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Using This Documentation

■ Overview – Describes the specifics of the OpenMP API supported by the Oracle Developer
Studio 12.5 C, C++, and Fortran compilers

■ Audience – Application developers, system developers, architects, support engineers
■ Required knowledge – Programming experience, software development testing, aptitude to

build and compile software products

Product Documentation Library

Documentation and resources for this product and related products are available at http://
docs.oracle.com/cd/E60778_01.

Feedback

Provide feedback about this documentation at http://www.oracle.com/goto/docfeedback.
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 1 ♦  ♦  ♦        C  H  A  P  T  E  R    1 

Introducing the OpenMP API

The OpenMP Application Program Interface (API) is a portable, parallel programming model
for writing multithreaded programs, developed in collaboration with a number of computer
vendors, academics, and researchers. The OpenMP specifications are created and published by
the OpenMP Architecture Review Board.

The OpenMP API is the recommended parallel programming model for all Oracle Developer
Studio compilers.

1.1 Supported OpenMP Specification

This manual describes issues specific to the Oracle Developer Studio implementation of the
OpenMP API specification version 4.0 (also referred to in this manual as OpenMP 4.0). The
specification can be found on the official OpenMP web site at http://www.openmp.org.

Note - For the best performance and functionality on Oracle Solaris platforms, make sure
that the latest version of the OpenMP runtime library, libmtsk.so, is installed on the running
system.

The latest information about the Oracle Developer Studio compiler releases and their
implementation of the OpenMP API can be found on the Oracle Developer Studio portal at
http://www.oracle.com/technetwork/server-storage/solarisstudio.

Note - This release of Oracle Developer Studio fully supports the OpenMP 4.0 specification.
However, the following should be noted:

■ SIMD constructs are accepted. However, SIMD constructs may not result in the use of any
SIMD instructions.

■ Device constructs are accepted. However, all code will be executed on the host device. The
only device available is the host device.

Chapter 1 • Introducing the OpenMP API 13
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1.2  Special Conventions for This Document

1.2 Special Conventions for This Document

The term structured-block refers to a block of C, C++, or Fortran statements having no transfers
into or out of the block.

Constructs within square brackets, [...], are optional.

Throughout this manual, “Fortran” refers to the Fortran 95 language and the Oracle Developer
Studio compiler, f95(1).

The terms “directive” and “pragma” are used interchangeably in this manual. OpenMP
directives are significant comments inserted by the programmer to instruct the compiler to use
specialized features. As comments, they are not part of the host C, C++, or Fortran language,
and may be ignored or enacted depending on compiler options.
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 2 ♦  ♦  ♦        C  H  A  P  T  E  R    2 

Compiling and Running OpenMP Programs

This chapter describes compiler options and runtime settings affecting programs that use the
OpenMP API.

2.1 Compiler Options

To enable explicit parallelization with OpenMP directives, compile your program with the cc,
CC, or f95 compiler option -xopenmp. The f95 compiler accepts both -xopenmp and -openmp as
synonyms.

The -xopenmp flag accepts the keyword sub-options listed in the following table.

-xopenmp=parallel Enables recognition of OpenMP directives.

The minimum optimization level for -xopenmp=parallel is -xO3.

If the optimization level is lower than -xO3, the compiler raises the optimization
level to -xO3 and issues a warning.

-xopenmp=noopt Enables recognition of OpenMP directives.

The compiler does not raise the optimization level if it is lower than -xO3.

If you explicitly set the optimization level with -xopenmp=noopt lower than -xO3,
as in -xO2 -xopenmp=noopt, the compiler will issue an error.

If you do not specify an optimization level with -xopenmp=noopt, the OpenMP
directives are recognized and the program is parallelized accordingly, but no
optimization is done.

-xopenmp=stubs This option is no longer supported.

For C and C++ programs only:

An OpenMP stubs library is provided for users’ convenience. To compile an
OpenMP program that calls OpenMP runtime routines but ignores the OpenMP
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2.2  OpenMP Environment Variables

directives, compile the program without the -xopenmp option and link the object
files with the libompstubs.a library. For example,

% cc omp_ignore.c -lompstubs

Note - Linking with both libompstubs.a and the OpenMP runtime library,
libmtsk.so, is unsupported and may result in unexpected behavior.

-xopenmp=none Disables recognition of OpenMP directives and does not change the optimization
level.

Note the following additional points:

■ If you do not specify -xopenmp on the command line, the compiler assumes -xopenmp=none
(disable recognition of OpenMP directives) by default.

■ If you specify -xopenmp but without a keyword sub-option, the compiler assumes
-xopenmp=parallel.

■ Specifying -xopenmp=parallel or -xopenmp=noopt will define the _OPENMP macro to have
the decimal value 201307L in C/C++ and 201307 in Fortran, where 2013 is the year and 07
is the month of the OpenMP 4.0 specification.

■ When debugging OpenMP programs with dbx, compile with -xopenmp=noopt -g to enable
full debugging capabilities.

■ To avoid compilation warning messages, specify an appropriate optimization level explicitly
rather than relying on the default value, which is subject to change.

■ With Fortran, compiling with -xopenmp, -xopenmp=parallel, or -xopenmp=noopt implies -
stackvar. See “2.3 Stacks and Stack Sizes” on page 24.

■ When compiling and linking an OpenMP program in separate steps, include -xopenmp in
each of the compile and the link steps.

■ Use the -xvpara option with the -xopenmp option to display compiler warnings about
potential OpenMP programming problems (see Chapter 7, “Scope Checking”).

2.2 OpenMP Environment Variables

The OpenMP specification defines several environment variables that control the execution of
OpenMP programs. For details, refer to the OpenMP 4.0 specification at http://openmp.org.
Also see Chapter 9, “OpenMP Implementation-Defined Behaviors” for information about the
implementation of OpenMP environment variables in Oracle Developer Studio.

Oracle Developer Studio supports additional environment variables which are not part of
the OpenMP specification, are summarized in “2.2.2 Oracle Developer Studio Environment
Variables” on page 19.

16 Oracle Developer Studio 12.5: OpenMP API User's Guide • July 2016
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2.2  OpenMP Environment Variables

Note - The default number of threads for OpenMP and autopar programs is a multiple of the
number of cores per socket (that is, cores per processor chip), which is less than or equal to
MIN(total number of cores, 32).

2.2.1 OpenMP Environment Variable Behaviors and
Defaults

The following table describes the behaviors of the OpenMP environment variables supported
by Oracle Developer Studio and their default values. Note that the values specified for the
environment variables are case insensitive and can be in uppercase or lowercase.

Environment Variable Behavior, Default Value, and Example

OMP_SCHEDULE If the schedule type specified for the OMP_SCHEDULE is not one of the valid types
(static, dynamic, guided, auto, sunw_mp_sched_reserved), then the environment
variable is ignored, and the default schedule (static with no chunk size) is used. A
warning message is issued if SUNW_MP_WARN is set to TRUE or a callback function is
registered by a call to sunw_mp_register_warn().

If the schedule type specified for the OMP_SCHEDULE environment variable is static,
dynamic, or guided but the chunk size specified is a negative integer, then the chunk
size used is as follows: For static, there is no chunk size. For dynamic and guided,
the chunk size is 1. A warning message is issued if SUNW_MP_WARN is set to TRUE or a
callback function is registered by a call to sunw_mp_register_warn().

If not set, a default value of static (with no chunk size) is used.

Example: % setenv OMP_SCHEDULE "GUIDED,4"

OMP_NUM_THREADS If the value specified for OMP_NUM_THREADS is not a positive integer, then the
environment variable is ignored. A warning message is issued if SUNW_MP_WARN is set to
TRUE or a callback function is registered by a call to sunw_mp_register_warn().

If the value specified is greater than the number of threads the implementation can
support, the following actions are taken:

■ If dynamic adjustment of the number of threads is enabled, then the number of
threads will be reduced and a warning message will be issued if SUNW_MP_WARN is set
to TRUE or a callback function is registered by a call to sunw_mp_register_warn().

■ If dynamic adjustment of the number of threads is disabled, then an error message
will be issued and the program will stop execution.

If not set, the default is a multiple of the number of cores per socket (that is, cores per
processor chip), which is less than or equal to MIN (total number of cores, 32).

Example: % setenv OMP_NUM_THREADS 16
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2.2  OpenMP Environment Variables

Environment Variable Behavior, Default Value, and Example

OMP_DYNAMIC If the value specified for OMP_DYNAMIC is neither TRUE nor FALSE, then the value
will be ignored, and the default value TRUE will be used. A warning message will be
issued if SUNW_MP_WARN is set to TRUE or a callback function is registered by a call to
sunw_mp_register_warn().

If not set, the default is TRUE.

Example: % setenv OMP_DYNAMIC FALSE

OMP_PROC_BIND If the value specified for OMP_PROC_BIND is not TRUE, FALSE, or a comma separated list
of master, close, or spread, then the process is exited with a nonzero status.

If an initial thread cannot be bound to the first place in the OpenMP place list, then the
process is exited with a nonzero status.

If not set, the default is FALSE.

Example: % setenv OMP_PROC_BIND spread

OMP_PLACES If the value specified for OMP_PLACES is not valid or cannot be fufilled, then the process
is exited with a nonzero status.

If not set, the default is cores.

Example: % setenv OMP_PLACES sockets

OMP_NESTED If the value specified for OMP_NESTED is neither TRUE nor FALSE, then the value will
be ignored and the default value FALSE will be used. A warning message will be
issued if SUNW_MP_WARN is set to TRUE or a callback function is registered by a call to
sunw_mp_register_warn().

If not set, the default is FALSE.

Example: % setenv OMP_NESTED TRUE

OMP_STACKSIZE If the value specified for OMP_STACKSIZE does not conform to the specified format, then
the value will be ignored and the default value (4 Megabytes for 32-bit applications,
and 8 Megabytes for 64-bit applications) will be used. A warning message will be
issued if SUNW_MP_WARN is set to TRUE or a callback function is registered by a call to
sunw_mp_register_warn().

The default stack size of a helper thread is 4 Megabytes for 32-bit applications, and 8
Megabytes for 64-bit applications.

Example: % setenv OMP_STACKSIZE 10M

OMP_WAIT_POLICY The ACTIVE behavior for a thread is spin. The PASSIVE behavior for a thread is sleep
after possibly spinning for a while.

If not set, the default is PASSIVE.

Example: % setenv OMP_WAIT_POLICY ACTIVE

OMP_MAX_ACTIVE_LEVELS If the value specified for OMP_MAX_ACTIVE_LEVELS is not a nonnegative integer, then the
value will be ignored and the default value of 4 will be used. A warning message will

18 Oracle Developer Studio 12.5: OpenMP API User's Guide • July 2016



2.2  OpenMP Environment Variables

Environment Variable Behavior, Default Value, and Example

be issued if SUNW_MP_WARN is set to TRUE or a callback function is registered by a call to
sunw_mp_register_warn().

If not set, the default is 4.

Example: % setenv OMP_MAX_ACTIVE_LEVELS 8

OMP_THREAD_LIMIT If the value specified for OMP_THREAD_LIMIT is not a positive integer, then the value
will be ignored and the default value of 1024 will be used. A warning message will be
issued if SUNW_MP_WARN is set to TRUE or a callback function is registered by a call to
sunw_mp_register_warn().

If not set, the default is 1024.

Example: % setenv OMP_THREAD_LIMIT 128

OMP_CANCELLATION If the value specified for OMP_CANCELLATION is neither TRUE nor FALSE, then the value
will be ignored and the default value FALSE will be used. A warning message will be
issued if SUNW_MP_WARN is set to TRUE or a callback function is registered by a call to
sunw_mp_register_warn().

If not set, the default is FALSE.

Example: % setenv OMP_CANCELLATION TRUE

OMP_DISPLAY_ENV If the value specified for OMP_DISPLAY_ENV is not TRUE, FALSE, or VERBOSE, then the
value will be ignored, and the default value FALSE will be used. A warning message will
be issued if SUNW_MP_WARN is set to TRUE or a callback function is registered by a call to
sunw_mp_register_warn().

If not set, the default is FALSE.

Example: % setenv OMP_DISPLAY_ENV VERBOSE

2.2.2 Oracle Developer Studio Environment Variables

The following additional environment variables affect the execution of OpenMP programs
but are not part of the OpenMP specifications. Note that the values specified for the following
environment variables are case insensitive and can be in uppercase or lowercase.

2.2.2.1 PARALLEL

For compatibility with legacy programs, setting the PARALLEL environment variable has the
same effect as setting OMP_NUM_THREADS.

If both PARALLEL and OMP_NUM_THREADS are set, they must be set to the same value.
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2.2.2.2 SUNW_MP_WARN

The OpenMP runtime library has the ability to issue warnings about many common OpenMP
violations, such as incorrect nesting of regions, incorrect placement of explicit barriers,
deadlocks, invalid settings of environment variables, and the like.

The environment variable SUNW_MP_WARN controls warning messages issued by the OpenMP
runtime library. If SUNW_MP_WARN is set to TRUE, the runtime library issues warning messages
to stderr. If the environment variable is set to FALSE, the runtime library does not issue any
warning messages. The default is FALSE.

Example:

% setenv SUNW_MP_WARN TRUE

The runtime library will also issue warning messages if the program registers a callback
function to accept warning messages. A program can register a callback function by calling the
following function:

int sunw_mp_register_warn (void (*func)(void *));

The address of the callback function is passed as an argument to sunw_mp_register_warn().
sunw_mp_register_warn() returns 0 upon successfully registering the callback function, or 1
upon failure.

If the program has registered a callback function, the runtime library will call the registered
function and pass a pointer to the localized string containing the warning message. The memory
pointed to is no longer valid upon return from the callback function.

Note - Set SUNW_MP_WARN to TRUE while testing or debugging a program to enable runtime
checking and to display warning messages from the OpenMP runtime library. Be aware that
runtime checking adds overhead to the execution of the program.

2.2.2.3 SUNW_MP_THR_IDLE

Controls the behavior of threads in an OpenMP program that are waiting for work (idle) or
waiting at a barrier. You can set the value to be one of the following: SPIN, SLEEP, SLEEP(time
s), SLEEP(time ms), SLEEP(time mc), where time is an integer that specifies an amount of time,
and s, ms, and mc are optional suffixes that specify the time unit (seconds, milliseconds, and
microseconds, respectively). If the time unit is not specified, then a time unit of seconds is
assumed.

SPIN specifies that a thread should spin while waiting for work (idle) or waiting at a barrier.
SLEEP without a time parameter specifies that a waiting thread should sleep immediately. SLEEP
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with a time parameter specifies the amount of time a thread should spin-wait before going to
sleep.

The default behavior is to sleep after possibly spin-waiting for some amount of time. SLEEP,
SLEEP(0), SLEEP(0s), SLEEP(0ms), and SLEEP(0mc) are all equivalent.

If both SUNW_MP_THR_IDLE and OMP_WAIT_POLICY are set, then OMP_WAIT_POLICY will be
ignored.

