more complex or real sequences. For a single sequence, the data
is stored in a vector. If more than one sequence is being transformed, the sequences are
stored column-wise in a two-dimensional array and a one-dimensional FFT is computed
for each sequence along the column direction. The linear forward FFT routines compute:

 where .

Or expressed in polar form:

.

The inverse FFT routines compute

In polar form:

80 Oracle Developer Studio 12.6: Performance Library User's Guide • July 2017

Forward and Inverse FFT Routines

With the forward transform, if the input is one or more complex sequences of size N1, the result
will be one or more complex sequences, each consisting of N1 unrelated data points. However,
if the input is one or more real sequences, each containing N1 real data points, the result will be
one or more complex sequences that are conjugate symmetric. That is:

The imaginary part of X(0) is always zero. If N1 is even, the imaginary part of is also
zero. Both zeros are stored explicitly. Because the second half of each sequence can be derived

from the first half, only complex data points are computed and stored in the output array.
Here and elsewhere in this chapter, integer division is rounded down.

With the inverse transform, if an N1-point complex-to-complex transform is being computed,
then N1 unrelated data points are expected in each input sequence and N1 data points will
be returned in the output array. However, if an N1-point complex-to-real transform is being

computed, only the first complex data points of each conjugate symmetric input
sequence are expected in the input, and the routine will return N1 real data points in each output
sequence.

For each value of N1, either the forward or the inverse routine must be called to compute the
factors of N1 and the trigonometric weights associated with those factors before computing the
actual FFT. The factors and trigonometric weights can be reused in subsequent transforms as
long as N1 remains unchanged.

The following table Table 12, “Single Precision Linear FFT Routines,” on page 81
lists the single precision linear FFT routines and their purposes. For routines that have two-
dimensional arrays as input and output, Table 12, “Single Precision Linear FFT Routines,” on
page 81 also lists the leading dimension requirements. The same information applies to the
corresponding double precision routines except that their data types are double precision and
double complex. See Table 12, “Single Precision Linear FFT Routines,” on page 81 for
the mapping. See the individual man pages for a complete description of the routines and their
arguments.

TABLE 12 Single Precision Linear FFT Routines

Name Purpose Size and Type of
Input

Size and Type of
Output

Leading Dimension Requirements

SFFTC OPT = 0 initialization

OPT = -1 real-to-complex
forward linear FFT of a single
vector

N1,

Real
,

Complex

Chapter 7 • Using Oracle Developer Studio Performance Library Signal Processing Routines 81

Forward and Inverse FFT Routines

Name Purpose Size and Type of
Input

Size and Type of
Output

Leading Dimension Requirements

SFFTC OPT = 0 initialization

OPT = 1 complex-to-real
inverse linear FFT of single
vector

,

Complex

N1

Real

CFFTC OPT = 0 initialization

OPT = -1 complex-to-complex
forward linear FFT of a single
vector

N1,

Complex

N1,

Complex

OPT = 1 complex-to-complex
inverse linear FFT of a single
vector

N1,

Complex

N1,

Complex

SFFTCM OPT = 0 initialization

OPT = -1 real-to-complex
forward linear FFT of M
vectors

N1 × M,

Real ,

Complex

LDX1 = 2 × LDY1 LDX1 ≥ N1

CFFTSM OPT = 0 initialization

OPT = 1 complex-to-real
inverse linear FFT of M
vectors ,

Complex

N1 × M,

Real
LDX1 ≥

LDY1=2 × LDX1

LDX1 ≥

LDY1 ≥ N1

CFFTCM OPT = 0 initialization

OPT = -1 complex-to-complex
forward linear FFT of M
vectors

N1 × M,

Complex

N1 × M,

Complex

LDX1 ≥ N1

LDY1 ≥ N1

LDX1 ≥ N1

LDY1 ≥ N1

OPT = 1 complex-to-complex
inverse linear FFT of M
vectors

N1 × M,

Complex

N1 × M,

Complex

LDX1 ≥ N1

LDY1 ≥ N1

LDX1 ≥ N1

LDY1 ≥ N1

82 Oracle Developer Studio 12.6: Performance Library User's Guide • July 2017

Forward and Inverse FFT Routines

Note - Note the following about the table Table 12, “Single Precision Linear FFT Routines,” on
page 81:

■ LDX1 is the leading dimension of the input array.
■ LDY1 is the leading dimension of the output array.
■ N1 is the first dimension of the FFT problem.
■ N2 is the second dimension of the FFT problem.
■ When calling routines with OPT = 0 to initialize the routine, the only error checking that is

done is to determine if N1 < 0

The following example shows how to compute the linear real-to-complex and complex-to-real
FFT of a set of sequences.

EXAMPLE 10 Linear Real-to-Complex FFT and Complex-to-Real FFT

my_system% cat testscm.f

 PROGRAM TESTSCM

 IMPLICIT NONE

 INTEGER :: LW, IERR, I, J, K, LDX, LDC

 INTEGER,PARAMETER :: N1 = 3, N2 = 2, LDZ = N1,

 $ LDC = N1, LDX = 2*LDC

 INTEGER, DIMENSION(:) :: IFAC(128)

 REAL :: SCALE

 REAL, PARAMETER :: ONE = 1.0

 REAL, DIMENSION(:) :: SW(N1), TRIGS(2*N1)

 REAL, DIMENSION(0:LDX-1,0:N2-1) :: X, V, Y

 COMPLEX, DIMENSION(0:LDZ-1, 0:N2-1) :: Z

* workspace size

 LW = N1

 SCALE = ONE/N1

 WRITE(*,*)

 $ 'Linear complex-to-real and real-to-complex FFT of a sequence'

 WRITE(*,*)

 X = RESHAPE(SOURCE = (/.1, .2, .3,0.0,0.0,0.0,7.,8.,9.,

 $ 0.0, 0.0, 0.0/), SHAPE=(/6,2/))

 V = X

 WRITE(*,*) 'X = '

 DO I = 0,N1-1

 WRITE(*,'(2(F4.1,2x))') (X(I,J), J = 0, N2-1)

 END DO

 WRITE(*,*)

* intialize trig table and compute factors of N1

 CALL SFFTCM(0, N1, N2, ONE, X, LDX, Z, LDZ, TRIGS, IFAC,

 $ SW, LW, IERR)

Chapter 7 • Using Oracle Developer Studio Performance Library Signal Processing Routines 83

Forward and Inverse FFT Routines

 IF (IERR .NE. 0) THEN

 PRINT*,'ROUTINE RETURN WITH ERROR CODE = ', IERR

 STOP

 END IF

* Compute out-of-place forward linear FFT.

* Let FFT routine allocate memory.

 CALL SFFTCM(-1, N1, N2, ONE, X, LDX, Z, LDZ, TRIGS, IFAC,

 $ SW, 0, IERR)

 IF (IERR .NE. 0) THEN

 PRINT*,'ROUTINE RETURN WITH ERROR CODE = ', IERR

 STOP

 END IF

 WRITE(*,*) 'out-of-place forward FFT of X:'

 WRITE(*,*)'Z ='

 DO I = 0, N1/2

 WRITE(*,'(2(A1, F4.1,A1,F4.1,A1,2x))') ('(',REAL(Z(I,J)),

 $ ',',AIMAG(Z(I,J)),')', J = 0, N2-1)

 END DO

 WRITE(*,*)

* Compute in-place forward linear FFT.

* X must be large enough to store N1/2+1 complex values

 CALL SFFTCM(-1, N1, N2, ONE, X, LDX, X, LDC, TRIGS, IFAC,

 $ SW, LW, IERR)

 IF (IERR .NE. 0) THEN

 PRINT*,'ROUTINE RETURN WITH ERROR CODE = ', IERR

 STOP

 END IF

 WRITE(*,*) 'in-place forward FFT of X:'

 CALL PRINT_REAL_AS_COMPLEX(N1/2+1, N2, 1, X, LDC, N2)

 WRITE(*,*)

* Compute out-of-place inverse linear FFT.

 CALL CFFTSM(1, N1, N2, SCALE, Z, LDZ, X, LDX, TRIGS, IFAC,

 $ SW, LW, IERR)

 IF (IERR .NE. 0) THEN

 PRINT*,'ROUTINE RETURN WITH ERROR CODE = ', IERR

 STOP

 END IF

 WRITE(*,*) 'out-of-place inverse FFT of Z:'

 DO I = 0, N1-1

 WRITE(*,'(2(F4.1,2X))') (X(I,J), J = 0, N2-1)

 END DO

 WRITE(*,*)

* Compute in-place inverse linear FFT.

 CALL CFFTSM(1, N1, N2, SCALE, Z, LDZ, Z, LDZ*2, TRIGS,

 $ IFAC, SW, 0, IERR)

 IF (IERR .NE. 0) THEN

 PRINT*,'ROUTINE RETURN WITH ERROR CODE = ', IERR

84 Oracle Developer Studio 12.6: Performance Library User's Guide • July 2017

Forward and Inverse FFT Routines

 STOP

 END IF

 WRITE(*,*) 'in-place inverse FFT of Z:'

 CALL PRINT_COMPLEX_AS_REAL(N1, N2, 1, Z, LDZ*2, N2)

 WRITE(*,*)

 END PROGRAM TESTSCM

 SUBROUTINE PRINT_COMPLEX_AS_REAL(N1, N2, N3, A, LD1, LD2)

 INTEGER N1, N2, N3, I, J, K

 REAL A(LD1, LD2, *)

 DO K = 1, N3

 DO I = 1, N1

 WRITE(*,'(5(F4.1,2X))') (A(I,J,K), J = 1, N2)

 END DO

 WRITE(*,*)

 END DO

 END

 SUBROUTINE PRINT_REAL_AS_COMPLEX(N1, N2, N3, A, LD1, LD2)

 INTEGER N1, N2, N3, I, J, K

 COMPLEX A(LD1, LD2, *)

 DO K = 1, N3

 DO I = 1, N1

 WRITE(*,'(5(A1, F4.1,A1,F4.1,A1,2X))') ('(',REAL(A(I,J,K)),

 $ ',',AIMAG(A(I,J,K)),')', J = 1, N2)

 END DO

 WRITE(*,*)

 END DO

 END

my_system% f95 -dalign testscm.f -xlibrary=sunperf

my_system% a.out

Linear complex-to-real and real-to-complex FFT of a sequence

X =

0.1 7.0

0.2 8.0

0.3 9.0

out-of-place forward FFT of X:

Z =

(0.6, 0.0) (24.0, 0.0)

(-0.2, 0.1) (-1.5, 0.9)

in-place forward FFT of X:

(0.6, 0.0) (24.0, 0.0)

(-0.2, 0.1) (-1.5, 0.9)

out-of-place inverse FFT of Z:

0.1 7.0

0.2 8.0

0.3 9.0

in-place inverse FFT of Z:

0.1 7.0

0.2 8.0

Chapter 7 • Using Oracle Developer Studio Performance Library Signal Processing Routines 85

Forward and Inverse FFT Routines

0.3 9.0

Example 7-1 Notes:

The forward FFT of X is actually:

 (0.6, 0.0) (24.0, 0.0)
Z = (-0.2, 0.1) (-1.5, 0.9)
 (-0.2, 0.1) (-1.5, 0.9)

Because of symmetry, Z(2) is the complex conjugate of Z(1), and therefore only the first two

 complex values are stored. For the in-place forward transform, SFFTCM is called
with real array X as the input and output. Because SFFTCM expects the output array to be of type
COMPLEX, the leading dimension of X as an output array must be as if X were complex. Since
the leading dimension of real array X is LDX = 2 × LDC, the leading dimension of X as a complex
output array must be LDC. Similarly, in the in-place inverse transform, CFFTSM is called with
complex array Z as the input and output. Because CFFTSM expects the output array to be of type
REAL, the leading dimension of Z as an output array must be as if Z were real. Since the leading
dimension of complex array Z is LDZ, the leading dimension of Z as a real output array must be
LDZ × 2.

The following example Example 11, “Linear Complex-to-Complex FFT,” on page 86
shows how to compute the linear complex-to-complex FFT of a set of sequences.

EXAMPLE 11 Linear Complex-to-Complex FFT

my_system% cat testccm.f

 PROGRAM TESTCCM

 IMPLICIT NONE

 INTEGER :: LDX1, LDY1, LW, IERR, I, J, K, LDZ1, NCPUS,

 $ USING_THREADS, IFAC(128)

 INTEGER, PARAMETER :: N1 = 3, N2 = 4, LDX1 = N1, LDZ1 = N1,

 $ LDY1 = N1+2

 REAL, PARAMETER :: ONE = 1.0, SCALE = ONE/N1

 COMPLEX :: Z(0:LDZ1-1,0:N2-1), X(0:LDX1-1,0:N2-1),

 $ Y(0:LDY1-1,0:N2-1)

 REAL :: TRIGS(2*N1)

 REAL, DIMENSION(:), ALLOCATABLE :: SW

* get number of threads

 NCPUS = USING_THREADS()

* workspace size

 LW = 2 * N1 * NCPUS

 WRITE(*,*)'Linear complex-to-complex FFT of one or more sequences'

86 Oracle Developer Studio 12.6: Performance Library User's Guide • July 2017

Forward and Inverse FFT Routines

 WRITE(*,*)

 ALLOCATE(SW(LW))

 X = RESHAPE(SOURCE =(/(.1,.2),(.3,.4),(.5,.6),(.7,.8),(.9,1.0),

 $ (1.1,1.2),(1.3,1.4),(1.5,1.6),(1.7,1.8),(1.9,2.0),(2.1,2.2),

 $ (1.2,2.0)/), SHAPE=(/LDX1,N2/))

 Z = X

 WRITE(*,*) 'X = '

 DO I = 0, N1-1

 WRITE(*,'(5(A1, F5.1,A1,F5.1,A1,2X))') ('(',REAL(X(I,J)),

 $ ',',AIMAG(X(I,J)),')', J = 0, N2-1)

 END DO

 WRITE(*,*)* intialize trig table and compute factors of N1

 CALL CFFTCM(0, N1, N2, SCALE, X, LDX1, Y, LDY1, TRIGS, IFAC,

 $ SW, LW, IERR)

 IF (IERR .NE. 0) THEN

 PRINT*,'ROUTINE RETURN WITH ERROR CODE = ', IERR

 STOP

 END IF

* Compute out-of-place forward linear FFT.

* Let FFT routine allocate memory.

 CALL CFFTCM(-1, N1, N2, ONE, X, LDX1, Y, LDY1, TRIGS, IFAC,

 $ SW, 0, IERR)

 IF (IERR .NE. 0) THEN

 PRINT*,'ROUTINE RETURN WITH ERROR CODE = ', IERR

 STOP

 END IF

* Compute in-place forward linear FFT. LDZ1 must equal LDX1

 CALL CFFTCM(-1, N1, N2, ONE, Z, LDX1, Z, LDZ1, TRIGS,

 $ IFAC, SW, 0, IERR)

 WRITE(*,*) 'in-place forward FFT of X:'

 DO I = 0, N1-1

 WRITE(*,'(5(A1, F5.1,A1,F5.1,A1,2X))') ('(',REAL(Z(I,J)),

 $ ',',AIMAG(Z(I,J)),')', J = 0, N2-1)

 END DO

 WRITE(*,*)

 WRITE(*,*) 'out-of-place forward FFT of X:'

 WRITE(*,*) 'Y ='

 DO I = 0, N1-1

 WRITE(*,'(5(A1, F5.1,A1,F5.1,A1,2X))') ('(',REAL(Y(I,J)),

 $ ',',AIMAG(Y(I,J)),')', J = 0, N2-1)

 END DO

 WRITE(*,*)

* Compute in-place inverse linear FFT.

 CALL CFFTCM(1, N1, N2, SCALE, Y, LDY1, Y, LDY1, TRIGS, IFAC,

 $ SW, LW, IERR)

 IF (IERR .NE. 0) THEN

 PRINT*,'ROUTINE RETURN WITH ERROR CODE = ', IERR

 STOP

Chapter 7 • Using Oracle Developer Studio Performance Library Signal Processing Routines 87

Forward and Inverse FFT Routines

 END IF

 WRITE(*,*) 'in-place inverse FFT of Y:'

 WRITE(*,*) 'Y ='

 DO I = 0, N1-1

 WRITE(*,'(5(A1, F5.1,A1,F5.1,A1,2X))') ('(',REAL(Y(I,J)),

 $ ',',AIMAG(Y(I,J)),')', J = 0, N2-1)

 END DO

 DEALLOCATE(SW)

 END PROGRAM TESTCCM

my_system% f95 -dalign testccm.f -library=sunperf

my_system% a.out

Linear complex-to-complex FFT of one or more sequences

X =

(0.1, 0.2) (0.7, 0.8) (1.3, 1.4) (1.9, 2.0)

(0.3, 0.4) (0.9, 1.0) (1.5, 1.6) (2.1, 2.2)

(0.5, 0.6) (1.1, 1.2) (1.7, 1.8) (1.2, 2.0)

in-place forward FFT of X:

(0.9, 1.2) (2.7, 3.0) (4.5, 4.8) (5.2, 6.2)

(-0.5, -0.1) (-0.5, -0.1) (-0.5, -0.1) (0.4, -0.9)

(-0.1, -0.5) (-0.1, -0.5) (-0.1, -0.5) (0.1, 0.7)

out-of-place forward FFT of X:

Y =

(0.9, 1.2) (2.7, 3.0) (4.5, 4.8) (5.2, 6.2)

(-0.5, -0.1) (-0.5, -0.1) (-0.5, -0.1) (0.4, -0.9)

(-0.1, -0.5) (-0.1, -0.5) (-0.1, -0.5) (0.1, 0.7)

in-place inverse FFT of Y:

Y =

(0.1, 0.2) (0.7, 0.8) (1.3, 1.4) (1.9, 2.0)

(0.3, 0.4) (0.9, 1.0) (1.5, 1.6) (2.1, 2.2)

(0.5, 0.6) (1.1, 1.2) (1.7, 1.8) (1.2, 2.0)

Two-Dimensional FFT Routines

For the linear FFT routines, when the input is a two-dimensional array, the FFT is computed
along one dimension only, namely, along the columns of the array. The two-dimensional FFT
routines take a two-dimensional array as input and compute the FFT along both the column
and row dimensions. Specifically, the forward two-dimensional FFT routines compute the
following:

The inverse two-dimensional FFT routines compute the following:

88 Oracle Developer Studio 12.6: Performance Library User's Guide • July 2017

Forward and Inverse FFT Routines

For both the forward and inverse two-dimensional transforms, a complex-to-complex transform
where the input problem is N1 × N2 will yield a complex array that is also N1 × N2.

When computing a real-to-complex two-dimensional transform (forward FFT), if the real
input array is of dimensions N1 × N2, the result will be a complex array of dimensions

.

Conversely, when computing a complex-to-real transform (inverse FFT) of dimensions N1 ×

N2, an complex array is required as input. As with the real-to-complex and

complex-to-real linear FFT, because of conjugate symmetry, only the first complex data
points need to be stored in the input or output array along the first dimension. The complex

subarray can be obtained from as follows:

To compute a two-dimensional transform, an FFT routine must be called twice. One call
initializes the routine and the second call actually computes the transform. The initialization
includes computing the factors of N1 and N2 and the trigonometric weights associated with
those factors. In subsequent forward or inverse transforms, initialization is not necessary as long
as N1 and N2 remain unchanged.

IMPORTANT: Upon returning from a two-dimensional FFT routine, Y(0 : N - 1, :) contains
the transform results and the original contents of Y(N : LDY-1, :) is overwritten. Here, N = N1 in

the complex-to-complex and complex-to-real transforms and N = in the real-to-complex
transform.

Chapter 7 • Using Oracle Developer Studio Performance Library Signal Processing Routines 89

Forward and Inverse FFT Routines

The following table Table 13, “Single Precision Two-Dimensional FFT Routines,” on page
90 lists the single precision two-dimensional FFT routines and their purposes. The same
information applies to the corresponding double precision routines except that their data types
are double precision and double complex. See Table 13, “Single Precision Two-Dimensional
FFT Routines,” on page 90 for the mapping. Refer to the individual man pages for a
complete description of the routines and their arguments.

TABLE 13 Single Precision Two-Dimensional FFT Routines

Name
Purpose Size, Type of Input Size, Type of

Output
Leading Dimension Requirements

SFFTC2 OPT = 0 initialization

OPT = -1 real-to-complex forward
two-dimensional FFT

N1 × N2, Real

,

Complex

LDX1 = 2 × LDY1

LDY1 ≥

LDX1 ≥ N1

LDY1 ≥

CFFTS2 OPT = 0 initialization

OPT = 1 complex-to-real inverse
two-dimensional FFT

,

Complex

N1 × N2, Real
LDX1 ≥

LDY1=2 × LDX1

LDX1 ≥

LDY1≥ 2 × LDX1

LDY1 is even

CFFTC2 OPT = 0 initialization

OPT = -1 complex-to-complex
forward two-dimensional FFT

N1 × N2, Complex N1 × N2, Complex LDX1 ≥ N1

LDY1 = LDX1

LDX1 ≥ N1

LDY1 ≥ N1

OPT = 1 complex-to-complex
inverse two-dimensional FFT

N1 × N2, Complex N1 × N2, Complex LDX1 ≥ N1

LDY1 = LDX1

LDX1 ≥ N1

LDY1 = LDX1

Note -Note the following about the table Table 13, “Single Precision Two-Dimensional FFT
Routines,” on page 90

■ LDX1 is leading dimension of input array.
■ LDY1 is leading dimension of output array.
■ N1 is first dimension of the FFT problem.
■ N2 is second dimension of the FFT problem.
■ When calling routines with OPT = 0 to initialize the routine, the only error checking that is

done is to determine if N1, N2 < 0.

90 Oracle Developer Studio 12.6: Performance Library User's Guide • July 2017

Forward and Inverse FFT Routines

EXAMPLE 12 Two-Dimensional Real-to-Complex FFT and Complex-to-Real FFT of a Two-
Dimensional Array

The following example shows how to compute a two-dimensional real-to-complex FFT and
complex-to-real FFT of a two-dimensional array.

my_system% cat testsc2.f

 PROGRAM TESTSC2

 IMPLICIT NONE

 INTEGER, PARAMETER :: N1 = 3, N2 = 4, LDX1 = N1,

 $ LDY1 = N1/2+1, LDR1 = 2*(N1/2+1)

 INTEGER LW, IERR, I, J, K, IFAC(128*2)

 REAL, PARAMETER :: ONE = 1.0, SCALE = ONE/(N1*N2)

 REAL :: V(LDR1,N2), X(LDX1, N2), Z(LDR1,N2),

 $ SW(2*N2), TRIGS(2*(N1+N2))

 COMPLEX :: Y(LDY1,N2)

 WRITE(*,*) $'Two-dimensional complex-to-real and real-to-complex FFT'

 WRITE(*,*)

 X = RESHAPE(SOURCE = (/.1, .2, .3, .4, .5, .6, .7, .8,

 $ 2.0,1.0, 1.1, 1.2/), SHAPE=(/LDX1,N2/))

 DO I = 1, N2

 V(1:N1,I) = X(1:N1,I)

 END DO

 WRITE(*,*) 'X ='

 DO I = 1, N1

 WRITE(*,'(5(F5.1,2X))') (X(I,J), J = 1, N2)

 END DO

 WRITE(*,*)

* Initialize trig table and get factors of N1, N2

 CALL SFFTC2(0,N1,N2,ONE,X,LDX1,Y,LDY1,TRIGS,

 $ IFAC,SW,0,IERR)

* Compute 2-dimensional out-of-place forward FFT.

* Let FFT routine allocate memory.

* cannot do an in-place transform in X because LDX1 < 2*(N1/2+1)

 CALL SFFTC2(-1,N1,N2,ONE,X,LDX1,Y,LDY1,TRIGS,

 $ IFAC,SW,0,IERR)

 WRITE(*,*) 'out-of-place forward FFT of X:'

 WRITE(*,*)'Y ='

 DO I = 1, N1/2+1

 WRITE(*,'(5(A1, F5.1,A1,F5.1,A1,2X))')('(',REAL(Y(I,J)),

 $ ',',AIMAG(Y(I,J)),')', J = 1, N2)

 END DO

 WRITE(*,*)

* Compute 2-dimensional in-place forward FFT.

