
Oracle® Developer Studio 12.5: Overview

Part No: E60744
June 2016

Oracle Developer Studio 12.5: Overview

Part No: E60744

Copyright © 2011, 2016, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except
as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform,
publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation,
delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the
hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous
applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of
SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products, and services from third parties. Oracle Corporation and its affiliates are
not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an applicable agreement
between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Référence: E60744

Copyright © 2011, 2016, Oracle et/ou ses affiliés. Tous droits réservés.

Ce logiciel et la documentation qui l'accompagne sont protégés par les lois sur la propriété intellectuelle. Ils sont concédés sous licence et soumis à des restrictions d'utilisation et
de divulgation. Sauf stipulation expresse de votre contrat de licence ou de la loi, vous ne pouvez pas copier, reproduire, traduire, diffuser, modifier, accorder de licence, transmettre,
distribuer, exposer, exécuter, publier ou afficher le logiciel, même partiellement, sous quelque forme et par quelque procédé que ce soit. Par ailleurs, il est interdit de procéder à toute
ingénierie inverse du logiciel, de le désassembler ou de le décompiler, excepté à des fins d'interopérabilité avec des logiciels tiers ou tel que prescrit par la loi.

Les informations fournies dans ce document sont susceptibles de modification sans préavis. Par ailleurs, Oracle Corporation ne garantit pas qu'elles soient exemptes d'erreurs et vous
invite, le cas échéant, à lui en faire part par écrit.

Si ce logiciel, ou la documentation qui l'accompagne, est livré sous licence au Gouvernement des Etats-Unis, ou à quiconque qui aurait souscrit la licence de ce logiciel pour le
compte du Gouvernement des Etats-Unis, la notice suivante s'applique :

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation,
delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the
hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

Ce logiciel ou matériel a été développé pour un usage général dans le cadre d'applications de gestion des informations. Ce logiciel ou matériel n'est pas conçu ni n'est destiné à être
utilisé dans des applications à risque, notamment dans des applications pouvant causer un risque de dommages corporels. Si vous utilisez ce logiciel ou ce matériel dans le cadre
d'applications dangereuses, il est de votre responsabilité de prendre toutes les mesures de secours, de sauvegarde, de redondance et autres mesures nécessaires à son utilisation dans
des conditions optimales de sécurité. Oracle Corporation et ses affiliés déclinent toute responsabilité quant aux dommages causés par l'utilisation de ce logiciel ou matériel pour des
applications dangereuses.

Oracle et Java sont des marques déposées d'Oracle Corporation et/ou de ses affiliés. Tout autre nom mentionné peut correspondre à des marques appartenant à d'autres propriétaires
qu'Oracle.

Intel et Intel Xeon sont des marques ou des marques déposées d'Intel Corporation. Toutes les marques SPARC sont utilisées sous licence et sont des marques ou des marques
déposées de SPARC International, Inc. AMD, Opteron, le logo AMD et le logo AMD Opteron sont des marques ou des marques déposées d'Advanced Micro Devices. UNIX est une
marque déposée de The Open Group.

Ce logiciel ou matériel et la documentation qui l'accompagne peuvent fournir des informations ou des liens donnant accès à des contenus, des produits et des services émanant de
tiers. Oracle Corporation et ses affiliés déclinent toute responsabilité ou garantie expresse quant aux contenus, produits ou services émanant de tiers, sauf mention contraire stipulée
dans un contrat entre vous et Oracle. En aucun cas, Oracle Corporation et ses affiliés ne sauraient être tenus pour responsables des pertes subies, des coûts occasionnés ou des
dommages causés par l'accès à des contenus, produits ou services tiers, ou à leur utilisation, sauf mention contraire stipulée dans un contrat entre vous et Oracle.

Accès aux services de support Oracle

Les clients Oracle qui ont souscrit un contrat de support ont accès au support électronique via My Oracle Support. Pour plus d'informations, visitez le site http://www.oracle.com/
pls/topic/lookup?ctx=acc&id=info ou le site http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs si vous êtes malentendant.

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Contents

Using This Documentation ...  7

Oracle Developer Studio 12.5 Overview ...  9
Introduction to Oracle Developer Studio Software ..  9
Developer Workflow for Oracle Developer Studio ...  10
Oracle Developer Studio IDE ..  11
Oracle Developer Studio Compilers ..  14

C Compiler ..  15
C++ Compiler ... 16
Fortran 95 Compiler ..  17

C/C++/Fortran Libraries ...  19
OpenMP 4.0 for Parallel Programming .. 19
Oracle Developer Studio Performance Library for Programs With Intensive
Computation ...  20
Oracle Developer Studio Code Security Check — Discover ADI ............................ 21
dmake Utility for Building Applications ...  21
Tools for Debugging Applications ..  22

dbx on the Command Line ..  23
dbx in the IDE ..  24
dbx in dbxtool ...  25

Tools for Verifying Applications ..  26
discover Tool for Detecting Memory Errors ..  27
uncover Tool for Measuring Code Coverage ..  28
Code Analyzer Tool For Integrated Error Checking .....................................  29
codean Tool for Integrated Checking ..  30

Tools for Tuning Application Performance ...  31
Performance Analyzer Tools .. 31
Simple Performance Optimization Tool (SPOT) ..  38

5

Contents

Profiling Tools in the IDE ... 39
For More Information ..  42

6 Oracle Developer Studio 12.5: Overview • June 2016

Using This Documentation

■ Overview – Describes the many tools, compilers, and programming libraries available in
the product. The manual does not provide detailed information about using the tools, but
does show how a developer might use them together to edit, build, and analyze software
applications under development.

■ Audience – Application developers, system developers, architects, support engineers
■ Required knowledge – None

Product Documentation Library

Documentation and resources for this product and related products are available at http://www.
oracle.com/pls/topic/lookup?ctx=E60778-01.

Feedback

Provide feedback about this documentation at http://www.oracle.com/goto/docfeedback.

Using This Documentation 7

http://www.oracle.com/pls/topic/lookup?ctx=E60778-01
http://www.oracle.com/pls/topic/lookup?ctx=E60778-01
http://www.oracle.com/goto/docfeedback

8 Oracle Developer Studio 12.5: Overview • June 2016

Oracle Developer Studio 12.5 Overview

Oracle Developer Studio software is a set of software development tools for C, C++, and
Fortran development on Oracle Solaris™ and Linux platforms, with support of multicore
systems with SPARC® processors and x86 and x64 processors.

Introduction to Oracle Developer Studio Software

Oracle Developer Studio consists of two suites of tools: a compiler suite and an analysis suite.
The tools of each suite are designed to work together to provide an optimized development
environment for the development of single, multithreaded, and distributed applications.

Oracle Developer Studio provides everything you need to develop C, C++, and Fortran
applications to run in Oracle Solaris 10 or Oracle Solaris 11 on SPARC or x86 and x64
platforms, or in Oracle Linux on x86 and x64 platforms. The compilers and analysis tools are
engineered to make your applications run optimally on Oracle Sun systems.

In particular, Oracle Developer Studio compilers and analysis tools are designed to leverage
the capabilities of newer multicore CPUs including the SPARC T5, SPARC M5, SPARC
M6, SPARC M10, SPARC M10+, and Intel Ivy Bridge and Haswell processors as well as
the older SPARC T4, SPARC T3, and the Intel® Xeon® and AMD Opteron™ processors.
Oracle Developer Studio enables you to more easily create parallel and concurrent software
applications for these platforms.

The components of Oracle Developer Studio include:

■ IDE for application development in a graphical environment. The Oracle Developer Studio
IDE integrates several other Oracle Developer Studio tools.