Examples:

% setenv SUNW_MP_THR_IDLE SPIN 

% setenv SUNW_MP_THR_IDLE SLEEP

The following are all equivalent:

% setenv SUNW_MP_THR_IDLE SLEEP(5)

% setenv SUNW_MP_THR_IDLE SLEEP(5s)

% setenv SUNW_MP_THR_IDLE SLEEP(5000ms)

% setenv SUNW_MP_THR_IDLE SLEEP(5000000mc)

2.2.2.4 SUNW_MP_PROCBIND

The SUNW_MP_PROCBIND environment variable can be used to bind OpenMP threads to hardware
threads on the running system. Performance can be enhanced with processor binding, but
performance degradation will occur if multiple threads are bound to the same hardware thread.
You cannot set both SUNW_MP_PROCBIND and OMP_PROC_BIND. If SUNW_MP_PROCBIND is not
set, the default is FALSE. See Chapter 5, “Processor Binding (Thread Affinity)” for more
information.

2.2.2.5 SUNW_MP_MAX_POOL_THREADS

Specifies the maximum size of the OpenMP helper thread pool. OpenMP helper threads are
those threads that the OpenMP runtime library creates to work on parallel regions. The helper
thread pool does not include the initial (or main) thread or any threads created explicitly by the
user’s program. If this environment variable is set to zero, the OpenMP helper thread pool will
be empty and all parallel regions will be executed by the initial (or main) thread. If not set, the
default is 1023. See “3.2 Control of Nested Parallelism” on page 29 for more information.

Note that SUNW_MP_MAX_POOL_THREADS specifies the maximum number of non-user OpenMP
threads to use for the program, while OMP_THREAD_LIMIT specifies the maximum number of
user and non-user OpenMP threads to use for the program. If both SUNW_MP_MAX_POOL_THREADS
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and OMP_THREAD_LIMIT are set, they must be set to consistent values. The value of
OMP_THREAD_LIMIT must be 1 more than the value of SUNW_MP_MAX_POOL_THREADS.

2.2.2.6 SUNW_MP_MAX_NESTED_LEVELS

Sets the maximum number of nested active parallel regions. A parallel region is active if it
is executed by a team consisting of more than one thread. If SUNW_MP_MAX_NESTED_LEVELS
is not set, the default is 4. See “3.2 Control of Nested Parallelism” on page 29 for more
information.

2.2.2.7 STACKSIZE

Sets the stack size for each OpenMP helper thread. The environment variable accepts numeric
values with an optional suffix of B, K, M, or G for Bytes, Kilobytes, Megabytes, or Gigabytes,
respectively. If no suffix is specified, the default is Kilobytes.

If not set, the default OpenMP helper thread stack size is 4 Megabytes for 32-bit applications,
and 8 Megabytes for 64-bit applications.

Examples:

% setenv STACKSIZE 8192  <- sets the OpenMP helper thread stack size to 8 Megabytes

% setenv STACKSIZE 16M   <- sets the OpenMP helper thread stack size to 16 Megabytes

Note that if both STACKSIZE and OMP_STACKSIZE are set, they must be set to the same value.

2.2.2.8 SUNW_MP_GUIDED_WEIGHT

Sets the weighting factor used to determine the size of chunks in loops with the guided
schedule. The value should be a positive floating-point number, and will apply to all loops with
the guided schedule in the program. If not set, the default weighting factor is 2.0.

When the schedule(guided, chunk_size) clause is specified with the for/do directive, the
loop iterations are assigned to threads in chunks as the threads request them, with the chunk
sizes decreasing to chunk_size, except that the last chunk may have a smaller size. The thread
executes a chunk of iterations and then requests another chunk until no chunks remain to
be assigned. For a chunk_size of 1, the size of each chunk is proportional to the number of
unassigned iterations divided by the number of threads, decreasing to 1. For a chunk_size of
k (where k is greater than 1), the size of each chunk is determined in the same way with the
restriction that the chunks do not contain fewer than k iterations except possibly for the last
chunk. When no chunk_size is specified, the value defaults to 1.
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The OpenMP runtime library, libmtsk.so, uses the following formula to compute the chunk
sizes for a loop with the guided schedule:

chunk_size = num-unassigned-iters / (guided-weight * num-threads)

■ num-unassigned-iters is the number of iterations in the loop that have not yet been assigned
to any thread.

■ guided-weight is the weighting factor specified by the SUNW_MP_THR_GUIDED_WEIGHT
environment variable (or 2.0 if the environment variable is not set).

■ num-threads is the number of threads used to execute the loop.

To illustrate, suppose a 100-iteration loop with the guided schedule. If num-threads = 4 and the
weighting factor = 1.0, then the chunk sizes will be:

25, 18, 14, 10, 8, 6, 4, 3, 3, 2, 1,...

On the other hand, if num-threads= 4 and the weighting factor = 2.0, then the chunk sizes will
be:

12, 11, 9, 8, 7, 6, 5, 5, 4, 4, 3,...

2.2.2.9 SUNW_MP_WAIT_POLICY

Allows fine-grained control of the behavior of OpenMP threads in the program that are waiting
for work (idle), waiting at a barrier, or waiting for tasks to complete. The behavior for each of
these types of wait has three possibilities: spin for a while, yield the processor for a while, or
sleep until awakened.

The syntax (shown using csh) is as follows:

% setenv SUNW_MP_WAIT_POLICY "IDLE=val:BARRIER=val:TASKWAIT=val"

IDLE, BARRIER, and TASKWAIT are optional keywords that specify the type of wait being
controlled. IDLE refers to the wait for work. BARRIER refers to the wait at an explicit or implicit
barrier. TASKWAIT refers to the wait at a taskwait region. Each of these keywords is followed by
a val setting that describes the wait behavior using the keywords SPIN, YIELD, or SLEEP.

SPIN(time) specifies how long a waiting thread should spin before yielding the processor. time
can be in seconds, milliseconds, or microseconds (denoted by s, ms, or mc, respectively). If no
time unit is specified, then seconds is assumed. SPIN with no time parameter means that the
thread should continuously spin while waiting.

YIELD(number) specifies the number of times a thread should yield the processor before
sleeping. After each yield of the processor, a thread will run again when the operating system
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schedules it to run. YIELD with no number parameter means the thread should continuously
yield while waiting.

SLEEP specifies that a waiting thread should immediately go to sleep.

Note that the SPIN, SLEEP, and YIELD settings for a particular type of wait can be specified
in any order. The settings must be separated by comma. "SPIN(0),YIELD(0)" is the same as
"YIELD(0),SPIN(0)", which is equivalent to SLEEP or sleep immediately. When processing
the settings for IDLE, BARRIER, and TASKWAIT, the “left-most wins” rule is used. The "left-most
wins" rule means that if different values are specified for the same type of wait, then the left-
most value is the one that will apply. In the following example, two values are specified for
IDLE. The first is SPIN, and the second is SLEEP. Because SPIN appears first (it is the left-most in
the string), this is the value that will be applied by the OpenMP runtime library.

% setenv SUNW_MP_WAIT_POLICY "IDLE=SPIN:IDLE=SLEEP"

 

If both SUNW_MP_WAIT_POLICY and OMP_WAIT_POLICY are set, OMP_WAIT_POLICY will be ignored.

Example 1:

% setenv SUNW_MP_WAIT_POLICY “BARRIER=SPIN”

A thread waiting at a barrier spins until all threads in the team have reached the barrier.

Example 2:

% setenv SUNW_MP_WAIT_POLICY “IDLE=SPIN(10ms),YIELD(5)”

A thread waiting for work (idle) spins for 10 milliseconds, then yields the processor 5 times
before going to sleep.

Example 3:

% setenv SUNW_MP_WAIT_POLICY “IDLE=SPIN(2s),YIELD(2):BARRIER=SLEEP:TASKWAIT=YIELD(10)”

A thread waiting for work (idle) spins for 2 seconds, then yields the processor 2 times before
going to sleep; a thread waiting at a barrier goes to sleep immediately; a thread waiting at a
taskwait yields the processor 10 times before going to sleep.

2.3 Stacks and Stack Sizes
Stacks are temporary memory address spaces used to hold arguments and automatic variables
during an invocation of a subprogram or function. Stack overflow might occur if the size of a
thread's stack is too small, causing silent data corruption or segmentation fault.
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The executing program maintains a main stack for the initial (or main) thread executing the
program. Use the limit C shell command or the ulimit Bourne or Korn shell command to
display or set the stack size for the initial (or main) thread.

In addition, each OpenMP helper thread in the program has its own thread stack. This
stack mimics the initial (or main) thread stack but is unique to the thread. The thread’s
private variables are allocated on the thread stack. The default size of a helper thread stack
is 4 Megabytes for 32-bit applications, and 8 Megabytes for 64-bit applications. Use the
OMP_STACKSIZE environment variable to set the size of the helper thread stack.

Note that compiling Fortran programs with the -stackvar option forces the allocation of local
variables and arrays on the stack as if they were automatic variables. -stackvar is implied with
programs compiled with the -xopenmp, -xopenmp=parallel, or -xopenmp=noopt option. This
could lead to stack overflow if not enough memory is allocated for the stack. Take extra care to
ensure that the stacks are large enough.

Example for C shell:

% limit stacksize 32768   <- Sets the main thread stack size to 32 Megabytes
% setenv OMP_STACKSIZE 16384   <- Sets the helper thread stack size to 16 Megabytes

Example for Bourne or Korn shell:

$ ulimit -s 32768   <- Sets the main thread stack size to 32 Megabytes

$ OMP_STACKSIZE=16384   <- Sets the helper thread stack size to 16 Megabytes 
$ export OMP_STACKSIZE

2.3.1 Detecting Stack Overflow

To detect stack overflow, compile your C, C++, or Fortran program with the -xcheck=stkovf
compiler option. The syntax is as follows:

-xcheck=stkovf[:detect | :diagnose]

If -xheck=stkovf:detect is specified, a detected stack overflow error is handled by executing
the signal handler normally associated with the error.

If -xcheck=stkovf:diagnose is specified, a detected stack overflow error is handled by
catching the associated signal and calling stack_violation(3C) to diagnose the error. If a stack
overflow error is diagnosed, an error message is printed to stderr. This is the default behavior
if only -xcheck=stkovf is specified.

See the cc(1), CC(1), or f95(1) man pages for more information about the -xcheck=stkovf
compiler option.
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2.4 OpenMP Runtime Routines
The section describes the behaviors of certain OpenMP runtime routines when the program is
compiled using Oracle Developer Studio compilers.

2.4.1 omp_set_num_threads()

If the argument to omp_set_num_threads() is not a positive integer, then the call is ignored. A
warning message is issued if SUNW_MP_WARN is set to TRUE or a callback function is registered by
a call to sunw_mp_register_warn().

2.4.2 omp_set_schedule()

The behavior for the Oracle Developer Studio specific sunw_mp_sched_reserved schedule is
the same as static with no chunk size.

2.4.3 omp_set_max_active_levels()

When omp_set_max_active_levels() is called from within an active parallel region, then
the call is ignored. A warning message is issued if SUNW_MP_WARN is set to TRUE or a callback
function is registered by a call to sunw_mp_register_warn().

If the argument to omp_set_max_active_levels() is not a non-negative integer, then the call
is ignored. A warning message is issued if SUNW_MP_WARN is set to TRUE or a callback function is
registered by a call to sunw_mp_register_warn().

2.4.4 omp_get_max_active_levels()

omp_get_max_active_levels() can be called from anywhere in the program. The call returns
the value of the max-active-levels-var internal control variable.

2.5 Checking and Analyzing OpenMP Programs
Oracle Developer Studio provides several tools to help debug and analyze OpenMP programs.
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■ dbx is an interactive debugging tool that provides facilities to run a program in a controlled
fashion and inspect the state of a stopped program. dbx provides several features that are
tailored to OpenMP, such as single-stepping into a parallel region; printing of shared,
private, and threadprivate variables in a region; printing information about parallel regions
and task regions; and keeping track of synchronization events. Refer to Oracle Developer
Studio 12.5: Debugging a Program with dbx for more information.

■ Code Analyzer is a tool that provides static source-code checking as well as runtime
memory access checking. Static errors detected include missing malloc() return value
check, null pointer dereference, missing function return, and the like. Memory access errors
detected include unallocated memory read/write, uninitialized memory read, freed memory
read/write, and the like. Refer to Oracle Developer Studio 12.5: Code Analyzer User’s
Guide for more information.

■ Thread Analyzer is a tool for detecting data races and deadlocks in multithreaded
applications. It works on applications written using OpenMP, POSIX threads, Oracle Solaris
threads, or a combination of these. Refer to Oracle Developer Studio 12.5: Thread Analyzer
User’s Guide and the tha(1) and libtha(3) man pages for more information.

■ Performance Analyzer is a tool for analyzing application performance. The tool collects
performance data based on statistical sampling of call stacks, and shows metrics of
performance for functions, callers and callees, source lines, and instructions. The
Performance Analyzer provides several features that are useful for understanding OpenMP
performance, such as OMP work, OMP wait, and OMP overhead metrics, and user
mode and machine mode views of the application. Refer to Oracle Developer Studio
12.5: Performance Analyzer and the collect(1) and analyzer(1) man pages for more
information.
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 3 ♦  ♦  ♦        C  H  A  P  T  E  R    3 

OpenMP Nested Parallelism

This chapter discusses the features of OpenMP nested parallelism.

3.1 OpenMP Execution Model
OpenMP uses the fork-join model of parallel execution. When a thread encounters a parallel
construct, the thread creates a team composed of itself and some additional (possibly zero)
helper threads. The encountering thread becomes the master of the new team. All team
members execute the code in the parallel region. When a thread finishes its work within the
parallel region, it waits at an implicit barrier at the end of the parallel region. When all team
members have arrived at the barrier, the threads can leave the barrier. The master thread
continues execution of user code in the program beyond the end of the parallel construct, while
the helper threads wait to be summoned to join other teams.

OpenMP parallel regions can be nested inside each other. If nested parallelism is disabled,
then the team executing a nested parallel region consists of one thread only (the thread that
encountered the nested parallel construct). If nested parallelism is enabled, then the new team
may consist of more than one thread.

The OpenMP runtime library maintains a pool of helper threads that can be used to work on
parallel regions. When a thread encounters a parallel construct and requests a team of more than
one thread, the thread will check the pool and grab idle threads from the pool, making them
part of the team. The encountering thread might get fewer helper threads than it requests if the
pool does not contain a sufficient number of idle threads. When the team finishes executing the
parallel region, the helper threads are returned to the pool.

3.2 Control of Nested Parallelism
Nested parallelism can be controlled by setting various environment variables prior to the
execution of the program, or by calling the omp_set_nested() runtime routine. This section
discusses various environment variables that can be used to control nested parallelism.
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3.2.1 OMP_NESTED

Nested parallelism can be enabled or disabled by setting the OMP_NESTED environment variable.
By default, nested parallelism is disabled.

The following example has three levels of nested parallel constructs.