* Use workspace already allocated.

* V which is real array containing input data is also

* used to store complex results; as a complex array, its first

* leading dimension is LDR1/2.

Chapter 7 • Using Oracle Developer Studio Performance Library Signal Processing Routines 91

Forward and Inverse FFT Routines

 CALL SFFTC2(-1,N1,N2,ONE,V,LDR1,V,LDR1/2,TRIGS,

 $ IFAC,SW,LW,IERR)

 WRITE(*,*) 'in-place forward FFT of X:'

 CALL PRINT_REAL_AS_COMPLEX(N1/2+1, N2, 1, V, LDR1/2, N2)

* Compute 2-dimensional out-of-place inverse FFT.

* Leading dimension of Z must be even

 CALL CFFTS2(1,N1,N2,SCALE,Y,LDY1,Z,LDR1,TRIGS,

 $ IFAC,SW,0,IERR)

 WRITE(*,*) 'out-of-place inverse FFT of Y:'

 DO I = 1, N1

 WRITE(*,'(5(F5.1,2X))') (Z(I,J), J = 1, N2)

 END DO

 WRITE(*,*)

* Compute 2-dimensional in-place inverse FFT.

* Y which is complex array containing input data is also

* used to store real results; as a real array, its first

* leading dimension is 2*LDY1.

 CALL CFFTS2(1,N1,N2,SCALE,Y,LDY1,Y,2*LDY1,

 $ TRIGS,IFAC,SW,0,IERR)

 WRITE(*,*) 'in-place inverse FFT of Y:'

 CALL PRINT_COMPLEX_AS_REAL(N1, N2, 1, Y, 2*LDY1, N2)

 END PROGRAM TESTSC2

 SUBROUTINE PRINT_COMPLEX_AS_REAL(N1, N2, N3, A, LD1, LD2)

 INTEGER N1, N2, N3, I, J, K

 REAL A(LD1, LD2, *)

 DO K = 1, N3

 DO I = 1, N1

 WRITE(*,'(5(F5.1,2X))') (A(I,J,K), J = 1, N2)

 END DO

 WRITE(*,*)

 END DO

 END

 SUBROUTINE PRINT_REAL_AS_COMPLEX(N1, N2, N3, A, LD1, LD2)

 INTEGER N1, N2, N3, I, J, K

 COMPLEX A(LD1, LD2, *)

 DO K = 1, N3

 DO I = 1, N1

 WRITE(*,'(5(A1, F5.1,A1,F5.1,A1,2X))') ('(',REAL(A(I,J,K)),

 $ ',',AIMAG(A(I,J,K)),')', J = 1, N2)

 END DO

 WRITE(*,*)

 END DO

 END

my_system% f95 -dalign testsc2.f -library=sunperf

my_system% a.out

Two-dimensional complex-to-real and real-to-complex FFT

x =

0.1 0.4 0.7 1.0

92 Oracle Developer Studio 12.6: Performance Library User's Guide • July 2017

Forward and Inverse FFT Routines

0.2 0.5 0.8 1.1

0.3 0.6 2.0 1.2

out-of-place forward FFT of X:

Y =

(8.9, 0.0) (-2.9, 1.8) (-0.7, 0.0) (-2.9, -1.8)

(-1.2, 1.3) (0.5, -1.0) (-0.5, 1.0) (0.5, -1.0)

in-place forward FFT of X:

(8.9, 0.0) (-2.9, 1.8) (-0.7, 0.0) (-2.9, -1.8)

(-1.2, 1.3) (0.5, -1.0) (-0.5, 1.0) (0.5, -1.0)

out-of-place inverse FFT of Y:

0.1 0.4 0.7 1.0

0.2 0.5 0.8 1.1

0.3 0.6 2.0 1.2

in-place inverse FFT of Y:

0.1 0.4 0.7 1.0

0.2 0.5 0.8 1.1

0.3 0.6 2.0 1.2

Three-Dimensional FFT Routines

Oracle Developer Studio Performance Library includes routines that compute three-dimensional
FFT. In this case, the FFT is computed along all three dimensions of a three-dimensional array.
The forward FFT computes

,

and the inverse FFT computes

Chapter 7 • Using Oracle Developer Studio Performance Library Signal Processing Routines 93

Forward and Inverse FFT Routines

In the complex-to-complex transform, if the input problem is N1 × N2 × N3, a three-dimensional
transform will yield a complex array that is also N1 × N2 × N3. When computing a real-to-
complex three-dimensional transform, if the real input array is of dimensions N1 × N2 × N3,

the result will be a complex array of dimensions . Conversely, when

computing a complex-to-real FFT of dimensions N1 × N2 × N3, an
complex array is required as input. As with the real-to-complex and complex-to-real linear FFT,

because of conjugate symmetry, only the first complex data points need to be stored

along the first dimension. The complex subarray can be obtained from

 as follows:

To compute a three-dimensional transform, an FFT routine must be called twice: Once
to initialize and once more to actually compute the transform. The initialization includes
computing the factors of N1, N2, and N3 and the trigonometric weights associated with those
factors. In subsequent forward or inverse transforms, initialization is not necessary as long as
N1, N2, and N3 remain unchanged.

IMPORTANT: Upon returning from a three-dimensional FFT routine, Y(0 : N - 1, :, :) contains
the transform results and the original contents of Y(N:LDY1-1, :, :) is overwritten. Here, N=N1 in

the complex-to-complex and complex-to-real transforms and N= in the real-to-complex
transform.

Table 14, “Single Precision Three-Dimensional FFT Routines,” on page 95 lists the single
precision three-dimensional FFT routines and their purposes. The same information applies to
the corresponding double precision routines except that their data types are double precision
and double complex. See Table 14, “Single Precision Three-Dimensional FFT Routines,” on
page 95 for the mapping. See the individual man pages for a complete description of the
routines and their arguments.

94 Oracle Developer Studio 12.6: Performance Library User's Guide • July 2017

Forward and Inverse FFT Routines

TABLE 14 Single Precision Three-Dimensional FFT Routines

Name Purpose Size, Type of Input Size, Type of Output Leading Dimension Requirements

SFFTC3 OPT = 0 initialization

OPT = -1 real-to-
complex forward
three-dimensional FFT

N1 × N2 × N3, Real

,Complex

LDX1=2 × LDY1

LDX2 ≥ N2

LDY1 ≥

LDY2 = LDX2

LDX1 ≥ N1

LDX2 ≥ N2

LDY1 ≥

LDY2 ≥ N2

CFFTS3 OPT = 0 initialization

OPT = 1 complex-to-
real inverse three-
dimensional FFT ,

Complex

N1 × N2 × N3, Real
LDX1 ≥

LDX2 ≥ N2

LDY1=2 × LDX1

LDY2=LDX2

LDX1 ≥

LDX2 ≥ N2

LDY1 ≥ 2 × LDX1

LDY1 is even

LDY2 ≥ N2

CFFTC3 OPT = 0 initialization

OPT = -1 complex-
to-complex forward
three-dimensional FFT

N1 × N2 × N3, Complex N1 × N2 × N3, Complex LDX1 ≥ N1

LDX2 ≥ N2

LDY1=LDX1

LDY2=LDX2

LDX1 ≥ N1

LDX2 ≥ N2

LDY1 ≥ N1

LDY2 ≥ N2

OPT = 1 complex-to-
complex inverse three-
dimensional FFT

N1 × N2 × N3, Complex N1 × N2 × N3, Complex LDX1 ≥ N1

LDX2 ≥ N2

LDY1=LDX1

LDY2=LDX2

LDX1 ≥ N1

LDX2 ≥ N2

LDY1 ≥ N1

LDY2 ≥ N2

Chapter 7 • Using Oracle Developer Studio Performance Library Signal Processing Routines 95

Forward and Inverse FFT Routines

Note - Note the following about the table Table 14, “Single Precision Three-Dimensional FFT
Routines,” on page 95:

■ LDX1 is first leading dimension of input array.
■ LDX2 is the second leading dimension of the input array.
■ LDY1 is the first leading dimension of the output array.
■ LDY2 is the second leading dimension of the output array.
■ N1 is the first dimension of the FFT problem.
■ N2 is the second dimension of the FFT problem.
■ N3 is the third dimension of the FFT problem.
■ When calling routines with OPT = 0 to initialize the routine, the only error checking that is

done is to determine if N1, N2, N3 < 0.

Example 7-4 shows how to compute the three-dimensional real-to-complex FFT and complex-
to-real FFT of a three-dimensional array.

EXAMPLE 13 Three-Dimensional Real-to-Complex FFT and Complex-to-Real FFT of a Three-
Dimensional Array

my_system% cat testsc3.f

 PROGRAM TESTSC3

 IMPLICIT NONE

 INTEGER LW, NCPUS, IERR, I, J, K, USING_THREADS, IFAC(128*3)

 INTEGER, PARAMETER :: N1 = 3, N2 = 4, N3 = 2, LDX1 = N1,

 $ LDX2 = N2, LDY1 = N1/2+1, LDY2 = N2,

 $ LDR1 = 2*(N1/2+1), LDR2 = N2

 REAL, PARAMETER :: ONE = 1.0, SCALE = ONE/(N1*N2*N3)

 REAL :: V(LDR1,LDR2,N3), X(LDX1,LDX2,N3), Z(LDR1,LDR2,N3),

 $ TRIGS(2*(N1+N2+N3))

 REAL, DIMENSION(:), ALLOCATABLE :: SW

 COMPLEX :: Y(LDY1,LDY2,N3)

 WRITE(*,*)

 $'Three-dimensional complex-to-real and real-to-complex FFT'

 WRITE(*,*)

* get number of threads

 NCPUS = USING_THREADS()

* compute workspace size required

 LW = (MAX(MAX(N1,2*N2),2*N3) + 16*N3) * NCPUS

 ALLOCATE(SW(LW))

 X = RESHAPE(SOURCE =

 $ (/ .1, .2, .3, .4, .5, .6, .7, .8, .9,1.0,1.1,1.2,

 $ 4.1,1.2,2.3,3.4,6.5,1.6,2.7,4.8,7.9,1.0,3.1,2.2/),

 $ SHAPE=(/LDX1,LDX2,N3/))

96 Oracle Developer Studio 12.6: Performance Library User's Guide • July 2017

Forward and Inverse FFT Routines

 V = RESHAPE(SOURCE =

 $ (/.1,.2,.3,0.,.4,.5,.6,0.,.7,.8,.9,0.,1.0,1.1,1.2,0.,

 $ 4.1,1.2,2.3,0.,3.4,6.5,1.6,0.,2.7,4.8,7.9,0.,

 $ 1.0,3.1,2.2,0./), SHAPE=(/LDR1,LDR2,N3/))

 WRITE(*,*) 'X ='

 DO K = 1, N3

 DO I = 1, N1

 WRITE(*,'(5(F5.1,2X))') (X(I,J,K), J = 1, N2)

 END DO

 WRITE(*,*)

 END DO

* Initialize trig table and get factors of N1, N2 and N3

 CALL SFFTC3(0,N1,N2,N3,ONE,X,LDX1,LDX2,Y,LDY1,LDY2,TRIGS,

 $ IFAC,SW,0,IERR)

* Compute 3-dimensional out-of-place forward FFT.

* Let FFT routine allocate memory.

* cannot do an in-place transform because LDX1 < 2*(N1/2+1)

 CALL SFFTC3(-1,N1,N2,N3,ONE,X,LDX1,LDX2,Y,LDY1,LDY2,TRIGS,

 $ IFAC,SW,0,IERR)

 WRITE(*,*) 'out-of-place forward FFT of X:'

 WRITE(*,*)'Y ='

 DO K = 1, N3

 DO I = 1, N1/2+1

 WRITE(*,'(5(A1, F5.1,A1,F5.1,A1,2X))')('(',REAL(Y(I,J,K)),

 $ ',',AIMAG(Y(I,J,K)),')', J = 1, N2)

 END DO

 WRITE(*,*)

 END DO

* Compute 3-dimensional in-place forward FFT.

* Use workspace already allocated.

* V which is real array containing input data is also

* used to store complex results; as a complex array, its first

* leading dimension is LDR1/2.

 CALL SFFTC3(-1,N1,N2,N3,ONE,V,LDR1,LDR2,V,LDR1/2,LDR2,TRIGS,

 $ IFAC,SW,LW,IERR)

 WRITE(*,*) 'in-place forward FFT of X:'

 CALL PRINT_REAL_AS_COMPLEX(N1/2+1, N2, N3, V, LDR1/2, LDR2)

* Compute 3-dimensional out-of-place inverse FFT.

* First leading dimension of Z (LDR1) must be even

 CALL CFFTS3(1,N1,N2,N3,SCALE,Y,LDY1,LDY2,Z,LDR1,LDR2,TRIGS,

 $ IFAC,SW,0,IERR)

 WRITE(*,*) 'out-of-place inverse FFT of Y:'

 DO K = 1, N3

 DO I = 1, N1

 WRITE(*,'(5(F5.1,2X))') (Z(I,J,K), J = 1, N2)

 END DO

 WRITE(*,*)

 END DO

Chapter 7 • Using Oracle Developer Studio Performance Library Signal Processing Routines 97

Forward and Inverse FFT Routines

* Compute 3-dimensional in-place inverse FFT.

* Y which is complex array containing input data is also

* used to store real results; as a real array, its first

* leading dimension is 2*LDY1.

 CALL CFFTS3(1,N1,N2,N3,SCALE,Y,LDY1,LDY2,Y,2*LDY1,LDY2,

 $ TRIGS,IFAC,SW,LW,IERR)

 WRITE(*,*) 'in-place inverse FFT of Y:'

 CALL PRINT_COMPLEX_AS_REAL(N1, N2, N3, Y, 2*LDY1, LDY2)

 DEALLOCATE(SW)

 END PROGRAM TESTSC3

 SUBROUTINE PRINT_COMPLEX_AS_REAL(N1, N2, N3, A, LD1, LD2)

 INTEGER N1, N2, N3, I, J, K

 REAL A(LD1, LD2, *)

 DO K = 1, N3

 DO I = 1, N1

 WRITE(*,'(5(F5.1,2X))') (A(I,J,K), J = 1, N2)

 END DO

 WRITE(*,*)

 END DO

 END

 SUBROUTINE PRINT_REAL_AS_COMPLEX(N1, N2, N3, A, LD1, LD2)

 INTEGER N1, N2, N3, I, J, K

 COMPLEX A(LD1, LD2), *)

 DO K = 1, N3

 DO I = 1, N1

 WRITE(*,'(5(A1, F5.1,A1,F5.1,A1,2X))') ('(',REAL(A(I,J,K)),

 $ ',',AIMAG(A(I,J,K)),')', J = 1, N2)

 END DO

 WRITE(*,*)

 END DO

 END

my_system% f95 -dalign testsc3.f -xlibrary=sunperf

my_system% a.out

Three-dimensional complex-to-real and real-to-complex FFT

X =

0.1 0.4 0.7 1.0

0.2 0.5 0.8 1.1

0.3 0.6 0.9 1.2

4.1 3.4 2.7 1.0

1.2 6.5 4.8 3.1

2.3 1.6 7.9 2.2

out-of-place forward FFT of X:

Y =

(48.6, 0.0) (-9.6, -3.4) (3.4, 0.0) (-9.6, 3.4)

(-4.2, -1.0) (2.5, -2.7) (1.0, 8.7) (9.5, -0.7)

(-33.0, 0.0) (6.0, 7.0) (-7.0, 0.0) (6.0, -7.0)

(3.0, 1.7) (-2.5, 2.7) (-1.0, -8.7) (-9.5, 0.7)

in-place forward FFT of X:

98 Oracle Developer Studio 12.6: Performance Library User's Guide • July 2017

Forward and Inverse FFT Routines

(48.6, 0.0) (-9.6, -3.4) (3.4, 0.0) (-9.6, 3.4)

(-4.2, -1.0) (2.5, -2.7) (1.0, 8.7) (9.5, -0.7)

(-33.0, 0.0) (6.0, 7.0) (-7.0, 0.0) (6.0, -7.0)

(3.0, 1.7) (-2.5, 2.7) (-1.0, -8.7) (-9.5, 0.7)

out-of-place inverse FFT of Y:

0.1 0.4 0.7 1.0

0.2 0.5 0.8 1.1

0.3 0.6 0.9 1.2

4.1 3.4 2.7 1.0

1.2 6.5 4.8 3.1

2.3 1.6 7.9 2.2

in-place inverse FFT of Y:

0.1 0.4 0.7 1.0

0.2 0.5 0.8 1.1

0.3 0.6 0.9 1.2

4.1 3.4 2.7 1.0

1.2 6.5 4.8 3.1

2.3 1.6 7.9 2.2

Comments

When doing an in-place real-to-complex or complex-to-real transform, care must be taken to
ensure the size of the input array is large enough to hold the results. For example, if the input
is of type complex stored in a complex array with first leading dimension N, then to use the
same array to store the real results, its first leading dimension as a real output array would be
2 × N. Conversely, if the input is of type real stored in a real array with first leading dimension
2 × N, then to use the same array to store the complex results, its first leading dimension as a
complex output array would be N. Leading dimension requirements for in-place and out-of-
place transforms can be found in Table 12, “Single Precision Linear FFT Routines,” on page
81, Table 13, “Single Precision Two-Dimensional FFT Routines,” on page 90, and
Table 14, “Single Precision Three-Dimensional FFT Routines,” on page 95.

In the linear and multi-dimensional FFT, the transform between real and complex data through
a real-to-complex or complex-to-real transform can be confusing because N1 real data points

correspond to complex data points. N1 real data points do map to N1 complex data

points, but because there is conjugate symmetry in the complex data, only data points
need to be stored as input in the complex-to-real transform and as output in the real-to-complex
transform. In the multi-dimensional FFT, symmetry exists along all the dimensions, not just in
the first. However, the two-dimensional and three-dimensional FFT routines store the complex
data of the second and third dimensions in their entirety.

Chapter 7 • Using Oracle Developer Studio Performance Library Signal Processing Routines 99

Forward and Inverse FFT Routines

While the FFT routines accept any size of N1, N2 and N3, FFTs can be computed most
efficiently when values of N1, N2 and N3 can be decomposed into relatively small primes. A
real-to-complex or a complex-to-real transform can be computed most efficiently when

,

and a complex-to-complex transform can be computed most efficiently when

,

where p, q, r, s, t, u, and v are integers and p, q, r, s, t, u, v ≥ 0.

The function xFFTOPT can be used to determine the optimal sequence length, as shown in
Example 14, “ RFFTOPT Example,” on page 100. Given an input sequence length, the
function returns an optimal length that is closest in size to the original length.

EXAMPLE 14 RFFTOPT Example

my_system% cat fft_ex01.f

 PROGRAM TEST

 INTEGER N, N1, N2, N3, RFFTOPT

C

 N = 1024

 N1 = 1019

 N2 = 71

 N3 = 49

C

 PRINT *, 'N Original N Suggested'

 PRINT '(I5, I12)', (N, RFFTOPT(N))

 PRINT '(I5, I12', (N1, RFFTOPT(N1))

 PRINT '(I5, I12)', (N2, RFFTOPT(N2))

 PRINT '(I5, I12)', (N3, RFFTOPT(N3))

 END

my_system% f95 -dalign fft_ex01.f -library=sunperf

my_system% a.out

 N Original N Suggested

 1024 1024

 1019 1024

 71 72

 49 49

100 Oracle Developer Studio 12.6: Performance Library User's Guide • July 2017

Cosine and Sine Transforms

Cosine and Sine Transforms

Input to the DFT that possess special symmetries occur in various applications. A transform
that exploits symmetry usually saves in storage and computational count, such as with the real-
to-complex and complex-to-real FFT transforms. The Performance Library cosine and sine
transforms are special cases of FFT routines that take advantage of the symmetry properties
found in even and odd functions.

Note - Oracle Developer Studio Performance Library sine and cosine transform routines are
based on the routines contained in FFTPACK (http://www.netlib.org/fftpack/). Routines
with a V prefix are vectorized routines that are based on the routines contained in VFFTPACK
(http://www.netlib.org/vfftpack/).

Fast Cosine and Sine Transform Routines

The following tables list the Oracle Developer Studio Performance Library fast cosine and sine
transforms. Names of double precision routines are in square brackets. Routines whose name
begins with 'V' can compute the transform of one or more sequences simultaneously. Those
whose name ends with 'I' are initialization routines.

■ Table 15, “Fast Cosine Transforms for Even Sequences Routines and Their Arguments,” on
page 101

■ Table 16, “Fast Cosine Transforms for Quarter-Wave Even Sequences Routines and Their
Arguments,” on page 102

■ Table 17, “Fast Sine Transforms for Odd Sequences Routines and Their Arguments,” on
page 102

■ Table 18, “Fast Sine Transforms for Quarter-Wave Odd Sequences Routines and Their
Arguments,” on page 102

TABLE 15 Fast Cosine Transforms for Even Sequences Routines and Their Arguments

Routine Name
Arguments

COST [DCOST] (LEN+1, X, WORK)

COSTI [DCOSTI] (LEN+1, WORK)

VCOST [VDCOST] (M, LEN+1, X, WORK, LD, TABLE)

VCOSTI [VDCOSTI] (LEN+1, TABLE)

Chapter 7 • Using Oracle Developer Studio Performance Library Signal Processing Routines 101

http://www.netlib.org/fftpack/
http://www.netlib.org/vfftpack/

Cosine and Sine Transforms

TABLE 16 Fast Cosine Transforms for Quarter-Wave Even Sequences Routines and Their
Arguments

Routine Name
Arguments

COSQF [DCOSQF] (LEN, X, WORK)

COSQB [DCOSQB] (LEN, X, WORK)

COSQI [DCOSQI] (LEN, WORK)

VCOSQF [VDCOSQF] (M, LEN, X, WORK, LD, TABLE)

VCOSQB [VDCOSQB] (M, LEN, X, WORK, LD, TABLE)

VCOSQI [VDCOSQI] (LEN, TABLE)

TABLE 17 Fast Sine Transforms for Odd Sequences Routines and Their Arguments

Routine Name
Arguments

SINT [DSINT] (LEN-1, X, WORK)

SINTI [DSINTI] (LEN-1, WORK)

VSINT [VDSINT] (M, LEN-1, X, WORK, LD, TABLE)

VSINTI [VDSINTI] (LEN-1, TABLE)

TABLE 18 Fast Sine Transforms for Quarter-Wave Odd Sequences Routines and Their Arguments

Routine Name
Arguments

SINQF [DSINQF] (LEN, X, WORK)

SINQB [DSINQB] (LEN, X, WORK)

SINQI [DSINQI] (LEN, WORK)

VSINQF [VDSINQF] (M, LEN, X, WORK, LD, TABLE)

VSINQB [VDSINQB] (M, LEN, X, WORK, LD, TABLE)

VSINQI [VDSINQI] (LEN, TABLE) Notes:

102 Oracle Developer Studio 12.6: Performance Library User's Guide • July 2017

Cosine and Sine Transforms

Note - Note the following information about the previous tables:

■ M: Number of sequences to be transformed.
■ LEN, LEN-1, LEN+1: Length of the input sequence or sequences.
■ X: A real array which contains the sequence or sequences to be transformed. On output, the

real transform results are stored in X.
■ TABLE: Array of constants particular to a transform size that is required by the transform

routine. The constants are computed by the initialization routine.
■ WORK: Workspace required by the transform routine. In routines that operate on a single

sequence, WORK also contains constants computed by the initialization routine.

Fast Sine Transforms
Another type of symmetry that is commonly encountered is the odd symmetry where x(n)
= -x(-n) for n = -N+1, …, 0, …, N. As in the case of the fast cosine transform, the fast sine
transform (FST) takes advantage of the odd symmetry to save memory and computation. For
a real odd sequence x, symmetry implies that x(0) = -x(0) = 0. Therefore, if x is of length 2N
then only N = 1 values of x are required to compute the FST. Routine SINT computes the FST
of a single real odd sequence while VSINT computes the FST of one or more sequences. Before
calling [V]SINT, [V]SINTI must be called to compute trigonometric constants and factors
associated with input length N-1. The FST is its own inverse transform. Calling VSINT twice
will result in the original N -1 data points. Calling SINT twice will result in the original N-1 data
points multiplied by 2N.

