
Copying and Creating Package
Repositories in Oracle® Solaris 11.3

Part No: E54747
September 2018

Copying and Creating Package Repositories in Oracle Solaris 11.3

Part No: E54747

Copyright © 2011, 2018, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except
as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform,
publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation,
delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the
hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous
applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of
SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products, and services from third parties. Oracle Corporation and its affiliates are
not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an applicable agreement
between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Référence: E54747

Copyright © 2011, 2018, Oracle et/ou ses affiliés. Tous droits réservés.

Ce logiciel et la documentation qui l'accompagne sont protégés par les lois sur la propriété intellectuelle. Ils sont concédés sous licence et soumis à des restrictions d'utilisation et
de divulgation. Sauf stipulation expresse de votre contrat de licence ou de la loi, vous ne pouvez pas copier, reproduire, traduire, diffuser, modifier, accorder de licence, transmettre,
distribuer, exposer, exécuter, publier ou afficher le logiciel, même partiellement, sous quelque forme et par quelque procédé que ce soit. Par ailleurs, il est interdit de procéder à toute
ingénierie inverse du logiciel, de le désassembler ou de le décompiler, excepté à des fins d'interopérabilité avec des logiciels tiers ou tel que prescrit par la loi.

Les informations fournies dans ce document sont susceptibles de modification sans préavis. Par ailleurs, Oracle Corporation ne garantit pas qu'elles soient exemptes d'erreurs et vous
invite, le cas échéant, à lui en faire part par écrit.

Si ce logiciel, ou la documentation qui l'accompagne, est livré sous licence au Gouvernement des Etats-Unis, ou à quiconque qui aurait souscrit la licence de ce logiciel pour le
compte du Gouvernement des Etats-Unis, la notice suivante s'applique :

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation,
delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the
hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

Ce logiciel ou matériel a été développé pour un usage général dans le cadre d'applications de gestion des informations. Ce logiciel ou matériel n'est pas conçu ni n'est destiné à être
utilisé dans des applications à risque, notamment dans des applications pouvant causer un risque de dommages corporels. Si vous utilisez ce logiciel ou ce matériel dans le cadre
d'applications dangereuses, il est de votre responsabilité de prendre toutes les mesures de secours, de sauvegarde, de redondance et autres mesures nécessaires à son utilisation dans
des conditions optimales de sécurité. Oracle Corporation et ses affiliés déclinent toute responsabilité quant aux dommages causés par l'utilisation de ce logiciel ou matériel pour des
applications dangereuses.

Oracle et Java sont des marques déposées d'Oracle Corporation et/ou de ses affiliés. Tout autre nom mentionné peut correspondre à des marques appartenant à d'autres propriétaires
qu'Oracle.

Intel et Intel Xeon sont des marques ou des marques déposées d'Intel Corporation. Toutes les marques SPARC sont utilisées sous licence et sont des marques ou des marques
déposées de SPARC International, Inc. AMD, Opteron, le logo AMD et le logo AMD Opteron sont des marques ou des marques déposées d'Advanced Micro Devices. UNIX est une
marque déposée de The Open Group.

Ce logiciel ou matériel et la documentation qui l'accompagne peuvent fournir des informations ou des liens donnant accès à des contenus, des produits et des services émanant de
tiers. Oracle Corporation et ses affiliés déclinent toute responsabilité ou garantie expresse quant aux contenus, produits ou services émanant de tiers, sauf mention contraire stipulée
dans un contrat entre vous et Oracle. En aucun cas, Oracle Corporation et ses affiliés ne sauraient être tenus pour responsables des pertes subies, des coûts occasionnés ou des
dommages causés par l'accès à des contenus, produits ou services tiers, ou à leur utilisation, sauf mention contraire stipulée dans un contrat entre vous et Oracle.

Accès aux services de support Oracle

Les clients Oracle qui ont souscrit un contrat de support ont accès au support électronique via My Oracle Support. Pour plus d'informations, visitez le site http://www.oracle.com/
pls/topic/lookup?ctx=acc&id=info ou le site http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs si vous êtes malentendant.

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Contents

Using This Documentation .. 11

1 Image Packaging System Package Repositories ..  13
Local IPS Repositories ...  13
Best Practices for Creating and Using Local IPS Package Repositories ....................  14

Do Not Subset Repository Content ...  14
Create Repositories in a Separate ZFS File System in a Shared, Persistent
Location ... 17
Verify and Snapshot the Repository ..  18
Provide Security and High Availability .. 18

Oracle Solaris Repository Content ..  19
System Requirements ...  20
Repository Management Privileges ...  21

2 Copying IPS Package Repositories ... 23
Performance Considerations for Copying Repositories ...  23
Troubleshooting Local Package Repositories ..  24
Comparing Repository Content Sources ... 25

▼ How to Install a Certificate and Key for the Oracle Solaris Support
Repository ..  26
▼ How to Update the Certificate and Key for the Oracle Solaris Support
Repository ..  28

Copying a Repository From a File .. 28
▼ How to Copy a Repository From a zip File ..  29
▼ How to Copy a Repository From an iso File ... 32