EXAMPLE   1 Nested Parallelism Example

#include <omp.h>

#include <stdio.h>

void report_num_threads(int level)

{

    #pragma omp single

    {

        printf("Level %d: number of threads in the team = %d\n",

                  level, omp_get_num_threads());

    }

 }

int main()

{

    omp_set_dynamic(0);

    #pragma omp parallel num_threads(2)

    {

        report_num_threads(1);

        #pragma omp parallel num_threads(2)

        {

            report_num_threads(2);

            #pragma omp parallel num_threads(2)

            {

                report_num_threads(3);

            }

        }

    }

    return(0);

}

Compiling and running this program with nested parallelism enabled produces the following
(sorted) output:

% setenv OMP_NESTED TRUE

% a.out | sort

Level 1: number of threads in the team = 2

Level 2: number of threads in the team = 2

Level 2: number of threads in the team = 2

Level 3: number of threads in the team = 2
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Level 3: number of threads in the team = 2

Level 3: number of threads in the team = 2

Level 3: number of threads in the team = 2

Running the program with nested parallelism disabled produces the following output:

% setenv OMP_NESTED FALSE

% a.out | sort

Level 1: number of threads in the team = 2

Level 2: number of threads in the team = 1

Level 2: number of threads in the team = 1

Level 3: number of threads in the team = 1

Level 3: number of threads in the team = 1

3.2.2 OMP_THREAD_LIMIT

The setting of the OMP_THREAD_LIMIT environment variable controls the maximum number
of OpenMP threads to use for the whole program. This number includes the initial (or main)
thread, as well as the OpenMP helper threads that the OpenMP runtime library creates. By
default, the maximum number of OpenMP threads to use for the whole program is 1024 (one
initial or main thread and 1023 OpenMP helper threads).

Note that the thread pool consists of only OpenMP helper threads that the OpenMP runtime
library creates. The pool does not include the initial (or main) thread or any thread created
explicitly by the user's program.

If OMP_THREAD_LIMIT is set to 1, then the helper thread pool will be empty and all parallel
regions will be executed by one thread (the initial or main thread).

The following example output shows that a parallel region might get fewer helper threads if
the pool does not contain a sufficient number of helper threads. The code is the same as that
in Example 1, “Nested Parallelism Example,” on page 30, except that the environment
variable OMP_THREAD_LIMIT is set to 6. The number of threads needed for all the parallel regions
to be active at the same time is 8. Therefore, the pool needs to contain at least 7 helper threads.
If OMP_THREAD_LIMIT is set to 6, then the pool contains at most 5 helper threads. Therefore, two
of the four innermost parallel regions might not be able to get all the helper threads requested.
The following example shows one possible result.

% setenv OMP_NESTED TRUE

% OMP_THREAD_LIMIT 6

% a.out | sort

Level 1: number of threads in the team = 2

Level 2: number of threads in the team = 2

Level 2: number of threads in the team = 2
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Level 3: number of threads in the team = 2

Level 3: number of threads in the team = 2

Level 3: number of threads in the team = 1

Level 3: number of threads in the team = 1

3.2.3 OMP_MAX_ACTIVE_LEVELS

The environment variable OMP_MAX_ACTIVE_LEVELS controls the maximum number of nested
active parallel regions. A parallel region is active if it is executed by a team consisting of more
than one thread. If not set, the default is 4.

Note that setting this environment variable simply controls the maximum number of nested
active parallel regions; it does not enable nested parallelism. To enable nested parallelism,
OMP_NESTED must be set to TRUE, or omp_set_nested() must be called with an argument that
evaluates to true.

The following sample code creates 4 levels of nested parallel regions.

#include <omp.h>

#include <stdio.h>

#define DEPTH 4

void report_num_threads(int level)

{

    #pragma omp single

    {

        printf("Level %d: number of threads in the team = %d\n",

               level, omp_get_num_threads());

    }

}

void nested(int depth)

{

    if (depth > DEPTH)

        return;

    #pragma omp parallel num_threads(2)

    {

        report_num_threads(depth);

        nested(depth+1);

    }

}

int main()

{

    omp_set_dynamic(0);

    omp_set_nested(1);

    nested(1);
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    return(0);

}

The following output shows a possible result from compiling and running the sample code
when DEPTH is set to 4. Actual results would depend on how the operating system schedules the
threads.

% setenv OMP_NESTED TRUE

% setenv OMP_MAX_ACTIVE_LEVELS 4

% a.out | sort

Level 1: number of threads in the team = 2

Level 2: number of threads in the team = 2

Level 2: number of threads in the team = 2

Level 3: number of threads in the team = 2

Level 3: number of threads in the team = 2

Level 3: number of threads in the team = 2

Level 3: number of threads in the team = 2

Level 4: number of threads in the team = 2

Level 4: number of threads in the team = 2

Level 4: number of threads in the team = 2

Level 4: number of threads in the team = 2

Level 4: number of threads in the team = 2

Level 4: number of threads in the team = 2

Level 4: number of threads in the team = 2

Level 4: number of threads in the team = 2

If OMP_MAX_ACTIVE_LEVELS is set to 2, then nested parallel regions at nesting depths of 3 and 4
are executed single-threaded. The following example shows a possible result.

% setenv OMP_NESTED TRUE

% setenv OMP_MAX_ACTIVE_LEVELS 2

% a.out |sort

Level 1: number of threads in the team = 2

Level 2: number of threads in the team = 2

Level 2: number of threads in the team = 2

Level 3: number of threads in the team = 1

Level 3: number of threads in the team = 1

Level 3: number of threads in the team = 1

Level 3: number of threads in the team = 1

Level 4: number of threads in the team = 1

Level 4: number of threads in the team = 1

Level 4: number of threads in the team = 1

Level 4: number of threads in the team = 1
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3.3 Calling OpenMP Runtime Routines Within Nested
Parallel Regions

This section discusses calls to the following OpenMP runtime routines within nested parallel
regions:

■ omp_set_num_threads()

■ omp_get_max_threads()

■ omp_set_dynamic()

■ omp_get_dynamic()

■ omp_set_nested()

■ omp_get_nested()

■ omp_set_schedule()

■ omp_get_schedule()

The set calls affect future parallel regions at the same or inner nesting levels encountered by
the calling thread only. They do not affect parallel regions encountered by other threads.

The get calls return the values for the calling thread. When a thread becomes the master of
a team executing a parallel region, all other members of the team inherit the values of the
master thread. When the master thread exits a nested parallel region and continues executing
the enclosing parallel region, the values for that thread revert to their values in the enclosing
parallel region just before executing the nested parallel region.

EXAMPLE   2 Calls to OpenMP Runtime Routines Within Parallel Regions

#include <stdio.h>

#include <omp.h>

int main()

{

    omp_set_nested(1);

    omp_set_dynamic(0);

    #pragma omp parallel num_threads(2)

    {

        if (omp_get_thread_num() == 0)

            omp_set_num_threads(4);       /* line A */

        else

            omp_set_num_threads(6);       /* line B */

        /* The following statement will print out:

         *

         * 0: 2 4
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         * 1: 2 6

         *

         * omp_get_num_threads() returns the number

         * of the threads in the team, so it is

         * the same for the two threads in the team.

         */

        printf("%d: %d %d\n", omp_get_thread_num(),

               omp_get_num_threads(),

               omp_get_max_threads());

        /* Two inner parallel regions will be created

         * one with a team of 4 threads, and the other

         * with a team of 6 threads.

         */

        #pragma omp parallel

        {

            #pragma omp master

            {

                /* The following statement will print out:

                 *

                 * Inner: 4

                 * Inner: 6

                 */

                printf("Inner: %d\n", omp_get_num_threads());

            }

            omp_set_num_threads(7);      /* line C */

        }

        /* Again two inner parallel regions will be created,

         * one with a team of 4 threads, and the other

         * with a team of 6 threads.

         *

         * The omp_set_num_threads(7) call at line C

         * has no effect here, since it affects only

         * parallel regions at the same or inner nesting

         * level as line C.

         */

        #pragma omp parallel

        {

            printf("count me.\n");

        }

    }

    return(0);

}

The following example shows a possible result from running the above program:

% a.out
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0: 2 4

Inner: 4

1: 2 6

Inner: 6

count me.

count me.

count me.

count me.

count me.

count me.

count me.

count me.

count me.

count me.

3.4 Some Tips for Using Nested Parallelism

■ Nested parallel regions provide an immediate way for more threads to participate in the
computation.
For example, suppose you have a program that contains two levels of parallelism and
OMP_NUM_THREADS is set to 2. Also, suppose your system has four hardware threads and
you want to use all four hardware threads to speed up the execution of the program.
Just parallelizing any one level will use only two hardware threads. You can use all four
hardware threads by enabling nested parallelism.

■ Nested parallel regions can easily create too many threads and oversubscribe the system.
Set OMP_THREAD_LIMIT and OMP_MAX_ACTIVE_LEVELS appropriately to limit the number of
threads in use and prevent runaway oversubscription.

■ Nested parallel regions add overhead. If the outer level has enough parallelism and the load
is balanced, using all the threads at the outer level of the computation will be more efficient
than creating nested parallel regions at the inner levels.
For example, suppose you have a program that contains two levels of parallelism and the
load is balanced. Suppose you have a system with four hardware threads and want to use all
four hardware threads to speed up the execution of this program. In general, using all four
threads for the outer parallel region would yield better performance than using two threads
for the outer parallel region and using the other two threads as helper threads for the inner
parallel regions because nested parallel regions will introduce additional barriers.
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OpenMP Tasking

This chapter describes the OpenMP tasking model.

4.1 OpenMP Tasking Model
Tasking facilitates the parallelization of applications where units of work are generated
dynamically, as in recursive structures or while loops.

4.1.1 OpenMP Task Execution

In OpenMP, an explicit task is specified using the task construct, which can be placed
anywhere in the program. Whenever a thread encounters a task construct, a new task is
generated.

When a thread encounters a task construct, it may choose to execute the task immediately or
defer its execution until a later time. If task execution is deferred, then the task is placed in a
conceptual pool of tasks that is associated with the current parallel region. The threads in the
current team will take tasks out of the pool and execute them until the pool is empty. The thread
that executes a task might be different from the thread that originally encountered the task and
placed it in the pool.

The code associated with a task is executed only once. A task is tied if the code must be
executed by the same thread from beginning to end. A task is untied if the code may be
executed by more than one thread, so that different threads execute different parts of the task
code. By default, tasks are tied, and a task can be specified to be untied by using the untied
clause on the task directive.

Threads are allowed to suspend the execution of a task region at a task scheduling point in order
to execute a different task. If the suspended task is tied, then the same thread later resumes
execution of the suspended task. If the suspended task is untied, then any thread in the current
team may resume the task execution.
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Task scheduling points are implied at a number of locations, including the following:

■ The point immediately following the generation of an explicit task
■ After the point of completion of a task region
■ In a taskyield region
■ In a taskwait region
■ At the end of a taskgroup region
■ In an implicit and explicit barrier region

In addition to explicit tasks specified using the task construct, the OpenMP specification
presents the notion of implicit tasks. An implicit task is a task generated by the implicit parallel
region, or generated when a parallel construct is encountered during execution. In the latter
case, the code for each implicit task is the code inside the parallel construct. Each implicit
task is assigned to a different thread in the team and is tied.

All implicit tasks generated when a parallel construct is encountered are guaranteed to be
complete when the master thread exits the implicit barrier at the end of the parallel region.
On the other hand, all explicit tasks generated within a parallel region are guaranteed to be
complete on exit from the next implicit or explicit barrier within the parallel region.

4.1.2 OpenMP Task Types

The OpenMP specification defines various types of tasks that the programmer may use to
reduce the overhead of tasking.

An undeferred is a task for which execution is not deferred with respect to the generating
task; that is, the generating task region is suspended until execution of the undeferred task is
completed. The undeferred task might not be executed immediately by the encountering thread.
It might be placed in a pool and executed at a later time by the encountering thread or by some
other thread. Once the execution of the task is completed, the generating task can resume. An
example of an undeferred task is a task with an if clause expression that evaluates to false. In
this case, an undeferred task is generated and the encountering thread must suspend the current
task region. Execution of the current task region cannot be resumed until the task with the if
clause is completed.

Unlike an undeferred task, an included task is executed immediately by the encountering
thread and is not placed in the pool to be executed at a later time. The task's execution is
sequentially included in the generating task region. As with undeferred tasks, the generating
task is suspended until the execution of the included task is completed, at which point the
generating task can resume. An example of an included task is a task that is a descendant of a
final task.
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A merged task is a task whose data environment is the same as that of its generating task region.
If a mergeable clause is present on a task directive, and the generated task is an undeferred
task or an included task, then the implementation may choose to generate a merged task instead.
If a merged task is generated, then the behavior is as though there was no task directive at all.

A final task is a task that forces all of its descendent tasks to become final and included tasks.
When a final clause is present on a task directive and the final clause expression evaluates to
true, the generated task will be a final task.

4.2 OpenMP Data Environment

The task directive takes the following data-sharing attribute clauses that define the data
environment of the task:

■ default (private | firstprivate | shared | none)
■ private (list)
■ firstprivate (list)
■ shared (list)

All references within a task to a variable listed in the shared clause refer to the variable with
that same name known at the point when the task construct is encountered.

For each private and firstprivate variable, new storage is created and all references to the
original variable in the lexical extent of the task construct are replaced by references to the
new storage. A firstprivate variable is initialized with the value of the original variable at the
point when the task construct is encountered.

The OpenMP specification describes how the data-sharing attributes of variables referenced in
parallel, task, or work-sharing constructs are determined.

The data-sharing attributes of variables referenced in a construct may be predetermined,
explicitly determined, or implicitly determined. Certain variables have predetermined data-
sharing attributes; for example, the loop iteration variable in a parallel for/do construct is
private. Variables with explicitly determined data-sharing attributes are those that are referenced
in a given construct and are listed in a data-sharing attribute clause on the construct. Variables
with implicitly determined data-sharing attributes are those that are referenced in a given
construct, do not have predetermined data-sharing attributes, and are not listed in a data-sharing
attribute clause on the construct.
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Note - The rules for how the data-sharing attributes of variables are implicitly determined might
not always be obvious. To avoid any surprises, be sure to explicitly scope all variables that are
referenced in a task construct using the data-sharing attribute clauses rather than relying on the
OpenMP implicit scoping rules.

4.3 Tasking Example

The C/C++ example in this section illustrates how the OpenMP task and taskwait directives
can be used to compute Fibonacci numbers recursively.

In the example, the parallel region is executed by four threads. The single region ensures that
only one of the threads executes the print statement that calls fib(n).

The call to fib(n) generates two tasks (indicated by the task directives). One of the tasks
calls fib(n-1) and the other calls fib(n-2) The return values of these calls are added together
to produce the value returned by fib(n). Each of the calls to fib(n-1) and fib(n-2) in turn
generates two tasks, which are recursively generated until the argument passed to fib() is less
than 2.

Note the final clause on each of the task directives. If the final clause expression (n <=
THRESHOLD) evaluates to true, then the generated task will be a final task. All task constructs
encountered during the execution of a final task will generate included and final tasks. Included
tasks will be generated when fib() is called with the argument n = 9, 8, ..., 2. These tasks will
be executed immediately by the encountering threads, thus reducing the overhead of placing
tasks in the pool.