An odd sequence with symmetry such that x(n) = -x(-n - 1), where -N+1, …, 0, …, N is said
to have quarter-wave odd symmetry. SINQF and SINQB compute the FST and its inverse,
respectively, of a single real quarter-wave odd sequence while VSINQF and VSINQB operate on
one or more sequences. SINQB is unnormalized, so using the results of SINQF as input in SINQB
produces the original sequence scaled by a factor of 4N. However, VSINQB is normalized, so a
call to VSINQF followed by a call to VSINQB will produce the original sequence. An FST of a real
sequence of length 2N that has quarter-wave odd symmetry requires N input data points and
produces an N-point resulting sequence. Initialization is required before calling the transform
routines by calling [V]SINQI.

Fast Cosine Transforms
A special form of the FFT that operates on real even sequences is the fast cosine transform
(FCT). A real sequence x is said to have even symmetry if x(n) = x(-n) where n = -N + 1, …,

Chapter 7 • Using Oracle Developer Studio Performance Library Signal Processing Routines 103

Cosine and Sine Transforms

0, …, N. An FCT of a sequence of length 2N requires N + 1 input data points and produces a
sequence of size N + 1. Routine COST computes the FCT of a single real even sequence while
VCOST computes the FCT of one or more sequences. Before calling [V]COST, [V]COSTI must
be called to compute trigonometric constants and factors associated with input length N + 1.
The FCT is its own inverse transform. Calling VCOST twice will result in the original N +1 data
points. Calling COST twice will result in the original N +1 data points multiplied by 2N.

An even sequence x with symmetry such that x(n) = x(-n - 1) where n = ‐N + 1, … , 0, …,
N is said to have quarter-wave even symmetry. COSQF and COSQB compute the FCT and its
inverse, respectively, of a single real quarter-wave even sequence. VCOSQF and VCOSQB operate

on one or more sequences. The results of [V]COSQB are unnormalized, and if scaled by the
original sequences are obtained. An FCT of a real sequence of length 2N that has quarter-
wave even symmetry requires N input data points and produces an N-point resulting sequence.
Initialization is required before calling the transform routines by calling [V]COSQI.

Discrete Fast Cosine and Sine Transforms and
Their Inverse

Oracle Developer Studio Performance Library routines use the equations in the following
sections to compute the fast cosine and sine transforms and inverse transforms.

[D]COST: Forward and Inverse Fast Cosine Transform (FCT) of
a Sequence

The forward and inverse FCT of a sequence is computed as:

[D]COST Notes:

■ N + 1 values are needed to compute the FCT of an N-point sequence.
■ [D]COST also computes the inverse transform. When [D]COST is called twice, the result will

be the original sequence scaled by

104 Oracle Developer Studio 12.6: Performance Library User's Guide • July 2017

Cosine and Sine Transforms

V[D]COST: Forward and Inverse Fast Cosine Transforms of
Multiple Sequences (VFCT)

The forward and inverse FCTs of multiple sequences are computed as:

For i = 0, M - 1

.

V[D]COST Notes

■ M × (N+1) values are needed to compute the VFCT of M N-point sequences.
■ The input and output sequences are stored row-wise.
■ V[D]COST is normalized and is its own inverse. When V[D]COST is called twice, the result

will be the original data.

[D]COSQF: Forward FCT of a Quarter-Wave Even Sequence

The forward FCT of a quarter-wave even sequence is computed as:

N values are needed to compute the forward FCT of an N-point quarter-wave even sequence.

[D]COSQB: Inverse FCT of a Quarter-Wave Even Sequence

The inverse FCT of a quarter-wave even sequence is computed as

.

Calling the forward and inverse routines will result in the original input scaled by .

Chapter 7 • Using Oracle Developer Studio Performance Library Signal Processing Routines 105

Cosine and Sine Transforms

V[D]COSQF: Forward FCT of One or More Quarter-Wave Even
Sequences

The forward FCT of one or more quarter-wave even sequences is computed as

For i = 0, M - 1

V[D]COSQF Notes:

■ The input and output sequences are stored row-wise.
■ The transform is normalized so that if the inverse routine V[D]COSQB is called immediately

after calling V[D]COSQF, the original data is obtained.

V[D]COSQB: Inverse FCT of One or More Quarter-Wave Even
Sequences

The inverse FCT of one or more quarter-wave even sequences is computed as

For i = 0, M - 1

V[D]COSQB Notes:

■ The input and output sequences are stored row-wise.
■ The transform is normalized so that if V[D]COSQB is called immediately after calling V[D]

COSQF, the original data is obtained.

[D]SINT: Forward and Inverse Fast Sine Transform (FST) of a
Sequence

The forward and inverse FST of a sequence is computed as

106 Oracle Developer Studio 12.6: Performance Library User's Guide • July 2017

Cosine and Sine Transforms

.

[D]SINT Notes:

■ N-1 values are needed to compute the FST of an N-point sequence.
■ [D]SINT also computes the inverse transform. When [D]SINT is called twice, the result will

be the original sequence scaled by .

V[D]SINT: Forward and Inverse Fast Sine Transforms of
Multiple Sequences (VFST)

The forward and inverse fast sine transforms of multiple sequences are computed as

For i = 0, M - 1

.

V[D]SINT Notes:

■ M × (N - 1) values are needed to compute the VFST of M N-point sequences.
■ The input and output sequences are stored row-wise.
■ V[D]SINT is normalized and is its own inverse. Calling V[D]SINT twice yields the original

data.

[D]SINQF: Forward FST of a Quarter-Wave Odd Sequence

The forward FST of a quarter-wave odd sequence is computed as

.

N values are needed to compute the forward FST of an N-point quarter-wave odd sequence.

[D]SINQB: Inverse FST of a Quarter-Wave Odd Sequence

The inverse FST of a quarter-wave odd sequence is computed as

Chapter 7 • Using Oracle Developer Studio Performance Library Signal Processing Routines 107

Cosine and Sine Transforms

.

Calling the forward and inverse routines will result in the original input scaled by .

V[D]SINQF: Forward FST of One or More Quarter-Wave Odd
Sequences

The forward FST of one or more quarter-wave odd sequences is computed as

For i = 0, M - 1

.

V[D]SINQF Notes:

■ The input and output sequences are stored row-wise.
■ The transform is normalized so that if the inverse routine V[D]SINQB is called immediately

after calling V[D]SINQF, the original data is obtained.

V[D]SINQB: Inverse FST of One or More Quarter-Wave Odd
Sequences

The inverse FST of one or more quarter-wave odd sequences is computed as

For i = 0, M - 1

.

V[D]SINQB Notes:

■ The input and output sequences are stored row-wise.

108 Oracle Developer Studio 12.6: Performance Library User's Guide • July 2017

Cosine and Sine Transforms

■ The transform is normalized, so that if V[D]SINQB is called immediately after calling V[D]
SINQF, the original data is obtained.

Fast Cosine Transform Examples

Example 15, “Computer FCT and Inverse FCT of Single Real Even Sequence,” on page 109
calls COST to compute the FCT and the inverse transform of a real even sequence. If the real
sequence is of length 2N, only N + 1 input data points need to be stored and the number of
resulting data points is also N + 1. The results are stored in the input array.

EXAMPLE 15 Computer FCT and Inverse FCT of Single Real Even Sequence

my_system% cat cost.f

 program Drive cost

 implicit none

 integer,parameter :: len=4

 real x(0:len),work(3*(len+1)+15), z(0:len), scale

 integer i

 scale = 1.0/(2.0*len)

 call RANDOM_NUMBER(x(0:len))

 z(0:len) = x(0:len)

 write(*,'(a25,i1,a10,i1,a12)')'Input sequence of length ',

 $ len,' requires ', len+1,' data points'

 write(*,'(5(f8.3,2x),/)')(x(i),i=0,len)

 call costi(len+1, work)

 call cost(len+1, z, work)

 write(*,*)'Forward fast cosine transform'

 write(*,'(5(f8.3,2x),/)')(z(i),i=0,len)

 call cost(len+1, z, work)

 write(*,*)

 $ 'Inverse fast cosine transform (results scaled by 1/2*N)'

 write(*,'(5(f8.3,2x),/)')(z(i)*scale,i=0,len)

 end

my_system% f95 -dalign cost.f -library=sunperf

my_system% a.out

Input sequence of length 4 requires 5 data points

0.557 0.603 0.210 0.352 0.867

Forward fast cosine transform

3.753 0.046 1.004 -0.666 -0.066

Inverse fast cosine transform (results scaled by 1/2*N)

0.557 0.603 0.210 0.352 0.867

Example 16, “Compute the FCT and the Inverse FCT of Two Real Quarter-wave Even
Sequences,” on page 110 calls VCOSQF and VCOSQB to compute the FCT and the inverse FCT,

Chapter 7 • Using Oracle Developer Studio Performance Library Signal Processing Routines 109

Cosine and Sine Transforms

respectively, of two real quarter-wave even sequences. If the real sequences are of length 2N,
only N input data points need to be stored, and the number of resulting data points is also N.
The results are stored in the input array.

EXAMPLE 16 Compute the FCT and the Inverse FCT of Two Real Quarter-wave Even Sequences

my_system% cat vcosq.f

 program vcosq

 implicit none

 integer,parameter :: len=4, m = 2, ld = m+1

 real x(ld,len),xt(ld,len),work(3*len+15), z(ld,len)

 integer i, j

 call RANDOM_NUMBER(x)

 z = x

 write(*,'(a27,i1)')' Input sequences of length ',len

 do j = 1,m

 write(*,'(a3,i1,a4,4(f5.3,2x),a1,/)')

 $ 'seq',j,' = (',(x(j,i),i=1,len),')'

 end do

 call vcosqi(len, work)

 call vcosqf(m,len, z, xt, ld, work)

 write(*,*)

 $ 'Forward fast cosine transform for quarter-wave even sequences'

 do j = 1,m

 write(*,'(a3,i1,a4,4(f5.3,2x),a1,/)')

 $ 'seq',j,' = (',(z(j,i),i=1,len),')'

 end do

 call vcosqb(m,len, z, xt, ld, work)

 write(*,*)

 $ 'Inverse fast cosine transform for quarter-wave even sequences'

 write(*,*)'(results are normalized)'

 do j = 1,m

 write(*,'(a3,i1,a4,4(f5.3,2x),a1,/)')

 $ 'seq',j,' = (',(z(j,i),i=1,len),')'

 end do

 end

my_system% f95 -dalign vcosq.f -library=sunperf

my_system% a.out

Input sequences of length 4

seq1 = (0.557 0.352 0.990 0.539)

seq2 = (0.603 0.867 0.417 0.156)

Forward fast cosine transform for quarter-wave even sequences

seq1 = (0.755 -.392 -.029 0.224)

seq2 = (0.729 0.097 -.091 -.132)

Inverse fast cosine transform for quarter-wave even sequences

(results are normalized)

110 Oracle Developer Studio 12.6: Performance Library User's Guide • July 2017

Cosine and Sine Transforms

seq1 = (0.557 0.352 0.990 0.539)

seq2 = (0.603 0.867 0.417 0.156)

Fast Sine Transform Examples
In the following example Example 17, “Compute the FCT and the Inverse FCT of Two Real
Quarter-wave Even Sequences,” on page 111, SINT is called to compute the FST and the
inverse transform of a real odd sequence. If the real sequence is of length 2N, only N - 1 input
data points need to be stored and the number of resulting data points is also N - 1. The results
are stored in the input array.

EXAMPLE 17 Compute the FCT and the Inverse FCT of Two Real Quarter-wave Even Sequences

my_system% cat sint.f

 program Drive sint

 implicit none

 integer,parameter :: len=4

 real x(0:len-2),work(3*(len-1)+15), z(0:len-2), scale

 integer i

 call RANDOM_NUMBER(x(0:len-2))

 z(0:len-2) = x(0:len-2)

 scale = 1.0/(2.0*len)

 write(*,'(a25,i1,a10,i1,a12)')'Input sequence of length ',

 $ len,' requires ', len-1,' data points'

 write(*,'(3(f8.3,2x),/)')(x(i),i=0,len-2)

 call sinti(len-1, work)

 call sint(len-1, z, work)

 write(*,*)'Forward fast sine transform'

 write(*,'(3(f8.3,2x),/)')(z(i),i=0,len-2)

 call sint(len-1, z, work)

 write(*,*)

 $ 'Inverse fast sine transform (results scaled by 1/2*N)'

 write(*,'(3(f8.3,2x),/)')(z(i)*scale,i=0,len-2)

 end

my_system% f95 -dalign sint.f -library=sunperf

my_system% a.out

Input sequence of length 4 requires 3 data points

0.557 0.603 0.210

Forward fast sine transform

2.291 0.694 -0.122

Inverse fast sine transform (results scaled by 1/2*N)

0.557 0.603 0.210

In the following example Example 18, “Compute FST and Inverse FST of Two Real Quarter-
Wave Odd Sequences,” on page 112, VSINQF and VSINQB are called to compute the FST and

Chapter 7 • Using Oracle Developer Studio Performance Library Signal Processing Routines 111

Cosine and Sine Transforms

inverse FST, respectively, of two real quarter-wave odd sequences. If the real sequence is of
length 2N, only N input data points need to be stored and the number of resulting data points is
also N. The results are stored in the input array.

EXAMPLE 18 Compute FST and Inverse FST of Two Real Quarter-Wave Odd Sequences

my_system% cat vsinq.f

 program vsinq

 implicit none

 integer,parameter :: len=4, m = 2, ld = m+1

 real x(ld,len),xt(ld,len),work(3*len+15), z(ld,len)

 integer i, j

 call RANDOM_NUMBER(x)

 z = x

 write(*,'(a27,i1)')' Input sequences of length ',len

 do j = 1,m

 write(*,'(a3,i1,a4,4(f5.3,2x),a1,/)')

 $ 'seq',j,' = (',(x(j,i),i=1,len),')'

 end do

 call vsinqi(len, work)

 call vsinqf(m,len, z, xt, ld, work)

 write(*,*)

 $ 'Forward fast sine transform for quarter-wave odd sequences'

 do j = 1,m

 write(*,'(a3,i1,a4,4(f5.3,2x),a1,/)')

 $ 'seq',j,' = (',(z(j,i),i=1,len),')'

 end do

 call vsinqb(m,len, z, xt, ld, work)

 write(*,*)

 $ 'Inverse fast sine transform for quarter-wave odd sequences'

 write(*,*)'(results are normalized)'

 do j = 1,m

 write(*,'(a3,i1,a4,4(f5.3,2x),a1,/)')

 $ 'seq',j,' = (',(z(j,i),i=1,len),')'

 end do

 end

my_system% f95 vsinq.f -library=sunperf

my_system% a.out

Input sequences of length 4

seq1 = (0.557 0.352 0.990 0.539)

seq2 = (0.603 0.867 0.417 0.156)

Forward fast sine transform for quarter-wave odd sequences

seq1 = (0.823 0.057 0.078 0.305)

seq2 = (0.654 0.466 -.069 -.037)

Inverse fast sine transform for quarter-wave odd sequences

(results are normalized)

seq1 = (0.557 0.352 0.990 0.539)

112 Oracle Developer Studio 12.6: Performance Library User's Guide • July 2017

Convolution and Correlation

seq2 = (0.603 0.867 0.417 0.156)

Convolution and Correlation

Two applications of the FFT that are frequently encountered especially in the signal processing
area are the discrete convolution and discrete correlation operations.

Convolution Operation

Given two functions x(t) and y(t), the Fourier transform of the convolution of x(t) and y(t),
denoted as x * y, is the product of their individual Fourier transforms: DFT (x * y)=X (•) Y
where * denotes the convolution operation and (•) denotes pointwise multiplication.

Typically, x(t) is a continuous and periodic signal that is represented discretely by a set of N
data points xj, j = 0, …, N -1, sampled over a finite duration, usually for one period of x(t) at
equal intervals. y(t) is usually a response that starts out as zero, peaks to a maximum value, and
then returns to zero. Discretizing y(t) at equal intervals produces a set of N data points, yk, k =
0, …, N -1. If the actual number of samplings in yk is less than N, the data can be padded with
zeros. The discrete convolution can then be defined as

The values of

are the same as those of k = 0, …, N -1 but in the wrap-around order.

The Oracle Developer Studio Performance Library routines enable you to compute the
convolution by using the definition above with k = 0, …, N -1, or by using the FFT. If the FFT
is used to compute the convolution of two sequences, the following steps are performed:

■ Compute X = forward FFT of x
■ Compute Y = forward FFT of y
■ Compute Z = X (•) Y <=> DFT (x * y)
■ Compute z = inverse FFT of Z; z = (x * y)

Chapter 7 • Using Oracle Developer Studio Performance Library Signal Processing Routines 113

Convolution and Correlation

One interesting characteristic of convolution is that the product of two polynomials is actually a
convolution. A product of an m-term polynomial

 a(x) = a0 + a1x + ... + am-1xm-1

and an n-term polynomial

 b(x) = b0 + b1x + ... + bn-1xn-1

has m+n-1 coefficients that can be obtained by:

where k = 0, …, m + n - 2.

Correlation Operation

Closely related to convolution is the correlation operation. It computes the correlation of two
sequences directly superposed or when one is shifted relative to the other. As with convolution,
we can compute the correlation of two sequences efficiently as follows using the FFT:

■ Compute the FFT of the two input sequences.
■ Compute the pointwise product of the resulting transform of one sequence and the complex

conjugate of the transform of the other sequence.
■ Compute the inverse FFT of the product.

The routines in the Performance Library also allow correlation to be computed by the following
definition:

There are various ways to interpret the sampled input data of the convolution and correlation
operations. The argument list of the convolution and correlation routines contain parameters to
handle the following cases:

■ The signal and/or response function can start at different sampling times.
■ You might want only part of the signal to contribute to the output.
■ The signal and/or response function can begin with one or more zeros that are not explicitly

stored.

114 Oracle Developer Studio 12.6: Performance Library User's Guide • July 2017

Convolution and Correlation

Oracle Developer Studio Performance Library
Convolution and Correlation Routines

Oracle Developer Studio Performance Library contains the convolution routines shown in Table
19, “Convolution and Correlation Routines,” on page 115.

TABLE 19 Convolution and Correlation Routines

Routine Arguments Function

SCNVCOR, DCNVCOR,
CCNVCOR, ZCNVCOR

CNVCOR,FOUR,NX,X,IFX, INCX,NY,

NPRE,M,Y,IFY, INC1Y,INC2Y,NZ,K,

Z, IFZ,INC1Z,INC2Z,WORK, LWORK

Convolution or correlation of a filter with one or
more vectors

SCNVCOR2, DCNVCOR2,
CCNVCOR2, ZCNVCOR2

CNVCOR,METHOD,TRANSX, SCRATCHX,

TRANSY, SCRATCHY,MX,NX,X,LDX,

MY,NY,MPRE,NPRE,Y,LDY, MZ,NZ,Z,

LDZ,WORKIN, LWORK

Two-dimensional convolution or correlation of
two matrices

SWIENER, DWIENER N_POINTS,ACOR,XCOR, FLTR,EROP,

ISW,IERR

Wiener deconvolution of two signals

The [S,D,C,Z]CNVCOR routines are used to compute the convolution or correlation of a filter
with one or more input vectors. The [S,D,C,Z]CNVCOR2 routines are used to compute the two-
dimensional convolution or correlation of two matrices.

Arguments for Convolution and Correlation
Routines

The one-dimensional convolution and correlation routines use the arguments shown in Table
20, “Arguments for One-Dimensional Convolution and Correlation Routines SCNVCOR, DCNVCOR,
CCNVCOR, and ZCNVCOR,” on page 115.

TABLE 20 Arguments for One-Dimensional Convolution and Correlation Routines SCNVCOR,
DCNVCOR, CCNVCOR, and ZCNVCOR

Argument Definition

CNVCOR 'V' or 'v' specifies that convolution is computed. 'R' or 'r' specifies that correlation
is computed.

FOUR 'T' or 't' specifies that the Fourier transform method is used. 'D' or 'd' specifies
that the direct method is used, where the convolution or correlation is computed from
the definition of convolution and correlation. †

Chapter 7 • Using Oracle Developer Studio Performance Library Signal Processing Routines 115

Convolution and Correlation

Argument Definition

NX Length of filter vector, where NX≥ 0.

X Filter vector

IFX Index of first element of X, where NX ≥ IFX ≥ 1

INCX Stride between elements of the vector in X, where INCX > 0.

NY Length of input vectors, where NY ≥ 0.

NPRE Number of implicit zeros prefixed to the Y vectors, where NPRE ≥ 0.

M Number of input vectors, where M ≥ 0.

Y Input vectors.

IFY Index of the first element of Y, where NY ≥ IFY ≥ 1

INC1Y Stride between elements of the input vectors in Y, where INC1Y > 0.

INC2Y Stride between input vectors in Y, where INC2Y > 0.

NZ Length of the output vectors, where NZ ≥ 0.

K Number of Z vectors, where K ≥ 0. If K < M, only the first K vectors will be processed. If
K > M, all input vectors will be processed and the last M-K output vectors will be set to
zero on exit.

Z Result vectors

IFZ Index of the first element of Z, where NZ ≥ IFZ ≥ 1

INC1Z Stride between elements of the output vectors in Z, where INCYZ > 0.

INC2Z Stride between output vectors in Z, where INC2Z > 0.

WORK Work array

LWORK Length of work array

†When the lengths of the two sequences to be convolved are similar, the FFT method is faster than the direct method. However, when one
sequence is much larger than the other, such as when convolving a large time-series signal with a small filter, the direct method performs
faster than the FFT-based method.

The two-dimensional convolution and correlation routines use the arguments shown in Table
21, “Arguments for Two-Dimensional Convolution and Correlation Routines SCNVCOR2,
DCNVCOR2, CCNVCOR2, and ZCNVCOR2,” on page 116.

TABLE 21 Arguments for Two-Dimensional Convolution and Correlation Routines SCNVCOR2,
DCNVCOR2, CCNVCOR2, and ZCNVCOR2

Argument Definition

CNVCOR 'V' or 'v' specifies that convolution is computed. 'R' or 'r' specifies that correlation
is computed.

METHOD 'T' or 't' specifies that the Fourier transform method is used. 'D' or 'd' specifies
that the direct method is used, where the convolution or correlation is computed from
the definition of convolution and correlation. †

TRANSX 'N' or 'n' specifies that X is the filter matrix 'T' or 't' specifies that the transpose of
X is the filter matrix

116 Oracle Developer Studio 12.6: Performance Library User's Guide • July 2017

Convolution and Correlation

Argument Definition

SCRATCHX 'N' or 'n' specifies that X must be preserved 'S' or 's' specifies that X can be used
for scratch space. The contents of X are undefined after returning from a call where X is
used for scratch space.

TRANSY 'N' or 'n' specifies that Y is the input matrix 'T' or 't' specifies that the transpose of
Y is the input matrix

SCRATCHY 'N' or 'n' specifies that Y must be preserved 'S' or 's' specifies that Y can be used
for scratch space. The contents of X are undefined after returning from a call where Y is
used for scratch space.

MX Number of rows in the filter matrix X, where MX ≥ 0

NX Number of columns in the filter matrix X, where NX ≥ 0

X Filter matrix. X is unchanged on exit when SCRATCHX is 'N' or 'n' and undefined on
exit when SCRATCHX is 'S' or 's'.

LDX Leading dimension of array containing the filter matrix X.

MY Number of rows in the input matrix Y, where MY ≥ 0.

NY Number of columns in the input matrix Y, where NY ≥ 0

MPRE Number of implicit zeros prefixed to each row of the input matrix Y vectors, where
MPRE ≥ 0.

NPRE Number of implicit zeros prefixed to each column of the input matrix Y, where NPRE ≥
0.

Y Input matrix. Y is unchanged on exit when SCRATCHY is 'N' or 'n' and undefined on
exit when SCRATCHY is 'S' or 's'.

LDY Leading dimension of array containing the input matrix Y.

MZ Number of output vectors, where MZ ≥ 0.

NZ Length of output vectors, where NZ ≥ 0.

Z Result vectors

LDZ Leading dimension of the array containing the result matrix Z, where LDZ ≥ MAX(1,MZ).

WORKIN Work array

LWORK Length of work array

†When the sizes of the two matrices to be convolved are similar, the FFT method is faster than the direct method. However, when one
sequence is much larger than the other, such as when convolving a large data set with a small filter, the direct method performs faster
than the FFT-based method.

