Using Puppet to Perform Configuration
Management in Oracle® Solaris 11.3

Part No: E77676
September 2018

ORACLE

Using Puppet to Perform Configuration Management in Oracle Solaris 11.3
Part No: E77676
Copyright © 2016, 2018, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except
as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform,
publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.
If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation,
delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the
hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous
applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of
SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products, and services from third parties. Oracle Corporation and its affiliates are
not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an applicable agreement
between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Référence: E77676
Copyright © 2016, 2018, Oracle et/ou ses affiliés. Tous droits réservés.

Ce logiciel et la documentation qui I'accompagne sont protégés par les lois sur la propriété intellectuelle. Ils sont concédés sous licence et soumis a des restrictions d'utilisation et

de divulgation. Sauf stipulation expresse de votre contrat de licence ou de la loi, vous ne pouvez pas copier, reproduire, traduire, diffuser, modifier, accorder de licence, transmettre,
distribuer, exposer, exécuter, publier ou afficher le logiciel, méme partiellement, sous quelque forme et par quelque procédé que ce soit. Par ailleurs, il est interdit de procéder a toute
ingénierie inverse du logiciel, de le désassembler ou de le décompiler, excepté a des fins d'interopérabilité avec des logiciels tiers ou tel que prescrit par la loi.

Les informations fournies dans ce document sont susceptibles de modification sans préavis. Par ailleurs, Oracle Corporation ne garantit pas qu'elles soient exemptes d'erreurs et vous
invite, le cas échéant, a lui en faire part par écrit.

Si ce logiciel, ou la documentation qui I'accompagne, est livré sous licence au Gouvernement des Etats-Unis, ou a quiconque qui aurait souscrit la licence de ce logiciel pour le
compte du Gouvernement des Etats-Unis, la notice suivante s'applique :

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation,
delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the
hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

Ce logiciel ou matériel a été développé pour un usage général dans le cadre d'applications de gestion des informations. Ce logiciel ou matériel n'est pas congu ni n'est destiné a étre
utilisé dans des applications a risque, notamment dans des applications pouvant causer un risque de dommages corporels. Si vous utilisez ce logiciel ou ce matériel dans le cadre
d'applications dangereuses, il est de votre responsabilité de prendre toutes les mesures de secours, de sauvegarde, de redondance et autres mesures nécessaires a son utilisation dans
des conditions optimales de sécurité. Oracle Corporation et ses affiliés déclinent toute responsabilité quant aux dommages causés par l'utilisation de ce logiciel ou matériel pour des
applications dangereuses.

Oracle et Java sont des marques déposées d'Oracle Corporation et/ou de ses affiliés. Tout autre nom mentionné peut correspondre a des marques appartenant a d'autres propriétaires
qu'Oracle.

Intel et Intel Xeon sont des marques ou des marques déposées d'Intel Corporation. Toutes les marques SPARC sont utilisées sous licence et sont des marques ou des marques
déposées de SPARC International, Inc. AMD, Opteron, le logo AMD et le logo AMD Opteron sont des marques ou des marques déposées d'Advanced Micro Devices. UNIX est une
marque déposée de The Open Group.

Ce logiciel ou matériel et la documentation qui I'accompagne peuvent fournir des informations ou des liens donnant accés a des contenus, des produits et des services émanant de
tiers. Oracle Corporation et ses affiliés déclinent toute responsabilité ou garantie expresse quant aux contenus, produits ou services émanant de tiers, sauf mention contraire stipulée
dans un contrat entre vous et Oracle. En aucun cas, Oracle Corporation et ses affiliés ne sauraient étre tenus pour responsables des pertes subies, des cofits occasionnés ou des
dommages causés par l'accés a des contenus, produits ou services tiers, ou a leur utilisation, sauf mention contraire stipulée dans un contrat entre vous et Oracle.

Acceés aux services de support Oracle

Les clients Oracle qui ont souscrit un contrat de support ont acceés au support électronique via My Oracle Support. Pour plus d'informations, visitez le site http://www.oracle.com/
pls/topic/lookup?ctx=acc&id=info ou le site http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs si vous étes malentendant.

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Contents

Using This DOCUMENtAtIONccoiiuiiiiiiiiiiie e e e e e eaenes 7

1 About Performing Configuration Management With Puppet in Oracle

SOIAIIS ..o ettt ettt e e et 9
Highlights of Puppet Support in Oracle Solaris 11.3cccuiviiiiiiiinieiieeiiieeeiies 9
Common Uses for Puppet in Oracle Solarisccoevvviiiviiniiiriiiiiiiiieeeneeeeennees 14
HOW PUPPEt WOTKS ..ovniiiiiiiiieii ettt et e e e e et e e e e e e e e enenas 14

About the PUPPEt IMaSTET ...c.uiiuniiiiiieiii ittt et e e eans 15
About the PUPPEt AGENEvvuiiniiieiieeii ettt et et e e e e e e e e e eaneeanaenns 16
Function of the Puppet User and GIOUPccceuvvveeeineeineeinerieeineeineesneennnens 16
Puppet Encryption and Communication Methodsccooeiviiiiiiiiniinn. 16
Puppet TermMiNOIOZY . ..uvvniiiniiieiieei ettt e et e et e et e et e e e e e e e e e eaneaaneenns 17
PUPPEt MANI ESS ..evvuiveiiieiieiiee et e et e e e e e e e e et e et e et e e e aneaneeaneeans 17
PUPPEL CLASSES ..eeuetieeiieeie ettt ettt et et et et et e e e et e et e e e e eaanas 18
PUPPEt MOAUIESuiiieiieieiie et e et e e et e e e e e e e e ea e aneaanas 18
Additional Puppet ReferenCeSccuviiniiiniiieiiieiee e e ie et ei e et e e e e e eaneeannees 18

2 Getting Started With Puppet in Oracle Solarisc.cooevviiiiiiiinninnn. 19

Puppet Pre-Installation Taskseeeuveiuiiiniiiriieie e e e e e e e e eens 19
Vv How to Configure NTP on the Puppet Masterccecveveeveneinneineennnnnn. 20
INStAlling PUPPET ...cvneiieiiiie ettt ettt et et e e eans 21
Configuring the Puppet Master and AZENtceeuuveureinreineeieeieeieeeeeeeenreaneenns 22
How Puppet Configuration Is Managed Through SMFccooeeiiiiiiinnennn.. 22
Vv How to Configure the Puppet Master and Agentceceuuveeeuneernnnennnn. 24
Troubleshooting Issues With Puppet in Oracle Solarisc.ccoevvviiniiiniineinnennnnn. 27

3 Working With Puppet Resources and Resource Types in Oracle Solaris 29

About Puppet Resources and Resource TYPescc.oveueiuriiniiiniiiniiineiineiineiiennnens 29

Puppet Resource Type DeSCIIPLONSc.ccueuiereueinreieinreieiireeireeer et eneeneeneennes 31

About Declaring Puppet RESOUICESc.uvivnriueiieiieeieeieeineeieeeneeenreaneenneenneennees 33
Viewing and Modifying Puppet Resources by Using the Command Line 34
Viewing the State of a Puppet RESOUICEcccuuviiiniiiinneiiineiineeiieeeineeeenn. 34

Modifying the State of a Puppet Resourcec...cccoveeeuieieiiiiiinieiinecnnnneen. 35

Gathering Information About a System by Using Facterc..cccoeveeiiiiiineennnneen. 36

4 Writing Puppet Manifests, Classes, and Modules in Oracle Solaris 39
Writing a Puppet Site Manifestoviueiiniriniiiiiie e e e e e 39

Vv How to Write a Puppet Site Manifestccceveiiiiiiniiiiiiieeiiecieeeieeenes 40

Writing Puppet Manifests That Specify Node-Specific Codecoceevvuiriieinnnneeen. 42
WIItING PUPPEL ClASSES ..vvnirneineiiieiieiieeie et et et et etne et e et e et eanneeneanaraneenneenns 43
Writing Puppet Modulesccouiiuiiiiiiiieie e 45

5 Using Puppet to Manage System Configuration in Oracle Solaris 49
Puppet Configuration Management Workflowc.ccoviviviiiiiniiiniiiniiineeeenen, 49
Using Puppet to Configure Packagingccooeeiuiiiiiiiiiiiiiiiiiiiiiece e, 50
Using Puppet to Configure ZFS File SYStemsSc.cevvvuvviiiiiiiineiiineeiineeiieeeinnens 53
Using Puppet to Configure Networking Parametersc...ceeveviueenneenneinneinnennns 54
Using Puppet to Configure Naming ServiCesceceuureeeiieiiinieiineeiiieeiieeeinneens 55
Using Puppet to Configure Oracle Solaris ZONesc.oveerueeeiineeiuneeeineeeinneennnss 56
INdEX ..o 61

Using Puppet to Perform Configuration Management in Oracle Solaris 11.3 « September 2018

Using This Documentation

= Overview — Provides information about how to configure and administer various network
components in the Oracle Solaris operating system (OS), such as datalinks, IP interfaces and
addresses, naming and directory services, reactive profiles, and wireless networks.

= Audience — System administrators who are responsible for managing network configuration
in corporate datacenters.
m Required knowledge — Basic and advanced network administration concepts and practices.

Product Documentation Library

Documentation and resources for this product and related products are available at http://www.
oracle.com/pls/topic/lookup?ctx=E53394-01.

Feedback

Provide feedback about this documentation at http://www.oracle.com/goto/docfeedback.

Using This Documentation 7

http://www.oracle.com/pls/topic/lookup?ctx=E53394-01
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01
http://www.oracle.com/goto/docfeedback

Using Puppet to Perform Configuration Management in Oracle Solaris 11.3 « September 2018

* e CHAPTER 1

About Performing Configuration Management
With Puppet in Oracle Solaris

Puppet is cross-platform software that you can use to automate and enforce the configuration
management of most major subsystems in Oracle Solaris, including Oracle Solaris servers and
their subsystems. You can use Puppet to perform several common system configuration tasks.
Puppet enables you to standardize and enforce resource configurations across your entire IT
infrastructure.

This chapter provides an overview of Puppet's infrastructure, as well as a basic description of
how Puppet is implemented in Oracle Solaris.

This chapter includes the following topics:

m “Highlights of Puppet Support in Oracle Solaris 11.3” on page 9

= “Common Uses for Puppet in Oracle Solaris” on page 14

m “How Puppet Works” on page 14

= “Puppet Terminology” on page 17
= “Additional Puppet References” on page 18

For information that is beyond the scope of this guide, including background information and
more complete descriptions of the various Puppet offerings, go to the Puppet web site.

You can find specific information about the Puppet version that is supported in Oracle Solaris
11.3 in the Puppet 3.6 Reference Manual.

Highlights of Puppet Support in Oracle Solaris 11.3

The following Puppet features and functionality are supported in Oracle Solaris:

= Puppet installation

The Puppet software package (system/management/puppet) is not installed by default on
your Oracle Solaris system. You must individually install the same Puppet Image Packaging

Chapter 1 « About Performing Configuration Management With Puppet in Oracle Solaris 9

https://puppet.com/
https://docs.puppet.com/puppet/3.6/

Highlights of Puppet Support in Oracle Solaris 11.3

System (IPS) package on the Puppet master and all of the nodes that will run the Puppet
agent.

See Chapter 2, “Getting Started With Puppet in Oracle Solaris™.
= Puppet modules and utilities

When you install the Puppet IPS package, you get all of the core Puppet modules, as well as
other modules that are specific to the Oracle Solaris release.

To display a complete list of all of the installed and available modules that are included in a
Puppet installation, run the following command:

% pkg list -a *puppet*

For detailed information about a specific Puppet module, refer to the README file that is
included with that module. You can also go to the Puppet web site to search for more
information about a given module.

When you install Puppet, you also get the following utilities, which are designed to work in
concert with Puppet:

= Facter — Is a utility that Puppet uses to discover facts about a particular system, for
example, OS type, CPUs, memory size, and so on. The information that Facter gathers
about a system is sent to the Puppet master, which the Puppet master then uses to
compile catalogs that describe a desired system state for a specific set of resources.
The catalog lists all of the resources that must be managed and any dependencies
between those resources. See “Gathering Information About a System by Using
Facter” on page 36.