The taskwait directive ensures that the two tasks generated in the same invocation of fib() are
completed (that is, the tasks compute i and j) before that invocation of fib() returns.

Note that although only one thread executes the single directive and hence the first call to
fib(), all four threads will participate in the execution of the tasks generated and placed in the
pool.

EXAMPLE   3 Computing Fibonacci Numbers Using Tasks

#include <stdio.h>

#include <omp.h>

#define THRESHOLD 9

int fib(int n)
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{

  int i, j;

 

  if (n<2)

    return n;

 

  #pragma omp task shared(i) firstprivate(n) final(n <= THRESHOLD)

  i=fib(n-1);

 

  #pragma omp task shared(j) firstprivate(n) final(n <= THRESHOLD)

  j=fib(n-2);

 

  #pragma omp taskwait

  return i+j;

}

int main()

{

  int n = 30;

  omp_set_dynamic(0);

  omp_set_num_threads(4);

 

  #pragma omp parallel shared(n)

  {

     #pragma omp single

     printf ("fib(%d) = %d\n", n, fib(n));

  }

}

% CC -xopenmp -xO3 task_example.cc

% a.out

fib(30) = 832040

4.4 Task Scheduling Constraints

The OpenMP specification lists several task scheduling constraints which an OpenMP task
scheduler must follow.

1. An included task is executed immediately after it is generated.
2. Scheduling of new tied tasks is constrained by the set of task regions that are currently tied

to the thread and that are not suspended in a barrier region. If this set is empty, any new
tied task may be scheduled. Otherwise, a new tied task may be scheduled only if it is a
descendant task of every task in the set.
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3. A dependent task shall not be scheduled until its task dependences are fulfilled.
4. When an explicit task is generated by a construct containing an if clause for which the

expression evaluates to false and the previous constraints are already met, the task is
executed immediately after it is generated.

A program relying on any other assumptions about task scheduling is non-conforming.

Constraints 1 and 4 are two cases where an OpenMP task should be executed immediately.

Constraint 2 is for preventing deadlock. In Example 4, “Illustrating Task Scheduling Constraint
2,” on page 42. Tasks A, B, and C are tied tasks. The thread that is executing Task A is
about to enter the critical taskyield region and the thread has ownership of the lock associated
with the critical region. Because taskyield is a task scheduling point, the thread executing
Task A may choose to suspend Task A and execute another task instead. Suppose Tasks B and
C are in the task pool. According to constraint 2, the thread executing Task A cannot execute
Task B because Task B is not a descendant of Task A. Only Task C can be scheduled at this
point, because Task C is a descendant of Task A.

If Task B were to be scheduled while Task A is suspended, then the thread to which Task A
is tied cannot enter the critical region in Task B because the thread already holds the lock
associated with that critical region. Therefore, a deadlock occurs. The purpose of constraint 2 is
to avoid this kind of deadlock when the code is conforming.

Note that deadlock can also occur if the programmer nests a critical section inside Task C, but
that would be a programming error.

EXAMPLE   4 Illustrating Task Scheduling Constraint 2

#pragma omp task // Task A

{

    #pragma omp critical

    {

        #pragma omp task // Task C

        {

        }

        #pragma omp taskyield

     }

}

#pragma omp task // Task B

{

    #pragma omp critical

     {

     }

}
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4.5 Task Dependence

The OpenMP 4.0 specification introduces the depend clause on the task directive, which
enforces additional constraints on the scheduling of tasks. These constraints establish
dependences between sibling tasks only. Sibling tasks are OpenMP tasks that are child tasks of
the same task region.

When the in dependence-type is specified with the depend clause, the generated task will be
a dependent task of all previously generated sibling tasks that reference at least one of the list
items in an out or inout dependence-type list. When the out or inout dependence-type is
specified on the depend clause, the generated task will be a dependent task of all previously
generated sibling tasks that reference at least one of the list items in an in, out, or inout
dependence-type list.

The following example illustrates task dependence.

EXAMPLE   5 Illustrating the depend Clause Synchronizing Only Sibling Tasks

% cat -n task_depend_01.c

     1  #include <omp.h>

     2  #include <stdio.h>

     3  #include <unistd.h>

     4

     5  int main()

     6  {

     7      int a,b,c;

     8

     9      #pragma omp parallel

    10      {

    11          #pragma omp master

    12          {

    13              #pragma omp task depend(out:a)

    14              {

    15                  #pragma omp critical

    16                  printf ("Task 1\n");

    17              }

    18

    19              #pragma omp task depend(out:b)

    20              {

    21                  #pragma omp critical

    22                  printf ("Task 2\n");

    23              }

    24

    25              #pragma omp task depend(in:a,b) depend(out:c)

    26              {
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    27                  printf ("Task 3\n");

    28              }

    29

    30              #pragma omp task depend(in:c)

    31              {

    32                  printf ("Task 4\n");

    33              }

    34          }

    35          if (omp_get_thread_num () == 1)

    36            sleep(1);

    37      }

    38      return 0;

    39  }

% cc -xopenmp -O3 task_depend_01.c

% a.out

Task 2

Task 1

Task 3

Task 4

% a.out

Task 1

Task 2

Task 3

Task 4

In this example, Tasks 1, 2, 3, and 4 are all child tasks of the same implicit task region, and so
are sibling tasks. Task 3 is a dependent task of Tasks 1 and 2 because of the dependences on the
a argument specified in the depend clauses. Therefore, Task 3 cannot be scheduled until both
Tasks 1 and 2 have completed. Similarly, Task 4 is a dependent task of task 3 so Task 4 cannot
be scheduled until Task 3 has completed.

Note that the depend clause synchronizes sibling tasks only. The following example (Example
6, “Illustrating the depend Clause Not Affecting non-Sibling Tasks,” on page 44) shows a
case where the depend clause does not affect non-sibling tasks.

EXAMPLE   6 Illustrating the depend Clause Not Affecting non-Sibling Tasks

% cat -n task_depend_02.c

     1  #include <omp.h>

     2  #include <stdio.h>

     3  #include <unistd.h>

     4

     5  int main()

     6  {

     7      int a,b,c;
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     8

     9      #pragma omp parallel

    10      {

    11          #pragma omp master

    12          {

    13              #pragma omp task depend(out:a)

    14              {

    15                  #pragma omp critical

    16                  printf ("Task 1\n");

    17              }

    18

    19              #pragma omp task depend(out:b)

    20              {

    21                  #pragma omp critical

    22                  printf ("Task 2\n");

    23

    24                  #pragma omp task depend(out:a,b,c)

    25                  {

    26                    sleep(1);

    27                    #pragma omp critical

    28                    printf ("Task 5\n");

    29                  }

    30              }

    31

    32              #pragma omp task depend(in:a,b) depend(out:c)

    33              {

    34                  printf ("Task 3\n");

    35              }

    36

    37              #pragma omp task depend(in:c)

    38              {

    39                  printf ("Task 4\n");

    40              }

    41          }

    42          if (omp_get_thread_num () == 1)

    43            sleep(1);

    44      }

    45      return 0;

    46  }

% cc -xopenmp -O3 task_depend_02.c

% a.out

Task 1

Task 2

Task 3

Task 4

Task 5
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In this above example, Task 5 is a child task of Task 2 and is not a sibling of Tasks 1, 2, 3 or 4.
So, despite the depend clauses referencing the same variables (a, b, c), there is no dependence
between Task 5 and Tasks 1, 2, 3, or 4.

4.5.1 Notes About Task Dependence

Note the following tips about task dependence:

■ in, out, and inout dependence-types in the depend clause are similar to read and write
operations, although the in, out and inout dependence-types are solely for establishing task
dependences. They do not indicate any memory access patterns inside task regions. A task
having a depend(in:a), depend(out:a), or depend(inout:a) clause may read or write
variable a inside its region, or may even not access variable a at all.

■ Having both the if clause and the depend clause on the same task directive can be
expensive when the condition of the if clause evaluates to false. When a task has an
if(false) clause, the encountering thread must suspend the current task region until
the generated task (the task with the if(false) clause) is completed. At the same time,
the task scheduler should not schedule the generated task until its task dependences are
fulfilled. Because the point immediately following the generation of an explicit task is a task
scheduling point, the task scheduler will try to schedule tasks so that the task dependences
of the undeferred task are fulfilled. Finding and scheduling the right tasks in the pool may
be expensive. In the worst case, it can be as expensive as having a taskwait region.

■ List items used in depend clauses of the same task or sibling tasks must indicate identical
storage or disjoint storage. Therefore, if array sections appear in depend clauses, make sure
that the array sections indicate either identical or disjoint storage.

4.6 Task Synchronization Using taskwait and taskgroup

You can synchronize tasks by using the taskwait or taskgroup directives.

When a thread encounters a taskwait construct, the current task is suspended until all child
tasks that it generated before the taskwait region complete execution.

When a thread encounters a taskgroup construct, it commences to execute the taskgroup
region. At the end of the taskgroup region, the current task is suspended until all child tasks
that it generated in the taskgroup region and all of their descendant tasks complete execution.

Note the difference between taskwait and taskgroup. With taskwait, the current task waits
only for its child tasks. With taskgroup, the current task waits not only for the child tasks
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generated in the taskgroup but also for all the descendants of those child tasks. The following
two examples illustrate the difference.

EXAMPLE   7 taskwait Example

% cat -n taskwait.c

     1  #include <omp.h>

     2  #include <stdio.h>

     3  #include <unistd.h>

     4

     5  int main()

     6  {

     7    #pragma omp parallel

     8    #pragma omp single

     9    {

    10      #pragma omp task

    11      {

    12        #pragma omp critical

    13        printf ("Task 1\n");

    14

    15        #pragma omp task

    16        {

    17          sleep(1);

    18          #pragma omp critical

    19          printf ("Task 2\n");

    20        }

    21      }

    22

    23      #pragma omp taskwait

    24

    25      #pragma omp task

    26      {

    27        #pragma omp critical

    28        printf ("Task 3\n");

    29      }

    30    }

    31

    32    return 0;

    33  }

EXAMPLE   8 taskgroup Example

% cat -n taskgroup.c

     1  #include <omp.h>

     2  #include <stdio.h>

     3  #include <unistd.h>
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     4

     5  int main()

     6  {

     7    #pragma omp parallel

     8    #pragma omp single

     9    {

    10      #pragma omp taskgroup

    11      {

    12        #pragma omp task

    13        {

    14          #pragma omp critical

    15          printf ("Task 1\n");

    16

    17          #pragma omp task

    18          {

    19            sleep(1);

    20            #pragma omp critical

    21            printf ("Task 2\n");

    22          }

    23        }

    24      } /* end taskgroup */

    25

    26      #pragma omp task

    27      {

    28        #pragma omp critical

    29        printf ("Task 3\n");

    30      }

    31    }

    32

    33    return 0;

    34  }

Although the source codes of taskwait.c and taskgroup.c are almost the same, taskwait.c
has a taskwait directive at line 23, whereas taskgroup.c has a taskgroup construct at line
10 that contains Task 1 and Task 2. In both programs, the taskwait and taskgroup directives
synchronize the execution of Task 1 and Task 3; the difference is in whether they synchronize
the execution of Task 2 and Task 3.

In the case of taskwait.c, Task 2 is not a child task of the implicit task generated by the
parallel region to which the taskwait region is bound. So, Task 2 does not have to finish by the
end of the taskwait region. Task 3 can be scheduled before the completion of Task 2.

In the case of taskgroup.c, Task 2 is a child task of Task 1, which is generated in the
taskgroup region. So, Task 2 has to finish by the end of the taskgroup region, before Task 3 is
encountered and scheduled.
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4.7 OpenMP Programming Considerations
Tasking introduces a layer of complexity to an OpenMP program. This section discusses some
task-related programming issues to consider.

4.7.1 Threadprivate and Thread-Specific Information
When a thread encounters a task scheduling point, the implementation might suspend the
current task and schedule the thread to work on another task. This behavior implies that
threadprivate variables or other thread-specific information such as the thread number in a
task might change across a task scheduling point.

If the suspended task is tied, then the thread that resumes executing the task will be the same
thread that suspended it. Therefore, the thread number will remain the same after the task is
resumed. However, the value of a threadprivate variable might change because the thread
might have been scheduled to work on another task that modified the threadprivate variable
before resuming the suspended task.

If the suspended task is untied, then the thread that resumes executing the task might be
different from the thread that suspended it. Therefore, both the thread number and the value of
threadprivate variables before and after the task scheduling point might be different.

4.7.2 OpenMP Locks
Since OpenMP 3.0, locks are owned by tasks, not by threads. Once a lock is acquired by a task,
the task owns it, and the same task must release it before the task is completed. However, the
critical construct remains a thread-based mutual exclusion mechanism.

Because locks are owned by tasks, take extra care when using locks. The following example
conforms to the OpenMP 2.5 specification because the thread that releases the lock lck in the
parallel region is the same thread that acquired the lock in the sequential part of the program.
The master thread of the parallel region and the initial thread are the same. However, the
example does not conform to later specifications because the task region that releases the lock
lck is different from the task region that acquired the lock.

EXAMPLE   9 Using Locks Prior to OpenMP 3.0

#include <stdlib.h>

#include <stdio.h>

#include <omp.h>
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int main()

{

  int x;

  omp_lock_t lck;

  omp_init_lock (&lck);

  omp_set_lock (&lck);

  x = 0;

  #pragma omp parallel shared (x)

  {

    #pragma omp master

    {

      x = x + 1;

      omp_unset_lock (&lck);

    }

  }

  omp_destroy_lock (&lck);

}

4.7.3 References to Stack Data

A task may reference data on the stack of the routine where the task construct appears (the host
routine). Because the execution of a task may be deferred until the next implicit or explicit
barrier, a task could execute after the stack of the host routine has already been popped and the
stack data overwritten, thereby destroying the stack data referenced by the task.

Be sure to insert the needed synchronizations so that variables are still on the stack when the
task references them, as illustrated in the two examples in this section.

In Example 10, “Stack Data: Incorrect Reference,” on page 51, i is specified to be shared
in the task construct, and the task accesses the copy of i that is allocated on the stack of the
work() routine.

Task execution may be deferred, so the task may be executed at the implicit barrier at the end of
the parallel region in main() after the work() routine has already returned. At that point, when
the task references i, it accesses some undetermined value that happens to be on the stack at that
time.

