
SPARC Assembly Language Reference
Manual

Part No: E54833
April 2020

SPARC Assembly Language Reference Manual

Part No: E54833

Copyright © 1993, 2020, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except
as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform,
publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation,
delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the
hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous
applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of
SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products, and services from third parties. Oracle Corporation and its affiliates are
not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an applicable agreement
between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Référence: E54833

Copyright © 1993, 2020, Oracle et/ou ses affiliés. Tous droits réservés.

Ce logiciel et la documentation qui l'accompagne sont protégés par les lois sur la propriété intellectuelle. Ils sont concédés sous licence et soumis à des restrictions d'utilisation et
de divulgation. Sauf stipulation expresse de votre contrat de licence ou de la loi, vous ne pouvez pas copier, reproduire, traduire, diffuser, modifier, accorder de licence, transmettre,
distribuer, exposer, exécuter, publier ou afficher le logiciel, même partiellement, sous quelque forme et par quelque procédé que ce soit. Par ailleurs, il est interdit de procéder à toute
ingénierie inverse du logiciel, de le désassembler ou de le décompiler, excepté à des fins d'interopérabilité avec des logiciels tiers ou tel que prescrit par la loi.

Les informations fournies dans ce document sont susceptibles de modification sans préavis. Par ailleurs, Oracle Corporation ne garantit pas qu'elles soient exemptes d'erreurs et vous
invite, le cas échéant, à lui en faire part par écrit.

Si ce logiciel, ou la documentation qui l'accompagne, est livré sous licence au Gouvernement des Etats-Unis, ou à quiconque qui aurait souscrit la licence de ce logiciel pour le
compte du Gouvernement des Etats-Unis, la notice suivante s'applique :

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation,
delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the
hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

Ce logiciel ou matériel a été développé pour un usage général dans le cadre d'applications de gestion des informations. Ce logiciel ou matériel n'est pas conçu ni n'est destiné à être
utilisé dans des applications à risque, notamment dans des applications pouvant causer un risque de dommages corporels. Si vous utilisez ce logiciel ou ce matériel dans le cadre
d'applications dangereuses, il est de votre responsabilité de prendre toutes les mesures de secours, de sauvegarde, de redondance et autres mesures nécessaires à son utilisation dans
des conditions optimales de sécurité. Oracle Corporation et ses affiliés déclinent toute responsabilité quant aux dommages causés par l'utilisation de ce logiciel ou matériel pour des
applications dangereuses.

Oracle et Java sont des marques déposées d'Oracle Corporation et/ou de ses affiliés. Tout autre nom mentionné peut correspondre à des marques appartenant à d'autres propriétaires
qu'Oracle.

Intel et Intel Xeon sont des marques ou des marques déposées d'Intel Corporation. Toutes les marques SPARC sont utilisées sous licence et sont des marques ou des marques
déposées de SPARC International, Inc. AMD, Opteron, le logo AMD et le logo AMD Opteron sont des marques ou des marques déposées d'Advanced Micro Devices. UNIX est une
marque déposée de The Open Group.

Ce logiciel ou matériel et la documentation qui l'accompagne peuvent fournir des informations ou des liens donnant accès à des contenus, des produits et des services émanant de
tiers. Oracle Corporation et ses affiliés déclinent toute responsabilité ou garantie expresse quant aux contenus, produits ou services émanant de tiers, sauf mention contraire stipulée
dans un contrat entre vous et Oracle. En aucun cas, Oracle Corporation et ses affiliés ne sauraient être tenus pour responsables des pertes subies, des coûts occasionnés ou des
dommages causés par l'accès à des contenus, produits ou services tiers, ou à leur utilisation, sauf mention contraire stipulée dans un contrat entre vous et Oracle.

Accès aux services de support Oracle

Les clients Oracle qui ont souscrit un contrat de support ont accès au support électronique via My Oracle Support. Pour plus d'informations, visitez le site http://www.oracle.com/
pls/topic/lookup?ctx=acc&id=info ou le site http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs si vous êtes malentendant.

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Contents

Using This Documentation ...  9

1 SPARC Assembler Syntax ... 11
1.1 Assembler Syntax Notation ...  11
1.2 Assembler File Syntax ...  11

1.2.1 Assembler Lines Syntax ...  12
1.2.2 Assembler Statement Syntax ...  12

1.3 Assembler Lexical Features ... 12
1.3.1 Case Distinction in Assembler ... 12
1.3.2 Comments in Assembler ..  13
1.3.3 Labels in Assembler ..  13
1.3.4 Numbers in Assembler ... 13
1.3.5 Strings in Assembler ...  13
1.3.6 Symbol Names in Assembler ..  14
1.3.7 Special Symbols – Registers ...  15
1.3.8 Attributes in Assembler ...  16
1.3.9 Operators and Expressions in Assembler ...  16
1.3.10 SPARC V9 Operators and Expressions ..  17

1.4 Assembler Error Messages ..  18

2 SPARC Executable and Linking Format ..  21
2.1 Sections of an ELF File .. 21

2.1.1 Section Header ...  22
2.1.2 Predefined User Sections .. 23
2.1.3 Predefined Non-User Sections ...  25
2.1.4 Symbol Tables .. 26
2.1.5 String Tables ..  28

2.2 Locations Within a Section ...  28

5

Contents

2.3 Addresses in Memory ..  29
2.3.1 Relocation Tables .. 29

2.4 ELF Tools ..  29

3 SPARC Directives and Pseudo-Operations ...  31
3.1 Assembler Directives ...  31

3.1.1 Section Control Directives ..  31
3.1.2 Symbol Attribute Directives .. 32
3.1.3 Assignment Directive ..  32
3.1.4 Data Generating Directives ...  32

3.2 Notation Conventions ... 32
3.3 Alphabetized Listing of Pseudo Operations With Descriptions .........................  33
3.4 Pseudo-Op Attributes ...  41
3.5 Pseudo-Op Examples ...  42

3.5.1 Example 1: Binding to C Variables ..  42
3.5.2 Example 2: Generating Ident Strings ..  43
3.5.3 Example 3: Data Alignment, Size, Scope, and Type ............................. 44
3.5.4 Example 4: "Hello World" ..  44

4 Creating Data in Assembler ..  47
4.1 Examples of Various Data Types ..  47

5 SPARC Code Models ...  51
5.1 Basics of Compiling C Programs ...  51
5.2 Address Sizes ...  52

5.2.1 32-Bit Absolute ..  52
5.2.2 64-Bit Absolute ..  52
5.2.3 44-Bit Absolute ..  53
5.2.4 64-Bit With 13-Bit PIC ..  53
5.2.5 64-Bit With 32-Bit PIC ..  54

5.3 Global Object Table (GOT) Code Models ..  55
5.4 Thread Local Storage (TLS) Code Models ...  57

5.4.1 Local Executable Code Model ... 57
5.4.2 Initial Executable Code Model ..  57
5.4.3 Local Dynamic TLS Code Model ..  58
5.4.4 General Dynamic TLS Code Model ...  59

6 SPARC Assembly Language Reference Manual • April 2020

Contents

6 Writing Functions in the SPARC ABI ..  61
6.1 Anatomy of a C Function ...  61
6.2 Register Usage ..  63
6.3 Parameter Passing ...  64
6.4 Functions Returning Values ...  65

6.4.1 Limitations for 32-Bit Code ..  65
6.4.2 Limitations for Both 32-Bit and 64-Bit Code .....................................  65
6.4.3 Additional Information About SPARC ABI .......................................  66

7 SPARC Assembler Inline Functions and __asm Code .....................................  67
7.1 Inline Function Templates in C and C++ ...  67

7.1.1 Compiling C/C++ with Inline Templates ...  67
7.1.2 Layout of Code in Inline Templates ...  68
7.1.3 Guidelines for Coding Inline Templates ..  68
7.1.4 Late and Early Inlining ..  72
7.1.5 Compiler Calling Convention ..  73
7.1.6 Improving Efficiency of Inlined Functions ...  75
7.1.7 Inline Templates in C++ ... 77

7.2 Using __asm Statements in C and C++ ..  77

A Using the SPARC Assembler Command Line ...  79
A.1 Assembler Command Line ...  79
A.2 Assembler Command Line Options ..  80
A.3 Disassembling Object Code ..  83

B A Sample SPARC Assembler Program ...  85

C SPARC Instruction Sets and Mnemonics .. 93
C.1 Natural Instructions ...  93

C.1.1 Natural Register, Natural Word for SPARC .......................................  94

Index ..  95

7

8 SPARC Assembly Language Reference Manual • April 2020

Using This Documentation

■ Overview – Describes the assembler that runs on the SPARC platform and translates source
files that are in assembly language format into object files in linking format.
The object files link into executables on Oracle Solaris SPARC platforms.
The assembler is a tool for producing program modules intended to exploit features of the
SPARC platform in ways that cannot be easily done using high level languages and their
compilers.
The choice of assembly language for the development of program modules depends on the
extent to which and the ease with which the language allows the programmer to control the
architectural features of the processor.
The assembly language described in this manual offers full direct access to the SPARC
instruction set and Oracle Solaris macro preprocessors to achieve full macro-assembler
capability. Furthermore, the assembler responds to directives that allow the programmer
control over the contents of the relocatable object file.
This document describes the language in which the source files must be written. The nature
of the machine mnemonics governs the way in which the program's executable portion is
written. This document includes descriptions of the pseudo operations that allow control
over the object file. This facilitates the development of programs that are easy to understand
and maintain.

■ Audience – This manual is intended for experienced SPARC assembly language
programmers who are familiar with the SPARC platform.

■ Required knowledge – You should also become familiar with the following:
■ as(1), ld(1), cpp(1), dis(1), elf(3elf), and a.out(4) manual pages
■ Oracle SPARC Architecture 2011
■ Systems Documentation
■ System V Application Binary Interface: SPARC Processor Supplement, May 1990,

AT&T

Using This Documentation 9

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1as-1
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1ld-1
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1cpp-1
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1dis-1
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Delf-3elf
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN4a.out-4
https://www.oracle.com/technetwork/server-storage/sun-sparc-enterprise/documentation/140521-ua2011-d096-p-ext-2306580.pdf
https://www.oracle.com/servers/technologies/enterprise-sparc-servers-resources.html

Product Documentation Library

Product Documentation Library

Documentation and resources for this product and related products are available at http://www.
oracle.com/pls/topic/lookup?ctx=E53394-01.

Feedback

Provide feedback about this documentation at http://www.oracle.com/goto/docfeedback.

10 SPARC Assembly Language Reference Manual • April 2020

http://www.oracle.com/pls/topic/lookup?ctx=E53394-01
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01
http://www.oracle.com/goto/docfeedback

 1 ♦ ♦ ♦ C H A P T E R 1

SPARC Assembler Syntax

The Oracle Solaris SPARC assembler takes assembly language programs, as specified in this
document, and produces relocatable object files for processing by the Oracle Solaris link editor.
The assembly language described in this document corresponds to the SPARC instruction set
defined in the Oracle SPARC Architecture 2011 (OSA) and is intended for use on Oracle Solaris
SPARC platforms.
This chapter is organized into the following sections:

■ “1.1 Assembler Syntax Notation” on page 11
■ “1.2 Assembler File Syntax” on page 11
■ “1.3 Assembler Lexical Features” on page 12
■ “1.4 Assembler Error Messages” on page 18

1.1 Assembler Syntax Notation

In the descriptions of assembly language syntax in this chapter:

■ Brackets ([]) enclose optional items.

■ Asterisks (*) indicate items to be repeated zero or more times.

■ Braces ({ }) enclose alternate item choices, which are separated from each other by vertical
bars (|).

■ Wherever blanks are allowed, arbitrary numbers of blanks and horizontal tabs may be used.
Newline characters are not allowed in place of blanks.

1.2 Assembler File Syntax

The syntax of assembly language files is:

Chapter 1 • SPARC Assembler Syntax 11

https://www.oracle.com/technetwork/server-storage/sun-sparc-enterprise/documentation/140521-ua2011-d096-p-ext-2306580.pdf

1.3 Assembler Lexical Features

[line]*

1.2.1 Assembler Lines Syntax

The syntax of assembly language lines is:

[statement [; statement]*] [!comment]

1.2.2 Assembler Statement Syntax

The syntax of an assembly language statement is:

[label:] [instruction]

where:

label

Description: is a symbol name.

instruction

Description: is an encoded pseudo-op, synthetic instruction, or instruction.

1.3 Assembler Lexical Features

This section describes the lexical features of the assembler syntax.

1.3.1 Case Distinction in Assembler

Uppercase and lowercase letters are distinct everywhere except in the names of special symbols.
Special symbol names have no case distinction.

12 SPARC Assembly Language Reference Manual • April 2020

1.3 Assembler Lexical Features

1.3.2 Comments in Assembler

A comment is preceded by an exclamation mark character (!); the exclamation mark character
and all following characters up to the end of the line are ignored. C language-style comments
(``/*…*/'') are also permitted and can span multiple lines.

1.3.3 Labels in Assembler

A label is either a symbol or a single decimal digit n (0...99). A label is immediately followed
by a colon (:).

Numeric labels may be defined repeatedly in an assembly file; symbolic labels may be defined
only once.

A numeric label n is referenced after its definition (backward reference) as nb, and before its
definition (forward reference) as nf.

1.3.4 Numbers in Assembler

Decimal, hexadecimal, and octal numeric constants are recognized and are written as in the C
language. However, integer suffixes (such as L) are not recognized.

For floating-point pseudo-operations, floating-point constants are written with 0r or 0R (where
r or R means REAL) followed by a string acceptable to atof(); that is, an optional sign followed
by a non-empty string of digits with optional decimal point and optional exponent.

The special names 0rnan and 0rinf represent the special floating-point values Not-A-Number
(NaN) and INFinity. Negative Not-A-Number and Negative INFinity are specified as 0r-nan and
0r-inf.

Note - The names of these floating-point constants begin with the digit zero, not the letter "O".

1.3.5 Strings in Assembler

A string is a sequence of characters quoted with either double-quote mark (") or single-quote
mark (') characters. The sequence must not include a newline character. When used in an

Chapter 1 • SPARC Assembler Syntax 13

1.3 Assembler Lexical Features

expression, the numeric value of a string is the numeric value of the ASCII representation of its
first character.

The suggested style is to use single quote mark characters for the ASCII value of a single
character, and double quote mark characters for quoted-string operands such as used by pseudo-
ops. An example of assembly code in the suggested style is:

add %g1,'a'-'A',%g1 ! g1 + ('a' - 'A') --> g1

The following escape codes, derived from ANSI C, are recognized in strings.

\a Alert

\b Backspace

\f Form feed

\n Newline (line feed)

\r Carriage return

\t Horizontal tab

\v Vertical tab

\nnn Octal value nnn

\xnn... Hexadecimal value nn...

1.3.6 Symbol Names in Assembler

The syntax for a symbol name is:

{ letter | _ | $ | . } { letter | _ | $ | . | digit }*

In the preceding syntax:

■ Uppercase and lowercase letters are distinct; the underscore (_), dollar sign ($), and dot
(.) are treated as alphabetic characters.

■ Symbol names that begin with a dot (.) are assumed to be local symbols. To simplify
debugging, avoid using this type of symbol name in hand-coded assembly language
routines.

■ The symbol dot (.) is predefined and always refers to the address of the beginning of the
current assembly language statement.

14 SPARC Assembly Language Reference Manual • April 2020

1.3 Assembler Lexical Features

■ External variable names beginning with the underscore character are reserved by the ANSI
C Standard. Do not begin these names with the underscore; otherwise, the program will not
conform to ANSI C and unpredictable behavior may result.

1.3.7 Special Symbols – Registers

Special symbol names begin with a percentage sign (%) to avoid conflict with user symbols.
Table 1, “Special Symbol Names,” on page 15 lists these special symbol names.

TABLE 1 Special Symbol Names

Symbol Object Name Comment

General-purpose registers %r0 … %r31

General-purpose global registers %g0 … %g7 Same as %r0 … %r7

General-purpose out registers %o0 … %o7 Same as %r8 … %r15

General-purpose local registers %l0 … %l7 Same as %r16 … %r23

General-purpose in registers %i0 … %i7 Same as %r24 … %r31

Stack-pointer register %sp (%sp = %o6 = %r14)

Frame-pointer register %fp (%fp = %i6 = %r30)

Floating-point registers %f0 … %f31

Floating-point status register %fsr

Front of floating-point queue %fq

Program status register %psr

Trap vector base address register %tbr

Window invalid mask %wim

Y register %y

Unary operator %lo Extracts least significant 10 bits

Unary operator %hi Extracts most significant 22 bits

Unary operator %r_disp32 Used only in Oracle Developer
Studio compiler-generated code.

Unary operator %r_plt32 Used only in Oracle Developer
Studio compiler-generated code.