= Hiera — Is a cross-platform, key/value lookup tool that you use to manage configuration
data. You use Hiera along with Puppet to maintain site-specific data that would normally
be included in a Puppet manifest. Storing site-specific data in a Hiera configuration
file rather than a manifest avoids repetition, which enables you to write more generic
manifests that you can reuse for multiple systems.

Puppet classes can request the data that is needed and Hiera acts as a site-wide
configuration file. When Puppet loads Hiera, it uses this configuration file instead of the
global file that is located in /etc/hiera.yaml. For more information, go to https://
docs.puppet.com/hiera/3.1/.
= Puppet agent/master model
Puppet uses an agent/master model, where the Puppet master manages important

configuration information for all of the nodes (physical or virtual) on which the Puppet
agent is running.

Nodes that are running the Puppet agent poll the Puppet master at regular intervals and
make requests for updated configuration information, which the agent then applies to the
node. See “How Puppet Works” on page 14.

= Puppet SMF service

10 Using Puppet to Perform Configuration Management in Oracle Solaris 11.3 « September 2018

https://puppet.com/
https://docs.puppet.com/hiera/3.1/
https://docs.puppet.com/hiera/3.1/

Highlights of Puppet Support in Oracle Solaris 11.3

When you install the Puppet software package, you get a single Puppet SMF service (svc:
/application/puppet) with the following two instances: svc:/application/puppet:
master, for the Puppet master, and svc:/application/puppet:agent, for the Puppet
agent. By default, these service instances are disabled after a Puppet installation. When
you enable these service instances, the daemons for these services are started. When these
services are disabled, the daemons are halted. See “Configuring the Puppet Master and
Agent” on page 22.

Puppet configuration file

Puppet provides a configuration file (/etc/puppet/puppet.conf) for both the master and
the agents. This configuration is stored in the SMF repository. Many system resources are
defined in the puppet. conf file. The file lists the default values that are used by the Puppet
master and all of the nodes that are managed by the master.

The Puppet configuration file is generated through the svcio utility by using an SMF
stencil. See Chapter 6, “Using a Stencil to Create a Configuration File” in Developing
System Services in Oracle Solaris 11.3.

To ensure that the configuration within the puppet.conf file always matches what is in
the SMF repository, never edit this file directly. Instead, use SMF commands to set the
appropriate properties in the file. See svccfg(1M). Because stenciling is used to generate
the Puppet configuration file, any persistent changes that you make by setting SMF
properties are automatically applied to the puppet. conf file.

Puppet resources and resource types

Puppet uses resources to represent various aspects of a system, such as when and how
services are run, software package management, and certain components of networking and
naming service configuration. A resource can also reflect the state in which a certain aspect
of a system should be.

Each resource has a resource type, which is defined by a title and a series of attributes

and values that you can specify within a Puppet manifest. The values that you can declare
depend on the type of configuration that you are managing. See Chapter 3, “Working With
Puppet Resources and Resource Types in Oracle Solaris”.

Puppet providers

Puppet providers translate the general definitions for a resource into the actions that

are required to implement that resource on a specific platform. These cross-platform
capabilities are enabled by the Puppet Resource Abstraction Layer (RAL), which translates
configuration settings into the platform-specific commands that are required to apply the
specified configuration.

For example, if you are installing a software package on an Oracle Solaris system, Puppet
uses IPS, while on a Red Hat Enterprise Linux system, Puppet uses RPM (Red Hat Package
Manager) to install the package.

Chapter 1 « About Performing Configuration Management With Puppet in Oracle Solaris 11

http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=SVCDVstencilsvcs
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=SVCDVstencilsvcs
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1Msvccfg-1m

Highlights of Puppet Support in Oracle Solaris 11.3

The following are some of the key providers that are supported in Oracle Solaris:
m [PS package installation, commands, publishers, facets, and mediators

= SVR4 package installation

= Boot environments

= Datalink properties

m Aggregations

= Etherstubs

m [P network interfaces

= Naming services

m Oracle Solaris Zones, Oracle Solaris Kernel Zones, and Zones on Shared Storage
(Z0OSS) backing stores

m SMF administrative commands

m SMF properties

= TCP/IP tunables

= Virtual area networks (VLANS)

m Virtual network interface cards (VNICs)

m ZFS dataset creation and property manipulation (including zpool creation and deletion
for most vdev types)

See “About Puppet Resources and Resource Types” on page 29.
= Puppet command-line interface (CLI)

You use the Puppet command-line interface (CLI) to perform several actions, for example,
the initial handshake between the master and agent nodes. You might also use the CLI to
perform a dry run for testing purposes. You can also use the CLI to troubleshoot and debug
issues with Puppet.

Other tasks that you might perform with the Puppet CLI include the following:
m Managing certificates

m Generating and managing reports

= Accessing plug-ins

m Managing resources

= Displaying status

You use the following syntax to perform actions with the Puppet CLI:
puppet subcommand [options] action [options]
Display all of the available Puppet subcommands and their usage as follows:

puppet help

12 Using Puppet to Perform Configuration Management in Oracle Solaris 11.3 « September 2018

Highlights of Puppet Support in Oracle Solaris 11.3

Display help for a specific subcommand as follows:
puppet help subcommand

The following partial example shows how you would display information about the agent
subcommand:

puppet help agent
puppet-agent(8) -- The puppet agent daemon

Retrieves the client configuration from the puppet master and applies it to
the local host.

This service may be run as a daemon, run periodically using cron (or something
similar), or run interactively for testing purposes.

puppet agent [--certname <name>] [-D|--daemonize|--no-daemonize]

[-d|--debug] [--detailed-exitcodes] [--digest <digest>] [--disable [messagel] [--
enable]

[--fingerprint] [-h|--help] [-1]--logdest syslog|<file>|console]

[--no-client] [--noop] [-o0|--onetime] [-t]|--test]

[-v]|--verbose] [-V]|--version] [-w]|--waitforcert <seconds>]

DESCRIPTION

This is the main puppet client. Its job is to retrieve the local
machine's configuration from a remote server and apply it. In order to
successfully communicate with the remote server, the client must have a
certificate signed by a certificate authority that the server trusts;
the recommended method for this, at the moment, is to run a certificate
authority as part of the puppet server (which is the default). The
client will connect and request a signed certificate, and will continue
connecting until it receives one.

Display help for a specific subcommand's action as follows:

puppet help subcommand action

Puppet privileges and authorizations

Chapter 1 « About Performing Configuration Management With Puppet in Oracle Solaris 13

Common Uses for Puppet in Oracle Solaris

To configure and administer Puppet, you must be assigned the Puppet Management rights
profile, or you must assume the root role. The Puppet Management rights profile includes
the solaris.smf.manage.puppet and solaris.smf.value.puppet privileges. See “User
Rights Management” in Securing Users and Processes in Oracle Solaris 11.3 for details
about how user rights and privileges work.

Common Uses for Puppet in Oracle Solaris

You can use Puppet to manage most major subsystems in Oracle Solaris, as well as automate
several common system configuration tasks for multiple nodes (both physical and virtual).
Puppet can scale from simple deployments to more complex infrastructures, such as cloud
deployments and OpenStack. Some other ways that you might use Puppet include provisioning,
system configuration, and software management.

How Puppet Works

Puppet provides the ability to define which software and configuration a system requires and
then maintain a specified state after an initial setup.

You use a declarative Domain Specific Language (DSL) that is similar to Ruby to define
configuration parameters for a specific environment or infrastructure. Puppet discovers
information about a system by using a utility called Facter, which is installed when you
install the Puppet software package. See “Gathering Information About a System by Using
Facter” on page 36.

The Puppet master is the system that manages important configuration information for all of the
nodes that it controls by using manifests. See “Puppet Manifests” on page 17.

The nodes that the master controls are those that have Puppet installed on them and are running
the Puppet agent, which is a daemon. The configuration information that the agent collects
about a node is sent to the Puppet master. The Puppet master then complies a catalog based on
how the node should be configured. Each node uses that information to apply any necessary
configuration updates to itself.

Puppet works by using a pull mode, where agents poll the master at regular intervals to retrieve
site-specific and node-specific configurations. In this infrastructure, managed nodes run the
Puppet agent application, typically as a background service. For more information, go to
Overview of Puppet’s Architecture.

The following figure describes the Puppet master/agent topology in more detail.

14 Using Puppet to Perform Configuration Management in Oracle Solaris 11.3 « September 2018

http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=OSSUPrbac-1
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=OSSUPrbac-1
https://docs.puppet.com/puppet/3.6/architecture.html

How Puppet Works

Puppet master

1. Node that is running the
Puppet agent collects data
about itself using facts

2. Agent sends facts to
Puppet master

3. Master compiles a catalog
based on data for how the
node should be configured

4. Master sends catalog back
to agent

5. Agent configures itself and

reports back to master Nodes running the Puppet agent

About the Puppet Master

The Puppet master is a daemon that runs on a designated server and is the primary source

of configuration data and authority for Puppet. The master provides instructions for all of

the nodes that are part of the Puppet infrastructure. Because some aspects of component
configuration depend on the configuration of other components, the server that is designated as
the Puppet master is required to be aware of the system's entire configuration. Puppet restricts
access to the master by having the master run as its own user and group. See “Function of the
Puppet User and Group” on page 16.

The master is responsible for several actions, including the following:

m Compiling the catalog for the agents
m Transferring files from a file server

m Sending reports to a central instance

Note - The master might also perform other actions that do not require root privileges.

Chapter 1 « About Performing Configuration Management With Puppet in Oracle Solaris 15

How Puppet Works

About the Puppet Agent

The Puppet daemon that runs on a target system (or node) is known as the Puppet agent.

The agent must have the appropriate privileges for the node on which it is enabled so that

it can apply the configuration catalogs that it pulls from the Puppet master. The agent gains
communication privileges from the master server by requesting an Secure Socket Layer (SSL)
certificate the first time that it contacts the master. Subsequently, whenever the agent polls the
master for configuration updates, it only receives updates if its certificate is valid.

The Puppet agent that runs on each of the target nodes must have the ability to modify most
aspects of the system's configuration. This requirement enforces the state in which the master
has indicated the agent should be. Because so much access to the system is required by the
puppet agent, it is run as the root user or a user who is assigned the Puppet Management rights
profile.

Note - Note that the master must also authenticate to the agents so that they do not inadvertently
receive incorrect configuration information.

Function of the Puppet User and Group

The Puppet user and group are used for security purposes to ensure that a module only has
access to the information that it requires from the master. The Puppet user and group also
prevent the Puppet module from being exploited or compromised. The Puppet user performs
tasks on the master and is a member of the Puppet group. This privileged user and group are
automatically created and assigned to the master daemon when you enable the master SMF
service instance during the setup process. See Chapter 2, “Getting Started With Puppet in
Oracle Solaris”.

Through the Puppet user, the Puppet master performs the following tasks:
m Stores configuration manifests in the puppet manifests directory.
m Accepts SSL certificates from agent.

m Transfers files to agents.
m Creates catalogs.

Puppet Encryption and Communication Methods

Puppet interfaces with the OpenSSL toolkit, which is based on SSL and the Transport Layer
Security (TLS) cryptographic protocol. Puppet uses standard SSL/TLS encryption technology
and standard SSL certificates for agent and master authentication and verification. Puppet also

16 Using Puppet to Perform Configuration Management in Oracle Solaris 11.3 « September 2018

Puppet Terminology

makes use of SSL/TLS to encrypt the traffic flow between server and agents. SHA-256 is the
default hash that is used.

Puppet's encryption method does the following:

= Authenticates any agent to the master
m Authenticates the master on any agent
m Prevents communication eavesdropping between master and agents

Puppet uses a TLS client-side X.509 certificate to perform mutual host authentication. By
default, this information is stored in the /etc/puppet/ssl directory, which is defined in the
puppet configuration file (puppet.conf). You can change the default location by using SMF
commands, which would then be reflected in the site configuration file. Note that there are
separate directories for keys, certificates, and signed requests, as well as those requests that are
awaiting a signature. These directories exists on both the master and the agent.

Because Puppet uses its own certificate authority (CA), you do not need to use the system's
default setting for CAs (/etc/certs/CA). When the master is initialized, it generates its own
CA certificate and private key, initializes the Certificate Revocation List (CRL), then generates
another certificate, called the server certificate. This certificate is used for SSL and TLS
communications and is sent to the agent. During the master and agent exchange, the CA is
stored in the /etc/puppet/ssl/ca/signed directory on the master and in the /etc/puppet/
ssl/certs directory on the agent.

