
Oracle® Developer Studio 12.5:
Debugging a Program with dbx

Part No: E60748
June 2016

Oracle Developer Studio 12.5: Debugging a Program with dbx

Part No: E60748

Copyright © 1992, 2016, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except
as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform,
publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation,
delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the
hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous
applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of
SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products, and services from third parties. Oracle Corporation and its affiliates are
not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an applicable agreement
between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Référence: E60748

Copyright © 1992, 2016, Oracle et/ou ses affiliés. Tous droits réservés.

Ce logiciel et la documentation qui l'accompagne sont protégés par les lois sur la propriété intellectuelle. Ils sont concédés sous licence et soumis à des restrictions d'utilisation et
de divulgation. Sauf stipulation expresse de votre contrat de licence ou de la loi, vous ne pouvez pas copier, reproduire, traduire, diffuser, modifier, accorder de licence, transmettre,
distribuer, exposer, exécuter, publier ou afficher le logiciel, même partiellement, sous quelque forme et par quelque procédé que ce soit. Par ailleurs, il est interdit de procéder à toute
ingénierie inverse du logiciel, de le désassembler ou de le décompiler, excepté à des fins d'interopérabilité avec des logiciels tiers ou tel que prescrit par la loi.

Les informations fournies dans ce document sont susceptibles de modification sans préavis. Par ailleurs, Oracle Corporation ne garantit pas qu'elles soient exemptes d'erreurs et vous
invite, le cas échéant, à lui en faire part par écrit.

Si ce logiciel, ou la documentation qui l'accompagne, est livré sous licence au Gouvernement des Etats-Unis, ou à quiconque qui aurait souscrit la licence de ce logiciel pour le
compte du Gouvernement des Etats-Unis, la notice suivante s'applique :

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation,
delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the
hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

Ce logiciel ou matériel a été développé pour un usage général dans le cadre d'applications de gestion des informations. Ce logiciel ou matériel n'est pas conçu ni n'est destiné à être
utilisé dans des applications à risque, notamment dans des applications pouvant causer un risque de dommages corporels. Si vous utilisez ce logiciel ou ce matériel dans le cadre
d'applications dangereuses, il est de votre responsabilité de prendre toutes les mesures de secours, de sauvegarde, de redondance et autres mesures nécessaires à son utilisation dans
des conditions optimales de sécurité. Oracle Corporation et ses affiliés déclinent toute responsabilité quant aux dommages causés par l'utilisation de ce logiciel ou matériel pour des
applications dangereuses.

Oracle et Java sont des marques déposées d'Oracle Corporation et/ou de ses affiliés. Tout autre nom mentionné peut correspondre à des marques appartenant à d'autres propriétaires
qu'Oracle.

Intel et Intel Xeon sont des marques ou des marques déposées d'Intel Corporation. Toutes les marques SPARC sont utilisées sous licence et sont des marques ou des marques
déposées de SPARC International, Inc. AMD, Opteron, le logo AMD et le logo AMD Opteron sont des marques ou des marques déposées d'Advanced Micro Devices. UNIX est une
marque déposée de The Open Group.

Ce logiciel ou matériel et la documentation qui l'accompagne peuvent fournir des informations ou des liens donnant accès à des contenus, des produits et des services émanant de
tiers. Oracle Corporation et ses affiliés déclinent toute responsabilité ou garantie expresse quant aux contenus, produits ou services émanant de tiers, sauf mention contraire stipulée
dans un contrat entre vous et Oracle. En aucun cas, Oracle Corporation et ses affiliés ne sauraient être tenus pour responsables des pertes subies, des coûts occasionnés ou des
dommages causés par l'accès à des contenus, produits ou services tiers, ou à leur utilisation, sauf mention contraire stipulée dans un contrat entre vous et Oracle.

Accès aux services de support Oracle

Les clients Oracle qui ont souscrit un contrat de support ont accès au support électronique via My Oracle Support. Pour plus d'informations, visitez le site http://www.oracle.com/
pls/topic/lookup?ctx=acc&id=info ou le site http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs si vous êtes malentendant.

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Contents

Using This Documentation .. 25

1 Getting Started With dbx .. 27
Compiling Your Code for Debugging .. 27
Starting dbx or dbxtool and Loading Your Program ..  28
Running Your Program in dbx ...  29
Debugging Your Program With dbx ..  30

Examining a Core File ...  31
Setting Breakpoints ..  32
Stepping Through Your Program ..  33
Looking at the Call Stack ...  34
Examining Variables ..  35
Finding Memory Access Problems and Memory Leaks ................................. 35

Quitting dbx ...  36
Accessing dbx Online Help ...  37

2 Starting dbx .. 39
Starting a Debugging Session ..  39
Debugging a Core File ...  40

Debugging a Core File in the Same Operating Environment ..........................  40
If Your Core File Is Truncated ...  41
Debugging a Mismatched Core File ..  42

Using the Process ID ...  44
dbx Startup Sequence ...  45
Setting Startup Properties .. 45

Mapping the Compile-Time Directory to the Debug-Time Directory ................ 46
Setting dbx Environment Variables ...  46
Creating Your Own dbx Commands ..  47

5

Contents

Compiling a Program for Debugging ..  47
Compiling With the -g Option ...  47
Using a Separate Debug File ...  47
Compressed Debug Sections (Oracle Solaris Only) ......................................  50

Debugging Optimized Code ..  51
Parameters and Variables ..  52
Inlined Functions ... 52
Code Compiled Without the -g Option ..  53
Shared Libraries Require the -g Option for Full dbx Support .........................  53
Completely Stripped Programs ... 53

Quitting Debugging ...  54
Stopping a Process Execution ..  54
Detaching a Process From dbx ...  54
Killing a Program Without Terminating the Session .....................................  54

Saving and Restoring a Debugging Run ..  55
Using the save Command ...  55
Saving a Series of Debugging Runs as Checkpoints .....................................  57
Restoring a Saved Run ...  57
Saving and Restoring Using replay .. 58

3 Customizing dbx ..  59
Using the dbx Initialization File ...  59

Creating a .dbxrc File ...  60
Initialization File Sample ..  60

Setting dbxenv Variables ...  60
dbxenv Variables and the Korn Shell ..  66

4 Viewing and Navigating To Code ..  67
Navigating To Code ...  67

Navigating To a File ..  68
Navigating To Functions ...  68
Printing a Source Listing ..  69
Walking the Call Stack to Navigate To Code ..  69

Types of Program Locations ..  70
Program Scope .. 70

Variables That Reflect the Current Scope ...  70

6 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

Contents

Visiting Scope ... 71
Qualifying Symbols With Scope Resolution Operators ...  72

Backquote Operator ...  73
C++ Double-Colon Scope Resolution Operator ...  73
Block Local Operator ...  74
Linker Names ...  75

Locating Symbols ..  75
Printing a List of Occurrences of a Symbol ..  75
Determining Which Symbol dbx Uses ...  76
Scope Resolution Search Path .. 77
Relaxing the Scope Lookup Rules ..  77

Viewing Variables, Members, Types, and Classes ..  78
Looking Up Definitions of Variables, Members, and Functions ......................  78
Looking Up Definitions of Types and Classes ... 79

Debugging Information in Object Files and Executables .......................................  81
Object File Loading ...  82
Compiler and Linker Options to Support Debugging ....................................  82
Listing Debugging Information for Modules ... 84
Listing Modules ..  85

Finding Source and Object Files ..  86

5 Controlling Program Execution ...  87
Running a Program .. 87
Attaching dbx to a Running Process ...  88
Detaching dbx From a Process ... 89
Stepping Through a Program ...  90

Controlling Single Stepping Behavior ...  90
Stepping Into a Specific or Last Function ..  91
Continuing Execution of a Program ..  91
Calling a Function ...  92
Call Safety ...  93

Using Ctrl+C to Stop a Process ...  94
Event Management ..  94

6 Setting Breakpoints and Traces ..  97
Setting Breakpoints ..  97

7

Contents

Setting a Breakpoint at a Line of Source Code ..  98
Setting a Breakpoint in a Function ...  99
Setting Multiple Breakpoints in C++ Programs ...  100
Setting Data Change Breakpoints (Watchpoints) ..  102

Setting Filters on Breakpoints ..  105
Qualifying Breakpoints With Conditional Filters .......................................  105
Qualifying Breakpoints With Caller Filters ...  106
Filters and Multithreading ...  107

Tracing Execution ..  108
Setting a Trace ..  108
Controlling the Speed of a Trace ..  108
Directing Trace Output to a File ...  108

Executing dbx Commands at a Line ..  109
Setting Breakpoints in Dynamically Loaded Libraries ..  109
Listing and Deleting Breakpoints ..  110

Listing Breakpoints and Traces ..  110
Deleting Specific Breakpoints Using Handler ID Numbers ..........................  110

Enabling and Disabling Breakpoints .. 111
Efficiency Considerations ..  111

7 Using the Call Stack ..  113
Finding Your Place on the Stack ..  113
Walking the Stack and Returning Home ... 114
Moving Up and Down the Stack ..  114

Moving Up the Stack ...  114
Moving Down the Stack ...  114
Moving to a Specific Frame ..  115

Popping the Call Stack ...  115
Hiding Stack Frames ..  116
Displaying and Reading a Stack Trace ... 116

8 Evaluating and Displaying Data ..  119
Evaluating Variables and Expressions ..  119

Verifying Which Variable dbx Uses ...  119
Variables Outside the Scope of the Current Function ..................................  120
Printing the Value of a Variable, Expression, or Identifier ............................  120
Printing C++ Pointers ...  120

8 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

Contents

Evaluating Unnamed Arguments in C++ Programs ....................................  121
Dereferencing Pointers .. 122
Monitoring Expressions ..  122
Stop the Display (Undisplaying) ...  123

Assigning a Value to a Variable .. 123
Evaluating Arrays ..  123

Array Slicing ..  124
Using Slices .. 127
Using Strides ..  127

Using Pretty-Printing ..  128
Invoking Pretty-Printing ..  129
Call-Based Pretty-Printing ...  129
Python Pretty-Print Filters (Oracle Solaris) ...  131

9 Using Runtime Checking ...  135
Capabilities of Runtime Checking ... 135

When to Use Runtime Checking ..  136
Runtime Checking Requirements ..  136

Using Runtime Checking ..  137
Enabling Memory Use and Memory Leak Checking ................................... 137
Enabling Memory Access Checking ..  137
Enabling All Runtime Checking ...  137
Disabling Runtime Checking ...  137
Running Your Program ...  138

Using Access Checking ..  140
Understanding the Memory Access Error Report .......................................  141
Memory Access Errors ...  142

Using Memory Leak Checking ... 143
Detecting Memory Leak Errors ..  144
Possible Leaks ..  144
Checking for Leaks ..  145
Understanding the Memory Leak Report ..  145
Fixing Memory Leaks ..  148

Using Memory Use Checking ..  148
Suppressing Errors ...  149

Types of Suppression ...  150
Suppressing Error Examples ..  151

9

Contents

Default Suppressions ..  151
Using Suppression to Manage Errors ... 152

Using Runtime Checking on a Child Process ..  152
Using Runtime Checking on an Attached Process ..  156

Attached Process on a System Running Oracle Solaris ................................  156
Attached Process on a System Running Linux ..  157

Using Fix and Continue With Runtime Checking ... 157
Runtime Checking Application Programming Interface .......................................  159
Using Runtime Checking in Batch Mode ...  160

bcheck Syntax ...  160
bcheck Examples ...  160
Enabling Batch Mode Directly From dbx ...  161

Troubleshooting Tips ..  161
Runtime Checking Limitations ...  162

Performance Improves With More Symbols and Debug Information ..............  162
SIGSEGV and SIGALTSTACK Signals Are Restricted on x86 Platforms ..............  162
Performance Improves When Sufficient Patch Area Is Available Within 8 MB
of All Existing Code (SPARC Platforms Only). ...  163

Runtime Checking Errors ..  165
Access Errors ..  165
Memory Leak Errors ..  169

10 Debugging Multithreaded Applications ...  171
Understanding Multithreaded Debugging ...  171

Thread Information ..  172
Viewing the Context of Another Thread ... 173
Viewing the Threads List ..  174
Resuming Execution ... 174

Understanding Thread Creation Activity ..  175
Understanding LWP Information ..  176

11 Debugging Child Processes ..  179
Attaching to Child Processes ...  179
Following the exec Function ...  180
Following the fork Function ...  180
Interacting With Events ..  180

10 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

Contents

12 Debugging OpenMP Programs ..  181
How Compilers Transform OpenMP Code ...  181
dbx Functionality Available for OpenMP Code ...  182

Single-Stepping Into a Parallel Region ..  182
Printing Variables and Expressions ...  183
Printing Region and Thread Information ..  183
Serializing the Execution of a Parallel Region ...  186
Using Stack Traces ..  186
Using the dump Command ...  187
Using Events ..  188

Execution Sequence of OpenMP Code ..  189

13 Working With Signals ..  191
Understanding Signal Events ...  191
Catching Signals ..  192

Changing the Default Signal Lists ..  193
Trapping the FPE Signal (Oracle Solaris Only) ...  193

Sending a Signal to a Program ...  196
Automatically Handling Signals ...  196

14 Debugging C++ With dbx .. 197
Using dbx With C++ ..  197
Exception Handling in dbx ..  198

Commands for Handling Exceptions ...  198
Examples of Exception Handling ..  201

Debugging With C++ Templates ... 202
Template Example ...  203
Commands for C++ Templates ...  204

15 Debugging Fortran Using dbx ..  209
Debugging Fortran ...  209

Current Procedure and File ..  209
Uppercase Letters ..  210
Sample dbx Session ...  210

Debugging Segmentation Faults ...  213
Using dbx to Locate Problems ...  213

11

Contents

Locating Exceptions ...  214
Tracing Calls ..  214
Working With Arrays ...  215

Fortran Allocatable Arrays ..  216
Showing Intrinsic Functions ..  217
Showing Complex Expressions ..  218
Showing Interval Expressions ..  218
Showing Logical Operators ...  219
Viewing Fortran Derived Types ..  220
Pointer to Fortran Derived Type ...  221
Object Oriented Fortran ..  223
Allocatable Scalar Type ..  223

16 Debugging a Java Application With dbx ... 225
Using dbx With Java Code ..  225

Capabilities of dbx With Java Code ..  225
Limitations of dbx With Java Code ...  225

Environment Variables for Java Debugging ..  226
Starting to Debug a Java Application ..  226

Debugging a Class File ...  227
Debugging a JAR File ..  227
Debugging a Java Application That Has a Wrapper ....................................  228
Attaching dbx to a Running Java Application .. 228
Debugging a C Application or C++ Application That Embeds a Java
Application ...  229
Passing Arguments to the JVM Software ...  230
Specifying the Location of Your Java Source Files .....................................  230
Specifying the Location of Your C Source Files or C++ Source Files .............  230
Specifying a Path for Class Files That Use Custom Class Loaders .................  230
Setting Breakpoints on Java Methods ..  231
Setting Breakpoints in Native (JNI) Code ... 231

Customizing Startup of the JVM Software ...  231
Specifying a Path Name for the JVM Software ...  232
Passing Run Arguments to the JVM Software ...  232
Specifying a Custom Wrapper for Your Java Application ............................  233
Specifying 64-bit JVM Software ..  234

dbx Modes for Debugging Java Code ..  235

12 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

Contents

Switching From Java or JNI Mode to Native Mode ....................................  235
Switching Modes When You Interrupt Execution .......................................  236

Using dbx Commands in Java Mode ...  236
Java Expression Evaluation in dbx Commands ..  236
Static and Dynamic Information Used by dbx Commands ...........................  237
Commands With Identical Syntax and Functionality in Java Mode and Native
Mode ...  238
Commands With Different Syntax in Java Mode .......................................  239
Commands Valid Only in Java Mode ..  240

17 Debugging at the Machine-Instruction Level ...  241
Using dbx at the Machine-Instruction Level .. 241
Examining the Contents of Memory ..  241

Using the examine or x Command ..  242
Using the dis Command ...  244
Using the listi Command ...  245

Stepping and Tracing at Machine-Instruction Level ..  246
Single-Stepping at the Machine-Instruction Level ......................................  246
Tracing at the Machine-Instruction Level ...  247

Setting Breakpoints at the Machine-Instruction Level ...  248
Setting a Breakpoint at an Address ...  248

Using the regs Command ...  248
Platform-Specific Registers .. 251

18 Using dbx With the Korn Shell ...  259
ksh-88 Features Not Implemented ..  259
Extensions to ksh-88 ..  260
Renamed Commands ..  260
Rebinding of Editing Functions ..  260

19 Debugging Shared Libraries ..  263
Dynamic Linker ..  263

Link Map ...  263
Startup Sequence and .init Sections ..  264
Procedure Linkage Tables ...  264

Setting Breakpoints in Shared Libraries ...  264

13

Contents

Setting a Breakpoint in an Explicitly Loaded Library ...  265

A Modifying a Program State ...  267
Impacts of Running a Program Under dbx .. 267
Commands That Alter the State of the Program ... 268

assign Command ..  268
pop Command ...  268
call Command ...  269
print Command ..  269
when Command ...  269
fix Command ...  270
cont at Command ..  270

B Event Management ...  271
Event Handlers ..  271
Creating Event Handlers ...  272
Manipulating Event Handlers ...  272
Using Event Counters ...  273
Event Safety ...  273
Setting Event Specifications ..  274

Breakpoint Event Specifications ...  274
Data Change Event Specifications ..  277
System Event Specifications ..  279
Execution Progress Event Specifications ..  283
Tracked Thread Event Specifications ...  285
Other Event Specifications ..  286

Event Specification Modifiers ..  289
-if Modifier ...  289
-resumeone Modifier ..  289
-in Modifier ...  290
-disable Modifier ...  290
-count n, -count infinity Modifier ...  290
-temp Modifier ..  290
-instr Modifier ..  291
-thread Modifier ..  291
-lwp Modifier ...  291

14 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

Contents

-hidden Modifier ..  291
-perm Modifier ..  292

Parsing and Ambiguity ...  292
Using Predefined Variables ..  292

Variables Valid for when Command ...  294
Variables Valid for when Command and Specific Events ..............................  294

Event Handler Examples ...  296
Setting a Breakpoint for Store to an Array Member .................................... 296
Implementing a Simple Trace ..  296
Enabling a Handler While Within a Function ..  296
Determining the Number of Lines Executed ...  297
Determining the Number of Instructions Executed by a Source Line ..............  297
Enabling a Breakpoint After an Event Occurs ...  297
Resetting Application Files for replay ..  298
Checking Program Status ..  298
Catch Floating-Point Exceptions ...  298

C Macros ..  301
Additional Uses of Macro Expansion ..  301
Macro Definitions ..  302

Compiler and Compiler Options ...  303
Tradeoffs in Functionality ...  303
Limitations ...  304

Skimming Errors ...  304
Using the pathmap Command to Improve Skimming ..  305

D Command Reference ..  307
adi assign Command ...  307

Native Mode Syntax ... 307
adi examine Command ...  308

Native Mode Syntax ... 308
assign Command ..  308

Native Mode Syntax ... 308
Java Mode Syntax ...  309

attach Command ..  309
Syntax ...  309

15

Contents

bsearch Command ..  310
Syntax ...  310

call Command ...  310
Native Mode Syntax ... 311
Java Mode Syntax ...  311

cancel Command ..  312
catch Command ..  312

Syntax ...  312
check Command ..  313

Syntax ...  313
clear Command ..  316

Syntax ...  316
collector Command ...  316

Syntax ...  317
collector archive Command ..  318
collector dbxsample Command ...  318
collector disable Command ..  318
collector enable Command .. 319
collector heaptrace Command ...  319
collector hwprofile Command ...  319
collector limit Command ...  320
collector pause Command ...  321
collector profile Command ..  321
collector resume Command .. 321
collector sample Command .. 321
collector show Command ...  322
collector status Command .. 323
collector store Command ...  323
collector synctrace Command ...  324
collector tha Command ..  324
collector version Command ..  324

cont Command ...  325
Syntax ...  325

dalias Command ..  325
Syntax ...  325

dbx Command ...  326

16 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

Contents

Native Mode Syntax ... 326
Java Mode Syntax ...  327
Options ..  328

dbxenv Command ..  328
Syntax ...  329

debug Command ..  329
Native Mode Syntax ... 329
Java Mode Syntax ...  330
Options ..  331

delete Command ..  332
Syntax ...  332

detach Command ..  332
Native Mode Syntax ... 333
Java Mode Syntax ...  333

dis Command ...  333
Syntax ...  333
Options ..  334

display Command ..  334
Native Mode Syntax ... 334
Java Mode Syntax ...  335

down Command ...  336
Syntax ...  336

dump Command ...  336
Syntax ...  336

edit Command ...  337
Syntax ...  337

examine Command ..  337
Syntax ...  337

exception Command ...  339
Syntax ...  339

exists Command ..  339
Syntax ...  340

file Command ...  340
Syntax ...  340

files Command ..  340
Native Mode Syntax ... 340

17

Contents

Java Mode Syntax ...  341
fix Command ...  341

Syntax ...  341
fixed Command ..  342
fortran_modules Command ..  342

Syntax ...  342
frame Command ..  342

Syntax ...  343
func Command ...  343

Native Mode Syntax ... 343
Java Mode Syntax ...  343

funcs Command ..  344
Syntax ...  344

gdb Command ...  345
Syntax ...  345

handler Command ..  346
Syntax ...  346

hide Command ...  346
Syntax ...  346

ignore Command ..  347
Syntax ...  347

import Command ..  347
Syntax ...  347

intercept Command ...  348
Syntax ...  348

java Command ...  349
Syntax ...  349

jclasses Command ...  349
Syntax ...  349

joff Command ...  350
jon Command ...  350
jpkgs Command ..  350
kill Command ...  350

Syntax ...  350
language Command ...  351

Syntax ...  351

18 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

Contents

line Command ...  351
Syntax ...  352
Examples .. 352

list Command ...  352
Syntax ...  352

listi Command ..  354
loadobject Command ..  354

Syntax ...  355
loadobject -dumpelf Command ...  355
loadobject -exclude Command ...  356
loadobject -hide Command .. 356
loadobject -list Command .. 357
loadobject -load Command .. 358
loadobject -unload Command ..  358
loadobject -use Command ...  359

lwp Command ...  359
Syntax ...  359

lwps Command ...  360
macro Command ..  360

Syntax ...  360
mmapfile Command ...  361

Syntax ...  361
Example ...  361

module Command ..  362
Syntax ...  362

modules Command ..  362
Syntax ...  362

native Command ..  363
Syntax ...  363

next Command ...  363
Native Mode Syntax ... 364
Java Mode Syntax ...  364

nexti Command ..  365
Syntax ...  365

omp_loop Command ...  366
omp_pr Command ..  366

19

Contents

Syntax ...  366
omp_serialize Command ...  367

Syntax ...  367
omp_team Command ...  367

Syntax ...  367
omp_tr Command ..  367

Syntax ...  368
pathmap Command ..  368

Syntax ...  368
Examples .. 369

pop Command ...  370
Syntax ...  370

print Command ..  370
Native Mode Syntax ... 370
Java Mode Syntax ...  373

proc Command ...  374
Syntax ...  374

prog Command ...  374
Syntax ...  374

quit Command ...  375
Syntax ...  375

regs Command ...  375
Syntax ...  375
Example (SPARC platform) ...  376

replay Command ..  376
Syntax ...  376

rerun Command ..  377
Syntax ...  377

restore Command ..  377
Syntax ...  377

rprint Command ..  377
Syntax ...  378

rtc showmap Command ...  378
rtc skippatch Command ..  378

Syntax ...  379
run Command ...  379

20 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

Contents

Native Mode Syntax ... 379
Java Mode Syntax ...  380

runargs Command ..  380
Syntax ...  380

save Command ...  381
Syntax ...  381

scopes Command ..  381
search Command ..  381

Syntax ...  381
showblock Command ...  382

Syntax ...  382
showleaks Command ...  382

Syntax ...  382
showmemuse Command ..  383

Syntax ...  383
source Command ..  383

Syntax ...  384
status Command ..  384

Syntax ...  384
Example ...  384

step Command ...  384
Native Mode Syntax ... 385
Java Mode Syntax ...  386

stepi Command ..  386
Syntax ...  387

stop Command ...  387
Syntax ...  387

stopi Command ..  392
Syntax ...  392

suppress Command ...  393
Syntax ...  393

sync Command ...  395
Syntax ...  396

syncs Command ..  396
thread Command ..  396

Native Mode Syntax ... 396

21

Contents

Java Mode Syntax ...  397
threads Command ..  398

Native Mode Syntax ... 398
Java Mode Syntax ...  399

trace Command ..  400
Syntax ...  400

tracei Command ..  404
Syntax ...  404

uncheck Command ..  405
Syntax ...  405

undisplay Command ...  406
Native Mode Syntax ... 406
Java Mode Syntax ...  406

unhide Command ..  406
Syntax ...  407

unintercept Command ..  407
Syntax ...  407

unsuppress Command ..  408
Syntax ...  408

unwatch Command ..  409
Syntax ...  409

up Command ..  409
Syntax ...  410

use Command ...  410
watch Command ..  410

Syntax ...  410
whatis Command ..  411

Native Mode Syntax ... 411
Java Mode Syntax ...  412

when Command ...  413
Syntax ...  413

wheni Command ..  415
Syntax ...  415

where Command ..  415
Native Mode Syntax ... 415
Java Mode Syntax ...  416

22 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

Contents

whereami Command ...  417
Syntax ...  417

whereis Command ..  417
Syntax ...  417

which Command ..  418
Syntax ...  418

whocatches Command ..  418
Syntax ...  419

Index ..  421

23

24 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

Using This Documentation

■ Overview – Describes how to use the dbx command-line debugger, an interactive source
level debugging tool

■ Audience – Application developers, system developers, architects, support engineers
■ Required knowledge – Familiarity with the Fortran, C, C++, or Java programming

language and some understanding of the Oracle Solaris operating system, or the Linux
operating system, and UNIX® commands

Product Documentation Library

Documentation and resources for this product and related products are available at http://www.
oracle.com/pls/topic/lookup?ctx=E60778-01.

Feedback

Provide feedback about this documentation at http://www.oracle.com/goto/docfeedback.

Using This Documentation 25

http://www.oracle.com/pls/topic/lookup?ctx=E60778-01
http://www.oracle.com/pls/topic/lookup?ctx=E60778-01
http://www.oracle.com/goto/docfeedback

26 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

 1 ♦ ♦ ♦ C H A P T E R 1

Getting Started With dbx

dbx is an interactive, source-level, command-line debugging tool. You can use it to run a
program in a controlled manner and to inspect the state of a stopped program. dbx gives you
complete control of the dynamic execution of a program, including collecting performance and
memory usage data, monitoring memory access, and detecting memory leaks.

You can use dbx to debug an application written in C, C++, including the C++11 and C11
standard, or Fortran. You can also, with some limitations (see “Limitations of dbx With Java
Code” on page 225), debug an application that is a mixture of Java™ code and C JNI (Java
Native Interface) code or C++ JNI code.

dbxtool provides a graphical user interface for dbx.

This chapter gives you the basics of using dbx to debug an application. It contains the following
sections:

■ “Compiling Your Code for Debugging” on page 27
■ “Starting dbx or dbxtool and Loading Your Program” on page 28
■ “Running Your Program in dbx” on page 29
■ “Debugging Your Program With dbx” on page 30
■ “Quitting dbx” on page 36
■ “Accessing dbx Online Help” on page 37

Compiling Your Code for Debugging

You must prepare your program for source-level debugging with dbx by compiling it with the
-g option, which is accepted by the C compiler, C++ compiler, Fortran compiler, and Java
compiler. dbx also supports code written in the C++11 and C11 standard. For more information,
see “Compiling a Program for Debugging” on page 47.

Chapter 1 • Getting Started With dbx 27

Starting dbx or dbxtool and Loading Your Program

Starting dbx or dbxtool and Loading Your Program

To start dbx, type the dbx command in a shell prompt:

$ dbx

To start dbxtool, type the dbxtool command in a shell prompt:

$ dbxtool

To start dbx and load the program to be debugged:

$ dbx program-name

To start dbxtool and load the program to be debugged:

$ dbxtool program-name

To start dbx and load a program that is a mixture of Java code and C JNI code or C++ JNI code:

$ dbx program-name {.class | .jar}

You can use the dbx command to start dbx and attach it to a running process by specifying the
process ID.

$ dbx - process-ID

You can use the dbxtool command to start dbxtool and attach it to a running process by
specifying the process ID.

$ dbxtool - process-ID

If you don’t know the process ID of the process, include the pgrep command in the dbx
command to find and attach to the process. For example:

$ dbx - `pgrep Freeway`

Reading -

Reading ld.so.1

Reading libXm.so.4

Reading libgen.so.1

Reading libXt.so.4

Reading libX11.so.4

Reading libce.so.0

Reading libsocket.so.1

Reading libm.so.1

Reading libw.so.1

Reading libc.so.1

Reading libSM.so.6

Reading libICE.so.6

28 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

Running Your Program in dbx

Reading libXext.so.0

Reading libnsl.so.1

Reading libdl.so.1

Reading libmp.so.2

Reading libc_psr.so.1

Attached to process 1855

stopped in _libc_poll at 0xfef9437c

0xfef9437c: _libc_poll+0x0004: ta 0x8

Current function is main

 48 XtAppMainLoop(app_context);

(dbx)

For more information about the dbx command and startup options, see “dbx
Command” on page 326 and the dbx(1) man page, or type dbx -h.

If you are already running dbx, you can load the program to be debugged, or switch from the
program you are debugging to another program, with the debug command:

(dbx) debug program-name

To load or switch to a program that includes Java code and C JNI code or C++ JNI code:

(dbx) debug program-name{.class | .jar

 dbx debug program-name{.class | .jar

 }

If you are already running dbx, you can also use the debug command to attach dbx to a running
process:

(dbx) debug program-name process-ID

To attach dbx to a running process that includes Java code and C JNI (Java Native Interface)
code or C++ JNI code:

(dbx) debug program-name{.class | .jar} process-ID

For more information, see “debug Command” on page 329.

Running Your Program in dbx

To run your most recently loaded program in dbx, use the run command. If you type the run
command initially without arguments, the program is run without arguments. To pass arguments
or redirect the input or output of your program, use the following syntax:

Chapter 1 • Getting Started With dbx 29

Debugging Your Program With dbx

run [arguments] [< inputfile] [> output-file]

For example:

(dbx) run -h -p < input > output

Running: a.out

(process id 1234)

execution completed, exit code is 0

(dbx)

When you run an application that includes Java code, the run arguments are passed to the Java
application, not to the JVM software. Do not include the main class name as an argument.

If you repeat the run command without arguments, the program restarts using the arguments
or redirection from the previous run command. You can reset the options using the rerun
command. For more information about the run command, see “run Command” on page 379.
For more information about the rerun command, see “rerun Command” on page 377.

Your application might run to completion and terminate normally. If you have set breakpoints, it
will probably stop at a breakpoint. If your application contains bugs, it might stop because of a
memory fault or segmentation fault.

Debugging Your Program With dbx

You are likely to be debugging your program for one of the following reasons:

■ To determine where and why it is crashing. Strategies for locating the cause of a crash
include:
■ Running the program in dbx. dbx reports the location of the crash when it occurs.
■ Examining the core file and looking at a stack trace. See “Examining a Core

File” on page 31 and “Looking at the Call Stack” on page 34.
■ To determine why your program is returning incorrect results. Strategies include:

■ Setting breakpoints to stop execution so that you can check your program’s state
and look at the values of variables. See “Setting Breakpoints” on page 32 and
“Examining Variables” on page 35.

■ Stepping through your code one source line at a time to monitor how the program state
changes. See “Stepping Through Your Program” on page 33.

■ To find a memory leak or memory management problem. Runtime checking (RTC) lets you
detect runtime errors such as memory access errors and memory leak errors and enables
you to monitor memory usage. See “Finding Memory Access Problems and Memory
Leaks” on page 35.

30 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

Debugging Your Program With dbx

Examining a Core File

To determine where your program is crashing, you might want to examine the core file,
which is the memory image of your program when it crashed. You can use the where
command to determine where the program was executing when it dumped core. See “where
Command” on page 415

Note - dbx cannot tell you the state of a Java application from a core file as it can with native
code.

To debug a core file, type:

$ dbx program-name core

or

$ dbx - core

In the following example, the program has crashed with a segmentation fault and dumped core.
First, dbx started with the core file loaded. Then, the where command displays a stack trace,
which shows that the crash occurred at line 9 of the file foo.c.

% dbx a.out core

Reading a.out

core file header read successfully

Reading ld.so.1

Reading libc.so.1

Reading libdl.so.1

Reading libc_psr.so.1

program terminated by signal SEGV (no mapping at the fault address)

Current function is main

 9 printf("string ’%s’ is %d characters long\n", msg, strlen(msg));

(dbx) where

 [1] strlen(0x0, 0x0, 0xff337d24, 0x7efefeff, 0x81010100, 0xff0000), at

0xff2b6dec

=>[2] main(argc = 1, argv = 0xffbef39c), line 9 in "foo.c"

(dbx)

For more information about debugging core files, see “Debugging a Core
File” on page 40. For more information about using the call stack, see “Looking at the Call
Stack” on page 34.

Chapter 1 • Getting Started With dbx 31

Debugging Your Program With dbx

Note - If your program is dynamically linked with any shared libraries, debug the core file in
the same operating environment in which it was created. For information on debugging a core
file that was created in a different operating environment, see “Debugging a Mismatched Core
File” on page 42.

Setting Breakpoints
A breakpoint is a location in your program where you want the program to stop executing
temporarily and give control to dbx. Set breakpoints in areas of your program where you
suspect bugs. If your program crashes, determine where the crash occurs and set a breakpoint
just before this part of your code.

When your program stops at a breakpoint, you can then examine the state of program and the
values of variables. dbx enables you to set many types of breakpoints “Using Ctrl+C to Stop a
Process” on page 94.

The simplest type of breakpoint is a stop breakpoint. You can set a stop breakpoint to stop in a
function or procedure. For example, to stop when the main function is called:

(dbx) stop in main

(2) stop in main

For more information about the stop in command, see Chapter 6, “Setting Breakpoints and
Traces” and “stop Command” on page 387.

You can also set a stop breakpoint to stop at a particular line of source code. For example, to
stop at line 13 in the source file t.c:

(dbx) stop at t.c:13

(3) stop at “t.c”:13

For more information about the stop at command, see “Setting a Breakpoint at a Line of
Source Code” on page 98 and “stop Command” on page 387.

You can determine the line at which to stop by using the file command to set the current file
and the list command to list the function in which you want to stop. Then use the stop at
command to set the breakpoint on the source line:

(dbx) file t.c

(dbx) list main

10 main(int argc, char *argv[])

11 {

12 char *msg = "hello world\n";

13 printit(msg);

32 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

Debugging Your Program With dbx

14 }

(dbx) stop at 13

(4) stop at “t.c”:13

To continue execution of your program after it has stopped at a breakpoint, use the
cont command (see “Continuing Execution of a Program” on page 91 and “cont
Command” on page 325).

To display a list of all current breakpoints, use the status command:

(dbx) status

(2) stop in main

(3) stop at "t.c":13

Now if you run your program, it stops at the first breakpoint:

(dbx) run

...

stopped in main at line 12 in file "t.c"

12 char *msg = "hello world\n";

Stepping Through Your Program
After you have stopped at a breakpoint, you might want to step through your program one
source line at a time while you compare its actual state with the expected state. You can use the
step and next commands to do so. Both commands execute one source line of your program,
stopping when that line has completed execution. The commands handle source lines that
contain function calls differently: the step command steps into the function, while the next
command steps over the function.

The step up command continues execution until the current function returns control to the
function that called it.

The step to command attempts to step into a specified function in the current source line, or if
no function is specified, into the last function called as determined by the assembly code for the
current source line.

Some functions, notably library functions such as printf, might not have been compiled with
the -g option, so dbx cannot step into them. In such cases, step and next perform similarly.

The following example shows the use of the step and next commands as well as the breakpoint
set in “Setting Breakpoints” on page 32.

(dbx) stop at 13

(3) stop at "t.c":13

(dbx) run

Chapter 1 • Getting Started With dbx 33

Debugging Your Program With dbx

Running: a.out

stopped in main at line 13 in file "t.c"

 13 printit(msg);

(dbx) next

Hello world

stopped in main at line 14 in file "t.c"

 14 }

(dbx) run

Running: a.out

stopped in main at line 13 in file "t.c"

 13 printit(msg);

(dbx) step

stopped in printit at line 6 in file "t.c"

 6 printf("%s\n", msg);

(dbx) step up

Hello world

printit returns

stopped in main at line 13 in file "t.c"

 13 printit(msg);

(dbx)

For more information about stepping through your program, see “Stepping Through a
Program” on page 90. For more information about the step and next commands, see “step
Command” on page 384 and “next Command” on page 363.

Looking at the Call Stack
The call stack represents all currently active routines, which are those that have been called but
have not yet returned to their respective caller. In the stack, the functions and their arguments
are listed in the order in which they were called. A stack trace shows where in the program
flow execution stopped and how execution reached this point. It provides the most concise
description of your program’s state.

To display a stack trace, use the where command:

(dbx) stop in printf

(dbx) run

(dbx) where

 [1] printf(0x10938, 0x20a84, 0x0, 0x0, 0x0, 0x0), at 0xef763418

=>[2] printit(msg = 0x20a84 "hello world\n"), line 6 in "t.c"

 [3] main(argc = 1, argv = 0xefffe93c), line 13 in "t.c"

(dbx)

For functions that were compiled with the -g option, the argument names and their types
are known so accurate values are displayed. For functions without debugging information,

34 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

Debugging Your Program With dbx

hexadecimal numbers are displayed for the arguments. These numbers are not necessarily
meaningful. For example, in the stack trace above, frame 1 shows the contents of the SPARC
input registers $i0 through $i5.Only the contents of registers $i0 through $i1 are meaningful
because only two arguments were passed to printf in the example shown in “Stepping
Through Your Program” on page 33.

You can stop in a function that was not compiled with the -g option. When you stop in such a
function, dbx searches down the stack for the first frame whose function is compiled with the -
g option, in this case printit(), and sets the current scope to it. This is denoted by the arrow
symbol (=>).

For more information about the call stack, see “Efficiency Considerations” on page 111. For
more information about the current scope, see “Program Scope” on page 70.

Examining Variables

Although a stack trace might contain enough information to fully represent the state of your
program, you might need to see the values of more variables. The print command evaluates an
expression and prints the value according to the type of the expression. The following example
shows several simple C expressions:

(dbx) print msg

msg = 0x20a84 "Hello world"

(dbx) print msg[0]

msg[0] = ’h’

(dbx) print *msg

*msg = ’h’

(dbx) print &msg

&msg = 0xefffe8b4

You can track when the values of variables and expressions change using data change
breakpoints (see “Setting Data Change Breakpoints (Watchpoints)” on page 102). For
example, to stop execution when the value of the variable count changes, type:

(dbx) stop change count

Finding Memory Access Problems and Memory
Leaks

Runtime checking consists of two parts: memory access checking, and memory use and leak
checking. Access checking checks for improper use of memory by the debugged application.

Chapter 1 • Getting Started With dbx 35

Quitting dbx

Memory use and leak checking involves keeping track of all the outstanding heap space and
then on demand or at termination of the program, scanning the available data spaces and
identifying the space that has no references.

Memory access checking, and memory use and leak checking, are enabled with the check
command. To enable memory access checking only:

(dbx) check -access

To enable memory use and memory leak checking:

(dbx) check -memuse

After enabling the types of runtime checking you want, run your program. The program runs
normally but slowly because each memory access is checked for validity just before it occurs.
If dbx detects invalid access, it displays the type and location of the error. You can then use dbx
commands such as the where command to display the current stack trace or the print command
to examine variables.

Note - You cannot use runtime checking on an application that is a mixture of Java code and C
JNI code or C++ JNI code.

For detailed information about using runtime checking, see Chapter 9, “Using Runtime
Checking”.

Quitting dbx

A dbx session runs from the time you start dbx until you quit dbx. You can debug any number of
programs in succession during a dbx session.

To quit a dbx session, type quit at the dbx prompt.

(dbx) quit

When you start dbx and attach it to a running process by providing the process ID, the process
survives and continues when you quit the debugging session. dbx performs an implicit detach
before quitting the session.

For more information about quitting dbx, see “Quitting Debugging” on page 54.

36 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

Accessing dbx Online Help

Accessing dbx Online Help

dbx includes a help file that you can access with the help command:

(dbx) help

Chapter 1 • Getting Started With dbx 37

38 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

 2 ♦ ♦ ♦ C H A P T E R 2

Starting dbx

This chapter explains how to start, execute, save, restore, and quit a dbx debugging session. It
contains the following sections:

■ “Starting a Debugging Session” on page 39
■ “Debugging a Core File” on page 40
■ “Using the Process ID” on page 44
■ “dbx Startup Sequence” on page 45
■ “Setting Startup Properties” on page 45
■ “Compiling a Program for Debugging” on page 47
■ “Debugging Optimized Code” on page 51
■ “Quitting Debugging” on page 54
■ “Saving and Restoring a Debugging Run” on page 55

Starting a Debugging Session

How you start dbx depends on what you are debugging, where you are, what you need dbx to
do, how familiar you are with dbx, and whether you have set up any dbxenv variables.

You can use dbx entirely from the command line in a terminal window, or run dbxtool, a
graphical user interface for dbx. For information about dbxtool, see the dbxtool man page and
the online help in dbxtool.

The simplest way to start a dbx session is to type the dbx command or dbxtool command at a
shell prompt.

To start dbx from a shell and load a program to be debugged, type:

$ dbx program-name

Chapter 2 • Starting dbx 39

Debugging a Core File

or

$ dbxtool program-name

To start dbx and load a program that is a mixture of Java code and C JNI code or C++ JNI code:

$ dbx program-name{.class | .jar}

The Oracle Developer Studio software includes two dbx binaries: a 32-bit dbx that can debug
32-bit programs only and a 64-bit dbx that can debug both 32-bit and 64-bit programs. When
you start dbx, it determines which of its binaries to execute. On 64-bit operating systems, the
64-bit dbx is the default.

Note - On the Linux OS, the 64-bit dbx cannot debug 32-bit programs. To debug a 32-bit
program on the Linux OS, you must start the 32-bit dbx with the dbx command option -xexec32
or set the DBX_EXEC_32 environment variable.

When using the 32-bit dbx on a 64-bit Linux OS, do not use the debug command or set the
follow_fork_mode environment variable to child if the result will be execution of a 64-bit
program. Exit dbx and start the 64-bit dbx to debug a 64-bit program.

For more information about the dbx command and startup options, see “dbx
Command” on page 326 and the dbx(1) man page.

Debugging a Core File

If the program that dumped core was dynamically linked with any shared libraries, debug the
core file in the same operating environment in which it was created. dbx has limited support for
the debugging of “mismatched” core files for example, core files produced on a system running
a different version or patch level of the Oracle Solaris operating system.

Note - dbx cannot tell you the state of a Java application from a core file as it can with native
code.

Debugging a Core File in the Same Operating
Environment

To debug a core file, use the following command:

40 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

Debugging a Core File

$ dbx program-name core

or

$ dbxtool program-name core

If you issue the following command, dbx determines the program name from the core file:

$ dbx - core

or

$ dbxtool - core

You can also debug a core file using the debug command when dbx is already running:

(dbx) debug -c core program-name

If you substitute - for the program name,dbx will attempt to extract the program name from the
core file. dbx might not find the executable if its full path name is not available in the core file.
If dbx does not find the executable, specify the complete path name of the binary when you tell
dbx to load the core file.

If the core file is not in the current directory, you can specify its path name, for example, /tmp/
core.

Use the where command to determine where the program was executing when it dumped core.

When you debug a core file, you can also evaluate variables and expressions to see the values
they had at the time the program crashed, but you cannot evaluate expressions that make
function calls. Although you cannot single step, you can set breakpoints and then rerun the
program.

If Your Core File Is Truncated

If you have problems loading a core file, check whether you have a truncated core file. If you
have the maximum allowable size of core files set too low when the core file is created, then
dbx cannot read the resulting truncated core file. In the C shell, you can set the maximum
allowable core file size using the limit command (see the limit(1) man page). In the Bourne
shell and Korn shell, use the ulimit command (see the limit(1) man page). You can change
the limit on core file size in your shell startup file, re-source the startup file, and then rerun the
program that produced the core file to produce a complete core file.

Chapter 2 • Starting dbx 41

Debugging a Core File

If the core file is incomplete, and the stack segment is missing, then stack trace information is
not available. If the runtime linker information is missing, then the list of load objects is not
available. In this case, you get an error message about librtld_db.so not being initialized.
If the list of light weight processes (LWPs) is missing, then no thread information, LWP
information, or stack trace information is available. If you run the where command, you get an
error saying the program was not active.

Debugging a Mismatched Core File

Sometimes a core file is created on one system (the core-host) and you want to load the core
file on another machine (the dbx-host) to debug it. However, two problems with libraries might
arise when you do so:

■ The shared libraries used by the program on the core-host might not be the same libraries as
those on the dbx-host. To get proper stack traces involving the libraries, make these original
libraries available on the dbx-host.

■ dbx uses system libraries in /usr/lib to help understand the implementation details of
the runtime linker and threads library on the system. You might also have to provide these
system libraries from the core-host so that dbx can understand the runtime linker data
structures and the threads data structures.

The user libraries and system libraries can change in patches as well as major Oracle Solaris
operating system upgrades, so this problem can even occur on the same host, if, for example, a
patch was installed after the core file was collected but before running dbx on the core file.

dbx might display one or more of the following error messages when you load a mismatched
core file:

dbx: core file read error: address 0xff3dd1bc not available

dbx: warning: could not initialize librtld_db.so.1 -- trying libDP_rtld_db.so

dbx: cannot get thread info for 1 -- generic libthread_db.so error

dbx: attempt to fetch registers failed - stack corrupted

dbx: read of registers from (0xff363430) failed -- debugger service failed

Keep the following things in mind when debugging a mismatched core file:

■ The pathmap command does not recognize a pathmap for ’/’ so you cannot use the
following command:

pathmap / /net/core-host

■ The single-argument mode for the pathmap command does not work with load object path
names, so use the two argument from-path to-path mode.

42 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

Debugging a Core File

■ Debugging the core file is likely to work better if the dbx-host has either the same or a more
recent version of the Oracle Solaris operating system than the core-host, though this setup is
not always necessary.

■ The system libraries that you might need are as follows:
■ For the runtime linker:

/usr/lib/ld.so.1

/usr/lib/librtld_db.so.1

/usr/lib/64/ld.so.1

/usr/lib/64/librtld_db.so.1

■ For the threads library, depending on which implementation of libthread you are
using:

/usr/lib/libthread_db.so.1

/usr/lib/64/libthread_db.so.1

You will need the 64-bit versions of the xxx_db.so libraries if dbx is running on a 64-
bit capable version of the Oracle Solaris OS since these system libraries are loaded and
used as part of dbx, not as part of the target program.

The ld.so.1 libraries are part of the core file image like libc.so or any other library, so
you need the 32-bit ld.so.1 library or 64-bit ld.so.1 library that matches the program
that created the core file.

■ If you are looking at a core file from a threaded program and the where command does not
display a stack, try using lwp commands. For example:.

(dbx) where

current thread: t@0

[1] 0x0(), at 0xffffffff

(dbx) lwps

o>l@1 signal SIGSEGV in _sigfillset()

(dbx) lwp l@1

(dbx) where

=>[1] _sigfillset(), line 2 in "lo.c"

 [2] _liblwp_init(0xff36291c, 0xff2f9740, ...

 [3] _init(0x0, 0xff3e2658, 0x1, ...

...

The -setfp and -resetfp options of the lwp command are useful when the frame pointer
(fp) of the LWP is corrupted. These options work when debugging a core file, where
assign $fp=... is unavailable.

The lack of a thread stack can indicate a problem with thread_db.so.1 Therefore, you
might also want to try copying the proper libthread_db.so.1 library from the core-host.

Chapter 2 • Starting dbx 43

To Eliminate Shared Library Problems and Debug a Mismatched Core File

To Eliminate Shared Library Problems and Debug a
Mismatched Core File

1. Set the dbxenv variable core_lo_pathmap to on.

2. Use the pathmap command to indicate where the correct libraries for the core file
are located.

3. Use the debug command to load the program and the core file.
For example, assuming that the root partition of the core-host has been exported over NFS and
can be accessed using /net/core-host/ on the dbx-host machine, you would use the following
commands to load the program prog and the core file prog.core for debugging:

(dbx) dbxenv core_lo_pathmap on

(dbx) pathmap /usr /net/core-host/usr

(dbx) pathmap /appstuff /net/core-host/appstuff

(dbx) debug prog prog.core

If you are not exporting the root partition of the core-host, you must copy the libraries by hand.
You need not re-create the symbolic links. For example, you need not make a link from libc.so
to libc.so.1; just make sure libc.so.1 is available.

Using the Process ID

You can attach a running process to dbx using the process ID as an argument to the dbx
command or the dbxtool command.

$ dbx programname process-ID

or

dbxtool program-name processD

To attach dbx to a running process that includes Java™ code and C JNI (Java Native Interface)
code or C++ JNI code:

$ dbx program-name{.class | .jar} process-ID

You can also attach to a process using its process ID without knowing the name of the program.

$ dbx - processID

44 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

dbx Startup Sequence

or

$ dbxtool - processID

Because the program name remains unknown to dbx, you cannot pass arguments to the process
in a run command.

For more information, see “Attaching dbx to a Running Process” on page 88.

dbx Startup Sequence

When you start dbx, if you do not specify the -S option, dbx looks for the installed startup file,
dbxrc, in the directory /install-dir/lib. The default installation directory is /opt/solstudio12.4
on Oracle Solaris platforms and /opt/oracle/solstudio12.4 on Linux platforms. If your
Oracle Developer Studio software is not installed in the default directory, dbx derives the path
to the dbxrc file from the path to the dbx executable.

Then dbx searches for a .dbxrc file in the current directory, then in $HOME. You can specify a
different startup file than .dbxrc explicitly by specifying the file path using the -s option. For
more information, see “Using the dbx Initialization File” on page 59.

A startup file can contain any dbx command and commonly contains the alias command,
dbxenv command, pathmap command, and Korn shell function definitions. However, certain
commands require a program to have been loaded or a process to have been attached. All
startup files are loaded before the program or process is loaded. The startup file might also
source other files using the source or .(period) command. You can also use the startup file to
set other dbx options.

As dbx loads program information, it prints a series of messages, such as Reading filename.

Once the program is finished loading, dbx is in a ready state, visiting the main block of the
program (for C or C++: main(); for Fortran: MAIN()). Typically, you set a breakpoint (for
example, stop in main) and then issue a run command for a C program.

Setting Startup Properties

You can use the pathmap command, dbxenv command, and alias command to set startup
properties for your dbx sessions.

Chapter 2 • Starting dbx 45

Setting Startup Properties

Mapping the Compile-Time Directory to the
Debug-Time Directory

By default, dbx looks in the directory in which the program was compiled for the source files
associated with the program being debugged. If the source or object files are not there or the
machine you are using does not use the same path name, you must inform dbx of their location.

If you move the source or object files, you can add their new location to the search path. The
pathmap command creates a mapping from your current view of the file system to the name in
the executable image. The mapping is applied to source paths and object file paths.

Add common pathmaps to your .dbxrc file.

The following command establishes a new mapping from the directory from to the directory to

(dbx) pathmap [-c] from to

If -c is used, the mapping is applied to the current working directory as well.

The pathmap command is useful for dealing with automounted and explicit NFS-mounted file
systems with different base paths on differing hosts. Use -c when you try to correct problems
due to the automounter because current working directories are inaccurate on automounted file
systems.

The mapping of /tmp_mnt to / exists by default.

For more information, see “pathmap Command” on page 368.

Setting dbx Environment Variables

You can use the dbxenv command to either list or set dbx customization variables. You can
place dbxenv commands in your .dbxrc file.

You can also set dbxenv variables. See “Saving and Restoring Using replay” on page 58
for more information about the .dbxrc file and about setting these variables.

For more information, see “Setting dbxenv Variables” on page 60 and “dbxenv
Command” on page 328.

46 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

Compiling a Program for Debugging

Creating Your Own dbx Commands

You can create your own dbx commands using the kalias or dalias commands. For more
information, see “dalias Command” on page 325.

Compiling a Program for Debugging

You must prepare your program for debugging with dbx by compiling it with the -g or -g0
option.

Compiling With the -g Option

The -g option instructs the compiler to generate debugging information during compilation.

For example, to compile using the C++ compiler:

% CC -g example_source.cc

For the C++ compiler:

■ The -g option alone, with no optimization level specified, enables capturing debugging
information and disables inlining of functions.

■ The -g option used with the -O option or the -xOlevel option turns on debugging information
and does not disable inlining of functions. This set of options produces limited debugging
information and inlined functions.

■ The -g0 (zero) option turns on debugging information and does not affect inlining of
functions. You cannot debug inline functions in code compiled with the -g0 option. The -g0
option can significantly decrease link time and dbx startup time, depending on the use of
inlined functions by the program.

To compile optimized code for use with dbx, compile the source code with both the -O
(uppercase letter O) and the -g options.

Using a Separate Debug File

dbx enables you to use options in the objcopy command on Linux platforms and the gobjcopy
command on Oracle Solaris platforms to copy the debugging information from an executable to

Chapter 2 • Starting dbx 47

How to Create a Separate Debug File

a separate debug file, strip that information from the executable, and create a link between these
two files.

dbx searches for the separate debug file in the following order and reads the debugging
information from the first file it finds:

1. The directory that contains the executable file.
2. A subdirectory named debug in the directory that contains the executable file.
3. A subdirectory of the global debug file directory, which you can view or change if the

dbxenv variable debug_file_directory is set to the path name of the directory. The default
value of the environment variable is /usr/lib/debug.

For example, the following procedure describes how to create a separate debug file for
executable a.out.

How to Create a Separate Debug File

1. Create a separate debug file named a.out.debug containing the debugging
information.

objcopy --only-keep-debug a.out a.out.debug

2. Strip the debugging information from a.out.

objcopy --strip-debug a.out

3. Establish the link between the two files.

objcopy --add-gnu-debuglink=a.out.debug a.out

On Oracle Solaris platforms, use the gobjcopy command. On Linux platforms, use the objcopy
command.

On a Linux platform, you can use the command objcopy -help to find out whether the -add-
gnu-debuglink option is supported on the platform. You can replace the -only-keep-debug
option of the objcopy command with the command cp a.out a.out.debug to make a.out.
debug a fully executable file.

Ancillary Files (Oracle Solaris Only)

By default, load objects contain both allocable and non-allocable sections. Allocable sections
are the sections that contain executable code and the data needed by that code at runtime. Non-

48 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

How to Create a Separate Debug File

allocable sections contain supplemental information that is not required to execute a file at
runtime. These sections support the operation of debuggers and other observability tools. The
non-allocable sections in an object are not loaded into memory at runtime by the operating
system, and so, they have no impact on memory use or other aspects of runtime performance no
matter their size.

For convenience, both allocable and non-allocable sections are normally maintained in the
same file. However, there are situations in which it can be useful to separate these sections.
Specifically, to support fine grained debugging of highly optimized code requires considerable
debug data. In modern systems, the debugging data can easily be larger than the code it
describes. The size of a 32-bit object is limited to 4GB. In very large 32-bit objects, the debug
data can cause this limit to be exceeded and prevent the creation of the object.

Traditionally, load objects have been stripped of non-allocable sections in order to address these
issues. Stripping is effective, but destroys data that might be needed later. The Oracle Solaris
link-editor can instead write non-allocable sections to an ancillary file. This feature is enabled
via the -z ancillary command line option.

% ld ... -z ancillary[=outfile] ...
/* Your file is separated into a.out and b.out, where

a.out: ELF 32-bit LSB executable 80386 Version 1 [FPU], dynamically linked, not

 stripped, ancillary object b.out

b.out: ELF 32-bit LSB ancillary 80386 Version 1, primary object a.out */

By default, the ancillary file is given the same name as the primary output object, with a .anc
file extension. However, a different name can be provided by providing an outfile value to the
-z ancillary option.

Note - The ELF definition of ancillary files provides for a single primary file, and an arbitrary
number of ancillary file. At this time, the Oracle Solaris link-editor only produces a single
ancillary file containing all non-allocable sections. This might change in the future.

When -z ancillary is specified, the link-editor does the following.

■ All allocable sections are written to the primary file. In addition, all non-allocable sections
containing one or more input sections that have the SHF_SUNW_PRIMARY section header flag
set are written to the primary file.

■ All remaining non-allocable sections are written to the ancillary file.
■ Both output files receive full identical copies of the following well known non-allocable

sections:

.shstrtab Section name string table.

.symtab The full non-dynamic symbol table.

Chapter 2 • Starting dbx 49

How to Create a Separate Debug File

.symtab The symbol table extended index section associated with .symtab.

.strtab The non-dynamic string table associated with .symtab.

.SUNW_ancillary Contains the information required to identify the primary object, and
all of the ancillary objects, and to identify the object being examined.

■ The primary file and all ancillary files contain the same array of sections headers. Each
section has the same section index in every file.

■ Although the primary and ancillary files all define the same section headers, the data for
most sections will be written to a single file as described above. If the data for a section
is not present in a given file, the SHF_SUNW_ABSENT section header flag will be set, and
sh_size field will be 0.

This organization makes it possible to acquire a full list of section headers, a complete symbol
table, and a complete list of the primary and ancillary files, all from examining a single file.

dbx can then use these ancillary files just as dbx uses a separate debug file, by looking for
ancillary files in your executable. Use the -z ancillary option when compiling as follows:

%CC -g -z ancillary=a.out demo.cpp //"a.out" contains the ancillary object

The primary load object, and all associated ancillary files, contain a .SUNW_ancillary section
that allows all the load objects to be identified and related together.

For more information, see Chapter 2, “Link-Editor” in Oracle Solaris 11.3 Linkers and
Libraries Guide.

Note - This feature is currently only available for Oracle Solaris 11.1.

Compressed Debug Sections (Oracle Solaris Only)

In addition to “Ancillary Files (Oracle Solaris Only)” on page 48, dbx also supports
debugging of compressed debug sections. Compressed debug sections are useful in compacting
debugging data that can sometimes be bigger than the code itself. This issue is sometimes
referred to as the "DWARF bloat" problem.

Compressed debug sections are non-allocable sections that are reduced in size with the industry
standard ZLIB compression library. Documentation for ZLIB can be found at http://www.
zlib.net/. The debugger recognizes compressed debug sections within input objects and
automatically decompresses these sections. This operation is transparent to the user of the
debugger and requires no special action.

50 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=OSLLGchapter2-88783
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=OSLLGchapter2-88783
http://www.zlib.net/
http://www.zlib.net/

Debugging Optimized Code

Use the -z compress-debug-sections option to enable the compression of debug sections in
the output file.

$ cc -z compress-sections[=cmp-type] demo.cc

The following lists acceptable values for cmp-type:

zlib Compress candidates using ZLIB compression. The resulting output
sections have the SHF_COMPRESSED section flag set to identify the use of
compression. This is the default cmd-type, if one is not specified. For
more information on the SHF_COMPRESSED section flag, see “Section
Compression” in Oracle Solaris 11.3 Linkers and Libraries Guide.

zlib-gnu Compress all candidate sections using ZLIB compression, using the
GNU section compression format. This format requires candidate
sections to have a name that begins with .debug. The resulting output
sections are renamed to start with .zdebug to identify the use of
compression.

For more information on compressed debug sections and for an example of using compressed
debug sections, see “Compressed Debug Sections” in Oracle Solaris 11.3 Linkers and Libraries
Guide.

Debugging Optimized Code

dbx provides partial debugging support for optimized code. The extent of the support depends
largely upon how you compiled the program.
When analyzing optimized code, you can do the following:

■ Stop execution at the start of any function (stop in function command)
■ Evaluate, display, or modify arguments
■ Evaluate, display, or modify global, local, or static variables
■ Single-step from one line to another (next or step command)

When programs are compiled with optimization and debugging enabled at the same time (using
the -O and -g options), dbx operates in a restricted mode.

The details about which compilers emit which kind of symbolic information under what
circumstances is likely to change from release to release.

Source line information is available, but the code for one source line might appear in several
different places for an optimized program, so stepping through a program by source line results

Chapter 2 • Starting dbx 51

http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=OSLLGsection_compression
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=OSLLGsection_compression
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=OSLLGman-cds
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=OSLLGman-cds

Debugging Optimized Code

in the current line being in different places in the source file, depending on how the code was
scheduled by the optimizer.

Tail call optimization can result in missing stack frames when the last effective operation in a
function is a call to another function.

For OpenMP programs, compiling with the -xopenmp=noopt option instructs the compiler not to
apply any optimizations. However, the optimizer still processes the code in order to implement
the OpenMP directives, so some of the problems described might occur in programs compiled
with -xopenmp=noopt.

Parameters and Variables

Generally, symbolic information for parameters, local variables, and global variables is
available for optimized programs. Type information about structs, unions, C++ classes, and the
types and names of local variables, global variables, and parameters should be available.

Information about the location of parameters and local variables is sometimes missing for
optimized code. If dbx cannot locate a value, it reports that it cannot. Sometimes the value
might disappear temporarily, so try to single-step and print again.

The Oracle Developer Studio 12.2 compilers and later Oracle Developer Studio updates for
SPARC based systems and x86 based systems provide the information for locating parameters
and local variables. Newer versions of the GNU compilers also provide this information.

You can print global variables and assign values to them, although they might have inaccurate
values if the final register-to-memory store has not happened yet.

Inlined Functions

dbx allows you to set breakpoints on inlined functions. Control stops at the first instruction from
the inlined function in the caller. You can perform the same dbx operations (for example, step,
next, and list commands) on inlined functions as you can perform on non-inlined functions.

The where command shows the call stack with the inlined function and the parameters if
location information for the inlined parameters is available.

The up and down commands for moving up and down the call stack are also supported for
inlined functions.

Local variables from the caller are not available in the inline frame.

52 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

Debugging Optimized Code

Registers, if shown, are those from the caller's window.

Functions that the compilers might inline include the C++ inline functions, the C functions
with the C99 inline keyword, and any other functions that the compiler deems profitable for
performance.

The Oracle Developer Studio 12.5: Performance Analyzer contains information that might be
helpful when debugging an optimized program.

Code Compiled Without the -g Option

While most debugging support requires that a program be compiled with -g, dbx still provides
the following level of support for code compiled without -g:

■ Backtrace (dbx where command)
■ Calling a function but without parameter checking
■ Checking global variables

Note, however, that dbx cannot display source code unless the code was compiled with the -g
option. This restriction also applies to code that has had strip -x applied to it.

Shared Libraries Require the -g Option for Full dbx
Support

For full support, a shared library must also be compiled with the -g option. If you build a
program with shared library modules that were not compiled with the -g option, you can still
debug the program. However, full dbx support is not possible because the information was not
generated for those library modules.

Completely Stripped Programs

dbx can debug programs that have been completely stripped. These programs contain some
information that can be used to debug your program, but only externally visible functions are
available. Some runtime checking works on stripped programs or load objects. For example,
memory use checking works and access checking works with code stripped with strip -x, but
not with code stripped with strip.

Chapter 2 • Starting dbx 53

http://www.oracle.com/pls/topic/lookup?ctx=E60778-01&id=OSSPA

Quitting Debugging

Quitting Debugging

A dbx session runs from the time you start dbx until you quit dbx.You can debug any number of
programs in succession during a dbx session.

To quit a dbx session, type quit at the dbx prompt.

(dbx) quit

When you start dbx and attach it to a running process by providing the process ID option, the
process survives and continues when you quit the debugging session. dbx performs an implicit
detach before quitting the session.

Stopping a Process Execution

You can stop execution of a process at any time by pressing Carl+C without leaving dbx.

Detaching a Process From dbx

If you have attached dbx to a process, you can detach the process from dbx without killing it or
the dbx session by using the detach command.

You can detach a process and leave it in a stopped state while you temporarily apply other
/proc-based debugging tools that might be blocked when dbx has exclusive access. For more
information, see “Detaching dbx From a Process” on page 89.

For more information, see “detach Command” on page 332.

Killing a Program Without Terminating the Session

The dbx kill command terminates debugging of the current process as well as killing the
process. However, the kill command preserves the dbx session itself, leaving dbx ready to
debug another program.

54 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

Saving and Restoring a Debugging Run

Killing a program is a good way of eliminating the remains of a program you were debugging
without exiting dbx.For more information, see “kill Command” on page 350.

Saving and Restoring a Debugging Run

dbx provides three commands or saving all or part of a debugging run and replaying it later:

■ save [-number] [filename]
■ restore [filename]
■ replay [-number]

Using the save Command

The save command saves to a file all debugging commands issued from the last run command,
rerun command, or debug command up to the save command. This segment of a debugging
session is called a debugging run.

In addition to the list of debugging commands issued, the save command saves debugging
information associated with the state of the program at the start of the run: breakpoints, display
lists, and the like. When you restore a saved run, dbx uses the information in the save-file.

You can save part of a debugging run; that is, the whole run minus a specified number of
commands from the last one entered.

Chapter 2 • Starting dbx 55

Saving and Restoring a Debugging Run

If you are not sure where you want to end the run you are saving, use the history command to
see a list of the debugging commands issued since the beginning of the session.

Note - By default, the save command writes information to a special file. If you want to save
a debugging run to a file you can restore later, you can specify a file name with the save
command. See “Saving a Series of Debugging Runs as Checkpoints” on page 57.

Issue the save command at the point at which you want to save an entire debugging.

(dbx) save

To save part of a debugging run, include the number option, where number is the number of
commands back from the save command that you do not want saved.

56 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

Saving and Restoring a Debugging Run

(dbx) save -number

Saving a Series of Debugging Runs as
Checkpoints

If you save a debugging run without specifying a file name, dbx writes the information to
a special file. Each time you save, dbx overwrites this file. However, by giving the save
command a filename argument, you can save a debugging run to a file that you can restore later,
even if you have saved other debugging runs since the one saved to filename.

Saving a series of runs gives you a set of checkpoints, each one starting farther back in the
session. You can restore any one of these saved runs, continue, then reset dbx to the program
location and state saved in an earlier run.

To save a debugging run to a file other than the default, include the file name:

(dbx) save filename

Restoring a Saved Run

After saving a run, you can restore the run using the restore command. dbx uses the
information in its save file. When you restore a run, dbx first resets the internal state to what it
was at the start of the run, then reissues each of the debugging commands in the saved run.

Note - The source command also reissues a set of commands stored in a file, but it does not
reset the state of dbx. It only reissues the list of commands from the current program location.