■ C, C++, and Fortran compilers for compiling your code at the command line or through the
IDE. The compilers are engineered to work well with the Oracle Developer Studio debugger
(dbx), and include options for optimizing your code for specific processors.

■ Libraries to add advanced performance and multithreading capabilities to your applications.
■ Make utility (dmake) for building your code in distributed computing environments at the

command line or through the IDE.

Oracle Developer Studio 12.5 Overview 9

Developer Workflow for Oracle Developer Studio

■ Debugger (dbx) for finding bugs in your code at the command line, or through the IDE, or
through an independent graphical interface (dbxtool).

■ Code Analyzer tools for finding static code errors in your code during compilation, and
memory access and code coverage errors during execution.

■ Performance Analyzer tools that employ Oracle Solaris technologies such as DTrace and
can be used at the command line or through graphical interfaces to find trouble spots in your
code that you cannot detect through debugging.

■ Thread Analyzer for examining multithreaded programs to detect programming errors that
cause data races and deadlocks.

These tools together enable you to build, debug, and tune your applications for high
performance on Oracle Solaris running on Oracle Sun systems. Each component is described in
greater detail later in this document.

Developer Workflow for Oracle Developer Studio

Oracle Developer Studio provides tools to help developers create applications that run on
Oracle Solaris. The tools can support developers who want a graphical IDE to manage many
development tasks for them, and developers who want to control all aspects of their software
development using their own methods.

You do not need to make a commitment to using the IDE or the command line because the tools
are designed to be used in any combination. You can create a project in the IDE and still build
the source of the project with dmake or make from the command line if you want. You can use
Performance Analyzer on the binary of a project you created in the IDE. The IDE keeps its
project files separate from the source files so there is no dependency.

If you are a devoted Emacs or vi user, you can continue to use your accustomed environment
and ignore the IDE, but adopt the Oracle Developer Studio compilers and performance tools to
make your application run optimally in Oracle Solaris on Oracle Sun hardware.

The following diagram shows the developer workflow for the Oracle Developer Studio tools
when developing with or without the graphical IDE.

10 Oracle Developer Studio 12.5: Overview • June 2016

Oracle Developer Studio IDE

The rest of this document describes the components of the Oracle Developer Studio software,
explains the ways that the components are integrated, and briefly shows how to use them.

Oracle Developer Studio IDE

Oracle Developer Studio IDE is based on NetBeans IDE, an open-source integrated
development environment. Oracle Developer Studio IDE includes the core NetBeans IDE,

Oracle Developer Studio 12.5 Overview 11

Oracle Developer Studio IDE

the NetBeans C/C++ plugin module, and additional integrated Oracle Developer Studio
components that are not available in the open-source NetBeans IDE.

Oracle Developer Studio IDE uses the Oracle Developer Studio C, C++, and Fortran compilers,
the dmake build utility, and the dbx debugger. In addition, the IDE provides graphical profiling
tools that use Oracle Developer Studio performance utilities invisibly to collect data on your
running project.

Using Oracle Developer Studio IDE offers some advantages over development using text
editors and the command line:

■ Code editing. Working with code can be more efficient with syntax highlighting, code
completion, navigation between code elements, and integrated API documentation and man
pages.

■ Code investigation. When you are trying to become familiar with some code or looking
for a root cause of a bug, you might find useful such IDE features as Go to Symbol, Find
Usages, the Classes window, the Include hierarchy, and the Call Graph.

■ Refactoring. You can find all usages of a variable or operation within a project, and rename
all occurrences of the variable or operation and refactor throughout the product. Before
performing the refactoring, you can preview the changes in a split-screen UI and approve
them individually or all at once.

■ Remote development. You can run the IDE, dbxtool, Code Analyzer, and Performance
Analyzer on a desktop system while using Oracle Developer Studio compilers and tools that
are installed on a remote server. The tools run on the remote server while displaying back
to your IDE or other tool which is running on your local system, with much better response
time than typical remote display solutions.

To start the IDE, type the following command:

% solstudio

The following figure shows the IDE with the Quote sample project running with the Monitor
Project profiling tools.

12 Oracle Developer Studio 12.5: Overview • June 2016

Oracle Developer Studio IDE

A C or C++ or Fortran project is a group of source files and associated information about how
to compile and link the source files and run the resulting program. In the IDE, you always
work inside a project even if your program is contained in a single source file. The IDE stores
project information in a project folder that includes a makefile and metadata files. Your source
directories do not need to be physically located in the project folder.

Each project (except a project created from an existing binary) must have a makefile so the
IDE can build the project. A project's makefile can be generated by the IDE or you can use a
makefile that was previously created outside the IDE. You can create projects from existing
sources that already include a makefile, or that build a makefile when you run configure scripts.

You can build, run, and debug projects by clicking toolbar buttons, or by selecting menu
commands. The IDE is preconfigured to use the Oracle Developer Studio C, C++, and Fortran
compilers, dmake, and dbx by default. However, if you have GNU compilers on your system,
the IDE can usually find them if they are on your PATH. You can use the GNU tool collection
by setting the Tool Collection in your project's properties.

You can learn about using Oracle Developer Studio IDE by reading the IDE's integrated help,
which you can access through the IDE's Help menu or by pressing the F1 key. Many dialog
boxes also have a Help button for information about how to use the dialog box.

The Oracle Developer Studio 12.5: IDE Quick Start Tutorial shows how to get started using
the IDE. In addition, the tutorials on the NetBeans IDE C/C++ Learning Trail can also be

Oracle Developer Studio 12.5 Overview 13

http://www.oracle.com/pls/topic/lookup?ctx=E60778-01&id=OSSQS
https://netbeans.org/kb/trails/cnd.html

Oracle Developer Studio Compilers

helpful for learning how to use the Oracle Developer Studio IDE, although there are some
differences between the user interfaces and features. In particular, NetBeans documentation
about debugging does not apply to Oracle Developer Studio IDE.

Oracle Developer Studio Compilers
Oracle Developer Studio software includes C, C++, and Fortran compilers, which have the
following features:

■ Comply with modern standards for C, C++, and Fortran programming languages.
■ Produce code that is targeted for specific operating systems, processors, architectures,

memory models (32-bit and 64-bit), floating-point arithmetic, and more, according to
command-line options you specify.

■ Perform automatic parallelization on serial source code to produce binaries that exhibit
enhanced performance on multicore systems.

■ Produce code that is optimized in ways that you can specify through command-line options
to suit your application and deployment environment.

■ Prepare binaries for enhanced debugging or analysis by other Oracle Developer Studio
tools.

■ Use the same command-line options across all the compilers to specify these features.

Some of the Oracle Developer Studio compiler options you can use to optimize your compiled
code for speed and take the best advantage of processor instruction sets and features are as
follows:

-On Specifies a level of optimization indicated by n, which can be a number
from 1 to 5. A higher optimization level creates a binary with better
runtime performance.

-fast Selects the optimum combination of compilation options for speed of
executable code. -fast can be used effectively as a starting point for
tuning an executable for maximum runtime performance.

-g Produces additional information in the binary for debugging with
dbx and analysis with Performance Analyzer. Compiling with the
-g option enables you to use the full capabilities of the Performance
Analyzer, such as viewing annotated source, function information, and
compiler commentary messages that describe the optimizations and
transformations that the compiler made while compiling your program.

Oracle Developer Studio compilers provide significantly more information than other compilers
to help you understand your code. With optimization, the compilers insert commentary

14 Oracle Developer Studio 12.5: Overview • June 2016

Oracle Developer Studio Compilers

describing the transformations performed on the code, any obstacles to parallelization,
operation counts for loop iterations, and so forth. The compiler commentary can be displayed in
tools such as Performance Analyzer.