Puppet Terminology

Puppet uses a Declarative Domain Specific Language (DSL) that defines states. Puppet code is
written in manifests. In that code, you declare resources that define various aspects of a system,
such as files, packages, services, and so on. Resources are grouped into classes, which expose
parameters that can affect their behavior. Classes and configuration files are then organized into
modules. These core Puppet terms are described in more detail in the following sections. For
more complete definitions, consult the Puppet Glossary.

Puppet Manifests

The various resources that you need to declare for a specific configuration are stored in

files that are called manifests. Manifests contain Puppet code and are central to Puppet's
infrastructure. These manifests are located on the Puppet master. Whenever you want to save a
resource definition, you save it in a manifest. Note that each manifest must end with a . pp file
extension.

Chapter 1 « About Performing Configuration Management With Puppet in Oracle Solaris 17

https://docs.puppet.com/references/glossary.html

Additional Puppet References

You use a Puppet site.pp manifest to define global configuration that applies to all of the
nodes. A site manifest can also include node-specific code that applies to certain nodes. A node
definition (or node statement) is a block of Puppet code that is only included in the catalogs of
the nodes that it matches. This feature enables you to assign specific configurations to specific
nodes. For more information, go to Node Definitions.

You can also write manifests that group several resources together. In this case, you would use
a class to apply the resources to the specified nodes. See Chapter 4, “Writing Puppet Manifests,
Classes, and Modules in Oracle Solaris”.

Puppet Classes

A class is a set of configurations that are bundled together. A Puppet class can include
resources, variables, as well as additional, advanced attributes. When you assign a class to
a node, that node gets all of the configurations that are part of the class. You include class
declarations within a manifest. See “Writing Puppet Classes” on page 43.

Puppet Modules

Puppet modules are self-contained collections of files and directories that can contain Puppet
manifests and other objects, including files and templates. The information that is within a
module is packaged and organized in a way that Puppet can understand and use. Modules are
how Puppet finds the classes and types that can be used for configuration management within
your IT infrastructure. Puppet automatically loads any class or defined type that is stored within
a given module. You can declare any of these classes or types by name within a manifest. See
“Writing Puppet Modules” on page 45.

Additional Puppet References

18

For more in-depth information about Puppet, refer to the following documentation:

m For general information about Puppet, go to the Puppet web site
m For Puppet reference information, see the Puppet 3.6 Reference Manual
= For other Puppet documentation resources, see the Puppet Resource library

Using Puppet to Perform Configuration Management in Oracle Solaris 11.3 « September 2018

https://docs.puppet.com/puppet/3.6/lang_node_definitions.html
https://puppet.com/
https://docs.puppet.com/puppet/3.6/
https://puppet.com/resources

¢ e CHAPTER 2

Getting Started With Puppet in Oracle Solaris

This chapter describes how to install, configure, and enable Puppet in Oracle Solaris.

This chapter contains the following topics:

“Puppet Pre-Installation Tasks” on page 19

“Installing Puppet” on page 21

“Configuring the Puppet Master and Agent” on page 22
“Troubleshooting Issues With Puppet in Oracle Solaris” on page 27

Note - You must be assigned the Puppet Management rights profile or assume the root role
to administer configuration management with Puppet. Privileges that are associated with the
Puppet Management rights profile include solaris.smf.manage.puppet and solaris.smf.
value.puppet. See “Using Your Assigned Administrative Rights” in Securing Users and
Processes in Oracle Solaris 11.3.

Puppet Pre-Installation Tasks

Prior to installing the Puppet IPS package on the master and the nodes that will run the Puppet
agent, perform the following tasks:

Designate a server that will function as the Puppet master.

You should install and configure Puppet on the master server, or servers, before you install
Puppet on any of the nodes.

Designate the nodes that will run the Puppet agent.

Configure the Domain Name System (DNS) protocol on both the master and agents so that
all of the hosts can be resolved by using a fully qualified domain name. See Chapter 3,
“Managing DNS Server and Client Services” in Working With Oracle Solaris 11.3 Directory
and Naming Services: DNS and NIS.

Ensure that time-keeping on the Puppet master is configured accurately. See “How to
Configure NTP on the Puppet Master” on page 20.

Chapter 2 « Getting Started With Puppet in Oracle Solaris 19

http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=OSSUPrbactask-28
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=OSSUPrbactask-28
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=SVNAMdnsadmin-1
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=SVNAMdnsadmin-1
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=SVNAMdnsadmin-1

How to Configure NTP on the Puppet Master

v

How to Configure NTP on the Puppet Master

Because the Puppet master server acts as the certificate authority, a recommended best practice
is to configure the Network Time Protocol (NTP) to accurately keep time on the master prior

to installing Puppet. Otherwise, the master could issue certificates that the agents could treat as
expired. For more information about managing NTP, see Enhancing System Performance Using
Clock Synchronization and Web Caching in Oracle Solaris 11.3.

Perform the following procedure on the Puppet master prior to installing the Puppet IPS
package.

Become an administrator who is assigned the Puppet Management rights profile or
assume the root role.

Create a configuration file by editing the /etc/inet/ntp.client file and then
copying the information to /etc/inet/ntp.conf.

In this procedure, the following four time servers are used, in the event that one time server
fails.

echo "server 0.pool.ntp.org" > /etc/inet/ntp.conf
echo "server l.pool.ntp.org" >> /etc/inet/ntp.conf

echo "server 2.pool.ntp.org" >> /etc/inet/ntp.conf
echo "server 3.pool.ntp.org" >> /etc/inet/ntp.conf

Add the required configuration parameters to the /etc/inet/ntp.conf file.
echo "driftfile /var/ntp/ntp.drift" >> /etc/inet/ntp.conf
echo "statsdir /var/ntp/ntpstats/" >> /etc/inet/ntp.conf

echo "filegen peerstats file peerstats type day enable" >> /etc/inet/ntp.conf
echo "filegen loopstats file loopstats type day enable" >> /etc/inet/ntp.conf

Force an initial time synchronization.
ntpdate 0.pool.ntp.org

Enable the ntp SMF service.

svcadm enable ntp

Verify that NTP is working.

ntpg -p

Note - NTP start-up can take from 15 to 60 minutes, or longer.

20 Using Puppet to Perform Configuration Management in Oracle Solaris 11.3 « September 2018

http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=SVNTP
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=SVNTP

Installing Puppet

Next Steps As an alternative, you could also specify NTP configuration by using a Puppet manifest. See
Chapter 4, “Writing Puppet Manifests, Classes, and Modules in Oracle Solaris”.

Installing Puppet

In Oracle Solaris, the Puppet IPS package is not installed by default. To use Puppet, you must
individually install the system/management/puppet package on the Puppet master and all of the
nodes that will run the Puppet agent. You install the same software package on both the master
and each of the nodes. The Puppet version that is supported in Oracle Solaris 11.3 is 3.6.2.

To determine whether the Puppet IPS package is installed on a system, type the following
command:

pkg list puppet
pkg list: no packages matching the following patterns are installed:
puppet

You can display more detailed information about the Puppet IPS package as follows:

pkg info -r puppet
Name: system/management/puppet
Summary: Puppet - configuration management toolkit
Description: Puppet is a flexible, customizable framework designed to help
system administrators automate the many repetitive tasks they
regularly perform. As a declarative, model-based approach to IT
automation, it lets you define the desired state - or the "what"
- of your infrastructure using the Puppet configuration
language. Once these configurations are deployed, Puppet
automatically installs the necessary packages and starts the
related services, and then regularly enforces the desired state.
Category: System/Administration and Configuration
State: Not installed
Publisher: solaris
Version: 3.6.2
Build Release: 5.11
Branch: 0.175.3.8.0.5.0
Packaging Date: Mon May 09 22:30:56 2016
Size: 427.92 kB
FMRI: pkg://solaris/system/management/puppet@3.6.2,5.11-0.175.3.8.0.5.0:
20160509T223056Z

The previous output indicates that the Puppet package is not installed on the system.

Install the Puppet IPS package on the master first, then install the package on each of the nodes
as follows:

Chapter 2 « Getting Started With Puppet in Oracle Solaris 21

Configuring the Puppet Master and Agent

pkg install puppet
Verify that Puppet is installed:

pkg info puppet
Name: system/management/puppet
Summary: Puppet - configuration management toolkit
Description: Puppet is a flexible, customizable framework designed to help
system administrators automate the many repetitive tasks they
regularly perform. As a declarative, model-based approach to IT
automation, it lets you define the desired state - or the "what"
- of your infrastructure using the Puppet configuration
language. Once these configurations are deployed, Puppet
automatically installs the necessary packages and starts the
related services, and then regularly enforces the desired state.
Category: System/Administration and Configuration
State: Installed
Publisher: solaris
Version: 3.6.2
Build Release: 5.11
Branch: 0.175.3.0.0.30.0
Packaging Date: Fri Aug 21 17:26:04 2015
Size: 426.20 kB
FMRI: pkg://solaris/system/management/puppet@3.6.2,5.11-0.175.3.0.0.30.0:
20150821T172604Z

Per the previous output, you can see that Puppet is now installed on the system.

Configuring the Puppet Master and Agent

After installing Puppet on both the Puppet master and the nodes (agents) that the master will
control, you are ready to configure the master and the agents.

Note - To perform the following tasks, you must be assigned the Puppet Management rights
profile or assume the root role.

How Puppet Configuration Is Managed Through
SMF

As part of the Puppet installation, the Puppet SMF service is installed on both the Puppet master
and the nodes that the will run the Puppet agent. This SMF service has two instances: svc:/

22 Using Puppet to Perform Configuration Management in Oracle Solaris 11.3 « September 2018

Configuring the Puppet Master and Agent

application/puppet:master, which is for the Puppet master, and svc:/application/puppet:
agent, which is for the Puppet agent. Having Puppet managed through SMF enables you to take
advantage of a layered configuration, which helps preserve your configuration during system
updates.

By default, both of the Puppet SMF service instances are disabled, as shown in the following
output:

svcs -a | grep puppet
disabled Feb 18 svc:/application/puppet:agent
disabled Feb 18 svc:/application/puppet:master

The initial Puppet configuration file (etc/puppet/puppet.conf) is generated by using an SMF
stencil, which ensures that any configuration that is stored in the SMF repository correctly maps
to the configuration that is stored in the Puppet configuration file.

Puppet reads configuration information from the /etc/puppet/puppet.conf file rather than
from the properties that are set in the application/puppet service instances. To provide the
required configuration file, each puppet instance provides a stencil file and a configfile
property group. The configfile property group instructs the svcio utility to run and to create
the specified configuration file. The stencil file is then used to write data from service property
values to the configuration using the correct format. For more information about stencils, see
Chapter 6, “Using a Stencil to Create a Configuration File” in Developing System Services in
Oracle Solaris 11.3.

The following example shows all of the puppet service properties that are included in the
configfile property group:

svcprop -g configfile puppet
svc:/application/puppet:master/:properties/puppet stencil/mode astring 0444
svc:/application/puppet:master/:properties/puppet stencil/path astring /etc/puppet/
puppet.conf

svc:/application/puppet:master/:properties/puppet stencil/stencil astring puppet.stencil
svc:/application/puppet:agent/:properties/puppet_stencil/mode astring 0444
svc:/application/puppet:agent/:properties/puppet_stencil/path astring /etc/puppet/
puppet.conf

svc:/application/puppet:agent/:properties/puppet stencil/stencil astring puppet.stencil

In the previous output, both instances of the puppet service have the same configfile
properties with the same values. Each puppet service instance provides the path to the
configuration file, the mode of the configuration file, and the path to the stencil file.

The following example shows that these instance properties are inherited from the parent
service:

svccfg -s puppet listprop -1 all puppet_stencil
puppet stencil configfile manifest

Chapter 2 « Getting Started With Puppet in Oracle Solaris 23

http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=SVCDVstencilsvcs
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=SVCDVstencilsvcs

How to Configure the Puppet Master and Agent

Before You Begin

puppet stencil/mode astring manifest 0444
puppet stencil/path astring manifest /etc/puppet/puppet.conf
puppet stencil/stencil astring manifest puppet.stencil

When making configuration changes to the puppet. conf file, do not manually edit the file.
Instead, use SMF commands, as shown in the following example:

svccfg -s puppet:agent

svc:/application/puppet:agent> setprop config/report=true
svc:/application/puppet:agent> setprop config/pluginsync=true
svc:/application/puppet:agent> refresh
svc:/application/puppet:agent> exit

Any changes that you make by using SMF commands are automatically reflected in the
puppet. conf file when you restart the Puppet agent service instance:

svcadm restart puppet:agent

cat /etc/puppet/puppet.conf

WARNING: THIS FILE GENERATED FROM SMF DATA.

