

[1] Oracle® Database Mobile Server
Developer's Guide

Release 12.1.0

E58649-01

January 2015

Oracle Database Mobile Server Developer's Guide Release 12.1.0

E58649-01

Copyright © 2014, 2015, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services, except as set forth in an applicable agreement between you and
Oracle.

iii

Contents

Preface ... xi

Audience... xi
Documentation Accessibility ... xi
Related Documents ... xi
Conventions ... xi

1 Overview for Designing Mobile Applications

1.1 Introduction ... 1-1
1.2 Oracle Database Mobile Server Application Model and Architecture 1-2
1.2.1 Mobile Client Database... 1-4
1.2.1.1 Berkeley DB ... 1-4
1.2.1.2 SQLite ... 1-5
1.2.1.3 Java DB... 1-5
1.2.2 Mobile Sync .. 1-5
1.2.3 Mobile Server ... 1-6
1.2.4 Message Generator and Processor (MGP) ... 1-7
1.2.5 Mobile Server Repository ... 1-8
1.2.6 Device Manager ... 1-8
1.3 Creating the Publish-Subscribe Model for Mobile Users.. 1-8
1.3.1 Defining the Weight and Conflict Resolution for Publication Items 1-10
1.3.2 Behavior and Requirements for Primary Keys, Foreign Keys and Not Null Fields in

Publication Items .. 1-11
1.4 Mobile Development Kit (MDK) ... 1-11
1.4.1 Using the Mobile Database Workbench .. 1-11
1.4.2 Using the Packaging Wizard... 1-12
1.5 Mobile Application Design... 1-12
1.5.1 Steps for Designing Your Mobile Application ... 1-12
1.5.1.1 Design for Synchronization.. 1-13
1.5.1.2 Design for Sequences .. 1-14
1.5.2 Application Programming Interfaces .. 1-15
1.5.3 Application Deployment into the Mobile Environment... 1-15

2 Synchronization

2.1 How Oracle Database Mobile Server Synchronizes .. 2-2
2.1.1 Mobile Client Database Created on First Synchronization ... 2-4

iv

2.1.2 Using Multiple Databases for Application Data ... 2-4
2.1.3 Deciding on Automatic or Manual Synchronization ... 2-5
2.1.3.1 Synchronization Priorities ... 2-7
2.1.4 Deciding on Synchronization Refresh Option... 2-7
2.1.4.1 Fast Refresh ... 2-7
2.1.4.2 Complete Refresh ... 2-8
2.1.4.3 Queue-Based Refresh ... 2-8
2.1.4.4 Forced Refresh... 2-8
2.1.5 Synchronizing to a File With File-Based Sync ... 2-8
2.1.6 How Downloaded Data is Processed on the Mobile Client .. 2-9
2.1.7 How Updates Are Propagated to the Back-End Database .. 2-9
2.1.8 Oracle Database Mobile Server (DMS) Encryption ... 2-10
2.2 Enabling Automatic Synchronization... 2-11
2.2.1 Enable Automatic Synchronization at the Publication Level..................................... 2-11
2.2.2 Define the Rules Under Which the Automatic Synchronization Starts.................... 2-12
2.2.2.1 Default vs Custom Rules .. 2-12
2.2.2.2 Configure Publication-Level Automatic Synchronization Rules 2-13
2.2.2.3 Configure Platform-Level Automatic Synchronization Rules 2-14
2.2.2.3.1 Event Rules for Platforms ... 2-14
2.2.2.3.2 Condition Rules for Platforms.. 2-15
2.2.2.3.3 Network Speed of SyncAgent .. 2-15
2.2.2.3.4 Network Configuration for the Client Platform .. 2-16
2.2.3 Enable the Server to Notify the Client to Initiate a Synchronization to Download Data .

.. 2-16
2.2.4 Retrieve Status for Automatic Synchronization Events.. 2-16
2.3 What is The Process for Setting Up a User For Synchronization? 2-16
2.3.1 Creating a Snapshot Definition Declaratively .. 2-17
2.3.1.1 Manage Snapshots... 2-18
2.3.1.1.1 Read-only Snapshots.. 2-18
2.3.1.1.2 Updatable Snapshots ... 2-18
2.3.1.1.3 Refresh a Snapshot ... 2-19
2.3.1.1.4 Snapshot Template Variables ... 2-19
2.3.2 Creating the Snapshot Definition Programmatically .. 2-20
2.4 Creating Publications Using Oracle Database Mobile Server APIs.................................. 2-21
2.4.1 Defining a Publication With Java Consolidator Manager APIs................................. 2-21
2.4.1.1 Create the Mobile Server User... 2-23
2.4.1.1.1 Change Password... 2-24
2.4.1.2 Create Publications.. 2-24
2.4.1.3 Create Publication Items... 2-26
2.4.1.3.1 Defining Publication Items for Updatable Multi-Table Views.................... 2-29
2.4.1.4 Define Publication-Level Automatic Synchronization Rules 2-29
2.4.1.4.1 Retrieve All Publications Associated with a Rule ... 2-31
2.4.1.4.2 Retrieve Rule Text ... 2-31
2.4.1.4.3 Check if Rule is Modified.. 2-31
2.4.1.4.4 Remove Rule ... 2-31
2.4.1.5 Data Subsetting: Defining Client Subscription Parameters for Publications.... 2-31
2.4.1.6 Create Publication Item Indexes.. 2-32
2.4.1.6.1 Define Client Indexes... 2-32

v

2.4.1.7 Adding Publication Items to Publications ... 2-33
2.4.1.7.1 Defining Conflict Rules ... 2-33
2.4.1.7.2 Using Table Weight.. 2-33
2.4.1.8 Creating Client-Side Sequences for the Downloaded Snapshot......................... 2-34
2.4.1.9 Subscribing Users to a Publication.. 2-34
2.4.1.10 Instantiate the Subscription ... 2-34
2.4.1.11 Bringing the Data From the Subscription Down to the Client............................ 2-35
2.4.1.12 Modifying a Publication Item ... 2-35
2.4.1.13 Callback Customization for DML Operations .. 2-36
2.4.1.13.1 DML Procedure Example.. 2-37
2.4.1.14 Restricting Predicate ... 2-38
2.5 Client Device Database DDL Operations ... 2-38
2.6 Customize the Compose Phase Using MyCompose .. 2-39
2.6.1 Create a Class That Extends MyCompose to Perform the Compose........................ 2-39
2.6.2 Implement the Extended MyCompose Methods in the User-Defined Class........... 2-39
2.6.2.1 Implement the needCompose Method .. 2-40
2.6.2.2 Implement the doCompose Method... 2-41
2.6.2.3 Implement the init Method .. 2-42
2.6.2.4 Implement the destroy Method... 2-42
2.6.3 Use Get Methods to Retrieve Information You Need in the User-Defined Compose

Class ... 2-42
2.6.3.1 Retrieve the Publication Name With the getPublication Method 2-43
2.6.3.2 Retrieve the Publication Item Name With the getPublicationItem Method..... 2-43
2.6.3.3 Retrieve the DML Table Name With the getPubItemDMLTableName Method

.. 2-43
2.6.3.4 Retrieve the Primary Key With the getPubItemPK Method 2-43
2.6.3.5 Retrieve All Base Tables With the getBaseTables Method 2-43
2.6.3.6 Retrieve the Primary Key With the getBaseTablePK Method 2-43
2.6.3.7 Discover If Base Table Has Changed With the baseTableDirty Method........... 2-44
2.6.3.8 Retrieve the Name for DML Log Table With the getBaseTableDMLLogName

Method .. 2-44
2.6.3.9 Retrieve View of the Map Table With the getMapView Method....................... 2-44
2.6.4 Register the User-Defined Class With the Publication Item 2-45
2.7 Customize What Occurs Before and After Synchronization Phases 2-45
2.7.1 Customize What Occurs Before and After Every Phase of Each Synchronization . 2-45
2.7.1.1 NullSync.. 2-46
2.7.1.2 BeforeProcessApply .. 2-46
2.7.1.3 AfterProcessApply .. 2-46
2.7.1.4 BeforeProcessCompose... 2-46
2.7.1.5 AfterProcessCompose... 2-47
2.7.1.6 BeforeProcessLogs... 2-47
2.7.1.7 AfterProcessLogs ... 2-47
2.7.1.8 BeforeClientCompose ... 2-47
2.7.1.9 AfterClientCompose ... 2-47
2.7.1.10 BeforeSyncMapCleanup ... 2-47
2.7.1.11 AfterSyncMapCleanup ... 2-48
2.7.1.12 Example Using the Customize Package... 2-48

vi

2.7.1.13 Error Handling For CUSTOMIZE Package ... 2-48
2.7.2 Customize What Occurs Before and After Compose/Apply Phases for a Single

Publication Item ... 2-49
2.8 Understanding Your Refresh Options ... 2-51
2.8.1 Fast Refresh.. 2-52
2.8.2 Complete Refresh for Views ... 2-53
2.8.3 Queue-Based Refresh ... 2-53
2.8.4 Forced Refresh... 2-53
2.9 Synchronizing With Database Constraints .. 2-54
2.9.1 Synchronization And Database Constraints... 2-54
2.9.2 Primary Key is Unique... 2-55
2.9.3 Foreign Key Constraints .. 2-55
2.9.3.1 Set Update Order for Tables With Weights ... 2-55
2.9.3.2 Defer Constraint Checking Until After All Transactions Are Applied 2-56
2.9.4 Unique Key Constraint .. 2-56
2.9.5 NOT NULL Constraint .. 2-57
2.9.6 Generating Constraints on the Mobile Client... 2-57
2.9.6.1 The assignWeights Method.. 2-57
2.10 Resolving Conflicts with Winning Rules.. 2-58
2.10.1 Resolving Errors and Conflicts on the Mobile Server Using the Error Queue 2-59
2.10.2 Customizing Synchronization Conflict Resolution Outcomes 2-59
2.11 Using the Sync Discovery API to Retrieve Statistics .. 2-60
2.11.1 getDownloadInfo Method... 2-60
2.11.2 DownloadInfo Class Access Methods ... 2-60
2.11.3 PublicationSize Class.. 2-61
2.12 Customizing Synchronization With Your Own Queues.. 2-64
2.12.1 Customizing Apply/Compose Phase of Synchronization with a Queue-Based

Publication Item ... 2-65
2.12.1.1 Queue Creation .. 2-67
2.12.1.2 Queue-Based PL/SQL Callouts... 2-70
2.12.1.2.1 In Queue Apply Phase Processing... 2-70
2.12.1.2.2 Out Queue Compose Phase Processing .. 2-72
2.12.1.3 Create a Publication Item as a Queue... 2-73
2.12.1.4 Register the PL/SQL Package Outside the Repository.. 2-73
2.12.2 Creating Data Collection Queues for Uploading Client Collected Data 2-74
2.12.2.1 Creating a Data Collection Queue .. 2-75
2.12.3 Selecting How and When to Notify Clients of Composed Data................................ 2-77
2.13 Synchronization Performance.. 2-78
2.14 Troubleshooting Synchronization Errors ... 2-78
2.14.1 Foreign Key Constraints in Updatable Publication Items .. 2-78
2.14.1.1 Foreign Key Constraint Violation Example... 2-79
2.14.1.2 Avoiding Constraint Violations with Table Weights... 2-79
2.14.1.3 Avoiding Constraint Violations with BeforeApply and After Apply 2-79
2.15 Register a Remote Oracle Database for Application Data ... 2-80
2.15.1 Set up a Remote Application Repository With the APPREPWIZARD Script 2-80
2.15.2 Register or Deregister a Remote Oracle Database for Application Data.................. 2-81
2.15.3 Create Publication, Publication Item, Hints and Virtual Primary Keys on a Remote

Database ... 2-82

vii

2.15.4 Using Callbacks on Remote Databases.. 2-84
2.15.4.1 Customize Callbacks on the Remote Database ... 2-84
2.15.4.2 Publication Item Level Callbacks for the MGP Apply/Compose Phases......... 2-84
2.15.4.3 Customizing the Apply/Compose Phase for a Queue-Based Publication Item on a

Remote Database ... 2-84
2.16 Create a Synonym for Remote Database Link Support For a Publication Item 2-85
2.16.1 Publishing Synonyms for the Remote Object Using CreatePublicationItem........... 2-85
2.16.2 Creating or Removing a Dependency Hint ... 2-86
2.17 Parent Tables Needed for Updateable Views .. 2-86
2.17.1 Creating a Parent Hint ... 2-86
2.17.2 INSTEAD OF Triggers ... 2-87
2.18 Manipulating Application Tables.. 2-87
2.18.1 Creating Secondary Indexes on Client Device ... 2-87
2.18.2 Virtual Primary Key ... 2-87
2.19 Facilitating Schema Evolution.. 2-88
2.19.1 Schema Evolution Involving a Primary Key .. 2-88
2.20 Set DBA or Operational Privileges for the Mobile Server.. 2-90

3 Managing Synchronization on the Mobile Client

3.1 Invoke Manual Synchronization on the Mobile Client ... 3-3
3.1.1 OSE Synchronization API for Applications on Mobile Clients..................................... 3-4
3.1.1.1 OSE Synchronization Java API... 3-4
3.1.1.1.1 Overview .. 3-4
3.1.1.1.2 OSESession Class... 3-5
3.1.1.1.3 OSEProgressListener Interface .. 3-8
3.1.1.1.4 Selective Synchronization .. 3-9
3.1.1.1.5 Custom Transport with the OSETransport Class .. 3-10
3.1.1.1.6 Sequences Emulated for SQLite Mobile Clients in Replicated Environment.... ..

... 3-10
3.1.1.1.7 OSEException Class ... 3-11
3.1.1.2 OSE Synchronization APIs For Native Applications ... 3-12
3.1.1.2.1 Overview of Native Synchronization API .. 3-13
3.1.1.2.2 Initializing the Environment With oseOpenSession 3-13
3.1.1.2.3 Setting Session Options ... 3-14
3.1.1.2.4 Saving User Settings With oseSaveUser ... 3-19
3.1.1.2.5 Start the Synchronization With the oseSync Method 3-20
3.1.1.2.6 Manage What Publications Are Synchronized With oseSelectPub 3-20
3.1.1.2.7 See Progress of Synchronization with Progress Listening 3-21
3.1.1.2.8 Cancel a synchronization event using oseCancelSync 3-22
3.1.1.2.9 Close the Synchronization Environment Using oseCloseSession 3-22
3.1.1.2.10 Retrieve Synchronization Error Information with oseGetLastError 3-23
3.1.1.2.11 Enable File-Based Synchronization through Native APIs............................ 3-23
3.1.1.2.12 Share the Database Connection.. 3-24
3.1.1.2.13 Set and Retrieve Data Encryption Keys .. 3-24
3.1.1.2.14 Accessing Mobile Client Configuration Parameters 3-26
3.1.1.3 OSE .Net Synchronization API .. 3-28
3.1.1.3.1 Overview ... 3-28

viii

3.1.1.3.2 Enumerations Used by OSESession... 3-28
3.1.1.3.3 OSESession Class.. 3-29
3.1.1.3.4 OSEProgressEventArgs Properties.. 3-33
3.1.1.3.5 OSEProgressHandler Interface... 3-33
3.1.1.3.6 Selective Synchronization ... 3-34
3.1.1.3.7 OSEException Class ... 3-34
3.1.1.4 OSE Synchronization JavaScript API for PhoneGap.. 3-35
3.1.1.4.1 Overview ... 3-35
3.1.1.4.2 OSESession Class.. 3-36
3.1.2 SQLite Synchronization API for .Net Clients ... 3-39
3.1.3 OCAPI Synchronization API for the Mobile Client... 3-39
3.1.3.1 OCAPI Synchronization APIs For C or C++ Applications.................................. 3-40
3.1.3.1.1 Overview of C/C++ Synchronization API ... 3-40
3.1.3.1.2 Initializing the Environment With ocSessionInit... 3-41
3.1.3.1.3 Managing the C/C++ Data Structures.. 3-41
3.1.3.1.4 ocEnv Data Structure ... 3-42
3.1.3.1.5 ocTransportEnv Data Structure.. 3-45
3.1.3.1.6 Retrieving Publication Information With ocGetPublication........................ 3-45
3.1.3.1.7 Managing User Settings With ocSaveUserInfo .. 3-46
3.1.3.1.8 Manage What Tables Are Synchronized With ocSetTableSyncFlag........... 3-47
3.1.3.1.9 Configure Proxy Information ... 3-48
3.1.3.1.10 Start the Synchronization With the ocDoSynchronize Method................... 3-49
3.1.3.1.11 See Progress of Synchronization with Progress Listening 3-49
3.1.3.1.12 Clear the Synchronization Environment Using ocSessionTerm 3-50
3.1.3.1.13 Retrieve Synchronization Error Message with ocGetLastError 3-51
3.1.3.1.14 Enable File-Based Synchronization through C or C++ APIs 3-51
3.1.3.2 mSync, OCAPI, and mSyncCom API ... 3-52
3.2 Manage Automatic Synchronization on the Mobile Client ... 3-52
3.2.1 OSE APIs for Managing Automatic Synchronization ... 3-52
3.2.1.1 JAVA APIs for the Sync Agent and Automatic Synchronization....................... 3-53
3.2.1.1.1 Overview ... 3-54
3.2.1.1.2 BGSession Class.. 3-54
3.2.1.1.3 BGAgentStatus Object ... 3-56
3.2.1.1.4 BGSyncStatus Object.. 3-58
3.2.1.1.5 BGMessageHandler Interface... 3-59
3.2.1.1.6 LogMessage Class .. 3-60
3.2.1.1.7 BGException Class ... 3-61
3.2.1.2 Native APIs for the Sync Agent and Automatic Synchronization 3-61
3.2.1.2.1 Overview ... 3-62
3.2.1.2.2 Initializing the Environment... 3-62
3.2.1.2.3 Synchronization Status .. 3-63
3.2.1.2.4 Control the Sync Agent ... 3-66
3.2.1.2.5 Setting Synchronization Parameters.. 3-67
3.2.1.2.6 Close the Synchronization Environment .. 3-69
3.2.1.2.7 Trap Sync Agent Messages with a Callback Function 3-69
3.2.1.2.8 Retrieve Synchronization Error Message.. 3-71
3.2.1.3 The .Net APIs for the Sync Agent and Automatic Synchronization.................. 3-72

ix

3.2.1.3.1 Overview ... 3-73
3.2.1.3.2 BGStatusCode Enumeration ... 3-73
3.2.1.3.3 BGSession Class.. 3-74
3.2.1.3.4 BGAgentStatus Object ... 3-76
3.2.1.3.5 BGSyncStatus Object.. 3-77
3.2.1.3.6 BGMessageHandler Interface... 3-79
3.2.1.3.7 BGMessageType Enumeration ... 3-79
3.2.1.3.8 BGMsgEventArgs Class .. 3-80
3.2.1.3.9 BGException Class ... 3-80
3.2.1.4 OCAPI Sync Control APIs.. 3-81
3.2.1.4.1 C/C++ Sync Control APIs to Start or Enable Automatic Synchronization 3-81
3.2.1.4.2 Java Sync Control APIs to Start or Enable Automatic Synchronization 3-82
3.2.1.5 JavaScript APIs for the Sync Agent and Automatic Synchronization in PhoneGap..

.. 3-82
3.2.1.5.1 Overview ... 3-83
3.2.1.5.2 BGSession Class.. 3-83
3.2.1.5.3 BGAgentStatus Object ... 3-85
3.2.1.5.4 BGSyncStatus Object.. 3-87
3.2.2 OCAPI APIs for Retrieving Status on Automatic Synchronization 3-88
3.2.2.1 Retrieving Status for Automatic Synchronization in Java Applications 3-88
3.2.2.2 Retrieving Status for Automatic Synchronization in C and C++ Applications 3-89
3.2.2.3 Fields of the Automatic Synchronization Status Structure 3-89
3.2.3 OCAPI Notification APIs for the Automatic Synchronization Cycle Status 3-90
3.2.3.1 Automatic Synchronization Notification for C/C++ Application 3-90
3.2.3.2 Automatic Synchronization Notification for Java Applications......................... 3-91
3.2.3.3 Fields of the Automatic Synchronization Message Structure 3-91

4 Using Mobile Database Workbench to Create Publications

4.1 Use MDW to Create Publications ... 4-1
4.2 Create a Project.. 4-2
4.3 Use the Quick Wizard to Create Your Publication .. 4-4
4.4 Create a Publication Item... 4-8
4.4.1 Create SQL Statement for Publication Item .. 4-12
4.4.2 Create a Dependency Hint .. 4-13
4.4.3 Specify Parent Table and Primary Key Hints ... 4-13
4.5 Define the Rules Under Which the Automatic Synchronization Starts 4-14
4.5.1 Configure Publication-Level Automatic Synchronization Rules 4-15
4.5.2 Configure Platform-Level Automatic Synchronization Rules 4-15
4.5.2.1 Define System Event Rules for the Platform ... 4-16
4.5.2.2 Define Automatic Synchronization Conditions for the Platform 4-16
4.6 Create a Sequence .. 4-17
4.6.1 Configuring Sequences in MDW.. 4-18
4.6.2 Configuration Scenarios for Sequence Generation .. 4-19
4.6.3 Example of a Sequence .. 4-20
4.6.4 Example of a Client and Server Sharing a Sequence ... 4-20
4.7 Create and Load a Script Into The Project.. 4-21
4.7.1 Writing SQL Scripts.. 4-21

x

4.7.2 Load the Script Into the Project .. 4-21
4.8 Create a Publication... 4-22
4.8.1 General Tab Configures Publication Name .. 4-22
4.8.2 Publication Item Tab Associates Publication Items With the Publication 4-23
4.8.2.1 Associating a Publication Item to this Publication ... 4-23
4.8.3 Sequence Tab Associates Existing Sequences With the Publication 4-25
4.8.4 Script Tab Associates Existing Scripts With the Publication...................................... 4-25
4.8.5 Event Tab Configures Automatic Synchronization Rules for this Publication 4-26
4.9 Import Existing Publications and Objects from Repository .. 4-26
4.9.1 Import Existing Publication from Repository .. 4-26
4.9.2 Import Existing Publication Item From the Repository.. 4-27
4.9.3 Import Existing Sequence From the Repository... 4-27
4.9.4 Import an Existing Script From the Repository ... 4-27
4.10 Create a Virtual Primary Key... 4-28
4.11 Test a Publication by Performing a Synchronization ... 4-28
4.12 Deploy the Publications in the Project to the Repository... 4-30

5 Using the Packaging Wizard

5.1 Using the Packaging Wizard... 5-1
5.1.1 Starting the Packaging Wizard .. 5-2
5.1.2 Specifying New Application Definition Details.. 5-4
5.1.3 Listing Application Files... 5-8
5.1.4 Publish the Application .. 5-9
5.1.5 Editing Application Definition ... 5-10
5.1.6 Troubleshooting.. 5-10
5.2 Packaging Wizard Synchronization Support... 5-10

6 Create and Manage Jobs with APIs

6.1 Managing Scheduled Jobs Using ConsolidatorManager APIs... 6-1
6.2 Start a Standalone Job Engine In Separate JVM ... 6-1
6.3 Using the ConsolidatorManager APIs to Create Jobs ... 6-2

7 Customizing Oracle Database Mobile Server Security

7.1 Providing Your Own Authentication Mechanism for Authenticating Users for the Mobile
Server ... 7-1

7.1.1 Implementing Your External Authenticator.. 7-1
7.1.1.1 Initialization for the External Authenticator .. 7-2
7.1.1.2 Destruction of the External Authenticator.. 7-2
7.1.1.3 The Authentication Method for the External Authenticator.................................. 7-2
7.1.1.4 The User Instantiation Method for the External Authenticator 7-2
7.1.1.5 Retrieve the User Name or the User Global Unique ID.. 7-3
7.1.1.6 Log Off User .. 7-3
7.1.1.7 Change User Password.. 7-3
7.1.2 Registering External Authenticator... 7-3
7.1.3 User Initialization Scripts ... 7-4

Index

xi

Preface

This preface introduces you to the Oracle Database Mobile Server Developer's Guide,
discussing the intended audience, documentation accessibility, and structure of this
document.

Audience
This manual is intended for application developers as the primary audience and for
database administrators who are interested in application development as the
secondary audience.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

Related Documents
Use the following manuals as reference when performing administration tasks for
either a WebLogic or Glassfish server:

■ Oracle® Fusion Middleware documentation for Oracle WebLogic Server

■ Oracle® GlassFish Server 3.1 documentation

Conventions
The following conventions are also used in this manual:

Convention Meaning

 .
 .
 .

Vertical ellipsis points in an example mean that information not directly
related to the example has been omitted.

xii

. . . Horizontal ellipsis points in statements or commands mean that parts
of the statement or command not directly related to the example have
been omitted

boldface text Boldface type in text indicates a term defined in the text, the glossary,
or in both locations.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

italic monospace Italic monospace type indicates a variable in a code example that you
must replace. For example:

Driver=install_dir/lib/libtten.sl

Replace install_dir with the path of your TimesTen installation
directory.

< > Angle brackets enclose user-supplied names.

[] Brackets enclose optional clauses from which you can choose one or
none.

Convention Meaning

1

Overview for Designing Mobile Applications 1-1

1 Overview for Designing Mobile Applications

The following sections provide an introduction to Oracle Database Mobile Server and
an overview of the application development process:

■ Section 1.1, "Introduction"

■ Section 1.2, "Oracle Database Mobile Server Application Model and Architecture"

■ Section 1.3, "Creating the Publish-Subscribe Model for Mobile Users"

■ Section 1.4, "Mobile Development Kit (MDK)"

■ Section 1.5, "Mobile Application Design"

1.1 Introduction
Oracle Database Mobile Server facilitates the development, deployment, and
management of mobile database applications for a large number of mobile users. A
mobile application is an application that can run on mobile devices without requiring
constant connectivity to the server. The application requires a small, local database on
the mobile device, whose content is a subset of data that is stored in the enterprise data
server. This database can be either a Berkeley DB, SQLite or Java DB. Modifications
made to the client database by the application are reconciled with the back-end server
data through data synchronization.

The mobile client in the Oracle Database Mobile Server is a preconfigured component
to facilitate running a mobile application. It contains synchronization and software
components to manage the device.

Once the application has been developed, it has to be deployed. Deployment sets up
the server so that end users can easily install and use the applications. All mobile
applications are deployed first to the mobile server after which the applications are
downloaded to the appropriate mobile client.

Deployment consists of five major steps:

1. Design the server system to achieve the required level of performance, scalability,
security, availability, and connectivity. Oracle Database Mobile Server provides
tools such as the Consperf utility to tune the performance of data synchronization.
It also provides benchmark data that can be used for capacity planning for
scalability. Security measures such as authentication, authorization, and
encryption are supported using the appropriate standards. Availability and
scalability are also supported by means of load balancing, caching, and the
transparent switch-over technologies of the application server and the Oracle
database server.

Oracle Database Mobile Server Application Model and Architecture

1-2 Oracle Database Mobile Server Developer's Guide

2. Publish the application to the server. This refers to installing all components for an
application on the mobile server. The Packaging Wizard tool can be used to
publish applications to the mobile server.

3. Provision the applications to the mobile users. This phase includes determining
user accesses to applications with a specified subset of data. The Mobile Manager
to create users, grant privileges to execute applications, and define the data
subsets for them, among others. You can also use the Java API to provision
applications.

4. Test for functionality and performance in a real deployment environment. A
mobile application system is a complex system involving many mobile device
client technologies (operating systems, and form factors), connectivity options
(LAN, Wireless LAN, cellular, and wireless data), and server configuration
options. Nothing can substitute for testing and performance tuning of the system
before it is rolled out. Particular attention should be paid to tuning the
performance of the data subsetting queries, as it is the most frequent cause of
performance problems.

5. Determine the method for initial installation of applications on mobile devices
(application delivery). Initial installation involves installing the mobile client and
user applications. The volume of data required to install applications on a mobile
device for the first time could be quite high, necessitating the use of either a
high-speed reliable connection between the mobile device and the server, or using
a technique known as offline instantiation. In offline instantiation, everything
needed to install an application on a mobile device is put on a CD or an external
storage device and physically mailed to the user. The user uses this media to
install the application on the device by means of a desktop machine. Oracle
Database Mobile Server provides a tool for offline instantiation.

After deployment, both the application and the data schema may change because of
enhancements or defect resolution. The mobile server takes care of managing
application updates and data schema evolution. However, the administrator must
republish the application and the schema. The mobile server automatically updates the
mobile clients that have an older version of the application or the data.

Oracle Database Mobile Server installation provides you with an option to install the
mobile server or the Mobile Development Kit. For application development, you need
to install the Mobile Development Kit on your development machine. The installation
of the mobile server requires an Oracle database in which the mobile repository is
created.

1.2 Oracle Database Mobile Server Application Model and Architecture
In the application model, each application defines its data requirements using a
publication. A publication is similar to a database schema and it contains one or more
publication items. A publication item is like a parameterized view definition and
defines a subset of data, using a SQL query with bind variables in it. These bind
variables are called subscription parameters or template variables.

A subscription defines the relationship between a user and a publication. This is
analogous to a newspaper or magazine subscription. Accordingly, once you subscribe
to a particular publication, you begin to receive information associated with that
publication. With a newspaper you receive the daily paper or the Sunday paper, or
both. With Oracle Database Mobile Server, the user receives snapshots, and,
depending on the subscription parameter values, those snapshots are partitioned with
data tailored for the user.

Oracle Database Mobile Server Application Model and Architecture

Overview for Designing Mobile Applications 1-3

When a user synchronizes the mobile client for the first time, the mobile client creates
the client database on the client machine for each subscription that is provisioned to
the user. The client database could be a Berkeley DB, SQLite or Java DB, which is set in
the publication. The mobile client then creates a snapshot in this database for each
publication item contained in the subscription, and populates it with data retrieved
from the server database by running the SQL query (with all the variables bound)
associated with the publication item. Once installed, Oracle Database Mobile Server is
transparent to the end user; it requires minimal tuning or administration.

As the user accesses and uses the application, changes made to the client database are
captured by the snapshots. At a certain time when the connection to the mobile server
is available, the user may synchronize the changes with the mobile server.
Synchronization may be initiated by the user using the Mobile Sync application
(mSync) directly or by programmatically calling the Mobile Sync API from the
application. The Mobile Sync application communicates with the mobile server and
uploads the changes made in the client machine. It then downloads the changes for the
client that are already prepared by the mobile server.

A background process called the Message Generator and Processor (MGP), which runs
in the same tier as the mobile server, periodically collects all the uploaded changes
from many mobile users and then applies them to the server database. Next, MGP
prepares changes that need to be sent to each mobile user. This step is essential
because the next time the mobile user synchronizes with the mobile server, these
changes can be downloaded to the client and applied to the client database.

Figure 1–1 illustrates the architecture of Oracle Database Mobile Server applications.

Figure 1–1 Oracle Database Mobile Server Architecture

The following sections describe the separate components of Oracle Database Mobile
Server:

■ Section 1.2.1, "Mobile Client Database"

■ Section 1.2.2, "Mobile Sync"

■ Section 1.2.3, "Mobile Server"

■ Section 1.2.4, "Message Generator and Processor (MGP)"

■ Section 1.2.5, "Mobile Server Repository"

■ Section 1.2.6, "Device Manager"

Mobile Client Mobile

E1

E2

E3

Message Generator

Mobile Server

Middle Tier

Oracle Database

Mobile Mobile

Mobile Client

Client System

Synchronization
ModuleApplication

RDBMS

Database Server and Processor (MGP)

Repository

Server

Oracle Database Mobile Server Application Model and Architecture

1-4 Oracle Database Mobile Server Developer's Guide

1.2.1 Mobile Client Database
The mobile client uses a client database, which can be either a Berkeley DB, SQLite or
Java DB database, to store the relational data in one or more data files on the file
system on the client.

The installation requirements for both mobile client databases are listed in the
following sections:

■ Section 1.2.1.1, "Berkeley DB"

■ Section 1.2.1.2, "SQLite"

■ Section 1.2.1.3, "Java DB"

1.2.1.1 Berkeley DB
If you choose to use Berkeley DB as the client database, then install the Berkeley DB
Mobile Client. When you install the Berkeley DB Mobile Client, the following
components get installed: a Berkeley DB client database used to store application data;
Berkeley DB libraries; a Sync Engine for managing synchronization between the client
database and the server repository; a DMAgent for managing the client device
administrative actions.

The specific Berkeley DB library used as the client database is Berkeley DB Transaction
Data Store with the SQL API (often referred to as the SQL interface). The Berkeley DB
SQL interface is compatible with SQLite, so it can be used as a replacement for any
SQLite application. Any C/C++ interfaces, or command shell environment used to
access SQLite can also be used to access Berkeley DB SQL interface as long as the
correct libraries are referenced. The Database Mobile Server install package comes
with pre-built and tested libraries for Berkeley DB. For more information on Berkeley
DB, see:
http://www.oracle.com/technetwork/database/database-technologies/berkeleyd
b/documentation/index.html

The Berkeley DB SQL API guide contains the differences between SQLite and Berkeley
DB with the SQL API.

The default installed Berkeley DB SQL interface libraries and the command line
interpreter are named as follows:

■ dbsql.exe on Windows and dbsql on UNIX - This is the command line shell. It
operates identically to the SQLite shell, sqlite3.exe on Windows and sqlite3 on
UNIX.

■ libdb_sql61.dll on Windows and libdb_sql-6.1 so on UNIX - This is the library that
provides the Berkeley DB SQL interface. It is the equivalent and compatible with
the SQLite library, sqlite3.dll on Windows and libsqlite3 on UNIX.

Note: All details about both client database options and how to
install them are described in detail in Chapter 1, "Mobile Client
Overview" in the Oracle Database Mobile Server Mobile Client Guide.

Note: On Java SE, you need to install the JDBC driver and the native
Berkeley DB libraries separately.

Oracle Database Mobile Server Application Model and Architecture

Overview for Designing Mobile Applications 1-5

1.2.1.2 SQLite
If you choose to use SQLite as the client database, then install the SQLite Mobile
Client. When you install the SQLite Mobile Client, you will get SQLite libraries used to
store application data on Win32, Linux, Windows Mobile, Android, iOS and
Blackberry platforms. On Java SE, you need to install JDBC driver and SQLite libraries
separately.

All details about SQLite are documented on the SQLite Web site at
http://www.sqlite.org/.

1.2.1.3 Java DB
If you choose to use Java DB as the client database, which is only available on Java SE
platform, then install the Java DB Sync engine. The Java DB Sync engine includes Java
DB database used to store application data, but you still need to prepare the Apache
Derby Embedded JDBC Driver.

1.2.2 Mobile Sync
Use the msync executable (msync.exe on Win32 and Windows Mobile, msync on
Linux) for Mobile Sync. Mobile Sync (msync) is a small footprint application that
comes with Mobile Client on Win32, Linux and Windows Mobile platforms.

Mobile Sync enables you to synchronize data between handheld devices, desktop and
laptop computers and Oracle databases. Mobile Sync authenticates locally, collects
changes from the mobile client database and sends them to the server, where the user
is authenticated before the changes are uploaded.

Mobile Sync synchronizes the snapshots in Oracle Database Mobile Server with the
data in corresponding Oracle database server. These snapshots are created by the
mobile server for each user from the publication items associated with a mobile
application. The mobile server also coordinates the synchronization process.

The Mobile Sync application communicates with the mobile server using any of the
supported protocols, such as HTTP or HTTPS. When called by the mobile user, the
Mobile Sync application collects the user information and authenticates the user with
the mobile server. It collects the changes made from the snapshot change logs and
uploads these changes to the mobile server. It then downloads the changes for the user
from the mobile server and applies them to the mobile server.

In addition to this basic function, the Mobile Sync application can also encrypt,
decrypt, and compress transmitted data.

When you install the Mobile Development Kit, the Mobile Sync application is also
installed on your development machine. The mobile server also installs the Mobile
Sync on the client machine as part of application installation.

Unlike base tables and views, snapshots cannot be created in Oracle Database Mobile
Server by using SQL statements. They can only be created by the mobile server based
on subscriptions which are derived from publication items associated with an
application.

Note: On Java SE platform, if you use pure Java SQLite JDBC Driver,
for example, the Zentus JDBC Driver, then you do not need SQLite
native libraries.

Oracle Database Mobile Server Application Model and Architecture

1-6 Oracle Database Mobile Server Developer's Guide

1.2.3 Mobile Server
The installation of the mobile server requires an Oracle database to be running. You
can use an existing test database as well. The mobile server stores its metadata in this
database.

The mobile server provides the interface between the mobile infrastructure and the
enterprise database. Most administration tasks are accomplished through the mobile
server Web application—the Mobile Manager.

The mobile server provides the following features.

■ application publishing

■ application provisioning

■ application installation and update

■ data synchronization

The Mobile Manager application provides the capability to manage users, devices,
publications and applications. This utility can provide the following:

■ Monitors and manages synchronization between the client data store and the
enterprise data store.

■ Sends administrative commands to the mobile clients. These commands capture
data and logs from the client or instruct the client to carry out necessary tasks. For
example, the Mobile Manager could send a command to a client to perform
synchronization or to remove the entire client data store, if a device may have been
compromised.

As with any Web server tier, the mobile server may be configured within a farm for
improved performance within the mobile infrastructure. This enables the use of a load
balancer, such as the balancer included with Oracle WebLogic, or with one provided
by a 3rd party vendor. The mobile server is designed to be fully integrated with
WebLogic to take advantage of the features within WebLogic.

The mobile server has two major modules called the Resource Manager and the
Consolidator Manager. The Resource Manager is responsible for application
publishing, application provisioning, and application installation. The Consolidator
Manager is responsible for data and application synchronization.

Application publishing refers to uploading your application to the mobile server so
that it can be provisioned to the mobile users. Once you have finished developing your
application, you can publish it to the mobile server.

Application provisioning is concerned with creating subscriptions for users and
assigning application execution privilege to them. Application provisioning can also
be done in one of two ways.

Note: You can accomplish the same tasks as the Mobile Manager
with the Application Programming Interfaces (APIs).

Note: As the mobile server is a Web-based environment, it is
important to design for a proper security environment as for any Web
server.

Oracle Database Mobile Server Application Model and Architecture

Overview for Designing Mobile Applications 1-7

■ Using the administration tool called the Mobile Manager, you can create users and
groups, create subscriptions for users by assigning values to subscription
parameters, and give users or groups privileges to use the application.

■ Using the Resource Manager API, you can programmatically perform the above
tasks.

End users install mobile applications in two steps.

1. As the mobile user, browse the setup page on the mobile server and choose the
setup program for the platform you want to use.

2. Run the Mobile Sync (mSync) command on your mobile device, which prompts
for the mobile user name and password. The Mobile Sync application
communicates with the Consolidator Manager module of the mobile server and
downloads the applications and the data provisioning for the user.

After the installation of the applications and data, you can start using the application.
Periodically, use msync or a custom command to synchronize your local database with
the server database. This synchronization updates all application data that have
changed.

1.2.4 Message Generator and Processor (MGP)
The Consolidator Manager module of the mobile server uploads the changes from the
client database to the server, and it downloads the relevant server changes to the
client. But it does not reconcile the changes. The reconciliation of changes and the
resolution of any conflicts arising from the changes are handled by MGP. MGP runs as
a background process which can be controlled to start its cycle at certain intervals.

Each cycle of MGP consists of two phases: Apply and Compose.

The Apply Phase
In the apply phase, MGP collects the changes that were uploaded by the users since
the last apply phase and applies them to the server database. For each user that has
uploaded his changes, the MGP applies the changes for each subscription in a single
transaction. If the transaction fails, MGP logs the reason in the log file and stores the
changes in the error file.

The Compose Phase
When the apply phase is finished, MGP goes into the compose phase, where it starts
preparing the changes that need to be downloaded for each client.

Applying Changes to the Server Database
Because of the asynchronous nature of data synchronization, the mobile user may
sometimes get an unexpected result. A typical case is when the user updates a record
that is also updated by someone else on the server. After a round of synchronization,
the user may not get the server changes.

This happens because the user's changes have not been reconciled with the server
database changes yet. In the next cycle of MGP, the changes are reconciled with the
server database, and any conflicts arising from the reconciliation are resolved. Then a

Note: The mobile infrastructure may allow for multiple mobile
servers to be configured within a farm. However, there may only be
one MGP application utilized for the entire farm.

Creating the Publish-Subscribe Model for Mobile Users

1-8 Oracle Database Mobile Server Developer's Guide

new record is prepared for downloading the changes to the client. When the user
synchronizes again (the second time), the user gets the record that reflects the server
changes. If there is a conflict between the server changes and the client changes, the
user gets the record that reflects either the server changes or the client changes,
depending on how the conflict resolution policy is defined.

1.2.5 Mobile Server Repository
The mobile server repository contains all the application data as well as all information
needed to run the mobile server. The repository contains the repository schema under
which all the data mapping and internal tables utilized to maintain data
synchronization exist. This schema also stores the application, application tables and
its data published for use with a mobile client.

The information is normally stored in the same database where the application data
resides. The only exception to this is in cases where the application data resides in a
remote instance and there is a synonym defined in the mobile server to this remote
instance.

The repository contains some internal tables that the mobile server uses to perform its
functions. You may query these tables to gain more details about the current state of
the environment; however, most of the information needed from these tables is already
accessible from the Mobile Manager. You should never alter any of the internal tables
and their contents unless explicitly directed to by Oracle Support Services or Oracle
Development.

Administration, backup, and recovery of the repository are no different then for any
other Oracle database requiring standard Database Administrator (DBA) skills

Changes to the repository should only be made using the Mobile Manager or the
Resource Manager API.

1.2.6 Device Manager
The Device Manager manages client devices. On install of the mobile client, the Device
Manager registers a device with the mobile server. The Device Manager invokes the
update executable after synchronization completes to determine if any mobile
application updates are available, then downloads and installs these application
updates to a mobile client. You can request—through the Mobile Manager—that
certain commands are invoked on the client. The Device Manager executes these
commands. The Device Manager is responsible for most administrative actions
between the mobile server and the mobile client.

1.3 Creating the Publish-Subscribe Model for Mobile Users
To enable users to access their data, you need to first define the data in the snapshot.
Then, subscribe the appropriate users to access only their data. On the client device,
data is stored in a special type of relational table, called a snapshot table. A snapshot
table behaves exactly the same as a regular relational table, but also includes
functionality to track changes made to the table.

The publication item, which is executed against the server database, can determine the
record set that is downloaded to the snapshot table. The result set of the query defines
the structure (columns) of the snapshot table on the client device as well as its
contents.

Creating the Publish-Subscribe Model for Mobile Users

Overview for Designing Mobile Applications 1-9

A collection of publication items is a publication, which corresponds to a single
database on a client device. All snapshot tables that are based on publication items
part of a single publication are stored in the same client database.

Oracle Database Mobile Server operates within a publish-subscribe model. We use the
example of the magazine as an effective way to explain the publish-subscribe model. A
magazine is created with specific data that would be of interest to readers, such as
sports, hunting, automobiles, and so on. Readers request a subscription for the specific
magazine they feel would be in their interest to read. Once this subscription is created
only the magazines to which the reader has been subscribed are sent to the reader.

For Oracle Database Mobile Server, the publication is the magazine, the publication
items are the specific articles of data and the subscription is the granting of access to
the publication for specific users. In the Oracle Database Mobile Server application
model, each application defines its data requirements using a publication. Data
subsets, known as publications items, are created and added to a publication.
Application files are also uploaded to the same publication. Once these publications
are deployed to the mobile server, any user may be granted a subscription to the
publication.

Technically, a publication is like a database schema and it contains one or more
publication items. A publication item is like a parameterized view definition and
defines a subset of data, using a SQL query with bind variables in it. These bind
variables are called subscription parameters or template variables.

As shown in Figure 1–2, a subscription defines the relationship between a user and a
publication. Once you subscribe to a particular publication, you begin to receive
information associated with that publication. With a newspaper you receive the daily
paper or the Sunday paper, or both. With Oracle Database Mobile Server you receive
snapshots, and, depending on your subscription parameter values, those snapshots are
partitioned with data tailored for you.

Subscription parameter values can be set by the administrator in order to tailor the
snapshot data for each user.

Figure 1–2 Subscription Defines Relationship Between User and Publication

The subscription is the definition of how to retrieve data from the back-end database;
the snapshot is the actual data that conforms to the definition within the subscription
and which belongs to the user.

This process really forms a simple development cycle for mobile applications, as
follows:

1. Create the publication and its publication items that contains the data subset for a
particular application.

Creating the Publish-Subscribe Model for Mobile Users

1-10 Oracle Database Mobile Server Developer's Guide

2. Grant users a subscription to a publication. This forms the specific dataset that is
used on a mobile client.

3. Develop and test the mobile application to work with the specific data set.

4. Deploy the application to the mobile server and install it on the client.

Two of the more common questions and sources of confusion that comes up are what
has to be done first:

1. Do you create the publication first or the publication items?

It does not matter. You can create either the publication or the publication item
first. Consider an article for a magazine. That article may have been written by a
freelance author. The article exists before it belongs to any publication. The author
submits this to two or three magazine publishers since it is relevant to the content
they advertise. Two decide it is appropriate for the publication they are
distributing currently while one does not include it since the content is not quite
what their readers want.

2. Do you have to create a separate publication item for each publication?

No, you can have one or more publication items in a publication.

The following sections describe other pertinent information for publication items:

■ Section 1.3.1, "Defining the Weight and Conflict Resolution for Publication Items"

■ Section 1.3.2, "Behavior and Requirements for Primary Keys, Foreign Keys and
Not Null Fields in Publication Items"

1.3.1 Defining the Weight and Conflict Resolution for Publication Items
The following important aspects of the publication item should be taken into account
when you are designing your application:

■ Weight—The publication item weight is used to control the order in processing
publication items, which avoids conflicts. Changes made on the client are
processed according to weight in order to prevent conflicts, such as foreign key
violations. The weight determines what tables are applied to the enterprise
database first. For example, the scott.emp table has a foreign key constraint to the
scott.dept table. If a new department number is added to the dept table and a
new record utilizing the new department number were added to the emp table,
then the transaction would be placed in the error queue if the new record utilizing
the new department in the emp table was applied to the repository before the new
department in the dept table was applied. To prevent the violation of the foreign
key constraint on the enterprise server, you set the dept snapshot to a weight of 1
and the emp snapshot to a weight of 2, which applies all updates to the dept table
before any updates to the emp table as the lower weight is always processed first.

■ Conflict Resolution—In the same scenario, what if someone already updated the
enterprise server with the new department number? This causes a conflict when
the client attempts to synchronize with the new department that utilizes the same
number. To handle this, conflict resolution may be set to either "client wins" or
"server wins". If set to "server wins", then the setting on the server takes
precedence to the setting on the client. The client transaction is sent to the error

Note: You can create publications with the Mobile Database
Workbench or the Java APIs.

Mobile Development Kit (MDK)

Overview for Designing Mobile Applications 1-11

queue. However, if "client wins" is set, then the new department number from the
client overrides the setting on the server.

1.3.2 Behavior and Requirements for Primary Keys, Foreign Keys and Not Null Fields in
Publication Items

Only primary keys and not NULL fields are replicated down to the client. Publication
items require a primary key field or, as in the case of a view, primary key hints.

If a foreign key needs to be applied to the client, then the script for the foreign key
needs to be added to the publication, so that it is executed when the client
synchronizes for the first time. You can set the script for the foreign key within either
the MDW scripts section or the API.

Constraints are not the only type of script that may be executed on the client. The
script could execute any valid SQL DDL statement on the client.

1.4 Mobile Development Kit (MDK)
Before you develop an application using Oracle Database Mobile Server, you should
install the Mobile Development Kit (MDK) on the machine on which you intend to
develop your application. For instructions on how to install the Mobile Development
Kit, see section 4.3.1.2 "Installation of the Mobile Development Kit" in the Oracle
Database Mobile Server Installation Guide.

The Mobile Development Kit includes the following components.

■ Berkeley DB, SQLite and Java DB Mobile Client binaries.

■ Mobile Database Workbench (MDW)—A development tool for creating a
publication.

■ Packaging Wizard—A tool to publish applications to the mobile server.

■ Mobile Sync - A transactional synchronization engine that includes the msync
executable and the Java wrapper for it. The Mobile Sync is only available on
Windows and Linux platforms.

■ PJ SE client library archive file - This is the pure Java synchronization engine,
osync_se_bdb.jar (for PJ Berkeley DB), osync_se_sqlite.jar (for PJ SQLite) and
osync_se_javadb.jar (for PJ Java DB).

Using any C, C++, or Java development tool in conjunction with the Mobile
Development Kit for Windows, you can develop your mobile applications for
Windows against Oracle Database Mobile Server, and then publish the applications to
the mobile server by using the Packaging Wizard.

Once you have published the applications to the mobile server, you can use the Mobile
Manager to provision the applications to the mobile users. Provisioning involves
specifying the values of the subscription parameters used for subsetting the data
needed by the application for a particular user. A user to whom an application has
been provisioned can then log in to the mobile server and request it to set up
everything the user needs to run the applications on the user's device.

1.4.1 Using the Mobile Database Workbench
The Mobile Database Workbench (MDW) is a tool that enables you to iteratively create
and test publications—testing each object as you add it to a publication. Publications
are stored within a project, which can be saved and restored from your file system, so
that you can continue to add and modify any of the contained objects within it.

Mobile Application Design

1-12 Oracle Database Mobile Server Developer's Guide

All work is created within a project, which can be saved to the file system and
retrieved for further modifications later. Once you create the project, start creating the
publication items, sequences, and scripts that are to be associated with the publication.
You can create the publication and associated objects in any order, but you always
associate an existing object with the publication. Thus, it saves time to start with
creating the objects first and associating it with the publication afterwards.

For detailed information on how to use MDW, see Chapter 4, "Using Mobile Database
Workbench to Create Publications".

1.4.2 Using the Packaging Wizard
The Packaging Wizard is a graphical tool that enables you to perform the following
tasks.

1. Create a new mobile application.

2. Edit an existing mobile application.

3. Publish an application to the mobile server.

When you create a new mobile application, you must define its components and files.
In some cases, you may want to edit the definition of existing mobile application
components. For example, if you develop a new version of your application, you can
use the Packaging Wizard to update your application definition. The Packaging
Wizard also enables you to package application components in a JAR file which can be
published using the Mobile Manager. The Packaging Wizard also enables you to create
SQL scripts which can be used to execute any SQL statements in the Oracle database.

For detailed information on how to use the Packaging Wizard, see Chapter 5, "Using
the Packaging Wizard".

1.5 Mobile Application Design
Before you start to design your mobile application, it is important to read the
following sections to understand the differences between an enterprise application and
the mobile application as well as the choices you have in designing your application:

■ Section 1.5.1, "Steps for Designing Your Mobile Application"

■ Section 1.5.2, "Application Programming Interfaces"

■ Section 1.5.3, "Application Deployment into the Mobile Environment"

1.5.1 Steps for Designing Your Mobile Application
With a proper design, you can avoid the most common causes for mobile project
failure, not meeting the needs of the business, poor performance, or issues occurring
within a production environment. Proper design of the mobile system includes the
infrastructure and the mobile application. Without proper design, a mobile
architecture could end up costing more then it saves.

The following assumption is one of the most common misconceptions for taking an
enterprise application and incorporating it into a mobile component:

The mobile application is a scaled down version of the enterprise application.

By taking an existing enterprise application, you may intend to provide the same
functionality in remote or disconnected locations. Since the enterprise application has
already undergone thorough requirements gathering, design, development, testing,
and successful implementation, you may assume that it automatically works

Mobile Application Design

Overview for Designing Mobile Applications 1-13

seamlessly as a mobile application and so do not test it in this environment. This
assumption may lead to project failure.

For example, take an enterprise form-based client/server application. You have a
client connecting through a middle-tier connecting to a database on the back-end.
Taking this to a mobile infrastructure, such as with Oracle Database Mobile Server,
adds a completely new tier that did not exist within the original infrastructure. The
mobile server tier introduces new concerns, such as the following:

■ Security—There is now a system in the infrastructure that potentially gives any
outsider access to the entire organization if proper security configuration and
implementation is not performed.

■ Bandwidth—The mobile server may become a bottleneck for all remote locations
without the implementation of a farm.

■ Scalability—The applications are performing synchronization of hundreds to
millions of records, which is not the same as providing static Web pages to a large
number of users. A system that is fine for serving static Web pages may not be
capable of servicing hundreds of users performing synchronization.

A complete redesign of the system specifications may be in order.

You may also need to re-evaluate the original design of the enterprise application. The
following lists a few design considerations for the mobile application:

■ Memory—An application designed, tested, and implemented on a multiprocessor
system with several gigabytes of memory does not perform the same on a mobile
device with only a single processor and maybe 512 megabytes of memory.

■ Resource Limitations—Several years ago, limitations of available resources made
the usage of data types an extreme concern. The storage space saved by using a
small integer over an integer was crucial due to limited memory available. With
advances in memory and system resources, this has not been a concern to most
modern developers. Now, the mobile infrastructure brings resource limitations
back to the list of chief concerns for the design and development of mobile
applications. One of the most significant of these limitations is the bandwidth
available for the mobile client. If a mobile client is only able to synchronize over a
cell phone network, you may not wish to bring a million records down to a client
that only needs a few thousand records. This decision impacts the synchronization
performance, as well as the costs associated with the synchronization. If the
mobile client was only utilized to collect data, then you can create a data collection
queue for synchronization and avoid the whole download phase of
synchronization.

■ Use of Indexes—You use indexes for avoiding full-table scans. So, if you use the
same data subset originally designed for a Windows machine down on a client
device and do not use an index, then the performance may be adversely effected.
Oracle Database Mobile Server uses two types of scans for queries: full table scans
and index based scans.

Thus, we recommend the following steps:

■ Section 1.5.1.1, "Design for Synchronization"

■ Section 1.5.1.2, "Design for Sequences"

1.5.1.1 Design for Synchronization
If you are using the mobile option, synchronization holds the mobile infrastructure
together.

Mobile Application Design

1-14 Oracle Database Mobile Server Developer's Guide

Analyze all of the data needed by the mobile user, as follows:

■ Most snapshots are created where the data can be modified on either the client or
the server, where the modifications are propagated to the other side through
synchronization.

■ If any snapshots require only the ability to read the data—that is, all modifications
to the data are made on the server-level and not by the user—then create read-only
snapshots.

■ If all or a majority of the users use the same read-only snapshots, then create a
cached user that shares the read-only data across multiple clients.

Analyze the type of synchronization that is appropriate for the user’s needs, as
described below:

■ For optimal performance, use fast refresh for all publications, if appropriate.

■ Only design publication items for a complete refresh if the following is true:

– If it is absolutely critical for all changes to be processed and applied to the data
store immediately.

– If it is critical that any enterprise updates are immediately brought down to
the client.

■ If a mobile user is only performing data collection and it is not necessary for server
updates to be brought down to the user, then implement a push-only
synchronization model for those publication items. For more information, see
Section 2.12.2, "Creating Data Collection Queues for Uploading Client Collected
Data".

■ When a mobile user only requires specific table to be updated or synchronized,
perform a selective synchronization methodology limiting the synchronization
process to specific tables or specific publications.

1.5.1.2 Design for Sequences
Sequences guarantee uniqueness of a value, such as a primary key. Design how the
sequences are generated within the mobile infrastructure. For example, if the
enterprise database generates a sequence number and the mobile client generates the
same sequence number a conflict with the data occurs and causes an error.

Native sequences may be formed specifically for the mobile clients. These sequences
would never populate on the enterprise database itself, so there is no risk of a conflict
occurring. This works well when data updates only occur from the mobile clients and
input to the database does not come from any other source. However, it is often
necessary to have the sequences generated by both the database and the clients. To
accomplish this, sequences must be designed so the database uses a range separate
from the range used by the clients. For example, you could define the sequences where
the database uses all odd numbers and the clients uses all even numbers.

You must design sequences for mobile clients, so that each client uses a unique range
of values without any two clients using the same range. For this you specify the
sequence range for each client, such as sequences 1 through 1000 for client A and

Note: The complete refresh is the most resource intensive method
and should only be utilized after full consideration of the performance
hit is analyzed. Only time critical publication items should be
specified for a complete refresh synchronization type.

Mobile Application Design

Overview for Designing Mobile Applications 1-15

sequences 1001 through 2000 for client B. Using these ranges for the sequence numbers
prevents each client from using the same sequence number as used by another client.

For full details on sequences, see Section 4.6, "Create a Sequence".

1.5.2 Application Programming Interfaces
When you are developing your application, you may decide that you want to control
more aspects of Oracle Database Mobile Server within your application—rather than
relying on user interaction. In this case, you can use the Oracle Database Mobile Server
Application Programming Interfaces (APIs). Almost any task performed by the tools
and utilities included with Oracle Database Mobile Server may also be accomplished
with the APIs. Some of the more advanced functionality within the product is only
available through the use of the APIs. Except for the synchronization APIs which are
provided for most languages utilized for application development, most of the APIs
are Java interfaces that must be developed with the Java programming language.

The most common APIs utilized and their uses are as follows:

■ Synchronization APIs: These APIs provide all of the basic synchronization
functionality that is found within the mSync utility. The advantages of using these
APIs are that the synchronization process can be fully integrated within the actual
mobile application. The APIs also provide the ability for a push-only
synchronization, which allows mobile clients to only upload data skipping the
downloading of new data or applications. The push-only model is useful when
bandwidth is limited and when the client just collects data—that is, it is not
necessary for a remote client to have updated data from the enterprise.

■ Consolidator APIs: The Consolidator APIs provide administrative functionality
for creating users, setting the user properties, working with applications, and so
on. You can automate common administration tasks and speed up some of the
administration tasks required, such as the creation of a large amount of users. The
only limitation is that application and user settings are not displayed in the Mobile
Manager Web administration tool as these APIs directly access the repository.

■ Mobile Resource Manager APIs: The Mobile Resource Manager APIs also provides
administration functionality for users and applications; however, these API’s
actually update the Mobile Manager administration tool as well as the repository.
This utility may be used to create users, set user access, set the user template
variables, and many other tasks.

■ Device Manager APIs: The Device Manager APIs provide the ability customize the
management of devices. These APIs may be used to gather information on
devices, send commands to devices, register devices, and so on.

1.5.3 Application Deployment into the Mobile Environment
Deployment of applications includes setting up the server system so that end users can
easily install and use the applications. Mobile applications are deployed to the mobile
server.

Deployment consists of the following steps:

1. Creating the publication with the Mobile Database Workbench (MDW). See
Section 1.4.1, "Using the Mobile Database Workbench" for more information.

2. Publishing the application to the server includes installing all the components for
an application on the mobile server with the Packaging Wizard tool. See
Section 1.4.2, "Using the Packaging Wizard" for details.

Mobile Application Design

1-16 Oracle Database Mobile Server Developer's Guide

3. Provisioning the applications to the mobile users through the Mobile Manager,
which is a GUI interface for the mobile server. This phase includes determining
user access to applications with a specified subset of data. The Mobile Manager
can create users, grant privileges to execute applications, and define the data
subsets for them, among others. You can also use the Java API to provision
applications.

4. Testing for functionality and performance in a real deployment environment. A
mobile application system is a complex system involving the following:

■ Multiple mobile device client technologies—such as, operating systems, form
factors, and so on.

■ Multiple connectivity options—such as, LAN, Wireless LAN, cellular, wireless
data, and other technologies.

■ Multiple server configuration options.

When testing, pay particular attention to tuning the performance of the data
subsetting queries, as it is the most frequent cause of performance problems.

5. Determining the method of initial installation of applications on mobile devices
(application delivery). Initial installation involves installing the mobile client, the
application code, and the initial client database. The volume of data required to
install applications on a mobile device for the first time could be quite high,
necessitating the use of either a high-speed reliable connection between the mobile
device and the server, or using a technique known as offline instantiation. In
offline instantiation, everything needed to install an application on a mobile
device is put on a CD or any storage media device and physically given to the
user. The user then uses this media to install the application on the device by
means of a desktop machine. Oracle Database Mobile Server provides a tool for
offline instantiation.

After deployment, both the application and the data schema may change because of
enhancements or defect resolution. The mobile server manages application updates
and data schema evolution. The only requirement is that the administrator must
republish the application and the schema. The mobile server automatically updates the
mobile clients that have older version of the application or the data.

2

Synchronization 2-1

2 Synchronization

The mobile client database contains a subset of data stored in the Oracle database. This
subset is stored in snapshots in the mobile client database. Unlike a base table, a
snapshot keeps track of changes made to it in a change log. Users can make changes in
the mobile client database and can synchronize these with the Oracle database.

The following sections describe synchronization functions between the mobile clients
and an Oracle database using the mobile server. This chapter discusses how you can
programmatically initiate the synchronization both from the client or the server side.

■ Section 2.1, "How Oracle Database Mobile Server Synchronizes"

■ Section 2.2, "Enabling Automatic Synchronization"

■ Section 2.3, "What is The Process for Setting Up a User For Synchronization?"

■ Section 2.4, "Creating Publications Using Oracle Database Mobile Server APIs"

■ Section 2.5, "Client Device Database DDL Operations"

■ Section 2.6, "Customize the Compose Phase Using MyCompose"

■ Section 2.7, "Customize What Occurs Before and After Synchronization Phases"

■ Section 2.8, "Understanding Your Refresh Options"

■ Section 2.9, "Synchronizing With Database Constraints"

■ Section 2.10, "Resolving Conflicts with Winning Rules"

■ Section 2.11, "Using the Sync Discovery API to Retrieve Statistics"

■ Section 2.12, "Customizing Synchronization With Your Own Queues"

■ Section 2.13, "Synchronization Performance"

■ Section 2.14, "Troubleshooting Synchronization Errors"

■ Section 2.15, "Register a Remote Oracle Database for Application Data"

■ Section 2.16, "Create a Synonym for Remote Database Link Support For a
Publication Item"

■ Section 2.17, "Parent Tables Needed for Updateable Views"

■ Section 2.18, "Manipulating Application Tables"

■ Section 2.19, "Facilitating Schema Evolution"

■ Section 2.20, "Set DBA or Operational Privileges for the Mobile Server"

How Oracle Database Mobile Server Synchronizes

2-2 Oracle Database Mobile Server Developer's Guide

2.1 How Oracle Database Mobile Server Synchronizes
In Oracle Database Mobile Server, the synchronization is used for multiple
clients—rather than a single user. In order to accommodate a large number of
concurrent users, the application tables on the back-end database cannot be locked by
a single user. Thus, the synchronization process involves using queues to manage the
information between the mobile clients and the application tables in the database.

Oracle Database Mobile Server uses a synchronization model that maintains data
integrity between the mobile server and the mobile client. In addition, the
synchronization is asynchronous and that as a result, change propagation is not
immediate. The benefit, however, is that the clients do not stay connected for long
while the changes are being applied.

You can specify if the synchronization occurs automatically or by manual request. For
more details, see Section 2.1.3, "Deciding on Automatic or Manual Synchronization".

A simplified view of synchronization is as follows:

■ On the client—The mobile application communicates through the Sync Server
with the mobile server and uploads the changes made in the client machine. It
then downloads the changes for the client that are already prepared by the mobile
server.

■ On the mobile server—A background process called the Message Generator and
Processor (MGP), which runs in the same tier as the mobile server, periodically
collects all the uploaded changes from many mobile users and then applies them
to the server database. Next, MGP prepares changes that need to be sent to each
mobile user. This step is essential because the next time the mobile user
synchronizes with the mobile server, these changes can be downloaded to the
client and applied to the client database.

Figure 2–1 illustrates the architecture for Oracle Database Mobile Server applications.

Figure 2–1 Oracle Database Mobile Server Architecture

The mobile server replicates data between the mobile clients with their client
databases and the application tables, which are stored on a back-end Oracle database.

Note: This section describes how the synchronization is performed
across several components and enterprise tiers to complete
successfully. For more details on each component, see Section 1.2,
"Oracle Database Mobile Server Application Model and Architecture".

Mobile
Client

Database

Mobile
Server

Mobile Server
Repository

Middle Tier

Oracle Database
 Server

Mobile
Application

Client System: Mobile Device

How Oracle Database Mobile Server Synchronizes

Synchronization 2-3

Thus, the more detailed description of how synchronization is performed within the
separate components of Oracle Database Mobile Server is demonstrated by Figure 2–2.

Figure 2–2 Data Synchronization Architecture

1. A synchronization is initiated on the mobile client either by the user or from
automatic synchronization.

2. The mobile client software gathers all of the client changes into a transaction and
the Sync Client uploads the transaction to the Sync Server on the mobile server.

3. Sync Server places the transaction into the In-Queue.

4. Sync Server gathers all transactions destined for the mobile client from the
Out-Queue.

5. Sync Client downloads all changes for client database.

6. The mobile client applies all changes for client database. If this is the first
synchronization, the client database is created.

7. All transactions uploaded by all mobile clients are gathered by the MGP out of the
In-Queue. The MGP executes independently and periodically based upon an
interval specified in the Job Scheduler in the mobile server.

8. The MGP executes the apply phase by applying all transactions for the mobile
clients to their respective application tables to the back-end Oracle database. The
MGP commits after processing each publication. If any conflicts occur during this
phase, most are resolved by the MGP or by the conflict resolution rules. If the
conflict cannot be resolved, the transaction is moved into the Error Queue. See
Section 1.3.1, "Defining the Weight and Conflict Resolution for Publication Items"
for more information.

Note: When packaging your application, you can specify if the
transaction is to be applied at the same time as the synchronization. If
you set this option, then the transaction is immediately applied to the
application tables. However, this may not be scaleable and you should
only do this if the application of the transaction immediately is
important and you have enough resources to handle the load.

In Queue

Database

Error Queue

Out Queue

Mobile client

1. Synchronize
client

database
Sync
Client

Sync
Server

Mobile Server

2. Upload
changes

E1

E2

E3

MGP

3. Place client
transaction in
the In Queue

7. MGP executes,
grabs the client

transaction 8. MGP applies
client

transaction to
application tables

9. MGP composes
updates destined

for the client

10. Updates for client
placed in Out Queue

**Any errors during
steps 7-10 are

placed in the
error queue.

4. Grab transaction
for client database

5. Download
changes

6. Execute changes
 against database

Steps 1 through 6 occur between
the Mobile Server and the client

Steps 7-10 occur between
the Mobile Server
and the Database

when the MGP executes

How Oracle Database Mobile Server Synchronizes

2-4 Oracle Database Mobile Server Developer's Guide

9. MGP executes the compose phase by gathering the client data into outgoing
transactions for mobile clients.

10. MGP places the composed data for mobile clients into the Out-Queue, where the
Sync Server downloads these updates to the client on the next client
synchronization.

Overall, synchronization involves two parties: the mobile client using the Sync
Client/Server to upload and download changes and the MGP process interacting with
the queues and the application tables to apply and compose transactions. These are
displayed separately in the Data Synchronization section of the Mobile Manager.

The following sections describe synchronization activity:

■ Section 2.1.1, "Mobile Client Database Created on First Synchronization"

■ Section 2.1.2, "Using Multiple Databases for Application Data"

■ Section 2.1.3, "Deciding on Automatic or Manual Synchronization"

■ Section 2.1.4, "Deciding on Synchronization Refresh Option"

■ Section 2.1.5, "Synchronizing to a File With File-Based Sync"

■ Section 2.1.6, "How Downloaded Data is Processed on the Mobile Client"

■ Section 2.1.7, "How Updates Are Propagated to the Back-End Database"

2.1.1 Mobile Client Database Created on First Synchronization
When a user synchronizes a mobile client for the first time, the mobile client creates a
database on the client machine for each subscription that is provisioned to the user.
The mobile client then creates a snapshot in this database for each publication item
contained in the subscription, and populates it with data retrieved from the server
database by running the SQL query (with all the variables bound) associated with the
publication item. Once installed, Oracle Database Mobile Server is transparent to the
end user; it requires minimal tuning or administration.

As the user accesses and uses the application, changes made to the data in the client
database are captured by the snapshots. When the connection to the mobile server is
available, the changes can be synchronized with the mobile server.

2.1.2 Using Multiple Databases for Application Data
By default, the repository metadata and the application data are stored on the same
database. However, if for performance or other reasons, you may store application
data on a separate database other than the main database where the repository exists.
In this manner, the repository exists on the main database and the data for one or more
applications may exist on the main database or another database of your choosing.

Note: The behavior of the apply/compose phase can be modified.
See Section 5.1.1, "Defining Behavior of Apply/Compose Phase for
Synchronization" in the Oracle Database Mobile Server Administration
and Deployment Guide for more information.

How Oracle Database Mobile Server Synchronizes

Synchronization 2-5

Figure 2–3 Separating Application Data from Repository

You can register one or more databases to host the application data. Once registered,
you can specify during publication creation where to host the application data.
Synchronization is executed on a per publication basis rotating through the databases.

2.1.3 Deciding on Automatic or Manual Synchronization
In the past, all that was available was manual synchronization. That is, a client
manually requests a synchronization either through an application program executing
an API or by a user manually pushing the Sync button.

Manual Synchronization may be initiated, as follows:

■ The user initiates the Mobile Sync (mSync) application directly.

■ The application programmatically invokes the Mobile Sync API.

Automatic Synchronization can be configured to automatically occur under specific
circumstances and conditions. When these conditions are met, Oracle Database Mobile
Server automatically performs the synchronization for you without locking your
database, so you can continue to work while the synchronization happens in the
background. This way, synchronization can happen seamlessly without the client’s
knowledge.

Note: Automatic synchronization is enabled on per-publication
basis. A publication can be enabled for automatic synchronization.
The publications that are not enabled for automatic synchronization
can only be synchronized manually. A publication contains one or
more publication items that can be marked as either manual or
automatic.

Currently, you can enable automatic synchronization for a publication
by marking one or more of its publication items automatic. Once you
do that, all publication items within that publication are synchronized
automatically. A publication without automatic publication items is
enabled only for manual synchronization.

Mobile
Server

Middle Tier

Application 1
Data

Oracle
Database
 Server

Application 2
Data

Oracle
Database
 Server

Mobile Server
Repository

Oracle
Database
 Server

MAIN

Client 1

Client 5

Client 4

Client 3

Client 2

How Oracle Database Mobile Server Synchronizes

2-6 Oracle Database Mobile Server Developer's Guide

For example, you may choose to enable automatic synchronization for the following
scenarios:

■ If you have a user who changes data on their handheld device, but does not sync
as often as you would prefer.

■ If you have multiple users who all sync at the same time and overload your
system.

These are just a few examples of how automatic synchronization can make managing
your data easier, be more timely, and occur at the moment you need it to be uploaded.

Synchronization is closely tied to how you define the snapshot for your application.
See Section 1.3, "Creating the Publish-Subscribe Model for Mobile Users" for a
description of a snapshot and its components. One of the components is a publication
item. If you want automatic synchronization, you define it at the publication item
level.

The differences between the two types of synchronization are as follows:

Manual synchronization supports selective sync option where the user can choose
which publications need to be synchronized instead of synchronizing all publications
on the client. See Section 3.1.1.1.4, "Selective Synchronization".

Note: When a manual synchronization is requested by the client,
ALL publications are synchronized at that time - including those
defined as manual and automatic synchronization.