C Compiler

The Oracle Developer Studio C compiler conforms to the ISO/IEC 9899:1999, Programming
Language - C and ISO/IEC 9899:1990, Programming Languages-C standards, and some of the
Programming Language - C and ISO/IEC 9899:2014 standard. The C compiler also supports
the OpenMP 4.0 shared-memory parallelism API.

The C compilation system consists of a compiler, an assembler, and a linker. The cc command
invokes each of these components automatically unless you use command-line options to
perform the steps separately.

cc Command Syntax

The syntax of the cc command is:

cc [compiler-options] source-files [-Ldir] [-llibrary]...

You can type cc -flags to see short descriptions of all the possible compiler options.

The source file names can end in .c, .s, .S, or .i. Files whose names do not end in one of these
suffixes are passed to the link editor.

You can also specify the -Ldir option to add directories to the list so that the linker searches for
libraries, and the -llibrary option to add object libraries to the linker's list of search libraries.
The directories specified by the -L option are searched in the order listed.

The link editor produces a dynamically linked executable named a.out by default. You can
use the -o filename option to specify a different executable name. You can use the -c option to
compile a source file and produce an object (.o) file but suppress linking.

To compile a source file named test.c and produce an executable file named a.out:

% cc test.c

To compile source files test1.c and test2.c and link them into an executable file called test:

% cc -o test test1.c test2.c

Oracle Developer Studio 12.5 Overview 15

Oracle Developer Studio Compilers

To compile the two source files separately and then link them into an executable:

% cc -c test1.c

% cc -c test2.c

% cc test1.o test2.o

C Documentation

For complete information about using the C compiler, and the cc command and its options, see
the Oracle Developer Studio 12.5: C User’s Guide and the cc(1) man page. For information
about the new and changed features, see What’s New in the Oracle Developer Studio
12.5 Release. For information about problems and workarounds, and limitations and
incompatibilities of the compiler, see Oracle Developer Studio 12.5: Release Notes.

C++ Compiler

The Oracle Developer Studio C++ compiler (CC) supports the ISO International Standard for
C++, ISO/IEC 14882:2014, Programming Language — C++ and ISO International Standard
for C++, ISO IS 14822:2003, Programming Language — C++. The CC compiler also supports
the OpenMP 4.0 shared-memory parallelism API. The OpenMP 4.0 API is included with Oracle
Developer Studio 12.5.

For specific information about C++14 support, see “Partial Support for the C++14 Standard” in
What’s New in the Oracle Developer Studio 12.5 Release.

The C++ compiler (CC) produces code that is targeted for specific operating systems,
processors, architectures, memory models (32-bit and 64-bit), floating-point arithmetic, and
more, according to command-line options you specify. The compiler automatically parallelizes
serial source code to produce binaries with better performance on multicore systems and can
also prepare binaries for enhanced debugging or analysis by other Oracle Developer Studio
tools. The compiler also supports GNU C/C++ compatibility features.

The C++ compiler consists of a front end, optimizer, code generator, assembler, template
prelinker, and link editor. The CC command invokes each of these components automatically
unless you use command-line options to specify otherwise.

CC Command Syntax

The syntax of the CC command is:

16 Oracle Developer Studio 12.5: Overview • June 2016

http://www.oracle.com/pls/topic/lookup?ctx=E60778-01&id=OSSCG
http://www.oracle.com/pls/topic/lookup?ctx=E60778-01&id=OSSWN
http://www.oracle.com/pls/topic/lookup?ctx=E60778-01&id=OSSWN
http://www.oracle.com/pls/topic/lookup?ctx=E60778-01&id=OSSRN
http://www.oracle.com/pls/topic/lookup?ctx=E60778-01&id=OSSWNgncix
http://www.oracle.com/pls/topic/lookup?ctx=E60778-01&id=OSSWNgncix

Oracle Developer Studio Compilers

CC [compiler-options] source-files [-Ldir] [-l library]...

You can type CC -flags to see short descriptions of all the possible CC compiler options.

The source file names can end in .c, .C, .cc, .cxx, .c++, .cpp, or .i. Files whose names do not
end with one of these suffixes are treated as object files or libraries and are handed over to the
link editor.

Following the source file names, you can optionally specify the -Ldir option to add directories
to the list that the linker searches for libraries, and the-llibrary option to add object libraries
to the linker's list of search libraries. The -L option must precede the associated library on the
command line.

By default, the files are compiled and linked in the order given to produce an output file named
a.out. You can use the -o filename option to specify a different executable name. You can use
the -c option to compile a source file and produce an object (.o) file, but suppress linking.

To compile a source file named test.C and produce an executable file named a.out:

% CC test.c

To compile the two source files test1.c and test2.C separately and then link them into an
executable file called test:

% CC -c test1.c

% CC -c test2.C

% CC -o test test1.o test2.o

C++ Documentation

For complete information about using the C++ compiler, and the CC command and its options,
see the Oracle Developer Studio 12.5: C++ User’s Guide and the CC(1) man page. For
information about the new and changed features, see What’s New in the Oracle Developer
Studio 12.5 Release. For information about problems and workarounds, and limitations and
incompatibilities of the compiler, see Oracle Developer Studio 12.5: Release Notes.

Fortran 95 Compiler

The Fortran compiler in Oracle Developer Studio is optimized for Oracle Solaris on
multiprocessor systems. The compiler can perform both automatic and explicit loop
parallelization to enable your programs to run efficiently on multiprocessor systems.

Oracle Developer Studio 12.5 Overview 17

http://www.oracle.com/pls/topic/lookup?ctx=E60778-01&id=OSSCP
http://www.oracle.com/pls/topic/lookup?ctx=E60778-01&id=OSSWN
http://www.oracle.com/pls/topic/lookup?ctx=E60778-01&id=OSSWN
http://www.oracle.com/pls/topic/lookup?ctx=E60778-01&id=OSSRN

Oracle Developer Studio Compilers

The Fortran compiler offers compatibility with Fortran77, Fortran90, and Fortran95 standards.
and support of OpenMP 4.0.

The f95 command invokes the Oracle Developer Studio Fortran compiler.

f95 Command Syntax

The syntax of the f95 command is:

f95 [compiler-options] source-files... [-llibrary]

The compiler options precede the source file names. You can type f95 -flags to see short
descriptions of all the possible compiler options.

The source file names must be one or more Fortran source file names ending in .f, .F, .f90,
.f95, .F90, .F95, or .for.

Following the source file names, you can optionally specify the -llibrary option to add object
libraries to the linker's list of search libraries.

A sample command to compile a Fortran program from two source files:

% f95 -o hello_1 foo.f bar.f

To compile the same program with separate compile and link steps:

% f95 -c -o bar.o bar.f

% f95 -c -o foo.o foo.f

% f95 -o hello_1 bar.o foo.o

To compile the same program and link in a library called libexample:

% f95 -o hello_1 foo.f bar.f -lexample

Fortran Documentation

For complete information about using the Fortran 95 compiler, and a description of the f95
command and its options, see the Oracle Developer Studio 12.5: Fortran User’s Guide and the
f95(1) man page. For information about the new and changed features, see What’s New in the
Oracle Developer Studio 12.5 Release. For information about problems and workarounds, and
limitations and incompatibilities of the compiler, see Oracle Developer Studio 12.5: Release
Notes.

18 Oracle Developer Studio 12.5: Overview • June 2016

http://www.oracle.com/pls/topic/lookup?ctx=E60778-01&id=OSSFG
http://www.oracle.com/pls/topic/lookup?ctx=E60778-01&id=OSSWN
http://www.oracle.com/pls/topic/lookup?ctx=E60778-01&id=OSSWN
http://www.oracle.com/pls/topic/lookup?ctx=E60778-01&id=OSSRN
http://www.oracle.com/pls/topic/lookup?ctx=E60778-01&id=OSSRN

C/C++/Fortran Libraries

C/C++/Fortran Libraries

Oracle Developer Studio compilers make use of the operating system's native libraries. The
Oracle Solaris operating system provides many system libraries installed in /usr/lib, including
the C runtime libc and several C++ runtime libraries. The intro(3) man page describes each
library and refers to additional man pages for detailed information about each library. Type man
intro.3 to view the page.