DO NOT EDIT THIS FILE. EDITS WILL BE LOST.

#

See puppet.conf(5) and http://docs.puppetlabs.com/guides/configuring.html
for details.

[agent]

logdest = /var/log/puppet/puppet-agent.log
pluginsync = true
report = true

See the svccfg(1M) and svcadm(1M) man pages.

For a complete list of all of the configuration settings that apply to the puppet. conf file, see
Configuration: How Puppet is Configured.

How to Configure the Puppet Master and Agent

One Puppet master can control many nodes that are running the Puppet agent. Depending on
your particular infrastructure, you can also designate more than one Puppet master to control
thousands of nodes. The following procedure describes how to configure one master and one
agent.

Prior to performing the following procedure, do the following:

= Install the Puppet IPS package on both the master and all of the nodes that will run the
Puppet agent. See “Installing Puppet” on page 21.

24 Using Puppet to Perform Configuration Management in Oracle Solaris 11.3 « September 2018

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1Msvccfg-1m
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1Msvcadm-1m
https://docs.puppet.com/puppet/3.6/config_about_settings.html

How to Configure the Puppet Master and Agent

®= On the master, configure and enable the Puppet master SMF service instance.

svccfg -s puppet:master setprop config/server=master.company.com
svcadm enable puppet:master
svcs puppet:master

The output should indicate that the SMF service instance for the master is online. You are
now ready to configure the nodes that will run the Puppet agent.

1. On the node, do the following:

a. Set the value of the SMF config/server property for the agent so that it points
to the master.

svccfg -s puppet:agent setprop config/server=master.company.com
svccfg -s puppet:agent refresh

You must refresh the SMF service for the changes to take effect.

Note - Do not enable the agent service instance until after the agent makes the certificate
request and it is successfully signed on the master.

b. Test the connection from the agent to the master.
puppet agent --test

Running the puppet agent command with the --test option on the agent creates a new
SSL key and sets up a request for authentication between the agent and the master.

2. On the master, do the following:

a. View any outstanding certificate requests coming from agents that are
attempting to connect to the master.

puppet cert list

The output of this command should show a request being made by the agent.

b. Sign the certificate for the agent that is making the request.

puppet cert sign agent

Chapter 2 « Getting Started With Puppet in Oracle Solaris 25

How to Configure the Puppet Master and Agent

Note - Although manually signing certificates is the preferred Puppet practice, if you have
an environment where it is not absolutely necessary to manually sign certificates, you

can configure the CA Puppet master to automatically sign certain CSRs. See the Puppet
documentation at SSL. Configuration: Autosigning Certificate Requests.

3. Retest the connection from the agent to the master.
puppet agent --test

This step ensures that the authentication between the master and the agent has taken place.

4. Enable the SMF service instance for the Puppet agent.

svcadm enable puppet:agent
svcs puppet:agent

The output should indicate that the SMF service instance for the agent is online.

Example 1 Configuring the Puppet Master and Agent

The following example shows how you would configure a Puppet master and agent.

svcs -a | grep puppet
disabled 16:04:54 svc:/application/puppet:agent
disabled 16:04:55 svc:/application/puppet:master

svccfg -s puppet:master setprop config/server=master.company.com
root@master:~# svcadm enable puppet:master

root@master:~# svcs puppet:master

STATE STIME FMRI

online 17:38:42 svc:/application/puppet:master

svccfg -s puppet:agent setprop config/server=master.company.com
svccfg -s puppet:agent refresh

puppet agent --test

Info: csr_attributes file loading from /etc/puppet/csr_attributes.yaml

Info: Creating a new SSL certificate request for agent.company.com

Info: Certificate Request fingerprint (SHA256): E0:1D:QF:18:72:B7:CE:A7:83:E4:48
:D5:F8:93:36:15:55:0A:B9:C8:E5:B1:CE:D9:3E:0A:68:01:BE:F7:76:47

Exiting; no certificate found and waitforcert is disabled

puppet cert list
"agent.company.com" (SHA256) EQ:1D:QF:18:72:B7:CE:A7:83:E4:48 :D5:F8:93:36:15:55:
0A:B9:C8 :E5:B1:CE:D9:3E:0A:68:01:BE:F7:76:47

puppet cert sign agent.company.com

26 Using Puppet to Perform Configuration Management in Oracle Solaris 11.3 « September 2018

https://docs.puppet.com/puppet/3.6/ssl_autosign.html

Troubleshooting Issues With Puppet in Oracle Solaris

Notice: Signed certificate request for agent.company.com
Notice: Removing file Puppet:SSL:CertificateRequest agent at '/etc/puppet/ssl/ca/
requests/solaris.pem'

puppet agent --test

Info: Caching certificate for agent.company.com
Info: Caching certificate revocation list for ca
Info: Caching certificate for agent.company.com
Info: Retrieving plugin

Info: Caching catalog for agent.company.com

Info: Applying configuration version '1400782295'
Notice: Finished catalog run in 0.18 seconds

svcadm enable puppet:agent

svcs puppet:agent

STATE STIME FMRI

online 18:20:32 svc:/application/puppet:agent

Next Steps After you have installed Puppet and performed all of the necessary configuration and validation
tasks, you are ready to use Puppet to manage system configuration.

For details about declaring resources with Puppet, see Chapter 3, “Working With Puppet
Resources and Resource Types in Oracle Solaris”.

For instructions on writing Puppet manifests, see Chapter 4, “Writing Puppet Manifests,
Classes, and Modules in Oracle Solaris”.

For examples of various Oracle Solaris system configurations, see Chapter 5, “Using Puppet to
Manage System Configuration in Oracle Solaris”.

Troubleshooting Issues With Puppet in Oracle Solaris

The puppet master and agent services log most activity to the syslog service. The syslog
configuration dictates where these messages are saved. In Oracle Solaris, the default location
is the /var/adm/messages directory. However, Puppet service logs are stored in the following
locations.

For the Puppet daemon, the logs are stored in the following locations:

® /var/log/puppet/puppet-master.log
® /var/log/puppet/puppet-agent.log

For the Puppet SMF service instances, the logs are stored in the following locations:

® /var/svc/log/application-puppet:agent.log

Chapter 2 « Getting Started With Puppet in Oracle Solaris 27

Troubleshooting Issues With Puppet in Oracle Solaris

® /var/svc/log/application-puppet:master.log

You can access the logs for the Puppet agent by running the following command:

svcs -Lv puppet:agent

You can access the logs for the Puppet master as follows:

svcs -Lv puppet:master

The following example shows the types of information you can view with this command:
svcs -Lv puppet:master

svc:/application/puppet:master (Puppet version 3.6.2)

[Jul 1 09:47:23 Disabled.]
[Jul 1 09:47:26 Rereading configuration.]

28 Using Puppet to Perform Configuration Management in Oracle Solaris 11.3 « September 2018

* e CHAPTER 3

Working With Puppet Resources and Resource
Types in Oracle Solaris

This chapter provides more detailed descriptions of Puppet resources and resource types, as
well as examples of resource types that are commonly used in Oracle Solaris. Information about
how to use the Puppet command-line interface (CLI) to list, view, and modify resources is also
provided.

This chapter includes the following topics:

= “About Puppet Resources and Resource Types” on page 29

= “Puppet Resource Type Descriptions” on page 31

= “About Declaring Puppet Resources” on page 33

= “Viewing and Modifying Puppet Resources by Using the Command Line” on page 34
m “Gathering Information About a System by Using Facter” on page 36

About Puppet Resources and Resource Types

Puppet uses resources and resource types to describe a system's configuration. Resources are
grouped into collections. At a high level, a resource is referred to as a type, which describes a
specific resource that Puppet can manage on a system, such as users, packaging, networking,
and so on.

At a platform-specific level, a resource is referred to as a provider. Providers are the platform-
specific implementations of a specified type. Providers translate the general definitions for a
resource into the actions that are required to implement the resource on that specific platform.

Resource types and providers are at the heart of the Puppet Resource Abstraction Layer (RAL).
Oracle Solaris includes several built-in Puppet resource types and providers that apply to a
specific Puppet version, as well as additional resource types that are distributed in individual
Puppet modules that enable you to manage certain aspects of networking, naming services, and
so on. There are also types that are unique to managing specific Oracle Solaris features, for
example, Oracle Solaris Zones.

Chapter 3 « Working With Puppet Resources and Resource Types in Oracle Solaris 29

About Puppet Resources and Resource Types

30

As previously mentioned, Puppet uses a declarative language to describe system resources and
their state. This information is written in manifests. You can use a Puppet site manifest (site.
pp), which is located on the Puppet master, to define global configuration that is common to all
of the nodes.

You can also include node-specific code in a main Puppet manifest to define configuration that
pertains to certain nodes. See Chapter 4, “Writing Puppet Manifests, Classes, and Modules in
Oracle Solaris”.

Display all of the Puppet resource types that are available on a system as follows:

puppet resource --types
address _object
address _properties
augeas

boot environment
computer

cron

dns

etherstub

exec

file

filebucket

group

host

interface

interface properties
ip_interface
ip_tunnel
ipmp_interface
k5login

ldap

link aggregation
link properties
macauthorization
mailalias

maillist

mcx

mount

nagios_command
nagios contact
nagios contactgroup
nagios host
nagios_hostdependency
nagios_hostescalation
nagios_hostextinfo
nagios_hostgroup
nagios service

Using Puppet to Perform Configuration Management in Oracle Solaris 11.3 « September 2018

Puppet Resource Type Descriptions

nagios servicedependency
nagios serviceescalation
nagios_serviceextinfo
nagios_servicegroup
nagios_ timeperiod
nis

notify

nsswitch

package

pkg facet

pkg mediator

pkg publisher

pkg variant
protocol properties
resources

router

schedule

scheduled task
selboolean
selmodule

service
solaris_vlan
ssh_authorized key
sshkey

stage

svccfg

tidy

user

vlan

vni_interface

vnic

whit

yumrepo

zfs

zone

zpool

The previous output includes both Oracle Solaris-specific types and core Puppet types, which
are available for use on other platforms.