Ancillary state registers %asr1 … %asr31

There is no case distinction in special symbols. For example, %PSR is equivalent to %psr.

The suggested style is to use lowercase letters.

Chapter 1 • SPARC Assembler Syntax 15

1.3 Assembler Lexical Features

The lack of case distinction allows for the use of non-recursive preprocessor substitutions, for
example:

#define psr %PSR

The special symbols %hi and %lo are true unary operators which can be used in any expression
and, as other unary operators, have higher precedence than binary operations. For example:

%hi a+b = (%hi a)+b

%lo a+b = (%lo a)+b

To avoid ambiguity, enclose operands of the %hi or %lo operators in parentheses. For example:

%hi(a) + b

1.3.8 Attributes in Assembler

Attributes, in the form #attribute, can be used to modify certain pseudo-operations and
instructions. Pseudo-ops .global, .section, .register, and .type accept specific attributes
that correspond to linker attribute flags, as shown in Table 10, “Pseudo-op Linker Attributes,”
on page 41.

Several instructions, such as membar and prefetch, also accept attributes. See the instruction
descriptions in Oracle SPARC Architecture 2011 for details on the attributes a given instruction
supports.

1.3.9 Operators and Expressions in Assembler

The operators described in Table 2, “Operators Recognized in Constant Expressions,” on page
16 are recognized in constant expressions.

TABLE 2 Operators Recognized in Constant Expressions

Binary Operators Unary Operators

+ Integer addition + (No effect)

– Integer subtraction – 2's Complement

* Integer multiplication ~ 1's Complement

/ Integer division %lo(address) Extract least significant 10 bits as computed
by: (address & 0x3ff)

% Modulo %hi(address) Extract most significant 22 bits as computed
by: (address >>10)

16 SPARC Assembly Language Reference Manual • April 2020

https://www.oracle.com/technetwork/server-storage/sun-sparc-enterprise/documentation/140521-ua2011-d096-p-ext-2306580.pdf

1.3 Assembler Lexical Features

Binary Operators Unary Operators

^ Exclusive OR %r_disp32

%r_disp64

Used in Oracle Developer Studio compiler-
generated code only to instruct the assembler
to generate specific relocation information
for the given expression.

<< Left shift %r_plt32

%r_plt64

Used in Oracle Developer Studio compiler-
generated code only to instruct the assembler
to generate specific relocation information
for the given expression.

>> Right shift

& Bitwise AND

| Bitwise OR

Since these operators have the same precedence as in the C language, put expressions in
parentheses to avoid ambiguity.

To avoid confusion with register names or with the %hi, %lo, %r_disp32/64, or %r_plt32/64
operators, the modulo operator % must not be immediately followed by a letter or digit. The
modulo operator is typically followed by a space or left parenthesis character.

1.3.10 SPARC V9 Operators and Expressions

The following SPARC V9 64-bit operators and expressions in Table 3, “SPARC V9 64-bit
Operators and Expressions,” on page 17 ease the task of converting from V8/V8plus
assembly code to V9 assembly code.

TABLE 3 SPARC V9 64-bit Operators and Expressions

Unary
Calculation Operators

%hh (address) >> 42 Extract bits 42-63 of a 64-bit word

%hm ((address) >> 32) & 0x3ff Extract bits 32-41 of a 64-bit word

%lm (((address) >> 10) & 0x3fffff) Extract bits 10-31 of a 64-bit word

For example:

sethi %hh (address), %l1

or %l1, %hm (address), %l1

sethi %lm (address), %12

or %12, %lo (address), %12

Chapter 1 • SPARC Assembler Syntax 17

1.4 Assembler Error Messages

sllx %l1, 32, %l1

or %l1, %12, %l1

The SPARC V9 high 32-bit operators and expressions are identified in Table 4, “SPARC V9 32-
Bit Operators and Expressions,” on page 18.

TABLE 4 SPARC V9 32-Bit Operators and Expressions

Unary
Calculation Operators

%hix ((((address) ^ 0xffffffffffffffff >> 10) &0x4fffff) Invert every bit and extract bits 10-31

%lox ((address) & 0x3ff | 0x1c00 Extract bits 0-9 and sign extend that to 13 bits

For example:

%sethi %hix (address), %l1

or %l1, %lox (address), %l1

The SPARC V9 low 44-bit operators and expressions are identified in Table 5, “SPARC V9
Low 44-Bit Operators and Expressions,” on page 18.

TABLE 5 SPARC V9 Low 44-Bit Operators and Expressions

Unary
Calculation Operators

%h44 ((address) >> 22) Extract bits 22-43 of a 64-bit word

%m44 ((address) >> 12) & 0x3ff Extract bits 12-21 of a 64-bit word

%l44 (address) & 0xfff Extract bits 0-11 of a 64-bit word

For example:

%sethi %h44 (address), %l1

or %l1, %m44 (address), %l1

sllx %l1, 12, %l1

or %l1, %

l44 (address), %l1

1.4 Assembler Error Messages

Messages generated by the assembler are generally self-explanatory and give sufficient
information to allow correction of a problem.

18 SPARC Assembly Language Reference Manual • April 2020

1.4 Assembler Error Messages

Certain conditions will cause the assembler to issue warnings associated with delay slots
following Control Transfer Instructions (CTI). These warnings are:

■ Set synthetic instructions in delay slots
■ Labels in delay slots
■ Segments that end in control transfer instructions

These warnings point to places where a problem could exist. If you have intentionally written
code this way, you can insert an .empty pseudo-operation immediately after the control transfer
instruction.

The .empty pseudo-operation in a delay slot tells the assembler that the delay slot can be empty
or can contain whatever follows because you have verified that either the code is correct or the
content of the delay slot does not matter.

Chapter 1 • SPARC Assembler Syntax 19

20 SPARC Assembly Language Reference Manual • April 2020

 2 ♦ ♦ ♦ C H A P T E R 2

SPARC Executable and Linking Format

The object files created by the Oracle Solaris SPARC assembler are Executable and Linking
Format (ELF) files. These relocatable ELF files hold code and data suitable for linking with
other object files to create an executable or a shared object file, and are the assembler normal
output. The assembler can also write information to standard output (for example, under the -S
option) and to standard error (for example, under the -V option). The SPARC assembler creates
a default output file when standard input or multiple files are used.
The ELF object file format consists of various component features, including:

■ Header
■ Sections
■ Locations
■ Addresses
■ Relocation tables
■ Symbol tables
■ String tables

This chapter is just a summary of the ELF features. For complete details on the ELF format, see
Chapter 14, “Object File Format” in Oracle Solaris 11.3 Linkers and Libraries Guide.

2.1 Sections of an ELF File

A section is the smallest unit of an object that can be relocated. Use the elfdump command to
inspect the components of an object or executable file generated by the assembler.
The following sections are commonly present in an ELF file:

■ Section header
■ Executable text

Chapter 2 • SPARC Executable and Linking Format 21

http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=OSLLGchapter6-46512

2.1 Sections of an ELF File

■ Read-only data
■ Read-write data
■ Read-write uninitialized data (section header only)

Sections do not need to be specified in any particular order. The current section is the section to
which code is generated.
These sections contain all other information in an object file and satisfy several conditions.

1. Every section must have one section header describing the section. However, a section
header does not need to be followed by a section.

2. Each section occupies one contiguous sequence of bytes within a file. The section may be
empty (that is, of zero-length).

3. A byte in a file can reside in only one section. Sections in a file cannot overlap.
4. An object file may have inactive space. The contents of the data in the inactive space are

unspecified.

Sections can be added for multiple text or data segments, shared data, user-defined sections, or
information in the object file for debugging.

Note - Not all of the component sections need to be present.

2.1.1 Section Header

The section header allows you to locate all of the file sections. An entry in a section header
table contains information characterizing the data in a section.

The section header contains a number of fields as described in detail in sys/elf.h and “Section
Headers” in Oracle Solaris 11.3 Linkers and Libraries Guide. However, only the following
fields are of immediate interest to the assembly language programmer because they can be
specified in assembler pseudo-operations (directives):

sh_flags

Description: One-bit descriptions of section attributes. Table 6, “Section Attribute Flags,” on
page 23 describes the some of the section attribute flags. For details and additional flags,
see “Section Headers” in Oracle Solaris 11.3 Linkers and Libraries Guide.

sh_info

22 SPARC Assembly Language Reference Manual • April 2020

http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=OSLLGman-s
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=OSLLGman-s
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=OSLLGman-s

2.1 Sections of an ELF File

Description: Extra information. The interpretation of this information depends on the section
type, as described in Table 7, “Section Types Modified by Assembler Pseudo-ops,” on page
23.

sh_link

Description: Section header table index link. The interpretation of this information depends
on the section type, as described in Table 7, “Section Types Modified by Assembler Pseudo-
ops,” on page 23.

sh_name

Description: Specifies the section name. An index into the section header string table section
specifies the location of a null-terminated string.

TABLE 6 Section Attribute Flags

Flag Default Value Description

SHF_WRITE 0x1 Contains data that is writable during process execution.

SHF_ALLOC 0x2 Occupies memory during process execution. This attribute is off if a
control section does not reside in the memory image of the object file.

SHF_EXECINSTR 0x4 Contains executable machine instructions.

SHF_MASKPROC 0xf0000000 Reserved for processor-specific semantics.

TABLE 7 Section Types Modified by Assembler Pseudo-ops

Name Value Description

null 0 Marks section header as inactive.

progbits 1 Contains information defined explicitly by the program.

note 7 Contains information that marks the file.

nobits 8 Contains information defined explicitly by the program; however, a section
of this type does not occupy any space in the file.

2.1.2 Predefined User Sections

A section that can be manipulated by the section control directives is known as a user section.
You can use the section control directives to change the user section in which code or data is
generated. The following predefined user sections can be named in section control directives:

.bss Section contains uninitialized read-write data.

Chapter 2 • SPARC Executable and Linking Format 23

2.1 Sections of an ELF File

.comment Comment section.

.data & .data1 Section contains initialized read-write data.

.debug Section contains debugging information.

.fini Section contains runtime finalization instructions.

.init Section contains runtime initialization instructions.

.rodata & .

rodata1

Section contains read-only data.

.text Section contains executable text.

.line Section contains line # info for symbolic debugging.

.note Section contains note information.

For details and additional information, see “Special Sections” in Oracle Solaris 11.3 Linkers
and Libraries Guide.

2.1.2.1 Creating an .init Section in an Object File

The .init sections contain codes that are to be executed before the main program is executed.
To create an .init section in an object file, use the assembler pseudo-ops shown in Example 1,
“Creating an .init Section,” on page 24.

EXAMPLE 1 Creating an .init Section

.section ".init"

.align 4

<instructions>

At link time, the .init sections in a sequence of .o files are concatenated into an .init section
in the linker output file. The code in the .init section are executed before the main program is
executed.

Because the whole .init section is treated as a single function body, it is recommended that the
only code added to these sections be in the following form:

24 SPARC Assembly Language Reference Manual • April 2020

http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=OSLLGchapter7-1
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=OSLLGchapter7-1

2.1 Sections of an ELF File

call routine_name
nop

The called routine should be located in another section. This will prevent conflicting register
and stack usage within the .init sections.

2.1.2.2 Creating a .fini Section in an Object File

.fini sections contain codes that are to be executed after the the main program is executed. To
create an .fini section in an object file, use the assembler pseudo-ops shown in Example 2,
“Creating a .fini Section,” on page 25.

EXAMPLE 2 Creating a .fini Section

.section ".fini"

.align 4

<instructions>

At link time, the .fini sections in a sequence of .o files are concatenated into a .fini section
in the linker output file. The codes in the .fini section are executed after the main program is
executed.

Because the whole .fini section is treated as a single function body, it is recommended that the
only code added to these section be in the following form:

call routine_name
nop

The called routine should be located in another section. This will prevent conflicting register
and stack usage within the .fini sections.

2.1.3 Predefined Non-User Sections

The following sections are predefined and not under user control. Therefore, these section
names are reserved by the assembler and should be avoided.

".dynamic" Section contains dynamic linking information.

.dynstr Section contains strings needed for dynamic linking.

Chapter 2 • SPARC Executable and Linking Format 25

2.1 Sections of an ELF File

.dynsym Section contains the dynamic linking symbol table.

.got Section contains the global offset table.

.hash Section contains a symbol hash table.

.interp Section contains the path name of a program interpreter.

.plt Section contains the procedure linking table.

.relname & .

relaname

Section containing relocation information. name is the section to which
the relocations apply, that is, ".rel.text", ".rela.text".

.shstrtab String table for the section header table names.

.strtab Section contains the string table.

.symtab Section contains a symbol table.

2.1.4 Symbol Tables

A symbol table contains information to locate and relocate symbolic definitions and references.
The Oracle Solaris SPARC assembler creates a symbol table section for the object file. It makes
an entry in the symbol table for each symbol that is defined or referenced in the input file and
is needed during linking. The symbol table is then used by the Oracle Solaris linker during
relocation. The section header contains the symbol table index for the first non-local symbol.

A symbol table contains the following information defined by Elf32_Sym and Elf64_Sym in
sys/elf.h and “Symbol Table Section” in Oracle Solaris 11.3 Linkers and Libraries Guide:

st_name

Description: Index into the object file symbol string table. A value of zero indicates the
symbol table entry has no name; otherwise, the value represents the string table index that
gives the symbol name.

st_value

Description: Value of the associated symbol. This value is dependent on the context; for
example, it may be an address, or it may be an absolute value.

26 SPARC Assembly Language Reference Manual • April 2020

http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=OSLLGman-sts

2.1 Sections of an ELF File

st_size

Description: Size of symbol. A value of 0 indicates that the symbol has either no size or an
unknown size.

st_info

Description: Specifies the symbol type and binding attributes. Table 8, “Symbol Type
Attributes ELF32_ST_TYPE and ELF64_ST_TYPE,” on page 27 describe these values.

st_other

Description: Specifies a symbol's visibility.

st_shndx

Description: Contains the section header table index to another relevant section, if specified.
As a section moves during relocation, references to the symbol will continue to point to the
same location because the value of the symbol will change as well.

TABLE 8 Symbol Type Attributes ELF32_ST_TYPE and ELF64_ST_TYPE

Value Type Description

0 notype Type not specified.

1 object Symbol is associated with a data object; for example, a variable or an array.

2 func Symbol is associated with a function or other executable code. When another object
file references a function from a shared object, the link editor automatically creates a
procedure linkage table entry for the referenced symbol.

3 section Symbol is associated with a section. These types of symbols are primarily used for
relocation.

4 file Gives the name of the source file associated with the object file.

13

15

loproc

hiproc

Values reserved for processor-specific semantics.

Table 9, “Symbol Binding Attributes ELF32_ST_BIND and ELF64_ST_BIND,” on page 27
shows the symbol binding attributes.

TABLE 9 Symbol Binding Attributes ELF32_ST_BIND and ELF64_ST_BIND

Value Binding Description

0 local Symbol is defined in the object file and not accessible in other files. Local symbols of
the same name may exist in multiple files.

Chapter 2 • SPARC Executable and Linking Format 27

2.2 Locations Within a Section

Value Binding Description

1 global Symbol is either defined externally or defined in the object file and accessible in other
files.

2 weak Symbol is either defined externally or defined in the object file and accessible in
other files; however, these definitions have a lower precedence than globally defined
symbols.

13

15

loproc

hiproc

Values reserved for processor-specific semantics.

2.1.5 String Tables

A string table is a section which contains null-terminated variable-length character sequences,
or strings, in the object file; for example, symbol names and file names. The strings are
referenced in the section header as indexes into the string table section.

■ A string table index may refer to any byte in the section.
■ Empty string table sections are permitted; however, the index referencing this section must

contain zero.

A string may appear multiple times and may also be referenced multiple times. References to
substrings may exist, and unreferenced strings are allowed.

2.2 Locations Within a Section

A location is a specific position within a section. Each location is identified by a section and
a byte offset from the beginning of the section. The current location is the location within the
current section where code is generated.

A location counter tracks the current offset within each section where code or data is being
generated. When a section control directive (for example, the .section pseudo-op) is
processed, the location information from the location counter associated with the new section is
assigned to and stored with the name and value of the current location.

The current location is updated at the end of processing each statement, but can be updated
during processing of data-generating assembler directives (for example, the .word pseudo-op).

Note - Each section has one location counter. If more than one section is present, only one
location can be current at any time.

28 SPARC Assembly Language Reference Manual • April 2020

2.3 Addresses in Memory

2.3 Addresses in Memory

Locations represent addresses in memory if a section is allocatable; that is, its contents are to be
placed in memory at program runtime. Symbolic references to these locations must be changed
to addresses by the SPARC link editor.

2.3.1 Relocation Tables

The assembler produces a companion relocation table for each relocatable section. The table
contains a list of relocations (that is, adjustments to data in the section) to be performed by the
link editor.