For exact restoration of a saved debugging run, all the inputs to the run must be exactly the
same: arguments to a run-type command, manual inputs, and file inputs.

Note - If you save a segment and then issue a run, rerun, or debug command before you do a
restore, restore uses the arguments to the second, post-save run, rerun, or debug command.
If those arguments are different, you might not get an exact restoration.

To restore a saved debugging run

(dbx) restore

To restore a debugging run saved to a file other than the default:

Chapter 2 • Starting dbx 57

Saving and Restoring a Debugging Run

(dbx) restore filename

Saving and Restoring Using replay

The replay command is a combination command, equivalent to issuing a save -1 followed
immediately by a restore. The replay command takes a negative number argument, which
it passes to the save portion of the command. By default, the value of -number is -1, so the
replay command works as an undo command, restoring the last run until,but not including the
last command issued.

To replay the current debugging run, minus the last debugging command issued, type:

(dbx) replay

To replay the current debugging run and stop the run before a specific command, use the
-number option, where number is the number of commands back from the last debugging
command.

(dbx) replay -number

58 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

 3 ♦ ♦ ♦ C H A P T E R 3

Customizing dbx

This chapter describes the dbxenv variables you can use to customize certain attributes of your
debugging environment, and how to use the initialization file, .dbxrc, to preserve your changes
and adjustments from session to session.
This chapter contains the following sections:

■ “Using the dbx Initialization File” on page 59
■ “Setting dbxenv Variables” on page 60
■ “dbxenv Variables and the Korn Shell” on page 66

Using the dbx Initialization File

The dbx initialization file stores dbx commands that are executed each time you start dbx.
Typically, the file contains commands that customize your debugging environment, but you can
place any dbx commands in the file. If you customize dbx from the command line while you are
debugging, those settings apply only to the current debugging session.

A .dbxrc file should not contain commands that execute your code. However, you can put
such commands in a file, and then use the dbx source command to execute the commands in
that file.
During startup, the search order is:

1. Installation directory (unless you specify the -S option to the dbx command) /install--dir
\/lib/dbxrc. The default installation directory is /opt/solstudio12.4 on Oracle Solaris
platforms and /opt/oracle/solstudio12.4 on Linux platforms. If your Oracle Developer
Studio software is not installed in the default install-dir, dbx derives the path to the dbxrc
file from the path to the dbx executable.

2. Current directory ./.dbxrc
3. Home directory $HOME/.dbxrc

Chapter 3 • Customizing dbx 59

Setting dbxenv Variables

Creating a .dbxrc File

To create a .dbxrc file that contains common customizations and aliases

(dbx) help .dbxrc>$HOME/.dbxrc

You can then customize the resulting file by using your text editor to uncomment the entries
you want to have executed.

Initialization File Sample

The following example shows a sample .dbxrc file:

dbxenv input_case_sensitive false

catch FPE

The first line changes the default setting for the case sensitivity control:

■ dbxenv is the command used to set dbxenv variables. For a complete list of dbxenv
variables, see “Setting dbxenv Variables” on page 60.

■ input_case_sensitive is the dbxenv variable that controls case sensitivity.
■ false is the setting for input_case_sensitive.

The next line is a debugging command, catch, which adds a system signal, FPE, to the default
list of signals to which dbx responds, stopping the program.

Setting dbxenv Variables

You can use the dbxenv command to set the dbxenv variables that customize your dbx sessions.

To display the value of a specific variable:

(dbx) dbxenv variable

To show all variables and their values

(dbx) dbxenv

To set the value of a variable:

(dbx) dbxenv variable value

60 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

Setting dbxenv Variables

Table 1, “dbx Environment Variables,” on page 61 consists all of the dbxenv variables that
you can set.

TABLE 1 dbx Environment Variables

dbx Environment Variable
What the Variable Does

array_bounds_check on|off If set to on, dbx checks the array bounds. Default: on.

c_array_op on | off Allows array operations for C and C++. For example, if a and b are
arrays, you can use the command print a+b. Default: off.

CLASSPATHX Specifies to dbx a path for Java class files that are loaded by custom
class loaders.

core_lo_pathmap on|off Controls whether dbx uses pathmap settings to locate the correct
libraries for a ismatchedcore file. Default: off.

debug_file_directory Sets the global debug file directory. Default: /usr/lib/debug.

disassembler_versionautodetect|v8|v9|

x86_32|x86_64

SPARC platform: Sets the version of dbx’s built-in disassembler
for SPARC V8 or V9. Default is autodetect, which sets the mode
dynamically depending on the type of the machine a.out is running
on.

x86 platforms: Sets the version of dbx's built-in disassembler for
x86_32 or x86_64. Default is autodetect, which sets the mode
dynamically depending on the type of the machine a.out is running
on.

event_safety on | off Protects dbx against unsafe use of events. Default: on.

filter_max_length num Sets the maximum length of sequences converted to arrays by
pretty-printing filters to num.

fix_verbose on|off Governs the printing of compilation line during a fix. Default: off.

follow_fork_inherit on|off When following a child, determines whether to inherit breakpoints.
Default: off.

follow_fork_mode parent|child|both|ask Determines which process is followed after a fork; that is, when
the current process executes a fork, vfork, or fork1. If set to
parent, the process follows the parent. If set to child, it follows
the child. If set to both, it follows the child, but the parent process
remains active. If set to ask, you are asked which process to follow
whenever a fork is detected. Default: parent.

follow_fork_mode_inner unset|parent|

child|both

After a fork has been detected, if follow_fork_mode was set to ask
and you chose stop, by setting this variable, you need not use cont
-follow. Default: unset.

input_case_sensitive autodetect| true|

false

If set to autodetect, dbx automatically selects case sensitivity
based on the language of the file: false for Fortran files; otherwise
true. If true, case matters in variable and function names;
otherwise, case is not significant. Default: autodetect.

JAVASRCPATH Specifies the directories in which dbx should look for Java source
files.

Chapter 3 • Customizing dbx 61

Setting dbxenv Variables

dbx Environment Variable
What the Variable Does

jdbx_mode java| jni| native Stores the current dbx mode. Valid settings are java, jni, or
native.

jvm_invocation The jvm_invocation environment variable enables you to
customize the way the JVM™ software is started. (The terms “Java
virtual machine” and “JVM” mean a virtual machine for the Java™
platform.) For more information, see “Customizing Startup of the
JVM Software” on page 231.

language_mode autodetect|main|c| c++|

fortran|fortran90

Governs the language used for parsing and evaluating expressions.

■ autodetect sets the expression language to the language of
the current file. Useful if debugging programs with mixed
languages (default).

■ main sets the expression language to the language of the main
routine in the program. Useful if debugging homogeneous
programs.

■ c, c++, c++, fortran, or fortran90 sets the expression language
to the selected language.

macro_expand on | off When set to on, globally enables macro expansion for selected
expressions. Default: on.

macro_source none | compiler | skim |

skim_unless_compiler

Governs where dbx gets macro information. See “Skimming
Errors” on page 304 for more information. Default:
skim_unless_compiler.

mt_resume_one on | off | auto When set to off, all threads are resumed when stepping over calls
with the next command in order to avoid deadlocks. When set to
on, only the current thread is resumed when stepping over calls
with the next command. When set to auto, behavior is the same
as when set to off unless the program is a transaction management
application and you are stepping within a transaction, in which case
only the current thread is resumed. Default: auto.

mt_scalable on|off When enabled, dbx is more conservative in its resource usage
and will be able to debug processes with upwards of 300 LWPs.
However, this setting can result in significant slowdown. Default:
off.

mt_sync_tracking on | off Determines whether dbx enables tracking of sync objects when it
starts a process. Default: off.

output_auto_flush on|off Automatically calls fflush() after each call. Default: on

output_base 8|10|16|automatic Default base for printing integer constants. Default: automatic
(pointers in hexadecimal characters, all else in decimal).

output_class_prefix on | off Used to cause a class member to be prefixed with one or more
classnames when its value or declaration is printed. If set to on, it
causes the class member to be prefixed. Default: on.

 output_data_member_only on|off Used to display data members only when printing definition of a
class (dbx command whatis -t -a). When set to on, the -a option
is the default (dbx command whatis -t will display data members
only). Default: off.

62 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

Setting dbxenv Variables

dbx Environment Variable
What the Variable Does

output_dynamic_type on|off When set to on, -d is the default for printing watches and
displaying. Default: off.

output_inherited_members on|off When set to on, -r is the default for printing, displaying, and
inspecting. Default: off.

output_list_size num Governs the default number of lines to print in the list command.
Default: 10.

output_log_file_name filename Name of the command log file.

Default: /tmp/dbx.log.unique-ID

.

output_max_object_size number Sets maximum number of bytes for printing variable; if variable
size larger than this number, specifying the -L flag is required. This
dbxenv variable applies to commands print, display. and watch.
Default: 4096.

output_max_string_length number Sets number of characters printed for char *s. Default: 096.

output_no_literal on|off When enabled, if the expression is a string (char *), print the
address only, do not print the literal. Default: off.

output_pretty_print on|off Sets -p as the default for printing watches and displaying. Default:
on.

output_pretty_print_fallback on|off By default, pretty-printing reverts to regular printing if problems
occur. If you want to diagnose a pretty-printing problem, set this
variable to off to prevent the fallback. Default: on.

output_pretty_print_mode call | filter

| filter_unless_call

Determines which pretty-printing mechanism is used. If set to call.
uses call-style pretty-printers. If set to filter, uses python-based
pretty-printers. If set to filter_unless_call, uses call-style pretty-
printers first.

output_short_file_name on|off Displays short path names for files. Default: on.

overload_function on|off For C++, if set to on, does automatic function overload resolution.
Default: on.

overload_operator on|off For C++, if set to on, does automatic operator overload resolution.
Default: on.

pop_auto_destruct on|off If set to on, automatically calls appropriate destructors for locals
when popping a frame. Default: on.

proc_exclusive_attach on|off If set to on, keeps dbx from attaching to a process if another tool
is already attached. Caution: If more than one tool attaches to a
process and tries to control it unexpected results can occur. Default:
on.

rtc_auto_continue on|off Logs errors to rtc_error_log_file_name and continues. Default:
off.

rtc_auto_suppress on|off If set to on, an RTC error at a given location is reported only once.
Default: on.

Chapter 3 • Customizing dbx 63

Setting dbxenv Variables

dbx Environment Variable
What the Variable Does

rtc_biu_at_exit on|off|verbose Used when memory use checking is on explicitly or because of
check -all. If the value is on, a non-verbose memory use (blocks
in use) report is produced at program exit. If the value is verbose, a
verbose memory use report is produced at program exit. The value
off causes no output. Default: on.

rtc_error_limit number The number of RTC access errors to be reported. Default: 1000.

rtc_error_log_file_name filename Name of file to which RTC errors are logged if rtc_auto_continue
is set. Default:/tmp/dbx.errlog.

rtc_error_stack on|off If set to on, stack traces show frames corresponding to RTC internal
mechanisms. Default: off.

rtc_inherit on|off If set to on, enables runtime checking on child processes that are
executed from the debugged program and causes the LD_PRELOAD
environment variable to be inherited. Default: off.

rtc_mel_at_exit on|off|verbose Used when memory leak checking is on. If the value is on, a non-
verbose memory leak report is produced at program exit. If the
value is verbose, a verbose memory leak report is produced at
program exit. The value off causes no output. Default: on.

run_autostart on|off If set to on with no active program, step, next, stepi, and nexti
implicitly run the program and stop at the language-dependent main
routine. If set to on, cont implies run when necessary. Default: off.

run_iostdio|pty Governs whether the user program’s input/output is redirected
to dbx’s stdio or a specific pty. The pty is provided by run_pty.
Default: stdio.

run_pty ptyname Sets the name of the pty to use when run_io is set to pty. ptys are
used by graphical user interface wrappers.

run_quick on|off If set to on, no symbolic information is loaded. The symbolic
information can be loaded on demand using prog -readsysms.
Until then, dbx behaves as if the program being debugged is
stripped. Default: off.

run_savetty on | off Multiplexes TTY settings, process group, and keyboard settings (if
-kbd was used on the command line) between dbx and the program
being debugged. Useful when debugging editors and shells. Set to
on if dbx gets SIGTTIN or SIGTTOU and pops back into the shell. Set
to off to gain a slight speed advantage. The setting is irrelevant if
dbx is attached to the program being debugged or is running in the
Oracle Developer Studio IDE. Default: off.

run_setpgrp on | off If set to on, when a program is run, setpgrp(2)is called right after
the fork. Default: off.

scope_global_enums on | off If set to on, enumerators are put in global scope and not in file
scope. Set before debugging information is processed (~/.dbxrc).
Default: off.

scope_look_aside on | off If set to on, finds file static symbols, in scopes other than the current
scope. Default: on.

64 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

Setting dbxenv Variables

dbx Environment Variable
What the Variable Does

session_log_file_name filename Name of the file where dbx logs all commands and their output.
Output is appended to the file. Default: “ “(no session logging).

show_static_members When set to on, -S is the default for printing, watches, and
displaying. Default: on.

stack_find_source on | off When set to on, dbx attempts to find and automatically make active
the first stack frame with source when the program being debugged
comes to a stop in a function that is not compiled with -g.

Default: on.

stack_max_size number Sets the default size for the where command. Default: 100.

stack_verbose on | off Governs the printing of arguments and line information in where.
Default: on.

step_abflow stop|ignore When set to stop, dbx stops in longjmp(), siglongjmp(), and
throw statements when single stepping. When set to ignore, dbx
does not detect abnormal control flow changes for longjmp() and
siglongjmp(). Default: stop.

step_events on |off When set to on, allows breakpoints while using step and next
commands to step through code. Default: off.

step_granularity statement | line Controls granularity of source line-stepping. When set to statement
the following code:

a(); b();

takes the two next commands to execute. When set to line, a
single next command executes the code. The granularity of line is
particularly useful when dealing with multi-line macros. Default:
statement.

suppress_startup_message number Sets the release level below which the startup message is not
printed. Default: 3.01.

symbol_info_compression on|off When set to on, reads debugging information for each include file
only once. Default: on.

trace_speed number Sets the speed of tracing execution. Value is the number of seconds
to pause between steps. Default: 0.50.

 track_process_cwd on|off When set to on and the GUI is attached to a running process, the
current working directory changes to the working directory of the
running process. Default: off.

vdl_mode classic | lisp | xml Value Description Language (VDL) is used to communicate data
structures to the graphical user interface (GUI) for dbx. classic
mode was used for the Sun WorkShop™ IDE. lisp mode is used
by the IDE in Sun Studio and Oracle Developer Studio releases. xml
mode is experimental and unsupported. Default: value is set by the
GUI.

Chapter 3 • Customizing dbx 65

dbxenv Variables and the Korn Shell

dbxenv Variables and the Korn Shell

Each dbxenv variable is also accessible as a ksh variable. The name of the ksh variable
is derived from the dbxenv variable by prefixing it with DBX_. For example dbxenv
stack_verbose and echo $DBX_stack_verbose yield the same output. You can assign the value
of the variable directly or with the dbxenv command.

66 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

 4 ♦ ♦ ♦ C H A P T E R 4

Viewing and Navigating To Code

This chapter describes how dbx navigates to code and locates functions and symbols. It also
covers how to use commands to navigate to code or look up declarations for identifiers, types,
and classes.
This chapter contains the following sections

■ “Navigating To Code” on page 67
■ “Types of Program Locations” on page 70
■ “Program Scope” on page 70
■ “Qualifying Symbols With Scope Resolution Operators” on page 72
■ “Locating Symbols” on page 75
■ “Viewing Variables, Members, Types, and Classes” on page 78
■ “Debugging Information in Object Files and Executables” on page 81
■ “Finding Source and Object Files” on page 86

Navigating To Code

Each time the program you are debugging stops, dbx prints the source line associated with the
stop location. At each program stop, dbx resets the value of the current function to the function
in which the program is stopped. Before the program starts running and when it is stopped,
you can move to, or navigate through, functions and files elsewhere in the program. You can
navigate to any function or file that is part of the program. Navigating sets the current scope
(see “Program Scope” on page 70). It is useful for determining when and at what source
line you want to set a stop at breakpoint.

Chapter 4 • Viewing and Navigating To Code 67

Navigating To Code

Navigating To a File

You can navigate to any file dbx recognizes as part of the program, even if a module or file was
not compiled with the -g option To navigate to a file:

(dbx) file filename

Using the file command without arguments echoes the file name you are currently navigating.

(dbx) file

dbx displays the file from its first line unless you specify a line number.

(dbx) file filename ; list line-number

For more information, see “Setting a Breakpoint at a Line of Source Code” on page 98.

Navigating To Functions

You can use the func command to navigate to a function. Type the command func followed by
the function name. For example:

(dbx) func adjust-speed

The func command by itself echoes the current function.

For more information, see “func Command” on page 343

Selecting From a List of C++ Ambiguous Function Names

When you try to navigate to a C++ member function with an ambiguous name or an overloaded
function name, a list is displayed showing all functions with the overloaded name. Type the
number of the function you want to navigate. If you know which specific class a function
belongs to, you can type the class name and function name. For example:

(dbx) func block::block

68 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

Navigating To Code

Choosing Among Multiple Occurrences

If multiple symbols are accessible from the same scope level, dbx prints a message reporting the
ambiguity.

(dbx) func main

(dbx) which C::foo

More than one identifier ’foo’.

Select one of the following:

 0) Cancel

 1) ”a.out”t.cc”C::foo(int)

 2) ”a.out”t.cc”C::foo()

>1

”a.out”t.cc”C::foo(int)

In the context of the which command, choosing from the list of occurrences does not affect the
state of dbx or the program. Whichever occurrence you choose, dbx echoes the name.

Printing a Source Listing

Use the list command to print the source listing for a file or function. Once you navigate
through a file, the list command prints number lines from the top. The default is 10 lines.
Once you navigate through a function, the list command prints its lines.

For detailed information, see “list Command” on page 352.

Walking the Call Stack to Navigate To Code

Another way to navigate to code when a live process exists is to “walk the call stack,” using the
stack commands to view functions currently on the call stack that represent all currently active
routines. Walking the stack causes the current function and file to change each time you display
a stack function. The stop location is considered to be at the “bottom” of the stack, so to move
away from it, use the up command, that is, move toward the main or begin function. Use the
down command to move toward the current frame.

For more information see “Walking the Stack and Returning Home” on page 114.

Chapter 4 • Viewing and Navigating To Code 69

Types of Program Locations

Types of Program Locations

dbx uses three global locations to track the parts of the program you are inspecting:

■ The current address, which is used and updated by the dis command and the examine
command .

■ The current source code line, which is used and updated by the list command This line
number is reset by some commands that alter the visiting scope. For more information, see
“Changing the Visiting Scope” on page 71.

■ The current visiting scope, which is a compound variable described in “Visiting
Scope” on page 71. The visiting scope is used during expression evaluation. It is
updated by the line command, the func command, the file command,and the list
command.

Program Scope

A scope is a subset of the program defined in terms of the visibility of a variable or function.
A symbol is said to be “in scope” if its name is visible at a given point of execution. In C,
functions can have global or file-static scope; variables can have global, file-static, function, or
block scope.

Variables That Reflect the Current Scope

The following variables always reflect the current program counter of the current thread or
LWP, and are not affected by the various commands that change the visiting scope:

$scope Scope of the current program counter

$lineno Current line number

$func Current function

$class Class to which $func belongs

$file Current source file

$loadobj Current load object

70 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

Program Scope

These variables are only useful during a live process.

Visiting Scope

When you inspect various elements of your program with dbx, you modify the visiting scope.
dbx uses the visiting scope during expression evaluation for purposes such as resolving
ambiguous symbols. For example, if you type the following command, dbx uses the visiting
scope to determine which i to print:

(dbx) print i

Each thread or LWP has its own visiting scope. When you switch between threads, each thread
returns its visiting scope.

Components of the Visiting Scope

Some of the components of the visiting scope are visible in the following predefined ksh
variables:

$vscope Current visiting scope

$vloadobj Current visiting load object

$vfile Current visiting file

$vlineno Current visiting line number

$vclass Class to which $vfunc belongs

$vfunc Current visiting function

All of the components of the current visiting scope stay compatible with one another. For
example, if you visit a file that contains no functions, the current visiting source file is updated
to the new file name and the current visiting function is updated to NULL.

Changing the Visiting Scope

The following commands are the most common ways of changing the visiting scope:

■ func

Chapter 4 • Viewing and Navigating To Code 71

Qualifying Symbols With Scope Resolution Operators

■ file

■ up

■ down

■ frame number
■ pop

■ list procedure

The debug command and the attach command set the initial visiting scope.

When you hit a breakpoint, dbx sets the visiting scope to the current location. If the stack-
find-source environment variable set to on, dbx attempts to find and make active a stack frame
that has source code.

When you use the up command, the down command, the frame command, or the pop command
to change the current stack frame, dbx sets the visiting scope according to the program counter
from the new stack frame.

The line number location used by the list command changes the visiting scope only if you
use the list command. When the visiting scope is set, the line number location for the list
command is set to the first line number of the visiting scope. When you subsequently use the
list command, the current line number location for the list command is updated, but as long
as you are listing lines in the current file, the visiting scope does not change. For example, the
following command causes dbx to list the start of the source for my-func and change the visiting
scope to my-func.

(dbx) list my-func

The following command causes dbx to list line 127 in the current source file and does not
change the visiting scope.

(dbx) list 127

When you use the file command or the func command to change the current file or the current
function, the visiting scope is updated accordingly.

Qualifying Symbols With Scope Resolution Operators

When using the func command or the file command, you might need to use scope resolution
operators to qualify the names of the functions that you give as targets.

72 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

Qualifying Symbols With Scope Resolution Operators

dbx provides three scope resolution operators with which to qualify symbols: the backquote
operator (`), the C++ double colon operator (::), and the block local operator (:lineno). You use
them separately or, in some cases, together.

In addition to qualifying file and function names when navigating through code, symbol name
qualifying is also necessary for printing and displaying out-of-scope variables and expressions,
and for displaying type and class declarations (using the whatis command).

This section covers the rules for all types of symbol name qualifying. The symbol qualifying
rules are the same in all cases.

Backquote Operator

Use the backquote character (`) to find a variable or function of global scope:

(dbx) print `item

A program can use the same function name in two different files or compilation modules. In
this case, you must also qualify the function name to dbx so that it registers which function you
will navigate. To qualify a function name with respect to its file name, use the general purpose
backquote (`) scope resolution operator.

(dbx) func`filename`function-name

C++ Double-Colon Scope Resolution Operator

Use the double colon operator (::) to qualify a C++ member function, a top-level function, or a
variable with global scope with the following name types:

■ An overloaded name (same name used with different argument types)
■ An ambiguous name (same name used in different classes)

If you do not qualify an overloaded function name, dbx displays an overload list so you can
choose which function you will navigate. If you know the function class name, you can use it
with the double-colon scope resolution operator to qualify the name.

(dbx) func class::function-name (args)

For example, if hand is the class name and draw is the function name:

Chapter 4 • Viewing and Navigating To Code 73

Qualifying Symbols With Scope Resolution Operators

(dbx) func hand::draw

Block Local Operator

The block local operator (:line-number) allows you to refer specifically to a variable in a nested
block. You might want to do so if you have a local variable shadowing a parameter or member
name, or if you have several blocks, each with its own version of a local variable. The line
number is the number of the first line of code within the block for the variable of interest. When
dbx qualifies a local variable with the block local operator, dbx uses the line number of the first
block of code, but you can use any line number within the scope in dbx expressions.

In the following example, the block local operator (:230) is combined with the backquote
operator.

(dbx) stop in `animate.o`change-glyph:230`item

The following example shows how dbx evaluates a variable name qualified with the block local
operator when there are multiple occurrences in a function.

(dbx) list 1,$

 1 #include <stddef.h>

 2

 3 int main(int argc, char** argv) {

 4

 5 int i=1;

 6

 7 {

 8 int i=2;

 9 {

 10 int j=4;

 11 int i=3;

 12 printf("hello");

 13 }

 14 printf("world\n");

 15 }

 16 printf("hi\n");

 17 }

 18

(dbx) whereis i

variable: `a.out`t.c`main`i

variable: `a.out`t.c`main:8`i

variable: `a.out`t.`main:10`i

(dbx) stop at 12 ; run

...

(dbx) print i

74 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

Locating Symbols

i = 3

(dbx) which i

`a.out`t.c`main:10`i

(dbx) print `main:7`i

`a.out`t.c`main`i = 1

(dbx) print `main:8`i

`a.out`t.c`main:8`i = 2

(dbx) print `main:10`i

`a.out`t.c`main:10`i = 3

(dbx) print `main:14`i

`a.out`t.c`main:8`i = 2

(dbx) print `main:15`i

`a.out`t.c`main`i = 1

Linker Names

dbx provides a special syntax for looking up symbols by their linker names (mangled names in
C++). Prefix the symbol name with a # (pound sign) character. Use the ksh escape character \
(backslash) before any $ (dollar sign) characters.

(dbx) stop in #.mul

(dbx) whatis #\$FEcopyPc

(dbx) print `foo.c`#staticvar

Locating Symbols

In a program, the same name might refer to different types of program entities and occur in
many scopes. The dbx whereis command lists the fully qualified name, and hence the location,
of all symbols of that name. The dbx which command tells you which occurrence of a symbol
dbx would use if you give that name in an expression.

Printing a List of Occurrences of a Symbol

To print a list of all the occurrences of a specified symbol, use whereis symbol, where symbol
can be any user-defined identifier. For example:

(dbx) whereis table

forward: `Blocks`block-draw.cc`table

Chapter 4 • Viewing and Navigating To Code 75

Locating Symbols

function: `Blocks`block.cc`table::table(char*, int, int, const point&)

class: `Blocks`block.cc`table

class: `Blocks`main.cc`table

variable: `libc.so.1`hsearch.c`table

The output includes the name of the loadable objects where the program defines symbol, as well
as its entity type: class, function, or variable.

Because information from the dbx symbol table is read in as it is needed, the whereis command
registers only occurrences of a symbol that are already loaded. As a debugging session gets
longer, the list of occurrences can grow. For more information, see “Debugging Information in
Object Files and Executables” on page 81.

Determining Which Symbol dbx Uses

The which command tells you which symbol with a given name dbx uses if you specify that
name without fully qualifying it in an expression. For example:

(dbx) func

wedge::wedge(char*, int, int, const point&, load-bearing-block*)

(dbx) which draw

`block-draw.cc`wedge::draw(unsigned long)

If a specified symbol name is not in a local scope, the which command searches for the first
occurrence of the symbol along the scope resolution search path. If which finds the name, it
reports the fully qualified name.

If at any place along the search path the search finds multiple occurrences of symbol at the same
scope level, dbx prints a message in the command pane reporting the ambiguity.

(dbx) which fid

More than one identifier `fid’.

Select one of the following:

 0) Cancel

 1) `example`file1.c`fid

 2) `example`file2.c`fid

dbx shows the overload display, listing the ambiguous symbols names. In the context of the
which command, choosing from the list of occurrences does not affect the state of dbx or the
program. Whichever occurrence you choose, dbx echoes the name.

The which command gives you a preview of what happens if you make symbol (in this
example, block) an argument of a command that must operate on symbol (for example, a print

76 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

Locating Symbols

command). In the case of ambiguous names, the overload display list indicates that dbx does not
yet register which occurrence of two or more names it uses. dbx lists the possibilities and waits
for you to choose one.

Scope Resolution Search Path

When you issue a debugging command that contains an expression, the symbols in the
expression are looked up in the following order. dbx resolves the symbols as the compiler would
at the current visiting scope.

1. Within the scope of the current function using the current visiting scope If the program is
stopped in a nested block, dbx searches within that block, then in the scope of all enclosing
blocks.

2. For C++ only: class members of the current function's class and its base class.
3. For C++ only: the current name space.
4. The parameters of the current function.
5. The immediately enclosing module, which is generally, the file containing the current

function.
6. Symbols that were made private to this shared library or executable. These symbols can be

created using linker scoping.
7. Global symbols for the main program, and then for shared libraries.
8. If none of the above searches are successful, dbx assumes you are referencing a private,

or file static, variable or function in another file. dbx optionally searches for a file static
symbol in every compilation unit depending on the value of the dbxenv setting scope-
look-aside.

dbx uses whichever occurrence of the symbol it first finds along this search path. If dbx cannot
find the symbol, it reports an error.

Relaxing the Scope Lookup Rules

To relax the scope lookup rules for static symbols and C++ member functions, set the dbxenv
variable scope-look-aside to on:

dbxenv scope-look-aside on

You can also use the “double backquote” prefix:

Chapter 4 • Viewing and Navigating To Code 77

Viewing Variables, Members, Types, and Classes

stop in ``func4 func4 may be static and not in scope

If the dbxenv variable scope-look-aside is set to on, dbx looks for the following:

■ Static variables defined in other files if not found in current scope. Files from libraries in
/usr/lib are not searched.

■ C++ member functions without class qualification.
■ Instantiations of C++ inline member functions in other files if a member function is not

instantiated in current file.

The which command tells you which symbol dbx would choose. In the case of ambiguous
names, the overload display list indicates that dbx has not yet determined which occurrence of
two or more names it would use. dbx lists the possibilities and waits for you to choose one.

Viewing Variables, Members, Types, and Classes

The whatis command prints the declarations or definitions of identifiers, structs, types and
C++ classes, or the type of an expression. The identifiers you can look up include variables,
functions, fields, arrays, and enumeration constants.

For more information, see “whatis Command” on page 411.

Looking Up Definitions of Variables, Members,
and Functions

Use the whatis command to print out the declaration of an identifier:

(dbx) whatis identifier

Qualify the identifier name with file and function information as needed.

For C++ programs, whatis lists function template instantiations. Template definitions are
displayed with whatis -t See “Looking Up Definitions of Types and Classes” on page 79.

For Java programs, whatis identifier, lists the declaration of a class, a method in the current
class, a local variable in the current frame, or a field in the current class.

78 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

Viewing Variables, Members, Types, and Classes

To print out the member function, you would type the following commands:

(dbx) whatis block::draw

void block::draw(unsigned long pw);

(dbx) whatis table::draw

void table::draw(unsigned long pw);

(dbx) whatis block::pos

class point *block::pos();

(dbx) whatis table::pos

class point *block::pos();

:

To print out the data member

(dbx) whatis block::movable

int movable;

On a variable, the whatis command tells you the variable's type.

(dbx) whatis the-table

class table *the-table;

.

On a field, the whatis command gives the field's type.

(dbx) whatis the-table->draw

void table::draw(unsigned long pw);

When you are stopped in a member function, you can look up the this pointer.

(dbx) stop in brick::draw

(dbx) cont

(dbx) where 1

brick::draw(this = 0x48870, pw = 374752), line 124 in

 "block-draw.cc"

(dbx) whatis this

class brick *this;

Looking Up Definitions of Types and Classes

The -t option of the whatis command displays the definition of a type. For C++, the list
displayed by whatis -t includes template definitions and class template instantiations.

To print the declaration of a type or C++ class:

Chapter 4 • Viewing and Navigating To Code 79

Viewing Variables, Members, Types, and Classes

(dbx) whatis -t class-name

To view data members only, use the whatis command along with the -a option. This option
only prints the list of data members for a specific class (and not its members' functions). It
displays this information in the same order as the -r option, starting from the base class first.

(dbx) whatis -t -a class-name

To view members in base classes, the whatis command takes an -r option (for recursive). This
displays the declaration of a specified class, as well as the members it inherits from the base
classes.

(dbx) whatis -t -r class-name

The output from a whatis -r query might be long, depending on the class hierarchy and class
size. The output displays the list of inherited data members, starting from the most ancestral
class. The inserted comment lines separate the list of members into their respective parent
classes.

To see the root of a class' inherited members, the whatis command takes a -u option that
displays the root of the type definition. Without the -u option, the whatis command will display
the last value in the value history. This is similar to the ptype command used in gdb.

The following two examples us the class table, a child class of the parent class load-bearing-
block, which is, in turn, a child class of block.

Without -r, whatis reports the members declared in class table.

(dbx) whatis -t class table

class table : public load-bearing-block {

public:

 table::table(char *name, int w, int h, const class point &pos);

 virtual char *table::type();

 virtual void table::draw(unsigned long pw);

};

The following examples show the results when whatis -r is used on a child class to see
members it inherits.

(dbx) whatis -t -r class table

class table : public load-bearing-block {

public:

 /* from base class table::load-bearing-block::block */

 block::block();

 block::block(char *name, int w, int h, const class point &pos, class load-bearing-

block *blk);

 virtual char *block::type();

80 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

Debugging Information in Object Files and Executables

 char *block::name();

 int block::is-movable();

// deleted several members from example protected:

 char *nm;

 int movable;

 int width;

 int height;

 class point position;

 class load-bearing-block *supported-by;

 Panel-item panel-item;

 /* from base class table::load-bearing-block */

public:

 load-bearing-block::load-bearing-block();

 load-bearing-block::load-bearing-block(char *name, int w, int h,

 const class point &pos, class load-bearing-block *blk);

 virtual int load-bearing-block::is-load-bearing();

 virtual class list *load-bearing-block::supported-blocks();

 void load-bearing-block::add-supported-block(class block &b);

 void load-bearing-block::remove-supported-block(class block &b);

 virtual void load-bearing-block::print-supported-blocks();

 virtual void load-bearing-block::clear-top();

 virtual void load-bearing-block::put-on(class block &object);

 class point load-bearing-block::get-space(class block &object);

 class point load-bearing-block::find-space(class block &object);

 class point load-bearing-block::make-space(class block &object);

protected:

 class list *support-for;

 /* from class table */

public:

 table::table(char *name, int w, int h, const class point &pos);

 virtual char *table::type();

 virtual void table::draw(unsigned long pw);

};

Debugging Information in Object Files and Executables

For the best results, compile your source files with the -g option to make your program more
debuggable. The -g option causes the compilers to record debugging information in stabs or
DWARF format into the object files along with the code and data for the program.

dbx parses and loads debugging information for each object file (module) on demand when
the information is needed. You can use the module command to ask dbx to load debug
information for any specific module, or for all modules. See also “Finding Source and Object
Files” on page 86.

Chapter 4 • Viewing and Navigating To Code 81

Debugging Information in Object Files and Executables

Object File Loading

When the object (.o) files are linked together, the linker can optionally store only summary
information into the resulting load object. This summary information can be used by dbx at
runtime to load the rest of the debug information from the object files themselves instead of
from the executable file. The resulting executable has a smaller disk-footprint, but requires that
the object files be available when dbx runs.

You can override this requirement by compiling object files with the -xs option to cause all the
debugging information for those object files to be put into the executable at link time.

If you create archive libraries (.a files) with your object files and use the archive libraries in
your program, then dbx extracts the object files from the archive library as needed. The original
object files are not needed at that point.

The only drawback to putting all the debugging information into the executable file is
using additional disk space. The program does not run more slowly, because the debugging
information is not loaded into the process image at runtime.

The default behavior when using stabs is for the compiler to put only summary information into
the executable.

Object files can be created with DWARF using the -xs option. For more information, see “Index
DWARF (-xs[={yes|no}])” on page 84.

Note - The DWARF format is significantly more compact than recording the same information
in stabs format. However, because all the information is copied into the executable, DWARF
information can appear to be larger than stabs information.

For more information about the stabs index, see the Stabs Interface guide found with the path
install-dir/solarisstudio12.4/READMEs/stabs.pdf.

Compiler and Linker Options to Support
Debugging

Compiler and linker options give users more freedom to generate and use debug information.
Compilers generate an Index for DWARF, similar to index stabs The index is always present
and results in faster dbx start-up time, as well as other improvements when debugging with
DWARF.

82 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

Debugging Information in Object Files and Executables

The following is a diagram of the different kinds and locations of debug information,
specifically highlighting where the debug data resides:

FIGURE 1 Flow of Debug Information

Chapter 4 • Viewing and Navigating To Code 83

Debugging Information in Object Files and Executables

Index DWARF (-xs[={yes|no}])

DWARF by default is loaded into the executable file. The new index makes it possible to leave
the DWARF in the object files with the -xs=no option. This results in a smaller executable size
and a faster link. The object files must be retained in order to debug. This is similar to how
stabs works.

Separate Debug File (-z ancillary[=outfile])

The Oracle Solaris 11.1 linker can send debug information to a separate ancillary file while
building the executable. A separate debug file is useful for environments where all the debug
information must be moved, installed, or archived. An executable can be run independently, but
can also be debugged by people with a copy of its separate debug file.

dbx continues to support the use of the GNU utility objcopy to extract debug information into a
separate file, but using the Oracle Solaris linker has the following advantages over objcopy:

■ The separate debug file is produced as a by-product of the link
■ A program which was too large to be linked as one file links as two files

For more information, see “Ancillary Files (Oracle Solaris Only)” on page 48.

Minimizing Debug Information

The -g1 compiler option is intended for minimal debuggability of deployed applications.
Compiling your application with this option produces the file and line number, as well as simple
parameter information that is considered crucial during postmortem debugging. For more
information, see the compiler man pages and the compiler user guides.

Listing Debugging Information for Modules

The module command and its options help you to keep track of program modules during the
course of a debugging session. Use the module command to read in debugging information for
one or all modules. Normally, dbx automatically and “lazily” reads in debugging information
for modules as needed.

To read in debugging information for a module:

84 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

Debugging Information in Object Files and Executables

(dbx) module [-f] [-q] name

To read in debugging information for all modules:

(dbx) module [-f] [-q] -a

where:

-a Specifies all modules

-f Forces reading of debugging information, even if the file is newer than
the executable.

-q Specifies quiet mode.

-v Specifies verbose mode, which prints language, file names, and so on.
This is the default.

To print the name of the current module, type:

(dbx) module

Listing Modules

The modules command helps you keep track of modules by listing module names.

To list the names of modules containing debugging information that have already been read into
dbx, type:

(dbx) modules [-v] -read

To list the names of all program modules regardless of whether they contain debugging
information:

(dbx) modules [-v]

To list all program modules that contain debugging information:

(dbx) modules [-v] -debug

where:

-v Specifies verbose mode, which prints language, file names, and so on.

Chapter 4 • Viewing and Navigating To Code 85

Finding Source and Object Files

Finding Source and Object Files

dbx must know the location of the source code files associated with a program. The default
directory for the source files is the one they were in when last compiled. If you move the source
files or copy them to a new location, you must either relink the program, change to the new
location before debugging, or use the pathmap command.

Under the stabs format used by dbx in Sun Studio 11 and earlier releases, debugging
information in dbx sometimes uses object files to load additional debugging information.
Source files are used when dbx displays source code.

Symbolic information, including paths to source files, is contained within the executable file.
When dbx needs to display source lines, it reads as much symbolic information as necessary to
locate the source file, and read and display the lines from it.

The symbolic information includes the full path name of a source file, but when you type dbx
commands, you typically use only the basename of a file. For example:

stop at test.cc:34

dbx searches for a matching file in the symbolic information.

If you have removed source files, dbx cannot show you source lines from those files, but you
can display stack traces, print variable values, and even determine the source line you are on.

If you have moved the source files since you compiled and linked the program, you can add
their new location to the search path. The pathmap command creates a mapping from your
current view of the file system to the name in the executable image. The mapping is applied to
source paths and object file paths.

To establish a new mapping from the directory from to the directory to:

(dbx) pathmap [-c] from to

If -c is used, the mapping is applied to the current working directory as well.

The pathmap command is also useful for dealing with automounted and explicit NFS mounted
file systems with different base paths on differing hosts. Use -c when you try to correct
problems due to the automounter because current working directories are inaccurate on
automounted file systems.

The mapping of /tmp-mnt to / exists by default.

86 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

 5 ♦ ♦ ♦ C H A P T E R 5

Controlling Program Execution

The commands used for running, stepping, and continuing (run, rerun, next, step, and cont)
are called process control commands. Used together with event management commands, you
can control the runtime behavior of a program as it executes under dbx.
This chapter contains the following sections:

■ “Running a Program” on page 87
■ “Attaching dbx to a Running Process” on page 88
■ “Detaching dbx From a Process” on page 89
■ “Stepping Through a Program” on page 90
■ “Using Ctrl+C to Stop a Process” on page 94
■ “Event Management” on page 94

Running a Program

When you first load a program into dbx, dbx navigates to the program’s “main” block (main for
C, C++, and Fortran 90; MAIN for Fortran 77; the main class for Java code). dbx waits for you to
issue further commands, by navigating through code or using event management commands.

You can set breakpoints in the program before running it.

Note - When debugging an application that is a mixture of Java™ code and C JNI (Java
Native Interface) code or C++ JNI code, you might want to set breakpoints in code that
has not yet been loaded. For more information, see “Setting Breakpoints in Native (JNI)
Code” on page 231.

Use the run command to start program execution.

Chapter 5 • Controlling Program Execution 87

Attaching dbx to a Running Process

You can optionally add command-line arguments and redirection of input and output, using <
for input and > or >> for output. Using >> will append contents to the existing output file.

(dbx) run [arguments][< input-file] [> output-file]

Note - You cannot redirect the input and output of a Java application.

Note - Output from the run command overwrites an existing file even if you have set
noclobber for the shell in which you are running dbx, unless you used >>, in which case, the
command appends to the existing file.

The run command without arguments restarts the program using the previous arguments and
redirection. The rerun command restarts the program and clears the original arguments and
redirection.

Attaching dbx to a Running Process

You might need to debug a program that is already running. You would attach to a running
process in the following situations:

■ You want to debug a running server, and you do not want to stop or kill it.
■ You want to debug a running program that has a graphical user interface, and you do not

want to restart it.
■ Your program is looping indefinitely, and you want to debug it without killing it.

You can attach dbx to a running program by using the program’s process ID number as an
argument to the dbx debug command.

Once you have debugged the program, you can then use the detach command to take the
program out of the control of dbx without terminating the process.

If you quit dbx after attaching it to a running process, dbx implicitly detaches before
terminating.

To attach dbx to a program that is running independently of dbx, you can use either the attach
command or the debug command:

(dbx) debug program-name process-ID

or

(dbx) attach process-ID

88 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

Detaching dbx From a Process

You can substitute a – (dash) for the program name. dbx automatically finds the program
associated with the process ID and loads it.

For more information, see “debug Command” on page 329 and “attach
Command” on page 309.

If dbx is not running, start dbx by typing:

% dbx program-name process-id

After you have attached dbx to a program, the program stops executing. You can examine it as
you would any program loaded into dbx. You can use any event management or process control
command to debug it.

When you attach dbx to a new process while you are debugging an existing process, the
following occurs:

■ If you started the process you are currently debugging with a run command, then dbx
terminates that process before attaching to the new process.

■ If you started debugging the current process with an attach command or by specifying the
process ID on the command line then dbx detaches from the current process before attaching
to the new process.

If the process to which you are attaching dbx is stopped due to a SIGSTOP signal, SIGTSTOP
signal, SIGTTIN signal, or SIGTTOUT signal, the attach succeeds with a message like the
following:

dbx76: warning: Process is stopped due to signal SIGSTOP

The process is inspectable, but to resume it you need to send it a SIGCONT signal with the cont
command:.

(dbx) cont -sig cont

You can use runtime checking on an attached process with certain exceptions. See “Using
Runtime Checking on an Attached Process” on page 156.

Detaching dbx From a Process

When you have finished debugging the program, use the detach command to detach dbx from
the program. The program then resumes running independently of dbx unless you specify the -
stop option when you detach it.

Chapter 5 • Controlling Program Execution 89

Stepping Through a Program

You can detach a process and leave it in a stopped state while you temporarily apply other
/proc-based debugging tools that might be blocked when dbx has exclusive access. For
example:

(dbx) oproc=$proc # Remember the old process ID

(dbx) detach -stop

(dbx) /usr/proc/bin/pwdx $oproc

(dbx) attach $oproc

For more information, see “detach Command” on page 332.

Stepping Through a Program

dbx supports two basic single-step commands: next and step, plus two variants of the step
command, called step up and step to. Both the next command and the step command
execute one source line before stopping again.

If the line executed contains a function call, the next command allows the call to be executed
and stops at the following line (“steps over” the call). The step command stops at the first line
in a called function (“steps into” the call).

The step up command returns the program to the caller function after you have stepped into a
function.

The step to command attempts to step into a specified function in the current source line,
or if no function is specified, into the last function called as determined by the assembly code
for the current source line. The function call might not occur due to a conditional branch, or
no function might be called in the current source line. In these cases, step to steps over the
current source line.

For more information on the next and step commands, see “next Command” on page 363
and “step Command” on page 384.

Controlling Single Stepping Behavior

To single step a specified number of lines of code, use the dbx commands next or step
followed by the number of lines [n] of code you want executed.

(dbx) next n

or

90 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

Stepping Through a Program

(dbx) step n

The step_granularity dbxenv variable determines the unit by which the step command and
next command step through your code. The unit can be either statement or line.

The step_events environment variable controls whether breakpoints are enabled during a step.

The step_abflow environment variable controls whether dbx stops when it detects that an
abnormal control flow change is about to happen. This type of control flow change can be
caused by a call to siglongjmp() or longjmp() or an exception throw.

For more information, see “Setting dbxenv Variables” on page 60.

Stepping Into a Specific or Last Function

To step into a function called from the current source code line, use the step to command.

(dbx) step to function

To step into the last function called:

(dbx) step to

For the following two examples, using step to by itself will step into foo:

foo(bar(baz(4)));

baz()->bar()-> foo()

Continuing Execution of a Program

To continue a program after it has hit a breakpoint or some event, use the cont command.

(dbx) cont

A variant, cont at line-number, enables you to specify a line other than the current program
location line at which to resume program execution. This option enables you to skip over one or
more lines of code that you know are causing problems, without having to recompile.

To continue a program at a specified line, type:

(dbx) cont at 124

Chapter 5 • Controlling Program Execution 91

Stepping Through a Program

The line number is evaluated relative to the file in which the program is stopped. The line
number given must be within the scope of the current function.

Using the cont at line-number command with the assign command, you can avoid executing
a line of code that contains a call to a function that might be incorrectly computing the value of
some variable. To quickly adjust incorrectly computed values, use the assign command to give
the variable a correct value. Use cont at line-number to skip the line that contains the function
call that would have computed the value incorrectly.

For example, assume that a program is stopped at line 123. Line 123 calls a function,
how_fast(), that computes incorrectly a variable, speed. You know what the value of speed
should be, so you assign a value to speed. Then you continue program execution at line 124,
skipping the call to how_fast().

(dbx) assign speed = 180; cont at 124;

If you use the cont command with a when breakpoint command, the program skips the call to
how_fast() each time the program attempts to execute line 123.

(dbx) when at 123 { assign speed = 180; cont at 124;}

For more information, see the following:

■ “Setting a Breakpoint at a Line of Source Code” on page 98
■ “Setting Breakpoints in Member Functions of Different Classes” on page 100
■ “Setting Breakpoints in All Member Functions of a Class” on page 100
■ “Setting Multiple Breakpoints in Nonmember Functions” on page 101
■ “when Command” on page 413

Calling a Function

When a program is stopped, you can call a function using the dbx call command, which
accepts values for the parameters that must be passed to the called function.

To call a procedure, type the name of the function and supply its parameters. For example:

(dbx) call change_glyph(1,3)

While the parameters are optional, you must type the parentheses after the function name. For
example:

(dbx) call type_vehicle()

92 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

Stepping Through a Program

You can call a function explicitly, using the call command, or implicitly, by evaluating an
expression containing function calls or using a conditional modifier such as stop in glyph -
if animate().

A C++ virtual function can be called like any other function using the print command or call
command , or any other command that executes a function call.

For C++, dbx handles the implicit this pointer, default arguments, and function overloading.
The C++ overloaded functions are resolved automatically if possible. If any ambiguity remains
(for example, functions not compiled with -g), dbx displays a list of the overloaded names.

If the source file in which the function is defined was compiled with the–g option, or if the
prototype declaration is visible at the current scope, dbx checks the number and type of
arguments and issues an error message if there is a mismatch. Otherwise, dbx does not check
the number of parameters and proceeds with the call.

By default, after every call command, dbx automatically calls fflush(stdout) to ensure that
any information stored in the I/O buffer is printed. To disable automatic flushing, set the dbxenv
variable output_auto_flush to off.

When you use the call command, dbx behaves as though you used the next command,
returning from the called function. However, if the program encounters a breakpoint in the
called function, dbx stops the program at the breakpoint and issues a message. If you then type a
where command, the stack trace shows that the call originated from dbx command level.

If you continue execution, the call returns normally. If you attempt to kill, run, rerun, or
debug, the command aborts as dbx tries to recover from the nesting. You can then reissue the
command. Alternatively, you can use the command pop -c to pop all frames up to the most
recent call made from the debugger.

Call Safety

Making calls into the process you are debugging, either by using the call command or by
printing expressions that contain calls, has the potential for causing severe non-obvious
disruptions. For example:

■ A call might go into an infinite loop, which you can interrupt, or cause a segmentation fault.
In many cases, you can use a pop -c command to return to the site of the call.

■ When you make a call in a multithreaded application, all threads are resumed in order to
avoid deadlocks, so you might see side-effects on threads other than the one on which you
made the call.

Chapter 5 • Controlling Program Execution 93

Using Ctrl+C to Stop a Process

■ Calls used in breakpoint conditionals might confuse event management (see “Resuming
Execution” on page 174).

Some calls made by dbx are performed safely. If a problem, typically a segmentation fault, is
encountered instead of the usual Stopped with call to ..., dbx does one of the following
actions:

■ Ignores any stop commands including those caused by detection of memory access errors
■ Automatically issues a pop -c command to return to the site of the call
■ Proceeds with execution

dbx uses safe calls for the following situations:

■ Calls occurring within an expression printed by the display command. A failed call appears
as: ic0->get _data() = <call failed>

To diagnose such a failure, try printing the expression with the print command.
■ Calls to the db_pretty_print() function, except when the print -p command is used.
■ Calls used in event condition expressions. A condition with a failed call evaluates to false.
■ Calls made to invoke destructors during a pop command.
■ All internal calls.

Using Ctrl+C to Stop a Process

You can stop a process running in dbx by pressing Ctrl+C (^C). When you stop a process using
^C, dbx ignores the ^C, but the child process accepts it as a SIGINT and stops. You can then
inspect the process as if it had been stopped by a breakpoint.

To resume execution after stopping a program with ^C, use the cont command. You do not need
to use the cont optional modifier, sig signal-name, to resume execution. The cont command
resumes the child process after cancelling the pending signal.

Event Management

An event is an occurrence in the debugging process that causes dbx to be notified. Event
management refers to the capability of dbx to perform actions when events take place in the
program being debugged. When an event occurs, dbx enables you to stop a process, execute

94 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

Event Management

arbitrary commands, or print information. The simplest example of an event is a breakpoint.
Examples of other events are faults, signals, system calls, calls to dlopen(), and data changes
(see “Qualifying Breakpoints With Caller Filters” on page 106).

For more in-depth information about event management, such as event handlers, event safety,
creating events, event specifications, and other event management topics, see Appendix B,
“Event Management”.

Chapter 5 • Controlling Program Execution 95

96 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

 6 ♦ ♦ ♦ C H A P T E R 6

Setting Breakpoints and Traces

When an event occurs, dbx allows you to stop a process, execute arbitrary commands, or print
information. The simplest example of an event is a breakpoint. Examples of other events are
faults, signals, system calls, calls to dlopen(), and data changes.

This chapter describes how to set, clear, and list breakpoints and traces. For complete
information on the event specifications you can use in setting breakpoints and traces, see
“Setting Event Specifications” on page 274.
This chapter contains the following sections:

■ “Setting Breakpoints” on page 97
■ “Setting Filters on Breakpoints” on page 105
■ “Tracing Execution” on page 108
■ “Executing dbx Commands at a Line” on page 109
■ “Setting Breakpoints in Dynamically Loaded Libraries” on page 109
■ “Listing and Deleting Breakpoints” on page 110
■ “Enabling and Disabling Breakpoints” on page 111
■ “Efficiency Considerations” on page 111

Setting Breakpoints

In dbx, you can use three commands to set breakpoints:

■ stop – If the program arrives at a breakpoint created with a stop command, the program
halts. The program cannot resume until you issue another debugging command, such as
cont, step, or next.

■ when – If the program arrives at a breakpoint created with a when command, the program
halts and dbx executes one or more debugging commands, then the program continues
unless one of the executed commands is stop.

Chapter 6 • Setting Breakpoints and Traces 97

Setting Breakpoints

■ trace – A trace displays information about an event in your program, such as a change in
the value of a variable. Although a trace’s behavior is different from that of a breakpoint,
traces and breakpoints share similar event handlers. If a program arrives at a breakpoint
created with a trace command, the program halts and an event-specific trace information
line is emitted, then the program continues.

The stop, when, and trace commands all take as an argument an event specification, which
describes the event on which the breakpoint is based. Event specifications are discussed in
detail in “Setting Event Specifications” on page 274.

To set machine-level breakpoints, use the stopi, wheni, and tracei commands. For more
information, see Chapter 17, “Debugging at the Machine-Instruction Level”.

Note - When debugging an application that is a mixture of Java™ code and C JNI (Java Native
Interface) code or C++ JNI code, you might want to set breakpoints in code that has not yet
been loaded. For information on setting breakpoints on such code, see “Setting Breakpoints in
Native (JNI) Code” on page 231.

Setting a Breakpoint at a Line of Source Code

You can set a breakpoint at a line number by using the stop at command, where n is a source
code line number and filename is an optional program file name qualifier.

(dbx) stop at filename:n

For example:

(dbx) stop at main.cc:3

If the line specified is not an executable line of source code, dbx sets the breakpoint at the next
executable line. If there is no executable line, dbx issues an error.

You can determine the line at which you wish to stop by using the file command to set the
current file and the list command to list the function in which you wish to stop. Then use the
stop at command to set the breakpoint on the source line, as shown in the following example.

(dbx) file t.c

(dbx) list main

10 main(int argc, char *argv[])

11 {

12 char *msg = "hello world\n";

13 printit(msg);

14 }

98 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

Setting Breakpoints

(dbx) stop at 13

For more information on specifying at an location event, see “at Event
Specification” on page 275.

Setting a Breakpoint in a Function

You can set a breakpoint in a function by using the stop in command.

(dbx) stop in function

An in-function breakpoint suspends program execution at the beginning of the first source line
in a procedure or function.

dbx should be able to determine which function you are referring to except in the following
situations:

■ You reference an overloaded function by name only.
■ You reference a function with a leading `.
■ You reference a function by its linker name (mangled name in C++). In this case,

dbx accepts the name if you prefix it with a #. For more information, see “Linker
Names” on page 75.

Consider the following set of declarations:

int foo(double);

int foo(int);

int bar();

class x {

 int bar();

};

To stop at a non-member function, the following command sets a breakpoint at the global foo
(int):

stop in foo(int)

To set a breakpoint at the member function:

stop in x::bar()

In the following command, dbx cannot determine whether you mean the global function foo
(int) or the global function foo(double) and might be forced to display an overloaded menu
for clarification.

stop in foo

Chapter 6 • Setting Breakpoints and Traces 99

Setting Breakpoints

If you type:

stop in `bar

dbx cannot determine whether you mean the global function bar() or the member function
bar() and displays an overload menu.

Note - If a member name is unique, for example unique_member, using stop in
unique_member is sufficient. If a member name is not unique, you can use the stop in
command and answer the overload menu to specify which member you mean.

For more information about specifying an in-function event, see “in Event
Specification” on page 275.

Setting Multiple Breakpoints in C++ Programs

You can check for problems related to calls to members of different classes, calls to any
members of a given class, or calls to overloaded top-level functions. You can use the keywords,
inmember, inclass, infunction, or inobject with a stop, when, or trace command to set
multiple breaks in C++ code.

Setting Breakpoints in Member Functions of Different Classes

To set a breakpoint in each of the class-specific variants of a particular member function (same
member function name, different classes), use stop inmember.

For example, if the function draw is defined in several different classes, then to place a
breakpoint in each function, type:

(dbx) stop inmember draw

For more information about specifying an inmember or inmethod event, see “inmember Event
Specification” on page 276.

Setting Breakpoints in All Member Functions of a Class

To set a breakpoint in all member functions of a specific class, use the stop inclass command.

100 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

Setting Breakpoints

By default, breakpoints are inserted only in the class member functions defined in the class, not
those that it might inherit from its base classes. To insert breakpoints in the functions inherited
from the base classes also, specify the -recurse option.

The following command sets a breakpoint in all member functions defined in the class shape:

(dbx) stop inclass shape

The following command sets a breakpoint in all member functions defined in the class, and also
in functions inherited from the class:

(dbx) stop inclass shape -recurse

For more information on specifying an inclass event, see “inclass Event
Specification” on page 277 and “stop Command” on page 387.

Due to the large number of breakpoints that might be inserted by stop inclass and other
breakpoint selections, be sure to set the dbxenv variable step_events to on to speed up the step
and next commands. For more information,see “Efficiency Considerations” on page 111.

Setting Multiple Breakpoints in Nonmember Functions

To set multiple breakpoints in nonmember functions with overloaded names (same name,
different type or number of arguments), use the stop infunction command.

For example, if a C++ program has defined two versions of a function named sort(), one that
passes an int type argument and the other a float, then the following command would place a
breakpoint in both functions:

(dbx) stop infunction sort

For more information on specifying an infunction event, see “infunction Event
Specification” on page 276.

Setting Breakpoints in Objects

Set an in-object breakpoint to check the operations applied to a specific object instance.

Use in-object breakpoints to stop program execution when any method is called on a specific
object instance. For example, the following code will only cause a stop when f1->printit() is
called:

Chapter 6 • Setting Breakpoints and Traces 101

Setting Breakpoints

Foo *f1 = new Foo();

Foo *f2 = new Foo();

 f1->printit();

 f2->printit();

(dbx) stop inobject f1

The address stored in f1 identifies the objects you put a breakpoint on. This implies that this
breakpoint can only be created after the object in f1 has been instantiated.

By default, an in-object breakpoint suspends program execution in all nonstatic member
functions of the object’s class, including inherited ones. To restrict breakpoints only to the
objects class, specify the -norecurse option.

To set a breakpoint in all nonstatic member functions defined in the base class of object foo and
in all nonstatic member functions defined in inherited classes of object foo:

(dbx) stop inobject &foo

To set a breakpoint in all nonstatic member functions defined in the class of object foo, but not
those defined in inherited classes of object foo:

(dbx) stop inobject &foo -norecurse

For more information on specifying an inobject event, see “inobject Event
Specification” on page 277 and “stop Command” on page 387

Setting Data Change Breakpoints (Watchpoints)

You can use data change breakpoints, otherwise known as watchpoints, in dbx to note when the
value of a variable or expression has changed.

Stopping Execution When an Address Is Accessed

Use the stop access command to stop execution when a memory address has been accessed:

(dbx) stop access mode address-expression [, byte-size-expression]

mode specifies how the memory was accessed. The valid mode options are:

r The memory at the specified address has been read.

w The memory has been written to.

102 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

Setting Breakpoints

x The memory has been executed.

mode can also contain either of the following:

a Stops the process after the access (default).

b Stops the process before the access.

In both cases the program counter will point at the accessing instruction. The “before” and
“after” refer to the side effect.

address-expression is any expression that can be evaluated to produce an address. If you
provide a symbolic expression, the size of the region to be watched is automatically deduced.
You can override it by specifying byte-size-expression. You can also use nonsymbolic, typeless
address expressions in which case, the size is mandatory.

In the following example, the command will stop execution after any of the four bytes after the
memory address 0x4762 has been read.

(dbx) stop access r 0x4762, 4

In the following example, execution will stop before the variable speed has be written to:

(dbx) stop access wb &speed

Keep these points in mind when using the stop access command:

■ The event occurs when a variable is written to even if it is the same value.
■ By default, the event occurs after execution of the instruction that wrote to the variable.

You can indicate that you want the event to occur before the instruction is executed by
specifying the mode as b.

For more information on specifying an access event, see “access Event
Specification” on page 277 and “stop Command” on page 387.

Stopping Execution When Variables Change

Use the stop change command to stop program execution if the value of a specified variable
has changed:

(dbx) stop change variable

Keep these points in mind when using the stop change command:

■ dbx stops the program at the line after the line that caused a change in the value of the
specified variable.

Chapter 6 • Setting Breakpoints and Traces 103

Setting Breakpoints

■ If variable is local to a function, the variable is considered to have changed when the
function is first entered and storage for variable is allocated. The same is true with respect
to parameters.

■ The command does not work with multithreaded applications.

For more information on specifying a change event, see “change Event
Specification” on page 278 and “stop Command” on page 387.

dbx implements stop change by causing automatic single-stepping together with a check
on the value at each step. Stepping skips over library calls if the library was not compiled
with the -g option. So, if control flows in the following manner, dbx does not trace the nested
user_routine2 because tracing skips the library call and the nested call to user_routine2.

 user_routine calls

 library_routine, which calls

 user_routine2, which changes variable

The change in the value of variable appears to have occurred after the return from the library
call, not in the middle of user_routine2.

dbx cannot set a breakpoint for a change in a block local variable (a variable nested in {}).
If you try to set a breakpoint or trace in a block local nested variable, dbx issues an error
informing you that it cannot perform this operation.

Note - Watching data changes is faster using the access event than the change event. Instead of
automatically single-stepping the program, the access event uses hardware or OS services that
are much faster.

Stopping Execution on a Condition

Use thestop cond command to stop program execution if a conditional statement evaluates to
true:

(dbx) stop cond condition

The program stops executing when the condition occurs.

Keep these points in mind when using the stop cond command:

■ dbx stops the program at the line after the line that caused the condition to evaluate to true.
■ The command does not work with multithreaded applications.

For more information about specifying a condition event, see “cond Event
Specification” on page 279 and “stop Command” on page 387.

104 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

Setting Filters on Breakpoints

Setting Filters on Breakpoints

In dbx, most of the event management commands also support an optional event filter modifier.
The simplest filter instructs dbx to test for a condition after the program arrives at a breakpoint
or trace handler, or after a data change breakpoint occurs.

If this filter condition evaluates to true (non 0), the event command applies and program
execution stops at the breakpoint. If the condition evaluates to false (0), dbx continues program
execution as if the event had never happened.

To set a breakpoint that includes a filter , add an optional- if condition modifier statement to
the end of a stop or trace command.

The condition can be any valid expression, including function calls, returning Boolean or
integer in the language current at the time the command is entered.

With a location-based breakpoint like in or at, the scope for parsing the condition is that of
the breakpoint location. Otherwise, the scope of the condition is the scope at the time of entry,
not at the time of the event. You might have to use the backquote operator (see “Backquote
Operator” on page 73) to specify the scope precisely.

The following two filters are not the same:

stop in foo -if a>5

stop cond a>5

The former breaks at foo and tests the condition. The latter automatically single steps and tests
for the condition.

Qualifying Breakpoints With Conditional Filters

To set a breakpoint that includes a filter, add an optional -if condition modifier statement to
the end of a stop or trace command. The condition can be any valid expression, including
function calls, returning Boolean or integer in the language current at the time the command is
entered.

You can use a function call as a breakpoint filter. In this example, if the value in the string str is
abcde, then execution stops in function foo():

(dbx) stop in foo -if !strcmp(“abcde”,str)

You can use the -if option with function calls:

stop in lookup -if strcmp(name, "troublesome")==0

Chapter 6 • Setting Breakpoints and Traces 105

Setting Filters on Breakpoints

The following is an example of using a conditional filter with a watchpoint:

(dbx) stop access w &speed -if speed==fast_enough

Qualifying Breakpoints With Caller Filters
Inexperienced users sometimes confuse setting a conditional event command (a watch-type
command) with using filters. Conceptually, “watching” creates a precondition that must
be checked before each line of code executes (within the scope of the watch). But even a
breakpoint command with a conditional trigger can also have a filter attached to it.

Consider this example:

(dbx) stop access w &speed -if speed==fast_enough

This command instructs dbx to monitor the variable, speed; if the variable speed is written
to (the “watch” part), then the -if filter goes into effect. dbx checks whether the new value
of speed is equal to fast_enough. If it is not, the program continues, “ignoring” the stop
command.

In dbx syntax, the filter is represented in the form of an [-if condition] statement at the end of
the command.

stop in function [-if condition]

Consider a simple example, in which you have code like the following:

44: if(open(filename, ...) == -1)

45: return "Error";

You can stop on a specific failure, for example ENOENT of open() with the following command:

(dbx) stop at 45 -if errno == 2

Filters can be convenient when you are placing a data change breakpoint on a local variable.
In the following example, the current scope is in function foo(), while index, the variable of
interest, is in function bar().

(dbx) stop access w &bar`index -in bar

bar`index ensures that the index variable in function bar() is picked up, instead of the index
variable in function foo or a global variable named index.

-in bar implies the following:

■ The breakpoint is automatically enabled when function bar() is entered.
■ The breakpoint remains enabled for the duration of bar() including any functions it calls.

106 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

Setting Filters on Breakpoints

■ The breakpoint is automatically disabled upon return from bar().

The stack location corresponding to index might be reused by some other local variable of
some other function. -in ensures that the breakpoint is triggered only when bar`index is
accessed.

Filters and Multithreading

If you set a breakpoint with a filter that contains function calls in a multithreaded program, dbx
stops execution of all threads when it hits the breakpoint and then evaluates the condition. If the
condition is met and the function is called, dbx resumes all threads for the duration of the call.

For example, you might set the following breakpoint in a multithreaded application where many
threads call lookup():

(dbx) stop in lookup -if strcmp(name, “troublesome”) == 0

dbx stops when thread t@1 calls lookup(), evaluates the condition, and calls strcmp()
resuming all threads. If dbx hits the breakpoint in another thread during the function call, it
issues a warning such as one of the following:

event infinite loop causes missed events in the following handlers:

...

Event reentrancy

first event BPT(VID 6m TID 6, PC echo+0x8)

second event BPT*VID 10, TID 10, PC echo+0x8)

the following handlers will miss events:

...

In such a case, if you can ascertain that the function called in the conditional expression will not
grab a mutex, you can use the -resumeone event specification modifier to force dbx to resume
only the first thread in which it hit the breakpoint. For example, you might set the following
breakpoint:

(dbx) stop in lookup -resumeone -if strcmp(name, “troublesome”) == 0

The -resumeone modifier does not prevent problems in all cases. For example, it would not
help in the following circumstances:

■ The second breakpoint on lookup() occurs in the same thread as the first because the
condition recursively calls lookup().

■ The thread on which the condition runs relinquishes control to another thread.

For detailed information, see “Event Specification Modifiers” on page 289.

Chapter 6 • Setting Breakpoints and Traces 107

Tracing Execution

Tracing Execution
Tracing collects information about what is happening in your program and displays it. If a
program arrives at a breakpoint created with a trace command, the program halts and an event-
specific trace information line is emitted, then the program continues.