Work Array WORK for Convolution and Correlation
Routines

The minimum dimensions for the WORK work arrays used with the one-dimensional and
two-dimensional convolution and correlation routines are shown in Table 24, “Minimum
Dimensions and Data Types for WORK Work Array Used With Convolution and Correlation

Chapter 7 • Using Oracle Developer Studio Performance Library Signal Processing Routines 117

Convolution and Correlation

Routines,” on page 119. The minimum dimensions for one-dimensional convolution and
correlation routines depend upon the values of the arguments NPRE, NX, NY, and NZ.

The minimum dimensions for two-dimensional convolution and correlation routines depend
upon the values of the arguments shown in the table Table 22, “Arguments Affecting Minimum
Work Array Size for Two-Dimensional Routines: SCNVCOR2, DCNVCOR2, CCNVCOR2, and
ZCNVCOR2,” on page 118.

TABLE 22 Arguments Affecting Minimum Work Array Size for Two-Dimensional Routines:
SCNVCOR2, DCNVCOR2, CCNVCOR2, and ZCNVCOR2

Argument Definition

MX Number of rows in the filter matrix

MY Number of rows in the input matrix

MZ Number of output vectors

NX Number of columns in the filter matrix

NY Number of columns in the input matrix

NZ Length of output vectors

MPRE Number of implicit zeros prefixed to each row of the input matrix

NPRE Number of implicit zeros prefixed to each column of the input matrix

MPOST MAX(0,MZ-MYC)

NPOST MAX(0,NZ-NYC)

MYC MPRE + MPOST + MYC_INIT, where MYC_INIT depends upon filter and input matrices, as
shown in Table 23, “MYC_INIT and NYC_INIT Dependencies,” on page 118

NYC NPRE + NPOST + NYC_INIT, where NYC_INIT depends upon filter and input matrices, as
shown in Table 23, “MYC_INIT and NYC_INIT Dependencies,” on page 118

MYC_INIT and NYC_INIT depend upon the following, where X is the filter matrix and Y is the
input matrix.

TABLE 23 MYC_INIT and NYC_INIT Dependencies

Routine Y Transpose(Y)

X Transpose(X) X Transpose(X)

MYC_INIT MAX(MX,MY) MAX(NX,MY) MAX(MX,NY) MAX(NX,NY)

NYC_INIT MAX(NX,NY) MAX(MX,NY) MAX(NX,MY) MAX(MX,MY)

The values assigned to the minimum work array size is shown in Table 24, “Minimum
Dimensions and Data Types for WORK Work Array Used With Convolution and Correlation
Routines,” on page 119.

118 Oracle Developer Studio 12.6: Performance Library User's Guide • July 2017

Convolution and Correlation

TABLE 24 Minimum Dimensions and Data Types for WORK Work Array Used With Convolution and
Correlation Routines

Routine Minimum Work Array Size (WORK) Type

SCNVCOR, DCNVCOR 4*(MAX(NX,NPRE+NY) + MAX(0,NZ-NY)) REAL, REAL*8

CCNVCOR, ZCNVCOR 2*(MAX(NX,NPRE+NY) + MAX(0,NZ‐NY))) COMPLEX, COMPLEX*16

SCNVCOR2†, DCNVCOR2† MY + NY + 30 COMPLEX, COMPLEX*16

CCNVCOR2†, ZCNVCOR2† If MY = NY: MYC + 8 If MY ≥ NY: MYC + NYC + 16 COMPLEX, COMPLEX*16

1

Sample Program: Convolution

The following example uses CCNVCOR to perform FFT convolution of two complex vectors.

EXAMPLE 19 One-Dimensional Convolution Using Fourier Transform Method and COMPLEX Data

my_system% cat con_ex20.f

 PROGRAM TEST

C

 INTEGER LWORK

 INTEGER N

 PARAMETER (N = 3)

 PARAMETER (LWORK = 4 * N + 15)

 COMPLEX P1(N), P2(N), P3(2*N-1), WORK(LWORK)

 DATA P1 / 1, 2, 3 /, P2 / 4, 5, 6 /

C

 EXTERNAL CCNVCOR

C

 PRINT *, 'P1:'

 PRINT 1000, P1

 PRINT *, 'P2:'

 PRINT 1000, P2

 CALL CCNVCOR ('V', 'T', N, P1, 1, 1, N, 0, 1, P2, 1, 1, 1,

 $ 2 * N - 1, 1, P3, 1, 1, 1, WORK, LWORK)

C

 PRINT *, 'P3:'

 PRINT 1000, P3

C

 1000 FORMAT (1X, 100(F4.1,' +',F4.1,'i '))

C

1Memory will be allocated within the routine if the workspace size, indicated by LWORK, is not large enough.

Chapter 7 • Using Oracle Developer Studio Performance Library Signal Processing Routines 119

Convolution and Correlation

 END

my_system% f95 -dalign con_ex20.f -xlibrary=sunperf

my_system% a.out

 P1:

 1.0 + 0.0i 2.0 + 0.0i 3.0 + 0.0i

 P2:

 4.0 + 0.0i 5.0 + 0.0i 6.0 + 0.0i

 P3:

 4.0 + 0.0i 13.0 + 0.0i 28.0 + 0.0i 27.0 + 0.0i 18.0 + 0.0i

If any vector overlaps a writable vector, either because of argument aliasing or ill-chosen values
of the various INC arguments, the results are undefined and can vary from one run to the next.

The most common form of the computation, and the case that executes fastest, is applying a
filter vector X to a series of vectors stored in the columns of Y with the result placed into the
columns of Z. In that case, INCX = 1, INC1Y = 1, INC2Y ≥ NY, INC1Z = 1, INC2Z ≥ NZ. Another
common form is applying a filter vector X to a series of vectors stored in the rows of Y and store
the result in the row of Z, in which case INCX = 1, INC1Y ≥ NY, INC2Y = 1, INC1Z ≥ NZ, and INC2Z
= 1.

Convolution can be used to compute the products of polynomials. The following example
Example 20, “One-Dimensional Convolution Using Fourier Transform Method and REAL
Data,” on page 120 uses SCNVCOR to compute the product of 1 + 2x + 3x2 and 4 + 5x + 6x2.

EXAMPLE 20 One-Dimensional Convolution Using Fourier Transform Method and REAL Data

my_system% cat con_ex21.f

 PROGRAM TEST

 INTEGER LWORK, NX, NY, NZ

 PARAMETER (NX = 3)

 PARAMETER (NY = NX)

 PARAMETER (NZ = 2*NY-1)

 PARAMETER (LWORK = 4*NZ+32)

 REAL X(NX), Y(NY), Z(NZ), WORK(LWORK)

C

 DATA X / 1, 2, 3 /, Y / 4, 5, 6 /, WORK / LWORK*0 /

C

 PRINT 1000, 'X'

 PRINT 1010, X

 PRINT 1000, 'Y'

 PRINT 1010, Y

 CALL SCNVCOR ('V', 'T', NX, X, 1, 1,

 $NY, 0, 1, Y, 1, 1, 1, NZ, 1, Z, 1, 1, 1, WORK, LWORK)

 PRINT 1020, 'Z'

 PRINT 1010, Z

 1000 FORMAT (1X, 'Input vector ', A1)

 1010 FORMAT (1X, 300F5.0)

120 Oracle Developer Studio 12.6: Performance Library User's Guide • July 2017

Convolution and Correlation

 1020 FORMAT (1X, 'Output vector ', A1)

 END

my_system% f95 -dalign con_ex21.f -library=sunperf

my_system% a.out

 Input vector X

 1. 2. 3.

 Input vector Y

 4. 5. 6.

 Output vector Z

 4. 13. 28. 27. 18.

Making the output vector longer than the input vectors, as in the example above, implicitly adds
zeros to the end of the input. No zeros are actually required in any of the vectors, and none are
used in the example, but the padding provided by the implied zeros has the effect of an end-off
shift rather than an end-around shift of the input vectors.

The following example Example 21, “Convolution Used to Compute the Product of a Vector
and Circulant Matrix,” on page 121 computes the product between the vector [1, 2, 3] and
the circulant matrix defined by the initial column vector [4, 5, 6].

EXAMPLE 21 Convolution Used to Compute the Product of a Vector and Circulant Matrix

my_system% cat con_ex22.f

 PROGRAM TEST

C

 INTEGER LWORK, NX, NY, NZ

 PARAMETER (NX = 3)

 PARAMETER (NY = NX)

 PARAMETER (NZ = NY)

 PARAMETER (LWORK = 4*NZ+32)

 REAL X(NX), Y(NY), Z(NZ), WORK(LWORK)

C

 DATA X / 1, 2, 3 /, Y / 4, 5, 6 /, WORK / LWORK*0 /

C

 PRINT 1000, 'X'

 PRINT 1010, X

 PRINT 1000, 'Y'

 PRINT 1010, Y

 CALL SCNVCOR ('V', 'T', NX, X, 1, 1,

 $NY, 0, 1, Y, 1, 1, 1, NZ, 1, Z, 1, 1, 1,

 $WORK, LWORK)

 PRINT 1020, 'Z'

 PRINT 1010, Z

C

 1000 FORMAT (1X, 'Input vector ', A1)

 1010 FORMAT (1X, 300F5.0)

 1020 FORMAT (1X, 'Output vector ', A1)

Chapter 7 • Using Oracle Developer Studio Performance Library Signal Processing Routines 121

Convolution and Correlation

 END

my_system% f95 -dalign con_ex22.f -library=sunperf

my_system% a.out

 Input vector X

 1. 2. 3.

 Input vector Y

 4. 5. 6.

 Output vector Z

 31. 31. 28.

The difference between the following example and the previous example is that the length of
the output vector is the same as the length of the input vectors, so there are no implied zeros on
the end of the input vectors. With no implied zeros to shift into, the effect of an end-off shift
from the previous example does not occur and the end-around shift results in a circulant matrix
product.

EXAMPLE 22 Two-Dimensional Convolution Using Direct Method

my_system% cat con_ex23.f

 PROGRAM TEST

C

 INTEGER M, N

 PARAMETER (M = 2)

 PARAMETER (N = 3)

C

 INTEGER I, J

 COMPLEX P1(M,N), P2(M,N), P3(M,N)

 DATA P1 / 1, -2, 3, -4, 5, -6 /, P2 / -1, 2, -3, 4, -5, 6 /

 EXTERNAL CCNVCOR2

C

 PRINT *, 'P1:'

 PRINT 1000, ((P1(I,J), J = 1, N), I = 1, M)

 PRINT *, 'P2:'

 PRINT 1000, ((P2(I,J), J = 1, N), I = 1, M)

C

 CALL CCNVCOR2 ('V', 'Direct', 'No Transpose X', 'No Overwrite X',

 $ 'No Transpose Y', 'No Overwrite Y', M, N, P1, M,

 $ M, N, 0, 0, P2, M, M, N, P3, M, 0, 0)

C

 PRINT *, 'P3:'

 PRINT 1000, ((P3(I,J), J = 1, N), I = 1, M)

C

 1000 FORMAT (3(F5.1,' +',F5.1,'i '))

C

 END

my_system% f95 -dalign con_ex23.f -library=sunperf

my_system% a.out

122 Oracle Developer Studio 12.6: Performance Library User's Guide • July 2017

References

 P1:

 1.0 + 0.0i 3.0 + 0.0i 5.0 + 0.0i

 -2.0 + 0.0i -4.0 + 0.0i -6.0 + 0.0i

 P2:

 -1.0 + 0.0i -3.0 + 0.0i -5.0 + 0.0i

 2.0 + 0.0i 4.0 + 0.0i 6.0 + 0.0i

 P3:

-83.0 + 0.0i -83.0 + 0.0i -59.0 + 0.0i

 80.0 + 0.0i 80.0 + 0.0i 56.0 + 0.0i

References

For additional information on the DFT or FFT, see the following sources.

Briggs, William L., and Henson, Van Emden. The DFT: An Owner's Manual for the Discrete
Fourier Transform. Philadelphia, PA: SIAM, 1995.

Brigham, E. Oran. The Fast Fourier Transform and Its Applications. Upper Saddle River, NJ:
Prentice Hall, 1988.

Chu, Eleanor, and George, Alan. Inside the FFT Black Box: Serial and Parallel Fast Fourier
Transform Algorithms. Boca Raton, FL: CRC Press, 2000.

Press, William H., Teukolsky, Saul A., Vetterling, William T., and Flannery, Brian P. Numerical
Recipes in C: The Art of Scientific Computing. 2 ed. Cambridge, United Kingdom: Cambridge
University Press, 1992.

Ramirez, Robert W. The FFT: Fundamentals and Concepts. Englewood Cliffs, NJ: Prentice-
Hall, Inc., 1985.

Swartzrauber, Paul N. Vectorizing the FFTs. In Rodrigue, Garry ed. Parallel Computations.
New York: Academic Press, Inc., 1982.

Strang, Gilbert. Linear Algebra and Its Applications. 3 ed. Orlando, FL: Harcourt Brace &
Company, 1988.

Van Loan, Charles. Computational Frameworks for the Fast Fourier Transform. Philadelphia,
PA: SIAM, 1992.

Walker, James S. Fast Fourier Transforms. Boca Raton, FL: CRC Press, 1991.

Chapter 7 • Using Oracle Developer Studio Performance Library Signal Processing Routines 123

124 Oracle Developer Studio 12.6: Performance Library User's Guide • July 2017

 A ♦ ♦ ♦ A P P E N D I X A

Oracle Developer Studio Performance Library
Routines

This appendix lists the Oracle Developer Studio Performance Library routines by library,
routine name, and function.

For a description of the function and a listing of the Fortran and C interfaces, refer to the section
3P man pages for the individual routines. For example, to display the man page for the SBDSQR
routine, type man -s 3P sbdsqr. The man page routine names use lowercase letters.

For many routines, separate routines exist that operate on different data types. Rather than
list each routine separately, a lowercase x is used in a routine name to denote single, double,
complex, and double complex data types. For example, the routine xBDSQR is available as four
routines that operate with the following data types:

■ SBDSQR – Single data type
■ DBDSQR – Double data type
■ CBDSQR – Complex data type
■ ZBDSQR – Double complex data type

If a routine name is not available for S, D, C, and Z, the x prefix will not be used and
each routine name will be listed. Also available (but not listed) in 64-bit enable operating
environments are the corresponding routines in 64-bit. Their names are denoted by the _64
suffix. For example, the 64-bit versions of xBDSQR are the following:

■ SBDSQR_64

■ DBDSQR_64

■ CBDSQR_64

■ ZBDSQR_64

Appendix A • Oracle Developer Studio Performance Library Routines 125

LAPACK Routines

LAPACK Routines
The following set of tables lists the Oracle Developer Studio Performance Library LAPACK
routines. (P) denotes routines that are parallelized.

■ Table 25, “Bidiagonal Matrix Routines,” on page 127
■ Table 26, “Common or Calculating Routines,” on page 127
■ Table 27, “Cosine-Sine (CS) Decomposition Routines,” on page 128
■ Table 28, “Diagonal Matrix Routines,” on page 128
■ Table 29, “General Band Matrix Routines,” on page 129
■ Table 30, “General Matrix (Unsymmetric or Rectangular) Routines,” on page 129
■ Table 31, “General Matrix-Generalized Problem (Pair of General Matrices) Routines,” on

page 132
■ Table 32, “General Tridiagonal Matrix Routines,” on page 133
■ Table 33, “Hermitian Band Matrix Routines,” on page 134
■ Table 34, “Hermitian Matrix Routines,” on page 134
■ Table 35, “Hermitian Matrix in Packed Storage Routines,” on page 136
■ Table 36, “Upper Hessenberg Matrix Routines,” on page 137
■ Table 37, “Upper Hessenberg Matrix-Generalized Problem (Hessenberg and Triangular

Matrix) Routines,” on page 137
■ Table 38, “Real Orthogonal Matrix in Packed Storage Routines,” on page 137
■ Table 39, “Real Orthogonal Matrix Routines,” on page 138
■ Table 40, “Symmetric or Hermitian Positive Definite Band Matrix Routines,” on page

139
■ Table 41, “Symmetric or Hermitian Positive Definite Matrix Routines,” on page 140
■ Table 42, “Symmetric or Hermitian Positive Definite Matrix in Packed Storage Routines,”

on page 141
■ Table 43, “Symmetric or Hermitian Positive Definite Tridiagonal Matrix Routines,” on page

141
■ Table 44, “Real Symmetric Band Matrix Routines,” on page 142
■ Table 45, “Symmetric Matrix in Packed Storage Routines,” on page 142
■ Table 46, “Real Symmetric Tridiagonal Matrix Routines,” on page 143
■ Table 47, “Symmetric Matrix Routines,” on page 145
■ Table 48, “Triangular Band Matrix Routines,” on page 147
■ Table 49, “Triangular Matrix-Generalized Problem (Pair of Triangular Matrices) Routines,”

on page 147
■ Table 50, “Triangular Matrix in Packed Storage Routines,” on page 148
■ Table 51, “Triangular Matrix in Rectangular Full-Packed (RFP) Format and Standard

Packed Format Routines,” on page 148

126 Oracle Developer Studio 12.6: Performance Library User's Guide • July 2017

LAPACK Routines

■ Table 52, “Triangular Matrix Routines,” on page 149
■ Table 53, “Trapezoidal Matrix Routines,” on page 149
■ Table 54, “Unitary Matrix Routines,” on page 150
■ Table 55, “Unitary Matrix in Packed Storage Routines,” on page 151

TABLE 25 Bidiagonal Matrix Routines

Routine
Function

SBDSDC (P) or DBDSDC (P) Computes the singular value decomposition (SVD) of a bidiagonal matrix, using a
divide and conquer method.

SBDSVDX or DBDSVDX Computes the singular value decomposition (SVD) of a real N-by-N (upper or lower)
bidiagonal matrix (driver).

xBDSQR Computes SVD of a real upper or lower bidiagonal matrix, using the implicit zero-shift
QR algorithm.

SLARTGS or DLARTGS Generates a plane rotation designed to introduce a bulge in implicit QR iteration for the
bidiagonal SVD problem. Used by SBBCSD or DBBCSD.

TABLE 26 Common or Calculating Routines

Routine Function

CHLA_TRANSTYPE Translates from a BLAST-specified integer constant to the character string specifying a
transposition operation.

CLA_HERPVGRW (P) or
ZLA_HERPVGRW (P)

Computes the reciprocal pivot growth factor norm(A)/norm(U) for a complex
Hermitian matrix.

ILADIAG Translates from a character string specifying, if a matrix has the unit diagonal or not, to
the relevant BLAST-specified integer constant.

ILAPREC Translates from a character string specifying an intermediate precision to the relevant
BLAST-specified integer constant.

ILATRANS Translates from a character string specifying a transposition operation to the relevant
BLAST-specified integer constant.

ILAENV Is called from the LAPACK routines to choose problem-dependent parameters for the
local environment.

ILAUPLO Translates from a character string specifying an upper or lower triangular matrix to the
relevant BLAST-specified integer constant.

ILAVER Returns the LAPACK version.

xLA_GBRPVGRW Computes the reciprocal pivot growth factor norm(A)/norm(U) for a real or complex
general banded matrix.

xLA_GERPVGRW (P) Computes the reciprocal pivot growth factor norm(A)/norm(U) for a general indefinite
matrix.

xLA_PORPVGRW (P) Computes the reciprocal pivot growth factor norm(A)/norm(U) for a real symmetric or
Hermitian positive definite matrix.

xLA_SYRPVGRW (P) Computes the reciprocal pivot growth factor norm(A)/norm(U) for a real or complex
symmetric indefinite matrix.

Appendix A • Oracle Developer Studio Performance Library Routines 127

LAPACK Routines

Routine Function

SLAMRG (P) or DLAMRG (P) Creates a permutation list to merge the entries of two independently sorted sets into a
single set sorted in ascending order.

CLANHF (P) or ZLANHF (P) Returns a value of the one-norm, Frobenius norm, infinity norm, or the element of
largest absolute value of a Hermitian matrix in the RFP format.

SLANSF (P) or DLANSF (P) Returns a value of the one-norm, Frobenius norm, infinity norm, or the element of
largest absolute value of a real symmetric matrix in the RFP format.

xLARSCL2 (P) Performs a reciprocal diagonal scaling on a vector.

xLASCL2 (P) Performs a diagonal scaling on a vector.

SLASQ1 or DLASQ1 Computes the singular values of a real square bidiagonal matrix. Used by SBDSQR or
DBDSQR.

SLASQ2 or DLASQ2 Computes all the eigenvalues of a real symmetric positive definite tridiagonal matrix
(high relative accuracy). Used by SBDSQR and SSTEGR or DBDSQR and DSTEGR.

SLASQ3 or DLASQ3 Checks for deflation, computes a shift and calls the DQDS algorithm. Used by SBDSQR
or DBDSQR.

SLASQ4 or DLASQ4 Computes an approximation to the smallest eigenvalue using values from the previous
transform. Used by SBDSQR or DBDSQR.

SLASQ5 or DLASQ5 Computes one DQDS transform in the ping-pong form. Used by SBDSQR and SSTEGR or
DBDSQR and DSTEGR.

SLASQ6 or DLASQ6 Computes one DQD transform (shift equal to zero) in ping-pong form, with protection
against underflow and overflow. Used by SBDSQR and SSTEGR or DBDSQR and DSTEGR.

SLASRT or DLASRT Sorts numbers in a vector in increasing or decreasing order.

xLATRZ (P) Factors a real or complex upper trapezoidal matrix by means of orthogonal
transformations.

CROT, ZROT Apply Givens plane rotation Note that SROT/DROT are included in level 1 BLAS.

TABLE 27 Cosine-Sine (CS) Decomposition Routines

Routine
Function

xBBCSD (P) Computes the CS decomposition of an unitary or orthogonal matrix in a bidiagonal-
block form.

SORCSD (P) or DORCSD (P) Computes the CS decomposition of a real partitioned orthogonal matrix.

SORCSD2BY1 or DORCSD2BY1
(P)

Computes the CS decomposition of an M-by-Q matrix X with orthonormal columns
that has been partitioned into a 2-by-1 block structure.

CUNCSD (P) or ZUNCSD (P) Computes the CS decomposition of an M-by-M partitioned unitary matrix.

TABLE 28 Diagonal Matrix Routines

Routine
Function

SDISNA (P) or DDISNA (P) Computes the reciprocal of the condition numbers for eigenvectors of a real symmetric
or complex Hermitian matrix.

128 Oracle Developer Studio 12.6: Performance Library User's Guide • July 2017

LAPACK Routines

TABLE 29 General Band Matrix Routines

Routine
Function

CGBBRD or ZGBBRD Reduces a complex general band matrix to an upper bidiagonal form by the orthogonal
transformation.

SGBBRD (P) or DGBBRD (P) Reduces a real general band matrix to an upper bidiagonal form by the orthogonal
transformation.

xGBCON Estimates the reciprocal of the condition number of a general band matrix using LU
factorization.

xGBEQU (P) Computes row and column scalings to equilibrate a general band matrix and reduce its
condition number.

xGBEQUB (P) Computes row and column scalings intended to equilibrate a general band matrix and
reduce its condition number. Differs from CGEEQU by restricting the scaling factors to a
power of the radix.

xGBRFS (P) Improves the computed solution to a system of linear equations when the coefficient
matrix is banded, and provides error bounds and backward error estimates for the
solution.

xGBRFSX (P) Improves the computed solution to a banded system of linear equations and provides
error bounds and backward error estimates. In addition to normwise error bound, the
code provides maximum componentwise error bound if possible.

xGBSV Solves a general banded system of linear equations (simple driver).

xGBSVX (P) Solves a general banded system of linear equations (expert driver).

xGBSVXX (P) Solves a general banded system of linear equations (expert driver, extra precision). If
requested, both normwise and maximum componentwise error bounds are returned.

xGBTF2 (P) Computes the LU factorization of a real or complex general band matrix using partial
pivoting with row interchanges (unblocked algorithm).

xGBTRF (P) Computes the LU factorization of a general band matrix using partial pivoting with row
interchanges.

xGBTRS Solves a general banded system of linear equations, using the factorization computed
by xGBTRF.

xLA_GBAMV Performs a matrix-vector operation to calculate error bounds for a real or complex band
matrix.

xLA_GBRFSX_EXTENDED Improves the computed solution to a system of linear equations for a real or complex
general banded matrix by performing extra-precise iterative refinement and provides
error bounds and backward error estimates for the solution.