To link a /usr/lib system library, use the appropriate -l option with the compiler. For example,
to link the libmalloc library, specify -lmalloc on the cc and CC command line at link time.

Runtime libraries for Fortran, C, and C++ are also provided with Oracle Developer Studio in
addition to those provided in the operating systems. Some examples include the libsunmath
and libmopt math libraries,

Fortran runtime libraries are provided with Oracle Developer Studio, not with the operating
systems.

Fortran programs can also use the Oracle Solaris /usr/lib libraries that have a C interface. See
the Fortran Programming Guide for information about the C-Fortran interface.

See the Linker and Libraries Guide in the Oracle Solaris documentation for more information
about linking libraries.

OpenMP 4.0 for Parallel Programming

OpenMP is an Application Programming Interface (API) to write shared memory parallel
applications in C, C++ and Fortran. It consists of a set of compiler directives, library routines,
and environment variables.

Programming in OpenMP has following advantages:

■ Can dramatically improve program performance on modern multicore architectures.
■ Enables programmers to easily write portable code since OpenMP is supported on a large

number of compilers.
■ Requires little programming effort. Programmers identify the code that can be parallelized

in existing programs, and add pragmas to parallelize it.
■ Enables programmers to parallelize their code incrementally.

Oracle Developer Studio 12.5 Overview 19

Oracle Developer Studio Performance Library for Programs With Intensive Computation

To take advantage of the compiler OpenMP support, use OpenMP directives and functions to
parallelize sections of your code, and use the -xopenmp option when compiling. See the Oracle
Developer Studio 12.5: OpenMP API User’s Guide for details.

Oracle Developer Studio Performance Library for Programs
With Intensive Computation

Oracle Developer Studio Performance Library is a set of optimized, high-speed mathematical
subroutines for solving linear algebra and other numerically intensive problems. Oracle
Developer Studio Performance Library is based on a collection of public domain subroutines
available from Netlib at http://www.netlib.org. Oracle enhanced these public domain
subroutines and bundled them as the Oracle Developer Studio Performance Library.

Oracle Developer Studio Performance Library routines can increase application performance
on multicore and multiprocessor (MP) Oracle systems. Many routines have SPARC and x86
specific optimizations that are not present in the base Netlib libraries, as well as parallelization
using OpenMP. Besides the standard Fortran interfaces, a complete set of C interfaces is also
included.

The Oracle Developer Studio Performance Library is linked into an application with the
-library switch instead of the -l switch that is used to link other libraries.

To compile Fortran source that uses Performance Library routines:

% f95 -dalign filename.f -library=sunperf

The -dalign option is required because this option was used to compile the Performance
Library to control the alignment of data.

To compile C or C++ source that uses Performance Library routines:

% cc filename.c -library=sunperf

% CC filename.cpp -library=sunperf

To compile and link statically so that you can deploy the application to a system that does
not have the Oracle Developer Studio Performance Library, you must use the options
-library=sunperf and -staticlib=sunperf.

For complete information about using the Oracle Developer Studio Performance Library,
see the Oracle Solaris Studio 12.4: Performance Library User’s Guide in PDF format in
the Information Library. For man pages for each function and subroutine in the library, see
section 3p of the man pages. For information about the new and changed features of the Oracle

20 Oracle Developer Studio 12.5: Overview • June 2016

http://www.oracle.com/pls/topic/lookup?ctx=E60778-01&id=OSSMP
http://www.oracle.com/pls/topic/lookup?ctx=E60778-01&id=OSSMP
http://www.netlib.org
http://docs.oracle.com/cd/E37069_01

Oracle Developer Studio Code Security Check — Discover ADI

Developer Studio Performance Library, see What’s New in the Oracle Developer Studio 12.5
Release.

Oracle Developer Studio Code Security Check — Discover
ADI

The discover -i ADI tool (or libdiscoverADI.so library) is a security feature in Oracle
Developer Studio which utilizes the SPARC M7 hardware to make fixing errant code easier. It
prevents malicious software attacks and other memory corruption issues by locating the errant
code earlier on.

To prevent such memory corruption, discover ADI interposes the production code, checking
version numbers or colors that are assigned to the application's memory pointers with the
pointer associated with the content's version number. If the pointer version number and content
version number do not match, discover ADI reports an error. This hardware-assisted checking
allows the user to detect buffer overflower, freed pointer, and stale pointer errors. discover
ADI then reports the exact source lines (when compiled with the -g option) and stack traces
of the errors so that the user can remediate the errant code before continuing execution. It also
reports the allocation and free point stack traces of the errors. There is no code instrumentation
or rebuild step required. See “Hardware-Assisted Checking Using Silicon Secured Memory
(SSM)” in Oracle Developer Studio 12.5: Discover and Uncover User’s Guide for more
information.

If an application has its own memory allocator and does not call malloc(), the user can use the
new APIs provided by the discover ADI tool. To view these new APIs, see “Custom Memory
Allocators and the discover ADI Library” in Oracle Developer Studio 12.5: Discover and
Uncover User’s Guide. These APIs are also available in the libdiscoverADI.so library or the
libaidiplugin.3 man page.

dmake Utility for Building Applications

The dmake utility is a command-line tool, compatible with make(1), for building software
project targets that are defined in makefiles. dmake can build targets in grid, distributed, parallel,
or serial mode. If you use the standard make(1) utility, the transition to dmake requires little if
any alteration to your makefiles. dmake is a superset of the make utility.

dmake parses your makefiles to determine which targets can be built concurrently, and
distributes the build of those targets over a number of hosts that you specify in a .dmakerc file.

Oracle Developer Studio 12.5 Overview 21

http://www.oracle.com/pls/topic/lookup?ctx=E60778-01&id=OSSWN
http://www.oracle.com/pls/topic/lookup?ctx=E60778-01&id=OSSWN
http://www.oracle.com/pls/topic/lookup?ctx=E60778-01&id=OSSDUgphwb
http://www.oracle.com/pls/topic/lookup?ctx=E60778-01&id=OSSDUgphwb
http://www.oracle.com/pls/topic/lookup?ctx=E60778-01&id=OSSDUgqeru
http://www.oracle.com/pls/topic/lookup?ctx=E60778-01&id=OSSDUgqeru
http://www.oracle.com/pls/topic/lookup?ctx=E60778-01&id=OSSDUgqeru

Tools for Debugging Applications

Oracle Developer Studio IDE uses dmake by default when you build and run your project
in the IDE, using the targets in the makefile for the project. You can also execute individual
makefile targets with dmake through the IDE. If you prefer you can configure the IDE to use
make instead.

For information about how to use dmake from the command line and how to create your
.dmakerc file, see Oracle Developer Studio 12.5: Distributed Make (dmake) or the dmake(1)
man page.

Tools for Debugging Applications

Oracle Developer Studio includes the dbx debugger to help you detect errors in your
applications.

dbx is an interactive, source-level, command-line debugging tool. You can use it to run a C, C
++, or Fortran program in a controlled manner and to inspect the state of a stopped program.
dbx gives you complete control of the dynamic execution of a program, including collecting
performance and memory usage data, monitoring memory access, and detecting memory leaks.

dbx enables you to perform the following tasks:

■ Examine a core file from a program that has crashed
■ Set breakpoints
■ Step through your program
■ Examine the call stack
■ Evaluate variables and expressions
■ Use runtime checking to find memory access problems and memory leaks
■ Use fix-and-continue to modify and recompile a source file and continue executing without

rebuilding the entire program

You can use the dbx debugger on the command line, graphically through Oracle Developer
Studio IDE, or through a separate graphical interface called dbxtool.