A trace displays each line of source code as it is about to be executed. In all but the simplest
programs, this trace produces volumes of output.

A more useful trace applies a filter to display information about events in your program. For
example, you can trace each call to a function, every member function of a given name, every
function in a class, or each exit from a function. You can also trace changes to a variable.

Setting a Trace

Set a trace by typing the trace command at the command line. The basic syntax of the trace
command is:

trace event-specification [modifier]

For the complete syntax of the trace command, see “trace Command” on page 400.

The information a trace provides depends on the type of event associated with it (see “Setting
Event Specifications” on page 274).

Controlling the Speed of a Trace

Often trace output goes by too quickly. The dbxenv variable trace_speed enables you to
control the delay after each trace is printed. The default delay is 0.5 seconds.

To set the interval in seconds between execution of each line of code during a trace:

dbxenv trace_speed number

Directing Trace Output to a File

You can direct the output of a trace to a file using the -file filename option. For example, the
following command directs trace output to the file trace1:

108 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

Executing dbx Commands at a Line

(dbx) trace -file trace1

To revert trace output to standard output use - for filename. Trace output is always appended to
filename. It is flushed whenever dbx prompts and when the application has exited. The file is
always reopened on a new run or resumption after an attach.

Executing dbx Commands at a Line

A when breakpoint command accepts other dbx commands such as list, which means you can
write your own version of trace.

(dbx) when at 123 {list $lineno;}

The when command operates with an implied cont command. In the example, after listing
the source code at the current line, the program continues executing. If you included a stop
command after the list command, the program would not continue executing.

For the complete syntax of the when command, see “when Command” on page 413. For
detailed information on event modifiers, see “Event Specification Modifiers” on page 289.

Setting Breakpoints in Dynamically Loaded Libraries

dbx interacts with the following types of shared libraries:

■ Libraries that are implicitly loaded at the beginning of a program's execution.
■ Libraries that are explicitly (dynamically) loaded using dlopen(2). The names in such

libraries are known only after the library has been loaded during a run, so you cannot place
breakpoints in them after starting a debugging session with a debug or attach command.

■ Filter libraries that are explicitly loaded using dlopen(2). The names in such libraries are
known only after the library has been loaded and the first function in it has been called.

You can set breakpoints in explicitly (dynamically) loaded libraries in two ways:

■ If you have a library, for example mylibrary.so, which contains a function myfunc(),
you could preload the library's symbol tale into dbx and set a breakpoint on the function as
follows:

(dbx) loadobject -load fullpathto/mylibrary.so

Chapter 6 • Setting Breakpoints and Traces 109

Listing and Deleting Breakpoints

(dbx) stop in myfunc

■ A much easier way is to run your program under dbx to completion. dbx records and
remembers all shared libraries that are loaded with dlopen(2), even if they are closed
with dlclose(). So after the first run of the program, you will be able to set breakpoints
successfully.

(dbx) run

execution completed, exit code is 0

(dbx) loadobject -list

u myprogram (primary)

u /lib/libc.so.1

u p /platform/sun4u-us3/lib/libc_psr.so.1

u fullpathto/mylibrary.so

(dbx) stop in myfunc

Listing and Deleting Breakpoints

Often, you set more than one breakpoint or trace handler during a debugging session. dbx
supports commands for listing and clearing them.

Listing Breakpoints and Traces

To display a list of all active breakpoints, use the status command to display ID numbers
in parentheses or brackets, which can then be used by other commands. If ID numbers are in
brackets, these breakpoints are disabled. Additionally, an asterisk (*) might appear before the
parentheses or brackets to indicate if the program is stopped due to that event.

dbx reports multiple breakpoints set with the inmember, inclass, and infunction keywords as
a single set of breakpoints with one status ID number.

Deleting Specific Breakpoints Using Handler ID
Numbers

When you list breakpoints using the status command, dbx displays the ID number assigned to
each breakpoint when it was created. Using the delete command, you can remove breakpoints

110 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

Enabling and Disabling Breakpoints

by ID number, or use the keyword all to remove all breakpoints currently set anywhere in the
program.

To delete breakpoints by ID number (in this case, 3 and 5):

(dbx) delete 3 5

To delete all breakpoints set in the program currently loaded in dbx:

(dbx) delete all

For more information, see “delete Command” on page 332.

Enabling and Disabling Breakpoints

Each event management command (stop, trace, when) that you use to set a breakpoint creates
an event handler. Each of these commands returns a number known as the handler ID (hid).
You can use the handler ID as an argument to the handler command to enable or disable the
breakpoint. For example:

(dbx) handler -disable 5

(dbx) handler -enable 5

For more information, see “Event Handlers” on page 271.

Efficiency Considerations

Various events have different degrees of overhead in respect to the execution time of the
program being debugged. Some events, like the simplest breakpoints, have practically no
overhead. Events based on a single breakpoint have minimal overhead.

Multiple breakpoints such as inclass, that might result in hundreds of breakpoints, have an
overhead only during creation time. dbx uses permanent breakpoints, which are retained in the
process at all times and are not taken out on every stoppage and put in on every cont command.

In the case of the step command and next command, by default all breakpoints are taken out
before the process is resumed and reinserted once the step completes. If you are using many
breakpoints or multiple breakpoints on prolific classes, the speed of the step command and
next command slows down considerably. Use the dbx step_events environment variable to

Chapter 6 • Setting Breakpoints and Traces 111

Efficiency Considerations

control whether breakpoints are taken out and reinserted after each step command or next
command.

The slowest events are those that use automatic single-stepping. This process might be explicit
and obvious as in the trace step command, which single-steps through every source line.
Other events, like the stop change or trace cond commands not only single-step automatically
but also have to evaluate an expression or a variable at each step.

These events are very slow, but you can often overcome the slowness by bounding the event
with a function using the -in modifier. For example:

trace next -in mumble

stop change clobbered_variable -in lookup

Do not use trace -in main because the trace is effective in the functions called by main as
well. Use this modifier in the cases where you suspect that the lookup() function is corrupting
your variable.

112 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

 7 ♦ ♦ ♦ C H A P T E R 7

Using the Call Stack

This chapter discusses how dbx uses the call stack, and how to use the where command, hide
command, unhide command, and pop command when working with the call stack.

In a multithreaded program, these commands operate on the call stack of the current thread. See
“thread Command” on page 396 for information on how to change the current thread.
This chapter contains the following sections:

■ “Finding Your Place on the Stack” on page 113
■ “Walking the Stack and Returning Home” on page 114
■ “Moving Up and Down the Stack” on page 114
■ “Popping the Call Stack” on page 115
■ “Hiding Stack Frames” on page 116
■ “Displaying and Reading a Stack Trace” on page 116

The call stack represents all currently active routines, routines that have been called but have
not yet returned to their respective caller. A stack frame is a section to the call stack allocated
for use by a single function.

Because the call stack grows from higher memory (larger addresses) to lower memory, up
means going toward the caller’s frame (and eventually main() or the starting function of
the thread) and down means going toward the frame of the called function (and eventually
the current function). The frame for the routine executing when the program stopped at a
breakpoint, after a single-step, or when a fault occurs and produces a core file, is in lower
memory. A caller routine, such as main(), is located in higher memory.

Finding Your Place on the Stack

Use the where command to find your current location on the stack.

where [-f] [-h] [-l] [-q] [-v] number-ID

Chapter 7 • Using the Call Stack 113

Walking the Stack and Returning Home

When debugging an application that is a mixture of Java™ code and C JNI (Java Native
Interface) code or C++ JNI code, the syntax of the where command is:

where [-f] [-q] [-v] [thread_id] number-ID

The where command is also useful for learning about the state of a program that has crashed
and produced a core file. When this occurs, you can load the core file into dbx (see “Debugging
a Core File” on page 40).

For more information, see “where Command” on page 415.

Walking the Stack and Returning Home
Moving up or down the stack is referred to as “walking the stack.” When you visit a function by
moving up or down the stack, dbx displays the current function and the source line. The location
from which you start, home, is the point where the program stopped executing. From home, you
can move up or down the stack using the up command, down command, or frame command.

The dbx commands up and down both accept a number argument that instructs dbx to move a
number of frames up or down the stack from the current frame. If number is not specified, the
default is 1. The -h option includes all hidden frames in the count.

Moving Up and Down the Stack
You can examine the local variables in functions other than the current one.

Moving Up the Stack
To move up the call stack (toward main) number levels:

up [-h] [number]

If you do not specify number, the default is one level. For more information, see “up
Command” on page 409.

Moving Down the Stack
To move down the call stack (toward the current stopping point) number levels:

114 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

Popping the Call Stack

down [-h] [number]

If you do not specify number, the default is one level. For more information, see “down
Command” on page 336.

Moving to a Specific Frame

The frame command is similar to the up command and down command. Use to go directly to the
frame as given by numbers displayed by the where command.

frame

frame -h

frame [-h] number
frame [-h] +[number]
frame [-h] -[number]

The frame command without an argument displays the current frame number. With number,
the command enables you to go directly to the frame indicated by the number. By including a
+ (plus sign) or - (minus sign), the command enables you to move an increment of one level up
(+) or down (-). If you include a plus or minus sign with number, you can move up or down the
specified number of levels. The -h option includes any hidden frames in the count.

You can also move to a specific frame using the pop command.

Popping the Call Stack

You can remove the stopped-in function from the call stack, making the calling function the
new stopped-in function.

Unlike moving up or down the call stack, popping the stack changes the execution of your
program. When the stopped-in function is removed from the stack, it returns your program to its
previous state, except for changes to global or static variables, external files, shared members,
and similar global states.

The pop command removes one or more frames from the call stack. For example, to pop five
frames from the stack:

pop 5

You can also pop to a specific frame. To pop to frame 5, type:

Chapter 7 • Using the Call Stack 115

Hiding Stack Frames

pop -f 5

For more information, see “pop Command” on page 370.

Hiding Stack Frames

Use the hide command to list the stack frame filters currently in effect.

To hide or delete all stack frames matching a regular expression:

hide [regular-expression]

The regular-expression matches either the function name or the name of the load object and
uses sh or ksh syntax for file matching.

Use the unhide command to delete all stack frame filters.

unhide 0

Because the hide command lists the filters with numbers, you can also use the unhide
command with the filter number.

unhide [number | regular-expression]

Displaying and Reading a Stack Trace

A stack trace shows where in the program flow execution stopped and how execution reached
this point. It provides the most concise description of your program’s state.

To display a stack trace, use the where command.

For functions that were compiled with the -g option, the names and types of the arguments
are known so accurate values are displayed. For functions without debugging information
hexadecimal numbers are displayed for the arguments. These numbers are not necessarily
meaningful. When a function call is made through function pointer 0, the function value is
shown as a low hexadecimal number instead of a symbolic name.

You can stop in a function that was not compiled with the -g option. When you stop in such a
function, dbx searches down the stack for the first frame whose function is compiled with the -g
option and sets the current scope to it. This stopped-in function is denoted by the arrow symbol
(=>).

116 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

Displaying and Reading a Stack Trace

In the following example, main() was compiled with the -g option, so the symbolic names as
well as the values of the arguments are displayed. The library functions called by main() were
not compiled with -g, so the symbolic names of the functions are displayed but the hexadecimal
contents of the SPARC input registers $i0 through $i5 are shown for the arguments.

In the following example, the program has halted with a segmentation fault. The cause is most
likely the null argument to strlen() in SPARC input register $i0.

(dbx) run

Running: Cdlib

(process id 6723)

CD Library Statistics:

 Titles: 1

 Total time: 0:00:00

 Average time: 0:00:00

signal SEGV (no mapping at the fault address) in strlen at 0xff2b6c5c

0xff2b6c5c: strlen+0x0080: ld [%o1], %o2

Current function is main

(dbx) where

 [1] strlen(0x0, 0x0, 0x11795, 0x7efefeff, 0x81010100, 0xff339323), at 0xff2b6c5c

 [2] _doprnt(0x11799, 0x0, 0x0, 0x0, 0x0, 0xff00), at 0xff2fec18

 [3] printf(0x11784, 0xff336264, 0xff336274, 0xff339b94, 0xff331f98, 0xff00), at

 0xff300780

=>[4] main(argc = 1, argv = 0xffbef894), line 133 in "Cdlib.c"

(dbx)

For more examples of stack traces, see “Looking at the Call Stack” on page 34 and “Tracing
Calls” on page 214.

Chapter 7 • Using the Call Stack 117

118 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

 8 ♦ ♦ ♦ C H A P T E R 8

Evaluating and Displaying Data

This chapter describes two types of data checking: evaluating data and displaying data.
This chapter contains the following sections:

■ “Evaluating Variables and Expressions” on page 119
■ “Assigning a Value to a Variable” on page 123
■ “Evaluating Arrays” on page 123
■ “Using Pretty-Printing” on page 128

Evaluating Variables and Expressions

This section discusses how to use dbx to evaluate variables and expressions.

Verifying Which Variable dbx Uses

If you are not sure which variable dbx is evaluating, use the which command to see the fully
qualified name dbx is using.

To see other functions and files in which a variable name is defined, use the whereis command.

For information on the commands, see “which Command” on page 418 and “whereis
Command” on page 417.

Chapter 8 • Evaluating and Displaying Data 119

Evaluating Variables and Expressions

Variables Outside the Scope of the Current
Function

When you want to evaluate or monitor a variable outside the scope of the current function, do
one of the following:

■ Qualify the name of the function. See “Qualifying Symbols With Scope Resolution
Operators” on page 72. For example:

(dbx) print ‘item

■ Visit the function by changing the current function. See “Navigating To Code” on page 67.

Printing the Value of a Variable, Expression, or
Identifier

An expression should follow current language syntax, with the exception of the meta syntax
that dbx introduces to deal with scope and arrays.

Use the print command to evaluate a variable or expression in native code:

print expression

You can use the print command to evaluate an expression, local variable, or parameter in Java
code.

For more information, see “print Command” on page 370.

Note - dbx supports the C++ dynamic_cast and typeid operators. When evaluating expressions
with these two operators, dbx makes calls to certain runtime type identification functions made
available by the compiler. If the source does not explicitly use the operators, those functions
might not have been generated by the compiler, and dbx fails to evaluate the expression.

Printing C++ Pointers

In C++ an object pointer has two types: its static type (what is defined in the source code) and
its dynamic type (what an object was before any casts were made to it). dbx can sometimes
provide you with the information about the dynamic type of an object.

120 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

Evaluating Variables and Expressions

In general, when an object has a virtual function table (a vtable) in it, dbx can use the
information in the vtable to correctly determine an object’s type.

You can use the print command, display command, or watch command with the -r
(recursive) option. dbx displays all the data members directly defined by a class and those
inherited from a base class.

These commands also take a -d or +d option that toggles the default behavior of the dbxenv
variable output_dynamic_type.

Using the -d flag or setting the dbxenv variable output_dynamic_type to on when no process
is running generates a program is not active error message. As when you are debugging a
core file, accessing dynamic information is not possible when there is no process. An illegal
cast on class pointers error message is generated if you try to find a dynamic type through
a virtual inheritance. Casting from a virtual base class to a derived class is not legal in C++.

Evaluating Unnamed Arguments in C++ Programs

You can define functions in C++ with unnamed arguments. For example:

void tester(int)

{

};

main(int, char **)

{

 tester(1);

};

Though you cannot use unnamed arguments elsewhere in a program, the compiler encodes
unnamed arguments in a form that lets you evaluate them. The form is as follows, where the
compiler assigns an integer to %n:

_ARG%n

To obtain the name assigned by the compiler, use the whatis command with the function name
as its target.

(dbx) whatis tester

void tester(int _ARG1);

(dbx) whatis main

int main(int _ARG1, char **_ARG2);

For more information, see “whatis Command” on page 411.

Chapter 8 • Evaluating and Displaying Data 121

Evaluating Variables and Expressions

To evaluate (or display) an unnamed function argument:

(dbx) print _ARG1

_ARG1 = 4

Dereferencing Pointers

When you dereference a pointer, you ask for the contents of the container to which the pointer
points.

To dereference a pointer, dbx displays the evaluation in the command pane; in this case, the
value pointed to by t:

(dbx) print *t

*t = {

a = 4

}

Monitoring Expressions

Monitoring the value of an expression each time the program stops is an effective technique
for learning how and when a particular expression or variable changes. The display command
instructs dbx to monitor one or more specified expressions or variables. Monitoring continues
until you stop it with the undisplay command. The watch command evaluates and prints
expressions at every stopping point in the scope current at that stop point.

Use the display command to display the value of a variable or expression each time the
program stops:

display expression, ...

You can monitor more than one variable at a time. The display command used with no options
prints a list of all expressions being displayed.

For more information, see “display Command” on page 334.

Use the watch command to watch the value of the expression at every stopping point:

watch expression, ...

122 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

Assigning a Value to a Variable

For more information, see “watch Command” on page 410.

Stop the Display (Undisplaying)

dbx continues to display the value of a variable you are monitoring until you stop the display
with the undisplay command. You can stop the display of a specified expression or stop the
display of all expressions currently being monitored.

To stop the display of a particular variable or expression:

undisplay expression

To stop the display of all currently monitored variables:

undisplay 0

For more information, see “undisplay Command” on page 406.

Assigning a Value to a Variable

Use the assign command to assign a value to a variable:

assign variable = expression

Evaluating Arrays

You evaluate arrays the same way you evaluate other types of variables.

The following example is a sample Fortran array:

integer*4 arr(1:6, 4:7)

To evaluate the array, use the print command. For example:

(dbx) print arr(2,4)

Chapter 8 • Evaluating and Displaying Data 123

Evaluating Arrays

The dbx print command enables you to evaluate part of a large array. Array evaluation
includes:

■ Array slicing – Prints any rectangular, n-dimensional box of a multidimensional array.
■ Array striding – Prints certain elements only, in a fixed pattern, within the specified slice,

which might be an entire array.

You can slice an array, with or without striding. (The default stride value is 1, which means
print each element.)

Array Slicing

Array slicing is supported in the print, display, and watch commands for C, C++, and
Fortran.

Array Slicing Syntax for C and C++

For each dimension of an array, the full syntax of the print command to slice the array is as
follows:

print array-expression [first-expression .. last-expression : stride-expression]

where:

array-expression Expression that should evaluate to an array or pointer type.

first-expression First element to be printed. Defaults to 0.

last-expression Last element to be printed. Defaults to upper bound.

stride-expression Length of the stride (the number of elements skipped is stride-
expression-1). Defaults to 1.

The first expression, last expression, and stride expression are optional expressions that should
evaluate to integers.

For example:

(dbx) print arr[2..4]

arr[2..4] =

[2] = 2

124 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

Evaluating Arrays

[3] = 3

[4] = 4

(dbx) print arr[..2]

arr[0..2] =

[0] = 0

[1] = 1

[2] = 2

(dbx) print arr[2..6:2]

arr[2..6:2] =

[2] = 2

[4] = 4

[6] = 6

Array Slicing Syntax for Fortran

For each dimension of an array, the full syntax of the print command to slice the array is as
follows:

print array-expression (first-expression : last-expression : stride-expression)

where:

array-expression Expression that should evaluate to an array type.

first-expression First element in a range, also first element to be printed. Defaults to
lower bound.

last-expression Last element in a range, but might not be the last element to be printed if
stride is not equal to 1. Defaults to upper bound.

stride-expression Length of the stride. Defaults to 1.

The first expression, last expression, and stride expression are optional expressions that should
evaluate to integers. For an n-dimensional slice, separate the definition of each slice with a
comma.

For example:

(dbx) print arr(2:6)

arr(2:6) =

(2) 2

(3) 3

(4) 4

(5) 5

Chapter 8 • Evaluating and Displaying Data 125

Evaluating Arrays

(6) 6

(dbx) print arr(2:6:2)

arr(2:6:2) =

(2) 2

(4) 4

(6) 6

To specify rows and columns:

demo% f95 -g -silent ShoSli.f

demo% dbx a.out

Reading symbolic information for a.out

(dbx) list 1,12

 1 INTEGER*4 a(3,4), col, row

 2 DO row = 1,3

 3 DO col = 1,4

 4 a(row,col) = (row*10) + col

 5 END DO

 6 END DO

 7 DO row = 1, 3

 8 WRITE(*,’(4I3)’) (a(row,col),col=1,4)

 9 END DO

 10 END

(dbx) stop at 7

(1) stop at "ShoSli.f":7

(dbx) run

Running: a.out

stopped in MAIN at line 7 in file "ShoSli.f"

 7 DO row = 1, 3

To print row 3:

(dbx) print a(3:3,1:4)

’ShoSli’MAIN’a(3:3, 1:4) =

 (3,1) 31

 (3,2) 32

 (3,3) 33

 (3,4) 34

(dbx)

To print column 4:

(dbx) print a(1:3,4:4)

’ShoSli’MAIN’a(1:3, 1:4) =

 (1,4) 14

 (2,4) 24

 (3,4) 34

(dbx)

126 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

Evaluating Arrays

Using Slices

The following example is a two-dimensional, rectangular slice of a C++ array, with the default
stride of 1 omitted.

print arr[201..203][101..105]

This command prints a block of elements in a large array. Note that the command omits stride-
expression, using the default stride value of 1.

As illustrated, the first two expressions (201:203) specify a slice in the first dimension of this
two-dimensional array (the three-row column). The slice starts with row 201 and ends with 203.
The second set of expressions, separated by a comma from the first, defines the slice for the
second dimension. The slice begins with column 101 and ends with column 105.

Using Strides

When you instruct print to stride across a slice of an array, dbx evaluates certain elements in
the slice only, skipping over a fixed number of elements between each one it evaluates.

The third expression in the array slicing syntax, stride-expression, specifies the length of the
stride. The value of stride-expression specifies the elements to print. The default stride value is
1, meaning: evaluate all of the elements in the specified slices.

The following example is the same array used in the previous example of a slice. This time, the
print command includes a stride of 2 for the slice in the second dimension.

print arr(201:203, 101:105:2)

As shown in the diagram, a stride of 2 prints every second element, skipping every other
element.

Chapter 8 • Evaluating and Displaying Data 127

Using Pretty-Printing

For any expression you omit, print takes a default value equal to the declared size of the array.
The following examples show how to use the shorthand syntax.

For a one-dimensional array, use the following commands:

print arr Prints the entire array with default boundaries.

print arr(:) Prints the entire array with default boundaries and default stride of 1.

print arr

(::stride-
expression)

Prints the entire array with a stride of stride-expression.

For a two-dimensional array, the following command prints the entire array.

print arr

The following command prints every third element in the second dimension of a two-
dimensional array:

print arr (:,::3)

Using Pretty-Printing
Pretty-printing enables your program to provide its own rendition of an expression's value
through a function call. dbx supports two mechanisms for pretty-printing : call-based pretty-
printing and filter-based pretty-printing. The older, call-based mechanism works by calling
functions defined in the debuggee, which conform to a certain pattern. The current version of
dbx now supports Python-based filters, allowing the user to create filters that transform values
from one form to another.

■ “Call-Based Pretty-Printing” on page 129
■ “Python Pretty-Print Filters (Oracle Solaris)” on page 131

128 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

Using Pretty-Printing

 dbx determines which mechanism to use with the dbxenv variable
output_pretty_print_mode. If set to call, call-based pretty-printers are sought. If set to
filter, Python-based pretty-printers are sought. If set to filter_unless_call, call-based
pretty-printers take precedence over filters.

Pretty-printers, regardless of type,are invoked if you specify the -p option to the print
command, rprint command, display command, or watch command. For more about
invocation of pretty-printers, see “Invoking Pretty-Printing” on page 129.

If the dbxenv variable output_pretty_print is set to on, -p is passed to the print command,
rprint command, or display command as the default. Use +p to override this behavior. In
addition, output_pretty_print controls pretty-printing for IDE locals, balloon evaluation, and
watches.

Invoking Pretty-Printing

Pretty-print functions are invoked for the following:

■ print -p or if the dbxenv variable output_pretty_print is set to on.
■ display -p or if the dbxenv variable output_pretty_print is set to on.
■ watch -p or if the dbxenv variable output_pretty_print is set to on.
■ Balloon evaluation if the dbxenv variable output_pretty_print is set to on.
■ Local variable if the dbxenv variable output_pretty_print is set to on.

Pretty-print functions are not invoked for the following:

■ $[]. $[] is intended to be used in scripts, therefore the scripts should be predictable.
■ The dump command. dump uses the same simplified formatting as the where command,

which might be converted to use pretty-printing in later releases. This limitation does not
apply to the Local Variables window in the IDE.

Call-Based Pretty-Printing
Call-based pretty-printing enables an application to provide its own rendition of an expression's
value through a function call. If you specify the -p option to the print command, rprint
command, display command, or watch command, dbx searches for a function of the form
const chars *db_pretty_print(const T *, int flags, const char *fmt) and calls it,
substituting the returned value for print or display.

The value passed in the flags argument of the function is bit-wise or one of the following:

Chapter 8 • Evaluating and Displaying Data 129

Using Pretty-Printing

FVERBOSE 0x1 Not currently implemented, always set

FDYNAMIC 0x2 -d

FRECURSE 0x4 -r

FFORMAT 0x8 -f (if set, fmt is the format part)

FLITERAL 0x10 -l

The db_pretty_print() function can be either a static member function or a standalone
function.
When pretty-printing, also consider the following information:

■ “Possible Failures” on page 131
■ “Pretty-Printing Function Considerations” on page 130
■ Prior to dbx version 8.0 pretty-printing was based on a ksh implementation of prettyprint.

While this ksh function (and its pre-defined alias pp) still exist, most of the semantics have
been reimplemented inside dbx with the following results:
■ For the IDE, watches, local variables, and balloon evaluation can use pretty-printing.
■ In the print command, display command, and watch command, the -p option uses the

native route.
■ Better scalability, especially now that pretty-printing can be called quite often, especially

for watches and local variables.
■ Better opportunity to derive addresses from expressions.
■ Better error recovery.

■ Nested values will not be pretty-printed because dbx does not have the infrastructure to
calculate the addresses of nested fields.

■ The dbxenv variable output_pretty_print_fallback is set by default to on, which means
that dbx will fall back on regular formatting if pretty-printing fails. If pretty-printing fails
while i the environment variable is set to off, dbx will still issue an error message.

Pretty-Printing Function Considerations

When using the pretty-printing functions, you will need to consider the following:

■ For const/volatile unqualified types, in general, functions such as db_pretty_print(int
*, ...()) and db_pretty_print(const int *, ...)() are considered distinct. The
overload resolution approach of dbx is discerning but non-enforcing:
■ Discerning – If you have defined variables declared both int and const int, each will

be routed to the appropriate function.

130 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

Using Pretty-Printing

■ Non-enforcing – If you have only one int or const int variable defined, they will
match with both functions. This behavior is not specific to pretty-printing and applies to
any calls.

■ The db_pretty_print() function must be compiled with the -g option because dbx needs
access to parameter signatures.

■ The db_pretty_print() function is allowed to return NULL.
■ The main pointer passed to the db_pretty_print() function is guaranteed to be non-NULL

but otherwise it might still point to a poorly initialized object.
■ The db_pretty_print() function needs to be disambiguated based on the type of its first

parameter. In C, you can overload functions by writing them as file statics.

Possible Failures

Pretty-printing might fail for one of these detectable and recoverable reasons:

■ No pretty-print function found.
■ The expression to be pretty-printed cannot have its address taken.
■ The function call did not immediately return, which would imply a segmentation fault

resulting when the pretty-print function is not robust when encountering bad objects. It
could also imply a user breakpoint.

■ The pretty-print function returned NULL.
■ The pretty-print function returned a pointer that dbx fails to indirect through.
■ A core file is being debugged.

For all cases except the function call not immediately returning, these failures are silent and dbx
falls back on regular formatting. But if the output_pretty_print_fallback dbxenv variable is
set to off, dbx will issue an error message if pretty-printing fails.

If you use the print -p command rather than setting the dbxenv variable
output_pretty_print to on, dbx stops in the broken function to enable you to diagnose the
cause of failure. You can then use the pop -c command to clean up the call.

Python Pretty-Print Filters (Oracle Solaris)

The pretty-printing filter feature enables you to write filters in Python which can transform
a Value from one form to another. Python-based pretty-printers are only available on Oracle
Solaris.

Chapter 8 • Evaluating and Displaying Data 131

Using Pretty-Printing

Note - Python pretty-print filters can only be used in C and C++ code, not Fortran.

Filters are built in for select classes in 4 implementations of the C++ Standard Template
Library. The following table specifies the library name and the compiler option for that library:

Compiler option for Library Library Name

-library=Cstd (default) libCstd.so.1

-library=stlport4 libstlport.so.1

-library=stdcxx4 libstdcxx4.so.4.**

-library=stdcpp (default when using the -std=c++11
option)

libstdc++.so.6.*

The following table specifies which classes the pretty-print filters can be used for in the C++
Standard Template Library and whether index and slice can be printed:

Classes Index and Slice Availability C++ Compatibility

string No Yes

pair No Yes

vector Yes Yes

list Yes Yes

set Yes Yes

bitset Yes Yes

map Yes Yes

stack Yes Yes

priority queue Yes Yes

queue Yes Yes

multimap Yes Yes

tuple No C++11 only

unique_ptr No C++11 only

forward_list Yes C++11 only

unordered_map Yes C++11 only

unordered_multimap Yes C++11 only

unordered_set Yes C++11 only

unordered_multiset Yes C++11 only

array Yes C++11 only

132 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

Using Pretty-Printing

Classes Index and Slice Availability C++ Compatibility

initializer_list Yes C++11 only

EXAMPLE 1 Pretty-Printing with Filters

The following output is an example of printing a list using the print command in dbx:

(dbx) dbxenv output_pretty_print off

(dbx) print list10

list10 = {

 __buffer-size = 32U

 __buffer-list = {

 __data_ = 0x654a8

 }

 __free-list = (nil)

 __next-avail = 0x67334

 __last = 0x67448

 __node = 0x48830

 __length = 10U

 }

The following is the same list printed in dbx, but using pretty-printing filters:

(dbx) print -p list10

list10 = (200, 201, 202, 203, 204, 205, 206, 207, 208, 209)

(dbx) print -p list10[5]

list10[5] = 205

(dbx) print -p list10[1..100:2]

list10[1..100:2] =

[1] = 202

[3] = 204

[5] = 206

[7] = 208

Using Python on Oracle Solaris

Python pretty-print filters and the python command is available only on Oracle Solaris. To
start the built-in Python interpreter, type python. To evaluate your Python code, type python
python-code. A nascent Python plugin API is available. However, its primary purpose is for
the writing of pretty-printer filters which that get invoked as callbacks. Therefore the python
command mainly serves testing and diagnostic purposes.

Chapter 8 • Evaluating and Displaying Data 133

Using Pretty-Printing

Python Pretty-Print API Documentation

To generate the Python pretty-print API documentation, use the python-docs command. This
command is only available on Oracle Solaris.

134 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

 9 ♦ ♦ ♦ C H A P T E R 9

Using Runtime Checking

Runtime checking (RTC) enables you to automatically detect runtime errors such as memory
access errors and memory leak, in a native code application during the development phase. It
also enables you to monitor memory usage.
The following topics are covered in this chapter:

■ “Capabilities of Runtime Checking” on page 135
■ “Using Runtime Checking” on page 137
■ “Using Access Checking” on page 140
■ “Using Memory Leak Checking” on page 143
■ “Using Memory Use Checking” on page 148
■ “Suppressing Errors” on page 149
■ “Using Runtime Checking on a Child Process” on page 152
■ “Using Runtime Checking on an Attached Process” on page 156
■ “Using Fix and Continue With Runtime Checking” on page 157
■ “Runtime Checking Application Programming Interface” on page 159
■ “Using Runtime Checking in Batch Mode” on page 160
■ “Troubleshooting Tips” on page 161
■ “Runtime Checking Limitations” on page 162
■ “Runtime Checking Errors” on page 165

Capabilities of Runtime Checking

Because runtime checking is an integral debugging feature, you can perform all debugging
operations while using runtime checking except collecting performance data using the
Collector.

Note - You cannot use runtime checking on Java code.

Chapter 9 • Using Runtime Checking 135

Capabilities of Runtime Checking

Runtime checking provides the following capabilities:

■ Detects memory access errors
■ Detects memory leaks
■ Collects data on memory use
■ Works with all languages
■ Works with multithreaded code
■ Requires no recompiling, relinking, or makefile changes

Compiling with the -g flag provides source line-number correlation in the runtime checking
error messages. Runtime checking can also check programs compiled with the optimization -O
flag. There are some special considerations with programs not compiled with the -g option.

You can use runtime checking by using the check command.

When to Use Runtime Checking

To avoid seeing a large number of errors at once, use runtime checking early in the development
cycle, as you are developing the individual modules that make up your program. Write a unit
test to drive each module and use runtime checking incrementally to check one module at
a time. This method means you deal with a smaller number of errors at a time. When you
integrate all of the modules into the full program, you are likely to encounter few new errors.
When you reduce the number of errors to zero, you need to run runtime checking again only
when you make changes to a module.

Runtime Checking Requirements

To use runtime checking, you must fulfill the following requirements:

■ Dynamic linking with libc.
■ Use of the standard libc malloc, free, and realloc functions or allocators based

on those functions. Runtime checking provides an application programming interface
(API) to handle other allocators. See “Runtime Checking Application Programming
Interface” on page 159.

■ Programs that are not fully stripped; programs stripped with strip -x are acceptable.

For information about the limitations of runtime checking, see “Runtime Checking
Limitations” on page 162.

136 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

Using Runtime Checking

Using Runtime Checking

To use runtime checking, enable the type of checking you want to use before you run the
program.

Enabling Memory Use and Memory Leak Checking

Use the following command to enable memory use and memory leak checking:

(dbx) check -memuse

When memory use checking or memory leak checking is enabled, the showblock
command shows the details about the heap block at a given address. The details include
the location of the block’s allocation and its size. For more information, see “showblock
Command” on page 382.

Enabling Memory Access Checking

Use the following command to enablememory access checking only:

(dbx) check -access

Enabling All Runtime Checking

Use the following command to enable memory leak, memory use, and memory access
checking:

(dbx) check -all

For more information, see “check Command” on page 313.

Disabling Runtime Checking

Use the following command to disable runtime checking entirely:

(dbx) uncheck -all

For detailed information, see “uncheck Command” on page 405.

Chapter 9 • Using Runtime Checking 137

Using Runtime Checking

Running Your Program
After enabling the types of runtime checking you want, run the program being tested with or
without breakpoints.

The program runs normally but slowly because each memory access is checked for validity
just before it occurs. If dbx detects invalid access, it displays the type and location of the error.
Control returns to you unless the dbxenv variable rtc_auto_continue is set to on.

You can then issue dbx commands, such as where to get the current stack trace or print to
examine variables. If the error is not a fatal error, you can continue execution of the program
with the cont command. The program continues to the next error or breakpoint, whichever is
detected first. For detailed information, see “cont Command” on page 325.

If the rtc_auto_continue dbxenv variable is set to on, runtime checking continues to find
errors and keeps running automatically. It redirects errors to the file named by the dbxenv
variable rtc_error_log_file_name. The default log file name is /tmp/dbx.errlog.unique-ID.

You can limit the reporting of runtime checking errors using the suppress command. For
detailed information, see “suppress Command” on page 393.

The following simple example shows how to enable memory access and memory use checking
for a program called hello.c.

% cat -n hello.c

 1 #include <stdio.h>

 2 #include <stdlib.h>

 3 #include <string.h>

 4

 5 char *hello1, *hello2;

 6

 7 void

 8 memory_use()

 9 {

 10 hello1 = (char *)malloc(32);

 11 strcpy(hello1, "hello world");

 12 hello2 = (char *)malloc(strlen(hello1)+1);

 13 strcpy(hello2, hello1);

 14 }

 15

 16 void

 17 memory_leak()

 18 {

 19 char *local;

 20 local = (char *)malloc(32);

 21 strcpy(local, "hello world");

138 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

Using Runtime Checking

 22 }

 23

 24 void

 25 access_error()

 26 {

 27 int i,j;

 28

 29 i = j;

 30 }

 31

 32 int

 33 main()

 34 {

 35 memory_use();

 36 access_error();

 37 memory_leak();

 38 printf("%s\n", hello2);

 39 return 0;

 40 }

% cc -g -o hello hello.c

% dbx -C hello

Reading ld.so.1

Reading librtc.so

Reading libc.so.1

Reading libdl.so.1

(dbx) check -access

access checking - ON

(dbx) check -memuse

memuse checking - ON

(dbx) run Running: hello

(process id 18306)

Enabling Error Checking... done

Read from uninitialized (rui):

Attempting to read 4 bytes at address 0xeffff068

 which is 96 bytes above the current stack pointer

Variable is ’j’

Current function is access_error

 29 i = j;

(dbx) cont

hello world

Checking for memory leaks...

Actual leaks report (actual leaks: 1 total size: 32 bytes)

 Total Num of Leaked Allocation call stack

 Size Blocks Block

 Address

Chapter 9 • Using Runtime Checking 139

Using Access Checking

========== ====== ========== =======================================

 32 1 0x21aa8 memory_leak < main

Possible leaks report (possible leaks: 0 total size: 0 bytes)

Checking for memory use...

Blocks in use report (blocks in use: 2 total size: 44 bytes

 Total % of Num of Avg Allocation call stack

 Size All Blocks Size

========== ==== ====== ====== =======================================

 32 72% 1 32 memory_use < main

 12 27% 1 12 memory_use < main

execution completed, exit code is 0

The function access_error() reads variable j before it is initialized. Runtime checking reports
this access error as a Read from uninitialized (rui) error.

The function memory_leak() does not free the variable local before it returns. When
memory_leak() returns, this variable goes out of scope and the block allocated at line 20
becomes a leak.

The program uses the global variables hello1 and hello2, which are in scope all the time.
They both point to dynamically allocated memory, which is reported as Blocks in use (biu).

Using Access Checking

Access checking checks whether your program accesses memory correctly by monitoring each
read, write, allocate, and free operation.

Programs might incorrectly read or write memory in a variety of ways, which are called
memory access errors. For example, the program might reference a block of memory that has
been deallocated through a free()call for a heap block. Or a function might return a pointer to
a local variable and when that pointer is accessed, an error would result. Access errors might
result in wild pointers in the program and can cause incorrect program behavior, including
wrong outputs and segmentation violations. Some kinds of memory access errors can be very
hard to find.

Runtime checking maintains a table that tracks the state of each block of memory being used by
the program. Runtime checking checks each memory operation against the state of the block of
memory it involves and then determines whether the operation is valid. The possible memory
states are:

140 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

Using Access Checking

■ Unallocated, initial state. Memory has not been allocated. It is illegal to read, write, or free
this memory because it is not owned by the program.

■ Allocated, but uninitialized. Memory has been allocated to the program but not initialized.
It is legal to write to or free this memory, but is illegal to read it because it is uninitialized.
For example, upon entering a function, stack memory for local variables is allocated, but
uninitialized.

■ Read-only. It is legal to read, but not write or free, read-only memory.
■ Allocated and initialized. It is legal to read, write, or free allocated and initialized memory.

Using runtime checking to find memory access errors is not unlike using a compiler to find
syntax errors in your program. In both cases, a list of errors is produced, with each error
message giving the cause of the error and the location in the program where the error occurred.
In both cases, you should fix the errors in your program starting at the top of the error list and
working your way down. One error can cause other errors in a chain reaction. The first error
in the chain is, therefore, the “first cause” and fixing that error might also fix some subsequent
errors.

For example, a read from an uninitialized section of memory can create an incorrect pointer,
which when dereferenced can cause another invalid read or write, which can in turn lead to yet
another error.

Understanding the Memory Access Error Report

Runtime checking provides the following information for memory access errors:

type Type of error.

access Type of access attempted (read or write).

size Size of attempted access.

address Address of attempted access.

size Size of leaked block.

detail More detailed information about address. For example, if the address is
in the vicinity of the stack, then its position relative to the current stack
pointer is given. If the address is in the heap, then the address, size, and
relative position of the nearest heap block is given.

Chapter 9 • Using Runtime Checking 141

Using Access Checking

stack Call stack at time of error (with batch mode).

allocation If the address is in the heap, then the allocation trace of the nearest heap
block is given.

location Where the error occurred. If line number information is available, this
information includes line number and function. If line numbers are not
available, runtime checking provides function and address.

The following example shows a typical access error.

Read from uninitialized (rui):

Attempting to read 4 bytes at address 0xefffee50

 which is 96 bytes above the current stack pointer

Variable is ”j’

Current function is rui

 12 i = j;

Memory Access Errors

Runtime checking detects the following memory access errors:

■ rui – See “Read From Uninitialized Memory (rui) Error” on page 167
■ rua – See “Read From Unallocated Memory (rua) Error” on page 167
■ rob – See “Read From Array Out-of-Bounds (rob) Error” on page 167
■ wua – See “Write to Unallocated Memory (wua) Error” on page 168
■ wro – See “Write to Read-Only Memory (wro) Error” on page 168
■ wob – See“Write to Array Out-of-Bounds Memory (wob) Error” on page 168
■ mar – See “Misaligned Read (mar) Error” on page 166
■ maw – See “Misaligned Write (maw) Error” on page 166
■ duf – See “Duplicate Free (duf) Error” on page 165
■ baf – See “Bad Free (baf) Error” on page 165
■ maf – See “Misaligned Free (maf) Error” on page 166
■ oom – See “Out of Memory (oom) Error” on page 167

Note - On SPARC platforms, runtime checking does not perform array bounds checking and
therefore does not report array bound violations as access errors.

142 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

Using Memory Leak Checking

Using Memory Leak Checking

A memory leak is a dynamically allocated block of memory that has no pointers pointing to
it anywhere in the data space of the program. Such blocks are orphaned memory. Because
no pointers are pointing to the blocks, programs cannot reference them, much less free them.
Runtime checking finds and reports such blocks.

Memory leaks result in increased virtual memory consumption and generally result in memory
fragmentation. This might slow down the performance of your program and the whole system.

Typically, memory leaks occur because allocated memory is not freed and you lose a pointer to
the allocated block. Here are some examples of memory leaks:

void

foo()

{

 char *s;

 s = (char *) malloc(32);

 strcpy(s, "hello world");

 return; /* no free of s. Once foo returns, there is no */

 /* pointer pointing to the malloc’ed block, */

 /* so that block is leaked. */

}

A leak can result from incorrect use of an API.

void

printcwd()

{

 printf("cwd = %s\n", getcwd(NULL, MAXPATHLEN));

 return; /* libc function getcwd() returns a pointer to */

 /* malloc’ed area when the first argument is NULL, */

 /* program should remember to free this. In this */

 /* case the block is not freed and results in leak.*/

}

You can avoid memory leaks by always freeing memory when it is no longer needed and paying
close attention to library functions that return allocated memory. If you use such functions,
remember to free up the memory appropriately.

Sometimes the term memory leak is used to refer to any block that has not been freed. This
definition is much less useful, because it is a common programming practice not to free

Chapter 9 • Using Runtime Checking 143

Using Memory Leak Checking

memory if the program will terminate shortly. Runtime checking does not report a block as a
leak if the program still retains one or more pointers to it.

Detecting Memory Leak Errors

Runtime checking detects the following memory leak errors:

■ mel – See “Memory Leak (mel) Error” on page 170
■ air – See “Address in Register (air) Error” on page 169
■ aib – See “Address in Block (aib) Error” on page 169

Note - Runtime checking only finds leaks of malloc memory. If your program does not use
malloc, runtime checking cannot find memory leaks.

Possible Leaks

Runtime checking can report a “possible” leak in two cases. The first case is when no pointers
are found pointing to the beginning of the block but a pointer is found pointing to the interior
of the block. This case is reported as an Address in block (aib) error. A stray pointer pointing
into the block would be a real memory leak. However, some programs deliberately move the
only pointer to an array back and forth as needed to access its entries. This case would not be a
memory leak. Because runtime checking cannot distinguish between these two cases, it reports
both of them as possible leaks, letting you determine which are real memory leaks.

The second type of possible leak occurs when no pointers to a block are found in the data space
but a pointer is found in a register. This case is reported as an Address in register (air) error. If
the register points to the block accidentally or if it is an old copy of a memory pointer that has
since been lost, then this is a real leak. However, the compiler can optimize references and place
the only pointer to a block in a register without ever writing the pointer to memory. Such a case
would not be a real leak. Hence, if the program has been optimized and the report was the result
of the showleaks command, it is likely not to be a real leak. In all other cases, it is likely to be a
real leak. For more information, see “showleaks Command” on page 382.

Note - Runtime leak checking requires the use of the standard libc malloc/free/realloc
functions or allocators based on those functions. For other allocators, see “Runtime Checking
Application Programming Interface” on page 159.

144 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

Using Memory Leak Checking

Checking for Leaks

If memory leak checking is enabled, a scan for memory leaks is automatically performed just
before the program being tested exits. Any detected leaks are reported. The program should
not be killed with the kill command. The following example is a typical memory leak error
message:

Memory leak (mel):

Found leaked block of size 6 at address 0x21718

At time of allocation, the call stack was:

 [1] foo() at line 63 in test.c

 [2] main() at line 47 in test.c

A UNIX program has a main procedure (called MAIN in f77) that is the top-level user function
for the program. Normally, a program terminates either by calling exit(3) or by returning from
main. In the latter case, all variables local to main go out of scope after the return, and any heap
blocks they pointed to are reported as leaks unless global variables point to those same blocks.

A common programming practice is not to free heap blocks allocated to local variables in main,
because the program is about to terminate and return from main without calling exit(). To
prevent runtime checking from reporting such blocks as memory leaks, stop the program just
before main returns by setting a breakpoint on the last executable source line in main. When the
program halts there, use the showleaks command to report all the true leaks, omitting the leaks
that would result merely from variables in main going out of scope.

For more information, see “showleaks Command” on page 382.

Understanding the Memory Leak Report

With leak checking enabled, you receive an automatic leak report when the program exits. All
possible leaks are reported, provided the program has not been killed using the kill command.
The level of detail in the report is controlled by the dbxenv variable rtc_mel_at_exit. By
default, a non-verbose leak report is generated.

Reports are sorted according to the combined size of the leaks. Actual memory leaks are
reported first, followed by possible leaks. The verbose report contains detailed stack trace
information, including line numbers and source files whenever they are available.

Both reports include the following information for memory leak errors:

Size Size of leaked block

Chapter 9 • Using Runtime Checking 145

Using Memory Leak Checking

Location Location where leaked block was allocated

Address Address of leaked block

Stack Call stack at time of allocation, as constrained by check -frames

The following is the corresponding non-verbose memory leak report.

Actual leaks report (actual leaks: 3 total size: 2427 bytes)

 Total Num of Leaked Allocation call stack

 Size Blocks Block

 Address

========== ====== ========== =======================================

 1852 2 - true_leak < true_leak

 575 1 0x22150 true_leak < main

Possible leaks report (possible leaks: 1 total size: 8 bytes)

 Total Num of Leaked Allocation call stack

 Size Blocks Block

 Address

========== ====== ========== =======================================

 8 1 0x219b0 in_block < main

The following example shows a typical verbose leak report.

Actual leaks report (actual leaks: 3 total size: 2427 bytes)

Memory Leak (mel):

Found 2 leaked blocks with total size 1852 bytes

At time of each allocation, the call stack was:

 [1] true_leak() at line 220 in "leaks.c"

 [2] true_leak() at line 224 in "leaks.c"

Memory Leak (mel):

Found leaked block of size 575 bytes at address 0x22150

At time of allocation, the call stack was:

 [1] true_leak() at line 220 in "leaks.c"

 [2] main() at line 87 in "leaks.c"

Possible leaks report (possible leaks: 1 total size: 8 bytes)

Possible memory leak -- address in block (aib):

Found leaked block of size 8 bytes at address 0x219b0

At time of allocation, the call stack was:

 [1] in_block() at line 177 in "leaks.c"

 [2] main() at line 100 in "leaks.c"

146 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

Using Memory Leak Checking

Generating a Leak Report

You can ask for a leak report at any time using the showleaks command, which reports new
memory leaks since the last showleaks command. For more information, see “showleaks
Command” on page 382.

Combining Leaks

Because the number of individual leaks can be very large, runtime checking automatically
combines leaks allocated at the same place into a single combined leak report. The decision
to combine leaks, or report them individually, is controlled by the number-of-frames-to-
match parameter specified by the -match m option on a check -leaks or the -m option of the
showleaks command. If the call stack at the time of allocation for two or more leaks matches to
m frames to the exact program counter level, these leaks are reported in a single combined leak
report.

Consider the following three call sequences:

Block 1 Block 2 Block 3

[1] malloc [1] malloc [1] malloc

[2] d() at 0x20000 [2] d() at 0x20000 [2] d() at 0x20000

[3] c() at 0x30000 [3] c() at 0x30000 [3] c() at 0x31000

[4] b() at 0x40000 [4] b() at 0x41000 [4] b() at 0x40000

[5] a() at 0x50000 [5] a() at 0x50000 [5] a() at 0x50000

If all of these blocks lead to memory leaks, the value of m determines whether the leaks are
reported as separate leaks or as one repeated leak. If m is 2, Blocks 1 and 2 are reported as one
repeated leak because the 2 stack frames above malloc() are common to both call sequences.
Block 3 will be reported as a separate leak because the trace for c() does not match the other
blocks. For m greater than 2, runtime checking reports all leaks as separate leaks. The malloc is
not shown on the leak report.

In general, the smaller the value of m, the fewer individual leak reports and the more combined
leak reports are generated. The greater the value of m, the fewer combined leak reports and the
more individual leak reports are generated.

Chapter 9 • Using Runtime Checking 147

Using Memory Use Checking

Fixing Memory Leaks

Once you have obtained a memory leak report, follow these guidelines for fixing the memory
leaks:

■ Most importantly, determine where the leak is. The leak report tells you the allocation trace
of the leaked block, the place where the leaked block was allocated.

■ You can then look at the execution flow of your program and see how the block was used. If
it is obvious where the pointer was lost, the job is easy; otherwise you can use showleaks to
narrow your leak window. By default, the showleaks command lists the new leaks created
only since the last showleaks command. You can run showleaks repeatedly while stepping
through your program to narrow the window where the block was leaked.

For more information, see “showleaks Command” on page 382.

Using Memory Use Checking

Memory use checking enables you to see all the heap memory in use. You can use this
information to get a sense of where memory is allocated in your program or which program
sections are using the most dynamic memory. This information can also be useful in reducing
the dynamic memory consumption of your program and might help in performance tuning.

Memory use checking is useful during performance tuning or to control virtual memory
use. When the program exits, a memory use report can be generated. Memory usage
information can also be obtained at any time during program execution with the showmemuse
command, which causes memory usage to be displayed. For information, see “showmemuse
Command” on page 383.

Enabling memory use checking also enables leak checking. In addition to a leak report at the
program exit, you also get a Blocks in use (biu) report. By default, a non-verbose blocks in use
report is generated at program exit. The level of detail in the memory use report is controlled by
the dbxenv variable rtc_biu_at_exit.

The following example shows a typical non-verbose memory use report.

Blocks in use report (blocks in use: 5 total size: 40 bytes)

 Total % of Num of Avg Allocation call stack

 Size All Blocks Size

148 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

Suppressing Errors

========== ==== ====== ====== =====================================

 16 40% 2 8 nonleak < nonleak

 8 20% 1 8 nonleak < main

 8 20% 1 8 cyclic_leaks < main

 8 20% 1 8 cyclic_leaks < main

Blocks in use report (blocks in use: 5 total size: 40 bytes)

Block in use (biu):

Found 2 blocks totaling 16 bytes (40.00% of total; avg block size 8)

At time of each allocation, the call stack was:

 [1] nonleak() at line 182 in "memuse.c"

 [2] nonleak() at line 185 in "memuse.c"

Block in use (biu):

Found block of size 8 bytes at address 0x21898 (20.00% of total)

At time of allocation, the call stack was:

 [1] nonleak() at line 182 in "memuse.c"

 [2] main() at line 74 in "memuse.c"

Block in use (biu):

Found block of size 8 bytes at address 0x21958 (20.00% of total)

At time of allocation, the call stack was:

 [1] cyclic_leaks() at line 154 in "memuse.c"

 [2] main() at line 118 in "memuse.c"

Block in use (biu):

Found block of size 8 bytes at address 0x21978 (20.00% of total)

At time of allocation, the call stack was:

 [1] cyclic_leaks() at line 155 in "memuse.c"

 [2] main() at line 118 in "memuse.c"

The following is the corresponding verbose memory use report:

You can ask for a memory use report any time with the showmemuse command.

Suppressing Errors

Runtime checking includes a powerful error suppression facility that provides great flexibility
in limiting the number and types of errors reported. If an error occurs that you have suppressed,
then no report is given, and the program continues as if no error had occurred.

You can suppress errors using the suppress command.

You can undo error suppression using the unsuppress command.

Chapter 9 • Using Runtime Checking 149

Suppressing Errors

Suppression is persistent across run commands within the same debug session, but not across
debug commands.

Types of Suppression

This section describes thetypes of suppression that are available:

Suppression by Scope and Type

You must specify which type of error to suppress. You can specify which parts of the program
to suppress. The options are:

Global The default; applies to the whole program

Load Object Applies to an entire load object, such as a shared library, or the main
program

File Applies to all functions in a particular file

Function Applies to a particular function

Line Applies to a particular source line

Address Applies to a particular instruction at an address

Suppression of Last Error

By default, runtime checking suppresses the most recent error to prevent repeated reports
of the same error. This setting is controlled by the dbx variable rtc_auto_suppress. When
rtc_auto_suppress is set to on (the default), a particular access error at a particular location is
reported only the first time it is encountered and suppressed thereafter. This setting is useful, for
example, for preventing multiple copies of the same error report when an error occurs in a loop
that is executed many times.

Limiting the Number of Errors Reported

You can use the dbxenv variable rtc_error_limit to limit the number of errors that will be
reported. The error limit is used separately for access errors and leak errors. For example, if the

150 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

Suppressing Errors

error limit is set to 5, then a maximum of five access errors and five memory leaks are shown
in both the leak report at the end of the run and for each showleaks command you issue. The
default is 1000.

Suppressing Error Examples

In the following examples, main.cc is a file name, foo and bar are functions, and a.out is the
name of an executable.

Do not report memory leaks whose allocation occurs in function foo:

suppress mel in foo

Suppress reporting blocks in use allocated from libc.so.1:

suppress biu in libc.so.1

Suppress read from uninitialized in all functions in a.out:

suppress rui in a.out

Do not report read from unallocated in file main.cc:

suppress rua in main.cc

Suppress duplicate free at line 10 of main.cc:

suppress duf at main.cc:10

Suppress reporting of all errors in function bar:

suppress all in bar

For more information, see “suppress Command” on page 393.

Default Suppressions

To detect all errors, runtime checking does not require the program be compiled using the-
g option (symbolic). However, symbolic information is sometimes needed to guarantee the
correctness of certain errors, mostly rui errors. For this reason, certain errors (rui for a.out
and rui, aib, and air for shared libraries) are suppressed by default if no symbolic information
is available. This behavior can be changed using the -d option of the suppress command and
unsuppress command.

Chapter 9 • Using Runtime Checking 151

Using Runtime Checking on a Child Process

The following command causes runtime checking to no longer suppress read from uninitialized
memory (rui) in code that does not have symbolic information (compiled without -g):

unsuppress -d rui

For more information, see “unsuppress Command” on page 408.

Using Suppression to Manage Errors

For the initial run on a large program, the large number of errors might be overwhelming.
Consider taking a phased approach. You can do so using the suppress command to reduce the
reported errors to a manageable number, fixing just those errors, and repeating the cycle. This
enables you to suppress fewer and fewer errors with each iteration.

For example, you could focus on a few error types at one time. The most common error types
typically encountered are rui, rua, and wua, usually in that order. rui errors are less serious,
although they can cause more serious errors to happen later. Often a program might still work
correctly with these errors. rua and wua errors are more serious because they are accesses to or
from invalid memory addresses and always indicate a coding error.

You can start by suppressing rui and rua errors. After fixing all the wua errors that occur, run
the program again, suppressing only rui errors. After fixing all the rua errors that occur, run the
program again with no errors suppressed. Fix all the rui errors. Lastly, run the program a final
time to ensure that no errors are left.

If you want to suppress the last reported error, use suppress -last.

Using Runtime Checking on a Child Process

To use runtime checking on a child process, you must have the dbxenv variable rtc_inherit
set to on. By default, it is set to off.

dbx supports runtime checking of a child process if runtime checking is enabled for the parent
and the dbxenv variable follow_fork_mode is set to child.

When a fork happens, dbx automatically performs runtime checking on the child. If the program
calls exec(), the runtime checking settings of the program calling exec() are passed on to the
program.

152 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

Using Runtime Checking on a Child Process

At any given time, only one process can be under runtime checking control, as shown in the
following example.

% cat -n program1.c

 1 #include <sys/types.h>

 2 #include <unistd.h>

 3 #include <stdio.h>

 4

 5 int

 6 main()

 7 {

 8 pid_t child_pid;

 9 int parent_i, parent_j;

 10

 11 parent_i = parent_j;

 12

 13 child_pid = fork();

 14

 15 if (child_pid == -1) {

 16 printf("parent: Fork failed\n");

 17 return 1;

 18 } else if (child_pid == 0) {

 19 int child_i, child_j;

 20

 21 printf("child: In child\n");

 22 child_i = child_j;

 23 if (execl("./program2", NULL) == -1) {

 24 printf("child: exec of program2 failed\n");

 25 exit(1);

 26 }

 27 } else {

 28 printf("parent: child’s pid = %d\n", child_pid);

 29 }

 30 return 0;

 31 }

 % cat -n program2.c

 1

 2 #include <stdio.h>

 3

 4 main()

 5 {

 6 int program2_i, program2_j;

 7

 8 printf ("program2: pid = %d\n", getpid());

 9 program2_i = program2_j;

 10

 11 malloc(8);

 12

Chapter 9 • Using Runtime Checking 153

Using Runtime Checking on a Child Process

 13 return 0;

 14 }

%

 % cc -g -o program1 program1.c

 % cc -g -o program2 program2.c

 % dbx -C program1

 Reading symbolic information for program1

 Reading symbolic information for rtld /usr/lib/ld.so.1

 Reading symbolic information for librtc.so

 Reading symbolic information for libc.so.1

 Reading symbolic information for libdl.so.1

 Reading symbolic information for libc_psr.so.1

 (dbx) check -all

 access checking - ON

 memuse checking - ON

 (dbx) dbxenv rtc_inherit on

 (dbx) dbxenv follow_fork_mode child

 (dbx) run

 Running: program1

 (process id 3885)

 Enabling Error Checking... done

RTC reports first error in the parent, program1
 Read from uninitialized (rui):

 Attempting to read 4 bytes at address 0xeffff110

 which is 104 bytes above the current stack pointer

 Variable is ’parent_j’

 Current function is main

 11 parent_i = parent_j;

(dbx) cont

 dbx: warning: Fork occurred; error checking disabled in parent

 detaching from process 3885

 Attached to process 3886

Because follow_fork_mode is set to child, when the fork occurs error checking is switched from the
 parent
to the child process
 stopped in _fork at 0xef6b6040

 0xef6b6040: _fork+0x0008: bgeu _fork+0x30

 Current function is main

 13 child_pid = fork();

 parent: child’s pid = 3886

 (dbx) cont

 child: In child

 Read from uninitialized (rui):

 Attempting to read 4 bytes at address 0xeffff108

 which is 96 bytes above the current stack pointer

RTC reports an error in the child
 Variable is ’child_j’

154 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

Using Runtime Checking on a Child Process

 Current function is main

 22 child_i = child_j;

 (dbx) cont

 dbx: process 3886 about to exec("./program2")

 dbx: program "./program2" just exec’ed

 dbx: to go back to the original program use "debug $oprog"

 Reading symbolic information for program2

 Skipping ld.so.1, already read

 Skipping librtc.so, already read

 Skipping libc.so.1, already read

 Skipping libdl.so.1, already read

 Skipping libc_psr.so.1, already read

When the exec of program2 occurs, the RTC settings are inherited by program2 so access and memory
 use checking
are enabled for that process
 Enabling Error Checking... done

 stopped in main at line 8 in file "program2.c"

 8 printf ("program2: pid = %d\n", getpid());

(dbx) cont

 program2: pid = 3886

 Read from uninitialized (rui):

 Attempting to read 4 bytes at address 0xeffff13c

 which is 100 bytes above the current stack pointer

RTC reports an access error in the executed program, program2
 Variable is ’program2_j’

 Current function is main

 9 program2_i = program2_j;

 (dbx) cont

 Checking for memory leaks...

RTC prints a memory use and memory leak report for the process that exited while under RTC control,
 program2

Actual leaks report (actual leaks: 1 total size: 8

 bytes)

 Total Num of Leaked Allocation call stack

 Size Blocks Block

 Address

========== ====== ========== ====================================

 8 1 0x20c50 main

 Possible leaks report (possible leaks: 0 total size: 0

 bytes)

 execution completed, exit code is 0

Chapter 9 • Using Runtime Checking 155

Using Runtime Checking on an Attached Process

Using Runtime Checking on an Attached Process

Runtime checking works on an attached process, with the exception that rui cannot be detected
if the affected memory has already been allocated.

Attached Process on a System Running Oracle
Solaris

On a system running the Oracle Solaris operating system, the process must have rtcaudit.so
preloaded when it starts. If the process to which you are attaching is a 64-bit process, use the
appropriate 64-bit rtcaudit.so, which is located at:

64-bit SPARC platforms: /install-dir/lib/dbx/sparcv9/runtime/rtcaudit.so

AMD64 platforms: /install-dir/lib/dbx/amd64/runtime/rtcaudit.so

32-bit platforms: /install-dir/lib/dbx/runtime/rtcaudit.so

To preload rtcaudit.so:

% setenv LD_AUDIT path-to-rtcaudit/rtcaudit.so

Set the LD_AUDIT environment variable to preload rtcaudit.so only when needed. Do not keep
it loaded all the time. For example:

% setenv LD_AUDIT...

% start_your_application

% unsetenv LD_AUDIT

Once you attach to the process, you can enable runtime checking.

If the program you want to attach to is forked or executed from some other program, you must
set LD_AUDIT for the main program, which will fork. The setting of LD_AUDIT is inherited across
forks and execution. This solution might not work if a 32–bit program forks or executes a 64–
bit program, or a 64–bit program forks or executes a 32–bit program.

The LC_AUDIT environment variable applies to both 32-bit programs and 64-bit programs, which
makes it difficult to select the correct library for a 32-bit program that runs a 64-bit program,
or a 64-bit program that runs a 32-bit program. Some versions of the Oracle Solaris OS support
the LD_AUDIT_32 environment variable and the LD_AUDIT_64 environment variable, which affect
only 32-bit programs and 64-bit programs, respectively. See the Linker and Libraries Guide for
the version of Oracle Solaris you are running to determine if these variables are supported.

156 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

Using Fix and Continue With Runtime Checking

Attached Process on a System Running Linux
On a system running the Linux operating system, the process must have librtc.so preloaded
when it starts. If the process to which you are attaching is a 64-bit process running on an
AMD64 processor, use the appropriate 64-bit librtc.so, which is located at:

64-bit AMD64 platforms: /install-dir/lib/dbx/amd64/runtime/librtc.so

32-bit AMD64 platforms/install-dir/lib/dbx/runtime/librtc.so

To preload librtc.so:

% setenv LD_PRELOAD path-to-rtcaudit/librtc.so

Set the LD_PRELOAD environment variable to preload librtc.so only when needed. Do not keep
it loaded all the time. For example:

% setenv LD_PRELOAD...

% start_your_application

% unsetenv LD_PRELOAD

Once you attach to the process, you can enable runtime checking.

If the program you want to attach to is forked or executed from some other program, you must
set LD_PRELOAD for the main program, which will fork. The setting of LD_PRELOAD is inherited
across forks and execution. This solution might not work if a 32-bit program forks or executes a
64-bit program, or a 64-bit program forks or executes a 32-bit program.

The LC_PRELOAD environment variable applies to both 32-bit programs and 64-bit programs,
which makes it difficult to select the correct library for a 32-bit program that runs a 64-bit
program, or a 64-bit program that runs a 32-bit program. Some versions of Linux support the
LD_PRELOAD_32 environment variable and the LD_PRELOAD_64 environment variable, which
affect only 32-bit programs and 64-bit programs, respectively. See the Linker and Libraries
Guide for the version of Linux you are running to determine if these variables are supported.

Using Fix and Continue With Runtime Checking

You can use runtime checking along with the fix and cont commands to isolate and fix
programming errors rapidly. Fix and continue provide a powerful combination that can save you
a lot of debugging time. For example:

% cat -n bug.c

 1 #include stdio.h

 2 char *s = NULL;

Chapter 9 • Using Runtime Checking 157

Using Fix and Continue With Runtime Checking

 3

 4 void

 5 problem()

 6 {

 7 *s = ’c’;

 8 }

 9

 10 main()

 11 {

 12 problem();

 13 return 0;

 14 }

% cat -n bug-fixed.c

 1 #include stdio.h

 2 char *s = NULL;

 3

 4 void

 5 problem()

 6 {

 7

 8 s = (char *)malloc(1);

 9 *s = ’c’;

 10 }

 11

 12 main()

 13 {

 14 problem();

 15 return 0;

 16 }

yourmachine46: cc -g bug.c

yourmachine47: dbx -C a.out

Reading symbolic information for a.out

Reading symbolic information for rtld /usr/lib/ld.so.1

Reading symbolic information for librtc.so

Reading symbolic information for libc.so.1

Reading symbolic information for libintl.so.1

Reading symbolic information for libdl.so.1

Reading symbolic information for libw.so.1

(dbx) check -access

access checking - ON

(dbx) run

Running: a.out

(process id 15052)

Enabling Error Checking... done

Write to unallocated (wua):

Attempting to write 1 byte through NULL pointer

Current function is problem

 7 *s = ’c’;

158 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

Runtime Checking Application Programming Interface

(dbx) pop

stopped in main at line 12 in file "bug.c"

 12 problem();

(dbx) #at this time we would edit the file; in this example just copy

the correct version

(dbx) cp bug_fixed.c bug.c

(dbx) fix

fixing "bug.c"

pc moved to "bug.c":14

stopped in main at line 14 in file "bug.c"

 14 problem();

(dbx) cont

execution completed, exit code is 0

(dbx) quit

The following modules in \Qa.out’ have been changed (fixed):

bug.c

Remember to remake program.

For more information about using fix and continue, see “Memory Leak (mel)
Error” on page 170.

Runtime Checking Application Programming Interface

Both leak detection and access checking require that the standard heap management routines in
the shared library libc.so be used so that runtime checking can keep track of all the allocations
and deallocations in the program. Many applications write their own memory management
routines either on top of the malloc() or free() function or stand alone. When you use your
own allocators (referred to as private allocators), runtime checking cannot automatically
track them. Therefore, you do not learn of leak and memory access errors resulting from their
improper use.