For correct results, make sure that work() does not return before the task has completed. This
can be accomplished by inserting a taskwait directive after the task construct, as shown
in Example 11, “Stack Data: Corrected Reference,” on page 51. Alternatively, i can be
specified to be firstprivate in the task construct, instead of shared.
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EXAMPLE   10 Stack Data: Incorrect Reference

#include <stdio.h>

#include <omp.h>

void work()

 {

   int i;

   i = 10;

   #pragma omp task shared(i)

   {

     #pragma omp critical

     printf("In Task, i = %d\n",i);

   }

 }

int main(int argc, char** argv)

 {

    omp_set_num_threads(8);

    omp_set_dynamic(0);

    #pragma omp parallel 

    {

      work();

    }

 }

EXAMPLE   11 Stack Data: Corrected Reference

#include <stdio.h>

#include <omp.h>

void work()

 {

   int i;

   i = 10;

   #pragma omp task shared(i)

   {

     #pragma omp critical

     printf("In Task, i = %d\n",i);

   }

   /* Use TASKWAIT for synchronization. */

   #pragma omp taskwait

 }
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int main(int argc, char** argv)

 {

    omp_set_num_threads(8);

    omp_set_dynamic(0);

    #pragma omp parallel 

    {

      work();

    }

 }

In the following example, j in the task construct refers to the j in the sections construct.
Therefore, the task accesses the firstprivate copy of j in the sections construct, which in
Oracle Developer Studio is a local variable on the stack of the outlined routine for the sections
construct.

Task execution may be deferred so the task may be executed at the implicit barrier at the end of
the sections region after the outlined routine for the sections construct has exited. Therefore,
when the task references j, it accesses some undetermined value on the stack.

For correct results, make sure that the task is executed before the sections region reaches its
implicit barrier by inserting a taskwait directive after the task construct as shown in Example
13, “Sections Data: Corrected Reference,” on page 53. Alternatively, j can be specified to
be firstprivate in the task construct, instead of shared.

EXAMPLE   12 Sections Data: Incorrect Reference

#include <stdio.h>

#include <omp.h>

int main(int argc, char** argv)

 {

    omp_set_num_threads(2);

    omp_set_dynamic(0);

    int j=100;

    #pragma omp parallel shared(j)

    {

       #pragma omp sections firstprivate(j)

       {

          #pragma omp section

          {

             #pragma omp task shared(j)

             {

               #pragma omp critical
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               printf("In Task, j = %d\n",j);

             }

          }

       } /* Implicit barrier for sections */

    } /* Implicit barrier for parallel */

    printf("After parallel, j = %d\n",j);

 }

EXAMPLE   13 Sections Data: Corrected Reference

#include <stdio.h>

#include <omp.h>

int main(int argc, char** argv)

 {

    omp_set_num_threads(2);

    omp_set_dynamic(0);

    int j=100;

    #pragma omp parallel shared(j)

    {

       #pragma omp sections firstprivate(j)

       {

          #pragma omp section

          {

             #pragma omp task shared(j)

             {

               #pragma omp critical

               printf("In Task, j = %d\n",j);

             }

             /* Use TASKWAIT for synchronization. */

             #pragma omp taskwait

          }

       } /* Implicit barrier for sections */

    }/* Implicit barrier for parallel */

    printf("After parallel, j = %d\n",j);

 }
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Processor Binding (Thread Affinity)

This chapter describes processor binding.

5.1 Processor Binding Overview

With processor binding (also called thread affinity), the program instructs the operating system
that a thread in the program should run on the same place on the machine throughout its
execution, and should not be moved to other places. A place in this context refers to some
grouping of sockets, cores, or hardware threads.

Processor binding can improve the performance of applications that exhibit a certain data reuse
pattern where data accessed by a thread in a parallel or worksharing region will be in the local
cache from a previous invocation of a parallel or worksharing region.

A computer system can be viewed as a hierarchy of sockets, cores, and hardware threads. Each
socket contains one or more cores, and each core contains one or more hardware threads.

On Oracle Solaris platforms, the psrinfo(1M) command can be used to list available hardware
threads. On Linux platforms, the text file /proc/cpuinfo provides information about available
hardware threads.

When the operating system binds a thread to a processor, the thread will in effect be bound to a
specific hardware thread or to a group of hardware threads.

To control the binding of OpenMP threads to processors, you can use the OpenMP 4.0
environment variables, OMP_PLACES and OMP_PROC_BIND. Alternatively, you can use the
Oracle-specific environment variable SUNW_MP_PROCBIND. These two sets of environment
variables should not be mixed. The environment variables are described in “5.2 OMP_PLACES and
OMP_PROC_BIND” on page 56.
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Note - The OpenMP environment variables described in this chapter control the binding of
OpenMP threads only (that is, any user threads recorded in the OpenMP runtime library, as well
as helper threads that the library created). The environment variables do not control the binding
of other user threads. The library records a user thread if the user thread encounters an OpenMP
construct or calls an OpenMP runtime routine.

5.2 OMP_PLACES and OMP_PROC_BIND

OpenMP 4.0 provides the OMP_PLACES and OMP_PROC_BIND environment variables to specify
how the OpenMP threads in a program are bound to processors. These two environment
variable are often used in conjunction with each other. OMP_PLACES is used to specify the places
on the machine to which the threads are bound. OMP_PROC_BIND is used to specify the binding
policy (thread affinity policy) which prescribes how the threads are assigned to places. Setting
OMP_PLACES alone does not enable binding. You also need to set OMP_PROC_BIND.

According to the OpenMP specification, the value of OMP_PLACES can be one of two types of
values: either an abstract name describing a set of places (threads, cores, or sockets), or an
explicit list of places described by non-negative numbers. Intervals can also be used to define
places using the <lowerbound> : <length> : <stride> notation to represent the following list
of numbers: "<lower-bound>, <lower-bound> + <stride>, …, <lower-bound> + (<length>-1)
*<stride>". When <stride> is omitted, a unit stride is assumed. If OMP_PLACES is not set, then
the default value is cores.

EXAMPLE   14 One hardware thread in each place

% OMP_PLACES="{0:1}:8:32"

{0:1} defines a place which has one hardware thread only, namely place {0}. The interval

 {0:1}:8:32 is therefore equivalent to

{0}:8:32, which defines 8 places starting with place {0}, and the stride is 32. So the

 list of places is as follows:

Place 0: {0}

Place 1: {32}

Place 2: {64}

Place 3: {96}

Place 4: {128}

Place 5: {160}

Place 6: {192}

Place 7: {224}
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EXAMPLE   15 Two hardware threads in each place

% OMP_PLACES="{0:2}:32:8"

{0:2} defines a place which has two hardware threads, namely place {0,1}. The interval

 {0:2}:24:8 is therefore equivalent to

{0,1}:24:8 which defines 24 places starting with place {0,1}, and the stride is 8. So

 the list of places is as follows: 

Place 0: {0,1}

Place 1: {8,9}

Place 2: {16,17}

Place 3: {24,25}

Place 4: {32,33}

Place 5: {40,41}

Place 6: {48,49}

Place 7: {56,57}

Place 8: {64,65}

Place 9: {72,73}

Place 10: {80,81}

Place 11: {88,89}

Place 12: {96,97}

Place 13: {104,105}

Place 14: {112,113}

Place 15: {120,121}

Place 16: {128,129}

Place 17: {136,137}

Place 18: {144,145}

Place 19: {152,153}

Place 20: {160,161}

Place 21: {168,169}

Place 22: {176,177}

Place 23: {184,185}

In addition to the two environment variables, OMP_PLACES and OMP_PROC_BIND, OpenMP 4.0
provides the proc_bind clause, which can appear on a parallel directive. The proc_bind
clause is used to specify how the team of threads executing the parallel region are bound to
processors.

For details about the OMP_PLACES and OMP_PROC_BIND environment variables and the proc_bind
clause, refer to the OpenMP 4.0 specification.

5.2.1 Controlling Thread Affinity in OpenMP 4.0
This section provides details about Section 2.5.2, "Controlling OpenMP Thread Affinity", in the
OpenMP 4.0 specification.
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When a thread encounters a parallel construct that includes a proc_bind clause, the
OMP_PROC_BIND environment variable is used to determine the policy for binding threads to
places. If the parallel construct includes a proc_bind clause, then the binding policy specified
by the proc_bind clause overrides the policy specified by OMP_PROC_BIND. Once a thread in the
team is assigned to a place, the implementation does not move it to another place.

The master thread affinity policy instructs the execution environment to assign every thread
in the team to the same place as the master thread. The place partition is not changed by this
policy, and each implicit task inherits the place-partition-var Internal Control Variable (ICV) of
the parent implicit task.

The close thread affinity policy instructs the execution environment to assign the threads in the
team to places close to the place of the parent thread. The place partition is not changed by this
policy, and each implicit task inherits the place-partition-var ICV of the parent implicit task.
If T is the number of threads in the team, and P is the number of places in the parent's place
partition, then the assignment of threads in the team to places is as follows:

■ T <= P. The master thread executes on the place of the parent thread, that is, the thread
that encountered the parallel construct. The thread with the next smallest thread number
executes on the next place in the place partition, and so on, with wrap around with respect to
the place partition of the master thread.

■ T > P. Each place P will contain Sp threads with consecutive thread numbers, where floor
(T/P) <= Sp <= ceiling(T/P). The first S0 threads (including the master thread) are assigned
to the place of the parent thread. The next S1 threads are assigned to the next place in the
place partition, and so on, with wrap around with respect to the place partition of the master
thread. When P does not divide T evenly, the exact number of threads in a particular place is
implementation defined.

The purpose of the spread thread affinity policy is to create a sparse distribution for a team of T
threads among the P places of the parent's place partition. A sparse distribution is achieved by
first subdividing the parent partition into T subpartitions if T <= P, or P subpartitions if T > P.
Then one thread (T <= P) or a set of threads (T > P) is assigned to each subpartition. The place-
partition-var ICV of each implicit task is set to its subpartition. The subpartitioning is not only
a mechanism for achieving a sparse distribution, it also defines a subset of places for a thread to
use when creating a nested parallel region. The assignment of threads to places is as follows:

■ T <= P. The parent thread's place partition is split into T subpartitions, where each
subpartition contains floor(P/T) or ceiling(P/T) consecutive places. A single thread is
assigned to each subpartition. The master thread executes on the place of the parent thread
and is assigned to the subpartition that includes that place. The thread with the next smallest
thread number is assigned to the first place in the next subpartition, and so on, with wrap
around with respect to the original place partition of the master thread.

■ T > P. The parent thread's place partition is split into P subpartitions, each consisting of a
single place. Each subpartition is assigned Sp threads with consecutive thread numbers,
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where floor(T/P) <= Sp <= ceiling(T/P). The first S0 threads (including the master thread)
are assigned to the subpartition containing the place of the parent thread. The next S1
threads are assigned to the next subpartition, and so on, with wrap around with respect to
the original place partition of the master thread. When P does not divide T evenly, the exact
number of threads in a particular subpartition is implementation defined.

Note - Wrap around is needed if the end of a place partition is reached before all thread
assignments are done. For example, wrap around may be needed in the case of close and T
<= P, if the master thread is assigned to a place other than the first place in the place partition.
In this case, thread 1 is assigned to the place after the place of the master place, thread 2 is
assigned to the place after that, and so on. The end of the place partition may be reached before
all threads are assigned. In this case, assignment of threads is resumed with the first place in the
place partition.

5.3 SUNW_MP_PROCBIND

SUNW_MP_PROCBIND is a legacy, environment variable specific to Oracle for specifying processor
binding. This section describes the values you can set for this variable.

Note - Non-negative integers used as values for SUNW_MP_PROCBIND denote logical hardware
thread IDs, which might be different from actual hardware thread IDs. Although hardware
thread IDs may be consecutive, gaps can occur. For example, on a 16-core SPARC system, the
hardware thread IDs could be 0, 1, 2, 3, 8 9, 10, 11, 512, 513, 514, 515, 520, 521, 522, 523.
However, logical processor IDs are consecutive integers that start with 0. If the number of
hardware threads available in the system is n, their logical processor IDs are 0, 1, ..., n-1.

The possible values for SUNW_MP_PROCBIND are:

■ The strings FALSE, TRUE, COMPACT, or SCATTER in uppercase or lowercase. For example:

% setenv SUNW_MP_PROCBIND "TRUE"

■ FALSE – The OpenMP threads will not be bound to any processors. This is the default
setting.

■ TRUE – The OpenMP threads will be bound to hardware threads in a round-robin
fashion. The starting hardware thread for the binding is determined by the runtime
library with the goal of achieving best performance.

■ COMPACT – The OpenMP threads will be bound to hardware threads that are as close
together as possible on the system. COMPACT allows threads to share data caches and thus
improve data locality.
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■ SCATTER – The OpenMP threads will be bound to hardware threads that are far apart.
This setting enables higher memory bandwidth for each of the threads.

■ Non-negative integer – Denotes the starting logical ID of the hardware threads to which
OpenMP threads should be bound. OpenMP threads will be bound to hardware threads in
a round-robin fashion starting with the hardware thread with the specified logical ID and
wrapping around to the hardware thread with logical ID 0 after binding to the hardware
thread with logical ID n-1.
For example:

% setenv SUNW_MP_PROCBIND "2"

■ A list of two or more non-negative integers – The OpenMP threads will be bound in a
round-robin fashion to hardware threads with the specified logical IDs. Hardware threads
with logical IDs other than those specified will not be used.
The following example binds two threads to hardware thread 2, one to hardware thread 4,
and one to hardware thread 6 if four threads are used.

% setenv SUNW_MP_PROCBIND "2 2 4 6"

■ Two non-negative integers separated by a hyphen ("-") – The OpenMP threads will be
bound in a round-robin fashion to hardware threads in the range that begins with the first
logical ID and ends with the second logical ID. The first integer must be less than or equal
to the second integer. Hardware threads with logical IDs other than those in the range will
not be used.
For example:

% setenv SUNW_MP_PROCBIND "0-6"

If the value specified for SUNW_MP_PROCBIND is invalid, or if an invalid logical ID is given, an
error message results and execution of the program will terminate.

If the number of OpenMP threads is greater than the number of hardware threads available, then
some hardware threads will have more than one OpenMP thread bound to them. This situation
can negatively impact performance.

5.4 Interaction With Processor Sets

A processor set is a subset of the system's processors set aside for exclusive use by specified
processes. Processor sets allow the binding of processes to groups of processors, rather than
just a single processor. A processor set can be specified using the psrset(1M) utility on Oracle
Solaris platforms, or the taskset command on Linux platforms. Processor binding does not
currently respect processor sets specified using the taskset command on Linux.
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Automatic Scoping of Variables

Determining the data-sharing attributes of variables referenced in an OpenMP construct is
called scoping. This chapter describes automatic scoping of variables.

6.1 Variable Scoping Overview

In an OpenMP program, every variable referenced in an OpenMP construct is scoped.
Generally, a variable referenced in a construct may be scoped in one of two ways. Either the
programmer explicitly declares the scope of the variable with a data-sharing attribute clause,
or the compiler automatically applies rules for predetermined and implicitly determined scopes
according to Section 2.14.1, "Data-Sharing Attribute Rules", in the OpenMP 4.0 specification.
For more information about data-sharing attributes, see Section 2.14.3, "Data-Sharing Attribute
Clauses", of the OpenMP 4.0 specification.

Explicitly scoping variables can be tedious and error-prone, especially with large and
complicated programs. Moreover, the data-sharing attribute rules can yield some unexpected
results. The task directive adds to the complexity and difficulty of scoping.