2.4 ELF Tools

Oracle Solaris provides a number of command-line tools to display, analyze, and modify the
functional components of object and executable files, such as the following:

■ elfdump – The elfdump utility symbolically dumps selected parts of the specified object file
(s). The options allow specific portions of the file to be displayed.

■ elfedit – A tool for examining or modifying the contents of an existing ELF object.
Access is provided to most of the ELF data contained in an object, including the ELF
header, section header table, program header table, dynamic section, hardware and software
capabilities, string tables, and symbol tables.

■ dump – The dump utility dumps selected parts of each of its object file arguments, and is
best suited for use in shell scripts, while the elfdump command is recommended for more
human-readable output.

■ /usr/sfw/bin/greadelf – greadelf displays information about one or more ELF format
object files. The options control what particular information to display.

■ mcs – The mcs command is used to manipulate a section in an ELF object file.
■ dis – The dis command produces an assembly language listing of an object file or an

archive of object files. The listing includes assembly statements and an octal or hexadecimal
representation of the binary that produced those statements.

■ /usr/sfw/bin/gobjdump – gobjdump displays information about one or more object files.
The options control what particular information to display.

Chapter 2 • SPARC Executable and Linking Format 29

30 SPARC Assembly Language Reference Manual • April 2020

 3 ♦ ♦ ♦ C H A P T E R 3

SPARC Directives and Pseudo-Operations

Assembler directives are commands to the assembler in the form of pseudo-operations. Some
directives cause the assembler to generate code or data, while others do not. The different types
of assembler directives are:

■ Section Control Directives
■ Symbol Attribute Directives
■ Assignment Directives
■ Data Generating Directives

3.1 Assembler Directives

3.1.1 Section Control Directives

When a section is created, a section header is generated and entered in the ELF object file
section header table. The section control pseudo-ops allow you to make entries in this table.
Sections that can be manipulated with the section control directives are known as user sections.
You can also use the section control directives to change the user section in which code or data
is generated.

Note - The symbol table, relocation table, and string table sections are created implicitly. The
section control pseudo-ops cannot be used to manipulate these sections.

The section control directives also create a section symbol which is associated with the location
at the beginning of each created section. The section symbol has an offset value of zero.

Chapter 3 • SPARC Directives and Pseudo-Operations 31

3.2 Notation Conventions

3.1.2 Symbol Attribute Directives

The symbol attribute pseudo-ops declare the symbol type and size and whether it is local or
global.

3.1.3 Assignment Directive

The assignment directive associates the value and type of expression with the symbol and
creates a symbol table entry for the symbol. This directive constitutes a definition of the symbol
and, therefore, must be the only definition of the symbol.

3.1.4 Data Generating Directives

The data generating directives are used for allocating storage and loading values.

3.2 Notation Conventions

The synopses of the pseudo-operations in this appendix use the following notation:

■ Pseudo-operations and literal characters are displayed in typewriter font. For example,
.popsection

■ Italics are used to denote a replaceable (variable) item explained in the description. For
example, .section section_name

■ Items enclosed in square brackets are optional. For example, [item, ..., item] denotes an
optional list of items of arbitrary length. When shown as item[, item, ..., item], at least one
occurrence of item is required. The brackets [and] are meta-characters and not part of the
declaration.

■ string denotes a string of characters enclosed in double quotes, as in "a string of
characters".

■ Items in curly brackets separated by a vertical bar denote a required option with at least
two choices. For example, {#scratch | symbol_name} denotes that either #scratch or a
symbolic name is required. The brackets { and } are meta-characters and not part of the
declaration.

32 SPARC Assembly Language Reference Manual • April 2020

3.3 Alphabetized Listing of Pseudo Operations With Descriptions

3.3 Alphabetized Listing of Pseudo Operations With
Descriptions

.alias

Turns off the effect of the preceding .noalias pseudo-op. (Compiler-generated only.)

.align boundary

Aligns the location counter on a boundary where ((location counter" mod boundary)
==0); boundary may be any power of 2.

.ascii string[, string, ..., string]

Generates the given sequences of ASCII characters.

.asciz string[, string, ..., string]

Generates the given sequences of ASCII characters. This pseudo-op appends a null (zero)
byte to each string.

.byte 8bitval[, 8bitval, ..., 8bitval]

Generates (a sequence of) initialized bytes in the current segment.

.common symbol, size[, sect_name][, alignment]

Provides a tentative definition of symbol. Size bytes are allocated for the object represented
by symbol.

■ If the symbol is not defined in the input file and is declared to be local to the file, the
symbol is allocated in sect_name and its location is optionally aligned to a multiple
of alignment. If sect_name is not given, the symbol is allocated in the uninitialized
data section (bss). Currently, only .bss is supported for the section name. (.data is not
currently supported.)

■ If the symbol is not defined in the input file and is declared to be global, the SPARC link
editor allocates storage for the symbol, depending on the definition of symbol_name in
other files. Global is the default binding for common symbols.

■ If the symbol is defined in the input file, the definition specifies the location of the
symbol and the tentative definition is overridden.

Chapter 3 • SPARC Directives and Pseudo-Operations 33

3.3 Alphabetized Listing of Pseudo Operations With Descriptions

.double 0rfloatval[, 0rfloatval, ..., 0rfloatval]

Generates (a sequence of) initialized double-precision floating-point values in the current
segment. floatval is a string acceptable to atof(3); that is, an optional sign followed by a non-
empty string of digits with optional decimal point and optional exponent.

.empty

Suppresses assembler complaints about the next instruction presence in a delay slot when
used in the delay slot of a Control Transfer Instruction (CTI).

Some instructions should not be in the delay slot of a CTI. See Oracle SPARC Architecture
2011 for details.

.exported symbol[, symbol, ..., symbol]

Declares each symbol in the list to have exported linker scope. Ensures that these symbols
remain global and are visible to all modules. References to them are bound at runtime. This
visibility can not be demoted, or eliminated by any other symbol visibility technique. A
symbol with STB_LOCAL binding will not have STV_EXPORTED visibility.

.file string

Creates a symbol table entry where string is the symbol name and STT_FILE is the symbol
table type. string specifies the name of the source file associated with the object file.

.global symbol[, symbol, ..., symbol]

(Spelling .globl is also accepted.) Declares each symbol in the list to be global; that is, each
symbol is either defined externally or defined in the input file and accessible in other files;
default bindings for the symbol are overridden.

■ A global symbol definition in one file will satisfy an undefined reference to the same
global symbol in another file.

■ Multiple definitions of a defined global symbol is not allowed. If a defined global
symbol has more than one definition, an error will occur.

■ A global pseudo-op does not need to occur before a definition, or tentative definition, of
the specified symbol.

Note - This pseudo-op by itself does not define the symbol.

.group group, section, #comdat

34 SPARC Assembly Language Reference Manual • April 2020

https://www.oracle.com/technetwork/server-storage/sun-sparc-enterprise/documentation/140521-ua2011-d096-p-ext-2306580.pdf
https://www.oracle.com/technetwork/server-storage/sun-sparc-enterprise/documentation/140521-ua2011-d096-p-ext-2306580.pdf

3.3 Alphabetized Listing of Pseudo Operations With Descriptions

Adds section to a COMDAT group. Refer to “COMDAT Section” in Oracle Solaris 11.3
Linkers and Libraries Guide for information about COMDAT.

.half 16bitval[, 16bitval, ..., 16bitval]

Generates (a sequence of) initialized halfwords in the current segment. The location counter
must already be aligned on a halfword boundary (use .align 2).

.hidden symbol[, symbol, ..., symbol]

Declares each symbol in the list to have hidden linker scoping. All references to one of these
listed symbols within a dynamic module bind to the definition within that module. These
symbols are not visible outside the module, and are given linker scope STV_HIDDEN.

.ident string

Generates the null terminated string in a comment section. This operation is equivalent to:

.pushsection .comment .asciz string .popsection

.internal symbol[, symbol, ..., symbol]

Same as .hidden

.local symbol[, symbol, ..., symbol]

Declares each symbol in the list to be local; that is, each symbol is defined in the input file
and not accessible in other files; default bindings for the symbol are overridden. These
symbols take precedence over weak and global symbols.

Since local symbols are not accessible to other files, local symbols of the same name may
exist in multiple files.

Note - This pseudo-op by itself does not define the symbol.

.noalias %reg1, %reg2

Registers %reg1 and %reg2 will not alias each other (that is, point to the same destination)
until a .alias pseudo-op is issued. (Compiler-generated only.)

.nonvolatile

Chapter 3 • SPARC Directives and Pseudo-Operations 35

http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=OSLLGchapter7-11598
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=OSLLGchapter7-11598

3.3 Alphabetized Listing of Pseudo Operations With Descriptions

Defines the end of a block of instruction. The instructions in the block may not be permuted.
This pseudo-op has no effect if:

■ The block of instruction has been previously terminated by a Control Transfer Instruction
(CTI) or a label

■ There is no preceding .volatile pseudo-op

.nword 64bitval[, 64bitval, ..., 64bitval]

If assembling with -m32, the assembler interprets the instruction as .word. If -m64 the
assembler interprets the instruction as .xword.

.poplocals

Removes the top local label scope from the local label scope stack. The local label scope
subsequently on the top of the stack becomes the current scope. This pseudo-op and its
corresponding .pushlocals command allow you to switch between local label scopes.

.popsection

Removes the top section from the section stack. The new section on the top of the stack
becomes the current section. This pseudo-op and its corresponding .pushsection command
allow you to switch back and forth between the named sections.

.proc n

Signals the beginning of a procedure (that is, a unit of optimization) to the peephole
optimizer in the SPARC assembler; n specifies which registers will contain the return value
upon return from the procedure. (Compiler-generated only.)

.protected symbol[, symbol, ..., symbol]

Declares each symbol in the list to have protected linker scoping and visible to all external
objects. References to these symbols from within the object are bound at link-edit, thus
preventing runtime interposition. This visibility scope can be demoted, or eliminated by
other symbol visibility techniques. This scope definition has the same affect as a symbol
with STV_PROTECTED visibility.

.pushlocals

Creates a new local label scope on the top of the local label scope stack. This new top
scope then becomes the current scope. This pseudo-op and its corresponding .poplocals
command allow you to switch between local label scopes.

36 SPARC Assembly Language Reference Manual • April 2020

3.3 Alphabetized Listing of Pseudo Operations With Descriptions

.pushsection sect_name[, attributes]

Moves the named section to the top of the section stack. This new top section then becomes
the current section. This pseudo-op and its corresponding .popsection command allow you
to switch back and forth between the named sections.

.quad 0rfloatval[, 0rfloatval, ..., 0rfloatval]

Generates (a sequence of) initialized quad-precision floating-point values in the current
segment. floatval is a string acceptable to atof(); that is, an optional sign followed by a non-
empty string of digits with optional decimal point and optional exponent.

Note - The .quad command currently generates quad-precision values with only double-
precision significance.

.register %g{2|3|6|7}, {#scratch|symbol_name}

With SPARC V9, the four registers %g2, %g3, %g6, %g7, should not be used unless
explicitly declared on a .register pseudo-op. When assembling under -m64, the SPARC
assembler will issue an error message if it detects the use of %g2 or %g3 registers without
a .register declaration. A .register declaration is not required for %g6 or %g7, but its
appearance does invoke checking for proper use of these registers.

Specify the #scratch option when the register is used as a scratch register:

.register %g3, #scratch

Or, declare the global register with a symbolic name, as in:

.register %g2, xyz

A .register declaration must appear before the first use of the register. Linking objects
containing conflicting register will cause the linker to issue error messages.

.reserve symbol, size[, sect_name[, alignment]]

Defines symbol, and reserves size bytes of space for it in the sect_name. This operation is
equivalent to:

 .pushsection sect_name
 .align alignment
symbol:

 .skip size
 .popsection

Chapter 3 • SPARC Directives and Pseudo-Operations 37

3.3 Alphabetized Listing of Pseudo Operations With Descriptions

If a section is not specified, space is reserved in the current segment.

.section section_name[, attributes]

Makes the specified section the current section.

The assembler maintains a section stack which is manipulated by the section control
directives. The current section is the section that is currently on top of the stack. This
pseudo-op changes the top of the section stack.

■ If section_name does not exist, a new section with the specified name and attributes is
created.

■ If section_name is a non-reserved section, attributes must be included the first time it is
specified by the .section directive.

See the sections “2.1.2 Predefined User Sections” on page 23 and “2.1.3 Predefined Non-
User Sections” on page 25 for a detailed description of the reserved sections. SeeTable 6,
“Section Attribute Flags,” on page 23 for a list of the section attribute flags.

Attributes can be:

#write | #alloc | #execinstr

.seg section_name

This pseudo-op is currently supported for compatibility with existing SunOS 4.1 SPARC
assembly language programs. This pseudo-op has been replaced by the .section pseudo-op.

Changes the current section to one of the predefined user sections. The assembler will
interpret the following SunOS 4.1 SPARC assembly directive to be the same as the following
Oracle Solaris SPARC assembly directive:

 .seg text, .seg data, .seg data1, .seg bss,

.section .text, .section .data, .section .data1,

.section .bss.

Predefined user section names are changed in Oracle Solaris.

.single 0rfloatval[, 0rfloatval, ..., 0rfloatval]

Generates (a sequence of) initialized single-precision floating-point values in the current
segment.

38 SPARC Assembly Language Reference Manual • April 2020

3.3 Alphabetized Listing of Pseudo Operations With Descriptions

Note - This operation does not align automatically.

.size symbol, expr

Declares the symbol size to be expr. expr must be an absolute expression.

.skipn

Increments the location counter by n, which allocates n bytes of empty space in the current
segment.

.stabn various_parameters

The pseudo-op is used by Solaris 2.x SPARCompilers only to pass debugging information to
the symbolic debuggers.

.stabs various_parameters

The pseudo-op is used by Solaris 2.x SPARCompilers only to pass debugging information to
the symbolic debuggers.

.symbolic symbol[, symbol, ..., symbol]

Same as .protected

.tls_common symbol, size[, sect_name][, alignment]

Similar to .common, provides a tentative definition of symbol. Size bytes are allocated in
thread local storage (TLS) for the object represented by symbol. See .common for details.

.type symbol[, symbol, ..., symbol], type[, visibility]

Declares the type of symbol, where type can be:

#object #tls_object #function #no_type

and where visibility can be one of:

#hidden #protected #eliminate #singleton #exported #internal

.uahalf 16bitval[, 16bitval, ..., 16bitval]

Chapter 3 • SPARC Directives and Pseudo-Operations 39

3.3 Alphabetized Listing of Pseudo Operations With Descriptions

Generates a (sequence of) 16-bit values.

Note - This operation does not align automatically.

.uaword 32bitval[, 32bitval, ..., 32bitval]

Generates a (sequence of) 32-bit values.

Note - This operation does not align automatically.

.version string

Identifies the minimum assembler version necessary to assemble the input file. You can
use this pseudo-op to ensure assembler-compiler compatibility. If string indicates a newer
version of the assembler than this version of the assembler, a fatal error message is displayed
and the SPARC assembler exits.

.volatile

Obsolete and has no effect. Defines the beginning of a block of instructions in the section
that may not be changed.

.weak symbol[, symbol, ..., symbol]

Declares each symbol in the list to be defined either externally, or in the input file and
accessible to other files; default bindings of the symbol are overridden by this directive.
Note the following:

■ A weak symbol definition in one file will satisfy an undefined reference to a global
symbol of the same name in another file.

■ Unresolved weak symbols have a default value of zero; the link editor does not resolve
these symbols.

■ If a weak symbol has the same name as a defined global symbol, the weak symbol is
ignored and no error results.

Note - This pseudo-op does not itself define the symbol.

.word 32bitval[, 32bitval, ..., 32bitval]

Generates (a sequence of) initialized words in the current segment.

40 SPARC Assembly Language Reference Manual • April 2020

3.4 Pseudo-Op Attributes

Note - This operation does not align automatically.

.xword 64bitval[, 64bitval, ..., 64bitval]

Generates (a sequence of) initialized 64-bit values in the current segment.

Note - This operation does not align automatically.

.xstabs various_parameters

The pseudo-op is used by Solaris 2.x SPARCompilers only to pass debugging information to
the symbolic debuggers.

symbol =expr

Assigns the value of expr to symbol.

3.4 Pseudo-Op Attributes

Pseudo-ops .global, .section, .register, and .type accept specific attributes that
correspond to linker attribute flags, as shown in the following table.