However, runtime checking provides an API for the use of private allocators. This API
allows the private allocators the same treatment as the standard heap allocators. The API
itself is provided in the header file rtc-api.h and is distributed as a part of Oracle Developer
Studiosoftware. The man page rtc_api(3x) details the runtime checking API entry points.

Some minor differences might exist with runtime checking access error reporting when private
allocators do not use the program heap. When a memory access error referring to a standard
heap block occurs, the error report typically includes the location of the heap block allocation.
When private allocators do not use the program heap, the error report might not include the
allocation item.

Chapter 9 • Using Runtime Checking 159

Using Runtime Checking in Batch Mode

Using the runtime checking API to track memory allocators in libumem is not required.
Runtime checking interposes libumem heap management routines and redirects them to the
corresponding libc functions.

Using Runtime Checking in Batch Mode

The bcheck utility is a convenient batch interface to the runtime checking feature of dbx. It runs
a program under dbx and, by default, places the runtime checking error output in the default file
program.errs.

The bcheck utility can perform memory leak checking, memory access checking, memory use
checking, or all three. Its default action is to perform only leak checking. See the bcheck(1)
man page for more details on its use.

Note - Before running the bcheck utility on a system running the 64-bit Linux OS, you must set
the _DBX_EXEC_32 environment variable.

bcheck Syntax

The syntax for bcheck is:

bcheck [-V] [-access | -all | -leaks | -memuse] [-xexec32] [-o logfile] [-q]
[-s script] program [args]

Use the -o logfile option to specify a different name for the logfile. Use the -s script option
before executing the program to read in the dbx commands contained in the file script. The
script file typically contains commands like suppress and dbxenv to tailor the error output of
the bcheck utility.

The -q option makes the bcheck utility completely quiet, returning with the same status as the
program. This option is useful when you want to use the bcheck utility in scripts or makefiles.

bcheck Examples

To perform only leak checking on hello:

160 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

Troubleshooting Tips

bcheck hello

To perform only access checking on mach with the argument 5:

bcheck -access mach 5

To perform memory use checking on cc quietly and exit with normal exit status:

bcheck -memuse -q cc -c prog.c

The program does not stop when runtime errors are detected in batch mode. All error output is
redirected to your error log file logfile. The program stops when breakpoints are encountered
or if the program is interrupted.

In batch mode, the complete stack backtrace is generated and redirected to the error log file.
The number of stack frames can be controlled using the dbxenv variable stack_max_size.

If the file logfile already exists, bcheck erases the contents of that file before it redirects the
batch output to it.

Enabling Batch Mode Directly From dbx

You can also enable a batch-like mode directly from dbx by setting the dbxenv variables
rtc_auto_continue and rtc_error_log_file_name.

If rtc_auto_continue is set to on, runtime checking continues to find errors and keeps
running automatically. It redirects errors to the file named by the dbxenv variable
rtc_error_log_file_name. The default log file name is /tmp/dbx.errlog.unique-ID. To
redirect all errors to the terminal, set the rtc_error_log_file_name environment variable to
/dev/tty.

By default, rtc_auto_continue is set to off.

Troubleshooting Tips

After error checking has been enabled for a program and the program is run, one of the
following errors might be detected:

librtc.so and dbx version mismatch; Error checking disabled

Chapter 9 • Using Runtime Checking 161

Runtime Checking Limitations

This error can occur if you are using runtime checking on an attached process and have set
LD_AUDIT to a version of rtcaudit.so other than the one shipped with your Oracle Developer
Studio dbx image. To fix this, change the setting of LD_AUDIT.

patch area too far (8mb limitation); Access checking disabled

Runtime checking was unable to find patch space close enough to a load object for access
checking to be enabled. See “Runtime Checking Limitations” on page 162.

Runtime Checking Limitations

This section describes the limitations of runtime checking.

Performance Improves With More Symbols and
Debug Information

Access checking requires some symbol information in the load objects. When a load object
is fully stripped, runtime checking might not catch all of the errors. Read from uninitialized
(rui) memory errors might be incorrect and therefore are suppressed. You can override the
suppression with the unsuppress rui command. To retain the symbol table in the load object,
use the -x option when stripping a load object.

Runtime checking cannot catch all array out-of-bounds errors. Bounds checking for static and
stack memory is not available without debug information.

SIGSEGV and SIGALTSTACK Signals Are Restricted on
x86 Platforms

Runtime checking instruments memory access instructions for access checking. These
instructions are handled by a SIGSEGV handler at runtime. Because runtime checking requires
its own SIGSEGV handler and signal alternate stack, an attempt to install a SIGSEGV handler or
SIGALTSTACK handler results in an EINVAL error or ignoring the attempt.

SIGSEGV handler calls cannot be nested. Doing so results in the error terminating signal 11
SEGSEGV. If you receive this error, use the rtc skippatch command to skip instrumentation of
the affected function.

162 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

Runtime Checking Limitations

Performance Improves When Sufficient Patch
Area Is Available Within 8 MB of All Existing Code
(SPARC Platforms Only).
Two problems might arise if a sufficient patch area is not available within 8 megabytes of all
existing code.

■ Slowness

When access checking is enabled, dbx replaces each load and store instruction with a
branch instruction that branches to a patch area. This branch instruction has an 8-megabyte
range. If the debugged program has used all the of address space within 8 megabytes of the
particular load or store instruction being replaced, no place exists to put the patch area. In
this case, dbx invokes a trap handler instead of using a branch. The transfer of control to a
trap handler is significantly slower (up to 10 times), but does not suffer from the 8 megabyte
limit.

■ Out register override problem in V8+ mode
The trap handler limitation affects access checking if both of the following conditions apply:
■ The process being debugged is instrumented using traps.
■ The process uses the V8+ instruction set.

The problem occurs because the sizes of out registers and in registers on V8+ architecture
are different. Out registers are 64 bits long, while in registers are only 32 bits long. When a
trap handler is invoked, out registers are copied into in registers and the higher 32 bits are
lost. Therefore, if the process being debugged uses the higher 32 bits of out registers, the
process might run incorrectly when access checking is enabled.
The compilers use the V8+ architecture by default when creating 32-bit SPARC based
binaries, but you can tell the compilers to use the V8 architecture with the -xarch option.
Unfortunately, system runtime libraries are unaffected by recompiling your application.

dbx automatically skips instrumentation of the following functions and libraries that are
known not to work correctly when instrumented with traps:
■ server/libjvm.so

■ client/libjvm.so

■ `libfsu_isa.so`__f_cvt_real

■ `libfsu_isa.so`__f90_slw_c4

However, skipping instrumentation might result in incorrect RTC error reports.

If either of the above conditions applies to your program and the program starts to behave
differently when you enable access checking, the trap handler limitation probably affects your
program. To work around the limitation, you can do the following:

Chapter 9 • Using Runtime Checking 163

Runtime Checking Limitations

■ Use the rtc skippatch command to skip instrumentation of the code in your program that
uses the functions and libraries listed above. Generally, tracking the problem to a specific
function is difficult, so you might want to skip instrumentation of an entire load object. The
rtc showmap command displays a map of instrument types sorted by address.

■ Try using 64-bit SPARC-V9 instead of 32-bit SPARC-V8.
If possible, recompile your program for V9 architecture, in which all of the registers are 64
bits long.

■ Try adding patch area object files.

You can use the rtc_patch_area shell script to create special .o files that can be linked into
the middle of a large executable or shared library to provide more patch space. For more
information, see the rtc_patch_area(1) man page.

When dbx reaches the 8-megabyte limit, it tells you which load object was too large (the
main program or a shared library) and displays the total patch space needed for that load
object.
For the best results, the special patch object files should be evenly spaced throughout
the executable or shared library, and the default size (8 megabytes) or smaller should be
used. Also, do not add more than 10-20% more patch space than dbx says it requires.
For example, if dbx says that it needs 31 megabytes for a.out, then add four object files
created with the rtc_patch_area script, each one 8 megabytes in size, and space them
approximately evenly throughout the executable.

When dbx finds explicit patch areas in an executable, it prints the address ranges spanned by
the patch areas, which can help you to place them correctly on the link line.

■ Try dividing the large load object into smaller load objects.
Split up the object files in your executable or your large library into smaller groups of object
files, then link them into smaller parts. If the large file is the executable, then divide it into
a smaller executable and a series of shared libraries. If the large file is a shared library, then
rearrange it into a set of smaller libraries.

This technique enables dbx to find space for patch code in between the different shared
objects.

■ Try adding a “pad” .so file.
This solution should be necessary only if you are attaching to a process after it has started
up.
The runtime linker might place libraries so close together that patch space cannot be created
in the gaps between the libraries. When dbx starts the executable with runtime checking
enabled, it asks the runtime linker to place an extra gap between the shared libraries.
However, when attaching to a process that was not started by dbx with runtime checking
enabled, the libraries might be too close together.

164 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

Runtime Checking Errors

If the runtime libraries are too close together and if you cannot start the program using dbx,
then you can try creating a shared library using the rtc_patch_area script and linking it
into your program between the other shared libraries. See the rtc_patch_area(1) man page
for more details.

Runtime Checking Errors

Errors reported by runtime checking generally fall in two categories: access errors and leaks.

Access Errors

When access checking is enabled, runtime checking detects and reports the types of errors
described in this section.

Bad Free (baf) Error

Problem: Attempt to free memory that has never been allocated.

Possible causes: Passing a non-heap data pointer to free() or realloc().

Example:

char a[4];

char *b = &a[0];

free(b); /* Bad free (baf) */

Duplicate Free (duf) Error

Problem: Attempt to free a heap block that has already been freed.

Possible causes: Calling free() more than once with the same pointer. In C++, using the delete
operator more than once on the same pointer.

Example:

char *a = (char *)malloc(1);

Chapter 9 • Using Runtime Checking 165

Runtime Checking Errors

free(a);

free(a); /* Duplicate free (duf) */

Misaligned Free (maf) Error

Problem: Attempt to free a misaligned heap block.

Possible causes: Passing an improperly aligned pointer to free() or realloc(); changing the
pointer returned by malloc.

Example:

char *ptr = (char *)malloc(4);

ptr++;

free(ptr); /* Misaligned free */

Misaligned Read (mar) Error

Problem: Attempt to read data from an address without proper alignment.

Possible causes: Reading 2, 4, or 8 bytes from an address that is not half-word-aligned, word-
aligned, or double-word-aligned, respectively.

Example:

char *s = “hello world”;

int *i = (int *)&s[1];

int j;

j = *i; /* Misaligned read (mar) */

Misaligned Write (maw) Error

Problem: Attempt to write data to an address without proper alignment.

Possible causes: Writing 2, 4, or 8 bytes to an address that is not half-word-aligned, word-
aligned, or double-word-aligned, respectively.

Example:

char *s = “hello world”;

int *i = (int *)&s[1];

166 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

Runtime Checking Errors

i = 0; / Misaligned write (maw) */

Out of Memory (oom) Error

Problem: Attempt to allocate memory beyond physical memory available.

Cause: Program cannot obtain more memory from the system. Useful in locating problems
that occur when the return value from malloc() is not checked for NULL, which is a common
programming mistake.

Example:

char *ptr = (char *)malloc(0x7fffffff);

/* Out of Memory (oom), ptr == NULL */

Read From Array Out-of-Bounds (rob) Error

Problem: Attempt to read from array out-of-bounds memory.

Possible causes: A stray pointer, overflowing the bounds of a heap block.

Example:

char *cp = malloc (10);

char ch = cp[10];

Read From Unallocated Memory (rua) Error

Problem: Attempt to read from nonexistent, unallocated, or unmapped memory.

Possible causes: A stray pointer, overflowing the bounds of a heap block or accessing a heap
block that has already been freed.

Example:

char *cp = malloc (10);

free (cp);

cp[0] = 0;

Read From Uninitialized Memory (rui) Error

Problem: Attempt to read from uninitialized memory.

Chapter 9 • Using Runtime Checking 167

Runtime Checking Errors

Possible causes: Reading local or heap data that has not been initialized.

Example:

foo()

{ int i, j;

 j = i; /* Read from uninitialized memory (rui) */

}

Write to Array Out-of-Bounds Memory (wob) Error

Problem: Attempt to write to array out-of-bounds memory.

Possible causes: A stray pointer or overflowing the bounds of a heap block.

Example:

char *cp = malloc (10);

cp[10] = 'a';

Write to Read-Only Memory (wro) Error

Problem: Attempt to write to read-only memory.

Possible causes: Writing to a text address, writing to a read-only data section (.rodata), or
writing to a page that mmap has made read-only.

Example:

foo()

{ int *foop = (int *) foo;

 foop = 0; / Write to read-only memory (wro) */

}

Write to Unallocated Memory (wua) Error

Problem: Attempt to write to nonexistent, unallocated, or unmapped memory.

Possible causes: A stray pointer, overflowing the bounds of a heap block, or accessing a heap
block that has already been freed.

Example:

168 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

Runtime Checking Errors

char *cp = malloc (10);

free (cp);

cp[0] = 0;

Memory Leak Errors

With leak checking enabled, runtime checking reports the following types of errors.

Address in Block (aib) Error

Problem: A possible memory leak. There is no reference to the start of an allocated block, but
there is at least one reference to an address within the block.

Possible causes: The only pointer to the start of the block is incremented.

Example:

char *ptr;

main()

{

 ptr = (char *)malloc(4);

 ptr++; /* Address in Block */

}

Address in Register (air) Error

Problem: A possible memory leak. An allocated block has not been freed and no reference to
the block exists anywhere in program memory but a reference exists in a register.

Possible causes: This situation can occur legitimately if the compiler keeps a program variable
only in a register instead of in memory. The compiler often does this for local variables and
function parameters when optimization is enabled. If this error occurs when optimization has
not been enabled, it is likely to be an actual memory leak. This situation can occur if the only
pointer to an allocated block goes out of scope before the block is freed.

Example:

if (i == 0) {

 char *ptr = (char *)malloc(4);

 /* ptr is going out of scope */

}

Chapter 9 • Using Runtime Checking 169

Runtime Checking Errors

 /* Memory Leak or Address in Register */

Memory Leak (mel) Error

Problem: An allocated block has not been freed and no reference to the block exists anywhere
in the program.

Possible causes: Program failed to free a block no longer used.

Example:

char *ptr;

 ptr = (char *)malloc(1);

 ptr = 0;

/* Memory leak (mel) */

170 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

 10 ♦ ♦ ♦ C H A P T E R 1 0

Debugging Multithreaded Applications

dbx can debug multithreaded applications that use either Oracle Solaris threads or POSIX
threads. With dbx, you can examine stack traces of each thread, resume all threads, step or
next a specific thread, and navigate between threads.

This chapter describes how to find information about and debug threads using the dbx thread
commands. It contains the following sections:

■ “Understanding Multithreaded Debugging” on page 171
■ “Understanding Thread Creation Activity” on page 175
■ “Understanding LWP Information” on page 176

Understanding Multithreaded Debugging

dbx recognizes a multithreaded program by detecting whether it utilizes libthread.so. The
program uses libthread.so either by explicitly being compiled with -lthread or -mt, or
implicitly by being compiled with -lpthread.

When it detects a multithreaded program, dbx tries to load libthread_db.so, a special system
library for thread debugging located in /usr/lib.

dbx is synchronous, so when any thread or lightweight process (LWP) stops, all other threads
and LWPs sympathetically stop. This behavior is sometimes referred to as the “stop the world”
model.

Note - For information on multithreaded programming and LWPs, see the Oracle Solaris
Multithreaded Programming Guide.

Chapter 10 • Debugging Multithreaded Applications 171

Understanding Multithreaded Debugging

Thread Information

The thread information shown in the following example is available in dbx.

(dbx) threads

 t@1 a l@1 ?() running in main()

 t@2 ?() asleep on 0xef751450 in_swtch()

 t@3 b l@2 ?() running in sigwait()

 t@4 consumer() asleep on 0x22bb0 in _lwp_sema_wait()

 *>t@5 b l@4 consumer() breakpoint in Queue_dequeue()

 t@6 b l@5 producer() running in _thread_start()

(dbx)

For native code, each line of information is composed of the following:

■ The * (asterisk) indicates that an event requiring user attention has occurred in this thread.
Usually this is a breakpoint.

An ’o’ instead of an asterisk indicates that a dbx internal event has occurred.
■ The > (arrow) denotes the current thread.
■ t@number, the thread id, refers to a particular thread. The number is the thread_t value

passed back by thr_create.
■ b l@number or a l@number means the thread is bound to or active on the designated LWP,

meaning the thread is actually runnable by the operating system.
■ The “Start function” of the thread as passed to thr_create. A ?() means that the start

function is not known.
■ The thread state .
■ The function that the thread is currently executing.

For Java code, each line of information is composed of the following:

■ t@number, a dbx-style thread ID
■ The thread state
■ The thread name in single quotation marks
■ A number indicating the thread priority

Thread and LWP States

suspended The thread has been explicitly suspended.

runnable The thread is runnable and is waiting for an LWP as a computational
resource.

172 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

Understanding Multithreaded Debugging

zombie When a detached thread exits (thr_exit)), it is in a zombie state until
it has rejoined through the use of thr_join(). THR_DETACHED is a flag
specified at thread creation time (thr_create()). A non-detached thread
that exits is in a zombie state until it has been reaped.

asleep on syncobj Thread is blocked on the given synchronization object. Depending on
what level of support libthread and libthread_db provide, syncobj
might be as simple as a hexadecimal address or something with more
information content.

active The thread is active on an LWP but dbx cannot access the LWP.

unknown dbx cannot determine the state.

lwpstate A bound or active thread state has the state of the LWP associated with it.

running LWP was running but was stopped in synchrony with some other LWP.

syscall num LWP stopped on an entry into the given system call #.

syscall return num LWP stopped on an exit from the given system call #.

job control LWP stopped due to job control.

LWP suspended LWP is blocked in the kernel.

single stepped LWP has just completed a single step.

breakpoint LWP has just hit a breakpoint.

fault num LWP has incurred the given fault #.

signal name LWP has incurred the given signal.

process sync The process to which this LWP belongs has just started executing.

LWP death LWP is in the process of exiting.

Viewing the Context of Another Thread

To switch the viewing context to another thread, use the thread command. The syntax is:

Chapter 10 • Debugging Multithreaded Applications 173

Understanding Multithreaded Debugging

thread [-blocks] [-blockedby] [-info] [-hide] [-unhide] [-suspend] [-resume] thread_id

To display the current thread:

thread

To switch to thread thread-ID:

thread thread-ID

For more information, see “thread Command” on page 396.

Viewing the Threads List

To view the threads list, use the threads command. The syntax is:

threads [-all] [-mode [all|filter] [auto|manual]]

To print the list of all known threads:

threads

To print threads normally not printed (zombies):

threads -all

For an explanation of the threads list, see “Thread Information” on page 172.

For more information on the threads command, see “threads Command” on page 398.

Resuming Execution

Use the cont command to resume program execution. Currently, threads use synchronous
breakpoints, so all threads resume execution. However, you can resume a single thread using
the call command with the -resumeone option.
Consider the following two scenarios when debugging a multithreaded application where many
threads call the function lookup():

■ You set a conditional breakpoint:

stop in lookup -if strcmp(name, "troublesome") == 0

When t@1 stops at the call to lookup(), dbx attempts to evaluate the condition and calls
strcmp().

174 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

Understanding Thread Creation Activity

■ You set a breakpoint:

stop in lookup

When t@1 stops at the call to lookup(), you issue the command:

call strcmp(name, "troublesome")

When calling strcmp(), dbx would resume all threads for the duration of the call, which is
similar to what dbx does when you are single-stepping with the next command. It does so
because resuming only t@1 has the potential to cause a deadlock if strcmp() tries to grab a lock
that is owned by another thread.

A drawback to resuming all threads in this case is that dbx cannot handle another thread, such as
t@2, hitting the breakpoint at lookup() whilestrcmp() is being called. It emits a warning like
one of the following:

event infinite loop causes missed events in following handlers:

Event reentrancy

first event BPT(VID 6, TID 6, PC echo+0x8)

second event BPT(VID 10, TID 10, PC echo+0x8)

the following handlers will miss events:

In such cases, if you can ascertain that the function called in the conditional expression will not
grab a mutex, you can use the -resumeone event modifier to force dbx to resume only t@1:

stop in lookup -resumeone -if strcmp(name, "troublesome") == 0

Only the thread that hit the breakpoint in lookup() would be resumed in order to evaluate
strcmp().
This approach does not help in cases such as the following examples:

■ If the second breakpoint on lookup() happens in the same thread because the conditional
recursively calls lookup()

■ If the thread on which the conditional runs yields, sleeps, or in some manner relinquishes
control to another thread

Understanding Thread Creation Activity

You can get an idea of how often your application creates and destroys threads by using the
thr_create event and thr_exit event, as in the following example:

Chapter 10 • Debugging Multithreaded Applications 175

Understanding LWP Information

(dbx) trace thr_create

(dbx) trace thr_exit

(dbx) run

trace: thread created t@2 on l@2

trace: thread created t@3 on l@3

trace: thread created t@4 on l@4

trace: thr_exit t@4

trace: thr_exit t@3

trace: thr_exit t@2

The application created three threads. Note how the threads exited in reverse order from their
creation, which might indicate that had the application had more threads, the threads would
accumulate and consume resources.

To get more extensive information, you could try the following example in a different session:

(dbx) when thr_create { echo "XXX thread $newthread created by $thread"; }

XXX thread t@2 created by t@1

XXX thread t@3 created by t@1

XXX thread t@4 created by t@1

The output shows that all three threads were created by thread t@1, which is a common
multithreading pattern.

Suppose you want to debug thread t@3 from its outset. You could stop the application at the
point that thread t@3 is created as follows:

(dbx) stop thr_create t@3

(dbx) run

t@1 (l@1) stopped in tdb_event_create at 0xff38409c

0xff38409c: tdb_event_create : retl

Current function is main

216 stat = (int) thr_create(NULL, 0, consumer, q, tflags, &tid_cons2);

(dbx)

If your application occasionally spawns a new thread from thread t@5 instead of thread t@1, you
could capture that event as follows:

(dbx) stop thr_create -thread t@5

Understanding LWP Information

Normally, you need not be aware of LWPs. However, sometimes thread level queries cannot be
completed. In these cases, use the lwps command to show information about LWPs.

176 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

Understanding LWP Information

(dbx) lwps

 l@1 running in main()

 l@2 running in sigwait()

 l@3 running in _lwp_sema_wait()

 *>l@4 breakpoint in Queue_dequeue()

 l@5 running in _thread_start()

(dbx)

Each line of the LWP list contains the following:

■ The * (asterisk) indicates that an event requiring user attention has occurred in this LWP.
■ The > (arrow) denotes the current LWP.
■ l@number refers to a particular LWP.
■ The LWP state.
■ The name of the function that the LWP is currently executing.

Use the lwp command to list or change the current LWP.

Chapter 10 • Debugging Multithreaded Applications 177

178 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

 11 ♦ ♦ ♦ C H A P T E R 1 1

Debugging Child Processes

This chapter describes how to debug a child process. dbx has several facilities to help you
debug processes that create children by using the fork (2) and exec (2) functions.
This chapter contains the following sections:

■ “Attaching to Child Processes” on page 179
■ “Following the exec Function” on page 180
■ “Following the fork Function” on page 180
■ “Interacting With Events” on page 180

Attaching to Child Processes

You can attach to a running child process in one of the following ways.

■ When starting dbx:

$ dbx program-name process-ID

■ From the dbx command line:

(dbx) debug program-name process-ID

If you include a - (minus sign) rather than a program name, dbx automatically finds the
executable associated with the given process ID. After using a -, a subsequent run command or
rerun command does not work because dbx does not know the full path name of the executable.

You can also attach to a running child process in the Oracle Developer StudioIDE. For more
information, see the online help fro the IDE and for dbxtool.

Chapter 11 • Debugging Child Processes 179

Following the exec Function

Following the exec Function

If a child process executes a new program using the exec(2)function or one of its variations,
the process ID does not change but the process image does. dbx automatically takes note of a
call to the exec() function and does an implicit reload of the newly executed program.

The original name of the executable is saved in $oprog. To return to it, use debug $oprog.

Following the fork Function

If a child process calls the vfork(2), fork1(2), or fork(2) function, the process ID changes,
but the process image stays the same, The behavior of dbx depends on how the dbxenv variable
follow_fork_mode is set.

parent In the traditional behavior, dbx ignores the fork and follows the parent.

child dbx automatically switches to the forked child using the new process ID.
All connection to and awareness of the original parent is lost.

both This mode is available only when using dbx through the Oracle
Developer Studio IDE or dbxtool.

ask You are prompted to choose parent, child, both, or stop to
investigate whenever dbx detects a fork. If you choose stop, you can
examine the state of the program, then type cont to continue. You will be
prompted again to select which way to proceed. both is supported only in
the Oracle Developer Studio IDE and dbxtool.

Interacting With Events

All breakpoints and other events are deleted for any exec() or fork() process.
You can override the deletion for forked processes by setting the dbxenv variable
follow_fork_inherit to on, or make the events permanent using the -perm eventspec
modifier. For more information about using event specification modifiers, see “cont at
Command” on page 270.

180 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

 12 ♦ ♦ ♦ C H A P T E R 1 2

Debugging OpenMP Programs

The OpenMP™ application programming interface (API) is a portable, parallel programming
model for shared memory multiprocessor architectures, developed in collaboration with a
number of computer vendors. Support for debugging Fortran, C++, and C OpenMP programs
with dbx is based on the general multithreaded debugging features of dbx.
This chapter contains the following sections:

■ “How Compilers Transform OpenMP Code” on page 181
■ “dbx Functionality Available for OpenMP Code” on page 182
■ “Execution Sequence of OpenMP Code” on page 189

See theOracle Developer Studio 12.5: OpenMP API User’s Guide for information on the
directives, runtime library routines, and environment variables comprising the OpenMP Version
4.0 Application Program Interfaces, as implemented by the Oracle Developer Studio Fortran
and C compilers.

How Compilers Transform OpenMP Code

To better describe OpenMP debugging, it is helpful to understand how OpenMP code is
transformed by the compilers. Consider the following Fortran example:

1 program example

2 integer i, n

3 parameter (n = 1000000)

4 real sum, a(n)

5

6 do i = 1, n

7 a(i) = i*i

8 end do

9

10 sum = 0

11

12 !$OMP PARALLEL DO DEFAULT(PRIVATE), SHARED(a, sum)

Chapter 12 • Debugging OpenMP Programs 181

http://www.oracle.com/pls/topic/lookup?ctx=E60778-01&id=OSSMP

dbx Functionality Available for OpenMP Code

13

14 do i = 1, n

15 sum = sum + a(i)

16 end do

17

18 !$OMP END PARALLEL DO

19

20 print*, sum

21 end program example

The code in line 12 through line 18 is a parallel region. The f95 compiler converts this section
of code to an outlined subroutine that will be called from the OpenMP runtime library. This
outlined subroutine has an internally generated name, in this case _$d1A12.MAIN_. The f95
compiler then replaces the code for the parallel region with a call to the OpenMP runtime
library and passes the outlined subroutine as one of its arguments. The OpenMP runtime library
handles all the thread-related issues and dispatches slave threads that execute the outlined
subroutine in parallel. The C compiler works in the same way.

When debugging an OpenMP program, the outlined subroutine is treated by dbx as any other
function, with the exception that you cannot explicitly set a breakpoint in that function by using
its internally generated name.

dbx Functionality Available for OpenMP Code

In addition to the usual functionality for debugging multithreaded programs, dbx provides
functionality for debugging an OpenMP program. All of the dbx commands that operate on
threads and LWPs can be used for OpenMP debugging. dbx does not support asynchronous
thread control in OpenMP debugging.

Single-Stepping Into a Parallel Region

dbx can single-step into a parallel region. Because a parallel region is outlined and called from
the OpenMP runtime library, a single step of execution actually involves several layers of
runtime library calls that are executed by threads created for this purpose. When you single-step
into the parallel region, the first thread that reaches the breakpoint causes the program to stop.
This thread might be a slave thread rather than the master thread that initiated the stepping.

For example, refer to the Fortran code in“How Compilers Transform OpenMP
Code” on page 181, and assume that master thread t@1 is at line 10. You single-step into line
12, and slave threads t@2, t@3, and t@4 are created to execute the runtime library calls. Thread
t@3 reaches the breakpoint first and causes the program execution to stop. The single step that

182 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

dbx Functionality Available for OpenMP Code

was initiated by thread t@1 therefore ends on thread t@3. This behavior is different from normal
stepping in which you are usually on the same thread after the single step as before.

Printing Variables and Expressions

dbx can print all shared, private, and thread-private variables. If you try to print a thread private
variable outside of a parallel region, the master thread’s copy is printed. The whatis command
prints data sharing attributes for shared and private variables within a parallel construction. It
prints data sharing attributes for thread-private variables regardless of whether they are within a
parallel construction. For example:

(dbx) whatis p_a

OpenMP first and last private variable

int p_a;

The print -s command prints the value of an expression expression for each thread in the
current OpenMP parallel region if the expression contains private or thread private variables.
For example:

(dbx) print -s p_a

thread t@3: p_a = 3

thread t@4: p_a = 3

If the expression does not contain any private or thread private variables, only one value is
printed.

Printing Region and Thread Information

Use the omp_pr command to print a description of the current parallel region or a specified
parallel region, including the parent region, parallel region ID, team size (number of threads),
and program location (program counter address). For example:

(dbx) omp_pr

parallel region 127283434369843201

 team size = 4

 source location = test.c:103

 parent = 127283430568755201

You can also print descriptions of all the parallel regions along the path from the current parallel
region or specified parallel region to its root. For example:

(dbx) omp_pr -ancestors

parallel region 127283434369843201

Chapter 12 • Debugging OpenMP Programs 183

dbx Functionality Available for OpenMP Code

 team size = 4

 source location = test.c:103

 parent = 127283430568755201

 parallel region 127283430568755201

 team size = 4

 source location = test.c:95

 parent = <no parent>

You can also print the whole parallel region tree. For example:

(dbx) omp_pr -tree

parallel region 127283430568755201

 team size = 4

 source location = test.c:95

 parent = <no parent>

 parallel region 127283434369843201

 team size = 4

 source location = test.c:103

 parent = 127283430568755201

For more information, see “omp_pr Command” on page 366.

Use the omp_tr command to print a description of the current task region or a specified task
region, including the task region ID, state (spawned, executing, waiting), executing thread,
program location (program counter address), unfinished children, and parent. For example:

(dbx) omp_tr

task region 65540

 type = implicit

 state = executing

 executing thread = t@4

 source location == test.c:46

 unfinished children = 0

 parent = <no parent>

You can also print descriptions of all the task regions along the path from the current task region
or specified task region to its root.

(dbx) omp_tr -ancestors

task region 196611

 type = implicit

 state = executing

 executing thread = t@3

 source location - test.c:103

 unfinished children = 0

 parent = 131075

184 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

dbx Functionality Available for OpenMP Code

 task region 131075

 type = implicit

 state = executing

 executing thread = t@3

 unfinished children = 0

 parent = <no parent>

And you can print the whole task region tree. For example:

(dbx) omp_tr -tree

task region 10

 type = implicit

 state = executing

 executing thread = t@10

 source location = test.c:103

 unfinished children = 0

 parent = <no parent>

task region 7

 type = implicit

 state = executing

 executing thread = t@7

 source location = test.c:103

 unfinished children = 0

 parent = <no parent>

task region 6

 type implicit

 state = executing

 executing thread = t@6

 source location = test.c:103

 unfinished children = 0

 parent = <o parent>

task region 196609

 type = implicit

 state = executing

 executing thread = t@1

 source location = test.c:95

 unfinished children = 0

 parent = <no parent>

 task region 262145

 type = implicit

 state = executing

 executing thread = t@1

 source location = test.c:103

 unfinished children - 0

 parent = 196609

For more information, see “omp_tr Command” on page 367.

Chapter 12 • Debugging OpenMP Programs 185

dbx Functionality Available for OpenMP Code

Use the omp_loop command to print a description of the current loop, including the scheduling
type (static, dynamic, guided, auto, or runtime), ordered or not, bounds, steps or strides, and
number of iterations. For example:

(dbx) omp_loop

 ordered loop: no

 lower bound: 0

 upper bound: 3

 step: 1

 chunk: 1

 schedule type: static

 source location: test.c:49

For more information, see “omp_loop Command” on page 366.

Use the omp_team command to print all the threads on the current team or the team of a
specified parallel region. For example:

(dbx) omp_team

team members:

 0: t@1 state = in implicit barrier, task region = 262145

 1: t@6 state = in implicit barrier, task region = 6

 2: t@7 state = working, task region = 7

 3: t@10 state = in implicit barrier, task region = 10

For more information, see “omp_team Command” on page 367.

When you are debugging OpenMP code, the thread -info prints the OpenMP thread
ID, parallel region ID, task region ID, and OpenMP thread state, in addition to the usual
information about the current or specified thread. For more information, see “thread
Command” on page 396.

Serializing the Execution of a Parallel Region

Use the omp_serialize command to serialize the execution of the next encountered parallel
region for the current thread or for all threads in the current team. For more information, see
“omp_serialize Command” on page 367.

Using Stack Traces

When execution is stopped in a parallel region, a where command shows a stack trace that
contains the outlined subroutine.

186 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

dbx Functionality Available for OpenMP Code

(dbx) where

current thread: t@4

=>[1] _$d1E48.main(), line 52 in "test.c"

 [2] _$p1I46.main(), line 48 in "test.c"

--- frames from parent thread ---

current thread: t@1

 [7] main(argc = 1, argv = 0xffffffff7fffec98), line 46 in "test.c"

The top frame on the stack is the frame of the outlined function. Even though the code is
outlined, the source line number still maps back to 15.

When execution is stopped in a parallel region, a where command from a slave thread prints the
master thread's stack trace if the relevant frames are still active. A where command from the
master thread has a full traceback.

You can also determine how execution reached the breakpoint in a slave thread by first using
the omp_team command to list all the threads in the current team, and then switching to the
master thread (the thread with the OpenMP thread ID 0) and getting a stack trace from that
thread.

Using the dump Command

When execution is stopped in a parallel region, a dump command might print more than one
copy of private variables. In the following example, the dump command prints two copies of the
variable i:

[t@1 l@1]: dump

i = 1

sum = 0.0

a = ARRAY

i = 1000001

Two copies of variable i are printed because the outlined routine is implemented as a nested
function of the hosting routine, and private variables are implemented as local variables of the
outlined routine. Because a dump command prints all the variables in scope, both the i in the
hosting routine and the i in the outlined routine are displayed.

Chapter 12 • Debugging OpenMP Programs 187

dbx Functionality Available for OpenMP Code

Using Events

dbx provides events you can use with the stop, when, and trace commands on your
OpenMP code. For information about using events with these commands, see “Setting Event
Specifications” on page 274.

Synchronization Events

omp_barrier

[type] [state]
Tracks the event of a thread entering a barrier.
type valid values are:
■ explicit – Track explicit barriers
■ implicit – Track implicit barriers

If you do not specify type, then only explicit barriers are tracked.
state valid values are:
■ enter – Report the event when any thread enters a barrier
■ exit – Report the event when any thread exits a barrier
■ all_entered – Report the event when all threads have entered a

barrier

If you do not specify state, the default is all_entered.

If you specify enter or exit, you can include a thread ID to specify
tracking only for that thread.

omp_taskwait

[state]
Tracks the event of a thread entering a taskwait.
state valid values are:
■ enter – Report the event when a thread enters a taskwait
■ exit – Report the event when all child tasks have finished

If you do not specify state, then exit is the default.

omp_ordered

[state]
Tracks the event of a thread entering an ordered region.
state valid values are:
■ begin – Report the event when an ordered region begins
■ enter – Report the event when a thread enters an ordered region
■ exit – Report the event when a thread exits an ordered region

188 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

Execution Sequence of OpenMP Code

If you do not specify state, then the default is enter.

omp_critical Tracks the event of a thread entering a critical region.

omp_atomic

[state]
Tracks the event of a thread entering an atomic region.
state valid values are:
■ begin – Report the event when an atomic region begins
■ exit – Report the event when a thread exits an atomic region

If you do not specify state, then the default is begin.

omp_flush Tracks the event of a thread executing a flush.

Other Events

omp_task [state] Tracks the creation and termination of tasks.
state valid values are:
■ create – Report the event when a task has just been created and

before its execution begins
■ start – Report the event when a task starts its execution
■ finish – Report the event when a task has finished its execution and

is about to be terminated

If you do not specify state, the default is start.

omp_master Tracks the event of the master thread entering the master region.

omp_single Tracks the event of a thread entering a single region.

Execution Sequence of OpenMP Code

When you are single-stepping inside a parallel region in an OpenMP program, the execution
sequence might not be the same as the source code sequence. This difference in sequence
occurs because the code in the parallel region is usually transformed and rearranged by the
compiler. Single-stepping in OpenMP code is similar to single-stepping in optimized code
where the optimizer has usually moved code around.

Chapter 12 • Debugging OpenMP Programs 189

190 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

 13 ♦ ♦ ♦ C H A P T E R 1 3

Working With Signals

This chapter describes how to use dbx to work with signals.
This chapter contains the following sections.

■ “Understanding Signal Events” on page 191
■ “Catching Signals” on page 192
■ “Sending a Signal to a Program” on page 196
■ “Automatically Handling Signals” on page 196

Understanding Signal Events

When a signal is to be delivered to a process that is being debugged, the signal is redirected
to dbx by the kernel. When this happens, you usually receive a prompt. You then have two
choices:

■ Cancel the signal when the program is resumed (the default behavior of the cont
command), facilitating easy interruption and resumption with SIGINT (Control-C), as shown
in Figure 2, “Intercepting and Cancelling the SIGINT Signal,” on page 192.

■ Forward the signal to the process using the following command:

cont -sig signal

signal can be either a signal name or a signal number.

Chapter 13 • Working With Signals 191

Catching Signals

FIGURE 2 Intercepting and Cancelling the SIGINT Signal

In addition, if a certain signal is received frequently, you can arrange for dbx to forward the
signal automatically because you do not want it displayed:

ignore signal

However, the signal is still forwarded to the process. A default set of signals is automatically
forwarded in this manner (see “ignore Command” on page 347).

Catching Signals

dbx supports the catch command, which instructs dbx to stop a program when dbx detects any
of the signals appearing on the catch list.

192 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

Catching Signals

By default, the catch list contains many of the more than 33 detectable signals. (The numbers
depend upon the operating system and version.) You can change the default catch list by adding
signals to or removing them from the default catch list.

Note - The list of signal names that dbx accepts includes all of those supported by the versions
of the Oracle Solaris operating environment that dbx supports. So dbx might accept a signal that
is not supported by the version of the Oracle Solaris operating environment you are running.
For example, dbx might accept a signal that is supported by the Oracle Solaris 9 OS even
through you are running the Oracle Solaris 7 OS. For a list of the signals supported by the
Oracle Solaris OS that you are running, see the signal(3head) man page.

To see the list of signals currently being trapped, type catch with no signal argument.

(dbx) catch

To see a list of the signals currently being ignored by dbx when the program detects them, type
ignore with no signal argument.

(dbx) ignore

Changing the Default Signal Lists
You control which signals cause the program to stop by moving the signal names from one list
to the other. To move signal names, supply a signal name that currently appears on one list as an
argument to the other list.

For example, to move the QUIT and ABRT signals from the catch list to the ignore list:

(dbx) ignore QUIT ABRT

Trapping the FPE Signal (Oracle Solaris Only)

Floating-point and integer arithmetic operations can cause exceptions like overflow or divide
by 0. Such exceptions are often silent such that the system returns a reasonable answer (e.g.
NaN) as the result for the operation that caused the exception. Therefore these exceptions are
not visible to dbx.

You can arrange for the exception to not be silent and instead cause a trap. Then the operating
system will convert the trap to a SIGFPE and deliver it to the process and dbx can intercept this
signal delivery. Note the following:

■ F77 by default does not trap on any floating-point exception.

Chapter 13 • Working With Signals 193

Catching Signals

■ F95 by default traps on invalid operand, divide-by-zero, and overflow exceptions, but not
underflow and inexact exceptions.

■ C and C++ do not trap on floating-point exceptions by default.
■ There is no provision for integer overflow to implicitly trigger a SIGFPE. On SPARC, you

can use the TVS (trap-on-overflow-set) assembly instruction. On SPARC or Intel, you can
use analogous branch-on-overflow-set instructions.

To find the cause of an exception, you need to set up a trap handler in the program so that the
exception triggers the signal SIGFPE.
You can enable a trap using the following:

■ fpsetmask – This function strictly controls the enabling of traps. See the fpsetmask(3C)
man page.
Example:

#include <ieeefp.h>

 int main() {

 fpsetmask(FP_X_INV|FP_X_OFL|FP_X_UFL|FP_X_DZ|FP_X_IMP);

 ...

■ ieee_handler – There is no exact analog of psetmask(3c) for Fortran. Instead, you can
enable traps by establishing the default behavior as follows.
Example:

 integer*4 ieeer

 ieeeer = ieee_handler('set', 'common', SIGFPE_DEFAULT)

See the ieee_environment(3f) and ieee_handler(3m) man pages for more information.
■ -ftrap compiler flag – This tag, like fpsetmask()(), strictly controls the enabling of traps.

For Fortran 95, see the f95(1) man page.

When you enable a floating-point trap handler using one of the previously mentioned methods,
the trap enable mask in the hardware floating-point status register is set. This trap enable mask
causes the exception to raise the SIGFPE signal at run time.

Once you have inserted a call to fpsetmask()() or ieee_handler()() or compiled the program
with the trap handler, load the program into dbx. SIGFPE is caught by default as of Oracle
Developer Studio 12.5. With older versions of dbx, ensure that the signal is still in the catch list.

(dbx) catch FPE

You can further tailor which specific exceptions you see by tweaking the parameters of
fpsetmask() and ieee_handler() by using an alternative to the dbx catch command which
acts like catch FPE, similar to the following.

194 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

Catching Signals

(dbx) stop sig FPE

(dbx) ignore SIGFPE #don't catch it twice

You can use the following code for finer control:

stop sig FPE subcode

where subcode can be one of the following:

FPE_INTDIV Integer divide by zero.

FPE_INTOVF Integer overflow.

FPE_FLTDIV Floating-point divide by zero.

FPE_FLTOVF Floating-point overflow.

FPE_FLTUND Floating-point underflow.

FPE_FLTRES Floating-point inexact result.

FPE_FLTINV Invalid floating-point operation,

FPE_FLTSUB Subscript out of range.

Determining Where the Exception Occurred

After adding FPE to the catch list, run the program in dbx. When the exception that you are
trapping occurs, the SIGFPE signal is raised and dbx stops the program. Then you can trace the
call stack using the dbx where command to help find the specific line number of the program
where the exception occurs.

Determining the Cause of the Exception

To determine the cause of the exception on SPARC, use the regs -f command to display the
floating point state register (FSR). Look at the accrued exception (aexc) and current exception
(cexc) fields of the register, which contain bits for the following floating-point exception
conditions:

■ Invalid operand
■ Overflow
■ Underflow

Chapter 13 • Working With Signals 195

Sending a Signal to a Program

■ Division by zero
■ Inexact result

On Intel, the floating-point status register is fstat for x87 and mxcsr for SSE.

For more information on the floating-point state register, see Version 8 (for V8) or Version 9
(for V9) of The SPARC Architecture Manual. For more discussion and examples, see Oracle
Developer Studio 12.5: Numerical Computation Guide.

Sending a Signal to a Program

The dbx cont command supports the -sig option, which enables you to resume execution of a
program with the program behaving as if it had received the system signal signal.

For example, if a program has an interrupt handler for SIGINT (^C), you can type ^C to stop
the application and return control to dbx. If you issue a cont command by itself to continue
program execution, the interrupt handler never executes. To execute the interrupt handler, send
the signal, SIGINT, to the program:

(dbx) cont -sig int

The step command, next command, and detach command also accept the -sig option.

Automatically Handling Signals

The event management commands can also deal with signals as events. The following two
commands have the same effect.

(dbx) stop sig signal
(dbx) catch signal

Having the signal event is more useful if you need to associate some pre-programmed action.

(dbx) when sig SIGCLD {echo Got $sig $signame;}

In this case, make sure to first move SIGCLD to the ignore list.

(dbx) ignore SIGCLD

196 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

http://www.oracle.com/pls/topic/lookup?ctx=E60778-01&id=OSSNC
http://www.oracle.com/pls/topic/lookup?ctx=E60778-01&id=OSSNC

 14 ♦ ♦ ♦ C H A P T E R 1 4

Debugging C++ With dbx

This chapter describes how dbx handles C++ exceptions and debugging C++ templates,
including a summary of commands used when completing these tasks and examples with code
samples. You can debug C++ with dbx normally, with the exceptions that are explained in this
chapter.
This chapter contains the following sections:

■ “Using dbx With C++” on page 197
■ “Exception Handling in dbx” on page 198
■ “Debugging With C++ Templates” on page 202

For information about compiling C++ programs, see “Compiling a Program for
Debugging” on page 47.

Using dbx With C++

Although this chapter concentrates on two specific aspects of debugging C++, dbx provides full
functionality when debugging your C++ programs. You can still do the following tasks with
your C++ program:

Note - All the following tasks have been explored in previous chapters.

Find out about class and type definitions See “Looking Up Definitions of Types and
Classes” on page 79

Print or display inherited data members See “Printing C++ Pointers” on page 120

Find out dynamic information about an
object pointer

See “Printing C++ Pointers” on page 120

Debug virtual functions See “Calling a Function” on page 92

Chapter 14 • Debugging C++ With dbx 197

Exception Handling in dbx

Using runtime type information See “Printing the Value of a Variable,
Expression, or Identifier” on page 120

Set breakpoints on all member functions of
a class

See “Setting Breakpoints in All Member
Functions of a Class” on page 100

Set breakpoints on all overloaded member
functions

See “Setting Breakpoints in Member Functions
of Different Classes” on page 100

Set breakpoints on all overloaded
nonmember functions

See “Setting Multiple Breakpoints in
Nonmember Functions” on page 101

Set breakpoints on all member functions of
a particular object

See “Setting Breakpoints in
Objects” on page 101

Deal with overloaded functions or data
members

See “Setting a Breakpoint in a
Function” on page 99

The rest of this chapter concentrates on two specific aspects of debugging C++.

Exception Handling in dbx

A program stops running if an exception occurs. Exceptions signal programming anomalies,
such as division-by-zero or array overflow. You can set up blocks to catch exceptions raised by
expressions elsewhere in the code.

While debugging a program, dbx enables you to do the following:

■ Catch unhandled exceptions before stack unwinding
■ Catch unexpected exceptions
■ Catch specific exceptions regardless of whether they are handled before stack unwinding
■ Determine where a specific exception would be caught if it occurred at a particular point in

the program

If you issue a step command after stopping at a point where an exception is thrown, control
is returned at the start of the first destructor executed during stack unwinding. If you step out
of a destructor executed during stack unwinding, control is returned at the start of the next
destructor. When all destructors have been executed, a step command brings you to the catch
block handling the throwing of the exception.

Commands for Handling Exceptions

This sections describes the dbx commands for handling exceptions.

198 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

Exception Handling in dbx

exception Command

The syntax for the exception command is as follows:

exception [-d | +d]

Use the exception command to display an exception’s type at any time during debugging. If
you use the exception command without an option, the type shown is determined by the setting
of the dbxenv variable output_dynamic_type:

■ If it is set to on, the derived type is shown.
■ If it is set to off (the default), the static type is shown.

Specifying the -d or +d option overrides the setting of the environment variable.

■ If you specify -d, the derived type is shown.
■ If you specify +d, the static type is shown.

For more information, see “exception Command” on page 339.

intercept Command

The syntax for the intercept command is as follows:

intercept [-all] [-x] [-set] [typename]

You can intercept, or catch, exceptions of a specific type before the stack has been unwound.

■ Use the intercept command with no arguments to list the types that are being intercepted.
■ Use -all to intercept all exceptions. Use typename to add a type to the intercept list.
■ Use -x to exclude a particular type to the excluded list to keep it from being intercepted.
■ Use -set to clear both the intercept list and the excluded list, and set the lists to intercept or

exclude only throws of the specified types.

For example, to intercept all types except int:

(dbx) intercept -all -x int

To intercept exceptions of type Error:

(dbx) intercept Error

After intercepting too many CommonError exceptions with the following command:

Chapter 14 • Debugging C++ With dbx 199

Exception Handling in dbx

(dbx) intercept -x CommonError

Typing the intercept command with no arguments would then show that the intercept list
includes unhandled exceptions and unexpected exceptions, which are intercepted by default,
plus exceptions of class Error except for those of class CommonError.

(dbx) intercept

-unhandled -unexpected class Error -x class CommonError

If you then realize that Error is not the class of exceptions that interests you, but you do
not know the name of the exception class you are looking for, you could try intercepting all
exceptions except those of class Error by typing:

(dbx) intercept -all -x Error

For more information, see “intercept Command” on page 348.

unintercept Command

The syntax for the unintercept command is as follows:

unintercept [-all] [-x] [typename]

■ Use the unintercept command to remove exception types from the intercept list or the
excluded list.

■ Use the command with no arguments to list the types that are being intercepted (same as the
intercept command).

■ Use -all to remove all types from the intercept list. Use typename to remove a type from
the intercept list. Use -x to remove a type from the excluded list.

For more information, see “unintercept Command” on page 200.

whocatches Command

The whocatches command reports where an exception of typename would be caught if thrown
at the current point of execution. Use this command to find out what would happen if an
exception were thrown from the top frame of the stack.

The line number, function name, and frame number of the catch clause that would catch
typename are displayed. The command returns “type is unhandled” if the catch point is in the
same function that is doing the throw.

200 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

Exception Handling in dbx

For more information, see “whocatches Command” on page 200.

Examples of Exception Handling

This example demonstrates exception handling in dbx by using a sample program containing
exceptions. An exception of type int is thrown in the function bar and is caught in the
following catch block.

1 #include <stdio.h>

2

3 class c {

4 int x;

5 public:

6 c(int i) { x = i; }

7 ~c() {

8 printf("destructor for c(%d)\n", x);

9 }

10 };

11

12 void bar() {

13 c c1(3);

14 throw(99);

15 }

16

17 int main() {

18 try {

19 c c2(5);

20 bar();

21 return 0;

22 }

23 catch (int i) {

24 printf("caught exception %d\n", i);

25 }

26 }

The following transcript from the example program shows the exception handling features in
dbx.

(dbx) intercept

-unhandled -unexpected

(dbx) intercept int

<dbx> intercept

-unhandled -unexpected int

(dbx) stop in bar

(2) stop in bar()

(dbx)run

Chapter 14 • Debugging C++ With dbx 201

Debugging With C++ Templates

Running: a.out

(process id 304)

Stopped in bar at line 13 in file “foo.cc”

 13 c c1(3);

(dbx) whocatches int

int is caught at line 24, in function main (frame number 2)

(dbx) whocatches c

dbx: no runtime type info for class c (never thrown or caught)

(dbx) cont

Exception of type int is caught at line 24, in function main (frame number 4)

stopped in _exdbg_notify_of_throw at 0xef731494

0xef731494: _exdbg_notify_of_throw : jmp %o7 + 0x8

Current function is bar

 14 throw(99);

(dbx) step

stopped in c::~c at line 8 in file "foo.cc"

 8 printf("destructor for c(%d)\n", x);

(dbx) step

destructor for c(3)

stopped in c::~c at line 9 in file "foo.cc"

 9 }

(dbx) step

stopped in c::~c at line 8 in file "foo.cc"

 8 printf("destructor for c(%d)\n", x);

(dbx) step

destructor for c(5)

stopped in c::~c at line 9 in file "foo.cc"

 9)

(dbx) step

stopped in main at line 24 in file "foo.cc"

 24 printf("caught exception %d\n", i);

(dbx) step

caught exception 99

stopped in main at line 26 in file "foo.cc"

 26 }

Note - The examples used in this section were built with the Oracle Developer Studio
compilers. The examples would differ if compiling the code with gcc.

Debugging With C++ Templates

dbx supports C++ templates. You can load programs containing class and function templates
into dbx and invoke any of the dbx commands on a template that you would use on a class or
function:

202 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

Debugging With C++ Templates

Setting breakpoints at class or function template
instantiations

See “stop inclass Command” on page 206,
“stop inclass Command” on page 206, and
“stop in Command” on page 207.

Printing a list of all class and function template
instantiations

See “whereis Command” on page 205

Displaying the definitions of templates and instances See “whatis Command” on page 205

Calling member template functions and function template
instantiations

See “call Command” on page 207

Printing values of function template instantiations See“print Expressions” on page 208

Displaying the source code for function template
instantiations

See “list Expressions” on page 208

Template Example

The following code example shows the class template Array and its instantiations and the
function template square and its instantiations.

 1 template<class C> void square(C num, C *result)

 2 {

 3 *result = num * num;

 4 }

 5

 6 template<class T> class Array

 7 {

 8 public:

 9 int getlength(void)

10 {

11 return length;

12 }

13

14 T & operator[](int i)

15 {

16 return array[i];

17 }

18

19 Array(int l)

20 {

21 length = l;

22 array = new T[length];

23 }

24

25 ~Array(void)

26 {

27 delete [] array;

28 }

Chapter 14 • Debugging C++ With dbx 203

Debugging With C++ Templates

29

30 private:

31 int length;

32 T *array;

33 };

34

35 int main(void)

36 {

37 int i, j = 3;

38 square(j, &i);

39

40 double d, e = 4.1;

41 square(e, &d);

42

43 Array<int> iarray(5);

44 for (i = 0; i < iarray.getlength(); ++i)

45 {

46 iarray[i] = i;

47 }

48

49 Array<double> darray(5);

50 for (i = 0; i < darray.getlength(); ++i)

51 {

52 darray[i] = i * 2.1;

53 }

54

55 return 0;

56 }

In the example:

■ Array is a class template
■ square is a function template
■ Array<int> is a class template instantiation (template class)
■ Array<int>::getlength is a member function of a template class
■ square(int, int*) and square(double, double*) are function template instantiations

(template functions)

Commands for C++ Templates

Use these commands on templates and template instantiations. Once you know the class or type
definitions, you can print values, display source listings, or set breakpoints.

204 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

Debugging With C++ Templates

whereis Command

Use the whereis command to print a list of all occurrences of function or class instantiations for
a function or class template.

For a class template:

(dbx) whereis Array

member function: `Array<int>::Array(int)

member function: `Array<double>::Array(int)

class template instance: `Array<int>

class template instance: `Array<double>

class template: `a.out`template_doc_2.cc`Array

For a function template:

(dbx) whereis square

function template instance: `square<int>(__type_0,__type_0*)

function template instance: `square<double>(__type_0,__type_0*)

function template: `a.out`template_doc_2.cc`square

The __type_0 parameter refers to the 0th template parameter. A __type_1 would refer to the
next template parameter.

For more information, see “whereis Command” on page 205.

whatis Command

Use the whatis command to print the definitions of function and class templates and
instantiated functions and classes.

For a class template:

(dbx) whatis -t Array

template<class T> class Array

To get the full template declaration, try `whatis -t Array<int>’;

For the class template’s constructors:

(dbx) whatis Array

More than one identifier ’Array’.

Select one of the following:

 0) Cancel

Chapter 14 • Debugging C++ With dbx 205

Debugging With C++ Templates

 1) Array<int>::Array(int)

 2) Array<double>::Array(int)

> 1

Array<int>::Array(int 1);

For a function template:

(dbx) whatis square

More than one identifier ’square’.

Select one of the following:

 0) Cancel

 1) square<int(__type_0,__type_0*)

 2) square<double>(__type_0,__type_0*)

> 2

void square<double>(double num, double *result);

For a class template instantiation:

(dbx) whatis -t Array<double>

class Array<double> {

public:

 int Array<double>::getlength()

 double &Array<double>::operator [](int i);

 Array<double>::Array<double>(int l);

 Array<double>::~Array();

private:

 int length;

 double *array;

};

For a function template instantiation:

(dbx) whatis square(int, int*)

void square(int num, int *result);

For more information, see “whatis Command” on page 205.

stop inclass Command

To stop in all member functions of a template class:

(dbx)stop inclass Array

(2) stop inclass Array

Use the stop inclass command to set breakpoints at all member functions of a particular
template class:

206 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

Debugging With C++ Templates

(dbx) stop inclass Array<int>

(2) stop inclass Array<int>

For more information, see “stop in Command” on page 207 and “inclass Event
Specification” on page 277.

stop infunction Command

Use the stop infunction command to set breakpoints at all instances of the specified function
template:

(dbx) stop infunction square

(9) stop infunction square

For more information, see “stop infunction Command” on page 207 and “infunction
Event Specification” on page 276.

stop in Command

Use the stop in command to set a breakpoint at a member function of a template class or at a
template function.

For a member of a class template instantiation:

(dbx) stop in Array<int>::Array(int l)

(2) stop in Array<int>::Array(int)

For a function instantiation:

(dbx) stop in square(double, double*)

(6) stop in square<double>(__type_0,__type_0*)

For more information, “stop in Command” on page 207 and “in Event
Specification” on page 275.

call Command

Use the call command to explicitly call a function instantiation or a member function of a class
template when you are stopped in scope. If dbx is unable to determine the correct instance, it
displays a numbered list of instances from which you can choose.

(dbx) call square(j,&i)

Chapter 14 • Debugging C++ With dbx 207

Debugging With C++ Templates

For more information, see “call Command” on page 310.

print Expressions

Use the print command to evaluate a function instantiation or a member function of a class
template.

(dbx) print iarray.getlength()

iarray.getlength() = 5

Use print to evaluate the this pointer.

(dbx) whatis this

class Array<int> *this;

(dbx) print *this

*this = {

 length = 5

 array = 0x21608

}

For more information, see “print Command” on page 370.

list Expressions

Use the list command to print the source listing for the specified function instantiation.

(dbx) list square(int, int*)

For more information, see “list Command” on page 352.

208 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

 15 ♦ ♦ ♦ C H A P T E R 1 5

Debugging Fortran Using dbx

This chapter introduces dbx features you might use with Fortran. Sample requests to dbx are
also included to provide you with assistance when debugging Fortran code using dbx.
This chapter includes the following topics:

■ “Debugging Fortran” on page 209
■ “Debugging Segmentation Faults” on page 213
■ “Locating Exceptions” on page 214
■ “Tracing Calls” on page 214
■ “Working With Arrays” on page 215
■ “Showing Intrinsic Functions” on page 217
■ “Showing Complex Expressions” on page 218
■ “Showing Logical Operators” on page 219
■ “Viewing Fortran Derived Types” on page 220
■ “Pointer to Fortran Derived Type” on page 221

Debugging Fortran

The following tips and general concepts are provided to help you while debugging Fortran
programs. For information about debugging Fortran OpenMP code with dbx, see “Interacting
With Events” on page 180.

Current Procedure and File

During a debug session, dbx defines a procedure and a source file as current. Requests to set
breakpoints and to print or set variables are interpreted relative to the current function and file.
Thus, stop at 5 sets different breakpoints, depending on which file is current.

Chapter 15 • Debugging Fortran Using dbx 209

Debugging Fortran

Uppercase Letters

If your program has uppercase letters in any identifiers, dbx recognizes them. You need not
provide case-sensitive or case-insensitive commands, as in some earlier versions.

Fortran and dbx must be in the same case-sensitive or case-insensitive mode:

■ Compile and debug in case-insensitive mode without the -U option. The default value of the
dbx input_case_sensitive environment variable is then false.

If the source has a variable named LAST, then in dbx, both the print LAST or print last
commands work. Fortran and dbx consider LAST and last to be the same, as requested.

■ Compile and debug in case-sensitive mode using -U. The default value of the dbx
input_case_sensitive environment variable is then true.

If the source has a variable named LAST and one named last, then in dbx, print last works
but print LAST does not work. Fortran and dbx distinguish between LAST and last, as
requested.

Note - File or directory names are always case-sensitive in dbx, even if you have set the dbx
input_case_sensitive environment variable to false.

Sample dbx Session

The following examples use a sample program called my_program.

Main program for debugging, a1.f:

 PARAMETER (n=2)

 REAL twobytwo(2,2) / 4 *-1 /

 CALL mkidentity(twobytwo, n)

 PRINT *, determinant(twobytwo)

 END

Subroutine for debugging, a2.f:

 SUBROUTINE mkidentity (array, m)

 REAL array(m,m)

 DO 90 i = 1, m

 DO 20 j = 1, m

 IF (i .EQ. j) THEN

 array(i,j) = 1.

210 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

How to Run the Sample dbx Session

 ELSE

 array(i,j) = 0.

 END IF

20 CONTINUE

90 CONTINUE

 RETURN

 END

Function for debugging, a3.f:

 REAL FUNCTION determinant (a)

 REAL a(2,2)

 determinant = a(1,1) * a(2,2) - a(1,2) * a(2,1)

 RETURN

 END

How to Run the Sample dbx Session

1. Compile and link with the - g option.
You can do this in one or two steps.

■ To compile and link in one step:

 demo% f95 -o my_program -g a1.f a2.f a3.f

■ To compile and link in separate steps:

 demo% f95 -c -g a1.f a2.f a3.f

 demo% f95 -o my_program a1.o a2.o a3.o

2. Start dbx on the executable named my_program.

 demo% dbx my_program

 Reading symbolic information…

3. Set a simple breakpoint.
To stop at the first executable statement in a main program.

 (dbx) stop in MAIN

 (2) stop in MAIN

Although the main program MAIN must be all uppercase, the names of subroutines, functions, or
block data subprogramas can be uppercase or lowercase.

4. Run the program in the executable files named when you started dbx.

Chapter 15 • Debugging Fortran Using dbx 211

How to Run the Sample dbx Session

 (dbx) run

 Running: my_program

 stopped in MAIN at line 3 in file "a1.f"

 3 call mkidentity(twobytwo, n)

When the breakpoint is reached, dbx displays a message showing where it stopped, in this case,
at line 3 of the a1.f file.

5. Print a value.
Print the value of n:

 (dbx) print n

 n = 2

To print the matrix twobytwo, the format might vary:

 (dbx) print twobytwo

 twobytwo =

 (1,1) -1.0

 (2,1) -1.0

 (1,2) -1.0

 (2,2) -1.0

Note that you cannot print the matrix array because array is not defined here, only in
mkidentity.

6. Advance execution to the next line.

(dbx) next

stopped in MAIN at line 4 in file "a1.f"

 4 print *, determinant(twobytwo)

(dbx) print twobytwo

twobytwo =

 (1,1) 1.0

 (2,1) 0.0

 (1,2) 0.0

 (2,2) 1.0

(dbx) quit

demo%

The next command executes the current source line and stops at the next line. It counts
subprogram calls as single statements.

7. Quit dbx.

(dbx)quit

demo%

212 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

Debugging Segmentation Faults

Debugging Segmentation Faults

If a program experiences a segmentation fault (SIGSEGV), it references a memory address
outside of the memory available to it.
The most frequent causes for a segmentation fault are:

■ An array index is outside the declared range.
■ The name of an array index is misspelled.
■ The calling routine has a REAL argument, which the called routine has as INTEGER.
■ An array index is miscalculated.
■ The calling routine has fewer arguments than required.
■ A pointer is used before it has been defined.

Using dbx to Locate Problems

Use dbx to find the source code line where a segmentation fault has occurred.

Use a program to generate a segmentation fault.

demo% cat WhereSEGV.f

 INTEGER a(5)

 j = 2000000

 DO 9 i = 1,5

 a(j) = (i * 10)

9 CONTINUE

 PRINT *, a

 END

demo%

Use dbx to find the line number of a dbx segmentation fault.

demo% f95 -g -silent WhereSEGV.f

demo% a.out

Segmentation fault

demo% dbx a.out

Reading symbolic information for a.out

program terminated by signal SEGV (segmentation violation)

(dbx) run

Running: a.out

signal SEGV (no mapping at the fault address)

 in MAIN at line 4 in file "WhereSEGV.f"

 4 a(j) = (i * 10)

(dbx)

Chapter 15 • Debugging Fortran Using dbx 213

Locating Exceptions

Locating Exceptions

A program can throw an exception for many possible reasons. One approach to locating the
problem is to find the line number in the source program where the exception occurred, and
then examine that location.

Compiling with -ftrap=common forces trapping on all common exceptions.

To find where an exception occurred:

demo% cat wh.f

 call joe(r, s)

 print *, r/s

 end

 subroutine joe(r,s)

 r = 12.

 s = 0.

 return

 end

demo% f95 -g -o wh -ftrap=common wh.f

demo% dbx wh

Reading symbolic information for wh

(dbx) catch FPE

(dbx) run

Running: wh

(process id 17970)

signal FPE (floating point divide by zero) in MAIN at line 2 in file “wh.f”

 2 print *, r/s

(dbx)

Tracing Calls
Sometimes a program stops with a core dump, and you need to know the sequence of calls that
led it there. This sequence is called a stack trace.

The where command shows where in the program flow execution stopped and how execution
reached this point, a stack trace of the called routines.

ShowTrace.f is a program written to get a core dump a few levels deep in the call sequence, to
show a stack trace.

Note the reverse order:
demo% f77 -silent -g ShowTrace.f

demo% a.out

214 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

Working With Arrays

MAIN called calc, calc called calcb.
*** TERMINATING a.out

*** Received signal 11 (SIGSEGV)

Segmentation Fault (core dumped)

quil 174% dbx a.out

Execution stopped, line 23
Reading symbolic information for a.out

...

(dbx) run

calcB called from calc, line 9
Running: a.out

(process id 1089)

calc called from MAIN, line 3
signal SEGV (no mapping at the fault address) in calcb at line 23 in file "ShowTrace.f"

 23 v(j) = (i * 10)

(dbx) where -V

=>[1] calcb(v = ARRAY , m = 2), line 23 in "ShowTrace.f"

 [2] calc(a = ARRAY , m = 2, d = 0), line 9 in "ShowTrace.f"

 [3] MAIN(), line 3 in "ShowTrace.f"

(dbx)

Show the sequence of calls, starting at where the execution stopped:

Working With Arrays

dbx recognizes arrays and can print them.

demo% dbx a.out

Reading symbolic information…

(dbx) list 1,25

 1 DIMENSION IARR(4,4)

 2 DO 90 I = 1,4

 3 DO 20 J = 1,4

 4 IARR(I,J) = (I*10) + J

 5 20 CONTINUE

 6 90 CONTINUE

 7 END

(dbx) stop at 7

(1) stop at "Arraysdbx.f":7

(dbx) run

Running: a.out

stopped in MAIN at line 7 in file "Arraysdbx.f"

 7 END

(dbx) print IARR

iarr =

 (1,1) 11

 (2,1) 21

Chapter 15 • Debugging Fortran Using dbx 215

Working With Arrays

 (3,1) 31

 (4,1) 41

 (1,2) 12

 (2,2) 22

 (3,2) 32

 (4,2) 42

 (1,3) 13

 (2,3) 23

 (3,3) 33

 (4,3) 43

 (1,4) 14

 (2,4) 24

 (3,4) 34

 (4,4) 44

(dbx) print IARR(2,3)

 iarr(2, 3) = 23 - Order of user-specified subscripts ok

(dbx) quit

For more information, see “Array Slicing Syntax for Fortran” on page 125.