Puppet Resource Type Descriptions

You would use the puppet describe command with the --1ist option as follows to display all
of the available resource types and descriptions for each of the supported Puppet providers:

puppet describe --list

Chapter 3 « Working With Puppet Resources and Resource Types in Oracle Solaris 31

Puppet Resource Type Descriptions

These are the types known to puppet:

address object - Manage the configuration of Oracle Solaris ad
address properties - Manage Oracle Solaris address properties
augeas - Apply a change or an array of changes to the
boot _environment - Manage Oracle Solaris Boot Environments (BEs)
computer - Computer object management using DirectorySer ..
cron - Installs and manages cron jobs. Every cron re ...
dns - Manage the configuration of the DNS client fo
etherstub - Manage the configuration of Solaris etherstub ..
exec - Executes external commands. Any command in an
file - Manages files, including their content, owner ..
filebucket - A repository for storing and retrieving file
group - Manage groups. On most platforms this can onl
host - Installs and manages host entries. For most s
interface - This represents a router or switch interface.
interface properties - Manage Oracle Solaris interface properties
ip_interface - Manage the configuration of Oracle Solaris IP ...
ip_tunnel - Manage the configuration of Oracle Solaris IP ..
ipmp_interface - Manage the configuration of Oracle Solaris IP ...
k5login - Manage the ".k5login’ file for a user. Specif
ldap - Manage the configuration of the LDAP client f

link aggregation - Manage the configuration of Oracle Solaris 1i
link properties - Manage Oracle Solaris link properties
macauthorization - Manage the Mac 0S X authorization database. S

mailalias - Creates an email alias in the local alias dat
maillist - Manage email lists. This resource type can on
mcx - MCX object management using DirectoryService
mount - Manages mounted filesystems, including puttin
nagios _command - The Nagios type command. This resource type i
nagios _contact - The Nagios type contact. This resource type i
nagios_contactgroup - The Nagios type contactgroup. This resource t
nagios host - The Nagios type host. This resource type is a

nagios_hostdependency - The Nagios type hostdependency. This resource ...
nagios hostescalation - The Nagios type hostescalation. This resource ...
nagios hostextinfo - The Nagios type hostextinfo. This resource ty ...
nagios_hostgroup - The Nagios type hostgroup. This resource type ...
nagios service - The Nagios type service. This resource type i

nagios servicedependency - The Nagios type servicedependency. This resou
nagios serviceescalation - The Nagios type serviceescalation. This resou
nagios _serviceextinfo - The Nagios type serviceextinfo. This resource ...
nagios servicegroup - The Nagios type servicegroup. This resource t
nagios timeperiod - The Nagios type timeperiod. This resource typ ...

nis - Manage the configuration of the NIS client fo
notify - Sends an arbitrary message to the agent run-t
nsswitch - Name service switch configuration data
package - Manage packages. There is a basic dichotomy i
pkg facet - Manage Oracle Solaris package facets

pkg mediator - Manage Oracle Solaris package mediators

32 Using Puppet to Perform Configuration Management in Oracle Solaris 11.3 « September 2018

About Declaring Puppet Resources

pkg publisher - Manage Oracle Solaris package publishers

pkg variant - Manage Oracle Solaris package variants

protocol properties - Manage Oracle Solaris protocol properties
resources - This is a metatype that can manage other reso ...
router - Manages connected router.

schedule - Define schedules for Puppet. Resources can be ..
scheduled task - Installs and manages Windows Scheduled Tasks.
selboolean - Manages SELinux booleans on systems with SELi ...
selmodule - Manages loading and unloading of SELinux poli ...
service - Manage running services. Service support unfo ...
solaris_vlan - Manage the configuration of Oracle Solaris VL ..
ssh_authorized key - Manages SSH authorized keys. Currently only t ...
sshkey - Installs and manages ssh host keys. At this p ...
stage - A resource type for creating new run stages.
svccfg - Manage SMF service properties with svccfg(1M)
tidy - Remove unwanted files based on specific crite ...
user - Manage users. This type is mostly built to ma ...
vlan - Manages a VLAN on a router or switch.
vni_interface - Manage the configuration of Solaris VNI inter ...
vnic - Manage the configuration of Oracle Solaris Vi ...
whit - Whits are internal artifacts of Puppet's curr ..
yumrepo - The client-side description of a yum reposito ...
zfs - Manage zfs. Create destroy and set properties
zone - Manages Solaris zones.

zpool - Manage zpools. Create and delete zpools. The

About Declaring Puppet Resources

A resource declaration is an expression that describes the desired state for a resource. The
Puppet master then takes these resource declarations and compiles them into a catalog. When
Puppet applies that catalog to a target system, it manages every resource that it contains,
ensuring that the actual state matches the desired state.

In contrast, when you specify the contents and behavior of a class or a defined type, you define
it by using the Puppet language. Defining a class or type makes it available to be declared
within a manifest.

Puppet uses the following format for basic resource declarations:
resource type { 'title':

attributel => 'valuel',
attribute2 => 'value2',

Chapter 3 « Working With Puppet Resources and Resource Types in Oracle Solaris 33

Viewing and Modifying Puppet Resources by Using the Command Line

All resource declarations use the following format:
® resource type — Is the type of resource that is being declared. The resource type must be
a word that does not include quotation marks.

The resource_type includes an opening that begins with a curly brace ({).

® title —Is an identifying string that Puppet uses for identification purposes. Every
resource_type must have a title, and the string must be unique, per each resource type.
Note that the title does not have to match the name of the resource that you are managing on
the node.

The title is followed by a colon (:).

B attribute — Describes the desired state of the resource. Most resources have a set of
required attributes, but they can also include a set of optional attributes..

Attribute and value pairs must consist of the following:
= An attribute name, which is a lowercase word with no quotes.

Each attribute name handles some aspect of the resource. Each resource type has its own
set of available attributes.

® An arrow (=>), also called a "fat comma,” or “hash rocket”.
m A value, which can have any data type.

The data type of the value depends on what the attribute accepts.
m A trailing comma.

® A closing curly bracket (}) must be included at the end of the resource declaration.
Note that you can use any amount of white space in the Puppet language.

For more detailed information, go to Language: Resources.

Viewing and Modifying Puppet Resources by Using the
Command Line

You can view and modify the state of a system's resource by using the puppet resource
command. This command converts the current system state into Puppet's declarative language,
which you can then use to enforce configuration on other systems.

Viewing the State of a Puppet Resource

The following example shows how you would view the state of the zone resource type:

34 Using Puppet to Perform Configuration Management in Oracle Solaris 11.3 « September 2018

https://docs.puppet.com/puppet/3.6/lang_resources.html

Viewing and Modifying Puppet Resources by Using the Command Line

puppet resource zone

zone { 'global':
ensure => 'running',
brand => 'solaris',
iptype => 'shared',
zonepath => '/',

}

zone { 'myzone':
ensure => 'running',
brand => 'solaris-kz',
iptype => 'excl',
zonepath => '/system/volatile/zones/myzone/zonepath',

}

In the previous example, there are two zone resources declared: a global zone and an installed
kernel zone. Each of these resources has four attributes: ensure, brand, iptype, and zonepath.
Each attribute has a value associated with it. This value is a central component of Puppet's
declarative language.

The following example shows how you would view the state of the service resource type:

puppet resource service svc:/network
/dns/client:default
service {'svc:/network/dns/client:default"':
ensure => 'running’',
enable =>'true',

Modifying the State of a Puppet Resource

You can also use the puppet resource command to modify the state of a resource. You would
use this method in lieu of directly modifying the configuration within a Puppet manifest.

For example, you would modify the state of the service resource type as follows:

puppet resource service svc:/network/dns/client:default enable=false

Notice: /Service[svc:/network/dns/client:default]/enable: enable changed 'true' to
'false'

service { 'svc:/network/dns/client:default"':
ensure => 'stopped’,
enable => 'false',

Chapter 3 « Working With Puppet Resources and Resource Types in Oracle Solaris 35

Gathering Information About a System by Using Facter

Gathering Information About a System by Using Facter

You use the Facter utility to gather information about a system. This information is sent to the
Puppet master and then used by Puppet's resource providers to compile catalogs that specify the
configuration changes that should be applied to each of the nodes.

A catalog also specifies the states in which each of the resources should be. Based on these
definitions, each system can then apply its own configurations, as appropriate. After the catalog
is applied to the system, the agent generates a report and sends that report to the Puppet master.
This report contains information about which resources are currently being managed on the
target node, as well as any changes that were made to the node to achieve a desired state. See
“How Puppet Works” on page 14.

To list all of the facts that are available for a given node, type the following command:

facter -p

architecture => i86pc
facterversion => 2.1.0
hardwareisa => 1386
hardwaremodel => i86pc
hostname => myhost

id => root

interfaces => 100,net0
ipaddress => 203.0.113.15
ipaddress6 => ::
ipaddress 100 => 127.0.0.1
ipaddress_net® => 203.0.113.5
ipaddress netl => 203.0.113.5

uptime => 0:22 hours
uptime days => 0
uptime_hours => 0
uptime seconds => 1320
virtual => virtualbox

Or, you can display an individual fact for a given node, for example hostname, as follows:

facter hostname
myhost

Gathering facts about a system can assist you in determining the types of configuration that
you can enforce on a given system. For example, you could declare a file resource that would
populate a given file with platform-specific content.

In the following example, the osfamily fact is used to declare the platform within the file:

$file contents = $osfamily ? {

36 Using Puppet to Perform Configuration Management in Oracle Solaris 11.3 « September 2018

Gathering Information About a System by Using Facter

'solaris' => "Hello Oracle Solaris",
'redhat' => "Hello RHEL",

file { '/custom-file.txt':
ensure => 'present’,
content => $file contents,

}

In the previous example, a new $file contents variable was created and a conditional check
was provided by using the osfamily fact. Then, depending on the platform, you would assign
different contents to the file.

For more information, see Facter: Custom Facts.

Chapter 3 « Working With Puppet Resources and Resource Types in Oracle Solaris 37

https://docs.puppet.com/facter/2.3/fact_overview.html

38 Using Puppet to Perform Configuration Management in Oracle Solaris 11.3 « September 2018

¢ e CHAPTER 4

Writing Puppet Manifests, Classes, and
Modules in Oracle Solaris

Puppet manifests, classes, and modules are what Puppet uses to define system configuration
within your infrastructure. This chapter describes the basics of writing manifests, classes, and
modules.

This chapter contains the following topics:

®m “Writing a Puppet Site Manifest” on page 39

= “Writing Puppet Manifests That Specify Node-Specific Code” on page 42
= “Writing Puppet Classes” on page 43

= “Writing Puppet Modules” on page 45

Writing a Puppet Site Manifest

After installing and configuring Puppet, you can write Puppet manifests to control the nodes
that are running the Puppet agent. Puppet manifests are written in a Puppet-specific language
that is similar to Ruby, where each manifest uses a . pp file extension.

The Puppet site manifest (site.pp) is the main file that Puppet uses to define global system
configuration. A site manifest defines configuration that you want applied to every node, which
is ideal for managing system-wide configurations, such as DNS servers, LDAP configuration,
and other site-wide settings that are common to all of the nodes.

A site manifest can also include node-specific blocks of code that apply to certain nodes. This
capability enables you to assign specific configurations to specific nodes within a site manifest.
See “Writing Puppet Manifests That Specify Node-Specific Code” on page 42.

Note - The site.pp manifest does not exist on the Puppet master by default. You must initially
create this file, and it must be stored in the /etc/puppet/manifests/ directory on the master.

Chapter 4 « Writing Puppet Manifests, Classes, and Modules in Oracle Solaris 39

How to Write a Puppet Site Manifest

v

Before You Begin

How to Write a Puppet Site Manifest

The following procedure describes how to write a Puppet site manifest to enforce configuration
globally within your infrastructure.

Prior to writing a Puppet site manifest, you will need to do the following:

= Determine which resource types to declare in the manifest. You can obtain this information
by using the puppet describe resource-type command, which displays all of the available
attributes and parameters for the specified resource type.

puppet describe resource-type

See “Puppet Resource Type Descriptions” on page 31.

m Familiarize yourself with the basic syntax that you use to declare resources within a
Puppet manifest. See “About Declaring Puppet Resources” on page 33. For more detailed
information, go to Language: Resources.

m Familiarize yourself with the syntax that you use to define specific Oracle Solaris system
configuration within a Puppet manifest. See Chapter 5, “Using Puppet to Manage System
Configuration in Oracle Solaris” for examples.

Become an administrator who is assigned the Puppet Management rights profile or
assume the root role.

See “Using Your Assigned Administrative Rights” in Securing Users and Processes in Oracle
Solaris 11.3.

Create a site.pp file on the Puppet master.
touch /etc/puppet/manifests/site.pp

This file should always reside in the /etc/puppet/manifests directory on the master.

Define the specified configuration within the Puppet site manifest (site.pp) and
save your changes.

See Chapter 3, “Working With Puppet Resources and Resource Types in Oracle Solaris” for
more details.

Test the configuration changes that you made to the site.pp file before they are
permanently applied.

puppet apply -v --noop /etc/puppet/manifests/site.pp

apply Applies the configuration to the Puppet manifest on the master.

40 Using Puppet to Perform Configuration Management in Oracle Solaris 11.3 « September 2018

https://docs.puppet.com/puppet/3.6/lang_resources.html
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=OSSUPrbactask-28
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=OSSUPrbactask-28

How to Write a Puppet Site Manifest

Example 2

-v Indicates to use verbose mode.

-noop Enables you to perform a dry run without actually applying your
changes. Use this option for testing purposes.

The Puppet agent that is running on each node queries the master for configuration changes at
regular intervals and then applies any required changes to the node.

Check the log file (/var/log/puppet/puppet-agent.log) on each node to verify that it
retrieved the latest configuration changes.

(Optional) To manually apply the latest configuration changes, run the following
command on the node:

puppet agent -t

Specifying the -t (--test) option enables verbose logging, which causes the agent daemon to
remain in the foreground, exits if the master server's configuration is invalid (as in the case of a
syntax error), then exits after running the configuration one time.