TABLE 30 General Matrix (Unsymmetric or Rectangular) Routines

Routine
Function

xGEJSV (P) Computes the singular value decomposition (SVD) of a real or complex general matrix.

DSGESV Computes the solution to a real system of linear equations with a general matrices
(mixed precision with iterative refinement).

Appendix A • Oracle Developer Studio Performance Library Routines 129

LAPACK Routines

Routine
Function

xGESVJ (P) Computes the singular value decomposition (SVD) of a real or complex general matrix.
Implements a preconditioned Jacobi SVD algorithm. Uses xGEQP3, xGEQR, xGELQF or
xGEQP3 as a preprocessor.

ZCGESV Computes the solution to a complex system of linear equations with a general matrices
(mixed precision with iterative refinement).

ZCPOSV Computes the solution to a complex system of linear equations with a positive definite
matrix (mixed precision with iterative refinement).

xGEBAK Forms the right or left eigenvectors of a general matrix by backward transformation on
the computed eigenvectors of the balanced matrix output by xGEBAL.

xGEBAL (P) Balances a real or complex general matrix.

xGEBD2 Reduces a general matrix to bidiagonal form (unblocked algorithm).

xGEBRD Reduces a general matrix to upper or lower bidiagonal form by an unitary or
orthogonal transformation (blocked algorithm).

xGECON Estimates the reciprocal of the condition number of a general matrix, using the
factorization computed by xGETRF.

xGEEQU (P) Computes row and column scalings intended to equilibrate a general rectangular matrix
and reduce its condition number.

xGEEQUB (P) Computes row and column scalings intended to equilibrate a general rectangular matrix
and reduce its condition number. Differs from xGETRF by restricting the scaling factors
to a power of the radix.

xGEES Computes the eigenvalues and Schur factorization of a general matrix (simple driver).

xGEESX Computes the eigenvalues and Schur factorization of a general matrix (expert driver).

xGEEV (P) Computes the eigenvalues and left and right eigenvectors of a general matrix (simple
driver).

xGEEVX (P) Computes the eigenvalues and left and right eigenvectors of a general matrix (expert
driver).

xGEGS Deprecated routine replaced by xGGES.

xGEGV (P) Deprecated routine replaced by xGGEV.

xGEHD2 Reduces a general square matrix to an upper Hessenberg form by the unitary or
orthogonal similarity transformation (unblocked algorithm).

xGEHRD (P) Reduces a general matrix to upper Hessenberg form by an orthogonal similarity
transformation.

xGELQ2 Computes the LQ factorization of a real or complex general rectangular matrix
(unblocked algorithm).

xGELQF Computes the LQ factorization of a general rectangular matrix.

xGELS (P) Computes the least squares solution to an over-determined system of linear equations
using a QR or LQ factorization of A.

xGELSD Computes the least squares solution to an over-determined system of linear equations
using a divide and conquer method and a QR or LQ factorization of A.

xGELSS Computes the minimum-norm solution to a linear least squares problem by using the
SVD of a general rectangular matrix (simple driver).

130 Oracle Developer Studio 12.6: Performance Library User's Guide • July 2017

LAPACK Routines

Routine
Function

xGELSX (P) Deprecated routine replaced by xSELSY.

xGELSY (P) Computes the minimum-norm solution to a linear least squares problem using a
complete orthogonal factorization.

xGEMQRT Overwrites a general matrix with the result of its transformation by an orthogonal
matrix, defined as the product of elementary reflectors generated using the compact
WY representation as returned by xGEQRT.

xGEQL2 Computes the QL factorization of a real or complex general rectangular matrix
(unblocked algorithm).

xGEQLF Computes the QL factorization of a real or complex general rectangular matrix.

xGEQP3 Computes the QR factorization of general rectangular matrix using Level 3 BLAS.

xGEQPF Deprecated routine replaced by xGEQP3.

xGEQR2 Computes the QR factorization of a real or complex general rectangular matrix
(unblocked algorithm).

xGEQR2P Computes the QR factorization of a real or complex general rectangular matrix with
non-negative diagonal elements (unblocked algorithm).

xGEQRFP Computes the QR factorization of a real or complex general rectangular matrix.

xGEQRT Computes a blocked QR factorization of a general real or complex matrix using the
compact WY representation of Q.

xGEQRT2 Computes a QR factorization of a general real or complex matrix using the compact
WY representation of Q.

xGEQRT3 (P) Recursively computes a QR factorization of a general real or complex matrix using the
compact WY representation of Q.

xGERFS (P) Refines the solution to a system of linear equations.

xGERFSX (P) Improves the computed solution to a system of linear equations and provides error
bounds and backward error estimates for the solution (extra precision).

xGERQ2 Computes the RQ factorization of a real or complex general rectangular matrix using
an unblocked algorithm.

xGERQF Computes the RQ factorization of a real or complex general rectangular matrix.

xGESDD Computes the singular value decomposition (SVD) of a real or complex general
rectangular matrix using a divide and conquer method (driver).

xGESV Solves a general system of linear equations (simple driver).

xGESVD Computes the singular value decomposition (SVD) for a real or complex general
matrix (driver).

xGESVDX Computes the singular value decomposition (SVD) for a real or complex general
matrix, allows the computation of a subset of singular values and vectors (driver).

xGESVJ Computes the singular value decomposition (SVD) of a real or complex general
rectangular matrix.

xGESVX (P) Solves a general system of linear equations (expert driver).

xGESVXX (P) Computes the solution to a system of linear equations for general matrices (extra
precision).

Appendix A • Oracle Developer Studio Performance Library Routines 131

LAPACK Routines

Routine
Function

xGETF2 Computes the LU factorization of a real or complex general matrix using partial
pivoting with row interchanges (unblocked algorithm).

xGETRF (P) Computes the LU factorization of a real or complex general rectangular matrix using
partial pivoting with row interchanges.

xGETRF2 (P) Computes the LU factorization of a real or complex general rectangular matrix using
partial pivoting with row interchanges (recursive algorithm).

xGETRI Computes the inverse of a general matrix using the factorization computed by xGETRF.

xGETRS Solves a general system of linear equations using the factorization computed by
xGETRF.

xGSVJ0 (P) Preprocessor for xGESVJ. Applies Jacobi rotations targeting only particular pivots.

xGSVJ1 (P) Preprocessor for xGESVJ. Applies Jacobi rotations in the same way as xGESVJ does, but
it does not check convergence (stopping criterion).

xLA_GEAMV (P) Performs a matrix-vector operation to calculate error bounds for a real or complex
general matrix.

CLA_GERCOND_C (P) or
ZLA_GERCOND_C (P)

Computes the infinity norm condition number of op(A)*inv(diag(c)) for a complex
general matrix. C is a REAL vector.

CLA_GERCOND_X (P) or
ZLA_GERCOND_X (P)

Computes the infinity norm condition number of op(A)*inv(diag(x)) for a complex
general matrix. X is a COMPLEX vector.

SLA_GERCOND(P) or
DLA_GERCOND (P)

Estimates the Skeel condition number for a real general matrix.

xLA_GERFSX_EXTENDED (P) Improves the computed solution to a system of linear equations for a real or complex
general matrix by performing extra-precise iterative refinement and provides error
bounds and backward error estimates for the solution.

xLA_GERFSX_GBRPVGRW Computes the reciprocal pivot growth factor norm(A)/norm(U) for a real or complex
general matrix.

xLALS0 (P) Applies back multiplying factors in solving the least squares problem using the divide
and conquer SVD approach. Used by xLALSA.

CLALSA (P) or ZLALSA (P) Computes the SVD of a complex matrix in compact form. Used by SGELSD.

SLALSA or DLALSA Computes the SVD of a real matrix in compact form. Used by SGELSD or DGELSD.

xLALSD (P) Solves the least squares problem using the SVD. Used by xGELSD.

TABLE 31 General Matrix-Generalized Problem (Pair of General Matrices) Routines

Routine
Function

xGGBAK Forms the right or left eigenvectors of a generalized eigenvalue problem based on the
output by xGGBAL.

xGGBAL (P) Balances a pair of general matrices for the generalized eigenvalue problem.

xGGES Computes the generalized eigenvalues, Schur form, and, optionally, left and/or right
Schur vectors for two nonsymmetric matrices (simple driver).

132 Oracle Developer Studio 12.6: Performance Library User's Guide • July 2017

LAPACK Routines

Routine
Function

xGGES3 Computes the generalized eigenvalues, Schur form, and, optionally, left and/or right
Schur vectors for two nonsymmetric matrices using a blocked algorithm (simple
driver).

xGGESX Computes the generalized eigenvalues, Schur form, and, optionally, left and/or right
Schur vectors (expert driver).

xGGEV (P) Computes the generalized eigenvalues and the left and/or right generalized
eigenvectors for two nonsymmetric matrices (simple driver).

xGGEV3 Computes the generalized eigenvalues and the left and/or right generalized
eigenvectors for two nonsymmetric matrices using a blocked algorithm (expert driver).

xGGEVX (P) Computes the generalized eigenvalues and the left and/or right generalized
eigenvectors for two nonsymmetric matrices (expert driver).

xGGGLM (P) Solves the general Gauss-Markov linear model (GLM) problem.

xGGHD3 (P) Reduces two matrices to the generalized upper Hessenberg form using orthogonal
transformations. This is a blocked variant of xGGHRD used to enhance performance.

xGGHRD (P) Reduces two matrices to the generalized upper Hessenberg form using orthogonal
transformations.

xGGLSE Solves the LSE (Constrained Linear Least Squares Problem) using the GRQ
(Generalized RQ) factorization.

xGGQRF Computes the generalized QR factorization of two matrices.

xGGRQF Computes the generalized RQ factorization of two matrices.

xGGSVD Computes the generalized singular value decomposition (driver).

xGGSVD3 Computes the generalized singular value decomposition (driver).

xGGSVP (P) Computes an orthogonal or unitary matrix as a preprocessing step for calculating the
generalized singular value decomposition using xGGSVD.

xGGSVP3 (P) Computes an orthogonal or unitary matrix as a preprocessing step for calculating the
generalized singular value decomposition using xGGSVD3.

TABLE 32 General Tridiagonal Matrix Routines

Routine
Function

xGTCON Estimates the reciprocal of the condition number of a tridiagonal matrix, using the LU
factorization as computed by xGTTRF.

xGTRFS (P) Refines the solution to a general tridiagonal system of linear equations.

xGTSV (P) Solves a general tridiagonal system of linear equations (simple driver).

xGTSVX Solves a general tridiagonal system of linear equations (expert driver).

xGTTRF (P) Computes an LU factorization of a general tridiagonal matrix using partial pivoting and
row exchanges.

xGTTRS Solves general tridiagonal system of linear equations using the factorization computed
by xGTTRF.

xGTTS2 (P) Solves a system of linear equations with a tridiagonal matrix using the LU factorization
computed by xGTTRF.

Appendix A • Oracle Developer Studio Performance Library Routines 133

LAPACK Routines

TABLE 33 Hermitian Band Matrix Routines

Routine
Function

CHBEV or ZHBEV Computes all the eigenvalues and eigenvectors of a Hermitian band matrix.
Replacement with newer version CHBEVD or ZHBEVD suggested.

CHBEVD or ZHBEVD Computes all the eigenvalues and eigenvectors of a Hermitian band matrix and uses a
divide and conquer method to calculate eigenvectors (driver).

CHBEVX (P) or ZHBEVX (P) Computes selected eigenvalues and eigenvectors of a Hermitian band matrix.

CHBGST (P) or ZHBGST (P) Reduces Hermitian-definite banded generalized eigenproblem to a standard form.

CHBGV or ZHBGV Computes all the eigenvalues and eigenvectors of a generalized Hermitian-definite
banded eigenproblem. Replacement with newer version CHBGVD or ZHBGVD suggested.

CHBGVD or ZHBGVD Computes all the eigenvalues and eigenvectors of a generalized Hermitian-definite
banded eigenproblem and uses a divide and conquer method to calculate eigenvectors
(driver).

CHBGVX (P) or ZHBGVX (P) Computes selected eigenvalues and eigenvectors of a generalized Hermitian-definite
banded eigenproblem.

CHBTRD (P) or ZHBTRD (P) Reduces a Hermitian band matrix to a real symmetric tridiagonal form by using a
unitary similarity transformation.

TABLE 34 Hermitian Matrix Routines

Routine
Function

CHECON or ZHECON Estimates the reciprocal of the condition number of a Hermitian matrix using the
factorization computed by CHETRF or ZHETRF.

CHECON_ROOK or
ZHECON_ROOK

Estimates the reciprocal of the condition number of a Hermitian matrix using the
factorization computed by CHETRF_ROOK or ZHETRF_ROOK.

CHEEQUB (P) or ZHEEQUB
(P)

Computes row and column scalings intended to equilibrate a Hermitian matrix and
reduce its condition number with respect to the two-norm.

CHEEV or ZHEEV Computes all the eigenvalues and eigenvectors of a Hermitian matrix (simple driver).
Replacement with newer version CHEEVR or ZHEEVR suggested.

CHEEVD or ZHEEVD Computes all the eigenvalues and eigenvectors of a Hermitian matrix and uses a
divide and conquer method to calculate eigenvectors (driver). Replacement with newer
version CHEEVR or ZHEEVR suggested.

CHEEVR or ZHEEVR Computes selected eigenvalues and the eigenvectors of a complex Hermitian matrix.

CHEEVX (P) or ZHEEVX (P) Computes selected eigenvalues and eigenvectors of a Hermitian matrix (expert driver).

CHEGST or ZHEGST Reduces a Hermitian-definite generalized eigenproblem to a standard form using the
factorization computed by CPOTRF or ZPOTRF.

CHEGV or ZHEGV Computes all the eigenvalues and eigenvectors of a complex generalized Hermitian-
definite eigenproblem. Replacement with newer version CHEGVD or ZHEGVD suggested.

CHEGVD or ZHEGVD Computes all the eigenvalues and eigenvectors of a complex generalized Hermitian-
definite eigenproblem and uses a divide and conquer method to calculate eigenvectors
(driver).

134 Oracle Developer Studio 12.6: Performance Library User's Guide • July 2017

LAPACK Routines

Routine
Function

CHEGVX or ZHEGVX Computes selected eigenvalues and eigenvectors of a complex generalized Hermitian-
definite eigenproblem.

CHERFS (P) or ZHERFS (P) Improves the computed solution to a system of linear equations when the coefficient
matrix is Hermitian indefinite.

CHERFSX (P) or ZHERFSX
(P)

Improves the computed solution to a system of linear equations when the coefficient
matrix is Hermitian indefinite (extra precision).

CHESV or ZHESV Solves a complex Hermitian-indefinite system of linear equations (simple driver).
CHETRF is called to compute the factorization of a complex Hermitian matrix

CHESV_ROOK or ZHESV_ROOK Solves a complex Hermitian-indefinite system of linear equations (simple driver).
CHETRF_ROOK is called to compute the factorization of a complex Hermitian matrix.

CHESVX or ZHESVX Solves a complex Hermitian-indefinite system of linear equations (expert driver).

CHESVXX (P) or ZHESVXX
(P)

Computes the solution to a complex system of linear equations with a square
symmetric matrix using the diagonal pivoting factorization (extra precision).

CHETD2 or ZHETD2 Reduces a complex Hermitian matrix to a real symmetric tridiagonal form by an
unitary similarity transformation (an unblocked algorithm).

CHETF2 (P) or ZHETF2 (P) Computes the factorization of a complex Hermitian matrix using the diagonal pivoting
method (unblocked algorithm).

CHETF2_ROOK (P) or
ZHETF2_ROOK (P)

Computes the factorization of a complex Hermitian matrix using the bounded Bunch-
Kaufman ("rook") diagonal pivoting method (unblocked algorithm).

CHETRD or ZHETRD Reduces a Hermitian matrix to a real symmetric tridiagonal form by using a unitary
similarity transformation.

CHETRF (P) or ZHERTF (P) Computes the factorization of a complex Hermitian-indefinite matrix using the
diagonal pivoting method.

CHETRF_ROOK (P) or
ZHERTF_ROOK (P)

Computes the factorization of a complex Hermitian-indefinite matrix using the Bunch-
Kaufman ("rook") diagonal pivoting method.

CHETRI (P) or ZHETRI (P) Computes the inverse of a complex Hermitian indefinite matrix using the factorization
computed by CHETRF or ZHETRF.

CHETRI_ROOK (P) or
ZHETRI_ROOK (P)

Computes the inverse of a complex Hermitian indefinite matrix using the factorization
computed by CHETRF_ROOK or ZHETRF_ROOK.

CHETRI2 or ZHETRI2 Computes the inverse of a complex Hermitian-indefinite matrix using the factorization
computed by CHETRF or ZHETRS.Sets the leading dimension of the workspace before
calling CHETRI2X or ZHETRI2X that actually computes the inverse (extra precision).

CHETRI2X (P) or ZHETRI2X
(P)

Computes the inverse of a complex Hermitian-indefinite matrix using the factorization
computed by CHETRF or ZHETRS (extra precision).

CHETRS (P) or ZHETRS (P) Solves a complex Hermitian-indefinite matrix using the factorization computed by
CHETRF or ZHETRF.

CHETRS_ROOK (P) or
ZHETRS_ROOK (P)

Solves a complex Hermitian-indefinite matrix using the factorization computed by
CHETRF_ROOK or ZHETRF_ROOK.

CHETRS2 (P) or ZHETRS2
(P)

Solves a system of linear equations with a complex Hermitian matrix using the
factorization computed by CHETRF or ZHERTF and converted by CSYCONV or ZSYCONV.

CHFRK (P) or ZHFRK (P) Performs a Hermitian rank-k operation for a matrix in the RFP format.

Appendix A • Oracle Developer Studio Performance Library Routines 135

LAPACK Routines

Routine
Function

CLA_HEAMV or ZLA_HEAMV Performs a matrix-vector operation to calculate error bounds for a complex Hermitian-
indefinite matrix.

CLA_HERCOND_C (P) or
ZLA_HERCOND_C (P)

Computes the infinity norm condition number of op(A)*inv(diag(c)) for a complex
Hermitian-indefinite matrix. C is a REAL vector.

CLA_HERCOND_X (P) or
ZLA_HERCOND_X (P)

Computes the infinity norm condition number of op(A)*inv(diag(x)) for a complex
Hermitian-indefinite matrix. X is a COMPLEX vector.

CLA_HERFSX_EXTENDED (P)
or ZLA_HERFSX_EXTENDED
(P)

Improves the computed solution to a system of linear equations for a complex
Hermitian-indefinite matrix by performing extra-precise iterative refinement and
provides error bounds and backward error estimates for the solution.

CLAHEF (P) or ZLAHEF (P) Computes a partial factorization of a complex Hermitian-indefinite matrix, using the
diagonal pivoting method. Used by CHETRF or CHETRF.

CLAHEF_ROOK (P) or
ZLAHEF_ROOK (P)

Computes a partial factorization of a complex Hermitian-indefinite matrix, using
the Bunch-Kaufman ("rook") diagonal pivoting method. Used by CHETRF_ROOK or
CHETRF_ROOK.

TABLE 35 Hermitian Matrix in Packed Storage Routines

Routine
Function

CHPCON or ZHPCON Estimates the reciprocal of the condition number of a Hermitian-indefinite matrix in
packed storage using the factorization computed by CHPTRF or ZHPTRF.

CHPEV or ZHPEV Computes all the eigenvalues and eigenvectors of a Hermitian matrix in packed storage
(simple driver). Replacement with newer version CHPEVD or ZHPEVD suggested.

CHPEVX (P) or ZHPEVX (P) Computes selected eigenvalues and eigenvectors of a Hermitian matrix in packed
storage (expert driver).

CHPEVD or ZHPEVD Computes all the eigenvalues and eigenvectors of a Hermitian matrix in packed
storage, and uses a divide and conquer method to calculate eigenvectors (driver).

CHPGST or ZHPGST Reduces a Hermitian-definite generalized eigenproblem to standard form, where the
coefficient matrices are in packed storage, and uses the factorization computed by
CPPTRF or ZPPTRF.

CHPGV or ZHPGV Computes all the eigenvalues and eigenvectors of a generalized Hermitian-definite
eigenproblem where the coefficient matrices are in packed storage (simple driver).
Replacement with newer version CHPGVD or ZHPGVD suggested.

CHPGVD or ZHPGVD Computes all the eigenvalues and eigenvectors of a generalized Hermitian-definite
eigenproblem where the coefficient matrices are in packed storage, and uses a divide
and conquer method to calculate eigenvectors (driver).

CHPGVX or ZHPGVX Computes selected eigenvalues and eigenvectors of a complex Hermitian-definite
eigenproblem, where the coefficient matrices are in packed storage (expert driver).

CHPRFS (P) or ZHPRFS (P) Improves the computed solution to a system of linear equations when the coefficient
matrix is Hermitian indefinite in packed storage.

CHPSV or ZHPSV Computes the solution to a complex system of linear equations where the coefficient
matrix is a Hermitian matrix stored in the packed format (simple driver).

136 Oracle Developer Studio 12.6: Performance Library User's Guide • July 2017

LAPACK Routines

Routine
Function

CHPSVX or ZHPSVX Uses the diagonal pivoting factorization to compute the solution to a complex system
of linear equations where the coefficient matrix is a Hermitian matrix stored in the
packed format (expert driver).

CHPTRD or ZHPTRD Reduces a complex Hermitian matrix stored in the packed form to a real symmetric
tridiagonal form by the unitary similarity transformation.

CHPTRF or ZHPTRF Computes the factorization of a complex Hermitian packed matrix using the Bunch-
Kaufman diagonal pivoting method.

CHPTRI or ZHPTRI Computes the inverse of a complex Hermitian-indefinite matrix in packed storage
using the factorization computed by CHPTRF or ZHPTRF.

CHPTRS (P) or ZHPTRS (P) Solves a complex Hermitian-indefinite matrix stored in the packed format using the
factorization computed by CHPTRF or ZHPTRF.

TABLE 36 Upper Hessenberg Matrix Routines

Routine
Function

xHSEIN (P) Computes the specified right and/or left eigenvectors of an upper Hessenberg matrix
using inverse iteration.

CHSEQR or ZHSEQR Computes the eigenvalues of a complex upper Hessenberg matrix and the Shur
factorization using the multishift QR algorithm.

SHSEQR (P) or DHSEQR (P) Computes the eigenvalues of a real upper Hessenberg matrix and the Shur factorization
using the multishift QR algorithm.

TABLE 37 Upper Hessenberg Matrix-Generalized Problem (Hessenberg and Triangular Matrix)
Routines

Routine
Function

xHGEQZ (P) Computes the eigenvalues of a complex matrix pair (H,T), where H is an upper
Hessenberg matrix and T is an upper triangular, using the single/double-shift QZ
method. Matrix pairs of this type are produced by xGGHRD.

TABLE 38 Real Orthogonal Matrix in Packed Storage Routines

Routine
Function

SOPGTR (P) or DOPGTR (P) Generates an orthogonal transformation matrix from a real tridiagonal matrix
determined by SSPTRD or DSPTRD.

SOPMTR or DOPMTR Multiplies a real general matrix by the orthogonal transformation matrix reduced to the
tridiagonal form by SSPTRD or DSPTRD.

Appendix A • Oracle Developer Studio Performance Library Routines 137

LAPACK Routines

TABLE 39 Real Orthogonal Matrix Routines

Routine
Function

SORBDB or DORBDB Simultaneously bidiagonalizes the blocks of a real partitioned orthogonal matrix.

SORBDB1 or DORBDB1 Simultaneously bidiagonalizes the blocks of a tall and skinny matrix with orthonormal
columns (variant 1).

SORBDB2 or DORBDB2 Simultaneously bidiagonalizes the blocks of a tall and skinny matrix with orthonormal
columns (variant 2).

SORBDB3 or DORBDB3 Simultaneously bidiagonalizes the blocks of a tall and skinny matrix with orthonormal
columns (variant 3).

SORBDB4 or DORBDB4 Simultaneously bidiagonalizes the blocks of a tall and skinny matrix with orthonormal
columns (variant 4).