Copying a Repository From the Internet ..  34
▼ How to Explicitly Copy a Repository From the Internet ...........................  34
▼ How to Automatically Copy a Repository From the Internet .....................  36

5

Contents

3 Providing Access To Your Repository ..  41
Comparing Repository Access Interfaces ...  41
Enabling Users to Retrieve Packages Using a File Interface ..................................  42

▼ How to Enable Users to Retrieve Packages Using a File Interface ..............  42
Enabling Users to Retrieve Packages Using an HTTP Interface ..............................  43

▼ How to Enable Users to Retrieve Packages Using an HTTP Interface .........  43
▼ How to Configure a pkg/server Service Instance ..................................  46
Updating Repositories with HTTP Locations ..  48

Using an Oracle Solaris 10 or Linux System to Serve Repository Content ................  50
▼ How to Provide HTTP Access to an IPS Repository From an Oracle Solaris
10 or Linux System ...  50

4 Maintaining Your Local IPS Package Repository ..  55
Updating Your Local Repository ..  55

▼ How to Update a Local IPS Package Repository ....................................  56
Resuming an Interrupted Package Receive ...  60

Maintaining Multiple Identical Local Repositories ...  60
▼ How to Clone a Local IPS Package Repository ......................................  61
▼ How to Update a Cloned Local IPS Package Repository ..........................  63

Serving Multiple Repositories Using Web Server Access ......................................  64
▼ How to Serve Multiple Repositories From Separate Locations ..................  65
▼ How to Serve Multiple Repositories From a Single Location ....................  66

Checking and Setting Repository Properties ...  70
Viewing Properties that Apply to the Entire Repository ................................  70
Viewing Repository Publisher Properties ...  72
Modifying Repository Property Values ..  73

Customizing Your Local Repository ...  74
Adding Packages to Your Repository ..  74
Examining Packages In Your Repository ...  76
Removing Packages From Your Repository ..  76

5 Running the Package Depot Server Behind a Web Server ............................  79
Depot Server Apache Configuration ...  79

Required Apache Configuration Setting ...  80
Recommended Generic Apache Configuration Settings ................................  80

Configuring Caching for the Depot Server ...  81
Cache Considerations for the Catalog Attributes File ...................................  82

6 Copying and Creating Package Repositories in Oracle Solaris 11.3 • September 2018

Contents

Cache Considerations for Search ..  82
Configuring a Simple Prefixed Proxy ..  83
Multiple Repositories Under One Domain ...  84
Configuring Load Balancing .. 84

One Repository Server With Load Balancing .. 85
One Load-Balanced and One Non-Load-Balanced Repository Server ..............  85

Configuring HTTPS Repository Access ...  86
Creating a Keystore ...  87
Creating a Certificate Authority for Client Certificates .................................  88
Creating Client Certificates Used for Accessing the Repository ......................  89
Adding SSL Configuration to the Apache Configuration File .........................  91
Creating a Self-Signed Server Certificate Authority .....................................  92
Creating a PKCS12 Keystore to Access a Secure Repository With Firefox ........  94
Complete Secure Repositories Example ...  94

Index ..  99

7

8 Copying and Creating Package Repositories in Oracle Solaris 11.3 • September 2018

Examples

EXAMPLE 1 Creating a New Repository From a zip File ...  30
EXAMPLE 2 Adding to an Existing Repository From a zip File .................................  32
EXAMPLE 3 Serving Package Content From a Linux System Using an HTTP

Interface ...  51

9

10 Copying and Creating Package Repositories in Oracle Solaris 11.3 • September 2018

Using This Documentation

■ Overview – Describes how to create, copy, access, update, and maintain a software package
repository by using the Oracle Solaris 11.3 Image Packaging System (IPS) feature.

■ Audience – System administrators who install and manage software or assist others who
install and manage software.

■ Required knowledge – Experience with the Oracle Solaris Service Management Facility
(SMF) feature and experience administering NFS and web servers.

Product Documentation Library

Documentation and resources for this product and related products are available at http://www.
oracle.com/pls/topic/lookup?ctx=E53394-01.

Feedback

Provide feedback about this documentation at http://www.oracle.com/goto/docfeedback.

Using This Documentation 11

http://www.oracle.com/pls/topic/lookup?ctx=E53394-01
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01
http://www.oracle.com/goto/docfeedback

12 Copying and Creating Package Repositories in Oracle Solaris 11.3 • September 2018

 1 ♦ ♦ ♦ C H A P T E R 1

Image Packaging System Package Repositories

Oracle Solaris 11 software is distributed in Image Packaging System (IPS) packages. IPS
packages are stored in IPS package repositories, which are populated by IPS publishers.

This guide describes how to create a software package repository using the Oracle Solaris
Image Packaging System (IPS) feature. IPS tools enable you to easily copy an existing
repository or create your own repository for your own packages and easily update the packages
in the repository. You can provide a file interface or an HTTP or HTTPS interface for users
of the repository. This guide also describes how to automatically update your repository and
how to clone a repository, and shows Apache web server configuration such as caching, load
balancing, and configuring HTTPS access.