To display all of the available Puppet subcommands, use the /usr/sbin/puppet help agent
command. See also the puppet(8) man page.

Writing a Puppet Manifest

The following example shows how you would declare resources in Puppet site manifest. This
example assumes that you have already created a site.pp file and that the file is stored in the
correct directory on the Puppet master.

First, you would declare resources in the site.pp file. In this example, the file resource type
is declared. For this resource type, two attributes are specified: ensure and content. These two

attributes ensure that a custom-file. txt file exists in the root directory on the node and that
the file includes the words, "Hello World".

file { '/custom-file.txt':
ensure => 'present’,
content => "Hello World",

}
After saving the site.pp file, you can test the configuration's validity on the master as follows:

puppet apply -v --noop /etc/puppet/manifests/site.pp

Notice: Compiled catalog for master in environment production in 0.16 seconds

Info: Applying configuration version '1400794990'

Notice: /Stage[main]/Main/File[/custom-file.txt]/ensure: current value absent, should be
present (noop)

Chapter 4 « Writing Puppet Manifests, Classes, and Modules in Oracle Solaris 41

Writing Puppet Manifests That Specify Node-Specific Code

Notice: Class[Main]: Would have triggered 'refresh' from 1 events
Notice: Stage[Main]: Would have triggered 'refresh' from 1 events
Notice: Finished catalog run in 0.27 seconds

The -v option specifies to use verbose mode, and the -noop option ensures that no changes are
actually made. Using the -noop option for testing purposes enables you to perform a dry run
without actually applying the changes to the manifest.

The Puppet agent that is running on each node queries the master for configuration changes at
regular intervals and then applies any new changes, as needed. You can check the node's log file
(/var/log/puppet/puppet-agent.log) to verify that the node applied the latest changes:

1s -la /custom-file.txt

SrW- - 1 root root 16 Mar 22 21:50 /custom-file.txt
cat /custom-file.txt

Hello World

tail /var/log/puppet/puppet-agent.log

2016-03-22 21:50:17 +0000 /Stage[main]/Main/File[/custom-file.txt]/ensure (notice):
created
2016-03-22 21:50:17 +0000 Puppet (notice): Finished catalog run in 0.21 seconds

The previous output indicates that the configuration is being enforced on the node. By default,
agents poll the master for configuration changes at 30-minute intervals. You could also verify
the configuration by checking whether the custom-file.txt file exists on the node.

Optionally, you would manually apply the configuration changes by running the following
command on the node:

puppet agent -t

For specific examples that show how to use Puppet to define Oracle Solaris system
configuration, see Chapter 5, “Using Puppet to Manage System Configuration in Oracle
Solaris”.

Writing Puppet Manifests That Specify Node-Specific Code

If you are managing configuration for a variety of systems, you might consider specifying
conditional logic in your manifests, which ensures that each system is correctly matched to the
appropriate configuration.

To enforce this logic, use the node keyword in your site manifest (which can be a single file
with a . pp file extension or a directory containing several files with a .pp file extension). While
node declarations enable you to specify any arbitrary Puppet code, it is recommended that they
only contain variable assignments and class declarations.

42 Using Puppet to Perform Configuration Management in Oracle Solaris 11.3 « September 2018

Writing Puppet Classes

The following example shows how you would match identical configuration for two nodes,
agentl.company.com and agent2.company . com:

node ‘agentl.company.com’, ‘agent2.company.com’ {
Include resources here

}

The following example shows the syntax that you would use to match identical configuration
for two nodes, along with a different resource definition for a third node (agent3. company.
com).

node 'agentl.company.com', 'agent2.company.com' {
Include resources here
}

node 'agent3.company.com' {

Include other resources here

Puppet also provides a special node, called default, which enables a fallback configuration
for any of the nodes that do not match existing node definitions. You would define a fallback
configuration for these nodes as follows:

node default {
Include other resources here

}

For more in-depth information about writing manifests that includes node-specific code, see
Language: Node Definitions.

Writing Puppet Classes

Classes are blocks of Puppet code that enable reuse. Using classes makes reading manifests less
complicated. A class definition contains the code for a specific class. You first define the class,
then you make the class available for use within manifests. Note that the class itself does not
perform any evaluation.

The following example shows the format that is used for a class definition named
examplecloud:

class examplecloud::analytics {

Chapter 4 « Writing Puppet Manifests, Classes, and Modules in Oracle Solaris 43

https://docs.puppet.com/puppet/3.6/lang_node_definitions.html

Writing Puppet Classes

package { "system/management/webui/webui-server":
ensure => installed,

svccfg { "webui":
require => Package["system/management/webui/webui-server"],
fmri => "system/webui/server:default",
property => "conf/redirect from https",
value => "false",
ensure => present,

service { "system/webui/server":
require => Package["system/management/webui/webui-server"],
ensure => running,

}

In this example, the class has two name spaces: examplecloud and analytics. The code that
is specified in this class ensures that certain IPS packages are installed and that certain SMF
configuration is applied prior to enabling the analytics SMF service on the node.

A class declaration is a class that is defined within a manifest. A class declaration instructs
Puppet to evaluate the code within that class.

There are two types of class declarations: normal and resource-like.

® For the normal class declaration, the include keyword is included in Puppet code, as shown
in the following example:

include example_class

= For the resource-type class declaration, the class is declared similarly to how a resource is
declared, as shown in this example:

class { 'example_class': }

You use resource-like class declarations to specify class parameters. These parameters
override the default values of class attributes.

For more in-depth information about writing and assigning Puppet classes, see Language:
Classes.

EXAMPLE 3 Including a Class Declaration in a Puppet Manifest

The following example manifest uses a class declaration named examplecloud, which is located
in the /puppet/modules directory on the Puppet master.

44 Using Puppet to Perform Configuration Management in Oracle Solaris 11.3 « September 2018

https://docs.puppet.com/puppet/3.8/lang_classes.html
https://docs.puppet.com/puppet/3.8/lang_classes.html

Writing Puppet Modules

Under the examplecloud class are several manifests (/puppet/modules/examplecloud/
manifests) that specify various configurations. Each manifest includes the examplecloud class
declaration, as shown in the following example:

NTP configuration for companyfoo
class examplecloud::ntp {

file { "ntp.conf" :
path => "/etc/inet/ntp.conf",
owner => "root",
group => "root",
mode => 644,
source => "puppet:///modules/examplecloud/ntp.conf",

package { "ntp":
ensure => installed,

service { "ntp":
require => File["ntp.conf"],
subscribe => File["ntp.conf"],
ensure => running,

}
The declarations for the examplecloud class in the previous example ensure the following:

m The NTP package is installed

m A certain configuration file (which is sourced from a location other than the Puppet master)
is installed

m The NTP service is enabled and in a running state on the node

Writing Puppet Modules

A

Puppet modules are a collection of manifests and data, which can include facts, files, and
templates. Modules help you organize and reuse Puppet code by enabling you to split the code
into several manifests. With the exception of the main site.pp manifest that contains global
configuration for all of the nodes, nearly all Puppet manifests should be included in modules. If
you have several Puppet manifests, consider using modules as a way to organize them.

Caution - Modules that are provided through IPS are specifically updated for Oracle Solaris.
Do not replace these modules with Puppet Forge modules.

Chapter 4 « Writing Puppet Manifests, Classes, and Modules in Oracle Solaris 45

Writing Puppet Modules

To write your own Puppet module, you would start by running the following command on the
Puppet master:

puppet module generate module-name

Running the previous command prompts you with a series of questions. Puppet uses your
responses to gather information about the module and then creates a basic module structure. For
further instructions and examples, see Writing Modules.

You add Puppet modules that you create to the /etc/puppet/modules directory on the master,
where the basic directory tree structure is similar to the following:

module-name/ — Is the outermost (or parent) directory structure that specifies the name of the
module.

® pmanifests/ — Contains all of the manifests within the module.
® jinit.pp— Contains a class definition. The name of the class definition must match the
name of the module.
® other class.pp — Contains a defined type named my module::my defined type.
® ny defined type.pp — Contains a class named my _module: :other class.
® my module::my defined type — Contains a defined type named my module: :
my defined type.
® implementation/ —Is a directory with a name that affects the class names that are
stored under it.
® foo.pp — Contains a class named my module::implementation::foo.
® par.pp — Contains a class named my module::implementation: :bar.
® files/— Contains static files that managed nodes can download.
service.conf —Is a file with a source URL that is similar to puppet:///modules/

my_module/service.conf. You can access the file's contents by using a file function, for
example, my module/service.conf.

® 1lib/ — Contains plug-ins, for example custom facts and resource types, which are used by
both the Puppet master server and the Puppet agent service.

® facts.d/ — Contains external facts, which you can use as an alternative to Ruby-based
custom facts.

® templates/ — Contains templates that a module’s manifests can use.
® component.erb — Is a template that a manifest can render as my module/component.
erb.
® component.epp — Is a template that a manifest can render as my module/component.
epp.
® examples/ — Contains examples that show how to declare the module’s classes and defined
types.

46 Using Puppet to Perform Configuration Management in Oracle Solaris 11.3 « September 2018

https://docs.puppet.com/puppet/3.6/modules_fundamentals.html#writing-modules

Writing Puppet Modules

B init.pp
® other example.pp — Includes major use case examples.

® spec/ — Contains tests for any plug-ins that are in the 1ib directory.

As shown in the following example, a module named examplecloud is located under the /etc/
puppet/modules directory:

cd /etc/puppet/modules

1s -al

drwxrwxr-x 3 userfoo staff 3 Mar 4 14:44 .

drwxr-xr-x 5 userfoo staff 6 Mar 25 06:33 ..
drwxr-xr-x 4 userfoo staff 4 Mar 3 13:24 examplecloud
cd examplecloud

1ls -al

drwxr-xr-x 4 userfoo staff 4 Mar 3 13:24 .

drwxrwxr-x 3 userfoo staff 3 Mar 4 14:44 ..
drwxr-xr-x 3 userfoo staff 12 Mar 9 11:55 files
drwxr-xr-x 2 userfoo staff 12 Mar 24 15:43 manifests

Under the examplecloud directory is the manifests directory that contains the manifests for the
module. Each manifest contains one class or defined type, as shown in the following output:

cd /etc/puppet/modules/examplecloud/manifests

1s -al

total 52

drwxr-xr-x 2 userfoo staff 12 Mar 24 15:43 .

drwxr-xr-x 4 userfoo staff 4 Mar 3 13:24 ..

-rw-r--r-- 1 userfoo staff 552 Mar 3 13:24 analytics.pp
-rw-r--r-- 1 userfoo staff 1097 Mar 3 13:24 compute node.pp
-rw-r--r-- 1 userfoo staff 1232 Mar 7 12:45 dlmp_aggr.pp
-rw-r--r-- 1 userfoo staff 491 Mar 3 13:24 mysql.pp
-rw-r--r-- 1 userfoo staff 1764 Mar 7 12:45 nameservice.pp
-rw-r--r-- 1 userfoo staff 1073 Mar 24 15:43 neutron_aggr.pp
-rw-r--r-- 1 userfoo staff 463 Mar 3 13:24 ntp.pp
-rw-r--r-- 1 userfoo staff 1814 Mar 3 13:24 openstack _horizon.pp
-rw-r--r-- 1 userfoo staff 690 Mar 3 13:24 rabbitmq.pp
-rw-r--r-- 1 userfoo staff 1688 Mar 14 14:34 storage ip.pp

Manifest file names map to the names of the classes and defined types that they contain. Each
subdirectory under the examplecloud/manifests directory has a specific function.

For a more comprehensive description of each of these components, go to Module
Fundamentals.

The Puppet Forge site includes a repository of publicly available modules, including newer
modules, as well as authoring tools and documentation that you can download.

Chapter 4 « Writing Puppet Manifests, Classes, and Modules in Oracle Solaris a7

https://docs.puppet.com/puppet/3.6/modules_fundamentals.html
https://docs.puppet.com/puppet/3.6/modules_fundamentals.html
https://forge.puppet.com/

48 Using Puppet to Perform Configuration Management in Oracle Solaris 11.3 « September 2018

* e CHAPTER 5

Using Puppet to Manage System Configuration
in Oracle Solaris

This chapter provides end-to-end examples that show some of the ways in which you can
manage Oracle Solaris system configuration with Puppet.