SORBDB5 or DORBDB5 Orthogonalizes the column vector X with respect to the orthonormal columns of Q.

SORBDB6 or DORBDB6 Orthogonalizes the column vector X with respect to the orthonormal columns of Q.
Used by SORBDB4 or DORBDB5.

SORG2L (P) or DORG2L (P) Generates all or part of a real orthogonal matrix Q from a QL factorization, as
determined by SGEQLF or DGEQLF (unblocked algorithm).

SORG2R (P) or DORG2R (P) Generates all or part of a real orthogonal matrix Q from a QR factorization, as
determined by SGEQRF or DGEQRF (unblocked algorithm).

SORGBR (P) or DORGBR Generates the real orthogonal transformation matrices from reduction to the bidiagonal
form, as determined by SGEBRD or DGEBRD.

SORGHR (P) or DORGHR (P) Generates the real orthogonal transformation matrix reduced to the Hessenberg form,
as determined by SGEHRD or DGEHRD.

SORGL2 (P) or DORGL2 (P) Generates a real rectangular matrix with orthonormal rows, as returned by SGELQF or
DGELQF.

SORGLQ (P) or DORGLQ (P) Generates a real orthogonal matrix Q from an LQ factorization, as returned by SGELQF
or DGELQF.

SORGQL (P) or DORGQL (P) Generates a real orthogonal matrix Q from a QL factorization, as returned by SGEQLF or
DGEQLF.

SORGQR (P) or DORGQR (P) Generates a real orthogonal matrix Q from a QR factorization, as returned by SGEQRF or
DGEQRF.

SORGR2 (P) or DORGR2 (P) Generates all or part of a real orthogonal matrix Q from an RQ factorization
determined SGEQRF or DGEQRF (unblocked algorithm).

SORGRQ (P) or DORGRQ (P) Generates a real orthogonal matrix Q from an RQ factorization, as returned by SGERQF
or DGERQF.

SORGTR (P) or DORGTR (P) Generates a real orthogonal matrix reduced to tridiagonal form by SSYTRD or DSYTRD.

SORM22 or DORM22 Multiplies a real general matrix by the orthogonal matrix.

SORM2L or DORM2L Multiplies a real general matrix by the orthogonal matrix from a QL factorization
determined by SGEQLF or DGEQLF (unblocked algorithm).

SORM2R or DORM2R Multiplies a real general matrix by the orthogonal matrix from a QR factorization
determined by SGEQRF or DGEQRF (unblocked algorithm).

SORMBR or DORMBR Multiplies a real general matrix with the orthogonal matrix reduced to the bidiagonal
form, as determined by SGEBRD or DGEBRD.

138 Oracle Developer Studio 12.6: Performance Library User's Guide • July 2017

LAPACK Routines

Routine
Function

SORMHR or DORMHR Multiplies a real general matrix by the orthogonal matrix reduced to the Hessenberg
form by SGEHRD or DGEHRD.

SORML2 or DORML2 Multiplies a real general matrix by the orthogonal matrix from an LQ factorization
determined by SGELQF (unblocked algorithm).

SORMLQ or DORMLQ Multiplies a real general matrix by the orthogonal matrix from an LQ factorization, as
returned by SGELQF or DGELQF.

SORMQL or DORMQL Multiplies a real general matrix by the orthogonal matrix from a QL factorization, as
returned by SGEQLF or DGEQLF.

SORMQR or DORMQR Multiplies a real general matrix by the orthogonal matrix from a QR factorization, as
returned by SGEQRF or DGEQRF.

SORMR2 or DORMR2 Multiplies a real general matrix by the orthogonal matrix from an RQ factorization
determined by STZRZF or DTZRZF (unblocked algorithm).

SORMR3 or DORMR3 Multiplies a real general matrix by the orthogonal matrix from an RZ factorization
determined by STZRZF or DTZRZF (unblocked algorithm).

SORMRQ or DORMRQ Multiplies a real general matrix by the orthogonal matrix from an RQ factorization
returned by SGERQF or DGERQF.

SORMRZ or DORMRZ Multiplies a real general matrix by the orthogonal matrix from an RZ factorization, as
returned by STZRZF or DTZRZF.

SORMTR or DORMTR Multiplies a real general matrix by the orthogonal transformation matrix reduced to
tridiagonal form by SSYTRD or DSYTRD.

TABLE 40 Symmetric or Hermitian Positive Definite Band Matrix Routines

Routine
Function

xPBCON Estimates the reciprocal of the condition number of a symmetric or Hermitian positive
definite band matrix using the Cholesky factorization returned by xPBTRF.

xPBEQU (P) Computes equilibration scale factors for a symmetric or Hermitian positive definite
band matrix.

xPBRFS (P) Refines solution to a symmetric or Hermitian positive definite banded system of linear
equations.

xPBSTF Computes a split Cholesky factorization of a real symmetric positive definite band
matrix.

xPBSV Solves a symmetric or Hermitian positive definite banded system of linear equations
(simple driver).

xPBSVX (P) Solves a symmetric or Hermitian positive definite banded system of linear equations
(expert driver).

xPBTF2 Computes the Cholesky factorization of a real symmetric or complex Hermitian
positive definite band matrix (unblocked algorithm).

xPBTRF Computes the Cholesky factorization of a symmetric or Hermitian positive definite
band matrix.

xPBTRS Solves a system of linear equations with a real symmetric or complex Hermitian
positive definite banded matrix using the Cholesky factorization computed by xPBTRF.

Appendix A • Oracle Developer Studio Performance Library Routines 139

LAPACK Routines

TABLE 41 Symmetric or Hermitian Positive Definite Matrix Routines

Routine
Function

CLA_PORCOND_C (P) or
ZLA_PORCOND_C (P)

Computes the infinity norm condition number of op(A)*inv(diag(c)) for a complex
Hermitian positive definite matrix. C is a REAL vector.

CLA_PORCOND_X (P) or
ZLA_PORCOND_X (P)

Computes the infinity norm condition number of op(A)*inv(diag(x)) for a complex
Hermitian positive definite matrix. X is a COMPLEX vector.

SLA_PORCOND (P) or
DLA_PORCOND(P)

Estimates the Skeel condition number for a real symmetric positive definite matrix.

xLA_LIN_BERR (P) Computes a component-wise relative backward error.

xLA_PORFSX_EXTENDED (P) Improves the computed solution to a system of linear equations for a real symmetric
or complex Hermitian positive definite matrix by performing extra-precise iterative
refinement and provides error bounds and backward error estimates for the solution.

xLA_WWADDW Adds a vector W into a doubled-single vector (X, Y). This works for all extant IBM's
hex and binary floating point arithmetics, but not for decimal.

xPFTRF Computes the Cholesky factorization of a real symmetric or Hermitian positive definite
band matrix.

xPFTRI Computes the inverse of a real symmetric or Hermitian positive definite matrix, using
the Cholesky factorization computed by xPFTRF.

xPFTRS Solves a system of linear equations with a symmetric or Hermitian positive definite
matrix, using the Cholesky factorization computed by xPFTRF.

xPOCON Estimates the reciprocal of the condition number of a symmetric or Hermitian positive
definite matrix, using the Cholesky factorization returned by xPOTRF.

xPOEQU (P) Computes equilibration scale factors for a symmetric or Hermitian positive definite
matrix.

xPOEQUB (P) Computes row and column scalings intended to equilibrate a symmetric or Hermitian
positive definite matrix and reduce its condition number with respect to the two-norm.

xPORFS (P) Refines the solution to a linear system in a Cholesky-factored symmetric or Hermitian
positive definite matrix.

xPORFSX (P) Improves the computed solution to a system of linear equations, when the coefficient
matrix is a real symmetric or Hermitian positive definite, and provides the error bounds
and backward-error estimates for the solution (extra precision).

xPOSV Solves a symmetric or Hermitian positive definite system of linear equations (simple
driver).

xPOSVX (P) Solves a symmetric or Hermitian positive definite system of linear equations (expert
driver).

xPOSVXX (P) Solves a real symmetric or Hermitian positive definite system of linear equations
(expert driver, extra precision). If requested, both normwise and maximum component-
wise error bounds are returned.

xPOTRF Computes the Cholesky factorization of a real symmetric or Hermitian positive definite
matrix.

xPOTRF2 Computes the Cholesky factorization of a real symmetric or Hermitian positive definite
matrix using the recursive algorithm.

xPOTRI Computes the inverse of a real symmetric or Hermitian positive definite matrix using
the Cholesky-factorization computed by xPOTRF.

140 Oracle Developer Studio 12.6: Performance Library User's Guide • July 2017

LAPACK Routines

Routine
Function

xPOTRS Solves a real symmetric or Hermitian positive definite system of linear equations, using
the Cholesky factorization computed by xPOTRF.

ZCPOSV Computes the solution to a complex system of linear equations with a positive definite
matrix (mixed precision with iterative refinement).

TABLE 42 Symmetric or Hermitian Positive Definite Matrix in Packed Storage Routines

Routine
Function

xPPCON Estimates the reciprocal of the condition number of a Cholesky-factored symmetric
positive definite matrix in packed storage.

xPPEQU (P) Computes equilibration scale factors for a symmetric or Hermitian positive definite
matrix in packed storage.

xPPRFS (P) Refines the solution to a linear system of equations in a Cholesky-factored symmetric
or Hermitian positive definite matrix in packed storage.

xPPSV Solves a linear system in a symmetric or Hermitian positive definite matrix in packed
storage (simple driver).

xPPSVX (P) Solves a linear system in a symmetric or Hermitian positive definite matrix in packed
storage (expert driver).

xPPTRF Computes the Cholesky factorization of a real symmetric or Hermitian positive definite
matrix stored in the packed format.

xPPTRI Computes the inverse of a real symmetric or Hermitian positive definite matrix in
packed storage using the Cholesky factorization returned by xPPTRF.

xPPTRS Solves a real symmetric or Hermitian positive definite system of linear equations where
the coefficient matrix is in packed storage, using the Cholesky factorization returned by
xPPTRF.

xPSTF2 (P) Computes the Cholesky factorization with complete pivoting of a real symmetric or
Hermitian positive-semi-definite matrix. This version of the algorithm calls level 2
BLAS.

xPSTRF (P) Computes the Cholesky factorization with complete pivoting of a real symmetric or
Hermitian positive-semi-definite matrix. This version of the algorithm calls level 3
BLAS.

TABLE 43 Symmetric or Hermitian Positive Definite Tridiagonal Matrix Routines

Routine
Function

xPTCON Estimates the reciprocal of the condition number of a real symmetric or Hermitian
positive definite tridiagonal matrix using the Cholesky factorization computed by
xPTTRF.

xPTEQR (P) Computes all the eigenvectors and, optionally, the eigenvalues of a real symmetric or
Hermitian positive definite matrix.

xPTRFS (P) Refines the solution to a symmetric or Hermitian positive definite tridiagonal system of
linear equations.

Appendix A • Oracle Developer Studio Performance Library Routines 141

LAPACK Routines

Routine
Function

xPTSV Solves a real symmetric or Hermitian positive definite tridiagonal system of linear
equations (simple driver).

xPTSVX Solves a real symmetric or Hermitian positive definite tridiagonal system of linear
equations (expert driver).

xPTTRF Computes the LDLH or LDLT factorization of a real symmetric or Hermitian positive
definite tridiagonal matrix.

xPTTRS Solves a real symmetric or Hermitian positive definite tridiagonal system of linear
equations using the LDLH or LDLT factorization returned by xPTTRF.

xPTTS2 (P) Solves a tridiagonal system of linear equations using the LDLH or LDLT factorization
computed by xPTTRF. Used by xPTTRS.

TABLE 44 Real Symmetric Band Matrix Routines

Routine
Function

SSBEV or DSBEV Computes all the eigenvalues and, optionally, the left and/or right eigenvectors of a real
symmetric band matrix (simple driver). Replacement with newer version SSBEVD or
DSBEVD suggested.

SSBEVD or DSBEVD Computes all the eigenvalues and, optionally, the eigenvectors of a real symmetric
band matrix. If eigenvectors are desired, it uses a divide and conquer algorithm.
(driver)

SSBEVX (P) or DSBEVX (P) Computes selected eigenvalues and, optionally, the left and/or right eigenvectors of a
symmetric band matrix (expert driver).

SSBGST (P) or DSBGST (P) Reduces a symmetric-definite banded generalized eigenproblem to a standard form.

SSBGV or DSBGV Computes all the eigenvalues and, optionally, the eigenvectors of a generalized
symmetric-definite banded eigenproblem (simple driver). Replacement with newer
version SSBGVD or DSBGVD suggested.

SSBGVD or DSBGVD Computes all the eigenvalues and, optionally, the eigenvectors of generalized
symmetric-definite banded eigenproblem and uses a divide and conquer method to
calculate eigenvectors (simple driver).

SSBGVX (P) or DSBGVX (P) Computes selected eigenvalues and eigenvectors of a generalized symmetric-definite
banded eigenproblem (expert driver).

SSBTRD (P) or DSBTRD (P) Reduces a symmetric band matrix to real symmetric tridiagonal form by using an
orthogonal similarity transformation.

TABLE 45 Symmetric Matrix in Packed Storage Routines

Routine
Function

xSPCON Estimates the reciprocal of the condition number of a real or complex symmetric
packed matrix using the factorization computed by xSPTRF.

SSFRK (P) or DSFRK (P) Performs a symmetric rank-k operation for a real matrix in RFP format.

SSPEV or DSPEV Computes all the eigenvalues and eigenvectors of a symmetric matrix in packed storage
(simple driver). Replacement with newer version SSPEVD or DSPEVD suggested.

142 Oracle Developer Studio 12.6: Performance Library User's Guide • July 2017

LAPACK Routines

Routine
Function

SSPEVD or DSPEVD Computes all the eigenvalues and, optionally, the light and/or right eigenvectors of a
symmetric matrix in packed storage. If eigenvectors are desired, it uses a divide and
conquer algorithm (simple driver).

SSPEVX (P) or DSPEVX (P) Computes selected eigenvalues and eigenvectors of a symmetric matrix in packed
storage (expert driver).

SSPGST or DSPGST Reduces a real symmetric-definite generalized eigenproblem to a standard form where
the coefficient matrices are in packed storage and uses the factorization computed by
SPPTRF or DPPTRF. Replacement with newer version SSPGVD or DSPGVD suggested.

SSPGV or DSPGV Computes all the eigenvalues and eigenvectors of a real generalized symmetric-definite
eigenproblem where the coefficient matrices are in packed storage (simple driver).
Replacement with newer version SSPGVD or DSPGVD suggested.

SSPGVD or DSPGVD Computes all the eigenvalues and eigenvectors of a real generalized symmetric-definite
eigenproblem where the coefficient matrices are in packed storage, and uses a divide
and conquer method to calculate eigenvectors (driver).

SSPGVX or DSPGVX Computes selected eigenvalues and eigenvectors of a real generalized symmetric-
definite eigenproblem where the coefficient matrices are in packed storage (expert
driver).

DSPOSV Computes the solution to a real system of linear equations with a real symmetric
positive definite matrix: first attempts to factorize the matrix in single precision, then,
if necessary - with double precision.

xSPRFS (P) Improves the computed solution to a real or complex system of linear equations when
the coefficient matrix is symmetric indefinite in packed storage.

xSPSV Computes the solution to a real or complex system of linear equations where the
coefficient matrix is a symmetric matrix in packed storage (simple driver).

xSPSVX Uses the diagonal pivoting factorization to compute the solution to a system of linear
equations where the coefficient matrix is a symmetric matrix in packed storage (expert
driver).

SSPTRD or DSPTRD Reduces a real symmetric matrix stored in the packed form to a real symmetric
tridiagonal form using an orthogonal similarity transformation.

xSPTRF Computes the factorization of a symmetric packed matrix using the Bunch-Kaufman
diagonal pivoting method.

xSPTRI Computes the inverse of a symmetric indefinite matrix in packed storage using the
factorization computed by xSPTRF.

xSPTRS (P) Solves a system of linear equations with a real or complex symmetric matrix in packed
storage using the factorization computed by xSPTRF.

TABLE 46 Real Symmetric Tridiagonal Matrix Routines

Routine
Function

xLAED0 (P) Computes all the eigenvalues and corresponding eigenvectors of a real or complex
unreduced symmetric tridiagonal matrix using the divide and conquer method. Used by
xSTEDC.

Appendix A • Oracle Developer Studio Performance Library Routines 143

LAPACK Routines

Routine
Function

SLAED1 (P) or DLAED1 (P) Computes the updated eigensystem of a real diagonal matrix after modification by a
rank-one symmetric matrix. Used by SSTEDC or DSTEDC, when the original matrix is
tridiagonal.

SLAED2 (P) or DLAED2 (P) Merges the two sets of eigenvalues together into a single sorted set and tries to deflate
the size of the problem. Used by SSTEDC or DSTEDC.

SLAED3 (P) or DLAED3 Finds the roots of the secular equation and updates the eigenvectors. Used by SSTEDC or
DSTEDC, when the original matrix is tridiagonal.

SLAED4 (P) or DLAED4 (P) Finds a single root of the secular equation. Used by SSTEDC or DSTEDC.

SLAED5 or DLAED5 Solves a 2-by-2 secular equation. Used by SSTEDC or DSTEDC.

SLAED6 or DLAED6 Computes the positive or negative root closest to the origin (one Newton step in
solution of the secular equation).

xLAED7 (P) Computes the updated eigensystem of a diagonal matrix after modification by a rank-
one symmetric matrix. Used by xSTEDC, when the original matrix is dense.

xLAED8 (P) Merges the two sets of eigenvalues into a single sorted set and deflates the secular
equation. Used by xSTEDC, when the original matrix is dense.

SLAED9 (P) or DLAED9 (P) Finds the roots of the secular equation and updates the eigenvectors. Used by SSTEDC or
DSTEDC, when the original matrix is dense.

SLAEDA (P) or DLAEDA (P) Computes a vector determining the rank-one modification of the diagonal matrix. Used
by SSTEDC or DSTEDC, when the original matrix is dense.

SLAGTF or DLAGTF (P) Computes an LU factorization of a matrix T - (lambda * I), where T is a general
tridiagonal matrix, and lambda is a scalar, using partial pivoting with row interchanges.
Used by SSTEIN or DSTEIN.

SSTEBZ or DSTEBZ Computes the eigenvalues of a real symmetric tridiagonal matrix.

CSTEDC (P) or ZSTEDC (P) Computes all the eigenvalues and, optionally, eigenvectors of a symmetric tridiagonal
matrix using the divide and conquer method. The eigenvectors of a full or band
complex Hermitian matrix can also be found if CHETRD/ZHETRD, CHPTRD/ZHPTRD, or
CHBTRD/ZHBTRD has been used to reduce this matrix to tridiagonal form.

SSTEDC or DSTEDC Computes all the eigenvalues and eigenvectors of a complex symmetric tridiagonal
matrix using the divide and conquer method. The eigenvectors of a full or band real
symmetric matrix can also be found if SSYTRD, SSPTRD, or SSBTRD; or DSYTRD, DSPTRD,
or DSBTRD has been used to reduce this matrix to tridiagonal form.

xSTEGR Computes selected eigenvalues and eigenvectors of a real symmetric tridiagonal matrix
using Relatively Robust Representations, xSTEGR is a compatibility wrapper around the
improved xSTEMR routine.

xSTEIN (P) Computes selected eigenvectors of a real symmetric tridiagonal matrix using inverse
iteration.

xSTEMR (P) Computes the selected eigenvalues and, optionally, eigenvectors of a real symmetric
tridiagonal matrix using Relatively Robust Representations.

xSTEQR (P) Computes all the eigenvalues and eigenvectors of a real symmetric tridiagonal matrix
using the Pal-Walker-Kahan variant of a QL or QR algorithm.

SSTERF (P) or DSTERF (P) Computes all the eigenvalues and eigenvectors of a real symmetric tridiagonal matrix
using a root-free QL or QR algorithm variant.

144 Oracle Developer Studio 12.6: Performance Library User's Guide • July 2017

LAPACK Routines

Routine
Function

SSTEV or DSTEV Computes all the eigenvalues and eigenvectors of a real symmetric tridiagonal matrix
(simple driver). Replacement with newer version SSTEVR or DSTEVR suggested.

SSTEVD or DSTEVD Computes all the eigenvalues and eigenvectors of a real symmetric tridiagonal matrix
(simple driver). Replacement with newer version SSTEVR or DSTEVR suggested.

SSTEVR or DSTEVR Computes selected eigenvalues and eigenvectors of a real symmetric tridiagonal matrix
using Relatively Robust Representations.

SSTEVX (P) or DSTEVX (P) Computes selected eigenvalues and eigenvectors of a real symmetric tridiagonal matrix
(expert driver).

xSTSV Computes the solution to a system of linear equations where the coefficient matrix is a
symmetric tridiagonal matrix (unblocked algorithm).

xSTTRF (P) Computes the factorization of a real or complex symmetric tridiagonal matrix using the
Bunch-Kaufman diagonal pivoting method (unblocked algorithm).

TABLE 47 Symmetric Matrix Routines

Routine
Function

xLA_SYAMV Performs a matrix-vector operation to calculate error bounds for a real or complex
symmetric indefinite matrix.

CLA_SYRCOND_C (P) or
ZLA_SYRCOND_C (P)

Computes the infinity norm condition number of op(A)*inv(diag(c)) for a real or
complex symmetric indefinite matrix. C is a REAL vector.

CLA_SYRCOND_X (P) or
ZLA_SYRCOND_X (P)

Computes the infinity norm condition number of op(A)*inv(diag(x)) for a real or
complex symmetric indefinite matrix. X is a COMPLEX vector.

SLA_SYRCOND (P) or
DLA_SYRCOND(P)

Estimates the Skeel condition number for a real symmetric indefinite matrix.

xLA_SYRFSX_EXTENDED(P) Improves the computed solution to a system of linear equations of a real or complex
symmetric indefinite matrix by performing extra-precise iterative refinement and
provides error bounds and backward error estimates for the solution.

xLASYF Computes a partial factorization of a real or complex symmetric matrix, using the
diagonal pivoting method. Used by xSYTRF.

xLASYF_ROOK Computes a partial factorization of a real or complex symmetric matrix, using the
bounded Bunch-Kaufman ("rook") diagonal pivoting method. Used by xSYTRF_ROOK.

xSYCON Estimates the reciprocal of the condition number of a real or complex symmetric
matrix using the factorization computed by xSYTRF.

xSYCON_ROOK Estimates the reciprocal of the condition number of a real or complex symmetric
matrix using the factorization computed by xSYTRF_ROOK.

xSYCONV (P) Converts the matrix computed by SSYTRF or DSYTRF into lower and upper triangular
matrices and vice-versa.

xSYEQUB (P) Computes row and column scalings intended to equilibrate a real or complex
symmetric matrix and reduce its condition number with respect to the two-norm.

SSYEV or DSYEV Computes all eigenvalues and eigenvectors of a symmetric matrix (simple driver).
Replacement with newer version SSYEVR or DSYEVR suggested.

Appendix A • Oracle Developer Studio Performance Library Routines 145

LAPACK Routines

Routine
Function

SSYEVD or DSYEVD Computes all eigenvalues and eigenvectors of a symmetric matrix and uses a divide
and conquer method to calculate eigenvectors (expert driver). Replacement with newer
version SSYEVR or DSYEVR suggested.

SSYEVR or DSYEVR Computes selected eigenvalues and eigenvectors of a real symmetric tridiagonal
matrix.

SSYEVX (P) or DSYEVX (P) Computes eigenvalues and eigenvectors of a real symmetric matrix (expert driver).

SSYGS2 or DSYGS2 Reduces a real symmetric-definite generalized eigenproblem to a standard form using
the factorization results obtained from SPOTRF or DPOTRF (unblocked algorithm).

SSYGST or DSYGST Reduces a symmetric-definite generalized eigenproblem to standard form using the
factorization computed by SPOTRF or DPOTRF.

SSYGV or DSYGV Computes all the eigenvalues and eigenvectors of a generalized symmetric-definite
eigenproblem. Replacement with newer version SSYGVD or DSYGVD suggested.

SSYGVD or DSYGVD Computes all the eigenvalues and eigenvectors of a generalized symmetric-definite
eigenproblem and uses a divide and conquer method to calculate eigenvectors (driver).