This chapter provides:

■ Reasons that you might want to create a local IPS package repository for internal use
■ Best practices for creating package repositories
■ System requirements for hosting a package repository
■ Privileges required for some package repository creation and maintenance tasks

Local IPS Repositories

You might want a local IPS repository for the following reasons:

■ Performance and security. You do not want your systems to go to the Internet to retrieve
new software packages or update existing packages.

■ Change control. You want to ensure that you can perform the same installation next year
that you perform today. You want to easily control the versions to which systems can be
updated.

■ Custom packages. You want to deliver custom IPS packages.

Chapter 1 • Image Packaging System Package Repositories 13

Best Practices for Creating and Using Local IPS Package Repositories

Best Practices for Creating and Using Local IPS Package
Repositories

The following is an example of the recommended way to use local IPS package repositories:

1. Create a master repository under /var/share/pkg/repositories.
2. Duplicate the master repository on other systems as necessary, depending on client demand

and distance between client locations.
3. Configure all of these repository locations as publisher origins on every system. IPS

automatically selects the repository location with the best connection for each client.
4. Update the master repository monthly to ensure that security fixes are available to client

systems. Update the clone repositories monthly from the master repository.

Follow the best practices described below to maintain repository availability and minimize
system update errors.

Do Not Subset Repository Content

Include all content from your chosen Oracle Solaris repository source.

Your Oracle Solaris repository source can be any of the following:

■ The Oracle Solaris release repository: http://pkg.oracle.com/solaris/release/
■ The Oracle Solaris support repository: https://pkg.oracle.com/solaris/support/
■ An Oracle Solaris package repository file

Repository files for Oracle Solaris GA releases and Support Repository Update (SRU) releases
are available from various Oracle download sites as described in “How to Copy a Repository
From a zip File” on page 29.

Do not attempt to select a subset of packages to include in your local repository.

■ Dependencies. Packages that belong together do not necessarily have the same version
numbers or any other common identifier that would enable you to correctly select the
required set.

■ Architecture. Each package includes all content for both SPARC and x86 architectures.
Creating a SPARC-only or x86-only repository is not possible.

Do not remove from your repository packages that are delivered by an Oracle publisher.
Oracle publishers include, for example, solaris, solarisstudio, and ha-cluster.

14 Copying and Creating Package Repositories in Oracle Solaris 11.3 • September 2018

Best Practices for Creating and Using Local IPS Package Repositories

Using a subset repository is not a viable way to accomplish any of the following:

■ Limit the software that users can install. To install or update to a release that is older
than the latest release available in the repository, or to otherwise control which software
users can install, use one of the solutions described in “Updating to a Version Older Than
the Newest Version Allowed” in Adding and Updating Software in Oracle Solaris 11.3.
Solutions described in that documentation include specifying a version constraint on the
command line and using a constraint package.

■ Save disk space. To minimize the amount of software installed on a system, install
the solaris-minimal-server package in your initial system installation instead of the
solaris-large-server package, and then add other packages that you want. You could
create a custom package with just this set of packages as group dependencies. Other
packages that are dependencies of the named packages are installed automatically. For
information about dependencies and instructions for creating packages, see Packaging and
Delivering Software With the Image Packaging System in Oracle Solaris 11.3.
To minimize the space required for a package repository, use the guidelines in “Minimal
Required Repository” on page 15 to periodically replace your repository, rather than
adding packages with every repository update. See the remove and replace instructions in
Step 3 in “How to Update a Local IPS Package Repository” on page 56 to update your
package repository by replacing the repository rather than simply adding to the repository.

■ Reduce package search and installation time. Use one of the following strategies to
reduce package access time:
■ Install multiple identical package repositories and configure all of these locations as

publisher origins on every system. IPS automatically selects the repository location
with the best connection for each client. See “Maintaining Multiple Identical Local
Repositories” on page 60.

■ Use the pkg/depot scalable repository server described in “How to Enable Users to
Retrieve Packages Using an HTTP Interface” on page 43.

See also “Provide Security and High Availability” on page 18 below.

Minimal Required Repository

The Oracle Solaris package repository for each GA release (Oracle Solaris 11 11/11, Oracle
Solaris 11.1, Oracle Solaris 11.2, and Oracle Solaris 11.3) is a complete set of packages for
that GA release. The Oracle Solaris package repository for each SRU (for example, Oracle
Solaris 11.3 SRU 19) includes only packages for that SRU. See also “Oracle Solaris Repository
Content” on page 19.

In general, you do not need to add SRU content to your local repository if you add the content
of a later GA release to your local repository. The exception to this general rule is if you are
updating from or to that SRU release.

Chapter 1 • Image Packaging System Package Repositories 15

http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=AUOSSupdateconstraints
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=AUOSSupdateconstraints
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=PKDEV
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=PKDEV

Best Practices for Creating and Using Local IPS Package Repositories

The minimal package repository required to support upgrades to new Oracle Solaris releases is
the following content for each system that the repository must support:

■ The repository content for the currently installed GA release
■ The repository content for the currently installed SRU, if any
■ The repository content for the GA release to which you want to update
■ The repository content for the SRU to which you want to update, if any
■ If the currently installed GA release is more than one release behind the release to which

you want to update, then your local repository must also contain the repository content for
each intervening GA release.