Table 2–1 Difference Between Automatic and Manual Synchronization

Manual Synchronization Automatic Synchronization

Initiation After the snapshot is set up, you can
initiate either by the user initiating
mSync or by an application invoking
one of the synchronization APIs.

All of the set up for automatic
synchronization is configured. Once
configured, it happens automatically,
so there is no synchronization API.

Configuration for automatic
synchronization can be defined
when you create the publication
item, publication or the platform.
For more information, see
Section 2.2.1, "Enable Automatic
Synchronization at the Publication
Level"

Controlling
synchronization

Synchronization occurs exactly when
the user/application requests it.

Synchronization occurs without the
user being aware of it occurring.
You can start, stop, pause, resume
and query the status of automatic
synchronization using Sync Agent
Control APIs. For more information
see, Section 3.2, "Manage Automatic
Synchronization on the Mobile
Client"

Objects
synchronized

All The following objects are not
synchronized by an automatic
synchronization: sequences, DDL
scripts, indexes and automatic
synchronization rules and
conditions.

How Oracle Database Mobile Server Synchronizes

Synchronization 2-7

Automatic synchronization also uses selective sync, but this is done automatically
without user's interference. Automatic synchronization is driven by rules: events and
conditions, which determine if, when and which publications need to be synchronized.
See Section 2.2.2, "Define the Rules Under Which the Automatic Synchronization
Starts" for details on events and conditions.

2.1.3.1 Synchronization Priorities
Sometimes, some data records may need to be sent from client to server and from
server to client in more expedient manner than the rest of the data. In other words,
some data may have higher priority and needs to be synchronized first without having
to wait for the rest of the data. Synchronization allows to define the priority of data for
every record. Two priorities are supported: high and normal. Usually most of the data
is of normal priority and only some data is of high priority. Data priority can be set on
per-record basis. See Section 3.5.1.2, "Data Priority Handling" of the Mobile Client Guide
on how to set record priorities on the client. Both manual and automatic
synchronization support priority setting: high priority sync synchronizes only records
of high priority and normal priority sync synchronizes all records including high and
normal priorities. Section 3.1, "Invoke Manual Synchronization on the Mobile Client"
indicates how sync priority can be set in all types of manual synchronization that the
APIs supported.

Automatic synchronization manages sync priority using different rules for high and
normal priority data: high priority rules and normal priority rules. Usually high
priority rules are defined such that they allow high priority data to be synchronized
quicker. For example, there may be a network condition rule that restricts normal
priority synchronization to a time where high network bandwidth is available. But
same kind of rule for high priority synchronization may allow synchronization with
any network bandwidth. For more information see, Section 2.2.2, "Define the Rules
Under Which the Automatic Synchronization Starts".

2.1.4 Deciding on Synchronization Refresh Option
How or when data changes are applied to either the mobile server or the mobile client
depends upon the synchronization refresh option at the publication item level.
Synchronization refresh options may ease the cost burden for resources, such as
wireless connectivity, bandwidth and network availability, personnel loss of time
during the synchronization process, and so on.

Oracle Database Mobile Server employs synchronization refresh options that may be
utilized to synchronize data between the Oracle enterprise database and the mobile
client. With the following Oracle Database Mobile Server refresh options, you can
maintain data accuracy and integrity between the Oracle database and mobile client:

■ Section 2.1.4.1, "Fast Refresh"

■ Section 2.1.4.2, "Complete Refresh"

■ Section 2.1.4.3, "Queue-Based Refresh"

■ Section 2.1.4.4, "Forced Refresh"

2.1.4.1 Fast Refresh
The most common method of synchronization is a fast refresh publication item where
changes are uploaded and downloaded by the client. Meanwhile, the MGP
periodically collects changes uploaded by all clients and applies them to the back-end
Oracle database tables. Then, the MGP composes new data, ready to be downloaded to
each client during the next synchronization, based on pre-defined subscriptions.

How Oracle Database Mobile Server Synchronizes

2-8 Oracle Database Mobile Server Developer's Guide

2.1.4.2 Complete Refresh
During a complete refresh, all data for a publication is downloaded to the client. For
example, during the first synchronization session, all data on the client is refreshed
from the Oracle database. This form of synchronization takes longer because all rows
that qualify for a subscription are transferred to the client device, regardless of existing
client data.

The complete refresh model is resource intensive as all aspects of synchronization are
performed. This model should only be utilized for snapshots/publication items where
it is an absolute requirement.

2.1.4.3 Queue-Based Refresh
The developer creates their own queues to handle the synchronization data transfer.
There is no synchronization logic created with a queue-based refresh; instead, the
synchronization logic is implemented solely by the developer. A queue-based
publication item is ideally suited for scenarios that require synchronization to behave
in a different manner than normally executed. For instance, data collection on the
client; all data is collected on the client and pushed to the server.

With data collection, there is no need to worry about conflict detection, client state
information, or server-side updates. Therefore, there is no need to add the additional
overhead normally associated with a fast refresh or complete refresh publication item.

2.1.4.4 Forced Refresh
This is not a refresh option; however, we discuss it here because it is often mistaken for
a refresh option—specifically, it is often confused with the complete refresh option.
The Forced Refresh is a one-time execution request made from within Mobile
Manager, the GUI interface for the mobile server. The forced refresh option may result
in a loss of critical data on the client.

The forced refresh option is an emergency only synchronization option. This option is
used when a client is corrupt or malfunctioning, so that you decide to replace the
mobile client data with a fresh copy of data from the enterprise data store with the
forced refresh. When this option is selected, any data transactions that have been made
on the client are lost.

When a forced refresh is initiated all data on the client is removed. The client then
brings down an accurate copy of the client data from the enterprise database to start
fresh with exactly what is currently stored in the enterprise data store.

2.1.5 Synchronizing to a File With File-Based Sync
There are times when you do not have network access to the mobile server, but there is
a way you can use removable media to transport a file between the mobile server and
the client. In this instance, you may want to use File-Based Sync, which saves all
transactions in an encrypted file either for the upload from the client for the mobile
server or the download from the mobile server for the client.

Once saved within the encrypted file, the file is manually transported and copied onto
the desired recipient—whether mobile client or mobile server. This file is uploaded
and the normal synchronization steps are performed. The only difference is that the
interim transmission of the data is through a file copied to the correct machine—rather
than transmitted over a network.

For full details on file-based synchronization, see Section 5.10, "Synchronizing to a File
with File-Based Sync" in the Oracle Database Mobile Server Administration and

How Oracle Database Mobile Server Synchronizes

Synchronization 2-9

Deployment Guide. To enable and perform file-based synchronization through the APIs,
see Chapter 3, "Managing Synchronization on the Mobile Client".

Android, Blackberry, iOS and PJ SE clients do not support file-based synchronization.

2.1.6 How Downloaded Data is Processed on the Mobile Client
The client processes the downloaded data. By default, the steps taken to process the
received data on the client is as follows:

1. Process each publication item

2. Commit

3. Process each DDL statement

4. Commit

In addition, the configuration could effect how the data is processed on the client. Low
memory may cause a commit before all of the publication items are processed. If the
client is on a WIN32 device and available memory is running low, then an auto
commit is performed. However, if the client is on a Windows Mobile device and if
memory is getting low, the synchronization throws an error and exits. In this situation,
the commit is not performed.

2.1.7 How Updates Are Propagated to the Back-End Database
The synchronization process applies client operations to the tables in the back-end
database, as follows:

1. The operations for each publication item are processed according to table weight.
The publication creator assigns the table weight to publication items within a
specific publication. This value can be an integer between 1 and 1023. For example,
a publication can have more than one publication item of weight "2" which would
have INSERT operations performed after those for any publication item of a lower
weight within the same publication. You define the order weight for tables when
you add a publication item to the publication. See Section 2.4.1.7.2, "Using Table
Weight" for more information.

2. Within each publication item being processed, the SQL operations are processed as
follows:

a. Client INSERT operations are executed first, from lowest to highest table
weight order.

b. Client DELETE operations are executed next, from highest to lowest table
weight order.

c. Client UPDATE operations are executed last, from highest to lowest table weight
order.

For details and an example of exactly how the weights and SQL operations are
processed, see Section 2.4.1.7.2, "Using Table Weight".

Note: The acknowledgment is sent only in the subsequent
synchronization.

How Oracle Database Mobile Server Synchronizes

2-10 Oracle Database Mobile Server Developer's Guide

In addition, the order in which SQL statements are executed against the client database
is not the same as how synchronization propagates these modifications. Instead,
synchronization captures the end result of all SQL modifications as follows:

1. Insert an employee record 4 with name of Joe Judson.

2. Update employee record 4 with address.

3. Update employee record 4 with salary.

4. Update employee record 4 with office number

5. Update employee record 4 with work email address.

When synchronization occurs, all modifications are captured and only a single insert is
performed on the back-end database. The insert contains the primary key, name,
address, salary, office number and email address. Even though the data was created
with multiple updates, the Sync Server only takes the final result and makes a single
insert.

2.1.8 Oracle Database Mobile Server (DMS) Encryption
DMS combines RSA asymmetric encryption with the 128-bit Advanced Encryption
Standard (AES). RSA public/private key encryption is used to transport user
credentials and session key info, while the data payload itself is encrypted with AES.
This allows for both fast and secure mobile data exchange. The communication
between the client and the server is initiated by the client with the following message
format:

[RSA_HEADER(usr/pwd/session_key)][ENCRYPTED_PAYLOAD]

In the formula above, RSA_HEADER contains a mobile client's username, password,
as well as a session key. While the username and password are provided by the client,
each session key is randomly generated. The key is calculated using
cryptographically-safe random number generator where the choice of the generator is
OS-dependent. Combined username, password and session key are encrypted using
the server's public key.

ENCRYPTED_PAYLOAD is encrypted with the 128-bit AES algorithm in Cipher-Block
Chaining (CBC) mode using session_key included in the RSA_HEADER. The server,
upon receiving a client's encrypted request, decrypts the RSA_HEADER with the
server's private key, authenticates the client based on the included credentials, and
finally decrypts the ENCRYPTED_PAYLOAD using the included session_key.

The server's response to the client is then encrypted with the same session_key.

Note: This order of executing operations can cause constraint
violations. See Section 2.9, "Synchronizing With Database Constraints"
for more information.

Note: Both RSA and AES encryptions are FIPS 140-2 approved.

Note: The user can select either SSL or AES for data encryption.

Enabling Automatic Synchronization

Synchronization 2-11

2.2 Enabling Automatic Synchronization
Automatic synchronization occurs in the background, so that the user does not have to
perform a synchronization; thus, the client appears continually connected to the
back-end database without user interaction. All modifications to each record are saved
in a log within the client database. When you requested synchronization manually,
Oracle Database Mobile Server locked the database while processing your request.
However, with automatic synchronization, it could be occurring while you are
performing other tasks to the client database.

When automatic synchronization occurs, all of the modified records stored in the log
are uploaded to the server. In addition, any modified records from the server are
downloaded into the client database. This occurs in the same manner as manual
synchronization. The only difference is when the synchronization is executed and how
the modified records are stored.

The following are details about automatic synchronization:

The following sections detail how you can configure for automatic synchronization:

■ Section 2.2.1, "Enable Automatic Synchronization at the Publication Level"

■ Section 2.2.2, "Define the Rules Under Which the Automatic Synchronization
Starts"

■ Section 2.2.3, "Enable the Server to Notify the Client to Initiate a Synchronization
to Download Data"

■ Section 2.2.4, "Retrieve Status for Automatic Synchronization Events"

2.2.1 Enable Automatic Synchronization at the Publication Level
Automatic synchronization can be enabled at publication level. Within a publication,
you can have one or more publication items. If automatic synchronization is enabled
for one of the publication items, by default all the publication items in the same
publication would be enabled with automatic synchronization.

Do not define a publication where some of the publication items are automatic
synchronization enabled but the others are not. See Section 4.4, "Create a Publication
Item" for details of how to enable synchronization in a publication item using MDW or
Section 2.4.1.3, "Create Publication Items"using the API.

To manage automatic synchronization, see Section 3.2, "Manage Automatic
Synchronization on the Mobile Client".

Table 2–2 Automatic Synchronization

Steps for Automatic Synchronization See the Following for Details

The developer enables the publication item to
use automatic synchronization.

Section 2.2.1, "Enable Automatic
Synchronization at the Publication Level"

The client can disable and enable automatic
synchronization with the Sync Control API.

Section 3.2, "Manage Automatic
Synchronization on the Mobile Client"

You can configure under what rules the
automatic synchronization occurs.

Section 2.2.2, "Define the Rules Under Which
the Automatic Synchronization Starts"

The server can notify the client of data
waiting for download.

Section 2.12.3, "Selecting How and When to
Notify Clients of Composed Data"

The client application can request status of the
outcome of an automatic synchronization.

Section 2.2.4, "Retrieve Status for Automatic
Synchronization Events"

Enabling Automatic Synchronization

2-12 Oracle Database Mobile Server Developer's Guide

2.2.2 Define the Rules Under Which the Automatic Synchronization Starts
You can configure under what circumstances a synchronization should occur and then
Oracle Database Mobile Server performs the synchronization for you automatically.
The circumstances under which an automatic synchronization occurs is defined within
the synchronization rules, which includes the following:

■ Events—An event is variable, as follows:

■ Data events: For example, you can specify that a synchronization occurs when
there are a certain number of modified records in the client database.

■ System events: For example, you can specify that if the battery drops below a
predefined minimum, you want to synchronize before the battery is depleted.

■ Conditions—A condition is an aspect of the client that needs to be present for a
synchronization to occur. This includes conditions such as battery life or network
availability.

The relationship between events and conditions when evaluating if an automatic
synchronization occurs is as follows:

when EVENT and if (CONDITIONS), then SYNC

So, if an event occurs, the conditions are evaluated. If the conditions are valid, then the
synchronization occurs; if the conditions are not met, then the synchronization is
queued until the conditions are valid.

For example, if the event for new data inserted and the condition specified is that the
network must be available, then a synchronization occurs when the network is
available and there is new data.

You can define the rules for automatic synchronization within certain parts of the
normal snapshot setup and platform configuration, as follows:

■ Publication level: Within the publication, you specify the rules under which the
synchronization occurs for all publication items in that publication.

■ Platform level: Some of the rules are specific to the platform of the client, such as
battery life, network bandwidth, and so on. These rules apply to all enabled
publication items that exist on this particular platform, such as Windows Mobile.

If after defining these rules and publishing the application, you want to modify the
rules, you can do so through MDW. However, you must perform a manual
synchronization. The manual synchronization restarts the automatic Sync Agent,
which then uses the new rules. The new settings are NOT applied during automatic
synchronization.

The following sections detail all of the rules you can configure for automatic
synchronization:

■ Section 2.2.2.1, "Default vs Custom Rules"

■ Section 2.2.2.2, "Configure Publication-Level Automatic Synchronization Rules"

■ Section 2.2.2.3, "Configure Platform-Level Automatic Synchronization Rules"

2.2.2.1 Default vs Custom Rules
Default rules are used to bootstrap the syncagent if user-defined rules are not present.
For each database, there is a default database level event which triggers sync after any
database commit, where 1 or more records were modified. Additionally, there is a
default platform level condition that allows sync only if network is detected on the
client. User-defined rules override these default rules as follows:

Enabling Automatic Synchronization

Synchronization 2-13

1. The database level event above are overridden (and removed) if a publication level
event is defined for the same database.

2. All default database level events are removed if a platform level event is defined.

3. The default platform level network condition is overridden (and removed) if
another network condition is defined.

Two default database level events are created for each database: for high and normal
priorities. This results in high priority sync being triggered after commit (if high
priority record(s) are modified) and normal sync being triggered after commit (if
normal record(s) are modified). Likewise, 2 default platform level network conditions
are created as well that apply to high and normal priority syncs correspondingly.

2.2.2.2 Configure Publication-Level Automatic Synchronization Rules
Within the publication, you specify the rules under which the synchronization occurs
for all publication items in that publication. These rules are defined when you create
the publication either using MDW or programmatically with the APIs. To create this
through MDW, see Section 4.5, "Define the Rules Under Which the Automatic
Synchronization Starts"; to add publication-level automatic synchronization rules with
the API, see Section 2.4.1.4, "Define Publication-Level Automatic Synchronization
Rules".

When you are creating the publication, you can define events that causes an automatic
synchronization. Although these are defined at the publication level, they enable only
the publication items within this publication that has automatic synchronization
enabled.

Table 2–3 describes the publication level events for automatic synchronization. The
lowest value that can be provided is 1.

Note: The rules, events and conditions, at publication level and at
platform level, are defined separately for high priority sync and
normal priority sync. High priority rules apply only to high priority
records and only trigger/allow/forbid high priority sync.

Note: The user-defined rules override default rules, as described
above, separately for each of the priorities. For example, if you define
a high priority platform level event, it overrides all high priority
default database events, but not normal priority default database
events. So in this case sync is still triggered on commit if normal
priority records are modified.

Table 2–3 Automatic Events for the Publication

Events Description

Client commit For mobile client only. Upon commit to the client database, the mobile client
detects the total number of record changes in the transaction log. If the number
of modifications is equal to or greater than your pre-defined number,
automatic synchronization occurs. This rule is on by default and set to start an
automatic synchronization if only one record is changed. You must modify this
rule if you do not want the automatic synchronization to occur after every
commit.

Enabling Automatic Synchronization

2-14 Oracle Database Mobile Server Developer's Guide

2.2.2.3 Configure Platform-Level Automatic Synchronization Rules
Some of the rules are specific to the platform of the client, such as battery life, network
bandwidth, and so on. These rules apply to all enabled publication items that exist on
this particular platform, such as Windows Mobile. You configure these rules through
Mobile Manager or MDW. This section describes Mobile Manager.

The platform-level synchronization rules apply to a selected client platform and all
publications that exist on that platform. You can specify both platform events and
conditions using the Mobile Manager.

To assign platform-level automatic synchronization rules, perform the following in
Mobile Manager:

1. Click "Data Synchronization".

2. Click "Platform Settings", which brings up a page with the list of all the platforms
that support automatic synchronization.

3. Click on the desired platform.

4. Modify the following for each platform:

■ Event Rules—See Section 2.2.2.3.1, "Event Rules for Platforms".

■ Conditions—See Section 2.2.2.3.2, "Condition Rules for Platforms".

■ Network settings—See Section 2.2.2.3.4, "Network Configuration for the Client
Platform".

2.2.2.3.1 Event Rules for Platforms Table 2–4 shows the platform events for automatic
synchronization.

Server MGP
compose

If after the MGP compose cycle, the number of modified records for a user is
equal to or greater than your pre-defined number, then an automatic
synchronization occurs. Thus, if there are a certain number of records
contained in an Out Queue destined for a client on the server, these
modifications are synchronized to the client.

Note: If you want to modify the publication-level automatic
synchronization rules after you publish the appliation, you can do so
through the Mobile Manager, as follows:

1. Click Data Synchronization.

2. Click Repository.

3. Click Publications.

4. Select the publication and click Automatic Synchronization Rules.

Table 2–4 Automatic Event Rules for the Client Platform

Event Description

Network
bandwidth

If the mobile client detects that it is connected to a network with a
pre-defined minimum bandwidth, then automatic synchronization occurs.
Refer to Section 2.2.2.3.3, "Network Speed of SyncAgent"

Battery life If the battery life drops below a pre-defined minimum, then synchronization
is automatically triggered.

Table 2–3 (Cont.) Automatic Events for the Publication

Events Description

Enabling Automatic Synchronization

Synchronization 2-15

2.2.2.3.2 Condition Rules for Platforms Table 2–5 shows the platform conditions for
automatic synchronization.

2.2.2.3.3 Network Speed of SyncAgent For some platforms, there are APIs to determine
network type and optionally subtype but for some platforms like the Windows CE
(Windows Mobile) and Android, there is no API to query the exact network speed. For
these platforms, syncagent has a hardcoded set of values for network speed based on
the network type/subtype to determine the network type/subtype and choose the
hardcoded value based on that.

There are 2 ways network speed is used:

■ It is reported in syncagent status (see BGAgentStatus) in bits per second (bps).

■ It is used by syncagent to evaluate network rules. The network rules are created by
the user and set up on the server. They include network speed as a threshold
parameter (for example, sync is allowed only if network speed >= specified value).
Since for the aforementioned platforms, the network speed cannot be exactly
determined, the user needs to decide on how to create a network rule based on
network type/subtype. The user can choose the network speed value based on the
network type/subtype to allow sync, for example.

AC Power As soon as AC power is detected, then synchronization is automatically
triggered.

Time Synchronize at a specific time or time interval. You can configure an
automatic synchronization to occur at a specific time each day or as an
interval.

■ Select Specify Time if you want to automatically synchronize at a
specific hour, such as 8:00 AM, everyday.

■ Select Specify Time Interval if you want to synchronize at a specific
interval. For example, if you want to synchronize every hour, then
specify how long to wait in-between synchronization attempts.

Table 2–5 Automatic Condition Rules for Client Platform

Condition Description

Battery level Specify the minimum battery level required in order for an
automatic synchronization to start. The battery level is specified
as a percentage.

Network conditions Network quality can be specified using several properties. This
condition enables you to specify a minimum value for the
following network properties:

■ Minimum network bandwidth, which is measured in bits
per second.

■ Maximum ping delay, which is measured in milliseconds.

■ Data priority, which is either high or regular. You can
specify the priority of your data in the table row.

For example, you can define a rule where all high priority data is
automatically synchronized at a specified network bandwidth.
The ping delay is optional. If not specified, the ping is not
calculated.

Refer to Section 2.2.2.3.3, "Network Speed of SyncAgent"

Table 2–4 (Cont.) Automatic Event Rules for the Client Platform

Event Description

What is The Process for Setting Up a User For Synchronization?

2-16 Oracle Database Mobile Server Developer's Guide

For example, the user wants to allow only sync on Windows Mobile device if the
network is UMTS or faster, the user can set network speed threshold in the rule to be
2000000. Sync would then only be allowed on networks such as UMTS and 1xRTT,
BLUETOOTH, HSPDI, WIFI which are considered faster than UMTS.

For some other platforms like PJ client SE and OJEC syncagent currently has no
network management, so network rules are ignored.

2.2.2.3.4 Network Configuration for the Client Platform You can set proxy information for
your network provider, if required for accessing the internet.

You could have two types of networks, as follows:

■ Always-on: Define the proxy and port number. Clicl "Apply" when finished.

■ Dial-up:

– Click "Add Dial-up Network" to add a a new entry for dial-up configuration.

– To edit an existing configuration, select the name of the existing configuration.

– To delete an existing configuration, select the checkbox next to the desired
configuration and click "Delete".

If the platform has an always-on network, then this network is always tried first for
the connection. If this network is not available, then the dial-up networks are tried in
the order specified. You can rearrange the order of the dial-up networks by selecting
one of the networks and clicking the up or down button. For dial-up, Oracle Database
Mobile Server can automatically establish the network connection before initiating the
synchronization.

2.2.3 Enable the Server to Notify the Client to Initiate a Synchronization to Download
Data

If you have designed the compose yourself—that is, you do not use the MGP—then,
you can notify the client if any data exists on the server that can be downloaded to the
client through enqueue notification APIs. You can also use these APIs to manage the
automatic synchronization schedule for your clients.

For more information on enqueue notification APIs, see Section 2.12.3, "Selecting How
and When to Notify Clients of Composed Data".

2.2.4 Retrieve Status for Automatic Synchronization Events
You can develop your client application retrieve status for the Sync Agent and
automatic synchronization events or to be notified of the stage for automatic
synchronization. For full details, see Section 3.2.1, "OSE APIs for Managing Automatic
Synchronization" and Section 3.2.3, "OCAPI Notification APIs for the Automatic
Synchronization Cycle Status".

2.3 What is The Process for Setting Up a User For Synchronization?
Before you perform synchronization, you must do the following:

■ Create the publication.

Note: If you are not using a proxy, then you do not need to define
proxy information on this page.

What is The Process for Setting Up a User For Synchronization?

Synchronization 2-17

■ Create the user and grant the user access to the publication.

■ Package publication with an application and publish to the mobile server. This is
an optional step.

This is referred to as the publish and subscribe model, which can be implemented in
one of the following two ways:

■ Declaratively, using MDW to create the publication and the Packaging Wizard to
package and publish the applications. This is the recommended method. See
Section 2.3.1, "Creating a Snapshot Definition Declaratively" for details.

■ Programmatically, using the Resource Manager and the Consolidator Manager
APIs to invoke certain advanced features or customize an implementation. This
technique is recommended for advanced users requiring specialized functionality.
See Section 2.3.2, "Creating the Snapshot Definition Programmatically" for details.

Once created and subscribed, the user can be synchronized, as follows:

■ Using manual synchronization where the user initiates it from the device or
programmatically from within an application. This chapter discusses how to start
the synchronization programmatically in Section 3.1, "Invoke Manual
Synchronization on the Mobile Client".

■ Using automatic synchronization which is enabled within the publication item
itself or the platform configuration. For more informationon automatic
synchronization, see Section 2.2, "Enabling Automatic Synchronization".

On the back-end of the synchronization process, you have the option to customize
how the apply and compose phase are executed. See Section 2.6, "Customize the
Compose Phase Using MyCompose".

2.3.1 Creating a Snapshot Definition Declaratively
Use the Mobile Database Workbench (MDW), a GUI based tool of Oracle Database
Mobile Server—described fully in Chapter 4, "Using Mobile Database Workbench to
Create Publications"—to create snapshots declaratively. The convenience of a graphical
tool is a safer and less error prone technique for developers to create a mobile
application. Before actual application programming begins, the following steps must
be executed:

1. Verify that the base tables exist on the server database; if not, create the base table.

2. Use MDW to define an application and the snapshot with the necessary
publicatinon and its publication items. See Chapter 4, "Using Mobile Database
Workbench to Create Publications" for details.

3. Use the Packaging Wizard to publish the application to the mobile server. This
creates the publication items associated with the application. See Chapter 5, "Using
the Packaging Wizard" for details.

4. Use the Mobile Manager to create a subscription for a given user.

Note: The automatic synchronization property is enabled per
publication item basis. If a publication contains one or more automatic
synchronization enabled publication item, that publication is
automatic synchronization enabled. During an automatic
synchronization process, all publication items in that publication get
synchronized.

What is The Process for Setting Up a User For Synchronization?

2-18 Oracle Database Mobile Server Developer's Guide

5. Install the application on the development machine.

6. If using manual synchronization, initiate synchronization for the mobile client
with the mobile server to create the client-side snapshots. For the mobile client,
create the client database automatically.

2.3.1.1 Manage Snapshots
The mobile server administrator can manage a snapshot, which is a full set or a subset
of rows of a table or view. Create the snapshot by executing a SQL query against the
base table. Snapshots are either read-only or updatable.

The following sections describe how to manage snapshots using MDW:

■ Section 2.3.1.1.1, "Read-only Snapshots"

■ Section 2.3.1.1.2, "Updatable Snapshots"

■ Section 2.3.1.1.3, "Refresh a Snapshot"

■ Section 2.3.1.1.4, "Snapshot Template Variables"

2.3.1.1.1 Read-only Snapshots Read-only snapshots are used for querying purposes
only. The data is downloaded from the Oracle server to the client; no data on the client
is ever uploaded to the server. Any data added on the client in a read-only snapshot
can be lost, since it is never uploaded to the server. Changes made to the master table
in the back-end Oracle database server are replicated to the mobile client. See
Section 4.8.2, "Publication Item Tab Associates Publication Items With the Publication"
for instructions on how to define the publication item as read-only.

2.3.1.1.2 Updatable Snapshots When you define a snapshot as updatable, then the data
propagated within a synchronization is bi-directional. That is, any modifications made
on the client are uploaded to the server; any modifications made on the back-end
Oracle server are downloaded to the client. See Section 4.8.2, "Publication Item Tab
Associates Publication Items With the Publication" for instructions on how to define
the publication item as updatable.

A snapshot can only be updated when all the base tables that the snapshot is based on
have a primary key or virtual primary key. If the base tables do not have a primary
key, a snapshot cannot be updated and becomes read-only. Table 2–6 shows each
refresh method type and whether it is updatable or read-only depending on primary
key or virtual primary key:

Note: A subscription created as complete refresh and read-only is
light weight; thus, to keep the subscription light weight, the primary
keys are not included in the replication. If you want to include
primary keys, then create them with the
createPublicationItemIndex API.

Also, because read-only does not upload any data from the client,
there are no conflicts. Thus, when specified within MDW, you can
only select Custom for conflict resolution.

Table 2–6 Which Refresh Methods Can Be Updatable or Read-Only

Fast Complete Queue-Based

Table Uses a Primary
Key

Updatable or
Read-Only

Updatable or
Read-Only

Updatable or
Read-Only

What is The Process for Setting Up a User For Synchronization?

Synchronization 2-19

2.3.1.1.3 Refresh a Snapshot Your snapshot definition determines whether an
updatable snapshot uses the complete or fast refresh method.

■ The complete refresh method recreates the snapshot every time it is refreshed.
Note that when it recreates the snapshot, all of the data on the client database is
erased and then the snapshot for this user on the back-end Oracle database is
brought down to the client.

■ The fast refresh method refreshes only the modified data within the snapshot
definition on both the client and server. In general, the simpler your snapshot
definition, the faster it is updated. All fast refresh methods require a primary key
or a virtual primary key.

See Section 4.4, "Create a Publication Item" and Section 2.8, "Understanding Your
Refresh Options"

2.3.1.1.4 Snapshot Template Variables Snapshots are application-based. In some cases,
you may quantify the data that your application downloads for each user by
specifying all of the returned data match a predicate. You can accomplish this by using
snapshot templates.

A snapshot template is an SQL query that contains data subsetting parameters. A data
subsetting parameter is a colon (:), followed by an identifier name, such as:

:var1

When the mobile client creates snapshots on the client machine, the mobile server
replaces the snapshot variables with user-specific values. By specifying different
values for different users, you can control the data returned by the query for each user.

You can use MDW to specify a snapshot template variable in the same way that you
create a snapshot definition for any platform.

Data subsetting parameters are bind variables and so should not be enclosed in
quotation marks (’). If you want to specify a string as the value of the data subsetting
parameter, then the string contains single quotation marks. You can specify the values
for the template variables within the Mobile Manager.

The following examples specify a different value for every user. By specifying a
different value for every user, the administrator controls the behavior and output of
the snapshot template.

select * from emp where deptno = :dno

Table Uses a Virtual
Primary Key

Updatable or
Read-Only

Updatable or
Read-Only

Updatable or
Read-Only

No Primary Key or
Virtual Primary Key
Used

Not applicable since
all Fast Refresh tables
use a primary or
virtual primary key.

Read-Only Read-Only

Note: If the subsetting parameter is on a CHAR column of a
specified length, then you should either preset all characters to spaces
before setting the value or pad for the length of the column with
spaces after setting the parameter.

Table 2–6 (Cont.) Which Refresh Methods Can Be Updatable or Read-Only

Fast Complete Queue-Based

What is The Process for Setting Up a User For Synchronization?

2-20 Oracle Database Mobile Server Developer's Guide

You define this select statement in your publication item. See Section 4.4.1, "Create
SQL Statement for Publication Item" for instructions. Then, modify the user in the
Mobile Manager to add the value for :dno. Then, when the user synchronizes, the
value defined for the user is replaced in the select script. See Section 4.5, "Managing
Application Parameter Input (Data Subsetting)" in the Oracle Database Mobile Server
Administration and Deployment Guide for information on how to define the value of the
variable. This value can only be defined after the application is published and the user
is associated with it.

Table 2–7 provides a sample set of snapshot query values specified for separate users.

select * from emp where ename = :ename

Table 2–8 provides another sample snapshot query value.

2.3.2 Creating the Snapshot Definition Programmatically
You can use the Resource Manager or Consolidator Manager APIs to
programmatically create the publication items on the mobile server. Create publication
items from views and customize code to construct snapshots.

The base tables must exist before the Consolidator Manager API can be invoked. The
following steps are required to create a subscription:

■ Create a publication

■ Create a publication item and add it to the publication

■ Create a user

■ Creating a subscription for the user based on the publication

The details of how to create a publication are documented in Chapter 4, "Using Mobile
Database Workbench to Create Publications". Anything that you can do with the
MDW tool, you can also perform programmatically using the Consolidator Manager
API. Refer to the Oracle Database Mobile Server JavaDoc for the syntax.

Table 2–7 Snapshot Query Values for Separate Users

User Value Snapshot Query

John 10 select * from emp where deptno = 10

Jane 20 select * from emp where deptno = 20

Table 2–8 Snapshot Query Value for User Names

User Value Snapshot Query

John ’KING’ select * from emp where ename = ’KING’

Note: The Consolidator Manager API can only create a publication.
See Section 2.4, "Creating Publications Using Oracle Database Mobile
Server APIs" for information on the Consolidator Manager API. Use
the Resource Manager APIs to package it with an application, and
publish it to the mobile server. See the
oracle.mobile.admin.MobileResourceManager in the Oracle Database
Mobile Server JavaDoc, which you can link to off the MOBILE_
HOME/Mobile/doc/index.htm page.

Creating Publications Using Oracle Database Mobile Server APIs

Synchronization 2-21

2.4 Creating Publications Using Oracle Database Mobile Server APIs
The mobile server uses a publish and subscribe model to centrally manage data
distribution between Oracle database servers and mobile clients. Basic functions, such
as creating publication items and publications, can be implemented easily using the
Mobile Development Workspace (MDW). See Chapter 4, "Using Mobile Database
Workbench to Create Publications" for more information.

These functions can also be performed using the Consolidator Manager or Resource
Manager APIs by writing Java programs to customize the functions as needed. Some
of the advanced functionality can only be enabled programmatically using the
Consolidator Manager or Resource Manager APIs.

The publish and subscribe model can be implemented one of two ways:

■ Declaratively, using MDW to create the publication and the Packaging Wizard to
package and publish the applications. This is the recommended method. This
method is described fully in Chapter 4, "Using Mobile Database Workbench to
Create Publications" and Chapter 5, "Using the Packaging Wizard".

■ Programmatically, using the Consolidator Manager or Resource Manager APIs to
invoke certain advanced features or customize an implementation. This technique
is recommended for advanced users requiring specialized functionality.

■ Publications created with the Consolidator Manager API can be packaged
with an application. See Section 2.4.1, "Defining a Publication With Java
Consolidator Manager APIs".

■ The Resource Manager API can be used to associate a publication with an
application. See the
oracle.mobile.admin.MobileResourceManager.setApplicationPublication
()in the Oracle Database Mobile Server JavaDoc, which is located on the ORACLE_
HOME/Mobile/doc/index.htm page.

2.4.1 Defining a Publication With Java Consolidator Manager APIs
While we recommend that you use MDW (see Chapter 4, "Using Mobile Database
Workbench to Create Publications") for creating your publications, you can also create
them, including the publication items and the user, with the Consolidator Manager
API. Choose this option if you are performing more advanced techniques with your
publications.

The Consolidator Manager APIs can be packaged with the packaging wizard by
following the steps below:

1. Start the Packaging Wizard by opening a Command Prompt and entering
'wtgpack' or by going to Start -> Programs-> Oracle Database Mobile Server 12c
and clicking on the Packaging Wizard shortcut.

2. Select "Create a New Aplication" on the "Make a Selection'"screen, and click "OK".

3. Select one of Berkeley DB, SQLite or Java DB (for the application attributes), a
Platform and Locale then click "Next".

4. On the application panel, enter the Application Name, Virutal Path, Description,
and Local Application Directory (use the 'Browse' button to navigate to this
folder). Click "OK".

5. Click "Browse" for the Publication Name or input the name of the publication
directly in the text area for the Publication Name.

Creating Publications Using Oracle Database Mobile Server APIs

2-22 Oracle Database Mobile Server Developer's Guide

6. Enter the Repository Username, Password and Database URL in the "Connect to
Database" dialog.

7. Click "OK".

8. Select the publication and click "Add" in the "Publication Name" list.

9. Click "Next"

10. Use the "Load" option to upload any files and click "Finish" .

11. Ensure "Publish the Current Application" is selected in the "Application Definition
Completed" screen, and click "OK".

12. Enter the Mobile Server URL, Mobile Manger Admin Username, Password, and
Repository Directory for the "Publish the Application" screen. Click "OK".

13. When the Message dialog reports that the application is published successfully,
click "OK" .

14. Click '"Exit" to close the Application Definition Completed dialog and the
Packaging Wizard.

After creating the database tables in the back-end database, create the Resource
Manager and Consolidator Manager objects to facilitate the creation of your
publication:

■ The Resource Manager object enables you to create users to associate with the
subscription.

■ The Consolidator Manager object enables you to create the subscription.

The order of creating the elements in the publication is the same as if you were using
MDW. You must create a publication first and then add the publication items and
other elements to it. Once the publications are created, subscribe users to them. See the
Oracle Database Mobile Server JavaDoc for full details on each method. See Chapter 4,
"Using Mobile Database Workbench to Create Publications" for more details on the
order of creating each element.

■ Section 2.4.1.1, "Create the Mobile Server User"

■ Section 2.4.1.2, "Create Publications"

■ Section 2.4.1.3, "Create Publication Items"

■ Section 2.4.1.4, "Define Publication-Level Automatic Synchronization Rules"

■ Section 2.4.1.5, "Data Subsetting: Defining Client Subscription Parameters for
Publications"

■ Section 2.4.1.6, "Create Publication Item Indexes"

■ Section 2.4.1.7, "Adding Publication Items to Publications"

Note: The following sections use the sample11.java sample to
demonstrate the Resource Manager and Consolidator Manager
methods used to create the publication and the users for the
publication. The full source code for this sample can be found in the
following directories:

On UNIX: <ORACLE_HOME>/mobile/server/demos/consolidator_api

On Windows: <ORACLE_HOME>\Mobile\Server\demos\consolidator_
api

Creating Publications Using Oracle Database Mobile Server APIs

Synchronization 2-23

■ Section 2.4.1.8, "Creating Client-Side Sequences for the Downloaded Snapshot"

■ Section 2.4.1.9, "Subscribing Users to a Publication"

■ Section 2.4.1.10, "Instantiate the Subscription"

■ Section 2.4.1.11, "Bringing the Data From the Subscription Down to the Client"

■ Section 2.4.1.12, "Modifying a Publication Item"

■ Section 2.4.1.13, "Callback Customization for DML Operations"

■ Section 2.4.1.14, "Restricting Predicate"

2.4.1.1 Create the Mobile Server User
Use the createUser method of the MobileResourceManager object to create the user for
the publication.

1. Create the MobileResourceManager object. A connection is opened to the mobile
server. Provide the schema name, password, and JDBC URL for the database the
contains the schema (the repository).

2. Create one or more users with the createUser method. Provide the user name,
password, the user's real name, and privilege, which can be one of the one of the
following: "O" for publishing an application, "U" for connecting as user, or "A" for
administrator. If NULL, no privilege is assigned.

Note: To call the Publish and Subscribe methods, the following JAR
files must be specified in your CLASSPATH.

■ <ORACLE_HOME>\jdbc\lib\ojdbc6.jar

■ <ORACLE_HOME>\Mobile\classes\consolidator.jar

■ <ORACLE_HOME>\Mobile\classes\classgen.jar

■ <ORACLE_HOME>\Mobile\classes\servlet.jar

■ <ORACLE_HOME>\Mobile\classes\xmlparserv2.jar

■ <ORACLE_HOME>\Mobile\classes\jssl-1_1.jar

■ <ORACLE_HOME>\Mobile\classes\javax-ssl-1_2.jar

■ <ORACLE_HOME>\Mobile\classes\share.jar

■ <ORACLE_HOME>\Mobile\classes\oracle_ice.jar

■ <ORACLE_HOME>\Mobile\classes\phaos.jar

■ <ORACLE_HOME>\Mobile\classes\jewt4.jar

■ <ORACLE_HOME>\Mobile\classes\jewt4-nls.jar

■ <ORACLE_HOME>\Mobile\classes\wtgpack.jar

■ <ORACLE_HOME>\Mobile\classes\jzlib.jar

■ <ORACLE_HOME>\Mobile\Sdk\bin\devmgr.jar

Note: Always request a drop user before you execute a create, in case
this user already exists.

Creating Publications Using Oracle Database Mobile Server APIs

2-24 Oracle Database Mobile Server Developer's Guide

3. Commit the transaction, which was opened when you created the
MobileResourceManager object, and close the connection.

MobileResourceManager mobileResourceManager =
 new MobileResourceManager(CONS_SCHEMA, DEFAULT_PASSWORD, JDBC_URL);
mobileResourceManager.createUser("S11U1", "manager", "S11U1", "U");
mobileResourceManager.commitTransaction();
mobileResourceManager.closeConnection();

2.4.1.1.1 Change Password You can change passwords for mobile server users with the
setPassword method, which has the following syntax:

public static void setPassword
 (String userName,
 String newpwd) throws Throwable

Execute the setPassword method before you commit the transaction and release the
connection. The following example changes the password for the user MOBILE:

mobileResourceManager.setPassword("MOBILE","MOBILENEW");

2.4.1.2 Create Publications
A subscription is an association of publications and the users who access the
information gathered by the publications. Create any publication through the
ConsolidatorManager object.

1. Create the ConsolidatorManager object.

2. Connect to the database using the openConnection method. Provide the schema
name, password, and JDBC URL for the database the contains the schema.

3. Create the publication with the createPublication method, which creates an
empty publication. An example of the createPublication method syntax is as
follows:

createPublication(
 java.lang.String name,
 java.lang.String db_inst,
 int client_storage_type,
 java.lang.String client_name_template,
 java.lang.String enforce_ri,
 int dev_types_flg)

The createPublication method can have some of the following input parameters:

■ name—A character string specifying the new publication name.

■ db_inst—NULL, unless you are using a registered database for application
data. If using a registered database, provide the application database name in
this field.

■ client_storage_type—An integer specifying the client storage type for all
publication items in the new publication. If you are defining a publication

Note: If you do not want to create any users, you do not need to
create the MobileResourceManager object.

Note: Both user name and passwords are limited to a maximum of
28 characters.

Creating Publications Using Oracle Database Mobile Server APIs

Synchronization 2-25

exclusively for a Berkeley DB, SQLite or Java DB Mobile Client, specify the
Consolidator.BDB_CREATOR_ID, Consolidator.SQLITE_CREATOR_ID, or
Consolidator.JAVADB_CREATOR_ID appropriately as the storage type.

Other values are Consolidator.DFLT_CREATOR_ID and Consolidator.OKPI_
CREATOR_ID.

■ client_name_template—A template for publication item instance names on
client devices. This parameter contains the following predefined values:

– %s—Default.

– DATABASE.%s—Causes all publication items to be instantiated inside a
client database with the name DATABASE.

– SFT-EE_%s—Must be used for Satellite Forms-based applications.

■ enforce_ri—Reserved for future use. Use NULL or an empty string.

■ dev_types_flg—Specifies which device types or platforms the publication
supports. The default flag is set to Consolidator.DEV_FLG_GEN, which includes
all device platforms. If a publication is for more than one platform, use the
sum of the platform flags.

Available platforms are as follows:

– SQLite DB: "SQLite LINUX", SQLite WCE", "SQLite WIN32", "SQLiteJava"

– Berkeley DB: "BDB LINUX", "BDB DB WCE", "BDB DB WIN32",
"BDBJava"

– Java DB: "JDBJava"

To retrieve the device flag for a platform, call the getPlatformDevFlg function.
The syntax for this function is as follows:

int getPlatformDevFlg(java.lang.String platform)

ConsolidatorManager consolidatorManager = new ConsolidatorManager();
consolidatorManager.openConnection(CONS_SCHEMA, DEFAULT_PASSWORD, JDBC_URL);
consolidatorManager.createPublication("T_SAMPLE11", NULL
 Consolidator.SQLITE_CREATOR_ID, "Orders.%s", NULL);

After a publication is created, the client name template is fixed. If changes to the client
name template are absolutely necessary, then it must be recreated by recreating the
publication. For an example of how to recreate an existing publication with a different
name and change the client name template, see the ReCreateTemplate.java sample.

Note: For Pure Java Client, Android and BlackBerry platforms,
"SQLiteJava", "BDBJava", and "JDBJava" should be specified for SQLite
Mobile Client, Berkeley DB Mobile Client and Java DB Mobile Client
respectively.

Note: Always request a drop publication before you execute a create,
in case this publication already exists.

Note: Special characters including spaces are supported in
publication names. The publication name is case-sensitive.

Creating Publications Using Oracle Database Mobile Server APIs

2-26 Oracle Database Mobile Server Developer's Guide

This sample demonstrates how to create a new publication and mirror the old
publication's publication items, scripts, sync rules, and subscribing users in the new
publication. After the new publication is created, then there will be a new client name
template as well.

The full source code for this sample can be found in the following directories:

■ On Windows:

<ORACLE_HOME>\Mobile\Server\demos\consolidator_api\recreateTemplate.bat
<ORACLE_HOME>\Mobile\Server\demos\consolidator_api\ReCreateTemplate.java

■ On Linux:

<ORACLE_HOME>/mobile/server/demos/consolidator_api/recreateTemplate.sh
<ORACLE_HOME>/mobile/server/demos/consolidator_api/ReCreateTemplate.java

To use this sample, first run this command to compile the sample source code:

javac -cp .;consolidator.jar ReCreateTemplate.java.
Then run the recreateTemplate.bat script on Windows and ReCreateTemplate.sh script
on Linux with necessary parameters. For example:

recreateTemplate.bat mobileadmin manager jdbc:oracle:thin:@localhost:1521:orcl MY_
PUB MY_NEW_PUB

2.4.1.3 Create Publication Items
An empty publication does not have anything that is helpful until a publication item is
added to it. Thus, after creating the publication, it is necessary to create the publication
item, which defines the snapshot of the base tables that is downloaded for your user.

When you create each publication item, you can specify the following:

■ Column data: When you specify column data in the publication item, you should
first verify what data types are supported and how others are modified when
brought down to the client database.

Also, the publication item query must select primary keys in the same order as
they are defined in the base table.

■ Automatic or Manual Synchronization: Whether the publication item is to be
synchronized automatically or manually.

■ Refresh Mode: The refresh mode of the publication item is specified during
creation to be either fast, complete-refresh, or queue-based.

■ Data-Subsetting Parameters: You can also establish the data-subsetting parameters
when creating the publication item, which provides a finer degree of control on the
data requirements for a given client.

■ If you are using a registered database for application data.

Note: You can create a publication using MDW. To see more details
on publications and publication items, refer to Section 4.4, "Create a
Publication Item".

Note: For full details on the method parameters, see the Oracle
Database Mobile Server JavaDoc.

Creating Publications Using Oracle Database Mobile Server APIs

Synchronization 2-27

Publication item names are limited to twenty-six characters and must be unique across
all publications. The publication item name is case-sensitive. The following examples
create a publication item named P_SAMPLE11-M.

The following example uses the createPublicationItem method, which creates a
manual synchronization publication item P_SAMPLE11-M based on the
ORD_MASTER database table with fast refresh. Use the addPublicationItem method to
add this publication item to the publication.

consolidatorManager.createPublicationItem("P_SAMPLE11-M", "MASTER",
 "ORD_MASTER", "F", "SELECT * FROM MASTER.ORD_MASTER", NULL, NULL);

When you create a publication item that uses automatic synchronization through the
createPublicationItem method, you can also define the following:

■ Automatic Synchronization: Set the publication to use automatic synchronization
by setting the isLogBased flag to true.

■ Server-initiated change notifications: If you set the doChangeNtf flag to true, then
the mobile server sends a notification to the client if any changes are made on the
server for this publication item.

■ Set what constraints are replicated to the client: If you set the setDfltColOptions
flag to true, the default values and NOT NULL constraints are replicated to the client.
However, if you are using a SQLite Mobile Client, then you might want to set the
setDfltColOptions flag to false, as SQLite does not support the same SQL
functions as Oracle. If setDfltColOptions is set to true (default) when the
publication item is created, synchronization automatically uses the default clause
from Oracle meta data, which is not supported by SQLite. Alternatively, you can
execute the ConsolidatorManager.setPubItemColOption method to set a
supported SQLite expression.

■ Create a client sub-query to return unique client ids in the cl2log_rec_stmt
parameter. The client sub-query correlates the primary key of the changed records
in the log table with the Consolidator client id. The log table contains the changes
for the table and is named clg$<tablename>.

Note: Always drop the publication item in case an item with the
same name already exists.

Note: For full details on the method parameters, see the Oracle
Database Mobile Server JavaDoc.

Creating Publications Using Oracle Database Mobile Server APIs

2-28 Oracle Database Mobile Server Developer's Guide

For example, if the publication item SQL query is as follows:

SELECT * FROM scott.emp a
 WHERE deptno in
 (select deptno from scott.emp b
 where b.empno = :empno)

Assuming that the Consolidator client id is empno and the snapshot table is emp,
then the client sub-query queries for data changes in the clg$emp log table as
follows:

SELECT empno as clid$$cs FROM scott.clg$emp
 UNION SELECT empno as clid$$cs FROM scott.emp
 WHERE deptno in (select deptno from scott.clg$dept)

The following example uses the automatic synchronization version of
createPublicationItem method, which uses the PubItemProps class to define all
publication item definitions, including automatic synchronization, as follows:

PubItemProps pi_props = new PubItemProps();
pi_props.db_inst = NULL; // Provide registered db instance name or NULL
pi_props.owner = "MASTER"; // owner schema
pi_props.store = STORES[i][0]; // store
pi_props.refresh_mode = "F"; //default // uses fast refresh
pi_props.select_stmt = // specify select statement for snapshot
 "SELECT * FROM "+"MASTER"+"."+STORES[i][0]+ " WHERE C1 =:CLIENTID";
pi_props.cl2log_rec_stmt = "SELECT base.C1 FROM " // client sub-query to
 + "MASTER"+"."+STORES[i][0] + " base," // return unique clientids
 + "MASTER"+".CLG$"+STORES[i][0] + " log"
 + " WHERE base.ID = log.ID";
// Setting "isLogBased" to True enables automatic sync for this pub item.
pi_props.isLogBased = true;
// If doChangeNtf is true, automatic publication item sends notifications
// from server about new/modified records
pi_props.doChangeNtf = true;

cm.createPublicationItem(PUBITEMS[i], pi_props);
cm.addPublicationItem(PUB,PUBITEMS[i],NULL,NULL,"S",NULL,NULL);

Notes:

■ If you are creating a fast refresh publication item on a table with a
composite primary key, the snapshot query must match the
primary key columns in the order that they are present in the table
definition. This automatically happens during the column
selection when MDW is used or when a SELECT * query is used.
Note that the order of the primary key columns in the table
definition may be different from those in the primary key
constraint definition.

■ A subscription created as complete refresh and read only is light
weight; thus, to keep the subscription light weight, the primary
keys are not included in the replication. If you want to include a
primary key, then you can create it with the
createPublicationItemIndex API.

Creating Publications Using Oracle Database Mobile Server APIs

Synchronization 2-29

2.4.1.3.1 Defining Publication Items for Updatable Multi-Table Views Publication items can be
defined for both tables and views. When publishing updatable multi-table views, the
following restrictions apply:

■ The view must contain a parent table with a primary key defined.

■ INSTEAD OF triggers must be defined for data manipulation language (DML)
operations on the view. See Section 2.8, "Understanding Your Refresh Options" for
more information.

■ All base tables of the view must be published.

2.4.1.4 Define Publication-Level Automatic Synchronization Rules
Once the publication is created, you can create and add automatic synchronization
rules that apply to all enabled publication items in this publication. Perform the
following to add a rule to a publication:

1. The rule is made up of a rule name and a String that contains the rule definition.
The rules can be created using the Rules classes and RuleInfo objects.

a. Define the rule and convert it to a String using the RuleInfo object and the
setSyncRuleParams method.

RuleInfo ri = Rules.RULE_MAX_DB_REC_ri;
ri.params.put(Rules.PARAM_NREC,"5");
String ruleText = cm.setSyncRuleParams(ri.type,ri.params);

There are RuleInfo objects for all of the main automatic synchronization rules.
So, in order to specify a rule, you obtain the appropriate RuleInfo object from
the Rules class and then define the variable. Table 2–9, " Automatic
Synchronization Rule Info Objects" describes the different types of rules you
can specify for triggering automatic synchronization:

Note: See the Oracle Database Mobile Server JavaDoc for syntax and the
parameters that you need to set for each rule.

Table 2–9 Automatic Synchronization Rule Info Objects

Rule Info Object Description

RULE_MAX_DB_REC_ri For mobile clients only. An automatic synchronization is
triggered if the client transaction log contains more than
NREC modified records.

RULE_NOTIFY_MAX_PUB_REC_ri Synchronize if the Out Queue contains more than NREC
modified records, where you specify the NREC of
modifed records in the server database to trigger an
automatic synchronization.

RULE_MAX_PI_REC_ri Client automatically synchronizes if the number of
modified records for a publication item is greater than
NREC.

RULE_HIGH_BANDWIDTH_ri Synchronize when the network bandwidth is greater
than <number> bits/second. Where <number> is an
integer that indicates the bandwidth bits/seconds.
When the bandwidth is at this value, the
synchronization occurs.

RULE_LOW_PWR_ri Synchronize when the battery level drops to <number>%,
where <number> is a percentage. Often you may wish to
synchronize before you lose battery power.

Creating Publications Using Oracle Database Mobile Server APIs

2-30 Oracle Database Mobile Server Developer's Guide

b. Define a name for the rule, which should be a name not attached to any
particular publication, so you can use the rule for several publications.

2. Create the rule with the createSyncRule method, which creates the rule with the
name, the String containing the rule, and a boolean on whether to replace the rule
if it already exists. Once completed, then this rule can be associated with any
publication.

boolean replace = true;
cm.createSyncRule (ruleName, ruleText, replace);

3. Associate the rule with the desired publication or platform using the addSyncRule
method. This method can add any existing rule to a designated publication. To
add to a publication, use the publication name as the first parameter, as follows:

cm.addSyncRule(PUB, ruleName);

To add a rule to a client platform—Win32 or Windows Mobile platform—perform
the following:

cm.addSyncRule(Consolidator.DEFAULT_TEMPLATE_WIN32, rulename);

Where the platform name is a constant defined in the Consolidator class as
DEFAULT_TEMPLATE_WIN32, DEFAULT_TEMPLATE_WCE,DEFAULT_TEMPLATE_
LINUX or DEFAULT_TEMPLATE_JAVA.

You can also perform the following:

■ Section 2.4.1.4.1, "Retrieve All Publications Associated with a Rule"

■ Section 2.4.1.4.2, "Retrieve Rule Text"

RULE_AC_PWR_ri Synchronize when the AC power is detected; that is,
when the device is plugged in.

RULE_MIN_MEM_ri Specify the minimum battery level required in order for
an automatic synchronization to start. The battery level
is specified as a percentage.

RULE_NET_PRIORITY_ri Network conditions can be specified using the following
properties: data priority, ping delay and network
bandwidth.

RULE_MIN_PWR_ri If the battery life drops below a pre-defined minimum,
then synchronization is automatically triggered.

NET_CONFIG_ri Configure network parameters (currently only the
network specific proxy configuration is supported) The
configuration rule contains a vector of hashtables with a
hashtable representing properties of each individual
network.

RULE_TIME_INTERVAL_ri Schedule sync at a given time of day with a certain
frequency (interval).

Specify the time (PARAM_START_TIME) for an automatic
synchronization to start. The format of time is standard
date string: H24:MI:SS e.g. 00:00:00 or 23:59:00 The time
is GMT. If not set, the synchronization starts when the
Sync Agent starts and all other conditions are satisfied
Set the period (PARAM_PERIOD), in seconds, to specify the
frequency of scheduled synchronization events.

Table 2–9 (Cont.) Automatic Synchronization Rule Info Objects

Rule Info Object Description

Creating Publications Using Oracle Database Mobile Server APIs

Synchronization 2-31

■ Section 2.4.1.4.3, "Check if Rule is Modified"

■ Section 2.4.1.4.4, "Remove Rule"

2.4.1.4.1 Retrieve All Publications Associated with a Rule Just as you can with scripts and
sequences that are associated with publications, you can retrieve all publications that
are associated with a rule with the getPublicationNames method. The following
retrieves all publications that are associated with the rule within the ruleName variable.
The object type is defined as Consolidator.RULES_OBJECT.

String[] pubs = cm.getPublicationNames (ruleName , Consolidator.RULES_OBJECT);

2.4.1.4.2 Retrieve Rule Text You can retrieve the text of the rule using the getSyncRule
and providing the rule name. This is useful if you are not sure what the rule is and
need to discover the text before associating it with another publication.

String retStr = cm.getSyncRule (ruleName);

2.4.1.4.3 Check if Rule is Modified You can compare the rule within the repository with a
provided string to see if the rule has been modified with the isSyncRuleModified
method. A boolean value of true is returned if the provided ruleText is different from
what exists in the repository.

boolean ismod = cm.isSyncRuleModified (ruleName, ruleText);

2.4.1.4.4 Remove Rule You can remove the association of a rule from a publication by
using the removeSyncRule method. You can delete the entire rule from the repository
by using the dropSyncRule method. If you drop the rule and it is still associated with
one or more publications, the rule is automatically unassociated from these
publications.

2.4.1.5 Data Subsetting: Defining Client Subscription Parameters for Publications
Data subsetting is the ability to create specific subsets of data and assign them to a
parameter name that can be assigned to a subscribing user. When creating publication
items, a parameterized Select statement can be defined. Subscription parameters
must be specified at the time the publication item is created, and are used during
synchronization to control the data published to a specific client.

Creating a Data Subset Example
consolidatorManager.createPublicationItem("CORP_DIR1",
 "DIRECTORY1", "ADDRLRL4P", "F" ,
 "SELECT LastName, FirstName, company, phone1, phone2, phone3, phone4,
 phone5, phone1id, phone2id, phone3id, displayphone, address, city, state,
 zipcode, country, title, custom1, custom2, custom3, note
 FROM directory1.addrlrl4p WHERE company = :COMPANY", NULL, NULL);

In this sample statement, data is being retrieved from a publication named CORP_DIR1,
and is subset by the variable COMPANY.

When a publication uses data subsetting parameters, set the parameters for each
subscription to the publication. For example, in the previous example, the parameter
COMPANY was used as an input variable to describe what data is returned to the client.
You can set the value for this parameter with the setSubscriptionParameter method.

Note: Within the select statement, the parameter name for the
data subset must be prefixed with a colon, for example:COMPANY.

Creating Publications Using Oracle Database Mobile Server APIs

2-32 Oracle Database Mobile Server Developer's Guide

The following example sets the subscription parameter COMPANY for the client DAVIDL
in the CORP_DIR1 publication to DAVECO:

consolidatorManager.setSubscriptionParameter("CORP_DIR1", "DAVIDL",
 "COMPANY", "'DAVECO'");

2.4.1.6 Create Publication Item Indexes
The mobile server supports automatic deployment of indexes on mobile clients. The
mobile server automatically replicates primary key indexes from the server database.
The Consolidator Manager API provides calls to explicitly deploy unique, regular, and
primary key indexes to clients as well.

By default, the primary key index of a table is automatically replicated from the server.
You can create secondary indexes on the snapshot table for a publication item. If you
do not want the primary index, you must explicitly drop it from the publication item.

If you want to create and associate other indexes on any columns in your application
tables in the publication item, then use the createPublicationItemIndex method. You
can drop an index from the publication item and from the snapshot table with the
dropPublicationItemIndex method.

The following demonstrates how to set up indexes on the name field in our
publication item P_SAMPLE11-M:

consolidatorManager.createPublicationItemIndex("P_SAMPLE11M-I3",
 "P_SAMPLE11-M", "I", "NAME");

An index can contain more than one column. You can define an index with multiple
columns, as follows:

consolidatorManager.createPublicationItemIndex("P_SAMPLE11D-I1", "P_SAMPLE11-D",
 "I", "KEY,NAME");

2.4.1.6.1 Define Client Indexes Client-side indexes can be defined for existing
publication items. There are three types of indexes that can be specified:

■ P - Primary key is an index based off of the primary keys.

■ U - Unique enforces the unique constraint on the indexed columns, which ensures
that duplicate values do not exist in the columns being indexed.

■ I - Regular does not provide the UNIQUE constraint on the indexed columns.

Note: This method should only be used on publications created
using the Consolidator Manager API. To create template variables,
a similar technique is possible using MDW.

Note: All indexes created by this API can be viewed within the
CV$ALL_PUBLICATIONS_INDEXES view.

Note: When an index of type 'U' or 'P' is defined on a publication
item, there is no check for duplicate keys on the server. If the same
constraints do not exist on the base object of the publication item,
synchronization may fail with a duplicate key violation. See the Oracle
Database Mobile Server API Specification for more information.

Creating Publications Using Oracle Database Mobile Server APIs

Synchronization 2-33

2.4.1.7 Adding Publication Items to Publications
Once you create a publication item, you must associate it with a publication using the
addPublicationItem method, as follows:

consolidatorManager.addPublicationItem("T_SAMPLE11", "P_SAMPLE11-M",
 NULL, NULL, "S", NULL, NULL);

See Section 2.4.1.12, "Modifying a Publication Item" for details on how to change the
definition.

2.4.1.7.1 Defining Conflict Rules When adding a publication item to a publication, the
user can specify winning rules to resolve synchronization conflicts in favor of either
the client or the server. See Section 2.10, "Resolving Conflicts with Winning Rules" for
more information.

2.4.1.7.2 Using Table Weight Table weight is an integer associated with publication
items that determines in what order the transactions for all publication items within
the publication are processed. For example, if three publication items exist—one that
contains SQL to modify the emp table, one that modifies the dept table, and one that
modifies the mgr table, then you can define the order in which the transactions
associated with each publication item are executed. In our example, assign table
weight of 1 to the publication item that contains the dept table, table weight of 2 to the
publication item that contains the mgr table, and table weight of 3 to the publication
item that contains the emp table. In doing this, you ensure that the publication item that
contains the master table dept is always processed first, followed by the publication
item that modifies the mgr table, and lastly by the publication item that modifies the
emp table.

The insert, update, and delete client operations are executed in the following order:

1. Client INSERT operations are executed first, from lowest to highest table weight
order. This ensures that the master table entries are added before the details table
entries.

2. Client DELETE operations are executed next, from highest to lowest table weight
order. Processing the delete operations ensures that the details table entries are
removed before the master table entries.

3. Client UPDATE operations are executed last, from highest to lowest table weight
order.

In our example with dept, mgr, and emp tables, the execution order would be as
follows:

1. All insert operations for dept are processed.

2. All insert operations for mgr are processed.

3. All insert operations for emp are processed.

4. All delete operations for emp are processed.

5. All delete operations for mgr are processed.

6. All delete operations for dept are processed.

7. All update operations for emp are processed.

8. All update operations for mgr are processed.

9. All update operations for dept are processed.

Creating Publications Using Oracle Database Mobile Server APIs

2-34 Oracle Database Mobile Server Developer's Guide

A publication can have more than one publication item of weight 2. In this case, it does
not matter which publication is executed first.

Define the order weight for publication items when you add it to the publication.

2.4.1.8 Creating Client-Side Sequences for the Downloaded Snapshot
A sequence is a database schema object that generates sequential numbers. After
creating a sequence, you can use it to generate unique sequence numbers for
transaction processing. These unique integers can include primary key values. If a
transaction generates a sequence number, the sequence is incremented immediately
whether you commit or roll back the transaction. For full details of what a sequence is
and how Oracle Database Mobile Server creates them, see Section 4.6, "Create a
Sequence".

If you do not want to use MDW to create a sequence, you can use the Consolidator
Manager API to manage the sequences with methods that create/drop a sequence,
add/remove a sequence from a publication, modify a sequence, and advance a
sequence window for each user. All of the same behavior exists for the Consolidator
Manager APIs as are available through MDW.

Once you have created the sequence, you place it into the publication with the
publication item to which it applies.

See the Oracle Database Mobile Server API Specification for a complete listing of the APIs
to define and administrate sequences.

2.4.1.9 Subscribing Users to a Publication
Subscribe the users to a publication using the createSubscription function. The
following creates a subscription between the S11U1 user and the T_SAMPLE11
publication:

consolidatorManager.createSubscription("T_SAMPLE11", "S11U1");

2.4.1.10 Instantiate the Subscription
After you subscribe a user to a publication, you complete the subscription process by
instantiating the subscription, which associates the user with the publication in the
back-end database. The next time that the user synchronizes, the data snapshot from
the publication is provided to the user.

consolidatorManager.instantiateSubscription("T_SAMPLE11", "S11U1");

//Close the connection.

Note: Sequences are only supported in Berkeley DB Mobile Clients.

Note: The sequence name is case-sensitive.

Note: If the sequences do not work properly, check your parent
publications. All parent publications must have at least one
publication item. If you do not have any publication items for the
parent publication, then create a dummy publication item within the
parent.

Creating Publications Using Oracle Database Mobile Server APIs

Synchronization 2-35

consolidatorManager.closeConnection();

2.4.1.11 Bringing the Data From the Subscription Down to the Client
You can perform the synchronization and bring down the data from the subscription
you just created. The client executes SQL queries against the client database to retrieve
any information. This subscription is not associated with any application, as it was
created using the low-level Consolidator Manager APIs.

2.4.1.12 Modifying a Publication Item
You can add additional columns to existing publication items. These new columns are
pushed to all subscribing clients the next time they synchronize. This is accomplished
through a complete refresh of all changed publication items.

■ An administrator can add multiple columns, modify the WHERE clause, add new
parameters, and change data type.

■ This feature is supported for all mobile client platforms.

■ The client does not upload snapshot information to the server. This also means the
client cannot change snapshots directly on the client database.

■ Publication item upgrades are deferred during high priority synchronizations.
This is necessary for low bandwidth networks, such as wireless, because all
publication item upgrades require a complete refresh of changed publication
items. While the high priority flag is set, high priority clients continues to receive
the old publication item format.

■ The server needs to support a maximum of two versions of the publication item
which has been altered.

To change the definition, use one of the following:

■ If the publication item is read-only, then modify the publication item either with
the reCreatePublicationItem method or by dropping and creating the
publication item with the dropPublicationItem and createPublicationItem
APIs.

■ If the publication item is updatable, then you can use the alterPublicationItem
method. This method enables a smooth transition of changing any table structure
on both the client and the server for updatable publications.

If you use the alterPublicationItem method, you must follow it up by executing
the resetCache method. The metadata cache should be reset every time a change
is made to the publication or publication items. If you make the change though
Mobile Manager, then the Mobile Manager calls the resetCache method. You can
reset the metadata cache from the Mobile Manager or execute the resetCache
method, part of the ConsolidatorManager class.

You may use the alterPublicationItem method for schema evolution to add
columns to an existing publication item. The WHERE clause may also be altered. If
additional parameters are added to the WHERE clause, then these parameters
must be set before the alter occurs. See the setSubscriptionParams method.
However, if you are creating a fast refresh publication item on a table with a

Note: If you need to set subscription parameters for data
subsetting, this must be completed before instantiating the
subscription. See Section 2.4.1.5, "Data Subsetting: Defining Client
Subscription Parameters for Publications" for more information.

Creating Publications Using Oracle Database Mobile Server APIs

2-36 Oracle Database Mobile Server Developer's Guide

composite primary key, the snapshot query must match the primary key columns
in the order that they are present in the table definition. This automatically
happens during the column selection when MDW is used or when a SELECT *
query is used. Note that the order of the primary key columns in the table
definition may be different from those in the primary key constraint definition.

consolidatorManager.alterPublicationItem("P_SAMEPLE1", "select * from
 EMP");

2.4.1.13 Callback Customization for DML Operations
Once a publication item has been created, a user can use the Consolidator Manager
API to specify a customized PL/SQL procedure that is stored in the mobile server
repository to be called in place of all DML operations for that publication item. There
can be only one DML procedure for each publication item. The procedure should be
created as follows:

AnySchema.AnyPackage.AnyName(DML in CHAR(1), COL1 in TYPE, COL2 in TYPE,
 COLn.., PK1 in TYPE, PK2 in TYPE, PKn..)

The parameters for customizing a DML operation are listed in Table 2–10:

The following defines a DML procedure for publication item exp:

select A,B,C from publication_item_exp_table

Assuming A is the primary key column for exp, then your DML procedure would have
the following signature:

any_schema.any_package.any_name(DML in CHAR(1), A in TYPE, B in TYPE, C
 in TYPE,A_OLD in TYPE)

Note: If the select statement does not change, then the call to the
alterPublicationItem() method has no effect.

Note: You can use the generateMobileDMLProcedure to generate the
procedure specification for a given publication item. This specification
can be used as a starting point in creating your own custom DML
handling logic in a PL/SQL procedure. See the Oracle Database Mobile
Server API Specification for more information.

Table 2–10 Mobile DML Operation Parameters

Parameter Description

DML DML operation for each row. Values can be "D" for DELETE, "I" for
INSERT, or "U" for UPDATE.

COL1 ... COLn List of columns defined in the publication item. The column names
must be specified in the same order that they appear n the publication
item query. If the publication item was created with "SELECT * FROM
exp", the column order must be the same as they appear in the table
"exp".

PK1 ... PKn List of primary key columns. The column names must be specified in
the same order that they appear in the base or parent table.

Creating Publications Using Oracle Database Mobile Server APIs

Synchronization 2-37

During runtime, this procedure is invoked with 'I', 'U', or 'D' as the DML type. For
insert and delete operations, A_OLD is NULL. In the case of updates, it is set to the
primary key of the row that is being updated. Once the PL/SQL procedure is defined,
it can be attached to the publication item through the following API call:

consolidatorManager.addMobileDmlProcedure("PUB_exp","exp",
 "any_schema.any_package.any_name")

where exp is the publication item name and PUB_exp is the publication name.

Refer to the Oracle Database Mobile Server API Specification for more information.

2.4.1.13.1 DML Procedure Example The following piece of PL/SQL code defines an
actual DML procedure for a publication item in one of the sample publications. As
described below, the ORD_MASTER table. The query was defined as:

SELECT * FROM "ord_master", where ord_master has a single
 column primary key on "ID"

ord_master Table
SQL> desc ord_master
Name Null? Type
--- -------- -------------
ID NOT NULL NUMBER(9)
DDATE DATE
STATUS NUMBER(9)
NAME VARCHAR2(20)
DESCRIPTION VARCHAR2(20)

Code Example
CREATE OR REPLACE PACKAGE SAMPLE11.ORD_UPDATE_PKG AS
PROCEDURE UPDATE_ORD_MASTER (DML IN CHAR, ID IN NUMBER, DDATE IN DATE,
STATUS IN NUMBER, NAME IN VARCHAR2, DESCRIPTION IN VARCHAR2, ID_OLD IN
NUMBER);
END ORD_UPDATE_PKG;
/
.
CREATE OR REPLACE PACKAGE BODY SAMPLE11.ORD_UPDATE_PKG AS
PROCEDURE UPDATE_ORD_MASTER (DML IN CHAR, ID IN NUMBER, DDATE IN DATE,
STATUS IN NUMBER, NAME IN VARCHAR2, DESCRIPTION IN VARCHAR2, ID_OLD IN
NUMBER) is
 begin
 if DML = 'U' then
 execute immediate 'update ord_master set id = :id, ddate = :ddate,
status = :status,
name = :name, description = '''||'from
ord_update_pkg'||''' where id = :id_old'
 using id, ddate, status, name, id_old;
 end if;
 if DML = 'I' then
 begin
 execute immediate 'insert into ord_master values(:id, :ddate,
:status, :name, '''||'from ord_update_pkg'||''')'
 using id, ddate, status, name;
 exception
 when others then NULL
 end;
 end if;
 if DML = 'D' then
 execute immediate 'delete from ord_master where id = :id'

Client Device Database DDL Operations

2-38 Oracle Database Mobile Server Developer's Guide

 using id;
 end if;
 end UPDATE_ORD_MASTER;
end ORD_UPDATE_PKG;
/

The API call to add this DML procedure is as follows:

consolidatorManager.addMobileDMLProcedure("T_SAMPLE11",
 "P_SAMPLE11-M","SAMPLE11.ORD_UPDATE_PKG.UPDATE_ORD_MASTER")

where T_SAMPLE11 is the publication name and P_SAMPLE11-M is the publication item
name.