Example: .type sum, #function

TABLE 10 Pseudo-op Linker Attributes

Attribute Linker Symbol Accepting Pseudo-op

#alloc SHF_ALLOC .section

#annotate SHT_SUNW_ANNOTATE .section

#comdat SHT_SUNW_COMDAT .group

#eliminate STV_ELIMINATE .type

#exclude SHF_EXCLUDE .section

#execinstr SHF_EXECINSTR .section

#exported STV_EXPORTED .type

#fini_array SHT_FINI_ARRAY .section

#function STT_FUNC .type

Chapter 3 • SPARC Directives and Pseudo-Operations 41

3.5 Pseudo-Op Examples

Attribute Linker Symbol Accepting Pseudo-op

#group SHF_GROUP .section

#hidden STV_HIDDEN .type

#init_array SHT_INIT_ARRAY .section

#internal STV_INTERNAL .type

#linkafter SHN_AFTER .section

#linkbefore SHN_BEFORE .section

#linkorder SHF_LINK_ORDER .section

#nobits SHT_NOBITS .section

#no_type STT_NOTYPE .type

#object STT_OBJECT .type

#ordered SHF_ORDERED .section

#preinit_array SHT_PREINIT_ARRAY .section

#progbits SHT_PROGBITS .section

#protected STV_PROTECTED .type

#scratch no linker flag .register

#singleton STV_SINGLETON .type

#symbolic STV_PROTECTED .type

#tls SHF_TLS .section

#tls_object STT_TLS .type

#visible STV_DEFAULT .type

#write SHF_WRITE .section

See the Oracle Solaris 11.3 Linkers and Libraries Guide for details.

3.5 Pseudo-Op Examples

3.5.1 Example 1: Binding to C Variables

This example shows how to use the following pseudo-ops to specify the bindings of variables in
C:

.common

.global

.local

42 SPARC Assembly Language Reference Manual • April 2020

http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=OSLLG

3.5 Pseudo-Op Examples

.weak

The following C definitions/declarations can be translated into the assembly code in Example 3,
“Using Pseudo-Ops to Specify C Variable Bindings,” on page 43:

 int

 foo1 = 1;

#pragma weak foo2 = foo1

 static int foo3;

 static int foo4 = 2;

EXAMPLE 3 Using Pseudo-Ops to Specify C Variable Bindings

 .pushsection ".data"

 .global foo1 ! int foo1 = 1

 .align 4

foo1:

 .word 0x1

 .type foo1,#object ! foo1 is of type data object,

 .size foo1,4 ! with size = 4 bytes

 .weak foo2 ! #pragma weak foo2 = foo1

 foo2 = foo1

 .local foo3 ! static int foo3

 .common foo3,4,4

 .align 4 ! static int foo4 = 2

 foo4:

 .word 0x2

 .type foo4,#object

 .size foo4,4

 .popsection

3.5.2 Example 2: Generating Ident Strings

This example shows how to use the pseudo-op .ident to generate a string in the .comment
section of the object file for identification purposes.

.ident "

myprog

Chapter 3 • SPARC Directives and Pseudo-Operations 43

3.5 Pseudo-Op Examples

:

This is an example of an ident string

"

3.5.3 Example 3: Data Alignment, Size, Scope, and Type

The pseudo-ops shown in this example are .align, .global, .type, and .size.

The following C subroutine can be translated into the assembly code that follows the
subroutine.

int sum(a, b)

 int a, b;

{

 return(a + b);

}

 .section

 ".text"

 .global sum

 .align 4

sum:

 retl

 add %o0,%o1,%o0 ! (a + b) is done in the

 ! delay slot of retl

 .type sum,#function ! sum is of type function

 .size sum,.-sum ! size of sum is the diff

 ! of current location

 ! counter and the initial

 ! definition of sum

3.5.4 Example 4: "Hello World"

The pseudo-ops shown in this example are .section, .ascii, and .align. The example calls
the printf() function to output the string "hello world".

44 SPARC Assembly Language Reference Manual • April 2020

3.5 Pseudo-Op Examples

 .section ".data1"

 .align 4

.L16:

 .ascii "hello world\n\0"

 .section ".text"

 .global main

main:

 save %sp,-96,%sp

 set .L16,%o0

 call printf,1

 nop

 restore

Chapter 3 • SPARC Directives and Pseudo-Operations 45

46 SPARC Assembly Language Reference Manual • April 2020

 4 ♦ ♦ ♦ C H A P T E R 4

Creating Data in Assembler

This chapter gives examples of creating various data types using assembler pseudo-ops.

4.1 Examples of Various Data Types

The following code illustrates writing declarations and definitions for various kinds of data
types.

EXAMPLE 4 Examples of Defining Data in Sections

This example demonstrates the use of the .word, .half, .byte, .xword, nword, and
.asciiz pseudo-ops, along with .align, .skip, .global, and .local, to define data in
.data, .rodata, and .bss sections.

! --------.data-----------------

 ! the .data section is used for normal read/write data

 .section ".data"

 ! iii is a global integer (word), "iii"

 .global iii

 .align 4

iii:

 .word 12345678

 ! sss is a global short (half)

 .global sss

 .align 2

sss:

 .half 12345

Chapter 4 • Creating Data in Assembler 47

4.1 Examples of Various Data Types

 ! ccc is a static (local) char (byte)

 .local ccc

 .align 1

ccc:

 .byte 12

 ! lll is a global long long (xword)

 .global lll

 .align 8

lll:

 .xword 1234567812345678

 ! aaa is a global char string

 .global aaa

 .align 1

aaa:

 .asciiz "a string"

 ! sss is a global pointer to a string (absolute addressing)

 .global sss

 .align 8

sss:

 .nword aaa

 ! --------.rodata-------------------

 ! the .rodata section is used for read-only data

 .section ".rodata"

 ! jjj is a global read-only integer (word)

 .global jjj

 .align 4

jjj:

 .word 12345678

 ! ---------.bss---------------------

 ! the .bss section is used for data allocated (as zeroes) at run-time

 ! data in this section does not occupy space in the ELF file

 .section ".bss"

 ! kkk is a global "bss" integer allocated at run-time

 .global kkk

 .align 4

kkk:

48 SPARC Assembly Language Reference Manual • April 2020

4.1 Examples of Various Data Types

 .skip 4

Chapter 4 • Creating Data in Assembler 49

50 SPARC Assembly Language Reference Manual • April 2020

 5 ♦ ♦ ♦ C H A P T E R 5

SPARC Code Models

There are two SPARC code models, absolute and position independent, and two address space
sizes, 32-bit and 64-bit. This chapter describes how the different code models use different
methods for creating an address.

5.1 Basics of Compiling C Programs

Consider the following simple C program.

int sum = 0;

void add(int a)

{

 sum += a;

}

The kind of code used to access the variable sum is different for different code models. All the
code models need a way to create the address for sum so that the address can be used to load or
store the value. Different code models use different methods for creating an address.

Oracle Solaris SPARC has two basic kinds of code models, absolute and position independent.
Absolute code models create an address that is a constant, so that the variable cannot be moved
without changing the code. Position independent code models create an address that is more
movable and can be decided at run-time. Position independent code (PIC) is recommended and
sometimes required for creating shared objects. The dynamic linker (ld.so) determines the
location of the shared object at run-time and finalizes the position independent address. See the
Oracle Solaris 11.3 Linkers and Libraries Guide for more info on this topic.

Chapter 5 • SPARC Code Models 51

http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=OSLLG

5.2 Address Sizes

5.2 Address Sizes

Code models come in two sizes, 32-bit and 64-bit, which results in three code models for 32-bit
code, and five code models for 64-bit code.
For 32-bit code, the following address modes exist:

■ 32-bit absolute
■ 13-bit PIC
■ 32-bit PIC

For 64-bit code, the following address modes exist:

■ 32-bit absolute
■ 44-bit absolute
■ 64-bit absolute
■ 13-bit PIC
■ 32-bit PIC

5.2.1 32-Bit Absolute

The following is an example of 32-bit absolute assembly code for the function add() function
from “5.1 Basics of Compiling C Programs” on page 51:

add:

 sethi %hi(sum),%o4

 ld [%o4+%lo(sum)],%o5

 add %o5,%o0,%o3

 retl

 st %o3,[%o4+%lo(sum)]

It takes two instructions to form the address of sum. The %hi() operator tells the assembler
to create a R_SPARC_HI22 relocation symbol sum, and the %lo(sum) operator creates a
R_SPARC_LO10 relocation on the symbol sum.

5.2.2 64-Bit Absolute

The 64-bit absolute code model for add() from “5.1 Basics of Compiling C
Programs” on page 51 might look like this:

52 SPARC Assembly Language Reference Manual • April 2020

5.2 Address Sizes

add:

 sethi %hh(sum),%o5

 sethi %lm(sum),%o2

 or %o5,%hm(sum),%o4

 sllx %o4,32,%o3

 or %o3,%o2,%o1

 ld [%o1+%lo(sum)],%g5

 add %g5,%o0,%g3

 retl

 st %g3,[%o1+%lo(sum)]

Here it takes 6 instruction to form address of sum. The operators act as follows:

%hh(sum) ⇒ R_SPARC_HH22 relocation
%hm(sum) ⇒ R_SPARC_HM10
%lm(sum) ⇒ R_SPARC_LM22
%lo(sum) ⇒ R_SPARC_LO10

5.2.3 44-Bit Absolute

The 44-bit absolute code model for add() from “5.1 Basics of Compiling C
Programs” on page 51 might look like the following:

add:

 sethi %h44(sum),%o5

 or %o5,%m44(sum),%o4

 sllx %o4,12,%o2

 ld [%o2+%l44(sum)],%o3

 add %o3,%o0,%o1

 retl

 st %o1,[%o2+%l44(sum)]

It takes 4 instructions to form the 44 bits of address for sum. The operators act as follows:

%h44(sum) ⇒ R_SPARC_H44 relocation
%m44(sum) ⇒ R_SPARC_M44
%l44(sum) ⇒ R_SPARC_L44

5.2.4 64-Bit With 13-Bit PIC

The 64-bit with 13-bit PIC code for add() from “5.1 Basics of Compiling C
Programs” on page 51 might look like the following:

Chapter 5 • SPARC Code Models 53

5.2 Address Sizes

add:

.L900000106:

 rd %pc,%o3

 sethi %pc22(_GLOBAL_OFFSET_TABLE_-(.L900000106-.)),%g1

 add %g1,%pc10(_GLOBAL_OFFSET_TABLE_-(.L900000106-.)),%g1

 add %g1,%o3,%o3

 ldx [%o3+%got13(sum)],%o1

 ld [%o1],%o2

 add %o2,%o0,%g5

 retl ! Result =

 st %g5,[%o1]

The address of sum is formed in two parts. The first four instructions form the address of the
global offset table (GOT). Then a 13-bit offset into the GOT is used to load the address of sum.
The dynamic linker puts the correct address for sum into the GOT at run-time.

The operators act as follows:

%pc22(...) ⇒ R_SPARC_PC22 relocation
%pc13(...) ⇒ R_SPARC_PC13
%got13(sum) ⇒ R_SPARC_GOT13

The 32-bit with 13-bit PIC code for add() is similar to the preceding 64-bit with 13-bit PIC, but
the ldx used for 64-bit code is changed to ld for 32-bit code.

5.2.5 64-Bit With 32-Bit PIC

The 64-bit with 32-bit PIC code for add() from “5.1 Basics of Compiling C
Programs” on page 51 might look as follows:

add:

 .L900000106:

 rd %pc,%o1

 sethi %pc22(_GLOBAL_OFFSET_TABLE_-(.L900000106-.)),%g1

 sethi %got22(sum),%o3

 add %g1,%pc10(_GLOBAL_OFFSET_TABLE_-(.L900000106-.)),%g1

 xor %o3,%got10(sum),%o2

 add %g1,%o1,%o1

 ldx [%o1+%o2],%g4,%gdop(sum)

 ld [%g4],%g5

 add %g5,%o0,%g3

 retl ! Result =

 st %g3,[%g4]

54 SPARC Assembly Language Reference Manual • April 2020

5.3 Global Object Table (GOT) Code Models

Again, the address of sum is formed in two parts. The first part forms the address of the global
offset table (GOT). Then a 32-bit offset into the GOT is used to load the address of sum.

The operators act as follows:

%pc22(...) ⇒ R_SPARC_PC22 relocation
%pc13(...) ⇒ R_SPARC_PC13
%got22(sum) ⇒ R_SPARC_GOT22
%got10(sum) ⇒ R_SPARC_GOT10
%gdop(sum) ⇒ R_SPARC_GOTDATA_OP

Similarly, the 32-bit code with 32-bit PIC would use just ld instead of ldx to load the address of
sum from the GOT.

5.3 Global Object Table (GOT) Code Models

On SPARC processors, position independent code (PIC) uses a global object table (GOT) for
loading addresses, so that the addresses can be determined at run-time by the dynamic linker.

For some data items, a faster access is possible by using the GOTdata relocations.

There are two different code models for GOTdata, plain GOTdata, and GOTdata_op.

Here is the code for the GOTdata_op code model.

add:

.L900000105:

 rd %pc,%o1

 sethi %pc22(_GLOBAL_OFFSET_TABLE_-(.L900000105-.)),%g1

 add %g1,%pc10(_GLOBAL_OFFSET_TABLE_-(.L900000105-.)),%g1

 add %g1,%o1,%o1

 sethi %gdop_hix22(sum),%o3

 xor %o3,%gdop_lox10(sum),%o2

 ldx [%o1+%o2],%g4,%gdop(sum)

 ld [%g4],%g5

 add %g5,%o0,%g3

 retl

 st %g3,[%g4]

 .type add,#function

 .size add,(.-add)

There are four instructions to form a pointer to the GOT into register %o1. Then it takes two
more instructions to form the offset of the address of sum in the GOT (in %o2), and another

Chapter 5 • SPARC Code Models 55

5.3 Global Object Table (GOT) Code Models

instruction to add those to the address of the GOT to form the address of the GOT slot for sum,
and load that address into %g4.

At this point, the code looks much like the PIC32 code model.

The operators act like this:

%gdop_hix22(sum) --> R_SPARC_GOTDATA_OP_HIX22

%gdop_lox10(sum) --> R_SPARC_GOTDATA_OP_LOX10

%gdop(sum) --> R_SPARC_GOTDATA_OP

The difference for the GOTdata_op code model is that the static linker, ld, can re-write the code
sequence to avoid one load from the GOT. This can happen if the distance from the beginning
of the GOT to the location of sum is less than 2 GB away.

So, then the following load is re-written into an add:

ldx [%o1+%o2],%g4,%gdop(sum)

add %o1,%o2,%g4

Here is the code for the plain GOTdata code model.

add:

.L900000105:

 rd %pc,%o1

 sethi %pc22(_GLOBAL_OFFSET_TABLE_-(.L900000105-.)),%g1

 add %g1,%pc10(_GLOBAL_OFFSET_TABLE_-(.L900000105-.)),%g1

 add %g1,%o1,%o1

 sethi %gd_hix22(sum),%o3

 xor %o3,%gd_lox10(sum),%o2

 ld [%o1+%o2],%g5

 add %g5,%o0,%g3

 retl

 st %g3,[%o1+%o2]

 .type add,#function

 .size add,(.-add)

There are four instructions to form a pointer to the GOT into register %o1. Then it takes two
more instructions to form the offset of the address of sum in the GOT (in %o2). Now the sum of
%o1 and %o2 can be used directly to load the value of sum.

The operators act like this:

%gd_hix22(sum) --> R_SPARC_GOTDATA_HIX22

%gd_lox10(sum) --> R_SPARC_GOTDATA_LOX10

The plain GOTdata code is simpler than the GOTdata_op code, but it requires that the data be
within 2 GB of the start of the GOT, otherwise a static link-time error will result.

56 SPARC Assembly Language Reference Manual • April 2020

5.4 Thread Local Storage (TLS) Code Models

5.4 Thread Local Storage (TLS) Code Models

The local executable code model uses the fastest code sequence, but it can only be used for code
within an executable accessing a variable within that executable.

The initial executable code model allows code in the executable to access TLS variables in the
shared objects to which the executable has been statically linked. IE code is somewhat slower
than LE code.

The local dynamic code model allows code in a shared object to access TLS variables of its
own. LD code is usually somewhat slower than IE code.

The general dynamic code model allows code from anywhere to access TLS variables
anywhere. So, the executable could access a TLS variable in a dynamically linked shared
object, for example. GD code is the slowest.

Note that on Oracle Solaris, the %g7 register is used by the OS to point to thread data, and the
TLS variables are sometimes accessed through this register. The program must not modify %g7
because the results are unpredictable.