■ If the currently installed release is Oracle Solaris 11 11/11 with no SRU or an SRU lower
than SRU10, then your local repository must also contain the repository content for Oracle
Solaris 11 11/11 SRU10.

For example, to upgrade from Oracle Solaris 11.3 SRU16 to Oracle Solaris 11.3 SRU19, your
local IPS package repository must include the following repository content:

■ Oracle Solaris 11.3
■ Oracle Solaris 11.3 SRU16
■ Oracle Solaris 11.3 SRU19

To upgrade from Oracle Solaris 11 11/11 SRU7.5 to Oracle Solaris 11.3 SRU19, your local IPS
package repository must include the following repository content:

■ Oracle Solaris 11 11/11
■ Oracle Solaris 11 11/11 SRU7.5
■ Oracle Solaris 11 11/11 SRU10.5
■ Oracle Solaris 11.1
■ Oracle Solaris 11.2
■ Oracle Solaris 11.3
■ Oracle Solaris 11.3 SRU19

Repository files for Oracle Solaris GA releases and Support Repository Update (SRU) releases
are available from various Oracle download sites as described in “How to Copy a Repository
From a zip File” on page 29.

Your local repository must contain complete content of the GA and SRU repositories for
currently installed software because content from those repositories that is not currently
installed might be needed to resolve dependencies for an update.

For more information about keeping your repository as small as possible see the
remove and replace instructions in Step 3 in “How to Update a Local IPS Package
Repository” on page 56.

16 Copying and Creating Package Repositories in Oracle Solaris 11.3 • September 2018

Best Practices for Creating and Using Local IPS Package Repositories

Most Complete Repository

If space is not a problem, you can use the svc:/application/pkg/mirror Service Management
Facility (SMF) service to automatically update your local package repository from the
Oracle Solaris support repository. See “How to Automatically Copy a Repository From the
Internet” on page 36 for instructions.

Create Repositories in a Separate ZFS File System
in a Shared, Persistent Location

An example of a recommended repository location is in a separate ZFS file system in /var/
share/pkg/repositories.

Create each repository in its own ZFS file system.

Using a separate ZFS file system enables you to do the following:

■ Achieve better performance.
■ Set separate file system characteristics. For example, set atime to off for better

performance when updating the repository. The atime property controls whether the access
time for files is updated when the files are read. Turning this property off avoids producing
write traffic when reading files. Set the compression property to reduce disk space required.

■ Manage resource use. Specify an appropriate disk quota for each repository dataset to
ensure that large repository updates do not consume all the space in the pool. This best
practice is especially important if you are performing updates automatically as described in
“How to Automatically Copy a Repository From the Internet” on page 36.

■ Create snapshots.

Create repositories in a shared location.

A shared location is a location that is not in any bootable environment (BE). Everything in
rpool/ROOT or pool/ROOT is copied to each new BE and potentially customized in each BE; it is
not shared by all BEs. Examples of shared locations include /var/share and /export. Creating
a repository in a shared location provides the following benefits:

■ The repository is available from any existing BE. When you boot to a different BE,
including an older BE, the same package repository is still available.

■ When you create a new BE through upgrading or by cloning an existing BE, you do not
waste space by creating multiple copies of the repository.

■ You do not waste time and I/O resources reapplying repository updates that you have
already made in a different BE.

Chapter 1 • Image Packaging System Package Repositories 17

Best Practices for Creating and Using Local IPS Package Repositories

If you are using non-global zones, all locations of publishers configured in non-global zones
must be accessible from the global zone even if that publisher is not configured in the global
zone.

Create repositories in a persistent location.

Package update or removal usually requires access to a repository that contains the currently
installed version of the package. Do not set a publisher origin to a repository in /tmp or other
nonpersistent location. Move that content to a persistent, shared location. If you install packages
from package archive files (.p5p files), save those package archive files in a persistent, shared
location.

Verify and Snapshot the Repository
Verify every time you update the repository.

Use the pkgrepo verify command whenever you change the content or property values of
the repository. The pkgrepo verify command verifies that the following attributes of the
repository content are correct:

■ File checksums.
■ File permissions. The repository files and directories and the path leading to the repository

are checked to ensure that the pkg5srv user can read the repository content.
■ Package manifest permissions.
■ Package manifest content.
■ Package signatures.

Snapshot every time you update the repository.

Snapshot the repository file system every time you update the repository to gain the following
benefits:

■ Use a previously saved snapshot to roll back to a previous version of the repository.
■ Minimize user disruption when updating the repository by updating a clone and then

replacing the repository with the updated clone.

Provide Security and High Availability
To secure your local repositories, see “Configuring HTTPS Repository Access” on page 86
for instructions.