2.4.1.14 Restricting Predicate
A restricting predicate can be assigned to a publication item as it is added to a
publication.The predicate is used to limit data downloaded to the client. The
parameter, which is for advanced use, can be NULL. For using a restricting predicate,
see Section 1.2.10 "Priority-Based Replication" in the Oracle Database Mobile Server
Troubleshooting and Tuning Guide.

2.5 Client Device Database DDL Operations
The first time a client synchronizes, Oracle Database Mobile Server automatically
creates the snapshot tables for the user subscriptions on the mobile client. If you would
like to execute additional DDL statements on the database, add the DDL statements as
part of your publication. Oracle Database Mobile Server executes these DDL
statements when the user synchronizes.

This is typically used for adding constraints and check values.

For example, you can add a foreign key constraint to a publication item. In this
instance, if the Oracle Database Mobile Server created snapshots S1 and S2 during the
initial synchronization, where the definition of S1 and S2 are as follows:

S1 (C1 NUMBER PRIMARY KEY, C2 VARCHAR2(100), C3 NUMBER);
S2 (C1 NUMBER PRIMARY KEY, C2 VARCHAR2(100), C3 NUMBER);

If you would like to create a foreign key constraint between C3 on S2 and the primary
key of S1 , then add the following DDL statement to your publication item:

CREATE TRIGGER S2_FK
BEFORE INSERT ON S2 FOR EACH ROW
BEGIN SELECT RAISE(FAIL, 'foreign key constraint S2_FK violated')
WHERE (SELECT C1 FROM S1 WHERE C1=NEW.C3) IS NULL;
END;

Then, Oracle Database Mobile Server executes any DDL statements after the snapshot
creation or, if the snapshot has already been created, after the next synchronization.

Note: '"ALTER TABLE...ADD CONSTRAINT" syntax is not
supported in Berkeley DB and SQLite, so a trigger is used to add a
foreign key constraint in this example. Refer to
http://www.sqlite.org/omitted.html for the SQL features that
SQLite does not implement.

Customize the Compose Phase Using MyCompose

Synchronization 2-39

See the Oracle Database Mobile Server API Specification for more information on these
APIs.

2.6 Customize the Compose Phase Using MyCompose
The compose phase takes a query for one or more server-side base tables and puts the
generated DML operations for the publication item into the Out Queue to be
downloaded into the client. The Consolidator Manager manages all DML operations
using the physical DML logs on the server-side base tables. This can be resource
intensive if the DML operations are complex—for example, if there are complex
data-subsetting queries being used. The tools to customize this process include an
extendable MyCompose with compose methods which can be overridden, and
additional ConsolidatorManager APIs to register and load the customized class.

When you want to customize the compose phase of the synchronization process, you
must perform the activities described in the following sections:

■ Section 2.6.1, "Create a Class That Extends MyCompose to Perform the Compose"

■ Section 2.6.2, "Implement the Extended MyCompose Methods in the User-Defined
Class"

■ Section 2.6.3, "Use Get Methods to Retrieve Information You Need in the
User-Defined Compose Class"

■ Section 2.6.4, "Register the User-Defined Class With the Publication Item"

2.6.1 Create a Class That Extends MyCompose to Perform the Compose
The MyCompose class is an abstract class, which serves as the super-class for creating a
user-written sub-class, as follows:

public class ItemACompose extends oracle.lite.sync.MyCompose
{ ... }

All user-written classes—such as ItemACompose—produce publication item DML
operations to be sent to a client device by interpreting the base table DML logs. The
sub-class is registered with the publication item, and takes over all compose phase
operations for that publication item. The sub-class can be registered with more than
one publication item—if it is generic—however, internally the Composer makes each
instance of the extended class unique within each publication item.

2.6.2 Implement the Extended MyCompose Methods in the User-Defined Class
The MyCompose class includes the following methods—needCompose, doCompose, init,
and destroy—which are used to customize the compose phase. One or more of these
methods can be overridden in the sub-class to customize compose phase operations.
Most users customize the compose phase for a single client. In this case, only
implement the doCompose and needCompose methods. The init and destroy methods
are only used when a process is performed for all clients, either before or after
individual client processing.

The following sections describe how to implement these methods:

Note: See the Oracle Database Mobile Server API Specification for more
information on these APIs.

Customize the Compose Phase Using MyCompose

2-40 Oracle Database Mobile Server Developer's Guide

■ Section 2.6.2.1, "Implement the needCompose Method"

■ Section 2.6.2.2, "Implement the doCompose Method"

■ Section 2.6.2.3, "Implement the init Method"

■ Section 2.6.2.4, "Implement the destroy Method"

2.6.2.1 Implement the needCompose Method
The needCompose method to identifies a client that has changes to a specific
publication item that is to be downloaded. Use this method as a way to trigger the
doCompose method.

public int needCompose(Connection conn, Connection rmt_conn, String clientid)
 throws Throwable

The parameters for the needCompose method are listed in Table 2–11:

The following example examines a client base table for changes—in this case, the
presence of dirty records. If there are changes, then the method returns
MyCompose.YES, which triggers the doCompose method.

public int needCompose(Connection conn, Connection rmtConn, String clientid)
 throws Throwable{
 boolean baseDirty = false;
 String [][] baseTables = this.getBaseTables();

 for(int i = 0; i < baseTables.length; i++){
 if(this.baseTableDirty(baseTables[i][0], baseTables[i][1])){
 baseDirty = true;
 break;
 }
 }

 if(baseDirty){
 return MyCompose.YES;
 }else{
 return MyCompose.NO;
 }
 }

This sample uses subsidiary methods discussed in Section 2.6.3, "Use Get Methods to
Retrieve Information You Need in the User-Defined Compose Class" to check if the
publication item has any tables with changes that need to be sent to the client. In this

Note: To retrieve information, use the methods described in
Section 2.6.3, "Use Get Methods to Retrieve Information You Need in
the User-Defined Compose Class".

Table 2–11 needCompose Parameters

Parameter Definition

conn Database connection to the Main mobile server repository.

rmt_conn Database connection to the remote database for application.
Set to NULL if the base tables are on the Main database
where the repository exists.

clientid Specifies the client that is being composed.

Customize the Compose Phase Using MyCompose

Synchronization 2-41

example, the base tables are retrieved, then checked for changed, or dirty, records. If
the result of that test is true, a value of Yes is returned, which triggers the call for the
doCompose method.

2.6.2.2 Implement the doCompose Method
The doCompose method populates the DML log table for a specific publication item,
which is subscribed to by a client.

public int doCompose(Connection conn, Connection rmt_conn,
 String clientid) throws Throwable

The parameters for the doCompose method are listed in Table 2–12:

The following example contains a publication item with only one base table where a
DML (Insert, Update, or Delete) operation on the base table is performed on the
publication item. This method is called for each client subscribed to the publication
item.

public int doCompose(Connection conn, Connection rmtConn, String clientid)
 throws Throwable {
 int rowCount = 0;

 Connection auxConn = rmtConn;
 if(auxConn == NULL)
 auxConn = rmtConn;

 String[][] baseTables = getBaseTables();
 String baseTableDMLLogName =
 getBaseTableDMLLogName(baseTables[0][0], baseTables[0][1]);
 String baseTablePK =
 getBaseTablePK(baseTables[0][0], baseTables[0][1]);
 String pubItemDMLTableName = getPubItemDMLTableName();
 String pubItemPK = getPubItemPK();
 String mapView = getMapView(clientid);

 Statement st = auxConn.createStatement();
 String sql = NULL;

 // insert
 sql = "INSERT INTO " + pubItemDMLTableName + " SELECT " + baseTablePK +
 ", DMLTYPE$$ FROM " + baseTableDMLLogName;

 rowCount += st.executeUpdate(sql);

 st.close();
 return rowCount;
 }

Table 2–12 doCompose Parameters

Parameter Definition

conn Database connection to the Main mobile server repository.

rmt_conn Database connection to the remote database for application.
Set to NULL if the base tables are on the Main database
where the repository exists.

clientid Specifies the client that is being composed.

Customize the Compose Phase Using MyCompose

2-42 Oracle Database Mobile Server Developer's Guide

This code uses subsidiary methods discussed in Section 2.6.3, "Use Get Methods to
Retrieve Information You Need in the User-Defined Compose Class" to create a SQL
statement. The MyCompose method retrieves the base table, the base table primary key,
the base table DML log name and the publication item DML table name using the
appropriate get methods. You can use the table names and other information returned
by these methods to create a dynamic SQL statement, which performs an insert into
the publication item DML table of the contents of the base table primary key and DML
operation from the base table DML log.

2.6.2.3 Implement the init Method
The init method provides the framework for user-created compose preparation
processes. The init method is called once for all clients before the individual client
compose phase. The default implementation has no effect.

public void init(Connection conn)

The parameter for the init method is described in Table 2–13:

2.6.2.4 Implement the destroy Method
The destroy method provides the framework for compose cleanup processes. The
destroy method is called once for all clients after to the individual client compose
phase. The default implementation has no effect.

public void destroy(Connection conn)

The parameter for the destroy method is described in Table 2–14:

2.6.3 Use Get Methods to Retrieve Information You Need in the User-Defined Compose
Class

The following methods return information for use by primary MyCompose methods.

■ Section 2.6.3.1, "Retrieve the Publication Name With the getPublication Method"

■ Section 2.6.3.2, "Retrieve the Publication Item Name With the getPublicationItem
Method"

■ Section 2.6.3.3, "Retrieve the DML Table Name With the
getPubItemDMLTableName Method"

■ Section 2.6.3.4, "Retrieve the Primary Key With the getPubItemPK Method"

■ Section 2.6.3.5, "Retrieve All Base Tables With the getBaseTables Method"

■ Section 2.6.3.6, "Retrieve the Primary Key With the getBaseTablePK Method"

■ Section 2.6.3.7, "Discover If Base Table Has Changed With the baseTableDirty
Method"

Table 2–13 init Parameters

Parameter Definition

conn Database connection to the Main mobile server repository.

Table 2–14 destroy Parameters

Parameter Definition

conn Database connection to the Main mobile server repository.

Customize the Compose Phase Using MyCompose

Synchronization 2-43

■ Section 2.6.3.8, "Retrieve the Name for DML Log Table With the
getBaseTableDMLLogName Method"

■ Section 2.6.3.9, "Retrieve View of the Map Table With the getMapView Method"

2.6.3.1 Retrieve the Publication Name With the getPublication Method
The getPublication method returns the name of the publication.

public String getPublication()

2.6.3.2 Retrieve the Publication Item Name With the getPublicationItem Method
The getPublicationItem method returns the publication item name.

public String getPublicationItem()

2.6.3.3 Retrieve the DML Table Name With the getPubItemDMLTableName Method
The getPubItemDMLTableName method returns the name of the DML table or DML
table view, including schema name, which the doCompose or init methods are
supposed to insert into.

public String getPubItemDMLTableName()

You can embed the returned value into dynamic SQL statements. The table or view
structure is as follows:

<PubItem PK> DMLTYPE$$

The parameters for getPubItemDMLTableName are listed in Table 2–15:

2.6.3.4 Retrieve the Primary Key With the getPubItemPK Method
Returns the primary key for the listed publication in comma separated format in the
form of <col1>,<col2>,<col3>.

public String getPubItemPK() throws Throwable

2.6.3.5 Retrieve All Base Tables With the getBaseTables Method
Returns all the base tables for the publication item in an array of two-string arrays.
Each two-string array contains the base table schema and name. The parent table is
always the first base table returned, in other words, baseTables[0].

public string [][] getBaseTables() throws Throwable

2.6.3.6 Retrieve the Primary Key With the getBaseTablePK Method
Returns the primary key for the listed base table in comma separated format, in the
form of <col1>, col2>,<col3>.

public String getBaseTablePK (String owner, String baseTable) throws Throwable

The parameters for getBaseTablePK are listed in Table 2–16:

Table 2–15 getPubItemDMLTableName View Structure Parameters

Parameter Definition

PubItemPK The value returned by getPubItemPK()

DMLTYPE$$ This can have the values 'I' for insert, 'D' for delete, or 'U' for Update.

Customize the Compose Phase Using MyCompose

2-44 Oracle Database Mobile Server Developer's Guide

2.6.3.7 Discover If Base Table Has Changed With the baseTableDirty Method
Returns the a boolean value for whether or not the base table has changes to be
synchronized.

public boolean baseTableDirty(String owner, String store)

The parameters for baseTableDirty are listed in Table 2–17:

2.6.3.8 Retrieve the Name for DML Log Table With the getBaseTableDMLLogName
Method
Returns the name for the physical DML log table or DML log table view for a base
table.

public string getBaseTableDMLLogName(String owner, String baseTable)

The parameters for getBaseTableDMLLogName are listed in Table 2–18:

You can embed the returned value into dynamic SQL statements. There may be
multiple physical logs if the publication item has multiple base tables. The parent base
table physical primary key corresponds to the primary key of the publication item. The
structure of the log is as follows:

<Base Table PK> DMLTYPE$$

The parameters for getBaseTableDMLLogName view structure are listed in Table 2–19:

2.6.3.9 Retrieve View of the Map Table With the getMapView Method
Returns a view of the map table which can be used in a dynamic SQL statement and
contains a primary key list for each client device. The view can be an inline view.

Table 2–16 getBaseTablePK Parameters

Parameter Definition

owner The schema name of the base table owner.

baseTable The base table name.

Table 2–17 baseTableDirty Parameters

Parameter Definition

owner The schema name of the base table.

store The base table name.

Table 2–18 getBaseTableDMLLogName Parameters

Parameter Definition

owner The schema name of the base table owner.

baseTable The base table name.

Table 2–19 getBaseTableDMLLogName View Structure Parameters

Parameter Definition

Base Table PK The primary key of the parent base table.

DMLTYPE$$ This can have the values 'I' for insert, 'D' for delete, or 'U' for Update.

Customize What Occurs Before and After Synchronization Phases

Synchronization 2-45

public String getMapView() throws Throwable

The structure of the map table view is as follows:

CLID$$CS <Pub Item PK> DMLTYPE$$

The parameters of the map table view are listed in Table 2–20:

2.6.4 Register the User-Defined Class With the Publication Item
Once you have created your sub-class, it must be registered with a publication item.
The Consolidator Manager API now has two methods registerMyCompose and
deRegisterMyCompose to permit adding and removing the sub-class from a publication
item.

■ The registerMyCompose method registers the sub-class and loads it into the mobile
server repository, including the class byte code. By loading the code into the
repository, the sub-class can be used without having to be loaded at runtime.

■ The deRegisterMyCompose method removes the sub-class from the mobile server
repository.

2.7 Customize What Occurs Before and After Synchronization Phases
You can customize what happens before and after certain synchronization processes
by creating one or more PL/SQL packages. The following sections detail the different
options you have for customization:

■ Section 2.7.1, "Customize What Occurs Before and After Every Phase of Each
Synchronization"

■ Section 2.7.2, "Customize What Occurs Before and After Compose/Apply Phases
for a Single Publication Item"

2.7.1 Customize What Occurs Before and After Every Phase of Each Synchronization
You can customize the MGP phase of the synchronization process through a set of
predefined callback methods that add functionality to be executed before or after
certain phases of the synchronization process. These callback methods are defined in
the CUSTOMIZE PL/SQL package. Note that these callback methods are called before or
after the defined phase for every publication item.

Table 2–20 getMapView View Structure Parameters

Parameter Definition

CLID$$CS This is the client ID column.

Base Table PK The primary key columns of the publication item.

DMLTYPE$$ This can have the values 'I' for insert, 'D' for delete, or 'U' for
Update.

Note: If you want to customize certain activity for only a specific
publication item, see Section 2.7.2, "Customize What Occurs Before
and After Compose/Apply Phases for a Single Publication Item" for
more information.

Customize What Occurs Before and After Synchronization Phases

2-46 Oracle Database Mobile Server Developer's Guide

Manually create this package in the mobile server repository and any remote database
that has publication items that are relevant for the customization.

The methods and their respective calling sequence are as follows:

■ Section 2.7.1.1, "NullSync"

■ Section 2.7.1.2, "BeforeProcessApply"

■ Section 2.7.1.3, "AfterProcessApply"

■ Section 2.7.1.4, "BeforeProcessCompose"

■ Section 2.7.1.5, "AfterProcessCompose"

■ Section 2.7.1.6, "BeforeProcessLogs"

■ Section 2.7.1.7, "AfterProcessLogs"

■ Section 2.7.1.8, "BeforeClientCompose"

■ Section 2.7.1.9, "AfterClientCompose"

■ Section 2.7.1.10, "BeforeSyncMapCleanup"

■ Section 2.7.1.11, "AfterSyncMapCleanup"

■ Section 2.7.1.12, "Example Using the Customize Package"

■ Section 2.7.1.13, "Error Handling For CUSTOMIZE Package"

2.7.1.1 NullSync
The NullSync procedure is called at the beginning of every synchronization session. It
can be used to determine whether or not a particular user is uploading data.

procedure NullSync (clientid varchar2, isNullSync boolean);

2.7.1.2 BeforeProcessApply
The BeforeProcessApply procedure is called before the entire apply phase of the MGP
process.

procedure BeforeProcessApply;

2.7.1.3 AfterProcessApply
The AfterProcessApply procedure is called after the entire apply phase of the MGP
process.

procedure AfterProcessApply;

2.7.1.4 BeforeProcessCompose
The BeforeProcessCompose procedure is called before the entire compose phase of the
MGP process.

procedure BeforeProcessCompose;

Note: Some of the procedures in the package are invoked for each
client defined in your mobile server, such as the BeforeClientCompose
and AfterClientCompose methods.

Customize What Occurs Before and After Synchronization Phases

Synchronization 2-47

2.7.1.5 AfterProcessCompose
The AfterProcessCompose procedure is called after the entire compose phase of the
MGP process.

procedure AfterProcessCompose;

2.7.1.6 BeforeProcessLogs
The BeforeProcessLogs procedure is called before the database log tables (CLG$) are
generated for the compose phase of the MGP process. This log tables capture changes
for MGP and should not be confused with the trace logs.

procedure BeforeProcessLogs;

2.7.1.7 AfterProcessLogs
The AfterProcessLogs procedure is called after the database log tables (CLG$) are
generated for the compose phase of the MGP process. This log tables capture changes
for MGP and should not be confused with the trace logs.

procedure AfterProcessLogs;

2.7.1.8 BeforeClientCompose
The BeforeClientCompose procedure is called before each user is composed during the
compose phase of the MGP process.

procedure BeforeClientCompose (clientid varchar2);

2.7.1.9 AfterClientCompose
The AfterClientCompose procedure is called after each user is composed during the
compose phase of the MGP process.

procedure AfterClientCompose (clientid varchar2);

2.7.1.10 BeforeSyncMapCleanup
For every publication item, Oracle Database Mobile Server maintains a map table,
where the MGP inserts the DML operations to be carried out on the client database or
new records to be inserted in the case of a complete refresh. At the end of the every
synchronization session, the map tables are cleaned up where all old entries are
deleted.

During this cleanup, if the connection properties are not ideal, then you may have
performance issues. The callbacks added before and after the map cleanup operation
enable you to optimize the connection properties and revert back to old connection
properties after the operation is complete.

The BeforeSyncMapCleanup procedure is called at the beginning of the cleanup; the
AfterSyncMapCleanup procedure is called after cleanup is finished. You can configure
the connection settings can be changed in the BeforeSyncMapCleanup and reverted
back in the AfterSyncMapCleanup procedure. These methods are invoked only once
during the synchronization cycle.

The properties you can manage in these callback procedures are as follows:

■ Any session level hints

■ You can set the OPTIMIZER_INDEX_CACHING and OPTIMIZER_INDEX_COST_ADJ
session parameters, as follows:

■ ALTER SESSION SET OPTIMIZER_INDEX_CACHING=0;

Customize What Occurs Before and After Synchronization Phases

2-48 Oracle Database Mobile Server Developer's Guide

■ ALTER SESSION SET OPTIMIZER_INDEX_COST_ADJ=100;

2.7.1.11 AfterSyncMapCleanup
The AfterSyncMapCleanup procedure is called at the end of the map cleanup. If you set
any parameters in the BeforeSyncMapCleanup callback, you can set them back to the
original settings in this procedure. See Section 2.7.1.10, "BeforeSyncMapCleanup" for
more information.

2.7.1.12 Example Using the Customize Package
If a developer wants to use any of the procedures listed above, perform the following:

■ Manually create the CUSTOMIZE package in the mobile server schema.

■ Define all of the methods with the following specification:

create or replace package CUSTOMIZE as
 procedure NullSync (clientid varchar2, isNullSync boolean);
 procedure BeforeProcessApply ;
 procedure AfterProcessApply ;
 procedure BeforeProcessCompose ;
 procedure AfterProcessCompose ;
 procedure BeforeProcessLogs ;
 procedure AfterProcessLogs ;
 procedure BeforeClientCompose(clientid varchar2);
 procedure AfterClientCompose(clientid varchar2);
 end CUSTOMIZE;

2.7.1.13 Error Handling For CUSTOMIZE Package
Errors are logged for the CUSTOMIZE package only if logging is enabled for the MGP
component for the finest level for all event types. Thus, you should set the logging
level to ALL and the type to ALL.

If any errors occur due to an invalid CUSTOMIZE package, they are logged only on the
first MGP cycle after the mobile server restarts. On subsequent synchronizations, the
errors are not re-written to the logs, sine the MGP does not attempt to re-execute the
CUSTOMIZE package until the mobile server is restarted.

Note: In the CONSOLIDATOR section of the mobile.ora file, you may
want to modify the MAX_U_COUNT parameter before the
synchronization starts.

The MAX_U_COUNT parameter controls the number of SQL statements
that are executed together in a SQL batch statement while performing
the map cleanup. The default value for the MAX_U_COUNT parameter is
256. However, if the value is 256 during the map cleanup, then a
maximum of 256 SQL statements can be executed together in a batch.
Modify this parameter and restart the mobile server to enable a larger
batch of SQL statements to be processed during map cleanup.

WARNING: It is the developer’s responsibility to ensure that the
package is defined properly and that the logic contained does not
jeopardize the integrity of the synchronization process.

Customize What Occurs Before and After Synchronization Phases

Synchronization 2-49

To locate these errors easily within the MGP_<x>.log files, search for the
MGP.callBoundCallBack method. Another option is to restart the mobile server and
check the MGP log right after the next synchronization.

2.7.2 Customize What Occurs Before and After Compose/Apply Phases for a Single
Publication Item

When creating publication items, the user can define a customizable PL/SQL package
that MGP calls during the Apply and Compose phase of the MGP background process
for that particular publication item. To customize the compose/apply phases for a
publication item, perform the following:

1. Create the PL/SQL package with the customized before/after procedures.

2. Register this PL/SQL package with the publication item.

Then when the publication item is being processed, MGP calls the appropriate
procedures from your package.

Client data is accumulated in the In Queue before being processed by the MGP. Once
processed by the MGP, data is accumulated in the Out Queue before being pulled to
the client by Mobile Sync.

You can implement the following PL/SQL procedures to incorporate customized code
into the MGP process. The clientname and tranid are passed to allow for
customization at the user and transaction level.

■ The BeforeApply method is invoked before the client data is applied:

procedure BeforeApply(clientname varchar2)

■ The AfterApply method is invoked after all client data is applied.

procedure AfterApply(clientname varchar2)

■ The BeforeTranApply method is invoked before the client data with tranid is
applied.

procedure BeforeTranApply(tranid number)

■ The AfterTranApply method is invoked after all client data with tranid is applied.

procedure AfterTranApply(tranid number)

■ The BeforeCompose method is invoked before the Out Queue is composed.

procedure BeforeCompose(clientname varchar2)

■ The AfterCompose method is invoked after the Out Queue is composed.

procedure AfterCompose(clientname varchar2)

Note: One requirement is that the CUSTOMIZE package can only be
executed as user mobileadmin.

Note: If you are using a remote database for application data, then
the callbacks must be defined on the same database as the application.

Customize What Occurs Before and After Synchronization Phases

2-50 Oracle Database Mobile Server Developer's Guide

The following is a PL/SQL example that creates a callback package and registers it
when creating the P_SAMPLE3 publication item. The BeforeApply procedure disables
constraints before the apply phase; the AfterApply procedure enables these
constraints. Even though you are only creating procedures for the before and after
apply phase of the MGP process, you still have to provide empty procedures for the
other parts of the MGP process.

1. Create PL/SQL package declaration with callback owner/schema name of
SAMPLE3 and callback package name of SAMP3_PKG.

2. Create the package definition, with all MGP process procedures with callback
owner.callback package name of SAMPLE3.SAMP3_PKG. Provide a NULL procedure
for any procedure you do not want to modify.

3. Register the package as the callback package for the SAMPLE3 publication item. If
you are creating the publication item, provide the callback schema/owner and the
callback package names as input parameters to the createPublicationItem
method. If you want to add the callback package to an existing publication item,
do the following:

a. Retrieve the template metadata with getTemplateItemMetaData for the
publication item.

b. Modify the attributes that specify the callback owner/schema (cbk_owner) and
the callback package (cbk_name).

c. Register the package by executing the setTemplateItemMetaData method.

// create package declaration
 stmt.executeUpdate("CREATE OR REPLACE PACKAGE SAMPLE3.SAMP3_PKG as"
 + " procedure BeforeCompose(clientname varchar2);"
 + " procedure AfterCompose(clientname varchar2);"
 + " procedure BeforeApply(clientname varchar2);"
 + " procedure AfterApply(clientname varchar2);"
 + " procedure BeforeTranApply(tranid number);"
 + " procedure AfterTranApply(tranid number);"
 + " end;"
);
// create package definition
 stmt.executeUpdate("CREATE OR REPLACE PACKAGE body SAMPLE3.SAMP3_PKG as"
 + " procedure BeforeTranApply(tranid number) is"
 + " begin"
 + " NULL;"
 + " end;"
 + " procedure AfterTranApply(tranid number) is"
 + " begin"
 + " NULL;"
 + " end;"
 + " procedure BeforeCompose(clientname varchar2) is"
 + " begin"
 + " NULL;"
 + " end;"
 + " procedure AfterCompose(clientname varchar2) is"
 + " begin"
 + " NULL;"
 + " end;"
 + " procedure BeforeApply(clientname varchar2) is"
 + " cur integer;"
 + " ign integer;"
 + " begin"
 + " cur := dbms_sql.open_cursor;"
 + " dbms_sql.parse(cur,'SET CONSTRAINT SAMPLE3.address14_fk DEFERRED',

Understanding Your Refresh Options

Synchronization 2-51

 dbms_sql.native);"
 + " ign := dbms_sql.execute(cur);"
 + " dbms_sql.close_cursor(cur);"
 + " end;"
 + " procedure AfterApply(clientname varchar2) is"
 + " cur integer;"
 + " ign integer;"
 + " begin"
 + " cur := dbms_sql.open_cursor;"
 + " dbms_sql.parse(cur, 'SET CONSTRAINT SAMPLE3.address14_fk IMMEDIATE',
 dbms_sql.native);"
 + " ign := dbms_sql.execute(cur);"
 + " dbms_sql.close_cursor(cur);"
 + " end;"
 + " end;"
);

Then, register the callback package with the createPublicationItem method call, as
follows:

// register SAMPLE3.SAMP3_PKG as the callback for MGP processing of
// P_SAMPLE3 publication item.

cm.createPublicationItem("P_SAMPLE3","SAMPLE3","ADDRESS", "F",
 "SELECT * FROM SAMPLE3.ADDRESS", "SAMPLE3", "SAMP3_PKG");

In the previous code example, the following is required:

■ stmt, which is used when creating the package definition, is an instance of
java.sql.Statement

■ cm, which is used when registering the callback package, is an instance of
oracle.lite.sync.ConsolidatorManager

■ The callback package must have the following procedures defined:

■ BeforeCompose (clientname varchar2);

■ AfterCompose (clientname varchar2);

■ BeforeApply (clientname varchar2);

■ AfterApply (clientname varchar2);

■ BeforeTranApply (tranid number);

■ AfterTranApply (tranid number);

2.8 Understanding Your Refresh Options
The mobile server supports several refresh options. During a fast refresh, incremental
changes are synchronized. However, during a complete refresh, all data is refreshed
with current data. The refresh mode is established when you create the publication
item using the createPublicationItem API call. In order to change the refresh mode,
first drop the publication item and recreate it with the appropriate mode.

The following sections describe the types of refresh for your publication item that can
be used to define how to synchronize:

■ Fast Refresh: The most common method of synchronization is a fast refresh
publication item where changes are uploaded by the client, and changes for the
client are downloaded. Meanwhile, the MGP periodically collects the changes
uploaded by all clients and applies them to database tables. It then composes new

Understanding Your Refresh Options

2-52 Oracle Database Mobile Server Developer's Guide

data, ready to be downloaded to each client during the next synchronization,
based on predefined subscriptions.

■ Complete Refresh: During a complete refresh, all data for a publication is
downloaded to the client. For example, during the very first synchronization
session, all data on the client is refreshed from the client database. This form of
synchronization takes longer because all rows that qualify for a subscription are
transferred to the client device, regardless of existing client data.

■ Queue-Based: The developer creates their own queues to handle the
synchronization data transfer. This can be considered the most basic form of
publication item, for the simple reason that there is no synchronization logic
created with it. The synchronization logic is left entirely in the hands of the
developer. A queue-based publication item is ideally suited for scenarios that do
not require actual synchronization, but require something somewhere in between.
For instance, data collection on the client. With data collection, there is no need to
worry about conflict detection, client state information, or server-side updates.
Therefore, there is no need to add the additional overhead normally associated
with a fast refresh or complete refresh publication item.

■ Forced Refresh: This is actually NOT a refresh option; however, we discuss it here
in order to inform you of the consequences of performing a forced refresh. When a
Forced Refresh is initiated all data on the client is removed. The client then brings
down an accurate copy of the client data from the enterprise database to start fresh
with exactly what is currently stored in the enterprise data store.

The following sections describe the refresh options in more detail:

■ Section 2.8.1, "Fast Refresh"

■ Section 2.8.2, "Complete Refresh for Views"

■ Section 2.8.3, "Queue-Based Refresh"

■ Section 2.8.4, "Forced Refresh"

2.8.1 Fast Refresh
Publication items are created for fast refresh by default. Under fast refresh, only
incremental changes are replicated. The advantages of fast refresh are reduced
overhead and increased speed when replicating data stores with large amounts of data
where there are limited changes between synchronization sessions.

The mobile server performs a fast refresh of a view if the view meets the following
criteria:

■ Each of the view base tables must have a primary key.

■ All primary keys from all base tables must be included in the view column list.

■ If the item is a view, and the item predicate involves multiple tables, then all tables
contained in the predicate definition must have primary keys and must have
corresponding publication items.

The view requires only a unique primary key for the parent table. The primary keys of
other tables may be duplicated. For each base table primary key column, you must
provide the mobile server with a hint about the column name in the view. You can
accomplish this by using the primaryKeyHint method of the Consolidator Manager
object. See the Oracle Database Mobile Server JavaDoc for more information.

Understanding Your Refresh Options

Synchronization 2-53

2.8.2 Complete Refresh for Views
A complete refresh is simply a complete execution of the snapshot query. When
application synchronization performance is slow, tune the snapshot query. Complete
refresh is not optimized for performance. Therefore, to improve performance, use the
fast refresh option. The Consperf utility analyzes only fast refresh publication items.

Publication items can be created for complete refresh using the C refresh mode in the
createPublicationItem API from the Consolidator Manager API. When this mode is
specified, client data is completely refreshed with current data from the server after
every sync. An administrator can force a complete refresh for an entire publication
through an API call. This function forces complete refresh of a publication for a given
client.

See the Oracle Database Mobile Server JavaDoc for more information.

The following lists what can cause a complete refresh, ordered from most likely to
least likely:

1. The same mobile user synching from multiple devices on the same platform, or
synching from different platforms when the publications are not platform specific.

2. Republishing the application.

3. An unexpected server apply condition, such as constraint violations, unresolved
conflicts, and other database exceptions.

4. Modifying the application, such as changing subsetting parameters or
adding/altering publication items. This refresh only affects the publication items.

5. A force refresh requested by server administrator or a force refresh requested by
the client.

6. On mobile clients, restoring an old client database.

7. Two separate applications using the same back-end store.

8. An unexpected client apply conditions, such as a moved or deleted database,
database corruption, memory corruption, other general system failures.

9. Loss of transaction integrity between the server and client. The server fails post
processing after completing the download and disconnects from the client.

10. Data transport corruptions.

2.8.3 Queue-Based Refresh
You can create your own queues. The mobile server uploads and downloads changes
from the user. Perform customized apply/compose modifications to the back-end
database with your own implementation. See the Section 2.12, "Customizing
Synchronization With Your Own Queues" for more information.

2.8.4 Forced Refresh
This is actually NOT a refresh option; however, we discuss it here in order to inform
you of the consequences of performing a forced refresh. Out of all the different
synchronization options, the Forced Refresh synchronization architecture is probably
the most misunderstood synchronization type. This option is commonly confused
with the Complete Refresh synchronization. This confusion may result in tragic
consequences and the loss of critical data on the client.

The Forced Refresh option is an emergency only synchronization option. This option is
for when a client is so corrupt or malfunctioning so severely that the determination is

Synchronizing With Database Constraints

2-54 Oracle Database Mobile Server Developer's Guide

made to replace the mobile client data with a fresh copy of data from the enterprise
data store. When this option is selected, any data transactions that have been made on
the client are lost.

When a Forced Refresh is initiated all data on the client is removed. The client then
brings down an accurate copy of the client data from the enterprise database to start
fresh with exactly what is currently stored in the enterprise data store.

2.9 Synchronizing With Database Constraints
When you have database constraints on your table, you must develop your application
in a certain way to facilitate the synchronization of the data and keeping the database
constraints.

The following sections detail each constraint and what issues you must take into
account:

■ Section 2.9.1, "Synchronization And Database Constraints"

■ Section 2.9.2, "Primary Key is Unique"

■ Section 2.9.3, "Foreign Key Constraints"

■ Section 2.9.4, "Unique Key Constraint"

■ Section 2.9.5, "NOT NULL Constraint"

■ Section 2.9.6, "Generating Constraints on the Mobile Client"

2.9.1 Synchronization And Database Constraints
Oracle Database Mobile Server does not keep a record of the SQL operations executed
against the database; instead, only the final changes are saved and synchronized to the
back-end database.

For example, if you have a client with a unique key constraint, where the following is
executed against the client database:

1. Record with primary key of one and unique field of ABC is deleted.

2. Record with primary key of 4 and unique field of ABC is inserted.

When this is synchronized, according the Section 2.4.1.7.2, "Using Table Weight"
discussion, the insert is performed before the delete. This would add a duplicate field
for ABC and cause a unique key constraint violation. In order to avoid this, you
should defer all constraint checking until after all transactions are applied. See
Section 2.9.3.2, "Defer Constraint Checking Until After All Transactions Are Applied".

Another example of how synchronization captures the end result of all SQL
modifications is as follows:

1. Insert an employee record 4 with name of Joe Judson.

2. Update employee record 4 with address.

3. Update employee record 4 with salary.

4. Update employee record 4 with office number

5. Update employee record 4 with work email address.

When synchronization occurs, all modifications are captured and only a single insert is
performed on the back-end database. The insert contains the primary key, name,
address, salary, office number and email address. Even though the data was created

Synchronizing With Database Constraints

Synchronization 2-55

with multiple updates, the Sync Server only takes the final result and makes a single
insert.

2.9.2 Primary Key is Unique
When you have multiple clients, each updating the same table, you must have a
method for guaranteeing that the primary key is unique across all clients. Oracle
Database Mobile Server provides you a sequence number that you can use as the
primary key, which is guaranteed to be unique across all mobile clients.

For more information on the sequence number, see Section 2.4.1.8, "Creating
Client-Side Sequences for the Downloaded Snapshot".

2.9.3 Foreign Key Constraints
A foreign key exists in a details table and points to a row in the master table. Thus,
before a client adds a record to the details table, the master table must first exist.

For example, two tables EMP and DEPT have referential integrity constraints and are an
example of a master-detail relationship. The DEPT table is the master table; the EMP
table is the details table. The DeptNo field (department number) in the EMP table is a
foreign key that points to the DeptNo field in the DEPT table. The DeptNo value for each
employee in the EMP table must be a valid DeptNo value in the DEPT table.

When a user adds a new employee, first the employee’s department must exist in the
DEPT table. If it does not exist, then the user first adds the department in the DEPT table,
and then adds a new employee to this department in the EMP table. The transaction
first updates DEPT and then updates the EMP table. However, Oracle Database Mobile
Server does not store the sequence in which these operations were executed.

Oracle Database Mobile Server does not keep a record of the SQL operations executed
against the database; instead, only the final changes are saved and synchronized to the
back-end database. For our employee example, when the user replicates with the
mobile server, the mobile server could initiate the updates the EMP table first. If this
occurs, then it attempts to create a new record in EMP with an invalid foreign key value
for DeptNo. Oracle database detects a referential integrity violation. The mobile server
rolls back the transaction and places the transaction data in the mobile server error
queue. In this case, the foreign key constraint violation occurred because the
operations within the transaction are performed out of their original sequence.

In order to avoid this violation, you can do one of two things:

■ Section 2.9.3.1, "Set Update Order for Tables With Weights"

■ Section 2.9.3.2, "Defer Constraint Checking Until After All Transactions Are
Applied"

2.9.3.1 Set Update Order for Tables With Weights
Set the order in which tables are updated on the back-end Oracle database with
weights. To avoid integrity constraints with a master-details relationship, the master
table must always be updated first in order to guarantee that it exists before any
records are added to a details table. In our example, you must set the DEPT table with a
lower weight than the EMP table to ensure that all records are added to the DEPT table
first.

Note: If you want these constraints to apply on the mobile client, see
Section 2.9.6, "Generating Constraints on the Mobile Client".

Synchronizing With Database Constraints

2-56 Oracle Database Mobile Server Developer's Guide

You define the order weight for tables when you add a publication item to the
publication. For more information on weights, see Section 2.4.1.7.2, "Using Table
Weight".

2.9.3.2 Defer Constraint Checking Until After All Transactions Are Applied
You can use a PL/SQL procedure avoid foreign key constraint violations based on
out-of-sequence operations by using DEFERRABLE constraints in conjunction with the
BeforeApply and AfterApply functions. DEFERRABLE constraints can be either
INITIALLY IMMEDIATE or INITIALLY DEFERRED. The behavior of DEFERRABLE
INITIALLY IMMEDIATE foreign key constraints is identical to regular immediate
constraints. They can be applied interchangeably to applications without impacting
functionality.

The mobile server calls the BeforeApply function before it applies client transactions to
the server and calls the AfterApply function after it applies the transactions. Using the
BeforeApply function, you can set constraints to DEFFERED to delay referential integrity
checks. After the transaction is applied, call the AfterApply function to set constraints
to IMMEDIATE. At this point, if a client transaction violates referential integrity, it is
rolled back and moved into the error queues.

To prevent foreign key constraint violations using DEFERRABLE constraints:

1. Drop all foreign key constraints and then recreate them as DEFERRABLE constraints.

2. Bind user-defined PL/SQL procedures to publications that contain tables with
referential integrity constraints.

3. The PL/SQL procedure should set constraints to DEFERRED in the BeforeApply
function and IMMEDIATE in the AfterApply function as in the following example
featuring a table named SAMPLE3 and a constraint named address.14_fk:

 procedure BeforeApply(clientname varchar2) is
 cur integer;
 begin
 cur := dbms_sql.open_cursor;
 dbms_sql.parse(cur,'SET CONSTRAINT SAMPLE3.address14_fk
 DEFERRED', dbms_sql.native);
 dbms_sql.close_cursor(cur);
 end;
 procedure AfterApply(clientname varchar2) is
 cur integer;
 begin
 cur := dbms_sql.open_cursor;
 dbms_sql.parse(cur, 'SET CONSTRAINT SAMPLE3.address14_fk
 IMMEDIATE', dbms_sql.native);
 dbms_sql.close_cursor(cur);
 end;

2.9.4 Unique Key Constraint
A unique key constraint enforces uniqueness of data. However, you may have
multiple clients across multiple devices updating the same table. Thus, a record may
be unique on a single client, but not across all clients. Enforcing uniqueness is the
customer’s reponsibility and depends on the data.

How do you guarantee that the records added on separate clients are unique? You can
use the sequence numbers generated on the client by Oracle Database Mobile Server.
See Section 2.4.1.8, "Creating Client-Side Sequences for the Downloaded Snapshot" for
more information.

Synchronizing With Database Constraints

Synchronization 2-57

2.9.5 NOT NULL Constraint
When you have a NOT NULL constraint on the client or on the server, you must
ensure that this constraint is set on both sides.

■ On the server—Create a NOT NULL constraint on the back-end server table using
the Oracle database commands.

■ For the client—Set a column as NOT NULL by executing the
setPubItemColOption method in the ConsolidatorManager API. Provide
Consolidator.NOT_NULL as the input parameter for nullType. The constraint is
then enforced on the table in the client database.

2.9.6 Generating Constraints on the Mobile Client
The Primary Key, Foreign Key, Not Null and Default Value constraints can be
synchronized to the mobile client; the Unique constraints cannot be synchronized. For
foreign key constraints, you decide if you want the foreign key on the mobile client.
That is, when you create a foreign key constraint on a table on the back-end server, you
may or may not want this constraint to exist on the mobile client.

■ Each publication that is defined is specific to a certain usage. For example, if you
have a foreign key constraint between two tables, such as department and
employee, your publication may only specify that information from the employee
table is downloaded. In this situation, you would not want the foreign constraint
between the employee and department table to be enforced on the client.

■ If you do have a master-detail relationship or other constraint relationships
synchronized down to the client, then you would want to have the constraint
generated on the client.

In order to generate the constraints on the mobile client, perform the following:

1. Within the process for creating or modifying an existing publication using the
APIs, invoke the assignWeights method of the ConsolidatorManager object,
which does the following tasks:

a. Calculates a weight for each of the publication items included in the
publication.

b. Creates a script that, when invoked on the client, generates the constraints on
the client. This script is automatically added to the publication.

2. On the mobile client, perform a synchronization for the user, which brings down
the snapshot and the constraint script. The script is automatically executed on the
mobile client.

Once executed on the client, all constraints on the server for this publication are also
enforced on the mobile client.

2.9.6.1 The assignWeights Method
The assignWeights method automatically calculates weights for all publication items
belonging to a publication. If a new publication item is added or if there is a change in
the referential relationships, the API should be called again.

The following defines the assignWeights method and its parameters:

public void assignWeights(java.lang.String pub, boolean createScripts)
 throws ConsolidatorException

Where:

Resolving Conflicts with Winning Rules

2-58 Oracle Database Mobile Server Developer's Guide

■ pub - Publication name

■ createScripts - If true, creates referential constraints scripts and adds them to the
publication to be propagated to subscribed clients.

2.10 Resolving Conflicts with Winning Rules
When you have a conflict, you need to determine which party wins. The following are
the settings that you can choose for conflict resolution on the server:

■ Client wins—When the client wins, the mobile server automatically applies client
changes to the server. And if you have a record that is set for INSERT, yet a record
already exists, the mobile server automatically modifies it to be an UPDATE.

■ Server wins—If the server wins, the client updates are not applied to the
application tables. Instead, the mobile server automatically composes changes for
the client. The client updates are placed into the error queue, just in case you still
want these changes to be applied to the server—even though the winning rules
state that the server wins.

The mobile server uses internal versioning to detect synchronization conflicts. A
separate version number is maintained for each client and server record. When the
client updates are applied to the server, then the mobile server checks the version
numbers of the client against the version numbers on the server. If the version does not
match, then the conflict resolves according to the defined winning rules—such as
client wins or server wins, as follows:

The mobile server does not automatically resolve synchronization errors. Instead, the
mobile server rolls back the corresponding transactions, and moves the transaction
operations into the mobile server error queue. It is up to the administrator to view the
error queue and determine if the correct action occurred. If not, the administrator must
correct and re-execute the transaction. If it did execute correctly, then purge the
transaction from the error queue.

One type of error is a synchronization conflict, which is detected in any of the
following situations:

■ The client and the server update the same row.

■ The client deletes the same row that the server updates.

■ The client updates a row at the same time that the server deletes it when the
"server wins" conflict rule is specified. This is considered a synchronization error
for compatibility with Oracle database advanced replication.

■ Both the client and server create rows with the same primary key values.

■ Two separate clients update the same row.

■ Two clients insert a row with the same primary key.

■ One client deletes a row that a second client updates.

■ For systems with delayed data processing, where the client data is not directly
applied to the base table—for instance, in a three-tiered architecture—a situation
could occur when a client inserts a row and then updates the same row, while the

Note: In the case where two clients conflict, then the client whose
data gets applied first effectively becomes the server and the other
client becomes the client in resolving this conflict.

Resolving Conflicts with Winning Rules

Synchronization 2-59

row has not yet been inserted into the base table. In that case, if the DEF_APPLY
parameter in C$ALL_CONFIG is set to TRUE, an INSERT operation is performed,
instead of the UPDATE. It is up to the application developer to resolve the resulting
primary key conflict. If, however, DEF_APPLY is not set, a "NO DATA FOUND"
exception is thrown.

All the other errors, including nullity violations and foreign key constraint violations
are synchronization errors. See Section 2.9, "Synchronizing With Database Constraints"
for more information.

On the server, synchronization errors and conflicts are placed into the error queue. For
each publication item created, a separate and corresponding error queue is created.
The purpose of this queue is to store transactions that fail due to unresolved conflicts.
The administrator can attempt to resolve the conflicts, either by modifying the error
queue data or that of the server, and then attempt to re-apply the transaction.

The administrator can resolve the errors, and then re-execute or purge transactions
from the error queue using either of the following:

■ Resolve errors and conflicts in the error queue using the Mobile Manager
GUI—See Section 5.12.4.3, "Viewing Server-Side Synchronization Conflicts and
Errors in the Error Queue" in the Oracle Database Mobile Server Administration and
Deployment Guide on how to update the client transaction in the error queue and
re-execute the statement using the Mobile Manager GUI.

■ Resolve errors and conflicts programmatically with the Consolidator Manager
API. You can access the mobile server error queue tables directly and customize
the conflict rules, as described in the following sections:

■ Section 2.10.1, "Resolving Errors and Conflicts on the Mobile Server Using the
Error Queue"

■ Section 2.10.2, "Customizing Synchronization Conflict Resolution Outcomes"

2.10.1 Resolving Errors and Conflicts on the Mobile Server Using the Error Queue
The error queue stores transactions that fail due to synchronization errors or
unresolved conflicts. For unresolved conflicts, only the "Server Wins" conflicts are
reported. If you have set your conflict rules to "Client Wins", then these are not
reported. The administrator can do one of the following:

■ Attempt to correct the error by modifying the error queue data or that of the
server, and re-apply the transaction through the executeTransaction method of
the Consolidator Manager object.

■ If a conflict was reported and resolved to your satisfaction, then you can purge the
transaction from the error queue with the purgeTransaction method of the
Consolidator Manager object. Otherwise, you can override the default conflict
resolution by modifying the error queue data and re-apply the transaction.

View the error queue through the Mobile Manager GUI, where you can see what the
conflict was. You can fix the problem and reapply the data by modifying the DML
operation appropriately and then re-executing. See Section 5.12.4.3, "Viewing
Server-Side Synchronization Conflicts and Errors in the Error Queue"" in the Oracle
Database Mobile Server Administration and Deployment Guide for directions.

2.10.2 Customizing Synchronization Conflict Resolution Outcomes
You can customize synchronization conflict resolution by doing the following:

1. Configure the winning rule to Custom.

Using the Sync Discovery API to Retrieve Statistics

2-60 Oracle Database Mobile Server Developer's Guide

2. Perform only ONE of the following:

– Create and attach one or more triggers on the back-end Oracle database base
tables to execute before the INSERT, UPDATE, or DELETE DML statements. The
triggers should be created to evaluate the data and handle the conflict.
Triggers are created to compare old and new row values and resolve client
changes as defined by you. See the Oracle Database documentation for full
details on how to create and attach triggers.

– Create a custom DML procedure. See Section 2.4.1.13, "Callback
Customization for DML Operations" for an example of how to create a custom
DML procedure.

You can use the generateMobileDMLProcedure to generate the procedure
specification for a given publication item. This specification can be used as a
starting point in creating your own custom DML handling logic in a PL/SQL
procedure. You use the addMobileDMLProcedure API to attach the PL/SQL
procedure to the publication item. See the Oracle Database Mobile Server API
Specification for more information.

2.11 Using the Sync Discovery API to Retrieve Statistics
The Sync Discovery feature is used to request an estimate of the size of the download
for a specific client, based on historical data. The following statistics are gathered to
maintain the historical data:

■ The total number of rows send for each publication item.

■ The total data size for these rows.

■ The compressed data size for these rows.

The following sections contain methods that can be used to gather statistics:

■ Section 2.11.1, "getDownloadInfo Method"

■ Section 2.11.2, "DownloadInfo Class Access Methods"

■ Section 2.11.3, "PublicationSize Class"

2.11.1 getDownloadInfo Method
The getDownloadInfo method returns the DownloadInfo object. The DownloadInfo
object contains a set of PublicationSize objects and access methods. The
PublicationSize objects carry the size information of a publication item. The method
Iterator iterator() can then be used to view each PublicationSize object in the
DownloadInfo object.

DownloadInfo dl = consolidatorManager.getDownloadInfo("S11U1", true, true);

2.11.2 DownloadInfo Class Access Methods
The access methods provided by the DownloadInfo class are listed in Table 2–21:

Note: See the Oracle Database Mobile Server JavaDoc for more
information.

Using the Sync Discovery API to Retrieve Statistics

Synchronization 2-61

2.11.3 PublicationSize Class
The access methods provided by the PublicationSize class are listed in Table 2–22:

Sample Code
import java.sql.*;
import java.util.Iterator;
import java.util.HashSet;

Table 2–21 DownloadInfo Class Access Methods

Method Definition

iterator Returns an Iterator object so that the user can traverse through
the all the PublicationSize objects that are contained inside
the DownloadInfo object.

getTotalSize Returns the size information of all PublicationSize objects in
bytes, and by extension, the size of all publication items
subscribed to by that user. If no historical information is
available for those publication items, the value returned is '-1'.

getPubSize Returns the size of all publication items that belong to the
publication referred to by the string pubName. If no historical
information is available for those publication items, the value
returned is '-1'.

getPubRecCount Returns the number of all records of all the publication items
that belong to the publication referred by the string pubName,
that be synchronization during the next synchronization.

getPubItemSize Returns the size of a particular publication item referred by
pubItemName. It follows the following rules in order.

1. If the publication item is empty, it return '0'.

2. If no historical information is available for those
publication items, it return '-1'.

getPubItemRecCount Returns the number of records of the publication item referred
by pubItemName that be synced in the next synchronization.

Note: See the Oracle Database Mobile Server JavaDoc for more
information.

Table 2–22 PublicationSize Class Access Methods

Parameter Definition

getPubName Returns the name of the publication containing the publication
item.

getPubItemName Returns the name of the publication item referred to by the
PublicationSize object.

getSize Returns the total size of the publication item referred to by the
PublicationSize object.

getNumOfRows Returns the number of rows of the publication item that is
synchronized in the next synchronization.

Note: See the Oracle Database Mobile Server JavaDoc for more
information.

Using the Sync Discovery API to Retrieve Statistics

2-62 Oracle Database Mobile Server Developer's Guide

import oracle.lite.sync.ConsolidatorManager;
import oracle.lite.sync.DownloadInfo;
import oracle.lite.sync.PublicationSize;

public class TestGetDownloadInfo
{

 public static void main(String argv[]) throws Throwable
 {
// Open Consolidator Manager connection
 try
 {
// Create a ConsolidatorManager object
 ConsolidatorManager cm = new ConsolidatorManager ();
// Open a Consolidator Manager connection
 cm.openConnection ("MOBILEADMIN", "MANAGER",
 "jdbc:oracle:thin:@server:1521:orcl", System.out);
// Call getDownloadInfo
 DownloadInfo dlInfo = cm.getDownloadInfo ("S11U1", true, true);
// Call iterator for the Iterator object and then we can use that to transverse
// through the set of PublicationSize objects.
 Iterator it = dlInfo.iterator ();
// A temporary holder for the PublicationSize object.
 PublicationSize ps = NULL;
// A temporary holder for the name of all the Publications in a HashSet object.
 HashSet pubNames = new HashSet ();
// A temporary holder for the name of all the Publication Items in a HashSet
// object.
 HashSet pubItemNames = new HashSet ();
// Traverse through the set.
 while (it.hasNext ())
 {
// Obtain the next PublicationSize object by calling next ().
 ps = (PublicationSize)it.next ();

// Obtain the name of the Publication this PublicationSize object is associated
// with by calling getPubName ().
 pubName = ps.getPubName ();
 System.out.println ("Publication: " + pubName);

// We save pubName for later use.
 pubNames.add (pubName);

// Obtain the Publication name of it by calling getPubName ().
 pubItemName = ps.getPubItemName ();
 System.out.println ("Publication Item Name: " + pubItemName);

// We save pubItemName for later use.
 pubItemNames.add (pubItemName);

// Obtain the size of it by calling getSize ().
 size = ps.getSize ();
 System.out.println ("Size of the Publication: " + size);

// Obtain the number of rows by calling getNumOfRows ().
 numOfRows = ps.getNumOfRows ();
 System.out.println ("Number of rows in the Publication: "
 + numOfRows);
 }

Using the Sync Discovery API to Retrieve Statistics

Synchronization 2-63

// Obtain the size of all the Publications contained in the
// DownloadInfo objects.
 long totalSize = dlInfo.getTotalSize ();
 System.out.println ("Total size of all Publications: " + totalSize);

// A temporary holder for the Publication size.
 long pubSize = 0;

// A temporary holder for the Publication number of rows.
 long pubRecCount = 0;

// A temporary holder for the name of the Publication.
 String tmpPubName = NULL;

// Transverse through the Publication names that we saved earlier.
 it = pubNames.iterator ();
 while (it.hasNext ())
 {
// Obtain the saved name.
 tmpPubName = (String) it.next ();

// Obtain the size of the Publication.
 pubSize = dlInfo.getPubSize (tmpPubName);
 System.out.println ("Size of " + tmpPubName + ": " + pubSize);

// Obtain the number of rows of the Publication.
 pubRecCount = dlInfo.getPubRecCount (tmpPubName);
 System.out.println ("Number of rows in " + tmpPubName + ": "
 + pubRecCount);
 }

// A temporary holder for the Publication Item size.
 long pubItemSize = 0;

// A temporary holder for the Publication Item number of rows.
 long pubItemRecCount = 0;

// A temporary holder for the name of the Publication Item.
 String tmpPubItemName = NULL;

// Traverse through the Publication Item names that we saved earlier.
 it = pubItemNames.iterator ();
 while (it.hasNext ())
 {
// Obtain the saved name.
 tmpPubItemName = (String) it.next ();

// Obtain the size of the Publication Item.
 pubItemSize = dlInfo.getPubItemSize (tmpPubItemName);
 System.out.println ("Size of " + pubItemSize + ": " + pubItemSize);

// Obtain the number of rows of the Publication Item.
 pubItemRecCount = dlInfo.getPubItemRecCount (tmpPubItemName);
 System.out.println ("Number of rows in " + tmpPubItemName + ": "
 + pubItemRecCount);
 }
 System.out.println ();

// Close the connection

Customizing Synchronization With Your Own Queues

2-64 Oracle Database Mobile Server Developer's Guide

 cm.closeConnection ();
 }
 catch (Exception e)
 {
 e.printStackTrace();
 }
 }
}

2.12 Customizing Synchronization With Your Own Queues
Application developers can manage the synchronization process programmatically by
using queue-based publication items. By default on the server-side, the MGP manages
both the In Queues and the Out Queues by gathering all updates posted to the In
Queue, applying these updates to the relevant tables, and then composing all new
updates created on the server that are destined for the client and posting it to the Out
Queue. This is described in Section 2.1, "How Oracle Database Mobile Server
Synchronizes".

However, you can bypass the MGP and provide your own solution for the apply and
compose phases on the server-side for selected publication items. You may wish to
bypass the MGP for the publication item if one or more of the following are true:

■ If you want to facilitate synchronous data exchange, use queue-based publication
items.

■ If you have complex business rules for data subsetting, in how you decide what
data each user receives, then use queue-based publication items. You can
incorporate these business rules into generation of the client’s queue data. This is
especially true if the rules are dynamically evaluated during runtime.

■ If your client collects large amounts of data only for upload to the server, never
receives data from the server, and it does not require conflict resolution, then use
the data collection queues.

Figure 2–4 shows how the Sync Server invokes the UPLOAD_COMPLETE PL/SQL
procedure when the client upload is complete. And before it downloads all composed
updates to the client, the Sync Server invokes the DOWNLOAD_INIT PL/SQL procedure.

Figure 2–4 Queue-Based Synchronization Architecture

To bypass the MGP, do the following:

Mobile Client

1. Synchronize
Client

Database
Sync
Client

Sync
Server

Mobile Server

2. Upload
changes

3. Place client
transaction in
the In Queue

4. PL/SQL procedure
UPLOAD_COMPLETE

executed when
data is

available.

6. PL/SQL procedure
DOWNLOAD_INIT
executed when

SyncServer
looks for

composed data

9. Grab transaction
for client database

10. Download
changes

11. Execute changes
 against database

Steps 1-3 and 9-11 occur between
the Mobile Server and the client

Steps 4-8 occur between
the Mobile Server
and the Database

when the Sync Server
invokes the PL/SQL package

8. PL/SQL procedure
DOWNLOAD_COMPLETE
executed after compose

phase is complete

In Queue
Database

Out Queue

 5. PL/SQL procedure
 applies client
transaction to

application tables

7. PL/SQL procedure
composes

updates destined
for the client

Customizing Synchronization With Your Own Queues

Synchronization 2-65

1. Define your publication item as queue-based or data collection. Then, the MGP is
not aware of the queues associated with this publication item. You can do this
when creating the publication item either through MDW or Consolidator APIs.

2. If queue-based, then create a package, either PL/SQL or Java, that implements the
queue interface callback methods. This includes the following callback methods:

■ UPLOAD_COMPLETE to process the incoming updates from the client.

■ DOWNLOAD_INIT to complete the compose phase.

■ DOWNLOAD_COMPLETE if you have any processing to perform after the compose
phase.

3. Create the queues. The In Queue, CFM$<publication_item_name> is created by
default for you. Create the Out Queue as CTM$<publication_item_name>.

The following sections describe the methods for customizing the server-side
apply/compose phases-++:

■ Section 2.12.1, "Customizing Apply/Compose Phase of Synchronization with a
Queue-Based Publication Item"—You can define both the apply and compose
phases using queue-based publication items.

■ Section 2.12.2, "Creating Data Collection Queues for Uploading Client Collected
Data"—You use the data collection queue for uploading data from the client. The
queues are optimized for when a client collects data to upload to the server and
never receives data from the server.

■ Section 2.12.3, "Selecting How and When to Notify Clients of Composed
Data"—You can notify a client that there is new data on the server ready to be
downloaded to initiate a synchronization.

2.12.1 Customizing Apply/Compose Phase of Synchronization with a Queue-Based
Publication Item

When you want to substitute your own logic for the apply/compose phase of the
synchronization process, use a queue-based publication item. The following briefly
gives an overview of how the process works internally when using a queue-based
publication item:

■ When data arrives from the client it is placed in the publication item In Queues.
The Sync Server calls UPLOAD_COMPLETE, after which the data is committed. All
records in the current synchronization session are given the same transaction
identifier. The Queue Control Table (C$INQ) indicates which publication item In
Queues have received new transactions with the unique transaction identifier.
Thus, this table shows which queues need processing.

■ If you have a queue-based publication item, you must implement the compose
phase, if you have one. The MGP is unaware of queue-based publication items and
so is not able to perform any action for this publication item. When you implement
your own compose logic, you decide when and how the compose logic is invoked.
For example, you could do the following:

– You could have a script execute your compose logic at a certain time of the
day.

Note: The sample for queue-based publication items is located in
<ORACLE_HOME>/Mobile/Sdk/samples/Sync/QBasedPI.

Customizing Synchronization With Your Own Queues

2-66 Oracle Database Mobile Server Developer's Guide

– You could schedule the compose procedure as a job in the Job Scheduler.

– You could include the compose logic as part of the DOWNLOAD_INIT function, so
that it executes before the client downloads.

Before the Sync Server begins the download phase of the synchronization session,
it calls DOWNLOAD_INIT. In this procedure, you can customize the compose or
develop any pre-download logic for the client. The Sync Server finds a list of the
publication items, which can be downloaded based on the client's subscription. A
list of publication items and their refresh mode, ('Y' for complete refresh, 'N' for
fast refresh) is inserted into a temporary table (C$PUB_LIST_Q). Items can be
deleted or the refresh status can be modified in this table since the Sync Server
refers to C$PUB_LIST_Q to determine the items that are downloaded to the client.

Similar to the In Queue, every record in the Out Queue should be associated with it a
transaction identifier (TRANID$$). The Sync Server passes the last_tran parameter to
indicate the last transaction that the client has successfully applied. New Out Queue
records that have not been downloaded to the client are be marked with the value of
curr_tran parameter. The value of curr_tran is always greater than that of last_
tran, though not sequential. The Sync Server downloads records from the Out Queues
when the value of TRANID$$ is greater than last_tran. When the data is downloaded,
the Sync Server calls DOWNLOAD_COMPLETE.

When you decide to use queue-based publication items, you need to do the following:

1. Create both the In and Out Queues used in the apply and compose phases.

■ You can use the default In Queue, which is named CFM$<publication_item_
name>. Alternatively, you can create the queue of this name manually. For
example, if you wanted the In Queue to be a view, then you would create the
In Queue manually.

■ Create the Out Queue for the compose phase as CTM$<publication_item_
name>.

2. Create the publication item and define it as a queue-based publication item. This
can be done either through MDW or the Consolidator APIs.

3. Create the PL/SQL or Java callback methods for performing the apply and
compose phases. Since the MGP has nothing to do with the queues used for these
phases, when you are finished processing the data, you must manage the queues
by deleting any rows that have completed the necessary processing.

4. Register the package to be used for all of the queue processing for a particular
publication item.

Note: If you decide to implement the compose phase independent of
the DOWNLOAD_INIT function; then once the compose is finished, you
may want the client to receive the data as soon as possible. In this
case, invoke the EN_QUEUE_NOTIFICATION function to start an
automatic synchronization from the client. For more information on
this function, see Section 2.12.3, "Selecting How and When to Notify
Clients of Composed Data".

Customizing Synchronization With Your Own Queues

Synchronization 2-67

2.12.1.1 Queue Creation
If a queue-based publication item is created, it always uses a queue by the name of
CFM$<publication_item_name>. However, if you want to customize how the In Queue
is defined—for example, by defining certain rules, making it a view or designating the
location of the queue—then you can create your own In Queue. The Out Queue is
never defined for you, so you must create an Out Queue named CTM$<publication_
item_name> in the mobile server repository manually using SQL.

These queues are created based upon the publication item tables. For example, the
following table ACTIVESTATEMENT has five columns, as follows:

create table ACTIVESTATEMENT(
 StatementName varchar2(50) primary key,
 TestSuiteName varchar2(50),
 TestCaseName varchar2(50),
 CurrLine varchar2(4000),
 ASOrder integer) nologging;

The application stores its data in these five columns. When synchronization occurs,
this data must be uploaded and downloaded. However, there is also meta-information
necessary for facilitating the synchronization phases. Therefore, the Out Queue that
you create contains the meta-information in the CLID$$CS, TRANID$$ and DMLTYPE$$
columns, as well as the columns from the ACTIVESTATEMENT table, as follows:

create table CTM$AUTOTS_PUBITEM(
CLID$$CS VARCHAR2 (30),
StatementName varchar2(50) primary key,
TestSuiteName varchar2(50),
TestCaseName varchar2(50),
CurrLine varchar2(4000),
ASOrder integer,
TRANID$$ NUMBER (10),
DMLTYPE$$ CHAR (1) CHECK (DMLTYPE$$ IN ('I','U','D'))) nologging;

Thus, before you can create the queues, you must already know the structure of the
tables for the publication item, as well as the publication item name.

The following shows the structure and creation of the queues:

■ In Queue

■ Out Queue

■ Queue Control Table

■ Temporary Table

In Queue
All In Queues are named CFM$<name> where name is the publication item name. It
contains the application publication item table columns, as well as the fields listed in
Table 2–23:

Note: Normally, you define the package on the Main database where
the repository is located. However, if you are using a remote database
for your application data, then the package must be defined on the
remote database.

Customizing Synchronization With Your Own Queues

2-68 Oracle Database Mobile Server Developer's Guide

The following designates the structure when creating the In Queue:

create table 'CFM$'+name
(
CLID$$CS VARCHAR2 (30),
TRANID$$ NUMBER (10),
SEQNO$$ NUMBER (10),
DMLTYPE$$ CHAR (1) CHECK (DMLTYPE$$ IN ('I','U','D'),
publication item column definitions
)

Out Queue
All Out Queues are named CTM$<name> where name is the publication item name. It
contains the application publication item table columns, as well as the fields listed in
Table 2–24:

The following designates the structure when creating the In Queue:

create table 'CTM$'+name
(
CLID$$CS VARCHAR2 (30),
publication item column definitions
TRANID$$ NUMBER (10),
DMLTYPE$$ CHAR (1) CHECK (DMLTYPE$$ IN ('I','U','D'),
)

Table 2–23 In Queue Interface Creation Parameters

Parameter Description

CLID$$CS A unique string identifying the client.

TRANID$$ A unique number identifying the transaction.

SEQNO$$ A unique number for every DML language operation per transaction in the
inqueue (CFM$) only.

DMLTYPE$$ Checks the type of DML instruction:

■ 'I' - Insert

■ 'D' - Delete

■ 'U' - Update

Note: You must have the parameters in the same order as shown
above for the In Queue. It is different than the ordering in the Out
Queue.

Table 2–24 Out Queue Interface Creation Parameters

Parameter Description

CLID$$CS A unique string identifying the client.

TRANID$$ A unique number identifying the transaction.

DMLTYPE$$ Checks the type of DML instruction:

■ 'I' - Insert

■ 'D' - Delete

■ 'U' - Update

Customizing Synchronization With Your Own Queues

Synchronization 2-69

Another example of creating an Out Queue is in the FServ example, which uses the
default In Queue of CFM$PI_FSERV_TASKS and creates the CTM$PI_FSERV_TASKS Out
Queue for the PI_FSERV_TASKS publication item, as follows:

create table CTM$PI_FSERV_TASKS(
 CLID$$CS varchar2(30),
 ID number,
 EMP_ID number,
 CUST_ID number,
 STAT_ID number,
 NOTES varchar2(255)
 TRANID$$ number(10),
 DMLTYPE$$ char(1) check(DMLTYPE$$ in ('I','U','D')),
);

Queue Control Table
The Sync Server automatically creates a queue control table, C$INQ, and a temporary
table, C$PUB_LIST_Q. You can process the information in the queue control table in the
PL/SQL or Java callout methods to determine which publication items have received
new transactions.

The parameters for the control table queue are listed in Table 2–25:

The control table has the following structure:

'C$INQ'
(
CLIENTID VARCHAR2 (30),
TRANID$$ NUMBER,
STORE VARCHAR2 (30),
)

Temporary Table
The DOWNLOAD_INIT procedure uses the Temporary Table C$PUB_LIST_Q for
determining what publication items to download in the compose phase.

'C$PUB_LIST_Q'
(
NAME VARCHAR2 (30),
COMP_REF CHAR(1),
CHECK(COMP_REF IN('Y','N'))

Note: You must have the parameters in the same order as shown
above for the Out Queue. It is different than the ordering in the In
Queue.

Note: The application publication item table for the FServ example
contains columns for ID, EMP_ID, CUST_ID, STAT_ID, and NOTES.

Table 2–25 Queue Control Table Parameters

Parameter Description

CLID$$CS A unique string identifying the client.

TRANID$$ A unique number identifying the transaction.

STORE Represents the publication item name in the queue control table.

Customizing Synchronization With Your Own Queues

2-70 Oracle Database Mobile Server Developer's Guide

)

The parameters for the manually created queues are listed in Table 2–26:

2.12.1.2 Queue-Based PL/SQL Callouts
The PL/SQL package for the queue-based publication callouts is in a package where
the UPLOAD_COMPLETE, DOWNLOAD_INIT, DOWNLOAD_COMPLETE, and POPULATE_Q_REC_
COUNT procedures are defined. The signatures for both callout procedures are as
follows:

CREATE OR REPLACE PACKAGE CONS_QPKG AS
/*
 * notifies that In Queue has a new transaction by providing the client
 * identifier and the transaction identifier.
*/
PROCEDURE UPLOAD_COMPLETE(
 CLIENTID IN VARCHAR2,
 TRAN_ID IN NUMBER -- IN queue tranid
);
/*
 * initializes client data for download. provides the compose phase for the
 * client. The input data for this procedure is the client id, the last
 * and current transaction markers and the priority.
*/
PROCEDURE DOWNLOAD_INIT(
 CLIENTID IN VARCHAR2,
 LAST_TRAN IN NUMBER,
 CURR_TRAN IN NUMBER,
 HIGH_PRTY IN VARCHAR2
);
/*
 * notifies when all the client's data is sent
*/
PROCEDURE DOWNLOAD_COMPLETE(
 CLIENTID IN VARCHAR2
);

PROCEDURE POPULATE_Q_REC_COUNT(
 CLIENTID IN VARCHAR2
);

END CONS_QPKG;
/

2.12.1.2.1 In Queue Apply Phase Processing Within the UPLOAD_COMPLETE procedure, you
should develop a method of applying all changes from the client to the correct tables
in the repository. The FServ example performs the following:

1. From the Master Table C$INQ, locates the rows for the designated client and
transaction identifiers that have been marked for update.

Table 2–26 Queue Interface Creation Parameters

Parameter Description

NAME The publication item name that is to be downloaded from the
repository to the Out Queue.

COMP_REF This value is 'Y' for complete refresh.