5.4.1 Local Executable Code Model

The following is an example of the code for the local executable TLS code model:

add:

 sethi %tle_hix22(sum),%o3

 xor %o3,%tle_lox10(sum),%o2

 ld [%g7+%o2],%o1

 add %o1,%o0,%g4

 retl

 st %g4,[%g7+%o2]

It takes two instructions to form the address of sum. The operators act as follows:

%tle_hix22(sum) ⇒ R_SPARC_TLS_LE_HIX22 relocation
%tle_lox10(sum) ⇒ R_SPARC_TLS_LE_LOX10

5.4.2 Initial Executable Code Model

The following is an example of the code for the initial executable TLS code model:

Chapter 5 • SPARC Code Models 57

5.4 Thread Local Storage (TLS) Code Models

add:

 rd %pc,%o1

 sethi %pc22(_GLOBAL_OFFSET_TABLE_-(.L900000106-.)),%g1

 add %g1,%pc10(_GLOBAL_OFFSET_TABLE_-(.L900000106-.)),%g1

 add %g1,%o1,%o1

 sethi %tie_hi22(sum),%o3

 add %o3,%tie_lo10(sum),%o2

 ldx [%o1+%o2],%g5,%tie_ldx(sum)

 add %g7,%g5,%g3,%tie_add(sum)

 ld [%g3],%g4

 add %g4,%o0,%g2

 retl

 st %g2,[%g3]

Here it takes four instructions to form a pointer to the GOT into register %o1, followed by two
instruction to form the offset of the address of sum in the GOT.

The operators act as follows:

%tie_hi22(sum) ⇒ R_SPARC_TLS_IE_HI22 relocation
%tie_lo10(sum) ⇒ R_SPARC_TLS_IE_LO10
%tie_ldx(sum) ⇒ R_SPARC_TLS_IE_LDX
%tie_add(sum) ⇒ R_SPARC_TLS_IE_ADD

5.4.3 Local Dynamic TLS Code Model

The following is an example of the local dynamic TLS code model:

add:

 save %sp,-176,%sp

.L900000107:

 rd %pc,%i3

 sethi %pc22(_GLOBAL_OFFSET_TABLE_-(.L900000107-.)),%g1

 add %g1,%pc10(_GLOBAL_OFFSET_TABLE_-(.L900000107-.)),%g1

 add %g1,%i3,%i3

 sethi %tldm_hi22(sum),%i2

 add %i2,%tldm_lo10(sum),%i1

 add %i3,%i1,%o0,%tldm_add(sum)

 call __tls_get_addr,%tldm_call(sum)

 nop

 sethi %tldo_hix22(sum),%l7

 xor %l7,%tldo_lox10(sum),%l6

 add %o0,%l6,%l4,%tldo_add(sum)

 ld [%l4],%l5

 add %l5,%i0,%l3

58 SPARC Assembly Language Reference Manual • April 2020

5.4 Thread Local Storage (TLS) Code Models

 st %l3,[%l4]

 ret

 restore %g0,%g0,%g0

Notice that we could not have a leaf routine because of the call instruction.

There are four instructions to form a pointer to the GOT into register %i3. Then it takes two
more instructions to form the offset of the address of sum in the GOT, and another instruction to
add those to the address of the GOT to form the address of the GOT slot for sum. This address
is passed to function __tls_get_addr that returns the address for local module's TLS data in
register %o0. Three more instructions form the offset of sum in the module data and to add that
to the module data address. Note that the module data address can be reused to access multiple
TLS variables.

The operators act as follows:

%tldm_hi22(sum) ⇒ R_SPARC_TLS_LDM_HI22 relocation
%tldm_lo10(sum) ⇒ R_SPARC_TLS_LDM_LO10
%tldm_add(sum) ⇒ R_SPARC_TLS_LDM_ADD
%tldm_call(sum) ⇒ R_SPARC_TLS_LDM_CALL
%tldo_hix22(sum) ⇒ R_SPARC_TLS_LDO_HIX22 relocation
%tldo_lox10(sum) ⇒ R_SPARC_TLS_LDO_LOX10
%tldo_add(sum) ⇒ R_SPARC_TLS_LDO_ADD

5.4.4 General Dynamic TLS Code Model

The following is an example of the general dynamic TLS code model:

add:

 save %sp,-176,%sp

.L900000107:

 rd %pc,%i3

 sethi %pc22(_GLOBAL_OFFSET_TABLE_-(.L900000107-.)),%g1

 add %g1,%pc10(_GLOBAL_OFFSET_TABLE_-(.L900000107-.)),%g1

 add %g1,%i3,%i3

 sethi %tgd_hi22(sum),%i2

 add %i2,%tgd_lo10(sum),%i1

 add %i3,%i1,%o0,%tgd_add(sum)

 call __tls_get_addr,%tgd_call(sum)

 nop

 ld [%o0],%l7

 add %l7,%i0,%l6

 st %l6,[%o0]

Chapter 5 • SPARC Code Models 59

5.4 Thread Local Storage (TLS) Code Models

 ret

 restore %g0,%g0,%g0

Notice that we could not have a leaf routine because of the call instruction.

There are four instructions to form a pointer to the GOT into register %i3, followed by two more
instruction to form the offset of the address of sum in the GOT, and another instruction to add
those to the address of the GOT to form the address of the GOT slot for sum. This address is
passed to function __tls_get_addr that returns the address for sum in register %o0.

The operators act as follows:

%tgd_hi22(sum) ⇒ R_SPARC_TLS_GD_HI22 relocation
%tgd_lo10(sum) ⇒ R_SPARC_TLS_GD_LO10
%tgd_add(sum) ⇒ R_SPARC_TLS_GD_ADD
%tgd_call(sum) ⇒ R_SPARC_TLS_GD_CALL

60 SPARC Assembly Language Reference Manual • April 2020

 6 ♦ ♦ ♦ C H A P T E R 6

Writing Functions in the SPARC ABI

This chapter outlines the basic design of an assembly language function that can be called from
a C program. In order for an assembly language program to interoperate with a C program
or the C library functions or the operating system calls, certain conventions about register
usage, stack usage, parameter passing, and returning values must be followed. These agreed-to
conventions are referred to as the Application Binary Interface, the ABI.

6.1 Anatomy of a C Function

A good place to start is with a simple C function:

int add(int a, int b)

{

 return a + b;

}

Compiling with the C compiler's -S option generates the assembler code:

demo$ cc -O add.c -S

demo$ cat add.s

! --------BEGIN PROLOG ------------

 .section ".text",#alloc,#execinstr,#progbits

 .file "add.c"

 .section ".bss",#alloc,#write,#nobits

Bbss.bss:

 .section ".data",#alloc,#write,#progbits

Ddata.data:

 .section ".rodata",#alloc,#progbits

Chapter 6 • Writing Functions in the SPARC ABI 61

6.1 Anatomy of a C Function

!

! CONSTANT POOL

!

Drodata.rodata:

 .section ".text",#alloc,#execinstr,#progbits

/* 000000 0 */ .align 4

/* 000000 */ .skip 16

/* 0x0010 */ .align 4

! FILE add.c

! 1 !int add(int a, int b)

! 2 !{

!

! SUBROUTINE add

!

! OFFSET SOURCE LINE LABEL INSTRUCTION

 .global add

! ---END PROLOG --- BEGIN BODY -------

 add:

! 3 ! return a + b;

 .L900000105:

/* 000000 3 */ retl ! Result = %o0

/* 0x0004 */ add %o0,%o1,%o0

!

! -------END BODY ------ BEGIN EPILOG -------

!

/* 0x0008 0 */ .type add,#function

/* 0x0008 0 */ .size add,(.-add)

 .L900000106:

 .section ".text",#alloc,#execinstr,#progbits

 .L900000107:

 .section ".annotate",#progbits

62 SPARC Assembly Language Reference Manual • April 2020

6.2 Register Usage

/* 000000 0 */ .asciz "annotate"

/* 0x0008 0 */ .half 6,0

/* 0x000c 0 */ .word 28

/* 0x0010 0 */ .half 0,8

/* 0x0014 0 */ .word (.L900000107-0x18)

/* 0x0018 0 */ .word 24

/* 0x001c 0 */ .half 1,12

/* 0x0020 0 */ .word .L900000105

/* 0x0024 0 */ .word (.L900000106-.L900000105)

/* 0x0028 0 */ .word 1577472

! ----------------END EPILOG-------------

The purpose of the prolog is to put the body of the code into the correct context for the
assembler to create an object file of executable code. The prolog creates the section where to
code should go and defines the proper alignment. It also declares the entry point as global so
that it can be called from another object.

The body of the function has a label for the function name and the instruction code for the
function.

The epilog section declares the type and size of the function for compatibility with other tools.

6.2 Register Usage

The input registers %i0 through %i7, and the local registers %l0 through %l7 are callee saves
registers. In other words, to use them in an assembly function called from C code, they should
be saved first and restored before returning. These registers are normally saved in the callee
by executing a save instruction to change the register windows, and restored with the restore
instruction or the return instruction at the end of the function. If you use the input or local
registers within an assembly language function and call a C function, there is no need to save
those registers before the call.

The output registers %o0 to %o7 are caller saves registers and are also used for parameter passing
and return values. To use the output registers in an assembly language function, there is no need
to save them before using them. If calling a C function from assembly language, any useful
value in an output register should be saved before the call is made.

The global registers %g0-%g7 are more complicated. The %g0 register is always zero. The %g6
and %g7 are always reserved for the operating system, so assembly code should not modify
them. The other global registers, %g1-%g5, are caller saves, and are usable by applications code.
But note that %g1 and %g5 may be used in the program linkage table (PLT) or other interposition
code, and thus cannot be used to pass parameters from caller to callee.

Chapter 6 • Writing Functions in the SPARC ABI 63

6.3 Parameter Passing

6.3 Parameter Passing

On SPARC processors, arguments to C functions are passed as if they were in a parameter
array. The array elements are called slots. The slots are numbered from zero. For 32-bit code,
the array has 32-bit elements (slots), and for 64-bit code the array has 64-bit elements (slots).
Successive parameters to a routine are passed in successive slots of the parameter array.

There is space allocated on the stack for all the slots necessary for a function's parameters, but
some slots may be promoted to registers and thus the stack location may contain no value.

For 32-bit code, the parameter array starts at %fp+68 (after a save instruction, %sp+68 before),
and the stack and frame pointers are aligned on a 64-bit (8 Byte) boundary. For 64-bit code,
the parameter array starts at %fp+BIAS+128 (after a save instruction), and the stack and frame
pointers are aligned on a 128-bit (16 Byte) boundary. For 64-bit code, BIAS is 2047. Parameters
that are passed in registers also have a (unused) memory location corresponding to their slot(s).

Integer data types smaller then a slot are passed in the lower part of that slot. For 64-bit code,
where a smaller integer type (int, short, char) parameter is passed in a register, the caller
must sign extend or zero extend the value to the full 64-bit slot width. Similarly, in 64-bit code
where a smaller integer type is returned in a register, the callee must sign extend or zero extend
the value to the full 64-bit slot width. In 32-bit code, there is no requirement for sign or zero
extensions, and only the lower bits of the values should be used.

Data types that are larger than the slot size are passed in multiple slots. For 32-bit code, double
and long long data types are passed in 2 slots, and they are not aligned, but packed next to the
previous parameter slot. For 32-bit code, values longer than a double are passed like passing
a structure by value. For 64-bit code, double and long long data types occupy just one slot,
but long double and double complex data occupy two slots, and these slots are aligned (slot
number modulo 2 equals 0), skipping a slot if necessary for alignment.

The first six slots of the parameter array are always passed in registers. For 32-bit code, these
slots always go into the lower 32-bits of registers %o0 to %o5, regardless of whether they are
integer or floating-point values. For 64-bit code, these 6 slots go into the full 64-bits of registers
%o0 to %o5 if they are integer types. The float, double, long double types are passed in the
double registers %d0 to %d10, corresponding to slots 0 to 5.

The float complex, double complex, and long double complex data types are passed as
though there were just two parameters of their base type. The imaginary types are passed the
same as the plain float types. For 64-bit code, float, double, and long double data in slots
6-31 are passed in registers %d12 to %d62.

Structure, union, or array parameters passed by value are passed by making a copy on the stack
and passing a pointer to the copy. The details of this kind of parameter passing are complicated

64 SPARC Assembly Language Reference Manual • April 2020

6.4 Functions Returning Values

and beyond the scope of this manual. Similarly, for functions returning a structure, union, or
array by value, the caller allocates space for the return value and passes a pointer for that area
to the callee. The callee puts there returned value into the designated area before returning.
The details of this kind of return value code are also complicated and beyond the scope of this
manual.

6.4 Functions Returning Values

Functions that return an integer value return it in %o0 or %o0 and %o1. For 32-bit code, long
long data are returned with the upper 32-bits in %o0 and the lower 32-bits in %o1, treating %o0
and %o1 as if they were 32-bit registers.

If the function returning a value has executed a save instruction, then the return value would
normally be put into %i0 or %i1 just before executing a restore or return instruction, which
changes register windows and puts the values into %o0 and %o1.

Functions that return a floating-point or complex value return it in some subset of %f0, %f1,
%d0, %d2, %d4, and %d6. So a float value is returned in %f0, and a double value is returned in
%d0 (or equivalently in %f0 and %f1).

Structure and array values returned by value are more complicated and beyond the scope of this
manual. Registers %o0-%o5 and %f0-%f31 may be used as temporaries.

6.4.1 Limitations for 32-Bit Code

The global registers and the output registers can be used to hold 64-bit integer values, but the
input registers and the local registers can only be used to hold 32-bit values in the lower half of
the register. This is because the register save area for the input and local registers does not have
enough room to store the full 64-bits and only the lower 32-bits are saved. The input and local
registers may be saved and later reloaded at any point in time by a trap to handle an interrupt.

6.4.2 Limitations for Both 32-Bit and 64-Bit Code

There is a minimum stack size for any routine, and certain areas of the stack that cannot be
used.

Chapter 6 • Writing Functions in the SPARC ABI 65

6.4 Functions Returning Values

The minimum stack frame size is just large enough to hold the register save area plus the
required 6 slots for parameter passing. For 32-bit code, the minimum stack frame size is 92
bytes. This is normally allocated with a "save %sp, 92, %sp" instruction. For 64-bit code, the
minimum stack frame size is 176 bytes. This is normally allocated with a "save %sp, 176, %
sp" instruction.

The stack area below where %sp points is volatile and might be overwritten at any point in
time (for example. by an interrupt). Do not store any useful data there, instead, change the %sp
downward first and store above the %sp.

6.4.3 Additional Information About SPARC ABI

For more information about the SPARC application binary interface (ABI), see the following
documents available at sparc.org:

■ SPARC Compliance Definition 2.3 (32-bit specification)
■ SPARC Compliance Definition 2.4 (64-bit specification)

Refer also to the SPARC V9 Architecture Manual (PDF) descriptions of the instruction set,
registers, and other details.

66 SPARC Assembly Language Reference Manual • April 2020

http://sparc.org/technical-documents/
http://sparc.org/technical-documents/#V9

 7 ♦ ♦ ♦ C H A P T E R 7

SPARC Assembler Inline Functions and __asm
Code

This chapter discusses how to use the C or C++ compiler to create inline functions and
__asm assembler code. Inline templates and the C/C++ __asm statement provide a way to
insert assembler code into a C or C++ program. The assembler code is processed by the
compiler's code generator, and not the SPARC assembler. However, the syntax recognized by
the compilers is similar to the SPARC Assembler syntax. This chapter describes how inline
templates and __asm statements can be used effectively.

7.1 Inline Function Templates in C and C++

The following are examples where inline templates are particularly useful:

■ Hand-coded mutex locks using atomic instructions.
■ System-level access for a hardware device or to access certain hardware registers.
■ Precise implementation of algorithms that can be implemented optimally using hand-coding

that the compiler is unable to replicate.

Inline templates appear as normal function calls in the C/C++ source code. When the source
code program cc -O prog.c code.il and the file containing the inline template defining the
function are compiled together, the compiler will insert the code from the inline template in
place of the function call in the code generated from the C/C++ source code.

7.1.1 Compiling C/C++ with Inline Templates

Inline template files have the .il file extension. Compile inline templates along with the source
file that calls them. The code is inlined during the code-generator stage of compilation.

Chapter 7 • SPARC Assembler Inline Functions and __asm Code 67

7.1 Inline Function Templates in C and C++

cc -O prog.c code.il

The preceding example will compile prog.c and inline the code from code.il wherever the
function defined by code.il is called in prog.c.

7.1.2 Layout of Code in Inline Templates

A single inline template file can define more than one inline templates. Each template definition
starts with a declaration, and ends with an end statement:

.inline identifier

 ...assembler code...

.end

identifier is the name of the template function. Multiple template definitions with the same
name can appear in the file, but the compiler will use only the first definition.

Since the template code will be inlined directly, without a call, into the code generated by the
compiler, there is no need for a return instruction.

The template requires a prototype declaration in C/C++ source code to ensure that the compiler
assigns correct types for all the parameters and recognizes the template name as a function.

For example, the following prototype declaration defines the template function:

void do_nothing();

And the associated template definition of this function might look like the following:

/* The do_nothing() template does nothing*/

.inline do_nothing,0

 nop

end

The inline template definition would appear in a separate .il file and would be compiled along
with the source code file containing the call.