For more information about using dbx in the different user interfaces, see the following
sections:

■ “dbx on the Command Line” on page 23
■ “dbx in the IDE” on page 24
■ “dbx in dbxtool” on page 25

22 Oracle Developer Studio 12.5: Overview • June 2016

http://www.oracle.com/pls/topic/lookup?ctx=E60778-01&id=OSSDM

Tools for Debugging Applications

dbx on the Command Line

The basic syntax of the dbx command to start dbx is:

dbx [options] [program-name|-] [process-ID]

To start a dbx session and load the program test to be debugged:

% dbx test

To start a dbx session and attach it to a program that is already running with the process ID 832:

% dbx - 832

When your dbx session starts, dbx loads the program information for the program you are
debugging. Then dbx waits in a ready state visiting the main block of the program such as the
main() function in a C or C++ program. The (dbx) command prompt is displayed.

You can type commands at the (dbx) prompt. Typically, you first set a breakpoint by typing a
command such as stop in main and then type a run command to run your program:

(dbx) stop in main

(4) stop in main

(dbx) run

Running: quote_1

(process id 5685)

(dbx)

When execution stops at the breakpoint, you can type commands such as step and next to
single-step through your code, and print and display to evaluate expressions and variables.

For information about the command-line options for the dbx utility, see the dbx(1) man page.

For complete information about using dbx including a command reference section, see Oracle
Developer Studio 12.5: Debugging a Program with dbx. You can also learn about the dbx
commands and other topics by typing help at the (dbx) command line.

For a list of the new and changed features, see What’s New in the Oracle Developer Studio 12.5
Release.

For known problems, limitations, and incompatibilities in the current release of dbx, see Oracle
Developer Studio 12.5: Release Notes.

Oracle Developer Studio 12.5 Overview 23

http://www.oracle.com/pls/topic/lookup?ctx=E60778-01&id=OSSDP
http://www.oracle.com/pls/topic/lookup?ctx=E60778-01&id=OSSDP
http://www.oracle.com/pls/topic/lookup?ctx=E60778-01&id=OSSWN
http://www.oracle.com/pls/topic/lookup?ctx=E60778-01&id=OSSWN
http://www.oracle.com/pls/topic/lookup?ctx=E60778-01&id=OSSRN
http://www.oracle.com/pls/topic/lookup?ctx=E60778-01&id=OSSRN

Tools for Debugging Applications

dbx in the IDE

You can use dbx in Oracle Developer Studio IDE by opening your project, creating breakpoints
in the source, and clicking the Debug button. The IDE enables you to use menu options and
buttons to step through your program, and provides a complete set of debugging windows.

As with building your application, the IDE debugs your application as a project. You can also
use the IDE to debug executables that are not associated with an IDE project.

In the following screen capture, one of the IDE sample projects is running in dbx. You can use
commands in the Debug menu or the buttons at the top right in the IDE window to control the
debugger. As you use the Debug commands and buttons, the IDE issues commands to dbx and
displays output in the various debugging windows.

In the figure , the debugger is stopped at a breakpoint and the Output window shows the
program interaction. Some debugger windows such as Variables and Breakpoints are also
shown but not selected. You can open more debugging windows by selecting from the Window
→ Debugging menu. One of the debugging windows is the Debugger Console window, which

24 Oracle Developer Studio 12.5: Overview • June 2016

Tools for Debugging Applications

displays the interaction with dbx. You can also type commands at the (dbx) prompt in the
Debugger Console window.

For more information about using dbx in the IDE, see the integrated help in the IDE and Oracle
Developer Studio 12.5: IDE Quick Start Tutorial.

dbx in dbxtool

You can also use dbx through dbxtool, a graphical tool separate from the IDE, but includes
similar debugging windows and an editor. Unlike the IDE, dbxtool does not use projects, and
you can use it to debug any C, C++, or Fortran executable or core file.

To start dbxtool, type:

% dbxtool executable-name

You can also omit the executable name and specify it from within dbxtool instead.

As with the IDE, you can issue commands to dbx by clicking toolbar buttons or using Debug
menu options in dbxtool. You can also type commands at the (dbx) prompt in the Debugger
Console window.

In the following figure, dbx is running in dbxtool on the quote_1 program. The Debugger
Console window is selected and you can see the (dbx) prompt and commands that have been
entered by dbxtool in response to the user's selections.

Oracle Developer Studio 12.5 Overview 25

http://www.oracle.com/pls/topic/lookup?ctx=E60778-01&id=OSSQS
http://www.oracle.com/pls/topic/lookup?ctx=E60778-01&id=OSSQS

Tools for Verifying Applications

For information about using dbxtool, see the dbxtool(1) man page and the integrated help in
dbxtool. The Oracle Developer Studio 12.5: dbxtool Tutorial shows how to use dbxtool.

Tools for Verifying Applications

Oracle Developer Studio provides tools to help verify your application's stability. The following
tools combine dynamic, static and code coverage analysis to detect application vulnerabilities,
including memory leaks and memory access violations.

discover A command-line utility that helps detect memory access errors in your
code.

uncover A command-line utility that shows you which areas of your application
code are not covered by testing.

Code Analyzer A graphical tool that analyzes and displays static code error data
collected by the C or C++ compiler, and data collected by discover and

26 Oracle Developer Studio 12.5: Overview • June 2016

http://www.oracle.com/pls/topic/lookup?ctx=E60778-01&id=OSSDX

Tools for Verifying Applications

uncover. By integrating static error data with dynamic memory access
error data and code coverage data, Code Analyzer lets you find errors in
your application that you would not find when using other error detection
tools by themselves.

codean A command-line utility that provides functionality similar to Code
Analyzer.

discover Tool for Detecting Memory Errors

The Memory Error Discovery Tool (discover) is an advanced development tool for detecting
memory access errors in your programs. Compiling a binary with -g enables discover to
display source code and line number information while reporting errors and warnings.

The discover utility is simple to use. After compiling your binary with the-g option, you run
the discover command on the binary to instrument it. Then you run the instrumented binary to
create a discover report. You can request the discover report in HTML format, text format, or
both. The report shows memory errors, warnings, and memory leaks, and you can display the
source code and stack trace for each error or warning.

The following example from the discover(1) man page shows how to prepare, instrument, and
run an executable to generate a discover report for detecting memory access errors. The -w
option on the discover command line indicates the report should be written as text and the -o
option indicates that the output should go to the screen.

% cc -g -O2 test.c -o test.prep

% discover -w - -o test.disc test.prep

% ./test.disc

ERROR (UMR): accessing uninitialized data from address 0x5000c (4 bytes) at:

 foo() + 0xdc <ui.c:6>

 3: int *t;

 4: foo() {

 5: t = malloc(5*sizeof(int));

 6:=> printf("%d0, t[1]);

 7: }

 8:

 9: main()

 main() + 0x1c

 _start() + 0x108

 block at 0x50008 (20 bytes long) was allocated at:

 malloc() + 0x260

 foo() + 0x24 <ui.c:5>

 2:

 3: int *t;

Oracle Developer Studio 12.5 Overview 27

Tools for Verifying Applications

 4: foo() {

 5:=> t = malloc(5*sizeof(int));

 6: printf("%d0, t[1]);

 7: }

 8:

 main() + 0x1c

 _start() + 0x108

 ***************** Discover Memory Report *****************

1 block at 1 location left allocated on heap with a total size of 20 bytes

 1 block with total size of 20 bytes

 malloc() + 0x260

 foo() + 0x24 <ui.c:5>

 2:

 3: int *t;

 4: foo() {

 5:=> t = malloc(5*sizeof(int));

 6: printf("%d0, t[1]);

 7: }

 8:

 main() + 0x1c

 _start() + 0x108

For more information, see the discover(1) man page and Oracle Developer Studio 12.5:
Discover and Uncover User’s Guide.

uncover Tool for Measuring Code Coverage

The uncover utility is a command-line tool for measuring code coverage. The tool shows you
which areas of your application code are exercised when the application is run, and which are
not exercised and not covered by testing. Uncover produces a report with statistics and metrics
to help you determine which functions should be added to the test suite to ensure that more of
the code is covered during testing.

uncover works with any binary that is built with an Oracle Developer Studio compiler, and
works best when the binary is built without optimization. Compiling a binary with -g enables
uncover to display source code and line-number information while reporting on code coverage.