Customizing Synchronization With Your Own Queues

Synchronization 2-71

2. Retrieves the application publication item data and the DMLTYPE$$ from the In
Queue, based on the client and transaction identifiers.

3. Performs insert, update, or delete (determined by the value in DMLTYPE$$) for
updates in the application tables in the repository.

4. After updates are complete, delete the rows in the C$INQ and the In Queue that
you just processed.

PROCEDURE UPLOAD_COMPLETE(CLIENTID IN VARCHAR2, TRAN_ID IN NUMBER) IS
/*create cursors for execution later */
/* PI_CUR locates the rows for the client out of the master table */
CURSOR PI_CUR(C_CLIENTID VARCHAR2, C_TRAN_ID NUMBER) IS
 SELECT STORE FROM C$INQ
 WHERE CLID$$CS = C_CLIENTID AND TRANID$$ = C_TRAN_ID FOR UPDATE;
/* TASKS_CUR retrieves the values for the client data to be updated */
/* from the In Queue */
CURSOR TASKS_CUR(C_CLIENTID varchar2, C_TRAN_ID number) IS
 SELECT ID, EMP_ID, STAT_ID, NOTES, DMLTYPE$$ FROM CFM$PI_FSERV_TASKS
 WHERE CLID$$CS = C_CLIENTID AND TRANID$$ = C_TRAN_ID FOR UPDATE;
/* create variables */
TASK_OBJ TASKS_CUR%ROWTYPE;
PI_OBJ PI_CUR%ROWTYPE;
INSERT_NOT_ALLOWED EXCEPTION;
DELETE_NOT_ALLOWED EXCEPTION;
UNKNOWN_DMLTYPE EXCEPTION;

BEGIN

 OPEN PI_CUR(CLIENTID, TRAN_ID);
 /* C$INQ is used to find out which publication items have received data
 from clients. The publication item name is available in the STORE column
 */
 LOOP
 FETCH PI_CUR INTO PI_OBJ;
 EXIT WHEN PI_CUR%NOTFOUND;

 /* Locate the updates for the publication item PI_FSERV_TASKS */
 IF PI_OBJ.STORE = 'PI_FSERV_TASKS' THEN
 OPEN TASKS_CUR(CLIENTID, TRAN_ID);
 LOOP
 /* Process the In Queue for PI_FSERV_TASKS */
 FETCH TASKS_CUR INTO TASK_OBJ;
 EXIT WHEN TASKS_CUR%NOTFOUND;

 /* Discover the DML command requested. For this publication, only
 updates are allowed.
 IF TASK_OBJ.DMLTYPE$$ = 'I' THEN
 RAISE INSERT_NOT_ALLOWED;
 ELSIF TASK_OBJ.DMLTYPE$$ = 'U' THEN
 FSERV_TASKS.UPDATE_TASK(TASK_OBJ.ID, TASK_OBJ.EMP_ID,
 TASK_OBJ.STAT_ID, TASK_OBJ.NOTES);
 ELSIF TASK_OBJ.DMLTYPE$$ = 'D' THEN
 RAISE DELETE_NOT_ALLOWED;
 ELSE
 RAISE UNKNOWN_DMLTYPE;
 END IF;

 /* after processing, delete the update request from the In Queue */
 DELETE FROM CFM$PI_FSERV_TASKS WHERE CURRENT OF TASKS_CUR;
 END LOOP;

Customizing Synchronization With Your Own Queues

2-72 Oracle Database Mobile Server Developer's Guide

 close TASKS_CUR;
 END IF;

 /* after completing all updates for the client apply phase, delete from
 master queue */
 DELETE FROM C$INQ WHERE CURRENT OF PI_CUR;
 END LOOP;
END;

2.12.1.2.2 Out Queue Compose Phase Processing Within the DOWNLOAD_INIT procedure,
develop a method of composing all changes from the server that are destined for the
client from the publication item tables in the repository. The FServ example performs
the following:

1. From the Temporary Table C$PUB_LIST_Q, discover the publication items that you
should download data for the user using the client id, current and last transaction.

2. Retrieves the application publication item data into the Out Queue. This example
always uses complete refresh.

PROCEDURE DOWNLOAD_INIT(CLIENTID IN VARCHAR2,
 LAST_TRAN IN NUMBER,
 CURR_TRAN IN NUMBER,
 HIGH_PRTY IN VARCHAR2) IS
 /*create cursor used later in procedure which retrieves the publication name
 from the temporary table to perform compose phase.*/
 CURSOR PI_CUR IS SELECT NAME from C$PUB_LIST_Q;
 /*create variables*/
 PI_NAME VARCHAR2(50);
 STATID_CLOSE NUMBER;

 BEGIN

 OPEN PI_CUR;
 /* C$PUB_LIST_Q (the temporary table) is used to find out which pub items
 have data to download to clients through the publication item Out Queue.
 The publication item name is available in the NAME column
 */
 LOOP
 FETCH PI_CUR INTO PI_NAME;
 EXIT WHEN PI_CUR%NOTFOUND;

 /* Populate the Out Queue of pub item PI_FSERV_TASKS with all
 unclosed tasks for the employee with this CLIENTID using a complete
 refresh. COMP_REF is always reset to Y since partial refresh has
 not been implemented.
 */
 /* if the PI_FSERV_TASKS publication item has data ready for the client,
 then perform a complete refresh and place all data in the Out Queue */
 IF PI_NAME = 'PI_FSERV_TASKS' THEN
 UPDATE C$PUB_LIST_Q SET COMP_REF='Y' where NAME = 'PI_FSERV_TASKS';
 SELECT ID INTO STATID_CLOSE FROM MASTER.TASK_STATUS
 WHERE DESCRIPTION='CLOSED';
 INSERT INTO CTM$PI_FSERV_TASKS(CLID$$CS, ID, EMP_ID, CUST_ID,
 STAT_ID, NOTES, TRANID$$, DMLTYPE$$)
 SELECT CLIENTID, a.ID, a.EMP_ID, a.CUST_ID, a.STAT_ID, a.NOTES,
 CURR_TRAN, 'I' FROM MASTER.TASKS a, MASTER.EMPLOYEES b
 WHERE a.STAT_ID < STATID_CLOSE AND b.CLIENTID = CLIENTID
 AND a.EMP_ID = b.ID;
 END IF;
 END LOOP;

Customizing Synchronization With Your Own Queues

Synchronization 2-73

 END;

If, however, you want to perform another type of refresh than a complete refresh, such
as an incremental refresh, then do the following:

1. Read the value of COMP_REF

2. If the value is N, insert only the new data into the Out Queue.

In this situation, the LAST_TRAN parameter becomes useful.

2.12.1.3 Create a Publication Item as a Queue
You create the publication item as you would normally, with one change: define the
publication item as queue-based. See Section 4.4, "Create a Publication Item" for
directions on how to define the publication item as queue-based when using MDW.

If you are using the Consolidator APIs, then the createQueuePublicationItem
method creates a publication item in the form of a queue. This API call registers the
publication item and creates CFM$<name> table as an In Queue, if one does not exist.

You must provide the Consolidator Manager with the primary key, owner and name of
the base table or view in order to create a queue that can be updated or refreshed with
fast-refresh. If the base table or view name has no primary key, one can be specified in
the primary key columns parameter. If primary key columns parameter is NULL, then
Consolidator Manager uses the primary key of the base table.

2.12.1.4 Register the PL/SQL Package Outside the Repository
Once you finish developing the PL/SQL package, register the package in the
MOBILEADMIN schema with the registerQueuePkg method. This method registers the
package separately from the mobile server repository; although it refers to the In
Queues, Out Queues, queue control table and temporary table that are defined in the
repository.

The following methods register or remove a procedure, or retrieve the procedure
name.

■ The registerQueuePkg method registers the string pkg as the current procedure.
The following registers the FServ package.

 /* Register the queue package for this publication */
 consolidatorManager.registerQueuePkg(QPKG_NAME, PUB_FSERV);

■ The getQueuePkg method returns the name of the currently registered procedure.

■ The unRegisterQueuePkg method removes the currently registered procedure.

Note: See the Oracle Database Mobile Server JavaDoc for more
information.

Note: The developer used Consolidator Manager APIs to create the
subscription, so this was included in the Java application that created
the subscription.

Customizing Synchronization With Your Own Queues

2-74 Oracle Database Mobile Server Developer's Guide

2.12.2 Creating Data Collection Queues for Uploading Client Collected Data
If you have an application that collects data on a client, such as taking inventory or the
amount collected on a parking meter, then you can use data collection queues to
improve the performance of uploading the data collected to the server. Since the data
only flows from the client to the server, then synchronous communication is the best
method for uploading massive amounts of data.

Data collection queues can be used for the following two types of data collection:

■ New records that are inserted on the client.

■ Existing records that are downloaded to the client in order that the user can
modify and upload these records.

An example of the second type is a supply counting application. If you want to count
the number of items in stock, then you could design the application table with the
columns: Item and Count. Initially, populate the Item column and synchronize the
data to the device, as follows:

The user on the client updates each item with the inventory amount, as follows:

The Data Collection Queue is lightweight and simple to create. Data collection queues
are the same as regular queues with the exception that they provide automatic apply
of the data uploaded by the client. However, you can customize whether the data is
implicitly applied or not. This queue does not require the MGP to apply the changes. It
does not create objects in the application schema or map data.

Data Collection Queues are easier to implement than a Queue-Based publication item.
There is no need to create a package with callback methods, as Oracle Database Mobile

Note: See the Oracle Database Mobile Server JavaDoc for more
information.

Note: If you are collecting data on the client, but still need updates
from the server, you can use the default method for synchronization
or create your own queues. See Section 2.12.1, "Customizing
Apply/Compose Phase of Synchronization with a Queue-Based
Publication Item" for more information.

Table 2–27 Stock Inventory Table

Item Count

Apples -

Pears -

Oranges -

Table 2–28 Stock Inventory Table

Item Count

Apples 2

Pears 3

Oranges 1

Customizing Synchronization With Your Own Queues

Synchronization 2-75

Server takes care of automatically uploading any new data from the client. In addition,
you configure how Oracle Database Mobile Server handles if there is any data to be
downloaded or if you want the data on the client to be erased when it is uploaded to
the server.

When you create the Data Collection Queue, the following is performed for you:

■ Automatically generates the in-queue when the publication item is created, which
is named as follows: CFM$<publication_item_name>.

■ Optionally, enables the developer to choose automatic removal of client data once
captured to the server. This is specified when you create the publication item.

■ Optionally, if you need an out-queue, then the developer can specify the
out-queue or to have Oracle Database Mobile Server automatically generate an
out-queue, which would be named as follows: CTM$<publication_item_name>.

Just like for regular queues, users can create their own Out Queue logic. By default, the
Out Queue created is an empty view with the name of (CTM$<publication_item>). An
empty view is a view that selects zero records. Therefore, by default, data collection
queues do not pick up any data from the server.

You can modify how the data collection queue behaves when you create it using the
ConsolidatorManager.createDataCollectionQueue method. The following
parameters effect the behavior of your data collection queue:

■ Specify an Out Queue—Out Queue creation is affected by the isOutView boolean
input parameter. If isOutView is TRUE, then creates the Out Queue as an empty
view; if FALSE, then creates the Out Queue as a table.

■ Automatic Removal of Data on the Client—Users can customize the default
behavior of data purging on the client by setting the purgeClientAfterSync
parameter to either true or false.

■ If TRUE, then the client uploads its data changes and removes the records
from the client database. At this point, the table on the client is empty. If the
Out Queue on the server is empty, the client no longer has any records. If the
Out Queue is not empty, the client downloads these records and the table on
the client contains only these records.

■ If FALSE, then the client records remain on the device after synchronization
unless the server explicitly sends the DELETE command, in the same manner as
a normal publication item.

2.12.2.1 Creating a Data Collection Queue
When you create a data collection queue, you perform the following:

1. Create the tables for the data that the queue updates on the back-end Oracle
database.

2. Create the data collection queue and its publication item using the
ConsolidatorManager createDataCollectionQueue method, where the input
parameters are as follows:

■ name—A character string specifying a new publication item name.

Note: All ConsolidatorManager methods are fully documented in
the Oracle Database Mobile Server Javadoc. This section provides context
of the order in which to execute these methods.

Customizing Synchronization With Your Own Queues

2-76 Oracle Database Mobile Server Developer's Guide

■ owner—A string specifying the base schema object owner.

■ store—A string specifying the table name that it is based on.

■ inq_cols—A string specifigying columns in the order in which to replicate
them. If NULL, then defaults to *, which makes the SQL statement, select *
from <table>.

■ pk_columns—A string specifying the primary keys.

■ purgeClientAfterSync—If true, removes client data from the mobile device
when uploaded to the server.

■ isOutView—If true, then creates Out Queue as an empty view, otherwise
creates Out Queue as a table.

The following creates the PI_CUSTOMERS data collection queue:

cm.createDataCollectionQueue("PI_CUSTOMERS", /* Publication Item name */
 MYSCHEMA, /* Schema owner */
 "CUSTOMERS", /* store */
 NULL, /* inqueue_columns
 NULL, /* NULL selects all pk_columns
 true, /* removes old data after sync
 true); /* isOutView */

3. Create the publication that is to be used by the data collection queue. Use the
ConsolidatorManager createPublication method. The following creates the PUB_
CUSTOMERS publication that is used by the PI_CUSTOMERS data collection queue:

cm.createPublication("PUB_CUSTOMERS",0, "sales.%s", NULL);

4. Add the publication item created within step 1 within this publication with the
ConsolidatorManager addPublicationItem method. The following adds a
publication item to the publication:

cm.addPublicationItem("PUB_CUSTOMERS", "PI_CUSTOMERS", NULL, NULL,
 "S", NULL, NULL);

5. If you want to have data download from the server to the mobile client, create an
Out Queue with a name that consists of CTM$<publication_item_name>. The
following replaces the default Out Queue view for CUSTOMER with a view that
selects all customers assigned to the EMP_ID associated with current sync session.

stmt.executeUpdate(
 "CREATE OR REPLACE VIEW CTM$"+pubIs[0]+" (CLID$$CS, TRANID$$,
 DMLTYPE$$,"+" CUST_ID, CNAME, CCOMPANY, CPHONE,
 CCONTACT_DATE)"+"\n
 AS SELECT CONS_EXT.GET_CURR_CLIENT, 999999999, 'I',cust.*
 FROM CUSTOMERS cust "+"\n
 WHERE cust.CUST_ID IN (SELECT CUST_ID
 FROM CUSTOMER_ASSIGNMENT WHERE EMP_ID IN "+"\n
 (SELECT EMP_ID FROM SESSION_EMP
 WHERE SESSION_ID = DBMS_SESSION.UNIQUE_SESSION_ID))"
);

Note: See the Oracle Database Mobile Server samples page for the
full data collection queue example from which these snippets were
taken. The example demonstrates both a regular queue and a data
collection queue.

Customizing Synchronization With Your Own Queues

Synchronization 2-77

2.12.3 Selecting How and When to Notify Clients of Composed Data
If you have created your own compose logic, such as in the queue-based publications,
then you may want the server to notify the client that there is data to be downloaded.
You can take control of starting an automatic synchronization from the server using
the enqueue notification APIs.

There are other situations where you may want to control how and when clients are
notified of compose data from the synchronization process. For example, if you have
so many clients that to notify all of them of the data waiting for them would overload
your system, you may want to control the process by notifying clients in batches.

In the normal synchronization process, when the compose phase is completed, all
clients that have data in the Out Queue are notified to download the data. If, for
example, you have 2000 clients, having all 2000 clients request a download at the same
time could overrun your server and cause a performance issue. In this scenario, you
could take control of the notification process and notify 100 clients at a time over the
span of a couple of hours. This way, all of the clients receive the data in a timely
fashion and your server is not overrun.

You can use the enqueue notification functionality, as follows:

■ If you implement queue-based publications for the compose phase, you can notify
the clients with the EN_QUEUE_NOTIFICATION function within the Queue-based
DOWNLOAD_INIT function.

■ If you write your own compose function, use the enQueueNotification method to
notify the client that there is data to download.

This starts an automatic synchronization process for the intended client.

The enqueue notification APIs enable the server to tell the client that there is data to be
downloaded and what type of data is waiting. Notifying the client of what type of
data is waiting enables the client to evaluate whether it conforms to any automatic
synchronization rules. For example, if the server has 10 records of low priority data,
but the client has set the Server MGP Compose rule to only start an automatic
synchronization if 20 records of low priority data exist, then the automatic
synchronization is not started. So, the notification API input parameters include
parameters that enable the server to describe the data that exists on the server.

A notification API is provided for you in both PL/SQL and Java, as follows:

■ Java: the ConsolidatorManager enQueueNotification method

public long enQueueNotification(java.lang.String clientid,
 java.lang.String publication,
 java.lang.String pubItems,
 int recordCount,
 int dataSize,
 int priority)
 throws ConsolidatorException

■ PL/SQL: the EN_QUEUE_NOTIFICATION function

FUNCTION EN_QUEUE_NOTIFICATION(
 CLIENTID IN VARCHAR2,
 PUBLICATION IN VARCHAR2,
 PUB_ITEMS IN VARCHAR2,
 RECORD_COUNT IN NUMBER,
 DATA_SIZE IN NUMBER,
 PRIORITY IN NUMBER)
RETURN NUMBER;

Synchronization Performance

2-78 Oracle Database Mobile Server Developer's Guide

Where the parameters for the above are as follows:

The enqueue notification API returns a unique notification ID, which can be used to
query notification status in the isNotificationSent method, which is as follows:

■ JAVA

public boolean isNotificationSent(long notificationId)
 throws ConsolidatorException

■ PL/SQL

FUNCTION NOTIFICATION_SENT(
 NOTIFICATION_ID IN NUMBER)
RETURN BOOLEAN;

If the notification has been sent, a boolean value of TRUE is returned.

2.13 Synchronization Performance
There are certain optimizations you can do to increase performance. See Section 1.2
"Increasing Synchronization Performance" in the Oracle Database Mobile Server
Troubleshooting and Tuning Guide for a full description.

2.14 Troubleshooting Synchronization Errors
The following section can assist you in troubleshooting any synchronization errors:

■ Section 2.14.1, "Foreign Key Constraints in Updatable Publication Items"

2.14.1 Foreign Key Constraints in Updatable Publication Items
Replicating tables between Oracle database and clients in updatable mode can result in
foreign key constraint violations if the tables have referential integrity constraints.
When a foreign key constraint violation occurs, the server rejects the client transaction.

■ Section 2.14.1.1, "Foreign Key Constraint Violation Example"

Table 2–29 Enqueue Notification Parameters

Parameters Description

clientid Consolidator client id, which is normally the user name on the
client device. This identifies the client to be notified. If the client
does not have any automatic synchronization rules, this is the
only required paramter for an automatic synchronization to
start.

publication Name of the publication for which you want notification control.
This tells the client for which publication the data is destined.

pubItems One or more publication items for which you want notification.
Separate multiple publication items with a comma. This notifies
the clients for which publication items the data applies.

recordCount This notifies the client how many records exist on the server for
the download.

dataSize Reserved for future expansion.

priority This notifies the client of the priority of the data that exists on
the server. The value is 0 for high and 1 for low.

Troubleshooting Synchronization Errors

Synchronization 2-79

■ Section 2.14.1.2, "Avoiding Constraint Violations with Table Weights"

■ Section 2.14.1.3, "Avoiding Constraint Violations with BeforeApply and After
Apply"

2.14.1.1 Foreign Key Constraint Violation Example
For example, two tables EMP and DEPT have referential integrity constraints. The DeptNo
(department number) attribute in the DEPT table is a foreign key in the EMP table. The
DeptNo value for each employee in the EMP table must be a valid DeptNo value in the
DEPT table.

A mobile server user adds a new department to the DEPT table, and then adds a new
employee to this department in the EMP table. The transaction first updates DEPT and
then updates the EMP table. However, the database application does not store the
sequence in which these operations were executed.

When the user replicates with the mobile server, the mobile server updates the EMP
table first. In doing so, it attempts to create a new record in EMP with an invalid foreign
key value for DeptNo. Oracle database detects a referential integrity violation. The
mobile server rolls back the transaction and places the transaction data in the mobile
server error queue. In this case, the foreign key constraint violation occurred because
the operations within the transaction are performed out of their original sequence.

Avoid this violation by setting table weights to each of the tables in the master-detail
relationship. See Section 2.14.1.2, "Avoiding Constraint Violations with Table Weights"
for more information.

2.14.1.2 Avoiding Constraint Violations with Table Weights
The mobile server uses table weight to determine in which order to apply client
operations to master tables. Table weight is expressed as an integer and are
implemented as follows:

1. Client INSERT operations are executed first, from lowest to highest table weight
order.

2. Client DELETE operations are executed next, from highest to lowest table weight
order.

3. Client UPDATE operations are executed last, from lowest to highest table weight
order.

In the example listed in Section 2.14.1.1, "Foreign Key Constraint Violation Example", a
constraint violation error could be resolved by assigning DEPT a lower table weight
than EMP. For example:

(DEPT weight=1, EMP weight=2)

You define the order weight for tables when you add a publication item to the
publication. For more information on setting table weights in the publication item, see
Section 2.4.1.7.2, "Using Table Weight".

2.14.1.3 Avoiding Constraint Violations with BeforeApply and After Apply
You can use a PL/SQL procedure to avoid foreign key constraint violations based on
out-of-sequence operations by using DEFERRABLE constraints in conjunction with the
BeforeApply and AfterApply functions. See Section 2.9.3.2, "Defer Constraint
Checking Until After All Transactions Are Applied" for more information.

Register a Remote Oracle Database for Application Data

2-80 Oracle Database Mobile Server Developer's Guide

2.15 Register a Remote Oracle Database for Application Data
By default, the repository metadata and the application schemas are present in the
same database. However, it is possible to place the application schemas in a database
other than the MAIN database where the repository exists. This can be an advantage
from a performance or administrative viewpoint.

Thus, you can spread your application data across multiple databases.

This section describes how to register a remote Oracle database containing application
schemas, using the ConsolidatorManager APIs. However, it is recommended that you
use the Oracle Database Mobile Server GUI tools for this task unless you have a
specific need to use the API. For concepts and description of how to perform this with
the Oracle Database Mobile Server GUI tools, see Section 5.8.1, "Register or Deregister
an Oracle Database for Application Data" in the Oracle Database Mobile Server
Administration and Deployment Guide.

To use an Oracle database other than the Oracle database used for the repository,
perform the following:

1. Use the apprepwizard script to setup a remote application repository. See
Section 2.15.1, "Set up a Remote Application Repository With the
APPREPWIZARD Script" for details.

2. Register the Oracle database as described in Section 2.15.2, "Register or Deregister
a Remote Oracle Database for Application Data".

3. When creating the publication and publication items, specify the name of the
registered Oracle database that contains the application schemas. All data for a
single application—that is, all publication items for the publication—must be
contained in the same Oracle database.

2.15.1 Set up a Remote Application Repository With the APPREPWIZARD Script
Use the apprepwizard script to setup a remote application repository. This script
creates and initializes an administrator schema with the same name as the
adminstrator schema in the Main database. For example, if the administrator schema
name in the Main database is mobileadmin, then the apprepwizard script creates a
mobileadmin schema on the remote database.

The apprepwizard script is located in the ORACLE_HOME/Mobile/Server/admin. The
usage of this script is as follows:

apprepwizard.bat <MAIN_Repository_Schema_Name> <MAIN_Repository_Schema_Password>
 <Application_Database_Administrator_User_Name>
 <Application_Database_Administrator_Password>
 <Application_Database_JDBC_URL> <Application_Database_Schema_Password>
 [<DB_name>]

Where each parameter is as follows:

Note: We refer to the database where the application schema resides
as remote because it is separate from the MAIN database that contains
the repository. It does not mean that the database is geographically
remote. It can be local or remote. For performance reasons, the mobile
server must have connectivity to all databases involved in the
synchronization—MAIN and remote.

Register a Remote Oracle Database for Application Data

Synchronization 2-81

■ MAIN_Repository_Schema_Name: Provide the repository schema name, which exists
on the Main database. The default is MOBILEADMIN.

■ MAIN_Repository_Schema_Password: Provide the password for the repository
administrator schema.

■ Application_Database_Administrator_User_Name: Any user with administrator
privileges at the application database. such as SYSTEM.

■ Application_Database_Administrator_Password: Password of the administrator
user for the application database.

■ Application_Database_JDBC_URL: JDBC URL of the application database.

■ Application_Database_Schema_Password: Password of the schema, which is
created at the application database. The user name is the same as the repository
schema name.

■ DB_Name: Optionally, the user can provide a name to identify this database. This
name is used in logging. By default, the log is sent to the console. If this name is
provided as the last parameter, then the log is generated in the By default, the log
is sent to the console. If the database name is provided as the last parameter, then
the log is generated in the ORACLE_HOME/Mobile/Server/<DB_
NAME>/apprepository.log file.

This script installs silently. Thus, If you execute this script without any arguments,
nothing is performed.

2.15.2 Register or Deregister a Remote Oracle Database for Application Data
Use the following ConsolidatorManager APIs to register, deregister, or alter the
properties of the remote Oracle database:

void registerDatabase(String name, Consolidator.DBProps props)
void deRegisterDatabase(String name)
void alterDatabase(String name, Consolidator.DBProps props)

Where:

■ Name—An identifying name for the database where the application schema
resides. Once defined, this name cannot be modified. This name must be unique
across all registered database names.

■ DBProps—A class that contains the JDBC URL, password and description, as
follows:

public static class DBProps {
 public String jdbcUrl;
 public String adminPassword;
 public String description;
}

– JDBC URL—The JDBC URL can be one of the following formats:

* The URL for a single Oracle database has the following structure:
jdbc:oracle:thin:@<host>:<port>:<SID>

* The JDBC URL for an Oracle RAC database can have more than one
address in it for multiple Oracle databases in the cluster and follows this
URL structure:

jdbc:oracle:thin:@(DESCRIPTION=
 (ADDRESS_LIST=

Register a Remote Oracle Database for Application Data

2-82 Oracle Database Mobile Server Developer's Guide

 (ADDRESS=(PROTOCOL=TCP)(HOST=PRIMARY_NODE_HOSTNAME)(PORT=1521))
 (ADDRESS=(PROTOCOL=TCP)(HOST=SECONDARY_NODE_HOSTNAME)(PORT=1521))
)
 (CONNECT_DATA=(SERVICE_NAME=DATABASE_SERVICENAME)))

– Password—The administrator password is used to logon to the database. The
administrator name is the same as what was defined for the main database.

When defining, the password must conform to the following restrictions:

– not case sensitive

– cannot contain white space characters

– maximum length of 28 characters

– must begin with an alphabet

– can contain only alphanumeric characters

– cannot be an Oracle database reserved word

– Description—A user-defined description to help identify this database.

Refer to the ConsolidatorManager in the Oracle Database Mobile Server JavaDoc for more
details.

The following code example registers a database as APP1. The registerDatabase API
stores access information for the application repository and provides a name so that
publications, publication items, and MGP Jobs can be created against this repository. It
does not define the administrator schema.

Consolidator.DBProps props = new Consolidator.DBProps();
props.jdbcUrl = "jdbc:oracle:thin:@apphost:1521:app1";
props.description="App database 1"
props.adminPassword = "secret";
consMgr.registerDatabase("APP1", props);

The following code example deregisters the APP1 database.

consMgr.deRegisterDatabase("APP1");

You can retrieve the names of all of the registered databases with the
getDatabaseInstances method, which is as follows:

Map getDatabaseInstances()

The Map returned by getDatabaseInstances method contains a keyset of the
application database names and the entry for each key is a Consolidator.DBProps
class where the adminPassword is always NULL for security purposes.

2.15.3 Create Publication, Publication Item, Hints and Virtual Primary Keys on a
Remote Database

You must have already registered the remote database before defining publications,
publication items, hints, and virtual primary keys that use the application data
schemas and tables on the remote database. In the ConsolidatorManager API calls, the
registered name of the remote database is required.

Note: The publication and publication item names are unique
irrespective of where the data resides.

Register a Remote Oracle Database for Application Data

Synchronization 2-83

All publication items within a publication must be defined on tables within the same
database.

The following example illustrates the creation of a publication and a publication item
against a remote database registered as APP1. Refer to the ConsolidatorManager in the
Oracle Database Mobile Server JavaDoc for more details.

ConsolidatorManager consMgr = new ConsolidatorManager();
consMgr.openConnection("mobileadmin", "mobileadmin",
 "oracle:jdbc:thin:@host1:1521:master");
consMgr.createPublication("PUB1","APP1",Consolidator.DFLT_CREATOR_ID,
 "ddb.%s", NULL);

Consolidator.PubItemProps taskPIProps = new Consolidator.PubItemProps();
taskPIProps.db_inst = "APP1"; // Remote App database name as registered
taskPIProps.owner = "APPUSER1";
taskPIProps.store = "TASKS";
taskPIProps.refresh_mode = "F";
taskPIProps.select_stmt = "select id, emp_id, cust_id, stat_id, notes
 from APPUSER1.TASKS";
taskPIProps.cbk_owner = "MOBILEADMIN";
taskPIProps.cbk_name = "TASKSPI_PKG";
consMgr.createPublicationItem("PI_1_TASKS", taskPIPProps);

consMgr.addPublicationItem("PUB1", "PI_1_TASKS", NULL, NULL, "S", NULL, NULL);
consMgr.createSubscription("PUB1", "USER1");
consMgr.instantiateSubscription("PUB1", "USER1");
consMgr.closeConnection();

Other API calls for managing data collection queues, hints, and virtual primary keys
that require the remote database name are shown below. Refer to the
ConsolidatorManager in the Oracle Database Mobile Server JavaDoc for more details.

■ Data Collection Queue

void createDataCollectionQueue(String name, String db_inst,
 String owner, String store, String inq_cols, String pk_columns,
 boolean purgeClientAfterSync, boolean isOutView)

■ Hint

void parentHint(String db_inst, String owner, String store, String owner_d,
 String store_d)
void dependencyHint(String db_inst, String owner, String store,
 String owner_d, String store_d)
void removeDependencyHint(String db_inst, String owner, String store,
 String owner_d, String store_d)

■ Virtual Primary Key

public void createVirtualPKColumn(String db_inst, String owner,
 String store, String column)
public void dropVirtualPKColumns(String db_inst, String owner,
 String store)

The APIs used for creating a publication and publication item is the same except for
the addition of the remote database name. Following is an example that provides the
remote database name, APP1, in bold for creating a publication and publication item:

ConsolidatorManager consMgr = new ConsolidatorManager();
consMgr.openConnection("mobileadmin", "mobileadmin",
"oracle:jdbc:thin:@host1:1521:master");

Register a Remote Oracle Database for Application Data

2-84 Oracle Database Mobile Server Developer's Guide

consMgr.createPublication("PUB1","APP1",Consolidator.DFLT_CREATOR_ID,
 "ddb.%s", NULL);
Consolidator.PubItemProps taskPIProps = new Consolidator.PubItemProps();
taskPIProps.db_inst = "APP1"; // Remote APP instance name as registered
taskPIProps.owner = "APPUSER1";
taskPIProps.store = "TASKS";
taskPIProps.refresh_mode = "F";
taskPIProps.select_stmt = "select id, emp_id, cust_id, stat_id, notes from
APPUSER1.TASKSî;
taskPIProps.cbk_owner = "MOBILEADMIN";
taskPIProps.cbk_name = "TASKSPI_PKG";
consMgr.createPublicationItem("PI_1_TASKS", taskPIPProps);
consMgr.addPublicationItem("PUB1", "PI_1_TASKS", NULL, NULL, "S", NULL, NULL);
consMgr.createSubscription("PUB1", "USER1");
consMgr.instantiateSubscription("PUB1", "USER1");
consMgr.closeConnection();

2.15.4 Using Callbacks on Remote Databases
The following sections describe how the synchronization callbacks, described in
Section 2.7, "Customize What Occurs Before and After Synchronization Phases", must
be handled for the remote database:

■ Section 2.15.4.1, "Customize Callbacks on the Remote Database"

■ Section 2.15.4.2, "Publication Item Level Callbacks for the MGP Apply/Compose
Phases"

2.15.4.1 Customize Callbacks on the Remote Database
The Customize callbacks, as described in Section 2.7.1, "Customize What Occurs
Before and After Every Phase of Each Synchronization", are created to perform defined
tasks before or after any phase of synchronization.

Most of the callbacks pertain to MGP processing. Since an MGP Job executes against a
database, these callbacks are invoked separately by each job against the corresponding
database. Callbacks that are not related to the MGP are invoked against the MAIN
database. Thus, the callback PL/SQL package must be created on the MAIN database
as well as on the appropriate remote databases.

2.15.4.2 Publication Item Level Callbacks for the MGP Apply/Compose Phases
Define the MGP publication item level callbacks on the database against which the
publication item is defined. Then, these can access the base tables on that database.

For full details on the MGP publication item level callbacks, see Section 2.7.2,
"Customize What Occurs Before and After Compose/Apply Phases for a Single
Publication Item".

2.15.4.3 Customizing the Apply/Compose Phase for a Queue-Based Publication
Item on a Remote Database
When you customize the apply/compose phase for a queue-based publication item, as
described in Section 2.12.1, "Customizing Apply/Compose Phase of Synchronization
with a Queue-Based Publication Item", then these packages must be defined on the
database where the queue-based publication item base tables exist. Thus, if the base
tables exist on a remote database, then the packages must be defined on the remote
database.

Create a Synonym for Remote Database Link Support For a Publication Item

Synchronization 2-85

2.16 Create a Synonym for Remote Database Link Support For a
Publication Item

Publication items can be defined for database objects existing on remote databases
outside of the mobile server repository. Local private synonyms of the remote objects
can be created in the Oracle database. However, we recommend that you use the
remote database functionality as described in Section 2.15, "Register a Remote Oracle
Database for Application Data".

If you still decide to use database links for defining publication items on remote
databases, then you can execute the following SQL script located in the <ORACLE_
HOME>\Mobile\server\admin\consolidator_rmt.sql directory on the remote schema
in order to create Consolidator Manager logging objects.

The synonyms should then be published using the createPublicationItem method of
the ConsolidatorManager object. If the remote object is a view that needs to be
published in updatable mode and/or fast-refresh mode, the remote parent table must
also be published locally. Parent hints should be provided for the synonym of the
remote view similar those used for local, updatable and/or fast refreshable views.

Two additional methods have been created, dependencyHint and
removeDependencyHint, to deal with non-apparent dependencies introduced by
publication of remote objects.

Remote links to the Oracle database must be established before attempting remote
linking procedures, please refer to the Oracle SQL Reference for this information.

The following sections describe how to manage remote links:

■ Section 2.16.1, "Publishing Synonyms for the Remote Object Using
CreatePublicationItem"

■ Section 2.16.2, "Creating or Removing a Dependency Hint"

2.16.1 Publishing Synonyms for the Remote Object Using CreatePublicationItem
The createPublicationItem method creates a new, stand-alone publication item as a
remote database object. If the URL string is used, the remote connection is established
and closed automatically. If the connection is NULL or cannot be established, an
exception is thrown. The remote connection information is used to create logging
objects on the linked database and to extract metadata.

consolidatorManager.createPublicationItem(
 "jdbc:oracle:oci8:@oracle.world",
 "P_SAMPLE1",
 "SAMPLE1",
 "PAYROLL_SYN",
 "F"

Note: The performance of synchronization from remote databases
is subject to network throughput and the performance of remote
query processing. Because of this, remote data synchronization is
best used for simple views or tables with limited amount of data.

Note: See the Oracle Database Mobile Server JavaDoc for more
information.

Parent Tables Needed for Updateable Views

2-86 Oracle Database Mobile Server Developer's Guide

 "SELECT * FROM sample1.PAYROLL_SYN"+"WHERE SALARY >:CAP", NULL, NULL);

2.16.2 Creating or Removing a Dependency Hint
Use the dependencyHint method to create a hint for a non-apparent dependency.

Given remote view definition
 create payroll_view as
 select p.pid, e.name
 from payroll p, emp e
 where p.emp_id = e.emp_id;

Execute locally
 create synonym v_payroll_syn for payroll_view@<remote_link_address>;
 create synonym t_emp_syn for emp@<remote_link_address>;

Where <remote_link_address> is the link established on the Oracle database. Use
dependencyHint to indicate that the local synonym v_payroll_syn depends on the
local synonym t_emp_syn:

consolidatorManager.dependencyHint("SAMPLE1","V_PAYROLL_SYN","SAMPLE1","T_EMP_
SYN");

Use the removeDependencyHint method to remove a hint for a non-apparent
dependency.

2.17 Parent Tables Needed for Updateable Views
For a view to be updatable, it must have a parent table. A parent table can be any one
of the view base tables in which a primary key is included in the view column list and
is unique in the view row set. If you want to make a view updatable, provide the
mobile server with the appropriate hint and the view parent table before you create a
publication item on the view.

To make publication items based on a updatable view, use the following two
mechanisms:

■ Parent table hints

■ INSTEAD OF triggers or DML procedure callouts

2.17.1 Creating a Parent Hint
Parent table hints define the parent table for a given view. Parent table hints are
provided through the parentHint method of the Consolidator Manager object, as
follows:

consolidatorManager.parentHint("SAMPLE3","ADDROLRL4P","SAMPLE3","ADDRESS");

See the Oracle Database Mobile Server JavaDoc for more information.

Note: Within the select statement, the parameter name for the
data subset must be prefixed with a colon, for example :CAP.

Note: See the Oracle Database Mobile Server JavaDoc for more
information.

Manipulating Application Tables

Synchronization 2-87

2.17.2 INSTEAD OF Triggers
INSTEAD OF triggers are used to execute INSTEAD OF INSERT, INSTEAD OF UPDATE, or
INSTEAD OF DELETE commands. INSTEAD OF triggers also map these DML commands
into operations that are performed against the view base tables. INSTEAD OF triggers
are a function of the Oracle database. See the Oracle database documentation for
details on INSTEAD OF triggers.

2.18 Manipulating Application Tables
If you need to manipulate the application tables to create a secondary index or a
virtual primary key, you can use ConsolidatorManager methods to programmatically
perform these tasks in your application, as described in the following sections:

■ Section 2.18.1, "Creating Secondary Indexes on Client Device"

■ Section 2.18.2, "Virtual Primary Key"

2.18.1 Creating Secondary Indexes on Client Device
The first time a client synchronizes, the mobile server automatically enables a mobile
client to create the database objects on the client in the form of snapshots. By default,
the primary key index of a table is automatically replicated from the server. You can
create secondary indexes on a publication item through the Consolidator Manager
APIs. See the Oracle Database Mobile Server Javadoc for specific API information. See
Section 2.4.1.6, "Create Publication Item Indexes" for an example.

2.18.2 Virtual Primary Key
You can specify a virtual primary key for publication items where the base object does
not have a primary key defined. This is useful if you want to create a fast refresh
publication item on a table that does not have a primary key.

A virtual primary key must be unique and not NULL. A virtual primary key can
consist of a single or multiple columns, where each column included in the virtual
primary key must not NULL. If a NULL value is entered into any column of a virtual
primary key, this results in an error. If the virtual primary key is on a single column, it
must be unique; if the virtual primary key consists of a composite of multiple columns,
then the composite must be unique.

If you want to create a virtual primary key for more than one column, then the API
must be called separately for each column that you wish to assign to that virtual
primary key.

Use the createVirtualPKColumn method to create a virtual primary key column.

consolidatorManager.createVirtualPKColumn("SAMPLE1", "DEPT", "DEPT_ID");

Use the dropVirtualPKColumns method to drop a virtual primary key.

consolidatorManager.dropVirtualPKColumns("SAMPLE1", "DEPT");

Note: See the Oracle Database Mobile Server JavaDoc for more
information.

Facilitating Schema Evolution

2-88 Oracle Database Mobile Server Developer's Guide

2.19 Facilitating Schema Evolution
You can use schema evolution when adding or altering a column in the application
tables. If you alter the schema, then the client receives a complete refresh on the
modified publication item, but not for the entire publication.

The following types of schema modifications are supported:

■ Adding new columns.

■ Changing the type of a column. You can only modify the type of a column in
accordance to the Oracle Database limitations.

■ Increasing the width of a column.

■ Modifying the publication item sub-query.

■ Modifying the column order in the publication item select statement.

■ Removing columns from the publication item SQL query.

For facilitating schema evolution, perform the following:

1. If necessary, modify the table in the back-end Oracle database.

2. If necessary, modify the publication item SQL query directly on the production
repository with MDW or use the alterPublicationItem API. Modifying the SQL
query causes the schema evolution to occur.

A schema evolution only occurs if the SQL query is modified. Some schema
modifications will directly lead to modifying the query, while others will not. The
SQL query will not change for a column type or width change. In these cases,
modify the SQL query by adding a space in the string. This will force schema
evolution to occur properly.

3. After altering the SQL query, either use Mobile Manager to refresh the metadata
cache or restart the mobile server. To refresh the metadata cache through the
mobile server, select Data Synchronization -> Administration -> Reset Metadata Cache
or execute the resetCache method of the ConsolidatorManager class.

2.19.1 Schema Evolution Involving a Primary Key
To perform a schema evolution that includes a modification to the primary key,
recreate the publication items that use the base table where the primary key is
changed.

The following steps describe how to change the primary key column and then recreate
the publication item.

Note: You should stop all synchronization events and MGP activity
during a schema evolution.

Note: Schema evolution does not occur when clients perform
high-priority sync. However, the next regular-priority foreground
sync will receive the new schema along with a complete refresh of the
publication item data.

Note: The steps below must be followed in the order listed.

Facilitating Schema Evolution

Synchronization 2-89

1. Remove the altered publication item from the publication using MDW or
removePublicationItem API.

2. Modify the primary key definition of the base table in the back-end Oracle
database.

3. Drop the altered publication item from the repository using MDW or
dropPublicationItem API.

4. Create a new publication item based on the changed base table using MDW or
createPublicationItem API. This should be a duplicate of the previously dropped
publication item.

5. Add the publication item to the publication through MDW or addPublicationItem
API.

6. Recreate the publication item and have it automatically re-added to the
publicationt using recreatePublicationItem API (alternatively to steps 3-5).

7. Reset the Metadata Cache using the Mobile Manager by selecting Data
Synchronization -> Administration -> Reset Metadata Cache.

8. Synchronize on the existing client device to bring over the new publication.

9. Verify that primary key definition on the client device is the same as that on the
server, after the synchronization is complete.

The following steps describe how to remove the primary key constraint, add a new
column and identify it as the primary or virtual primary key and then recreate the
publication item:

1. Remove the publication item from the publication using MDW, and drop the
publication item from the repository.

2. Modify the table in the back-end Oracle database, as described in the following
steps:

■ Drop the primary key constraint:

alter table table1 drop constraint pk_constraint;
■ Add a new primary key or virtual primary key:

alter table table1 add my_new_col number(5,0) not null;
■ Populate the new primary key or virtual primary key column with proper

values.

■ Alter the table to create a primary key or virtual primary key constraint on the
new column:

alter table table1 add constraint pk_constraint unique (my_new_col);
3. Create a new publication item for table1 in MDW. This should be a duplicate of the

previously dropped publication item, but with the new column included. When
creating the publication item, verify that the my_new_col appears as the primary
key.

4. Add the publication item to the publication.

5. Reset the metadata cache using the Mobile Manager by selecting Data
Synchronization -> Administration -> Reset Metadata Cache.

Note: The steps below must be followed in the order listed.

Set DBA or Operational Privileges for the Mobile Server

2-90 Oracle Database Mobile Server Developer's Guide

6. Verify that the new primary key is in effect in the Parent Table Primary Key and Base
Table Primary Key fields in the Publication Item Detail screen (in the Mobile
Manager).

7. Synchronize on the existing client device to bring over the new publication.

8. Verify that the new column is present and that it is included in the primary key on
the client device, after the synchronization is complete.

2.20 Set DBA or Operational Privileges for the Mobile Server
You can set either DBA or operational privileges for the mobile server with the
following Consolidator Manager API:

void setMobilePrivileges(String dba_schema, String dba_pass, int type)
 throws ConsolidatorException

where the input parameter are as follows:

■ dba_schema—The DBA schema name

■ dba_pass—The DBA password

■ type—Define the user by setting this parameter to either Consolidator.DBA or
Consolidator.OPER

If you specify Consolidator.DBA, then the privileges needed are those necessary for
granting DBA privileges that are required for publish/subscribe functions of the
mobile server.

If you specify Consolidator.OPER type, then the privileges needed are those necessary
for executing the mobile server without any schema modifications. The OPER is given
DML and select access to publication item base objects, version, log, and error queue
tables.

The mobile server privileges are modified using the C$MOBILE_PRIVILEGES PL/SQL
package, which is created for you automatically after the first time you use the
setMobilePrivileges procedure. After the package is created, the mobile server
privileges can be administered from SQL or from this Java API.

3

Managing Synchronization on the Mobile Client 3-1

3Managing Synchronization on the Mobile Client

To manage manual and automatic synchronization, Native (C) APIs and Java APIs are
available for Win32, Windows Mobile and Linux clients. In addition, .NET APIs are
also available for manual and automatic synchronization on Win32 and Windows
Mobile clients. Native APIs are implemented in the following:

■ The ose.dll(libose.so on linux) implements manual synchronization APIs - both
OSE (11g or later API) and OCAPI (10. 3 and earlier API for manual
synchronization for backward compatibility, implemented as a wrapper around
the new API). In MDK, OSE APIs are declared in ose.h and OCAPI APIs are
declared in ocapi.h (see Section 3.1.1.2, "OSE Synchronization APIs For Native
Applications").

■ The bgsync.dll(libbgsync.so on linux) implements automatic synchronization
control APIs (new 11g APIs). In MDK, these APIs are declared in bgsync.h (see
Section 3.2.1.2.1, "Overview") .

■ The olSyncAgent.dll (libautosync.so on linux) implements older 10.3 automatic
synchronization control APIs for backward compatibility (see Section 3.2.1.4,
"OCAPI Sync Control APIs"). In MDK, these APIs are declared in olite_bgsync.h.
Java APIs for these platforms are implemented in jsync.jar. In addition, jsync.jar
uses JNI code implemented in msync_java.dll (libmsync_java.so on linux).

To call native APIs on Win32, Linux and Windows Mobile do the following:

■ For Win32, ensure that all client dlls (both specified above and their dependencies)
are in the PATH.

■ For Linux, ensure all the shared libraries are found in LD_LIBRARY_PATH.

■ For Windows Mobile, the client setup will put these dlls into \Windows directory
on the device.

.NET APIs are implemented in Oracle.OpenSync.dll (see Section 3.2.1.3.1,
"Overview"), which depends on all other client binaries, so the requirement above
also applies.

Note: To call Java APIs on Win32, Windows Mobile and Linux, in
addition to above requirements, make sure that msync_
java.dll(libmsync_java.so on linux) is also found in PATH (LD_
LIBRARY_PATH on linux).

Ensure that jsync.jar is in the CLASSPATH.

3-2 Oracle Database Mobile Server Developer's Guide

For Android and Blackberry platforms, all synchronization functionality is
implemented in pure java. For Android, SQLite client library is osync_android.jar and
Berkeley DB client is osync_bdb_android.jar, located in MDK under the following:

■ <MOBILE_HOME>\Mobile\Sdk\android\lib

■ <MOBILE_HOME>\Mobile\Sdk\android\lib\bdb.

The pure java client referred as Pure Java SE (PJ SE) runs on Win32 and Linux (and
even Windows Mobile). The client libraries used for Berkeley DB, SQLite and Java DB
PJ SE are osync_se_bdb.jar, osync_se_sqlite.jar and osync_se_javadb.jar respectively,

Note: The dlls/shared libraries in MDK are located in <MOBILE_
HOME>\Mobile\Sdk\bin and the header files are located at
<MOBILE_HOME>\Mobile\Sdk\include.

Note: For iOS clients:

Both SQLite and Berkeley DB clients are supported. The iOS sync
APIs for SQLite client are implemented in libosync.a static library
which you link with the application.

For Berkeley DB client, the static library name is libosync_bdb.a.

The iOS clients support native manual synchronization APIs (See
Section 3.1.1.2, "OSE Synchronization APIs For Native Applications")
as well as automatic synchronization APIs (See Section 3.2.1.2, "Native
APIs for the Sync Agent and Automatic Synchronization").

Older 10.3 APIs (OCAPI) and Java APIs are not supported.

Note: Limitations of iOS client:

The iOS client runs within the user's application and can only access
database files stored within the application sandbox. Also, like
Android and Java SE clients (as mentioned below), syncagent only
runs within the application process.

Note: The Android Berkeley DB client also requires Berkeley DB jdbc
driver (sqlite.jar) and Berkeley DB native library (liboracle-jdbc.so,
located in MDK under <MOBILE_
HOME>\Mobile\Sdk\android\lib\bdb\armeabi) and the Blackberry
client library is in osync_rim.jar (in MDK under <MOBILE_
HOME>\Mobile\Sdk\blackberry\lib.

The actual binaries installed on the device are osync_rim*.cod files
under <MOBILE_HOME>\Mobile\Sdk\blackberry, but osync_rim.jar
will be used for building mobile application).

Note: Automatic synchronization is not currently supported for
Blackberry client.

Invoke Manual Synchronization on the Mobile Client

Managing Synchronization on the Mobile Client 3-3

we call it PJ SE client library file in this document (in MDK located in <ORACLE_
HOME>\Mobile\Sdk\bin . Note the following:

■ There are both Berkeley DB, SQLite and Java DB PJ SE clients.

■ The settings in ose.ini are used to configure whether Berkeley DB, SQLite or Java
DB client is used. See Section A 1.1 "OSE Parameter - OSE" of the Mobile Client
Guide for more details on the parameters.

■ Once these settings are set, they should not be changed.

■ PJ SE client uses Berkeley DB, SQLite or Java DB JDBC driver so there is a
dependency on the JDBC driver jar file, JNI and other native libraries used to
implement the JDBC driver.

■ Ensure that both PJ SE client library file (osync_se_bdb.jar, osync_se_sqlite.jar or
osync_se_javadb.jar) and the jdbc driver are in CLASSPATH and dependent native
libraries are in the PATH (LD_LIBRARY_PATH on linux).

Versions of compilers and run time libraries are listed in the following table:

The following sections describe the mobile client synchronization APIs available to
manage both manual and automatic synchronization programmatically within your
application on the mobile client:

– Section 3.1, "Invoke Manual Synchronization on the Mobile Client"

– Section 3.2, "Manage Automatic Synchronization on the Mobile Client"

3.1 Invoke Manual Synchronization on the Mobile Client
Besides using a tool like msync, your client side application can do synchronzation
programmatically. As described above, different sets of APIs are available for different
platforms, but they do represent the same functionality. Manual synchronization APIs
have a concept of sync session. Using the session you can provide necessary
parameters, customize synchronization options, invoke synchronization and track its
progress. Use the following APIs for invoking manual synchronization on your mobile
clients:

■ Section 3.1.1, "OSE Synchronization API for Applications on Mobile Clients"

■ Section 3.1.2, "SQLite Synchronization API for .Net Clients"

Note: PJ SE client has the same design and limitations for automatic
synchronization as PJ Android client, that is, the syncagent only runs
within application process and not outside of it.

Table 3–1 Compiler and Run Time Library Versions

APIs Language Compiler Version Run Time Library Version

Java Oracle JDK 1.6/1.7 Oracle JDK 1.7/1.8

.net vs 2008 ■ vs 2008 and .NET Framework
2.0 (for win32)

■ vs 2008 and .NET Compact
Framework 3.5 (for windows
mobile)

c and c++ vs 2008 /gcc 3.4.6 vs 2008

Invoke Manual Synchronization on the Mobile Client

3-4 Oracle Database Mobile Server Developer's Guide

■ Section 3.1.3, "OCAPI Synchronization API for the Mobile Client"

3.1.1 OSE Synchronization API for Applications on Mobile Clients
OSE synchronization interfaces are available for pure Java clients, native clients and
.Net clients. The following sections provide more details:

■ Section 3.1.1.1, "OSE Synchronization Java API"

■ Section 3.1.1.2, "OSE Synchronization APIs For Native Applications"

■ Section 3.1.1.3, "OSE .Net Synchronization API"

■ Section 3.1.1.4, "OSE Synchronization JavaScript API for PhoneGap"

3.1.1.1 OSE Synchronization Java API
The following sections describe how you can use the OSE Java APIs to invoke
synchronization:

■ Section 3.1.1.1.1, "Overview"

■ Section 3.1.1.1.2, "OSESession Class"

■ Section 3.1.1.1.3, "OSEProgressListener Interface"

■ Section 3.1.1.1.4, "Selective Synchronization"

■ Section 3.1.1.1.5, "Custom Transport with the OSETransport Class"

■ Section 3.1.1.1.6, "Sequences Emulated for SQLite Mobile Clients in Replicated
Environment"

■ Section 3.1.1.1.7, "OSEException Class"

3.1.1.1.1 Overview The Java interface for mobile client synchronization resides in the
oracle.opensync.ose package.

The Java interface provides for the following functions:

■ Setting (and optionally retrieving) client-side parameters such as user name,
password and server URL

■ Customizing syncronization with various runtime options

■ Invoking sync

■ Tracking sync progress

The following are the classes and interface for the Java API for mobile clients:

■ OSESession Class

■ OSEProgressListener Interface

Note: Use the OSE classes for all new application development for
your mobile clients. These are the classes that are supported for the
future.

Note: For more details on these classes, refer to the Oracle Database
Mobile Server JavaDoc.

Invoke Manual Synchronization on the Mobile Client

Managing Synchronization on the Mobile Client 3-5

■ OSETransport Interface

■ OSEException Class

3.1.1.1.2 OSESession Class OSESession enables setting synchronization parameters
and options. This class exposes APIs to invoke and control synchronization by using
the provided synchronization options.

In a multi-threaded environment, you cannot execute OSESession methods from
multiple threads. Each thread should open its own session. The only exception is
cancelSync, which can be executed by another thread.

The parameters for the constructor are listed in Table 3–2.

Constructors
OSESession()

OSESession(String user)

OSESession(String user, char[] pwd)

Public Methods
The public methods and their parameters for the OSESession class are listed in
Table 3–3:

Note: Synchronization progress is reported through the
OSEProgressListener interface, which is set by the OSESession
setProgress(OSEProgressListener) method.

Table 3–2 OSESession Class Constructor

Parameter Description

user A string containing the name used for authentication by the mobile server.

password A character array containing the user password.

Table 3–3 OSESession Class Public Method Parameters

Method Description

void cancelSync() Attempts to cancel the synchronization process
with a non-blocking call. If successful, throws
OSEException with error code
OSEExceptionConstants.SYNC_CANCELED.

void close() Closes any active database connections that the
session maintains. This method is called before
application exits.

void saveUser()

String getUser()

The saveUser method saves user information,
such as users specific information, and the last
synchronization user id.

The getUser method retrieves current
synchronization client name.

void selectPub(String name) Provided the publication name, adds the
publication to the list of publications to be
synchronized selectively. See Section 3.1.1.1.4,
"Selective Synchronization" for more information.

Invoke Manual Synchronization on the Mobile Client

3-6 Oracle Database Mobile Server Developer's Guide

void setAppRoot(String appRoot)

String getAppRoot()

Sets or retrieves the current root directory, as set
in the DATA_DIRECTORY parameter, for internal
synchronization and database files for the
application.

boolean getBackground()

void setBackground(boolean on)

Sets or returns TRUE is a synchronization event is
an automatic synchronization; FALSE if not.

void setEncryptionType
(int type)

int getEncryptionType()

Sets or retrieves the current encryption type.
Possible types can are as follows:

■ ENC_AES - AES encryption, which is the
default.

■ ENC_SSL - SSL over HTTP.

■ ENC_NONE - No encryption.

void setForceRefresh
(boolean on)

boolean getForceRefresh()

Set to wipe out all of the client data and replace it
with server data, if true.

Retrieves value of force refresh.

void setSavePassword
(boolean on)

boolean getSavePassword()

This is used to set and get the flag for persistently
saving the user password. If true, the password is
saved.

void setNewPassword(char[] pwd) Allows clients to modify their password on the
server. After a successful synchronization, the
client's password on the server is changed to the
new password.

void setPassword(char[] pwd) Provide or modify the mobile client password.

void setProgress
(OSEProgressListener p)

Set synchronization progress listener. For more
details, see Section 3.1.1.1.3,
"OSEProgressListener Interface".

void setProxy(java.lang.String proxy)

java.lang.String getProxy()

Sets or returns the current HTTP proxy, which
can be the hostname or IP address of the proxy
server. NULL is returned if proxy is not used.

void setSyncApps(boolean on)

boolean getSyncApps()

Sets or retrieves a flag that indicates whether the
application client updates should be downloaded
during the next synchronization. If set to FALSE,
client updates are only uploaded to the server.

setSyncDirection(int)

getSyncDirection()

Sets or retrieves the current synchronization
direction of data for the mobile client. You can
indicate whether the client should perform
normal synchronization with DIR_SENDRECEIVE,
where data is both uploaded and downloaded.
Alternatively, if you set the direction for data to
be as follows:

■ DIR_SENDRECEIVE: Default. Sets the direction
to send and receive.

■ DIR_SEND: Sets the direction to upload client
data, but no server data is downloaded.

■ DIR_RECEIVE: Sets the direction to download
data from the server, but no client data is
uploaded.

This direction setting affects only user data. All
mobile server data, such as awknowledgements,
will still be uploaded or downloaded as
appropriate.

Table 3–3 (Cont.) OSESession Class Public Method Parameters

Method Description

Invoke Manual Synchronization on the Mobile Client

Managing Synchronization on the Mobile Client 3-7

void setSyncNewPub(boolean on)

boolean getSyncNewPub()

Sets flag for enabling synchronization of new
publications. By default, this is set to true and all
publications are synchronized. However, if you
set this to false, any new subscribed publications
on the server are not downloaded to the client.

int getSyncPriority()

public void setSyncPriority(int prio)
throws OSEException

Sets or retrieves the synchronization priority. The
default is PRIO_DEFAULT, which is OFF. Only high
priority table or rows are synchronized when set
to PRIO_HIGH.

You can only use fast refresh with a high priority
restricting predicate. If you use any other type of
refresh, the high priority restricting predicate is
ignored.

See Section 1.2.10, "Priority-Based Replication" in
the Oracle Database Mobile Server Troubleshooting
and Tuning Guide for more information.

void setTransportType(int type)

int getTransportType()

Sets and retrieves the current transport type,
which can be one of the following:

■ TR_HTTP: Default transport.

■ TR_USER: Custom transport.

void setURL
(java.lang.String url)

java.lang.String getURL()

Sets or retrieves the HTTP URL of the mobile
server.

void setUseFiles(boolean on)

boolean getUseFiles()

Set flag to switch between using streaming or
files to transport synchronization data. If set to
true, synchronization stores uploaded and
downloaded data in a file; otherwise, data is
streamed.

When using files, the ose$in.bin file contains the
data received from the server. The ose$out.bin
file contains the data sent to the server. These files
are located in the <mobileclient_root>\bin
directory on Win32, Windows Mobile and Linux
platfoms or in the directory specified by the
DATA_DIRECTORY on the Android or Blackberry
platforms.

Note: streaming requires that the underlying
client transport stack implements HTTP 1.1.
Thus, if a platform does not support streaming,
setUseFiles must be congifigured as TRUE.

void setUseResume(boolean on)

boolean getUseResume()

If setUseResume is set to TRUE, enables the
resume feature, which attempts to resume
sending and receiving data for a synchronization
after a network failure. Requires that
setUseFiles is also set to TRUE; otherwise, this
method is ignored. The resume feature provides a
more reliable transport for synchronizing data
with minimal overhead.

void setUserTransport(OSETransport t) Sets custom user-defined transport for
synchronization, which you implement in the
OSETransport interface. See Section 3.1.1.1.5,
"Custom Transport with the OSETransport Class"
for more details.

Table 3–3 (Cont.) OSESession Class Public Method Parameters

Method Description

Invoke Manual Synchronization on the Mobile Client

3-8 Oracle Database Mobile Server Developer's Guide

Example
The following example sets the user name and password to JOHN/john. The mobile
server URL is identified as localhost:88. And a synchronization is initiated with the
sync method.

/* set up user name and password */
String user = "JOHN";
String pwd = "john";

/* create OSESession with user John */
OSESession sess = new OSESession(user, pwd.toCharArray());

/* Identify Mobile Server URL */
sess.setURL("localhost:88");

/* Identify the progress listener, myProgressTracker */
sess.setProgress(myProgressTracker);

/* Initiate Sync */
sess.sync();

3.1.1.1.3 OSEProgressListener Interface The OSEProgressListener interface enables
progress updates to be trapped during synchronization.

Sync calls the progress function to report the current stage and the percent of
completion of that stage. The parameters for the progress method are listed in
Table 3–4:

Method
void progress (int stage, int val);

void sync() Initiates a manual synchronization from within
the application.

void
addProgressListener(OSEProgressListen
er pl)

Add progress listener.

void
removeProgressListener(OSEProgressLis
tener pl)

Remove progress listener.

boolean getEncryptDatabases() Get the current value of encrypt database flag.

void setEncryptDatabases() Enable database encryption for new databases
created during sync.

public void shareConnection(String
dbName, Object connObj

dbName is database name. connObj is connection
object and has to be a valid connection object for
particular type of database as used in OSE
plugin. For pure java sync client, it must be an
instance of corresponding platform-specific
database connection class:
net.rim.device.api.database.Database for
Blackberry client,
android.database.sqlite.SQLiteDatabase for
Android client, java.sql.Connection for SE client

Table 3–3 (Cont.) OSESession Class Public Method Parameters

Method Description

Invoke Manual Synchronization on the Mobile Client

Managing Synchronization on the Mobile Client 3-9

The names of the constants which report the synchronization progress are listed in
Table 3–5.

Example
This simple class implements the OSEProgressListener.

class myProgressTracker implements OSEProgressListener

{
 public void progress
 (int state,
 int val)
 {
 System.out.println("Status: "+state+"="+ val+"%");
 } //progress
 }

3.1.1.1.4 Selective Synchronization Selective sync specifies whether a publication should
be synchronized or not for the next session. Set the flag with the selectPub method to
indicate whether the publication is to be synchronized on the next execution of the
sync method. The default setting is NULL for all publications.

Table 3–6 lists the name and description of parameter for the selectPub method.

Table 3–4 OSEProgress Method Parameters

Parameter Description

stage This is set to one of the constants listed in Table 3–5.

val This is the percentage of completion for specific stage.

Table 3–5 OSEProgressListener Interface Constants

Constant Name Progress Type

PREPARE States that the synchronization engine is preparing local data to
be sent to the server. This includes getting locally modified data.
For streaming implementations this takes a shorter amount of
time.

SEND States that the synchronization engine is sending data to the
network.

RECEIVE States that the synchronization engine is receiving data from the
server.

PROCESS States that the synchronization engine is applying the newly
received data from the server to the local data stores.

IDLE States that the synchronization engine has completed the
synchronization process.

COMPOSE Not supported yet.

APPLY Not supported yet.

Note: Automatic synchronization selectively synchronizes only
publications that contain automatic publication items.

Invoke Manual Synchronization on the Mobile Client

3-10 Oracle Database Mobile Server Developer's Guide

3.1.1.1.5 Custom Transport with the OSETransport Class You can implement a custom
user-defined transport for synchronization with the OSETransport interface.
Implement the following methods to connect and disconnect the connection and to
open the input and output streams. These methods are used for the transport when
you provide your implementation in the setUserTransport method in the OSESession
class.

3.1.1.1.6 Sequences Emulated for SQLite Mobile Clients in Replicated Environment SQLite
only supports sequences in a replicated environment. Sequences partitioned per client
are useful for generating unique, non-overlapping values to avoid data conflicts.

In order to emulate sequence behavior on SQLite, the Sync Client replicates the
partitioned sequence information from the server. The mobile client applications can
generate unique column values from the partitioned sequence information, which is
replicated for every SQLite database in the C$SEQ_CLIENTS table.

The C$SEQ_CLIENTS table has the following definition:

TABLE C$SEQ_CLIENTS(
 "NAME" VARCHAR2(30) NOT NULL, -- sequence name
 "CUR_VALUE" NUMBER(10,0), -- current value, set to NULL on the first sync
 "MAX_VALUE" NUMBER(10,0) NOT NULL, -- max value
 "MIN_VALUE" NUMBER(10,0) NOT NULL, -- min value
 "PUB_NAME" VARCHAR2(30) NOT NULL, -- publication name (for internal use)
 "DB_NAME" VARCHAR2(30), -- database name (for internal use)
 "INCREMENT_BY" NUMBER(10,0) NOT NULL, -- increment
 PRIMARY KEY ("NAME"))

To select the next sequence value, users can perform the following:

1. Select CUR_VALUE or MIN_VALUE if CUR_VALUE is NULL.

2. Add INCREMENT_BY to the CUR_VALUE.

Table 3–6 selectPub Parameters

Name Description

publication_name The name of the publication which is being synchronized. If the
value for the publication_name is NULL, it means all publications in
the database, which turns off selective sync.

For more information, see Section 2.4, "Creating Publications Using
Oracle Database Mobile Server APIs".

Table 3–7 OSETransport methods

Method Description

void connect() Open transport connection.

void disconnect() Closes transport connection and
releases its resources.

java.io.OutputStream openOutputStream() Opens output stream.

java.io.InputStream openInputStream() Opens input stream.

Note: For details on using sequences in Berkeley DB, see
Section 2.4.1.8, "Creating Client-Side Sequences for the Downloaded
Snapshot".

Invoke Manual Synchronization on the Mobile Client

Managing Synchronization on the Mobile Client 3-11

3. Update the CUR_VALUE with the CUR_VALUE+INCREMENT_BY for the sequence.

Example 3–1 Emulating Sequences on the Mobile Client

The following Java code example demonstrates this functionality:

 /* Advance sequence value using sequence properties replicated from the
 * server using C$SEQ_CLIENTS table
 * @param seq sequence name
 * @return int next sequence value
 * @throws DatabaseException if sequence is not found.
 */
 int advanceSequence(String seq) throws Exception
 {
 int seqNextVal = 0;
 Statement statement = _db.createStatement(
 "SELECT ifnull((cur_value+increment_by),min_value)
 FROM "+SEQUENCES_TABLE+" WHERE name = ?");
 statement.prepare();
 statement.bind(1, seq);
 Cursor cursor = statement.getCursor();
 if(cursor.next())
 {
 Row row = cursor.getRow();
 seqNextVal = row.getInteger(0);
 } else {
 throw new Exception("Sequence not found: " + seq);
 }
 cursor.close();
 statement.close();
 statement = _db.createStatement(
 "UPDATE "+SEQUENCES_TABLE+" SET cur_value =
 ifnull((cur_value+increment_by),min_value) WHERE name = ?");
 statement.prepare();
 statement.bind(1, seq);
 statement.execute();
 statement.close();

 return seqNextVal;
 }

3.1.1.1.7 OSEException Class This class signals a non-recoverable error during the
synchronization process. The OSEException class constructs a clear object. The
parameters for the constructor are listed in Table 3–8, " OSEException Constructor
Parameter Description":

Constructors
OSEException(int errCode)

OSEException(int errCode,Object arg)

OSEException(int errCode,Object arg, Throwable cause)

OSEException(int errCode, Object arg1, Object arg2)

OSEException(int errCode, Object arg1, Object arg2, Object arg3)

OSEException(int errCode, Object [] args, Throwable cause)

Invoke Manual Synchronization on the Mobile Client

3-12 Oracle Database Mobile Server Developer's Guide

Public Methods
OSEException class extends BaseException.

The methods for getting error code, cause and message are listed in Table 3–9,
" BaseException Class Public Methods".

For a complete list of the error messages that can be thrown in the OSEException, see
"Exception Error Codes and Messages" in the Oracle Database Mobile Server Message
Reference.

3.1.1.2 OSE Synchronization APIs For Native Applications
You can initiate and monitor synchronization from a native client application. The OSE
synchronization methods for the native interface are defined in ose.h, which is located
in <ORACLE_HOME>\Mobile\Sdk\include, and implemented in ose.dll, which is
located in the <ORACLE_HOME>\Mobile\Sdk\bin directory.

The following sections describe how to set up and initiate synchronization:

■ Section 3.1.1.2.1, "Overview of Native Synchronization API"

■ Section 3.1.1.2.2, "Initializing the Environment With oseOpenSession"

■ Section 3.1.1.2.3, "Setting Session Options"

Table 3–8 OSEException Constructor Parameter Description

Parameter Description

errorCode Error codes are provided within the OSEExceptionConstants
class. Error codes for synchronization are provided in the
OSEExceptionConstants class. Some OSEException instances are
thrown from OSE APIs. Others are used as causes of the
synchronization error messages. The message handler returns an
error message.

For a complete list of the error messages that can be thrown in
OSEException, see "Exception Error Codes and Messages" in the
Oracle Database Mobile Server Message Reference.

arg, args, arg1,
arg2, arg3

Return variables for information within the error message.

cause The cause of this throwable or NULL if the cause is nonexistent
or unknown.

Table 3–9 BaseException Class Public Methods

Method Description

getErrorCode() Returns exception error code

getMessage() Returns exception message

getCause() Returns exception cause

toString() Returns string representation of this
BaseException instance. The string
contains information from the whole
chain of causes if present (cause of this
exception is also often instance of
BaseException). For each exception in
the chain, it contains error code, error
message and additional diagnostic
information if present.

Invoke Manual Synchronization on the Mobile Client

Managing Synchronization on the Mobile Client 3-13

■ Section 3.1.1.2.4, "Saving User Settings With oseSaveUser"

■ Section 3.1.1.2.5, "Start the Synchronization With the oseSync Method"

■ Section 3.1.1.2.6, "Manage What Publications Are Synchronized With
oseSelectPub"

■ Section 3.1.1.2.7, "See Progress of Synchronization with Progress Listening"

■ Section 3.1.1.2.8, "Cancel a synchronization event using oseCancelSync"

■ Section 3.1.1.2.9, "Close the Synchronization Environment Using oseCloseSession"

■ Section 3.1.1.2.10, "Retrieve Synchronization Error Information with
oseGetLastError"

■ Section 3.1.1.2.11, "Enable File-Based Synchronization through Native APIs"

■ Section 3.1.1.2.12, "Share the Database Connection"

■ Section 3.1.1.2.13, "Set and Retrieve Data Encryption Keys"

■ Section 3.1.1.2.14, "Accessing Mobile Client Configuration Parameters"

3.1.1.2.1 Overview of Native Synchronization API For starting synchronization, the
application should perform the following:

1. Invoke the oseOpenSession method to initialize the session and its environment
and resources.

2. Set any session options. Invoke the oseSaveUser method to preserve the last user,
URL, proxy and optionally the user password for future synchronization events.

3. Invoke oseSync method to synchronize, which returns after the synchronization
completes, an error occurs, or the user interrupts the process.

Synchronization progress is reported through the oseProgressFunc interface,
which is set by the oseSetProgress method.

4. If synchronization failed, use the oseGetLastError method to retrieve the error
message.

5. When done with the session, invoke the oseCloseSession method to close the
session and release its resources.

3.1.1.2.2 Initializing the Environment With oseOpenSession The oseOpenSession method
initializes the synchronization environment—which is passed to each subsequent call
with the oseSess handle.