7.1.3 Guidelines for Coding Inline Templates

SPARC inline assembly code can use only integer registers %o0 to %o5 and floating point
registers %f0 to %f31 for temporary values. These registers are referred to as the caller-saved

68 SPARC Assembly Language Reference Manual • April 2020

7.1 Inline Function Templates in C and C++

registers. Other registers should not be used. Calls can be made to other routines from the inline
template, but these calls are subject to the same constraint.

The compiler will handle most of the SPARC instruction set. If the template utilises only those
instructions that the compiler normally generates it will be early inlined (see “7.1.4 Late and
Early Inlining” on page 72), and the code will be scheduled optimally. However, if the
template utilises instructions that the compiler accepts but does not typically generate (such as
VIS instructions or atomics), the code might be late inlined. Consequently, the code might not
be optimally scheduled by the compiler, resulting in a possible performance loss.

7.1.3.1 Parameter Passing

Passing parameters between the C/C++ caller program and the assembly language template
code must obey the parameter passing rules defined by the target architecture, which are
different for 32-bit and 64-bit code. Parameter passing is described by the SPARC ABI. See
https://sparc.org/technical-documents/. SCD 2.3 describes Version 8 (32-bit code) and
SCD 2.4.1 describes Version 9 (64-bit code).

Entering the template code, arguments will be passed in %o0 to %o5 and will continue on the
stack. For 32-bit code, the offset is [%sp+0x5c] and %sp is guaranteed to be 64-byte aligned; for
64-bit code, the offset is [%sp+0x8af]. (For 64-bit code, the stack bias is %sp+2047, which is
aligned on a 16-byte boundary.)

For example (function prototype in C followed by assembler template equivalent):

int add_up(int v1,int v2, int v3, int v4, int v5, int v6, int v7);

/*Add up 7 integer parameters; last one will be passed on stack*/

.inline add_up,28

 add %o0,%o1,%o0

 ld [%sp+0x5c],%o1

 add %o2,%o3,%o2

 add %o4,%o5,%o4

 add %o0,%o1,%o0

 add %o2,%o4,%o2

 add %o0,%o2,%o0

.end

The same example for 64-bit code, but note that when a 32-bit int register is passed on the
stack, the full 64 bits of the register are saved:

int add_up(int v1,int v2, int v3, int v4, int v5, int v6, int v7);

/*Add up 7 integer parameters; last one will be passed on stack*/

Chapter 7 • SPARC Assembler Inline Functions and __asm Code 69

https://sparc.org/technical-documents/

7.1 Inline Function Templates in C and C++

.inline add_up,28

 add %o0,%o1,%o0

 ldx [%sp+0x8af],%o1

 add %o2,%o3,%o2

 add %o4,%o5,%o4

 add %o0,%o1,%o0

 add %o2,%o4,%o2

 add %o0,%o2,%o0

.end

For 32-bit floating point, values will be passed in the integer registers. For 64-bit code, they will
be passed in the floating point registers.

32-bit floating-point passing by value example:

double sum_val(double a, double b);

/*sum of two doubles by value*/

.inline sum_val,16

 st %o0,[%sp+0x48]

 st %o1,[%sp+0x4c]

 ldd [%sp+0x48],%f0

 st %o2,[%sp+0x48]

 st %o3,[%sp+0x4c]

 ldd [%sp+0x48],%f2

 faddd %f0,%f2,%f0

.end

64-bit floating-point passing by value example:

double sum(double a, double b);

/*sum of two doubles 64-bit calling convention*/

.inline sum,16

 faddd %f0,%f2,%f0

.end

Values passed in memory, single-precision floating point values, and integers are guaranteed to
be 4-byte aligned. Double-precision floating point values will be 8-byte aligned if their offset in
the parameters is a multiple of 8-bytes.

Integer return values are passed in %o0. Floating point return values are passed in %f0/%f1
(single-precision values in %f0, double-precision values in the register pair %f0,%f1).

For 32-bit code, there are two ways of passing the floating point registers. The first way is to
pass them by value, and the second is to pass them by reference. Either way, the compiler will
do its best to optimize out the load and store instructions. It is often more successful at doing
this if the floating point parameters are passed by reference.

70 SPARC Assembly Language Reference Manual • April 2020

7.1 Inline Function Templates in C and C++

Here is an example of 32-bit by reference parameter passing:

double sum_ref(double *a, double *b);

/*sum of two doubles by reference*/

.inline sum_ref,16

 ldd [%o0],%f0

 ldd [%o1],%f2

 faddd %f0,%f2,%f0

.end

7.1.3.2 Stack Space

Sometimes, it is necessary to store variables to the stack in order to load them back later; this
is the case for moving between the int and fp registers. The best way of doing this is to use the
space already set aside for parameters that are passed into the function.

For example, in the 32-bit floating-point passing by value code shown in the preceding code,
the location %sp+0x48 is 8-byte aligned (%sp is 8-byte aligned), and it corresponds to the place
where the second and third 4-byte integer parameters would be stored if they were passed on the
stack. (Note that the first parameter would be stored at a non-8-byte boundary.)

7.1.3.3 Branches and Calls

Branching and calls within template code is allowed. Every branch or call must be followed by
a nop instruction to fill the branch delay slot. It is possible to put instructions in the delay slot of
branches, which can be useful if you wish to use the processor support for annulled instructions,
but doing so will cause the code to be late-inlined (described in Late and Early Inlining) and
may result in sub-optimal performance.

Call instructions must have an extra last argument that indicates the number of registers used to
pass arguments in the call parameters. In general, you should avoid inlining call instructions.

The destinations of branches must be indicated with a number, and the branch instructions
should use this number to indicate the appropriate destination together with an f for a forward
branch or a b for a backward branch.

Here is an example of using branches in an inline template:

int is_true(int i);

/*return whether true*/

.inline is_true,4

 cmp %o0,%g0

Chapter 7 • SPARC Assembler Inline Functions and __asm Code 71

7.1 Inline Function Templates in C and C++

 bne 1f

 nop

 mov 1,%o0

 ba 2f

 nop

1:

 mov 0,%o0

2:

.end

7.1.4 Late and Early Inlining

The code generator of the compiler processes template inlining. There are two opportunities
for inlining: before and after optimization. If the inline template is complicated, the compiler
may choose to do the inlining after optimization (late inlining), which means that the code will
more or less appear exactly as it appears in the template. Otherwise, the code is inlined before
optimization (early inlining) and will be merged and optimized with the rest of the code around
the call site.
Early inlining leads to better performance. Things that will cause late inlining are:

■ Use of instructions that the compiler cannot generate
■ Instructions in the delay slots of branches
■ Call instructions

View the compiler commentary generated with -g to see if a routine is late inlined. The
following example shows a template that fails early inlining because it uses the frame pointer
(%fp) rather than the stack pointer (%sp).

.inline sum_val,16

 st %o0,[%fp+0x48]

 st %o1,[%fp+0x4c]

 ldd [%fp+0x48],%f0

 st %o2,[%fp+0x48]

 st %o3,[%fp+0x4c]

 ldd [%fp+0x48],%f2

 faddd %f0,%f2,%f0

.end

The compiler will still inline the code, but it is unable to early inline the code and the code will
not participate in the compiler's optimization.

The following example compiles a 32-bit executable with compiler commentary information
and displays it using the Oracle Developer Studio er_src command. The debug information is
stored in the .o files by default, so it is necessary to keep these files available.

72 SPARC Assembly Language Reference Manual • April 2020

7.1 Inline Function Templates in C and C++

$ cc -g -O inline32.il driver32.c

$ er_src a.out main

Source file: /home/jdoe/code/inline/driver32.c

Object file: /home/jdoe/code/inline/driver32.o

Load Object: a.out

 1. #include <stdio.h>

 2.

 3. void do_nothing();

 4. int add_up(int v1,int v2, int v3, int v4, int v5, int v6, int v7);

 5. double sum_val(double a, double b);

 6. double sum_ref(double *a, double *b);

 7. int is_true(int i);

 8.

 9.

 10. void main()

 11. {

 12. double a=3.11,b=7.22;

 13. do_nothing();

 14. printf("add_up %i\n",add_up(1,2,3,4,5,6,7));

 Template could not be early inlined because it references the register %fp

 Template could not be early inlined because it references the register %fp

 Template could not be early inlined because it references the register %fp

 Template could not be early inlined because it references the register %fp

 Template could not be early inlined because it references the register %fp

 Template could not be early inlined because it references the register %fp

 15. printf("sum_val %f\n",sum_val(a,b));

 16. printf("sum_ref %f\n",sum_ref(&a,&b));

 17. printf("is_true 0=%i,1=%i\n", is_true(0),is_true(1));

 18. }

Use the Oracle Developer Studio er_src command to examine the compiler commentary for a
particular file. It takes two parameters: the name of the executable and the name of the function
to examine. In this case, the template that cannot be early inlined is sum_val. Each time the
compiler comes across the %fp register, it inserts a debug message, so you can tell that there are
six references to %fp in the template.

7.1.5 Compiler Calling Convention

The calling convention differs for each architecture. You can see this by examining the
assembler code generated by the compiler for a simple test function.

The following example is compiled for a 32-bit platform:

Chapter 7 • SPARC Assembler Inline Functions and __asm Code 73

7.1 Inline Function Templates in C and C++

% more fptest.c

double sum(double d1,double d2, double d3, double d4)

{

 return d1 + d2 + d3 + d4;

 }

% cc -O -xarch=sparc -m32 -S fptest.c

% more fptest.s

....

 .global sum

 sum:

/* 000000 2 */ st %o0,[%sp+68]

/* 0x0004 */ st %o2,[%sp+76]

/* 0x0008 */ st %o1,[%sp+72]

/* 0x000c */ st %o3,[%sp+80]

/* 0x0010 */ st %o4,[%sp+84]

/* 0x0014 */ st %o5,[%sp+88]

! 3 ! return d1 + d2 + d3 + d4;

/* 0x0018 3 */ ld [%sp+68],%f2

/* 0x001c */ ld [%sp+72],%f3

/* 0x0020 */ ld [%sp+76],%f10

/* 0x0024 */ ld [%sp+80],%f11

/* 0x0028 */ ld [%sp+84],%f4

/* 0x002c */ faddd %f2,%f10,%f12

/* 0x0030 */ ld [%sp+88],%f5

/* 0x0034 */ ld [%sp+92],%f6

/* 0x0038 */ ld [%sp+96],%f7

/* 0x003c */ faddd %f12,%f4,%f14

/* 0x0040 */ retl ! Result = %f0

/* 0x0044 */ faddd %f14,%f6,%f0

....

In the example code, you can see that the first three floating-point parameters are passed
in %o0-%o5, and the fourth is passed on the stack at locations %sp+92 and %sp+96. Note that
this location is 4-byte aligned, so it is not possible to use a single floating point load double
instruction to load it.

Here is an example for 64-bit code.

$ more inttest.c

long sum(long v1,long v2, long v3, long v4, long v5, long v6, long v7)

{

return v1 + v2 + v3 + v4 + v5 + v6 + v7;

}

74 SPARC Assembly Language Reference Manual • April 2020

7.1 Inline Function Templates in C and C++

$ cc -O -xarch=sparc -m64 -S inttest.c

$ more inttest.s...

/* 000000 2 */ ldx [%sp+2223],%g2

/* 0x0004 3 */ add %o0,%o1,%g1

/* 0x0008 */ add %o3,%o2,%g3

/* 0x000c */ add %g3,%g1,%g4

/* 0x0010 */ add %o5,%o4,%g5

/* 0x0014 */ add %g5,%g4,%o1

/* 0x0018 */ retl ! Result = %o0

/* 0x001c */ add %o1,%g2,%o0

...

In the preceding code, you can see that the first action is to load the seventh integer parameter
from the stack.

7.1.6 Improving Efficiency of Inlined Functions

In the following example, when we examine the code the compiler generated we see a number
of unnecessary loads and stores when all the data could be held in registers.

Calling C program:

int lzd(int);

int a;

int c=0;

int main()

{

 for(a=0; a<1000; a++)

 {

 c=lzd(c);

 }

 return 0;

}

The program is intended to use the Leading Zero Detect (LZD) instruction on the SPARC T4 to
do a count of the number of leading zero bits in an integer register. The inline template lzd.il
might look like this:

.inline lzd

 lzd %o0,%o0

.end

Compiling the code with optimization gives the resulting code:

Chapter 7 • SPARC Assembler Inline Functions and __asm Code 75

7.1 Inline Function Templates in C and C++

$ cc -O -xtarget=T4 -S lzd.c lzd.il

$ more lzd.s

...

 .L77000018:

/* 0x001c 11 */ lzd %o0,%o0

/* 0x0020 9 */ ld [%i1],%i3

/* 0x0024 11 */ st %o0,[%i2]

/* 0x0028 9 */ add %i3,1,%i0

/* 0x002c */ cmp %i0,999

/* 0x0030 */ ble,pt %icc,.L77000018

/* 0x0034 */ st %i0,[%i1]

...

Clearly everything could be held in registers, but the compiler is adding unnecessary loads and
stores because it sees the inline template as a call to a function and must load and save registers
around a function call it knows nothing about.

But we can insert a #pragma directive to tell the compiler that the routine lzd() has no side
effects - meaning that it does not read or write to memory:

#pragma no_side_effect(routine_name)

and it needs to be placed after the declaration of the function. The new C code might look like:

int lzd(int);

#pragma no_side_effect(lzd)

int a;

int c=0;

int main()

{

 for(a=0; a<1000; a++)

 {

 c=lzd(c);

 }

 return 0;

}

Now the generated assembler code for the loop looks much neater:

/* 0x0014 10 */ add %i1,1,%i1

! 11 ! {

! 12 ! c=lzd(c);

/* 0x0018 12 */ lzd %o0,%o0

/* 0x001c 10 */ cmp %i1,999

/* 0x0020 */ ble,pt %icc,.L77000018

76 SPARC Assembly Language Reference Manual • April 2020

7.2 Using __asm Statements in C and C++

/* 0x0024 */ nop

7.1.7 Inline Templates in C++

To prevent linker errors, calls to inline template functions in C++ must be enclosed in an
extern "C" declaration. For example:

extern "C"

 {

 void nothing();

 }

int main()

{

 nothing();

}

Inline template function:

.inline nothing

 nop

.end

7.1.7.1 C++ Inline Templates and Exceptions

In C++, #pragma no_side_effect cannot be combined with exceptions. But we know that the
code cannot produce exceptions. The compiler might be able to produce even better code by
adding the throw()keyword to the template declaration:

extern "C"

 {

 int mytemplate(int) throw();

 #pragma no_side_effect(mytemplate)

 }

7.2 Using __asm Statements in C and C++

The Oracle Developer Studio C and C++ compilers support the __ asm statement:

__asm(string);

Chapter 7 • SPARC Assembler Inline Functions and __asm Code 77

7.2 Using __asm Statements in C and C++

__asm{

...block of instructions...
}

The string may be a single assembler instruction, or a block of instructions, as in the following
examples.

The following __asm statement is supported:

__asm("lzd ccx %o0");

The following block of instructions is supported:

__asm{

 ldd ccx %f0

 ldd ccy %f1

 fadd %f0 %f1 %f0

 st ccz %f0

}

The Oracle Developer Studio C and C++ compilers also support the GCC Extended ASM
Statement syntax. See the GCC compiler documentation at gcc.gnu.org for details.

78 SPARC Assembly Language Reference Manual • April 2020

http://gcc.gnu.org/onlinedocs/gcc/

 A ♦ ♦ ♦ A P P E N D I X A

Using the SPARC Assembler Command Line

This appendix is organized into the following sections:

■ “A.1 Assembler Command Line” on page 79
■ “A.2 Assembler Command Line Options” on page 80
■ “A.3 Disassembling Object Code” on page 83

A.1 Assembler Command Line

You invoke the assembler command line as follows:

as [options] [inputfile] ...

Note - The Oracle Developer Studio C, C++, and Fortran compilers (cc(1), CC(1), and f95(1))
invoke the assembler with the fbe command. You can use either the as or fbe command on
an Oracle Solaris SPARC platform to invoke the SPARC assembler. (Note that the as or fbe
command will invoke the x86 assembler on an Oracle Solaris x86 platform.)

The as command translates the assembly language source files, inputfile, into an executable
object file, objfile. The SPARC assembler recognizes the filename argument hyphen (-) as
the standard input. It accepts more than one file name on the command line. The input file is
the concatenation of all the specified files. If an invalid option is given or the command line
contains a syntax error, the SPARC assembler prints the error (including a synopsis of the
command line syntax and options) to standard error output, and then terminates.