SSYGVX or DSYGVX Computes selected eigenvalues and eigenvectors of a generalized symmetric-definite
eigenproblem (expert driver).

xSYRFS (P) Improves the computed solution to a system of linear equations when the coefficient
matrix is symmetric indefinite.

xSYRFSX (P) Improves the computed solution to a system of linear equations when the coefficient
matrix is symmetric indefinite and provides error bounds and backward error estimates
for the solution (extra precision).

xSYSV Solves a real or complex symmetric indefinite system of linear equations (simple
driver). xSYTRF is called to compute the factorization of a complex symmetric matrix
using the diagonal pivoting method.

xSYSV_ROOK Solves a real or complex symmetric indefinite system of linear equations (simple
driver). xSYTRF_ROOK is called to compute the factorization of a complex symmetric
matrix using the bounded Bunch-Kauffman ("rook") diagonal pivoting method.

xSYSVX Solves a real or complex symmetric indefinite system of linear equations (expert
driver).

xSYSVXX (P) Solves a real or complex symmetric indefinite system of linear equations (expert driver,
extra precision). If requested, both normwise and maximum component-wise error
bounds are returned.

SSYTD2 or DSYTD2 Reduces a real symmetric matrix to a real symmetric tridiagonal form by an orthogonal
similarity transformation (unblocked algorithm).

xSYTF2 Computes the factorization of a real or complex symmetric indefinite matrix, using the
diagonal pivoting method (unblocked algorithm).

xSYTF2_ROOK Computes the factorization of a real or complex symmetric indefinite matrix, using the
bounded Bunch-Kauffman ("rook") diagonal pivoting method (unblocked algorithm).

SSYTRD or DSYTRD Reduces a real symmetric matrix to a real symmetric tridiagonal form by using an
orthogonal similarity transformation.

xSYTRF (P) Computes the factorization of a real or complex symmetric indefinite matrix using the
Bunch-Kaufman diagonal pivoting method (blocked algorithm).

146 Oracle Developer Studio 12.6: Performance Library User's Guide • July 2017

LAPACK Routines

Routine
Function

xSYTRI Computes the inverse of a real or complex symmetric indefinite matrix using the
factorization computed by xSYTRF.

xSYTRI_ROOK Computes the inverse of a real or complex symmetric indefinite matrix using the
factorization computed by xSYTRF_ROOK.

xSYTRI2 Computes the inverse of a real or complex symmetric indefinite matrix using the
factorization computed by xSYTRF. Sets the leading dimension of the workspace before
calling xSYTRF2X that actually computes the inverse.

xSYTRI2X (P) Computes the inverse of a real or complex symmetric indefinite matrix using the
factorization computed by xSYTRF. Used by xSYTRI2.

xSYTRS (P) Solves a system of linear equations with a real or complex symmetric matrix using the
factorization computed by xSYTRF.

xSYTRS_ROOK (P) Solves a system of linear equations with a real or complex symmetric matrix using the
factorization computed by xSYTRF_ROOK.

xSYTRS2 (P) Solves a system of linear equations with a real or complex symmetric matrix using the
factorization computed by xSYTRF and converted by xSYCONV.

TABLE 48 Triangular Band Matrix Routines

Routine
Function

xTBCON Estimates the reciprocal of the condition number of a triangular band matrix.

xTBRFS (P) Determines error bounds and estimates for solving a triangular banded system of linear
equations.

xTBTRS Solves a triangular banded system of linear equations.

TABLE 49 Triangular Matrix-Generalized Problem (Pair of Triangular Matrices) Routines

Routine
Function

xTGEVC (P) Computes some or all of the right and/or left eigenvectors of a pair of real or complex
triangular matrices, computed by xGGHRD and xHGEQZ.

xTGEXC Reorders the generalized Schur decomposition of a real or complex matrix pair using
an orthogonal or unitary equivalence transformation.

xTGSEN (P) Reorders the generalized Schur decomposition of a real or complex matrix pair and
computes the generalized eigenvalues.

xTGSJA (P) Computes the generalized singular value decomposition (SVD) from two real or
complex triangular or trapezoidal matrices obtained from xGGSVP.

CTGSNA (P) or ZTGSNA (P) Estimates the reciprocal of the condition numbers for specified eigenvalues and
eigenvectors of two matrices in generalized Schur canonical form.

STGSNA or DTGSNA Estimates the reciprocal of the condition numbers for specified eigenvalues and
eigenvectors of two matrices in generalized real Schur canonical form.

xTGSYL Solves the generalized Sylvester equation.

Appendix A • Oracle Developer Studio Performance Library Routines 147

LAPACK Routines

TABLE 50 Triangular Matrix in Packed Storage Routines

Routine
Function

xTPCON Estimates the reciprocal or the condition number of a triangular matrix in packed
storage.

xTPMQRT Applies a real or complex orthogonal matrix obtained from a “triangular-pentagonal”
block reflector to a general matrix, which consists of two blocks.

xTPQRT Computes a blocked QR factorization of a real or complex “triangular-pentagonal”
matrix, which is composed of a triangular block and a pentagonal block, using the
compact WY representation.

xTPQRT2 Computes a QR factorization of a real or complex “triangular-pentagonal” matrix,
which is composed of a triangular block and a pentagonal block, using the compact
WY representation.

xTPRFS (P) Provides error bounds and backward error estimates for the solution to a real or
complex system of linear equations with a triangular packed coefficient matrix. The
solution should be preliminary obtained by xTPTRS or some other means.

xTPTRI Computes the inverse of a real or complex triangular matrix in packed storage.

xTPTRS Solves a real or complex triangular system of linear equations where the coefficient
matrix is in packed storage.

xTPTTF Copies a real or complex triangular matrix from the standard packed format (TP) to the
rectangular full packed format (TF).

xTPTTR Copies a real or complex triangular matrix from the standard packed format (TP) to the
standard full-packed format (TR).

TABLE 51 Triangular Matrix in Rectangular Full-Packed (RFP) Format and Standard Packed Format
Routines

Routine
Function

xTFSM (P) Solves a matrix equation with real or complex matrices. One operand is a triangular
matrix in the RFP format.

xTFTRI Computes the inverse of a real or complex triangular matrix stored in RFP format.

xTFTTP Copies a real or complex triangular matrix from the rectangular full-packed format
(TF) to the standard packed format (TP).

xTFTTR Copies a real or complex triangular matrix from the rectangular full-packed format
(TF) to the standard full format (TR).

xTPTTF Copies a real or complex triangular matrix from the standard packed format (TP) to the
rectangular full packed format (TF).

xTPTTR Copies a real or complex triangular matrix from the standard packed format (TP) to the
standard full-packed format (TR).

xTRTTF Copies a real or complex triangular matrix from the standard full format (TR) to the
rectangular full-packed format (TF).

xTRTTP Copies a real or complex triangular matrix from the standard full format (TR) to the
standard packed format (TP).

148 Oracle Developer Studio 12.6: Performance Library User's Guide • July 2017

LAPACK Routines

TABLE 52 Triangular Matrix Routines

Routine
Function

xTRCON Estimates the reciprocal or the condition number of a real or complex triangular matrix.

xTREVC (P) Computes right and/or left eigenvectors of a real or complex upper triangular matrix.

xTREVC3 (P) Computes some or all right and/or left eigenvectors of a real or complex upper quasi-
triangular matrix.

xTREXC Reorders the Schur factorization of a real or complex matrix using an orthogonal or
unitary similarity transformation.

xTRRFS (P) Provides error bounds and estimates for a triangular system of linear equations with a
real or complex triangular matrix.

CTRSEN (P) or ZTRSEN (P) Reorders the Schur factorization of a complex matrix A = Q*T*Q**H, so that a
selected cluster of eigenvalues appears in the leading positions in the diagonal of the
upper triangular matrix T, and the leading columns of Q form an orthonormal basis of
the corresponding right invariant subspace.

STRSEN or DTRSEN Reorders the real Schur factorization of a real matrix A = Q*T*Q**T, so that a selected
cluster of eigenvalues appears in the leading positions in the diagonal of the upper
triangular matrix T, and the leading columns of Q form an orthonormal basis of the
corresponding right invariant subspace.

xTRSNA (P) Estimates the reciprocal condition numbers of selected eigenvalues and eigenvectors of
an upper quasi-triangular matrix.

xTRSYL Solves a Sylvester matrix equation.

xTRTRI Computes the inverse of a real or complex triangular matrix (unblocked algorithm).

xTRTRS Solves a triangular system of linear equations.

TABLE 53 Trapezoidal Matrix Routines

Routine
Function

xLARZ Applies an elementary reflector (as returned by xTZRZF) to a real or complex general
matrix.

xLARZB (P) Applies a block reflector or its transpose to a real general matrix or applies a block
reflector or its conjugate-transpose to a complex general matrix.

xLARZT Forms the triangular factor T of a real or complex block reflector H, which is defined
as a product of k elementary reflectors.

xLATZM Deprecated routine replaced by xORMZ. Applies a Householder matrix generated by
xTZRQF to a real or complex matrix.

xTZRQF (P) Deprecated routine replaced by routine xTZRZF.

xTZRZF (P) Reduces a rectangular upper trapezoidal matrix to an upper triangular form by means
of orthogonal transformations.

Appendix A • Oracle Developer Studio Performance Library Routines 149

LAPACK Routines

TABLE 54 Unitary Matrix Routines

Routine Function

CUNBDB or ZUNBDB Simultaneously bidiagonalizes the blocks of an M-by-M partitioned unitary matrix.

CUNBDB1 or ZUNBDB1 Simultaneously bidiagonalizes the blocks of a tall and skinny matrix with orthonormal
columns (variant 1).

CUNBDB2 or ZUNBDB2 Simultaneously bidiagonalizes the blocks of a tall and skinny matrix with orthonormal
columns (variant 2).

CUNBDB3 or ZUNBDB3 Simultaneously bidiagonalizes the blocks of a tall and skinny matrix with orthonormal
columns (variant 3).

CUNBDB4 or ZUNBDB4 Simultaneously bidiagonalizes the blocks of a tall and skinny matrix with orthonormal
columns (variant 4).

CUNBDB5 or ZUNBDB5 Orthogonalizes the column vector X with respect to the orthonormal columns of Q.

CUNBDB5 or ZUNBDB5 Orthogonalizes the column vector X with respect to the orthonormal columns of Q.
Used by CUNBDB5 or ZUNBDB5.

CUNCSD2BY1 or ZUNCSD2BY1 Computes the CS decomposition of an M-by-Q matrix X with orthonormal columns
that has been partitioned into a 2-by-1 block structure.

CUNG2L (P) or ZUNG2L (P) Generates an M-by-N complex matrix Q with orthonormal columns, which is defined
as the last N columns of a product of K elementary reflectors of order M, as returned
by CGEQLF or ZGEQLF.

CUNG2R (P) or ZUNG2R (P) Generates an M-by-N complex matrix Q with orthonormal columns, which is defined
as the last N columns of a product of K elementary reflectors of order M, as returned
by CGEQRF or ZGEQRF.

CUNGBR (P) or ZUNGBR (P) Generates an unitary transformation matrix from reduction to bidiagonal form, as
determined by CGEBRD or ZGEBRD.

CUNGHR (P) or ZUNGHR (P) Generates an orthogonal transformation matrix reduced to Hessenberg form, as
determined by CGEHRD or ZGEHRD.

CUNGL2 (P) or ZUNGL2 (P) Generates all or part of an unitary matrix Q from an LQ factorization determined by
CGELQF or ZGELQF (unblocked algorithm).

CUNGLQ (P) or ZUNGLQ (P) Generates an unitary matrix Q from an LQ factorization, as returned by CGELQF or
ZGELQF.

CUNGQL (P) or ZUNGQL (P) Generates an unitary matrix Q from a QL factorization, as returned by CGEQLF or
ZGEQLF.

CUNGQR (P) or ZUNGQR (P) Generates an unitary matrix Q from a QR factorization, as returned by CGEQRF or
ZGEQRF.

CUNGR2 (P) or ZUNGR2 (P) Generates all or part of an unitary matrix Q from an RQ factorization determined by
CGERQF or ZGERQF (unblocked algorithm).

CUNGRQ (P) or ZUNGRQ (P) Generates an unitary matrix Q from an RQ factorization, as returned by CGERQF or
ZGERQF.

CUNGTR (P) or ZUNGTR (P) Generates an unitary matrix reduced to a tridiagonal form, by CHETRD or ZHETRD.

CUNM22 or ZUNM22 Multiplies a general matrix by a banded unitary matrix.

CUNM2L or ZUNM2L Multiplies a general matrix by the unitary matrix from a QL factorization determined
by CGEQLF or ZGEQLF (unblocked algorithm).

150 Oracle Developer Studio 12.6: Performance Library User's Guide • July 2017

BLAS1 Routines

Routine Function

CUNM2R or ZUNM2R Multiplies a general matrix by an unitary matrix from a QR factorization determined by
CGEQRF or ZGERLF (unblocked algorithm).

CUNMBR or ZUNMBR Multiplies a general matrix with an unitary transformation matrix reduced to a
bidiagonal form, as determined by CGEBRD or ZGEBRD.

CUNMHR or ZUNMHR Multiplies a general matrix by an unitary matrix reduced to the Hessenberg form by
CGEHRD or ZGEHRD.

CUNML2 or ZUNML2 Multiplies a general matrix by an unitary matrix from an LQ factorization determined
by CGELQF or ZGELQF (unblocked algorithm).

CUNMLQ or ZUNMLQ Multiplies a general matrix by an unitary matrix from an LQ factorization, as returned
by CGELQF or ZGELQF.

CUNMQL or ZUNMQL Multiplies a general matrix by an unitary matrix from a QL factorization, as returned
by CGEQLF or ZGEQLF.

CUNMQR or ZUNMQR Multiplies a general matrix by an unitary matrix from a QR factorization, as returned
by CGEQRF or ZGEQRF.

CUNMR2 or ZUNMR2 Multiplies a general matrix by an unitary matrix from an RQ factorization determined
by CGERQF or ZGERQF (unblocked algorithm).

CUNMR3 or ZUNMR3 Multiplies a general matrix by an unitary matrix from an RZ factorization determined
by CTZRZF or ZTZRZF (unblocked algorithm).

CUNMRQ or ZUNMRQ Multiplies a general matrix by an unitary matrix from an RQ factorization, as returned
by CGERQF or ZGERQF.

CUNMRZ or ZUNMRZ Multiplies a general matrix by an unitary matrix from an RZ factorization, as returned
by CTZRZF or ZTZRZF.

CUNMTR or ZUNMTR Multiplies a general matrix by an unitary transformation matrix reduced to tridiagonal
form by CHETRD or ZHETRD.

TABLE 55 Unitary Matrix in Packed Storage Routines

Routine
Function

CUPGTR (P) or ZUPGTR (P) Generates an unitary transformation matrix from a tridiagonal matrix determined by
CHPTRD or ZHPTRD.

CUPMTR or ZUPMTR Multiplies a general matrix by an unitary transformation matrix reduced to tridiagonal
form by CHPTRD or ZHPTRD.

BLAS1 Routines

Table 56, “BLAS1 (Basic Linear Algebra Subprograms, Level 1) Routines,” on page 152
lists the Oracle Developer Studio Performance Library BLAS1 routines. No Oracle Developer
Studio Performance Library BLAS1 routines are currently parallelized.

Appendix A • Oracle Developer Studio Performance Library Routines 151

BLAS2 Routines

TABLE 56 BLAS1 (Basic Linear Algebra Subprograms, Level 1) Routines

Routine Function

SASUM, DASUM, SCASUM,
DZASUM

Sum of the absolute values of a vector

xAXPY Product of a scalar and vector plus a vector

xCOPY Copy a vector

SDOT, DDOT, DSDOT, SDSDOT,
CDOTU, ZDOTU, DQDOTA,
DQDOTI

Dot product (inner product) Quad-precision DQDOTA, DQDOTI available only on
SPARC

CDOTC, ZDOTC Dot product conjugating first vector

SNRM2, DNRM2, SCNRM2,
DZNRM2

Euclidean norm of a vector

xROTG Set up Givens plane rotation

SROT, DROT, CSROT, ZDROT Apply Givens plane rotation

SROTMG, DROTMG Set up modified Givens plane rotation

SROTM, DROTM Apply modified Givens rotation

ISAMAX, IDAMAX, ICAMAX,
IZAMAX

Index of element with maximum absolute value

xSCAL, CSSCAL, ZDSCAL Scale a vector

xSWAP Swap two vectors

CVMUL, ZVMUL Compute scaled product of complex vectors

BLAS2 Routines

Table 57, “BLAS2 (Basic Linear Algebra Subprograms, Level 2) Routines,” on page 152
lists the Oracle Developer Studio Performance Library BLAS2 routines. (P) denotes routines
that are parallelized.

TABLE 57 BLAS2 (Basic Linear Algebra Subprograms, Level 2) Routines

Routine Function

xGBMV Product of a matrix in banded storage and a vector

xGEMV (P) Product of a general matrix and a vector

SGER (P), DGER (P), CGERC
(P), ZGERC (P), CGERU (P),
ZGERU (P)

Rank-1 update to a general matrix

CHBMV or ZHBMV Product of a Hermitian matrix in banded storage and a vector

CHEMV (P) or ZHEMV (P) Product of a Hermitian matrix and a vector

152 Oracle Developer Studio 12.6: Performance Library User's Guide • July 2017

BLAS3 Routines

Routine Function

CHER (P) or ZHER (P) Rank-1 update to a Hermitian matrix

CHER2 or ZHER2 Rank-2 update to a Hermitian matrix

CHPMV (P) or ZHPMV (P) Product of a Hermitian matrix in packed storage and a vector

CHPR or ZHPR Rank-1 update to a Hermitian matrix in packed storage

CHPR2 or ZHPR2 Rank-2 update to a Hermitian matrix in packed storage

SSBMV or DSBMV Product of a symmetric matrix in banded storage and a vector

SSPMV (P) or DSPMV (P) Product of a Symmetric matrix in packed storage and a vector

SSPR or DSPR Rank-1 update to a real symmetric matrix in packed storage

SSPR2 (P) or DSPR2 (P) Rank-2 update to a real symmetric matrix in packed storage

xSYMV (P) Product of a symmetric matrix and a vector

SSYR (P) or DSYR (P) Rank-1 update to a real symmetric matrix

SSYR2 (P) or DSYR2 (P) Rank-2 update to a real symmetric matrix

xTBMV Product of a triangular matrix in banded storage and a vector

xTBSV Solution to a triangular system in banded storage of linear equations

xTPMV Product of a triangular matrix in packed storage and a vector

xTPSV Solution to a triangular system of linear equations in packed storage

xTRMV (P) Product of a triangular matrix and a vector

xTRSV (P) Solution to a triangular system of linear equations

BLAS3 Routines
Table 58, “BLAS3 (Basic Linear Algebra Subprograms, Level 3) Routines,” on page 153
lists the Oracle Developer Studio Performance Library BLAS3 routines. (P) denotes routines
that are parallelized.

TABLE 58 BLAS3 (Basic Linear Algebra Subprograms, Level 3) Routines

Routine Function

xGEMM (P) Product of two general matrices

CHEMM (P) or ZHEMM (P) Product of a Hermitian matrix and a general matrix

CHERK (P) or ZHERK (P) Rank-k update of a Hermitian matrix

CHER2K (P) or ZHER2K (P) Rank-2k update of a Hermitian matrix

xSYMM (P) Product of a symmetric matrix and a general matrix

xSYRK (P) Rank-k update of a symmetric matrix

xSYR2K (P) Rank-2k update of a symmetric matrix

xTRMM (P) Product of a triangular matrix and a general matrix

Appendix A • Oracle Developer Studio Performance Library Routines 153

Sparse BLAS Routines

Routine Function

xTRSM (P) Solution for a triangular system of equations

Sparse BLAS Routines
Table 59, “Sparse BLAS Routines,” on page 154 lists the Oracle Developer Studio
Performance Library sparse BLAS routines. (P) denotes routines that are parallelized.

TABLE 59 Sparse BLAS Routines

Routines
Function

xAXPYI Adds a scalar multiple of a sparse vector X to a full vector Y.

xBCOMM (P) Block coordinate matrix-matrix multiply.

xBDIMM (P) Block diagonal format matrix-matrix multiply.

xBDISM (P) Block Diagonal format triangular solve.

xBELMM (P) Block Ellpack format matrix-matrix multiply.

xBELSM (P) Block Ellpack format triangular solve.

xBSCMM (P) Block compressed sparse column format matrix-matrix multiply.

xBSCSM (P) Block compressed sparse column format triangular solve.

xBSRMM (P) Block compressed sparse row format matrix-matrix multiply.

xBSRSM (P) Block compressed sparse row format triangular solve.

xCOOMM (P) Coordinate format matrix-matrix multiply.

xCSCMM (P) Compressed sparse column format matrix-matrix multiply

xCSCSM (P) Compressed sparse column format triangular solve

xCSRMM (P) Compressed sparse row format matrix-matrix multiply.

xCSRSM (P) Compressed sparse row format triangular solve.

xDIAMM (P) Diagonal format matrix-matrix multiply.

xDIASM (P) Diagonal format triangular solve.

SDOTI, DDOTI, CDOTUI, or
ZDOTUI

Computes the dot product of a sparse vector and a full vector.

CDOTCI or ZDOTCI Computes the conjugate dot product of a sparse vector and a full vector.

xELLMM (P) Ellpack format matrix-matrix multiply.

xELLSM (P) Ellpack format triangular solve.

xGTHR Given a full vector, creates a sparse vector and corresponding index vector.

xGTHRZ Given a full vector, creates a sparse vector and corresponding index vector and zeros
the full vector.

xJADMM (P) Jagged diagonal matrix-matrix multiply.

154 Oracle Developer Studio 12.6: Performance Library User's Guide • July 2017

Sparse Solver Routines

Routines
Function

SJADRP or DJADRP Right permutation of a jagged diagonal matrix.

xJADSM (P) Jagged diagonal triangular solve.

SROTI or DROTI Applies a Givens rotation to a sparse vector and a full vector.

xSCTR Given a sparse vector and corresponding index vector, puts those elements into a full
vector.

xSKYMM (P) Skyline format matrix-matrix multiply.

xSKYSM (P) Skyline format triangular solve.

xVBRMM (P) Variable block sparse row format matrix-matrix multiply.

xVBRSM (P) Variable block sparse row format triangular solve.

Sparse Solver Routines

The following tables list routines from SPSOLVE and SuperLU sparse solvers in the Oracle
Developer Studio Performance Library. (P) denotes routines that are parallelized.

TABLE 60 SPSOLVE Routines

Routines Function

xGSSFS (P) One call interface to SPSOLVE.

xGSSIN SPSOLVE initialization.

xGSSOR Fill reducing ordering and symbolic factorization.

xGSSFA (P) Matrix value input and numeric factorization.

xGSSSL Triangular solve.

xGSSUO Sets user-specified ordering permutation.

xGSSRP Returns permutation used by solver.

xGSSCO Returns condition number estimate of coefficient matrix.

xGSSDA Deallocate SPSOLVE memory.

xGSSPS Prints solver statistics.