To provide high availability, use one or more of the following strategies:

18 Copying and Creating Package Repositories in Oracle Solaris 11.3 • September 2018

Oracle Solaris Repository Content

■ Maintain repository clones in different locations and configure all of these repository
locations as publisher origins on every system. IPS automatically selects the repository
location with the best connection for each client. See “Maintaining Multiple Identical Local
Repositories” on page 60 for instructions.

■ To better serve more clients simultaneously, configure repository service properties
as described in “How to Enable Users to Retrieve Packages Using an HTTP
Interface” on page 43.

■ Configure your web server for caching, load balancing, and serving multiple repositories.
See Chapter 5, “Running the Package Depot Server Behind a Web Server” for information.

Oracle Solaris Repository Content

Oracle provides the following IPS package repositories for Oracle Solaris. See also “Comparing
Repository Content Sources” on page 25.

■ The Oracle Solaris release repository is publicly available at http://pkg.oracle.com/
solaris/release/. The release repository is updated at every Oracle Solaris GA release.
For example, the release repository was updated for Oracle Solaris 11.1, Oracle Solaris 11.2,
and Oracle Solaris 11.3. Some FOSS updates are available in the release repository between
Oracle Solaris GA releases. See FOSS in Oracle Solaris for more information.
Previous Oracle Solaris GA release repositories are available as file downloads from My
Oracle Support (MOS) and other sites as described in “How to Copy a Repository From a
zip File” on page 29. For example, on MOS see Where to download Oracle Solaris ISO
images and Update Releases (Doc ID 1277964.1) for GA repositories. The first link under
each release section is a link to download the IPS repository file for that release.

■ The Oracle Solaris support repository is available at https://pkg.oracle.com/solaris/
support/. To access the support repository, follow the instructions in “How to Install a
Certificate and Key for the Oracle Solaris Support Repository” on page 26. The support
repository includes the content of the release repository plus fixes, including security fixes,
that were made after the release repository was released.

■ Support Repository Updates (SRUs) are integrated into the Oracle Solaris support
repository and are also available as separate repository updates that you can download
from MOS or other sites as described in “How to Copy a Repository From a zip
File” on page 29.

Updates to the support repository are released approximately monthly. Every third SRU is a
CPU (Critical Patch Update) SRU with content typically more focused on security fixes. See
Critical Patch Updates, Security Alerts and Third Party Bulletin for information about CPUs.
SRU repositories include only packages for that SRU. While each SRU includes all fixes and

Chapter 1 • Image Packaging System Package Repositories 19

https://www.oracle.com/technetwork/server-storage/solaris11/technologies/foss-2584558.html
https://support.oracle.com/epmos/faces/DocumentDisplay?_afrLoop=564306745704566&id=1277964.1
https://support.oracle.com/epmos/faces/DocumentDisplay?_afrLoop=564306745704566&id=1277964.1
https://www.oracle.com/technetwork/topics/security/alerts-086861.html

System Requirements

enhancements that were delivered by previously released SRUs, an SRU does not contain any
other SRUs. An SRU contains only one version of pkg:/entire. For best system upgrade
results, integrate SRUs into your local Oracle Solaris repository monthly, either from the Oracle
Solaris support repository URI or from the downloaded SRU repository files.

■ If you update your local repository from the Oracle Solaris support repository URI (as
described in “Copying a Repository From the Internet” on page 34), then you receive
all packages for each update. If you failed to apply an update one month but updated in a
subsequent month, the missed update would still be available in your updated repository.
For example, if you updated in March but not in February, you would still be able to update
systems to the February update level by using one of the solutions described in “Updating
to a Version Older Than the Newest Version Allowed” in Adding and Updating Software in
Oracle Solaris 11.3.

■ If you update your local repository from downloaded SRU files, you can only update
systems to those SRU levels. For example, if you applied the January and March SRU
repository updates but did not apply the February update to your local repository, you
would not be able to update systems to the February SRU level. You could add the February
SRU repository content to your local repository, even though you already added the March
content, and then you could update systems to the February SRU level. If your repository
does not contain the version of pkg:/entire for a particular SRU update, then you cannot
update to that SRU level.

System Requirements

The system that hosts the IPS package repository can be either an x86-based or a SPARC-based
system.

Operating system

A system that hosts an IPS package repository must be running at least Oracle Solaris
11 11/11. Newer versions of Oracle Solaris 11 provide additional repository creation and
maintenance features, in addition to other new Oracle Solaris features and security fixes.
■ The pkgrepo verify and pkgrepo fix commands are available only with Oracle

Solaris 11.1.7 and later.
■ The pkgrepo contents and pkgrepo remove-publisher commands are available only

with Oracle Solaris 11.2 and later.
■ The pkgrecv -m all-timestamps behavior is the default with Oracle Solaris 11.2 and

later.
■ The pkgrecv --clone option is available only with Oracle Solaris 11.2 and later.
■ The svc:/application/pkg/mirror SMF service is available only with Oracle Solaris

11.2 and later.