The SPARC assembler supports macros, #include files, and symbolic substitution through use
of the C preprocessor cpp. The assembler invokes the preprocessor before assembly begins if it
has been specified from the command line as an option. See the -P option.

Appendix A • Using the SPARC Assembler Command Line 79

A.2 Assembler Command Line Options

A.2 Assembler Command Line Options

-Dname -Dname=def

When the -P option is in effect, these options are passed to the cpp preprocessor without
interpretation by the as command; otherwise, they are ignored.

-hwcap={1|0}

Enable (-hwcap=1) or suppress (-hwcap=0) the generation of the Hardware Capabilities
section. Default is to generate the section.

-I path

When the -P option is in effect, this option is passed to the cpp preprocessor without
interpretation by the as command; otherwise, it is ignored.

-i

Ignore line number information from the preprocessor.

-L

Saves all symbols, including temporary labels that are normally discarded to save space, in
the ELF symbol table.

-m

This option runs m4 macro preprocessing on input. The m4 preprocessor is more useful for
complex preprocessing than the C preprocessor invoked by the -P option. See the m4(1) man
page for more information about the m4 macro-processor.

-m64|-m32

Select the 64-bit (-m64) or 32-bit (-m32) memory model. With -m64, the resulting .o object
files are in 64-bit ELF format and can only be linked with other object files in the same
format. The resulting executable can only be run on a 64-bit SPARC processor running 64-
bit Oracle Solaris. -m32 is the default.

-n

80 SPARC Assembly Language Reference Manual • April 2020

A.2 Assembler Command Line Options

Suppress all warnings while assembling.

-o outfile

Write the output of the assembler to outfile. By default, if -o is not specified, the output file
name is the same as the input file name with .s replaced with .o.

-P

Run cpp(1), the C preprocessor, on the files being assembled. The preprocessor is run
separately on each input file, not on their concatenation. The preprocessor output is passed to
the assembler.

-Q{y|n}

This option produces the "assembler version" information in the comment section of the
output object file if the y option is specified; if the -n option is specified, the information is
suppressed.

-S[a|b|c|l|A|B|C|L]

Produces a disassembly of the emitted code to the standard output. Adding each of the
following characters to the -S option produces:

■ a – Disassembling with address
■ b – Disassembling with ".bof"
■ c – Disassembling with comments
■ l – Disassembling with line numbers

Capital letters turn the switch off for the corresponding option.

-s

This option places all stabs in the ".stabs" section. By default, stabs are placed in "stabs.
excl" sections, which are stripped out by the static linker ld during final execution. When
the -s option is used, stabs remain in the final executable because ".stab" sections are not
stripped out by the static linker ld.

-Uname

When the -P option is in effect, this option is passed to the cpp preprocessor without
interpretation by the as command; otherwise, it is ignored.

Appendix A • Using the SPARC Assembler Command Line 81

A.2 Assembler Command Line Options

-ul

By default, undefined symbols are marked as global. With -ul, they are marked as local.

-V

This option writes the version information on the standard error output.

-xarch=isa

isa specifies the target architecture instruction set (ISA). This option limits the instructions
accepted by the assembler to the instructions of the specified instruction set architecture.
The assembler will issue an error when encountering an instruction that is not part of the
specified isa.

Use the -m64 or -m32 option to specify the intended memory model, 64-bit or 32-bit
respectively. The -xarch flag no longer indicates the memory model.

Note: The assembler and linker will mark .o files and executables that require a particular
instruction set architecture (ISA) so that the executable will not be loaded at runtime if the
running system does not support that particular ISA. If you compile and link in separate
steps, make sure to specify the same isa value for -xarch in both steps.

isa value Meaning

generic Equivalent to -xarch=sparc

sparc Limit the instruction set to SPARC V9 without the VIS (Visual Instruction Set) and
without other implementation-specific extensions.

sparcvis Limit the instruction set to SPARC V9 plus the VIS version 1.0 and the UltraSPARC
extensions.

sparcvis2 Limit the instruction set to SPARC V9 and the UltraSPARC extensions, plus the VIS
version 2.0 and the UltraSPARC III extensions.

sparcvis3 Limit the instruction set to SPARC V9 and the Ultra SPARC extensions, plus the VIS
version 3.0 and the UltraSPARC III extensions, plus the fused multiply-add instructions.

sparcfmaf Limit the instruction set to SPARC V9 and the Ultra SPARC extensions, plus the VIS
version 2.0 and the UltraSPARC III extensions, and the SPARC64 VI extensions for
floating-point multiply-add.

sparcima Limit the instruction set to the SPARC IMA version of SPARC V9 and the Ultra SPARC
extensions, plus the VIS version 2.0 and the UltraSPARC III extensions, the SPARC64 VI
extensions for floating-point multiply-add, and the SPARC64 VII instructions for integer
multiply-add.

sparc4 Limit the instruction set to the SPARC4 version of SPARC V9 and the Ultra SPARC
extensions, plus the VIS version 3.0 and the UltraSPARC III extensions, the SPARC64 VI
extensions for fused floating-point multiply-add, and the SPARC64 VII instructions for
integer multiply-add, and SPARC4 instructions.

82 SPARC Assembly Language Reference Manual • April 2020

A.3 Disassembling Object Code

isa value Meaning

sparcace Limit the instruction set to the SPARCACE version of the SPARC V9 ISA and includes
the following instruction sets:

■ SPARC V9
■ UltraSPARC extensions, including the Visual Instruction Set(VIS) version 1.0
■ UltraSPARC-III extensions, including the Visual Instruction Set(VIS) version 2.0
■ SPARC64 VI extensions for floating-point multiply-add
■ SPARC64 VII extensions for integer multiply-add, and SPARCACE instructions

sparcaceplus Limit the instruction set to the SPARCACEPLUS version of the SPARC V9 ISA and
includes the following instruction sets:

■ SPARC V9
■ UltraSPARC extensions, including the Visual Instruction Set(VIS) version 1.0
■ UltraSPARC-III extensions, including the Visual Instruction Set(VIS) version 2.0
■ SPARC64 VI extensions for floating-point multiply-add
■ SPARC64 VII extensions for integer multiply-add, SPARCACE, and

SPARCACEPLUS instructions

v9 Equivalent to -m64 -xarch=sparc.

v9a Equivalent to -m64 -xarch=sparcvis

v9b Equivalent to -m64 -xarch=sparcvis2

-xF

Generates additional information for use by the Oracle Developer Studio performance
analyzer. If the input file does not contain any debugging directives, the assembler will
generate default stabs needed by the analyzer. See also the dbx(1) man page.

-Y{c|m},path

Specify the path to locate the version of cpp (-Yc,path) or m4 (-Ym,path) to use.

A.3 Disassembling Object Code

The dis program is the object code disassembler for ELF. It produces an assembly language
listing of the object file. For detailed information about this function, see the dis(1) man page.

Appendix A • Using the SPARC Assembler Command Line 83

84 SPARC Assembly Language Reference Manual • April 2020

 B ♦ ♦ ♦ A P P E N D I X B

A Sample SPARC Assembler Program

The following code takes a sample C language program and generates the corresponding
assembly code using the Oracle Developer Studio C compiler running on the Oracle Solaris
11 operating environment. Comments have been added to the assembly code to show
correspondence to the C code.

The following C program computes the first n Fibonacci numbers.

EXAMPLE 5 C Program Example Source

#include <stdio.h>

#include <stdlib.h>

/* a simple program computing the first n Fibonacci numbers */

extern unsigned * fibonacci();

#define MAX_FIB_REPRESENTABLE 49

/* compute the first n Fibonacci numbers */

unsigned * fibonacci(n)

 int n;

{

 static unsigned fib_array[MAX_FIB_REPRESENTABLE] = {0,1};

 unsigned prev_number = 0;

 unsigned curr_number = 1;

 int i;

 if (n >= MAX_FIB_REPRESENTABLE) {

 printf("Fibonacci(%d) cannot be represented in a 32 bit word\n", n);

 exit(1);

 }

 for (i = 2; i < n; i++) {

 fib_array[i] = prev_number + curr_number;

 prev_number = curr_number;

Appendix B • A Sample SPARC Assembler Program 85

 curr_number = fib_array[i];

 }

 return(fib_array);

}

int main()

{

 int n, i;

 unsigned * result;

 printf("Fibonacci(n):, please enter n:\n");

 scanf("%d", &n);

 result = fibonacci(n);

 for (i = 1; i <= n; i++)

 printf("Fibonacci (%d) is %u\n", i, *result);

 return 0;

}

The Oracle Developer Studio C compiler generates the following assembler output for the
Fibonacci number C source. Annotation has been added to help you understand the code.

EXAMPLE 6 Assembler Output From C Source

 .section ".text",#alloc,#execinstr

 .file "fib.c"

 .section ".data",#alloc,#write ! open a data section

 ! #alloc - memory will be allocated for this section at

 runtime

 ! #write - section contains data that is writeable during

 process execution

Ddata.data:

 .align 4 ! align the beginning of this section to a 4-byte

 boundary

.L18:

 .skip 4 ! skip 4 bytes, which initializes fib_array[0]=0

 .word 1 ! write the 4-byte value '1', initializes fib_array

[1]=1

 .skip 188 ! skip 188 bytes, which initializes the remainder of

 fib_array[] to 0

 .type .L18,#object ! set the type of .L17 (fib_array) to be an

 object

86 SPARC Assembly Language Reference Manual • April 2020

Drodata.rodata:

 .section ".rodata1",#alloc ! open a read-only data section.

 .align 4

!

! CONSTANT POOL

!

.L21:

 .ascii "Fibonacci(%d) cannot be represented in a 32 bit word\n\000" ! ascii

 string for printf

 .align 4 ! align the next ascii string to a 4-

byte boundary

.L34:

 .ascii "Fibonacci(n):, please enter n:\n\000"

 .align 4

.L35:

 .ascii "%d\000"

 .align 4

.L40:

 .ascii "Fibonacci (%d) is %u\n\000"

 .section ".text",#alloc,#execinstr ! open a text section

/* 000000 0 */ .align 4

/* 000000 */ .skip 16

/* 0x0010 */ .align 4

! FILE fib.c

! 1 !#include <stdio.h>

! 2 !#include <stdlib.h>

! 4 !/* a simple program computing the first n Fibonacci numbers */

! 6 !extern unsigned * fibonacci();

! 8 !#define MAX_FIB_REPRESENTABLE 49

! 10 !/* compute the first n Fibonacci numbers */

! 11 !unsigned * fibonacci(n)

! 12 ! int n;

! 13 !{

!

! SUBROUTINE fibonacci

!

! OFFSET SOURCE LINE LABEL INSTRUCTION

 .global fibonacci ! create a symbol with global scope

Appendix B • A Sample SPARC Assembler Program 87

 fibonacci:

 .L900000112:

/* 000000 13 */ save %sp,-96,%sp ! create a new stack frame and

 ! register window for this subroutine

! 14 ! static unsigned fib_array[MAX_FIB_REPRESENTABLE] = {0,1};

! 15 ! unsigned prev_number = 0;

! 16 ! unsigned curr_number = 1;

! 17 ! int i;

! 19 ! if (n >= MAX_FIB_REPRESENTABLE) {

/* 0x0004 19 */ cmp %i0,49 ! cmp is a synthetic instr, equivalent to

 ! subcc %i0,49,%g0

/* 0x0008 */ bge,pn %icc,.L77000033 ! branch %i0 (n) on gt 49 to .

L77000033 ;

! predict not taken

/* 0x000c 24 */ cmp %i0,2 ! delay slot instr. Note that although

 ! this instr is conceptually executed before the branch, it

 does

 ! not influence the condition codes as seen by the branch

! 20 ! printf("Fibonacci(%d) cannot be represented in a 32 bit word\n", n);

! 21 ! exit(1);

! 22 ! }

! 24 ! for (i = 2; i < n; i++) {

 .L77000052:

/* 0x0010 24 */ ble,pn %icc,.L77000043 ! branch on n less equal to 2 ; predict

 not taken

/* 0x0014 */ mov 2,%l4 ! delay slot instr. %l4 = i = 2

 .L77000061:

/* 0x0018 24 */ add %i0,-1,%l5 ! %l5 = %i0 (n) - 1

/* 0x001c 16 */ mov 1,%i4 ! %i4 (curr_number) = 1

/* 0x0020 15 */ mov 0,%i3 ! %i3 (prev_number) = 0

/* 0x0024 */ sethi %hi(.L18),%i1 ! set the high 22-bits of %i1 to the

 address of .L18

 ! (fib_array)

 .L900000109:

/* 0x0028 15 */ add %i1,%lo(.L18),%i0 ! complete the formation of the

 address of fib_array

! 25 ! fib_array[i] = prev_number + curr_number;

/* 0x002c 25 */ add %i3,%i4,%l7 ! %i7 = %i3 (prev_number) + %i4

 (curr_number)

/* 0x0030 15 */ add %i0,8,%l6 ! %l6 = &fib_array[i]

88 SPARC Assembly Language Reference Manual • April 2020

 .L900000110:

 ! beginning of the loop body

/* 0x0034 24 */ add %l4,1,%l4 ! increment i by 1

! 26 ! prev_number = curr_number;

/* 0x0038 26 */ mov %i4,%i3 ! %i3 (prev_number) = %i4 (curr_number)

/* 0x003c 25 */ st %l7,[%l6] ! store %l7 into fib_array[i]

! 27 ! curr_number = fib_array[i];

/* 0x0040 27 */ mov %l7,%i4 ! %i4 (curr_number) = %l7 (fib_array[i])

/* 0x0044 24 */ add %l6,4,%l6 ! increase %l6 by 4 bytes, so that it

 now contains &fib_array[i+1]

/* 0x0048 */ cmp %l4,%l5 ! i <= (n - 1)

/* 0x004c */ ble,pt %icc,.L900000110 ! if yes (predict taken), goto

 beginning of loop

/* 0x0050 25 */ add %i3,%i4,%l7 ! delay slot instr. %i7 = %i3

 (prev_number) + %l4 (curr_number)

 ! end of loop body

! 28 ! }

! 30 ! return(fib_array);

 ! Body of if (n >= MAX_FIB_REPRESENTABLE) {}

 .L77000043:

/* 0x0054 30 */ sethi %hi(.L18),%i5 ! set the high 22-bits of %l4 to the

 address of .L18

 ! (fib_array)

/* 0x0058 24 */ ret ! synthetic instr. equivalent to jmpl %

i7+8, %g0

/* 0x005c */ restore %i5,%lo(.L18),%o0 ! delay slot instr. restore the

 caller's window.

 ! the subroutine return value is in %o0

 .L77000033:

/* 0x0060 20 */ sethi %hi(.L21),%i2 ! set the high 22-bits of %i2 to the

 address of .L21

 ! (string to be passed to printf)

/* 0x0064 16 */ mov 1,%i4 ! ** note that the instrs marked "**"

 are unnecessary. These instrs

 ! perform the same function as those earlier in the

 program. They are created

 ! by the compiler as it is not aware that (exit(1))

 will terminate the

 ! program.

/* 0x0068 20 */ add %i2,%lo(.L21),%o0 ! add high and low bits

Appendix B • A Sample SPARC Assembler Program 89

! to complete formation of address of .L21

/* 0x006c 15 */ mov 0,%i3 ! **

/* 0x0070 20 */ call printf ! params = %o0 %o1 ! Call printf with args %o0

 and %o1

/* 0x0074 */ mov %i0,%o1

/* 0x0078 21 */ call exit ! params = %o0 ! Call exit whose 1st arg is

 %o0

/* 0x007c */ mov 1,%o0 ! **

/* 0x0080 */ add %i0,-1,%l5 ! **

/* 0x0084 24 */ mov 2,%l4 ! **

/* 0x0088 */ ba .L900000109 ! **

/* 0x008c 15 */ sethi %hi(.L18),%i1 ! **

/* 0x0090 0 */ .type fibonacci,#function ! set the type of fibonacci to

 be a function

/* 0x0090 0 */ .size fibonacci,(.-fibonacci) ! set the size of the function

 ! size of function:

 ! current location counter minus beginning definition

 of function

 .L900000113:

 .section ".text",#alloc,#execinstr

/* 000000 0 */ .align 4

! 31 !}

! 33 !int main()

! 34 !{

!

! SUBROUTINE main

!