The following examples assume that you have already installed and configured Puppet on the
master server and all of the nodes. The following examples also assume that you previously
created a Puppet site manifest and that this file exists on the Puppet master.

This chapter includes the following topics:

“Puppet Configuration Management Workflow” on page 49
“Using Puppet to Configure Packaging” on page 50

“Using Puppet to Configure ZFS File Systems” on page 53
“Using Puppet to Configure Networking Parameters” on page 54
“Using Puppet to Configure Naming Services” on page 55
“Using Puppet to Configure Oracle Solaris Zones” on page 56

Puppet Configuration Management Workflow

To manage Oracle Solaris system configuration with Puppet, you typically follow this basic
process:

1.

Use the puppet describe command to display all of the available attributes for the
specified resource type that you are planning to configure. See Chapter 3, “Working With
Puppet Resources and Resource Types in Oracle Solaris”.

Declare the appropriate resources in a Puppet manifest that resides on the master.

You would use a Puppet site manifest (site.pp) to define global system configuration that
applies to all nodes.

Chapter 5 « Using Puppet to Manage System Configuration in Oracle Solaris 49

Using Puppet to Configure Packaging

You can also define node-specific configuration within a Puppet site manifest by
using the node keyword. See “Writing Puppet Manifests That Specify Node-Specific
Code” on page 42.

3. Perform a dry run to test whether the configuration that is defined in the Puppet manifest is
valid.

Although this step is not required, it is suggested as a best practice.
4. Verify that the nodes have applied the configuration.

For step-by-step instructions, see “How to Write a Puppet Site Manifest” on page 40.

Using Puppet to Configure Packaging

The following example shows how you would add a new IPS software package (nmap) by
declaring the Puppet package resource type in a manifest.

EXAMPLE 4 Configuring Packaging With Puppet

First, you would determine whether the package that you plan to install is already installed:

$ pkg info nmap
pkg: info: no packages matching the following patterns you specified are
installed on the system. Try specifying -r to query remotely:

If you wanted to check remotely whether the package was installed, you would use the -r
option as follows:

pkg info -r nmap
Name: diagnostic/nmap
Summary: Network exploration tool and security / port scanner.
Description: Nmap is useful for inventorying the network, managing service
upgrade schedules, and monitoring host or service uptime.
Category: System/Administration and Configuration
State: Not installed
Publisher: solaris
Version: 6.25
Build Release: 5.11
Branch: 0.175.3.0.0.30.0
Packaging Date: Fri Aug 21 16:46:42 2015
Size: 19.07 MB
FMRI: pkg://solaris/diagnostic/nmap@6.25,5.11-0.175.3.0.0.30.0:
20150821T1646427

50 Using Puppet to Perform Configuration Management in Oracle Solaris 11.3 « September 2018

Using Puppet to Configure Packaging

Next, you would use the puppet describe command (as shown in the following partial
example output) to check for the appropriate attribute to declare for the package resource type:

puppet describe package

package

Manage packages. There is a basic dichotomy in package

support right now: Some package types (e.g., yum and apt) can
retrieve their own package files, while others (e.g., rpm and sun)
cannot. For those package formats that cannot retrieve their own files,
you can use the “source’ parameter to point to the correct file.
Puppet will automatically guess the packaging format that you are
using based on the platform you are on, but you can override it
using the “provider® parameter; each provider defines what it
requires in order to function, and you must meet those requirements
to use a given provider.

Autorequires: If Puppet is managing the files specified as a
package's “adminfile®, “responsefile’, or “source’, the package
resource will autorequire those files.

Parameters

- *¥*adminfile**
A file containing package defaults for installing packages.
This is currently only used on Solaris. The value will be
validated according to system rules, which in the case of
Solaris means that it should either be a fully qualified path
or it should be in */var/sadm/install/admin" .

- **allow_virtual**
Specifies if virtual package names are allowed for install and
uninstall.
Valid values are “true’, “false', ‘yes', "no’.
Requires features virtual packages.

- **allowcdrom**
Tells apt to allow cdrom sources in the sources.list file.
Normally apt will bail if you try this.
Valid values are “true’, "“false'.

- **category**
A read-only parameter set by the package.

- **configfiles**

Whether configfiles should be kept or replaced. Most packages
types do not support this parameter. Defaults to “keep.

Chapter 5 « Using Puppet to Manage System Configuration in Oracle Solaris 51

Using Puppet to Configure Packaging

Valid values are “keep', ‘“replace’.

- **description**
A read-only parameter set by the package.

- ¥*epsure**
What state the package should be in. On packaging systems that can
retrieve new packages on their own, you can choose which package to
retrieve by specifying a version number or “latest’ as the ensure
value. On packaging systems that manage configuration files separately
from "normal" system files, you can uninstall config files by
specifying “purged’ as the ensure value. This defaults to “installed’.
Valid values are “present’ (also called “installed’), “absent”,
“purged’, “held’, “latest’. Values can match “/./ .

You would then declare the resource type within the Puppet manifest on the master as follows:

package { 'nmap':
ensure => 'present’,

}

In the previous example, the resource definition title is set to nmap (the package to be installed),
and the ensure attribute's value is set to present, which checks that the package is available for
installation.

The configuration is verified as follows:

pkg info nmap
Name: diagnostic/nmap
Summary: Network exploration tool and security / port scanner.
Description: Nmap is useful for inventorying the network, managing service
upgrade schedules, and monitoring host or service uptime.
Category: System/Administration and Configuration
State: Installed
Publisher: solaris
Version: 6.25
Build Release: 5.11
Branch: 0.175.3.0.0.30.0
Packaging Date: Fri Aug 21 16:46:42 2015
Size: 19.07 MB
FMRI: pkg://solaris/diagnostic/nmap@6.25,5.11-0.175.3.0.0.30.0:
20150821T164642Z

The output of the previous command shows that the nmap package is now installed on the node.

The package is installed when the Puppet agent runs. Or, you can run the puppet agent -t
command on the node to manually enforce the configuration changes.

52 Using Puppet to Perform Configuration Management in Oracle Solaris 11.3 « September 2018

Using Puppet to Configure ZFS File Systems

Note that if you were to uninstall the nmap package, Puppet would enforce the specified
configuration by reinstalling the package on the node.

Using Puppet to Configure ZFS File Systems

The following example shows how you could define ZFS file system configuration in a Puppet
manifest by using the zfs resource type.

EXAMPLE 5 Configuring ZFS File Systems With Puppet

You would first display a list of all of the attributes that you can declare for the zfs resource
type as follows:

puppet describe zfs
zfs

Manage zfs. Create destroy and set properties on zfs instances.
Autorequires: If Puppet is managing the zpool at the root of this zfs
instance, the zfs resource will autorequire it. If Puppet is managing any
parent zfs instances, the zfs resource will autorequire them.

Parameters
- **aclinherit**
The aclinherit property. Valid values are “discard’, “noallow’,
‘restricted’, “passthrough’, “passthrough-x".
- **aclmode**
The aclmode property. Valid values are “discard’, “groupmask’,
“passthrough™.
- **atime**
The atime property. Valid values are ‘on’, “off’.
- *¥kcanmount**
The canmount property. Valid values are ‘on’, ‘off’, “noauto’.
- **checksum**
The checksum property. Valid values are ‘on’, “off’, "fletcher2,

“fletcherd4®, “sha256" .

- **compression**
The compression property. Valid values are “on", “off', “lzjb", “gzip~’,

Chapter 5 « Using Puppet to Manage System Configuration in Oracle Solaris 53

Using Puppet to Configure Networking Parameters

‘gzip-[1-91°, “zle .

- ¥*copies**
The copies property. Valid values are "1°, 2%, "3°.

- kkdedup**
The dedup property. Valid values are “on’, “off’.

- **devices**
The devices property. Valid values are “on’, “off".
- ¥*epsure**
The basic property that the resource should be in.
Valid values are “present’, “absent.

Next, you would declare the zfs resource type, with the following parameters, in the manifest.
Note that an additional attribute called readonly has been added and it is set to on.

zfs { 'rpool/test':
ensure => 'present’',

readonly => 'on',

}

You would verify the configuration by running the following commands on the node:
zfs list rpool/test

NAME USED AVAIL REFER MOUNTPOINT

rpool/test 31K 31.8G 31K /rpool/test

zfs get readonly rpool/test

NAME PROPERTY VALUE SOURCE
rpool/test readonly on local

Using Puppet to Configure Networking Parameters

The following example shows how you might manage network configuration with Puppet. In
this example, various network-related resource types are declared in a Puppet manifest.

EXAMPLE 6 Configuring Network Parameters With Puppet

The following example shows how you might specify multiple network configuration
parameters in a Puppet manifest.

Force link speed negotiation to be at least 1 Gb

54 Using Puppet to Perform Configuration Management in Oracle Solaris 11.3 « September 2018

Using Puppet to Configure Naming Services

link _properties { "net0":
ensure => present,
properties => { en-100fdx-cap => "0" },

link properties { "netl":
ensure => present,
properties => { en-100fdx-cap => "0" },

link _aggregation { "aggr@"
ensure => present,
lower links => ['net@', 'netl' 1,
mode => "dlmp",

ip_interface { "aggro"
ensure => present,
require => Link aggregation['aggr@'l],

ip_interface { "net0":
ensure => absent,
before => Link aggregation['aggr@'l],

address object { "net0":
ensure => absent,
before => Ip interface['net0'],

address object { 'aggr@/v4':
require => Ip interface['aggr0'],
ensure => present,
address => "${myip}/24",
address _type => "static",
enable => "true",

Using Puppet to Configure Naming Services

The following example shows how you might manage naming services configuration with
Puppet by declaring the service resource type in a Puppet manifest.

Chapter 5 « Using Puppet to Manage System Configuration in Oracle Solaris 55

Using Puppet to Configure Oracle Solaris Zones

EXAMPLE 7 Configuring Naming Services With Puppet

In the following example, the DNS service is enabled and a DNS server is configured. Then, the
domainname property is set. Finally, the name service switch values are specified.

service { "dns/client":
ensure => running,

}

svccfg { "domainname":
ensure => present
fmri => "svc:/network/nis/domain",
property => "config/domainname",
type => "hostname",
value => "company.com",
notify => Service[‘dns/client'],

svccfg { "nameserver":
ensure => present,
fmri: => "svc:/network/dns/client",
property => "config/nameserver",
type => "net address",
value => "1.2.3.4"
notify => Service[‘dns/client'],

nameservice switch
nsswitch { "dns + ldap":
default => "files",

host => "files dns",
password => "files ldap",
group => "files ldap",
automount => "files ldap",
netgroup => "ldap",

}

Using Puppet to Configure Oracle Solaris Zones

The following example shows one way that you could define Oracle Solaris zones configuration
by declaring the zone resource type in a Puppet manifest.

56 Using Puppet to Perform Configuration Management in Oracle Solaris 11.3 « September 2018

Using Puppet to Configure Oracle Solaris Zones

EXAMPLE 8 Configuring Oracle Solaris Zones With Puppet

By running the puppet describe command (as shown in the following partial example output),
you would first display a list of all of the attributes that you can declare for the zone resource
type:

puppet describe zone
zone

Manages Solaris zones.

Parameters

- **archive**
The archive file containing an archived zone.

- **archived_zonename**
The archived zone to configure and install

- **prand**
The zone's brand type

- **Clone**
Instead of installing the zone, clone it from another zone.
If the zone root resides on a zfs file system, a snapshot will be
used to create the clone; if it resides on a ufs filesystem, a copy of
the
zone will be used. The zone from which you clone must not be running.

- **config profile**
Path to the config profile to use to configure a solaris zone.
This is set when providing a sysconfig profile instead of running the
sysconfig SCI tool on first boot of the zone.

- ¥*ensure**
The running state of the zone. The valid states directly reflect
the states that “zoneadm™ provides. The states are linear,
in that a zone must be “configured®, then “installed’, and

only then can be “running®. Note also that “halt® is currently
used to stop zones.
Valid values are “absent’, “configured®, “installed’, “running.

- **zonecfg _export**
Contains the zone configuration information. This can be passed in
in the form of a file generated by the zonecfg command, in the form
of a template, or a string.

Chapter 5 « Using Puppet to Manage System Configuration in Oracle Solaris 57

Using Puppet to Configure Oracle Solaris Zones

- **zonepath**
The path to zone's file system.