20 Copying and Creating Package Repositories in Oracle Solaris 11.3 • September 2018

http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=AUOSSupdateconstraints
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=AUOSSupdateconstraints
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=AUOSSupdateconstraints

Repository Management Privileges

■ The scalable repository server, pkg.depotd, and the pkg.depot-config command are
available only with Oracle Solaris 11.2 and later.

Disk space

The amount of disk space required depends on how complete your repository is. See
“Comparing Repository Content Sources” on page 25.
■ The repository file for the release creates a 9.5GB repository.
■ Copying the Oracle Solaris support repository creates a 95GB repository.

Because best practice is to keep local repositories updated with all SRUs since the last
Oracle Solaris dot release that you added, plan to use 10-15 GB of additional space each
year for SRUs.
Additional software, such as Oracle Developer Studio or Oracle Solaris Cluster, requires
additional space in the package repository.

If one system hosts more than one IPS repository, make each repository a separate ZFS file
system so that you can rollback and recover each repository separately.

Repository Management Privileges

Use one of the following methods to gain the privilege you need to create and configure
package repositories. See Securing Users and Processes in Oracle Solaris 11.3 for more
information about roles and profiles, including how to determine which role or profile you need.

Roles

Use the roles command to list the roles that are assigned to you. Use the su command with
the name of the role to assume that role. As this role, you can execute any commands that
are permitted by the rights profiles that are assigned to that role.

Rights profiles

Use the profiles command to list the rights profiles that are assigned to you. The
following profiles are useful for maintaining local package repositories:

ZFS File System Management

This rights profile enables you to run the zfs command to create new ZFS file
systems.

Software Installation

This rights profile enables you to run the pkg command to install and update packages,
configure publishers and images, and manage boot environments.

Chapter 1 • Image Packaging System Package Repositories 21

http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=OSSUP

Repository Management Privileges

Service Management

This rights profile enables you to run SMF commands such as svccfg to configure
services.

Use one of the following methods to execute commands that your rights profiles permit
you to execute:
■ Use a profile shell such as pfbash or pfksh.
■ Use the pfexec command in front of the command that you want to execute. In general,

you must specify the pfexec command with each privileged command that you
execute.

sudo command

Depending on the security policy at your site, you might be able to use the sudo command
with your user password to execute a privileged command.

22 Copying and Creating Package Repositories in Oracle Solaris 11.3 • September 2018

 2 ♦ ♦ ♦ C H A P T E R 2

Copying IPS Package Repositories

This chapter describes two ways to create a copy of an Oracle Solaris IPS package repository:

■ Use repository files from media or from an Oracle Solaris download site.
■ Retrieve the repository content from the Internet manually or automatically.

In all cases, first create a separate ZFS file system in a shared location for your local package
repository. After the repository is created, verify and snapshot the repository.

This chapter also provides the following information:

■ Performance and troubleshooting information related to copying repositories.
■ A description of the content available from different repository sources.

Performance Considerations for Copying Repositories

If you download repository files from the Oracle Solaris download site, or if you use the
pkgrecv command shown in “Copying a Repository From the Internet” on page 34 to
retrieve repository content from an Internet location, consider the following configuration to
improve your transfer performance:

■ Ensure that your ZFS storage pool capacity (percentage of pool space used) is less than
90%. Use the zpool list command to view your pool capacity.

■ If you are using a proxy, check the performance of the proxy.
■ Close applications that use a large amount of memory.
■ Ensure adequate free space is available in the temporary directory. During its operations,

the pkgrecv command uses $TMPDIR as a temporary storage directory. If TMPDIR is not set,
pkgrecv uses /var/tmp for this temporary storage. Ensure that $TMPDIR or /var/tmp has
enough free space for the size of the pkgrecv operation you are doing.

■ If you are using the pkgrecv command to copy a large repository, consider using the --
clone option. The --clone option makes the destination repository an exact copy of the

Chapter 2 • Copying IPS Package Repositories 23

Troubleshooting Local Package Repositories

source repository, which is significantly faster than the default pkgrecv copy mode. See
“How to Explicitly Copy a Repository From the Internet” on page 34 and “How to
Clone a Local IPS Package Repository” on page 61.

■ On the ZFS file system that hosts the repository, set atime to off for better performance
when updating the repository. The atime property controls whether the access time for files
is updated when the files are read. Turning this property off avoids producing write traffic
when reading files.

Set compression to on or lzjb. The lzjb compression algorithm is optimized for
performance while providing good data compression. For better compression, set
compression to lz4. The lz4 compression algorithm provides better compression than lzjb
with lower CPU overhead.

Note that setting compression only affects the package manifest data; the package file data
is already compressed. To check the compression, check the compressratio value for the
dataset. See the zfs(1M) man page for more information.

Troubleshooting Local Package Repositories

The following methods can prevent problems or help find the cause of problems you might
encounter:

■ Verify repository source files. If you use .zip files to create your repository, confirm that
the files on your system are correct by using the checksums as described in “How to Copy a
Repository From a zip File” on page 29.

■ Do not use multiple instances of the pkgrecv command simultaneously to republish
packages to the same destination repository or archive.