The automatic scoping feature (called autoscoping) supported by the Oracle Developer Studio
compilers relieves the programmer from having to explicitly determine the scopes of variables.
With autoscoping, the compiler determines the scopes of variables by using some smart rules in
a simple user model.

Earlier compiler releases limited autoscoping to variables in a parallel construct. Current
Oracle Developer Studio compilers extend the autoscoping feature to scalar variables
referenced in a task construct.
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6.2 Autoscoping Data Scope Clause

Autoscoping is invoked either by specifying the variables to be scoped on a __auto data scope
clause or by using a default(__auto) clause. Both are Oracle Developer Studio extensions to
the OpenMP specification.

6.2.1 __auto Clause

Syntax:   __auto(list-of-variables)

For Fortran, __AUTO(list-of-variables) is also accepted.

The __auto clause can appear on a parallel directive (including parallel for/do, parallel
sections, and Fortran parallel workshare directive) or on a task directive.

The __auto clause on a parallel or task construct directs the compiler to automatically
determine the scopes of the named variables in the construct. (Note the two underscores before
auto.)

If a variable is specified in the __auto clause, then it cannot be specified in any other data
sharing attribute clause.

6.2.2 default(__auto) Clause

Syntax: default(__auto)

For Fortran, DEFAULT(__AUTO) is also accepted.

The default(__auto) clause can appear on a parallel directive (including parallel for/do,
parallel sections, and Fortran parallel workshare directive), or on a task directive.

The default(__auto) clause on a parallel or task construct directs the compiler to
automatically determine the scopes of all variables referenced in the construct that are not
explicitly scoped in any data scope clause.
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6.3 Scoping Rules for a parallel Construct

When doing automatic scoping, the compiler applies the rules described in this section to
determine the scope of a variable in a parallel construct. These rules do not apply to variables
scoped implicitly by the OpenMP specification, such as loop index variables of worksharing
for/do loops.

6.3.1 Scoping Rules for Scalar Variables in a parallel
Construct

When autoscoping a scalar variable that is referenced in a parallel construct and that does not
have predetermined or implicitly determined scope, the compiler checks the use of the variable
against the following rules PS1 - PS3 in the given order.

■ PS1: If the use of the variable in the parallel construct is free of data race conditions for
the threads in the team executing the construct, then the variable is scoped as shared.

■ PS2: If in each thread executing the parallel construct the variable is always written
before being read by the same thread, then the variable is scoped as private. The variable
is scoped as lastprivate if it can be scoped private and it is read before it is written
after the parallel construct, and the construct is either a parallel for/do or a parallel
sections.

■ PS3: If the variable is used in a reduction operation that can be recognized by the compiler,
then the variable is scoped as reduction with that particular operation type.

6.3.2 Scoping Rule for Arrays in a parallel Construct
■ PA1: If the use of the array in the parallel construct is free of data race conditions for the

threads in the team executing the construct, then the array is scoped as shared.

6.4 Scoping Rules for Scalar Variables in a task
Construct

When doing automatic scoping, the compiler applies the rules described in this section to
determine the scope of a scalar variable in a task construct.
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Note - In this release of Oracle Developer Studio, autoscoping for tasks does not handle arrays.

When autoscoping a scalar variable that is referenced in a task construct and that does not
have predetermined or implicitly determined scope, the compiler checks the use of the variable
against the rules TS1 - TS5 in the numeric order. These rules do not apply to variables scoped
implicitly by the OpenMP specification, such as loop index variables of parallel for/do
loops.

■ TS1: If the use of the variable is read-only in the task construct and read-only in the
parallel construct in which the task construct is enclosed, then the variable is autoscoped
as firstprivate.

■ TS2: If the use of the variable is free of data race and the variable will be accessible while
the task is executing, then the variable is autoscoped as shared.

■ TS3: If the use of the variable is free of data race, is read-only in the task construct, and the
variable may not be accessible while the task is executing, then the variable is autoscoped as
firstprivate.

■ TS4: If the use of the variable is not free of data race, and in each thread executing the
task construct the variable is always written before being read by the same thread, and the
value assigned to the variable in the task is not used outside the task, then the variable is
autoscoped as private.

■ TS5: If the use of the variable is not free of data race, and the variable is not read-only in
the task construct, and some read in the task might get the value assigned outside the task,
and the value assigned to the variable inside the task is not used outside the task, then the
variable is autoscoped as firstprivate.

6.5 Notes About Autoscoping

Specifying the _auto(list-of-variables) or default(_auto) clause on a parallel construct
doesn't imply that the same clause applies to task constructs that are lexically or dynamically
enclosed in the parallel construct.

When autoscoping a variable that does not have predetermined implicit scope, the compiler
checks the use of the variable against the rules in the given order. If a rule matches, the compiler
will scope the variable according to the matching rule. If no rule matches, or if autoscoping
cannot handle the variable, the compiler will scope the variable as shared and treat the
parallel or task construct as if an if(0) (if(.false.) in Fortran) clause was specified. For
more information, see “6.6 Restrictions When Using Autoscoping” on page 65.

A variable generally cannot be autoscoped if the use of the variable does not match any of the
rules or if the source code is too complex for the compiler to do a sufficient analysis. Function
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calls, complicated array subscripts, memory aliasing, and user-implemented synchronizations
are some typical causes.

6.6 Restrictions When Using Autoscoping

■ To enable autoscoping, the program must be compiled with the -xopenmp option at an
optimization level of -xO3 or higher. Autoscoping is not enabled if the program is compiled
with -xopenmp=noopt.

■ Parallel and task autoscoping in C and C++ can handle only basic data types: integer,
floating point, and pointer.

■ Task autoscoping cannot handle arrays.
■ Task autoscoping in C and C++ cannot handle global variables.
■ Task autoscoping cannot handle untied tasks.
■ Task autoscoping cannot handle tasks that are lexically enclosed in some other tasks. For

example:

     #pragma omp task /* task 1 */

     {

       ...

       #pragma omp task /* task 2 */

       {

         ...

       }

      ...

     }

In this example, the compiler does not attempt autoscoping for task 2 because it is lexically
nested in task 1. The compiler will scope all variables referenced in task 2 as shared and
will treat task 2 as if an if(0) (if(.false.) in Fortran) clause is specified on the task.

■ Only OpenMP directives are recognized and used in the analysis. Calls to OpenMP
runtime routines are not recognized. For example, if a program uses omp_set_lock() and
omp_unset_lock() to implement a critical section, the compiler is not able to detect the
existence of the critical section. Use the critical directive if possible.

■ Only synchronizations specified using OpenMP synchronization directives, such as
barrier and master, are recognized and used in the data race analysis. User-implemented
synchronizations such as busy-waiting are not recognized.

Chapter 6 • Automatic Scoping of Variables 65



6.7  Checking the Results of Autoscoping

6.7 Checking the Results of Autoscoping

Detailed autoscoping results are displayed in the compiler commentary, The compiler produces
an inline commentary when the source is compiled with the -g option. The commentary can be
viewed with the er_src command, as shown in the following example. The er_src command
is provided as part of the Oracle Developer Studio software. For more information, see the
er_src(1) man page or the Oracle Developer Studio 12.5: Performance Analyzer.

For a quick check of autoscoping results, compile with the -xvpara option. Compiling with —
xvpara will give you a general idea about whether autoscoping for a particular construct was
successful.

EXAMPLE   16 Checking Autoscoping Results With -xvpara

% cat source1.f

      INTEGER X(100), Y(100), I, T

C$OMP PARALLEL DO DEFAULT(__AUTO)

      DO I=1, 100

         T = Y(I)

         X(I) = T*T

      END DO

C$OMP END PARALLEL DO

      END

% f95 -xopenmp -xO3 -xvpara -c -g source1.f

"source1.f", line 2: Autoscoping for OpenMP construct succeeded. 

Check er_src for details

If autoscoping fails for a particular construct, a warning message is issued when -xvpara is
specified, as shown in the following example.

EXAMPLE   17 Autoscoping Failure With -xvpara

% cat source2.f

      INTEGER X(100), Y(100), I, T

C$OMP PARALLEL DO DEFAULT(__AUTO)

      DO I=1, 100

         T = Y(I)

         CALL FOO(X)

         X(I) = T*T

      END DO

C$OMP END PARALLEL DO

      END
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% f95 -xopenmp -xO3 -xvpara -c -g source2.f

"source2.f", line 2: Warning: Autoscoping for OpenMP construct failed. 

 Check  er_src for details. Parallel region will be executed by

 a single thread.

More detailed autoscoping information appears in the compiler commentary displayed by
er_src, as shown in the following example.

EXAMPLE   18 Detailed Autoscoping Results Displayed Using er_src

% er_src source2.o

Source file: source2.f

Object file: source2.o

Load Object: source2.o

     1.         INTEGER X(100), Y(100), I, T

        

   Source OpenMP region below has tag R1

   Variables autoscoped as SHARED in R1: y

   Variables autoscoped as PRIVATE in R1: t, i

   Variables treated as shared because they cannot be autoscoped in R1: x

   R1 will be executed by a single thread because 

     autoscoping for some variable s was not successful

   Private variables in R1: i, t

   Shared variables in R1: y, x

     2. C$OMP PARALLEL DO DEFAULT(__AUTO)

   Source loop below has tag L1

   L1 parallelized by explicit user directive

   L1 autoparallelized

   L1 parallel loop-body code placed in function _$d1A2.MAIN_ 

      along with 0 inner loops

   L1 could not be pipelined because it contains calls

     3.         DO I=1, 100

     4.                 T = Y(I)

     5.                 CALL FOO(X)

     6.                 X(I) = T*T

     7.         END DO

     8. C$OMP END PARALLEL DO

     9.         END

    10.
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6.8 Autoscoping Examples

This section provides some examples to illustrate how the autoscoping rules work. The rules are
described in “6.3 Scoping Rules for a parallel Construct” on page 63 and “6.4 Scoping
Rules for Scalar Variables in a task Construct” on page 63.

EXAMPLE   19 Complex Example Illustrating Autoscoping Rules

 1.      REAL FUNCTION FOO (N, X, Y)

 2.      INTEGER       N, I

 3.      REAL          X(*), Y(*)

 4.      REAL          W, MM, M

 5.

 6.      W = 0.0

 7.

 8. C$OMP PARALLEL DEFAULT(__AUTO)

 9.

10. C$OMP SINGLE

11.       M = 0.0

12. C$OMP END SINGLE

13.

14.       MM = 0.0

15.

16. C$OMP DO

17.       DO I = 1, N

18.          T = X(I)

19.          Y(I) = T

20.          IF (MM .GT. T) THEN

21.             W = W + T

22.             MM = T

23.          END IF

24.       END DO

25. C$OMP END DO

26.

27. C$OMP CRITICAL

28.       IF ( MM .GT. M ) THEN

29.          M = MM

30.       END IF

31. C$OMP END CRITICAL

32.

33. C$OMP END PARALLEL

34.

35.      FOO = W - M

36.

37.      RETURN

38.      END
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In this example, function FOO() contains a parallel construct, which contains a single
construct, a worksharing do construct, and a critical construct.

The variables I, N, MM, T, W, M, X, and Y, are used in the parallel construct. The compiler
determines the scopes of these variables as follows:

■ Scalar I is the loop index of the worksharing do loop. The OpenMP specification mandates
that I be scoped private.

■ Scalar N is only read in the parallel construct and therefore will not cause a data race, so it is
scoped as shared following rule PS1.

■ Any thread executing the parallel construct will execute line 14, which sets the value of
scalar MM to 0.0. This write will cause a data race, so rule PS1 does not apply. The write
happens before any read of MM in the same thread, so MM is scoped as private according to
rule PS2.

■ Similarly, scalar T is scoped as private.
■ Scalar W is read and then written at line 21, so rules PS1 and PS2 do not apply. The addition

operation is both associative and communicative, therefore, W is scoped as reduction(+)
according to rule PS3.

■ Scalar M is written at line 11 which is inside a single construct. The implicit barrier at the
end of the single construct ensures that the write at line 11 will not happen concurrently
with either the read at line 28 or the write at line 29, and the latter two will not happen at the
same time because both are inside the same critical construct. No two threads can access
M at the same time. Therefore, the writes and reads of M in the parallel construct do not
cause a data race, and, following rule S1, M is scoped as shared.

■ Array X is only read and not written in the construct, so it is scoped as shared by rule PA1.
■ The writes to array Y are distributed among the threads, and no two threads will write to the

same element of Y. Because no data race occurs, Y is scoped as shared according to rule
PA1.

EXAMPLE   20 QuickSort Example

static void par_quick_sort (int p, int r, float *data)

{

   if (p < r) 

   {

      int q = partition (p, r, data);  

      

      #pragma omp task default(__auto) if ((r-p)>=low_limit)

      par_quick_sort (p, q-1, data);

      #pragma omp task default(__auto) if ((r-p)>=low_limit)

      par_quick_sort (q+1, r, data);
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   }

}

int main ()

{

  ...

  #pragma omp parallel

  {

     #pragma omp single nowait

     par_quick_sort (0, N-1, &Data[0]);

  }

  ...

}

er_src shows the following compiler commentary:

      Source OpenMP region below has tag R1

      Variables autoscoped as FIRSTPRIVATE in R1: p, q, data

      Firstprivate variables in R1: data, p, q

        47. #pragma omp task default(__auto) if ((r-p)>=low_limit)

        48. par_quick_sort (p, q-1, data);

      

      Source OpenMP region below has tag R2

      Variables autoscoped as FIRSTPRIVATE in R2: q, r, data

      Firstprivate variables in R2: data, q, r

        49. #pragma omp task default(__auto) if ((r-p)>=low_limit)

        50. par_quick_sort (q+1, r, data);

The scalar variables p and q, and the pointer variable data, are read-only in the task construct,
and read-only in the parallel construct. Therefore, they are autoscoped as firstprivate
according to TS1.

EXAMPLE   21 Fibonacci Example

int fib (int n)

{

   int x, y;

   if (n < 2) return n;

   #pragma omp task default(__auto)

   x = fib(n - 1);

   #pragma omp task default(__auto)

   y = fib(n - 2);

   #pragma omp taskwait
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   return x + y;

}

er_src shows the following compiler commentary:

   Source OpenMP region below has tag R1

   Variables autoscoped as SHARED in R1: x

   Variables autoscoped as FIRSTPRIVATE in R1: n

   Shared variables in R1: x

   Firstprivate variables in R1: n

    24.         #pragma omp task default(__auto) /* shared(x) firstprivate(n) */

    25.         x = fib(n - 1);

   

   Source OpenMP region below has tag R2

   Variables autoscoped as SHARED in R2: y

   Variables autoscoped as FIRSTPRIVATE in R2: n

   Shared variables in R2: y

   Firstprivate variables in R2: n

    26.         #pragma omp task default(__auto) /* shared(y) firstprivate(n) */

    27.         y = fib(n - 2);

    28. 

    29.         #pragma omp taskwait

    30.         return x + y;

    31. }

Scalar n is read-only in the task constructs and read-only in the parallel construct. Therefore,
n is autoscoped as firstprivate, according to TS1.