In a multi-threaded environment, you cannot concurrently use a session from multiple
threads, even with the same user. Instead, each thread should open its own session
with the oseOpenSession method. The only exception is oseCancelSync, which can be
executed by another thread.

Syntax
oseError oseOpenSession(const char *user, const char *pwd, oseSess *sess);

Note: Every time you invoke the oseOpenSession method, you must
also clean up with oseCloseSession method. These methods should
always be called in pairs. See Section 3.1.1.2.9, "Close the
Synchronization Environment Using oseCloseSession" for more
information.

Invoke Manual Synchronization on the Mobile Client

3-14 Oracle Database Mobile Server Developer's Guide

Table 3–10 lists the oseOpenSession parameters.

This call initializes the oseSess synchronization environment handle—which holds
context information for the synchronization engine—and restores any session options
that were saved with the last oseSaveUser method invocation. See Section 3.1.1.2.4,
"Saving User Settings With oseSaveUser" for more information on oseSaveUser.

If successful, zero is returned; otherwise, an OSE error code is returned.

3.1.1.2.3 Setting Session Options You can set certain session options explicitly with the
set session methods. Every session option, except OSE_OPT_NEW_PASSWORD, is set for the
duration of the session, unless it is explicitly reset with the appropriate set session
option method.

When the session is created, the initial value for each option is loaded from the
following:

■ The ose.ini file.

■ If it is not set in the ose.ini file, the option value is loaded from the saved options
in the internal OSE Meta files. The OSE Meta files save session information that
was either set on the previous synchronization or set explicitly with the
appropriate set session option method. New values for options set by the user,
such as OSE_OPT_URL or OSE_OPT_PROXY, are saved in the internal OSE Meta files
during next synchronization.

■ If not set in the ose.ini file or saved as within the OSE Meta files, the default
value is taken for each option.

Options are separated into boolean, numeric, and string options:

■ Boolean options are those options that can only be set to OSE_TRUE or OSE_FALSE.

■ Numeric options are set to an integer value.

■ String options are those options that are defined with a character string.

The following sections describe the session options and the methods that can get or set
the values for these options:

■ Boolean and Numeric Session Options

■ String Session Options

Table 3–10 oseOpenSession Parameters

Name Description

user User name for synchronization. If NULL, the last saved user name is
provided. If the last user name was not saved, the OSE_ERR_USER_NOT_
SPECIFIED error is returned.

pwd User password. If NULL, the last saved password for this user is provided
if it was previously saved. Alternatively, the password can be provided
later if the OSE_OPT_PASSWORD option is specified. If, at the time of sync,
the password is not provided and was not previously saved, the OSE_ERR_
PWD_NOT_SPECIFIED error is returned.

sess Pointer to a session handle into which the new session is returned. This
handle cannot be NULL.

Invoke Manual Synchronization on the Mobile Client

Managing Synchronization on the Mobile Client 3-15

Boolean and Numeric Session Options
Use the oseSetNumOption and oseGetNumOption methods to set and get the boolean
and numeric session options.

oseSetNumOption
oseError oseSetNumOption(oseSess sess, int opt, long val);

Table 3–11 lists the oseSetNumOption parameters.

Returns zero if the option is set successfully. An OSE error code is returned if an
invalid option code or an invalid value is specified.

oseGetNumOption
oseError oseGetNumOption(oseSess sess, int opt, long *val);

Table 3–12 lists the oseGetNumOption parameters.

Returns zero if the option is retrieved successfully. An OSE error code is returned if an
invalid option code is specified.

Table 3–13 lists all boolean and numeric synchronization options and potential values.
For all boolean options, the value can only be either OSE_TRUE and OSE_FALSE.

Table 3–11 oseSetNumOption Parameters

Name Description

oseSess sess Session pointer to a session handle, which contains the synchronization
environment across all calls for this session. Returns OSE_ERR_INVALID_
SESS if the handle is NULL.

int opt Option code. See Table 3–13 for a list of all of the options that can bet set
by this method.

long val The option value to set for the session. See Table 3–13 for potential values
for this option.

Table 3–12 oseGetNumOption Parameters

Name Description

oseSess sess Session pointer to a session handle, which contains the synchronization
environment across all calls for this session. Returns OSE_ERR_INVALID_
SESS if the handle is NULL.

int opt Option code. See Table 3–13 for a list of all of the options that can bet
retrieved by this method.

long *val Pointer to a variable into which to return the option value. The pointer
cannot be NULL. See Table 3–13 for potential values for this option.

Invoke Manual Synchronization on the Mobile Client

3-16 Oracle Database Mobile Server Developer's Guide

Table 3–13 Numeric and Boolean Session Options

Session Option Description

OSE_OPT_SYNC_DIRECTION Specifies the synchronization direction with one of the
following numeric constants:

■ Bidirectional sync (default): OSE_SYNC_DIR_
SENDRECEIVE, value 0.

■ Data is only sent, but not received, OSE_SYNC_
DIR_SEND, value 1.

■ Data is only received, but not sent: OSE_SYNC_
DIR_RECEIVE, value 2.

OSE_OPT_ENCRYPTION_TYPE Specifies the encryption type, which indicates how the
data is encrypted when transfered over the network.

■ AES encryption: OSE_ENC_TYPE_AES, value 0.

■ HTTPS protocol over secure sockets: OSE_ENC_
TYPE_SSL, value 1.

■ No encryption: OSE_ENC_TYPE_NONE, value 2.

OSE_OPT_TRANSPORT_TYPE Transport type designates the protocol used to transfer
data to and from the mobile server.

■ Data is transfered using the HTTP protocol: OSE_
TR_TYPE_HTTP, value 0.

■ Data is transfered by the custom transport
provided by the application: OSE_TR_TYPE_USER,
value 1.

■ Data is transfered manually using File-Based
Sync): OSE_TR_TYPE_FILE, value 2.

OSE_OPT_TRANSPORT_DIRECTION Transport direction. This is used to indicate connected
or disconnected (that is, File-Based) sync.

■ Connected synchronization (default). This can be
used with either bidirectional or unidirectional
synchronization. If synchronization direction is
set to OSE_SYNC_DIR_SEND, it specifies send-only
synchronization over connected transport, where
the data is sent and an acknowledgement is
received. OSE_TR_DIR_SENDRECEIVE, value 0.

■ Disconnected synchronization, send-only
synchronization. Data is sent without
acknowledgement. This can only be used with the
OSE_TR_TYPE_FILE transport type. OSE_TR_DIR_
SEND, value 1.

■ Disconnected synchronization, receive-only
synchronization. This can only be used with the
OSE_TR_TYPE_FILE transport type. OSE_TR_DIR_
RECEIVE, value 2.

OSE_OPT_SAVE_PASSWORD Boolean option. Indicates whether the user
synchronization password should be saved on the
client, which means that it will not need to be
explicitly provided for future sessions.

The password is saved in an encrypted form.

OSE_OPT_BACKGROUND Boolean option. If OSE_OPT_BACKGROUND is set to true,
synchronization is more performant and consists
solely of DML operations, with no schema updates.

OSE_FALSE is the default, indicating normal
synchronization.

Invoke Manual Synchronization on the Mobile Client

Managing Synchronization on the Mobile Client 3-17

OSE_OPT_SYNC_PRIO Synchronization priority constants:

■ High priority: OSE_PRIO_HIGH, value 0.

■ Normal priority: OSE_PRIO_DEFAULT, value 1.

OSE_OPT_SYNC_APPS Boolean option. Indicates whether synchronization
should download a list of application and client
updates that can be installed later.

OSE_TRUE is the default.

Also, see the OSE_OPT_HAS_SOFT_UPDATES option.

OSE_OPT_SYNC_NEW_PUB Boolean option. Indicates whether new publications
can be created during synchronization.

OSE_TRUE is the default.

OSE_OPT_FORCE_REFRESH Boolean option. Indicates if the synchronization is
force-refresh. Ignores client changes and reloads all
client data from the mobile server.

OSE_FALSE is the default.

OSE_OPT_USE_FILES Boolean option. Indicates whether files are used to
temporarily store the data either before it is sent or
after it is received. If enabled, client changes are first
saved into a file named oseOutFile.bin (default),
then sent to the mobile server. The received data is
saved to another file named oseInFile.bin (default)
and then read and transferred to the database from
that file. This is used for the resume transport or for
protocols where the total data size to be sent needs to
be known in advance, such as HTTP 1.0. OSE_FALSE is
the default.

The related ose.ini parameter is OSE.FILES.

Also, see the OSE_OPT_RESUME_TRANSPORT option.

OSE_OPT_RESUME_TRANSPORT Boolean option. Indicates whether the resume protocol
should be used on top of the synchronization
transport. To use this option, the OSE_OPT_USE_FILES
option must be enabled. If not already set, OSE_OPT_
USE_FILES will be set implicitly.

The resume protocol is typically used for lengthy
synchronization sessions over unstable network
connections. It resumes sending and receiving data
from the point of a network disconnect, thus avoiding
the restart of synchronization from scratch. This
option is used only with connected transport (OSE_TR_
DIR_SENDRECEIVE).

OSE_FALSE is the default.

Related ose.ini parameter is OSE.RESUME.

OSE_OPT_HAS_SOFT_UPDATES Boolean read-only option. You can only retrieve the
value with the oseGetNumOption method. This option
indicates whether any updates are available for the
client after the last synchronization. This is used by
the mSync tool to specify whether it should launch the
update utility to retrieve updates.

Also, see the OSE_OPT_SYNC_APPS option.

Table 3–13 (Cont.) Numeric and Boolean Session Options

Session Option Description

Invoke Manual Synchronization on the Mobile Client

3-18 Oracle Database Mobile Server Developer's Guide

String Session Options
Use the oseSetStrOption and oseGetStrOption methods to set and get the string
session options. Every string option, except the OSE_OPT_APP_ROOT option, defaults to
NULL if not loaded during session initialization.

oseSetStrOption
oseError oseSetStrOption(oseSess sess, int opt, const char *val);

Table 3–14 lists the oseSetStrOption parameters.

Returns zero if the option is set successfully. An OSE error code is returned if an
invalid option code or an invalid value is specified.

oseGetStrOption and oseGetStrOptionNC
oseError oseGetStrOption(oseSess sess, int opt, char *val, int bufSize);
oseError oseGetStrOptionNC(oseSess sess, int opt, const char **val);

The difference between the two calls is that the oseGetStrOptionNC does not require
you to allocate the buffer for the returned string. Instead, a pointer to a string is
passed. The string is NULL-terminated, which is how the length is known.

Table 3–15 lists the oseGetStrOption parameters.

Returns zero if the option is set successfully. OSE_ERR_INVALID_STR_OPT error is
returned if an invalid option code is specified. OSE_ERR_INVALID_BUFFER error is
returned if the buffer provided is too small to store the value and the terminating NULL
character.

OSE_OPT_ENCRYPT_DATABASES Boolean option. Indicates whether any databases
newly created during synchronization should be
encrypted. The encryption key for each database is
either retrieved from the synchronization keystore or
generated based on the user password, if not found in
the keystore. Applications can define their own keys
for each database before database creation with the
keystore APIs.

OSE_FALSE is the default.

The related ose.ini parameter is OSE.ENCRYPTDB.

You can set, get, and remove the encryption key with
the oseSetDBKey, oseGetDBKey, and oseRemoveDBKey
methods, which are described in Section 3.1.1.2.13,
"Set and Retrieve Data Encryption Keys".

Table 3–14 oseSetStrOption Parameters

Name Description

oseSess sess Session pointer to a session handle, which contains the
synchronization environment across all calls for this session. Returns
OSE_ERR_INVALID_SESS if the handle is NULL.

int opt Option code. See Table 3–16 for a list of all of the options that can bet
set by this method.

const char *val The option value to set for the session. See Table 3–16 for potential
values for this option.

Table 3–13 (Cont.) Numeric and Boolean Session Options

Session Option Description

Invoke Manual Synchronization on the Mobile Client

Managing Synchronization on the Mobile Client 3-19

Table 3–16 lists all string session options and potential values.

3.1.1.2.4 Saving User Settings With oseSaveUser The oseSaveUser method saves the last
user, URL, proxy and optionally the user password for future synchronization events
into an OSE Meta file. However, the password is saved only if the OSE_OPT_SAVE_
PASSWORD option is enabled. These settings are normally saved at the end of each
synchronization, if changes are detected. These settings can be used for the current
session or used by the oseOpenSession method to initialize the environment when
next invoked.

Returns zero if successful and OSE_ERR_INTERNAL_ERROR if an input/output error
occured during saving.

Table 3–15 oseGetStrOption Parameters

Name Description

oseSess sess Session pointer to a session handle, which contains the synchronization
environment across all calls for this session. Returns OSE_ERR_INVALID_
SESS if the handle is NULL.

int opt Option code. See Table 3–16 for a list of all of the options that can bet
retrieved by this method.

char *val For oseGetStrOption: Pointer to a buffer into which to return the option
value. The pointer cannot be NULL.

const char **val For oseGetStrOptionNC: Pointer to a character pointer into which return
the value. The pointer cannot be NULL. The memory for the option value is
stored within the OSE engine and is valid until next call to
oseGetStrOptionNC.

int bufSize Size of the buffer.

Table 3–16 Session String Options

Option Option Description

OSE_OPT_URL Mobile server URL.

OSE_OPT_PROXY HTTP proxy, if present, as host:port or host, where the port
defaults to 80.

OSE_OPT_NEW_PASSWORD New password provided to modify the synchronization
password during the next synchronization. This option needs
to be set each time the password needs to be changed for the
session.

OSE_OPT_USER_NAME Read-only option, used to retrieve the synchronization user
name.

OSE_OPT_PASSWORD Used to set the synchronization password in the current
session. This overwrites the password that was originally
provided to the oseOpenSession method or retrieved from the
OSE configuration files. This is only used to set the
synchronization password in the case that a NULL password
was passed to the oseOpenSession method.

This password is saved in the OSE Meta files if the OSE_OPT_
SAVE_PASSWORD option was enabled.

OSE_OPT_APP_ROOT Root directory for internal synchronization files. By default, it
is the synchronization client installation bin directory.

OSE_OPT_FILE_URL File URL used for a file-based sync. Specifies the path to the
file, which can optionally prefixed by file://.

Invoke Manual Synchronization on the Mobile Client

3-20 Oracle Database Mobile Server Developer's Guide

Syntax
oseError oseSaveUser(oseSess sess);

Table 3–17 lists the oseSaveUser parameters.

Returns zero if successful. Returns the OSE_ERR_INTERNAL_ERROR error if an
input/output error occurs when saving the settings.

This saves or overwrites the user settings into an OSE Meta file on the client side.

3.1.1.2.5 Start the Synchronization With the oseSync Method Starts the synchronization
process synchronously.

Returns zero if synchronization is successful. Returns OSE_ERR_INVALID_SESS if session
handle was invalid and OSE_ERR_SYNC_CANCELED if synchronization was canceled from
another thread by the oseCancelSync method. Other OSE error codes are returned if
the synchronization fails.

Syntax
oseError oseSync(oseSess sess);

Table 3–18 lists the oseSync parameters.

3.1.1.2.6 Manage What Publications Are Synchronized With oseSelectPub Selective sync
allows only certain publications to be synchronized. The oseSelectPub method selects
a publication for selective sync, which specifies if it is to be synchronized on the next
synchronization. Selective sync only works if you have first performed at least one
synchronization for the client. Then, a selective sync for the publication occurs at the
next invocation of the oseSync method.

The application can select publications needed by repeatedly calling the oseSelectPub
method. To revert to the regular (non-selective) synchronization selection, invoke this
method with NULL as the publication name.

The default setting is for all publications to be synchronized.

Syntax
oseError oseSelectPub(oseSess sess, const char *pub);

Table 3–17 oseSaveUser Parameters

Name Description

oseSess sess Session pointer to a session handle, which contains the synchronization
environment across all calls for this session. Returns OSE_ERR_INVALID_
SESS if the handle is NULL.

Note: See Section 3.1.1.2.3, "Setting Session Options" for details on
the user settings saved.

Table 3–18 oseSync Parameters

Name Description

oseSess sess Session pointer to a session handle, which contains the synchronization
environment across all calls for this session. Returns OSE_ERR_INVALID_
SESS if the handle is NULL.

Invoke Manual Synchronization on the Mobile Client

Managing Synchronization on the Mobile Client 3-21

Table 3–19 lists the oseSelectPub parameters.

Returns zero if successful. Returns the OSE_ERR_PUB_NOT_FOUND error if the publication
with the provided name was not found.

3.1.1.2.7 See Progress of Synchronization with Progress Listening You can implement a
progress callback function that is called so that you can be notified of the progress of
the synchronization operations. If you create and set the progress callback method, the
mobile client invokes this callback method at appropriate times while the oseSync
method is executing.

The following is the declaration of the progress callback function.

oseError (* oseProgressFunc)(void *ctx, int stage, int val);

When the oseOpenSession invokes the method you declare in oseSetProgress, it
provides the following information as input to your method:

■ ctx—A pointer to user-defined state information for the callback. This handle is a
pointer to a user-defined structure. Since the oseProgressFunc callback method is
user-implemented, it should know how to process the user-defined structure. The
user context structure may or may not be initialized by the application before
calling the oseSetProgress method.

■ stage—The stage in the synchronization process, which is one of the following
values, where these values are defined in ose.h:

■ val—The percentage completed in the particular stage that synchronization is in
from 0 to 100.

After you define the progress callback function, you can initialize it with the mobile
client by executing the oseSetProgress method:

oseError oseSetProgress(oseSess sess, void *ctx, oseProgressFunc pf);

Table 3–19 oseSelectPub Parameters

Name Description

oseSess sess Session pointer to a session handle, which contains the synchronization
environment across all calls for this session. Returns OSE_ERR_INVALID_
SESS if the handle is NULL.

pub Publication name to select for the next synchronization. NULL deselects all
publications and reverts back to a non-selective synchronization.

Table 3–20 Description of the Stage Values

Stage Value Value Description

OSE_SYNC_STATE_IDLE 0 No synchronization occuring.

OSE_SYNC_STATE_PREPARE 1 Preparing data into temporary files. This state
only occurs if the OSE_OPT_USE_FILES option is
enabled.

OSE_SYNC_STATE_SEND 2 Sending the data to the mobile server.

OSE_SYNC_STATE_RECEIVE 3 Receiving data from the mobile server.

OSE_SYNC_STATE_PROCESS 4 Processing data from temporary file. This state
only occurs if the OSE_OPT_USE_FILES option is
enabled.

Invoke Manual Synchronization on the Mobile Client

3-22 Oracle Database Mobile Server Developer's Guide

You can unregister the progress callback function by executing oseSetProgress
method as follows:

oseSetProgress(oseSess, NULL, NULL);

Table 3–21 lists the oseSetProgress parameters.

3.1.1.2.8 Cancel a synchronization event using oseCancelSync Cancels the synchronization
operation from another thread and returns immediately without waiting for the
synchronization operation to abort.

Syntax
oseError oseCancelSync(oseSess sess);

Table 3–22 lists the oseCancelSync parameters.

Returns zero, if successful. Returns OSE_ERR_INVALID_SESS if the oseSess session
handle is invalid.

3.1.1.2.9 Close the Synchronization Environment Using oseCloseSession Clears and
performs a cleanup of the synchronization environment and resources. This function
must be invoked for every oseOpenSession, even if oseSync has not been executed
even once.

Returns zero, if successful. Returns OSE_ERR_INVALID_SESS if the oseSess session
handle is invalid.

Syntax
oseError oseCloseSession(oseSess sess);

Table 3–23 lists the oseCloseSession parameters.

Table 3–21 oseSetProgress Parameters

Name Description

sess Session pointer to a session handle, which contains the synchronization
environment across all calls for this session. Returns OSE_ERR_INVALID_
SESS if the handle is NULL.

ctx A pointer to the session environment settings. This handle is a pointer to
a user-defined structure. Since the oseProgressFunc callback method is
user-implemented, it should know how to process the user-defined
structure. The user context structure may or may not be initialized by the
application before calling the oseSetProgress method.

pf The progress callback function.

Table 3–22 oseCancelSync Parameters

Name Description

oseSess sess Session pointer to a session handle, which contains the synchronization
environment across all calls for this session. Returns OSE_ERR_INVALID_
SESS if the handle is NULL.

Invoke Manual Synchronization on the Mobile Client

Managing Synchronization on the Mobile Client 3-23

3.1.1.2.10 Retrieve Synchronization Error Information with oseGetLastError Retrieves the
extended synchronization error message and code from the last call. This information
contains the last OSE error info as well as any internal errors that caused the error.

Syntax
oseError oseGetLastError(oseSess sess, const oseErrorDesc **errDesc);

Table 3–24 lists the oseGetLastError parameters.

Returns zero if successful. Returns the OSE_ERR_INVALID_SESS error if the session
handle was invalid. Returns the OSE_ERR_INTERNAL_ERROR error if a system error has
occured.

The oseErrorDesc structure is defined as follows:

typedef struct _oseErrorDesc {
 oseError code; /* error code */
 const char *type; /* a string describing the type of error */
 const char *msg; /* error message */
 struct _oseErrorDesc *cause; /* underlying cause, if present */
} oseErrorDesc;

If the error has an underlying cause, the oseErrorDesc.cause points to another
oseErrorDesc structure, which in turn can have its own cause, and so on. This is
useful if the OSE call returns an OSE_ERR_INTERNAL_ERROR, which can be further
defined within another oseErrorDesc structure. If the cause is not present,
oseErrorDesc.cause is NULL.

3.1.1.2.11 Enable File-Based Synchronization through Native APIs When you want to use
file-based synchronization, you must enable file-based synchronization. Once enabled,
then when you initiate manual synchronization, then the synchronization file is
created. See Section 5.10, "Synchronizing to a File Using File-Base Sync" in the Oracle
Database Mobile Server Administration and Deployment Guide for more details on
file-based synchronization.

Table 3–23 oseCloseSession Parameters

Name Description

oseSess sess Session pointer to a session handle, which contains the synchronization
environment across all calls for this session. Returns OSE_ERR_INVALID_
SESS if the handle is NULL.

Table 3–24 oseGetLastError Parameters

Name Description

oseSess sess Session pointer to a session handle, which contains the
synchronization environment across all calls for this session.
This handle can be NULL if trying to retrieve error information
from a failed oseOpenSession call.

oseErrorDesc errDesc A pointer to an oseErrorDesc pointer into which the
oseErrorDesc pointer is returned. The pointer cannot be
NULL. The structures referenced by this pointer are only valid
until the next OSE call.

Note: The memory for oseErrorDesc structure is allocated within
the mobile client and should not be freed by the application.

Invoke Manual Synchronization on the Mobile Client

3-24 Oracle Database Mobile Server Developer's Guide

To enable file-based synchronization programmatically, perform the following:

1. Ensure that any previous settings of the File-Based Sync properties are set to NULL.

2. Initialize the session with the oseOpenSession method providing the user name
and password for the user that is initializing the synchronization.

3. Specify File-Based Sync by setting OSE_OPT_TRANSPORT_TYPE to OSE_TR_TYPE_FILE.

4. Specify the synchronization direction in the OSE_OPT_TRANSPORT_DIRECTION option
as follows:

■ OSE_TR_DIR_SEND: Send, which creates the synchronization file.

■ OSE_TR_DIR_RECEIVE: Receive, which takes in a file from the mobile server.

5. Set the OSE_OPT_FILE_URL to the path and filename of the file.

■ If sending, the path and filename is where the mobile client saves the
uploaded data for the mobile server. This file is created with the mobile client
transactions destined for the mobile server.

■ If receiving, the path and filename where the data file that was received from
the mobile server. This file is loaded and processed within the mobile client.

3.1.1.2.12 Share the Database Connection Provides a database connection handle from
the application to use in the OSE engine, instead of the OSE engine opening its own
database connection, which is the default. The connection handle is set for the
duration of the session unless explicitly unset by the same call with a NULL connection
handle value.

Applications can keep open cursors while invoking synchronization. If the connection
is not shared, the OSE engine needs to create its own connection and start a new
exclusive transaction; however, SQLite does not support creating exclusive
transactions when another connection has open cursors.

Syntax
oseError oseShareConnection(oseSess sess, const char *db, void *connHdl);

Table 3–25 lists the oseShareConnection parameters.

Returns zero, if successful. Returns OSE_ERR_PLUGIN_ERROR if a plugin error has
occured, the value of which can be retrieved with the oseGetLastError method.

3.1.1.2.13 Set and Retrieve Data Encryption Keys An application can provide its own
custom key to encrypt each database instead of using a key generated from the

Table 3–25 oseShareConnection Parameters

Name Description

oseSess sess Session pointer to a session handle, which contains the
synchronization environment across all calls for this session.
Returns OSE_ERR_INVALID_SESS if the handle is NULL.

const char *db Database name for which the connection handle is provided.

void *connHdl Valid database connection handle for a particular type of
database that is used in the OSE plugin. For example, for
SQLite and Berkeley DB, the connection handle should be of
type sqlite3 *. A NULL value will unshare the connection and
the OSE engine opens its own database connection.

Invoke Manual Synchronization on the Mobile Client

Managing Synchronization on the Mobile Client 3-25

synchronization password. Subsequently, the key in the key store is used by the mobile
client to open the database after it is created.

The oseSetDBKey method sets a database encryption key provided by the application
in the OSE key store for the database. Applications need to re-execute this call when
they re-encrypt the database with a different key, so that OSE engine has the current
key to access the database during synchronization.

For more details, see the description for the OSE_OPT_ENCRYPT_DATABASES option in
Table 3–13.

Syntax
oseError oseSetDBKey(oseSess sess, const char *db,
 const void *key, oseSize keyLen);

Table 3–26 lists the oseSetDBKey parameters.

Returns zero, if successful. Returns the OSE_ERR_INTERNAL_ERROR error if the internal
error occured in the key store.

The oseGetDBKey method retrieves the database encryption key from the OSE key
store. For more details, see the description for the OSE_OPT_ENCRYPT_DATABASES option
in Table 3–13.

Syntax
oseError oseGetDBKey(oseSess sess, const char *db, void *buf,
 oseSize bufSize, oseSize *retLen);

Table 3–27 lists the oseGetDBKey parameters.

Returns zero, if successful. Returns the OSE_ERR_INVALID_BUFFER error if the buffer
was too small to store the key. Returns the OSE_ERR_INTERNAL_ERROR error if the
internal error occurred in the key store.

Table 3–26 oseSetDBKey Parameters

Name Description

oseSess sess Session pointer to a session handle, which contains the synchronization
environment across all calls for this session. Returns OSE_ERR_INVALID_
SESS if the handle is NULL.

db Database name for which to set the key.

key Buffer with the provided key.

keyLen Length of the provided key.

Table 3–27 oseGetDBKey Parameters

Name Description

oseSess sess Session pointer to a session handle, which contains the synchronization
environment across all calls for this session. Returns OSE_ERR_INVALID_
SESS if the handle is NULL.

db Database name for which to retrieve the key.

buf Buffer to store the key.

bufSize Size of the buffer that stores the key.

retLen Actual length of the key. The length will be zero if the key is not found.

Invoke Manual Synchronization on the Mobile Client

3-26 Oracle Database Mobile Server Developer's Guide

The oseRemoveDBKey method removes the database encryption key from the OSE key
store. For more details, see the description for the OSE_OPT_ENCRYPT_DATABASES option
in Table 3–13.

Syntax
oseError oseRemoveDBKey(oseSess sess, const char *db);

Table 3–28 lists the oseRemoveDBKey parameters.

Returns zero, if successful. Returns the OSE_ERR_INTERNAL_ERROR error if the internal
error occured in the key store.

3.1.1.2.14 Accessing Mobile Client Configuration Parameters

Mobile Client configuration parameters are stored in ose.ini configuration file. For
more information about this configuration file, see the Section A.1, "OSE.INI File
Overview" of the "Mobile Client Guide".

On some platforms such as Win32, WinCE and Linux, this file can be read and
modified using ascii editor. However on platforms like iOS, where all Mobile
Client-related data, including ose.ini file, is stored within an application sandbox, user
cannot access this file.

In addition, on iOS platform, device management is not currently supported, so ose.ini
configuration parameters are not donwloaded from the mobile server.

Hence, two APIs are provided to read and modify ose.ini configuration parameters:
oseSetParam and oseGetParamNC.

For more information on the supported ose.ini parameters, see Mobile Client Guide,
Appendix A.

Syntax
OSE_API oseError oseSetParam(const char *cat, const char *name, const char *val)

Table 3–29 lists the oseSetParam parameters.

Set initialization parameter in ose.ini (or ose.txt) configuration file. This is a generic
routine to set parameter for any sync component based on component name (category)
and parameter name.

Returns zero if successful. Returns OSE_ERR_INTENRAL_ERROR error code if
ose.ini file could not be modified or saved.

Table 3–28 oseRemoveDBKey Parameters

Name Description

oseSess sess Session pointer to a session handle, which contains the synchronization
environment across all calls for this session. Returns OSE_ERR_INVALID_
SESS if the handle is NULL.

db Database name from which the key is removed.

Note: The new parameter value will only take effect when new OSE
session is opened.

Invoke Manual Synchronization on the Mobile Client

Managing Synchronization on the Mobile Client 3-27

Syntax
OSE_API oseError oseGetParamNC(const char *cat, const char *name, const char
**val);

Table 3–30 lists the oseGetParamNC parameters.

Get initialization parameter value from ose.ini (or ose.txt) configuration file. This is a
generic routine to get parameter value for any sync component based on component
name (category) and parameter name. The parameter value is retrieved without
copying. The memory for the parameter value is stored within OSE engine and is valid
until the next call to oseGetParamNC.

Returns zero if successful. Returns OSE_ERR_INTENRAL_ERROR error code if
ose.ini file could not be read.

Example
■ The following code:

oseError e;
e = oseSetParam("SQLITE", "DATA_DIRECTORY", "tmp/sqlite_db");
will set the following in ose.ini:

SQLITE.DATA_DIRECTORY=tmp/sqlite_db
■ The following code:

oseError e;
e = oseSetParam("OSE", "RESUME", "YES");
will set the following in ose.ini:

OSE.RESUME=YES
■ The following code:

const char *v;
oseError e;
e = oseGetParamNC("SQLITE", "DATA_DIRECTORY", &v);
will retrieve the value of SQLITE.DATA_DIRECTORY parameter into the variable v.

Table 3–29 oseSetParam Prameters

Name Description

cat Parameter category (for example, OSE, SQLITE, JAVADB, BGSYNC,
NETWORK)

name Parameter name (for example, RESUME, DATA_DIRECTORY, etc.)

val Parameter value represented as string. If the given parameter already
exists in ose.ini, its value will be overwritten by val.

Table 3–30 oseGetParamNC Prameters

Name Description

cat Parameter category (for example, OSE, SQLITE, BGSYNC, NETWORK)

name Parameter name (for example, RESUME, DATA_DIRECTORY, etc.)

val Pointer to a character pointer into which the return value cannot be
NULL. If a given parameter does not exist in ose.ini, pointer pointed to by
val will be set to NULL.

Invoke Manual Synchronization on the Mobile Client

3-28 Oracle Database Mobile Server Developer's Guide

3.1.1.3 OSE .Net Synchronization API
The following sections describe how you can use the OSE .Net Synchronization APIs
to build your own client synchronization initiation on mobile clients:

■ Section 3.1.1.3.1, "Overview"

■ Section 3.1.1.3.2, "Enumerations Used by OSESession"

■ Section 3.1.1.3.3, "OSESession Class"

■ Section 3.1.1.3.4, "OSEProgressEventArgs Properties"

■ Section 3.1.1.3.5, "OSEProgressHandler Interface"

■ Section 3.1.1.3.6, "Selective Synchronization"

■ Section 3.1.1.3.7, "OSEException Class"

3.1.1.3.1 Overview The .Net interface for mobile client synchronization resides in the
Oracle.OpenSync.OSE namespace and is implemented in Oracle.OpenSync.dll.

The .Net interface provides for the following functions:

■ Setting client-side user profiles containing data.

■ Starting the synchronization process.

■ Tracking the progress of the synchronization process.

3.1.1.3.2 Enumerations Used by OSESession Table 3–31 lists all enumerations and values
that can be used by OSESession APIs.

Note: OCAPI Synchronization APIs for C# are no longer supported,
use the APIs described in this section instead.

Table 3–31 Enumerations

Enumeration Members

SyncDirection Specifies the synchronization direction as follows:

■ SyncDirection.SendReceive: Bidirectional sync (default).
Value 0.

■ SyncDirection.Send: Data is only sent, but not received.
Value 1.

■ SyncDirection.Receive: Data is only received, but not sent.
Value 2.

EncryptionType Specifies the encryption type, which indicates how the data is
encrypted when transfered over the network.

■ EncryptionType.AES: AES encryption. Value 0.

■ EncryptionType.SSL: HTTPS protocol over secure sockets.
Value 1.

■ EncryptionType.None: No encryption. Value 2.

Invoke Manual Synchronization on the Mobile Client

Managing Synchronization on the Mobile Client 3-29

3.1.1.3.3 OSESession Class OSESession enables setting synchronization parameters
and options. This class exposes APIs to invoke and control synchronization by using
the provided synchronization options.

In a multi-threaded environment, you cannot execute OSESession methods from
multiple threads. Each thread should open its own session. The only exception is
CancelSync, which can be executed by another thread.

The parameters for the constructor are listed in Table 3–32.

Constructors
OSESession()

OSESession(String user)

OSESession(String user, char[] pwd)

TransportType Transport type designates the protocol used to transfer data to
and from the mobile server.

■ TransportType.Http: Data is transfered using the HTTP
protocol. Value 0.

■ TransportType.User: Data is transfered by the custom
transport provided by the application. Value 1.

■ TransportType.File: Data is transfered manually using
File-Based Sync). Value 2.

DataPriority Synchronization priority:

■ DataPriority.High: High priority. Value 0.

■ DataPriority.Normal: Normal priority. Value 1.

SyncProgressStage Synchronization stage:

■ SyncProgressStage.Prepare: States that the synchronization
engine is preparing local data to be sent to the server in a
local file. This includes getting locally modified data. For
streaming implementations this takes a shorter amount of
time. Only used if OSESession.UseFiles is true.

■ SyncProgressStage.Send: States that the synchronization
engine is sending data to the network.

■ SyncProgressStage.Receive: States that the synchronization
engine is receiving data from the server.

■ SyncProgressStage.Process: States that the synchronization
engine is applying the newly received data from the server to
the local data stores. Only used if OSESession.UseFiles is
true.

■ SyncProgressStage.Idle: States that the synchronization
engine has completed the synchronization process.

Table 3–32 OSESession Class Constructor

Parameter Description

user A string containing the name used for authentication by the mobile server.

password A character array containing the user password.

Table 3–31 (Cont.) Enumerations

Enumeration Members

Invoke Manual Synchronization on the Mobile Client

3-30 Oracle Database Mobile Server Developer's Guide

Public Methods
The public methods and their parameters for the OSESession class are listed in
Table 3–33:

OSESession Class Properties
The following documents the properties for the OSESession class.

■ Read-write properties read or write the value of a field with get and set accessors.

■ Read-only properties read the value of a field with the get accessor.

■ Write-only properties set the value of a field with the set accessor.

Boolean properties get or set the value of a field to either true or false.

Table 3–34 lists all properties. Table 3–31 lists all enumerations.

Table 3–33 OSESession Class Public Method Parameters

Method Description

CancelSync() Attempts to cancel the synchronization process
with a non-blocking call.

Close() Closes any active database connections that the
session maintains. This method is called before
application exits.

SaveUser() The SaveUser method saves session options and
user information.

SelectPub(String name)

UnselectPubs()

The SelectPub method provides the publication
name, adds the publication to the list of
publications to be synchronized selectively.

The UnselectPubs method reverts back to normal
synchronization for all publications.

See Section 3.1.1.3.6, "Selective Synchronization"
for more information.

event OSEProgressHandler
SyncProgress

Set synchronization progress listener with the
SyncProgress event. For more details, see
Section 3.1.1.3.5, "OSEProgressHandler Interface".

Sync() Initiates a manual synchronization from within the
application.

ShareConnection(string dbName,
IntPtr hdl)

UnshareConnection(string dbName)

Provides database connection handle from the
application to use in the OSE engine, instead of
engine opening its own database connection,
which is default. The connection handle is set for
the duration of the session unless explicitly unset
by calling UnshareConnection().

Parameters include the database name and a
connection handle, which has to be a valid native
handle for the particular type of database that is
used in the OSE plugin. For example, SQLite and
Berkeley DB handle should be of native type
sqlite3 *.

Table 3–34 OSESession Properties

Property Accessors Description

SyncDirection Read-write Gets or sets the synchronization direction on the
SyncDirection enumeration. The default is
SyncDirection.SendReceive.

Invoke Manual Synchronization on the Mobile Client

Managing Synchronization on the Mobile Client 3-31

EncryptionType Read-write Gets or sets the encryption type on the EncryptionType
enumeration. The default for which is
EncryptionType.AES.

TransportType Read-write Gets or sets the transport type on the TransportType
enumeration. The default for which is
TransportType.Http.

SyncPriority Read-write Gets or sets the synchronization priority on the
DataPriority enumeration. The default for which is
DataPriority.Normal.

SavePassword Read-write Boolean property. The default is FALSE. Indicates
whether the user synchronization password should be
saved on the client, which means that it will not need to
be explicitly provided for future sessions.

The password is saved in an encrypted form.

Background Read-write Boolean property. Indicates whether the next
synchronization should be an automatic
synchronization.

The default is FALSE, indicating manual
synchronization.

SyncApps Read-write Boolean property. Indicates whether synchronization
should download a list of application and client updates
that can be installed later.

The default is TRUE.

SyncNewPub Read-write Boolean property. Indicates whether new publications
can be created during synchronization.

The default is TRUE.

ForceRefresh Read-write Boolean property. Indicates if the synchronization is
force-refresh. Ignores client changes and reloads all
client data from the mobile server.

The default is FALSE.

UseFiles Read-write Boolean property. Indicates whether files are used to
temporarily store the data either before it is sent or after
it is received. If enabled, client changes are first saved
into a file named oseOutFile.bin (default), then sent to
the mobile server. The received data is saved to another
file named oseInFile.bin (default) and then read and
transferred to the database from that file. This is used
for the resume transport or for protocols where the total
data size to be sent needs to be known in advance, such
as HTTP 1.0. The default is FALSE.

The related ose.ini parameter is OSE.FILES.

Table 3–34 (Cont.) OSESession Properties

Property Accessors Description

Invoke Manual Synchronization on the Mobile Client

3-32 Oracle Database Mobile Server Developer's Guide

Example
/* Create the OSESession object */
oseSess = new OSESession(user, pwd != NULL ?
 pwd.ToCharArray() : NULL);

/* Assign Session options */
if (url != NULL)
 oseSess.URL = url;
if (f)
 oseSess.UseFiles = true;
if (sp)
 oseSess.SavePassword = true;
if (bResume)
 oseSess.UseResume = true;
if (ne)
 oseSess.EncryptionType = EncryptionType.None;
else if (ssl)
 oseSess.EncryptionType = EncryptionType.SSL;

UseResume Read-write Boolean property. Indicates whether the resume
protocol should be used on top of the synchronization
transport. To use this option, the UseFiles property
must be enabled. If not already set, UseFiles will be set
implicitly.

The resume protocol is typically used for lengthy
synchronization sessions over unstable network
connections. It resumes sending and receiving data from
the point of a network disconnect, thus avoiding the
restart of synchronization from scratch. This property is
used only with connected transport
(SyncDirection.SendReceive).

The default is FALSE.

Related ose.ini parameter is OSE.RESUME.

URL Read-write Mobile server URL property.

Proxy Read-write HTTP proxy property, if present, as host:port or host,
where the port defaults to 80 if not specified.

NewPassword Write-only New password provided to modify the synchronization
password during the next synchronization. This option
needs to be set each time the password needs to be
changed for the session.

User Read-only Read-only property, used to retrieve the
synchronization user name.

Password Write-only Used to set the synchronization password in the current
session. This overwrites the password that was
originally provided to the oseOpenSession method or
retrieved from the OSE configuration files. This is only
used to set the synchronization password in the case
that a NULL password was passed to the oseOpenSession
method.

This password is saved in the OSE Meta files if the
SavePassword property was enabled.

AppRoot Read-write Root directory for internal synchronization files. By
default, it is the synchronization client installation bin
directory.

Table 3–34 (Cont.) OSESession Properties

Property Accessors Description

Invoke Manual Synchronization on the Mobile Client

Managing Synchronization on the Mobile Client 3-33

/* Save the session options */
if (!ns)
 oseSess.SaveUser();

/* Assign a progress handler named syncProgress */
oseSess.SyncProgress += new OSEProgressHandler(syncProgress);

/* Perform the synchronization */
oseSess.Sync();

3.1.1.3.4 OSEProgressEventArgs Properties

The following documents the properties for the OSEProgressEventArgs class, which
are used primarily in the OSEProgressHandler interface.

■ Read-write properties read or write the value of a field with get and set accessors.

■ Read-only properties read the value of a field with the get accessor.

■ Write-only properties set the value of a field with the set accessor.

Table 3–35 lists all properties.

3.1.1.3.5 OSEProgressHandler Interface The OSEProgressHandler interface enables
progress updates to be trapped during synchronization.

Sync calls the a registered progress handler to report the current stage and the percent
of completion of that stage, which can be retrieve with the Stage and Value properties,
as described in Table 3–34.

Syntax
public delegate void OSEProgressHandler(object sender,
 OSEProgressEventArgs args);

You can implement your own progress handler by providing the same parameter
declaration as in the OSEProgressHandler declaration. The following implements a
progress handler called syncProgress, which takes in a sender and an
OSEProgressEventArgs structure. It evaluates the Stage and the Value of the
OSEProgressEventArgs structure when invoked by the Sync Agent.

 static void syncProgress(object sender, OSEProgressEventArgs args)

Table 3–35 OSEProgressEventArgs Properties

Property Accessors Description

Stage Read-only Gets the synchronization stage from the
SyncProgressStage enumeration. The default for which
is SyncProgressStage.Idle.

Value Read-only Gets the percentage of completion for a specific Stage.

Table 3–36 OSEProgressHandler Parameters

Name Description

object sender Sender of the event, which is set to the OSESession
object to which the handler is attached.

OSEProgressEventArgs args Progress event arguments that include Stage and Value
properties, which are described in Table 3–35.

Invoke Manual Synchronization on the Mobile Client

3-34 Oracle Database Mobile Server Developer's Guide

 {
 if (args.Stage == SyncProgressStage.Idle)
 return;

 if (prevVal == -1)
 {
 Console.Write(args.Stage);
 prevVal = 0;
 }

 int dots = (args.Value - prevVal) / 2;
 for(int i = 0; i < dots; i++)
 Console.Write('.');

 if (args.Value == 100)
 {
 Console.WriteLine();
 prevVal = -1;
 }
 else
 prevVal = args.Value;
 }

Then, you set the progress handler by setting the SyncProgress event, as shown
below:

oseSess.SyncProgress += new OSEProgressHandler(syncProgress);

3.1.1.3.6 Selective Synchronization Selective sync specifies whether a publication should
be synchronized or not for the next session. Provide the name of the publication with
the SelectPub method to indicate whether the publication is to be synchronized on the
next execution of the Sync method. The default setting is NULL for all publications.

Table 3–37 lists the name and description of parameter for the SelectPub method.

3.1.1.3.7 OSEException Class This class signals an error during the synchronization
process.

The OSEException read-only properties are listed in Table 3–38.

Note: Automatic synchronization selectively synchronizes only
publications that contain automatic publication items.

Table 3–37 SelectPub Parameters

Name Description

name The name of the publication which is being synchronized. If the
value for the name is NULL, it means all publications in the database,
which turns off selective sync. You can also turn off selective sync
with the UnselectPubs method.

For more information, see Section 2.4, "Creating Publications Using
Oracle Database Mobile Server APIs".

Invoke Manual Synchronization on the Mobile Client

Managing Synchronization on the Mobile Client 3-35

Constructors
OSEException(int errorCode)

OSEException(int errorCode, string errorMessage)

For a complete list of the error messages in the OSEException class, see "Exception
Error Codes and Messages" in the Oracle Database Mobile Server Message Reference.

3.1.1.4 OSE Synchronization JavaScript API for PhoneGap
The following sections describe how you can use the PhoneGap:

■ Section 3.1.1.4.1, "Overview"

■ Section 3.1.1.4.2, "OSESession Class"

3.1.1.4.1 Overview

PhoneGap framework allows applications written in HTML/JavaScript to run on
various mobile device platforms and access certain native APIs. The mobile client
synchronization PhoneGap plugin enables existing or new HTML/JavaScript
applications to synchronize data with the Database Mobile Server. Among several
APIs provided by PhoneGap, there is a Storage API that can be used to access the
synchronized data stored in the local SQLite database. For more details, see
http://docs.phonegap.com/en/2.5.0/cordova_storage_storage.md.html#Storage

In addition, there is an Android sqlitePlugin which allows similar SQLite specific data
access. For more details, see
https://github.com/brodyspark/PhoneGap-sqlitePlugin-Android

The OSE JavaScript interface provides for the following functions:

■ Setting client-side user profiles containing data such as user name, password, and
server.

■ Starting the synchronization process.

■ Tracking the progress of the synchronization process.

Table 3–38 OSEException Properties

Parameters Description

ErrorCode Gets the exception error code. The error code can be one of the
OSEErrorCode enumeration values, which are documented in the
"OSEException Error Messages" in the Oracle Database Mobile Server
Message Reference.

Kind Gets the exception type name.

InnerException Use the InnerException property to get underlying cause of the
OSEException.

Table 3–39 OSEException Parameter Description

Parameter Description

errorCode The error code can be one of the OSEErrorCode enumeration
values, which are documented in the "Exception Error Codes
and Messages" in the Oracle Database Mobile Server Message
Reference.

errorMessage A readable text message that provides extra information.

Invoke Manual Synchronization on the Mobile Client

3-36 Oracle Database Mobile Server Developer's Guide

For Android clients, the underlying native PhoneGap plugin implementation creates
wrappers on top of the existing Java OSE API and is modeled after it. It has the
follwing two jar files:

■ phonegap_sync_android.jar

■ osync_android.jar

It also has a JavaScript file osync.js.

The file locations are:

■ <MOBILE_HOME>\Mobile\Sdk\android\phonegap\libs\phonegap_sync_
android.jar

■ <MOBILE_HOME>\Mobile\Sdk\android\lib\osync_android.jar

■ <MOBILE_HOME>\Mobile\Sdk\android\phonegap\assets\www\osync.js

The sync API is incapsulated in OSESession JavaScript class. The background sync
API is exposed in BGSession class. For an example of a sync PhoneGap application for
Android, please see the demo shipped with MDK under:

■ <MOBILE_HOME>\Mobile\Sdk\samples\sync\android\phonegap

3.1.1.4.2 OSESession Class OSESession enables setting synchronization parameters
and options. This class exposes JavaScript API to invoke and control synchronization
by using the provided synchronization options.

The OSESession Class Constructors are as follows:

Constructors
OSESession (success_cbk, error_cbk)

OSESession (success_cbk, error_cbk, user)

OSESession(success_cbk, error_cbk, user, pwd)

Table 3–40 lists all the parameters for the constructor.

Public Methods
The public methods and their parameters for the OSESession class are listed in
Table 3–41:

Note: There should only be a single OSESession instance per
PhoneGap application.

Table 3–40 OSESession Class Constructor

Parameter Description

success_cbk A callback function that gets invoked upon successful sync
completion.

error_cbk An error callback function that gets invoked on any error in OSE
API.

user A string containing the name used for authentication by the
mobile server.

password A string containing the user password.

Invoke Manual Synchronization on the Mobile Client

Managing Synchronization on the Mobile Client 3-37

Table 3–41 OSESession Class Public Method Parameters

Parameter Description

cancelSync() Attempts to cancel the synchronization process with a
non-blocking call. If successful, sync calls error callback with
“Sync Canceled” error message.

close() Closes any active database connections that the session maintains.
This method is called before application exits or before a new
session needs to be created (for example, when a user id is
changed).

saveUser()

String getUser()

The saveUser method saves user information, such as users
specific information, and the last synchronization user id.

The getUser method retrieves current synchronization client
name.

selectPub(name) Provided the publication name, adds the publication to the list of
publications to be synchronized selectively. See Section 3.1.1.1.4,
"Selective Synchronization" for more information.

setAppRoot(appRoot)

String getAppRoot()

Sets or retrieves the current root directory, as set in the DATA_
DIRECTORY parameter, for internal synchronization and
database files for the application.

boolean getBackground()

setBackground(boolean
on)

Sets or returns TRUE if a synchronization event is an automatic
synchronization; FALSE if not.

setEncryptionType (int
type)

int getEncryptionType(
)

Sets or retrieves the current encryption type. Possible types can
are as follows:

■ ENC_AES - AES encryption, which is the default.

■ ENC_SSL - SSL over HTTP.

■ ENC_NONE - No encryption.

setForceRefresh
(boolean on)

boolean
getForceRefresh()

Set to wipe out all of the client data and replace it with server
data, if true.

Retrieves value of force refresh.

setSavePassword
(boolean on)

boolean
getSavePassword()

This is used to set and get the flag for persistently saving the user
password. If true, the password is saved.

setNewPassword(pwd) Allows clients to modify their password on the server. After a
successful synchronization, the client's password on the server is
changed to the new password.

setPassword(pwd) Provide or modify the mobile client password.

setProgress (boolean
on)

Sets whether or not native sync progress listener is displayed.

setProxy(proxy)

String getProxy()

Sets or returns the current HTTP proxy, which can be the
hostname or IP address of the proxy server. NULL is returned if
proxy is not used.

setSyncApps(boolean on)

boolean getSyncApps()

Sets or retrieves a flag that indicates whether the application
client updates should be downloaded during the next
synchronization. If set to FALSE, client updates are only
uploaded to the server.

Invoke Manual Synchronization on the Mobile Client

3-38 Oracle Database Mobile Server Developer's Guide

setSyncDirection(int
dir)

getSyncDirection()

Sets or retrieves the current synchronization direction of data for
the mobile client. You can indicate whether the client should
perform normal synchronization with DIR_SENDRECEIVE,
where data is both uploaded and downloaded. Alternatively, if
you set the direction for data to be as follows:

■ DIR_SENDRECEIVE: Default. Sets the direction to send and
receive.

■ DIR_SEND: Sets the direction to upload client data, but no
server data is downloaded.

■ DIR_RECEIVE: Sets the direction to download data from the
server, but no client data is uploaded. (Reserved for future
use).

This direction setting affects only the user data. All mobile server
data, such as acknowledgements, will still be uploaded or
downloaded as appropriate.

setSyncNewPub(boolean
on)

boolean getSyncNewPub(
)

Sets or retrieves flag for enabling synchronization of new
publications. By default, this is set to true and all publications are
synchronized. However, if you set this to false, any new
subscribed publications on the server are not downloaded to the
client.

int getSyncPriority()

setSyncPriority(int
prio)

Sets or retrieves the synchronization priority. The default is PRIO_
DEFAULT, which is OFF. Only high priority table or rows are
synchronized when set to PRIO_HIGH.

You can only use fast refresh with a high priority restricting
predicate. If you use any other type of refresh, the high priority
restricting predicate is ignored.

For more information, see Section 1.2.10, "Priority-Based
Replication" in the Oracle Database Mobile Server Troubleshooting
and Tuning Guide.

setURL (url)

String getURL()

Sets or retrieves the HTTP URL of the mobile server.

setUseFiles(boolean on)

boolean getUseFiles()

Sets or retrieves flag to switch between using streaming or files to
transport synchronization data. If set to true, synchronization
stores uploaded and downloaded data in a file; otherwise, data is
streamed.

When using files, the ose$in.bin file contains the data received
from the server. The ose$out.bin file contains the data sent to the
server. These files are located in the <mobileclient_root>\bin
directory on Win32, Windows Mobile and Linux platfoms or in
the directory specified by the DATA_DIRECTORY on the Android
or Blackberry platforms.

Note: streaming requires that the underlying client transport
stack implements HTTP 1.1. Thus, if a platform does not support
streaming, setUseFiles must be configured as TRUE.

setUseResume(boolean
on)

boolean getUseResume()

If setUseResume is set to TRUE, enables the resume feature,
which attempts to resume sending and receiving data for a
synchronization after a network failure. Requires that setUseFiles
is also set to TRUE; otherwise, this method is ignored. The
resume feature provides a more reliable transport for
synchronizing data with minimal overhead.

sync () Initiates a manual synchronization from within the application.

boolean
getEncryptDatabases()

Get the current value of encrypt database flag.

Table 3–41 (Cont.) OSESession Class Public Method Parameters

Parameter Description

Invoke Manual Synchronization on the Mobile Client

Managing Synchronization on the Mobile Client 3-39

Example
The following example sets the user name and password to JOHN/john. The mobile
server URL is identified as localhost:88. And a synchronization is initiated with the
sync method.

//* set up user name and password */
var user = "JOHN";
var pwd = "john";
//PhoneGap error callback. Prints error message on console
function onError(msg) {
 console.log("Encountered Error: " + msg);
};
//PhoneGap success callback. Prints success on console
function onSuccess() {
 console.log("Success");
};

/* create OSESession with user John */
OSESession sess = new OSESession(onSuccess, onError, user, pwd);

/* Identify Mobile Server URL */
sess.setURL("localhost:88");

/* Enable progress monitor GUI */
sess.setProgress(true);

/* Initiate Sync */
sess.sync();

3.1.2 SQLite Synchronization API for .Net Clients
You can initiate and monitor synchronization from an .Net provider application. See
the SQLite documentation for information on the .Net provider.

3.1.3 OCAPI Synchronization API for the Mobile Client

The following sections describe the OCAPI synchronization APIs:

■ Section 3.1.3.1, "OCAPI Synchronization APIs For C or C++ Applications"

■ Section 3.1.3.2, "mSync, OCAPI, and mSyncCom API"

setEncryptDatabases(boo
lean on)

Enable database encryption for new databases created during
sync.

Note: The following OCAPI synchronization APIs are currently
supported for the mobile client, but are not the direction
recommended for future applications. To develop applications for
future support, migrate existing applications to use the Section 3.1.1,
"OSE Synchronization API for Applications on Mobile Clients".

Table 3–41 (Cont.) OSESession Class Public Method Parameters

Parameter Description

Invoke Manual Synchronization on the Mobile Client

3-40 Oracle Database Mobile Server Developer's Guide

3.1.3.1 OCAPI Synchronization APIs For C or C++ Applications
You can initiate and monitor synchronization from a C or C++ client application. The
OCAPI synchronization methods for the C/C++ interface are contained in ocapi.h
and ocapi.dll, which are located in the <MOBILE_HOME>\Mobile\Sdk\include
directory and <MOBILE_HOME>\Mobile\Sdk\Bin directory respectively.

A C++ example is provided in the <MOBILE_
HOME>\Mobile\Sdk\Samples\sync\win32\msync directory. You can follow the
instruction in ReadMe.txt to build the executable- SimpleSync.exe.

The following sections describe how to set up and initiate synchronization:

■ Section 3.1.3.1.1, "Overview of C/C++ Synchronization API"

■ Section 3.1.3.1.2, "Initializing the Environment With ocSessionInit"

■ Section 3.1.3.1.3, "Managing the C/C++ Data Structures"

■ Section 3.1.3.1.4, "ocEnv Data Structure"

■ Section 3.1.3.1.5, "ocTransportEnv Data Structure"

■ Section 3.1.3.1.6, "Retrieving Publication Information With ocGetPublication"

■ Section 3.1.3.1.7, "Managing User Settings With ocSaveUserInfo"

■ Section 3.1.3.1.8, "Manage What Tables Are Synchronized With
ocSetTableSyncFlag"

■ Section 3.1.3.1.9, "Configure Proxy Information"

■ Section 3.1.3.1.10, "Start the Synchronization With the ocDoSynchronize Method"

■ Section 3.1.3.1.11, "See Progress of Synchronization with Progress Listening"

■ Section 3.1.3.1.12, "Clear the Synchronization Environment Using ocSessionTerm"

■ Section 3.1.3.1.13, "Retrieve Synchronization Error Message with ocGetLastError"

■ Section 3.1.3.1.14, "Enable File-Based Synchronization through C or C++ APIs"

3.1.3.1.1 Overview of C/C++ Synchronization API For starting synchronization, the
application should perform the following:

1. Create, memset, and initialize the ocEnv structure.

2. Invoke the ocSessionInit() method.

3. Set any optional fields in the ocEnv structure, such as user name and password. If
you want to preserve all optional fields set in the ocEnv structure for future
synchronization sessions, then execute the ocSaveUserInfo method.

4. Optionally, you can set proxy information with the ocSetSyncOption method or
specify the synchronization type for each table with the ocSetTableSyncFlag
function.

5. Invoke the ocDoSynchronize() method, which returns after the synchronization
completes, an error occurs, or the user interrupts the process. While executing, the
ocDoSynchronize function invokes any callback function set in the
ocEnv.fnProgress field. The callback function must not call any blocking
functions, as this process is not reentrant or threaded.

6. Once synchronization completes, then invoke the ocSessionTerm() method to
clear the ocEnv data structure.

Invoke Manual Synchronization on the Mobile Client

Managing Synchronization on the Mobile Client 3-41

7. If synchronization failed, then use the ocGetLastError function to retrieve the
error message.

For an example, see the SimpleSync.cpp sample code.

3.1.3.1.2 Initializing the Environment With ocSessionInit The ocSessionInit function
initializes the synchronization environment—which is contained in the ocEnv structure
or was created with ocSaveUserInfo. For more information, see Section 3.1.3.1.7,
"Managing User Settings With ocSaveUserInfo".

Syntax
int ocSessionInit(ocEnv env);

Table 3–42 lists the ocSessioninit parameter and its description.

This call initializes the ocEnv structure—which holds context information for the
synchronization engine—and restores any user settings that were saved in the last
ocSaveUserInfo call, such as user name and password (See Section 3.1.3.1.7,
"Managing User Settings With ocSaveUserInfo"). An ocEnv structure is passed as the
input parameter. Perform the following to prepare the ocEnv variable:

1. Create the ocEnv by allocating a variable the size of ocEnv.

2. Memset the ocEnv variable before invoking the ocSessionInit function. If you do
not perform a memset on the ocEnv variable, then the ocSessionInit function will
not perform correctly.

3. Set all required fields in the ocEnv structure before passing it to ocSessionInit. If
you want to save the user preferences for future sessions, then invoke the
ocSaveUserInfo method.

For a full description of ocEnv, see Section 3.1.3.1.4, "ocEnv Data Structure".

The following example allocates a new ocEnv, which is then passed into the
ocSessionInit call.

env = new ocEnv;
// Reset ocenv
memset(env, 0, sizeof(ocEnv));

// init OCAPI
ocError rc = ocSessionInit(env);

3.1.3.1.3 Managing the C/C++ Data Structures Two data structures—ocEnv Data Structure
and ocTransportEnv Data Structure—are used for certain functions in the Mobile Sync
API.

Note: Every time you invoke the ocSessionInit function, you must
also clean up with ocSessionTerm. These functions should always be
called in pairs. See Section 3.1.3.1.12, "Clear the Synchronization
Environment Using ocSessionTerm" for more information.

Table 3–42 ocSessionInit Parameters

Name Description

env An ocEnv class, which contains the synchronization environment.

Invoke Manual Synchronization on the Mobile Client

3-42 Oracle Database Mobile Server Developer's Guide

3.1.3.1.4 ocEnv Data Structure The ocEnv data structure holds internal memory buffers
and state information. Before using this structure, the application initializes it by
passing it to the ocSessionInit method.

Table 3–43 lists the field name, type, usage, and corresponding description of the
ocEnv structure parameters.

■ Required—If the usage is required, then you either set before calling the
ocSessionInit function or you have saved these parameters previously with the
ocSaveUserInfo function.

■ Optional—If the usage is optional, then optionally set after calling the
ocSessionInit function and before the ocDoSynchronize function.

■ Read Only.

Table 3–43 ocEnv Structure Field Parameters

Field Type Usage Description

username char[32] Required. Name of the user to authenticate. This name is
limited to 28 characters, because of other parts of
the product.

password char[32] Required. User password (clear text). This name is limited to
28 characters, because of other parts of the product.

trType Enum Required. If set to OC_BUILDIN_HTTP, use HTTP built-in
transport driver. This is the default.

If set to OC_USER_METHOD, use user provided
transport functions.

If set to OC_FILE_TRANSPORT, the synchronization
uses file-based sync. See Section 3.1.3.1.14, "Enable
File-Based Synchronization through C or C++
APIs".

newPassword char[32] Optional. If first character of this string is not NULL—in
otherwords (char) 0—this string is sent to the server
to change the user password; the password change
is effective on the next synchronization session.

savePassword Short Optional. If set to 1, the password is saved locally and is
loaded the next time ocSessionInit is called.

appRoot char[32] Optional. Directory to where the application will be copied. If
first character is NULL, then it uses the default
directory.

priority Short Optional. 0= OFF (default)

1= ON; Only high priority table or rows are
synchronized when turned on.

You can only use fast refresh with a high priority
restricting predicate. If you use any other type of
refresh, the high priority restricting predicate is
ignored.

See Section 1.2.10, "Priority-Based Replication" in
the Oracle Database Mobile Server Troubleshooting and
Tuning Guide for more information.

secure Short Optional. If set to 0, then AES is used on the transport. If set
to OC_SSL_ENCRYPTION, use SSL synchronization
(SSL-enabled device only).

Invoke Manual Synchronization on the Mobile Client

Managing Synchronization on the Mobile Client 3-43

syncDirection Enum Optional. If set to 0 (OC_SENDRECEIVE), then synchronization is
bi-directional (default).

If set to OC_SENDONLY, then push changes only to the
server. This stops the synchronization after the local
changes are collected and sent. User must write
own transport method (like floppy bases) when
using this method.

If set to OC_RECEIVEONLY, then send no changes and
only receive update from server. This only performs
the receive and allow changes function to local
database stages.

exError ocError Read-only. Extended error code - either OS or OKAPI error
code.

transportEnv ocTransportEnv Transport buffer. See Section 3.1.3.1.5,
"ocTransportEnv Data Structure".

progressProc fnProgress Optional. If not NULL, points to the callback for progress
listening. See Section 3.1.3.1.11, "See Progress of
Synchronization with Progress Listening".

totalSendDataLen Long Reserved

totalRecieveDataLen Long Reserved

userContext Void* Optional. Can be set to anything by the caller for context
information (such as progress dialog handle,
renderer object pointer, and so on.

ocContext Void* Reserved.

logged Short Reserved.

bufferSize Long Reserved (for Wireless/Nettech only).

pushOnly Short Optional. If set to 1, then only push changes to the server.

syncApps Short Optional. Set to 1 (by default), performs application
deployment.

If set to 0, then no applications will be received
from the server.

syncNewPublications Short Optional. If set to 1 (default), receives any new publication
created from the server since last synchronization.

If set to 0, only synchronizes existing publications
(useful for slow transports like wireless).

Table 3–43 (Cont.) ocEnv Structure Field Parameters

Field Type Usage Description

Invoke Manual Synchronization on the Mobile Client

3-44 Oracle Database Mobile Server Developer's Guide

The environment structure contains fields that the caller can update to change the way
Mobile Sync module works. The following example demonstrates how to set the fields
within the ocEnv structure.

typedef struct ocEnv_s {
 // User info
char username[MAX_USERNAME]; // Mobile Sync Client id, limited to 28 characters
char password[MAX_USERNAME]; // Mobile Sync Client password for
 // authentication during sync, limited to 28 chars
char newPassword[MAX_USERNAME]; // resetting Mobile Sync Client password
 // on server side if this field is not blank
short savePassword; // if set to 1, save password
char appRoot[MAX_PATHNAME]; // dir path on client device for deploying files
short priority; // High priority table only or not
short secure; // if set to 1, data encrypted over the wire
enum {
OC_SENDRECEIVE = 0, // full step of synchronize
OC_SENDONLY, // send phase only
OC_RECEIVEONLY, // receive phase only
OC_SENDTOFILE, // send into local file | pdb
OC_RECEIVEFROMFILE // receive from local file | pdb
}syncDirection; // synchronize direction

enum {
OC_BUILDIN_HTTP = 0, // Use build-in HTTP transport method
OC_USER_METHOD // Use user defined transport method
}trType; // type of transport

ocError exError; // extra error code

updateLog Short Optional. Debug only. If set to 1, logs server-side insert and
update row information to the publication client
database.

options Short Optional. Debug only. A bitset of the following flags:

■ OCAPI_OPT_SENDMETADATA

Sends meta-info to the server.

■ or OCAPI_OPT_DEBUG

Enables debugging messages.

■ OCAPI_OPT_DEBUG_F

Saves all bytes sent and received for
debugging.

■ OCAPI_OPT_NOCOMP

Disables compression.

■ OCAPI_OPT_ABORT

If set, OCAPI will try to abort the current
synchronization session.

■ OCAPI_OPT_FULLREFRESH

Forces OCAPI to purge all existing data and do
a full refresh.

cancel Short Caller can set to 1 on next operation.
ocDoSynchronize returns with -9032.

Table 3–43 (Cont.) ocEnv Structure Field Parameters

Field Type Usage Description

Invoke Manual Synchronization on the Mobile Client

Managing Synchronization on the Mobile Client 3-45

ocTransportEnv transportEnv; // transport control information

 // GUI related function entry
progressProc fnProgress; // callback to track progress; this is optional

 // Values used for Progress Bar. If 0, progress bar won't show.
long totalSendDataLen; // set by Mobile Sync API informing transport total number
 // of bytes to send; set before the first fnSend() is called
long totalReceiveDataLen; // to be set by transport informing Mobile Sync API
 // total number of bytes to receive;
 // should be set at first fnReceive() call.
void* userContext; // user defined context
void* ocContext; // internal use only
short logged; // internal use only
long bufferSize; // send/receive buffer size, default is 0
short pushOnly; // Push only flag
short syncApps; // Application deployment flag
short cancel; // cancel
} ocEnv;

3.1.3.1.5 ocTransportEnv Data Structure You can configure the HTTP URL, proxy, proxy
port number and other HTTP-specific transport definitions in the ocTrHttp structure.
This structure is an HTTP public structure defined in octrhttp.h.

You access the ocTrHttp structure from within the ocTransportEnv data structure,
which is provided as part of the ocEnv data structure. The following demonstrates the
fields within the ocTransportEnv structure:

typedef struct ocTransportEnv_s {
void* ocTrInfo; // transport internal context

The ocTrInfo is a pointer that points to the HTTP parameters in the ocTrHttp
structure. The following code example retrieves the ocTrInfo pointer to the HTTP
parameters and then modifies the URL, proxy, and proxy port number to the input
arguments:

ocTrHttp* http_params = (ocTrHttp*)(env->transportEnv.ocTrInfo);
// set server_name
strcpy(http_params->url, argv[3]);
// set proxy
strcpy(http_params->proxy, argv[4]);
// set proxy port
http_params->proxyPort = atoi(argv[5])

3.1.3.1.6 Retrieving Publication Information With ocGetPublication This function gets the
publication name on the client from the application name. The user knows only the
application name, which happens when the Packaging Wizard is used to package an
application before publishing it. If the application needs the publication name in order
to interact with the database, then this function is used to retrieve that name, given the
application name.

Syntax
ocError ocGetPublication(ocEnv* env, const char* application_name,
 char* buf, int buf_len);

The parameters for the ocGetPublication function are listed in Table 3–44 below.

Invoke Manual Synchronization on the Mobile Client

3-46 Oracle Database Mobile Server Developer's Guide

Return value of 0 indicates that the function has been executed successfully. Any other
value is an error code.

The following code example demonstrates how to get the publication name.

void sync()
{
 ocEnv env;
 int rc;

 // Clean up ocenv
 memset(&env 0, sizeof(env));

 // init OCAPI
 rc = ocSessionInit(&env);

 strcpy(env.username, "john");
 strcpy(env.password, "john");

 // We use transportEnv as HTTP paramters
 ocTrHttp* http_params = (ocTrHttp*)(env.transportEnv.ocTrInfo);
 strcpy(http_params->url, "your_host");

 // Do not synchronize applicaton "Sample3"
 char buf[32];
 rc = ocGetPublication(&env, "Sample3", buf, sizeof(buf));
 rc = ocSetTableSyncFlag(&env, buf, NULL, 0);

 // call sync
 rc = ocDoSynchronize(&env);
 if (rc < 0)
 fprintf(stderr, "ocDoSynchronize failed with %d:%d\n",
 rc, env.exError);
 else
 printf("Synchronization compeleted\n");

 // close OCAPI session
 rc = ocSessionTerm(&env);
 return 0;
}

3.1.3.1.7 Managing User Settings With ocSaveUserInfo Saves user settings for the ocEnv
structure. These settings can be used for the current session or used by the
ocSessionInit function to initialize the environment when next invoked.

Syntax
int ocSaveUserInfo(ocEnv *env);

Table 3–44 ocGetPublication Parameters

Name Description

ocEnv* env Pointer to an ocEnv structure buffer to hold the
return synchronization environment.

const char* application_name(in) The name of the application.

char* buf(out) The buffer where the publication name is
returned.

int buf_len(in) The buffer length, which must be at least 32
bytes.

Invoke Manual Synchronization on the Mobile Client

Managing Synchronization on the Mobile Client 3-47

Table 3–45 lists the ocSaveUserInfo parameter and its description.

This saves or overwrites the user settings into a file or database on the client side. The
following information provided in the environment structure is saved:

■ username

■ password

■ savePassword

■ newPassword

■ priority

■ secure

■ pushOnly

■ syncApps

■ syncNewPublications

If you use the HTTP default transport set in the ocTransportEnv structure, then the
following is also saved:

■ url

■ useProxy

■ proxy

■ proxyPort

For more information on how to use these fields, see Section 3.1.3.1.3, "Managing the
C/C++ Data Structures".

3.1.3.1.8 Manage What Tables Are Synchronized With ocSetTableSyncFlag Update the table
flags for selective sync. Call this for each table to specify whether it should be
synchronized (1) or not (0) for the next session. Selective sync only works if you have
first performed at least one synchronization for the client. Then, set the flag so that on
the next synchronization—that is, on the next invocation of the ocDoSynchronize
method—a selective sync occurs.

The default sync_flag setting for ocSetTableSyncFlag is TRUE (1) for all the tables;
that is, all tables are flagged to be synchronized. If you want to selectively synchronize
specific tables, you must first disable the default setting for all tables and then enable
the synchronization for only the specific tables that you want to synchronize.

Syntax
ocSetTableSyncFlag(ocEnv *env, const char* publication_name,

Table 3–45 ocSaveUserInfo Parameters

Name Description

env Pointer to the synchronization environment.

Note: See Section 3.1.3.1.4, "ocEnv Data Structure" or
Section 3.1.3.1.5, "ocTransportEnv Data Structure" for more
information.

Invoke Manual Synchronization on the Mobile Client

3-48 Oracle Database Mobile Server Developer's Guide

 const char* table_name, short sync_flag)

Table 3–46 lists the name and description of parameters for the ocSetTableSyncFlag
function.