Be careful not to modify a repository that the svc:/application/pkg/mirror:default
service is modifying. By default, the pkg/mirror service creates and updates repositories at
/var/share/pkg/repositories. See “How to Automatically Copy a Repository From the
Internet” on page 36 for more information about the pkg/mirror service.

■ Verify the installed repository. Use the pkgrepo verify command to check your installed
repository.

The following permissions problems are reported by pkgrepo verify:
■ File permissions. To avoid problems with directory and file permissions for file system

based repositories, ensure that the pkg5srv user has permission to read the repository.
■ Directory permissions. Ensure that all directories in the repository and the path to the

repository have execute permission.

These permissions problems prevent users from accessing these repositories.

24 Copying and Creating Package Repositories in Oracle Solaris 11.3 • September 2018

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1Mzfs-1m

Comparing Repository Content Sources

The pkgrepo verify command also checks file checksums, package signatures, and
manifest dependencies: The pkgrepo verify command verifies that every file referenced in
each package manifest is in the repository. If the pkgrepo verify command reports errors
other than permissions errors, try using the pkgrepo fix command to fix the errors. See the
pkgrepo(1) man page for more information.

■ After updating the configuration or content of a repository, restart any pkg/server service
instance that is managing that repository so that the changes will be reflected in the search
responses and browser interface for that repository.

■ Check your publisher origin. Make sure you set the origin for each publisher appropriately
in each image. To update installed packages, install packages that depend on installed
packages, or install a non-global zone, the repository that you set as the publisher origin
must contain at least the same software that is installed in the image where you are setting
the publisher. See Step 3 in “How to Enable Users to Retrieve Packages Using a File
Interface” on page 42. See Adding and Updating Software in Oracle Solaris 11.3 for
information about setting publishers and troubleshooting package installation problems.

■ Check web server configuration. If you configure an Apache web server to access your
repository, configure the web server to not decode encoded forward slashes. See the
instructions in “Required Apache Configuration Setting” on page 80. Decoding encoded
forward slashes can result in "package not found" errors.

■ Do not create a repository that is only accessible from a non-global zone. All locations of
publishers configured in non-global zones must be accessible from the global zone even if
that publisher is not configured in the global zone.

If you are using Oracle Enterprise Manager Ops Center, the IPS package repository is called
the Oracle Solaris Software Update Library. See the Oracle Solaris sections of the Software
Library section of the Oracle Enterprise Manager Ops Center configuration reference manual
for information about how to update the library. Use the Configure Parent Repos and Add
Content actions in the Library > Oracle Solaris section of the Ops Center BUI (browser user
interface) to associate new certificates with the solaris publisher. See the Firewall Rules
section of the Oracle Enterprise Manager Ops Center Ports and Protocols guide for firewall
rules to allow systems to access the external IPS repository. This list can also be useful if you
are not using Ops Center.

Comparing Repository Content Sources

The following table offers information to help you decide whether to create and update your
repository from the Oracle Solaris support repository or from repository files.

Chapter 2 • Copying IPS Package Repositories 25

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1pkgrepo-1
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=AUOSS

How to Install a Certificate and Key for the Oracle Solaris Support Repository

TABLE 1 Repository Content Source Comparison

Repository Source Support Repository Repository Files

Description The support repository includes
every package from every Oracle
Solaris release starting from
Oracle Solaris 11 11/11.

The repository zip files that are delivered with each
release include packages from the current release plus
all packages required to update to that release from any
previous release starting from Oracle Solaris 11 11/11.

Installing and
Updating Systems

Systems can install or update to
any release and to any SRU of
any release.

You can update systems to an SRU for the current release
only if you added the content of the repository file for
that SRU to your local repository. For example, if you
failed to add the April SRU repository content and then
you added the May SRU repository content, you would
have all the fixes and enhancements from the May, April,
and earlier SRUs, but you would not be able to update
systems to the April SRU level.

Time and Space The repository takes longer to
create and requires more disk
space.

The repository requires less time to create and consumes
less disk space.

How to Install a Certificate and Key for the Oracle
Solaris Support Repository

If you use the Oracle Solaris support repository, you must install a certificate and key. You
cannot add the support repository origin to your solaris publisher unless you specify a valid
certificate and key.

1. Get certificate and key files.

a. Open the Oracle Certificate Request site.
In your browser, navigate to https://pkg-register.oracle.com/.

b. Sign in to the site.

i. Select the Request Certificates link.

ii. Sign in using your My Oracle Account support credentials.

c. Find the Oracle Solaris 11 Support repository, and select the Request
Access button.

d. Read the license and select the Accept button.

26 Copying and Creating Package Repositories in Oracle Solaris 11.3 • September 2018

How to Install a Certificate and Key for the Oracle Solaris Support Repository

e. Open the Certificate Information page.
On the Product Details page, select the "certificate page" link or navigate to https://pkg-
register.oracle.com/register/certificate/.

f. Select the Download Certificate button, and save the certificate file on your
system.

g. Select the Download Key button, and save the key file on your system.