Scalar variables x and y are local variables of function fib(). Accesses to x and y in both tasks
are free of data race. Because there is a taskwait, the two tasks will complete execution before
the thread executing fib() (which encountered and generated the tasks) exits fib(). This
implies that x and y will be accessible while the two tasks are executing. Therefore, x and y are
autoscoped as shared, according to TS2.

EXAMPLE   22 Example With single and task Constructs

int main(void)

{

  int yy = 0;

  #pragma omp parallel default(__auto) shared(yy)

  {

    int xx = 0;

    #pragma omp single

    {

       #pragma omp task default(__auto) // task1
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       {

          xx = 20;

       }

    }

    #pragma omp task default(__auto) // task2

    {

       yy = xx;

    }

  }

  return 0;

}

er_src shows the following compiler commentary:

   Source OpenMP region below has tag R1

   Variables autoscoped as PRIVATE in R1: xx

   Private variables in R1: xx

   Shared variables in R1: yy

     7.   #pragma omp parallel default(__auto) shared(yy)

     8.   {

     9.     int xx = 0;

    10.

   Source OpenMP region below has tag R2

    11.     #pragma omp single

    12.     {

   Source OpenMP region below has tag R3

   Variables autoscoped as SHARED in R3: xx

   Shared variables in R3: xx

    13.        #pragma omp task default(__auto) // task1

    14.        {

    15.           xx = 20;

    16.        }

    17.     }

    18.

   Source OpenMP region below has tag R4

   Variables autoscoped as PRIVATE in R4: yy

   Variables autoscoped as FIRSTPRIVATE in R4: xx

   Private variables in R4: yy

   Firstprivate variables in R4: xx

    19.     #pragma omp task default(__auto) // task2

    20.     {

    21.        yy = xx;

    22.     }
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    23.   }

In this example, xx is a private variable in the parallel construct. One of the threads in the
team modifies its initial value of xx by executing task1. Then all of the threads encounter
task2, which uses xx to do some computation.

In task1, the use of xx is free of data race. Because an implicit barrier is at the end of the
single construct and task1 should complete before exiting this barrier, xx will be accessible
while task1 is executing. Therefore, according to TS2, xx is autoscoped as shared on task1.

In task2, the use of xx is read-only. However, the use of xx is not read-only in the enclosing
parallel construct. Because xx is predetermined as private for the parallel construct,
whether xx will be accessible while task2 is executing is not certain. Therefore, according to
TS3, xx is autoscoped firstprivate on task2.

In task2, the use of yy is not free of data race, and in each thread executing task2, the
variable yy is always written before being read by the same thread. So, according to TS4, yy is
autoscoped private on task2.

EXAMPLE   23 Example With task and taskwait Constructs

int foo(void)

{

  int xx = 1, yy = 0;

  #pragma omp parallel shared(xx,yy)

  {

    #pragma omp task default(__auto)

    {

       xx += 1;

       #pragma omp atomic

       yy += xx;

    }

    #pragma omp taskwait

  }

  return 0;

}

er_src shows the following compiler commentary:

   Source OpenMP region below has tag R1

   Shared variables in R1: yy, xx

     5.   #pragma omp parallel shared(xx,yy)

     6.   {
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   Source OpenMP region below has tag R2

   Variables autoscoped as SHARED in R2: yy

   Variables autoscoped as FIRSTPRIVATE in R2: xx

   Shared variables in R2: yy

   Firstprivate variables in R2: xx

     7.     #pragma omp task default(__auto)

     8.     {

     9.        xx += 1;

    10.

    11.        #pragma omp atomic

    12.        yy += xx;

    13.     }

    14.

    15.     #pragma omp taskwait

    16.   }

The use of xx in the task construct is not read-only and is not free of data race. However the
read of x in the task gets the value of x defined outside the task (because xx is shared in the
parallel construct) Therefore, according to TS5, xx is autoscoped as firstprivate.

The use of yy in the task construct is not read-only but is free of data race. yy will be accessible
while the task is executing because there is a taskwait. Therefore, according to TS2, yy is
autoscoped as shared.
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Scope Checking

Oracle Developer Studio C, C++, and Fortran compilers provide a scope-checking feature
whereby the compiler determines whether variables in an OpenMP program are correctly
scoped. This chapter describes how to use the scope checking feature.

7.1 Scope Checking Overview

Autoscoping can help you decide how to scope variables. However, for some complicated
programs, autoscoping might not be successful or the result of autoscoping might not be what
you expects. Incorrect scoping can cause inconspicuous yet serious problems. For example,
incorrectly scoping a variable as shared may cause a data race; incorrectly privatizing a
variable may result in an undefined value for the variable inside the construct.

Based on the compiler's capabilities, scope checking can discover potential problems including
data races, inappropriate privatization or reduction of variables, and other scoping issues.
During scope checking, the compiler checks the data-sharing attributes specified by the
programmer, the predetermined and implicitly determined data-sharing attributes, and the
autoscoping results.

7.2 Using the Scope Checking Feature

To enable scope checking, compile the OpenMP program with the -xvpara and -xopenmp
options. The optimization level should be -xO3 or higher. Scope checking does not work if the
program is compiled with just -xopenmp=noopt. If the optimization level is less than -xO3, the
compiler will issue a warning message and will not do any scope checking.

During scope checking, the compiler will check all OpenMP constructs. If the scoping of some
variables causes problems, the compiler will issue warning messages, and, in some cases,
provide suggestions for the correct data-sharing attribute clauses to use. For example, warning
messages are issued if the compiler detects the following situations:
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■ Loops are parallelized using OpenMP directives when there are data dependencies between
different loop iterations

■ OpenMP data-sharing attribute clauses can can be problematic if, for example, you specify a
variable to be shared in a parallel region when accesses to the variable in the parallel region
might cause data race, or you specify a variable to be private in a parallel region when the
value assigned to the variable in the parallel region is used after the parallel region.

The following example illustrates scope checking.

EXAMPLE   24 Scope Checking With -xvpara

% cat t.c

#include <omp.h>

#include <string.h>

int main()

{

  int g[100], b, i;

  memset(g, 0, sizeof(int)*100);

  #pragma omp parallel for shared(b)

  for (i = 0; i < 100; i++)

  {

    b += g[i];

  }

  return 0;

}

% cc -xopenmp -xO3 -xvpara source1.c

"source1.c", line 10: Warning: inappropriate scoping

         variable 'b' may be scoped inappropriately as 'shared'

         . write at line 13 and write at line 13 may cause data race

"source1.c", line 10: Warning: inappropriate scoping

         variable 'b' may be scoped inappropriately as 'shared'

         . write at line 13 and read at line 13 may cause data race

The compiler will not do scope checking if the optimization level is less than -xO3.

% cc -xopenmp=noopt -xvpara source1.c

 "source1.c", line 10: Warning: Scope checking under vpara compiler 

option is supported with optimization level -xO3 or higher.

 Compile with a higher optimization level to enable this feature
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The following example illustrates how potential scoping errors are reported.

EXAMPLE   25 Scoping Errors Example

% cat source2.c

#include <omp.h>

int main()

{

  int g[100];

  int r=0, a=1, b, i;

  #pragma omp parallel for private(a) lastprivate(i) reduction(+:r)

  for (i = 0; i < 100; i++)

  {

    g[i] = a;

    b = b + g[i];

    r = r * g[i];

  }

  a = b;

  return 0;

}

% cc -xopenmp -xO3 -xvpara source2.c

"source2.c", line 8: Warning: inappropriate scoping

        variable 'r' may be scoped inappropriately as 'reduction'

        . reference at line 13 may not be a reduction of the specified type

"source2.c", line 8: Warning: inappropriate scoping

        variable 'a' may be scoped inappropriately as 'private'

        . read at line 11 may be undefined

        . consider 'firstprivate'

"source2.c", line 8: Warning: inappropriate scoping

        variable 'i' may be scoped inappropriately as 'lastprivate'

        . value defined inside the parallel construct is not used outside

        . consider 'private'

"source2.c", line 8: Warning: inappropriate scoping

        variable 'b' may be scoped inappropriately as 'shared'

        . write at line 12 and write at line 12 may cause data race

"source2.c", line 8: Warning: inappropriate scoping

        variable 'b' may be scoped inappropriately as 'shared'

        . write at line 12 and read at line 12 may cause data race
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This example shows some typical errors that scope checking can detect.

1. r is specified as a reduction variable whose operation is +, but actually the operation should
be *.

2. a is explicitly scoped as private. Because private variables do not have an initial value,
the reference on line 11 to a could read undefined values. The compiler points out this
problem and suggests scoping a as firstprivate.

3. Variable i is the loop index variable. In some cases, the programmer may wish to specify
it to be LASTPRIVATE if the value of the loop index is used after the parallel for loop.
However, in the above example, i is not referenced at all after the loop. The compiler issues
a warning and suggests scoping i as private. Using private instead of lastprivate can
lead to better performance.

4. No data-sharing attribute for variable b was explicitly specified. According to the OpenMP
specification, b will be implicitly scoped as shared. However, scoping b as shared will
cause a data race. The correct data-sharing attribute of b should be reduction.

7.3 Restrictions When Using Scope Checking

■ Scope checking works only with optimization level -xO3 or higher. Scope checking does not
work if the program is compiled with just -xopenmp=noopt.

■ Only OpenMP directives are recognized and used in the analysis. Calls to OpenMP
runtime routines are not recognized. For example, if a program uses omp_set_lock() and
omp_unset_lock() to implement a critical section, the compiler is not able to detect the
existence of the critical section. Use the critical directive if possible.

■ Only synchronizations specified using OpenMP synchronization directives, such as
barrier and master, are recognized and used in data race analysis. User-implemented
synchronizations such as busy-waiting are not recognized.

Note - Scope checking with the -xvpara compiler option determines potential problems in the
program using static (compile-time) analysis. The Thread Analyzer tool, on the other hand,
checks for data races and deadlocks in the program using dynamic (runtime) analysis. Use both
of these approaches to detect as many errors as possible in the program.
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Performance Considerations

Once you have a correct, working OpenMP application, consider its overall performance. This
chapter provides some best practices to improve the efficiency and scalability of an OpenMP
application.

8.1 General Performance Recommendations

This section describes some general techniques for improving the performance of OpenMP
applications.

■ Minimize synchronization.
■ Avoid or minimize the use of synchronizations such as barrier, critical, ordered,

taskwait, and locks.
■ Use the nowait clause where possible to eliminate redundant or unnecessary barriers.

For example, there is always an implied barrier at the end of a parallel region. Adding
nowait to a worksharing loop in the region that is not followed by any code in the
region eliminates one redundant barrier.

■ Use named critical sections for fine-grained locking where appropriate so that not all
critical sections in the program will use the same, default lock.

■ Use the OMP_WAIT_POLICY, SUNW_MP_THR_IDLE, or SUNW_MP_WAIT_POLICY environment
variables to control the behavior of waiting threads. By default, idle threads will be put to
sleep after a certain timeout period. If a thread does not find work by the end of the timeout
period, it will go to sleep, thus avoiding wasting processor cycles at the expense of other
threads. The default timeout period might not be appropriate for your application, causing
the threads to go to sleep too soon or too late. In general, if an application has dedicated
processors to run on, then an active wait policy that would make waiting threads spin would
give better performance. If an application runs simultaneously with other applications, then
a passive wait policy that would put waiting threads to sleep would be better for system
throughput.
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■ Parallelize at the highest level possible, such as outermost loops. Enclose multiple loops
in one parallel region. In general, make parallel regions as large as possible to reduce
parallelization overhead. For example, this construct is less efficient:

#pragma omp parallel

{

   #pragma omp for

   {

      ...

   }

}

#pragma omp parallel

{

   #pragma omp for

   {

      ...

   }

}

A more efficient construct:

#pragma omp parallel

{

   #pragma omp for

   {

      ...

   }

   #pragma omp for

   {

      ...

   }

}

■ Use a parallel for/do construct, instead of a worksharing for/do construct nested inside
a parallel construct. For example, this construct is less efficient:

#pragma omp parallel

{

   #pragma omp for

   {

      ... statements ...

   }

}
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This construct is more efficient:

#pragma omp parallel for

{

   ... statements ...

}

■ When possible, merge parallel loops to avoid parallelization overhead. For example, merge
the two parallel for loops:

#pragma omp parallel for

for (i=1; i<N; i++)

   {

     ... statements 1 ...

   }

#pragma omp parallel for

for (i=1; i<N; i++)

   {

     ... statements 2 ...

   }

The resulting single parallel for loop is more efficient:

#pragma omp parallel for

for (i=1; i<N; i++)

   {

     ... statements 1 ...

     ... statements 2 ...

   }

■ Use the OMP_PROC_BIND or SUNW_MP_PROCBIND environment variable to bind threads to
processors. Processor binding, when used along with static scheduling, benefits applications
that exhibit a certain data reuse pattern where data accessed by a thread in a parallel region
will be in the local cache from a previous invocation of a parallel region. See Chapter 5,
“Processor Binding (Thread Affinity)”.

■ Use master instead of single where possible.
■ The master directive is implemented as an if statement with no implicit barrier: if

(omp_get_thread_num() == 0) {...}
■ The single construct is implemented similarly to other worksharing constructs.

Keeping track of which thread reaches single first adds additional runtime overhead.
Moreover, there is an implicit barrier if nowait is not specified, which is less efficient.

■ Choose the appropriate loop schedule.
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■ The static loop schedule requires no synchronization and can maintain data locality
when data fits in cache. However, the static schedule could lead to load imbalance.

■ The dynamic and guided loop schedules incur a synchronization overhead to keep track
of which chunks have been assigned. While these schedules could lead to poor data
locality, they can improve load balancing. Experiment with different chunk sizes.

■ Use efficient thread-safe memory management. An application could be using malloc() and
free() functions explicitly, or implicitly in the compiler-generated code for dynamic arrays,
allocatable arrays, vectorized intrinsics, and so on. The thread-safe malloc() and free() in
the standard C library, libc.so, have a high synchronization overhead caused by internal
locking. Faster versions can be found in other libraries, such as the libmtmalloc.so library.
Specify -lmtmalloc to link with libmtmalloc.so.

■ Small data sets could cause OpenMP parallel regions to underperform. Use the if clause
on the parallel construct to specify that the region should be run in parallel only in those
cases where some performance gain can be expected.

■ Try nested parallelism if your application lacks scalability beyond a certain level. However,
use nested parallelism with care as it adds synchronization overhead because the thread
team of every nested parallel region has to synchronize at a barrier. Also, nested parallelism
may oversubscribe the machine, leading to degraded performance.

■ Use lastprivate with care, as it has the potential of high overhead.
■ Data needs to be copied from a thread's private memory to shared memory before the

return from the region.
■ Extra checks are added for lastprivate. For example, the compiled code for a

worksharing loop with the lastprivate clause checks which thread executes the
sequentially last iteration. This imposes extra work at the end of each chunk in the loop,
which may add up if there are many chunks.