After compiling the binary, you run the uncover command on the binary. uncover creates a new
binary with added instrumentation code and also creates a directory named binary.uc that will
contain the code coverage data for your program. Each time you run the instrumented binary,
code coverage data is collected and stored in the binary.uc directory.

28 Oracle Developer Studio 12.5: Overview • June 2016

http://www.oracle.com/pls/topic/lookup?ctx=E60778-01&id=OSSDU
http://www.oracle.com/pls/topic/lookup?ctx=E60778-01&id=OSSDU

Tools for Verifying Applications

You can display the experiment data in Performance Analyzer, or generate the uncover report
as HTML and display it in your web browser.

The following example shows how to prepare, instrument, and run an executable to generate an
uncover report for examining code coverage. The optimized binary is test and is replaced by
the instrumented binary also named test.

% cc -g -O2 test.c -o test

% uncover test

% test

The experiment directory is test.uc and contains the data that is generated when the
instrumented test runs. The test.uc directory also contains a copy of the uninstrumented test
binary.

To view the experiment in Performance Analyzer:

% uncover test.uc

To view the experiment in an HTML page in a browser:

% uncover -H test.html test.uc

For more information, see the uncover(1) man page and the Oracle Developer Studio 12.5:
Discover and Uncover User’s Guide.

Code Analyzer Tool For Integrated Error Checking

Oracle Developer Studio Code Analyzer is a graphical tool that enables you do an integrated
analysis of your code. Code Analyzer uses three types of information that you gather using
other tools:

■ Static code checking, which is performed when you compile your application with the
Oracle Developer Studio C or C++ compiler and specify the -xprevise=yes option.

■ Dynamic memory access checking, which is performed when you instrument your binary
with discover using the -a option, and then run the instrumented binary.

■ Code coverage checking, which is performed when you instrument your binary with
uncover, run the instrumented binary, and then run Uncover with the -a option on the
collected coverage data.

You can use Code Analyzer on a binary that has been prepared with any one of these tools or
any combination of these tools. However, the integrated view of the three types of data offers
the most revealing look into your code and enables you to create a more secure and robust
application.

Oracle Developer Studio 12.5 Overview 29

http://www.oracle.com/pls/topic/lookup?ctx=E60778-01&id=OSSDU
http://www.oracle.com/pls/topic/lookup?ctx=E60778-01&id=OSSDU

Tools for Verifying Applications

The following example shows how to run Code Analyzer on a binary named a.out that has
been prepared previously with discover and uncover.

% code-analyzer a.out

In the following figure, Code Analyzer is displaying the issues found in the a.out binary.

For more information, see the integrated Code Analyzer help, Oracle Developer Studio 12.5:
Code Analyzer User’s Guide, and Oracle Developer Studio 12.5: Code Analyzer Tutorial.

codean Tool for Integrated Checking

You can also generate reports from the data collected through the compilers, discover, and
uncover with the codean command-line utility. The codean tool provides functionality similar
to Code Analyzer, but you can use it on systems where a graphical environment is not available,
or if you prefer the command line. The codean tool can also be used in automated scripts and
has some features that are not yet available in the Code Analyzer tool.

For more information, see the codean(1) man page, Oracle Developer Studio 12.5: Code
Analyzer User’s Guide, and Oracle Developer Studio 12.5: Code Analyzer Tutorial.

30 Oracle Developer Studio 12.5: Overview • June 2016

http://www.oracle.com/pls/topic/lookup?ctx=E60778-01&id=OSSCA
http://www.oracle.com/pls/topic/lookup?ctx=E60778-01&id=OSSCA
http://www.oracle.com/pls/topic/lookup?ctx=E60778-01&id=OSSCT
http://www.oracle.com/pls/topic/lookup?ctx=E60778-01&id=OSSCA
http://www.oracle.com/pls/topic/lookup?ctx=E60778-01&id=OSSCA
http://www.oracle.com/pls/topic/lookup?ctx=E60778-01&id=OSSCT

Tools for Tuning Application Performance

Tools for Tuning Application Performance

Oracle Developer Studio software features several tools you can use to examine your
application's behavior, enabling you to tune its performance.
The performance tools include the following:

■ Performance Analyzer and associated tools. A set of advanced performance tools and
utilities to help you identify locations in your code where problems affect performance.

■ Simple Performance Optimization Tool (SPOT). A command-line tool that works with
the Performance Analyzer tools and produces web pages to report the data gathered by the
tools.

■ Profiling Tools in the IDE. Enable you to examine the performance of your projects from
within the IDE.

Performance Analyzer Tools

The Oracle Developer Studio software provides a set of advanced performance tools and
utilities that work together. The Collector, Performance Analyzer, Thread Analyzer, and
er_print utility help you assess the performance of your code, identify potential performance
problems, and locate the part of the code where the problems occur. These tools together are
referred to as the Performance Analyzer tools.

You can use options for the Oracle Developer Studio C, C++, and Fortran compilers to target
hardware and advanced optimization techniques that will improve your program's performance.
Performance Analyzer tools also are engineered for use on Oracle Sun hardware together with
the compilers, and can help you improve your program's performance when running on Oracle
Sun machines.

Performance Analyzer tools allow you to have control over the data that is collected, inspect the
data deeply, and examine your program's interaction with the hardware. Performance Analyzer
tools are designed for and tested with complex compute-intensive applications running on
current Oracle Sun hardware.

The Performance Analyzer tools also feature profiling of OpenMP parallel applications and
MPI-based distributed applications, to help you to determine if you are using these technologies
effectively in your application.

To use the Performance Analyzer tools, you must perform two steps:

1. Profile a target application in Performance Analyzer or collect performance data from the
target application with the collect command.

Oracle Developer Studio 12.5 Overview 31

Tools for Tuning Application Performance

2. Examine the data with the Performance Analyzer graphical tool, or the er_print command
line utility, or the Thread Analyzer graphical tool for examining data race and deadlock
data.

Collect Performance Data to Profile an Application

The Collector collects performance data using profiling and by tracing function calls. The data
can include call stacks, microstate accounting information (on Oracle Solaris platforms only),
thread synchronization delay data, hardware counter overflow data, Message Passing Interface
(MPI) function call data, memory allocation data, and summary information for the operating
system and the process. The Collector can collect all types of data for C, C++, and Fortran
programs, and profiling data for applications written in the Java programming language. You
can run the Collector using the collect command, or from the Profile Application dialog in
Performance Analyzer, or by using the dbx debugger's collect subcommand.

The Oracle Developer Studio IDE profiling tools also use the Collector to gather information.

To collect data with the collect command:

% collect [collect-options] executable executable-options

You can include options to the collect command to specify the type of data you want to
collect. For example, the -i on option causes the Collector to perform input/output tracing. You
can pass arguments to the target executable by specifying the arguments after the executable.