This function allows client applications to select the way specific tables are
synchronized.

Set sync_flag for each table or each publication. If sync_flag = 0, the table is not
synchronized.

To synchronize specific tables only, you must perform the following steps:

1. Disable the default setting, which is set to 1 (TRUE) for all the tables.

Example:

ocSetTableSyncFlag(&env, <publication_name>,NULL,0)

Where <publication_name> must be replaced by the actual name of your
publication, and where the value NULL is specified to mean all the tables for that
publication without exception.

2. Enable the selective sync for specific tables.

Example:

ocSetTableSyncFlag(&env, <publication_name>,<table_name>,1)

3.1.3.1.9 Configure Proxy Information If you are using a firewall and need to configure
proxy information, perform the following before you execute the ocDoSynchronize
method:

1. Configure the proxy URL, IP address and/or port number through the
ocSaveUserInfo function. See Section 3.1.3.1.7, "Managing User Settings With
ocSaveUserInfo" for more information.

2. If required, configure the proxy user name and password. To configure the proxy
user name and password, use the ocSetSyncOption and provide the following:

ocSetSyncOption(env, "HTTPUSER=<username>;HTTPPASS=<password>");

Table 3–46 ocSetTableSyncFlag Parameters

Name Description

env Pointer to the synchronization environment.

publication_name The name of the publication which is being synchronized. If the
value for the publication_name is NULL, it means all publications in
the database. This string is the same as the client_name_template
parameter of the Consolidator Manager CreatePublication
method. In most cases, you will use NULL for this parameter. For
more information, see Section 2.4, "Creating Publications Using
Oracle Database Mobile Server APIs".

table_name This is the name of the snapshot. It is the same as the name of the
store, the third parameter of CreatePublicationItem(). For more
information, see Section 2.4, "Creating Publications Using Oracle
Database Mobile Server APIs".

sync_flag If the sync_flag is set to 1, you must synchronize the publication. If
the sync_flag is set to 0, then do not synchronize. The value for the
sync_flag is not stored persistently. Each time before
ocDoSynchronize(), you must call ocSetTableSyncFlag().

Invoke Manual Synchronization on the Mobile Client

Managing Synchronization on the Mobile Client 3-49

Where the ocSetSyncOption syntax is as follows:

int ocSetSyncOption(ocEnv *env, const char *str);

You can set one or more name/value pairs separated by a semi-colon in the string. The
previous example shows the HTTPUSER and HTTPPASS name/value pairs. You can also
set the URL string as follows: URL=www.myhost.com.

3.1.3.1.10 Start the Synchronization With the ocDoSynchronize Method Starts the
synchronization process.

Syntax
int ocDoSynchronize(ocEnv *env);

Table 3–47 lists the name and description of the ocDoSynchronize parameter.

This starts the synchronization cycle. A round trip synchronization is activated if
syncDirection is OC_SENDRECEIVE (default). If syncDirection is OC_SENDONLY or OC_
RECEIVEONLY, then the developer must implement a custom transport. If the developer
wishes to upload only changes, then set pushonly=1. You cannot only download
changes under the existing synchronization architecture.

This method returns when the synchronize completes. A return value of 0 indicates
that the function has been executed successfully. If an error occurred, local errors are
returned by ocDoSynchronize, which are defined in ocerror.h. For errors returned by
the server, see the ol_sync.log error log file, which is written into the working
directory of the application. Each line in the error file has the following format:

<type>, <code>, <date>, <message>

Where:

■ <type>: The type of the message, which can either be set to ERROR or SUCCESS.

■ <code>: Error code of the last operation of the synchronization.

■ <date>: Date and timestamp for when the synchronization completes. This is in
the format of dd/mm/yyyy hh:mm:ss.

■ <message>: A readable message text.

3.1.3.1.11 See Progress of Synchronization with Progress Listening If you create and set the
progress callback function, the mobile client invokes this callback function at different
times while the ocDoSynchronize method is executing. Create the callback function, as
follows:

void myProgressProc (void *env, int stage, int present);

When the ocDoSynchronize invokes your myProgressProc function, it provides the
following information as input to your function:

Note: The user name and password are limited to 28 characters.

Table 3–47 ocDoSynchronize Parameters

Name Description

env Pointer to the synchronization environment.

Invoke Manual Synchronization on the Mobile Client

3-50 Oracle Database Mobile Server Developer's Guide

■ env—A pointer to the environment (ocEnv structure) for the synchronization
session. This provides the function to retrieve the userContext pointer.

■ stage—A number that denotes the stage in the synchronization process, which is
one of the following values, where these values are defined in ocapi.h:

■ present—The percentage completed in the particular stage that synchronization is
in from 0 to 100.

If the function is a member of a class, then it must be defined as static.

After you create the callback function, set the function pointer in the
ocEnv.fnProgress (Table 3–43) to the address of your callback function. Save this with
the ocSaveUserInfo or ocSessionInit methods.

3.1.3.1.12 Clear the Synchronization Environment Using ocSessionTerm Clears and performs
a cleanup of the synchronization environment and buffers. This function must be
invoked for every ocSessionInit, even if the ocDoSynchronize function is not
performed.

Syntax
int ocSessionTerm(ocEnv *env);

Table 3–49 lists the ocSessionTerm parameter and its description.

Table 3–48 Description of the Stage Values

Stage Value Description

OC_PREPARE_START Start of the prepare stage, which collects all internal data from
the database and prepares to send the data to the server.

OC_PREPARING Progress in the prepare stage.

OC_PREPARE_FINISH Prepare stage is completed.

OC_SEND_START Starting to send the data to the server.

OC_SENDING Sending the data.

OC_SEND_FINISH Completed sending the data.

OC_RECEIVE_START Starting to receive data.

OC_RECEIVING Receiving data from the server.

OC_RECEIVE_FINISH Completed receiving data from the server.

OC_PROCESS_START Starting to process received data.

OC_PROCESSING Processing received data.

OC_PROCESS_FINISH Completed processing. Synchronization is finished.

OC_RETRY_CALL Resume synchronization is restarted.

OC_SYNC_FINISH Last callback after the synchronization.

Table 3–49 ocSessionTerm Parameters

Name Description

env Pointer to the environment structure returned by
ocSessionInit.

Invoke Manual Synchronization on the Mobile Client

Managing Synchronization on the Mobile Client 3-51

De-initializes all the structures and memory created by the ocSessionInit() call.
Users must ensure that they are always called in pairs.

3.1.3.1.13 Retrieve Synchronization Error Message with ocGetLastError Retrieves the
synchronization error message and code.

Syntax
int ocGetLastError(ocEnv *env, char *buf, int buf_size);

Table 3–50 lists the ocGetLastError parameters.

3.1.3.1.14 Enable File-Based Synchronization through C or C++ APIs When you want to use
file-based synchronization, you must enable file-based synchronization. Once enabled,
then when you initiate manual synchronization, then the synchronization file is
created. See Section 5.10, "Synchronizing to a File Using File-Base Sync" in the Oracle
Database Mobile Server Administration and Deployment Guide for more details on
file-based synchronization.

To enable file-based synchronization programmatically with the ocEnv structure,
perform the following:

1. Ensure that any previous settings of the File-Based Sync properties are set to NULL.

2. Initialize the environment with the ocSessionInit method.

3. Set the user name and password for the user that is initializing the
synchronization.

4. Specify the synchronization direction and directory and filename for the
synchronization file. The synchronization direction is either send, which creates
the synchronization file, or receive, which takes in a file from the mobile server.
These are configured in the SEND_FILE_PROP and RECEIVE_FILE_PROP properties
with the ocSetSyncProperty method.

■ When you set the SEND_FILE_PROP property, specify the filename—including
the relative or full path—where you want the mobile client to save the upload
data for the mobile server. This file is created with the mobile client
transactions destined for the mobile server.

■ When you set the RECEIVE_FILE_PROP property, specify the
filename—including the relative or full path—where the data file that was
received from the mobile server. This file is loaded and processed within the
mobile client.

The following code example sets the direction, filename, user name and password.
Notice that the ocEnv structure is memset to zero to ensure that if a previous direction
and filename were specified, then these are invalidated for the next file-based
synchronization. The SEND_FILE_PROP property is set with the filename and direction,
which tells the Sync Client to marshall the mobile client transactions that are to be
uploaded to the mobile server into this file. If you were receiving a synchronization

Table 3–50 ocGet Parameters

Name Description

env Pointer to the environment structure returned by
ocSessionInit.

buf A string with the error message.

buf_size The size of the error message string.

Manage Automatic Synchronization on the Mobile Client

3-52 Oracle Database Mobile Server Developer's Guide

file from the mobile server, you would have set the RECEIVE_FILE_PROP property with
the location and name of this file.

Finally, the ocEnv structure is provided to the ocDoSynchronize method, which
performs the file-based synchronization.

ocEnv env;
memset(&env, 0, sizeof(ocEnv));
ocSessionInit(&env);
strcpy(env.username, "S11U1");
strcpy(env.password, "manager");
ocSetSyncProperty(&env, SEND_FILE_PROP, "C:\\temp\\send1.bin");
ocDoSynchronize(&env);
ocSessionTerm(&env);

3.1.3.2 mSync, OCAPI, and mSyncCom API
For more information, refer to the Oracle Database Mobile Server API Specification.

3.2 Manage Automatic Synchronization on the Mobile Client
The following APIs are used to manage automatic synchronization on the Mobile
cllient:

■ Section 3.2.1, "OSE APIs for Managing Automatic Synchronization"

■ Section 3.2.2, "OCAPI APIs for Retrieving Status on Automatic Synchronization"

■ Section 3.2.3, "OCAPI Notification APIs for the Automatic Synchronization Cycle
Status"

3.2.1 OSE APIs for Managing Automatic Synchronization

Automatic synchronization is enabled by default if a publication is enabled for
automated synchronization. However, you may programmatically turn on and off
automatic synchronization on the mobile client using the Sync Control API.

Use the start or stop methods to start or stop the Sync Agent. The user may want to
stop the Sync Agent for many reasons, such as aborting an automatic synchronization
that may be running longer than desired, freeing up system resources, or
de-fragmenting or backing up a client database.

The following are the different methods of managing automatic synchronization and
the Sync Agent:

Note: Use the OSE classes for all new application development for
your mobile clients. These are the classes that will be supported for
the future.

Note: There is also a GUI for starting, stopping the automatic
synchronization process from the mobile server. See Section 5.5.2,
"Start, Stop, or Get Status for Automatic Synchronization" in the Oracle
Database Mobile Server Administration and Deployment Guide for more
details.

Manage Automatic Synchronization on the Mobile Client

Managing Synchronization on the Mobile Client 3-53

■ Pause/Resume—Pause and resume all Sync Agent activities without stopping the
process or freeing any resources, which would occur if you stopped or disabled
the Sync Agent. Pause and resume are the most efficient method for suspending
the Sync Agent and all automatic synchronization events, since it does not stop the
process or free any resources.

By default, if you are using the mSync GUI or sync API to initiate a manual
synchronization, the underlying code pauses and resumes the automatic
synchronization for you, as described below:

1. Pause the automatic synchronization with the Sync Control API.

2. Initiate the manual synchronization with the programmatic API.

3. Resume the automatic synchronization with the Sync Control API.

In some circumstances pausing syncagent might not be immediate if syncagent is
currently running automatic synchronization task and cancellation cannot occur in
the moment for various reasons. If syncagent cannot pause and you want the
manual synchronization to start immediately, you can kill syncagent (for native
clients). This can be done either by calling API in program or forcibly ending it
with autosync.exe manually on Windows or with autosync manually on Linux.

To kill syncagent by calling API, you can call bgControlAgent (bgSess, BG_CTRL_
STOP, BG_CTRL_OPT_TERMINATE) in C, BGSession.kill() in java.

To kill syncagent with autosync.exe on Windows or autosync on Linux, you can try
to stop syncagent and it takes time, then the "Stop" button will change to "End"
and you can kill it by pressing this button. Or the process syncagent.exe on
Windows or syncagent on Linux can be manually terminated. After the manual
synchronization is finished successfully, syncagent is started regardless whether it
was running before or not. If the manual synchronization fails, syncagent is
resumed - that is, it is only started if it was running before manual
synchronization.

■ Start/Stop—Stop the Sync Agent, which includes stopping the process and freeing
all resources, until a start operation is executed or the client is restarted. If the start
operation is not executed, the Sync Agent is automatically resumed when the
client restarts.

■ Enable/Disable—Disabling the Sync Agent stops the Sync Agent until an enable
operation is executed. Even restarting the client will not re-enable the Sync Agent.
Thus, in a disabled state, no automatic synchronization events will occur.

The following control APIs can be used to manage automatic synchronization:

■ Section 3.2.1.1, "JAVA APIs for the Sync Agent and Automatic Synchronization"

■ Section 3.2.1.2, "Native APIs for the Sync Agent and Automatic Synchronization"

■ Section 3.2.1.3, "The .Net APIs for the Sync Agent and Automatic Synchronization"

■ Section 3.2.1.4, "OCAPI Sync Control APIs"

■ Section 3.2.1.5, "JavaScript APIs for the Sync Agent and Automatic
Synchronization in PhoneGap"

3.2.1.1 JAVA APIs for the Sync Agent and Automatic Synchronization
The following sections describe how to manage automatic synchronization through
the Sync Agent and how to retrieve status of both the Sync Agent and any automatic
synchronization events:

Manage Automatic Synchronization on the Mobile Client

3-54 Oracle Database Mobile Server Developer's Guide

■ Section 3.2.1.1.1, "Overview"

■ Section 3.2.1.1.2, "BGSession Class"

■ Section 3.2.1.1.3, "BGAgentStatus Object"

■ Section 3.2.1.1.4, "BGSyncStatus Object"

■ Section 3.2.1.1.5, "BGMessageHandler Interface"

■ Section 3.2.1.1.6, "LogMessage Class"

■ Section 3.2.1.1.7, "BGException Class"

3.2.1.1.1 Overview Once automatic synchronization for the mobile client is enabled,
you can manage it either locally through the Sync Agent APIs or remotely through the
Mobile Manager UI controls. The Sync Agent controls and manages all aspects of
automatic synchronization, which occurs in the background. If a manual
synchronization is started, Sync Agent stops automatic synchronization as indicated
and resumes the automatic synchronization activities when the manual
synchronization finishes.

The Java interface for controlling the Sync Agent and automatic synchronization
resides in the oracle.opensync.syncagent package.

The Java interface provides for the following functions:

■ Tracking the progress of the automatic synchronization process.

■ Retrieve the status of the Sync Agent.

■ Specify custom handlers for events that occur in automatic synchronization.

The following are the classes and interface for the Java API for controlling the Sync
Agent and automatic synchronization:

■ BGSession Class

■ BGAgentStatus Class

■ BGSyncStatus Class

■ BGMessageHandler Interface

3.2.1.1.2 BGSession Class BGSession is the main class for controlling automatic
synchronization through the Sync Agent, as follows:

■ Start, stop, pause, resume, enable or disable automatic synchronization.

■ Retrieve automatic synchronization status information.

■ Specify message handlers for retrieving information about automatic
synchronization events.

Note: For more details on these classes, refer to the Oracle Database
Mobile Server JavaDoc.

Note: In a multi-threaded environment a single BGSession should
not be used from multiple threads. Each thread should open its own
session.

Manage Automatic Synchronization on the Mobile Client

Managing Synchronization on the Mobile Client 3-55

Constructor
BGSession()

Public Methods
The public methods and their parameters for the BGSession class are listed in
Table 3–51:

Table 3–51 BGSession Class Public Method Parameters

Method Description

void addMessageHandler
(BGMessageHandler h)

void removeMessageHandler
(BGMessageHandler h)

Adds or removes a custom message handler to the
Sync Agent. See Section 3.2.1.1.5,
"BGMessageHandler Interface" for more
information.

boolean agentEnabled() Returns TRUE if the Sync Agent is enabled;
otherwise, FALSE.

void close() Closes the session and release all the resources
used by the session.

void enableAgent(boolean on) TRUE enables the Sync Agent; FALSE disables the
Sync Agent.

BGAgentStatus getAgentStatus() Retrieves the current Sync Agent status. See
Section 3.2.1.1.3, "BGAgentStatus Object" for more
details on the status information returned.

int getAgentStatusCode() Retrieves the current Sync Agent status code,
which are described in Table 3–54, " Sync Agent
Status Codes".

BGSyncStatus getSyncStatus() Get current status of automatic synchronization
managed by the Sync Agent. See Table 3–55 for
more details on the status information returned.

void pause() Pauses the Sync Agent.

If the agent is aready paused or being paused, this
call is ignored. This call is asynchronous, it does
not wait for the Sync Agent to be paused before
returning. Use the waitForStatus method to wait
for the Sync Agent.

void resume() Resumes the Sync Agent.

If the agent is already resumed or resuming, this
call is ignored. This call is asynchronous, it does
not wait for the Sync Agent to be resumed before
returning. Use the waitForStatus method to wait
for the Sync Agent.

void showUI() Starts up the Sync Agent UI.

void start() Start the Sync Agent.

If the agent is already running, starting, or
resuming, this call is ignored. If the agent is
paused, this call resumes the Sync Agent. This call
is asynchronous and does not wait for the Sync
Agent to be started before returning. Use the
waitForStatus method to wait for the Sync Agent.

Manage Automatic Synchronization on the Mobile Client

3-56 Oracle Database Mobile Server Developer's Guide

Example
The following example demonstrates how to start the Sync Agent, retrieve status of
the Sync Agent and add a message handler for the session:

// Create the BGSession object
 BGSession sess = new BGSession();
 try {
 //Start the Sync Agent, which enables all automatic synchronization
 //events
 sess.start();
 //Wait until the Sync Agent successfully starts
 sess.waitForStatus(BGAgentStatus.RUNNING);
 //Retrieve the status of the Sync Agent
 BGAgentStatus s = sess.getAgentStatus();
 //Print out the user that is using automatic synchronization
 System.out.println("User name: " + s.clientId);
 //Add a message handler
 sess.addMessageHandler(new myMessageHandler());
 ...
 }
 finally {
 //When finished, close the session to release all resources
 sess.close();
 }

3.2.1.1.3 BGAgentStatus Object The BGAgentStatus object represents the current status
of the Sync Agent.

Public Methods
The methods for the BGAgentStatus are listed in Table 3–52.

void stop() Stop the Sync Agent.

If the agent is already stopped or stopping, this
call is ignored. This call is asynchronous, it does
not wait for the Sync Agent to be stopped before
returning. Use the waitForStatus method to wait
for the Sync Agent.

void waitForStatus
(int statusCode)

boolean waitForStatus
(int statusCode, long timeOut)

Wait for the Sync Agent to reach specified status.
You can also wait for a specified timeout.

■ The parameter can be one of the following:
RUNNING, PAUSED or STOPPED.

■ The timeOut parameter is the maximum time
to wait for in milliseconds. Unlimited time if
no timeout provided.

Returns TRUE if the agent has reached specified
status; FALSE if the timeout has occurred.

BGException getFatalError() If sync agent is in DEFUNCT state, retrieve the
error information that caused the bad internal
state. See Table 3–54, " Sync Agent Status Codes"
for description of DEFUNCT.

Table 3–51 (Cont.) BGSession Class Public Method Parameters

Method Description

Manage Automatic Synchronization on the Mobile Client

Managing Synchronization on the Mobile Client 3-57

Fields
BGAgentStatus provides status information on the Sync Agent. Table 3–53 lists and
describes the status information fields within the BGAgentStatus class.

The BGAgentStatus object defines the Sync Agent status codes, which are as follows:

Table 3–52 BGAgentStatus Class Public Method

Method Description

static java.lang.String
statusName(int statusCode)

Get language-specific name of a given status code.
When you provide one of the status codes shown in
Table 3–54, the appropriate name is returned.
Translation dependent on the device language settings

Table 3–53 BGAgentStatus Class Fields

Parameters Description

java.lang.String appName The name of the application or process that is
executing the Sync Agent. On some platforms,
such as Android, it is possible to execute the Sync
Agent within an application process.

int batteryPower Remaining percentage of battery life, if relevant.

java.lang.String clientId Sync user name.

java.lang.String networkName Name of the network currently used for
synchronization, evaluated by Sync Agent.

int networkSpeed Network bandwidth in bits per second.

int processId Process id of the process that is executing the Sync
Agent, if relevant for a given platform.

int statusCode Retrieves the status of the Sync Agent. Status
codes that can be returned are detailed in
Table 3–54, " Sync Agent Status Codes".

Table 3–54 Sync Agent Status Codes

Status Code Status Name Description

0 STOPPED Sync Agent application is not running.

1 START_PENDING Sync Agent is in the process of starting.

2 RUNNING Sync Agent is running. Any tasks within Sync Agent
such as synchronization, compose, apply, rule
evaluation, network evaluation and other operations
can be active.

3 PAUSE_PENDING Sync Agent is in the process of being paused.

4 PAUSED Sync Agent is paused. When paused, none of the tasks
within Sync Agent are running. However, resources
such as memory and threads, are saved in the case of a
speedy resume. Pause and resume are generally faster
than start and stop. When a manual synchronization is
started, this pauses the Sync Agent until the manual
synchronization is completed. At that point, the Sync
Agent is resumed.

5 RESUME_PENDING Sync Agent is in the process of resuming.

6 STOP_PENDING Sync Agent is in the process of stopping.

Manage Automatic Synchronization on the Mobile Client

3-58 Oracle Database Mobile Server Developer's Guide

Example
The following provides an example of retrieving and processing the Sync Agent status:

/* retrieve the Sync Agent status */
BGAgentStatus as = bgSess.getAgentStatus();
/* Print Sync Agent status */
 System.out.println("Agent Status: " +
 BGAgentStatus.statusName(as.statusCode));
if (as.statusCode == BGAgentStatus.STOPPED) return;
/* Identify the client id, process id and name */
System.out.println("Client ID: " + as.clientId);
System.out.println("Process Name: " + as.appName);
System.out.println("Process ID: " + as.processId);
/* network name and speed */
if (as.networkSpeed > 0) {
 System.out.println("Network Name: " + as.networkName);
 System.out.println("Network Speed: " + as.networkSpeed + " bps");
}
else System.out.println("Network is not present");
/* battery power */
if (as.batteryPower > 0)
 System.out.println("Battery Power: " + as.batteryPower + "%");
else
 System.out.println("Battery is not present");

3.2.1.1.4 BGSyncStatus Object Current status of automatic synchronization. If
automatic synchronization is in progress, startTime will have a non-zero value and
endTime will be zero.

Fields
BGSyncStatus provides status information on automatic synchronization in the fields
listed in Table 3–55.

7 DEFUNCT Sync Agent encountered fatal error and is in a bad
internal state. Sync Agent's environment needs to be
cleaned up and restarted.

Table 3–55 BGSyncStatus Class Fields

Parameters Description

long endTime End time of the last synchronization in
milliseconds since the standard base time of
January 1, 1970, 00:00:00 GMT. Returns zero if the
synchronzation is currently in progress or has not
yet run.

java.lang.Throwable lastError Exception object thrown during the last
synchronization. Returns NULL if the last
synchronization was successful or no
synchronization has completed yet.

int prio Priority of the current or last synchronization.

int progressStage Progress stage of synchronization if it is in
progress.

int progressVal Progress value in percentage of synchronization, if
it is in progress.

Table 3–54 (Cont.) Sync Agent Status Codes

Status Code Status Name Description

Manage Automatic Synchronization on the Mobile Client

Managing Synchronization on the Mobile Client 3-59

Example
The following provides an example of retrieving and processing the synchronization
status:

/* Retrieve the synchronization status */
BGSyncStatus ss = bgSess.getSyncStatus();

/* start time */
if (ss.startTime == 0) return;
System.out.println("Sync Started: " + time2str(ss.startTime));
/* end time */
if (ss.endTime != 0)
 System.out.println("Sync Finished: " + time2str(ss.endTime));
/* number of publications synchronized */
if (ss.pubs != NULL && ss.pubs.length != 0) {
 System.out.print("Publications synced: ");
 for(int i = 0; i < ss.pubs.length; i++) {
 System.out.print(ss.pubs[i]);
 if (i == ss.pubs.length - 1)
 System.out.println();
 else
 System.out.print(", ");
 }
}
/* synchronization priority */
System.out.println("Sync Priority: " +
 (ss.prio == OSESession.PRIO_HIGH ? "High" : "Normal"));
/* synchronization result */
System.out.print("Sync Result: ");
if (ss.lastError == NULL)
 System.out.println("Success");
else
 System.out.println("Failure: " + ss.lastError.toString());

3.2.1.1.5 BGMessageHandler Interface The BGMessageHandler interface enables the Sync
Agent and automatic synchronization message and error data to be trapped during
synchronization.

Sync calls the handleLogMessage method with a parameter message of type
LogMessage to report the current state and any errors for the Sync Agent or automatic
synchronization. Within the handleLogMessage method, you can perform the
appropriate action for the errors returned in the LogMessage structure.

For a complete description of the LogMessage class, see Section 3.2.1.1.6, "LogMessage
Class".

Example
This example demonstrates how to implement the BGMessageHandler.

java.lang.String[] pubs Array of names of publications synchronized
currently or during last synchronization.

long startTime Start time of current or last synchronization, in
milliseconds, since the standard base time of
January 1, 1970, 00:00:00 GMT. Returns zero if the
synchronization has not yet started or the last
synchronization time is unknown.

Table 3–55 (Cont.) BGSyncStatus Class Fields

Parameters Description

Manage Automatic Synchronization on the Mobile Client

3-60 Oracle Database Mobile Server Developer's Guide

class myMessageHandler implements BGMessageHandler;

{
 public void handleLogMessage(message)
 {
 private PrintStream ps =
 new PrintStream(new FileOutputStream(FILE_NAME, false));

 ps.println("Time: " + new Date(message.time));
 ps.println("Type: " + (message.type == LogMessage.INFO ? "INFO" :
 (message.type == LogMessage.WARNING ? "WARNING" : "ERROR")));
 ps.println("Id: " + message.id);
 if (message.text != NULL)
 ps.println("Text: " + message.text);
 if (message.cause != NULL)
 ps.println("Cause: " + message.cause);
 }
}

3.2.1.1.6 LogMessage Class The LogMessage class contains error message information
passed to handlers when an event occurs within the application. It exists in the
oracle.opensync.util package.

Example
The following demonstrates how to print out the error information in the LogMessage
class:

private void printMsg(PrintStream ps, LogMessage m)
{
 ps.println("Time: " + new Date(m.time));
 ps.println("Type: " + (m.type == LogMessage.INFO ? "INFO" :
 (m.type == LogMessage.WARNING ? "WARNING" : "ERROR")));
ps.println("Id: " + m.id);

Table 3–56 LogMessage Class

Name Description

java.lang.Throwable cause For error messages, optional cause of the error,
which can be NULL.

If the error has an underlying cause, the cause
could potentially point to several secondary
messages through iterative java.lang.Throwable
objects. This is useful if OSE returns an internal
error. If cause is not present, NULL is returned.

static int ERROR Error message number.

int id Application-specific message number.

static int INFO Informational message number.

static int NUM_TYPES

java.lang.String source Name of the application that created the message.

java.lang.String text Message text.

long time Message creation time. Number in milliseconds
since the epoch.

int type Message type: INFO, WARNING or ERROR.

static int WARNING Warning message.

Manage Automatic Synchronization on the Mobile Client

Managing Synchronization on the Mobile Client 3-61

if (m.text != NULL)
 ps.println("Text: " + m.text);
if (m.cause != NULL)
 ps.println("Cause: " + m.cause);
ps.println();
}

3.2.1.1.7 BGException Class This class signals a non-recoverable error during the
synchronization process. The BGException() class constructs a clear object. The
parameters for the constructor are listed in Table 3–57:

Constructors
BGException(int errCode)

BGException(int errCode, java.lang.Object arg)

BGException(int errCode, java.lang.Object[] args, java.lang.Throwable
cause)

BGException(int errCode, java.lang.Object arg1, java.lang.Object arg2)

BGException(int errCode, java.lang.Object arg1, java.lang.Object arg2,
java.lang.Object arg3)

BGException(int errCode, java.lang.Object arg, java.lang.Throwable cause)

BGException(int errCode, java.lang.Throwable cause)

BGException class extends BaseException class. The methods for getting cause and
message are listed in Table 3–9, " BaseException Class Public Methods".

For a complete list of the error messages that can be thrown in the BGException, see
"Exception Error Codes and Messages" in the Oracle Database Mobile Server Message
Reference.

3.2.1.2 Native APIs for the Sync Agent and Automatic Synchronization
The following sections describe how to manage automatic synchronization through
the Sync Agent and how to retrieve status of both the Sync Agent and any automatic
synchronization events:

■ Section 3.2.1.2.1, "Overview"

Table 3–57 BGException Constructor Parameter Description

Parameter Description

errCode Error codes are provided within the BGExceptionConstants class.
Error codes for automatic synchronization are provided in the
BGExceptionConstants class. Some BGException instances are
thrown from Sync Control APIs. Others are used as causes of the
automatic synchronization error messages.

The message handler returns an error message. For a complete list of
the error messages that can be thrown in BGException, see "Exception
Error Codes and Messages" in the Oracle Database Mobile Server
Message Reference.

arg, args, arg1,
arg2, arg3

Return variables for information within the error message.

cause The cause of this throwable or NULL if the cause is nonexistent or
unknown.

Manage Automatic Synchronization on the Mobile Client

3-62 Oracle Database Mobile Server Developer's Guide

■ Section 3.2.1.2.2, "Initializing the Environment"

■ Section 3.2.1.2.3, "Synchronization Status"

■ Section 3.2.1.2.4, "Control the Sync Agent"

■ Section 3.2.1.2.5, "Setting Synchronization Parameters"

■ Section 3.2.1.2.6, "Close the Synchronization Environment"

■ Section 3.2.1.2.7, "Trap Sync Agent Messages with a Callback Function"

■ Section 3.2.1.2.8, "Retrieve Synchronization Error Message"

3.2.1.2.1 Overview Once automatic synchronization for the mobile client is enabled,
you can manage it locally through the Sync Agent APIs and remotely through the
Mobile Manager UI controls. The Sync Agent controls and manages all aspects of
automatic synchronization, which occurs in the background. If a manual
synchronization is paused, the Sync Agent stops automatic synchronization as
indicated and resumes the automatic synchronization activities when the manual
synchronization finishes.

The native interface for controlling the Sync Agent and automatic synchronization are
defined in the <ORACLE_HOME>\Mobile\Sdk\include\bgsync.h file and implemented
in <ORACLE_HOME>\Mobile\Sdk\bin\bgsync.dll.

The native interface provides for the following functions:

■ Start, stop, pause, resume, enable or disable automatic synchronization.

■ Retrieve automatic synchronization status information.

■ Specify message handlers for retrieving information about automatic
synchronization events.

3.2.1.2.2 Initializing the Environment The bgOpenSession method initializes the
automatic synchronization environment—which is passed to each subsequent call
with the bgSess handle.

In a multi-threaded environment, you cannot concurrently use a session from multiple
threads, even with the same user. Instead, each thread should open its own session
with the bgOpenSession method.

Syntax
bgError bgOpenSession(bgSess *sess);

Table 3–58 lists the bgOpenSession parameters.

Note: Every time you invoke the bgOpenSession method, you must
also clean up with bgCloseSession method. These methods should
always be called in pairs. See Section 3.2.1.2.6, "Close the
Synchronization Environment" for more information.

Table 3–58 bgOpenSession Parameters

Name Description

bgSess sess Pointer to a session handle into which the new session is returned.
Returns BG_ERR_INVALID_SESS if the handle is NULL.

Manage Automatic Synchronization on the Mobile Client

Managing Synchronization on the Mobile Client 3-63

This call initializes the bgSess automatic synchronization environment handle—which
holds context information for the synchronization engine.

Returns zero if successful. Returns BG_ERR_INTERNAL if a system error has occured.

3.2.1.2.3 Synchronization Status You can retrieve the status of automatic
synchronization events or of the Sync Agent. The following sections describe the
methods for retrieving the status:

■ Retrieve Sync Agent Status

■ Retrieve Status of the Current Automatic Synchronization Event

Retrieve Sync Agent Status
Get the Sync Agent operational status with the bgGetAgentStatus method.

Syntax
bgError bgGetAgentStatus(bgSess sess, bgAgentStatus *s);

Table 3–59 lists the bgGetAgentStatus parameters.

Returns zero if the agent has reached specified status. Returns BG_ERR_INVALID_
SESSION if the session handle is invalid. Returns BG_ERR_INTERNAL if a system error has
occured.

The bgAgentStatus Structure
The bgAgentStatus structure provides status information on the Sync Agent.

Syntax
typedef struct _bgAgentStatus {
 ose1B statusCode;
 oseBool isExternal;
 oseU2B _reserved; /**< for alignment */
 const char *clientId;
 const char *processName;
 const char *networkName;
 ose4B processId;
 ose4B networkSpeed;
 ose4B batteryPower;
} bgAgentStatus;

Table 3–60 lists and describes the status information fields.

Table 3–59 bgGetAgentStatus Parameters

Name Description

bgSess sess Session pointer to a session handle, which contains the automatic
synchronization environment across all calls for this session. Returns
BG_ERR_INVALID_SESS if the handle is NULL.

bgAgentStatus *s Pointer to the Sync Agent status structure in which the status is
returned. This pointer cannot be NULL. Note that the memory for the
pointer fields is maintained by the Sync Agent and should not be freed
by the application. See Table 3–60 for details on the returned
bgAgentStatus structure.

Manage Automatic Synchronization on the Mobile Client

3-64 Oracle Database Mobile Server Developer's Guide

Table 3–61 lists the Sync Agent status codes:

Retrieve Status of the Current Automatic Synchronization Event
Get the current status of the automatic synchronization event within the Sync Agent
with the bgGetSyncStatus method.

Syntax
bgError bgGetSyncStatus(bgSess sess, bgSyncStatus *s);

Table 3–62 lists the bgGetSyncStatus parameters.

Table 3–60 bgAgentStatus Fields

Parameters Description

statusCode Retrieves the status of the Sync Agent. Status codes that can be
returned are detailed in Table 3–61.

isExternal A boolean value that if OSE_TRUE, the Sync Agent was started in a
separate process.

clientId Sync user name.

processName Name of the process within which the Sync Agent is currently
running.

networkName Name of the network currently used for synchronization,
evaluated by Sync Agent.

processId Process id of the process that is executing the Sync Agent, if
relevant for a given platform.

networkSpeed Network bandwidth in bits per second.

batteryPower Remaining percentage of battery life, if relevant.

Table 3–61 Sync Agent Status Codes

Code Status Name Description

0 BG_STATUS_STOPPED Sync Agent application is not running.

1 BG_STATUS_START_PENDING Sync Agent is in the process of starting.

2 BG_STATUS_RUNNING Sync Agent is running. Any tasks within Sync
Agent such as synchronization, compose,
apply, rule evaluation, network evaluation and
other operations can be active.

3 BG_STATUS_PAUSE_PENDING Sync Agent is in the process of being paused.

4 BG_STATUS_PAUSED Sync Agent is paused. When paused, none of
the tasks within Sync Agent are running.
However, resources such as memory and
threads, are saved in the case of a speedy
resume. Pause and resume are generally faster
than start and stop. When a manual
synchronization is started, this pauses the Sync
Agent until the manual synchronization is
completed. At that point, the Sync Agent is
resumed.

5 BG_STATUS_RESUME_PENDING Sync Agent is in the process of resuming.

6 BG_STATUS_STOP_PENDING Sync Agent is in the process of stopping.

Manage Automatic Synchronization on the Mobile Client

Managing Synchronization on the Mobile Client 3-65

Returns zero if the agent has reached specified status. Returns BG_ERR_INVALID_
SESSION if the session handle is invalid. Returns BG_ERR_INTERNAL if a system error has
occured.

The bgSyncStatus Structure
The bgSyncStatus structure provides status information on a current or the last
automatic synchronization event in the Sync Agent.

Syntax
typedef struct _bgSyncStatus {
 oseSize pubCnt;
 const char **pubs;
 osePrio prio;
 oseU1B _reserved[3]; /**< for alignment */
 ose8B startTime;
 ose8B endTime;
 oseError res;
 const char *errMsg;
 const char *stateName;
 ose2B state;
 ose2B progress;
} bgSyncStatus;

Table 3–63 describes the fields in bgSyncStatus.

Table 3–62 bgGetSyncStatus Parameters

Name Description

bgSess sess Session pointer to a session handle, which contains the automatic
synchronization environment across all calls for this session. Returns
BG_ERR_INVALID_SESS if the handle is NULL.

bgSyncStatus *s Pointer to the synchronization status structure in which the status is
returned. This pointer cannot be NULL. Note that the memory for the
pointer is maintained by the Sync Agent and should not be freed by the
application. See Table 3–63 for details on the returned bgSyncStatus
structure.

Table 3–63 bgSyncStatus Fields

Parameters Description

pubCnt Number of publications synchronized.

pubs Array of names of publications synchronized currently or during
last synchronization.

prio Priority of the current or last synchronization.

startTime Start time of current or last synchronization, in milliseconds, since
the standard base time of January 1, 1970, 00:00:00 GMT. Returns
zero if the synchronization has not yet started or the last
synchronization time is unknown.

endTime End time of the last synchronization in milliseconds since the
standard base time of January 1, 1970, 00:00:00 GMT. Returns zero if
the synchronzation is currently in progress or has not yet run.

res Last synchronization error code. Returns zero if the last
synchronization was successful or no synchronization has completed
yet.

errMsg Last synchronization error message or NULL if no error.

Manage Automatic Synchronization on the Mobile Client

3-66 Oracle Database Mobile Server Developer's Guide

3.2.1.2.4 Control the Sync Agent You can issue control commands to the Sync Agent
with the bgControlAgent method. This call returns immediately and does not wait for
completion of command execution. Use the bgWaitForStatus method to wait until the
Sync Agent reaches a certain status.

■ Issue Sync Agent Control Commands

■ Wait for Specific Sync Agent Status

Issue Sync Agent Control Commands
Returns zero if successful. Returns BG_ERR_INVALID_SESSION if the session handle is
invalid. Returns BG_ERR_INVALID_COMMAND if the control command code is invalid.
Returns BG_ERR_CANNOT_ACCEPT_CTRL if the Sync Agent is not able to execute the
provided command in its current state.

Syntax
bgError bgControlAgent(bgSess sess, int ctrl, int opt);

Table 3–64 lists the bgControlAgent parameters.

Table 3–65 lists the Sync Agent control command codes and options.

stateName Current synchronization stage name.

state Current synchronization stage Returns OSE_SYNC_STATE_IDLE if the
synchronization is not in progress.

progress Progress value in percentage of synchronization, if it is in progress.

Table 3–64 bgControlAgent Parameters

Name Description

bgSess sess Session pointer to a session handle, which contains the automatic
synchronization environment across all calls for this session. Returns BG_
ERR_INVALID_SESS if the handle is NULL.

int ctrl Sync Agent control command codes, which are listed in Table 3–65.

int opt options for given command

Table 3–65 Sync Agent Control Command Codes

Name Description Option Value

BG_CTRL_START Start the Sync Agent. If the
agent is running, pending or
resume pending, this command
has no effect. If the Sync Agent
is paused, this command
resumes the agent.

By default, this starts the Sync Agent
within a separate process named
syncagent or syncagent.exe on
Windows platforms. However, if you
set the option to BG_CTRL_OPT_START_
INTERNAL, the Sync Agent is started
within the current process.

This is the default for iOS clients.

Table 3–63 (Cont.) bgSyncStatus Fields

Parameters Description

Manage Automatic Synchronization on the Mobile Client

Managing Synchronization on the Mobile Client 3-67

Wait for Specific Sync Agent Status
Wait for the Sync Agent to reach specified status. You can also wait for a specified
timeout.

This method is often used to wait for the Sync Agent to start. For example, the
following code shows starting the Sync Agent and then waiting until the Sync Agent is
up and running:

bgSess sess;
bgOpenSession(&sess);
bgControlAgent(sess, BG_CTRL_START, 0);
bgWaitForStatus(sess, BG_STATUS_RUNNING);

Syntax
bgError bgWaitForStatus(bgSess sess, int statusCode, long timeOut);

Table 3–66 lists the bgWaitForStatus parameters.

Returns zero if the agent has reached specified status. Returns BG_ERR_INVALID_
SESSION if the session handle is invalid. Returns BG_ERR_WAIT_TIMEOUT if the timeout
has expired. Returns BG_ERR_INVALID_WAIT_STATUS if the status code is invalid. Other
errors may also be returned.

3.2.1.2.5 Setting Synchronization Parameters You can set certain session parameters
explicitly with the set session methods. The new parameter value takes effect only

BG_CTRL_STOP Stop the Sync Agent. If the agent
is stopped or stop pending, this
command has no effect.

By default, stops the Sync Agent
gracefully. However, if you set the
option to BG_CTRL_OPT_TERMINATE, this
kills the Sync Agent process, which
should be used only as a last resort.
This is not advisable if the Sync Agent
was started with the BG_CTRL_OPT_
START_INTERNAL option.

BG_CTRL_PAUSE Pause the Sync Agent. If the
agent is paused or pause
pending, this command has no
effect.

No options available.

BG_CTRL_RESUME Resume the Sync Agent. If the
agent is running, start pending,
or resume pending, this
command has no effect.

No options available.

Table 3–66 bgWaitForStatus Parameters

Name Description

bgSess sess Session pointer to a session handle, which contains the automatic
synchronization environment across all calls for this session. Returns BG_
ERR_INVALID_SESS if the handle is NULL.

int statusCode The status can be one of the following: BG_STATUS_STOPPED, BG_STATUS_
RUNNING or BG_STATUS_PAUSED.

long timeOut The timeOut parameter is the maximum time to wait for in milliseconds.
Unlimited time is enabled if timeOut is specified as -1.

Table 3–65 (Cont.) Sync Agent Control Command Codes

Name Description Option Value

Manage Automatic Synchronization on the Mobile Client

3-68 Oracle Database Mobile Server Developer's Guide

after the Sync Agent is restarted. When the session is created, the initial value for each
option is loaded from the ose.ini file.

Options are separated into boolean and numeric parameters:

■ Boolean options are those options that can only be set to OSE_TRUE or OSE_FALSE.

■ Numeric options are set to an integer value.

Use the bgSetNumParam and bgGetNumParam methods to set and get the boolean and
numeric session options. The bgSetNumParam method sets a parameter in the ose.ini
file.

bgSetNumParam
bgError bgSetNumParam(bgSess sess, int param, long val);

Table 3–67 lists the bgSetNumParam parameters.

Returns zero if the option is retrieved successfully. Returns BG_ERR_INVALID_SESSION if
the session handle is invalid. Returns BG_ERR_INVALID_PARAM if an invalid parameter
code is specified. Returns BG_ERR_INTERNAL if a system error has occured. Other errors
may also be returned.

bgGetNumParam
bgError bgGetNumParam(bgSess sess, int param, long *val);

Table 3–68 lists the bgGetNumParam parameters.

Returns zero if the option is retrieved successfully. Returns BG_ERR_INVALID_SESSION if
the session handle is invalid. Returns BG_ERR_INVALID_PARAM if an invalid parameter
code is specified. Returns BG_ERR_INTERNAL if a system error has occured.

Table 3–69 lists all boolean and numeric synchronization options and potential values.
For all boolean options, the value can only be either OSE_TRUE or OSE_FALSE.

Table 3–67 bgSetNumParam Parameters

Name Description

bgSess sess Session pointer to a session handle, which contains the automatic
synchronization environment across all calls for this session. Returns BG_
ERR_INVALID_SESS if the handle is NULL.

int param Parameter code. See Table 3–13 for a list of all of the options that can bet
set by this method.

long val The parameter value to set. See Table 3–13 for potential values for this
option.

Table 3–68 bgGetNumParam Parameters

Name Description

bgSess sess Session pointer to a session handle, which contains the automatic
synchronization environment across all calls for this session. Returns BG_
ERR_INVALID_SESS if the handle is NULL.

int param Param code. See Table 3–69 for a list of all of the options that can bet
retrieved by this method.

long *val Pointer to a variable into which to return the parameter value. The
pointer cannot be NULL. See Table 3–69 for potential values for this option.

Manage Automatic Synchronization on the Mobile Client

Managing Synchronization on the Mobile Client 3-69

3.2.1.2.6 Close the Synchronization Environment Clears and performs a cleanup of the
synchronization environment and resources. This function must be invoked for every
bgOpenSession.

Returns zero if successful. Returns BG_ERR_INVALID_SESSION if the session handle is
invalid.

Syntax
bgError bgCloseSession(bgSess sess);

Table 3–70 lists the bgCloseSession parameters.

3.2.1.2.7 Trap Sync Agent Messages with a Callback Function You can create a callback
function that is called when Sync Agent messages are generated, which traps
automatic synchronization messages and error data. You register or unregister this
callback function with the bgAddMsgCallback or bgRemoveMsgCallback methods.

Table 3–69 Numeric and Boolean Session Options

Session Option Description

BG_PARAM_DISABLE_AGENT Boolean parameter. If OSE_TRUE, specifies that the Sync
Agent should be disabled. If the Sync Agent is
disabled, the application and system startup process
cannot start the Sync Agent. In this case, BG_ERR_
AGENT_DISABLED error is returned from the
bgControlAgent method. OSE_FALSE is the default.

Refers to the ose.ini parameter: BGSYNC.DISABLE.

BG_PARAM_MAX_LOG_FILE_COUNT Maximum number of log files to keep in the bglog
directory. The log is circular, so that when the
maximum number of files is reached and a new log
file needs to be added, the oldest file will be removed.
For Windows 32 and Linux, the default is 128; for
Windows CE, the default is 32.

Refers to the ose.ini parameter: BGSYNC.MAX_LOG_
FILES.

BG_PARAM_MAX_LOG_FILE_SIZE Maximum log file size in bytes. On Windows 32 and
Linux, the default is 1 MB. On Windows CE, the
default is 128 KB.

Refers to the ose.ini parameter: BGSYNC.MAX_LOG_
FILE_SIZE.

BG_PARAM_NET_WAIT_TIMEOUT Time interval in milliseconds for the network manager
to wait before evaluating the network state in absence
of notifications. The network manager evaluates the
network when a notification is received or the interval
expires. The network is also evaluated periodically
after each period of the said interval. The default is 10
minutes (600000 milliseconds).

Refers to the ose.ini parameter: BGSYNC.NET_WAIT_
TIMEOUT.

Table 3–70 bgCloseSession Parameters

Name Description

bgSess sess Session pointer to a session handle, which contains the automatic
synchronization environment across all calls for this session. Returns BG_
ERR_INVALID_SESS if the handle is NULL.

Manage Automatic Synchronization on the Mobile Client

3-70 Oracle Database Mobile Server Developer's Guide

■ Register the Callback Function

■ Unregister the Callback Function

Register the Callback Function
Returns zero if successful. Returns BG_ERR_INVALID_SESSION if the session handle is
invalid. Returns BG_ERR_INTERNAL if a system error has occured.

Syntax
bgError bgAddMsgCallback(bgSess sess, bgUserCtx ctx, bgMsgCallback cb);

Table 3–71 lists the bgAddMsgCallback parameters.

The Sync Agent invokes the callback function with a message to report the current
state and any errors for the Sync Agent or automatic synchronization. Within the
callback method, you can perform the appropriate action for the errors returned.

The message callback function is declared as follows:

typedef void (* bgMsgCallback)(bgUserCtx ctx, const bgMsg *msg);

Table 3–72 lists the bgMsgCallback parameters.

The bgMsg structure contains error message information passed to handlers when an
event occurs within the Sync Agent or automatic synchronization.

Syntax
typedef struct _bgMsg {

Table 3–71 bgAddMsgCallback Parameters

Name Description

bgSess sess Session pointer to a session handle, which contains the automatic
synchronization environment across all calls for this session. Returns
BG_ERR_INVALID_SESS if the handle is NULL.

bgUserCtx ctx A user-defined structure that contains the session environment
settings. Since the bgMsgCallback callback method is
user-implemented, it should know how to process the user-defined
structure. The user context structure must be initialized by the
application before calling the bgAddMsgCallback method.

bgMsgCallback cb The callback function handle.

Table 3–72 bgMsgCallback Parameters

Name Description

bgUserCtx ctx A user-defined structure that contains the session environment
settings. Since the bgMsgCallback callback method is
user-implemented, it should know how to process the user-defined
structure. The user context structure must be initialized by the
application before calling the bgAddMsgCallback method.

bgMsg *msg Pointer for the message structure that reports on the current state and
any errors for the Sync Agent or automatic synchronization.

Note: The memory for bgMsg structure is allocated within the mobile
client and should not be freed by the application.

Manage Automatic Synchronization on the Mobile Client

Managing Synchronization on the Mobile Client 3-71

 ose8B time;
 ose4B type;
 ose4B id;
 const char *txt;
 const bgErrorDesc *cause;
} bgMsg;

Table 3–73 describes the fields of bgMsg.

Unregister the Callback Function
Remove the message callback function from the Sync Agent, after which it will no
longer be invoked.

Returns zero if successful. Returns BG_ERR_INVALID_SESSION if the session handle is
invalid. Returns BG_ERR_INTERNAL if a system error has occurred.

Syntax
bgError bgRemoveMsgCallback(bgSess sess, bgUserCtx ctx, bgMsgCallback cb);

Table 3–74 lists the bgRemoveMsgCallback parameters.

3.2.1.2.8 Retrieve Synchronization Error Message Retrieves the last error of a call to one of
the automatic synchronization APIs.

Syntax
bgError bgGetLastError(bgSess sess, const bgErrorDesc **errDesc);

Table 3–75 lists the bgGetLastError parameters.

Table 3–73 bgMsg Structure

Name Description

time Message creation time. Number in milliseconds since the epoch.

type Message type: BG_MSG_TYPE_INFO, BG_MSG_TYPE_WARNING or BG_MSG_TYPE_
ERROR.

id Application-specific message number.

txt Message text.

cause For error messages, optional cause of the error, which can be NULL. If not
NULL, points to a bgErrorDesc structure.

If the error has an underlying cause, the cause could potentially point to
several secondary messages through a chain of bgErrorDesc structures
through cause. This is useful if the Sync Agent returns an internal error. If
cause is not present, then cause is set to NULL.

Table 3–74 bgRemoveMsgCallback Parameters

Name Description

bgSess sess Session pointer to a session handle, which contains the automatic
synchronization environment across all calls for this session. Returns
BG_ERR_INVALID_SESS if the handle is NULL.

bgUserCtx ctx A user-defined structure that contains the session environment
settings.

bgMsgCallback cb The callback function handle.

Manage Automatic Synchronization on the Mobile Client

3-72 Oracle Database Mobile Server Developer's Guide

Returns zero if successful. Returns the BG_ERR_INVALID_SESS error if the session
handle was invalid. Returns the BG_ERR_INTERNAL error if a system error has occured.

The bgErrorDesc structure is a typedef for oseErrorDesc, which is defined as follows:

typedef struct _oseErrorDesc {
 oseError code; /* error code */
 const char *type; /* a string describing the type of error */
 const char *msg; /* error message */
 struct _oseErrorDesc *cause; /* underlying cause, if present */
} oseErrorDesc;

If the error has an underlying cause, the oseErrorDesc.cause points to another
oseErrorDesc structure, which in turn can have its own cause, and so on. This is
useful if the OSE call returns an OSE_ERR_INTERNAL_ERROR, which can be further
defined within another oseErrorDesc structure. If the cause is not present,
oseErrorDesc.cause is NULL.

3.2.1.3 The .Net APIs for the Sync Agent and Automatic Synchronization
The following sections describe how to manage automatic synchronization through
the Sync Agent and how to retrieve status of both the Sync Agent and any automatic
synchronization events:

■ Section 3.2.1.3.1, "Overview"

■ Section 3.2.1.3.2, "BGStatusCode Enumeration"

■ Section 3.2.1.3.3, "BGSession Class"

■ Section 3.2.1.3.4, "BGAgentStatus Object"

■ Section 3.2.1.3.5, "BGSyncStatus Object"

■ Section 3.2.1.3.6, "BGMessageHandler Interface"

■ Section 3.2.1.3.7, "BGMessageType Enumeration"

■ Section 3.2.1.3.8, "BGMsgEventArgs Class"

■ Section 3.2.1.3.9, "BGException Class"

Table 3–75 bgGetLastError Parameters

Name Description

bgSess sess Session pointer to a session handle, which contains the
automatic synchronization environment across all calls for
this session. This handle can be NULL if trying to retrieve
error information from a failed bgOpenSession call.

const bgErrorDesc **errDesc A pointer to an bgErrorDesc pointer into which the
bgErrorDesc pointer is returned. The pointer cannot be
NULL. The structures referenced by this pointer are only valid
until the next call.

Note: The memory for oseErrorDesc structure is allocated within
mobile server and should not be freed by the application.

Note: OCAPI C# Sync Control APIs are no longer supported, use the
APIs described in this section instead.

Manage Automatic Synchronization on the Mobile Client

Managing Synchronization on the Mobile Client 3-73

3.2.1.3.1 Overview Once automatic synchronization for the mobile client is enabled,
you can manage it locally through the Sync Agent APIs and remotely through the
Mobile Manager UI controls. The Sync Agent controls and manages all aspects of
automatic synchronization, which occurs in the background. If a manual
synchronization is paused, the Sync Agent stops automatic synchronization as
indicated and resumes the automatic synchronization activities when the manual
synchronization finishes.

The .Net interface for controlling the Sync Agent and automatic synchronization
resides in the Oracle.OpenSync.SyncAgent namespace. The .Net APIs are
implemented in Oracle.OpenSync.dll.

The .Net interface provides for the following functions:

■ Controlling the Sync Agent.

■ Retrieve the status of the Sync Agent and automatic synchronization events.

■ Specify custom handlers for events that occur in automatic synchronization.

The following are the classes and interface for the .Net API for controlling the Sync
Agent and automatic synchronization:

■ BGStatusCode Enumeration

■ BGSession Class

■ BGAgentStatus Class

■ BGSyncStatus Class

■ BGMessageType Enumeration

■ BGMessageHandler Interface

3.2.1.3.2 BGStatusCode Enumeration The BGStatusCode enumeration specifies the Sync
Agent status codes.

Syntax
public enum BGStatusCode
 {
 Stopped = 0,
 StartPending,
 Running,
 PausePending,
 Paused,
 ResumePending,
 StopPending
 }
Table 3–76 provides more information about these codes.

Table 3–76 Sync Agent Status Codes

Status Name Value Description

Stopped 0 Sync Agent application is not running.

StartPending 1 Sync Agent is in the process of starting.

Running 2 Sync Agent is running. Any tasks within Sync Agent such
as synchronization, compose, apply, rule evaluation,
network evaluation and other operations can be active.

PausePending 3 Sync Agent is in the process of being paused.

Manage Automatic Synchronization on the Mobile Client

3-74 Oracle Database Mobile Server Developer's Guide

3.2.1.3.3 BGSession Class BGSession is the main class for controlling automatic
synchronization through the Sync Agent, as follows:

■ Start, stop, pause, resume, enable or disable automatic synchronization.

■ Retrieve automatic synchronization status information.

■ Specify message handlers for retrieving information about automatic
synchronization events.

Properties
The following documents the properties for the BGSession class.

■ Read-write properties read or write the value of a field with get and set accessors.

■ Read-only properties read the value of a field with the get accessor.

■ Write-only properties set the value of a field with the set accessor.

Boolean properties get or set the value of a field to either true or false.

Table 3–77 lists all BGSession properties. Section 3.2.1.3.2, "BGStatusCode
Enumeration" lists all enumerations.

Constructor
BGSession()

Public Methods
The public methods and their parameters for the BGSession class are listed in
Table 3–78:

Paused 4 Sync Agent is paused. When paused, none of the tasks
within Sync Agent are running. However, resources such
as memory and threads, are saved in the case of a speedy
resume. Pause and resume are generally faster than start
and stop. When a manual synchronization is started, this
pauses the Sync Agent until the manual synchronization is
completed. At that point, the Sync Agent is resumed.

ResumePending 5 Sync Agent is in the process of resuming.

StopPending 6 Sync Agent is in the process of stopping.

Note: In a multi-threaded environment a single BGSession should
not be used from multiple threads. Each thread should open its own
session.

Table 3–77 BGSession Properties

Property Description

StatusCode Gets the Sync Agent status code from the BGStatusCode enumeration.

Enabled Boolean property that gets or sets to TRUE if the Sync Agent is
enabled; otherwise, FALSE. If the Sync Agent is disabled, it is not
allowed to start, which is useful when you only want manual
synchronization events.

Table 3–76 (Cont.) Sync Agent Status Codes

Status Name Value Description

Manage Automatic Synchronization on the Mobile Client

Managing Synchronization on the Mobile Client 3-75

Example
The following example demonstrates how to start the Sync Agent, retrieve status of
the Sync Agent and add a message handler for the session:

Table 3–78 BGSession Class Public Method Parameters

Method Description

void Start() Start the Sync Agent.

If the agent is already running, starting, or resuming, this
call is ignored. If the agent is paused, this call resumes
the Sync Agent. This call is asynchronous and does not
wait for the Sync Agent to be started before returning.
Use the waitForStatus method to wait for the Sync
Agent.

void StartInternal() Same as Start, but starts the Sync Agent within the
application process.

void Pause() Pauses the Sync Agent.

If the agent is already paused or being paused, this call is
ignored. This call is asynchronous, it does not wait for the
Sync Agent to be paused before returning. Use the
waitForStatus method to wait for the Sync Agent.

void Resume() Resumes the Sync Agent.

If the agent is already resumed or resuming, this call is
ignored. This call is asynchronous, it does not wait for the
Sync Agent to be resumed before returning. Use the
waitForStatus method to wait for the Sync Agent.

void Stop() Stop the Sync Agent.

If the agent is already stopped or stopping, this call is
ignored. This call is asynchronous, it does not wait for the
Sync Agent to be stopped before returning. Use the
waitForStatus method to wait for the Sync Agent.

void Kill() Forcefully terminate the Sync Agent process instead of
stopping it gracefully. Use this option as a last resort if
the Stop method is not working because some tasks are
hanging in the Sync Agent. Not recommended if the Sync
Agent was started with StartInternal.

void Close() Closes the session and release all the resources used by
the session.

BGAgentStatus GetAgentStatus() Retrieves the current Sync Agent status. See
Section 3.2.1.3.4, "BGAgentStatus Object" for more details
on the status information returned.

BGSyncStatus GetSyncStatus() Get current status of automatic synchronization managed
by the Sync Agent. See Table 3–82 for more details on the
status information returned.

void WaitForStatus
(int statusCode)

boolean WaitForStatus
(int statusCode, long timeOut)

Wait for the Sync Agent to reach specified status. You can
also wait for a specified timeout.

■ The status can be one of the following: RUNNING,
PAUSED or STOPPED.

■ The timeOut parameter is the maximum time to wait
for in milliseconds. Unlimited time if no timeout
provided.

Returns TRUE if the agent has reached specified status;
FALSE if the timeout has occurred.

Manage Automatic Synchronization on the Mobile Client

3-76 Oracle Database Mobile Server Developer's Guide

// Create the BGSession object
 using(BGsession sess = new BGSession())
 {
 //Start the Sync Agent, which enables all automatic synchronization events
 sess.Start();
 //Wait until the Sync Agent successfully starts
 sess.WaitForStatus(BGAgentStatus.RUNNING);
 //Retrieve the status of the Sync Agent
 BGAgentStatus s = sess.GetAgentStatus();
 //Print out the user that is using automatic synchronization
 Console.WriteLine("User name: " + s.clientId);
 //Add a message handler
 sess.MessageReceived += new BGMessageHandler(myHandler);
 ...
 }
 //When finished, close the session to release all resources
 sess.Close();

3.2.1.3.4 BGAgentStatus Object The BGAgentStatus object represents the current status
of the Sync Agent.

Public Methods
The methods for the BGAgentStatus are listed in Table 3–79.

Fields
BGAgentStatus provides status information on the Sync Agent. Table 3–80 lists and
describes the status information fields within the BGAgentStatus class.

Table 3–79 BGAgentStatus Class Public Method

Method Description

string GetStatusName(BGStatusCode
statusCode)

Get language-specific name of a given status code.
When you provide one of the status codes shown in
Table 3–76, the appropriate name is returned.
Translation dependent on the device language settings

Table 3–80 BGAgentStatus Class Fields

Parameters Description

string AppName The name of the application or process that is
executing the Sync Agent. On some platforms,
such as Android, it is possible to execute the Sync
Agent within an application process.

int BatteryPower Remaining percentage of battery life, if relevant.

string ClientId Sync user name.

string NetworkName Name of the network currently used for
synchronization, evaluated by Sync Agent.

int NetworkSpeed Network bandwidth in bits per second.

int ProcessId Process id of the process that is executing the Sync
Agent, if relevant for a given platform.

BGStatusCode StatusCode Retrieves the status of the Sync Agent. Status
codes that can be returned are detailed in
Table 3–76.

Manage Automatic Synchronization on the Mobile Client

Managing Synchronization on the Mobile Client 3-77

Example
The following provides an example of retrieving and processing the Sync Agent status:

BGAgentStatus ags = bgSess.GetAgentStatus();
 Console.WriteLine("Agent Status: " +
 BGAgentStatus.GetStatusName(ags.StatusCode));
if (ags.StatusCode == BGStatusCode.Stopped)
 return;

Console.WriteLine("Client ID: " + ags.ClientId);
Console.WriteLine("Process Name: " + ags.AppName);
Console.WriteLine("Process ID: " + ags.ProcessId);
if (ags.NetworkSpeed > 0) {
 Console.WriteLine("Network Name: " + ags.NetworkName);
 Console.WriteLine("Network Speed: " + ags.NetworkSpeed + " bps");
}
else
 Console.WriteLine("Network is not present");
if (ags.BatteryPower > 0)
 Console.WriteLine("Battery Power: " + ags.BatteryPower + "%");
else
 Console.WriteLine("Battery is not present");

3.2.1.3.5 BGSyncStatus Object The BGSyncStatus object provides status information on
a current or the last automatic synchronization event in the Sync Agent.

Public Methods
The methods for the BGSyncStatus are listed in Table 3–81.

Fields
BGSyncStatus provides status information on automatic synchronization in the fields
listed in Table 3–82.

Table 3–81 BGSyncStatus Class Public Method

Method Description

String GetSyncStageName(
SyncProgressStage stage)

Get language-specific name of a given sync status
code. When you provide one of the status codes
shown in Table 3–76, the appropriate name is
returned. Translation dependent on the device
language settings

Table 3–82 BGSyncStatus Class Fields

Parameters Description

DateTime EndTime End time of the last synchronization. EndTime is
set to DateTime.MinValue if the synchronization is
currently in progress or has not yet run.

Exception LastError Exception object thrown during the last
synchronization. Returns NULL if the last
synchronization was successful or no
synchronization has completed yet.

DataPriority Prio Priority of the current or last synchronization.

SyncProgressStage ProgressStage Progress stage of synchronization if it is in
progress.

Manage Automatic Synchronization on the Mobile Client

3-78 Oracle Database Mobile Server Developer's Guide

Properties
The following documents the properties for the BGSyncStatus class.

■ Read-write properties read or write the value of a field with get and set accessors.

■ Read-only properties read the value of a field with the get accessor.

■ Write-only properties set the value of a field with the set accessor.

Boolean properties get or set the value of a field to either true or false.

Table 3–83 lists all BGSyncStatus properties. Section 3.2.1.3.2, "BGStatusCode
Enumeration" lists all enumerations.

Example
The following provides an example of retrieving and processing the synchronization
status:

BGSyncStatus ss = bgSess.GetSyncStatus();
 if (!ss.SyncOccured) return;

 Console.WriteLine();
 Console.WriteLine("Sync Started: " + dt2str(ss.StartTime));

 if (!ss.SyncInProgress)
 Console.WriteLine("Sync Finished: " + dt2str(ss.EndTime));
 if (ss.Pubs != NULL && ss.Pubs.Length != 0) {
 Console.Write("Publications synced: ");
 for(int i = 0; i < ss.Pubs.Length; i++) {
 Console.Write(ss.Pubs[i]);
 if (i == ss.Pubs.Length - 1)
 Console.WriteLine();
 else
 Console.Write(", ");
 }
 }

 Console.WriteLine("Sync Priority: " + ss.Prio.ToString());
 Console.Write("Sync Result: ");
 if (ss.LastError == NULL)

int ProgressVal Progress value in percentage of synchronization, if
it is in progress.

string[] Pubs Array of names of publications synchronized
currently or during last synchronization.

DateTime StartTime Start time of the last synchronization. StartTime is
set to DateTime.MinValue if the synchronization
has not yet run.

Table 3–83 BGSyncStatus Properties

Property Description

SyncOccured Read-only boolean property. If an automatic synchronizatoin has
already occured, SyncOccured is TRUE.

SyncInProgress Read-only boolean property. If automatic synchronization is in
progress, SyncInProgress is TRUE.

Table 3–82 (Cont.) BGSyncStatus Class Fields

Parameters Description

Manage Automatic Synchronization on the Mobile Client

Managing Synchronization on the Mobile Client 3-79

 Console.WriteLine("Success");
 else
 Console.WriteLine("Failure: " + ss.LastError.ToString());
 Console.WriteLine();

3.2.1.3.6 BGMessageHandler Interface The BGMessageHandler interface enables the Sync
Agent and automatic synchronization message and error data to be trapped during
synchronization.

The message handler is defined as follows:

public delegate void BGMessageHandler(object sender, BGMsgEventArgs args);

You can implement a callback function with the same input parameters as the
BGMessageHandler and specify it as your callback function. The following is an
example of a user-implemented callback function called msgCallback. It processes the
error message information available in the Msg parameter that is contained within the
BGMsgEventArgs structure.

static void msgCallback(object sender, BGMsgEventArgs args)
{
 Console.WriteLine("Time: " + dt2str(args.Msg.Time));
 Console.WriteLine("Type " + args.Msg.Type);
 Console.WriteLine("Id " + args.Msg.Id);
 if (args.Msg.Text != NULL)
 Console.WriteLine("Text " + args.Msg.Text);
 if (args.Msg.Cause != NULL)
 Console.WriteLine("Cause " + args.Msg.Cause);
 Console.WriteLine();
}
The following event adds or removes a custom message handler to the Sync Agent.

public event BGMessageHandler MessageReceived

With the MessageReceived event, you can add the message handler as follows:

sess.MessageReceived += new BGMessageHandler(msgCallback);

Sync calls the msgCallback method with a message to report the current state and any
errors for the Sync Agent or automatic synchronization. Within the msgCallback
method, you can perform the appropriate action for the errors returned in the Msg
variable of type BGMessage, which is a public variable in the BGMsgEventArgs structure.
In addition, System.EventArgs is the base class for BGMsgEventArgs, which contains
event data.

For a complete description of the BGMsgEventArgs class, see Section 3.2.1.3.8,
"BGMsgEventArgs Class".

3.2.1.3.7 BGMessageType Enumeration The BGMessageType enumeration contains the
definitions for the different message types.

Syntax
 public enum BGMessageType
 {
 Info,
 Warning,
 Error
 }

Table 3–84 provides more details about these message types.

Manage Automatic Synchronization on the Mobile Client

3-80 Oracle Database Mobile Server Developer's Guide

3.2.1.3.8 BGMsgEventArgs Class The BGMsgEventArgs class contains the event
arguments for the BGMessageHandler interface. This class encapsulates the BGMessage
object. Both classes exist in the Oracle.OpenSync.SyncAgent namespace.

Syntax
public class BGMsgEventArgs : EventArgs
{
 public readonly BGMessage Msg;
}
The BGMessage class contains error message information passed to handlers when an
event occurs within the application.

3.2.1.3.9 BGException Class The BGException class signals an error during execution of
.Net Sync Agent Control API. The errors can be recoverable. In addition, the
BGException class can appear in the Cause field in a BGMessage object.

The BGException class inherits from OSEException, which is documented in
Section 3.1.1.3.7, "OSEException Class".

The BGException read-only properties are listed in Table 3–86.

Table 3–84 BGMessageType

Status Name Value Description

Info 0 Informational message.

Warning 1 Warning message.

Error 2 Error message.

Table 3–85 BGMessage Class Public Fields

Name Description

DateTime Time Message creation time.

BGMessageType Type Message type: INFO, WARNING or ERROR. See the Section 3.2.1.3.7,
"BGMessageType Enumeration" for details.

BGMessageId Id Error message number. The error code can be one of the
BGMessageId enumeration values, which are documented in
the "BGException Error Messages" in the Oracle Database Mobile
Server Message Reference.

string Text Message text.

Exception Cause For error messages, optional cause of the error, which can be
NULL.

Table 3–86 BGException Properties

Parameters Description

ErrorCode Gets the exception error code. The error code can be one of the
BGMessageId enumeration values, which are documented in the
"BGException Error Messages" in the Oracle Database Mobile Server
Message Reference.

Kind Gets the exception type name.

InnerException Use the InnerException property to get underlying cause of the
BGException.

Manage Automatic Synchronization on the Mobile Client

Managing Synchronization on the Mobile Client 3-81

Constructors
BGException(int errCode)

BGException(int errCode, string msg)

The parameters for the constructor are listed in Table 3–87:

3.2.1.4 OCAPI Sync Control APIs
The following sections describe how to start/stop or enable/disable automatic
synchronization from the OCAPI Sync Control API for the mobile client:

■ Section 3.2.1.4.1, "C/C++ Sync Control APIs to Start or Enable Automatic
Synchronization"

■ Section 3.2.1.4.2, "Java Sync Control APIs to Start or Enable Automatic
Synchronization"

Each of these APIs includes a stop method that has a timeout input parameter. You can
supply one of the following values for the timeout, which is a long that specifies a time
in milliseconds to wait for any current activity in the automatic synchronization to
complete.

■ BG_STOP_TIMEOUT: A value in seconds that allows the automatic synchronization
process to complete before stopping the service. By default, this is set to 5 seconds.

■ BG_KILL_AGENT: A value of -1 that makes the automatic synchronization service
stop immediately, even if it is in the middle of a synchronization. If an automatic
synchronization is in process, it will be terminated. NO errors or messages are
returned.

■ Any long value in milliseconds: If the automatic synchronization does not stop
within the time designated, the method returns with an error of BG_ERROR_
TIMEOUT. At this point, reissue the stop method to terminate the automatic
synchronization immediately by supplying BG_KILL_AGENT or -1 as the input
value.

3.2.1.4.1 C/C++ Sync Control APIs to Start or Enable Automatic Synchronization The
following sections describe the Sync Control APIs for C/C++ applications.

To start or stop the Sync Agent, use the following APIs:

olError olStartSyncAgent() ;
olError olStopSyncAgent(long timeout);

To enable or disable the Sync Agent, use the following APIs:

typedef struct _olSyncOpt {
olBool bDisable;
} olSyncOpt;
olError olGetSyncOptions(olSyncOpt *opt);
olError olSetSyncOptions(const olSyncOpt *opt);

Table 3–87 BGException Constructor Parameter Description

Parameter Description

errCode The error code can be one of the BGMessageId enumeration values,
which are documented in the "BGException Error Messages" in the
Oracle Database Mobile Server Message Reference.

msg The error message.