Providers

solaris

The zonecfg export attribute (shown in the previous output) enables you to create a zone
configuration file resource by using the zonecfg command as follows:

zonecfg -z testzonel

Use 'create' to begin configuring a new zone.
zonecfg:testzone> create

create: Using system default template 'SYSdefault'
zonecfg:testzone> export -f /tmp/zone.cfg
zonecfg:testzone> exit

root@master:~# cat /tmp/zone.cfg

create -b

set zonepath=/system/zones/%{zonename}

set autoboot=false

set autoshutdown=shutdown

set ip-type=exclusive

add anet

set linkname=net0

set lower-link=auto

set configure-allowed-address=true

set link-protection=mac-nospoof

set mac-address=auto

end

root@master:~# cp /tmp/zone.cfg /etc/puppet/modules/mycompany

The zone that you created becomes configurable when the zone resource type is applied. You
would declare the zone resource type in the Puppet manifest as follows:

zone { 'systemazone':
zonecfg export => 'puppet:///modules/mycompany/zone.conf"',
ensure => 'running’',

}

Here, the ensure attribute's value is set to installed. The value of ensure matches an
acceptable status for a zone (installed, and running). In this example, a zone called
systemazone is created on the node.

The last step would be to verify that the node applied the configuration to itself:
zoneadm list -cv

ID NAME STATUS PATH BRAND IpP
0 global running / solaris shared

58 Using Puppet to Perform Configuration Management in Oracle Solaris 11.3 « September 2018

Using Puppet to Configure Oracle Solaris Zones

- systemazone running /system/zones/systemazone solaris excl

The output of the previous command shows that the non-global zone systemazone is
configured, installed, and running.

Chapter 5 « Using Puppet to Manage System Configuration in Oracle Solaris 59

60 Using Puppet to Perform Configuration Management in Oracle Solaris 11.3 « September 2018

Index

A
actions performed by the master, 15
agent
description of, 16
agent configuration
setting config/server property, 25
agent configuration example, 26
agent SMF service instance
enabling, 26
agents requests
viewing certificates, 25
attribute
desired state of a resource, 34
authentication, 16
authorizations for using Puppet, 14

B

basic system configuration process, 49

Cc
catalogs
how Puppet compiles, 14
using the Facter utility, 10
certificate requests
viewing, 25
certificates
signing, 25
certification authority (CA) used by Puppet, 17
class declaration
example of, 44
types of, 44

class definition syntax
example of, 43
classes
description of, 18
how to write, 43
clock synchronization
configuring NTP prior to installation, 20
command to create a module
puppet module generate module-name, 45
command to describe resource types
puppet describe --list, 31
command to display resource types
puppet resource --types, 30
command to view resources, 34
common uses for Puppet, 14
communication methods that Puppet uses
encryption method, 16
compiling catalogs, 14
conditional logic
specifying in a manifest, 42
config/server property
setting on agent, 25
configuring a Puppet master and agent
example of, 26
configuring agents
testing connection to master, 25
configuring file systems
ZFS configuration, 53
configuring master and agents
tasks, 22
configuring naming services
defining in a Puppet manifest, 55
configuring network parameters
declaring in a Puppet manifest, 54

61

Index

configuring NTP

pre-installation task, 20
configuring packaging

declaring resources, 50
configuring zones

declaring the zone resource typei, 56
connection to master

testing, 25
controlling agents

through Puppet manifests, 39
create a module

how to, 45

D
declaring resources in a site manifest
example of, 41
default node, 43
defining Puppet resources
using manifests, 17
describing system information
using Facter, 36
description of a Puppet manifest, 17
description of a resource type, 31
description of classes, 18
description of modules, 18
description of the Puppet agent, 16
description of the Puppet master server, 15
description of the Puppet user and group, 16
desired state of a resource
attribute, 34
directory tree structure
modules, 46
discovering facts about a system
using Facter, 36
displaying resource types, 30
documentation references for Puppet, 18
DSL
Domain Specific Language, 14

E
/etc/puppet/manifests/

where the site.pp file is stored, 39
/etc/puppet/ssl/ca/signed

location of the Puppet CA, 17
enabling SMF service instance on agent, 26
enabling SMF service instance on master, 25
encryption, 16

example of configuring Puppet master and agent, 26

F
Facter

displaying system information, 36
facter -p

listing system facts, 36
Facter utility

description of, 10
facts

how to gather using Facter, 36

G
gathering facts
using Facter, 36
using the Facter utility, 10
generating a Puppet configuration file
using stencils, 23
getting started with Puppet
pre-installation tasks, 19
group
description of, 16

H

how puppet works, 14

how to configure a Puppet agent, 24

how to configure a Puppet master, 24

how to configure NTP on master, 20

how to configure Puppet master and agent, 22
how to write a site manifest, 40

infrastructure

62 Using Puppet to Perform Configuration Management in Oracle Solaris 11.3 « September 2018

Index

how Puppet works, 14
installation issues

connections, 27

security, 27

troubleshooting, 27
installing packages

by using a Puppet manifest, 50
installing Puppet, 21

pre-installation tasks, 19
IPS package

installing Puppet, 21

K
keyword
node
writing manifests, 42

L
location of the Puppet CA
/etc/puppet/ssl/ca/signed, 17

M
managing Puppet configuration
through SMF, 22
manifest
declaring a class definition, 44
declaring package resources
example of, 50
declaring the files resource type in a manifest
example of ZFS instances, 53
declaring the zone resource type, 56
defining naming services configuration
example of, 55
defining network configuration
example of, 54
how to declare resources, 33
node-specific, 42
manifests

description of, 17
master
testing connection from agent, 25
master and agent
configuring, 22
master configuration example, 26
master server
description of, 15
master tasks, 15
matching configuration to specific nodes, 43
module directory tree structure, 46
example of, 47
modules
description of, 18
how to write, 45
manifest location, 47
puppet module generate module-name
command to create, 45
more information about Puppet
where to find, 18

N
naming services configuration
using Puppet to define, 55
network configuration
declaring in a Puppet manifest, 54
node configuration
agent configuration, 24
node-specific manifest
description of, 42
normal class declaration
writing classes, 44
NTP
how to configure
pre-installation task, 20

o

Oracle Solaris system configuration, 49
outstanding certificate requests
viewing, 25

63

Index

P
packages
installing Puppet, 21
packaging
how to configure with Puppet, 50
polling
how agents work, 14
pre-installation task
configuring NTP, 20
pre-installation tasks, 19
privileges for using Puppet, 14
pull method
polling the master, 14
Puppet agent
how to configure, 24
Puppet agent description, 16
Puppet agent/master model
description of, 16
Puppet CA location
/etc/puppet/ssl/ca/signed, 17
Puppet certificate authority, 17
Puppet classes
how to write, 43
site.pp, 18
Puppet common uses, 14
Puppet configuration file
SMF stencil, 23
puppet describe --list

command to describe resource types, 31

Puppet documentation
additional references, 18
Puppet encryption, 16
Puppet infrastructure
how Puppet works, 14
Puppet installation, 21
Puppet IPS package
system/management/puppet, 21
Puppet management through SMF, 22
Puppet manifests
how to write, 39
Puppet master
how to configure, 24

Puppet master and agent configuration, 22

Puppet master server description, 15
puppet module generate
creating a Puppet module, 45
Puppet modules
description of, 18
how to write, 45
Puppet privileges and authorizations, 14
puppet resource --types
command for displaying, 30
Puppet resource types, 29
Puppet SMF service instance
enabling on master, 25
Puppet support in Oracle Solaris, 9
Puppet user
description of, 16
Puppet version supported, 21
puppet.conf file, 23
site configuration, 11

R
references
Puppet documentation, 18
resource
attribute, 34
declaring in a manifest, 33
resource type descriptions, 31
resource types
displaying, 30
overview, 29
Puppet resources, 29
resource-like class declaration
writing classes, 44
resources
defining in a class, 18
defining within a manifest, 17
viewing, 34
reusing Puppet code
writing classes, 43
rights profiles
solaris.smf.manage.puppet, 14
solaris.smf.value.puppet, 14

64 Using Puppet to Perform Configuration Management in Oracle Solaris 11.3 « September 2018

Index

S
service instances
for Puppet master and agent, 22
setting SMF values on agent, 25
signing certificates
master task, 25
site configuration
puppet.conf file, 11
site manifest, 39
declaring resources, 33
site manifest example, 41
site.pp
writing a site manifest, 39
site.pp file
defining a class, 18
manifest file, 17
SMF configuration, 22
SMF service instance
enabling on agent, 26
enabling on master, 25
SMF service instances
svc:/application/puppet:agent, 22
svc:/application/puppet:master, 22
SMF stencil
Puppet configuration file, 23
solaris.smf.manage.puppet
rights profiles, 14
solaris.smf.value.puppet
rights profiles, 14

specifying conditional logic in a manifest, 42

stencil
Puppet configuration, 23
supported Puppet features, 9
supported Puppet version, 21
svc:/application/puppet:agent
SMF service instance for agent, 22
svc:/application/puppet:master
SMF service instance for master, 22
syntax for declaring a resource
writing a Puppet manifest, 33
system configuration for Oracle Solaris, 49
system information
how to display with Facter, 36

system/management/puppet
Puppet IPS package, 21

T
tasks performed by the master, 15
testing connection to master

configuring agents, 25
troubleshooting connections

Puppet installation issues, 27
troubleshooting installation issues, 27
troubleshooting security

Puppet installation issues, 27

U
user and group functions, 16
uses for Puppet, 14
using Facter
describe system information, 36
using Puppet classes, 18
using Puppet modules, 18
using Puppet to configure naming services, 55
using Puppet to configure networking, 54
using Puppet to configure ZFS file systems, 53
using Puppet to configure zones, 56
using Puppet to install packages, 50

\
values

setting config/server property, 25
viewing certificate requests on master, 25
viewing resources, 34

w
where to find Puppet documentation, 18
writing a Puppet manifest
declaring a resource, 33
writing a site manifest, 39

65

Index

how to, 40
writing classes
normal class declaration, 44
resource-like class declaration, 44
writing modules, 45
writing node-specific manifests, 42
writing Puppet classes, 43

Z
ZFS file systems configuration
using Puppet to define, 53
zone resource type
declaring, 56
zones configuring with Puppet, 56

66 Using Puppet to Perform Configuration Management in Oracle Solaris 11.3 « September 2018

	Using Puppet to Perform Configuration Management in Oracle® Solaris 11.3
	Contents
	Using This Documentation
	Product Documentation Library
	Feedback

	Chapter 1 • About Performing Configuration Management With Puppet in Oracle Solaris
	Highlights of Puppet Support in Oracle Solaris 11.3
	Common Uses for Puppet in Oracle Solaris
	How Puppet Works
	About the Puppet Master
	About the Puppet Agent
	Function of the Puppet User and Group
	Puppet Encryption and Communication Methods

	Puppet Terminology
	Puppet Manifests
	Puppet Classes
	Puppet Modules

	Additional Puppet References

	Chapter 2 • Getting Started With Puppet in Oracle Solaris
	Puppet Pre-Installation Tasks
	How to Configure NTP on the Puppet Master

	Installing Puppet
	Configuring the Puppet Master and Agent
	How Puppet Configuration Is Managed Through SMF
	How to Configure the Puppet Master and Agent

	Troubleshooting Issues With Puppet in Oracle Solaris

	Chapter 3 • Working With Puppet Resources and Resource Types in Oracle Solaris
	About Puppet Resources and Resource Types
	Puppet Resource Type Descriptions
	About Declaring Puppet Resources
	Viewing and Modifying Puppet Resources by Using the Command Line
	Viewing the State of a Puppet Resource
	Modifying the State of a Puppet Resource

	Gathering Information About a System by Using Facter

	Chapter 4 • Writing Puppet Manifests, Classes, and Modules in Oracle Solaris
	Writing a Puppet Site Manifest
	How to Write a Puppet Site Manifest

	Writing Puppet Manifests That Specify Node-Specific Code
	Writing Puppet Classes
	Writing Puppet Modules

	Chapter 5 • Using Puppet to Manage System Configuration in Oracle Solaris
	Puppet Configuration Management Workflow
	Using Puppet to Configure Packaging
	Using Puppet to Configure ZFS File Systems
	Using Puppet to Configure Networking Parameters
	Using Puppet to Configure Naming Services
	Using Puppet to Configure Oracle Solaris Zones

	Index