Fortran Allocatable Arrays

The following example shows how to work with change to allocatable arrays in dbx.

demo% f95 -g Alloc.f95

 demo% dbx a.out

 (dbx) list 1,99

 1 PROGRAM TestAllocate

 2 INTEGER n, status

 3 INTEGER, ALLOCATABLE :: buffer(:)

 4 PRINT *, ’Size?’

 5 READ *, n

 6 ALLOCATE(buffer(n), STAT=status)

 7 IF (status /= 0) STOP ’cannot allocate buffer’

 8 buffer(n) = n

 9 PRINT *, buffer(n)

 10 DEALLOCATE(buffer, STAT=status)

 11 END

 (dbx) stop at 6

 (2) stop at "alloc.f95":6

 (dbx) stop at 9

 (3) stop at "alloc.f95":9

 (dbx) run

 Running: a.out

 (process id 10749)

216 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

Showing Intrinsic Functions

 Size?

 1000

 stopped in main at line 6 in file "alloc.f95"

 6 ALLOCATE(buffer(n), STAT=status)

 (dbx) whatis buffer

 integer*4 , allocatable::buffer(:)

 (dbx) next

 continuing

 stopped in main at line 7 in file "alloc.f95"

 7 IF (status /= 0) STOP ’cannot allocate buffer’

 (dbx) whatis buffer

 integer*4 buffer(1:1000)

 (dbx) cont

 stopped in main at line 9 in file "alloc.f95"

 9 PRINT *, buffer(n)

 (dbx) print n

buffer(1000) holds 1000
 n = 1000

 (dbx) print buffer(n)

 buffer(n) = 1000

Showing Intrinsic Functions

dbx recognizes Fortran intrinsic functions (SPARC platforms and x86 platforms only).

To show an intrinsic function in dbx:

demo% cat ShowIntrinsic.f

 INTEGER i

 i = -2

 END

(dbx) stop in MAIN

(2) stop in MAIN

(dbx) run

Running: shi

(process id 18019)

stopped in MAIN at line 2 in file "shi.f"

 2 i = -2

(dbx) whatis abs

Generic intrinsic function: "abs"

(dbx) print i

i = 0

(dbx) step

stopped in MAIN at line 3 in file "shi.f"

 3 end

(dbx) print i

Chapter 15 • Debugging Fortran Using dbx 217

Showing Complex Expressions

i = -2

(dbx) print abs(i)

abs(i) = 2

(dbx)

Showing Complex Expressions

dbx also recognizes Fortran complex expressions.

To show a complex expression in dbx:

demo% cat ShowComplex.f

 COMPLEX z

 z = (2.0, 3.0)

 END

demo% f95 -g ShowComplex.f

demo% dbx a.out

(dbx) stop in MAIN

(dbx) run

Running: a.out

(process id 10953)

stopped in MAIN at line 2 in file "ShowComplex.f"

 2 z = (2.0, 3.0)

(dbx) whatis z

complex*8 z

(dbx) print z

z = (0.0,0.0)

(dbx) next

stopped in MAIN at line 3 in file "ShowComplex.f"

 3 END

(dbx) print z

z = (2.0,3.0)

(dbx) print z+(1.0,1.0)

z+(1,1) = (3.0,4.0)

(dbx) quit

demo%

Showing Interval Expressions

To show an interval expression in dbx:

demo% cat ShowInterval.f95

218 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

Showing Logical Operators

 INTERVAL v

 v = [37.1, 38.6]

 END

demo% f95 -g -xia ShowInterval.f95

demo% dbx a.out

(dbx) stop in MAIN

(2) stop in MAIN

(dbx) run

Running: a.out

(process id 5217)

stopped in MAIN at line 2 in file "ShowInterval.f95"

 2 v = [37.1, 38.6]

(dbx) whatis v

INTERVAL*16 v

(dbx) print v

v = [0.0,0.0]

(dbx) next

stopped in MAIN at line 3 in file "ShowInterval.f95"

 3 END

(dbx) print v

v = [37.1,38.6]

(dbx) print v+[0.99,1.01]

v+[0.99,1.01] = [38.09,39.61]

(dbx) quit

demo%

Showing Logical Operators

dbx can locate Fortran logical operators and print them.

To show logical operators in dbx:

demo% cat ShowLogical.f

 LOGICAL a, b, y, z

 a = .true.

 b = .false.

 y = .true.

 z = .false.

 END

demo% f95 -g ShowLogical.f

demo% dbx a.out

(dbx) list 1,9

 1 LOGICAL a, b, y, z

 2 a = .true.

 3 b = .false.

 4 y = .true.

Chapter 15 • Debugging Fortran Using dbx 219

Viewing Fortran Derived Types

 5 z = .false.

 6 END

(dbx) stop at 5

(2) stop at "ShowLogical.f":5

(dbx) run

Running: a.out

(process id 15394)

stopped in MAIN at line 5 in file "ShowLogical.f"

 5 z = .false.

(dbx) whatis y

logical*4 y

(dbx) print a .or. y

a.OR.y = true

(dbx) assign z = a .or. y

(dbx) print z

z = true

(dbx) quit

demo%

Viewing Fortran Derived Types

You can show structures, Fortran derived types, with dbx.

demo% f95 -g DebStruc.f95

demo% dbx a.out

(dbx) list 1,99

 1 PROGRAM Struct ! Debug a Structure

 2 TYPE product

 3 INTEGER id

 4 CHARACTER*16 name

 5 CHARACTER*8 model

 6 REAL cost

 7 REAL price

 8 END TYPE product

 9

 10 TYPE(product) :: prod1

 11

 12 prod1%id = 82

 13 prod1%name = "Coffee Cup"

 14 prod1%model = "XL"

 15 prod1%cost = 24.0

 16 prod1%price = 104.0

 17 WRITE (*, *) prod1%name

 18 END

(dbx) stop at 17

(2) stop at "Struct.f95":17

220 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

Pointer to Fortran Derived Type

(dbx) run

Running: a.out

(process id 12326)

stopped in main at line 17 in file "Struct.f95"

 17 WRITE (*, *) prod1%name

(dbx) whatis prod1

product prod1

(dbx) whatis -t product

type product

 integer*4 id

 character*16 name

 character*8 model

 real*4 cost

 real*4 price

end type product

(dbx) n

(dbx) print prod1

 prod1 = (

 id = 82

 name = ’Coffee Cup’

 model = ’XL’

 cost = 24.0

 price = 104.0

)

Pointer to Fortran Derived Type

You can show structures, Fortran derived types, and pointers with dbx.

demo% f95 -o debstr -g DebStruc.f95

 demo% dbx debstr

 (dbx) stop in MAIN

 (2) stop in MAIN

 (dbx) list 1,99

 1 PROGRAM DebStruPtr! Debug structures & pointers
Declare a derived type.
 2 TYPE product

 3 INTEGER id

 4 CHARACTER*16 name

 5 CHARACTER*8 model

 6 REAL cost

 7 REAL price

 8 END TYPE product

 9

Declare prod1 and prod2 targets.
 10 TYPE(product), TARGET :: prod1, prod2

Chapter 15 • Debugging Fortran Using dbx 221

Pointer to Fortran Derived Type

Declare curr and prior pointers.
 11 TYPE(product), POINTER :: curr, prior

 12

Make curr point to prod2.
 13 curr => prod2

Make prior point to prod1.
 14 prior => prod1

Initialize prior.
 15 prior%id = 82

 16 prior%name = "Coffee Cup"

 17 prior%model = "XL"

 18 prior%cost = 24.0

 19 prior%price = 104.0

Set curr to prior.
 20 curr = prior

Print name from curr and prior.
 21 WRITE (*, *) curr%name, " ", prior%name

 22 END PROGRAM DebStruPtr

 (dbx) stop at 21

 (1) stop at "DebStruc.f95":21

 (dbx) run

 Running: debstr

(process id 10972)

stopped in main at line 21 in file "DebStruc.f95"

 21 WRITE (*, *) curr%name, " ", prior%name

(dbx) print prod1

 prod1 = (

 id = 82

 name = "Coffee Cup"

 model = "XL"

 cost = 24.0

 price = 104.0

)

In the previous example, dbx displays all fields of the derived type, including field names.

You can use structures and inquire about an item of a Fortran derived type.

Ask about the variable
(dbx) whatis prod1

 product prod1

Ask about the type (-t)
 (dbx) whatis -t product

 type product

 integer*4 id

 character*16 name

 character*8 model

 real cost

 real price

222 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

Object Oriented Fortran

 end type product

To print a pointer:

dbx displays the contents of a pointer, which is an address. This address can be different with every run.
(dbx) print prior

 prior = (

 id = 82

 name = ’Coffee Cup’

 model = ’XL’

 cost = 24.0

 price = 104.0

)

Object Oriented Fortran

The Object Oriented Fortran features supported in dbx are type extension and polymorphic
pointers, which is consistent with C++ support.

The dbxenv variables output_dynamic_type and output_inherited_members work with
Fortran.

You can use the -r, +r, -d, and +d options with the print and whatis commands to get
information about the inherited (parent) types and the dynamic types in Object Oriented Fortran
code.

Allocatable Scalar Type

dbx supports the Fortran allocatable scalar type.

Chapter 15 • Debugging Fortran Using dbx 223

224 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

 16 ♦ ♦ ♦ C H A P T E R 1 6

Debugging a Java Application With dbx

This chapter describes how you can use dbx to debug an application that is a mixture of Java™
code and C JNI (Java Native Interface) code or C++ JNI code.
The chapter contains the following sections:

■ “Using dbx With Java Code” on page 225
■ “Environment Variables for Java Debugging” on page 226
■ “Starting to Debug a Java Application” on page 226
■ “Customizing Startup of the JVM Software” on page 231
■ “dbx Modes for Debugging Java Code” on page 235
■ “Using dbx Commands in Java Mode” on page 236

Using dbx With Java Code

You can use Oracle Developer Studio dbx to debug mixed code (Java code and C code or C++
code) running under the Oracle Solaris™ OS and the Linux OS.

Capabilities of dbx With Java Code

You can debug several types of Java applications with dbx. Most dbx commands operate
similarly on native code and Java code.

Limitations of dbx With Java Code

dbx has the following limitations when debugging Java code:

■ dbx cannot tell you the state of a Java application from a core file as it can with native code.

Chapter 16 • Debugging a Java Application With dbx 225

Environment Variables for Java Debugging

■ dbx cannot tell you the state of a Java application if the application is hung for some reason
and dbx is not able to make procedure calls.

■ Fix and continue, and runtime checking, do not apply to Java applications.

Environment Variables for Java Debugging

The following dbxenv variables are specific to debugging a Java application with dbx. You can
set the JAVASRCPATH, CLASSPATHX, and jvm_invocation environment variables at a shell prompt
before starting dbx or from the dbx command line. The setting of the jdbx_mode environment
variable changes as you are debugging your application. You can change its setting with the jon
command and the joff command.

jdbx_mode The jdbx_mode dbxenv variable can have the following settings: java, jni, or native.
For descriptions of the Java, JNI, and native modes, and how and when the mode
changes, see “dbx Modes for Debugging Java Code” on page 235. Default: java.

JAVASRCPATH You can use the JAVASRCPATH dbxenv variable to specify the directories in which dbx
should look for Java source files. This variable is useful when the Java sources files are
not in the same directory as the .class or .jar files. See “Specifying the Location of
Your Java Source Files” on page 230 for more information.

CLASSPATHX The CLASSPATHX dbxenv variable lets you specify to dbx a path for Java class files that are
loaded by custom class loaders. For more information, see “Specifying a Path for Class
Files That Use Custom Class Loaders” on page 230.

jvm_invocation The jvm_invocation dbxenv variable lets you customize the way the JVM™ software
is started. (The terms “Java virtual machine” and “JVM” mean a virtual machine
for the Java platform.) For more information, see “Customizing Startup of the JVM
Software” on page 231.

Starting to Debug a Java Application

You can use dbx to debug the following types of Java applications:

■ A file with a file name that ends in .class
■ A file with a file name that ends in .jar
■ A Java application that is started using a wrapper
■ A running Java application that was started in debug mode to which you attach dbx
■ A C application or C++ application that embeds a Java application using the

JNI_CreateJavaVM interface

226 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

Starting to Debug a Java Application

dbx recognizes that it is debugging a Java application in all of these cases.

Debugging a Class File

If the class that defines the application is defined in a package, you need to include the package
path just as when running the application under the JVM software, as in the following example.

(dbx) debug java.pkg.Toy.class

You can debug a file that uses the .class file name extension using dbx.You can also use a full
path name for the class file. dbx automatically determines the package portion of the class path
by looking in the .class file and adds the remaining portion of the full path name to the class
path. For example, given the following path name, dbx determines that pkg/Toy.class is the
main class name and adds /home/user/java to the class path.

(dbx) debug /home/user/java/pkg/Toy.class

Debugging a JAR File

A Java application can be bundled in a JAR (Java Archive) file. You can debug a JAR file using
dbx. When you start debugging a file that has a file name ending in .jar, dbx uses the Main-
Class attribute specified in the manifest of this JAR file to determine the main class. (The main
class is the class within the JAR file that is your application’s entry point.) If you use a full path
name or relative path name to specify the JAR file, dbx uses the directory name and prefixes it
to the class path in the Main-Class attribute.

If you debug a JAR file that does not have the Main-Class attribute, you can use the JAR URL
syntax jar:<url>!/{entry} that is specified in the class JarURLConnection of the Java 2
Platform, Standard Edition to specify the name of the main class, as shown in the following
examples.

(dbx) debug jar:myjar.jar!/myclass.class

(dbx) debug jar:/a/b/c/d/e.jar!/x/y/z.class

(dbx) debug jar:file:/a/b/c/d.jar!/myclass.class

For each of these examples dbx would do the following:

■ Treat the class path specified after the ! character as the main class (for example,
/myclass.class or /x/y/z.class)

Chapter 16 • Debugging a Java Application With dbx 227

Starting to Debug a Java Application

■ Add the name of the JAR file (./myjar.jar, /a/b/c/d/e.jar, or /a/b/c/d.jar) to the
class path

■ Begin debugging the main class

Note - If you have specified a custom startup of the JVM software using the
jvm_invocation environment variable (see “Customizing Startup of the JVM
Software” on page 231), the file name of the JAR file is not automatically added to the
class path. In this case, you must add the file name of the JAR file to the class path when
you start debugging.

Debugging a Java Application That Has a Wrapper

A Java application usually has a wrapper to set environment variables. If your Java application
has a wrapper, you need to tell dbx that a wrapper script is being used by setting the
jvm_invocation environment variable. For more information, see “Customizing Startup of the
JVM Software” on page 231.

Attaching dbx to a Running Java Application

You can attach dbx to a running Java application if you specified the options shown in the
following example when you started the application. After starting the application, you would
use the dbx command with the process ID of the running Java process to start debugging.

$ java -agentlib:dbx_agent myclass.class

$ dbx - 2345

For the JVM software to locate libdbx_agent.so, you need to add the appropriate path to
LD_LIBRARY_PATH before running the Java application:

■ 32-bit version of the JVM software on a system running the Oracle Solaris OS: add /install-
dir/SUNWspro/lib/libdbx_agent.so

■ 64-bit version of the JVM software on a SPARC based system running the Oracle Solaris
OS: add /install-dir/SUNWspro/lib/v9/libdbx_agent.so to LD_LIBRARY_PATH

■ 64-bit version of the JVM software on an x64 based system running the Linux OS:
add/install-dir/sunstudio12/lib/amd64/libdbx_agent.so to LD_LIBRARY_PATH

install-dir is the location where the Oracle Developer Studio is installed.

228 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

To Attach to a Running Java Process

When you attach dbx to the running application, dbx starts debugging the application in Java
mode.

If your Java application requires 64-bit object libraries, include the -d64 option when you start
the application. Then when you attach dbx to the application, dbx will use the 64-bit JVM
software on which the application is running.

$ java -agentlib:dbx_agent

$ dbx - 2345

The following task explains how to attach dbx to a specific Java process using a process ID.

To Attach to a Running Java Process

1. Ensure that the JVM™ software can find libdbx_agent.so by adding libdbx_agent.
so to your LD_LIBRARY_PATH as explained in the previous section.

2. Start your Java application by typing:
java -agentlib:dbx_agent myclass.class

3. Then you can attach to the process by starting dbx with the process ID:
dbx -process-ID

Debugging a C Application or C++ Application
That Embeds a Java Application

You can debug a C application or C++ application that embeds a Java application using
the JNI_CreateJavaVM interface. The C application or C++ application must start the Java
application by specifying the following option to the JVM software:

-agentlib:dbx_agent

For the JVM software to locate libdbx_agent.so, you need to add the appropriate path to
LD_LIBRARY_PATH before running the Java application. See “Attaching dbx to a Running Java
Application” on page 228.

The install-dir is the location where the Oracle Developer Studio software is installed.

Chapter 16 • Debugging a Java Application With dbx 229

To Attach to a Running Java Process

Passing Arguments to the JVM Software

When you use the run command in Java mode, the arguments you give are passed to the
application and not to the JVM software. To pass arguments to the JVM software, see
“Customizing Startup of the JVM Software” on page 231.

Specifying the Location of Your Java Source Files

Sometimes your Java source files are not in the same directory as the .class or .jar files. You
can use the $JAVASRCPATH environment variable to specify the directories in which dbx should
look for Java source files. The following example causes dbx to look in the listed directories for
source files that correspond to the class files being debugged.

JAVASRCPATH=.:/mydir/mysrc:/mydir/mylibsrc:/mydir/myutils

Specifying the Location of Your C Source Files or
C++ Source Files

dbx might not be able to find your C source files or C++ source files in the following
circumstances:

■ If your source files are not in the same location as they were when you compiled them
■ If you compiled your source files on a different system than the one on which you are

running dbx and the compile directory does not have the same path name

In such cases, use the pathmap command (see “pathmap Command” on page 368) to map one
path name to another so that dbx can find your files.

Specifying a Path for Class Files That Use Custom
Class Loaders

An application can have custom class loaders that load class files from locations that might
not be part of the regular class path. In such situations dbx cannot locate the class files. The
CLASSPATHX environment variable lets you specify to dbx a path for the class files that are
loaded by their custom class loaders. For example, CLASSPATHX=.:/myloader/myclass:/

230 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

Customizing Startup of the JVM Software

mydir/mycustom causes dbx to look in the listed directories when it is trying to locate a class
file.

Setting Breakpoints on Java Methods

Unlike native applications, Java applications do not contain an easily accessible index of names.
So, for example, you cannot simply specify a method name:

(dbx) stop in myMethod #This will not work

Instead, you need to use the full path to the method.

(dbx) stop in com.any.library.MyClass.myMethod

An exception is the case where you are stopped with some method of MyClass in which
myMethod should be enough.

One way to avoid including the full path to the method is to use stop inmethod.

(dbx) stop inmethod myMethod

However, this command might cause stops in multiple methods name myMethod.

Setting Breakpoints in Native (JNI) Code

The shared libraries that contain JNI C or C++ code are dynamically loaded by the JVM and
setting breakpoints in them requires some additional steps. For more information, see “Setting
Breakpoints in Dynamically Loaded Libraries” on page 109.

Customizing Startup of the JVM Software

You might need to customize startup of the JVM software from dbx to do certain tasks.
Common tasks involving customization include the following::

■ “Specifying a Path Name for the JVM Software” on page 232
■ “Passing Run Arguments to the JVM Software” on page 232
■ “Specifying a Custom Wrapper for Your Java Application” on page 233
■ “Specifying 64-bit JVM Software” on page 234

Chapter 16 • Debugging a Java Application With dbx 231

Customizing Startup of the JVM Software

You can customize startup of the JVM software using the jvm_invocation environment
variable. By default, when the jvm_invocation environment variable is not defined, dbx starts
the JVM software as follows

java -agentlib:dbx_agent=sync=process-ID

When the jvm_invocation environment variable is defined, dbx uses the value of the variable
to start the JVM software.

You must include the -Xdebug option in the definition of the jvm_invocation environment
variable. dbx expands -Xdebug into the internal options -Xdebug- Xnoagent -Xrundbxagent:
sync.

If you do not include the -Xdebug option in the definition, as in the following example, dbx
issues an error message.

jvm_invocation="/set/java/javasoft/sparc-S2/jdk1.2/bin/java"

dbx: Value of `$jvm_invocation’ must include an option to invoke the VM in debug mode

Specifying a Path Name for the JVM Software

By default, dbx starts the JVM software in your path if you do not specify a path name for the
JVM software.

To specify a path name for the JVM software, set the jvm_invocation environment variable to
the appropriate path name, as shown in the following example.

jvm_invocation="/myjava/java -Xdebug"

This setting causes dbx to start the JVM software as follows:

/myjava/java -agentlib:dbx_agent=sync

Passing Run Arguments to the JVM Software

To pass run arguments to the JVM software, set the jvm_invocation environment variable to
start the JVM software with those arguments, as in the following example.

jvm_invocation="java -Xdebug -Xms512 -Xmx1024 -Xcheck:jni"

This example causes dbx to start the JVM software as follows:

232 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

Customizing Startup of the JVM Software

java -agentlib:dbx_agent=sync= -Xms512 -Xmx1024 -Xcheck:jni

Specifying a Custom Wrapper for Your Java
Application

A Java application can use a custom wrapper for startup. If your application uses a custom
wrapper, you can use the jvm_invocation environment variable to specify the wrapper to be
used, as shown in the following example.

jvm_invocation="/export/siva-a/forte4j/bin/forte4j.sh -J-Xdebug"

This example causes dbx to start the JVM software as follows:

/export/siva-a/forte4j/bin/forte4j.sh - -agentlib:dbx_agent=sync=process-ID

Using a Custom Wrapper That Accepts Command-Line
Options

The following wrapper script (xyz) sets a few environment variables and accepts command line
options.

#!/bin/sh

CPATH=/mydir/myclass:/mydir/myjar.jar; export CPATH

JARGS="-verbose:gc -verbose:jni -DXYZ=/mydir/xyz"

ARGS=

while [$# -gt 0] ; do

 case "$1" in

 -userdir) shift; if [$# -gt 0]

; then userdir=$1; fi;;

 -J*) jopt=`expr $1 : ’-J<.*>’`

; JARGS="$JARGS ’$jopt’";;

 *) ARGS="$ARGS ’$1’" ;;

 esac

 shift

done

java $JARGS -cp $CPATH $ARGS

This script accepts some command-line options for the JVM software and the user application.
For wrapper scripts of this form, you would set the jvm_invocation environment variable and
start dbx as follows:

% jvm_invocation="xyz -J-Xdebug -J other-java-options"
% dbx myclass.class -Dide=visual

Chapter 16 • Debugging a Java Application With dbx 233

Customizing Startup of the JVM Software

Using a Custom Wrapper That Does Not Accept Command-
Line Options

The following wrapper script (xyz) sets a few environment variables and starts the JVM
software, but does not accept any command-line options or a class name.

#!/bin/sh

CLASSPATH=/mydir/myclass:/mydir/myjar.jar; export CLASSPATH

ABC=/mydir/abc; export ABC

java <options> myclass

You could use such a script to debug a wrapper using dbx in one of two ways:

■ Modify the script to start dbx from inside the wrapper script itself by adding the definition
of the jvm_invocation variable to the script and starting dbx.

#!/bin/sh

CLASSPATH=/mydir/myclass:/mydir/myjar.jar; export CLASSPATH

ABC=/mydir/abc; export ABC

jvm_invocation="java -Xdebug <options>"; export jvm_invocation

dbx myclass.class

Once you have made this modification, you could start the debugging session by running
the script.

■ Modify the script slightly to accept some command-line options as follows:

#!/bin/sh

CLASSPATH=/mydir/myclass:/mydir/myjar.jar; export CLASSPATH

ABC=/mydir/abc; export ABC

JAVA_OPTIONS="$1 <options>"

java $JAVA_OPTIONS $2

Once you make this modification, you would set the jvm_invocation environment variable
and start dbx as follows:

% jvm_invocation="xyz -Xdebug"; export jvm_invocation

% dbx myclass.class

Specifying 64-bit JVM Software

If you want dbx to start 64-bit JVM software to debug an application that requires 64-bit object
libraries, include the -d64 option when you set the jvm_invocation environment variable.

jvm_invocation="/myjava/java -Xdebug -d64"

234 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

dbx Modes for Debugging Java Code

dbx Modes for Debugging Java Code

When debugging a Java application, dbx is in one of three modes:

■ Java mode
■ JNI mode
■ Native mode

When dbx is in Java mode or JNI (Java Native Interface) mode, you can inspect the state of
your Java application, including JNI code, and control execution of the code. When dbx is in
native mode, you can inspect the state of your C or C++ JNI code. The current mode (java, jni,
or native) is stored in the environment variable jdbx_mode.

In Java mode, you interact with dbx using Java syntax and dbx uses Java syntax to present
information to you. This mode is used for debugging pure Java code, or the Java code in an
application that is a mixture of Java code and C JNI code or C++ JNI code.

In JNI mode, dbx commands use native syntax and affect native code, but the output of
commands shows Java-related status as well as native status, so JNI mode is a “mixed” mode.
This mode is used for debugging the native parts of an application that is a mixture of Java code
and C JNI code or C++ JNI code.

In native mode, dbx commands affect only a native program, and all features related to Java are
disabled. This mode is used for debugging non-Java related programs.

As you execute your Java application, dbx switches automatically between Java mode and JNI
mode as appropriate. For example, when it encounters a Java breakpoint, dbx switches into Java
mode, and when you step from Java code into JNI code, it switches into JNI mode.

Switching From Java or JNI Mode to Native Mode

dbx does not switch automatically into native mode. You can switch explicitly from Java or JNI
Mode to native mode with the joff command, and from native mode to Java mode with the jon
command.

Chapter 16 • Debugging a Java Application With dbx 235

Using dbx Commands in Java Mode

Switching Modes When You Interrupt Execution

If you interrupt execution of your Java application (for example, by typing control-C), dbx tries
to set the mode automatically to Java/JNI mode by bringing the application to a safe state and
suspending all threads.

If dbx cannot suspend the application and switch to Java/JNI mode, dbx switches to native
mode. You can then use the jon command to switch to Java mode so that you can inspect the
state of the program.

Using dbx Commands in Java Mode

When you are using dbx to debug a mixture of Java and native code, dbx commands fall into
several categories:

■ Commands that accept the same arguments and operate the same way in Java mode or JNI
mode as in native mode. See “Commands With Identical Syntax and Functionality in Java
Mode and Native Mode” on page 238.

■ Commands that have arguments that are valid only in Java mode or JNI mode, as well as
arguments that are valid only in native mode. See “Commands With Different Syntax in
Java Mode” on page 239.

■ Commands that are valid only in Java mode or JNI mode. See “Commands Valid Only in
Java Mode” on page 240.

Any commands not included in one of these categories work only in native mode.

Java Expression Evaluation in dbx Commands

The Java expression evaluator used in most dbx commands supports the following constructs:

■ All literals
■ All names and field accesses
■ this and super
■ Array accesses
■ Casts

236 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

Using dbx Commands in Java Mode

■ Conditional binary operations
■ Method calls
■ Other unary/binary operations
■ Assignment to variables or fields
■ instanceof operator
■ Array length operator

The Java expression evaluator does not support the following constructs:

■ Qualified this, for example, <ClassName>.this
■ Class instance creation expressions
■ Array creation expressions
■ String concatenation operator
■ Conditional operator ? :
■ Compound assignment operators, for example x += 3

A particularly useful way of inspecting the state of your Java application is using the watch
facility in the IDE or dbxtool.

Do not depend on precise value semantics in expressions that do more than just inspect data.

Static and Dynamic Information Used by dbx
Commands

Much of the information about a Java application is normally available only after the JVM
software has started, and is unavailable after the Java application has finished executing.
However, when you debug a Java application with dbx, dbx gleans some of the information it
needs from class files and JAR files that are part of the system class path and user class path
before it starts the JVM software. This information enables dbx to do better error checking on
breakpoints before you run the application.

Some Java classes and their attributes might not be accessible through the class path. dbx can
inspect and step through these classes, and the expression parser can access them once they are
loaded at runtime. However, the information it gathers is temporary and is no longer available
after the JVM software terminates.

Some information that dbx needs to debug your Java application is not recorded anywhere so
dbx skims Java source files to derive this information as it is debugging your code.

Chapter 16 • Debugging a Java Application With dbx 237

Using dbx Commands in Java Mode

Commands With Identical Syntax and
Functionality in Java Mode and Native Mode

The dbx commands listed in the following table have the same syntax and perform the same
operations in Java mode as in native mode.

Command Functionality

attach Attaches dbx to a running process, stopping execution and putting the program under
debugging control

cont Causes the process to continue execution

dbxenv List or set dbxenv variables

delete Deletes breakpoints and other events

down Moves down the call stack (away from main)

dump Prints all variables local to a procedure or method

file Lists or changes the current file

frame Lists or changes the current stack frame number

handler Modifies event handlers (breakpoints)

import Imports commands from a dbx command library

line Lists or changes the current line number

list Displays lines of a source file

next Steps one source line (steps over calls)

pathmap Maps one path name to another for finding source files and the like

proc Displays the status of the current process

prog Manages programs being debugged and their attributes

quit Exits dbx

rerun Runs the program with no arguments

runargs Changes the arguments of the target process

status Lists the event handlers (breakpoints)

step up Steps up and out of the current function or method

stepi Steps one machine instruction (steps into calls)

up Moves up the call stack (toward main)

whereami Displays the current source line

238 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

Using dbx Commands in Java Mode

Commands With Different Syntax in Java Mode

The dbx commands listed in the following table have different syntax for Java debugging than
for native code debugging and operate differently in Java mode than in native mode.

Command Native Mode Functionality Java Mode Functionality

assign Assigns a new value to a program variable Assigns a new value to a local variable or
parameter

call Calls a procedure Calls a method

dbx Starts dbx Starts dbx

debug Loads the specified application and begins
debugging the application

Loads the specified Java application, checks
for the existence of the class file, and begins
debugging the application

detach Releases the target process from dbx’s
control

Releases the target process from dbx’s
control

display Evaluates and prints expressions at every
stopping point

Evaluates and prints expressions, local
variables, or parameters at every stopping
point

files Lists file names that match a regular
expression

Lists all of the Java source files known to
dbx

func Lists or changes the current function Lists or changes the current method

next Steps one source line (stepping over calls) Steps one source line (stepping over calls)

print Prints the value of an expression Prints the value of an expression, local
variable, or parameter

run Runs the program with arguments Runs the program with arguments

step Steps one source line or statement (stepping
into calls)

Steps one source line or statement (stepping
into calls)

stop Sets a source-level breakpoint Sets a source-level breakpoint

thread Lists or changes the current thread Lists or changes the current thread

threads Lists all threads Lists all threads

trace Shows executed source lines, function calls,
or variable changes

Shows executed source lines, function calls,
or variable changes

undisplay Undoes display commands Undoes display commands

whatis Prints the type of expression or declaration
of type

Prints the declaration of an identifier

when Executes commands when a specified event
occurs

Executes commands when a specified event
occurs

where Prints the call stack Prints the call stack

Chapter 16 • Debugging a Java Application With dbx 239

Using dbx Commands in Java Mode

Commands Valid Only in Java Mode

The dbx commands listed in the following table are valid only in Java mode or JNI mode.

Command Functionality

java Used when dbx is in JNI mode to indicate that the Java version of a specified command
is to be executed

jclasses Prints the names of all Java classes known to dbx when you give the command

joff Switches dbx from Java mode or JNI mode to native mode

jon Switches dbx from native mode to Java mode

jpkgs Prints the names of all Java packages known to dbx when you give the command

native Used when dbx is in Java mode to indicate that the native version of a specified
command is to be executed

240 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

 17 ♦ ♦ ♦ C H A P T E R 1 7

Debugging at the Machine-Instruction Level

This chapter describes how to use event management and process control commands at the
machine-instruction level, how to display the contents of memory at specified addresses, and
how to display source lines along with their corresponding machine instructions.
This chapter contains the following sections:

■ “Using dbx at the Machine-Instruction Level” on page 241
■ “Examining the Contents of Memory” on page 241
■ “Stepping and Tracing at Machine-Instruction Level” on page 246
■ “Setting Breakpoints at the Machine-Instruction Level” on page 248
■ “Using the regs Command” on page 248

Using dbx at the Machine-Instruction Level

The next command, step command, stop command, and trace command each support a
machine-instruction level variant: the nexti command, stepi command, stopi command, and
tracei command. Use the regs command to print out the contents of machine registers or the
print command to print out individual registers.

Examining the Contents of Memory

Using addresses and the examine or x command, you can examine the content of memory
locations as well as print the assembly language instruction at each address. Using a command
derived from adb(1), the assembly language debugger, you can query for the following:

■ The address, using the = (equal sign) character
■ The contents stored at an address, using the / (slash) character

Chapter 17 • Debugging at the Machine-Instruction Level 241

Examining the Contents of Memory

You can print the assembly commands using the dis command and the listi command.

Using the examine or x Command

Use the examine command, or its alias x, to display memory contents or addresses.

Use the following syntax to display the contents of memory starting at address for count items
in format format. The default address is the next one after the last address previously displayed.
The default count is 1. The default format is the same as was used in the previous examine
command, or X if this is the first command given.

The syntax for the examine command is:

examine [address] [/ [count] [format]]

To display the contents of memory from address1 through address2 inclusive in format format:

examine address1, address2 [/ [format]]

To display the address, instead of the contents of the address in the given format:

examine address = [format]

To print the value stored at the next address after the one last displayed by examine:

examine +/ i

To print the value of an expression, provide the expression as an address.

examine address=format
examine address=

Using Addresses

The address is any expression resulting in or usable as an address. The address can be replaced
with a + (plus sign), which displays the contents of the next address in the default format.

The following examples are valid addresses:

0xff00 An absolute address

main Address of a function

main+20 Offset from a function address

242 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

Examining the Contents of Memory

&errno Address of a variable

str A pointer-value variable pointing to a string

Symbolic addresses used to display memory are specified by preceding a name with an
ampersand (&). Function names can be used without the ampersand; &main is equal to main.
Registers are denoted by preceding a name with a dollar sign ($).

Using Formats

The format is the address display format in which dbx displays the results of a query. The
output produced depends on the current display format. To change the display format, supply a
different format code.

The default format set at the start of each dbx session is X, which displays an address or value as
a 32-bit word in hexadecimal. The following memory display formats are legal:

i Display as an assembly instruction

d Display as 16 bits (2 bytes) in decimal

D Display as 32 bits (4 bytes) in decimal

o Display as 16 bits (2 bytes) in octal

O Display as 32 bits (4 bytes) in octal

x Display as 16 bits (2 bytes) in hexadecimal

X Display as 32 bits (4 bytes) in hexadecimal (default format)

b Display as a byte in octal

c Display as a character

n Display as a decimal (1 byte).

w Display as a wide character

s Display as a string of characters terminated by a null byte

W Display as a wide character string

f Display as a single-precision floating-point number

F, g Display as a double-precision floating-point number

E Display as an extended-precision floating-point number

ld, lD Display 32 bits (4 bytes) in decimal (same as D)

lo, lO Display 32 bits (4 bytes) in octal (same as O)

lx, LX Display 32 bits (4 bytes) in hexadecimal (same as X)

Ld, LD Display 64 bits (8 bytes) in decimal

Lo, LO Display 64 bits (8 bytes) in octal

Lx, LX Display 64 bits (8 bytes) in hexadecimal

Chapter 17 • Debugging at the Machine-Instruction Level 243

Examining the Contents of Memory

Using Count

The count is a repetition count in decimal. The increment size depends on the memory display
format.

Examples of Using an Address

The following examples show how to use an address with and format options to display five
successive disassembled instructions starting from the current stopping point.

For SPARC based systems:

(dbx) stepi

stopped in main at 0x108bc

0x000108bc: main+0x000c: st %l0, [%fp - 0x14]

(dbx) x 0x108bc/5i

0x000108bc: main+0x000c: st %l0, [%fp - 0x14]

0x000108c0: main+0x0010: mov 0x1,%l0

0x000108c4: main+0x0014: or %l0,%g0, %o0

0x000108c8: main+0x0018: call 0x00020b90 [unresolved PLT 8: malloc]

0x000108cc: main+0x001c: nop

For x86 based systems:

(dbx) x &main/5i

0x08048988: main : pushl %ebp

0x08048989: main+0x0001: movl %esp,%ebp

0x0804898b: main+0x0003: subl $0x28,%esp

0x0804898e: main+0x0006: movl 0x8048ac0,%eax

0x08048993: main+0x000b: movl %eax,-8(%ebp)

Using the dis Command

The dis command is equivalent to the examine command with i as the default display format.

The syntax for the dis command is:

dis [<address>] [/<count>] | <address1>, <address1>

The dis command operates as follows:

■ Without arguments displays 10 instructions starting at address

244 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

Examining the Contents of Memory

■ With the address argument only, disassembles 10 instructions starting at address
■ With the address argument and a count, disassembles count instructions starting at address
■ With the address1 and address2 arguments, disassembles instructions from address1

through address2
■ With only a count, displays count instructions starting at +
■ With the option -a, disassembles entire function or, when used without parameters,

disassembles remains of current visiting function

Using the listi Command

To display source lines with their corresponding assembly instructions, use the listi
command, which is equivalent to the command list -i. See the discussion of list -i in
“Printing a Source Listing” on page 69.

SPARC based systems example:

(dbx) listi 13, 14

 13 i = atoi(argv[1]);

0x0001083c: main+0x0014: ld [%fp + 0x48], %l0

0x00010840: main+0x0018: add %l0, 0x4, %l0

0x00010844: main+0x001c: ld [%l0], %l0

0x00010848: main+0x0020: or %l0, %g0, %o0

0x0001084c: main+0x0024: call 0x000209e8 [unresolved PLT 7: atoi]

0x00010850: main+0x0028: nop

0x00010854: main+0x002c: or %o0, %g0, %l0

0x00010858: main+0x0030: st %l0, [%fp - 0x8]

 14 j = foo(i);

0x0001085c: main+0x0034: ld [%fp - 0x8], %l0

0x00010860: main+0x0038: or %l0, %g0, %o0

0x00010864: main+0x003c: call foo

0x00010868: main+0x0040: nop

0x0001086c: main+0x0044: or %o0, %g0, %l0

0x00010870: main+0x0048: st %l0, [%fp - 0xc]

x86 based systems example:

(dbx) listi 13, 14

 13 i = atoi(argv[1]);

0x080488fd: main+0x000d: movl 12(%ebp),%eax

0x08048900: main+0x0010: movl 4(%eax),%eax

0x08048903: main+0x0013: pushl %eax

0x08048904: main+0x0014: call atoi <0x8048798>

0x08048909: main+0x0019: addl $4,%esp

Chapter 17 • Debugging at the Machine-Instruction Level 245

Stepping and Tracing at Machine-Instruction Level

0x0804890c: main+0x001c: movl %eax,-8(%ebp)

 14 j = foo(i);

0x0804890f: main+0x001f: movl -8(%ebp),%eax

0x08048912: main+0x0022: pushl %eax

0x08048913: main+0x0023: call foo <0x80488c0>

0x08048918: main+0x0028: addl $4,%esp

0x0804891b: main+0x002b: movl %eax,-12(%ebp)

Stepping and Tracing at Machine-Instruction Level

Machine-instruction level commands behave the same as their source level counterparts except
that they operate at the level of single instructions instead of source lines.

Single-Stepping at the Machine-Instruction Level

To single-step from one machine instruction to the next machine instruction, use the nexti
command or the stepi command

The nexti command and the stepi command behave the same as their source-code level
counterparts: the nexti command steps over functions, the stepi command steps into a
function called by the next instruction, stopping at the first instruction in the called function.
The command forms are also the same.

The output from the nexti command and the stepi command differ from the corresponding
source level commands in two ways:

■ The output includes the address of the instruction at which the program is stopped (instead
of the source code line number).

■ The default output contains the disassembled instruction instead of the source code line.

For example:

(dbx) func

hand::ungrasp

(dbx) nexti

ungrasp +0x18: call support

(dbx)

For more information, see “nexti Command” on page 365 and “stepi
Command” on page 386.

246 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

Stepping and Tracing at Machine-Instruction Level

Tracing at the Machine-Instruction Level

Tracing techniques at the machine-instruction level work the same as at the source code
level, except you use the tracei command. For the tracei command, dbx executes a single
instruction only after each check of the address being executed or the value of the variable
being traced. The tracei command produces automatic stepi-like behavior: the program
advances one instruction at a time, stepping into function calls.

When you use the tracei command, it causes the program to stop for a moment after each
instruction while dbx checks for the address execution or the value of the variable or expression
being traced. Using the tracei command can slow execution considerably.

For more information on trace and its event specifications and modifiers, see “Tracing
Execution” on page 108 and “tracei Command” on page 404.

The general syntax for the tracei command is:

tracei event-specification [modifier]

Commonly used forms of the tracei command are:

tracei step Trace each instruction

tracei next Trace each instruction, but skip over calls

tracei at address Trace the given code address.

For more information, see “tracei Command” on page 404.

For SPARC:

(dbx) tracei next -in main

(dbx) cont

0x00010814: main+0x0004: clr %l0

0x00010818: main+0x0008: st %l0, [%fp - 0x8]

0x0001081c: main+0x000c: call foo

0x00010820: main+0x0010: nop

0x00010824: main+0x0014: clr %l0

....

....

(dbx) (dbx) tracei step -in foo -if glob == 0

(dbx) cont

0x000107dc: foo+0x0004: mov 0x2, %l1

0x000107e0: foo+0x0008: sethi %hi(0x20800), %l0

0x000107e4: foo+0x000c: or %l0, 0x1f4, %l0 ! glob

Chapter 17 • Debugging at the Machine-Instruction Level 247

Setting Breakpoints at the Machine-Instruction Level

0x000107e8: foo+0x0010: st %l1, [%l0]

0x000107ec: foo+0x0014: ba foo+0x1c

....

....

Setting Breakpoints at the Machine-Instruction Level

To set a breakpoint at the machine-instruction level, use the stopi command. The command
accepts any event specification. The syntax for the stopi command is:

stopi event-specification [modifier]

Commonly used forms of the stopi command are:

stopi [at address] [-if cond]
stopi in function [-if cond]

For more information, see “stopi Command” on page 392.

Setting a Breakpoint at an Address

Use the stopi command to set a breakpoint at a specific address:

(dbx) stopi at address

For example:

(dbx) nexti

stopped in hand::ungrasp at 0x12638

(dbx) stopi at &hand::ungrasp

(3) stopi at &hand::ungrasp

(dbx)

Using the regs Command

The regs command enables you to print the value of all the registers.

The syntax for the regs command is:

regs [-f][-F]

248 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

Using the regs Command

-f includes floating-point registers (single precision). -F includes floating-point registers
(double precision).

For more information, see “regs Command” on page 375.

SPARC based systems example:

dbx[13] regs -F

current thread: t@1

current frame: [1]

g0-g3 0x00000000 0x0011d000 0x00000000 0x00000000

g4-g7 0x00000000 0x00000000 0x00000000 0x00020c38

o0-o3 0x00000003 0x00000014 0xef7562b4 0xeffff420

o4-o7 0xef752f80 0x00000003 0xeffff3d8 0x000109b8

l0-l3 0x00000014 0x0000000a 0x0000000a 0x00010a88

l4-l7 0xeffff438 0x00000001 0x00000007 0xef74df54

i0-i3 0x00000001 0xeffff4a4 0xeffff4ac 0x00020c00

i4-i7 0x00000001 0x00000000 0xeffff440 0x000108c4

y 0x00000000

psr 0x40400086

pc 0x000109c0:main+0x4 mov 0x5, %l0

npc 0x000109c4:main+0x8 st %l0, [%fp - 0x8]

f0f1 +0.00000000000000e+00

f2f3 +0.00000000000000e+00

f4f5 +0.00000000000000e+00

f6f7 +0.00000000000000e+00

...

For x64 based systems example:

(dbx) regs

current frame: [1]

r15 0x0000000000000000

r14 0x0000000000000000

r13 0x0000000000000000

r12 0x0000000000000000

r11 0x0000000000401b58

r10 0x0000000000000000

r9 0x0000000000401c30

r8 0x0000000000416cf0

rdi 0x0000000000416cf0

rsi 0x0000000000401c18

rbp 0xfffffd7fffdff820

rbx 0xfffffd7fff3fb190

rdx 0x0000000000401b50

rcx 0x0000000000401b54

rax 0x0000000000416cf0

trapno 0x0000000000000003

err 0x0000000000000000

Chapter 17 • Debugging at the Machine-Instruction Level 249

Using the regs Command

rip 0x0000000000401709:main+0xf9 movl $0x0000000000000000,0xfffffffffffffffc(%

rbp)

cs 0x000000000000004b

eflags 0x0000000000000206

rsp 0xfffffd7fffdff7b0

ss 0x0000000000000043

fs 0x00000000000001bb

gs 0x0000000000000000

es 0x0000000000000000

ds 0x0000000000000000

fs_base 0xfffffd7fff3a2000

gsbase 0xffffffff80000000

(dbx) regs -F

current frame: [1]

r15 0x0000000000000000

r14 0x0000000000000000

r13 0x0000000000000000

r12 0x0000000000000000

r11 0x0000000000401b58

r10 0x0000000000000000

r9 0x0000000000401c30

r8 0x0000000000416cf0

rdi 0x0000000000416cf0

rsi 0x0000000000401c18

rbp 0xfffffd7fffdff820

rbx 0xfffffd7fff3fb190

rdx 0x0000000000401b50

rcx 0x0000000000401b54

rax 0x0000000000416cf0

trapno 0x0000000000000003

err 0x0000000000000000

rip 0x0000000000401709:main+0xf9 movl $0x0000000000000000,0xfffffffffffffffc

(%rbp)

cs 0x000000000000004b

eflags 0x0000000000000206

rsp 0xfffffd7fffdff7b0

ss 0x0000000000000043

fs 0x00000000000001bb

gs 0x0000000000000000

es 0x0000000000000000

ds 0x0000000000000000

fs_base 0xfffffd7fff3a2000

gsbase 0xffffffff80000000

st0 +0.00000000000000000000e+00

st1 +0.00000000000000000000e+00

st2 +0.00000000000000000000e+00

st3 +0.00000000000000000000e+00

st4 +0.00000000000000000000e+00

250 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

Using the regs Command

st5 +0.00000000000000000000e+00

st6 +0.00000000000000000000e+00

st7 +NaN

xmm0a-xmm0d 0x00000000 0xfff80000 0x00000000 0x00000000

xmm1a-xmm1d 0x00000000 0x00000000 0x00000000 0x00000000

xmm2a-xmm2d 0x00000000 0x00000000 0x00000000 0x00000000

xmm3a-xmm3d 0x00000000 0x00000000 0x00000000 0x00000000

xmm4a-xmm4d 0x00000000 0x00000000 0x00000000 0x00000000

xmm5a-xmm5d 0x00000000 0x00000000 0x00000000 0x00000000

xmm6a-xmm6d 0x00000000 0x00000000 0x00000000 0x00000000

xmm7a-xmm7d 0x00000000 0x00000000 0x00000000 0x00000000

xmm8a-xmm8d 0x00000000 0x00000000 0x00000000 0x00000000

xmm9a-xmm9d 0x00000000 0x00000000 0x00000000 0x00000000

xmm10a-xmm10d 0x00000000 0x00000000 0x00000000 0x00000000

xmm11a-xmm11d 0x00000000 0x00000000 0x00000000 0x00000000

xmm12a-xmm12d 0x00000000 0x00000000 0x00000000 0x00000000

xmm13a-xmm13d 0x00000000 0x00000000 0x00000000 0x00000000

xmm14a-xmm14d 0x00000000 0x00000000 0x00000000 0x00000000

xmm15a-xmm15d 0x00000000 0x00000000 0x00000000 0x00000000

fcw-fsw 0x137f 0x0000

fctw-fop 0x0000 0x0000

frip 0x0000000000000000

frdp 0x0000000000000000

mxcsr 0x00001f80

mxcr_mask 0x0000ffff

(dbx)

Platform-Specific Registers

The tables in this section list platform-specific register names for SPARC architecture, x86
architecture, and AMD64 architecture that can be used in expressions.

SPARC Register Information

The following table lists register information for SPARC architecture.

Register Description

$g0 through $g7 Global registers

$o0 through $o7 “out” registers

$l0 through $l7 “local” registers

$i0 through $i7 “in” registers

Chapter 17 • Debugging at the Machine-Instruction Level 251

Using the regs Command

Register Description

$fp Frame pointer, equivalent to register $i6

$sp Stack pointer, equivalent to register $o6

$y Y register

$psr Processor state register

$wim Window invalid mask register

$tbr Trap base register

$pc Program counter

$npc Next program counter

$f0 through $f31 FPU “f” registers

$fsr FPU status register

$fq FPU queue

The $f0f1 $f2f3 ... $f30f31 pairs of floating-point registers are treated as having C double type
(normally $fN registers are treated as C float type). These pairs can also be referred to as $d0 ...
$d30.

The following quad floating-point registers are treated as having C long double type, They are
available on SPARC V9 hardware:

$q0 $q4 through $q60

The following pairs of registers, which combine the least significant 32 bits of two registers, are
available on SPARC V8+ hardware:

$g0g1 through $g6g7

$o0o1 through $o6o7

The following additional registers are available on SPARC V9 and V8+ hardware:

$xg0 through $xg7

$xo0 through $xo7

$xfsr $tstate $gsr

$f32f33 $f34f35 through $f62f63 ($d32 ... $$d62)

See SPARC Architecture Reference Manual and the SPARC Assembly Language Reference
Manual for more information on SPARC registers and addressing.

x86 Register Information

The following table lists register information for x86 architecture.

252 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

Using the regs Command

Register Description

$gs Alternate data segment register

$fs Alternate data segment register

$es Alternate data segment register

$ds Data segment register

$edi Destination index register

$esi Source index register

$ebp Frame pointer

$esp Stack pointer

$ebx General register

$edx General register

$ecx General register

$eax General register

$trapno Exception vector number

$err Error code for exception

$eip Instruction pointer

$cs Code segment register

$eflags Flags

$ss Stack segment register

Commonly used registers are also aliased to their machine independent names.

Register Description

$sp Stack pointer; equivalent of $uesp

$pc Program counter; equivalent of $eip

$fp Frame pointer; equivalent of $ebp

$ps Processor status register

The following table lists registers for the 80386 lower halves (16 bits).

Register Description

$ax General register

$cx General register

$dx General register

$bx General register

Chapter 17 • Debugging at the Machine-Instruction Level 253

Using the regs Command

Register Description

$si Source index register

$di Destination index register

$ip Instruction pointer, lower 16 bits

$flags Flags, lower 16 bits

The first four 80386 16-bit registers can be split into 8-bit parts, as shown in the following
table:

Register Description

$al Lower (right) half of register $ax

$ah Higher (left) half of register $ax

$cl Lower (right) half of register $cx

$ch Higher (left) half of register $cx

$dl Lower (right) half of register $dx

$dh Higher (left) half of register $dx

$bl Lower (right) half of register $bx

$bh Higher (left) half of register $bx

The following table lists registers for 80387 halves:.

Register Description

$fctrl Control register

$fstat Status register

$ftag Tag register

$fip Instruction pointer offset

$fcs Code segment selector

$fopoff Operand pointer offset

$fopsel Operand pointer selector

$st0 through $st7 Data registers

AMD64 Register Information

The following table lists register information for AMD64 architecture:

254 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

Using the regs Command

Register Description

rax General purpose register - argument passing for function calls

rbp General purpose register - stack management/frame pointer

rbx General purpose register - callee-saved

rcx General purpose register - argument passing for function calls

rdx General purpose register - argument passing for function calls

rsi General purpose register - argument passing for function calls

rdi General purpose register - argument passing for function calls

rsp General purpose register - stack management/stack pointer

r8 General purpose register - argument passing for function calls

r9 General purpose register - argument passing for function calls

r10 General purpose register - temporary

r11 General purpose register - temporary

r12 General purpose register - callee-saved

r13 General purpose register - callee-saved

r14 General purpose register - callee-saved

r15 General purpose register - callee-saved

rflags Flags register

rip Instruction pointer

mmx0/st0 64-bit media and floating-point register

mmx1/st1 64-bit media and floating-point register

mmx2/st2 64-bit media and floating-point register

mmx3/st3 64-bit media and floating-point register

mmx4/st4 64-bit media and floating-point register

mmx5/st5 64-bit media and floating-point register

mmx6/st6 64-bit media and floating-point register

mmx7/st7 64-bit media and floating-point register

xmm0 128-bit media register

xmm1 128-bit media register

xmm2 128-bit media register

xmm3 128-bit media register

xmm4 128-bit media register

xmm5 128-bit media register

xmm6 128-bit media register

xmm7 128-bit media register

Chapter 17 • Debugging at the Machine-Instruction Level 255

Using the regs Command

Register Description

xmm8 128-bit media register

xmm9 128-bit media register

xmm10 128-bit media register

xmm11 128-bit media register

xmm12 128-bit media register

xmm13 128-bit media register

xmm14 128-bit media register

xmm15 128-bit media register

cs Segment register

es Segment register

fs Segment register

gs Segment register

os Segment register

ss Segment register

fcw fxsave and fxstor memory image control word

fsw fxsave and fxstor memory image status word

fctw fxsave and fxstor memory image tag word

fop fxsave and fxstor memory image last x87 op code

frdp fxsave and fxstor memory image 64-bit offset into the date segment

frip fxsave and fxstor memory image 64-bit offset into the code segment

mxcsr_mask set bits in mxcsr_mask indicate supported feature bits in mxcsr

ymmo 256–bit advanced vector register

ymm1 256–bit advanced vector register

ymm2 256–bit advanced vector register

ymm3 256–bit advanced vector register

ymm4 256–bit advanced vector register

ymm5 256–bit advanced vector register

ymm6 256–bit advanced vector register

ymm7 256–bit advanced vector register

ymm8 256–bit advanced vector register

ymm9 256–bit advanced vector register

ymm10 256–bit advanced vector register

ymm11 256–bit advanced vector register

ymm12 256–bit advanced vector register

256 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

Using the regs Command

Register Description

ymm13 256–bit advanced vector register

ymm14 256–bit advanced vector register

ymm15 256–bit advanced vector register

The fields of an advanced vector (AVX) register (ymm0 through ymm15) can be treated as having
C int, float, or double types.

Chapter 17 • Debugging at the Machine-Instruction Level 257

258 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

 18 ♦ ♦ ♦ C H A P T E R 1 8

Using dbx With the Korn Shell

The dbx command language is based on the syntax of the Korn Shell (ksh 88), including I/O
redirection, loops, built-in arithmetic, history, and command-line editing. This chapter describes
the differences between ksh-88 and dbx command language.

If no dbx initialization file is located on startup, dbx assumes ksh mode.
This chapter contains the following sections:

■ “ksh-88 Features Not Implemented” on page 259
■ “Extensions to ksh-88” on page 260
■ “Renamed Commands” on page 260

ksh-88 Features Not Implemented

The following features of ksh-88 are not implemented in dbx:

■ set -A name for assigning values to array name
■ set -o options: allexport bgnice gmacs markdirs noclobber nolog privileged

protected viraw

■ typeset -l -u -L -R -H attributes
■ Backquote (\Q…\Q) for command substitution (use $(...) instead)
■ [[expression]] compound command for expression evaluation
■ @(pattern[|pattern] …) extended pattern matching
■ Co-processes (command or pipeline running in the background that communicates with

your program)

Chapter 18 • Using dbx With the Korn Shell 259

Extensions to ksh-88

Extensions to ksh-88

dbx adds the following features as extensions:

■ $[p– > flags] language expression
■ typeset -q enables special quoting for user-defined functions
■ C shell-like history and alias arguments
■ set +o path disables path searching
■ 0xabcd C syntax for octal and hexadecimal numbers
■ bind to change Emacs-mode bindings
■ set -o hashall

■ set -o ignore suspend

■ print -e and read -e (opposite of -r, raw)
■ Built-in dbx commands

Renamed Commands

Particular dbx commands have been renamed to avoid conflicts with ksh commands.

■ The dbx print command retains the name print; the ksh print command has been
renamed kprint.

■ The ksh kill command has been merged with the dbxkill command.
■ The alias command is the ksh alias command, unless in dbx compatibility mode.
■ address/format is now examine address/format.
■ /pattern is now search pattern.
■ ?pattern is now bsearch pattern.

Rebinding of Editing Functions
The bind command enables you to rebind editing functions. You can use the command to
display or modify the key bindings for EMacs-style editors and vi-style editors. The syntax of
the bind command is:

bind Display the current editing key bindings

260 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

Rebinding of Editing Functions

bind key=definition Bind key to definition

bind key Display the current definition for key

bind key= Remove binding of key

bind -m key=definition Define key to be a macro with definition

bind -m Same as bind

where:

key is the name of a key.

definition is the definition of the macro to be bound to the key.

Some of the more important default key bindings for EMacs-style editors are:

^A = beginning-of-line ^B = backward-char

^D = eot-or-delete ^E = end-of-line

^F = forward-char ^G = abort

^K = kill-to-eo ^L = redraw

^N = down-history ^P = up-history

^R = search-history ^^ = quote

^? = delete-char-backward ^H = delete-char-backward

^[b = backward-word ^[d = delete-word-forward

^[f = forward-word ^[^H = delete-word-backward

^[^[= complete ^[? = list-command

Some of the more important default key bindings for vi-style editors are:

a = append A = append at EOL

c = change d = delete

G = go to line h = backward character

i = insert I = insert at BOL

j = next line k = previous line

l = forward line n = next match

N = prev match p = put after

P = put before r = repeat

R = replace s = substitute

u = undo x = delete character

Chapter 18 • Using dbx With the Korn Shell 261

Rebinding of Editing Functions

X = delete previous character y = yank

~ = transpose case _ = last argument

* = expand = = list expansion

- = previous line + = next line

sp = forward char # = comment out command

? = search history from beginning

/ = search history from current

In insert mode, the following keystrokes are special:

^? = delete character ^H = delete character

^U = kill line ^W = delete word

262 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

 19 ♦ ♦ ♦ C H A P T E R 1 9

Debugging Shared Libraries

dbx provides full debugging support for programs that use dynamically linked, shared libraries,
provided that the libraries are compiled using the -g option.
This chapter contains the following sections:

■ “Dynamic Linker” on page 263
■ “Setting Breakpoints in Shared Libraries” on page 264
■ “Setting a Breakpoint in an Explicitly Loaded Library” on page 265

Dynamic Linker

The dynamic linker, also known as rtld, Runtime ld, or ld.so, arranges to bring shared objects
(load objects) into an executing application. The two primary areas where rtld is active are:

■ Program startup – At program startup, rtld runs first and dynamically loads all shared
objects specified at link time. These preloaded shared objects might include libc.so, libC.
so, or libX.so. Use ldd(1) to find out which shared objects a program will load.

■ Application requests– The application uses the function calls dlopen(3) and dlclose(3) to
dynamically load and unload shared objects or executables.

dbx uses the term load object to refer to a shared object (.so) or executable (a.out). You can
use the loadobject command to list and manage symbolic information from load objects.

Link Map

The dynamic linker maintains a list of all loaded objects in a list called a link map. The link map
is maintained in the memory of the program being debugged, and is indirectly accessed through
librtld_db.so, a special system library for use by debuggers.

Chapter 19 • Debugging Shared Libraries 263

Setting Breakpoints in Shared Libraries

Startup Sequence and .init Sections

A .init section is a piece of code belonging to a shared object that is executed when the shared
object is loaded. For example, the .init section is used by the C++ runtime system to call all
static initializers in a .so file.

The dynamic linker first maps in all the shared objects, putting them on the link map. Then, the
dynamic linker traverses the link map and executes the .init section for each shared object. The
syncrtld event occurs between these two phases. For more information, see “syncrtld Event
Specification” on page 288.

Procedure Linkage Tables

Procedure linkage tables (PLTs) are structures used by the rtld to facilitate calls across shared
object boundaries. For instance, calls to printf go through this indirect table. For details, see
the generic and processor-specific SVR4 ABI reference manuals.

For dbx to handle step and next commands across PLTs, it has to keep track of the PLT table of
each load object. The table information is acquired at the same time as the rtld handshake.

Setting Breakpoints in Shared Libraries

To set a breakpoint in a shared library, dbx needs to confirm that a program will use that library
when it runs, and dbx needs to load the symbol table for the library. To determine which
libraries a newly loaded program will use when it runs, dbx executes the program just long
enough for the runtime linker to load all of the starting libraries. dbx then reads the list of
loaded libraries and kills the process. The libraries remain loaded and you can set breakpoints in
them before rerunning the program for debugging.

dbx follows the same procedure for loading the libraries regardless of whether the program is
loaded from the command line with the dbx command, from the dbx prompt with the debug
command, or in the IDE.

264 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

Setting a Breakpoint in an Explicitly Loaded Library

Setting a Breakpoint in an Explicitly Loaded Library

dbx automatically detects that a dlopen() or a dlclose() has occurred and loads the symbol
table of the loaded object. Once a shared object has been loaded with dlopen() you can place
breakpoints in it and debug it as you would any part of your program.

If a shared object is unloaded using dlclose(), dbx remembers the breakpoints placed in it and
replaces them if the shared object is again loaded with dlopen(), even if the application is run
again.

However, you do not need to wait for the loading of a shared object with dlopen() to place
a breakpoint in it, or to navigate its functions and source code. If you know the name of the
shared object that the program being debugged will be loading with dlopen(), you can request
that dbx preload its symbol table by using the loadobject -load command:

loadobject -load /usr/java1.1/lib/libjava_g.so

You can now navigate the modules and functions in this load object and place breakpoints in it
before it has been loaded with dlopen(). Once the load object is loaded by your program, dbx
automatically places the breakpoints.
Setting a breakpoint in a dynamically linked library is subject to the following limitations:

■ You cannot set a breakpoint in a filter library loaded with dlopen() until the first function in
it is called.

■ When a library is loaded by dlopen(), an initialization routine named _init() is called.
This routine might call other routines in the library. dbx cannot place breakpoints in the
loaded library until after this initialization is completed. Therefore, you cannot have dbx
stop at _init() in a library loaded by dlopen().

Chapter 19 • Debugging Shared Libraries 265

266 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

 A ♦ ♦ ♦ A P P E N D I X A

Modifying a Program State

This appendix focuses on dbx usage and commands that change your program or change the
behavior of your program when you run it under dbx, as compared to running it without dbx.
Understanding which commands might make modifications to your program is important.
The chapter contains the following sections:

■ “Impacts of Running a Program Under dbx” on page 267
■ “Commands That Alter the State of the Program” on page 268

Impacts of Running a Program Under dbx

You use dbx to observe a process, and the observation should not affect the process. However,
on occasion, you might drastically modify the state of the process. Sometimes plain observation
can affect execution and cause intermittent bug symptoms.

Your application might behave differently when run under dbx. Although dbx strives to
minimize its impact on the program being debugged, you should be aware of the following:

■ You might have forgotten to take out a -C or disable RTC. Having the RTC support library
librtc.so loaded into a program can cause the program to behave differently.

■ Your dbx initialization scripts might have some environment variables set that you have
forgotten. The stack base starts at a different address when running under dbx. The address
might also different based on your environment and the contents of argv[], forcing local
variables to be allocated differently. If the variables are not initialized, they will produce
different random numbers. This problem can be detected using runtime checking.

■ The program does not initialize memory allocated with malloc() before use. This problem
can be detected using runtime checking.

■ dbx has to catch LWP creation and dlopen events, which might affect timing-sensitive
multithreaded applications.

Appendix A • Modifying a Program State 267

Commands That Alter the State of the Program

■ dbx does context switching on signals so if your application makes heavy use of signals,
things might work differently.

■ Your program might be expecting that mmap() always returns the same base address for
mapped segments. Running under dbx affects the address space sufficiently that mmap() is
unlikely to return the same address as when the program is run without dbx. To determine if
this is a problem, look at all uses of mmap() and ensure that the address returned is used by
the program, rather than a hard-coded address.

■ If the program is multithreaded, it might contain data races or be otherwise dependent upon
thread scheduling. Running under dbx perturbs thread scheduling and might cause the
program to execute threads in a different order than normal. To detect such conditions, use
lock_lint.

Otherwise, determine whether running with adb or truss causes the same problems.

To minimize perturbations imposed by dbx, try attaching to the application while it is running in
its natural environment.

Commands That Alter the State of the Program

The commands described in this section might make modifications to your program.

assign Command

The assign command assigns the value of expression to variable. Using it in dbx permanently
alters the value of variable.

assign variable = expression

pop Command

The pop command pops a frame or frames from the stack:

pop Pop current frame.

pop number Pop number frames.

pop -f number Pop frames until specified frame number.

268 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

Commands That Alter the State of the Program

Any calls popped are re-executed upon resumption, which might result in unwanted program
changes. pop also calls destructors for objects local to the popped functions.

For more information, see “pop Command” on page 370.

call Command

When you use the call command in dbx, you call a procedure and the procedure performs as
specified:

call proc([params])

The procedure could modify your program. dbx makes the call as if you had written it into your
program source.

For more information, see “call Command” on page 310.

print Command

To print the value of the expressions, type:

print expression, ...

If an expression has a function call, printing the expression causes the call command to execute.
Therefore, the same considerations apply as with the “call Command” on page 310. With C
++, you should also be careful of unexpected side effects caused by overloaded operators.

For more information, see “print Command” on page 370.

when Command

The general syntax of the when command is as follows:

when event-specification [modifier] {command; ... }

When the event occurs, the commands are executed. Depending upon which command is
issued, this action could alter your program state.

For more information, see “when Command” on page 413.

Appendix A • Modifying a Program State 269

Commands That Alter the State of the Program

fix Command

You can use the fix command to make immediate changes to your program.

Although it is a very useful tool, the fix command recompiles modified source files and
dynamically links the modified functions into the application.

Note that the fix and continue feature isn't supported on Intel Linux or SPARC Linux.
Make sure to check for other restrictions for fix and continue. See “Memory Leak (mel)
Error” on page 170.