Manage Automatic Synchronization on the Mobile Client

3-82 Oracle Database Mobile Server Developer's Guide

The olGetSyncOptions and olSetSyncOptions methods take a pointer to the
olSyncOpt structure as a parameter. The olSyncOpt structure contains the bDisable
boolean, which is true if the Sync Agent is disabled.

To enable the Sync Agent, perform the following:

olSyncOpt opt.bDisable = FALSE;
olSetSyncOptions(&opt);

To disable the Sync Agent, perform the following:

olSyncOpt opt.bDisable = TRUE;
olSetSyncOptions(&opt);

Use olGetSyncOptions method to retrieve the current value of the bDisable boolean.

3.2.1.4.2 Java Sync Control APIs to Start or Enable Automatic Synchronization The following
BGSyncControl class has the following methods:

■ start—Start automatic synchronization that was previously stopped.

■ stop—Stop automatic synchronization. Normally, this is used to stop automatic
synchronization before a manual synchronization is invoked. Then, use the start
method to restart automatic synchronization.

■ enable—Enables automatic synchronization that was previously disabled.

■ disable—Disables automatic synchronization on a client. Even if the client is
restarted, automatic synchronization is not enabled unless you enable
synchronization.

■ isEnabled—Returns a boolean where true states that automatic synchronization is
enabled.

package oracle.lite.msync;
class BGSyncControl {
 public void start() throws SyncException;
 public void stop(long timeout) throws SyncException;
 void enable();
 void disable();
 bool isEnabled();
}

3.2.1.5 JavaScript APIs for the Sync Agent and Automatic Synchronization in
PhoneGap
The following sections describe how to manage automatic synchronization through
the Sync Agent and how to retrieve status of both the Sync Agent and any automatic
synchronization events:

■ Section 3.2.1.5.1, "Overview"

■ Section 3.2.1.5.2, "BGSession Class"

■ Section 3.2.1.5.3, "BGAgentStatus Object"

■ Section 3.2.1.5.4, "BGSyncStatus Object"

Note: For more details on these classes, refer to the osync.js
comments.

Manage Automatic Synchronization on the Mobile Client

Managing Synchronization on the Mobile Client 3-83

3.2.1.5.1 Overview Once automatic synchronization for the mobile client is enabled,
you can manage it through the Sync Agent APIs. The Sync Agent controls and
manages all aspects of automatic synchronization, which occurs in the background. If
a manual synchronization is started, Sync Agent stops automatic synchronization as
indicated and resumes the automatic synchronization activities when the manual
synchronization finishes.

The JavaScript interface provides for the following functions:

■ Tracking the progress of the automatic synchronization process.

■ Retrieve the status of the Sync Agent.

The following are the classes and interface for the JavaScript API for controlling the
Sync Agent and automatic synchronization:

■ BGSession Class

■ BGAgentStatus Class

■ BGSyncStatus Class

3.2.1.5.2 BGSession Class BGSession is the main class for controlling automatic
synchronization through the Sync Agent, as follows:

■ Start, stop, pause, resume, enable or disable automatic synchronization.

■ Retrieve automatic synchronization status information.

Constructors
BGSession (success_cbk, error_cbk)

Public Methods
The public methods and their parameters for the BGSession class are listed in
Table 3–89:

Note: There should be only a single BGSession object per your
PhoneGap application.

Table 3–88 BGException Constructor Parameter Description

Parameter Description

success_cbk A callback function that gets invoked upon successful API
completion.

error_cbk An error callback function that gets invoked on any error in
BGSession API.

Table 3–89 BGSession Class Public Method Parameters

Method Description

boolean
agentEnabled()

Returns TRUE if the Sync Agent is enabled; otherwise, FALSE.

close() Closes the session and release all the resources used by the session.

enableAgent(boolean
on)

TRUE enables the Sync Agent; FALSE disables the Sync Agent.

Manage Automatic Synchronization on the Mobile Client

3-84 Oracle Database Mobile Server Developer's Guide

Example
The following example demonstrates how to start the Sync Agent, retrieve status of
the Sync Agent and add a message handler for the session:

// Create the BGSession object
BGSession sess = new BGSession(onSuccess, onError);
// Create an instance of BGAgentStatus
var BGAgentStatusConst = new BGAgentStatus();
try {

BGAgentStatus
getAgentStatus()

Retrieves the current Sync Agent status. See Section 3.2.1.5.3,
"BGAgentStatus Object" for more details on the status information
returned.

int getAgentStatusCode
()

 See Table 3–92 for more details on the status information returned.

BGSyncStatus
getSyncStatus()

Gets current status of automatic synchronization managed by the
Sync Agent. See Table 3–93 for more details on the status information
returned.

pause() Pauses the Sync Agent.

If the agent is aready paused or being paused, this call is ignored.
This call is asynchronous, it does not wait for the Sync Agent to be
paused before returning. Use the waitForStatus method to wait for
the Sync Agent.

resume() Resumes the Sync Agent.

If the agent is already resumed or resuming, this call is ignored. This
call is asynchronous, it does not wait for the Sync Agent to be
resumed before returning. Use the waitForStatus method to wait for
the Sync Agent.

showUI() Starts up the Sync Agent UI.

start() Start the Sync Agent.

If the agent is already running, starting, or resuming, this call is
ignored. If the agent is paused, this call resumes the Sync Agent. This
call is asynchronous and does not wait for the Sync Agent to be
started before returning. Use the waitForStatus method to wait for
the Sync Agent.Starts up the Sync Agent UI.

stop() Stop the Sync Agent.

If the agent is already stopped or stopping, this call is ignored. This
call is asynchronous, it does not wait for the Sync Agent to be
stopped before returning. Use the waitForStatus method to wait for
the Sync Agent.

waitForStatus (int
statusCode)

boolean
waitForStatus (int
statusCode, long
timeOut)

Wait for the Sync Agent to reach specified status. You can also wait
for a specified timeout.

■ The parameter can be one of the following: RUNNING, PAUSED
or STOPPED.

■ The timeOut parameter is the maximum time to wait for in
milliseconds. Unlimited time if no timeout provided.

Returns TRUE if the agent has reached specified status; FALSE if the
timeout has occurred.

getFatalError() If sync agent is in DEFUNCT state, retrieve the error information that
caused the bad internal state. See "Table 3–92, " Sync Agent Status
Codes" for description of DEFUNCT.

Table 3–89 (Cont.) BGSession Class Public Method Parameters

Method Description

Manage Automatic Synchronization on the Mobile Client

Managing Synchronization on the Mobile Client 3-85

 //Start the Sync Agent, which enables all automatic synchronization
 //events
 sess.start();
 //Wait until the Sync Agent successfully starts
 sess.waitForStatus(BGAgentStatusConst.RUNNING);
 //Retrieve the status of the Sync Agent
 var s = sess.getAgentStatus();
 //Print out the user that is using automatic synchronization
 console.log("User name: " + s.clientId);
 ...
 }
 finally {
 //When finished, close the session to release all resources
 sess.close();
 }

3.2.1.5.3 BGAgentStatus Object The BGAgentStatus object represents the current status
of the Sync Agent.

Public Methods
The methods for the BGAgentStatus are listed in Table 3–90:

Fields
BGAgentStatus provides status information on the Sync Agent. Table 3–91,
" BGAgentStatus Class Fields" lists and describes the status information fields within
the BGAgentStatus class.

The BGAgentStatus object defines the Sync Agent status codes, which are as follows:

Table 3–90 BGAgentStatus Class Public Method

Method Description

String
statusName(int
statusCode)

Get language-specific name of a given status code. When you
provide one of the status codes shown in Table 3–92, " Sync Agent
Status Codes", the appropriate name is returned. Translation is
dependent on the device language settings.

Table 3–91 BGAgentStatus Class Fields

Parameter Description

appName The name of the application or process that is executing the Sync
Agent.

int batteryPower Remaining percentage of battery life, if relevant.

clientId Sync user name.

networkName Name of the network currently used for synchronization, evaluated
by Sync Agent.

int networkSpeed Network bandwidth in bits per second.

int processId Process id of the process that is executing the Sync Agent, if relevant
for a given platform.

int statusCode Retrieves the status of the Sync Agent. Status codes that can be
returned are detailed in Table 3–92, " Sync Agent Status Codes".

Manage Automatic Synchronization on the Mobile Client

3-86 Oracle Database Mobile Server Developer's Guide

Example
The following provides an example of retrieving and processing the Sync Agent status:

/* retrieve the Sync Agent status */
var bgStatus = bgSess.getAgentStatus();

/* Print Sync Agent status */
console.log("Agent Status: " +
 BGAgentStatus.statusName(bgStatus.statusCode));

/* If agent is stopped, return */
if (bgStatus.statusCode == BGAgentStatusConst.STOPPED)
 return;

/* Identify the client id, process id and name */
console.log("Client ID: " + bgStatus.clientId);
console.log("Process Name: " + bgStatus.appName);
console.log("Process ID: " + bgStatus.processId);
/* network name and speed */
if (bgStatus .networkSpeed > 0) {
 console.log("Network Name: " + bgStatus.networkName);
 console.log("Network Speed: " + bgStatus.networkSpeed + " bps");
}
else
 console.log("Network is not present");
/* battery power */
if (bgStatus.batteryPower > 0)
 console.log("Battery Power: " + bgStatus.batteryPower + "%");
else
console.log("Battery is not present");

Table 3–92 Sync Agent Status Codes

Status Code Status Name Description

0 STOPPED Sync Agent application is not running.

1 START_PENDING Sync Agent is in the process of starting.

2 RUNNING Sync Agent is running. Any tasks within Sync Agent
such as synchronization, compose, apply, rule
evaluation, network evaluation and other operations
can be active.

3 PAUSE_PENDING Sync Agent is in the process of being paused.

4 PAUSED Sync Agent is paused. When paused, none of the tasks
within Sync Agent are running. However, resources
such as memory and threads, are saved in the case of a
speedy resume. Pause and resume are generally faster
than start and stop. When a manual synchronization is
started, this pauses the Sync Agent until the manual
synchronization is completed. At that point, the Sync
Agent is resumed.

5 RESUME_PENDING Sync Agent is in the process of resuming.

6 STOP_PENDING Sync Agent is in the process of stopping.

7 DEFUNCT Sync Agent encountered fatal error and is in a bad
internal state. Sync Agent's environment needs to be
cleaned up and restarted.

Manage Automatic Synchronization on the Mobile Client

Managing Synchronization on the Mobile Client 3-87

3.2.1.5.4 BGSyncStatus Object The current status of automatic synchronization is if
automatic synchronization is in progress, startTime will have a non-zero value and
endTime will be zero.

Fields
BGSyncStatus provides status information on automatic synchronization in the fields
listed in Table 3–93, " BGSyncStatus Class Fields":

Example
The following provides an example of retrieving and processing the synchronization
status:

/* Retrieve the synchronization status */
var bgSyncStatus = bgSess.getSyncStatus();

/* start time */
if (bgSyncStatus.startTime == 0) return;
console.log("Sync Started: " + time2str(bgSyncStatus.startTime));

/* end time */
if (bgSyncStatus.endTime != 0)
console.log("Sync Finished: " + time2str(bgSyncStatus.endTime));

/* publications synchronized */
console.log(“Publications: “ + bgSyncStatus.pubs);

/* synchronization priority */
console.log("Sync Priority: " +
 (bgSyncStatus.prio == oseSession.PRIO_HIGH ? "High" : "Normal"));

Table 3–93 BGSyncStatus Class Fields

Parameters Description

long endTime End time of the last synchronization in milliseconds since the
standard base time of January 1, 1970, 00:00:00 GMT. Returns zero if
the synchronzation is currently in progress or has not yet run.

lastError Exception message string thrown during the last synchronization.
Returns NULL if the last synchronization was successful or no
synchronization has completed yet.

int prio Priority of the current or last synchronization.

int progressStage Progress stage of synchronization if it is in progress.

int progressVal Progress value in percentage of synchronization, if it is in progress.

pubs Comma-separated names of publications synchronized currently or
during last synchronization.

long startTime Start time of current or last synchronization, in milliseconds, since
the standard base time of January 1, 1970, 00:00:00 GMT. Returns zero
if the synchronization has not yet started or the last synchronization
time is unknown.

Manage Automatic Synchronization on the Mobile Client

3-88 Oracle Database Mobile Server Developer's Guide

3.2.2 OCAPI APIs for Retrieving Status on Automatic Synchronization

If you want to know at what stage the automatic synchronization cycle is, you can
request status from the Sync Agent. In the client application, execute the get status
API, which will return immediately with at what stage the automatic synchronization
cycle is executing. This is different from the notification message API, which only
returns when an event is completed within the synchronization cycle.

The get status API returns a structure that describes this event.

The following sections provide implementation details for each development
language:

■ Section 3.2.2.1, "Retrieving Status for Automatic Synchronization in Java
Applications"

■ Section 3.2.2.2, "Retrieving Status for Automatic Synchronization in C and C++
Applications"

■ Section 3.2.2.3, "Fields of the Automatic Synchronization Status Structure"

3.2.2.1 Retrieving Status for Automatic Synchronization in Java Applications
Use the getStatus method in your Java client application to retrieve status on the
automatic synchronization, as follows:

public BGSyncStatus getStatus() throws SyncException

This method returns the BGSyncStatus class with the status information on the
automatic synchronization, as follows:

public class BGSyncStatus
{
 public String clientId;
 public short syncState;
 public String syncStateStr;
 public short syncProgress;
 public short lastSyncError;
 public short lastSyncType;
 public Date lastSyncTime;

 public short applyState;
 public String applyStateStr;
 public short applyProgress;
 public short lastApplyError;
 public Date lastApplyTime;

 public String networkName;
 public int networkSpeed;
 public int batteryPower;
}

See Section 3.2.2.3, "Fields of the Automatic Synchronization Status Structure" for a
description of the input parameters in the structure.

Note: The following OCAPI APIs are currently supported for the
mobile client, but are not the direction recommended for future
applications. To develop applications for future support, migrate
existing applications to use the OSE APIs for Managing Automatic
Synchronization.

Manage Automatic Synchronization on the Mobile Client

Managing Synchronization on the Mobile Client 3-89

3.2.2.2 Retrieving Status for Automatic Synchronization in C and C++ Applications
Use the olGetSyncStatus method in your C/C++ client application to retrieve status
on the automatic synchronization, as follows:

olError olGetSyncStatus(olSyncStatus *s);

The Sync Agent returns the olSyncStatus class, which you provide as an input
parameter, with the information on what happened, as follows:

typedef struct _olSyncStatus {
 char clientId[BG_MAX_USERNAME];
 ol2B syncState;
 ol2B syncProgress;
 char syncStateStr[BG_MAX_STATUS_STR];
 olError lastSyncError;
 ol2B lastSyncType;
 ol8B lastSyncTime;
 ol2B applyState;
 ol2B applyProgress;
 char applyStateStr[BG_MAX_STATUS_STR];
 olError lastApplyError;
 olU2B _reserved;
 ol8B lastApplyTime;
 char networkName[BG_MAX_STATUS_STR];
 ol4B networkSpeed;
 ol4B batteryPower;
} olSyncStatus;

See Section 3.2.2.3, "Fields of the Automatic Synchronization Status Structure" for a
description of the input parameters in the structure.

3.2.2.3 Fields of the Automatic Synchronization Status Structure
The status structure/class have the following fields:

Table 3–94 Status Class Fields

Field Description

clientId User name

syncState A numeric value that denotes the current synchronization stage,
such as compose, send, or receive.

syncStateStr String describing the state, as denoted in the syncState, for the
automatic synchronization.

syncProgress A percentage that indicates the current progress for the
automatic synchronization.

lastSyncError If an error occurred in the last synchronization, this is the error
code. If no error, this value is zero.

lastSyncType The priority of the data for the last synchronization. If 1, then
high priority data; if 0, then regular priority data was
synchronized.

lastSyncTime Time of the last automatic synchronization.

applyState Code that indicates the state for the apply phase.

applyStateStr String describing the state for the apply phase, as denoted in the
applyState variable.

applyProgress A percentage that indicates the current progress for the apply
phase.

Manage Automatic Synchronization on the Mobile Client

3-90 Oracle Database Mobile Server Developer's Guide

3.2.3 OCAPI Notification APIs for the Automatic Synchronization Cycle Status

You can develop a mobile client application to be notified when an automatic
synchronization cycle occurs. The application is notified from the Sync Agent when
the automatic synchronization completes as well as when a critical event occurs in the
client device. For example, when the device battery runs critically low, Oracle
Database Mobile Server can notify the application.

In the client application, create a procedure that executes one of the following message
APIs. When your application calls the get message API, it blocks until an event occurs
within an automatic synchronization. It returns a structure that describes this event.

The following sections provide implementation details for each development
language:

■ Section 3.2.3.1, "Automatic Synchronization Notification for C/C++ Application"

■ Section 3.2.3.2, "Automatic Synchronization Notification for Java Applications"

■ Section 3.2.3.3, "Fields of the Automatic Synchronization Message Structure"

3.2.3.1 Automatic Synchronization Notification for C/C++ Application
Use the olGetSyncMsg method in your client application to receive the automatic
synchronization notification when implementing for C/C++ applications. In order to
block for the status, you need to perform the following:

1. Start the application messaging service with the olStartSyncMsg method,
providing a queue handle of type olAppMsgQ. This message starts the messaging
service and returns the queue handle in the olAppMsgQ.

2. Execute the olGetSyncMsg with the olAppMsgQ message handle and the defined
olSyncMsg structure for the returned automatic synchronization information.

The following provides the method definitions:

typedef void *olAppMsgQ
/* start application messaging, get queue handle */
olError olStartSyncMsg(olAppMsgQ *q);
/*Provide the queue handle and block to retrieve automatic synchronization event
*/

lastApplyError If an error occurred in the last apply phase, this is the error code.
If no error, this value is zero.

lastApplyTime Time of the last apply phase.

networkName The network name assigned to this network.

networkSpeed Current bandwidth of the network.

batteryPower Current battery power percentage.

Note: The following OCAPI APIs are currently supported for the
mobile client, but are not the direction recommended for future
applications. To develop applications for future support, migrate
existing applications to use the OSE APIs for Managing Automatic
Synchronization.

Table 3–94 (Cont.) Status Class Fields

Field Description

Manage Automatic Synchronization on the Mobile Client

Managing Synchronization on the Mobile Client 3-91

olError olGetSyncMsg(olAppMsgQ q, olSyncMsg *m);

The olGetSyncMsg method blocks until an event occurs, then the Sync Agent returns
the olSyncMsg class, which you provide as an input parameter, with the information
on what happened, as follows:

typedef struct _olSyncMsg {
 ol2B type;
 ol2B id;
 char msg[BG_MAX_MSG];
} olSyncMsg;

See Section 3.2.3.3, "Fields of the Automatic Synchronization Message Structure" for a
description of the input parameters in the structure.

The C/C++ application performs in a different manner than the Java and C# versions
in that this creates a message service with its own message queue. Thus, when finished
you must perform some cleanup to ensure that the message queue handle is released.
Use the olStopSyncMsg method to stop the messaging service and release the handle.
This must be performed for every message queue that is opened with the
olStartSyncMsg method.

olError olStopSyncMsg(olAppMsgQ q);

If you want to force an existing olGetSyncMsg to return, use the olCancelSyncMsg from
another thread in the application. This causes the olGetSyncMsg to return with the BG_
ERR_APP_MSG_CANCEL error.

olError olCancelSyncMsg(olAppMsgQ q);

3.2.3.2 Automatic Synchronization Notification for Java Applications
Use the getMessage method in your client application to receive the automatic
synchronization notification when implementing for Java applications, as follows:

public class BGSyncControl
{
 public BGSyncMsg getMessage() throws SyncException;
}
This method blocks until an event occurs, then the Sync Agent returns the BGSyncMsg
class with the information on what happened, as follows:

public class BGSyncMsg{
 public int type;
 public int id;
 public String msg;
}

See Section 3.2.3.3, "Fields of the Automatic Synchronization Message Structure" for a
description of the input parameters in the class.

3.2.3.3 Fields of the Automatic Synchronization Message Structure
The message structure/class has the following fields:

Manage Automatic Synchronization on the Mobile Client

3-92 Oracle Database Mobile Server Developer's Guide

Table 3–95 The Sync Message Variables

Variable Description

Event type The event can be of three types, each of which indicate the level
of severity of this notification:

■ INFO

■ ERROR

■ WARNING

Event identifier for INFO
types:

The INFO event identifer describes what occurred, as follows:

■ SYNC_STARTED: The Sync Agent has started the
synchronization task.

■ SYNC_SUCCEEDED: Data synchronization completed
successfully.

■ APPLY_STARTED: The Sync Agent has started the apply task.

■ APPLY_SUCCEEDED: The apply phase completed successfully.

■ SVR_NOTIF: The Sync Agent has received a server
notification. The message contains information about the
server notification, such as publication name, number of
modified records and the record priority (high priority or
normal).

■ NETWORK_CHANGED: Device has moved into a different
network

■ AGENT_STARTED: The Sync Agent started.

■ AGENT_STOPPED: The Sync Agent stopped.

Event identifier for the
WARNING type:

The WARNING event identifier describes in more detail what
occurred, as follows:

■ BATTERY_LOW: Device’s battery is running low

■ MEMORY_LOW: Device’s memory is running low

Event identifier for the
ERROR type:

The ERROR event identifier describes in more detail what
occurred, as follows:

■ APPLY_FAILED: The apply failed. In this case, ‘message'
contains the reason for failure.

■ SYNC_FAILED: Data synchronization failed. In this case,
‘message' contains the reason for failure.

■ AGENT_ERROR: An internal error condition occurred. The
message contains the actual error message. Examples would
be failure to load a rule, failure to process server
notification, failure to evaluate system power, and so on. In
spite of this error, the Sync Agent continues to execute. Fatal
errors are written to the olSyncAgent.err file.

Event Message String message that expounds on the information provided by
the event type and identifier.

4

Using Mobile Database Workbench to Create Publications 4-1

4 Using Mobile Database Workbench to Create
Publications

The following sections describe how to use the Mobile Database Workbench (MDW) to
create publications. When using MDW, you first create a project and then create the
other objects contained within a publication.

■ Section 4.1, "Use MDW to Create Publications"

■ Section 4.2, "Create a Project"

■ Section 4.3, "Use the Quick Wizard to Create Your Publication"

■ Section 4.4, "Create a Publication Item"

■ Section 4.5, "Define the Rules Under Which the Automatic Synchronization Starts"

■ Section 4.6, "Create a Sequence"

■ Section 4.7, "Create and Load a Script Into The Project"

■ Section 4.8, "Create a Publication"

■ Section 4.9, "Import Existing Publications and Objects from Repository"

■ Section 4.10, "Create a Virtual Primary Key"

■ Section 4.11, "Test a Publication by Performing a Synchronization"

■ Section 4.12, "Deploy the Publications in the Project to the Repository"

4.1 Use MDW to Create Publications
The Mobile Database Workbench (MDW) tool enables you to iteratively create and test
publications—testing each object as you add it to a publication. Publications are stored
within a project, which can be saved and restored from your file system, so that you
can continue to add and modify any of the contained objects within it.

All work is created within a project, which can be saved to the file system and
retrieved for further modifications later. Once you create the project, start creating the
publication items, sequences, and scripts that are to be associated with the publication.
You can create the publication and associated objects in any order, but you always
associate an existing object with the publication. Thus, it saves time to start with
creating the objects first and associating it with the publication afterwards.

To launch MDW, execute oramdw, which is located in $ORACLE_HOME\Mobile\Sdk\bin.

Create a Project

4-2 Oracle Database Mobile Server Developer's Guide

4.2 Create a Project
Create a new project with MDW. The project is the vehicle that contains your iterative
approach to defining publications, publication items, sequences, and scripts. The
project can be saved and restored from your file system, so that you can continue to
modify any of the contained objects within it.

You cannot perform any action on developing your publications without first creating
the project.

You must have access to the back-end database with the mobile server repository and
already defined the tables and schema that you are going to be using in your
publication items before entering the project wizard.

Perform the following to create the project:

1. Click File->New->Project to start the Project Wizard.

2. An Introductory screen appears. If you do not want this introductory screen to
display each time you start a new project, check the "Skip This Page Next Time"
box.

3. Define the project name. Enter the project name and location for your new project,
as follows:

■ Project name: This name can be any valid Java identifier. The name cannot
contain any spaces. For example, your project name may be something like
MY_NEW_PROJECT.

■ Project location: Enter a valid location in the directory on your machine that
has write permission to store the project. On a Windows machine, you could
enter the location as c:\myprojects. To browse for a directory, click "Browse".

■ The mobile client database type: Select the type of the mobile client, which can
be which can be SQLite, Berkeley DB or Java DB.

Click "Next" to move to the next step in the wizard.

4. Provide the repository access information. Because you are interacting with the
repository to create and manipulate synchronization objects, including the SQL
scripts for the publication items, you need access to the repository. Enter the
following access information: Username and Password

Specify the mobile server repository user name and password (with administrator
privilege). This is the same user name and password with which the repository
was originally created. For example, the default mobile server repository user
name and password is mobileadmin/manager.

The administrator user name and password are used to connect to the back-end
database, create the schema and assign database privileges for the mobile server.
In order to perform these actions, the administrator user must have the following
privileges:

– The following privileges are required with the Admin option:

ALTER ANY TABLE, ALTER SESSION, ALTER SYSTEM, ANALYZE ANY, CREATE
SESSION, CREATE ANY SEQUENCE, CREATE ANY VIEW, CREATE ANY TRIGGER,
CREATE ANY INDEX, CREATE ANY TABLE, CREATE ANY SYNONYM, CREATE ANY
PROCEDURE, CREATE PROCEDURE, CREATE SEQUENCE, CREATE SYNONYM,
CREATE TABLE, CREATE VIEW, CREATE INDEXTYPE, DELETE ANY TABLE, DROP
ANY SEQUENCE, DROP ANY PROCEDURE, DROP ANY VIEW, DROP ANY SYNONYM,
DROP ANY TRIGGER, DROP ANY INDEX, DROP ANY TABLE, INSERT ANY TABLE,

Create a Project

Using Mobile Database Workbench to Create Publications 4-3

SELECT ANY TABLE, SELECT ANY DICTIONARY, SELECT_CATALOG_ROLE,
UPDATE ANY TABLE

Specify the Connection

When you define the connection, you have two options:

■ Simple connection definition. For a connection to a single back-end Oracle
database, select the "Oracle JDBC Thin Driver" and provide the host (or IP
address), port and SID for the Oracle database that contains the mobile client
repository.

This creates a connect string which be as follows:

jdbc:oracle:thin:@<host>:<port>:<SID>

■ Oracle RAC connection definition. If you are connecting to a Oracle RAC
configuration, then select the "Oracle JDBC Thin Driver - Advanced". Selecting
this option enables the Connect String field where you can enter the tnsnames
connect string that defines all databases included in the Oracle RAC
configuration. For example, the following is a tnsnames connect string
definition that includes two Oracle databases in the Oracle RAC configuration:

(DESCRIPTION=(ADDRESS_LIST=(LOAD_BALANCE=-ON)
 (ADDRESS=(PROTOCOL=TCP)(HOST=HOST1)(PORT=1555))
 (ADDRESS=(PROTOCOL=TCP)(HOST=HOST2)(PORT=1555)))
 (CONNECT_DATA=(SERVICE_NAME=ORCL.TW.ORACLE.COM)
 (FAILOVER_MODE=(TYPE=SELECT)(METHOD=BASIC)(RETRIES=180)(DELAY=5))))

Click "Next" to move to the next step in the wizard. Once you click Next, the
wizard verifies that the database connection information is correct. If incorrect, the
wizard prompts you to re-enter the information. You can only advance if you enter
the correct information where the mobile server repository is located.

5. Specify the application information, as follows:

a. Specify the application schema user name and password, each of which are
limited to 28 characters. The mobile application schema contains all database
tables, views, synonyms used to build the snapshots for the application.

b. Use the Database Instance pull-down to select the database where the
application is to be deployed. In this database, the application schema be
created. You can select the Main database, where the mobile client repository
is stored, or any registered remote databases meant solely for application data.

Once selected, the JDBC URL for the selected database is displayed in the
Connect String field.

Click "Next" to move on to the last screen in the Project Wizard. As you click
"Next", MDW verifies that the user name and password that you entered are valid
for connecting to the application schema in the back-end database. If these are not
valid, you cannot advance until you supply a valid user name and password.

6. A summary page appears. Once the creation of the project is completed, this page
displays all of the information about your new project.

■ Click "Back" to modify any of the information supplied.

Note: All schema objects for an application exist in the same
back-end repository, which is why the Oracle database host, port and
SID are only read-only on this screen.

Use the Quick Wizard to Create Your Publication

4-4 Oracle Database Mobile Server Developer's Guide

■ Click "Finish" to complete the project creation.

■ Click "Cancel" to abort creation of this project.

At this point, you can create your publication within this project.

4.3 Use the Quick Wizard to Create Your Publication
The Quick Start Wizard enables you to create a simple publication in just a few steps. It
generates the publication items within your publication by assuming that you want
the default settings. In addition, the snapshot defaults to select all items within the
table. For example, if the table selected is EMP, then the select statement defaults to
select * from emp.

You can associate a publication item in a publication, which is then associated in an
application. The publication item is the vehicle that defines the SQL to retrieve data
from the database for the application users. When you execute the quick wizard, it
creates a publication item for each table you wish to include in the publication. In
addition, the wizard defaults the SQL statement used to define the data subset for each
table as select * from <table_name>.

The publication item name defaults to the following: <table_name>_PI<number> where
<number> is sequential and starts from 1. For example, the first publication item
created on table EMP would be named EMP_PI1. If, in a separate publication, you have
already defined a publication item for EMP_PI1, then the next time you execute the
wizard for the table EMP, it be named EMP_PI2.

After creating this publication item, this wizard enables you to test it immediately.
When the wizard completes, you can always return to the main menu and modify any
of the default settings or specify a more specific data subset with your own SQL
statement.

For each of the screens in the wizard, click "Next" to advance to the next screen.

1. To start the quick wizard, select the "Quick Wizard" button.

2. An introductory screen appears. If you do not want this introductory screen to
display each time you start a new project, check the "Skip This Page Next Time"
box.

Note: Since this tool is a quick wizard, it associates a single
publication item for each table you include in the publication. In order
to create a more complex snapshot—such as one that enables
automatic synchronization, creates multiple publication items based
on the same table or a more complex SQL statement—see Section 4.4,
"Create a Publication Item".

Use the Quick Wizard to Create Your Publication

Using Mobile Database Workbench to Create Publications 4-5

Figure 4–1 Welcome Screen for Quick Wizard to Create a Publication

3. Provide a name for the client database. This is the database that exists on the
device to contain the downloaded snapshot information. The name that you
choose also be used as the name of the publication.

When this publication is finished, a client database is created on your device and
the first synchronization to retrieve the snapshot from the back-end Oracle
database is initiated.

Figure 4–2 Define Client Database Name

4. Select the tables to be included in the publication item, as follows:

Use the Quick Wizard to Create Your Publication

4-6 Oracle Database Mobile Server Developer's Guide

Figure 4–3 Define the Tables to Include in the Publication

■ Choose the application schema to associate with this publication item: The
application schema is the schema from which the publication item retrieves
data. All available schemas in the database are listed in the pull-down list. You
must have created the schema before starting this wizard.

■ Click "Search" to display all tables within this schema in the Available column.
To search for a specific table or tables, enter the name or partial name with
wild charaters in the "Object Filter" field and then click "Search". You can use
any of the standard Oracle wild card characters.

■ Select the tables that you want in the publication item and click the arrow
buttons to move one or all tables into the Selected column. You can move these
tables back and forth using the arrow buttons.

■ When you are satisfied with the list of the tables in this publication item, then
click "Next".

5. Once the creation of the publication item is completed, a Summary page displays
the defaults used for each table included in this publication item, as follows:

Note: If the schema you want is not in this list, cancel the wizard,
create the schema in the back-end database, and then re-start this
wizard.

Note: If you do not see the object that you expect to see, verify that
you created the table in this schema in the back-end Oracle database.

Use the Quick Wizard to Create Your Publication

Using Mobile Database Workbench to Create Publications 4-7

Figure 4–4 Modify the Table Properties for Synchronization

■ Table name: Displays the schema and name of the table included in this
publication item.

■ Updatable: This is checked if the table is listed as updatable. You can toggle
this item to read-only by double-clicking on the field. However, if it is
unchecked, you should only enable it if the table has a virtual primary key.

For more information on Read-Only or Updatable options, see Section 2.3.1.1,
"Manage Snapshots".

■ Refresh Type: By default, all tables use fast refresh. If the table does not have a
primary key, then the table uses complete refresh. Double-click on this field to
bring up a pull-down with the option to change the refresh type to either fast
or complete.

For more information on Fast or Complete refresh types, see Section 2.8,
"Understanding Your Refresh Options".

■ Virtual Primary Key: This field displays the virtual primary key for the table.
If you want to have the table be updatable or use the fast refresh type, then the
table must have a virtual primary key. If the table does not have a primary key,
but it does contain a field with UNIQUE constraints, then you can specify this
field as the virtual primary key to be able to use fast refresh or updatable.

To specify a column in the table as your virtual primary key, double-click on
the Virtual Primary Key field to list all of the UNIQUE fields. If you select one
of them to be the virtual primary key, then you can use the Updatable or fast
refresh options for this table.

6. Decide if you want to test this publication.

Note: Any virtual primary key added must be unique and not
NULL.

Create a Publication Item

4-8 Oracle Database Mobile Server Developer's Guide

Figure 4–5 Decide to Test the Publication

You can specify that you want to test this publication as soon as the wizard exits.
By default, "Yes" is selected. This provides a test of the publication against the
back-end Oracle database.

In order to perform this test, a valid client user name must be provided. From the
drop-down list, select the client user name that you would like to use. You be
prompted for the password during synchronization.

7. You can end the wizard by performing one of the following:

■ Click "Back" to modify any of the information supplied.

■ Click "Finish" to complete the project creation.

■ Click "Cancel" to abort creation of this project.

8. If you clicked "Yes" for testing the publication, then the Test Publication screen is
brought up. Click the "Synchronize" button to start the test.

This creates a basic publication, which you can now view in the project in the MDW
main screen. You can modify this publication in any way.

4.4 Create a Publication Item
The Publication Item Wizard steps you through the process of creating a publication
item in the project. A publication item encapsulates a snapshot definition. It can be
based on a table, view or synonym in the Master Application schema in the back-end
database. If you use a synonym for a remote object to build a publication item, then
you are required to provide the JDBC connection information to the remote database
where the remote object resides.

After you create the publication items in the project, then you can associate multiple
publication items with a publication, which is then associated with an application. See
Section 4.8.2, "Publication Item Tab Associates Publication Items With the Publication"
for details.

You can create a publication item through the publication item wizard by clicking
File->New->Publication Item.

Create a Publication Item

Using Mobile Database Workbench to Create Publications 4-9

1. The publication item wizard introduction appears. If you do not want this
introductory screen to display each time you start a new project, check the "Skip
This Page Next Time" box.

Click "Next" to advance to the next screen.

2. Define name, refresh type, and automatic synchronization, as follows:

■ Publication item name: This name can be any valid Java identifier. The name
cannot contain any spaces. Publication item names are limited to twenty-six
characters and must be unique across all publications. For example, your
publication item name may be something like MY_PUBLICATION_ITEM.

■ Refresh type: The refresh mode of the publication item is specified during
creation to be either fast or complete refresh. See the Section 2.8,
"Understanding Your Refresh Options" for more information.

From the drop-down list choose one of the following refresh types:

– Complete: All data is refreshed with current data. Everytime you
synchronize, all data in the snapshot is retrieved. This can be performance
intensive.

– Fast: This is the recommended mode. Only incremental changes are
synchronized. Thus, you are not downloading the complete data snapshot
each time a synchronization is requested. The advantages of fast refresh
are reduced overhead and increased speed when replicating data stores
with large amounts of data where there are limited changes between
synchronization sessions.

– Queue-based: You can create your own queue. The mobile server upload
and download changes from the user. You perform the activity of the MGP
and apply/compose the modifications to the back-end database. See the
Section 2.12, "Customizing Synchronization With Your Own Queues" for
more information.

Once you create the publication item with a particular refresh type, the only
way to modify the publication item to have a different refresh type is to delete
it and recreate it with the desired refresh type.

■ Enable Automatic Synchronization checkbox: This defines the publication item
to use Automatic Synchronization, where synchronization for this publication
item occurs automatically and in the background. That is, you do not have to
manually press the Sync button as it occurs automatically.

In a publication, all publication items should either be enabled or disabled for
the automatic synchronization. Mixing the two types in a single publication
can potentially break the publication's transactional consistency.

Note: If, after you have published the application, you want to turn
off automatic synchronization, you can only disable automatic
synchronization as follows:

1. Execute the API to disable the automatic synchronization. Use the
reCreatePublicationItem method to disable automatic synchronization.
For more information on modifying a publication item using the APIs, see
Section 2.4.1.12, "Modifying a Publication Item".

2. Execute a manual synchronization on the device.The manual
synchronization restarts the automatic Sync Agent, which then use the
new rules The new settings NOT be downloaded automatically during
automatic synchronization.

Create a Publication Item

4-10 Oracle Database Mobile Server Developer's Guide

Step 7 shows you how to specify—with a SQL statement—which users receive
the automatic synchronization. Section 4.5, "Define the Rules Under Which the
Automatic Synchronization Starts" shows you how to define automatic
synchronization rules that apply to this publication item.

3. Designate the publication item object with the appropriate schema, as follows:

■ Choose the application schema to associate with this publication item: The
application schema is the schema from which the publication item retrieves
data. All available schemas except mobile repository user schema you defined
before and system schema of Oracle database are listed in the pull-down list.
You must have created the schema before creating the publication item.

If the schema you want is not in this list, cancel this publication item, create
the schema in the back-end database, and then associate the schema with the
publication item.

■ Designate the object type as a table, view, or synonym.

■ To choose the table, view or synonym from within the schema that you wish to
base this publication item on, click "Search" on the Object Filter. This brings up
several items in the Object List. Select the object that you are interested in and
click "Next".

4. Choose columns to add to the publication item. When you are adding columns to
the publication item, you should first verify what data types are supported and
how others are modified when brought down to the client database.

There are two tabs to enable you to structure your publication item, as follows:

■ Column Selection: Choose the columns from within the object that you use to
retrieve information for the application. To choose the appropriate columns,
select the column name and click the left or right arrow buttons to move
between the Available and Selected windows. To move all columns, use the
double arrows.

■ Structure: If you are not sure what columns you want, you can see the entire
table structure by clicking this tab.

Note: To search only for objects that match a condition, designate the
condition in the Filter box and click "Search". You can use the same
pattern matching characters in a valid SQL WHERE clause. The filter is
case-sensitive; use upper-case characters.

Note: The primary key defaults to being in the Selected window, as it
is required if you are using Fast Refresh and Updateable option. Since
most publication items use these options, MDW places the primary
key as Selected. You can move it back to the Available window.

The publication item query must select primary keys in the same
order as they are defined in the base table.

Create a Publication Item

Using Mobile Database Workbench to Create Publications 4-11

The Oracle Database Mobile server does not support creation of publication items
for a table with NVARCHAR2 data type. If you want to use national character set
in your table, do the following:

– create a table with column type VARCHAR2, not NVARCHAR2

– set Oracle database character set as UTF8 or AL32UTF

– use DB_CHAR_ENCODING=UTF8 in the client side.

If you have specified a fast refresh, you must provide a primary key. If you have
specified a table or view that does not have a primary key, exit out of this wizard
and create a virtual primary key specifying one of the columns in the table or view.
If you do not create a virtual primary key before specifying this publication item,
then any future synchronization of this primary key fail.

5. Create indexes and associate them with the publication item. These indexes
display in the Index Selection window. The index name, index type and the index
columns are shown. If you want to add or remove an index in the publication
item, use the following options:

■ Add: Click "Add" to create a new index and associate it with the publication
item. You need to provide the index name, type and snapshot columns for the
new index.

■ Remove: Removes an existing index from the publication item by selecting the
index in the Index Selection window and clicking "Remove".

By default, Oracle Database Mobile Server creates a primary key index for every
publication item and is created on the primary key of the snapshot table. This
index is named <piName>_PK. You cannot remove the primary key index from the
publication item within this screen. If you want to remove the primary key index,
use the dropPublicationItemIndex method. For more details, see Section 2.4.1.6,
"Create Publication Item Indexes".

If a snapshot is based on a table without a primary key, then the primary key index
not be created and the Index Selection box is empty.

When the desired indexes have been added or removed for this publication item,
click "Next" to advance to the next window.

6. Modify the SQL statement for the publication item. From the columns that you
selected in the previous screen, this simple SQL statement is available as a

Note: Oracle Database Mobile Server does not support creating
publication items for a table with object type columns, even if the
publication item query does not include any of the object type
columns. However, it is possible to define a view which selects only
columns of supported data types and then create a publication item
using the view definition.

Note: Any virtual primary key must be unique and not NULL.

Note: You can only modify an index by removing and creating it
again.

Create a Publication Item

4-12 Oracle Database Mobile Server Developer's Guide

template for you to modify. You can add any qualifiers and complexity to this base
statement. To view the structure of the schema object, select the Structure tab.

■ Perform Iterative Modifications

See Section 4.4.1, "Create SQL Statement for Publication Item" for directions on
how to edit and execute the SQL statement for this publication item.

■ Apply/Compose Callbacks

When creating publication items, the user can specify a customized package to
be called during the Apply and Compose phase of the MGP background
process. Client data is accumulated in the in queue before being processed by
the MGP. Once processed by the MGP, data is accumulated in the out queue
before being pulled to the client by Mobile Sync. See Section 2.7.2, "Customize
What Occurs Before and After Compose/Apply Phases for a Single
Publication Item" for more information on how to create the callbacks.

Provide the schema and package names for any apply/compose callbacks.

■ Dependency Hint

Click "Add" to add a dependency hint. All existing dependency hints are
shown in the window. See Section 4.4.2, "Create a Dependency Hint" for more
information.

7. If you specified a view, then you may need to define parent table and primary key
hints. See Section 4.4.3, "Specify Parent Table and Primary Key Hints" for
directions on how to define these hints.

8. If you specified automatic synchronization for this publication item, then the
Automatic Synchronization Query page is shown, which includes the following:

■ By default, all users are included in the Compose, which means that all users
receive the data that is being retrieved from the server and brought down to
the mobile clients. If you want to specify that only certain users that subscribe
to this application receive the application data, then check this box.

■ If you clicked the checkbox, then specify which users are to receive the
Compose data with a SQL query.

For example, if you only want MADAUSER within the mobileadmin schema to
receive the Compose data, then type in select name from
mobileadmin.users where name =’MADAUSER’. Click "Run" to verify that the
SQL query returns what you want; click "Next" to advance to the next page.

9. Summary page provides an overview of the publication item that you just created.
To view any dependency hints, click "Advanced". If you have used a view as the
base for your publication item and you created Parent Table or Primary Key hints,
click Hint to view these hints. The Parent Table and Primary Key hints are only
valid on views.

To modify any part of the publication item, click "Back" to return to the previous
screens.

Click "Finish" if you are satisfied with the publication item. Click "Cancel" to
eliminate all work in creating this publication item.

4.4.1 Create SQL Statement for Publication Item
You can compose your SQL statement through iterative steps to ensure that you are
creating a valid statement. You have the following options:

Create a Publication Item

Using Mobile Database Workbench to Create Publications 4-13

■ Modify the query by clicking "Edit".

■ Execute the statement against the schema in the back-end database by clicking
"Run". You be notified directly if the statement fails or view the data from the
schema object is retrieved for you to view.

When you click "Run", then the query of the publication item is validated by
executing the query against the back-end database. A dialog is displayed with the
returned snapshot that this publication item would generate. If there is more than
one page, then click "Previous" and "Next" to move between the pages. Click
"Close" to return to the publication item screen.

If the publication item SQL statement requires an input value, then a dialog
appears for you to input the value for the SQL query. You can modify this value or
the SQL query until you receive the results that you desire.

■ To return the query to the original statement, click "Reset".

■ When finished, clickk "Next".

4.4.2 Create a Dependency Hint
If the updates to this publication item effects another table, use the dependency hint to
notify the synchronization engine to update the other table. For example, if the
publication item updates the employee table, and these updates should also apply to
the department table, add a dependency hint notifying the synchronization engine of
the relationship with the department table.

For your dependency hint, specify whether the hint is based upon a table or synonym.
Then, use the pulldown lists to select the schema and table/synonym names. Click
"OK" to save the hint or "Cancel" to return to the Advanced screen.

4.4.3 Specify Parent Table and Primary Key Hints
When you use a view, you may need to specify a parent table and primary key hints. A
view can be composed of one or more tables joined together. If you have specified fast
refresh, then you must specify which table is the parent table and which column is the
primary key.

■ To create a parent table hint, select the base table from the Base Tables drop-down
list and check the Parent Table Hint checkbox.

■ To create a primary key hint, click "Add". Identify the primary key hint for this
view, as follows:

1. From the View Columns drop-down list, select the view column that you want
to be the primary key. This column name may be an alias of the actual
table.column name.

2. From the Base Tables drop-down list, select the base table where the actual
column exists that is to be the primary key.

3. From the Primary Key Columns drop-down list, all primary key columns from
the base table are shown, select the appropriate column for the primary key. If
you have a composite primary key, iteratively add each column within the
composite primary key.

Note: If you do not check the Parent Table Hint checkbox, then the
hint is not created when you click "Next".

Define the Rules Under Which the Automatic Synchronization Starts

4-14 Oracle Database Mobile Server Developer's Guide

Click "OK" to accept this primary key hint.

4.5 Define the Rules Under Which the Automatic Synchronization Starts
Once you have enabled a publication item to use automatic synchronization, you must
define the rules under which the automatic synchronization executes. The
circumstances under which an automatic synchronization occurs is defined within the
synchronization rules. There are two types of automatic synchronization rules: events
and conditions. If an event is true, it starts a synchronization; however, the
synchronization cannot occur unless all conditions are true, as well. This evaluates as
follows:

when EVENT and if (CONDITIONS) then sync;

If an event is true, then a synchronization can start—but only if all conditions are true.

Thus, event and condition rules are as follows:

■ Events—An event is variable, as follows:

■ Data events: For example, you can specify that a synchronization occurs when
there are a certain number of modified records in the client database.

■ System events: For example, you can specify that if the battery drops below a
predefined minimum, you want to synchronize before the battery is depleted.

■ Conditions—A condition is an aspect of the client that needs to be present for a
synchronization to occur. This includes conditions such as battery life or network
availability.

For example, if the event for new data inserted and the condition specified is that the
network must be available, then a synchronization only occurs when the network is
available and there is new data.

When you define the rules for the synchronization, you can define them in two places:

■ Publication level: You specify the rules under which the synchronization occurs at
the publication level for all publication items in that publication.

■ Platform level: Some of the rules are very specific to the platform of the client,
such as battery life, network bandwidth, and so on.

If after defining these rules and publishing the application, you want to modify the
rules, you can do so through MDW. However, you must perform a manual
synchronization. The manual synchronization restarts the automatic Sync Agent,

Note: If you do not provide accurate details in regards to the view,
base table, and primary key to which the view column maps, the
publication item may save, but the execution of the publication item
fail. For example, if you choose a view column which does not map to
the primary key column, MDW allow the action, but any execution of
the publication item result in failure.

Note: This section describes how to do this through MDW; see
Section 2.2.2, "Define the Rules Under Which the Automatic
Synchronization Starts" for directions on how to perform this
programmatically.

Define the Rules Under Which the Automatic Synchronization Starts

Using Mobile Database Workbench to Create Publications 4-15

which then use the new rules The new settings NOT be downloaded automatically
during automatic synchronization.

The following sections detail all of the rules you can configure for automatic
synchronization:

■ Section 4.5.1, "Configure Publication-Level Automatic Synchronization Rules"

■ Section 4.5.2, "Configure Platform-Level Automatic Synchronization Rules"

4.5.1 Configure Publication-Level Automatic Synchronization Rules
When you are creating the publication, you can define data events that cause an
automatic synchronization. Although these are defined at the publication level, they
apply only to the publication items within this publication that have automatic
synchronization enabled.

For full details of how to configure these data events, see Section 4.8.5, "Event Tab
Configures Automatic Synchronization Rules for this Publication".

Table 4–1 describes the publication level data events that trigger automatic
synchronization. The lowest value you can specify is 1.

4.5.2 Configure Platform-Level Automatic Synchronization Rules
The platform-level synchronization rules apply to a selected client platform and all
publications that exist on that platform. You can specify both platform events and
conditions using either MDW or the Mobile Manager. This section describes MDW; see
Section 5.5.1, "Specifying Platform Rules for Automatic Synchronization" in the Oracle
Database Mobile Server Administration and Deployment Guide for directions on how to
define these rules using Mobile Manager.

To assign platform-level automatic synchronization rules, perform the following in
MDW:

1. Click "Platform".

Table 4–1 Automatic Events for the Publication

Events Description

Client commit Upon commit to the client database, the mobile client detects the total number
of record changes in the transaction log. If the number of modifications is
equal to or greater than your pre-defined number, automatic synchronization
occurs.

Server MGP
compose

If after the MGP compose cycle, the number of modified records for a user is
equal to or greater than your pre-defined number, then an automatic
synchronization occurs. Thus, if there are a certain number of records
contained in an Out Queue destined for a client on the server, these
modifications are synchronized to the client.

Note: If you want to modify the publication-level automatic
synchronization rules after you publish the appliation, you can do so
through the Mobile Manager, as follows:

1. Click "Data Synchronization".

2. Click "Repository".

3. Click "Publications".

4. Select the publication and click "Automatic Synchronization Rules".

Define the Rules Under Which the Automatic Synchronization Starts

4-16 Oracle Database Mobile Server Developer's Guide

2. Select either the Win32, WINCE, Linux or JAVA platform, which brings up a page
with two tabs: Events and Conditions. These rules apply to all publications for this
platform.

3. You can modify the following for each platform:

■ Event Rules—See Section 4.5.2.1, "Define System Event Rules for the
Platform".

■ Conditions—See Section 4.5.2.2, "Define Automatic Synchronization
Conditions for the Platform".

4.5.2.1 Define System Event Rules for the Platform
When you choose the Event tab, select the checkbox for each event that you want to
enable. If the event requires a value, enter the value you desire. This initiates the
automatic synchronization the first time the event occurs. For example, if the battery
runs below the percentage you specified, the automatic synchronization occurs. As the
battery continues to deplete, you do not trigger another synchronization.

The following system events trigger an automatic synchronization if true.

■ Network Bandwidth: Synchronize when the network bandwidth is greater than
<number> bits/second. Where <number> is an integer that indicates the bandwidth
bits/seconds. When the bandwidth is at this value, the synchronization occurs.

■ Battery Life: Synchronize when the battery level drops to <number>%, where
<number> is a percentage. Often you may wish to synchronize before you lose
battery power. Set this to the percentage of battery left, when you want the
synchronization to automatically occur.

■ AC Power: Synchronize when the AC power is detected. Select this checkbox if
you want the synchronization to occur when the device is plugged in.

4.5.2.2 Define Automatic Synchronization Conditions for the Platform
When you choose the Condition tab, you can set under what conditions the automatic
synchronization is allowed or disallowed, as follows:

■ Battery Level: Specify the minimum battery level required in order for an
automatic synchronization to start. The battery level is specified as a percentage.

■ Network Availability: Network quality can be specified using several properties.
For example, if you have a very low network bandwidth and a high ping delay,
you may only want to synchronize your high priority data. To add network
quality condition for a specified data priority, click the "Add" button, which brings
up a screen where you can specify a minimum value for the following network
properties:

– Data Priority: You could have defined records in the snapshot with a data
priority number. Use this condition to specify under what conditions the
different data priority records are synchronized. Data priority can be either
one or zero, where zero is high priority. By default, all records are entered with
a value of NULL, which is the lowest priority.

Note: You can only modify the network settings for the platform
using Mobile Manager, see Section 5.5.1, "Specifying Platform Rules
for Automatic Synchronization" in the Oracle Database Mobile Server
Administration and Deployment Guide for more information.

Create a Sequence

Using Mobile Database Workbench to Create Publications 4-17

– Minimum Network Bandwidth (bits/sec): Configure the minimum bandwidth
(bits/second) in which the automatic synchronization can occur for records
with this data priority.

– Maximum Ping Delay (ms): Configure the maximum ping delay
(milliseconds) in which the automatic synchronization can occur for records
with this data priority.

– Include Dial-up Networks?: The always-on network is used if available.
However, if this network is not available, select "YES" if you want to use any
of the dial-up networks for this data priority.

4.6 Create a Sequence

A sequence is a database object, from which you can generate unique integers. You can
use sequences to automatically generate primary key values. However, when you have
multiple clients accessing a single server, you need a method to guarantee unique
identifying numbers for new records from multiple clients. Oracle Database Mobile
Server provides a method for unique sequence numbers.

After creating a sequence, you can use it to generate unique sequence numbers for
transaction processing. These unique integers can include primary key values. If a
transaction generates a sequence number, the sequence is incremented immediately
whether you commit or roll back the transaction.

For Oracle Database Mobile Server, you can add a sequence to a publication; then, the
sequence is created on all subscribed clients during the initial synchronization. On
each client database, the sequence can be used independently. However, since the
sequences are used to generate primary key and unique key values for snapshot
tables, it is important to ensure that different clients do not generate the same sequence
values. If they did, then conflicts may occur when the clients synchronize their
changes to the server tables.

The Sync Server guarantees uniqueness across all clients. During synchronization, the
Sync Server assigns separate sequence ranges, known as a window, to each client
when necessary. A client cannot increment a sequence beyond its current window.
Once a client exhausts its window, the Sync Server assigns a new window on the next
synchronization. All windows are unique and never reassigned.

Since the sequence windows are obtained from the Sync Server only during
synchronization, there is a chance that the client could exhaust all available sequence
numbers in its window in between synchronization events. To prevent this from

Note: You can only use fast refresh with a high priority restricting
predicate. If you use any other type of refresh, the high priority
restricting predicate is ignored.

See Section 1.2.10, "Priority-Based Replication" in the Oracle Database
Mobile Server Troubleshooting and Tuning Guide for more information.

Note: Sequences are supported only within Berkeley DB. The only
support for sequences on a SQLite Mobile Client is to emulate
sequences in a replicated environment. For details, see
Section 3.1.1.1.6, "Sequences Emulated for SQLite Mobile Clients in
Replicated Environment".

Create a Sequence

4-18 Oracle Database Mobile Server Developer's Guide

happening, the administrator can configure clients to obtain a new window before the
current one is exhausted by setting the threshold value. A threshold is less than the
window size. If the range of values left in the window is less than the threshold size,
then during the next synchronization, a new window be assigned to the client. For
example, you set the window to 200 and the threshold to 25. During a synchronization
event, the Sync Server notices that the current sequence value is greater than or equal
to 175, then it allocates the next window for the client.

The following describes how to use Oracle Database Mobile Server sequences:

■ Only clients use the sequence: If you have more than a single client, you want each
client to use a specific range of unique sequence numbers, so that none of the
records have duplicate sequence numbers.

Specify the start value and the window size. When you define the size of the
window, you provide the Sync Server the number of assigned identifiers for each
client and the range of values never overlaps with those of other clients.

■ Server and clients use the same sequence: If you want the server and one or more
clients to share a sequence, then the server and the client use every other
number—the identifiers are generated where the server uses all even numbers and
the clients use odd numbers—or vice versa, if the start value of the sequence is an
even number. Specify the start value, window size and select the "Generate
Server-side Sequence" option that tells Oracle Database Mobile Server to generate
a server-side sequence. The increment value always defaults to 2 for this case, even
if you specify another number. If you have more than one client, configure the
window size to ensure that the client sequence numbers do not conflict.

4.6.1 Configuring Sequences in MDW
Within Oracle Database Mobile Server, you configure how you want sequence
numbers generated in the sequence definition. In MDW, create a sequence by clicking
File->New->Sequence. When you are creating your publication, configure the
following values to instruct how the sequence is generated for all clients and the
server:

■ Name: This sequence name must be a valid database identifier.

■ Starts With: Enter the number with which you want this sequence to start.

■ Increment: Specify the increment from the starting value for the next value in the
sequence.

■ Window Size: Provide the size of the window that the Sync Server assigns to the
client. For each client, the Sync Server assigns the initial range of sequence values
at the time of subscription. For example, if you set the window size to 100 and the
Starts With value to 1, then the Sync Server assigns the client windows as follows:

■ Client A: sequence numbers 1 through 100

■ Client B: sequence numbers 101 through 200

■ Client C: sequence numbers 201 through 300

Note: If you have checked the "Generate Server-Side Sequence"
checkbox and set the increment value to 1, then this value is ignored
and is set to 2. When you specify the server-side sequence, then both
the client and the server use every other number in the sequence.
Thus, you cannot increment by 1 on the client.

Create a Sequence

Using Mobile Database Workbench to Create Publications 4-19

If any client exhausts their window, they are assigned another 100, which is the
defined window size in our example, during the next synchronization. If you also
click the "Generate Server-Side Sequence" checkbox, then the sequence numbers
used by the clients are the odd numbers in their range, such as 1, 3, 5, 7 and so on.

■ Threshold: When the number of identifiers left in the window is less than the
threshold, a new window of sequence numbers is assigned to the client on the next
synchronization. For example, if you have a window size of 200 and threshold of
25, then when the current sequence number is equal to or greater than 175, the
Sync Server assigns the next window of values to the client.

■ Description: A description of the sequence.

■ Generate server-side sequence: If you want the client and the server-sides to share
a sequence, where one side has all even numbers and the other has the odd
numbers, check this box. If unchecked, then the sequence is created solely for the
client.

When you check the "Generate Server-Side Sequence" checkbox, then no matter
what value is specified for Increment, it always be set to 2. A sequence of the
supplied name is created automatically on the server in the mobileadmin schema
to use all even numbers. Specify a 1 as the Starting Value, so that on the server
side, the sequence uses even values starting with 2 and on the clients, the odd
values are used. Thus, the server and client sequence values are unique.

If there are multiple clients, then to ensure that the clients use unique numbers, set
up separate windows for each client. There is no window for the server, because
the server uses all even numbers in the whole range of the sequence.

For example, the sequence number for the first client starts at 1 and increments by
2 for all of its sequence numbers. The first client still has a window size, which in
this example is 100, but it starts with an odd number within that window and
always increments by 2 to avoid any even numbers. Thus, client A has the
window of 1 to 100, but the sequence numbers would be 1, 3, 5, and so on up to 99.

Oracle Database Mobile Server creates and maintains the sequence based on the
sequence definition in the publication. Once you create a sequence in the project, you
can associate it with a publication. See Section 4.8.3, "Sequence Tab Associates Existing
Sequences With the Publication" for details.

See the Section 2.4.1.8, "Creating Client-Side Sequences for the Downloaded Snapshot"
for more information on sequences.

4.6.2 Configuration Scenarios for Sequence Generation
When setting up a sequence, you can configure one of the following three scenarios:

■ Multiple Clients: In this case, always define Start Value and the Window Size
parameters. When you define the size of the window, you provide the Sync Server
the number of assigned identifiers for each client and the range of values never
overlaps with those of other clients. Also, set the starting value for each client.

Note: If the window size is 100 and the threshold is 25, then no
matter what the increment is, the next window is assigned when the
sequence numbers are equal to or greater than 75. It is based on the
window size, not on the number of sequence values left for the client.

Create a Sequence

4-20 Oracle Database Mobile Server Developer's Guide

■ Server and Clients Use Same Sequence: If you want the server and one or more
clients to share a sequence, select the "Generate Server-Side Sequence" checkbox. If
you have multiple clients, set the Start Value and the Window Size. The checkbox
tells Oracle Database Mobile Server to create a sequence on the server side, where
the clients use the Start Value and the server uses Start Value +1. The identifiers
are generated where the server or the client uses either all odd numbers or even
numbers. The window ensures that the clients do not use the same sequence
window.

4.6.3 Example of a Sequence
For this example, the sequence is defined as follows:

The first client starts at 1 with an increment of 1. The full range of sequential values
provided to client 1 is 200 and a new set of sequential numbers is assigned during
synchronization by the Sync Server when the unused portion of the window is less
than 25.

Oracle Database Mobile Server creates the sequence locally on the mobile client by
executing the following SQL statement:

create sequence audiodb_seq start with 1 maxvalue 200 increment by 1;

On the second client, the Sync Server adjusts the numbers appropriately to
accommodate what was created on client 1 and creates the sequence locally with the
following SQL statement:

create sequence audiodb_seq start with 201 maxvalue 400 increment by 1;

During each synchronization, the Sync Server tracks the number of assigned windows
to ensure that each client has a unique range. When the Sync Server assigns a new set
of sequential numbers as identifiers for the client, it recreates the sequence, as follows:

drop sequence audiodb_seq;
create sequence audiodb_seq start with 401 maxvalue 600 increment by 1;

4.6.4 Example of a Client and Server Sharing a Sequence
You can define a sequence to provide unique sequence values by assigning all odd or
even sequence numbers to either the client or the server. The value specified in the
Start Value sets the starting value for the clients. If the server is sharing a sequence
with a client, then the start value also determines the values for the server. If the
starting value is odd, then the server use all even numbers; if the starting value is
even, then the server uses all odd numbers.

The following example demonstrates how to set up a sequence where the odd
numbers are for the client and the even numbers for the server.

Table 4–2

Parameter Definition

Name audiodb_seq

Start Value 1

Increment 1

Window size 200

Threshold 25

Create and Load a Script Into The Project

Using Mobile Database Workbench to Create Publications 4-21

Enter the following sequence definitions for the client in MDW when defining the
publication:

The sequence on the server starts at 2 and uses all even numbers; within the
publication, you specified that all clients use odd numbers starting at 1.

4.7 Create and Load a Script Into The Project
You can add a script to this project. Create the script on your file system and then
upload it to MDW. Before you add the script to the project, you can use MDW to test
the script. See the following sections for more information:

■ Section 4.7.1, "Writing SQL Scripts"

■ Section 4.7.2, "Load the Script Into the Project"

4.7.1 Writing SQL Scripts
When you write and upload a SQL script to the project, each script is executed
independently by Oracle Database Mobile Server in no specified order. Therefore, if
you have dependencies and need the DDL statements to be executed in a certain order,
include all statements in the correct order in a single script, where each DDL statement
is separated by a semicolon (";").

Alternatively, you can specify the weight for the script when loading them to specify
the order in which each script is executed on the client. See Section 4.7.2, "Load the
Script Into the Project" for more details.

If a SQL script fails upon execution, Oracle Database Mobile Server execute it once
more, in case the failure was due to a dependency of a later script. However, if you
have a script with a dependency on another script, you could effect your performance
while Oracle Database Mobile Server re-executes all of the scripts to resolve
dependencies.

4.7.2 Load the Script Into the Project
Define the script on your machine. Once defined, perform the following:

1. Bring the script into the project by clicking File->New->Script.

Table 4–3

Parameter Definition

Name audiodb_seq

Start Value 1

Increment 2

Window size 200

Threshold 25

Generate server-side sequence Check on

Note: If you upload scripts using one of the Consolidator APIs, you
must also ensure that the order of execution for these scripts does not
matter. Include all dependent DDL statements in a single script and in
the order necessary for clean resolution.

Create a Publication

4-22 Oracle Database Mobile Server Developer's Guide

2. Provide a user-defined name to identify the script and browse for the script in
your file system.

3. Specify the weight, if necessary. You can specify the weight for the script when
loading them to specify the order in which each script is executed on the client. For
example, when creating a master detail table on the client, you must create first the
master table and then the detail table. The client does not know which script
should be executed first, unless you specify a weight to let the client know the
order in which to execute the scripts.

4. Click "OK" to accept the definition and "Cancel" to return to the previous screen.

Once you include a script in the project, you can associate it with a publication. See
Section 4.8.4, "Script Tab Associates Existing Scripts With the Publication" for more
information.

4.8 Create a Publication
Create a publication by clicking File->New->Publication. You can create the
publication at any time. This starts the dialog for creating a publication.

There are six tabs included for configuring information about the new publication.
One configures general information about the publication, one defines event rules for
automatic synchronization, and the others enable you to associate different objects
with the publication.

If you click "OK", then you can associate the objects by selecting the publication name
and then selecting the appropriate tab.

When you are finished creating the publication, click File->Save to save the
publication.

■ Section 4.8.1, "General Tab Configures Publication Name"

■ Section 4.8.2, "Publication Item Tab Associates Publication Items With the
Publication"

■ Section 4.8.3, "Sequence Tab Associates Existing Sequences With the Publication"

■ Section 4.8.4, "Script Tab Associates Existing Scripts With the Publication"

■ Section 4.8.5, "Event Tab Configures Automatic Synchronization Rules for this
Publication"

4.8.1 General Tab Configures Publication Name
The General tab provides the following information about your new publication
within your project:

■ Publication name: Enter a valid Java identifier for the publication name. The name
cannot contain any spaces or special characters.

■ Optional description: You can add a description to remind you of the content of
this publication.

■ Client database name: This defaults to the same name as the publication name.
However, you can modify it. The purpose of this name is to specify the name of
the mobile client database, which is created during the first synchronization.

Create a Publication

Using Mobile Database Workbench to Create Publications 4-23

4.8.2 Publication Item Tab Associates Publication Items With the Publication
Selecting the Publication Item tab from within the publication enables you to associate
any existing publication item to this publication.

Manage Publication Items In This Publication
■ To add an existing publication item to this publication, Click "Add".

■ To remove a publication item from this publication, select the desire publication
item from the list and click "Remove".

■ To edit the details of the association for the publication item, select the desired
publication item and click "Edit".

To accept the current changes, click "OK".

4.8.2.1 Associating a Publication Item to this Publication
To associate any publication item to this publication, the publication item must first
exist. Thus, all of the information requested on this screen is about existing publication
items.

Provide the following information to identify the publication item to associate to this
publication:

Identify Existing Publication Item
From the Name drop-down list, select the name of the publication item.

Updatable or Read-Only Snapshot
Select if the snapshot is updatable or read-only. See Section 2.3.1.1, "Manage
Snapshots" for more details.

■ Read-only snapshots are used for querying purposes. Changes made to the master
table are replicated to the snapshot by the mobile client.

■ Updatable snapshots provide updatable copies of a master table. You can define
updatable snapshots to contain a full copy of a master table or a subset of rows in
the master table that satisfy a value-based selection criteria. You can make changes
to the snapshot which the Mobile Sync propagates back to the master table.

A snapshot can only be updated when all the base tables that the snapshot is
based on have a primary key. If the base tables do not have a primary key, a
snapshot cannot be updated and becomes read-only.

Conflict Resolution
When adding a publication item to a publication, the user can specify winning rules to
resolve synchronization conflicts in favor of either the client or the server. A mobile
server synchronization conflict is detected under any of the following situations:

■ The same row was updated on the client and on the server.

■ Both the client and server created rows with equal primary keys.

■ The client deleted a row and the server updated the same row.

■ The client updated a row and the server deleted the same row. This is considered a
synchronization error for compatibility with Oracle database advanced replication.

■ For systems with delayed data processing, where a client's data is not directly
applied to the base table (for instance in a three tier architecture) a situation could
occur when first a client inserts a row and then updates the same row, while the

Create a Publication

4-24 Oracle Database Mobile Server Developer's Guide

row has not yet been inserted into the base table. In that case, if the DEF_APPLY
parameter in C$ALL_CONFIG is set to TRUE, an INSERT operation is performed,
instead of the UPDATE. It is up to the application developer to resolve the resulting
primary key conflict. If, however, DEF_APPLY is not set, a "NO DATA FOUND"
exception is thrown (see below for the synchronization error handling).

■ All the other errors including nullity violations and foreign key constraint
violations are synchronization errors.

■ If synchronization errors are not automatically resolved, the corresponding
transactions are rolled back and the transaction operations are moved into mobile
server error queue in C$EQ, while the data is stored in CEQ$. The mobile server
database administrators can change these transaction operations and re-execute or
purge transactions from the error queue.

Choose the type of conflict resolution you want for this publication item, as follows:

■ Client wins—When the client wins, the mobile server automatically applies client
changes to the server. And if you have a record that is set for INSERT, yet a record
already exists, the mobile server automatically modifies it to be an UPDATE.

■ Server wins—If the server wins, the client updates are not applied to the
application tables. Instead, the mobile server automatically composes changes for
the client. The client updates are placed into the error queue, just in case you still
want these changes to be applied to the server—even though the winning rules
state that the server wins.

■ Custom—You have created your own callbacks to resolve the conflict resolution.

All synchronization errors are placed into the error queue. For each publication item
created, a separate and corresponding error queue is created. The purpose of this
queue is to store transactions that fail due to unresolved conflicts. The administrator
can attempt to resolve the conflicts, either by modifying the error queue data or that of
the server, and then attempt to re-apply the transaction.

See Section 2.10, "Resolving Conflicts with Winning Rules" for more information.

DML Callback
A user can use Java to specify a customized PL/SQL procedure which is stored in the
mobile server repository to be called in place of all DML operations for this
publication item. There can be only one mobile DML procedure for each publication
item. See Section 2.4.1.13, "Callback Customization for DML Operations" for more
information on how to specify a DML Callback.

Enter a string for the schema and package of the DML callback, such as
schema.package_name.

Grouping Function
If you know that two tables should share a map, but Oracle Database Mobile Server
would not normally associate these tables, provide a grouping function that denotes
the shared publication item data between the tables.

The grouping function is a PL/SQL function with the following signature.

(

Note: The mobile server schema owner needs to be granted execute
privilege on the defined grouping function.

Create a Publication

Using Mobile Database Workbench to Create Publications 4-25

CLIENT in VARCHAR2,
PUBLICATION in VARCHAR2,
ITEM in VARCHAR2
) return VARCHAR2.

The returned value must uniquely identify the client's group.

In this field, provide the PL/SQL grouping function fully-qualified, either with
schema.package.function_name or schema.function_name.

See the Section 1.2.7, "Shared Maps" in the Oracle Database Mobile Server Troubleshooting
and Tuning Guide for more information.

Priority Condition
Provide a string that is to be added to the publication item query statement to limit
what is returned based on priority.

See Section 1.2.10, "Priority-Based Replication" in the Oracle Database Mobile Server
Troubleshooting and Tuning Guide for more information.

MyCompose Class
Provide a string with the full path and classname of the location and name of the
MyCompose Class. See Section 2.6, "Customize the Compose Phase Using MyCompose"
for more information on this class.

Weight
You can rate the order in which each publication item in this publication is executed by
specifying the weight. This should be a number. Each publication item must have a
unique number in ascending order. The first publication item executed is the one with
the weight of one.

4.8.3 Sequence Tab Associates Existing Sequences With the Publication
You can only associate an existing sequence with the publication on this screen. To add
an existing sequence, click "Add". Create a sequence through the
File->New->Sequence screen.

Click on the drop-down list and select one of the existing sequences to add to the
publication. Click "OK" to add the sequence; click "Cancel" to go back to the previous
screen.

4.8.4 Script Tab Associates Existing Scripts With the Publication
You can only associate an existing script with the publication on this screen. To add an
existing script, click "Add".