The Collector creates a data directory with the name test.1.er by default, but you can specify
a different name on the command line. The test.1.er directory is known as an experiment,
and the name must always end in .er in order for the tools to recognize it as an experiment.

The following command shows how to use collect on the synprog program:

% collect synprog

Creating experiment database test.1.er (Process ID: 11103) ...

00:00:00.000 ===== (11103) synprog run

00:00:00.005 ===== (11103) Mon 22 Sep 14 17:05:51 Stopwatch calibration

 OS release 5.11 -- enabling microstate accounting 5.11.

 0.000096 s. (22.4 % of 0.000426 s.) -- inner

 N = 1000, avg = 0.096 us., min = 0.090, max = 0.105

 0.000312 s. (67.0 % of 0.000466 s.) -- outer

 N = 1000, avg = 0.312 us., min = 0.307, max = 0.457

00:00:00.006 ===== (11103) Begin commandline

 icpu.md.cpu.rec.recd.dousl.gpf.fitos.uf.ec.tco.b.nap.sig.sys.so.sx.so

00:00:00.006 ===== (11103) start of icputime

32 Oracle Developer Studio 12.5: Overview • June 2016

Tools for Tuning Application Performance

 3.003069 wall-secs., 2.978360 CPU-secs., in icputime

00:00:03.009 ===== (11103) start of muldiv

 3.007489 wall-secs., 2.997647 CPU-secs., in muldiv

00:00:06.017 ===== (11103) start of cputime

 3.002315 wall-secs., 2.989407 CPU-secs., in cputime

00:00:09.019 ===== (11103) start of recurse

 3.082371 wall-secs., 3.069782 CPU-secs., in recurse

...
(output edited to conserve space)
...

The data is stored in the test.1.er directory, which can be viewed using Performance
Analyzer or er_print.

See the Oracle Developer Studio 12.5: Performance Analyzer Tutorials for step-by-step
instructions for using Performance Analyzer on sample applications you can download.

For detailed information about profiling applications and using the Collector, see the Help menu
in Performance Analyzer, the Oracle Developer Studio 12.5: Performance Analyzer manual,
and the collect(1) man page.

Examine Performance Data With Performance Analyzer

Performance Analyzer provides insight into the behavior of your application to enable you
to find problem areas in your code. Performance Analyzer identifies which functions, code
segments, and source lines are using the most system resources. Performance Analyzer can
profile single-threaded, multithreaded, and multi-process applications, then present the profiling
data to help you identify where you can improve your application's performance.

You can run Performance Analyzer with the analyzer command. The basic syntax of the
analyzer command to start Performance Analyzer is:

% analyzer [experiment-list]

The experiment-list is one or more file names of experiments that were collected with the
Collector. If you want to load more than one experiment, specify the names separated by spaces.
When invoked on more than one experiment, Performance Analyzer aggregates the experiment
data by default, but can also be used to compare the experiments if you specify the -c option on
the command line before the experiment names.

If you do not specify an experiment on the command line, Performance Analyzer displays a
Welcome screen to help you get started.

To open the experiment test.1.er in Performance Analyzer:

Oracle Developer Studio 12.5 Overview 33

http://www.oracle.com/pls/topic/lookup?ctx=E60778-01&id=OSSPT
http://www.oracle.com/pls/topic/lookup?ctx=E60778-01&id=OSSPA

Tools for Tuning Application Performance

% analyzer test.1.er

The initial view of the experiment is the Overview where you can get a quick overview of time
and resources used by your program and select the performance metrics you want to see in the
views of performance data.

The following figure shows Performance Analyzer's Functions view for a test.1.er
experiment that was made on the synprog example. The Functions view shows the CPU time
used by each function of the synprog program. When you click the function gpf_work the
Selection Details window on the right side shows details about the gpf_work function's resource
usage. At the bottom of the Functions view, the Called-by/Calls area shows the functions that
are called by gpf_work and you can double-click the calls to navigate to them in the Functions
view.

For information about using Performance Analyzer, see the Oracle Developer Studio 12.5:
Performance Analyzer manual, Performance Analyzer integrated help, and the analyzer(1)
man page.

See the Oracle Developer Studio 12.5: Performance Analyzer Tutorials for step-by-step
instructions for using Performance Analyzer on sample applications you can download.

34 Oracle Developer Studio 12.5: Overview • June 2016

http://www.oracle.com/pls/topic/lookup?ctx=E60778-01&id=OSSPA
http://www.oracle.com/pls/topic/lookup?ctx=E60778-01&id=OSSPA
http://www.oracle.com/pls/topic/lookup?ctx=E60778-01&id=OSSPT

Tools for Tuning Application Performance

Examine Performance Data With the er_print Utility

The er_print utility presents in plain text most of the displays that are presented in the
Performance Analyzer except the Timeline display, the MPI Timeline display, and the MPI
Chart display.

You can use the er_print utility to display the performance metrics for functions, callers and
callees, the call tree, source code listing, disassembly listing, sampling information, dataspace
data, thread analysis data, and execution statistics.

The general syntax of the er_print command is:

% er_print -command experiment-list

You can specify one or more commands to indicate the type of data you want to display. The
experiment-list is one or more file names of experiments that were collected with the Collector.
When invoked on more than one experiment, er_print aggregates the experiment data by
default, but can also be used to compare the experiments.

The following example shows the command for displaying function information for a
program. The output shown is for the same experiment that was used in the screen capture of
Performance Analyzer in the previous section of this document.

% er_print -functions test.1.er

Functions sorted by metric: Exclusive Total CPU Time

Excl. Incl. Name

Total Total

CPU sec. CPU sec.

50.806 50.806 <Total>

 5.994 5.994 so_burncpu

 5.914 5.914 real_recurse

 3.502 3.502 gpf_work

 3.012 3.012 sigtime_handler

 3.002 3.002 bounce_a

 3.002 3.002 cputime

 3.002 3.002 icputime

 2.992 2.992 sx_burncpu

 2.992 2.992 underflow

 2.792 2.792 muldiv

 2.532 2.532 my_irand

 1.831 1.831 gethrtime

 1.031 1.991 tailcall_b

 0.961 0.961 inc_middle

 0.961 0.961 tailcall_c

 0.941 0.941 gethrvtime

Oracle Developer Studio 12.5 Overview 35

Tools for Tuning Application Performance

 0.941 0.941 gettimeofday

 0.911 2.902 tailcall_a

 0.801 0.801 dousleep

 0.650 0.650 inc_entry

 0.640 0.640 inc_exit

 0.480 3.012 fitos

 0.330 0.330 inc_func

 0.320 0.320 inc_body

 0.320 0.320 inc_brace

 0.290 4.003 systime

 0.260 0.260 ext_macro_code

lines deleted

You can also use er_print interactively if you specify the experiment name and omit the
command when starting er_print. You can type commands at an (er_print) prompt.

For information about the er_print utility, see the Oracle Developer Studio 12.5: Performance
Analyzer manual and the er_print(1) man page.

Analyze Multithreaded Application Performance With Thread
Analyzer

Thread Analyzer is a specialized version of Performance Analyzer for examining multithreaded
programs. Thread Analyzer can detect multithreaded programming errors that cause data races
and deadlocks in code that is written using the POSIX thread API, the Oracle Solaris thread
API, OpenMP directives, or a mix of these.

Thread Analyzer detects two common threading issues in multithreaded programs:

■ Data races, which occur when two threads in a single process access the same shared
memory location concurrently and without holding any exclusive locks, and at least one of
the accesses is a write.

■ Deadlocks, which occur when two or more threads are blocked because they are waiting for
each other to complete a task.

Thread Analyzer is streamlined for multithreaded program analysis and shows only the Races,
Deadlocks, and Dual Source data views of Performance Analyzer. For OpenMP programs, the
OpenMP Parallel Region and OpenMP Task views are also shown.