■ Use explicit flush with care. A flush causes data to be stored to memory, and subsequent
data accesses may require reload from memory, all of which decrease efficiency.

8.2 Avoid False Sharing

Careless use of shared memory structures with OpenMP applications can result in poor
performance and limited scalability. Multiple processors updating adjacent shared data in
memory can result in excessive traffic on the multiprocessor interconnect and, in effect, cause
serialization of computations.
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8.2.1 What Is False Sharing?

In most shared memory multiprocessor computers, each processor has its own local cache.
The cache acts as a buffer between slow memory and the high speed registers of the processor.
Accessing a memory location causes a slice of actual memory (a cache line) containing the
memory location requested to be copied into the cache. Subsequent references to the same
memory location or to those around it are satisfied out of the cache until the system determines
it is necessary to maintain the coherency between cache and memory.

False sharing occurs when threads on different processors modify variables that reside on
the same cache line. This situation is called false sharing (to distinguish it from true sharing)
because the threads are not accessing the same variable, but rather are accessing different
variables that happen to reside on the same cache line.

When a thread modifies a variable in its cache, the whole cache line on which the variable
resides is marked as invalid. If another thread attempts to access a variable on the same cache
line, then the modified cache line is written back to memory and the thread fetches the cache
line from memory. This occurs because cache coherency is maintained on a cache-line basis and
not for individual variables or elements. With false sharing, a thread is forced to fetch a more
recent copy of a cache line from memory, even though the variable it is attempting to access has
not been modified.

If false sharing occurs frequently, interconnect traffic increases, and the performance and
scalability of an OpenMP application suffer significantly. False sharing degrades performance
when all of the following conditions occur:

■ Shared data is modified by multiple threads
■ Multiple threads modify data within the same cache line
■ Data is modified very frequently (as in a tight loop)

Note that accessing shared data that is read-only does not lead to false sharing.

8.2.2 Reducing False Sharing

False sharing can typically be detected when accesses to certain variables seem particularly
expensive. Careful analysis of parallel loops that play a major part in the execution of an
application can reveal performance scalability problems caused by false sharing.

In general, false sharing can be reduced using the following techniques:

■ Make use of private or threadprivate data as much as possible.
■ Use the compiler’s optimization features to eliminate memory loads and stores.
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■ Pad data structures so that each thread's data resides on a different cache line. The size
of the padding is system-dependent, and is the size needed to push a thread's data onto a
separate cache line.

■ Modify data structures so there is less sharing of data among the threads.

Techniques for tackling false sharing are very much dependent on the particular application. In
some cases, a change in the way the data is allocated can reduce false sharing. In other cases,
changing the mapping of iterations to threads by giving each thread more work per chunk (by
changing the chunk_size value) can also lead to a reduction in false sharing.

8.3 Oracle Solaris OS Tuning Features

The Oracle Solaris operating system supports features that improve the performance of
OpenMP programs. These features include Memory Placement Optimizations (MPO) and
Multiple Page Size Support (MPSS).

8.3.1 Memory Placement Optimizations

Shared memory multiprocessor computers contain multiple processors. Each processor can
access all of the memory in the machine. In some shared memory multiprocessors, the memory
architecture enables each processor to access some areas of memory more quickly than other
areas. Therefore, allocating memory close to the processor that accesses it will reduce latency
and improve application performance.

The Oracle Solaris operating system introduced the locality group (lgroup) abstraction, which
is part of the MPO feature. An lgroup is a set of processor-like and memory-like devices in
which each processor in the set can access any memory in that set within a bounded latency
interval. The library liblgrp.so exports the lgroup abstraction for applications to use for
observability and performance tuning. Applications can use the liblgrp.so APIs to perform
the following tasks:

■ Traverse the group hierarchy
■ Discover the contents and characteristics of a given lgroup
■ Affect the thread and memory placement on lgroups

By default, the Oracle Solaris operating system attempts to allocate resources for a thread from
the thread's home lgroup. For example, by default the operating system attempts to schedule a
thread to run on processors in the thread's home lgroup and allocate the thread's memory in the
thread's home lgroup.

84 Oracle Developer Studio 12.5: OpenMP API User's Guide • July 2016



8.3  Oracle Solaris OS Tuning Features

The following mechanisms can be used to discover and affect thread and memory placement
with respect to lgroups:

■ The meminfo() system call can be used to discover memory placement.
■ The lgrp_home() function can be used to discover thread placement.
■ The lgrp_affinity_set() function can be used to affect thread and memory placement by

setting a thread's affinity for a given lgroup.
■ The madvise() function in the standard C library can be used to advise the operating

system that a region of user virtual memory is expected to follow a particular pattern of
use. The MADV_ACCESS flags passed to madvise() are used to affect memory allocation
among lgroups. For example, calling madvise() with the MADV_ACCESS_LWP flag advises the
operating system that the next thread to touch the specified address range is the thread that
will access the memory region the most. The OS places the memory for this range and the
thread accordingly.

For more information about the lgroup APIs, refer to Chapter 4, “Locality Group APIs” in
Oracle Solaris 11.3 Programming Interfaces Guide. For more information about the madvise()
function, see the madvise(3C) man page.

8.3.2 Multiple Page Size Support

The Multiple Page Size Support (MPSS) feature in Oracle Solaris allows an application to use
different page sizes for different regions of virtual memory. The default page size on a specific
platform can be obtained with the pagesize command. The -a option on this command lists all
the supported page sizes. For details, see the pagesize(1) man page.

The Translation Lookaside Buffer (TLB) is a data structure used to map virtual memory
addresses to physical memory addresses. Some performance penalty is associated with
accessing memory which does not have the virtual-to-physical mapping information available
in the TLB. Larger page sizes let the TLB map more physical memory using the fixed number
of TLB entries. Larger pages may therefore reduce the cost of virtual-to-physical memory
mapping and increase overall system performance.

There are several ways to change the default page size for an application:

■ Use the Oracle Solaris command ppgsz(1).
■ Compile the application with the -xpagesize, -xpagesize_heap, or the -xpagesize_stack

options. See the cc(1), CC(1), or f95(1) man pages for details.
■ Preload the mpss.so.1 shared object, which allows the use of environment variables to set

the page sizes. See the mpss.so.1(1) man page for details.
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OpenMP Implementation-Defined Behaviors

This chapter documents how certain OpenMP features behave when the program is compiled
using Oracle Developer Studio compilers. See Appendix D of the OpenMP 4.0 Specification for
a summary of behaviors described as implemenation-defined in the specification.

9.1 OpenMP Memory Model

Memory accesses by multiple threads to the same variable without synchronization are
not necessarily atomic with respect to each other. Several implementation-dependent and
application-dependent factors affect whether accesses are atomic. Some variables might be
larger than the largest atomic memory operation on the target platform. Some variables might
be misaligned or of unknown alignment. Sometimes there are faster code sequences that use
more loads (or stores). Therefore, the compiler and the runtime system might need to use
multiple loads (or stores) to access the variable.

When a memory update is on a bit-field variable, the minimum size at which the memory
update may also read and write back adjacent variables that are part of another variable such as
array or structure elements is the same as that required by the base language. When a memory
update is on a variable that is not a bit-field variable, the update will not read and write back
adjacent variables that are part of another variable such as array or structure elements.

9.2 OpenMP Internal Control Variables

The following internal control variables are defined by the implementation:

■ bind-var: Controls the binding of threads to places. The initial value of bind-var is FALSE.
■ default-device-var: Controls the default target device. The initial value of default-device-var

is 0 (the host device).
■ def-sched-var: Controls the implementation defined default scheduling of loop regions. The

initial value of def-sched-var is static with no chunk size.
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■ dyn-var: Controls whether dynamic adjustment of the number of threads is enabled for
encountered parallel regions. The initial value of dyn-var is TRUE (that is, dynamic
adjustment is enabled).

■ max-active-levels-var: Controls the maximum number of nested active parallel regions. The
initial value of max-active-levels-var is 4.

■ nthreads-var: Controls the number of threads requested for encountered parallel regions.
The initial value of nthreads-var is equal to the number of cores, capped at 32.

■ place-partition-var: Controls the place partition available to the execution environment for
encountered parallel regions. The initial value of place-partition-var is cores.

■ run-sched-var: Controls the schedule that the schedule(runtime) clause uses for loop
regions. The initial value of run-sched-var is static with no chunk size.

■ stacksize-var: Controls the stack size for threads that the OpenMP implementation creates
(also known as helper threads). The initial value of stacksize-var is 4 Megabytes for 32-bit
applications, and 8 Megabytes for 64-bit applications.

■ thread-limit-var: Controls the maximum number of threads participating in the OpenMP
program. The initial value of thread-limit-var is 1024.

■ wait-policy-var: Controls the desired behavior of waiting threads. The initial value of wait-
policy-var is PASSIVE.

9.3 Dynamic Adjustment of the Number of Threads

This implementation provides the ability to dynamically adjust the number of threads. Dynamic
adjustment is enabled by default. Set the OMP_DYNAMIC environment variable to FALSE or call the
omp_set_dynamic() routine with a false argument to disable dynamic adjustment.

When a thread encounters a parallel construct, the number of threads delivered by this
implementation is determined according to Algorithm 2.1 in the OpenMP 4.0 Specification. In
exceptional situations, such as lack of system resources, the number of threads supplied will be
less than that described in Algorithm 2.1.

If the implementation cannot supply the requested number of threads and dynamic adjustment
of the number of threads is enabled, then program execution will continue with the smaller
number of threads. If SUNW_MP_WARN is set to TRUE or a callback function is registered through a
call to sunw_mp_register_warn(), a warning message is issued.

If the implementation cannot supply the requested number of threads and dynamic adjustment
of the number of threads is disabled, then the program will issue an error message and the
program will stop execution.
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9.4 OpenMP Loop Directive

The integer type used to compute the iteration count of a collapsed loop is long.

The effect of the schedule(runtime) clause when the run-sched-var internal control variable is
set to auto is static with no chunk size.

9.5 OpenMP Constructs

sections The structured blocks in the sections construct are assigned to the
threads in the team in a static with no chunk size fashion, so that each
thread gets an approximately equal number of consecutive structured
blocks.

single The first thread to encounter the single construct will execute the
construct.

atomic The implementation handles all atomic directives by enclosing the target
statement or structured block with a special, named critical construct.
This operation enforces exclusive access between all atomic regions
in the program, regardless of whether these regions update the same or
different memory locations.

9.6 Processor Binding (Thread Affinity)

The OpenMP 4.0 specification defines the term processor as an implementation defined
hardware unit on which one or more OpenMP threads can execute.

In this implementation, the term processor is defined as the smallest hardware execution unit on
which one or more OpenMP threads can be scheduled, bound, and executed, as documented in
the processor_bind(2) Oracle Solaris man page. Synonyms for processor include CPU, virtual
processor, and hardware thread. For clarity, the term hardware thread is used consistently in this
manual.

In this implementation, the precise definitions of the abstract names threads, cores, and
sockets used with the OMP_PLACES environment variable are follows:

■ threads refers to the hardware threads on the machine.
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■ cores refers to the physical cores on the machine.
■ sockets refers to the physical sockets (processor chips) on the machine.

For more information, see “5.2 OMP_PLACES and OMP_PROC_BIND” on page 56. The
implementation-defined behaviors of Oracle Developer Studio that are related to OpenMP 4.0
thread affinity are as follows:

■ With the close thread binding policy, when T > P and P does not divide T evenly, the
assignment of threads to places is as follows: First, each of the P places is assigned S = floor
(T/P) threads; the IDs of the threads assigned to a place are a contiguous subset of the thread
IDs in the team. Second, each of the first T - (P*S) places (starting with the place of the
parent thread, and with wrap around) is assigned one additional thread.

■ With the spread thread binding policy, when T > P and P does not divide T evenly, the
assignment of threads to subpartitions is as follows: First, each of the P subpartitions
is assigned S = floor(T/P) threads; the IDs of the threads assigned to a subpartition are
a contiguous subset of the thread IDs in the team. Second, each of the first T - (P*S)
subpartitions (starting with the subpartition containing the place of the parent thread, and
with wrap around) is assigned one additional thread.

■ If an affinity request cannot be fulfilled, the process is exited with a nonzero status.
■ The numbers specified in the OMP_PLACES environment variable refer to hardware thread

IDs.
■ When creating a place list of n elements by appending the number n to an abstract name,

the place list will consist of N consecutive resources beginning at the resource containing
the hardware thread on which the main thread is executing at the time the place list is
constructed, with wrap around occurring after the last available named resource is reached.

■ If more resources are requested than are available on the machine, an error message is
issued and the process is exited with a nonzero status. A resource is available if it contains
at least one online hardware thread.

■ When the execution environment cannot map a numeric value (either explicitly defined or
implicitly derived from an interval) within the OMP_PLACES list to a hardware thread on the
target platform, or if it maps to an unavailable hardware thread, an error message is issued
and the process is exited with a nonzero status.

■ When the OMP_PLACES environment variable is defined using an abstract name, each unit
of the resource represented by the abstract name is allocated as a single place. The number
of allocated units can be specified by a count n whose value is no greater than the total
number of available units on the machine. On Oracle Solaris platforms, hardware threads
pre-emptively reserved by an administrator using psrset(1M) are not considered available.
If no available hardware threads remain in the set defined by OMP_PLACES, an error message
is issued and the process is exited with a nonzero status.

■ If the affinity request for a parallel construct cannot be fulfilled (because, for example, the
system call to bind an OpenMP thread to a hardware thread fails), the resulting behavior is
undefined.
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■ When using OMP_PLACES, intervals may be used to specify places. This implementation
assumes that when an interval specifies a sequence of places, length is the number of places
in the sequence, and stride is the number of hardware thread IDs separating successive
places in the sequence. If no stride value is specified, then unit stride is assumed.

9.7 Fortran Issues

The issues described in this section apply to Fortran only.

9.7.1 THREADPRIVATE Directive

If the conditions for values of data in the threadprivate objects of threads other than the initial
thread to persist between two consecutive active parallel regions do not all hold, then the
allocation status of an allocatable array in the second region might be not be currently allocated.

9.7.2 SHARED Clause

Passing a shared variable to a non-intrinsic procedure may result in the value of the shared
variable being copied into temporary storage before the procedure reference, and back out
of the temporary storage into the actual argument storage after the procedure reference. Use
of intervening temporary storage can occur only when the following three conditions hold
regarding an actual argument:

1. The actual argument is one of the following arguments:
■ A shared variable
■ A subobject of a shared variable
■ An object associated with a shared variable
■ An object associated with a subobject of a shared variable

2. The actual argument is one of the following arguments:
■ An array section
■ An array section with a vector subscript
■ An assumed-shape array
■ A pointer array

3. The associated dummy argument for the actual argument is an explicit-shape array or an
assumed-size array.
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9.7.3 Runtime Library Definitions

Both the include file omp_lib.h and the module file omp_lib are provided in the
implementation.

On Oracle Solaris platforms, the OpenMP runtime library routines that take an argument
are extended with a generic interface so arguments of different Fortran KIND types can be
accommodated.
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