Click on the drop-down list and select one of the existing scripts to add to the
publication. Click "OK" to add the script; click "Cancel" to go back to the previous
screen.

Note: Sequences are supported only within Berkeley DB.

Note: You can import a script through the File->New->Script screen.

Import Existing Publications and Objects from Repository

4-26 Oracle Database Mobile Server Developer's Guide

It is important that all scripts follow the instructions listed in Section 4.7.1, "Writing
SQL Scripts".

4.8.5 Event Tab Configures Automatic Synchronization Rules for this Publication
When you select the Event Tab, you can configure data event rules for this publication,
which apply to all automatic synchronization enabled publication items associated in
this publication.

Data events define when an automatic synchronization is triggered.

■ Client Data Events—Synchronize if the client database contains more than
<number> modified records, where you specify the <number> of modifed records in
the client database to trigger an automatic synchronization.

■ Server Data Events—Synchronize if the out queue contains more than <number>
modified records, where you specify the <number> of modifed records in the client
database to trigger an automatic synchronization.

The lowest value that can be provided in these fields is 1. Specify a high value if you
want the synchronization to occur based upon other rules. Click "Apply" when
finished.

4.9 Import Existing Publications and Objects from Repository
You can import existing publications, publication items, sequences, or scripts that
already exist within the repository by choosing the Project->Add From Repository
option, as described in the following sections:

■ Section 4.9.1, "Import Existing Publication from Repository"

■ Section 4.9.2, "Import Existing Publication Item From the Repository"

■ Section 4.9.3, "Import Existing Sequence From the Repository"

■ Section 4.9.4, "Import an Existing Script From the Repository"

4.9.1 Import Existing Publication from Repository
You can add an existing publication that already exists in the repository to this project
by selecting Project->Add From Repository->Publication. All associated
objects—publication items, sequences, or scripts—are also pulled into the project with
the publication.

To view all publications in the repository, click "Search". All publications are shown in
the left-hand screen. To limit the displayed publications to only those with a certain
string as part of the name, provide this string in the Filter and then click "Search". Only
those publications that match the filter are shown.

Select the desired publications and either double-click or select the right arrow to
move them to the right window. Once all desired publications are in the right window,
click "OK" to move these publications into the project.

Note: In the Search Filter, you can use the same pattern matching
characters in a valid SQL WHERE clause. The filter is case-sensitive; use
upper-case characters.

Import Existing Publications and Objects from Repository

Using Mobile Database Workbench to Create Publications 4-27

4.9.2 Import Existing Publication Item From the Repository
You can add an existing publication item that already exists in the repository to this
project by selecting Project->Add From Repository->Publication Item.

To view all publication items in the repository, click "Search". All publication items are
shown in the left-hand screen. To limit the displayed publication items to only those
with a certain string as part of the name, provide this string in the Filter and then click
"Search". Only those publication items that match the filter are shown.

Select the desired publication items and either double-click or select the right arrow to
move them to the right window. Once all desired publication items are in the right
window, click "OK" to move these publication items into the project.

Once added into the project, you still must associate them with the publication if you
want to test the synchronization of the publication item. See Section 4.8.2, "Publication
Item Tab Associates Publication Items With the Publication" for more information.

4.9.3 Import Existing Sequence From the Repository
You can add an existing sequence that already exists in the repository to this project by
selecting Project->Add From Repository->Sequence.

To view all sequences in the repository, click "Search". All sequences are shown in the
left-hand screen. To limit the displayed sequences to only those with a certain string as
part of the name, provide this string in the Filter and then click "Search". Only those
sequences that match the filter are shown.

Select the desired sequences and either double-click or select the right arrow to move
them to the right window. Once all desired sequences are in the right window, click
"OK" to move these sequences into the project.

Once added into the project, you still must associate them with a publication if you
want to test it with a synchronization. See Section 4.8.3, "Sequence Tab Associates
Existing Sequences With the Publication" for more information.

4.9.4 Import an Existing Script From the Repository
You can add an existing script that already exists in the repository to this project by
selecting Project->Add From Repository->Script.

Note: To search only for objects that match a condition, designate the
condition in the Filter box and click "Search". You can use the same
pattern matching characters in a valid SQL WHERE clause. The filter
is case-sensitive; use upper-case characters.

Note: Sequences are supported only within Berkeley DB.

Note: To search only for objects that match a condition, designate the
condition in the Filter box and click Search. You can use the same
pattern matching characters in a valid SQL WHERE clause. The filter is
case-sensitive; use upper-case characters.

Create a Virtual Primary Key

4-28 Oracle Database Mobile Server Developer's Guide

To view all scripts in the repository, click "Search". All scripts are shown in the
left-hand screen. To limit the displayed scripts to only those with a certain string as
part of the name, provide this string in the Filter and then click "Search". Only those
scripts that match the filter are shown.

Select the desired scripts and either double-click or select the right arrow to move
them to the right window. Once all desired scripts are in the right window, click "OK"
to move these scripts into the project.

Once added into the project, you still must associate them with a publication if you
want to test it with a synchronization. See Section 4.8.4, "Script Tab Associates Existing
Scripts With the Publication" for more information.

4.10 Create a Virtual Primary Key
For fast refresh, you must have a primary key. If the table, view, or synonym does not
currently have a primary key, you can designate one of the columns as the virtual
primary key through this screen, as follows:

1. Using the drop-down lists, choose the following:

■ Schema name

■ Object type: table, view or synonym type

■ Any string that exists within the object name, if desired

2. Click "Search", which brings up a list of available objects.

3. From the object list, choose the appropriate table, view, or synonym. Once chosen,
the available columns are listed.

4. Select the columns that you wish to be the primary key and click "OK".

If you have a composite primary key, iteratively add each column within the
composite primary key.

4.11 Test a Publication by Performing a Synchronization
You can create a test to perform a synchronization of the designated publication. Click
Project->Test Publication. When you create the test, MDW automatically creates the
subscription for the user.

Note: To search only for objects that match a condition, designate the
condition in the Filter box and click "Search". You can use the same
pattern matching characters in a valid SQL WHERE clause. The filter
is case-sensitive; use upper-case characters.

Note: All scripts added to the project must follow the guidelines as
described in Section 4.7.1, "Writing SQL Scripts".

Note: Any virtual primary key must be unique and not NULL.

Test a Publication by Performing a Synchronization

Using Mobile Database Workbench to Create Publications 4-29

1. Click "Create" to design the test and provide the following information:

■ Name: If the test is remote, then the user name is populated with the
registered owner of the remote target device. If the test is local, then the user
name should be a valid mobile user in the repository.

■ Publication: From the drop-down list, select one of the available publications
in this project for this test.

■ Client type: Designate if the client is local or remote. Default is local. If Active
Sync is not installed, the remote option is not available.

■ Specify a user that is defined in Mobile Manager.

Click "OK" to save the test; click "Cancel" to revert back to the previous screen.

2. Once created, click "Synchronize" to perform a synchronization for the designated
publication. On the pop-up dialog, provide the password for the given user name
and the URL of the mobile server. The URL for the mobile server should be the
hostname/mobile.

Click "Option" to specify priority of the publication items, as follows:

■ High Priority: Limits synchronization to server tables flagged as high priority,
otherwise all tables are synchronized.

■ Push Only: Upload changes from the client to the server only, do not
download. This is useful when data transfer is one way, client to server.

■ Complete Refresh: All data is refreshed from the server to the client.

■ Debug: Turn on debugging when synchronizing.

■ Selective Synchronization: Determine which publication and publication items
are allowed to synchronize. When you click this option, move the publication
items that you want to synchronize from the left window to the right window
using the arrow buttons. For details on how selective synchronization
performs, see Section 3.1.3.1.8, "Manage What Tables Are Synchronized With
ocSetTableSyncFlag" and Section 3.1.1.1.4, "Selective Synchronization".

Click "OK" to save the synchronization options or "Cancel" to return to the
previous screen.

Note: The Project -> Test Publication menu is disabled and not
supported if the mobile client database for the project is Java DB.

Note: To remove any tests, select the test and click "Remove".

Note: You can only use fast refresh with a high priority restricting
predicate. If you use any other type of refresh, the high priority
restricting predicate is ignored.

See Section 1.2.10, "Priority-Based Replication" in the Oracle Database
Mobile Server Troubleshooting and Tuning Guide for more information.

Deploy the Publications in the Project to the Repository

4-30 Oracle Database Mobile Server Developer's Guide

4.12 Deploy the Publications in the Project to the Repository
You can deploy one or more of the publications in the current project from the
development/test mobile server repository to a target production mobile server
repository by clicking File->Deploy. You should adequately test all publications before
deploying to the production mobile server repository.

All available publications are displayed in the project publications section. To limit the
displayed publications to only those with a certain string as part of the name, provide
this string in the Filter and then click "Search". Only those publications that match the
filter are shown.

Select the desired publications and click "OK" to deploy these publications into the
repository. A dialog appears where you specify the remote database connection
information, as follows:

■ User name and password for database connection authentication.

■ JDBC Driver type: Based on the type of the JDBC driver, different information is
required. At this time, you can only use the JDBC Thin driver. Provide the host
name, port, and SID for the remote database.

Click "OK" to accept the input values for the remote database; click "Cancel" to return
to the previous screen.

Note: In Ubuntu 14.04 64-bit, the following library dependencies
must be solved first before testing a publication:

■ QT3 is required

■ Libraries of libjpeg.so.62 and libmng.so.1 are required

■ libz.so may not be found. This is solved by:

sudo ln -s /lib/x86_64-linux-gnu/libz.so.1 /lib/x86_
64-linux-gnu/libz.so

Always check into ${ORACLE_HOME}/mobile/sdk/bin/MDW.log if
errors appear

Note: In the Search Filter, you can use the same pattern matching
characters in a valid SQL WHERE clause. The filter is case-sensitive; use
upper-case characters.

5

Using the Packaging Wizard 5-1

5 Using the Packaging Wizard

The following sections enable you to package and publish your mobile application
definitions using the Packaging Wizard.

■ Section 5.1, "Using the Packaging Wizard"

■ Section 5.2, "Packaging Wizard Synchronization Support"

5.1 Using the Packaging Wizard
After you have completed the code implementation for your application, you need to
define the SQL commands that retrieve the data for the user snapshot—also known as
a publication. MDW (as described in Chapter 4, "Using Mobile Database Workbench to
Create Publications") is a graphical tool that enables you to define the publications for
your application. Then, use the Packaging Wizard to package the application and
publish the final application product to the mobile server to complete the subscription.

In general, you can create a publication—or components of a publication—using one
of the following methods:

■ SQL on the back-end Oracle database

■ Consolidator APIs

■ MDW

■ Packaging Wizard

If you create the publication using any method other than the Packaging Wizard, you
can import the definition into the Packaging Wizard. However, these tools and the
Packaging Wizard are separate. Thus, once the publication is published by the
Packaging Wizard, you can only modify it through the Packaging Wizard.

Important: If you modify the publication or any component of the publication using
any method other than the Packaging Wizard, then it does not show up in your
published application.

The following is the recommended method for creating the publication for the
application:

■ Create a new mobile application definition—An application definition is more
than the code that you have implemented. It consists of the implementation, the
publication with its publication items, and other components. Use the Mobile

Note: If you create your publication using the Packaging Wizard,
you cannot use remote databases for your application.

Using the Packaging Wizard

5-2 Oracle Database Mobile Server Developer's Guide

Database Workbench (MDW) tool (as described in Chapter 4, "Using Mobile
Database Workbench to Create Publications" for performing an iterative approach
to defining your publications.

■ Edit an existing mobile application definition within the Packaging Wizard—You
can always go back and edit an existing mobile application definition for tuning
purposes, to modify the publication, or other reasons.

■ Package a mobile application definition for easy deployment within the Packaging
Wizard—Once the application is finished with development, you need to package
the components into a JAR file before you can publish the application definition.

■ Publish an application definition to the mobile server—You can either publish
your application definition to the mobile server with the Packaging Wizard or
through the Mobile Manager.

The following sections describe how to use the Packaging Wizard tool:

■ Section 5.1.1, "Starting the Packaging Wizard"

■ Section 5.1.2, "Specifying New Application Definition Details"

■ Section 5.1.3, "Listing Application Files"

■ Section 5.1.4, "Publish the Application"

■ Section 5.1.5, "Editing Application Definition"

■ Section 5.1.6, "Troubleshooting"

5.1.1 Starting the Packaging Wizard
To launch the Packaging Wizard, enter the following using a Command Prompt
window.

runwtgpack

Figure 5–1 shows the Welcome screen for the Packaging Wizard, which enables you to
create, edit, or remove the mobile application definition as described fully in Table 5–1.

Note: If you enable the mobile server to be SSL-Enabled, then you
have to change the configuration on the host where the Packaging
Wizard is located in order for it to successfully communicate with the
mobile server.

In order for Packaging Wizard to be SSL-Enabled, set the SSL
parameter to TRUE in the mobile.ora file located on the host where the
MDK is installed.

Using the Packaging Wizard

Using the Packaging Wizard 5-3

Figure 5–1 Packaging Wizard - Make A Selection Dialog

Click OK. This brings up the 'Select the client application attributes' dialog, with which
you want to package your application definition. As Figure 5–2 displays, this dialog
has a radio button group from which you can specify the database type, a pull-down
menu from which you can specify the platform, and a pull-down menu from which
you can specify the locale. The available platforms in the Platform pull-down menu
only provide those options which are applicable to the selected database type.

For Berkeley DB, the available platform options are as follows:

■ iOS stands for Berkeley DB iOS in mobile manager

■ Java All Platforms stands for all Java platforms where Berkeley DB Java client is
available

■ Windows 32/64 stands for Berkeley DB WIN32 in the Mobile Manager

■ Linux 32/64 stands for Berkeley DB Linux x86 in the Mobile Manager

Table 5–1 Make a Selection Dialog

Feature Description

Create a new
application
definition

Define a new mobile application definition with the application
implementation, publication items, and so on.

Edit an existing
application
definition

Edit an existing mobile application definition. When selected, all existing
application definitions are presented in a drop-down box. Users can
select the desired mobile application definition from the list.

All applications listed in this list have been created or published using
the Packaging Wizard. Any application definition created by MDW not
appear in this list.

Remove an existing
application
definition

Remove an existing mobile application definition. When selected, all
existing application definitions are presented in a drop-down box. Users
can select the desired mobile application definition from the list.

This option removes the application definition from the Packaging
Wizard; it does not delete the application from within the mobile server.

Open a Packaged
application
definition

Select an application definition that has been packaged a JAR file. You
can enter the name of the packaged application or locate it using the
’Browse’ button.

Using the Packaging Wizard

5-4 Oracle Database Mobile Server Developer's Guide

■ Windows CE/Mobile ARMv4i stands for Berkeley DB PPC50 and Berkeley DB
PPC60 ARMV4I in the Mobile Manager

■ Android stands for Berkeley DB Android in the Mobile Manager

For SQLite, the available platform options are as follow:

■ iOS stands for SQLite iOS in mobile manager

■ Java All Platforms stands for all Java platforms where SQLite Java client is
available

■ Windows 32/64 stands for SQLite WIN32 in the Mobile Manager

■ Linux 32/64 stands for SQLite Linux x86 in the Mobile Manager

■ Windows CE/Mobile ARMv4i stands for SQLite PPC60 ARMV4I in the Mobile
Manager

■ Android stands for SQLite Android in the Mobile Manager

■ BlackBerry stands for SQLite BlackBerry in the Mobile Manager

For Java DB, the available platform options are as follow:

■ Java All Platforms stand for all Java SE platforms where Java DB database is
supported

Once selected, click "Next".

Figure 5–2 Select a Platform Dialog

5.1.2 Specifying New Application Definition Details
The Application dialog enables you to name a new application and specify its storage
location on the mobile server.

Using the Packaging Wizard

Using the Packaging Wizard 5-5

Figure 5–3 Application Dialog for Non iOS Applications

Figure 5–4 Application Dialog for iOS Applications

Table 5–2 describes the Application dialog.

Using the Packaging Wizard

5-6 Oracle Database Mobile Server Developer's Guide

Table 5–2 Application Dialog Description

Field Name Description Required

Application Name The name of the new mobile application definition.

For iOS applications, application name is defined by the
application bundle id, so the plist file needs to be provided
by clicking the "Browse" button, see Figure 5–4. It will
retrieve the application bundle id from the plist file.

For non-iOS applications, application name is defined by
the text that you enter as shown in Figure 5–3.

Yes

Virtual Path A path that is mapped from the root directory of the server
repository to the mobile application itself. The virtual path
eliminates the need to refer to the application entire
directory structure. It indicates that all of the
subdirectories and all of the files that are in the virtual
path be uploaded exactly as they are in the directory
structure to the mobile server repository when the
application is published. It also provides the application
with a unique identity.

The name that you enter as the virtual path of the
application becomes the application root directory within
the mobile server repository, when the application is
published. Consequently, you can specify the application
root directory by the name that you enter in the virtual
path field. This name can be different from the application
name, but should not contain spaces. For example, your
application name can be ’Sales Office’ and your virtual
path ’/Admin’. In this case, ’/Admin’ becomes the name
of the application root directory within the mobile server
repository. The application root directory is the location
where the actual application files are stored within the
mobile server repository.

When the administrator publishes the application, the
Packaging Wizard automatically uses the name that you
entered in the virtual path as the name of the application
root directory in the mobile server repository. However,
the administrator can change the name of the application
root directory in the mobile server repository by entering a
different name for it when the administrator publishes the
application.

Yes

Description A brief description of the mobile application. Yes

Local Application
Directory

The directory on the local machine that contains all
components of the application. You can type this location
or locate it using the "Browse" button.

During development, the application root directory is set
to the local application directory.

Yes

Using the Packaging Wizard

Using the Packaging Wizard 5-7

Click "Next" to advance to the next screen.

Publication Name Publication name of an existing application in the Mobile
Server repository. You can enter the publication name or
locate it using the "Browse" button.

If you choose to enter the publication name, ensure that
the publication already exists in the Mobile Server
repository where you will publish the application.

If you choose to locate the publication using the "Browse"
button, ensure that it satisfies either of the following
conditions:

■ the publication exists in the Mobile server repository
where you will publish the application

■ the publication exists in another Mobile server
repository and it was originally created with Mobile
Database Workbench the publication exists in the
Mobile server repository where you will publish the
application

Note: these two Mobile servers should have the same base
tables for your publication

For example, you have two Mobile servers with matching
repository user and application schema names:

■ one in the production environment, with
MOBILEADMIN as its repository user and MASTER
as its application schema user in database instance A

■ another in the test environment, with
MOBILEADMIN as its repository user and MASTER
as its application schema user in another database
instance B

If you have a publication based on base table MASTER.T1
in the test environment and it was created with Mobile
Database Workbench, you do the following to publish an
application associated with this publication to the
production environment:

■ Locate the publication using the "Browse" button

■ Enter a JDBC connection to MOBILEADMIN in
database instance A. This is to get the mada data of
the publication in MOBILEADMIN and create
mada.xml. Mada.xml is then used to create the
publication in the production environment. This is
done when you publish the application associated
with the publication to the production environment.

When you locate a publication using the "Browse" button,
you need to specify schema name, password and JDBC
url. The schema name, password and JDBC url is the
mobile server repository user name, password (with
administrator privilege) and JDBC url where the
publication already exists. The default mobile server
repository user name is MOBILEADMIN.

For the example above, the schema name is
MOBILEADMIN and the JDBC url is the connection to
MOBILEADMIN in database instance A.

No

Table 5–2 (Cont.) Application Dialog Description

Field Name Description Required

Using the Packaging Wizard

5-8 Oracle Database Mobile Server Developer's Guide

5.1.3 Listing Application Files
Use the Files screen to list your application files and to specify their location on the
local machine. The Packaging Wizard analyzes the contents of the Local Application
Directory and displays each file's local path.

Figure 5–5 displays the Files screen.

Figure 5–5 Files Tab

You can add, remove, or load any of the files that are listed in the "Files" dialog. If you
are creating a new application, the Packaging Wizard automatically analyzes and
loads all files listed under the local directory when you proceed to the "Files" dialog. If
you are editing an existing application, upload your individual application files using
the "Load" button.

When you click the "Load" button, the "Input" dialog appears. You can use the "Input"
dialog to create a comma-separated list of filters that either include or exclude
application files from the upload process. To exclude a file, type a preceding minus
sign (-) before the file name. For example, to load all files but exclude files with the
.bak and .java suffixes, enter the following.

,-.bak,-*.java

Figure 5–6 displays the Input dialog.

Table 5–3 Files Tab Description

Field Description Required

Local Path The absolute path of each mobile application file.
Each entry on the list includes the complete path
of the individual file or directory.

Yes

Using the Packaging Wizard

Using the Packaging Wizard 5-9

Figure 5–6 Input Dialog

Once you have loaded all relevant files, click "Finish" to complete the packaging and
start the publishing of your application.

5.1.4 Publish the Application
Once the packaging is complete, the Packaging Wizard brings up the following screen,
so you can choose whether to start the publishing or to complete the packaging to be
published at another time.

Figure 5–7 Publish the Application

On this screen, you can choose one of the following:

■ Create files: You can package all the information you have gathered for the
application and its files into a JAR file. This JAR file can be used at a future date to
be published to any mobile server repository. If chosen, you are asked for a
location on where to store the JAR file.

■ Publish the current application: This publishes all of the information you have
gathered for the application and its files directly to the mobile server repository.

Packaging Wizard Synchronization Support

5-10 Oracle Database Mobile Server Developer's Guide

If chosen, you will be prompted for the URL, user name and password for the
mobile server repository. You will also be asked for the repository directory and if
you want to make this application public.

■ Restart wizard: This does not save any of your work for this application and starts
the Packaging Wizard without any saved data.

5.1.5 Editing Application Definition
You can edit application definitions by launching the Packaging Wizard and selecting
"Edit an existing application definition."

5.1.6 Troubleshooting
The Packaging Wizard also supports development mode. In this mode, the Packaging
Wizard only enables you to define application information, list the application files,
and make registry changes. Since the application is packaged to your local machine, it
requires neither connectivity nor database information.

To launch the Packaging Wizard in development mode, enter the following using the
Command Prompt.

runwtgpack -d

5.2 Packaging Wizard Synchronization Support
The Packaging Wizard and the Mobile Manager provide the ability to perform the
most commonly used functions of the publish and subscribe model, package and
publish applications, create or drop users, and create or drop subscriptions. More
sophisticated functionality is provided by the Consolidator Manager and Resource
Manager APIs. Table 5–4 describes basic features.

Note: In Ubuntu 14.04 64-bit, publishing the application to mobile
server may fail. In ${ORACLE_HOME}/mobile/sdk/bin/MDW.log,
there may be errors that libssl.so.6 or libcrypto.so.6 is missing. This
can be solved by commands below:

■ sudo ln -s /lib/x86_64-linux-gnu/libssl.so.1.0.0 /lib/x86_
64-linux-gnu/libssl.so.6.

■ sudo ln -s /lib/x86_64-linux-gnu/libcrypto.so.1.0.0 /lib/x86_
64-linux-gnu/libcrypto.so.6.

Table 5–4 Packaging Wizard Synchronization Support

Function Packaging Wizard
Mobile
Manager API

Open Connection No No Yes

Create User No Yes Yes

Drop User No Yes Yes

Create Publication Yes No Yes

Create Publication Item Yes No Yes

Create Publication Item Index Yes No Yes

Drop Publication No Yes Yes

Packaging Wizard Synchronization Support

Using the Packaging Wizard 5-11

More advanced features of Data Synchronization are only generally available by using
the Consolidator Manager and Resource Manager APIs. Table 5–5 describes these
features.

Drop Publication Item Special - See the Packaging
Wizard documentation for
more details.

No Yes

Drop Publication Item Index Yes No Yes

Create Sequence Yes No Yes

Create Sequence Partition Yes No Yes

Drop Sequence Yes No Yes

Drop Sequence Partition Yes No Yes

Add Publication Item Yes No Yes

Remove Publication Item No No Yes

Create Subscription No Yes Yes

Deinstantiate Subscription No No Yes

Set Subscription Parameter No Yes Yes

Drop Subscription No Yes Yes

Commit Transaction No No Yes

Rollback Transaction No No Yes

Close Connection No No Yes

Table 5–5 Data Synchronization Advanced Function Description

Function Packaging Wizard
Mobile
Manager API

Create Virtual Primary Key Column Yes No Yes

Drop Virtual Primary Key Column Yes No Yes

Add Mobile DML Procedure Yes No Yes

Remove Mobile DML Procedure Yes No Yes

Reinstantiate Publication Item No No Yes

Parent Hint Yes No Yes

Dependency Hint Yes No Yes

Remove Dependency Hint Yes No Yes

Enable Publication Item Query Cache No No Yes

Disable Publication Item Query Cache No No Yes

Primary Key Hint Yes No Yes

Purge Transaction No No Yes

Execute Transaction No No Yes

Complete Refresh Yes Yes Yes

Table 5–4 (Cont.) Packaging Wizard Synchronization Support

Function Packaging Wizard
Mobile
Manager API

Packaging Wizard Synchronization Support

5-12 Oracle Database Mobile Server Developer's Guide

Execute Statement No No Yes

Generate Metadata No No Yes

Reset Cache No No Yes

Cache Dependencies No No Yes

Remove Cache Dependencies No No Yes

Get Current Time No No Yes

Authenticate No Yes Yes

Set Restricting Predicate No No Yes

Alter Publication Yes No Yes

Table 5–5 (Cont.) Data Synchronization Advanced Function Description

Function Packaging Wizard
Mobile
Manager API

6

Create and Manage Jobs with APIs 6-1

6 Create and Manage Jobs with APIs

The following sections describe how you can manage and create jobs with
ConsolidatorManager APIs:

■ Section 6.1, "Managing Scheduled Jobs Using ConsolidatorManager APIs"

■ Section 6.2, "Start a Standalone Job Engine In Separate JVM"

■ Section 6.3, "Using the ConsolidatorManager APIs to Create Jobs"

6.1 Managing Scheduled Jobs Using ConsolidatorManager APIs
Application developers can define, submit, and manage jobs programmatically based
on a pre-determined time and interval. For example, jobs can be scheduled to run
repeatedly for a specified duration on any specified day or days of the week or month.
Administrators can schedule jobs to run repeatedly for a specified number of months,
weeks or specified days of the month or week.

The Job Scheduler API schedules and executes jobs using a job engine. It is a generic
component which enables apply and compose functions for MGP, device manager
jobs, and custom jobs.

■ Using the class oracle.lite.sync.ConsolidatorManager, application developers
can register or de-register a job class, create, drop, enable or disable a job, search,
and delete a job execution log.

■ Use other supporting classes, such as Job, Schedule, ExecutionResult and
ExecutionLog in the oracle.lite.sync.job package to manage your scheduled
jobs.

For more information on these classes and their methods, refer to the Oracle Database
Mobile Server JavaDoc.

6.2 Start a Standalone Job Engine In Separate JVM
If you want to execute a Standalone Job engine in a separate JVM from any of the
mobile servers in the farm, then perform the following:

1. Retrieve a connection to the database with the Consolidator Manager
openConnection method. Pass in the Mobile Manager administrator user name,
password and optionally, the JDBC URL to the back-end Oracle database.

2. Create a new Job engine with the JobEngine class and start it with the startUp
method. The Standalone Job engine executes in a separate thread, which you can
terminate from the main thread.

3. Define how long the thread is to sleep between execution of all jobs.

Using the ConsolidatorManager APIs to Create Jobs

6-2 Oracle Database Mobile Server Developer's Guide

4. Terminate the Standalone Job engine when you have completed all activities.

JobEngine JobEngine = new JobEngine();
JobEngine.startUp();
if (JobEngine.runnerThreadException != NULL){
 System.out.println("runnerThreadException:");
 JobEngine.runnerThreadException.printStackTrace();
}

Thread.currentThread().sleep(60*1000);

if (JobEngine.runnerThreadException != NULL){
 System.out.println("runnerThreadException:");
 JobEngine.runnerThreadException.printStackTrace();
}
JobEngine.shutDown();

6.3 Using the ConsolidatorManager APIs to Create Jobs
Within the oracle.lite.sync.ConsolidatorManager class, there are several APIs,
which are documented fully in the Oracle Database Mobile Server JavaDoc, that enable
you to create, register, and schedule your job.

While these methods are described fully in the Oracle Database Mobile Server JavaDoc,
the following demonstrates the order in which you would execute the methods:

1. Create your job class by implementing the oracle.lite.job.Job interface.
Implement the Job interface methods, as follows:

■ init method—This method is invoked by the Job Scheduler when the job is
loaded.

■ execute method—This method is invoked by the Job Scheduler when the job
is scheduled to execute. Put a call into your application within this method.
The Job Scheduler passes in the input parameter that was provided when the
job is created—either with the createJob method or within the Mobile
Manager Job Scheduler screen. When finished, the execute method returns an
object of class type ExecutionResult containing whether the job was a success
or failure.

■ destroy method—This method is invoked after the job completes.

2. After you have created your job class, register it with the registerJobClass
method.

3. Create the job in the Job Scheduler by executing the createJob method. One of the
input parameters is an object of class type Schedule, which defines when the job is
executed. There are also other management methods that correspond to the
Mobile Manager GUI, such as dropJob, enableJob, and disableJob.

4. If you want to retrieve any logs, execute the getJobExecutionLogs method, which
retrieves objects of ExecutionLog class.

Note: The following example demonstrates how to start up a
Standalone Job engine in its own thread. It executes all of the jobs that
have been scheduled either through the API or through the Mobile
Manager Job Scheduler screens, because the Job Scheduler retrieves
the scheduled job information from the repository.

7

Customizing Oracle Database Mobile Server Security 7-1

7 Customizing Oracle Database Mobile Server
Security

Managing the provided security within Oracle Database Mobile Server is described in
Chapter 9, "Configuring Security in the Oracle Database Mobile Server" in the Oracle
Database Mobile Server Administration and Deployment Guide. This chapter describes how
to customize authentication to provide your own mechanisms to be used within
Oracle Database Mobile Server.

The following section details security issues for Oracle Database Mobile Server:

■ Section 7.1, "Providing Your Own Authentication Mechanism for Authenticating
Users for the Mobile Server"

7.1 Providing Your Own Authentication Mechanism for Authenticating
Users for the Mobile Server

You can provide an external authenticator for the mobile server to authenticate users
with passwords as well as their access privileges to applications. For example, in an
enterprise environment, you may have your user data, such as employee information,
stored in a LDAP-based directory service. The mobile server can retrieve the user
information from the LDAP directory—or from any custom User Management
System—if configured with your own implementation of an external authenticator.
The mobile server links the external user information to the mobile server repository.

The following sections describe how to implement and use an external authentication
method for Oracle Database Mobile Server:

■ Section 7.1.1, "Implementing Your External Authenticator"

■ Section 7.1.2, "Registering External Authenticator"

■ Section 7.1.3, "User Initialization Scripts"

7.1.1 Implementing Your External Authenticator
In order to use an external authenticator, you must implement the
oracle.lite.provider.Authenticator Java interface and configure the
implementation in the mobile.ora file.

Implement the following methods in your external authenticator. The mobile server
invokes each of these methods as appropriately.

■ Section 7.1.1.1, "Initialization for the External Authenticator"

■ Section 7.1.1.2, "Destruction of the External Authenticator"

Providing Your Own Authentication Mechanism for Authenticating Users for the Mobile Server

7-2 Oracle Database Mobile Server Developer's Guide

■ Section 7.1.1.3, "The Authentication Method for the External Authenticator"

■ Section 7.1.1.4, "The User Instantiation Method for the External Authenticator"

■ Section 7.1.1.5, "Retrieve the User Name or the User Global Unique ID"

■ Section 7.1.1.6, "Log Off User"

■ Section 7.1.1.7, "Change User Password"

7.1.1.1 Initialization for the External Authenticator
The mobile server invokes the initialize method before calling any other method of
provider class. This method be called only once when the provider is initialized.

Method: void initialize (String metaData) throws Exception
Parameter: String metaData (Reserved for future use)

7.1.1.2 Destruction of the External Authenticator
The mobile server invokes the destroy method when the system shutdowns. Provider
implementation should implement all the cleanup code in this method.

Method: void destroy() throws Exception
Parameter: None

7.1.1.3 The Authentication Method for the External Authenticator
Authenticate a user and return a session handle with the authenticate method. The
returned session handle is passed to the logOff method when the user logs off from
the system. Note that the logOff method may not be called for each successful
authenticate method call. Some of the mobile server clients may use the
authenticate method to verify the user credential and not for logging on to the
system.

Method: Object authenticate (String uid, String pwd) throws SecurityException
Parameter: User Id (or User Name) and password string
Return: Session handle or NULL

You can pass error and warning information, as follows:

■ Failure: Pass along any error information, such as why the authentication failed.
Use the AuthException class, available in the package
oracle.lite.provider.auth, to pass along failure information.

■ Warning: Pass along any warnings, such as the situation when the user's password
is about to expire. Use the ExtAuthResult class, available in the package
oracle.lite.provider.auth, to pass along warning information.

Refer to the Oracle Database Mobile Server API Specification for more details on these
exception classes.

7.1.1.4 The User Instantiation Method for the External Authenticator
If the user has not been instantiated in the mobile server repository, then the mobile
server invokes the getInitializationScripts method—after authenticating the
user—to retrieve the initialization scripts for the user. The mobile server uses the
initialization scripts to instantiate the user in the mobile server and assign access rights
to applications and data. See Section 7.1.3, "User Initialization Scripts" for more
information.

Method: StringBuffer getInitializationScripts (Object sid)
Parameter: Session handle returned by 'authenticate' method

Providing Your Own Authentication Mechanism for Authenticating Users for the Mobile Server

Customizing Oracle Database Mobile Server Security 7-3

Return: 'StringBuffer' containing User's initialization scripts

7.1.1.5 Retrieve the User Name or the User Global Unique ID
Return the user name or GUID (Globally Unique Id) of the user if there is one. Usually,
LDAP-based User Management systems maintain a GUID for each user. In case your
authentication mechanism does not support GUID, then the getUserGUID method
returns NULL.

Method: String getFullName (Object sid)
Parameter: Session handle returned by 'authenticate' method
Return: User's full name

Method: String getUserGUID (Object sid)
Parameter: Session handle returned by 'authenticate' method
Return: User's GUID or NULL

7.1.1.6 Log Off User
Log off the User from the back-end system. Note that the logOff method may not be
called for each successful authenticate method call. Some of the mobile server clients
may use the authenticate method to verify the user credential and not for logging on
to the system.

Method: void logOff (Object sid) throws SecurityException
Parameter: Session handle returned by 'authenticate' method

7.1.1.7 Change User Password
Method: void changePassword (Object sid, String pwd) throws SecurityException
Parameter: Session handle returned by the authenticate method and new password
string

7.1.2 Registering External Authenticator
The EXTERNAL_AUTHENTICATION section in the mobile.ora file facilitates the
authentication of existing external users with the specified external authenticator class.
To register your external authenticator class, modify the mobile.ora file and set your
external Authenticator JAVA class name in the EXTERNAL_AUTHENTICATION section, as
follows:

[EXTERNAL_AUTHENTICATION]
CLASS = SampleAuthenticator
EXPIRATION = 1800

The mobile server caches the user instantiated through the external authenticator for a
period of time in order to improve efficiency. The default expiration time for the
cached user object is 30 minutes (or 1800 seconds). Customize this value by setting a
new value for the EXPIRATION parameter.

In addition, you must configure the EXTERNALUSER parameter in the WSH.INI script,
which notifies the server that the user being created is external and does not require a
password in the WSH.INI script. Instead, the new user be authenticated by the external
authenticator specified in the mobile.ora file. For more information on EXTERNALUSER
parameter, see Appendix B, "Write Scripts for the Mobile Server with the WSH Tool" in
the Oracle Database Mobile Server Administration and Deployment Guide.

Alternatively, you can create the external user with the ResourceManager APIs, which
notifies the server that the user being created does not require a password. Instead, the
new user be authenticated by the external authenticator specified in the mobile.ora
file.

Providing Your Own Authentication Mechanism for Authenticating Users for the Mobile Server

7-4 Oracle Database Mobile Server Developer's Guide

7.1.3 User Initialization Scripts
The mobile server invokes the getInitializationScripts method to retrieve the user
initialization script that instantiates user-specific objects in the mobile server
repository. The external authenticator can perform the following actions during the
initialization process:

1. Assign access rights to applications

2. Set data subscription parameters.

3. Optionally, add the user to a user group.

The syntax of the initialization script is based on the INI format. The first section in the
script is as follows.

[MAIN]
VERSION=2

The following example performs these actions for a user whose id is USER1.

1. Assigning access rights to applications.

Assign access rights to Application1 and Application2 for USER1, where
Application1 has two publication items and three subscription parameters.

List the applications we want access to
#
[ACL]
Application1
Application2
List Access details for 'Application1'
#
[ACL.Application1]
NAME=USER1
TYPE=USER
DATA=LOCATION, ITEMS
List Access details for 'Application2'
#
[ACL.Application2]
NAME=USER1
TYPE=USER

2. Setting data subscription parameters.

[SUBSCRIPTION.USER1.Application1.LOCATION]
NAME=ZIP, USR_ID
VALUE=12345, USER1
[SUBSCRIPTION.USER1.Application1.ITEMS]
NAME=WEIGHT
VALUE=20

3. Adding a User to a User Group

[GROUP]
User's Group
[GROUP.User's Group]
USER=USER1

Index-1

Index

A
addMobileDMLProcedure API, 2-37
addPublicationItem method, 2-76
addSyncRule method, 2-30
AfterSyncMapCleanup callback, 2-47
alterPublicationItem method, 2-33
API

usage, 1-15
application

API, 1-15
clean synchronization environment, 3-22, 3-50,

3-69
deployment, 1-1, 1-15
design, 1-12

steps, 1-12
development, 1-1

packaging wizard, 5-1
initiate synchronization, 3-20, 3-49
installation steps, 1-7
managing snapshots, 2-18
model, 1-2
models, 1-8
publish, 1-6, 1-15
publishing, 1-2
register database, 2-80
scheduling to execute, 6-1
selective synchronization, 3-9, 3-47

apply phase
callback, 4-12
development, 2-65

apprepwizard script, 2-80
architecture, 1-3

MGP, 1-7
Mobile Development Kit, 1-11
mobile server, 1-6
msync, 1-5
repository, 1-8

authentication
external, 7-1

automatic synchronization
API, 3-52
C APIs, 3-81
C# APIs, 3-83
C++ APIs, 3-81
close session, 3-69

data event rules, 4-26
disable, 3-52
enable, 3-52
enabling, 2-11

C APIS, 3-81
C# APIs, 3-83
C++ APIs, 3-81
Java APIs, 3-82
MDW, 4-9

event notification, 2-16, 3-90
exception, 3-61
initialize environment, 3-62
Java API, 3-53
Java APIs, 3-82
LogMessage class, 3-60
manage, 3-73
native API, 3-61
.Net API, 3-72
objects not synchronized, 2-6, 3-3
OSE API, 3-52
pause, 3-52
publication item level, 2-11
publication rules, 4-26
resume, 3-52
retrieve error information, 3-71
retrieve status, 3-63
retrieving status, 3-88, 3-89
rules, 2-12
scheduling, 2-16
set session parameters, 3-67
start, 3-52
status, 2-16, 3-58, 3-77, 3-88
stop, 3-52
track progress, 3-69, 3-79
trapping error data, 3-59
trapping status, 3-59

B
bandwidth

designing application, 1-13
BeforeSyncMapCleanup callback, 2-47
Berkeley DB

overview, 1-4
bgAddMsgCallback method, 3-69
bgAgentControl method, 3-66

Index-2

BGAgentStatus class, 3-54, 3-73
BGAgentStatus object, 3-76

Sync Agent status, 3-56
bgAgentStatus structure, 3-63
bgCloseSession method, 3-69
BGException class, 3-61, 3-80
bgGetAgentStatus method, 3-63
bgGetLastError method, 3-71
bgGetNumParam method, 3-68
bgGetSyncStatus method, 3-64
BGMessage object, 3-80
BGMessageHandler interface, 3-54, 3-59, 3-73, 3-79

event arguments, 3-80
BGMessageType enumeration, 3-73, 3-79
bgMsg structure

error information, 3-70
BGMsgEventArgs class, 3-80
BGMsgEventArgs structure, 3-79
bgOpenSession method, 3-62
bgRemoveMsgCallback method, 3-69
bgSess object, 3-62
BGSession class, 3-54, 3-73, 3-74
bgSetNumParam method, 3-68
BGStatusCode enumeration, 3-73
BGSyncControl class, 3-82
BGSyncStatus class, 3-54, 3-73
BGSyncStatus object, 3-77

automatic synchronization
status, 3-58

bgSyncStatus structure, 3-65
bgWaitForStatus method, 3-66

C
C API

file-based synchronization, 3-51
get publication name, 3-45
setting HTTP parameters, 3-45
synchronization

initialize environment, 3-41, 3-62
C++ API

file-based synchronization, 3-23, 3-51
get publication name, 3-45
setting HTTP parameters, 3-45
synchronization

intialize environment, 3-41, 3-62
C$SEQ_CLIENTS table, 3-10
callback

customization, 2-36
client

constraint, 2-57
executingDDL, 2-38
notification, 2-77
processing downloaded data, 2-9
subscribing to publications, 2-34

column
set default column options, 2-27

command
send, 1-6

commands

Sync Agent control commands, 3-66
complete refresh, 2-8, 2-53

defined in MDW, 4-9
compose phase

callback, 4-12
development, 2-65
extend MyCompose, 2-39
notify clients, 2-77

condition rule, 2-12
conflict resolution

overview, 1-10
synchronization rules, 4-23

conflict rules
defining, 2-33

Consolidator Manager, 2-75
API, 1-15
modifying publication item, 2-35
overview, 1-6

Consolidator Manager APIs, 2-21
ConsolidatorManager class, 6-1, 6-2

job creation API, 6-1
consperf utility

performance, 1-1
constraint

foreign key
client, 2-57

mobile client, 2-57
createDataCollectionQueue method, 2-75
createPublication method, 2-76
createSyncRule method, 2-30

D
data

processing download on client, 2-9
requirements, 1-2
synchronization, 2-9
update, 2-9

Data Collection Queues, 2-74
database

client, 1-4
creation, 2-4

encryption keys, 3-24
register for application, 2-80
share connection, 3-24
types, 1-4

DataPriority enumeration, 3-29, 3-36, 3-37
DDL

adding to client, 2-38
dependencies, 4-21

dependency hint, 2-86
creating for publication item, 4-12
creating in MDW, 4-13

deployment
application, 1-1, 1-15

design
architecture, 1-1
overview, 1-12

device
management, 1-6

Index-3

send command, 1-6
Device Manager

overview, 1-8
DML

callback, 4-24
callback customization, 2-36
PL/SQL procedure, 2-36, 2-60

doCompose method, 2-41
download_complete method

signature, 2-70
download_init method, 2-65

example, 2-72
signature, 2-70

DownloadInfo class method, 2-60
dropSyncRule method, 2-31

E
encryption

keys
retrieve, 3-24
set, 3-24

EncryptionType enumeration, 3-28, 3-36, 3-37
enqueue notification APIs, 2-16
environment

initialize, 3-13
error

synchronization, 3-23
error message

synchronization, 3-51, 3-71
Error queue

synchronization, 2-3
event rule, 2-12
execution model, 1-1

F
fast refresh, 2-7, 2-52

defined in MDW, 4-9
requirements, 4-11
virtual primary key, 4-28

file-based synchronization, 2-8
C API, 3-51
C++ API, 3-23, 3-51
native API, 3-23

firewall
configure proxy information, 3-48

forced refresh, 2-8
foreign key

behavior, 1-11
constraint, 2-56, 2-79

client, 2-57
constraints, 2-78

violations, 2-79

G
generateMobileDMLProcedure API, 2-36, 2-60
getDownloadInfo method, 2-60
getPublicationNames method, 2-31
getQueuPkg method, 2-73

getSyncRule method, 2-31
group

create, 1-7

H
handleLogMessage method, 3-59
HTTP

setting parameters, 3-45

I
identify callback function, 3-21
inconsistent datatype

SQL exception, 2-35
index

using, 1-13
In-Queue

synchronization, 2-3
installation

considerations, 1-2
INSTEAD OF Triggers, 2-87
isSyncRuleModified method, 2-31

J
Java

API
OSEException class, 3-11
OSESession class, 3-5
overview, 3-4, 3-54

OSEProgressListener interface, 3-8
Java API

BGException class, 3-61
BGSession class, 3-54

job
create using API, 6-1
create using APIs, 6-2
manage using APIs, 6-1
scheduling, 6-1

Job engine
Standalone, 6-1
start from API, 6-1

Job Scheduler, 6-1
separate thread from mobile server, 6-1

JobEngine class, 6-1

L
LogMessage class, 3-59, 3-60

M
manual synchronization, 3-3

cancel, 3-22
close session, 3-22
Java API, 3-4
native API, 3-12, 3-13
.Net API, 3-28
OCAPI, 3-39

map

Index-4

cleanup, 2-47
MAX_U_COUNT parameter, 2-47
MDK

Packaging Wizard, 1-11, 1-12
MDW

automatic synchronization, 4-9
create project, 4-2
create publication, 2-21
create publication item, 4-8
dependency hint, 4-12, 4-13
deploy publication, 4-30
overview, 1-11, 4-1
parent table hint, 4-12, 4-13
primary key hint, 4-12, 4-13
project, 1-12, 4-1

definition, 4-2
publication

creation, 4-22
publication item

creating SQL statement, 4-12
define refresh mode, 4-9

script, 4-21
loading into project, 4-21

sequence, 4-17
test

publication, 4-28, 4-29
wizard, 4-4

memory
desiging application, 1-13

Message Generator and Processor, see MGP
MessageReceived event, 3-79
metadata cache

reset, 2-33
MGP

apply phase, 1-7
callback, 4-12

applying changes to the database, 1-7
compose phase, 1-7

callback, 4-12
notify client, 2-77

composing transaction, 2-3
execution process, 2-3
overview, 1-3, 1-7

mobile client
architecture, 1-1
constraint, 2-57
database, 1-4
execution model, 1-1
processing downloaded data, 2-9

Mobile Database Workbench, see MDW
Mobile Development Kit, 1-11
Mobile Manager

overview, 1-2
mobile server

application model and architecture, 1-2, 1-8
configuration, 1-6
introduction, 1-1
overview, 1-6

model
architecture, 1-1

execution, 1-1
msgCallback method, 3-79
msync

architecture, 1-5
synchronization, 1-3

MyCompose, 2-39
doCompose method, 2-41
extend, 2-39
needCompose method, 2-40

MyCompose class, 4-25
myProgressProc callback function, 3-49

N
native API, 3-12

file-based synchronization, 3-23
initialize environment, 3-62
overview, 3-62
synchronization, 3-13

native application
saving user settings, 3-19, 3-46

needCompose method, 2-40
.Net API

automatic synchronization, 3-72
BGException class, 3-80
BGSession class, 3-74
enumerations, 3-28
manual synchronization, 3-28
OSEException class, 3-34
OSEProgressEventArgs properties, 3-33
OSEProgressHandler interface, 3-33
OSESession

properties, 3-30
OSESession class, 3-29
overview, 3-28, 3-73
SQLite Mobile Client, 3-39

not null fields
behavior, 1-11

notification
client, 2-77

O
OCAPI, 3-39

native API, 3-40
ocapi.h file, 3-40
ocDoSynchronize function

determine progress, 3-49
ocDoSynchronize method, 3-20, 3-49
ocEnv class, 3-41, 3-62
ocEnv structure, 3-42
ocGetLastError function, 3-51, 3-71
ocGetPublication function, 3-45
ocGetPublication method, 3-45
ocSaveUserInfo function, 3-48
ocSaveUserInfor method, 3-19, 3-46
ocSessionInit function, 3-41, 3-62
ocSessionTerm method, 3-22, 3-50, 3-69
ocSetSyncOption function, 3-48
ocTransportEnv structure, 3-45

Index-5

olGetSyncMsg method, 3-90
olGetSyncOptions method, 3-82
olGetSyncStatus method, 3-89
olSyncMsg class, 3-90
Oracle.OpenSync.OSE namespace, 3-28
Oracle.OpenSync.SyncAgent namespace, 3-73, 3-80
oracle.opensync.syncagent package, 3-54
oracle.opensync.util package, 3-60
OSE API, 3-4

automatic synchronization, 3-52
oseCancelSync method, 3-22
oseCloseSession method, 3-22
ose.dll, 3-12
OSEException class, 3-11, 3-34
oseGetDBKey method, 3-25
oseGetLastError method, 3-23
ose.h include file, 3-12
ose.ini file, 3-68
oseOpenSession method, 3-13
OSEProgressEventArgs properties, 3-33
oseProgressFunc callback method, 3-21
OSEProgressHandler interface, 3-33

OSEProgressEventArgs, 3-33
OSEProgressListener interface, 3-8
oseRemoveDBKey method, 3-26
oseSess handle, 3-13
OSESession class, 3-5, 3-29

MessageReceived event, 3-79
properties, 3-30

oseSetDBKey method, 3-25
oseSetProgress method, 3-21
oseShareConnection method, 3-24
OSETransport class, 3-10
Out-Queue

synchronization, 2-3

P
Packaging Wizard, 1-11, 1-12

editing application definition, 5-10
listing applications, 5-8
new application, 5-4
package application, 2-21
publish application, 2-21
starting, 5-10

parent table hint, 2-86
creating in MDW, 4-13

password
modify, 2-24

performance
considerations, 1-2
consperf utility, 1-1
scripts, 4-21

PL/SQL procedure
DML operations, 2-36, 2-60

primary key
behavior, 1-11
composite

query rule, 2-35
creating virtual, 4-28

hint
creating in MDW, 4-13

index, 2-32, 2-87
virtual, 2-87

privileges
setting, 2-90

project
MDW, create, 4-2

properties
OSESession, 3-30

proxy
setting proxy information for

synchronization, 3-48
publication

add publication item, 2-33
altering, 2-33
associate

publication item, 4-23
script, 4-25
sequence, 4-25

automatic synchronization, 4-26
rule, 2-29

create, 2-24
APIs, 2-21
MDW, 2-21

create using MDW, 1-11, 4-1
creation, 1-15, 4-22
deploy, 4-30
import existing from repository, 4-26
overview, 1-2, 1-9
setting order execution for publication

items, 4-25
specifying conflict resolution rules, 4-23
subscribing clients to, 2-34
test synchronization, 4-29
test using MDW, 4-28
use Quick Wizard, 4-4

publication item
add to publication, 2-33
altering, 2-33
associate with publication, 4-23
attach PL/SQL procedure, 2-37
automatic synchronization, 2-11
conflict resolution, 1-10
create, 2-26

APIs, 2-21
create using MDW, 4-8
creating SQL query, 4-11
creating SQL statement, 4-12
dependency hint, 4-12
DML procedure, 2-37
execution order, 4-25
import from repository, 4-26
modifying, 2-35
overview, 1-2, 1-9
queue-based, 2-65, 2-67, 2-73, 4-9

create, 2-73
register package, 2-73
setting priority, 4-25
use Quick Wizard, 4-4

Index-6

weight, 1-10
publishing

application, 1-2

Q
query

rule
composite primary key, 2-35

queue-based, 2-73
notify clients, 2-77
publication item, 2-65

create queues, 2-67
creation, 2-73

refresh, 2-8
defined in MDW, 4-9

replication, 2-64
queues

data collection, 2-74
involved in synchronization, 2-3

R
read-only

snapshots, 2-18
refresh

complete, 2-8, 2-53
defined in MDW, 4-9
fast, 2-7, 2-51, 2-52
forced, 2-8
queue-based, 2-8
snapshot, 2-19
synchronization, 2-7

registerQueuePkg method, 2-73
removeSyncRule method, 2-31
replication

sequence
SQLite Mobile Client, 3-10

repository
architecture, 1-8

resetCache method, 2-33
resource

limitations, 1-13
Resource Manager

API, 1-15
description, 1-6

Resource Manager APIs, 2-21
restricting predicate, 2-38
RuleInfo class, 2-29
rules

automatic synchronization, 2-12
publication, 2-29, 4-26

conflict, 2-33
Rules class, 2-29

S
scalability

designing application, 1-13
measures, 1-1

schema

evolution, 2-88
script

adding to publication in MDW, 4-21
associate with publication, 4-25
DDL dependencies, 4-21
import from repository, 4-26

security
designing application, 1-13
measures, 1-1

selective synchronization, 3-9, 3-34
SelectPub method, 3-34
sequence

associate with publication, 4-25
create, 2-34
creating in MDW, 4-17
definition, 4-17
emulate, 3-10
import from repository, 4-26
SQLite

mobile client, 3-10
SQLite Mobile Client, 3-10
synchronization, 2-34

setDfltColOptions flag, 2-27
setSyncRuleParams method, 2-29
shared maps

grouping function to force sharing, 4-24
snapshot

definition, 1-8
manage, 2-18
overview, 1-2, 1-9
read-only, 2-18, 4-23
refresh, 2-19
template variables, 2-19
updatable, 2-18, 4-23

snapshot definitions
declarative, 2-17
programmatic, 2-20

SQL exception
inconsistent datatypes, 2-35

SQLite
database, 1-4

overview, 1-5
mobile client

sequences, 3-10
set default column options, 2-27

SQLite Mobile Client
.Net API

synchronization, 3-39
replication

sequence, 3-10
sequence, 3-10

Standalone Job engine, 6-1
subscription

create, 1-7
instantiate, 2-34
overview, 1-2, 1-9

Sync Agent
callback function, 3-69
control commands, 3-66
manage, 3-54, 3-73

Index-7

native API, 3-61
manages automatic synchronization, 3-52
retrieve status, 3-63
status, 3-56, 3-63, 3-76
status codes, 3-64, 3-73
track progress, 3-79
trapping error data, 3-59
trapping status, 3-59
wait for status, 3-66

Sync Client
downloading data, 2-3

Sync Server
execution process, 2-3
uploading data, 2-3

SyncDirection enumeration, 3-28, 3-36, 3-37
synchronization, 3-54

API, 3-4
application

initiate, 3-20, 3-49
automatic

API, 3-52
C APIs, 3-81
C# APIs, 3-83
C++ APIs, 3-81
close session, 3-69
enabling, 2-11
exception, 3-61
Java API, 3-53
Java APIs, 3-82
LogMessage class, 3-60
manage, 3-54, 3-62, 3-73
native API, 3-61
.Net API, 3-72
OSE API, 3-52
overview, 2-5
retrieve error information, 3-71
retrieve status, 3-63
set session parameters, 3-67
status, 3-58, 3-77
Sync Agent, 3-52
track progress, 3-69, 3-79
trapping error data, 3-59
trapping status, 3-59

change password, 2-24
clean environment, 3-22, 3-50, 3-69
complete refresh

overview, 2-8
compose phase customization, 2-39
composing transaction, 2-3
conflicts, 2-58
DDL Operations, 2-87
defining

conflict rules, 2-33
publication items, 2-29

determine progress, 3-49
downloaded data processed, 2-9
DownloadInfo class, 2-60
downloading data, 2-3
errors, 2-58, 4-24
execution steps, 2-3

extending MyCompose, 2-39, 2-42, 2-45
fast refresh

overview, 2-7
file-based, 2-8, 3-23, 3-51
first, 1-3
forced refresh

overview, 2-8
getDownloadInfo method, 2-60
initiation, 1-3
management, 1-6
manual, 3-3

cancel, 3-22
close session, 3-22
Java API, 3-4, 3-5
native API, 3-12, 3-13
.Net API, 3-28
OCAPI, 3-39
overview, 2-5
retrieve error information, 3-23

.Net API, 3-29, 3-74
overview, 2-2
propagation, 2-9
PublicationSize class, 2-61
publish and subscribe model, 2-21
publishing synonyms, 2-85
queue-based refresh

overview, 2-8
queues, 2-3
refresh option, 2-7
remote database link support, 2-85, 2-86
retrieve error message, 3-51, 3-71
selective, 3-9, 3-34
separate databases, 2-80
sequences, 2-34
stage, 3-21
subscribing users, 2-34
Sync Discovery API, 2-60
track progress, 3-21, 3-33

callback function, 3-21
uploading data, 2-3
using APIs, 1-15, 3-3

SyncProgressStage enumeration, 3-29
synonym

publish, 2-85

T
tables

users sharing, 4-24
transport

custom
Java API, 3-10

TransportType enumeration, 3-29, 3-36
troubleshooting

sequences, 2-34
synchronization conflicts, 2-58

U
unRegisterQueuePkg method, 2-73

Index-8

UnselectPubs method, 3-34
upload_complete method, 2-65

example, 2-70
signature, 2-70

user
create, 1-7

APIs, 2-23
granting access, 1-2
management, 1-6
operations, 1-3
provisioning, 1-15
subscribing, 2-34

V
view

fast refresh, 2-51
parent table hint, 4-12, 4-13
primary key hint, 4-12, 4-13

virtual primary key, 2-87

W
weight

publication item
overview, 1-10

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 Overview for Designing Mobile Applications
	1.1 Introduction
	1.2 Oracle Database Mobile Server Application Model and Architecture
	1.2.1 Mobile Client Database
	1.2.1.1 Berkeley DB
	1.2.1.2 SQLite
	1.2.1.3 Java DB

	1.2.2 Mobile Sync
	1.2.3 Mobile Server
	1.2.4 Message Generator and Processor (MGP)
	1.2.5 Mobile Server Repository
	1.2.6 Device Manager

	1.3 Creating the Publish-Subscribe Model for Mobile Users
	1.3.1 Defining the Weight and Conflict Resolution for Publication Items
	1.3.2 Behavior and Requirements for Primary Keys, Foreign Keys and Not Null Fields in Publication Items

	1.4 Mobile Development Kit (MDK)
	1.4.1 Using the Mobile Database Workbench
	1.4.2 Using the Packaging Wizard

	1.5 Mobile Application Design
	1.5.1 Steps for Designing Your Mobile Application
	1.5.1.1 Design for Synchronization
	1.5.1.2 Design for Sequences

	1.5.2 Application Programming Interfaces
	1.5.3 Application Deployment into the Mobile Environment

	2 Synchronization
	2.1 How Oracle Database Mobile Server Synchronizes
	2.1.1 Mobile Client Database Created on First Synchronization
	2.1.2 Using Multiple Databases for Application Data
	2.1.3 Deciding on Automatic or Manual Synchronization
	2.1.3.1 Synchronization Priorities

	2.1.4 Deciding on Synchronization Refresh Option
	2.1.4.1 Fast Refresh
	2.1.4.2 Complete Refresh
	2.1.4.3 Queue-Based Refresh
	2.1.4.4 Forced Refresh

	2.1.5 Synchronizing to a File With File-Based Sync
	2.1.6 How Downloaded Data is Processed on the Mobile Client
	2.1.7 How Updates Are Propagated to the Back-End Database
	2.1.8 Oracle Database Mobile Server (DMS) Encryption

	2.2 Enabling Automatic Synchronization
	2.2.1 Enable Automatic Synchronization at the Publication Level
	2.2.2 Define the Rules Under Which the Automatic Synchronization Starts
	2.2.2.1 Default vs Custom Rules
	2.2.2.2 Configure Publication-Level Automatic Synchronization Rules
	2.2.2.3 Configure Platform-Level Automatic Synchronization Rules

	2.2.3 Enable the Server to Notify the Client to Initiate a Synchronization to Download Data
	2.2.4 Retrieve Status for Automatic Synchronization Events

	2.3 What is The Process for Setting Up a User For Synchronization?
	2.3.1 Creating a Snapshot Definition Declaratively
	2.3.1.1 Manage Snapshots

	2.3.2 Creating the Snapshot Definition Programmatically

	2.4 Creating Publications Using Oracle Database Mobile Server APIs
	2.4.1 Defining a Publication With Java Consolidator Manager APIs
	2.4.1.1 Create the Mobile Server User
	2.4.1.2 Create Publications
	2.4.1.3 Create Publication Items
	2.4.1.4 Define Publication-Level Automatic Synchronization Rules
	2.4.1.5 Data Subsetting: Defining Client Subscription Parameters for Publications
	2.4.1.6 Create Publication Item Indexes
	2.4.1.7 Adding Publication Items to Publications
	2.4.1.8 Creating Client-Side Sequences for the Downloaded Snapshot
	2.4.1.9 Subscribing Users to a Publication
	2.4.1.10 Instantiate the Subscription
	2.4.1.11 Bringing the Data From the Subscription Down to the Client
	2.4.1.12 Modifying a Publication Item
	2.4.1.13 Callback Customization for DML Operations
	2.4.1.14 Restricting Predicate

	2.5 Client Device Database DDL Operations
	2.6 Customize the Compose Phase Using MyCompose
	2.6.1 Create a Class That Extends MyCompose to Perform the Compose
	2.6.2 Implement the Extended MyCompose Methods in the User-Defined Class
	2.6.2.1 Implement the needCompose Method
	2.6.2.2 Implement the doCompose Method
	2.6.2.3 Implement the init Method
	2.6.2.4 Implement the destroy Method

	2.6.3 Use Get Methods to Retrieve Information You Need in the User-Defined Compose Class
	2.6.3.1 Retrieve the Publication Name With the getPublication Method
	2.6.3.2 Retrieve the Publication Item Name With the getPublicationItem Method
	2.6.3.3 Retrieve the DML Table Name With the getPubItemDMLTableName Method
	2.6.3.4 Retrieve the Primary Key With the getPubItemPK Method
	2.6.3.5 Retrieve All Base Tables With the getBaseTables Method
	2.6.3.6 Retrieve the Primary Key With the getBaseTablePK Method
	2.6.3.7 Discover If Base Table Has Changed With the baseTableDirty Method
	2.6.3.8 Retrieve the Name for DML Log Table With the getBaseTableDMLLogName Method
	2.6.3.9 Retrieve View of the Map Table With the getMapView Method

	2.6.4 Register the User-Defined Class With the Publication Item

	2.7 Customize What Occurs Before and After Synchronization Phases
	2.7.1 Customize What Occurs Before and After Every Phase of Each Synchronization
	2.7.1.1 NullSync
	2.7.1.2 BeforeProcessApply
	2.7.1.3 AfterProcessApply
	2.7.1.4 BeforeProcessCompose
	2.7.1.5 AfterProcessCompose
	2.7.1.6 BeforeProcessLogs
	2.7.1.7 AfterProcessLogs
	2.7.1.8 BeforeClientCompose
	2.7.1.9 AfterClientCompose
	2.7.1.10 BeforeSyncMapCleanup
	2.7.1.11 AfterSyncMapCleanup
	2.7.1.12 Example Using the Customize Package
	2.7.1.13 Error Handling For CUSTOMIZE Package

	2.7.2 Customize What Occurs Before and After Compose/Apply Phases for a Single Publication Item

	2.8 Understanding Your Refresh Options
	2.8.1 Fast Refresh
	2.8.2 Complete Refresh for Views
	2.8.3 Queue-Based Refresh
	2.8.4 Forced Refresh

	2.9 Synchronizing With Database Constraints
	2.9.1 Synchronization And Database Constraints
	2.9.2 Primary Key is Unique
	2.9.3 Foreign Key Constraints
	2.9.3.1 Set Update Order for Tables With Weights
	2.9.3.2 Defer Constraint Checking Until After All Transactions Are Applied

	2.9.4 Unique Key Constraint
	2.9.5 NOT NULL Constraint
	2.9.6 Generating Constraints on the Mobile Client
	2.9.6.1 The assignWeights Method

	2.10 Resolving Conflicts with Winning Rules
	2.10.1 Resolving Errors and Conflicts on the Mobile Server Using the Error Queue
	2.10.2 Customizing Synchronization Conflict Resolution Outcomes

	2.11 Using the Sync Discovery API to Retrieve Statistics
	2.11.1 getDownloadInfo Method
	2.11.2 DownloadInfo Class Access Methods
	2.11.3 PublicationSize Class

	2.12 Customizing Synchronization With Your Own Queues
	2.12.1 Customizing Apply/Compose Phase of Synchronization with a Queue-Based Publication Item
	2.12.1.1 Queue Creation
	2.12.1.2 Queue-Based PL/SQL Callouts
	2.12.1.3 Create a Publication Item as a Queue
	2.12.1.4 Register the PL/SQL Package Outside the Repository

	2.12.2 Creating Data Collection Queues for Uploading Client Collected Data
	2.12.2.1 Creating a Data Collection Queue

	2.12.3 Selecting How and When to Notify Clients of Composed Data

	2.13 Synchronization Performance
	2.14 Troubleshooting Synchronization Errors
	2.14.1 Foreign Key Constraints in Updatable Publication Items
	2.14.1.1 Foreign Key Constraint Violation Example
	2.14.1.2 Avoiding Constraint Violations with Table Weights
	2.14.1.3 Avoiding Constraint Violations with BeforeApply and After Apply

	2.15 Register a Remote Oracle Database for Application Data
	2.15.1 Set up a Remote Application Repository With the APPREPWIZARD Script
	2.15.2 Register or Deregister a Remote Oracle Database for Application Data
	2.15.3 Create Publication, Publication Item, Hints and Virtual Primary Keys on a Remote Database
	2.15.4 Using Callbacks on Remote Databases
	2.15.4.1 Customize Callbacks on the Remote Database
	2.15.4.2 Publication Item Level Callbacks for the MGP Apply/Compose Phases
	2.15.4.3 Customizing the Apply/Compose Phase for a Queue-Based Publication Item on a Remote Database

	2.16 Create a Synonym for Remote Database Link Support For a Publication Item
	2.16.1 Publishing Synonyms for the Remote Object Using CreatePublicationItem
	2.16.2 Creating or Removing a Dependency Hint

	2.17 Parent Tables Needed for Updateable Views
	2.17.1 Creating a Parent Hint
	2.17.2 INSTEAD OF Triggers

	2.18 Manipulating Application Tables
	2.18.1 Creating Secondary Indexes on Client Device
	2.18.2 Virtual Primary Key

	2.19 Facilitating Schema Evolution
	2.19.1 Schema Evolution Involving a Primary Key

	2.20 Set DBA or Operational Privileges for the Mobile Server

	3 Managing Synchronization on the Mobile Client
	3.1 Invoke Manual Synchronization on the Mobile Client
	3.1.1 OSE Synchronization API for Applications on Mobile Clients
	3.1.1.1 OSE Synchronization Java API
	3.1.1.2 OSE Synchronization APIs For Native Applications
	3.1.1.3 OSE .Net Synchronization API
	3.1.1.4 OSE Synchronization JavaScript API for PhoneGap

	3.1.2 SQLite Synchronization API for .Net Clients
	3.1.3 OCAPI Synchronization API for the Mobile Client
	3.1.3.1 OCAPI Synchronization APIs For C or C++ Applications
	3.1.3.2 mSync, OCAPI, and mSyncCom API

	3.2 Manage Automatic Synchronization on the Mobile Client
	3.2.1 OSE APIs for Managing Automatic Synchronization
	3.2.1.1 JAVA APIs for the Sync Agent and Automatic Synchronization
	3.2.1.2 Native APIs for the Sync Agent and Automatic Synchronization
	3.2.1.3 The .Net APIs for the Sync Agent and Automatic Synchronization
	3.2.1.4 OCAPI Sync Control APIs
	3.2.1.5 JavaScript APIs for the Sync Agent and Automatic Synchronization in PhoneGap

	3.2.2 OCAPI APIs for Retrieving Status on Automatic Synchronization
	3.2.2.1 Retrieving Status for Automatic Synchronization in Java Applications
	3.2.2.2 Retrieving Status for Automatic Synchronization in C and C++ Applications
	3.2.2.3 Fields of the Automatic Synchronization Status Structure

	3.2.3 OCAPI Notification APIs for the Automatic Synchronization Cycle Status
	3.2.3.1 Automatic Synchronization Notification for C/C++ Application
	3.2.3.2 Automatic Synchronization Notification for Java Applications
	3.2.3.3 Fields of the Automatic Synchronization Message Structure

	4 Using Mobile Database Workbench to Create Publications
	4.1 Use MDW to Create Publications
	4.2 Create a Project
	4.3 Use the Quick Wizard to Create Your Publication
	4.4 Create a Publication Item
	4.4.1 Create SQL Statement for Publication Item
	4.4.2 Create a Dependency Hint
	4.4.3 Specify Parent Table and Primary Key Hints

	4.5 Define the Rules Under Which the Automatic Synchronization Starts
	4.5.1 Configure Publication-Level Automatic Synchronization Rules
	4.5.2 Configure Platform-Level Automatic Synchronization Rules
	4.5.2.1 Define System Event Rules for the Platform
	4.5.2.2 Define Automatic Synchronization Conditions for the Platform

	4.6 Create a Sequence
	4.6.1 Configuring Sequences in MDW
	4.6.2 Configuration Scenarios for Sequence Generation
	4.6.3 Example of a Sequence
	4.6.4 Example of a Client and Server Sharing a Sequence

	4.7 Create and Load a Script Into The Project
	4.7.1 Writing SQL Scripts
	4.7.2 Load the Script Into the Project

	4.8 Create a Publication
	4.8.1 General Tab Configures Publication Name
	4.8.2 Publication Item Tab Associates Publication Items With the Publication
	4.8.2.1 Associating a Publication Item to this Publication

	4.8.3 Sequence Tab Associates Existing Sequences With the Publication
	4.8.4 Script Tab Associates Existing Scripts With the Publication
	4.8.5 Event Tab Configures Automatic Synchronization Rules for this Publication

	4.9 Import Existing Publications and Objects from Repository
	4.9.1 Import Existing Publication from Repository
	4.9.2 Import Existing Publication Item From the Repository
	4.9.3 Import Existing Sequence From the Repository
	4.9.4 Import an Existing Script From the Repository

	4.10 Create a Virtual Primary Key
	4.11 Test a Publication by Performing a Synchronization
	4.12 Deploy the Publications in the Project to the Repository

	5 Using the Packaging Wizard
	5.1 Using the Packaging Wizard
	5.1.1 Starting the Packaging Wizard
	5.1.2 Specifying New Application Definition Details
	5.1.3 Listing Application Files
	5.1.4 Publish the Application
	5.1.5 Editing Application Definition
	5.1.6 Troubleshooting

	5.2 Packaging Wizard Synchronization Support

	6 Create and Manage Jobs with APIs
	6.1 Managing Scheduled Jobs Using ConsolidatorManager APIs
	6.2 Start a Standalone Job Engine In Separate JVM
	6.3 Using the ConsolidatorManager APIs to Create Jobs

	7 Customizing Oracle Database Mobile Server Security
	7.1 Providing Your Own Authentication Mechanism for Authenticating Users for the Mobile Server
	7.1.1 Implementing Your External Authenticator
	7.1.1.1 Initialization for the External Authenticator
	7.1.1.2 Destruction of the External Authenticator
	7.1.1.3 The Authentication Method for the External Authenticator
	7.1.1.4 The User Instantiation Method for the External Authenticator
	7.1.1.5 Retrieve the User Name or the User Global Unique ID
	7.1.1.6 Log Off User
	7.1.1.7 Change User Password

	7.1.2 Registering External Authenticator
	7.1.3 User Initialization Scripts

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