For more information, see “fix Command” on page 341.

cont at Command

The cont at command alters the order in which the program runs. Execution is continued at
line line. The ID is required if the program is multithreaded.

cont at line [ID]

This command could change the outcome of the program.

270 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

 B ♦ ♦ ♦ A P P E N D I X B

Event Management

Event management refers to the capability of dbx to perform actions when events take place in
the program being debugged.
This appendix contains the following sections:

■ “Event Handlers” on page 271
■ “Creating Event Handlers” on page 272
■ “Manipulating Event Handlers” on page 272
■ “Using Event Counters” on page 273
■ “Event Safety” on page 273
■ “Setting Event Specifications” on page 274
■ “Event Specification Modifiers” on page 289
■ “Parsing and Ambiguity” on page 292
■ “Using Predefined Variables” on page 292
■ “Event Handler Examples” on page 296

Event Handlers

Event management is based on the concept of a handler. The name comes from an analogy with
hardware interrupt handlers. Each event management command typically creates a handler,
which consists of an event specification and a series of side-effect actions. (See “Setting Event
Specifications” on page 274.) The event specification specifies the event that will trigger the
handler.

When the event occurs and the handler is triggered, the handler evaluates the event
according to any modifiers included in the event specification. (See “Event Specification
Modifiers” on page 289.) If the event meets the conditions imposed by the modifiers, the
handler’s side-effect actions are performed (that is, the handler “fires”).

Appendix B • Event Management 271

Creating Event Handlers

An example of the association of a program event with a dbx action is setting a breakpoint on a
particular line.

The most generic form of creating a handler is by using the when command.

when event-specification {action; ... }

Examples in this chapter show how you can write a command (like stop, step, or ignore) in
terms of when. These examples are meant to illustrate the flexibility of the when command and
the underlying handler mechanism, but they are not always exact replacements.

Creating Event Handlers

Use the when command, stop command, and trace command to create event handlers. (For
detailed information, see “when Command” on page 413, “stop Command” on page 387,
and “trace Command” on page 400.)

stop is shorthand for a common when idiom.

when event-specification { stop -update; whereami; }

An event-specification is used by the event management commands stop, when, and trace to
specify an event of interest. (see “Setting Event Specifications” on page 274).

Most of the trace commands can be handcrafted using the when command, ksh functionality,
and event variables. This is especially useful if you want stylized tracing output.

Every command returns a number known as a handler id (hid). You can access this number
using the predefined variable $newhandlerid.

Manipulating Event Handlers

You can use the following commands to manipulate event handlers. For more information on
each command, see the cited section.

TABLE 2 Manipulating Event Handlers

Command Description For More Information

status Lists handlers See “status
Command” on page 384

272 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

Using Event Counters

Command Description For More Information

delete Deletes all handlers
including temporary
handlers

See “delete
Command” on page 332

clear Deletes handlers based on
breakpoint position

See “clear
Command” on page 316

handler -enable Enables handlers See “handler
Command” on page 346

handler -disable Disables handlers See “handler
Command” on page 346

cancel Cancels signals and enables
the process to continue

See “cancel
Command” on page 312

Using Event Counters

An event handler has a trip counter, which has a count limit. Whenever the specified event
occurs, the counter is incremented. The action associated with the handler is performed only if
the count reaches the limit, at which point the counter is automatically reset to 0. The default
limit is 1. Whenever a process is rerun, all event counters are reset.

You can set the count limit using the -count modifier with a stop command, when command,
or trace command. Otherwise, use the handler command to individually manipulate event
handlers.

handler [-count | -reset] hid new-count new-count-limit

Event Safety
While dbx provides you with a rich set of breakpoint types through the event mechanism,
it also uses many events internally. By stopping on some of these internal events you can
easily disrupt the internal workings of dbx. If you modify the process state in these cases the
chance of disruption is even higher. See Appendix A, “Modifying a Program State” and “Call
Safety” on page 93.

dbx can protect itself from disruption in some cases but not all cases. Some events are
implemented in terms of lower level events. For example, all stepping is based on the fault
FLTTRACE event. So, issuing the command stop fault FLTTRACE disrupts stepping.

During the following phases of debugging, dbx is unable to handle user events because they
interfere with some careful internal orchestration. These phases include:

Appendix B • Event Management 273

Setting Event Specifications

■ When rtld runs at program startup (see “Dynamic Linker” on page 263)
■ The beginning and end of processes
■ Following the fork() function and the exec() function (see “Following the fork

Function” on page 180 and “Following the exec Function” on page 180
■ During calls when dbx needs to initialize a head in the user process (proc_heap_init())
■ During calls when dbx needs to ensure availability of mapped pages on the stack

(ensure_stack_memory())

In many cases you can use the when command instead of the stop command, and echo the
information you would have otherwise acquired interactively.

dbx protects itself by:

■ Disallowing the stop command for the sync, syncrtld, and prog_new events
■ Ignoring the stop command during the rtld handshake and the other phases mentioned

above

For example:

...SolBook linebreakstopped in munmap at 0xff3d503c 0xff3d503c: munmap+0x0004: ta %icc,

0x00000008SolBook linebreak dbx76: warning: 'stop' ignored -- while doing rtld handshake

Only the stoppage effect, including recording in the $firedhandlers variable, is ignored.
Counts or filters are still active. To stop in such a case, set the event_safety environment
variable to off.

Setting Event Specifications

Event specifications are used by the stop command, stopi command, when command, wheni
command, trace command, and tracei command to denote event types and parameters.
The format consists of a keyword representing the event type and optional parameters. The
meaning of an event specification is generally identical for all three commands. Exceptions are
documented in the command descriptions in Appendix D.

Breakpoint Event Specifications

A breakpoint is a location where an action occurs, at which point the program stops executing.
This section describes event specifications for breakpoint events.

274 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

Setting Event Specifications

in Event Specification

The syntax for the in event specification is:

in function

The function has been entered, and the first line is about to be executed. The first executable
code after the prolog is used as the actual breakpoint location. This might be a line where a
local variable is being initialized. In the case of C++ constructors, execution stops after all base
class constructors have executed. If the -instr modifier is used, it is the first instruction of the
function about to be executed. The function specification can take a formal parameter signature
to help with overloaded function names or template instance specification. For example:

 stop in mumble(int, float, struct Node *)

Note - Do not confuse in function with the-in function modifier.

at Event Specification

The syntax for the at event specification is:

at [filename:]line-number

The designated line is about to be executed. If you specify filename, then the designated line in
the specified file is about to be executed. The file name can be the name of a source file or an
object file. Although quotation marks are not required, they might be necessary if the file name
contains special characters. If the designated line is in template code, a breakpoint is placed on
all instances of that template.

You can also use specify a specific address:

at address-expression

The instruction at the given address is about to be executed. This event is available only with
the stopi command or with the -instr event modifier

infile Event Specification

The syntax for the infile event specification is:

infile filename

Appendix B • Event Management 275

Setting Event Specifications

This event puts a breakpoint on every function defined in a file. The stop infile command
iterates through the same list of functions as the funcs -f filename command.

Method definitions in .h files, template files, or plain C code in .h files, such as the kind used
by the regexp command, might contribute function definitions to a file, but these definitions are
excluded.

If the specified filename is the name of an object file (that is, it ends in .o). breakpoints are put
on every function that occurs in that object file.

The stop infile list.h command does not put breakpoints on all instances of methods
defined in the list.h file. Use events like inclass or inmethod to do so.

The fix command might eliminate or add a function to a file. The stop infile command puts
breakpoints on all old versions of function in a file as well as any functions that might be added
in the future.

No breakpoints are put on nested functions or subroutines in Fortran files.

You can use the clear command to disable a single breakpoint in the set created by the infile
event.

infunction Event Specification

The syntax for the infunction event specification is:

infunction function

This specification is equivalent to in function for all overloaded functions named function or all
template instantiations thereof.

inmember Event Specification

The syntax for the inmember event specification is:

inmember function

This specification is an alias for the inmethod event specification.

inmethod Event Specification

The syntax for the inmethod event specification is:

276 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

Setting Event Specifications

inmethod function

This specification is equivalent to the in function or the member method named function for
every class.

inclass Event Specification

The syntax for the inclass event specification is:

inclass classname [-recurse | -norecurse]

This specification is equivalent to in function for all member functions that are members of
classname, but not any of the bases of classname. -norecurse is the default. If -recurse is
specified, the base classes are included.

inobject Event Specification

The syntax for the inobject event specification is:

inobject object-expression [-recurse | -norecurse]

A member function called on the specific object at the address denoted by object-expression
has been called. stop inobject ox is roughly equivalent to the following, but unlike inclass,
bases of the dynamic type of ox are included. -recurse is the default. If -norecurse is specified,
the base classes are not included.

stop inclass dynamic_type(ox) -if this==ox

Data Change Event Specifications

This section describes event specifications for events that involve access or change to the
contents of a memory address.

access Event Specification

The syntax for the access event specification is:

Appendix B • Event Management 277

Setting Event Specifications

access mode address-expression [,byte-size-expression]

The memory specified by address-expression has been accessed.

mode specifies how the memory was accessed. Valid values are one or all of the following
letters:

r The memory at the specified address has been read.

w The memory has been written to.

x The memory has been executed.

mode can also contain either of the following:

a Stops the process after the access (default).

b Stops the process before the access.

In both cases the program counter will point at the offending instruction. The “before” and
“after” refer to the side effect.

address-expression is any expression that can be evaluated to produce an address. If you
provide a symbolic expression, the size of the region to be watched is automatically deduced.
You can override it by specifying byte-size-expression. You can also use nonsymbolic, typeless
address expressions, in which case, the size is mandatory. For example:

stop access w 0x5678, sizeof(Complex)

The access command has the limitation that no two matched regions can overlap.

Note - The access event specification is a replacement for the modify event specification.

change Event Specification

The syntax for the change event specification is:

change variable

The value of variable has changed. The change event is roughly equivalent to:

when step { if [$last_value !=$[variable]]

278 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

Setting Event Specifications

 then

 stop

 else

 last_value=$[variable]

 fi

 }

This event is implemented using single-stepping. For faster performance, use the access event.

The first time variable is checked causes one event, even though no change is detected. This
first event provides access to the initial value of variable. Subsequent detected changes in the
value of variable trigger additional events.

cond Event Specification

The syntax for the cond event specification is:

cond condition-expression

The condition denoted by condition-expression evaluates to true. You can specify any
expression for condition-expression, but it must evaluate to an integral type. The cond event is
roughly equivalent to the following stop command:

stop step -if conditional-expression

System Event Specifications

This section describes event specifications for system events.

dlopen and
dlclose Event Specification

The syntax for the dlopen() and dlopen() event specifications is:

dlopen [lib-path]

dlclose [lib-path]

System events occur after a dlopen() call or a dlclose() call succeeds. A dlopen() call or
dlclose() call can cause more than one library to be loaded. The list of these libraries is always

Appendix B • Event Management 279

Setting Event Specifications

available in the predefined variable $dllist. The first shell word in $dllist is a + (plus sign)
or a - (minus sign), indicating whether the list of libraries is being added or deleted.

lib-path is the name of a shared library. If it is specified, the event occurs only if the given
library was loaded or unloaded. In that case, $dlobj contains the name of the library. $dllist is
still available.

If lib-path begins with a /, a full string match is performed. Otherwise, only the tails of the
paths are compared.

If lib-path is not specified, then the events always occur whenever there is any dl-activity. In
this case, $dlobj is empty but $dllist is valid.

fault Event Specification

The syntax for the fault event specification is:

fault fault

The fault event occurs when the specified fault is encountered. The faults are architecture-
dependent. The set of faults known to dbx is listed in the following list and defined in the
proc(4) man page.

FLTILL Illegal instruction

FLTPRIV Privileged instruction

FLTBPT* Breakpoint trap

FLTTRACE* Trace trap (single step)

FLTACCESS Memory access (such as alignment)

FLTBOUNDS Memory bounds (invalid address)

FLTIOVF Integer overflow

FLTIZDIV Integer zero divide

FLTPE Floating-point exception

FLTSTACK Irrecoverable stack fault

280 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

Setting Event Specifications

FLTPAGE Recoverable page fault

FLTWATCH* Watchpoint trap

FLTCPCOVF CPU performance counter overflow

Note - FLTBPT, FLTTRACE, and FLTWATCH are not handled because they are used by dbx to
implement breakpoints, single-stepping, and watchpoints.

These faults are taken from /usr/include/sys/fault.h. fault can be any of those listed above,
in uppercase or lowercase, with or without the FLT- prefix, or the actual numerical code.

Note - The fault event is not available on Linux platforms.

lwp_exit Event Specification

The syntax for the lwp_exit event specification is:

lwp_exit

The lwp_exit event occurs when lwp has been exited. $lwp contains the ID of the exited LWP
(lightweight process) for the duration of the event handler.

Note - The lwp_exit event is not available on Linux platforms.

sig Event Specification

The syntax for the sig event specification is:

sig signal

The sig signal event occurs when the signal is first delivered to the program being debugged.
signal can be either a decimal number or the signal name in uppercase or lowercase. The prefix
is optional. This event is completely independent of the catch command and ignore command,
although the catch command can be implemented as follows:

function simple_catch {

 when sig $1 {

 stop;

 echo Stopped due to $sigstr $sig

Appendix B • Event Management 281

Setting Event Specifications

 whereami

 }

}

Note - When the sig event is received, the process has not seen it yet. Only if you continue the
process with the specified signal is the signal forwarded to it.

Alternatively, you can specify a signal with a sub-code. The syntax for this option of the sig
event specification is:

sig signal sub-code

When the specified signal with the specified sub-code is first delivered to the child, the sig
signal sub-code event occurs. As with signals, you can provide the sub-code as a decimal
number, in uppercase or lowercase. The prefix is optional.

sysin Event Specification

The syntax for the sysin event specification is:

sysin code|name

The specified system call has just been initiated, and the process has entered kernel mode.

The concept of system call supported by dbx is that provided by traps into the kernel as
enumerated in /usr/include/sys/syscall.h.

This concept is not the same as the ABI notion of system calls. Some ABI system calls
are partially implemented in user mode and use non-ABI kernel traps. However, most of
the generic system calls (the main exception being signal handling) are the same between
syscall.h and the ABI.

Note - The sysin event is not available on Linux platforms.

The list of kernel system call traps in /usr/include/sys/syscall.h is part of a private
interface in the Oracle Solaris OS that changes from release to release. The list of trap names
(codes) and trap numbers that dbx accepts includes all of those supported by any of the versions
of the Oracle Solaris OS that dbx supports. The names supported by dbx are unlikely to exactly
match those of any particular release of the Oracle Solaris OS, and some of the names in
syscall.h might not be available. Any trap number (code) is accepted by dbx and works as
expected, but a warning is issued if it does not correspond to a known system call trap.

282 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

Setting Event Specifications

sysout Event Specification

The syntax for the sysout event specification is:

sysout code|name

The specified system call is finished, and the process is about to return to user mode.

Note - The sysout event is not available on Linux platforms.

sysin | sysout Event Specifications

Without arguments, all system calls are traced. Certain dbx features, for example, the modify
event and runtime checking, cause the child to execute system calls for its own purposes and
show up if traced.

Execution Progress Event Specifications

This section describes event specifications for events pertaining to execution progress.

exit Event Specification

The syntax for the exit event specification is:

exit exitcode

The exit event occurs when the process has exited.

next Event Specification

The next event is similar to the step event except that functions are not stepped into.

returns Event Specification

The returns event is a breakpoint at the return point of the current visited function. The visited
function is used so that you can use the returns event specification after giving a number of

Appendix B • Event Management 283

Setting Event Specifications

step up commands. The returns event is always -temp and can only be created in the presence
of a live process.

The syntax for the returns event specification is:

returns function

The returns function event executes each time the given function returns to its call site. This is
not a temporary event. The return value is not provided, but you can find integral return values
by accessing the following registers:

■ SPARC based systems – $o0
■ x86 based systems – $eax
■ x64 based systems – $rax, $rdx

The event is roughly equivalent to:

when in func { stop returns; }

step Event Specification

The step event occurs when the first instruction of a source line is executed. For example, you
can get simple tracing with the following command:

when step { echo $lineno: $line; }; cont

When enabling a step event, you instruct dbx to single step automatically the next time cont
command is used.

Note - The step (and next) events do not occur upon the termination of the step command.
The step command is implemented in terms of the step event roughly as follows: alias
step="when step -temp { whereami; stop; }; cont"

throw Event Specification

The syntax for the throw event is:

throw [type | -unhandled | -unexpected]

The throw event occurs whenever any exception that is not unhandled or unexpected is thrown
by the application.

284 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

Setting Event Specifications

If an exception type is specified with the throw event, only exceptions of that type cause the
throw event to occur.

If the -unhandled option is specified, a special exception type signifying an exception is thrown
but for which there is no handler.

The -unexpected option is specified, a special exception type signifying an exception does not
satisfy the exception specification of the function that threw it.

Tracked Thread Event Specifications

The following section describes event specifications for tracked threads.

omp_barrier Event Specification

The omp_barrier event specification is when the tracked thread enters or exits a barrier. You
can specify a type, which can be explicit or implicit, and a state, which can be enter, exit,
or all_entered. The default is explicit all_entered.

omp_taskwait Event Specification

The omp_taskwait event specification is when the tracked thread enters or exists a taskwait.
You can specify a state, which can be enter or exit. The default is exit.

omp_ordered Event Specification

The omp_ordered event specification is when the tracked thread enters or exists an ordered
region. You can specify a state, which can be begin, enter or exit. The default is enter.

omp_critical Event Specification

The omp_critical event specification is when the tracked thread enters a critical region.

Appendix B • Event Management 285

Setting Event Specifications

omp_atomic Event Specification

The omp_atomic event specification is when the tracked thread enters or exists an atomic
region. You can specify a state, which can be begin or exit. The default is begin.

omp_flush Event Specification

The omp_flush event specification is when the tracked thread enters a explicit flush region.

omp_task Event Specification

The omp_task event specification is when the tracked thread enters or exists a task region. You
can specify a state, which can be create, start or finish. The default is start.

omp_master Event Specification

The omp_master event specification is when the tracked thread enters a master region.

omp_single Event Specification

The omp_single event specification is when the tracked thread enters a single region.

Other Event Specifications

This section describes event specifications for other types of events.

attach Event Specification

The attach event is when dbx has successfully attached to a process.

286 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

Setting Event Specifications

detach Event Specification

The detach event is when dbx has successfully detached from the program being debugged.

lastrites Event Specification

The lastrites event is when process being debugged is about to expire, which can happen for
the following reasons:

■ The _exit(2) system call has been called, either through an explicit call or when main()
returns.

■ A terminating signal is about to be delivered.
■ The process is being killed by the kill command.

The final state of the process is usually, but not always, available when this event is triggered,
giving you your last opportunity to examine the state of the process. Resuming execution after
this event terminates the process.

Note - The lastrites event is not available on Linux platforms.

proc_gone Event Specification

The proc_gone event occurs when dbx is no longer associated with a debugged process. The
predefined variable $reason can be signal, exit, kill, or detach.

prog_new Event Specification

The prog_new event occurs when a new program has been loaded as a result of follow exec.

Note - Handlers for this event are always permanent.

stop Event Specification

The stop event occurs whenever the process stops such that the user receives a prompt,
particularly in response to a stop handler. For example, the following commands are
equivalent:

Appendix B • Event Management 287

Setting Event Specifications

display x

when stop {print x;}

sync Event Specification

The sync event occurs when the process being debugged has just been executed with exec().
All memory specified in a.out is valid and present, but preloaded shared libraries have not
been loaded. For example, printf, although available to dbx, has not been mapped into
memory.

A stop on this event is ineffective; however, you can use the sync event with the when
command.

Note - The sync event is not available on Linux platforms.

syncrtld Event Specification

The syncrtld event occurs after a sync or an attach if the process being debugged has not yet
processed shared libraries. It executes after the dynamic linker startup code has executed and
the symbol tables of all preloaded shared libraries have been loaded but before any code in the
.init section has run.

A stop on this event is ineffective; however, you can use the syncrtld event with the when
command.

thr_create [thread-ID] Event Specification

The thr_create event occurs when a thread, or a thread with the specified thread ID, has been
created. For example, in the following stop command, the thread ID t@1 refers to creating
thread, while the thread ID t@5 refers to the created thread.

stop thr_create t@5 -thread t@1

thr_exit Event Specification

The thr_exit event occurs when a thread has exited. To capture the exit of a specific thread,
use the -thread option of the stop command as follows:

stop thr_exit -thread t@5

288 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

Event Specification Modifiers

timer Event Specification

The syntax for the timer event is:

timer seconds

The timer event occurs when the program being debugged has been running for seconds.
The timer used with this event is shared with collector command. The resolution is in
milliseconds, so a floating point value for seconds, for example 0.001, is acceptable.

Event Specification Modifiers

An event specification modifier sets additional attributes of a handler, the most common kind
being event filters. Modifiers must appear after the keyword portion of an event specification. A
modifier begins with a dash (-). The following are the valid event specification modifiers.

-if Modifier

The syntax for the -if modifier is:

-if condition

The condition is evaluated when the event specified by the event specification occurs. The side
effect of the handler is allowed only if the condition evaluates to nonzero.

If the -if modifier is used with an event that has an associated singular source location, such as
in or at, condition is evaluated in the scope corresponding to that location. Otherwise, qualify it
with the desired scope.

Macro expansion is performed on the condition according to same conventions as with the
print command.

-resumeone Modifier

The -resumeone modifier can be used with the -if modifier in an event specification
for a multithreaded program, and causes only one thread to be resumed if the condition
contains function calls. For more information, see “Qualifying Breakpoints With Conditional
Filters” on page 105.

Appendix B • Event Management 289

Event Specification Modifiers

-in Modifier
The syntax for the -in modifier is:

-in function

The event triggers only if it occurs between the time the first instruction of the given function is
reached and the time the function returns. Recursion on the function are ignored.

-disable Modifier
The-disable modifier creates the handler in the disabled state.

-count n,
-count infinity Modifier
The syntax for the -count modifier is:

-count n

or

-count infinity

The -count n and -count infinity modifiers have the handler count from 0 (see “Using Event
Counters” on page 273). Each time the event occurs, the count is incremented until it reaches
n. Once that happens, the handler fires and the counter is reset to zero.

Counts of all enabled handlers are reset when a program is run or rerun. More specifically, they
are reset when the sync event occurs.

The count is reset when you begin debugging a new program with the debug -r command
(see “debug Command” on page 329) or the attach -r command (see “attach
Command” on page 309).

-temp Modifier
The -temp modifier creates a temporary handler. Once the event has occurred it is automatically
deleted. By default, handlers are not temporary. If the handler is a counting handler, it is
automatically deleted only when the count reaches 0 (zero).

290 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

Event Specification Modifiers

Use the delete -temp command to delete all temporary handlers.

-instr Modifier

The -instr modifier makes the handler act at an instruction level. This event replaces the
traditional ’i’ suffix of most commands. It usually modifies two aspects of the event handler:

■ Any message prints assembly-level rather than source-level information.
■ The granularity of the event becomes instruction level. For instance, step -instr implies

instruction-level stepping.

-thread Modifier

The syntax for the -thread modifier is:

-thread thread-ID

The -thread modifier means the action is executed only if the thread that caused the event
matches a different thread ID. The specific thread you have in mind might be assigned a
different thread ID from one execution of the program to the next.

-lwp Modifier

The syntax for the -lwp modifier is:

-lwp lwp-ID

The -lwp modifier means the action is executed only if the -lwp that caused the event matches
lwp-ID. The specific -lwp you have in mind might be assigned a different lwp-ID from one
execution of the program to the next.

-hidden Modifier

The -hidden modifier hides the handler in a regular status command. Use status -h to see
hidden handlers.

Appendix B • Event Management 291

Parsing and Ambiguity

-perm Modifier
Normally all handlers are thrown away when a new program is loaded. Using the -perm
modifier retains the handler across debugging sessions. A plain delete command does not
delete a permanent handler. Use delete -p to delete a permanent handler.

Parsing and Ambiguity
The syntax for event specifications and modifiers is keyword driven and based on ksh
conventions. Everything is split into words delimited by spaces.

Expressions can have spaces embedded in them, causing ambiguous situations. For example,
consider the following two commands:

when a -temp

when a-temp

In the first example, even though the application might have a variable named temp, the
dbx parser resolves the event specification in favor of -temp being a modifier. In the second
example, a-temp is collectively passed to a language-specific expression parser. If no variables
are named a and temp, an error occurs. Use parentheses to force parsing.

Using Predefined Variables
Certain read-only ksh predefined variables are provided. The variables listed in the following
table are always valid.

Variable Definition

$ins Disassembly of the current instruction.

$lineno Current line number in decimal.

$vlineno Current “visiting” line number in decimal.

$line Contents of the current line.

$func Name of the current function.

$vfunc Name of the current “visiting” function.

$class Name of the class to which $func belongs.

$vclass Name of the class to which $vfunc belongs.

$file Name of the current file.

292 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

Using Predefined Variables

Variable Definition

$vfile Name of the current file being visited.

$loadobj Name of the current loadable object.

$vloadobj Name of the current loadable object being visited.

$scope Scope of the current PC in back-quote notation.

$vscope Scope of the visited PC in back-quote notation.

$funcaddr Address of $func in hex.

$caller Name of the function calling $func.

$dllist After a dlopen or dlclose event, contains the list of load objects just loaded or
unloaded. The first word of dllist is a + (plus sign) or a - (minus sign) depending
on whether a dlopen or a dlclose has occurred.

$newhandlerid ID of the most recently created handler. This variable has an undefined value after
any command that deletes handlers. Use the variable immediately after creating
a handler. dbx cannot capture all of the handler IDs for a command that creates
multiple handlers.

$firedhandlers List of handler ids that caused the most recent stoppage. The handlers on the list are
marked with *(an asterisk) in the output of the status command.

$proc Process ID of the current process being debugged.

$lwp ID of the current LWP.

$thread Thread ID of the current thread.

$newlwp ID of a newly created LWP.

$newthread ID of a newly created thread.

$prog Full path name of the program being debugged.

$oprog Previous value of $prog, which is used to get back to what you were debugging
following an exec(), when the full path name of the program reverts to - (dash).
While $prog is expanded to a full path name, $oprog contains the program path as
specified on the command line or to the debug command. If exec() is called more
than once, there is no way to return to the original program.

$exec32 True if the dbx binary is 32-bit.

$exitcode Exit status from the last run of the program. The value is an empty string if the
process has not exited.

$booting Set to true if the event occurs during the boot process. Whenever a new program
is debugged, it is first booted so that the list and location of shared libraries can be
ascertained. The process is then killed. This sequence is termed “booting”.

While booting is occurring, all events are still available. Use this variable to
distinguish, for example, the sync and syncrtld events occurring during a
debugging run and the ones occurring during a normal run.

$machtype If a program is loaded, returns its machine type: sparcv8, sparcv8+, sparcv9, x86,
or x86_64. Otherwise, returns unknown.

Appendix B • Event Management 293

Using Predefined Variables

Variable Definition

$datamodel If a program is loaded, returns its data model: ilp32 or lp64. Otherwise, returns
unknown. To find the model of the program you've just loaded, use the following in
your .dbxrc file:

when prog_new -perm {

 echo machine: $machtype $datamodel;

}

The following example shows that whereami can be implemented:

function whereami {

 echo Stopped in $func at line $lineno in file $(basename $file)

 echo "$lineno\t$line"

}

Variables Valid for when Command

The variables described in this section are valid only within the body of a when command.

$handlerid

During the execution of the body, $handlerid is the ID of the when command to which the
body belongs. The following commands are equivalent:

when X -temp { do_stuff; }

when X { do_stuff; delete $handlerid; }

Variables Valid for when Command and Specific
Events
Certain variables are valid only within the body of a when command and for specific events, as
shown in the following tables.

TABLE 3 Variables Valid for sig Event

Variable
Description

$sig Signal number that caused the event

$sigstr Name of $sig

294 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

Using Predefined Variables

Variable
Description

$sigcode Subcode of $sig if applicable

$sigcodestr Name of $sigcode

$sigsender Process ID of sender of the signal, if appropriate

TABLE 4 Variable Valid for exit Event

Variable
Description

$exitcode Value of the argument passed to _exit(2) or exit(3) or the return value of main

TABLE 5 Variable Valid for dlopen and dlclose Events

Variable
Description

$dlobj Pathname of the load object dlopened or dlclosed

TABLE 6 Variables Valid for sysin and sysout Events

Variable
Description

$syscode System call number

$sysname System call name

TABLE 7 Variable Valid for proc_gone Events

Variable
Description

$reason One of signal, exit, kill, or detach

TABLE 8 Variables Valid for thr_create Event

Variable
Description

$newthread ID of the newly created thread, for example, t@5

$newlwp ID of the newly created LWP, for example, l@4

TABLE 9 Variables Valid for access Event

Variable
Description

$watchaddr The address being written to, read from, or executed

$watchmode One of the following: r for read, w for write, x for execute; followed by one of the following: a
for after, b for before

Appendix B • Event Management 295

Event Handler Examples

Event Handler Examples

This section provides some examples of setting event handlers.

Setting a Breakpoint for Store to an Array Member

This example shows how to set a data change breakpoint on array[99]:

(dbx) stop access w &array[99]

(2) stop access w &array[99], 4

(dbx) run

Running: watch.x2

watchpoint array[99] (0x2ca88[4]) at line 22 in file "watch.c"

 22 array[i] = i;

Implementing a Simple Trace

This example shows how to implement a simple trace:

(dbx) when step { echo at line $lineno; }

Enabling a Handler While Within a Function

The following example shows how to enable a handler while within a function:

<dbx> trace step -in foo

This command is equivalent to the following:

 # create handler in disabled state

 when step -disable { echo Stepped to $line; }

 t=$newhandlerid # remember handler id

 when in foo {

 # when entered foo enable the trace

 handler -enable "$t"

 # arrange so that upon returning from foo,

 # the trace is disabled.

 when returns { handler -disable "$t"; };

 }

296 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

Event Handler Examples

Determining the Number of Lines Executed

This example shows how to see how many lines have been executed in a small program, type:

(dbx) stop step -count infinity # step and stop when count=inf

(2) stop step -count 0/infinity

(dbx) run

...

(dbx) status

(2) stop step -count 133/infinity

The program never stops, and then the program terminates. The number of lines executed is
133. This process is very slow. It is most useful with breakpoints on functions that are called
many times.

Determining the Number of Instructions Executed
by a Source Line

This example shows how to count how many instructions a line of code executes:

(dbx) ... # get to the line in question

(dbx) stop step -instr -count infinity

(dbx) step ...

(dbx) status

(3) stop step -count 48/infinity # 48 instructions were executed

If the line you are stepping over makes a function call, the lines in the function are counted
as well. You can use the next event instead of step to count instructions, excluding called
functions.

Enabling a Breakpoint After an Event Occurs

Enable a breakpoint only after another event has occurred. For example, you would use the
following breakpoint if your program begins to execute incorrectly in function hash, but only
after the 1300th symbol lookup.

(dbx) when in lookup -count 1300 {

 stop in hash

 hash_bpt=$newhandlerid

Appendix B • Event Management 297

Event Handler Examples

 when proc_gone -temp { delete $hash_bpt; }

}

Note - $newhandlerid is referring to the just-executed stop incommand.

Resetting Application Files for replay

In this example, if your application processes files that need to be reset during a replay, you
can write a handler to do that each time you run the program.

(dbx) when sync { sh regen ./database; }

(dbx) run < ./database... # during which database gets clobbered

(dbx) save

... # implies a RUN, which implies the SYNC event which

(dbx) restore # causes regen to run

Checking Program Status

This example shows how to see quickly where the program is while it is running, type:

(dbx) ignore sigint

(dbx) when sig sigint { where; cancel; }

You would then issue ^C to see a stack trace of the program without stopping it.

This example is basically what the collector hand sample mode does (and more). Use SIGQUIT
(^\) to interrupt the program because ^C is now used.

Catch Floating-Point Exceptions

The following example shows how to catch only specific floating-point exceptions, for
example, IEEE underflow:

(dbx) ignore FPE # disable default handler

(dbx) help signals | grep FPE # can’t remember the subcode name

...

(dbx) stop sig fpe FPE_FLTUND

...

298 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

Event Handler Examples

For more information about enabling ieee handlers, see “Trapping the FPE Signal (Oracle
Solaris Only)” on page 193.

Appendix B • Event Management 299

300 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

 C ♦ ♦ ♦ A P P E N D I X C

Macros

By default, selected expressions are macro expanded before being evaluated, including
expressions you specify with the print, display, and watch commands; the -if option of the
stop, trace, and when commands; and the $[] construct. Macro expansion is also applied to
balloon evaluation and watches in the IDE or dbxtool.

Additional Uses of Macro Expansion

Macro expansion is applied to both the variable and the expression in an assign command.

In the call command, macro expansion is applied to the name of the function being called as
well as to the parameters being passed.

The macro commandtakes any expression and macro and expands the macro. For example:

(dbx) macro D(1, 2)

 Expansion of: D(1, 2)

 is: d(1,2)

If you give the whatis command a macro, it shows the macro's definition. For example:

(dbx) whatis B

 #define B(x) b(x)

If you give the which command a macro, it shows where the macro that is currently active in the
scope is defined. For example:

(dbx) which B2

 `a.out`macro_wh.c`B2 # defined at defs2.h:3

 # included from defs1.h:3

 # included from macro_wh.c:23

Appendix C • Macros 301

Macro Definitions

If you give the whereis command a macro, it shows all of the places where the macro has been
defined. The list is limited to modules for which dbx has already read debugging information.
For example:

(dbx) whereis U

 macro: U # defined at macro_wh.c:21

 macro: U # undefined at defs1.h:5

The dbxenv variable macro_expand controls whether these commands expand macros. It is set
to on by default.

In general, the +m option in dbx commands causes the commands to bypass macro expansion.
The -m option forces macro expansion even if the dbxenv variable macro_expand is set to off.
An exception is the -m option within the $[] construct, where -m only causes macros to be
expanded, with no evaluation taking place. This exception facilitates macro expansion in shell
scripts.

Macro Definitions

dbx can recognize macro definitions in two ways:

■ Definitions are provided by the compilers when you compile with the -g3 option if you use
the default DWARF format for debugging information. They are not provided if you specify
the -xdebugformat=stabs option when compiling.

■ dbx can re-create definitions by skimming the source file and its include files. Accurate re-
creation depends on access to the original sources and include files. It also depends on the
availability of the path name to the compiler used, and on compiler options like -D and -I.
This information is available in both DWARF and stabs formats from Oracle Developer
Studio compiler, but not from GNU compilers. See “Skimming Errors” on page 304 and
“Using the pathmap Command to Improve Skimming” on page 305 for information about
ensuring successful skimming.

The dbxenv variable macro_source (see Table 1, “dbx Environment Variables,” on page 61 in
Chapter 3, “Customizing dbx”) controls which one of the two methods dbx uses to recognize
macro definitions.

There are several factors to take into account in choosing which method you want dbx to use.

302 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

Macro Definitions

Compiler and Compiler Options

One factor in choosing a macro definition method is the availability of various types of
information that depend on which compiler and compiler options you used to build your code.
The following table shows which methods you can choose depending on the compiler and
debugging information options.

TABLE 10 Macro Definition Methods Available for Various Build Options

Compiler -g option Debug Information Format Methods That Work

Oracle Developer Studio -g DWARF Skimming

Oracle Developer Studio -g stabs Skimming

Oracle Developer Studio -g3 DWARF Skimming and from
compiler

Oracle Developer Studio -g3 stabs Skimming (-g3 option with
-xdebugformat=stabs
option is not supported)

GNU -g DWARF Neither

GNU -g stabs N/A

GNU -g3 DWARF From compiler

GNU -g3 stabs N/A

Tradeoffs in Functionality

Another factor to take into account in choosing a macro definition method is the tradeoffs in
functionality depending on which method you choose:

■ Size of executable. The main advantage of the skimming method is that it does not require
compilation with the -g3 option because it works with the smaller executables produced by
compiling with the -g option.

■ Debugging format. Skimming works with both DWARF and stabs. Compiling with the -g3
option to get the definitions from the compiler works only with DWARF.

■ Speed. Skimming takes up to one second the first time an expression is evaluated for a
module for which dbx has not yet read the debugging information.

■ Accuracy. Information provided by the compilers when you compile with the -g3 option is
more stable and accurate than information provided by skimming.

■ Availability of the build environment. Skimming requires that the compilers, source
code files, and include files be available during debugging. dbx does not check for these

Appendix C • Macros 303

Skimming Errors

items becoming out of date, so if they are likely to change, accuracy might deteriorate and
compiling with the -g3 option might be better than depending on skimming.

■ Debugging on a different system from the one where the code was compiled. If you
compiled the code on system A and are debugging it on system B, dbx accesses files on
system A using NFS with some help from the pathmap command.

The pathmap command also helps facilitate file access during skimming. Although it works
for your program's source files and include files, it might not work for system include files
because /usr/include is not usually available through NFS. Macro definitions therefore are
extracted from /usr/include on the debugging system instead of on the build system.
You can choose to be aware of and tolerant of possible discrepancies between system
include files, or choose to compile with the -g3 option.

Limitations

■ Although Fortran compilers support macros through the cpp(1) function or the fpp(1)
function, dbx does not support macro expansion for Fortran.

■ dbx ignores macro information generated by compiling with the -g3 option and the
-xdebugformat=stabs option.
For more information about the stabs index, see the Stab Interface guide,found with the path
install-dir/solarisstudio12.4/READMEs/stabs.pdf.

■ Skimming works with code compiled with the -g option and the -xdebugformat=stabs
option.

Skimming Errors

You are depending on macro skimming if you did not compile your code with the -g3 option
and have the macro_source dbxenv variable set to skim_unless_compiler or skim.

For skimming to succeed for a module, the following conditions need to be true:

■ The module must have been compiled with a Oracle Developer Studio compiler using the -g
option.

■ The compiler used to compile the module must be accessible by dbx.
■ The source file for the module must be accessible by dbx.
■ Files included by the source code of the module must be available, that is, the path given to

the -I options when the module was compiled must be accessible by dbx.

304 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

Using the pathmap Command to Improve Skimming

■ The source code must be lexically sound. For example, it cannot contain unterminated
strings of comments or be missing #endifs.

If the source code or include files are not accessible by dbx, you can use the pathmap command
to make them accessible.

Using the pathmap Command to Improve Skimming

If you move your source files after compiling, build on one machine and debug on another, or
are in one of the other situations described in “Finding Source and Object Files” on page 86,
macro skimming might not be able to find include files in the file it is skimming. The solution,
as with other cases of files not being found, is to use the pathmap command to help the macro
skimmer locate include directories. Imagine, for example, that you compile with the option
-I/export/home/proj1/include and have the statement #include "module1/api.h" in your
code. Then, if you rename proj1 to proj2, the following pathmap command will help the macro
skimmer locate your files:

pathmap /export/home/proj1 /export/home/proj2

The pathmap is not applied to the compilers used to compile the original code.

When you are working with macros, you must reload your application in order to have
pathmaps take effect, unlike other situations when a file is not found and you can use the
pathmap command to make changes in a pathmapping that are immediately effective.

The pathmap command helps dbx find the correct files when you build on one machine and
debug on another. However, system include files such as /usr/include/stdio.h are typically
not exported from the build machine, so the macro skimmer is likely to use the files on the
debug machine. In some cases, a system include file might not be available on the debug
machine. The value of system-specific and system-dependent macros also might not be the
same on the debug machine as on the build machine.

If the pathmap command does not solve your skimming problems, consider compiling
your code with the -g3 option and setting the macro_source dbxenv variable to
skim_unless_compiler or compiler.

Appendix C • Macros 305

306 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

 D ♦ ♦ ♦ A P P E N D I X D

Command Reference

This appendix provides detailed syntax and functional descriptions of all of the dbx commands.

adi assign Command

The adi assign command assigns a new ADI version to an address. This command is
supported only in native mode on Oracle Solaris SPARC systems.

Native Mode Syntax

adi assign

<addr> [/
<count>] = <ver>

Assigns a new ADI version to an address starting at addr for count
addresses. The default count is 1. ver must be between 0 and 15.

adi assign

<&object> [/
<count>] = <ver>

Assigns a new ADI version to the address span of the object, or count
bytes; whichever is less. The default count is the entire object.

adi assign

<addr1>, <addr2>
= <ver>

Assigns a new ADI version to addresses from addr1 through addr2. ver
must be between 0 and 15.

where:

addr is an address in the debuggee's address space.

count is the number of bytes.

ver is the newly assigned ADI version.

Appendix D • Command Reference 307

adi examine Command

adi examine Command

The adi examine command displays one ADI version per cacheline. All groups of output lines
that would be identical to the immediately preceding output line (except for byte offsets) will
be replaced with a line containing only an asterisk (*). The last line is always printed. This
command is supported only in native mode on Oracle Solaris SPARC systems.

Native Mode Syntax

adi examine

| x <addr> [/
<count>]

Displays the ADI version, one per cache line, starting at addr for count
addresses. The default count is 1.

adi examine

| x &object [/
<count>]

Displays the ADI version for an object for count bytes, up to the address
span of the object. The default count is the entire object. Only one
version per cacheline is printed.

adi examine | x
<addr1> , <addr2>

Displays the ADI version, one per cacheline, from addr1 through addr2,
inclusive.

where:

addr is an address in the debuggee's address space.

count is the number of bytes.

assign Command

In native mode, the assign command assigns a new value to a program variable. In Java mode,
the assign command assigns a new value to a local variable or parameter.

Native Mode Syntax

assign variable = expression

where:

308 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

attach Command

expression is the value to be assigned to variable.

Java Mode Syntax

assign identifier = expression

where:

expression is a valid Java expression, which can include any of the following:

■ class-name is the name of a Java class. You can use either of the following:
■ The package path using a period (.) as a qualifier; for example, test1.extra.T1.Inner
■ The full path name preceded by a pound sign (#) and using slash (/) and dollar sign ($)

as qualifiers. For example, #test1/extra/T1$Inner. Enclose class-name in quotation
marks if you use the $ qualifier.

■ field-name is the name of a field in the class.
■ identifier is a local variable or parameter, including this, the current class instance variable

(object-name.field-name) or a class (static) variable (class-name.field-name).
■ object-name is the name of a Java object.

attach Command

The attach command attaches dbx to a running process, stopping execution and putting the
program under debugging control. It has identical syntax and identical functionality in native
mode and Java mode.

Syntax
attach process-ID Begin debugging the program with process ID process-ID. dbx finds the

program using /proc.

attach -p

process-ID
program-name

Begin debugging program-name with process ID process-ID.

attach program-
name process-ID

Begin debugging program-name with process ID process-ID. program-
name can be ‐. dbx finds it using /proc.

Appendix D • Command Reference 309

bsearch Command

attach -r ... The -r option causes dbx to retain all watch commands, display
commands, when commands, and stop commands. With no -r option,
an implicit delete all command and undisplay 0 command are
performed.

where:

process-ID is the process ID of a running process.

program-name is the path name of the running program.

For information on how to attach dbx to a running Java process, see “Attaching dbx to a
Running Java Application” on page 228.

bsearch Command

The bsearch command searches backward in the current source file. It is valid only in native
mode.

Syntax

bsearch string Search backward for string in the current file.

bsearch Repeat search, using the last search string.

where:

string is a character string.

call Command

In native mode, the call command calls a procedure. In Java mode, the call command calls a
method.

You can also use the call command to call a function. To display the return value use the print
command.

310 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

call Command

Occasionally the called function hits a breakpoint. You can choose to continue using the cont
command or abort the call by using pop -c. The latter method is useful also if the called
function causes a segmentation fault.

Native Mode Syntax

call [-lang language] [-resumeone] [-m] [+m] procedure ([parameters])

where:

language is the language of the called procedure.

procedure is the name of the procedure.

parameters are the procedure’s parameters.

-lang specifies the language of the called procedure and tells dbx to use the calling conventions
of the specified language. This option is useful when the procedure being called was compiled
without debugging information and dbx does not know how to pass parameters.

-resumeone resumes only one thread when the procedure is called. For more information, see
“Resuming Execution” on page 174.

-m specifies that macro expansion be applied to the procedure and parameters when the dbxenv
variable macro_expand is set to off.

+m specifies that macro expansion be skipped when the dbxenv variable macro_expand is set to
on.

Java Mode Syntax

call [class-name.|object-name.] method-name ([parameters])

where:

class-name is the name of a Java class. You can use either of the following:

■ The package path using a period (.) as a qualifier; for example, test1.extra.T1.Inner
■ The full path name preceded by a pound sign (#) and using slash (/) and dollar sign ($) as

qualifiers. For example, #test1/extra/T1$Inner. Enclose class-name in quotation marks if
you use the $ qualifier.

object-name is the name of a Java object.

Appendix D • Command Reference 311

cancel Command

method-name is the name of a Java method.

parameters are the method’s parameters.

cancel Command

The cancel command cancels the current signal. It is primarily used within the body of a when
command (see “when Command” on page 413). It is valid only in native mode.

Signals are normally cancelled when dbx stops because of a signal. If a when command is
attached to a signal event, the signal is not automatically cancelled. The cancel command can
be used to explicitly cancel the signal.

catch Command

The catch command catches the given signals. It is valid only in native mode.

Catching a given signal causes dbx to stop the program when the process receives that signal. If
you continue the program at that point, the signal is not processed by the program.

Syntax
catch Print a list of the caught signals.

catch number
number ...

Catch signals numbered number.

catch signal
signal ...

Catch signals named by signal. SIGKILL cannot be caught or ignored.

catch $(ignore) Catch all signals.

where:

number is the number of a signal.

signal is the name of a signal.

312 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

check Command

check Command

The check command enables checking of memory access, leaks, or usage and prints the current
status of runtime checking (RTC). It is valid only in native mode.

The features of runtime checking that are enabled by this command are reset to their initial state
by the debug command.

Syntax

This section provides information about the options for the check command.

check [functions] [files] [loadobjects]

Equivalent to check -all; suppress all; unsuppress all in functions, files, and
loadobjects

where:

functions is one or more function names.

files is one or more file names.

loadobjects is one or more load object names.

You can use this to focus runtime checking on places of interest.

Note - To detect all errors, RTC does not require the program be compiled with -g. However,
symbolic (-g) information is sometimes needed to guarantee the correctness of certain errors
(mostly read from uninitialized memory). For this reason certain errors (rui for a.out and rui
+ aib + air for shared libraries) are suppressed if no symbolic information is available. This
behavior can be changed by using suppress and unsuppress.

-access Option

The -access option enables checking. RTC reports the following errors:

baf Bad free

Appendix D • Command Reference 313

check Command

duf Duplicate free

maf Misaligned free

mar Misaligned read

maw Misaligned write

oom Out of memory

rob Read from array out-of-bounds memory

rua Read from unallocated memory

rui Read from uninitialized memory

wob Write to array out-of-bounds memory

wro Write to read-only memory

wua Write to unallocated memory

The default behavior is to stop the process after detecting each access error, which can
be changed using the rtc_auto_continue dbxenv variable. When set to on, access
errors are logged to a file. The log file name is controlled by the dbxenv variable
rtc_error_log_file_name.

By default, each unique access error is only reported the first time it happens. You can change
this behavior using the dbxenv variable rtc_auto_suppress. The default setting of this variable
is on.

-leaks Option

The syntax for the -leaks option is:

check -leaks [-frames n] [-match m]

Enable leak checking. RTC reports the following errors:

aib Possible memory leak – The only pointer points in the middle of the
block

air Possible memory leak – Pointer to the block exists only in register

314 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

check Command

mel Memory leak – No pointers to the block

With leak checking enabled, an automatic leak report is generated when the program exits.
All leaks including possible leaks are reported at that time. By default, a non-verbose report is
generated, which can be changed through the dbxenv variable rtc_mel_at_exit. However, you
can ask for a leak report at any time (see “showleaks Command” on page 382).

-frames n implies that up to n distinct stack frames are displayed when reporting leaks. -match
m is used for combining leaks; if the call stack at the time of allocation for two or more leaks
matches n frames, then these leaks are reported in a single combined leak report.

The default value of n is 8 or the value of m (whichever is larger). Maximum value of n is 16.
The default value of m is 8.

-memuse Option

The syntax for the -memuse option is:

check -memuse [-frames n] [-match m]

The -memuse option behaves similarly to the -leaks option and also enables a blocks-in-
use report (biu) when the program exits. By default, a non-verbose blocks in use report is
generated, which can be changed through the dbxenv variable rtc_biu_at_exit. At any time
during program execution you can see where the memory in your program has been allocated
(see “showmemuse Command” on page 383).

-frames n implies that up to n distinct stack frames will be displayed while reporting memory
use and leaks. Use -match m to combine these reports. If the call stack at the time of allocation
for two or more leaks matches m frames, then these leaks are reported in a single combined
memory leak report.

The default value of n is 8 or the value of m, whichever is larger. The maximum value of n is
16. The default value of m is 8.

-all Option

The syntax for the -all option is:

check -all [-frames n] [-match m]

Equivalent to:

Appendix D • Command Reference 315

clear Command

check -access and check -memuse [-frames n] [-match m]

The value of the dbxenv variable rtc_biu_at_exit is not changed with check -all, so by
default no memory use report is generated at exit. See “dbx Command” on page 326 for the
description of the rtc_biu_at_exit environment variable.

clear Command

The clear command clears breakpoints. It is valid only in native mode.

Event handlers created using the stop command, trace command, or when command with the
inclass argument, inmethod argument, infile argument, or infunction argument create sets
of breakpoints. If the line you specify in the clear command matches one of these breakpoints,
only that breakpoint is cleared. Once cleared in this manner, an individual breakpoint belonging
to a set cannot be enabled again. However, disabling and then enabling the relevant event
handler re-establishes all the breakpoints.

Syntax

clear [filename: line]

where:

line is the number of a source code line, such that all breakpoints are cleared at the specified
line.

filename is the name of a source code file, such that all breakpoints at line line are cleared in the
specified file.

If no file or line is specified, all breakpoints are cleared at the current stopping point.

collector Command

The collector command collects performance data for analysis by the Performance Analyzer.
It is valid only in native mode.

This section lists the collector commands and provides details about them.

316 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

collector Command

Syntax
collector

archive options
Specify the mode for archiving an experiment when it terminates.

collector

dbxsample options
Control the collection of samples when dbx stops the target process.

collector

disable

Stop data collection and close the current experiment.

collector enable Enable the collector and open a new experiment .

collector

heaptrace options
Enable or disable collection of heap tracing data.

collector

hwprofile options
Specify hardware counter profiling settings.

collector limit

options
Limit the amount of profiling data recorded.

collector pause Stop collecting performance data but leave experiment open.

collector

profile options
Specify settings for collecting callstack profiling data.

collector resume Start performance data collection after pause.

collector sample

options
Specify sampling settings.

collector show

options
Show current collector settings.

collector status Inquire status about current experiment.

collector store

options
Experiment file control and settings.

collector

synctrace options
Specify settings for collecting thread synchronization wait tracing data.

collector tha

options
Specify settings for collecting thread analyzer data.

Appendix D • Command Reference 317

collector Command

collector

version

Report the version of libcollector.so that would be used to collect
data.

where:

To start collecting data, type collector enable.

To stop data collection, type collector disable.

collector archive Command

The collector archive command specifies the archiving mode to be used when the
experiment terminates.

Syntax

collector

archive on|off|

copy

By default, normal archiving is used. For no archiving, specify off. To
copy load objects into the experiment for portability, specify copy.

collector dbxsample Command

The collector dbxsample command specifies whether to record a sample when the process is
stopped by dbx.

Syntax

collector

dbxsample on|off

By default, a sample is collected when the process is stopped by dbx. To
indicate not to collect a sample at this time, specify off.

collector disable Command

The collector disable command causes the data collection to stop and the current
experiment to be closed.

318 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

collector Command

collector enable Command

The collector enable command enables the collector and opens a new experiment.

collector heaptrace Command

The collector heaptrace command specifies options for collecting heap tracing (memory
allocation) data.

Syntax

collector

heaptrace on|off

By default, heap tracing data is not collected. To collect this data, specify
on.

collector hwprofile Command

The collector hwprofile command specifies options for collecting hardware-counter
overflow profiling data.

Syntax

collector

hwprofile on|off

By default, hardware-counter overflow profile data is not collected. To
collect this data, specify on.

collector

hwprofile list

Print out the list of available counters.

collector

hwprofile

counter on|hi|

high|lo|low|off

By default, hardware-counter overflow profile data is not collected. To
collect this data, specify on. You can set the resolution of the counters to
high or low. If you do not specify a resolution, it is set to normal. These
options are similar to the collect command options. See the collect(1)
man page for more information.

Appendix D • Command Reference 319

collector Command

collector

hwprofile

addcounter on|

off

Add additional counters for hardware counter overflow profiles.

collector

hwprofile

counter name
interval [name2
interval2]

Specify hardware counter names and intervals.

where:

name is the name of a hardware counter.

interval is the collection interval in milliseconds.

name2 is the name of a second hardware counter.

interval2 is the collection interval in milliseconds.

Hardware counters are system-specific, so the choice of counters available depends on the
system you are using. Many systems do not support hardware-counter overflow profiling. On
these machines, the feature is disabled.

collector limit Command

The collector limit command specifies the experiment file size limit.

Syntax

collector limit value | unlimited | none

where:

value, in megabytes, limits the amount of profiling data recorded and must be a positive
number.When the limit is reached, no more profiling data is recorded but the experiment
remains open and sample points continue to be recorded. By default, there is no limit on the
amount of data recorded.

If you have set a limit, specify unlimited or none to remove the limit.

320 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

collector Command

collector pause Command

The collector pause command causes the data collection to stop but leaves the current
experiment open. Sample points are not recorded while the Collector is paused. A sample is
generated prior to a pause, and another sample is generated immediately following a resume.
Data collection can be resumed with the collector resume command.

collector profile Command

The collector profile command specifies options for collecting profile data.

Syntax

collector

profile on|off

Specify the profile data collection mode.

collector

profile timer

interval

Specify profile timer period, fixed or floating point, with an optional
trailing m for milliseconds or u for microseconds.

collector resume Command

The collector resume command causes the data collection to resume after a pause created by
the collector pause command (see “collector pause Command” on page 321).

collector sample Command

The collector sample command specifies the sampling mode and the sampling interval.

Syntax

collector sample

periodic|manual

Specify sampling mode.

Appendix D • Command Reference 321

collector Command

collector sample

period seconds
Specify sampling interval in seconds.

collector sample

record [name]
Record a sample with an optional name.

where:

seconds is the length of the sampling interval.

name is the name of the sample.

collector show Command

The collector show command shows the settings of one or more categories of options.

Syntax

collector show Show all settings

collector show

all

Show all settings

collector show

archive

Show archive setting

collector show
duration

Show duration setting

collector show

hwprofile

Show hardware counter data settings

collector show

heaptrace

Show heap tracing data settings

collector show

limit

Show experiment size limits

collector show
pausesig

Show pause and resume signal

322 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

collector Command

collector show

profile

Show call stack profiling settings

collector show

sample

Show sample settings

collector show
samplesig

Show sample signal

collector show

store

Show store settings

collector show

synctrace

Show thread synchronization wait tracing settings

collector show

tha

Show thread analyzer data settings

collector status Command

The collector status command inquires about the status of the current experiment. It returns
the working directory and the experiment name.

collector store Command

The collector store command specifies the directory and file name where an experiment is
stored.

Syntax

collector store {-directory pathname | -filename filename | -group string}

where:

pathname is the pathname of the directory where an experiment is to be stored.

filename is the name of the experiment file.

string is the name of an experiment group.

Appendix D • Command Reference 323

collector Command

collector synctrace Command

The collector synctrace command specifies options for collecting synchronization wait
tracing data.

Syntax

collector

synctrace on|off

By default, thread synchronization wait tracing data is not collected. To
collect this data, specify on.

collector

synctrace

threshold

{microseconds|
calibrate}

Specify threshold in microseconds. The default value is 1000.
If calibrate is specified, the threshold value will be calculated
automatically.

where:

microseconds is the threshold below which synchronization wait events are discarded.

collector tha Command

The collector tha command specifies options for collecting thread analyzer data.

Syntax

collector tha

on|off

By default, thread analyzer data is not collected. To collect this data,
specify on.

collector version Command

The collector version command reports the version of libcollector.so that would be used
to collect data.

324 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

cont Command

Syntax

collector version

cont Command

The cont command causes the process to continue execution. It has identical syntax and
identical functionality in native mode and Java mode.

Syntax
cont Continue execution. In a multithreaded process, all threads are resumed.

Use Control-C to stop executing the program.

cont ... -sig

signal
Continue execution with signal signal.

cont ... ID The id specifies which thread or LWP to continue.

cont at line [ID] Continue execution at line line. ID is required if the application is
multithreaded.

cont ... -follow

parent|child|

both

If the dbx follow_fork_mode environment variable is set to ask and you
have chosen stop, use this option to choose which process to follow.
both is only applicable in the Oracle Developer Studio IDE.

dalias Command

The dalias command defines a dbx-style (csh-style) alias. It is valid only in native mode.

Syntax
dalias [name
[definition]]

(dbx alias) List all currently defined aliases.

Appendix D • Command Reference 325

dbx Command

If a name is specified, list the definition, if any, of alias name.
If a definition is also specified, define name to be an alias for definition.
definition can contain white space. A semicolon or newline terminates
the definition.

where:

name is the name of an alias

definition is the definition of an alias.

dbx accepts the following csh history substitution meta-syntax, which is commonly used in
aliases:

!:<n>

!-<n>

!^

!$

!*

The ! usually needs to be preceded by a backslash. For example:

dalias goto "stop at \!:1; cont; clear"

For more information, see the csh(1) man page.

dbx Command

The dbx command starts dbx.

Native Mode Syntax
dbx options
program-name
[core | process-
ID]

Debug program-name.
If core is specified, debug program-name with corefile core.
If process-ID is specified, debug program-name with process ID process-
ID.

326 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

dbx Command

dbx options -
{process-ID|core}

If process ID is specified, debug process ID process-ID; dbx finds the
program using /proc.
If core is specified, debug with corefile core.

dbx options -
core

Debug using corefile core.

dbx options -r
program-name
arguments

Run program-name with arguments arguments. If abnormal termination,
start debugging program-name, else just exit.

where:

program-name is the name of the program to be debugged.

process-ID is the process ID of a running process.

arguments are the arguments to be passed to the program.

options are the options listed in “Options” on page 328.

Java Mode Syntax

dbx options
program-name{.
class | .jar}

Debug program-name.

dbx options
program-name{.
class | .jar}

process-ID

Debug program-name with process ID process ID.

dbx options -
process-ID

Debug process ID process ID; dbx finds the program using /proc.

dbx options { -r
| -a} program-
name{.class | .
jar} arguments

Run program-name with arguments arguments. If abnormal termination,
start debugging program-name, else, just exit.

where:

program-name is the name of the program to be debugged.

Appendix D • Command Reference 327

dbxenv Command

process-id is the process ID of a running process.

arguments are the arguments to be passed to the program (not to the JVM software).

options are the options listed in “Options” on page 328.

Options
The following table lists the options of the dbx command for both native mode and Java mode:

--a arguments Load program with program arguments arguments.

--B Suppress all messages; return with exit code of program being debugged.

-c commands Execute commands before prompting for input.

-C Preload the Runtime Checking library (see “check Command” on page 313).

-d Used with -s, removes file after reading.

-e Echo input commands.

-f Force loading of core file, even if it does not match.

-h Print the usage help on dbx.

-I dir Add dir to pathmap set (see “pathmap Command” on page 368).

-k Save and restore keyboard translation state.

-q Suppress messages about reading stabs.

-r Run program; if program exits normally, exit.

-R Print the README file on dbx.

-s file Use file instead of /current-dir/.dbxrc or $HOME/.dbxrc as the startup file

-S Suppress reading of initialization file /install-dir/lib/dbxrc.

-V Print the version of dbx.

-w n Skip n frames on where command.

-x exec32 Run the 32-bit dbx binary instead of the 64-bit dbx binary that runs by default on systems
running a 64-bit OS.

-- Marks the end of the option list; use this if the program name starts with a dash.

dbxenv Command

The dbxenv command is used to list or set dbxenv variables. It has the same syntax and
functionality in native mode and Java mode.

328 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

debug Command

Syntax
dbxenv

[environment-
variable setting]

Display the current settings of the dbxenv variables. If a dbxenv variable
is specified, set the dbxenv variable to setting.

where:

environment-variable is a dbxenv variable.

setting is a valid setting for that variable.

debug Command

The debug command lists or changes the program being debugged. In native mode, it loads
the specified application and begins debugging the application. In Java mode, it loads the
specified Java application, checks for the existence of the class file, and begins debugging the
application.

Native Mode Syntax
debug Print the name and arguments of the program being debugged.

debug program-
name

Begin debugging program-name with no process or core.

debug -c core
program-name

Begin debugging program-name with core file core.

debug -p process-
ID program-name

Begin debugging program-name with process ID process-ID.

debug program-
name core

Begin debugging program with core file core. program-name can be -.
dbx will attempt to extract the name of the executable from the core file.
For details, see “Debugging a Core File” on page 40.

debug program-
name process-ID

Begin debugging program-name with process ID process-ID. program-
name can be -; dbx finds it using /proc.

debug -f ... Force loading of a core file, even if it does not match.

Appendix D • Command Reference 329

debug Command

debug -r ... The -r option causes dbx to retain all display, trace, when, and stop
commands. With no -r option, an implicit delete all and undisplay O
are performed.

debug -clone ... The -clone option causes another dbx process to begin execution,
permitting debugging of more than one process at a time. Valid only if
running in the Oracle Developer Studio IDE.

debug -clone Starts another dbx process debugging nothing. Valid only if running in
the Oracle Developer Studio IDE.

debug [options]
-- program-name

Start debugging program-name even if program-name begins with a
dash.

where:

core is the name of a core file.

options are the options listed in“Options” on page 331.

process-ID is the process ID of a running process.

program-name is the path name of the program.

Leaks checking and access checking are disabled when a program is loaded with the debug
command. You can enable them with the check command.

Java Mode Syntax
debug Print the name and arguments of the program being debugged.

debug program-
name [.class | .
jar]

Begin debugging program-name with no process.

debug -p process-
ID program-name
[.class | .jar]

Begin debugging program-name with process ID process-ID.

debug program-
name [.class | .
jar] process-ID

Begin debugging program-name with process ID process-ID. program-
name can be -; dbx finds it using /proc.

debug -r The -r option causes dbx to retain all watch commands, display
commands, trace commands, when commands, and stop commands.

330 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

debug Command

With no -r option, an implicit delete all command and undisplay 0
command are performed.

debug -clone ... The -clone option causes another dbx process to begin execution,
permitting debugging of more than one process at a time. Valid only if
running in the Oracle Developer Studio IDE.

debug -clone Starts another dbx process debugging nothing. Valid only if running in
the Oracle Developer Studio IDE.

debug [options]
-- program-
name{.class | .
jar}

Start debugging program-name even if program-name begins with a
dash.

where:

options are the options listed in“Options” on page 331.

process-ID is the process ID of a running process.

program-name is the path name of the program.

Options
-c commands Execute commands before prompting for input.

-d Used with -s, removes

-e Echo input commands.

-I directory_name Add directory_name to pathmap set (see “pathmap
Command” on page 368.

-k Save and restore keyboard translation state.

-q Suppress messages about reading stabs.

-r Run program; if program exits normally, then exit.

-R Print the readme file for dbx.

-s file Use file instead of current_directory/.dbxrc or $HOME/.dbxrc as the
startup file

Appendix D • Command Reference 331

delete Command

-S Suppress reading of initialization file /install-dir/lib/dbxrc.

-V Print the version of dbx.

-w n Skip n frames on where command.

-- Marks the end of the option list; use this if the program name starts with
a dash.

delete Command

The delete command deletes breakpoints and other events. It has the same syntax and
functionality in native mode and Java mode.

Syntax

delete [-h]

handler-ID ...

Remove trace commands, when commands, or stop commands of given
handler-IDs. To remove hidden handlers, you must include the -h option.

delete [-h] O |

all | -all

Remove all trace commands, when commands, and stop commands
excluding permanent and hidden handlers. Specifying -h removes hidden
handlers as well.

delete -temp Remove all temporary handlers.

delete

$firedhandlers

Delete all the handlers that caused the latest stoppage.

where:

handler-ID is the identifier of a handler.

detach Command

The detach command releases the target process from dbx’s control.

332 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

dis Command

Native Mode Syntax

detach [-sig signal
| -stop]

Detach dbx from the target, and cancel any pending signals.

If the -sig option is specified, detach while forwarding the given signal.

If the -stop option is specified, detach dbx from the target and leave the
process in a stopped state. This option allows temporary application of
other/proc-based debugging tools that might be blocked due to exclusive
access. For an example, “Detaching dbx From a Process” on page 89.

where:

signal is the name of a signal.

Java Mode Syntax

detach Detach dbx from the target, and cancel any pending signals.

dis Command

The dis command disassembles machine instructions. It is valid only in native mode.

Syntax

dis [-a]

address [/count]
Disassemble count instructions (default is 10), starting at address
address.

dis address1,
address2

Disassemble instructions from address1 through address2.

dis Disassemble 10 instructions, starting at the value of +.

where:

address is the address at which to start disassembling. The default value of address is the
address after the last address previously assembled. This value is shared by the examine
command.

Appendix D • Command Reference 333

display Command

address1 is the address at which to start disassembling.

address2 is the address at which to stop disassembling.

count is the number of instructions to disassemble. The default value of count is 10.

Options

-a When used with a function address, disassembles the entire function.
When used without parameters, disassembles the remains of the current
visiting function, if any.

display Command

In native mode, the display command re-evaluates and prints expressions at every stopping
point. In Java mode, the display command evaluates and prints expressions, local variables, or
parameters at every stopping point. Object references are expanded to one level and arrays are
printed itemwise.

The expression is parsed for the current scope at the time you type the command and
reevaluated at every stopping point. Because the expression is parsed at entry time, the
correctness of the expression can be immediately verified.

If you are running dbx in the IDE or dbxtool in the Sun Studio 12 release, the Sun Studio 12
Update 1 release, the Oracle Solaris Studio 12.2 release, or later updated releases, the display
expression command effectively behaves like a watch $(which expression) command.

Native Mode Syntax

display Print the list of expressions being displayed.

display

expression, ...
Display the value of expressions expression, ... at every stopping point.
Because expression is parsed at entry time, the correctness of the
expression is immediately verified.

display [-r|+r|-

d|+d|-S|+S|-p|

See “print Command” on page 370 for the meaning of these flags.

334 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

display Command

+p|-L|-fformat|-
Fformat|-m|+m|--]
expression, ...

where:

expression is a valid expression.

format is the output format you want used to print the expression. For information on valid
formats, see “print Command” on page 370.