You can detect data races on source code or binary code. In both cases, you have to instrument
the code to enable the necessary data to be collected.

To use Thread Analyzer:

36 Oracle Developer Studio 12.5: Overview • June 2016

http://www.oracle.com/pls/topic/lookup?ctx=E60778-01&id=OSSPA
http://www.oracle.com/pls/topic/lookup?ctx=E60778-01&id=OSSPA

Tools for Tuning Application Performance

1. Instrument your code for analysis of data races. For source code, use the
-xinstrument=datarace compiler option when compiling. For binary code, use the
discover -i datarace command to create instrumented binaries.
Deadlock detection does not require instrumentation.

2. Run the executable with the collect command with the -r race option to collect datarace
data, the -r deadlock option to collect deadlock data, or the -r all option to collect both
types of data.

3. Start Thread Analyzer with the tha command or use the er_print command to display the
resulting experiment.

The following figure shows the Thread Analyzer window with data races that were detected in
an OpenMP program, and the call stacks that lead to the data races.

For information about using Thread Analyzer, see the tha(1) man page and the Oracle
Developer Studio 12.5: Thread Analyzer User’s Guide.

Oracle Developer Studio 12.5 Overview 37

http://www.oracle.com/pls/topic/lookup?ctx=E60778-01&id=OSSTA
http://www.oracle.com/pls/topic/lookup?ctx=E60778-01&id=OSSTA

Tools for Tuning Application Performance

Simple Performance Optimization Tool (SPOT)

The Simple Performance Optimization Tool (SPOT) can help you diagnose performance
problems in an application. SPOT runs a set of performance tools on an application and
produces web pages to report the data gathered by the tools. The tools can also be run
independently of SPOT.

SPOT is complementary to the Oracle Developer Studio Performance Analyzer. Performance
Analyzer tells you where the time was spent in running your application. In certain situations,
however, you may need more information to help diagnose your application's problems. SPOT
can assist you in these situations.

SPOT uses the collect utility as one of its tools. SPOT uses the er_print utility and an
additional utility called er_html to display the profiling data as a web page.

Before you use SPOT, the application binary should be compiled with some level of
optimization with the -O option and debugging information with the -g option to enable the
SPOT tools to map performance information to lines of code.

SPOT can be used to gather performance data by launching an application or attaching to an
already running application.

To run SPOT and launch your application:

% spot executable

To run SPOT on an already running application:

% spot -P process-id

SPOT produces a report for each run of your application, as well as a report that compares
SPOT data from different runs.

When SPOT is used on a PID, multiple tools are attached to the PID in sequence to generate the
report.

The following figure shows part of the SPOT run report, which shows information about the
system on which SPOT was run, and about how the application was compiled. The report
includes links to other pages with more information.

38 Oracle Developer Studio 12.5: Overview • June 2016

Tools for Tuning Application Performance

The SPOT report web pages are linked together to make it easy for you to examine all the data
complied.

For more information, see the Oracle Solaris Studio 12.2: Simple Performance Optimization
Tool (SPOT) User’s Guide in the Oracle Solaris Studio 12.2 documentation library at .

Profiling Tools in the IDE

Oracle Developer Studio IDE provides interactive graphical profiling tools to enable you to
examine the performance of your projects as they run within the IDE. The profiling tools use
Oracle Developer Studio utilities and operating system utilities to collect the data.

The profiling tools are available from the Profile Project button .

Oracle Developer Studio 12.5 Overview 39

Tools for Tuning Application Performance

Monitor Project Presents graphs that enable you to see a summary of resource usage of
your program.

Memory Access
Errors

Analyzes the program as it runs to detect memory access errors and
memory leaks.

Data Races
and Deadlocks
Detection

Analyzes the program as it runs to detect actual and potential data races
and deadlocks among the threads.

When you profile your project and choose Monitor Project, the Run Monitor window opens to
display the output of the low-impact tools for CPU Usage, Memory Usage, and Thread Usage.

The following figure shows the IDE with the Run Monitor tools.

Additional tools for more detailed profiling have a greater performance impact on the system
and the application, so those tools do not run automatically when you run Monitor Project.
The advanced tools are linked to the Run Monitor tools and can be launched easily by clicking
buttons to see Hot Spots, Memory Leaks, and Sync Problems.

40 Oracle Developer Studio 12.5: Overview • June 2016

Tools for Tuning Application Performance

The Data Races and Deadlocks Detection tool uses the same underlying technology as Thread
Analyzer, described later in this document. The tool adds instrumentation to your threaded
program and then analyzes the program as it runs to detect actual and potential data races and
deadlocks among the threads. To start the tool, click the Profile Project button, select Data
Races and/or Deadlocks, specify options for data collection, and click Start.

The following figure shows the Data Races and Deadlocks Detection tool after it has detected
data races.

If you click the details link in the Data Race Detection window, the Thread Details window
opens to show where the data races occur. You can double-click the threads in the Thread
Details window to open the source file where the problem occurs and go to the affected line of
code.

The Memory Access Error tool uses the same underlying technology as discover, described
earlier. The tool instruments your program and then analyzes the program as it runs to detect
memory access errors and memory leaks. To start the tool, click the Profile Project button,
select Memory Access Error, specify options for data collection, and click Start. The memory
access error types are displayed in the Memory Analysis window. When you click on an error

Oracle Developer Studio 12.5 Overview 41

For More Information

type, the errors of that type are displayed in the Memory Analysis Tool window, where you can
see the call stack for each error.

The following figure shows the Memory Access Error tool after it has detected memory access
errors.

For information about using the profiling tools, see the IDE integrated help, which you can
access by pressing the F1 key or through the Help menu in the IDE. See "Profiling C/C++/
Fortran Applications" , "Detecting Data Races and Deadlocks" and "Finding Memory Access
Errors in Your Project" in the help Contents tab.

For More Information

See the Oracle Developer Studio product pages on the Oracle Technology Network for more
information. You can find white papers, technical articles, training and support information, and
community forums and blogs to help you get more out of Oracle Developer Studio.

42 Oracle Developer Studio 12.5: Overview • June 2016

http://www.oracle.com/technetwork/server-storage/solarisstudio/overview/index.html

	Oracle® Developer Studio 12.5: Overview
	Contents
	Using This Documentation
	Product Documentation Library
	Feedback

	Oracle Developer Studio 12.5 Overview
	Introduction to Oracle Developer Studio Software
	Developer Workflow for Oracle Developer Studio
	Oracle Developer Studio IDE
	Oracle Developer Studio Compilers
	C Compiler
	cc Command Syntax
	C Documentation

	C++ Compiler
	CC Command Syntax
	C++ Documentation

	Fortran 95 Compiler
	f95 Command Syntax
	Fortran Documentation

	C/C++/Fortran Libraries
	OpenMP 4.0 for Parallel Programming
	Oracle Developer Studio Performance Library for Programs With Intensive Computation
	Oracle Developer Studio Code Security Check — Discover ADI
	dmake Utility for Building Applications
	Tools for Debugging Applications
	dbx on the Command Line
	dbx in the IDE
	dbx in dbxtool

	Tools for Verifying Applications
	discover Tool for Detecting Memory Errors
	uncover Tool for Measuring Code Coverage
	Code Analyzer Tool For Integrated Error Checking
	codean Tool for Integrated Checking

	Tools for Tuning Application Performance
	Performance Analyzer Tools
	Collect Performance Data to Profile an Application
	Examine Performance Data With Performance Analyzer
	Examine Performance Data With the er_print Utility
	Analyze Multithreaded Application Performance With Thread Analyzer

	Simple Performance Optimization Tool (SPOT)
	Profiling Tools in the IDE

	For More Information