! OFFSET SOURCE LINE LABEL INSTRUCTION

 .global main

 main:

 .L900000210:

/* 000000 34 */ save %sp,-104,%sp

/* 0x0004 0 */ sethi %hi(.L34),%i5

/* 0x0008 0 */ add %i5,%lo(.L34),%i1

! 35 ! int n, i;

! 36 ! unsigned * result;

! 38 ! printf("Fibonacci(n):, please enter n:\n");

90 SPARC Assembly Language Reference Manual • April 2020

/* 0x000c 38 */ call printf ! params = %o0

/* 0x0010 */ mov %i1,%o0

! 39 ! scanf("%d", &n);

/* 0x0014 39 */ add %i1,32,%o0 ! %o0 = %i1+32 (&.L35)

/* 0x0018 */ call scanf ! params = %o0 %o1

/* 0x001c */ add %fp,-4,%o1 ! %o1 = %fp-4 (&n)

! 41 ! result = fibonacci(n);

/* 0x0020 41 */ call fibonacci ! params = %o0 ! Result = %o0. On

 return from the

 ! routine, %o0 = &fib_array

/* 0x0024 */ ld [%fp-4],%o0 ! delay slot instr. load the value at %

fp-4 (n) into %o0

/* 0x0028 */ ld [%fp-4],%i4 ! load the value at %fp-4 (n) into %i4

! 42 ! for (i = 1; i <= n; i++)

/* 0x002c 42 */ cmp %i4,1 ! n < 1 ?

/* 0x0030 */ bl,pn %icc,.L77000075 ! if yes, branch to end of main()

/* 0x0034 41 */ mov %o0,%i2 ! %i2 (result) = %o0 (result of

 fibonacci())

! 43 ! printf("Fibonacci (%d) is %u\n", i, *result++);

 .L77000082:

/* 0x0038 42 */ mov 1,%i3 ! i = 1

 .L900000207:

 ! beginning of loop body

/* 0x003c 43 */ ld [%i2],%o2 ! %o2 (3rd arg) = value at &result

/* 0x0040 */ add %i1,36,%o0 ! %o0 (1st arg) = %i1+36 (&.L40)

/* 0x0044 */ add %i2,4,%i2 ! increment &result by 4, result now

 points to the

 ! next value in fib_array[]

/* 0x0048 */ call printf ! params = %o0 %o1 %o2 ! Result =

/* 0x004c */ mov %i3,%o1 ! %o1 (2nd arg) = %i3 (i)

/* 0x0050 */ ld [%fp-4],%i0 ! %i0 = value at %fp-4 (n)

/* 0x0054 42 */ add %i3,1,%i3 ! increment i by 1

/* 0x0058 */ cmp %i3,%i0 ! i <= n ?

/* 0x005c */ ble,pt %icc,.L900000207! if yes, goto beginning of loop body

/* 0x0060 */ nop ! end of the loop body

 .L77000075:

/* 0x0064 42 */ ret

/* 0x0068 */ restore %g0,0,%o0

Appendix B • A Sample SPARC Assembler Program 91

/* 0x006c 0 */ .type main,#function

/* 0x006c 0 */ .size main,(.-main)

92 SPARC Assembly Language Reference Manual • April 2020

 C ♦ ♦ ♦ A P P E N D I X C

SPARC Instruction Sets and Mnemonics

This appendix provides information about the SPARC instruction sets, operation codes, and
mnemonics accepted by the assembler.

The full SPARC instruction set is detailed in Oracle SPARC Architecture 2011 (OSA).

C.1 Natural Instructions

Some of the synthetic SPARC instructions were extended to include the natural operations,
which are interpreted differently for -m32 and -m64 assembly.

TABLE 11 Natural Instructions for SPARC

Natural Instruction -m32 Interpretation -m64 Interpretation

ldn ld ldx

stn st stx

ldna lda ldax

stna sta stxa

casn cas casx

slln sll sllx

srln srl srlx

sran sra srax

clrn clr clrx

setn set setx

setnhi sethi setxhi

Appendix C • SPARC Instruction Sets and Mnemonics 93

https://www.oracle.com/technetwork/server-storage/sun-sparc-enterprise/documentation/140521-ua2011-d096-p-ext-2306580.pdf

C.1 Natural Instructions

C.1.1 Natural Register, Natural Word for SPARC

In addition to natural instructions, the natural register %ncc and the natural word pseudo-op
.nword are interpreted differently for -m32 and -m64 assembly.

TABLE 12 Natural Register and Word for SPARC

Register and Word
-m32 Interpretation -m64 Interpretation

%ncc register %icc %xcc

.nword .word .xword

94 SPARC Assembly Language Reference Manual • April 2020

Index

Numbers and Symbols
32-bit

address space sizes, 51
code limitations, 65
code model, 51
expression options, 80
parameter passing in C, 64
SPARC V9 expressions, 18
SPARC V9 operators, 18

44-bit expressions and operators
SPARC V9, 18

64-bit
address space sizes, 51
code limitations, 65
code model, 51
expression options, 80
parameter passing in C, 64
SPARC V9 expressions, 17
SPARC V9 operators, 17

__asm statements
assembler, 67
C and C++, 77

A
address space sizes, 51
addresses, 29
.alias pseudo-op, 33
.align pseudo-op, 33
as command, 79
.ascii pseudo-op, 33
.asciz pseudo-op, 33
assembler

__asm statements, 67
assignment directives, 32
attributes, 16
case distinction, 12, 16
command line, 79
command line options, 80
compiling with C and C++ templates, 67
constants, 13
creating data in, 47
directives, 31
disassembling object code, 83
error messages, 18
expressions, 16
file syntax, 11
generating directives, 32
guidelines for coding inline templates, 68
inline function templates, 67
inline functions, 67
inline template layout, 68
labels, 13
lexical features, 12
lines syntax, 12
multiple comment lines, 13
numbers, 13
operators, 16
parameter passing, 69
pseudo operations, 33
pseudo-op attributes, 41
pseudo-op examples, 42
registers, 15
section control directives, 31
SPARC program example, 85
SPARC V9 expressions, 17
SPARC V9 operators, 17

95

Index

special symbols, 15
stack space, 71
statement syntax, 12
string escape codes, 14
strings, 13
symbol attribute directives, 32
symbol names, 14
synopses notations, 32
syntax notation, 11
templates in C and C++, 67
types of directives, 31
using command line, 79

assembly language See assembler
assignment directive, 32
atof() function, 13, 34, 37
attributes, 16

B
binary operations, 16
.byte pseudo-op, 33, 47

C
C code

32-bit absolute example, 52
44-bit absolute example, 53
64-bit absolute example, 52
64-bit with 13-bit, 53
64-bit with 32-bit PIC, 54
__asm statements, 77
address sizes, 52
basics of compiling, 51
compiling with templates, 67
global object table, 55
limitations for 32-bit, 65
limitations for 32-bit and 64-bit, 65
parameter passing, 64, 64
register usage, 63
return values, 65
simple function example, 61
SPARC assembler program example, 85

templates, 67
C++ code

__asm statements, 77
compiling with templates, 67
inline templates and, 77
templates, 67

case distinction, 12, 16
code models, 51

general dynamic TLS, 59
global object table, 55
initial executable, 57
local dynamic TLS, 58
local executable, 57
thread local storage, 57

command line
assembler and, 79
disassembling object code, 83

command line options, 80
comment lines, 13
.common pseudo-op, 33
compiler

calling conventions per architecture, 73
compiler drivers, 79
constants, 13
Control Transfer Instructions (CTI), 19
current location, 28
current section, 22

D
-D option, 80
data

creating in assembler, 47
examples, 47
various types, 47
writing declarations, 47

data generating directives, 32
decimal constants, 13
default output file, 21
dis program, 83
disassembling object code, 83
.double pseudo-op, 34

96 SPARC Assembly Language Reference Manual • April 2020

Index

E
.exported pseudo-op, 34
ELF

.fini section, 25

.init section, 24
addresses in memory, 29
files, 21
locations, 28
predefined non-user sections, 25
relocation tables, 29
section headers, 22
string tables, 28
symbol tables, 26
tools to use with, 29
user sections, 23

.empty pseudo-op, 19, 34
error messages, 18
escape codes in strings, 14
examples

32-bit absolute, 52
44-bit absolute, 53
64-bit absolute, 52
64-bit with 13-bit PIC, 53
64-bit with 32-bit PIC, 54
basics of compiling C code, 51
C function, simple, 61
Fibonacci program, 85
general dynamic TLS code, 59
initial executable TLS code, 57
local dynamic TLS code, 58
pseudo operations, 42
SPARC assembler program, 85

Executable and Linking Format See ELF
expressions, 16

44-bit in SPARC V9, 18
SPARC V9, 17

F
fbe command, 79
Fibonacci numbers

SPARC C assembler example, 85
.file pseudo-op, 34

file syntax, 11
floating-point constants, 13
floating-point pseudo-operations, 13

G
.global pseudo-op, 34
.globl pseudo-op, 34
.group pseudo-op, 34

H
.half, 47
.half pseudo-op, 35
hexadecimal constants, 13
.hidden pseudo-op, 35
-hwcap option, 80
hyphen (-), 79

I
-I option, 80
-i option, 80
.ident pseudo-op, 35
inline function templates

branches and calls, 71
C++, 77
guidlines, 68
layout, 68
optimations and, 72
parameter passing, 69

inline functions
assembler, 67
efficiency, 75

instruction sets
natural instructions, 93
natural register and word, 94
SPARC assembler, 93

integer suffixes, 13
.internal pseudo-op, 35

97

Index

invoking as command, 79

L
-L option, 80
labels, 13
lexical features, 12
lines syntax, 12
.local pseudo-op, 35
location counter, 28
locations, 28
low 44-bit expressions and operators

SPARC V9, 18

M
-m option, 80
-m64 and -m32 options, 80
multiple comment lines, 13
multiple files, on , 79
multiple sections, 22
multiple strings

in string table, 28

N
-n option, 80
natural instructions

SPARC instruction sets, 93
natural register

SPARC instruction sets, 94
natural word

SPARC instruction sets, 94
.noalias pseudo-op, 33, 35
.nonvolatile pseudo-op, 35
numbers, 13
numeric labels, 13
.nword pseudo-op, 36, 47, 94

O
-o option, 81

object files
type, 21

objects
sections, 21

octal numeric constants, 13
operators, 16

44-bit in SPARC V9, 18
SPARC V9, 17

options
assembler command line, 80

P
-P option, 81
percentage sign (%), 15
.poplocals pseudo-op, 36
.popsection pseudo-op, 36
predefined non-user sections, 25
predefined user sections, 23
.proc pseudo-op, 36
.protected pseudo-op, 36
pseudo operations

alphabetical list, 33
attributes, 41
examples, 42
section control directives, 31
SPARC, 31

.pushlocals pseudo-op, 36

.pushsection pseudo-op, 37

Q
-Q option, 81
.quad pseudo-op, 37

R
.register pseudo-op, 37
registers, 15
relocatable files, 21
relocation tables, 29

98 SPARC Assembly Language Reference Manual • April 2020

Index

.reserve pseudo-op, 37

S
-S option, 81
-s option, 81
.section pseudo-op, 38
section control directives, 31
section control pseudo-ops, 31
section headers, 22

sh_flags, 22
sh_info, 23
sh_link, 23
sh_name, 23

sections, 21
.seg pseudo-op, 38
sh_flags field, 22
sh_info field, 23
sh_link field, 23
sh_name field, 23
.single pseudo-op, 38
.size pseudo-op, 39
.skip pseudo-op, 39
SPARC

ABI, 66
address space sizes, 51
code models, 51
instruction sets, 93
mnemonics, 93
writing functions, 61

SPARC V9
64-bit expressions, 17
64-bit operators, 17

special floating-point values, 13
special names, floating point values, 13
special symbols, 15
st_info variable, 27
st_name variable, 26
st_other variable, 27
st_shndx variable, 27
st_size variable, 27
st_value variable, 26

.stabn pseudo-op, 39

.stabs pseudo-op, 39
stack space

storing variables, 71
statement syntax, 12
string escape codes, 14
string tables, 28
strings, 13

multiple in string table, 28
multiple references in string table, 28
suggested style, 14
unreferenced in string table, 28

sub-strings in string table
references to, 28

symbol attribute directives, 32
symbol names, 14
symbol pseudo-op, 41
symbol table, 26
symbol tables, 26

st_info, 27
st_name, 26
st_other, 27
st_shndx, 27
st_size, 27
st_value, 26

.symbolic pseudo-op, 39
syntax notation, 11

T
.tls_common pseudo-op, 39
.type pseudo-op, 39

U
-U option, 81
.uahalf pseudo-op, 39
.uaword pseudo-op, 40
-ul option, 82
unary operators, 16
user sections, 31

99

Index

V
-V option, 82
.version pseudo-op, 40
.volatile pseudo-op, 40

W
.weak pseudo-op, 40
.word, 47
.word pseudo-op, 40
writing functions in SPARC ABI, 61

X
-xarch option, 82
-xF option, 83
.xstabs pseudo-op, 41
.xword, 47
.xword pseudo-op, 41

Y
-Y{c|m} option, 83

100 SPARC Assembly Language Reference Manual • April 2020

	SPARC Assembly Language Reference Manual
	Contents
	Using This Documentation
	Product Documentation Library
	Feedback

	Chapter 1 • SPARC Assembler Syntax
	1.1 Assembler Syntax Notation
	1.2 Assembler File Syntax
	1.2.1 Assembler Lines Syntax
	1.2.2 Assembler Statement Syntax

	1.3 Assembler Lexical Features
	1.3.1 Case Distinction in Assembler
	1.3.2 Comments in Assembler
	1.3.3 Labels in Assembler
	1.3.4 Numbers in Assembler
	1.3.5 Strings in Assembler
	1.3.6 Symbol Names in Assembler
	1.3.7 Special Symbols – Registers
	1.3.8 Attributes in Assembler
	1.3.9 Operators and Expressions in Assembler
	1.3.10 SPARC V9 Operators and Expressions

	1.4 Assembler Error Messages

	Chapter 2 • SPARC Executable and Linking Format
	2.1 Sections of an ELF File
	2.1.1 Section Header
	2.1.2 Predefined User Sections
	2.1.2.1 Creating an .init Section in an Object File
	2.1.2.2 Creating a .fini Section in an Object File

	2.1.3 Predefined Non-User Sections
	2.1.4 Symbol Tables
	2.1.5 String Tables

	2.2 Locations Within a Section
	2.3 Addresses in Memory
	2.3.1 Relocation Tables

	2.4 ELF Tools

	Chapter 3 • SPARC Directives and Pseudo-Operations
	3.1 Assembler Directives
	3.1.1 Section Control Directives
	3.1.2 Symbol Attribute Directives
	3.1.3 Assignment Directive
	3.1.4 Data Generating Directives

	3.2 Notation Conventions
	3.3 Alphabetized Listing of Pseudo Operations With Descriptions
	3.4 Pseudo-Op Attributes
	3.5 Pseudo-Op Examples
	3.5.1 Example 1: Binding to C Variables
	3.5.2 Example 2: Generating Ident Strings
	3.5.3 Example 3: Data Alignment, Size, Scope, and Type
	3.5.4 Example 4: "Hello World"

	Chapter 4 • Creating Data in Assembler
	4.1 Examples of Various Data Types

	Chapter 5 • SPARC Code Models
	5.1 Basics of Compiling C Programs
	5.2 Address Sizes
	5.2.1 32-Bit Absolute
	5.2.2 64-Bit Absolute
	5.2.3 44-Bit Absolute
	5.2.4 64-Bit With 13-Bit PIC
	5.2.5 64-Bit With 32-Bit PIC

	5.3 Global Object Table (GOT) Code Models
	5.4 Thread Local Storage (TLS) Code Models
	5.4.1 Local Executable Code Model
	5.4.2 Initial Executable Code Model
	5.4.3 Local Dynamic TLS Code Model
	5.4.4 General Dynamic TLS Code Model

	Chapter 6 • Writing Functions in the SPARC ABI
	6.1 Anatomy of a C Function
	6.2 Register Usage
	6.3 Parameter Passing
	6.4 Functions Returning Values
	6.4.1 Limitations for 32-Bit Code
	6.4.2 Limitations for Both 32-Bit and 64-Bit Code
	6.4.3 Additional Information About SPARC ABI

	Chapter 7 • SPARC Assembler Inline Functions and __asm Code
	7.1 Inline Function Templates in C and C++
	7.1.1 Compiling C/C++ with Inline Templates
	7.1.2 Layout of Code in Inline Templates
	7.1.3 Guidelines for Coding Inline Templates
	7.1.3.1 Parameter Passing
	7.1.3.2 Stack Space
	7.1.3.3 Branches and Calls

	7.1.4 Late and Early Inlining
	7.1.5 Compiler Calling Convention
	7.1.6 Improving Efficiency of Inlined Functions
	7.1.7 Inline Templates in C++
	7.1.7.1 C++ Inline Templates and Exceptions

	7.2 Using __asm Statements in C and C++

	Appendix A • Using the SPARC Assembler Command Line
	A.1 Assembler Command Line
	A.2 Assembler Command Line Options
	A.3 Disassembling Object Code

	Appendix B • A Sample SPARC Assembler Program
	Appendix C • SPARC Instruction Sets and Mnemonics
	C.1 Natural Instructions
	C.1.1 Natural Register, Natural Word for SPARC

	Index