Java Mode Syntax

display Print the list of variables and parameters being displayed.

display

expression|identifier, ...
Display the value of variables and parameters of identifier, ... at every
stopping point.

display [-r|

+r|-d|+d|-p|

+p|-fformat|-
Fformat|-
Fformat|--]
expression|identifier, ...

See “print Command” on page 370 for the meaning of these flags.

where:

class-name is the name of a Java class. You can use either of the following:

■ The package path using a period (.) as a qualifier; for example, test1.extra.T1.Inner
■ The full path name preceded by a pound sign (#) and using slash (/) and dollar sign ($) as

qualifiers. For example, #test1/extra/T1$Inner. Enclose class-name in quotation marks if
you use the $ qualifier.

expression is a valid Java expression.

field-name is the name of a field in the class.

format is the output format you want used to print the expression. For information about valid
formats, see “print Command” on page 370.

identifier is a local variable or parameter, including this, the current class instance variable
(object-name.field-name) or a class (static) variable (class-name.field-name).

Appendix D • Command Reference 335

down Command

object-name is the name of a Java object.

down Command

The down command moves down the call stack (away from main). It has the same syntax and
functionality in native mode and Java mode.

Syntax

down Move down the call stack one level.

down number Move down the call stack number levels.

down -h [number] Move down the call stack, but do not skip hidden frames.

where:

number is a number of call stack levels.

dump Command

The dump command prints all variables local to a procedure. It has the same syntax and
functionality in native mode and Java mode.

Syntax

dump [procedure] Print all variables local to the current procedure.
If a procedure is specified, print all variables local to procedure.

where:

procedure is the name of a procedure.

336 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

edit Command

edit Command

The edit command invokes $EDITOR on a source file. It is valid only in native mode.

The edit command uses $EDITOR if dbx is not running in the Oracle Developer Studio IDE.
Otherwise, it sends a message to the IDE to display the appropriate file.

Syntax

edit [filename |
procedure]

Edit the current file.
If a file name is specified, edit the specified file filename.
If a procedure is specified, edit the file containing function or procedure
procedure.

where:

filename is the name of a file.

procedure is the name of a function or procedure.

examine Command

The examine command shows memory contents. It is valid only in native mode.

The x command is an alias for the examine command.

Syntax

examine [address]
[/ [count]
[format]]

Display the contents of memory starting at address for count items in
format format.

examine address1,
address2 [/
[format]]

Display the contents of memory from address1 through address2
inclusive, in format format.

Appendix D • Command Reference 337

examine Command

examine address=
[format]

Display the address (instead of the contents of the address) in the given
format.
The address can be +, which indicates the address just after the last one
previously displayed (the same as omitting it).

x is a predefined alias for examine.

where:

address is the address at which to start displaying memory contents. The default value of
address is the address after the address whose contents were last displayed. This value is shared
by the dis command.

address1 is the address at which to start displaying memory contents.

address2 is the address at which to stop displaying memory contents.

count is the number of addresses from which to display memory contents. The default value of
count is 1.

format is the format in which to display the contents of memory addresses. The default format
is X (hexadecimal) for the first examine command, and the format specified in the previous
examine command for subsequent examine commands. The following values are valid for
format:

o,O octal (2 or 4 bytes)

x,X hexadecimal (2 or 4 bytes)

b octal (1 byte)

c character

w wide character

s string

W wide character string

f hexadecimal and floating point (4 bytes, 6-digit precision)

F hexadecimal and floating point (8 bytes, 14-digit precision)

g same as F

338 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

exception Command

E hexadecimal and floating point (16 bytes, 14-digit precision)

ld,lD decimal (4 bytes, same as D)

lo,lO octal 94 bytes, same as O

lx,lX hexadecimal (4 bytes, same as X)

Ld,LD decimal (8 bytes)

Lo,LO octal (8 bytes)

Lx,LX hexadecimal (8 bytes)

exception Command

The exception command prints the value of the current C++ exception. It is valid only in
native mode.

Syntax

exception [-d |

+d]

Prints the value of the current C++ exception, if any.

where:

-d enables showing dynamic exceptions.

+d disables showing dynamic exceptions.

exists Command

The exists command checks for the existence of a symbol name. It is valid only in native
mode.

Appendix D • Command Reference 339

file Command

Syntax
exists name Returns 0 if name is found in the current program, 1 if name is not found.

where:

name is the name of a symbol.

file Command

The file command lists or changes the current file. It has the same syntax and functionality in
native mode and in Java mode.

Syntax
file filename Print the name of the current file.

If a file name is specified, change the current file.

where:

filename is the name of a file.

files Command

In native mode, the files command lists file names that match a regular expression. In Java
mode, the files command lists all of the Java source files known to dbx. If your Java source
files are not in the same directory as the .class or .jar files, dbx might not find them unless you
have set the $JAVASRCPATH environment variable. For more information, see “Specifying the
Location of Your Java Source Files” on page 230.

Native Mode Syntax
files List the names of all files that contributed debugging information to the

current program (those that were compiled with -g).

340 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

fix Command

files regular-
expression

List the names of all files compiled with-g that match the given regular
expression.

where:

regular-expression is a regular expression.

For example:

(dbx) files ^r

myprog:

retregs.cc

reg_sorts.cc

reg_errmsgs.cc

rhosts.cc

Java Mode Syntax

files List the names of all of the Java source files known to dbx.

fix Command

The fix command recompiles modified source files and dynamically links the modified
functions into the application. It is valid only in native mode. It is not valid on Linux platforms.

Syntax

fix [file-name
file-name ...]
[-options]

Fix the current file.
If file names are listed, fix files in list.

where:

-options are the following valid options.

-f Force fixing the file, even if source has not been modified.

-a Fix all modified files.

Appendix D • Command Reference 341

fixed Command

-g Strip -O flags and add -g flag.

-c Print compilation line (can include some options added internally for use
by dbx).

-n Do not execute compile/link commands (use with -v).

v Verbose mode (overrides dbx fix_verbose environment variable setting).

+v Non-verbose mode (overrides dbx fix_verbose environment variable
setting).

fixed Command

The fixed command lists the names of all fixed files. It is valid only in native mode.

fortran_modules Command

The fortran_modules command lists the Fortran modules in the current program, or the
functions or variables in one of the modules.

Syntax

fortran_modules

[-f module-name
| -v module-
name]

Lists all Fortran modules in the current program.

If the -f option is specified, list all functions in the specified module.

If the -v option is specified, lists all variables in the specified module.

frame Command

The frame command lists or changes the current stack frame number. It has identical syntax and
identical functionality in native mode and in Java mode.

342 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

func Command

Syntax

frame Display the frame number of the current frame.

frame [-h]

number
Set the current frame to frame number.

frame [-h]

+[number]
Go number frames up the stack; default is 1.

frame [-h] -

[number]
Go number frames down the stack; default is 1.

-h Go to frame, even if frame is hidden.

where:

number is the number of a frame in the call stack.

func Command

In native mode, the func command lists or changes the current function. In Java mode, the func
command lists or changes the current method.

Native Mode Syntax

func [procedure] Print the name of the current function.
If a procedure is specified, change the current function to the function or
procedure procedure.

where:

procedure is the name of a function or procedure.

Java Mode Syntax

func Print the name of the current method.

Appendix D • Command Reference 343

funcs Command

func [class-
name.]method-
name
[(parameters)]

Change the current function to the method method-name.

where:

class-name is the name of a Java class. You can use either of the following:

■ The package path using a period (.) as a qualifier; for example, test1.extra.T1.Inner
■ The full path name preceded by a pound sign (#) and using slash (/) and dollar sign ($) as

qualifiers. For example, #test1/extra/T1$Inner. Enclose class-name in quotation marks if
you use the $ qualifier.

method-name is the name of a Java method.

parameters are the method’s parameters.

funcs Command

The funcs command lists all function names that match a regular expression. It is valid only in
native mode.

Syntax

funcs [-f

filename] [-
g] [regular-
expression]

List all functions in the current program,

If -f filename is specified, list all functions in the file. If -g is specified,
list all functions with debugging information. If filename ends in .o, then
all functions, including those created automatically by the compiler, are
listed. Otherwise, only functions appearing in the source code are listed.
If regular-expression is specified, list all functions that match the regular
expression.

where:

filename is the name of the file for which you wish to list all the functions.

regular-expression is the regular expression for which you wish to list all the matching
functions.

344 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

gdb Command

For example:

(dbx) funcs [vs]print

”libc.so.1”isprint

”libc.so.1”wsprintf

”libc.so.1”sprintf

”libc.so.1”vprintf

”libc.so.1”vsprintf

gdb Command

The gdb command supports the GDB command set. It is valid only in native mode.

Syntax

gdb on | off Use gbd on to enter the GDB command mode under which dbx
understands and accepts GDB commands. To exit the GDB command
mode and return to the dbx command mode, type gdb off. dbx
commands are not accepted while in GDB command mode and GDB
commands are not accepted while in dbx mode. All debugging settings
such as breakpoints are preserved across different command modes.

The following GDB commands are not supported in this release:

■ commands

■ define

■ handle

■ hbreak

■ interrupt

■ maintenance

■ printf

■ rbreak

■ return

■ signal

■ tcatch

■ until

Appendix D • Command Reference 345

handler Command

handler Command

The handler command modifies event handlers (enable, disable, and such). It has identical
syntax and identical functionality in native mode and in Java mode.

A handler is created for each event that needs to be managed in a debugging session. The
commands trace, stop, and when create handlers. Each of these commands returns a number
known as the handler ID (handler-ID). The handler, status, and delete commands
manipulate or provide information about handlers in a generic fashion.

Syntax
handler [-enable

| -disable]

handler-ID ...

Either enable or disable given handlers, specify handler-ID as all for
all handlers. Use $firedhandlers instead of handler-ID to disable the
handlers that caused the most recent stoppage.

handler -count

handler-ID new-
limit

Print value of trip counter for given handler.
If a new limit parameter is specified, set new count limit for given event.

handler -reset

handler-ID
Reset trip counter for given handler.

where:

handler-ID is the identifier of a handler.

hide Command

The hide command hides stack frames that match a regular expression. It is valid only in native
mode.

Syntax
hide regular-
expression

List the stack frame filters currently in effect.
If regular-expression is specified, hide stack frames matching regular-
expression. The regular expression matches either the function name, or

346 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

ignore Command

the name of the load object, and is a sh or ksh file matching style regular
expression.

where:

regular-expression is a regular expression.

ignore Command

The ignore command tells the dbx process not to catch the given signals. It is valid only in
native mode.

Ignoring a signal causes dbx not to stop when the process receives that kind of signal.

Syntax
ignore [number
... | signal ...]

Print a list of the ignored signals.
If a signal number is specified, ignore signal numbered number.

If a signal is specified, ignore signals named by signal. SIGKILL cannot
be caught or ignored.

where:

number is the number of a signal.

signal is the name of a signal.

import Command

The import command imports commands from a dbx command library. It has the same syntax
and functionality in native mode and in Java mode.

Syntax
import path-name Import commands from the dbx command library path-name.

Appendix D • Command Reference 347

intercept Command

where:

path-name is the path name of a dbx command library.

intercept Command

The intercept command throws (C++ exceptions) of the given type (C++ only). It is valid
only in native mode.

dbx stops when the type of a thrown exception matches a type on the intercept list unless the
type of the exception also matches a type on the excluded list. A thrown exception for which
there is no matching catch is called an “unhandled” throw. A thrown exception that does not
match the exception specification of the function it is thrown from is called an “unexpected”
throw.

Unhandled and unexpected throws are intercepted by default.

Syntax

intercept -x

excluded-typename
[, excluded-
typename ...]

Add throws of excluded-typename to the excluded list.

intercept

-a[ll] -x

excluded-typename
[, excluded-
typename...]

Add all types except excluded-typename to the intercept list.

intercept -s

[et] [intercepted-
typename [,
intercepted-
typename ...]]
[-x excluded-
typename [,
excluded-
typename]]

Clear both the intercept list and the excluded list, and set the lists to
intercept or exclude only throws of the specified types.

348 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

java Command

intercept List intercepted types.

where:

included-typename and excluded-typename are exception type specifications such as List
<int> or unsigned short.

java Command

The java command is used when dbx is in JNI mode to indicate that the Java version of
a specified command is to be executed. It causes the specified command to use the Java
expression evaluator, and when relevant, to display Java threads and stack frames.

Syntax

java command

where:

command is the command name and arguments of the command to be executed.

jclasses Command

The jclasses command prints the names of all Java classes known to dbx at the time you issue
the command. It is valid only in Java mode.

Classes in your program that have not yet been loaded are not printed.

Syntax

jclasses [-a] Print the names of all Java classes known to dbx.

If the -a option is specified, print system classes as well as other known
Java classes.

Appendix D • Command Reference 349

joff Command

joff Command

The joffcommand switches dbx from Java mode or JNI mode to native mode.

jon Command

The jon command switches dbx from native mode to Java mode.

jpkgs Command

The jpkgs command prints the names of all Java packages known to dbx at the time you issue
the command. It is valid only in Java mode.

Packages in your program that have not yet been loaded are not printed.

kill Command

The kill command sends a signal to a process. It is valid only in native mode.

Syntax

kill -l List all known signal numbers, names, and descriptions.

kill Kill the controlled process.

kill [signal]job
...

Send the SIGTERM signal to the listed jobs.

If the -signal option is specified, send the given signal to the listed jobs.

where:

job can be a process ID or can be specified in any of the following ways:

350 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

language Command

%+ Kill the current job.

%- Kill the previous job.

%number Kill job number number.

%string Kill the job that begins with string.

%?string Kill the job that contains string.

where:

signal is the name of a signal.

language Command

The language command lists or changes the current source language. It is valid only in native
mode.

Syntax
language Print the current language mode set by the dbx language_mode

environment variable. If the language mode is set to autodetect or
main, the command also prints the name of the current language used for
parsing and evaluating expressions.

where:

language is c, c++, fortran, or fortran90.

Note - c is an alias for ansic.

line Command

The line command lists or changes the current line number. It has the same syntax and
functionality in native mode and in Java mode.

Appendix D • Command Reference 351

list Command

Syntax

line [["file-
name":]
[number]]

Display the current line number.
If a number is specified, set the current line number to number.
If a file name is specified, set current line number to line 1 in filename.
If both are specified, set current line number to line number in file-name.

where:

filename is the name of the file in which to change the line number. The ““ quotation marks
around the file name are optional. They are useful when your file name contains spaces.

number is the number of a line in the file.

Examples

line 100

line "/root/test/test.cc":100

list Command

The list command displays lines of a source file. It has the same syntax and functionality in
native mode and in Java mode.

The default number of lines listed, N, is controlled by the dbx output_list_size environment
variable.

Syntax

list List N lines.

list number List line number number.

list + List next N lines.

352 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

list Command

list +n List next n lines.

list - List previous N lines.

list -n List previous n lines.

list n1, n2 List lines from n1 to n2.

list n1, + List from n1 to n1 + N.

list n1, +n2 List from n1 to n1 + n2.

list n1, - List from n1-N to n1.

list n1, -n2 List from n1-n2 to n1.

list function List the start of the source for function. list function changes the current
scope. See “Program Scope” on page 70 for more information.

list filename List the start of the file filename.

list filename:n List file filename from line n.

where:

filename is the file name of a source code file.

function is the name of a function to display.

number is the number of a line in the source file.

n is a number of lines to display.

n1 is the number of the first line to display.

n2 is the number of the last line to display. Where appropriate, the line number can be ”$”
which denotes the last line of the file. Comma is optional.

Options

-i or -instr Intermix source lines and assembly code.

Appendix D • Command Reference 353

listi Command

-w or -wn List N (or n) lines (window) around line or function. This option is not
allowed in combination with the plus sign (+) or minus sign (-) syntax or
when two line numbers are specified.

-a When used with a function name, lists the entire function. When used
without parameters, lists the remains of the current visiting function, if
any.

Examples

list // list N lines starting at current line

list +5 // list next 5 lines starting at current line

list - // list previous N lines

list -20 // list previous 20 lines

list 1000 // list line 1000

list 1000,$ // list from line 1000 to last line

list 2737 +24 // list line 2737 and next 24 lines

list 1000 -20 // list line 980 to 1000

list test.cc:33 // list source line 33 in file test.cc

list -w // list N lines around current line

list -w8 ”test.cc”func1 // list 8 lines around function func1

list -i 500 +10 // list source and assembly code for line

 500 to line 510

listi Command

The listi command displays source and disassembled instructions. It is valid only in native
mode. This command is the same as using list -i.

See “list Command” on page 352 for details.

loadobject Command

The loadobject command lists and manages symbolic information from load objects. It is valid
only in native mode.

This section lists the loadobject options and provides details about them.

354 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

loadobject Command

Syntax
loadobject -list

[regexp] [-a]
Show currently loaded load objects.

loadobject -load

loadobject
Load symbols for specified load object.

loadobject -

unload [regexp]
Unload specified load objects.

loadobject -hide

[regexp]
Remove load object from dbx's search algorithm.

loadobject -use

[regexp]
Add load object to dbx's search algorithm.

loadobject -

dumpelf [regexp]
Show various ELF details of the load object.

loadobject -

exclude ex-regexp
Don't automatically load loadobjects matching ex-regexp.

loadobject

exclude -clear

Clear the exclude list of patterns.

where:

regexp is a regular expression. If it is not specified, the command applies to all load objects.

ex-regexp is not optional, it must be specified.

This command has a default alias lo.

loadobject -dumpelf Command

The loadobject -dumpelf command shows various ELF details of the load object. It is valid
only in native mode.

Syntax

loadobject -dumpelf [regexp]

Appendix D • Command Reference 355

loadobject Command

where:

regexp is a regular expression. If it is not specified, the command applies to all load objects.

This command dumps out information related to the ELF structure of the load object file on
disk. The details of this output are highly subject to change. If you want to parse this output, use
the Oracle Solaris OS commands dump or elfdump.

loadobject -exclude Command

The loadobject -exclude command tells dbx not to automatically load loadobjects matching
the specified regular expression.

Syntax

loadobject -exclude ex-regexp [-clear]

where:

ex-regexp is a regular expression.

This command prevents dbx from automatically loading symbols for load objects that match the
specified regular expression. Unlike regexp in other loadobject subcommands, if ex-regexp is
not specified, it does not default to all. If you do not specify ex-regexp, the command lists the
excluded patterns that have been specified by previous loadobject -exclude commands.

If you specify -clear, the list of excluded patterns is deleted.

Currently this functionality cannot be used to prevent loading of the main program or the
runtime linker. Also, using it to prevent loading of C++ runtime libraries could cause the failure
of some C++ functionality.

This option should not be used with runtime checking (RTC).

loadobject -hide Command

The loadobject -hide command removes load objects from dbx’s search algorithm.

356 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

loadobject Command

Syntax

loadobject -hide [regexp]

where:

regexp is a regular expression. If it is not specified, the command applies to all load objects.

This command removes a load object from the program scope, and hides its functions and
symbols from dbx. This command also resets the “preload” bit. For more information, refer to
the dbx help file by typing the following into the dbx prompt.

(dbx) help loadobject preloading

loadobject -list Command

The loadobject -list command shows currently loaded loadobjects. It is valid only in native
mode.

Syntax

loadobject -list [regexp] [-a]

where:

regexp is a regular expression. If it is not specified, the command applies to all load objects.

The full path name for each load object is shown along with letters in the margin to show status.
Load objects that are hidden are listed only if you specify the -a option.

h This letter means “hidden” (the symbols are not found by symbolic
queries like whatis or stop in).

u If there is an active process, u means “unmapped.”

p This letter indicates a load object that is preloaded, that is, the result of a
loadobject -load command or a dlopen event in the program.

For example:

Appendix D • Command Reference 357

loadobject Command

(dbx) lo -list libm

/usr/lib/64/libm.so.1

/usr/lib/64/libmp.so.2

(dbx) lo -list ld.so

h /usr/lib/sparcv9/ld.so.1 (rtld)

This last example shows that the symbols for the runtime linker are hidden by default. To use
those symbols in dbxcommands, see “loadobject -use Command” on page 359.

loadobject -load Command

The loadobject -load command loads symbols for specified load objects. It is valid only in
native mode.

Syntax

loadobject -load load-object

where:

load-object can be a full path name or a library in /usr/lib, /usr/lib/sparcv9 or /usr/
lib/amd64. If a program is being debugged, then only the proper ABI library directory will be
searched.

loadobject -unload Command

The loadobject -unload command unloads specified load objects. It is valid only in native
mode.

Syntax

loadobject -unload [regexp]

where:

regexp is a regular expression. If it is not specified, the command applies to all load objects.

358 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

lwp Command

This command unloads the symbols for any load objects matching the regexp supplied on the
command line. The main program loaded with the debug command cannot be unloaded. dbx
might also refuse to unload other load objects that might be currently in use or critical to the
proper functioning of dbx.

loadobject -use Command

The loadobject -use command adds load objects from dbx’s search algorithm. It is valid only
in native mode.

Syntax

loadobject -use [regexp]

where:

regexp is a regular expression. If it is not specified, the command applies to all load objects.

lwp Command

The lwp command lists or changes the current LWP (lightweight process). It is valid only in
native mode.

Note - The lwp command is available only on Oracle Solaris platforms.

Syntax

lwp Display current LWP.

lwp lwp-ID Switch to LWP lwp-ID.

lwp -info Displays the name, home, and masked signals of the current LWP.

Appendix D • Command Reference 359

lwps Command

lwp [lwp-ID]

-setfp address-
expression

Tells dbx that the fp register has the value address-expression. The state
of the program being debugged is not changed. A frame pointer set with
the -setfp option is reset to its original value upon resuming execution.

lwp [lwp-ID]

-resetfp

Sets the frame pointer logical value from the register value in the
current process or core file, undoing the effect of a previous lwp -setfp
command.

where:

lwp-ID is the identifier of a lightweight process.

If the command is used with both an LWP ID and an option, the corresponding action is applied
to LWP specified by the lwp-ID, but the current LWP is not changed.

The -setfp and -resetfp options are useful when the frame pointer (fp) of the LWP is
corrupted. In this event, dbx cannot reconstruct the call stack properly and evaluate local
variables. These options work when debugging a core file, where assign $fp=... is
unavailable.

To make changes to the fp register visible to the application being debugged, use the assign
$fp=address-expression command.

lwps Command

The lwps command lists all LWPs (lightweight processes) in the process. It is valid only in
native mode.

Note - The lwps command is available only on Oracle Solaris platforms.

macro Command

The macro command prints the macro expansion of an expression.

Syntax
macro expression, ...

360 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

mmapfile Command

mmapfile Command

The mmapfile command views the contents of memory mapped files that are missing from a
core dump. It is valid only in native mode.

Oracle Solaris core files do not contain any memory segments that are read-only. Executable
read-only segments (that is, text) are dealt with automatically and dbx resolves memory
accesses against these by looking into the executable and the relevant shared objects.

Syntax
mmapfile

mmapped-file
address offset
length

View contents of memory mapped files missing from core dump.

where:

mmapped-file is the file name of a file that was memory mapped during a core dump.

address is the starting address of the address space of the process.

length is length in bytes of the address space to be viewed.

offset is the offset in bytes to the starting address in mmapped-file.

Example
Read-only data segments typically occur when an application memory maps a database. For
example:

caddr_t vaddr = NULL;

off_t offset = 0;

size_t = 10 * 1024;

int fd;

fd = open("../DATABASE", ...)

vaddr = mmap(vaddr, size, PROT_READ, MAP_SHARED, fd, offset);

index = (DBIndex *) vaddr;

The following command enables access to the database through the debugger as memory:

mmapfile ../DATABASE $[vaddr] $[offset] $[size]

Appendix D • Command Reference 361

module Command

Then, to look at your database contents in a structured way:

print *index

module Command

The module command reads debugging information for one or more modules. It is valid only in
native mode.

Syntax
module [-v] Print the name of the current module.

module [-f] [-v]

[-q] {name | -a}
If name is specified, read in debugging information for the module called
name. If -a is specified, read in debugging information for all modules.

where:

name is the name of a module for which to read debugging information.

-a specifies all modules.

-f forces reading of debugging information, even if the file is newer than the executable. Use
this option with caution!

-v specifies verbose mode, which prints language, file names, and such.

-q specifies quiet mode.

modules Command

The modules command lists module names. It is valid only in native mode.

Syntax
modules [-v]

[-debug |-read]

List all modules.

362 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

native Command

If -debug is specified, list all modules containing debugging information.

If -read is specified, list names of modules containing debugging
information that have been read in already.

where:

-v specifies verbose mode, which prints language, file names, and such.

native Command

The native command is used when dbx is in Java mode to indicate that the native version
of a specified command is to be executed. Preceding a command with native results in dbx
executing the command in native mode. This means that expressions are interpreted and
displayed as C expressions or C++ expressions, and certain other commands produce different
output than they do in Java mode.

This command is useful when you are debugging Java code but you want to examine the native
environment.

Syntax

native command

where:

command is the command name and arguments of the command to be executed.

next Command

The next command steps one source line (stepping over calls).

The dbx step_events environment variable (see “Setting dbxenv Variables” on page 60)
controls whether breakpoints are enabled during a step.

Appendix D • Command Reference 363

next Command

Native Mode Syntax

next Step one line (step over calls). With multithreaded programs when
a function call is stepped over, all LWPs (lightweight processes) are
implicitly resumed for the duration of that function call in order to avoid
deadlock. Non-active threads cannot be stepped.

next n Step n lines (step over calls).

next ... -sig

signal
Deliver the specified signal while stepping.

next ... thread-
ID

Step the specified thread.

next ... lwp-ID Step the given LWP. Will not implicitly resume all LWPs when stepping
over a function.

where:

n is the number of lines to step.

signal is the name of a signal.

thread-ID is a thread ID.

lwp-ID is an LWP ID.

When an explicit thread-id or lwp-ID is included, the deadlock avoidance measure of the
generic next command is defeated.

See also “nexti Command” on page 365 for machine-level stepping over calls.

Note - For information about lightweight processes (LWPs), see the Oracle Solaris
Multithreaded Programming Guide.

Java Mode Syntax

next Step one line (step over calls). With multithreaded programs when
a function call is stepped over, all LWPs (lightweight processes) are
implicitly resumed for the duration of that function call in order to avoid
deadlock. Non-active threads cannot be stepped.

364 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

nexti Command

next n Step n lines (step over calls).

next ... thread-
ID

Step the given thread.

next ... lwp-ID Step the given LWP. Will not implicitly resume all LWPs when stepping
over a function.

where:

n is the number of lines to step.

thread-ID is a thread identifier.

lwp-ID is an LWP identifier.

When an explicit thread-ID or lwp-ID is included, the deadlock avoidance measure of the
generic next command is defeated.

Note - For information on lightweight processes (LWPs), see the Oracle Solaris Multithreaded
Programming Guide.

nexti Command

The nexti command steps one machine instruction (stepping over calls). It is valid only in
native mode.

Syntax
nexti Step one machine instruction (step over calls).

nexti n Step n machine instructions (step over calls).

nexti -sig signal Deliver the given signal while stepping.

nexti ... lwp-ID Step the given LWP.

nexti ... thread-
ID

Step the LWP on which the given thread is active. Will not implicitly
resume all LWPs when stepping over a function.

where:

Appendix D • Command Reference 365

omp_loop Command

n is the number of instructions to step.

signal is the name of a signal.

thread-ID is a thread ID.

lwp-ID is an LWP ID.

omp_loop Command

The omp_loop command prints a description of the current loop, including scheduling (static,
dynamic, guided, auto, or runtime), ordered or not, bounds, steps or strides, and number of
iterations. You can issue the command only from the thread that is currently executing a loop.

omp_pr Command

The omp_pr command prints a description of the current or specified parallel region, including
the parent region, parallel region id, team size (number of threads), and program location
(program counter address).

Syntax
omp_pr Print a description of the current parallel region.

omp_pr parallel-
region-ID

Print a description of the specified parallel region. This command does
not cause dbx to switch the current parallel region to the specified region.

omp_pr

-ancestors

Print descriptions of all the parallel regions along the path from the
current parallel region to the root of the current parallel region tree.

omp_pr parallel-
region-ID
-ancestors

Print descriptions of all the parallel regions along the path from the
specified parallel region to its root.

omp_pr -tree Print a description of the whole parallel region tree.

omp_pr -v Print a description of the current parallel region with team member
information.

366 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

omp_serialize Command

omp_serialize Command

The omp_serialize command serializes the execution of the next encountered parallel region
for the current thread or for all threads in the current team. The serialization applies only to that
one trip into the parallel region and does not persist.

Be sure you are in the right place in the program when you use this command. A logical place is
just before a parallel directive.

Syntax

omp_serialize

[-team]

Serialize the execution of the next encountered parallel region for the
current thread.

If -team is specified, do this for all threads in the current team.

omp_team Command

The omp_team command prints all the threads in the current team.

Syntax

omp_team

[parallel-region-
ID]

Print all the threads in the current team.
If a parallel region ID is specified, print all the threads in the team for the
specified parallel region.

omp_tr Command

The omp_tr command prints a description of the current task region, including the task region
ID, type (implicit or explicit), state (spawned, executing, or waiting), executing thread, program
location (program counter address), unfinished children, and parent.

Appendix D • Command Reference 367

pathmap Command

Syntax
omp_tr Print a description of the current task region.

omp_tr task-
region-ID

Print a description of the specified task region. This command does not
cause dbx to switch the current task region to the specified task region.

omp_tr

-ancestors

Print descriptions of all the task regions along the path from the current
task region to the root of the current task region tree.

omp_tr task-
region-ID
-ancestors

Print descriptions of all the task regions along the path from the specified
task region to its root.

omp_tr -tree Print a description of the whole task region tree.

pathmap Command

The pathmap command maps one path name to another for finding source files and such. The
mapping is applied to source paths, object file paths, and the current working directory (if you
specify -c). During macro skimming, it is also applied to include directory paths. The pathmap
command has the same syntax and functionality in native mode and in Java mode.

The pathmap command is useful for dealing with automounted and explicit NFS mounted
filesystems with different paths on differing hosts. Current working directories are inaccurate on
automounted filesystems. Specify -c when you are trying to correct problems arising due to the
automounter. The pathmap command is also useful if source or build trees are moved.

pathmap /tmp_mnt / exists by default.

The pathmap command is used to find load objects for core files when the dbxenv variable
core_lo_pathmap is set to on. Other than this case, the pathmap command has no effect on
finding load objects (shared libraries). For more information, see “Debugging a Mismatched
Core File” on page 42.

Syntax
pathmap [-c]

[-index] from to
Establish a new mapping from from to to.

368 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

pathmap Command

pathmap [-c]

[-index] to
Map all paths to to.

pathmap List all existing path mappings (by index).

pathmap -s The same, but the output can be read by dbx.

pathmap -d from1
from2 ...

Delete the given mappings by path.

pathmap -d index1
index2 ...

Delete the given mappings by index.

where:

from and to are path prefixes. from refers to the path compiled into the executable or object file
and to refers to the path at debug time.

from1 is the path of the first mapping to be deleted.

from2 is the path of the last mapping to be deleted.

index specifies the index with which the mapping is to be inserted in the list. If you do not
specify an index, the mapping is added to the end of the list.

index1 is the index of the first mapping to be deleted.

index2 is the index of the last mapping to be deleted.

If you specify -c, the mapping is applied to the current working directory as well.

If you specify -s, the existing mappings are listed in an output format that dbx can read.

If you specify -d, the specified mappings are deleted.

Examples
(dbx) pathmap /export/home/work1 /net/mmm/export/home/work2

 # maps /export/home/work1/abc/test.c to /net/mmm/export/home/work2/abc/test.c

(dbx) pathmap /export/home/newproject

 # maps /export/home/work1/abc/test.c to /export/home/newproject/test.c

(dbx) pathmap

(1) -c /tmp_mnt /

(2) /export/home/work1 /net/mmm/export/home/work2

(3) /export/home/newproject

Appendix D • Command Reference 369

pop Command

pop Command

The pop command removes one or more frames from the call stack. It is valid only in native
mode.

You can pop only to a frame for a function that was compiled with -g. The program counter
is reset to the beginning of the source line at the call site. You cannot pop past a function call
made by the debugger; but must use pop -c.

Normally, a pop command calls all the C++ destructors associated with the popped frames. You
can override this behavior by setting the dbx pop_auto_destruct environment variable to off.

Syntax

pop Pop the current top frame from stack.

pop number Pop number frames from stack.

pop -f number Pop frames from stack until specified frame number.

pop -c Pop the last call made from the debugger.

where:

number is the number of frames to pop from the stack.

print Command

In native mode, the print command prints the value of an expression. In Java mode, the print
command prints the value of an expression, local variable, or parameter.

Native Mode Syntax

print

expression, ...
Print the value of the expression expression,

370 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

print Command

print -r

expression
Print the value of the expression expression including its inherited
members.

print +r

expression
Do not print inherited members when the dbx
output_inherited_members environment variable is set to on.

print -d [-r]

expression
Show dynamic type of expression expression instead of static type.

print +d [-r]

expression
Don’t use dynamic type of expression expression when the dbx
output_dynamic_type environment variable is set to on.

print -s

expression
Print the value of expression expression for each thread in the current
OpenMP parallel region if the expression contains private or thread-
private variables.

print -S [-r] [-

d] expression
Print the value of expression expression including its static members (C+
+ only)

print +S [-r] [-

d] expression
Don't print static members when the dbxenv variable
show_static_members is set to on (C++ only).

print -p

expression
Call the prettyprint function.

print +p

expression
Do not call the prettyprint function when the dbx
output_pretty_print environment variable is on.

print -L

expression
If the printing object expression is larger than 4K, enforce the printing.

print +l

expression
If the expression is a string (char *), print the address only, do not print
the literal.

print -l

expression
('Literal’) Do not print the left side. If the expression is a string (char
*), do not print the address, just print the raw characters of the string,
without quotes.

print -fformat
expression

Use format as the format for integers, strings, or floating-point
expressions.

print -Fformat
expression

Use the given format but do not print the left hand side (the variable
name or expression).

Appendix D • Command Reference 371

print Command

print -o

expression
Print the value of expression, which must be an enumeration as an ordinal
value. You can also use a format string here (-fformat). This option is
ignored for non-enumeration expressions.

print —m

expression
Apply macro expansion to expression when the dbxenv variable
macro_expand is set to off.

print +m

expression
Skip macro expansion of expression when the dbxenv variable
macro_expand is set to on.

print --

expression
“--” signals the end of flag arguments. This is useful if expression can
start with a plus or minus. See“Program Scope” on page 70 for scope
resolution rules.

where:

expression is the expression whose value you want to print.

format is the output format you want used to print the expression. If the format does not
apply to the given type, the format string is silently ignored and dbx uses its built-in printing
mechanism.

The allowed formats are a subset of those used by the printf(3S) command. The following
restrictions apply:

■ No n conversion.
■ No * for field width or precision.
■ No %<digits>$ argument selection.
■ Only one conversion specification per format string.

The allowed forms are defined by the following simple grammar:

FORMAT ::= CHARS % FLAGS WIDTH PREC MOD SPEC CHARS

CHARS ::= <any character sequence not containing a %>

| %%

| <empty>

| CHARS CHARS

FLAGS ::= + | - | <space> | # | 0 | <empty>

WIDTH ::= <decimal_number> | <empty>

PREC ::= . | . <decimal_number> | <empty>

MOD ::= h | l | L | ll | <empty>

372 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

print Command

SPEC ::= d | i | o | u | x | X | f | e | E | g | G |

c | wc | s | ws | p

If the given format string does not contain a %, dbx automatically prepends one. If the format
string contains spaces, semicolons, or tabs, the entire format string must be surrounded by
double quotes.

Java Mode Syntax

print

expression, ... |
...

Print the values of the expressions expression, ... or identifier identifier,
....

print -r

expression |
identifier

Print the value of expression or identifier including its inherited
members.

print +r

expression |
identifier

Do not print inherited members when the dbx
output_inherited_members environment variable is set to on.

print -d [-

r] expression |
identifier

Show dynamic type of expression or identifier instead of static type.

print +d [-

r] expression |
identifier

Do not use dynamic type of expression or identifier when the dbx
output_dynamic_type environment variable is set to on.

print --

expression |
identifier

”--’ signals the end of flag arguments. This is useful if expression can
start with a plus or minus. See “Program Scope” on page 70 for scope
resolution rules.

where:

class-name is the name of a Java class. You can use either of the following:

■ The package path using a period (.) as a qualifier; for example, test1.extra.T1.Inner
■ The full path name preceded by a pound sign (#) and using slash (/) and dollar sign ($) as

qualifiers. For example, #test1/extra/T1$Inner. Enclose class-name in quotation marks if
you use the $ qualifier.

expression is the Java expression whose value you want to print.

Appendix D • Command Reference 373

proc Command

field-name is the name of a field in the class.

identifier is a local variable or parameter, including this, the current class instance variable
(object-name.field-name) or a class (static) variable (class-name.field-name).

object-name is the name of a Java object.

proc Command

The proc command displays the status of the current process. It has identical syntax and
identical functionality in native mode and in Java mode.

Syntax

proc {-cwd |

-map | -pid}

If -cwd is specified, show the current working directory of the current
process.

If -map is specified, show the list of load objects with addresses.

If -process-ID is specified, show current process ID (process-ID).

prog Command

The prog command manages programs being debugged and their attributes. It has the same
syntax and functionality in native mode and Java mode.

Syntax

prog -readsyms Read symbolic information which was postponed by having set the dbx
run_quick environment variable to on.

prog -executable Prints the full path of the executable, - if the program was attached to
using -.

prog -argv Prints the whole argv, including argv[0].

374 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

quit Command

prog -args Prints the argv, excluding argv[0].

prog -stdin Prints < filename or empty if stdin is used.

prog -stdout Prints > filename or >> filename or empty if stdout is used. The outputs
of -args, -stdin, -stdout are designed so that the strings can be
combined and reused with the run command.

quit Command

The quit command exits dbx. It has the same syntax and functionality in native mode and Java
mode.

If dbx is attached to a process, the process is detached from before exiting. If there are pending
signals, they are cancelled. Use the detach command for fine control.

Syntax

quit Exit dbx with return code 0. Same as exit.

quit n Exit with return code n. Same as exit n.

where:

n is a return code.

regs Command

The regs command prints the current value of registers. It is valid only in native mode.

Syntax

regs [-f] [-F]

Appendix D • Command Reference 375

replay Command

where:

-f includes floating-point registers (single precision) (SPARC platform only)

-F includes floating-point registers (double precision) (SPARC platform only)

Example (SPARC platform)

dbx[13] regs -F

current thread: t@1

current frame: [1]

g0-g3 0x00000000 0x0011d000 0x00000000 0x00000000

g4-g7 0x00000000 0x00000000 0x00000000 0x00020c38

o0-o3 0x00000003 0x00000014 0xef7562b4 0xeffff420

o4-o7 0xef752f80 0x00000003 0xeffff3d8 0x000109b8

l0-l3 0x00000014 0x0000000a 0x0000000a 0x00010a88

l4-l7 0xeffff438 0x00000001 0x00000007 0xef74df54

i0-i3 0x00000001 0xeffff4a4 0xeffff4ac 0x00020c00

i4-i7 0x00000001 0x00000000 0xeffff440 0x000108c4

y 0x00000000

psr 0x40400086

pc 0x000109c0:main+0x4 mov 0x5, %l0

npc 0x000109c4:main+0x8 st %l0, [%fp - 0x8]

f0f1 +0.00000000000000e+00

f2f3 +0.00000000000000e+00

f4f5 +0.00000000000000e+00

f6f7 +0.00000000000000e+00

replay Command

The replay command replays debugging commands since the last run, rerun, or debug
command. It is valid only in native mode.

Syntax

replay [-number] Replay all or all minus number commands since last run command,
rerun command, or debug command.

where:

376 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

rerun Command

number is the number of commands not to replay.

rerun Command

The rerun command runs the program with no arguments. It has the same syntax and
functionality in native mode and Java mode.

Syntax
rerun Begin executing the program with no arguments.

rerun arguments Begin executing the program with new arguments by the save command
(see “save Command” on page 381).

restore Command

The restore command restores dbx to a previously saved state. It is valid only in native mode.

Syntax

restore [filename]

where:

filename is the name of the file to which the dbx commands executed since the last run, rerun,
or debug command were saved.

rprint Command

The rprint command prints an expression using shell quoting rules. It is valid only in native
mode.

Appendix D • Command Reference 377

rtc showmap Command

Syntax

rprint [-r|+r|-

d|+d|-S|+S|-

p|+p|-L|-l|-f

format | -Fformat
| --] expression

Print the value of the expression. No special quoting rules apply, so
rprint a > b puts the value of a (if it exists) into file b. See “print
Command” on page 370 for the meanings of the flags.

where:

expression is the expression whose value you want to print.

format is the output format you want used to print the expression. For information about valid
formats, see “print Command” on page 370.

rtc showmap Command

The rtc showmap command reports the address range of program text categorized by
instrumentation type (branches and traps). It is valid only in native mode.

This command is intended for expert users. Runtime checking instruments program text for
access checking. The instrumentation type can be a branch or a trap instruction based on
available resources. The rtc showmap command reports the address range of program text
categorized by instrumentation type. This map can be used to find an optimal location for
adding patch area object files and to avoid the automatic use of traps. See“Runtime Checking
Limitations” on page 162 for details.

rtc skippatch Command

The rtc skippatch command excludes load objects, object files, and functions from being
instrumented by runtime checking. The effect of the command is permanent to each dbx session
unless the load object is unloaded explicitly.

Because dbx does not track memory access in load objects, object files, and functions affected
by this command, incorrect rui errors might be reported for functions that were not skipped.
dbx cannot determine whether an rui error was introduced by this command, so this type error
was not suppressed automatically.

378 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

run Command

Syntax
rtc skippatch

load-object [-o
object-file ...]
[-f function ...]

Exclude the specified object files and functions in the specified load
object from being instrumented.

where:

load-object is the name of a load object or the path to the name of a load object.

object-file is the name of an object file.

function is the name of a function.

run Command
The run command runs the program with arguments.

Use Control-C to stop executing the program.

Native Mode Syntax
run Begin executing the program with the current arguments.

run arguments Begin executing the program with new arguments.

run ... >|>>

output-file
Set the output redirection.

run ... < input-

file

Set the input redirection.

where:

arguments are the arguments to be used in running the target process.

input-file is the file name of the file from which input is to be redirected.

output-file is the file name of the file to which output is to be redirected.

Note - There is currently no way to redirect stderr using the run or runargs command.

Appendix D • Command Reference 379

runargs Command

Java Mode Syntax

run Begin executing the program with the current arguments.

run arguments Begin executing the program with new arguments.

where:

arguments are the arguments to be used in running the target process. They are passed to the
Java application, not to the JVM software. Do not include the main class name as an argument.

You cannot redirect the input or output of a Java application with the run command.

Breakpoints you set in one run persist in subsequent runs.

runargs Command

The runargs command changes the arguments of the target process. It has identical syntax and
identical functionality in native mode and Java mode.

Use the debug command with no arguments to inspect the current arguments of the target
process.

Syntax

runargs

arguments
Set the current arguments, to be used by the run command (see “run
Command” on page 379).

runargs ... >|

>>file
Set the output redirection to be used by the run command.

runargs ... <file Set the input redirection to be used by the run command.

runargs Clear the current arguments.

where:

arguments are the arguments to be used in running the target process.

380 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

save Command

file is the file to which output from the target process or input to the target process is to be
redirected.

save Command

The save command saves commands to a file. It is valid only in native mode.

Syntax

save [-number]
[filename]

Save all or all minus number commands since last run command, rerun
command, or debug command to the default file or filename.

where:

number is the number of commands not to save.

filename is the name of the file to save the dbx commands executed since the last run, rerun, or
debug command.

scopes Command

The scopes command prints a list of active scopes. It is valid only in native mode.

search Command

The search command searches forward in the current source file. It is valid only in native
mode.

Syntax

search string Search forward for string in the current file.

Appendix D • Command Reference 381

showblock Command

search Repeat search, using last search string.

where:

string is the character string for which you wish to search.

showblock Command

The showblock command shows where the particular heap block was allocated from runtime
checking. It is valid only in native mode.

When runtime checking is turned on, the showblock command shows the details about the heap
block at the specified address. The details include the location of the blocks’ allocation and its
size.

Syntax

showblock -a address

where:

address is the address of a heap block.

showleaks Command

Note - The showleaks command is available only on Oracle Solaris platforms.

In the default non-verbose case, a one-line report per leak record is printed. Actual leaks are
reported followed by the possible leaks. Reports are sorted according to the combined size of
the leaks.

Syntax

showleaks [-a] [-m m] [-n number] [-v]

382 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

showmemuse Command

where:

-a shows all the leaks generated so far, not just the leaks since the last showleaks command.

-m m combines leaks; if the call stack at the time of allocation for two or more leaks matches m
frames, then these leaks are reported in a single combined leak report. If the -m option is given,
it overrides the global value of m specified with the check command.

-n number shows up to number records in the report. The default is to show all records.

-v Generate verbose output. The default is to show non-verbose output.

showmemuse Command

A one-line report per block-in-use record is printed. The commands sorts the reports according
to the combined size of the blocks. Any leaked blocks since the last showleaks command are
also included in the report.

Syntax

showmemuse [-a] [-m m] [-n number] [-v]

where:

-a shows all the blocks in use (not just the blocks since the last showmemuse command).

-m m combines the blocks-in-use reports. The default value of m is 8 or the global value last
given with the check command. If the call stack at the time of allocation for two or more blocks
matches m frames, then these blocks are reported in a single combined report. If the -m option is
given, it overrides the global value of m.

-n number shows up to number records in the report. The default is 20.

-v generates verbose output. The default is to show non-verbose output.

source Command

The source command executes commands from a given file. It is valid only in native mode.

Appendix D • Command Reference 383

status Command

Syntax
source filename Execute commands from file filename. $PATH is not searched.

status Command

The status command lists event handlers (breakpoints and such). It has identical syntax and
identical functionality in native mode and Java mode.

Syntax
status Print trace, when, and stop breakpoints in effect.

status handler-ID Print status for handler handler-ID.

status -h Print trace, when, and stop breakpoints in effect including the hidden
ones.

status -s The same, but the output can be read by dbx.

where:

handler-ID is the identifier of an event handler.

Example
(dbx) status -s > bpts

...

(dbx) source bpts

step Command

The step command steps one source line or statement, stepping into calls that were compiled
with the -g option.

384 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

step Command

The dbx step_events environment variable controls whether breakpoints are enabled during a
step.

The dbx step_granularity environment variable controls granularity of source line stepping.

The dbx step_abflow environment variable controls whether dbx stops when it detects that
abnormal control flow change is about to occur. This type of control flow change can be caused
by a call to siglongjmp() or longjmp() or an exception throw.

Native Mode Syntax

step Single-step one line (step into calls). With multithreaded programs when
a function call is stepped over, all threads are implicitly resumed for
the duration of that function call in order to avoid deadlock. Non-active
threads cannot be stepped.

step n Single-step n lines (step into calls).

step up Step up and out of the current function.

step ... -sig

signal
Deliver the specified signal while stepping. If a signal handler exists
for the signal, step into it if the signal handler was compiled with the -g
option.

step ...thread-ID Step the specified thread. Does not apply to step up.

step ...lwp-ID Step the specified LWP. Does not implicitly resume all LWPs when
stepping over a function.

step to [

function]
Attempts to step into function called from the current source code line.
If function is not specified, steps into the last function called, helping
to avoid long sequences of step commands and step up commands.
Examples of the last function are:

f()->s()-t()->last();

last(a() + b(c()->d()));

where:

n is the number of lines to step.

signal is the name of a signal.

Appendix D • Command Reference 385

stepi Command

thread-ID is a thread ID.

lip-ID is an LWP ID.

function is a function name.

When an explicit lwpID is specified, the deadlock avoidance measure of the generic step
command is defeated.

When executing the step to command, while an attempt is made to step into the last assembly
call instruction or step into a function (if specified) in the current source code line, the call
might not be taken due to a conditional branch. In a case where the call is not taken or no
function call is in the current source code line, the step to command steps over the current
source code line. Take special consideration on user-defined operators when using the step to
command.

See also “stepi Command” on page 386 for machine-level stepping.

Java Mode Syntax

step Single-step one line (step into calls). With multithreaded programs when
a method call is stepped over, all threads are implicitly resumed for
the duration of that method call in order to avoid deadlock. Non-active
threads cannot be stepped.

step n Single-step n lines (step into calls).

step up Step up and out of the current method.

step ...thread-ID Step the specified thread. Does not apply to step up.

step ...lwp-ID Step the specified LWP. Does not implicitly resume all LWPs when
stepping over a method.

stepi Command

The stepi command steps one machine instruction (stepping into calls). It is valid only in
native mode.

386 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

stop Command

Syntax
stepi Single-step one machine instruction (step into calls).

stepi n Single step n machine instructions (step into calls).

stepi -sig signal Step and deliver the specified signal.

stepi ...lwp-ID Step the given LWP.

stepi ...thread-
ID

Step the LWP on which the specified thread is active.

where:

n is the number of instructions to step.

signal is the name of a signal.

lwp-ID is an LWP ID.

thread-ID is a thread ID.

stop Command

The stop command sets a source-level breakpoint.

Syntax

The stop command has the following general syntax:

stop event-specification [modifier]

When the specified event occurs, the process is stopped.

Native Mode Syntax

This section describes some of the more important syntaxes that are valid in native mode. For
information about additional events, see “Setting Event Specifications” on page 274.

Appendix D • Command Reference 387

stop Command

stop [-update] Stop execution now. Only valid within the body of a when command.

stop -noupdate Stop execution now but do not update the Oracle Developer Studio IDE
Debugger windows.

stop access

mode address-
expression [,byte-
size-expression]

Stop execution when the memory specified by address-expression
has been accessed. See also “Stopping Execution When an Address Is
Accessed” on page 102.

stop at line-
number

Stop execution at line-number. See “Setting a Breakpoint at a Line of
Source Code” on page 98.

stop change

variable
Stop execution when the value of variable has changed.

stop cond

condition-
expression

Stop execution when the condition denoted by condition-expression
evaluates to true.

stop in function Stop execution when function is called. See “Setting a Breakpoint in a
Function” on page 99.

stop inclass

class-name [-
recurse | -

norecurse]

C++ only: Set breakpoints on all member functions of a class, struct,
union, or template class. -norecurse is the default. If -recurse is
specified, the base classes are included. See also “Setting Breakpoints in
All Member Functions of a Class” on page 100.

stop infile file-
name

Stop execution when any function in filename is called.

stop infunction

name
C++ only: Set breakpoints on all non-member functions name.

stop inmember

name
C++ only: set breakpoints on all member functions name. See “Setting
Breakpoints in Member Functions of Different Classes” on page 100.

stop inobject

object-expression
[-recurse | -

norecurse]

C++ only: set breakpoint on entry into any non-static method of the class
and all its base classes when called from the object object-expression. -
recurse is the default. If -norecurse is specified, the base classes are
not included. See “Setting Breakpoints in Objects” on page 101.

line-number is the number of a source code line.

function is the name of a function.

388 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

stop Command

class-name is the name of a C++ class, struct, union, or template class.

mode specifies how the memory was accessed. It can be composed of one or all of the letters:

r The memory at the specified address has been read.

w The memory has been written to.

x The memory has been executed.

mode can also contain the following:

a Stops the process after the access (default).

b Stops the process before the access.

name is the name of a C++ function.

object-expression identifies a C++ object.

variable is the name of a variable.

The following modifiers are valid in native mode.

-if condition-
expression

The specified event occurs only when condition-expression evaluates to
true.

-in function Execution stops only if the specified event occurs during the extent of
function.

-count number Starting at 0, each time the event occurs, the counter is incremented.
When number is reached, execution stops and the counter is reset to 0.

-count infinity Starting at 0, each time the event occurs, the counter is incremented.
Execution is not stopped.

-temp Create a temporary breakpoint that is deleted when the event occurs.

-disable Create the breakpoint in a disabled state.

-instr Do instruction-level variation. For example, step becomes instruction
level stepping, and at takes a text address for an argument instead of a
line number.

Appendix D • Command Reference 389

stop Command

-perm Make this event permanent across debug. Certain events (like
breakpoints) are not appropriate to be made permanent. delete all will
not delete permanent handlers. To delete permanent handlers, use delete
hid.

-hidden Hide the event from the status command. Some import modules might
choose to use this. Use status -h to see them.

-lwp lwp-ID Execution stops only if the specified event occurs in the specified LWP.

-thread thread-ID Execution stops only if the specified event occurs in the specified thread.

Java Mode Syntax

The following specific syntaxes are valid in Java mode.

stop access mode
class-name.field-
name

Stop execution when the memory specified by class-name.field-name has
been accessed.

stop at line-
number

Stop execution at line-number.

stop at filename:
line-number

Stop execution at line-number in filename.

stop change

class-name.field-
name

Stop execution when the value of field-name in class-name has changed.

stop classload Stop execution when any class is loaded.

stop classload

class-name
Stop execution when class-name is loaded.

stop classunload Stop execution when any class is unloaded.

stop classunload

class-name
Stop execution when class-name is unloaded.

stop cond

condition-
expression

Stop execution when the condition denoted by condition-expression
evaluates to true.

390 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

stop Command

stop in class-
name.method-name

Stop execution when class-name.method-name has been entered, and the
first line is about to be executed. If no parameters are specified and the
method is overloaded, a list of methods is displayed.

stop in class-
name.method-
name([parameters])

Stop execution when class-name.method-name has been entered, and the
first line is about to be executed.

stop inmethod

class-name.
method-name

Set breakpoints on all non-member methods class-name.method-name.

stop inmethod

class-name.
method-name
([parameters])

Set breakpoints on all non-member methods class-name.method-name.

stop throw Stop execution when a Java exception has been thrown.

stop throw type Stop execution when a Java exception of type has been thrown.

where:

class-name is the name of a Java class.. You can use either of the following:

■ The package path using a period (.) as a qualifier; for example, test1.extra.T1.Inner
■ The full path name preceded by a pound sign (#) and using slash (/) and dollar sign ($) as

qualifiers. For example, #test1/extra/T1$Inner. Enclose class-name in quotation marks if
you use the $ qualifier.

condition-expression can be any expression, but it must evaluate to an integral type.

field-name is the name of a field in the class.

filename is the name of a file.

line-number is the number of a source code line.

method-name is the name of a Java method.

mode specifies how the memory was accessed. It can be composed of one or all of the letters:

r The memory at the specified address has been read.

w The memory has been written to.

Appendix D • Command Reference 391

stopi Command

mode can also contain the following:

b Stops the process before the access.

The program counter will point at the offending instruction.

parameters are the method’s parameters.

type is a type of Java exception. -unhandled or -unexpected are valid values for type.

The following modifiers are valid in Java mode:

-if condition-
expression

The specified event occurs only when condition-expression evaluates to
true.

-count number Starting at 0, each time the event occurs, the counter is incremented.
When number is reached, execution stops and the counter is reset to 0.

-count infinity Starting at 0, each time the event occurs, the counter is incremented.
Execution is not stopped.

-temp Create a temporary breakpoint that is deleted when the event occurs.

-disable Create the breakpoint in a disabled state.

See “stopi Command” on page 392 for information about setting a machine-level
breakpoint.

For a list and the syntax of all events, see “Setting Event Specifications” on page 274.

stopi Command

The stopi command sets a machine-level breakpoint. It is valid only in native mode.

Syntax

The stopi command has the following general syntax:

stopi event-specification [modifier]

When the specified event occurs, the process is stopped.

392 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

suppress Command

The following specific syntaxes are valid:

stopi at address-
expression

Stop execution at location address-expression.

stopi in function Stop execution when function is called.

where:

address-expression is any expression resulting in or usable as an address.

function is the name of a function.

For a list and the syntax of all events, see “Setting Event Specifications” on page 274.

suppress Command

The suppress command suppresses reporting of memory errors during runtime checking. It is
valid only in native mode.

If the dbx rtc_auto_suppress environment variable is set to on, the memory error at a given
location is reported only once.

Syntax

suppress History of suppress and unsuppress commands, not including those
specifying the -d and -reset options.

suppress -d List of errors being suppressed in functions not compiled for debugging
(default suppression). This list is per load object. These errors can be
unsuppressed only by using the unsuppress command with the -d
option.

suppress -d

errors
Modify the default suppressions for all load objects by further
suppressing errors.

suppress -d

errors in load-
objects

Modify the default suppressions in the load-objects by further
suppressing errors.

Appendix D • Command Reference 393

suppress Command

suppress -last At error location suppress present error.

suppress -reset Set the default suppression to the original value (startup time).

suppress -r

ID...

Remove the unsuppress events as specified by the IDs, which can be
obtained with the unsuppress command.

suppress -r 0 |

all | -all

Remove all the unsuppress events as specified by the unsuppress
command.

suppress errors Suppress errors everywhere.

suppress errors
in [functions]
[files] [load-
objects]

Suppress errors in list of functions, list of files, and list of load-objects.

suppress errors
at line

Suppress errors at line.

suppress errors
at "file":line

Suppress errors at line in file.

suppress errors
addr address

Suppress errors at location address.

where:

address is a memory address.

errors are blank separated and can be any combination of the following:

all All errors

aib Possible memory leak - address in block

air Possible memory leak - address in register

baf Bad free

duf Duplicate free

mel Memory leak

maf Misaligned free

394 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

sync Command

mar Misaligned read

maw Misaligned write

oom Out of memory

rob Read from array out-of-bounds memory

rua Read from unallocated memory

rui Read from uninitialized memory

wob Write to array out-of-bounds memory

wro Write to read-only memory

wua Write to unallocated memory

biu Block in use (allocated memory). Though not an error, you can use biu
just like errors in the suppress commands.

file is the name of a file.

files is the names of one or more files.

functions is one or more function names.

line is the number of a source code line.

load-objects is one or more load object names.

See “Suppressing Errors” on page 149 for more information about suppressing errors.

See “unsuppress Command” on page 408 for information about unsuppressing errors.

sync Command

The sync command shows information about a specified synchronization object. It is valid only
in native mode.

Note - The sync command is available only on Oracle Solaris platforms.

Appendix D • Command Reference 395

syncs Command

Syntax
sync -info

address
Show information about the synchronization object at address.

where:

address is the address of the synchronization object.

syncs Command

The syncs command lists all synchronization objects (locks). It is valid only in native mode.

Note - The syncs command is available only on Oracle Solaris platforms.

thread Command

The thread command lists or changes the current thread.

Native Mode Syntax
thread Display current thread.

thread thread-ID Switch to thread thread-ID.

In the following variations, the current thread is assumed if a thread ID is not specified.

thread -info

[thread-ID]

Print everything known about the specified thread. For OpenMP threads,
the information includes the OpenMP thread ID, parallel region ID, task
region ID, and thread state.

thread -hide

[thread-ID]

Hide the specified (or current) thread. It will not show up in the generic
threads listing.

thread -unhide

[thread-ID]

Unhide the specified (or current) thread.

396 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

thread Command

thread -unhide

all

Unhide all threads.

thread -suspend

thread-ID
Keep the specified thread from ever running. A suspended thread shows
up with an “S” in the threads list.

thread -resume

thread-ID
Undo the effect of -suspend.

thread -blocks

[thread-ID]

List all locks held by the specified thread blocking other threads.

thread -

blockedby

[thread-ID]

Show which synchronization object the specified thread is blocked by, if
any.

where:

thread-ID is a thread ID.

Java Mode Syntax

thread Display current thread.

thread thread-ID Switch to thread thread-ID.

In the following variations, the current thread is assumed if a thread ID is not specified.

thread -info

[thread-ID]

Print everything known about the specified thread.

thread -hide

[thread-ID]

Hide the specified (or current) thread. It will not show up in the generic
threads listing.

thread -unhide

[thread-ID]

Unhide the specified (or current) thread.

thread -unhide

all

Unhide all threads.

thread -suspend

thread-ID
Keep the specified thread from ever running. A suspended thread shows
up with an “S” in the threads list.

Appendix D • Command Reference 397

threads Command

thread -resume

thread-ID
Undo the effect of -suspend.

thread -blocks

[thread-ID]

Lists the Java monitor owned by thread-ID.

thread -

blockedby

[thread-id]

Lists the Java monitor on which thread-ID is blocked.

where:

thread-ID is a dbx-style thread ID of the form t@number or the Java thread name specified for
the thread.

threads Command

The threads command lists all threads.

Native Mode Syntax

threads Print the list of all known threads.

threads -all Print threads normally not printed (zombies).

threads -mode

all|filter

Controls whether all threads are printed or threads are filtered. The
default is to filter threads. When filtering is on, threads that have been
hidden by the thread -hide command are not listed.

threads -mode

auto|manual

Under the IDE, enables automatic updating of the thread listing.

threads -mode Echo the current modes.

Each line of information is composed of the following:

■ An * (asterisk) indicating that an event requiring user attention has occurred in this thread.
Usually this is a breakpoint.

An 'o’ instead of an asterisk indicates that a dbx internal event has occurred.

398 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

threads Command

■ An > (arrow) denoting the current thread.
■ t@num, the thread ID, referring to a particular thread. The number is the thread_t value

passed back by thr_create.
■ b l@num meaning the thread is bound (currently assigned to the designated LWP), or a

l@num meaning the thread is active (currently scheduled to run).
■ The “Start function” of the thread as passed to thr_create. A ?() means that the start

function is not known.
■ The thread state, which is one of the following:

■ monitor

■ running

■ sleeping

■ unknown

■ wait

■ zombie

The function that the thread is currently executing.

Java Mode Syntax
threads Print the list of all known threads.

threads -all Print threads normally not printed (zombies).

threads -mode

all|filter

Controls whether all threads are printed or threads are filtered. The
default is to filter threads.

threads -mode

auto|manual

Under the IDE, enables automatic updating of the thread listing.

threads -mode Echo the current modes.

Each line of information in the listing is composed of the following:

■ An > (arrow) denoting the current thread
■ t@number, a dbx-style thread ID
■ The thread state, which is one of the following:

■ monitor

■ running

■ sleeping

Appendix D • Command Reference 399

trace Command

■ unknown

■ wait

■ zombie

■ The thread name in single quotation marks
■ A number indicating the thread priority

trace Command

The trace command shows executed source lines, function calls, or variable changes.

The speed of a trace is set using the dbx trace_speed environment variable.

If dbx is in Java mode and you want to set a trace breakpoint in native code, switch to Native
mode using the joff command or prefix the trace command with native.

If dbx is in JNI mode and you want to set a trace breakpoint in Java code, prefix the trace
command with java.

Syntax

The trace command has the following general syntax:

trace event-specification [modifier]

When the specified event occurs, a trace is printed.

Native Mode Syntax

The following specific syntaxes are valid in native mode:

trace -file

filename
Direct all trace output to the specified file name. To revert trace output to
standard output use - for filename. Trace output is always appended to
filename. It is flushed whenever dbx prompts and when the application
has exited. The file is always re-opened on a new run or resumption after
an attach.

trace step Trace each source line, function call, and return.

400 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

trace Command

trace next -in

function
Trace each source line while in the specified function.

trace at line-
number

Trace given source line.

trace in function Trace calls to and returns from the specified function.

trace infile

filename
Trace calls to and returns from any function in filename.

trace inmember

function
Trace calls to any member function named function.

trace infunction

function
Trace when any function named function is called.

trace inclass

class
Trace calls to any member function of class.

trace change

variable
Trace changes to the variable.

where:

filename is the name of the file to which you want trace output sent.

function is the name of a function.

line-number is the number of a source code line.

class is the name of a class.

variable is the name of a variable.

The following modifiers are valid in native mode.

-if condition-
expression

The specified event occurs only when condition-expression evaluates to
true.

-in function Execution stops only if the specified event occurs in function.

-count number Starting at 0, each time the event occurs, the counter is incremented.
When number is reached, execution stops and the counter is reset to 0.

-count infinity Starting at 0, each time the event occurs, the counter is incremented.
Execution is not stopped.

Appendix D • Command Reference 401

trace Command

-temp Create a temporary breakpoint that is deleted when the event occurs.

-disable Create the breakpoint in a disabled state.

-instr Do instruction-level variation. For example, step becomes instruction-
level stepping, and at takes a text address for an argument instead of a
line number.

-perm Make this event permanent across debug. Certain events like breakpoints
are not appropriate to be made permanent. delete all will not delete
permanent handlers. To delete permanent handlers, use delete hid.

-hidden Hide the event from the status command. Some import modules might
choose to use this. Use status -h to see them.

-lwp lwp-ID Execution stops only if the specified event occurs in the given LWP.

-thread thread-ID Execution stops only if the specified event occurs in the given thread.

Java Mode Syntax

The following specific syntaxes are valid in Java mode.

trace -file

filename
Direct all trace output to the specified filename. To revert trace output to
standard output use - for filename. Trace output is always appended to
filename. It is flushed whenever dbxprompts and when the application
has exited. The file is always re-opened on a new run or resumption after
an attach.

trace at line-
number

Trace line-number.

trace at

filename.line-
number

Trace specified source filename.line-number.

trace in class-
name.method-name

Trace calls to and returns from class-name. method-name.

trace in class-
name.method-
name([parameters]).

Trace calls to and returns from class-name.method-name([parameters]).

402 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

trace Command

trace inmethod

class-name.
method-name

Trace when any method named class-name.method-name is called.

trace inmethod

class-name.
method-
name[(parameters)]

Trace when any method named class-name.method-name [(parameters)]
is called.

where:

class_name is the name of a Java class. You can use either of the following:

■ The package path using a period (.) as a qualifier; for example, test1.extra.T1.Inner
■ The full path name preceded by a pound sign (#) and using slash (/) and dollar sign ($) as

qualifiers. For example, #test1/extra/T1$Inner. Enclose class-name in quotation marks if
you use the $ qualifier.

filename is the name of a file.

line-number is the number of a source code line.

method-name is the name of a Java method.

parameters are the method’s parameters

The following modifiers are valid in Java mode.

-if condition-
expression

The specified event occurs and the trace is printed only when condition-
expression evaluates to true.

-count number Starting at 0, each time the event occurs, the counter is incremented.
When number is reached, the trace is printed and the counter is reset to 0.

-count infinity Starting at 0, each time the event occurs, the counter is incremented.
Execution is not stopped.

-temp Create a temporary breakpoint that is deleted when the event occurs
and the trace is printed. If -temp is used with -count, the breakpoint is
deleted only when the counter is reset to 0.

-disable Create the breakpoint in a disabled state.

For a list and the syntax of all events see “Setting Event Specifications” on page 274.

Appendix D • Command Reference 403

tracei Command

tracei Command

The tracei command shows machine instructions, function calls, or variable changes. It is
valid only in native mode.

tracei is really a shorthand for trace event-specification -instr where the -instr modifier
causes tracing to happen at instruction granularity instead of source-line granularity. When the
event occurs, the printed information is in disassembly format instead of source-line format.