TABLE 61 SuperLU Routines

Routine Function

xgstrf Computes factorization

xgssvx Factorizes and solves (expert driver)

xgssv Factorizes and solves (simple driver)

xgstrs Computes triangular solve

Appendix A • Oracle Developer Studio Performance Library Routines 155

Signal Processing Library Routines

Routine Function

xgsrfs Improves computed solution; provides error bounds

xlangs Computes one-norm, Frobenius-norm, or infinity-norm

xgsequ Computes row and column scalings

xgscon Estimates reciprocal of condition number

xlaqgs Equilibrates a general sparse matrix

LUSolveTime Returns time spent in solve stage

LUFactTime Returns time spent in factorization stage

LUFactFlops Returns number of floating point operations in factorization stage

LUSolveFlops Returns number of floating point operations in solve stage

xQuerySpace Returns information on the memory statistics

sp_ienv Returns specified machine dependent parameter

xPrintPerf Prints statistics collected by the computational routines

set_default_options Sets parameters that control solver behavior to default options

StatInit Allocates and initializes structure that stores performance statistics

StatFree Frees structure that stores performance statistics

Destroy_Dense_Matrix Deallocates a SuperMatrix in dense format

Destroy_SuperNode_Matrix Deallocates a SuperMatrix in supernodal format

Destroy_CompCol_Matrix Deallocates a SuperMatrix in compressed sparse column format

Destroy_CompCol_Permuted Deallocates a SuperMatrix in permuted compressed sparse column format

Destroy_SuperMatrix_Store Deallocates actual storage that stores matrix in a SuperMatrix

xCopy_CompCol_Matrix Copies a SuperMatrix in compressed sparse column format

xCreate_CompCol_Matrix Allocates a SuperMatrix in compressed sparse column format

xCreate_Dense_Matrix Allocates a SuperMatrix in dense format

xCreate_CompRow_Matrix Allocates a SuperMatrix in compressed sparse row format

xCreate_SuperNode_Matrix Allocates a SuperMatrix in supernodal format

sp_preorder Permutes columns of original sparse matrix

sp_sgemm sp_dgemm sp_cgemm

sp_zgemm

Multiplies a SuperMatrix by a dense matrix

Signal Processing Library Routines

Oracle Developer Studio Performance Library contains routines for computing the fast Fourier
transform, sine and cosine transforms, and convolution and correlation.

156 Oracle Developer Studio 12.6: Performance Library User's Guide • July 2017

Signal Processing Library Routines

FFT Routines

Oracle Developer Studio Performance Library provides a set of FFT interfaces that supersedes a
subset of the FFTPACK and VFFTPACK routines provided in earlier Oracle Developer Studio
Performance Library releases. The old FFT interfaces are included for backward compatibility,
and users are encouraged to use the new interfaces. For information on individual FFT routines,
see the section 3P man pages.

Table 62, “FFT Routines,” on page 157 shows the mapping between the Oracle Developer
Studio Performance Library FFT routines and the corresponding FFTPACK and VFFTPACK
routines. (P) denotes routines that are parallelized.

TABLE 62 FFT Routines

Routine
Replaces Function

CFFTC (P) CFFTI

CFFTF (P)

CFFTB (P)

Initialize the trigonometric weight and factor tables or compute the one-dimensional forward
or inverse FFT of a complex sequence.

CFFTC2 (P) CFFT2I

CFFT2F (P)

CFFT2B (P)

Initialize the trigonometric weight and factor tables or compute the two-dimensional
forward or inverse FFT of a two-dimensional complex array.

CFFTC3 (P) CFFT3I

CFFT3F (P)

CFFT3B (P)

Initialize the trigonometric weight and factor tables or compute the three-dimensional
forward or inverse FFT of three-dimensional complex array.

CFFTCM (P) VCFFTI

VCFFTF (P)

VCFFTB (P)

Initialize the trigonometric weight and factor tables or compute the one-dimensional forward
or inverse FFT of a set of data sequences stored in a two-dimensional complex array.

CFFTS RFFTI, RFFTB

EZFFTI, EZFFTB

Initialize the trigonometric weight and factor tables or compute the one-dimensional inverse
FFT of a complex sequence.

CFFTS2 RFFT2I

RFFT2B

Initialize the trigonometric weight and factor tables or compute the two-dimensional inverse
FFT of a two-dimensional complex array.

CFFTS3 (P) RFFT3I

RFFT3B

Initialize the trigonometric weight and factor tables or compute the three-dimensional
inverse FFT of three-dimensional complex array.

CFFTSM VRFFTI

VRFFTB (P)

Initialize the trigonometric weight and factor tables or compute the one-dimensional inverse
FFT of a set of data sequences stored in a two-dimensional complex array.

Appendix A • Oracle Developer Studio Performance Library Routines 157

Signal Processing Library Routines

Routine
Replaces Function

DFFTZ DFFTI, DFFTF

DEZFFTI, DEZFFTF

Initialize the trigonometric weight and factor tables or compute the one-dimensional forward
FFT of a double precision sequence.

DFFTZ2 DFFT2I

DFFT2F

Initialize the trigonometric weight and factor tables or compute the two-dimensional
forward FFT of a two-dimensional double precision array.

DFFTZ3 (P) DFFT3I

DFFT3F

Initialize the trigonometric weight and factor tables or compute the three-dimensional
forward FFT of three-dimensional double precision array.

DFFTZM VDFFTI

VDFFTF (P)

Initialize the trigonometric weight and factor tables or compute the one-dimensional forward
FFT of a set of data sequences stored in a two-dimensional double precision array.

SFFTC RFFTI, RFFTF

EZFFTI, EZFFTF

Initialize the trigonometric weight and factor tables or compute the one-dimensional forward
FFT of a real sequence.

SFFTC2 RFFT2I

RFFT2F

Initialize the trigonometric weight and factor tables or compute the two-dimensional
forward FFT of a two-dimensional real array.

SFFTC3 (P) RFFT3I

RFFT3F

Initialize the trigonometric weight and factor tables or compute the three-dimensional
forward FFT of three-dimensional real array.

SFFTCM VRFFTI

VRFFTF (P)

Initialize the trigonometric weight and factor tables or compute the one-dimensional forward
FFT of a set of data sequences stored in a two-dimensional real array.

ZFFTD DFFTI, DFFTB

DEZFFTI, DEZFFTB

Initialize the trigonometric weight and factor tables or compute the one-dimensional inverse
FFT of a double complex sequence.

ZFFTD2 DFFT2I

DFFT2B

Initialize the trigonometric weight and factor tables or compute the two-dimensional inverse
FFT of a two-dimensional double complex array.

ZFFTD3 (P) DFFT3I

DFFT3B

Initialize the trigonometric weight and factor tables or compute the three-dimensional
inverse FFT of three-dimensional double complex array.

ZFFTDM VDFFTI

VDFFTB (P)

Initialize the trigonometric weight and factor tables or compute the one-dimensional inverse
FFT of a set of data sequences stored in a two-dimensional double complex array.

ZFFTZ (P) ZFFTI

ZFFTF (P)

ZFFTB (P)

Initialize the trigonometric weight and factor tables or compute the one-dimensional forward
or inverse FFT of a double complex sequence.

ZFFTZ2 (P) ZFFT2I

ZFFT2F (P)

ZFFT2B (P)

Initialize the trigonometric weight and factor tables or compute the two-dimensional
forward or inverse FFT of a two-dimensional double complex array.

158 Oracle Developer Studio 12.6: Performance Library User's Guide • July 2017

Signal Processing Library Routines

Routine
Replaces Function

ZFFTZ3 (P) ZFFT3I

ZFFT3F (P)

ZFFT3B (P)

Initialize the trigonometric weight and factor tables or compute the three-dimensional
forward or inverse FFT of three-dimensional double complex array.

ZFFTZM (P) VZFFTI

VZFFTF (P)

VZFFTB (P)

Initialize the trigonometric weight and factor tables or compute the one-dimensional forward
or inverse FFT of a set of data sequences stored in a two-dimensional double complex array.

Fast Cosine and Sine Transforms
Oracle Developer Studio Performance Library fast cosine and sine transform routines are based
on the routines contained in FFTPACK (http://www.netlib.org/fftpack/). Routines with a
V prefix are vectorized routines that are based on the routines contained in VFFTPACK (http:
//www.netlib.org/vfftpack/).

Table 63, “Sine and Cosine Transform Routines,” on page 159 lists the Oracle Developer
Studio Performance Library sine and cosine transform routines.

TABLE 63 Sine and Cosine Transform Routines

Routine
Function

COSQB, DCOSQB, VCOSQB, VDCOSQB Cosine quarter-wave synthesis.

COSQF, DCOSQF, VCOSQF, VDCOSQF Cosine quarter-wave transform.

COSQI, DCOSQI, VCOSQI, VDCOSQI Initialize cosine quarter-wave transform and synthesis.

COST, DCOST, VCOST, VDCOST Cosine even-wave transform.

COSTI, DCOSTI, VCOSTI, VDCOSTI Initialize cosine even-wave transform.

SINQB, DSINQB, VSINQB, VDSINQB Sine quarter-wave synthesis.

SINQF, DSINQF, VSINQF, VDSINQF Sine quarter-wave transform.

SINQI, DSINQI, VSINQI, VDSINQI Initialize sine quarter-wave transform and synthesis.

SINT, DSINT, VSINT, VDSINT Sine odd-wave transform.

SINTI, DSINT, VSINTI, VDSINTI Initialize sine odd-wave transform.

Convolution and Correlation Routines
Table 64, “Convolution and Correlation Routines,” on page 160 lists the Oracle Developer
Studio Performance Library convolution and correlation routines.

Appendix A • Oracle Developer Studio Performance Library Routines 159

http://www.netlib.org/fftpack/
http://www.netlib.org/vfftpack/
http://www.netlib.org/vfftpack/

Miscellaneous Signal Processing Routines

TABLE 64 Convolution and Correlation Routines

Routines Function

xCNVCOR Computes convolution or correlation

xCNVCOR2 Computes two-dimensional convolution or correlation

Miscellaneous Signal Processing Routines

Table 65, “Convolution and Correlation Routines,” on page 160 lists the miscellaneous
Oracle Developer Studio Performance Library signal processing routines.

TABLE 65 Convolution and Correlation Routines

Routines Function

RFFTOPT, DFFTOPT, CFFTOPT, ZFFTOPT Compute the length of the closest FFT

SWIENER or DWEINER Performs Wiener deconvolution of two signals

xTRANS (P) Transposes array

See the section 3P man pages for information on using each routine.

Sort Routines

Table 66, “Sort Routines,” on page 160 lists the Oracle Developer Studio Performance
Library sort routines.

TABLE 66 Sort Routines

Routines Function

BLAS_DSORT (P) Sorts a real (double precision) vector X in increasing or decreasing order using quick sort
algorithm.

BLAS_DSORTV (P) Sorts a real (double precision) vector X in increasing or decreasing order using quick sort
algorithm and overwrite P with the permutation vector.

BLAS_DPERMUTE (P) Permutes a real (double precision) array in terms of the permutation vector P, output by
DSORTV.

BLAS_ISORT (P) Sorts an integer vector X in increasing or decreasing order using quick sort algorithm.

BLAS_ISORTV (P) Sorts a real vector X in increasing or decreasing order using quick sort algorithm and
overwrite P with the permutation vector.

BLAS_IPERMUTE (P) Permutes an integer array in terms of the permutation vector P, output by DSORTV.

160 Oracle Developer Studio 12.6: Performance Library User's Guide • July 2017

Sort Routines

Routines Function

BLAS_SSORT (P) Sorts a real vector X in increasing or decreasing order using quick sort algorithm.

BLAS_SSORTV (P) Sorts a real vector X in increasing or decreasing order using quick sort algorithm and
overwrite P with the permutation vector.

BLAS_SPERMUTE (P) Permutes a real array in terms of the permutation vector P, output by DSORTV.

Appendix A • Oracle Developer Studio Performance Library Routines 161

162 Oracle Developer Studio 12.6: Performance Library User's Guide • July 2017

Index

Numbers and Symbols
%g2,%g3,%g4, and%g5 global integer registers, 25
2D FFT routines

complex sequences as input, 89
conjugate symmetry, 89
data storage format, 89
forward 2D FFT, 88
inverse 2D FFT, 88
real sequences as input, 89
routines, 78, 90

3D FFT routines
complex sequences as input, 94
conjugate symmetry, 94
data storage format, 94
forward 3D FFT, 93
inverse 3D FFT, 93
real sequences as input, 94
routines, 78, 95

64-bit code
C, 33
Fortran 95, 32
See also 64-bit enabled Oracle Solaris operating
environment, 31

64-bit enabled Oracle Solaris operating environment
appending_64 to routine names, 31
compiling code, 31

64-bit enabled Solaris operating environment
integer promotion, 32

64-bit integer arguments, 21
promoting integers to 64-bits, 31, 32

64-bit integer interfaces, calling, 31
_64, appending to routine name, 21, 31

A
architectures, 12
argument data types

summary, 115
arguments

convolution and correlation, 115
FFT routines, 79

automatic code restructuring tools, 20

B
banded matrix, 41
bidiagonal matrix, 127
BLAS1, 11, 152
BLAS2, 11, 152
BLAS3, 11, 153

C
C

64-bit code, 33
array storage, 25
examples, 26
routine calling conventions, 25

C interfaces
advantages, 24
compared to Fortran interfaces, 24
routine calling conventions, 25

calling 64-bit integer interfaces, 31
calling conventions

C, 25
f77/f95, 20

CLAPACK, 13

163

Index

compatibility, LAPACK, 15
compile-time checking, 21
conjugate symmetric, 81
conjugate symmetry

2D FFT routines, 89
3D FFT routines, 94
FFT routines, 81

convolution, 113
convolution and correlation

arguments, 115
routines, 115, 115

correlation, 114
cosine transforms, 101

D
-dalign, 30
data storage format

2D FFT routines, 89
3D FFT routines, 94
FFT routines, 81

data types
arguments, 115

DFT, 77
efficiency of FFT versus DFT, 77, 77

diagonal matrix, 128, 128
discrete Fourier transform

See DFT, 77

E
environment variable

OMP_STACKSIZE, 35
STACKSIZE, 35

even sequences
fast cosine transform routines, 101

F
f95 interfaces

calling conventions, 20
fast cosine transform routines, 103

even sequences, 101

forward and inverse, 104
forward transform (multiple quarter-wave even
sequences), 106
forward transform (quarter-wave even
sequence), 105
inverse transform (multiple quarter-wave even
sequences), 106
inverse transform (quarter-wave even
sequence), 105
multiple sequences, 105
quarter-wave even sequences, 102

fast Fourier transform
See FFT, 77

fast sine transform routines, 103
forward and inverse, 106
forward and inverse (multiple sequences), 107
forward transform (multiple quarter-wave odd
sequences), 108
forward transform (quarter-wave odd
sequence), 107
inverse transform (multiple quarter-wave odd
sequences), 108
inverse transform (quarter-wave odd
sequence), 107
odd sequences, 102
quarter-wave odd sequences, 102

features, 14
FFT, 77

efficiency of FFT versus DFT, 77, 77
FFT routines

2D FFT routines, 78
3D FFT routines, 78
arguments, 79
complex sequences as input, 81
conjugate symmetry, 81
data storage format, 81
forward and inverse, 78
linear FFT routines, 78, 81
linear forward FFT, 80
linear forward FFT (polar form), 80
linear inverse FFT, 80
linear inverse FFT (polar form), 80
real sequences as input, 81

164 Oracle Developer Studio 12.6: Performance Library User's Guide • July 2017

Index

sequence length for most efficient
computation, 79, 100

FFTPACK, 12, 101, 157, 159
Fortran 95

64-bit code, 32
compile-time checking, 21
type independence, 21
USE SUNPERF, 21

Fortran interfaces
summary, 20

G
general band matrix, 129
general matrix, 129, 132
general tridiagonal matrix, 133
global integer registers, 25

H
Hermitian band matrix, 134
Hermitian matrix, 134
Hermitian matrix in packed storage, 136

I
including routines in development environment, 19

L
-library=sunperf, 16, 30
LAPACK, 11, 126
LAPACK 90, 13
LAPACK compatibility, 15
LINPACK, 12

M
malloc, 25
man pages

section 3P, 77, 125
matrix

banded, 41
bidiagonal, 127
diagonal, 128, 128
general, 43, 129
general band, 129
general tridiagonal, 133
general, generalized problem, 132
general, pair, 132
Hermitian, 134
Hermitian band, 134
Hermitian in packed storage, 136
pair of general, 132
real orthogonal, 138
real orthogonal in packed storage, 137
real symmetric band, 142
real symmetric tridiagonal, 143
sparse, 47
structurally symmetric sparse, 49
symmetric, 45, 145
symmetric in packed storage, 142
symmetric or Hermitian-positive definite, 140
symmetric or Hermitian-positive definite
band, 139
symmetric or Hermitian-positive definite in packed
storage, 141
symmetric or Hermitian-positive definite
tridiagonal, 141
symmetric sparse, 48
trapezoidal, 149
triangular, 44, 147, 149
triangular band, 147
triangular in packed storage, 148, 148
tridiagonal, 45
unitary in packed storage, 151
Upper Hessenberg, 137
upper Hessenberg, 137

MT-safe routines, 23

N
Netlib, 12
Netlib Sparse BLAS

naming conventions, 50

165

Index

Netlib Sparse-BLAS, 11
Netlib Sparse-BLAS 0.5, 11
NIST Fortran Sparse BLAS

naming conventions, 51
number of threads, 36

O
odd sequences

fast sine transform routines, 102
OMP_STACKSIZE environment variable, 35

P
packed storage, 42
parallel processing

number of threads, 36
promoting integer arguments to 64-bits, 31, 32

Q
quarter-wave even sequences

fast cosine transform routines, 102
quarter-wave odd sequences

fast sine transform routines, 102

R
real orthogonal matrix, 138
real orthogonal matrix in packed storage, 137
real symmetric band matrix, 142
real symmetric tridiagonal matrix, 143
replacing routines, 19
routines

2D FFT routines, 78, 90
3D FFT routines, 78, 95
BLAS1, 152
BLAS2, 152
BLAS3, 153
C calling conventions, 25, 25
convolution and correlation, 115, 115
f95 calling conventions, 20

fast cosine transform routines, 101, 102, 103
fast cosine transform routines (multiple
sequences), 105
fast sine transform routines, 102, 102, 103
FFTPACK, 157, 159
forward and inverse FFT, 78
forward fast cosine transform routines, 104
forward fast cosine transform routines (multiple
quarter-wave even sequences), 106
forward fast cosine transform routines (quarter-
wave even sequence), 105
forward fast sine transform routines, 106
forward fast sine transform routines (multiple
quarter-wave odd sequences), 108
forward fast sine transform routines (multiple
sequences), 107
forward fast sine transform routines (quarter-wave
odd sequence), 107
inverse fast cosine transform routines, 104
inverse fast cosine transform routines (multiple
quarter-wave even sequences), 106
inverse fast cosine transform routines (quarter-wave
even sequence), 105
inverse fast sine transform routines, 106
inverse fast sine transform routines (multiple
quarter-wave odd sequences), 108
inverse fast sine transform routines (multiple
sequences), 107
inverse fast sine transform routines (quarter-wave
odd sequence), 107
LAPACK, 126
linear FFT routines, 78, 81
sparse BLAS, 154
VFFTPACK, 157, 159

S
section 3P man pages, 77, 125
sine transforms, 101
sparse BLAS, 154
sparse matrices

structurally symmetric, 49
symmetric, 48

166 Oracle Developer Studio 12.6: Performance Library User's Guide • July 2017

Index

sparse matrix, 47
Sparse Solver , 11
SPSOLVE sparse solver routines, 52
STACKSIZE environment variable, 35
structurally symmetric sparse matrix, 49
SUNPERF module, 21
SuperLU 3.0, 11
SuperLU sparse solver routines, 64
symmetric matrix, 45, 145
symmetric matrix in packed storage, 142
symmetric or Hermitian positive definite band
matrix, 139
symmetric or Hermitian positive definite matrix, 140
symmetric or Hermitian positive definite matrix in
packed storage, 141
symmetric or Hermitian positive definite tridiagonal
matrix, 141
symmetric sparse matrix, 48
synchronization, 37

T
threads

synchronization, 37
trapezoidal matrix, 149
triangular band matrix, 147
triangular matrix, 44, 147, 149
triangular matrix in packed storage, 148, 148
tridiagonal matrix, 45
type Independence, 21

U
unitary matrix in packed storage, 151
Upper Hessenberg matrix, 137
upper Hessenberg matrix, 137
USE SUNPERF

enabling Fortran 95 features, 21

V
VFFTPACK, 12, 101, 157, 159

X
-xarch, 30
XBLAS, 12
xFFTOPT, 100

167

168 Oracle Developer Studio 12.6: Performance Library User's Guide • July 2017

	Oracle® Developer Studio 12.6: Performance Library User's Guide
	Contents
	Using This Documentation
	Product Documentation Library
	Feedback

	Chapter 1 • Introduction to Oracle Developer Studio Performance Library
	Libraries Included With Oracle Developer Studio Performance Library
	About Netlib
	Related Documentation

	Oracle Developer Studio Performance Library Features
	Mathematical Routines
	Compatibility With Previous LAPACK Versions
	Getting Started With Oracle Developer Studio Performance Library
	Enabling Trap 6 on SPARC Platforms

	Chapter 2 • Using Oracle Developer Studio Performance Library
	Improving Application Performance
	Replacing Routines With Oracle Developer Studio Performance Library Routines
	Improving Performance of Other Libraries
	Using Tools to Restructure Code

	Fortran Interfaces
	Fortran SUNPERF Module for Use With Fortran 95

	Fortran Examples
	C Interfaces
	C Examples

	Chapter 3 • Optimizing Applications
	Comparison of 32-Bit and 64-Bit Environments
	Using the Oracle Developer Studio Performance Library
	Linking Fortran Programs
	Linking C and C++ Programs

	About Compiling
	Compiling Code for a 64-Bit Enabled Operating Environments
	64-Bit Integer Arguments

	Chapter 4 • Parallel Processing
	Run-Time Issues
	Degree of Parallelism
	Synchronization Mechanisms
	Parallel Processing Examples

	Chapter 5 • Working With Matrices
	Matrix Storage Schemes
	Banded Storage
	Packed Storage
	Rectangular Full Packed Format

	Matrix Types
	General Matrices
	Triangular Matrices
	Symmetric Matrices
	Tridiagonal Matrices

	Chapter 6 • Sparse Computation
	Sparse Matrices
	Symmetric Sparse Matrices
	Structurally Symmetric Sparse Matrices
	Unsymmetric Sparse Matrices

	Sparse BLAS
	Netlib Sparse BLAS
	NIST Fortran Sparse BLAS

	SPSOLVE Interface
	SPSOLVE Routines
	SPSOLVE Routine Calling Order
	SPSOLVE Examples

	SuperLU Interface
	Calling SuperLU from C
	Calling SuperLU from Fortran
	SuperLU Examples

	References for Sparse BLAS and Solver

	Chapter 7 • Using Oracle Developer Studio Performance Library Signal Processing Routines
	Forward and Inverse FFT Routines
	Linear FFT Routines
	Two-Dimensional FFT Routines
	Three-Dimensional FFT Routines
	Comments

	Cosine and Sine Transforms
	Fast Cosine and Sine Transform Routines
	Fast Sine Transforms
	Fast Cosine Transforms
	Discrete Fast Cosine and Sine Transforms and Their Inverse
	[D]COST: Forward and Inverse Fast Cosine Transform (FCT) of a Sequence
	V[D]COST: Forward and Inverse Fast Cosine Transforms of Multiple Sequences (VFCT)
	[D]COSQF: Forward FCT of a Quarter-Wave Even Sequence
	[D]COSQB: Inverse FCT of a Quarter-Wave Even Sequence
	V[D]COSQF: Forward FCT of One or More Quarter-Wave Even Sequences
	V[D]COSQB: Inverse FCT of One or More Quarter-Wave Even Sequences
	[D]SINT: Forward and Inverse Fast Sine Transform (FST) of a Sequence
	V[D]SINT: Forward and Inverse Fast Sine Transforms of Multiple Sequences (VFST)
	[D]SINQF: Forward FST of a Quarter-Wave Odd Sequence
	[D]SINQB: Inverse FST of a Quarter-Wave Odd Sequence
	V[D]SINQF: Forward FST of One or More Quarter-Wave Odd Sequences
	V[D]SINQB: Inverse FST of One or More Quarter-Wave Odd Sequences

	Fast Cosine Transform Examples
	Fast Sine Transform Examples

	Convolution and Correlation
	Convolution Operation
	Correlation Operation
	Oracle Developer Studio Performance Library Convolution and Correlation Routines
	Arguments for Convolution and Correlation Routines
	Work Array WORK for Convolution and Correlation Routines
	Sample Program: Convolution

	References

	Appendix A • Oracle Developer Studio Performance Library Routines
	LAPACK Routines
	BLAS1 Routines
	BLAS2 Routines
	BLAS3 Routines
	Sparse BLAS Routines
	Sparse Solver Routines
	Signal Processing Library Routines
	FFT Routines
	Fast Cosine and Sine Transforms
	Convolution and Correlation Routines

	Miscellaneous Signal Processing Routines
	Sort Routines

	Index