Syntax
tracei step Trace each machine instruction.

tracei next -in

function
Trace each instruction while in the specified function.

tracei at address Trace the instruction at address.

tracei in

function
Trace calls to and returns from the specified function.

tracei inmember

function
Trace calls to any member function named function.

tracei

infunction

function

Trace when any function named function is called.

tracei inclass

class
Trace calls to any member function of class.

tracei change

variable
Trace changes to the variable.

where:

address is any expression resulting in or usable as an address.

filename is the name of the file to which you want trace output sent.

function is the name of a function.

line is the number of a source code line.

404 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

uncheck Command

class is the name of a class.

variable is the name of a variable.

See “trace Command” on page 400 for more information.

uncheck Command

The uncheck command disables checking of memory access, leaks, or usage. It is valid only in
native mode.

Syntax

uncheck Print the current status of checking.

uncheck -access Disable access checking.

uncheck -leaks Disable leak checking.

uncheck -memuse Disable memory use checking (leak checking is disabled as well).

uncheck -all Equivalent to uncheck -access; uncheck -memuse.

uncheck

[functions] [files]
[load-objects]

Equivalent to suppress all in functions files load-objects.

where:

functions is one or more function names.

files is one or more file names.

load-objects is one or more load object names

See “check Command” on page 313 for information about enabling checking.

See “suppress Command” on page 393 for information about suppressing errors.

See “Capabilities of Runtime Checking” on page 135 for an introduction to runtime checking.

Appendix D • Command Reference 405

undisplay Command

undisplay Command

The undisplay command undoes display commands.

Native Mode Syntax
undisplay

{expression,... | n
...}

Undo a display expression command or all the display commands
numbered n, ...
If n is set to zero (0), then undo all display commands.

where:

expression is a valid expression.

Java Mode Syntax
undisplay

expression, ... |
identifier, ...

Undo a display expression, ... or display identifier, ... command.

undisplay n, ... Undo the display commands numbered n, ...

undisplay 0

do all display
commands.

Undo all display commands.

where:

expression is a valid Java expression.

field-name is the name of a field in the class.

identifier is a local variable or parameter, including this, the current class instance variable
(object-name.field-name), or a class (static) variable (class-name.field-name).

unhide Command

The unhide command undoes hide commands. It is valid only in native mode.

406 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

unintercept Command

Syntax

unhide {regular-
expression |
number}

Delete stack frame filter regular-expression or delete stack frame filter
number number
If number is set to zero (0), delete all stack frame filters.

where:

regular-expression is a regular expression.

number is the number of a stack frame filter.

The hide command lists the filters with numbers.

unintercept Command

The unintercept command undoes intercept commands (C++ only). It is valid only in native
mode.

Syntax

unintercept

intercepted-
typename [,
intercepted-
typename ...]

Delete throws of type intercepted-typename from the intercept list.

unintercept -a

[ll]

Delete all throws of all types from intercept list.

unintercept -x

excluded-typename
[, excluded-
typename ...]

Delete excluded-typename from excluded list.

unintercept -x -

a[ll]

Delete all throws of all types from the excluded list.

unintercept List intercepted types.

Appendix D • Command Reference 407

unsuppress Command

where:

included-typename and excluded-typename are exception type specifications such as List
<int> or unsigned short.

unsuppress Command

The unsuppress command undoes suppress commands. It is valid only in native mode.

Syntax

unsuppress History of suppress and unsuppress commands (not those specifying
the -d and -reset options).

unsuppress -d List of errors being unsuppressed in functions that are not compiled
for debugging. This list is per load object. Any other errors can be
suppressed only by using the suppress command with the -d option.

unsuppress -d

errors
Modify the default suppressions for all load objects by further
unsuppressing errors.

unsuppress -d

errors in load-
objects

Modify the default suppressions in the load-objects by further
unsuppressing errors.

unsuppress -last At error location unsuppress present error.

unsuppress -

reset

Set the default suppression mask to the original value (startup time).

unsuppress errors Unsuppress errors everywhere.

unsuppress errors
in [functions]
[filename ...]
[load-objects]

Suppress errors in a list of functions, a list of files, and a list of load
objects.

unsuppress errors
at line

Unsuppress errors at line.

408 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

unwatch Command

unsuppress errors
at "filenames"
line

Unsuppress errors at line in filenames.

unsuppress errors
addr address

Unsuppress errors at location address.

where:

errors is one or more error names.

functions is one or more function names.

filenames is one or more file names.

line is a line number.

load-objects is one or more load object names

unwatch Command

The unwatch command undoes a watch command. It is valid only in native mode.

Syntax

unwatch

{expression | n}
Undo a watch expression command or the watch commands numbered n

If n is set to zero (0), then undo all watch commands.

where:

expression is a valid expression.

up Command

The up command moves up the call stack toward main. It has the same syntax and functionality
in native mode and in Java mode.

Appendix D • Command Reference 409

use Command

Syntax

up [-h [number]] Move up the call stack one level.
If number is specified, move up the call stack number levels.

If -h is specified, move up the call stack, but do not skip hidden frames.

where:

number is a number of call stack levels.

use Command

The use command lists or changes the directory search path. It is valid only in native mode.

This command is an anachronism and usage of this command is mapped to the following
pathmap commands:

use is equivalent to pathmap -s

use directory is equivalent to pathmap directory.

watch Command

The watch command evaluates and prints expressions at every stopping point in the scope
current at that stop point. Because the expression is not parsed at entry time, the correctness
of the expression cannot be immediately verified. The watch command is valid only in native
mode.

Syntax

watch Print the list of expressions being displayed.

watch [-r|+r|-

d|+d|-S|+S|-p|

Watch the value of expression expression at every stopping point. See
“print Command” on page 370 for the meaning of these flags.

410 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

whatis Command

+p|-L|-fformat|-
Fformat|-m|+m|--]
expression

where:

expression is a valid expression.

format is the output format you want used to print the expression. For information about valid
formats, see “print Command” on page 370.

whatis Command

In native mode, the whatis command prints the type of expression or declaration of type, or the
definition of a macro. It also prints OpenMP data-sharing attribute information when applicable.

In Java mode, the whatis command prints the declaration of an identifier. If the identifier is a
class, it prints method information for the class, including all inherited methods.

Native Mode Syntax

whatis [-n] [-r]

[-m] [+m] name
Print the declaration of the non-type name, or the definition if name is a
macro.

whatis -t [-a]

[-r] [-u] type
Print the declaration of the type type.

whatis -e [-

r] [-u] [-d]

expression

Print the type of the expression expression.

where:

name is the name of a non-type or macro.

type is the name of a type.

expression is a valid expression.

macro is the name of a macro.

Appendix D • Command Reference 411

whatis Command

-a prints only data members for a specified class.

-d shows dynamic type instead of static type.

-e displays the type of an expression.

-n displays the declaration of a non-type. It is not necessary to specify -n; this is the default if
you type the whatis command with no options.

-r prints information about base classes and types.

-t displays the declaration of a type.

-u displays the root definition of a type.

-m forces macro expansion even if the dbxenv variable macro_expand is set to off.

+m defeats macro lookup so that any symbols that might have been shadowed by macros are
found instead.

The whatis command, when run on a C++ class or structure, provides you with a list of all the
defined member functions, the static data members, the class friends, and the data members that
are defined explicitly within that class. Undefined member functions are not listed.

Specifying the -r (recursive) option adds information from the inherited classes.

The-d flag, when used with the -e flag, uses the dynamic type of the expression.
For C++, template-related identifiers are displayed as follows:

■ All template definitions are listed with whatis -t.
■ Function template instantiations are listed with whatis.
■ Class template instantiations are listed with whatis -t.

Java Mode Syntax

whatis identifier Print the declaration of identifier.

where:

identifier is a class, a method in the current class, a local variable in the current frame, or a field
in the current class.

412 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

when Command

when Command

The when command executes commands when a specified event occurs.

If dbx is in Java mode and you want to set a when breakpoint in native code, switch to Native
mode using the joff command or prefix the when command with native.

If dbx is in JNI mode and you want to set a when breakpoint in Java code, prefix the when
command with java.

Syntax

The when command has the following general syntax:

when event-specification [modifier]{command; ... }
When the specified event occurs, the commands are executed. The following commands are
forbidden in the when command:

■ attach

■ debug

■ next

■ replay

■ rerun

■ restore

■ run

■ save

■ step

A cont command with no options is ignored.

Native Mode Syntax

The following specific syntaxes are valid in native mode:

when at line-
number {
command; }

Execute command when line-number is reached.

Appendix D • Command Reference 413

when Command

when in procedure
{ command; }

Execute command when procedure is called.

where:

line-number is the number of a source code line.

command is the name of a command.

procedure is the name of a procedure.

Java Mode Syntax

The following specific syntaxes are valid in Java mode.

when at line-
number

Execute command when source line-number is reached.

when at filename.
line-number

Execute command when filename.line-number is reached.

when in class-
name.method-name

Execute command when class-name.method-name is called.

when in class-
name.method-
name([parameters])

Execute command when class-name.method-name([parameters]) is
called.

class-name is the name of a Java class. You can use either of the following:

■ The package path using a period (.) as a qualifier; for example, test1.extra.T1.Inner
■ The full path name preceded by a pound sign (#) and using slash (/) and dollar sign ($) as

qualifiers. For example, #test1/extra/T1$Inner. Enclose class-name in quotation marks if
you use the $ qualifier.

filename is the name of a file.

line-number is the number of a source code line.

method-name is the name of a Java method.

parameters are the method’s parameters.

For a list and the syntax of all events, see “Setting Event Specifications” on page 274.

414 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

wheni Command

See “wheni Command” on page 415 for information about executing commands on a
specified low-level event.

wheni Command

The wheni command executes commands when a specified low-level event occurs. It is valid
only in native mode.

Syntax

wheni event-specification [modifier]{command... ; }

When the specified event occurs, the commands are executed.

The following specific syntax is valid:

wheni at address
{ command; }

Execute command when address is reached.

where:

address is any expression resulting in or usable as an address.

command is the name of a command.

For a list and the syntax of all events see “Setting Event Specifications” on page 274.

where Command

The where command prints the call stack. For OpenMP slave threads, the command also prints
the master thread's stack trace if the relevant frames are still active.

Native Mode Syntax

where Print a procedure traceback.

Appendix D • Command Reference 415

where Command

where number Print the number top frames in the traceback.

where -f number Start traceback from frame number.

where -fp

address-expression
Print traceback as if fp register had address-expression value.

where -h Include hidden frames.

where -l Include library name with function name.

where -q Quick traceback (only function names).

where -v Verbose traceback, which includes the function arguments and line
information.

where:

address-expression is any expression resulting in or usable as an address.

number is a number of call stack frames.

Any of these options can be combined with a thread or LWP ID to obtain the traceback for the
specified entity.

The -fp option is useful when the fp (frame pointer) register is corrupted, in which event dbx
cannot reconstruct call stack properly. This option provides a shortcut for testing a value for
being the correct fp register value. Once you have identified that the correct value has been
identified, you can set it with an assign command or lwp command.

Java Mode Syntax
where [thread-ID] Print a method traceback.

where -f [thread-
ID] number

Print the number top frames in the traceback.
If f is specified, start traceback from frame number.

where -q [thread-
ID]

Quick trace back (only method names).

where -v [thread-
ID]

Verbose traceback, which includes the method arguments and line
information.

where:

416 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

whereami Command

number is a number of call stack frames.

thread-ID is a dbx-style thread ID or the Java thread name specified for the thread.

whereami Command

The whereami command displays the current source line. It is valid only in native mode.

Syntax

whereami Display the source line corresponding to the current location (top of
the stack), and the source line corresponding to the current frame, if
different.

whereami -instr Same as previous, except that the current disassembled instruction is
printed instead of the source line.

whereis Command

The whereis command prints all uses of a specified name, or symbolic name of an address. It is
valid only in native mode.

The whereis -a command can print the location of an address-expression if the address is from
a heap or stack. Note that dbx cannot print the location if the process is not alive or if dbx is
working with a core file.

Syntax

whereis name Print all declarations of name.

whereis -a

address-expression
Print location of an address-expression.

where:

Appendix D • Command Reference 417

which Command

name is the name of a loadable object that is in scope, for example, a variable, function, class
template, or function template.

address is any expression resulting in or usable as an address.

which Command

The which command prints the full qualification of a specified name. It is valid only in native
mode.

Syntax
which [-n] [-m]

[+m] name
Print full qualification of name.

which -t type Print full qualification of type.

where:

name is the name of loadable object that is in scope, for example, a variable, function, class
template, or function template.

type is the name of a type.

-n displays the full qualification of a non-type. It is not necessary to specify -n; this is the
default if you type the which command with no options.

-t displays the full qualification of a type.

-m forces macro lookup even if the dbxenv variable macro_expand is set to off.

+m defeats macro lookup so that any symbols that might have been shadowed by macros are
found instead.

whocatches Command

The whocatches command tells where a C++ exception would be caught. It is valid only in
native mode.

418 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

whocatches Command

Syntax

whocatches type Tell where (if at all) an exception of type type would be caught if
thrown at the current point of execution. Assume the next statement to
be executed is a throw x where x is of type type, and display the line
number, function name, and frame number of the catch clause that
would catch it.

Will return "type is unhandled" if the catch point is in the same
function that is doing the throw.

where:

type is the type of an exception.

Appendix D • Command Reference 419

420 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

Index

Numbers and Symbols
:: (double-colon) C++ operator, 73

A
access checking, 140
access event, 277
address

current, 70
display format, 243
examining contents at, 241
examples, 242
examples of using, 244

adi assign command
native mode syntax, 307

adi examine command
native mode syntax, 308

adjusting default dbx settings, 59
alias command, 47
AMD64 registers, 254
ancillary objects, 48
array_bounds_check dbxenv variable, 61
arrays

bounds, exceeding, 213
evaluating, 123, 123
Fortran, 215
Fortran allocatable, 216
slicing, 124, 127

syntax for C and C++, 124
syntax for Fortran, 125

striding, 124, 127
assembly language debugging, 241
assign command

syntax, 308
using to assign a value to a variable, 123, 268

assigning a value to a variable, 123, 268
at event, 275
attach command, 72, 88, 309
attach event, 286
attached process, using runtime checking on, 156
attaching

dbx to a new process while debugging an existing
process, 89
dbx to a running child process, 179
dbx to a running Java process, 229
dbx to a running process, 44, 88

when dbx is not already running, 89

B
backquote operator, 73
bcheck command, 160

examples, 160
syntax, 160

bind command, 260
block local operator, 74
breakpoints

clearing, 110
defined, 32, 97
deleting, using handler ID, 110
disabling, 111
enabling, 111
enabling after event occurs, 297
event efficiency, 111
event specifications, 274
filters, 105

421

Index

using return value of a function call, 105
In Function, 99
In Object, 101
listing, 110, 110
multiple, setting in nonmember functions, 101
On Value Change, 103
overview, 97
setting

at a line, 32, 98
at a member function of a template class or at a
template function, 207
at all instances of a function template, 207
at an address, 248
at class template instantiations, 203, 206
at function template instantiations, 203, 206
filters on, 105
in a function, 32, 99
in all member functions of a class, 100
in an explicitly loaded library, 265
in dynamically loaded libraries, 109
in member functions of different classes, 100
in native (JNI) code, 231
in objects, 101
in shared libraries, 264
machine level, 248
multiple breaks in C++ code, 100
on Java methods, 231
with filters that contain function calls, 107

stop type, 97
determining when to set, 67

trace type, 98
when type, 97

setting at a line, 109
bsearch command, 310

C
-count event specification modifier, 290
C

debugging application that embeds a Java
application, 229
source files, specifying the location of, 230

C++

ambiguous or overloaded functions, 68
backquote operator, 73
class

declarations, looking up, 78
definition, looking up, 79
displaying all the data members directly defined
by, 121
displaying all the data members inherited
from, 121
printing the declaration of, 79
seeing inherited members, 80
viewing, 78

compiling with the -g option, 47
compiling with the -g0 option, 47
debugging application that embeds a Java
application, 229
double-colon scope resolution operator, 73
exception handling, 198
function template instantiations, listing, 78
inherited members, 80
mangled names, 75
object pointer types, 120
printing, 120
setting multiple breakpoints, 100, 100
source files, specifying the location of, 230
template debugging, 202
template definitions

displaying, 78
tracing member functions, 108
unnamed arguments, 121
using dbx with, 197

call command
safety, 93
syntax, 310
using to call a function, 92
using to call a function explicitly, 93
using to call a procedure, 92, 269
using to explicitly call a function instantiation or
member function of a class template, 207

call safety, 93
call stack, 113

deleting
all frame filters, 116

422 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

Index

frames, 116
finding your place on, 113
frame, defined, 113
hiding frames, 116
looking at, 34
moving

down, 114
to a specific frame in, 115
up, 114

popping, 115, 268
removing the stopped-in function from, 115
walking, 69, 114

calling
function, 92, 93
function instantiation or member function of a class
template, 207
member template functions, 203
procedure, 269

cancel command, 312
catch blocks, 198
catch command, 193, 194, 312
catch signal list, 193
catching exceptions of a specific type, 199
change event, 278
changing

default signal lists, 193
check command, 36, 137, 137, 313

-access option, 313
-all option, 315
combining leaks, 147
-leaks option, 314
-memuse option, 315

checkpoints, saving a series of debugging runs as, 57
child process

attaching dbx to, 179
debugging, 179
interacting with events, 180
using runtime checking on, 152

choosing among multiple occurrences of a symbol, 69
class template instantiations, printing a list of, 203,
205
classes

displaying all the data members directly defined
by, 121
displaying all the data members inherited
from, 121
looking up declarations of, 78
looking up definitions of, 79
printing the declarations of, 79
seeing inherited members, 80
viewing, 78

CLASSPATHX dbxenv variable, 61, 226
clear command, 316
clearing breakpoints, 110
collector archive command, 318
collector command, 316
collector dbxsample command, 318
collector disable command, 318
collector enable command, 319
collector heaptrace command, 319
collector hwprofile command, 319
collector limit command, 320
collector pause command, 321
collector profile command, 321
collector resume command, 321
collector sample command, 321
collector show command, 322
collector status command, 323
collector store command, 323
collector synctrace command, 324
collector tha command, 324
collector version command, 324
commands, 307

dbxenv, 60
debug

using to attach to a child process, 179
handling exceptions, 198
kill, 145
print

using to dereference a pointer, 122
process control, 87
setting startup properties, 45
stop

423

Index

using to set breakpoint at all member functions
of a C++ template class, 206

that alter the state of your program, 268
thread, 173
when, 272

compiling
code for debugging, 27
optimized code, 47
with the -g option, 47
with the -g0 option, 47

cond event, 279
cont command

continuing execution of your program with, 91,
138
syntax, 325
using to continue execution of your program from a
different line, 91, 270
using to resume execution of a multithreaded
program, 174

continuing execution of a program, 91
at a specified line, 91, 270

core file
core file truncation, 41
debugging, 31, 40
debugging mismatched, 42
examining, 31
using debug command to debug a core file, 41

core_lo_pathmap dbxenv variable, 61
count

using, 244
creating

a .dbxrc file, 60
event handlers, 272

creating a separate debug file, 48
current address, 70
current procedure and file, 209
customizing dbx, 59

D
-disable event specification modifier, 290
.dbxrc file, 59

creating, 60
sample, 60
use at dbx startup, 45, 59

dalias command, 325
data change event specifications, 277
data member, printing, 79
dbx

attaching to a process, 88
customizing, 59
detaching a process from, 54
detaching from a process, 89
quitting, 36, 54
starting, 28, 39

startup options, 328
with core file name, 40
with process ID only, 45

dbx command, 39, 44, 326
dbx commands

at the machine-instruction level, 241
creating your own, 47
differences between Korn shell and, 259
Java expression evaluation in, 236
process control, 87
setting startup properties, 45
static and dynamic information used by when
debugging Java code, 237
that alter the state of your program, 268
using in Java mode, 236
valid only in Java mode, 240
with different syntax in Java mode, 239
with identical syntax and functionality in Java mode
and native mode, 238

dbx dbxenv variables
output_pretty_print_fallback, 63
output_pretty_print_mode, 63

dbx modes for debugging Java code, 234
switching from Java or JNI to native mode, 235
switching modes when you interrupt
execution, 236

dbx online help, 37
dbxenv command, 46, 60, 328
dbxenv variable, 61
dbxenv variables, 60, 61

424 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

Index

descriptions of, 61
follow_fork_mode, 180
for Java debugging, 226
Korn shell, and, 66
setting, 60
setting with the dbxenv command, 60

dbxrc file, use at dbx startup, 45, 59
dbxtool, 27, 39, 39
debug command, 72

syntax, 329
using to attach dbx to a running process, 88
using to attach to a child process, 179
using to debug a core file, 41

debug_file_directory dbxenv variable, 61
debugging

assembly language, 241
child processes, 179
code compiled without -g option, 53
core file, 31, 40
creating a separate debug file, 48
machine-instruction level, 241, 246
mismatched core file, 42
multithreaded programs, 171
optimized code, 51
replaying a saved debugging run, 58
saving a run, 55
using a separate debug file, 47

ancillary objects, 48
debugging application that embeds a Java application

C, 229
C++, 229

debugging information
reading in, 84, 85

debugging run
saved

replaying, 58
restoring, 57

saving, 55
declarations, looking up (displaying), 78
delete command, 332
deleting

all call stack frame filters, 116
call stack frames, 116

specific breakpoints using handler IDs, 110
dereferencing a pointer, 122
detach command, 54, 332
detach event, 287
detaching

a process from dbx, 54, 89
a process from dbx and leaving it in a stopped
state, 90

determining
at symbol dbx uses, 76
cause of floating-point exception (FPE), 195
granularity of source line stepping, 91
location of floating-point exception (FPE), 195
number of instructions executed, 297
number of lines executed, 297
where your program is crashing, 31

dis command, 70, 244, 333
disabling

runtime checking, 137
disassembler_version dbxenv variable, 61
display command, 122, 122, 334
displaying

all the data members directly defined by a
class, 121
all the data members inherited from a base
class, 121
declarations, 78
definitions of templates and instances, 203, 205
inherited members, 80
source code for function template
instantiations, 203
stack trace, 116
symbols, occurrences of, 75
template definitions, 78
type of an exception, 199
unnamed function argument, 122
variable type, 79
variables and expressions, 122

dlclose event
valid variables, 295

dlopen event, 279
valid variables, 295

down command, 72, 114, 336

425

Index

dump command, 336
using on OpenMP code, 187

dynamic linker, 263

E
edit command, 337
enabling

a breakpoint after an event occurs, 297
memory access checking, 36, 137, 137
memory leak checking, 36, 137, 137
memory use checking, 36, 137, 137

error suppression, 149, 150
default, 151
examples, 151
scope, 150
types, 150

establishing a new mapping from directory to
directory, 46, 86
evaluating

arrays, 123, 123
function instantiation or member function of a class
template, 208
unnamed function argument, 122

event counters, 273, 273
event handler

hiding, 291
retaining across debugging sessions, 292

event handlers
creating, 272
manipulating, 272
setting, examples, 296

event management, 94, 271
event specification modifiers, descriptions of, 289
event specifications, 271, 272, 274

for breakpoint events, 274
for data change events, 277
for execution progress events, 283
for OpenMP code, 188

for synchronization, 188
other, 189

for other types of events, 286
for synchronization, 188

for system events, 279
for thread tracking, 285
keywords, defined, 274
machine-instruction level, 248
modifiers, 289
setting, 274
using predefined variables, 292

event-specific variables, 294
event_safety dbxenv variable, 61
events

ambiguity, 292
child process interaction with, 180
parsing, 292

examine command, 70, 242, 337
examining the contents of memory, 241
exception command, 199, 339
exception handling, 198

examples, 201
exceptions

floating point, determining cause of, 195
floating point, determining location of, 195
in Fortran programs, locating, 214
of a specific type, catching, 199
removing types from intercept list, 200
reporting where type would be caught, 200
type of, displaying, 199

exec function, following, 180
executables

separate debugging information, 81
execution progress event specifications, 283
exists command, 339
exit event, 283

valid variables, 295
experiments

limiting the size of, 320
expressions

displaying, 122
Fortran

complex, 218
interval, 218

monitoring changes, 122
monitoring the value of, 122
printing the value of, 120, 269

426 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

Index

stop the display of, 123

F
fault event, 280
fflush(stdout), after dbx calls, 93
field type

displaying, 79
printing, 79

file command, 68, 70, 72, 340
files

finding, 46, 86
location of, 86
navigating to, 68
qualifying name, 72

files command, 340
filter_max_length dbxenv variable, 61
finding

object files, 46
place on the call stack, 113
source files, 46, 86

fix and continue
using with runtime checking, 157

fix command, 270, 341
fix_verbose dbxenv variable, 61
fixed command, 342
fixing

program, 270
floating-point exception (FPE)

catching, 298
determining cause of, 195
determining location of, 195

follow_fork_inherit dbxenv variable, 61, 180
follow_fork_mode dbxenv variable, 61, 152, 180
follow_fork_mode_inner dbxenv variable, 61
fork function, following, 180
Fortran

allocatable arrays, 216
allocatable scalar type, 223
array slicing syntax for, 125
case sensitivity, 210
complex expressions, 218

derived types, 220
interval expressions, 218
intrinsic functions, 217
logical operators, 219
Object Oriented, 223
sample dbx session, 210
structures, 220

fortran_modules command, 342
FPE signal, trapping, 193
frame command, 72, 115, 342
frame, defined, 113
func command, 68, 70, 72, 343
funcs command, 344
function argument, unnamed, 122, 122
function template instantiations

displaying the source code for, 203
printing a list of, 203, 205
printing the values of, 203

functions
ambiguous or overloaded, 68
calling, 92, 93
inlined, in optimized code, 52
instantiation

calling, 207
evaluating, 208
printing source listing for, 208

intrinsic, Fortran, 217
looking up definitions of, 78
member of a class template, calling, 207
member of class template, evaluating, 208
navigating to, 68
obtaining names assigned by the compiler, 121
qualifying name, 72
setting breakpoints in, 99
setting breakpoints in C++ code, 100

G
-g compiler option, 47
gdb command, 345

427

Index

H
-hidden event specification modifier, 291
handler command, 273, 346
handler id, defined, 272
handlers, 271

creating, 272, 272
enabling while within a function, 296

hide command, 116, 346
hiding call stack frames, 116

I
-if event specification modifier, 289
-in event specification modifier, 290
-instr event specification modifier, 291
ignore command, 192, 193, 347
ignore signal list, 193
import command, 347
in event, 275
In Function breakpoint, 99
In Object breakpoint, 101
inclass event, 277
infile event, 275
infunction event, 276
inherited members

displaying, 80
seeing, 80

inmember event, 276
inmethod event, 276, 276
inobject event, 277
input_case_sensitive dbxenv variable, 61
input_case_sensitive environment variable, 210,
210
instances, displaying the definitions of, 203, 205
Intel registers, 252
intercept command, 199, 348
invocation options, 328

J
JAR file, debugging, 227
Java applications

attaching dbx to, 228
specifying custom wrappers for, 233
starting to debug, 226
that require 64-bit libraries, 229
types you can debug with dbx, 226
with wrappers, debugging, 228

Java class file, debugging, 227
Java code

capabilities of dbx with, 225
dbx modes for debugging, 234
limitations of dbx with, 225
static and dynamic information used by dbx
commands, 237
using dbx with, 225

java command, 349
Java debugging, environment variables for, 226
Java mode, 235

dbx commands valid only in, 240
different syntax than dbx commands, 239
identical syntax and functionality for dbx
commands, 238
switching from Java or JNI to native mode, 235
using dbx commands in, 236

Java source files, specifying the location of, 230
JAVASRCPATH dbxenv variable, 61, 226
jclasses command, 349
jdbx_mode dbxenv variable, 62, 226
joff command, 350
jon command, 350
jpkgs command, 350
JVM software

customizing startup of, 231
passing run arguments to, 230, 232
specifying 64-bit, 234
specifying a path name for, 232

jvm_invocation dbxenv variable, 62, 226

K
key bindings for editors, displaying or modifying, 260
kill command, 54, 145, 350
killing

428 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

Index

program, 54
Korn shell

differences from dbx, 259
extensions, 260
features not implemented, 259
renamed commands, 260

L
-lwp event specification modifier, 291
language command, 351
language_mode dbxenv variable, 62
lastrites event, 287
LD_AUDIT, 156
LD_PRELOAD, 157
leak checking, 137
libraries

dynamically loaded, setting breakpoints in, 109
shared, compiling for dbx, 53

librtc.so, preloading, 157
librtld_db.so, 263
libthread_db.so, 171
limiting the experiment size, 320
line command, 70, 351
link map, 263
linker names, 75
list command, 70, 72

syntax, 352
using to print a source listing for a file or
function, 69
using to print the source listing for a function
instantiation, 208

listi command, 245, 354
listing

all program modules that contain debugging
information, 85
breakpoints, 110, 110
C++ function template instantiations, 78
debugging information for modules, 84
names of all program modules, 85

names of modules containing debugging
information that have already been read into
dbx, 85
signals currently being ignored, 193
signals currently being trapped, 193
traces, 110

load object, defined, 263
loading your program, 28
loadobject command, 354

-dumpelf flag, 355
-exclude flag, 356
-hide flag, 356
-list flag, 357
-load flag, 358
-unload flag, 358
-use flag, 359

looking up
definitions of classes, 79
definitions of functions, 78
definitions of members, 78
definitions of types, 79
definitions of variables, 78
this pointer, 79

lwp command, 359
lwp_exit event, 281
LWPs (lightweight processes), 171

information displayed for, 176
showing information about, 176
states, 172

lwps command, 176, 360

M
machine-instruction level

address, setting breakpoint at, 248
AMD64 registers, 254
debugging, 241
Intel registers, 252
printing the value of all the registers, 248
setting breakpoint at address, 248
single stepping, 246
SPARC registers, 251

429

Index

tracing, 247
using dbx, 241

macro
compiler and compiler options, 303
definition method, 302, 303

limitations, 304
skimming, 304
tradeoffs in functionality, 303

definitions, 302
expansion, 301
skimming, 304

macro command, 301, 360
macro_expand dbxenv variable, 62, 302
macro_source dbxenv variable, 62, 302
manipulating event handlers, 272
member functions

printing, 79
setting multiple breakpoints in, 100
tracing, 108

member template functions, 203
members

declarations, looking up, 78
looking up declarations of, 78
looking up definitions of, 78
viewing, 78

memory
address display formats, 243
display modes, 241
examining contents at address, 241
states, 140

memory access
checking

enabling, 36
error report, 141
errors, 142, 165

memory access checking, 140
enabling, 137, 137

memory leak
checking, 145

enabling, 36
errors, 144, 169
fixing, 148
report, 145

memory leak checking, 143
enabling, 137, 137

memory use checking, 148
enabling, 36, 137, 137

mmapfile command, 361
module command, 84, 362
modules

all program, listing, 85
containing debugging information that have already
been read into dbx, listing, 85
containing debugging information, listing, 85
current, printing the name of, 85
listing debugging information for, 84

modules command, 84, 85, 362
monitoring the value of an expression, 122
moving

down the call stack, 114
to a specific frame in the call stack, 115
up the call stack, 114

mt_resume_one dbxenv variable, 62
mt_scalable dbxenv variable, 62
mt_sync_tracking dbxenv variable, 62
multithreaded programs, debugging, 171

N
native command, 363
navigating

through functions by walking the call stack, 69
to a file, 68
to functions, 68

next command, 90, 363
next event, 283
nexti command, 246, 365

O
object files

finding, 46
loading, 82
separate debugging information, 81

object pointer types, 120

430 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

Index

obtaining the function name assigned by the
compiler, 121
omp_atomic event, 286
omp_barrier event, 285
omp_critical event, 285
omp_flush event, 286
omp_loop command, 366
omp_master event, 286
omp_ordered event, 285
omp_pr command, 366
omp_serialize command, 367
omp_single event, 286
omp_task event, 286
omp_taskwait event, 285
omp_team command, 367
omp_tr command, 367
online help, accessing, 37
OpenMP application programming interface, 181
OpenMP code

dbx functionality available for, 182
events for, other, 189
events for, synchronization, 188
execution sequence of, 189
printing a description of the current loop, 186
printing a description of the current parallel
region, 183
printing a description of the current task
region, 184
printing all the threads on the current tea, 186
printing shared, private, and thread private variables
in, 183
serializing the execution of the next encountered
parallel region, 186
single-stepping in, 182
transformation by compilers, 181
using stack traces with, 186
using the dump command on, 187

operators
backquote, 73
block local, 74
C++ double colon scope resolution, 73

optimized code

about parameters and variables, 52
compiling, 47
debugging, 51
inlined functions, 52

output_auto_flush dbxenv variable, 62
output_base dbxenv variable, 62
output_class_prefix dbxenv variable, 62
output_data_member_only dbxenv variable, 62
output_dynamic_type dbxenv variable, 63, 199
output_dynamic_type environment variable, 121
output_inherited_members dbxenv variable, 63
output_list_size dbxenv variable, 63
output_log_file_name dbxenv variable, 63
output_max_object_size dbxenv variable, 63
output_max_string_length dbxenv variable, 63
output_no_literal dbxenv variable, 63
output_pretty_print dbxenv variable, 63
output_pretty_print environment variable, 129
output_pretty_print_mode environment
variable, 129
output_short_file_name dbxenv variable, 63
overload_function dbxenv variable, 63
overload_operator dbxenv variable, 63

P
-perm event specification modifier, 292
pathmap command, 86

skimming, 305
syntax, 368
using to map the compile-time directory to the
debug-time directory, 46

pointers
dereferencing, 122
printing, 223

pop command
syntax, 370
using to change the current stack frame, 72
using to pop frames from the call stack, 268
using to remove frames from the call stack, 115

pop_auto_destruct dbxenv variable, 63
popping

431

Index

the call stack, 115, 268
predefined variables for event specification, 292
preloading

librtc.so, 157
rtcaudit.so, 156

pretty-printing, 128
call-based, 129

failures, 131
function considerations, 130

filters, 131
invoking, 129
Python, 131, 133

API, 134
Python Docs, 134

print command
syntax, 370
syntax to slice a C or C++ array, 124
syntax to slice a Fortran array, 125
using to dereference a pointer, 122
using to evaluate a function instantiation or a
member function of a class template, 208
using to evaluate a variable or expression, 120
using to print the value of an expression, 269

printing
all the threads on the current team, 186
arrays, 123
data member, 79
declaration of a type or C++ class, 79
description of the current loop, 186
description of the current parallel region, 183
description of the current task region, 184
field type, 79
list of all class and function template
instantiations, 203, 205
list of all known threads, 174
list of occurrences of a symbol, 75
list of threads normally not printed (zombies), 174
member functions, 79
name of the current module, 85
pointer, 223
shared, private, and thread private variables in
OpenMP code, 183
source listing, 69

source listing for the specified function
instantiation, 208
tvalue of a variable or expression, 120
value of all the machine-level registers, 248
value of an expression, 269
values of function template instantiations, 203
variable type, 79

proc command, 374
proc_exclusive_attach dbxenv variable, 63
proc_gone event, 287

valid variables, 295
procedure linkage tables, 264
procedure, calling, 269
process

attached, using runtime checking on, 156
attaching dbx using process ID, 44
child

attaching dbx to, 179
using runtime checking on, 152

detaching from dbx, 54, 89
detaching from dbx and leaving in a stopped
state, 90
running, attaching dbx to, 88, 89
stopping execution, 54
stopping with Ctrl+C, 94

process control commands, definition, 87
prog command, 374
prog_new event, 287
program

continuing execution of, 91
at a specified line, 270

fixing, 270
killing, 54, 54
multithreaded

debugging, 171
resuming execution of, 174

running, 87
under dbx, impacts of, 267
with runtime checking enabled, 138

single-stepping through, 90
status, checking, 298
stepping through, 90
stopping execution

432 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

Index

if a conditional statement evaluates to true, 104
if the value of a specified variable has
changed, 103

stripped, 53
python-docs

command, 134

Q
qualifying symbol names, 72
quit command, 375
quitting a dbx session, 54
quitting dbx, 36

R
-resumeone event specification modifier, 107, 289
reading a stack trace, 116
reading in

debugging information, 84, 85
registers

AMD64 architecture, 254
Intel architecture, 252
printing the value of, 248
SPARC architecture, 251

regs command, 248, 375
removing

exception types from intercept list, 200
stopped-in function from the call stack, 115

replay command, 55, 58, 376
replaying a saved debugging run, 58
reporting where an exception type would be
caught, 200
rerun command, 377
resetting application files for replay, 298
restore command, 55, 57, 377
restoring a saved debugging run, 57
resuming

execution of a multithreaded program, 174
returns event, 283, 284
rprint

command, 377

rtc showmap command, 378
rtc skippatch command, 378

skipping instrumentation, 164
rtc_auto_continue dbxenv variable, 63, 161
rtc_auto_continue environment variable, 138
rtc_auto_suppress dbx variable, 150
rtc_auto_suppress dbxenv variable, 63
rtc_biu_at_exit dbxenv variable, 64
rtc_biu_at_exit dbxenv variables, 148
rtc_error_limit dbxenv variable, 64, 150
rtc_error_log_file_name dbxenv variable, 64, 161
rtc_error_log_file_name environment
variable, 138
rtc_error_stack dbxenv variable, 64
rtc_inherit dbxenv variable, 64
rtc_mel_at_exit dbxenv variable, 64
rtcaudit.so, preloading, 156
rtld, 263
run command, 87, 379
run_autostart dbxenv variable, 64
run_io dbxenv variable, 64
run_pty dbxenv variable, 64
run_quick dbxenv variable, 64
run_savetty dbxenv variable, 64
run_setpgrp dbxenv variable, 64
runargs command, 380
running a program, 29, 87

in dbx without arguments, 30, 87
with runtime checking enabled, 138

runtime checking
access checking, 140
application programming interface, 159
attached process, 156
child process, 152
disabling, 137
error suppression, 149
errors, 165
fixing memory leaks, 148
limitations, 162
memory access

checking, 140
error report, 141

433

Index

errors, 142, 165
memory leak

checking, 143, 145
error report, 145
errors, 144, 169

memory use checking, 148
possible leaks, 144
requirements, 136
suppressing errors, 149

default, 151
examples, 151

suppression of last error, 150
troubleshooting tips, 161
types of error suppression, 150
using fix and continue with, 157
using in batch mode, 160

directly from dbx, 161
when to use, 136

S
sample .dbxrc file, 60
save command, 55, 55, 381
saving

debugging run to a file, 55, 57
series of debugging runs as checkpoints, 57

scope, 70
changing the visiting, 71
current, 67, 70
lookup rules, relaxing, 77
visiting, 71

changing, 72
components of, 71

scope resolution operators, 72
scope resolution search path, 77
scope-look-aside dbxenv variable, 77
scope_global_enums dbxenv variable, 64
scope_look_aside dbxenv variable, 64
scopes command, 381
search command, 381
segmentation fault

finding line number of, 213
Fortran, causes, 213

generating, 213
separate debugging information

executables, 81
object files, 81

session, dbx
quitting, 54
starting, 39

session_log_file_name dbxenv variable, 65
setting

a trace, 108
breakpoints

at a member function of a template class or at a
template function, 207
at all instances of a function template, 207
in all member functions a class, 100
in dynamically loaded libraries, 109
in member functions of different classes, 100
in native (JNI) code, 231
in objects, 101
on Java methods, 231
when breakpoint at a line, 109
with filters that contain function calls, 107

dbxenv variables with the dbxenv command, 60
filters on breakpoints, 105
multiple breakpoints in nonmember functions, 101

shared libraries
compiling for dbx, 53
setting breakpoints in, 264

shared objects
.init sections, 264
startup sequence, 264

show_static_members dbxenv variable, 65
showblock command, 137, 382
showleaks command

combining leaks, 147
default output of, 148
error limit for, 151
report resulting from, 144
syntax, 382
using to ask for a leaks report, 147

showmemuse command, 148, 383
sig event, 281

valid variables, 294

434 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

Index

signals
cancelling, 191
catching, 192
changing default lists, 193
forwarding, 191
FPE, trapping, 193
handling automatically, 196
ignoring, 193
listing those currently being ignored, 193
listing those currently being trapped, 193
names that dbx accepts, 193
sending in a program, 196

single stepping
through a program, 90

single-stepping
at the machine-instruction level, 246

skimming
errors, 304
improving by using pathmap command, 305

slicing
arrays, 127
C and C++ arrays, 124
Fortran arrays, 125

source command, 383
source files

finding, 46, 86
specifying the location of

C, 230
C++, 230
Java source files, 230

source listing, printing, 69
SPARC registers, 251
specifying a path for class files that use custom class
loaders, 230
stack frame, defined, 113
stack trace, 214

displaying, 116
example, 117, 117
Fortran, 214
reading, 116
using on OpenMP code, 186

stack-find-source environment variable, 72
stack_find_source dbxenv variable, 65

stack_max_size dbxenv variable, 65
stack_verbose dbxenv variable, 65
starting dbx, 28
starting dbxtool, 28
startup options, 328
status command, 384
step command, 90, 198, 384
step event, 284
step to command, 33, 90, 386
step up command, 90, 385
step_abflow dbxenv variable, 65
step_events dbxenv variable, 65
step_events environment variable, 111
step_granularity dbxenv variable, 65
step_granularity environment variable, 91
stepi command, 246, 386
stepping into a function, 91
stepping through a program, 33, 90
stop

display of a particular variable or expression, 123
display of all currently monitored variables, 123

stop access command, 102, 388
stop at command, 98, 388
stop change command, 103, 388
stop command, 207

syntax, 387
using to set breakpoint at all member functions of a
C++ template class, 206
using to set breakpoints at all instances of a function
template, 207
using to stop in all member functions of a C++
template class, 206

stop cond command, 104, 388
stop event, 287
stop in command, 99, 388
stop inclass command, 100, 388
stop infile command, 388
stop inmember command, 100, 388, 388
stop inobject command, 101, 388
stopi command, 248, 392
stopping

in all member functions of a template class, 206

435

Index

process execution, 54
process with Ctrl+C, 94
program execution

if a conditional statement evaluates to true, 104
if the value of a specified variable has
changed, 103

striding across slices of arrays, 127
stripped programs, 53
suppress command

syntax, 393
using to limit reporting of runtime checking
errors, 138
using to list errors being suppressed in files not
compiled for debugging, 151
using to manage runtime checking errors, 152
using to suppress runtime checking errors, 149

suppress_startup_message dbxenv variable, 65
suppression of last error, 150
symbol names, qualifying scope, 72
symbol_info_compression dbxenv variable, 65
symbols

choosing among multiple occurrences of, 69
determining which dbx uses, 76
printing a list of occurrences, 75

sync command, 395
sync event, 288
syncrtld event, 288
syncs command, 396
sysin event, 282

valid variables, 295
sysout event, 283

valid variables, 295
system event specifications, 279

T
-temp event specification modifier, 290
-thread event specification modifier, 291
templates

class, 202
stopping in all member functions of, 206

displaying the definitions of, 203, 205

function, 202
instantiations, 202

printing a list of, 203, 205
looking up declarations of, 79

thr_create event, 175, 288
valid variables, 295

thr_exit event, 175, 288
thread command, 173, 396
thread creation, understanding, 175
threads

current, displaying, 174
information displayed for, 172
list, viewing, 174
other, switching viewing context to, 173
printing list of all known, 174
printing list of normally not printed (zombies), 174
resuming only the first in which a breakpoint was
hit, 107
states, 172
switching to by thread ID, 174

threads command, 174, 398
throw event, 284
timer event, 289
trace command, 108, 400
trace output, directing to a file, 108
trace_speed dbxenv variable, 65
trace_speed environment variable, 108
tracei command, 247, 404
traces

controlling speed of, 108
implementing, 296
listing, 110, 110
setting, 108

traces at the machine-instruction level, 247
track_process_cwd dbxenv variables, 65
trip counters, 273
troubleshooting tips, runtime checking, 161
types

declarations, looking up, 78
derived, Fortran, 220
looking up declarations of, 78
looking up definitions of, 79
printing the declaration of, 79

436 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

Index

viewing, 78

U
uncheck command, 137, 405
undisplay command, 123, 123, 406
unhide command, 116, 406
unintercept command, 200, 407
unsuppress command, 149, 152, 408
unwatch command, 409
up command, 72, 114, 409
use command, 410

V
variable type, displaying, 79
variables

assigning values to, 123, 268
declarations, looking up, 78
determining which dbx is evaluating, 119
displaying functions and files in which
defined, 119
event specific, 294, 294
examining, 35
looking up declarations of, 78
looking up definitions of, 78
monitoring changes, 122
outside of scope, 120
printing the value of, 120
qualifying names, 72
stop the display of, 123
viewing, 78

vdl_mode dbxenv variables, 65
verifying which variable dbx is evaluating, 119
viewing

classes, 78
context of another thread, 173
members, 78
threads list, 174
types, 78
variables, 78

visiting scope, 71

changing, 71, 72
components of, 71

W
walking the call stack, 69, 114
watch command, 122, 410
watch event

valid variables, 295
whatis command, 78, 79, 301

syntax, 411
using to display the definitions of templates and
instances, 205
using to obtain the function name assigned by the
compiler, 121

when breakpoint at a line, setting, 109
when command, 109, 269, 272, 413
wheni command, 415
where command, 114, 214, 415
whereami command, 417
whereis command, 76, 205, 417

macro, 302
verifying variables, 119

which command, 69, 76, 119, 418
macro, 301

whocatches command, 200, 418

X
x command, 242, 337

437

438 Oracle Developer Studio 12.5: Debugging a Program with dbx • June 2016

	Oracle® Developer Studio 12.5: Debugging a Program with dbx
	Contents
	Using This Documentation
	Product Documentation Library
	Feedback

	Chapter 1 • Getting Started With dbx
	Compiling Your Code for Debugging
	Starting dbx or dbxtool and Loading Your Program
	Running Your Program in dbx
	Debugging Your Program With dbx
	Examining a Core File
	Setting Breakpoints
	Stepping Through Your Program
	Looking at the Call Stack
	Examining Variables
	Finding Memory Access Problems and Memory Leaks

	Quitting dbx
	Accessing dbx Online Help

	Chapter 2 • Starting dbx
	Starting a Debugging Session
	Debugging a Core File
	Debugging a Core File in the Same Operating Environment
	If Your Core File Is Truncated
	Debugging a Mismatched Core File
	To Eliminate Shared Library Problems and Debug a Mismatched Core File

	Using the Process ID
	dbx Startup Sequence
	Setting Startup Properties
	Mapping the Compile-Time Directory to the Debug-Time Directory
	Setting dbx Environment Variables
	Creating Your Own dbx Commands

	Compiling a Program for Debugging
	Compiling With the -g Option
	Using a Separate Debug File
	How to Create a Separate Debug File
	Ancillary Files (Oracle Solaris Only)

	Compressed Debug Sections (Oracle Solaris Only)

	Debugging Optimized Code
	Parameters and Variables
	Inlined Functions
	Code Compiled Without the -g Option
	Shared Libraries Require the -g Option for Full dbx Support
	Completely Stripped Programs

	Quitting Debugging
	Stopping a Process Execution
	Detaching a Process From dbx
	Killing a Program Without Terminating the Session

	Saving and Restoring a Debugging Run
	Using the save Command
	Saving a Series of Debugging Runs as Checkpoints
	Restoring a Saved Run
	Saving and Restoring Using replay

	Chapter 3 • Customizing dbx
	Using the dbx Initialization File
	Creating a .dbxrc File
	Initialization File Sample

	Setting dbxenv Variables
	dbxenv Variables and the Korn Shell

	Chapter 4 • Viewing and Navigating To Code
	Navigating To Code
	Navigating To a File
	Navigating To Functions
	Selecting From a List of C++ Ambiguous Function Names
	Choosing Among Multiple Occurrences

	Printing a Source Listing
	Walking the Call Stack to Navigate To Code

	Types of Program Locations
	Program Scope
	Variables That Reflect the Current Scope
	Visiting Scope
	Components of the Visiting Scope
	Changing the Visiting Scope

	Qualifying Symbols With Scope Resolution Operators
	Backquote Operator
	C++ Double-Colon Scope Resolution Operator
	Block Local Operator
	Linker Names

	Locating Symbols
	Printing a List of Occurrences of a Symbol
	Determining Which Symbol dbx Uses
	Scope Resolution Search Path
	Relaxing the Scope Lookup Rules

	Viewing Variables, Members, Types, and Classes
	Looking Up Definitions of Variables, Members, and Functions
	Looking Up Definitions of Types and Classes

	Debugging Information in Object Files and Executables
	Object File Loading
	Compiler and Linker Options to Support Debugging
	Index DWARF (-xs[={yes|no}])
	Separate Debug File (-z ancillary[=outfile])
	Minimizing Debug Information

	Listing Debugging Information for Modules
	Listing Modules

	Finding Source and Object Files

	Chapter 5 • Controlling Program Execution
	Running a Program
	Attaching dbx to a Running Process
	Detaching dbx From a Process
	Stepping Through a Program
	Controlling Single Stepping Behavior
	Stepping Into a Specific or Last Function
	Continuing Execution of a Program
	Calling a Function
	Call Safety

	Using Ctrl+C to Stop a Process
	Event Management

	Chapter 6 • Setting Breakpoints and Traces
	Setting Breakpoints
	Setting a Breakpoint at a Line of Source Code
	Setting a Breakpoint in a Function
	Setting Multiple Breakpoints in C++ Programs
	Setting Breakpoints in Member Functions of Different Classes
	Setting Breakpoints in All Member Functions of a Class
	Setting Multiple Breakpoints in Nonmember Functions
	Setting Breakpoints in Objects

	Setting Data Change Breakpoints (Watchpoints)
	Stopping Execution When an Address Is Accessed
	Stopping Execution When Variables Change
	Stopping Execution on a Condition

	Setting Filters on Breakpoints
	Qualifying Breakpoints With Conditional Filters
	Qualifying Breakpoints With Caller Filters
	Filters and Multithreading

	Tracing Execution
	Setting a Trace
	Controlling the Speed of a Trace
	Directing Trace Output to a File

	Executing dbx Commands at a Line
	Setting Breakpoints in Dynamically Loaded Libraries
	Listing and Deleting Breakpoints
	Listing Breakpoints and Traces
	Deleting Specific Breakpoints Using Handler ID Numbers

	Enabling and Disabling Breakpoints
	Efficiency Considerations

	Chapter 7 • Using the Call Stack
	Finding Your Place on the Stack
	Walking the Stack and Returning Home
	Moving Up and Down the Stack
	Moving Up the Stack
	Moving Down the Stack
	Moving to a Specific Frame

	Popping the Call Stack
	Hiding Stack Frames
	Displaying and Reading a Stack Trace

	Chapter 8 • Evaluating and Displaying Data
	Evaluating Variables and Expressions
	Verifying Which Variable dbx Uses
	Variables Outside the Scope of the Current Function
	Printing the Value of a Variable, Expression, or Identifier
	Printing C++ Pointers
	Evaluating Unnamed Arguments in C++ Programs
	Dereferencing Pointers
	Monitoring Expressions
	Stop the Display (Undisplaying)

	Assigning a Value to a Variable
	Evaluating Arrays
	Array Slicing
	Array Slicing Syntax for C and C++
	Array Slicing Syntax for Fortran

	Using Slices
	Using Strides

	Using Pretty-Printing
	Invoking Pretty-Printing
	Call-Based Pretty-Printing
	Pretty-Printing Function Considerations
	Possible Failures

	Python Pretty-Print Filters (Oracle Solaris)
	Using Python on Oracle Solaris
	Python Pretty-Print API Documentation

	Chapter 9 • Using Runtime Checking
	Capabilities of Runtime Checking
	When to Use Runtime Checking
	Runtime Checking Requirements

	Using Runtime Checking
	Enabling Memory Use and Memory Leak Checking
	Enabling Memory Access Checking
	Enabling All Runtime Checking
	Disabling Runtime Checking
	Running Your Program

	Using Access Checking
	Understanding the Memory Access Error Report
	Memory Access Errors

	Using Memory Leak Checking
	Detecting Memory Leak Errors
	Possible Leaks
	Checking for Leaks
	Understanding the Memory Leak Report
	Generating a Leak Report
	Combining Leaks

	Fixing Memory Leaks

	Using Memory Use Checking
	Suppressing Errors
	Types of Suppression
	Suppression by Scope and Type
	Suppression of Last Error
	Limiting the Number of Errors Reported

	Suppressing Error Examples
	Default Suppressions
	Using Suppression to Manage Errors

	Using Runtime Checking on a Child Process
	Using Runtime Checking on an Attached Process
	Attached Process on a System Running Oracle Solaris
	Attached Process on a System Running Linux

	Using Fix and Continue With Runtime Checking
	Runtime Checking Application Programming Interface
	Using Runtime Checking in Batch Mode
	bcheck Syntax
	bcheck Examples
	Enabling Batch Mode Directly From dbx

	Troubleshooting Tips
	Runtime Checking Limitations
	Performance Improves With More Symbols and Debug Information
	SIGSEGV and SIGALTSTACK Signals Are Restricted on x86 Platforms
	Performance Improves When Sufficient Patch Area Is Available Within 8 MB of All Existing Code (SPARC Platforms Only).

	Runtime Checking Errors
	Access Errors
	Bad Free (baf) Error
	Duplicate Free (duf) Error
	Misaligned Free (maf) Error
	Misaligned Read (mar) Error
	Misaligned Write (maw) Error
	Out of Memory (oom) Error
	Read From Array Out-of-Bounds (rob) Error
	Read From Unallocated Memory (rua) Error
	Read From Uninitialized Memory (rui) Error
	Write to Array Out-of-Bounds Memory (wob) Error
	Write to Read-Only Memory (wro) Error
	Write to Unallocated Memory (wua) Error

	Memory Leak Errors
	Address in Block (aib) Error
	Address in Register (air) Error
	Memory Leak (mel) Error

	Chapter 10 • Debugging Multithreaded Applications
	Understanding Multithreaded Debugging
	Thread Information
	Thread and LWP States

	Viewing the Context of Another Thread
	Viewing the Threads List
	Resuming Execution

	Understanding Thread Creation Activity
	Understanding LWP Information

	Chapter 11 • Debugging Child Processes
	Attaching to Child Processes
	Following the exec Function
	Following the fork Function
	Interacting With Events

	Chapter 12 • Debugging OpenMP Programs
	How Compilers Transform OpenMP Code
	dbx Functionality Available for OpenMP Code
	Single-Stepping Into a Parallel Region
	Printing Variables and Expressions
	Printing Region and Thread Information
	Serializing the Execution of a Parallel Region
	Using Stack Traces
	Using the dump Command
	Using Events
	Synchronization Events
	Other Events

	Execution Sequence of OpenMP Code

	Chapter 13 • Working With Signals
	Understanding Signal Events
	Catching Signals
	Changing the Default Signal Lists
	Trapping the FPE Signal (Oracle Solaris Only)
	Determining Where the Exception Occurred
	Determining the Cause of the Exception

	Sending a Signal to a Program
	Automatically Handling Signals

	Chapter 14 • Debugging C++ With dbx
	Using dbx With C++
	Exception Handling in dbx
	Commands for Handling Exceptions
	exception Command
	intercept Command
	unintercept Command
	whocatches Command

	Examples of Exception Handling

	Debugging With C++ Templates
	Template Example
	Commands for C++ Templates
	whereis Command
	whatis Command
	stop inclass Command
	stop infunction Command
	stop in Command
	call Command
	print Expressions
	list Expressions

	Chapter 15 • Debugging Fortran Using dbx
	Debugging Fortran
	Current Procedure and File
	Uppercase Letters
	Sample dbx Session
	How to Run the Sample dbx Session

	Debugging Segmentation Faults
	Using dbx to Locate Problems

	Locating Exceptions
	Tracing Calls
	Working With Arrays
	Fortran Allocatable Arrays

	Showing Intrinsic Functions
	Showing Complex Expressions
	Showing Interval Expressions
	Showing Logical Operators
	Viewing Fortran Derived Types
	Pointer to Fortran Derived Type
	Object Oriented Fortran
	Allocatable Scalar Type

	Chapter 16 • Debugging a Java Application With dbx
	Using dbx With Java Code
	Capabilities of dbx With Java Code
	Limitations of dbx With Java Code

	Environment Variables for Java Debugging
	Starting to Debug a Java Application
	Debugging a Class File
	Debugging a JAR File
	Debugging a Java Application That Has a Wrapper
	Attaching dbx to a Running Java Application
	To Attach to a Running Java Process

	Debugging a C Application or C++ Application That Embeds a Java Application
	Passing Arguments to the JVM Software
	Specifying the Location of Your Java Source Files
	Specifying the Location of Your C Source Files or C++ Source Files
	Specifying a Path for Class Files That Use Custom Class Loaders
	Setting Breakpoints on Java Methods
	Setting Breakpoints in Native (JNI) Code

	Customizing Startup of the JVM Software
	Specifying a Path Name for the JVM Software
	Passing Run Arguments to the JVM Software
	Specifying a Custom Wrapper for Your Java Application
	Using a Custom Wrapper That Accepts Command-Line Options
	Using a Custom Wrapper That Does Not Accept Command-Line Options

	Specifying 64-bit JVM Software

	dbx Modes for Debugging Java Code
	Switching From Java or JNI Mode to Native Mode
	Switching Modes When You Interrupt Execution

	Using dbx Commands in Java Mode
	Java Expression Evaluation in dbx Commands
	Static and Dynamic Information Used by dbx Commands
	Commands With Identical Syntax and Functionality in Java Mode and Native Mode
	Commands With Different Syntax in Java Mode
	Commands Valid Only in Java Mode

	Chapter 17 • Debugging at the Machine-Instruction Level
	Using dbx at the Machine-Instruction Level
	Examining the Contents of Memory
	Using the examine or x Command
	Using Addresses
	Using Formats
	Using Count
	Examples of Using an Address

	Using the dis Command
	Using the listi Command

	Stepping and Tracing at Machine-Instruction Level
	Single-Stepping at the Machine-Instruction Level
	Tracing at the Machine-Instruction Level

	Setting Breakpoints at the Machine-Instruction Level
	Setting a Breakpoint at an Address

	Using the regs Command
	Platform-Specific Registers
	SPARC Register Information
	x86 Register Information
	AMD64 Register Information

	Chapter 18 • Using dbx With the Korn Shell
	ksh-88 Features Not Implemented
	Extensions to ksh-88
	Renamed Commands
	Rebinding of Editing Functions

	Chapter 19 • Debugging Shared Libraries
	Dynamic Linker
	Link Map
	Startup Sequence and .init Sections
	Procedure Linkage Tables

	Setting Breakpoints in Shared Libraries
	Setting a Breakpoint in an Explicitly Loaded Library

	Appendix A • Modifying a Program State
	Impacts of Running a Program Under dbx
	Commands That Alter the State of the Program
	assign Command
	pop Command
	call Command
	print Command
	when Command
	fix Command
	cont at Command

	Appendix B • Event Management
	Event Handlers
	Creating Event Handlers
	Manipulating Event Handlers
	Using Event Counters
	Event Safety
	Setting Event Specifications
	Breakpoint Event Specifications
	in Event Specification
	at Event Specification
	infile Event Specification
	infunction Event Specification
	inmember Event Specification
	inmethod Event Specification
	inclass Event Specification
	inobject Event Specification

	Data Change Event Specifications
	access Event Specification
	change Event Specification
	cond Event Specification

	System Event Specifications
	dlopen and dlclose Event Specification
	fault Event Specification
	lwp_exit Event Specification
	sig Event Specification
	sysin Event Specification
	sysout Event Specification
	sysin | sysout Event Specifications

	Execution Progress Event Specifications
	exit Event Specification
	next Event Specification
	returns Event Specification
	step Event Specification
	throw Event Specification

	Tracked Thread Event Specifications
	omp_barrier Event Specification
	omp_taskwait Event Specification
	omp_ordered Event Specification
	omp_critical Event Specification
	omp_atomic Event Specification
	omp_flush Event Specification
	omp_task Event Specification
	omp_master Event Specification
	omp_single Event Specification

	Other Event Specifications
	attach Event Specification
	detach Event Specification
	lastrites Event Specification
	proc_gone Event Specification
	prog_new Event Specification
	stop Event Specification
	sync Event Specification
	syncrtld Event Specification
	thr_create [thread-ID] Event Specification
	thr_exit Event Specification
	timer Event Specification

	Event Specification Modifiers
	-if Modifier
	-resumeone Modifier
	-in Modifier
	-disable Modifier
	-count n, -count infinity Modifier
	-temp Modifier
	-instr Modifier
	-thread Modifier
	-lwp Modifier
	-hidden Modifier
	-perm Modifier

	Parsing and Ambiguity
	Using Predefined Variables
	Variables Valid for when Command
	$handlerid

	Variables Valid for when Command and Specific Events

	Event Handler Examples
	Setting a Breakpoint for Store to an Array Member
	Implementing a Simple Trace
	Enabling a Handler While Within a Function
	Determining the Number of Lines Executed
	Determining the Number of Instructions Executed by a Source Line
	Enabling a Breakpoint After an Event Occurs
	Resetting Application Files for replay
	Checking Program Status
	Catch Floating-Point Exceptions

	Appendix C • Macros
	Additional Uses of Macro Expansion
	Macro Definitions
	Compiler and Compiler Options
	Tradeoffs in Functionality
	Limitations

	Skimming Errors
	Using the pathmap Command to Improve Skimming

	Appendix D • Command Reference
	adi assign Command
	Native Mode Syntax

	adi examine Command
	Native Mode Syntax

	assign Command
	Native Mode Syntax
	Java Mode Syntax

	attach Command
	Syntax

	bsearch Command
	Syntax

	call Command
	Native Mode Syntax
	Java Mode Syntax

	cancel Command
	catch Command
	Syntax

	check Command
	Syntax
	-access Option
	-leaks Option
	-memuse Option
	-all Option

	clear Command
	Syntax

	collector Command
	Syntax
	collector archive Command
	Syntax

	collector dbxsample Command
	Syntax

	collector disable Command
	collector enable Command
	collector heaptrace Command
	Syntax

	collector hwprofile Command
	Syntax

	collector limit Command
	Syntax

	collector pause Command
	collector profile Command
	Syntax

	collector resume Command
	collector sample Command
	Syntax

	collector show Command
	Syntax

	collector status Command
	collector store Command
	Syntax

	collector synctrace Command
	Syntax

	collector tha Command
	Syntax

	collector version Command
	Syntax

	cont Command
	Syntax

	dalias Command
	Syntax

	dbx Command
	Native Mode Syntax
	Java Mode Syntax
	Options

	dbxenv Command
	Syntax

	debug Command
	Native Mode Syntax
	Java Mode Syntax
	Options

	delete Command
	Syntax

	detach Command
	Native Mode Syntax
	Java Mode Syntax

	dis Command
	Syntax
	Options

	display Command
	Native Mode Syntax
	Java Mode Syntax

	down Command
	Syntax

	dump Command
	Syntax

	edit Command
	Syntax

	examine Command
	Syntax

	exception Command
	Syntax

	exists Command
	Syntax

	file Command
	Syntax

	files Command
	Native Mode Syntax
	Java Mode Syntax

	fix Command
	Syntax

	fixed Command
	fortran_modules Command
	Syntax

	frame Command
	Syntax

	func Command
	Native Mode Syntax
	Java Mode Syntax

	funcs Command
	Syntax

	gdb Command
	Syntax

	handler Command
	Syntax

	hide Command
	Syntax

	ignore Command
	Syntax

	import Command
	Syntax

	intercept Command
	Syntax

	java Command
	Syntax

	jclasses Command
	Syntax

	joff Command
	jon Command
	jpkgs Command
	kill Command
	Syntax

	language Command
	Syntax

	line Command
	Syntax
	Examples

	list Command
	Syntax
	Options
	Examples

	listi Command
	loadobject Command
	Syntax
	loadobject -dumpelf Command
	Syntax

	loadobject -exclude Command
	Syntax

	loadobject -hide Command
	Syntax

	loadobject -list Command
	Syntax

	loadobject -load Command
	Syntax

	loadobject -unload Command
	Syntax

	loadobject -use Command
	Syntax

	lwp Command
	Syntax

	lwps Command
	macro Command
	Syntax

	mmapfile Command
	Syntax
	Example

	module Command
	Syntax

	modules Command
	Syntax

	native Command
	Syntax

	next Command
	Native Mode Syntax
	Java Mode Syntax

	nexti Command
	Syntax

	omp_loop Command
	omp_pr Command
	Syntax

	omp_serialize Command
	Syntax

	omp_team Command
	Syntax

	omp_tr Command
	Syntax

	pathmap Command
	Syntax
	Examples

	pop Command
	Syntax

	print Command
	Native Mode Syntax
	Java Mode Syntax

	proc Command
	Syntax

	prog Command
	Syntax

	quit Command
	Syntax

	regs Command
	Syntax
	Example (SPARC platform)

	replay Command
	Syntax

	rerun Command
	Syntax

	restore Command
	Syntax

	rprint Command
	Syntax

	rtc showmap Command
	rtc skippatch Command
	Syntax

	run Command
	Native Mode Syntax
	Java Mode Syntax

	runargs Command
	Syntax

	save Command
	Syntax

	scopes Command
	search Command
	Syntax

	showblock Command
	Syntax

	showleaks Command
	Syntax

	showmemuse Command
	Syntax

	source Command
	Syntax

	status Command
	Syntax
	Example

	step Command
	Native Mode Syntax
	Java Mode Syntax

	stepi Command
	Syntax

	stop Command
	Syntax
	Native Mode Syntax
	Java Mode Syntax

	stopi Command
	Syntax

	suppress Command
	Syntax

	sync Command
	Syntax

	syncs Command
	thread Command
	Native Mode Syntax
	Java Mode Syntax

	threads Command
	Native Mode Syntax
	Java Mode Syntax

	trace Command
	Syntax
	Native Mode Syntax
	Java Mode Syntax

	tracei Command
	Syntax

	uncheck Command
	Syntax

	undisplay Command
	Native Mode Syntax
	Java Mode Syntax

	unhide Command
	Syntax

	unintercept Command
	Syntax

	unsuppress Command
	Syntax

	unwatch Command
	Syntax

	up Command
	Syntax

	use Command
	watch Command
	Syntax

	whatis Command
	Native Mode Syntax
	Java Mode Syntax

	when Command
	Syntax
	Native Mode Syntax
	Java Mode Syntax

	wheni Command
	Syntax

	where Command
	Native Mode Syntax
	Java Mode Syntax

	whereami Command
	Syntax

	whereis Command
	Syntax

	which Command
	Syntax

	whocatches Command
	Syntax

	Index