2. Configure the solaris publisher using the new certificate and key files.
The arguments to the -c and -k options are the certificate and key files that you downloaded in
the previous step, as shown in the following example:

$ pkg set-publisher -g https://pkg.oracle.com/solaris/support/ \

> -c ~/Downloads/pkg.oracle.com.certificate.pem \

> -k ~/Downloads/pkg.oracle.com.key.pem solaris

Use the following command to show that the certificate and key are installed:

$ pkg publisher solaris

 Publisher: solaris

 Alias:

 Origin URI: https://pkg.oracle.com/solaris/support/

 SSL Key: /var/pkg/ssl/keyfile
 SSL Cert: /var/pkg/ssl/certfile
 Cert. Effective Date: July 1, 2015 04:47:13 PM

Cert. Expiration Date: July 8, 2017 04:47:13 PM

 Client UUID: client-uuid
 Catalog Updated: January 18, 2016 06:59:40 PM

 Enabled: Yes

 Properties:

 proxied-urls = []

 signature-policy = require-signatures

Next Steps See also “SSL Certificate Problem” in Adding and Updating Software in Oracle Solaris 11.3.

This process is similar for repositories of other publishers such as solarisstudio or ha-
cluster.

Chapter 2 • Copying IPS Package Repositories 27

http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=AUOSSsslcerts

How to Update the Certificate and Key for the Oracle Solaris Support Repository

How to Update the Certificate and Key for the
Oracle Solaris Support Repository

Use this procedure if you receive a message such as the following when you perform pkg
commands:

Certificate '/var/pkg/ssl/certfile' for publisher 'solaris', needed to access
'https://pkg.oracle.com/solaris/support/', will expire in '7' days.

1. Get new certificate and key files.

a. Open the Oracle Certificate Request site.
In your browser, navigate to https://pkg-register.oracle.com/register/
certificate/.

b. Sign in using your My Oracle Account support credentials.

c. For Oracle Solaris 11.3, select the Download Certificate button, and save the
certificate file on your system.

d. For Oracle Solaris 11.3, select the Download Key button, and save the key
file on your system.

2. Configure the solaris publisher using the new certificate and key files.
Because the support repository is already configured with the old key and certificate, you do not
need to specify the origin to update the key and certificate.

$ pkg set-publisher -c ~/Downloads/pkg.oracle.com.certificate.pem \

> -k ~/Downloads/pkg.oracle.com.key.pem solaris

The pkg publisher solaris command shows the updated “Cert. Effective Date” and “Cert.
Expiration Date.”

Copying a Repository From a File

This section describes how to make a local copy of the Oracle Solaris package repository from
one or more repository files. The repository files might be on media or might be available on an
Oracle Solaris download site. The repository files might be zip files or iso files.

28 Copying and Creating Package Repositories in Oracle Solaris 11.3 • September 2018

How to Copy a Repository From a zip File

How to Copy a Repository From a zip File

1. Create a ZFS file system for the new repository.
Create the repository in a shared location. Set atime to off when you create the repository file
system. Consider setting the compression property. See “Best Practices for Creating and Using
Local IPS Package Repositories” on page 14.

$ zfs create -o atime=off rpool/VARSHARE/pkgrepos

$ zfs create rpool/VARSHARE/pkgrepos/solaris

$ zfs get atime rpool/VARSHARE/pkgrepos/solaris

NAME PROPERTY VALUE SOURCE

rpool/VARSHARE/pkgrepos/solaris atime off inherited from rpool/VARSHARE/pkgrepos

2. Get the package repository files.
Download the Oracle Solaris IPS package repository files (*repo*.zip) from the same location
where you downloaded the system installation image. In addition to the repository files,
download the install-repo.ksh script and the README and checksum .txt files.

$ ls

install-repo.ksh sol-11_3-ga-repo-3of4.zip

README-zipped-repo.txt sol-11_3-ga-repo-4of4.zip

sol-11_3-ga-repo-1of4.zip sol-11_3-ga-repo.txt

sol-11_3-ga-repo-2of4.zip

On the Oracle Technology Network (OTN) site, you can download the install-repo.ksh
script and the README and digest .txt files directly. On the My Oracle Support (MOS)
and the Oracle Software Delivery Cloud (OSDC) sites, the install-repo.ksh script and
the README and checksum .txt files are part of the Repository Installation Guide. For
example, in the IPS Repository column of an SRU Index on MOS, select the Installation Guide
document. A new page displays that contains the following buttons:

■ Download. Select this button to retrieve the Repository Installation Guide .zip file. The
Repository Installation Guide file contains the following files:
■ The install-repo.ksh script.
■ The README-zipped-repo.txt README file that explains how to use the install-

repo.ksh script.
■ The digest.txt checksums file for the repository files (*repo*.zip).
■ Text and HTML versions of a README file that describes this particular SRU.

■ View Readme. Select this button to display the README file that describes this particular
SRU.

■ View Digest. Select this button to pop up a new window that displays the SHA-1 and MD5
checksums for the Repository Installation Guide .zip file.

Chapter 2 • Copying IPS Package Repositories 29

https://www.oracle.com/technetwork/server-storage/solaris11/downloads/index.html
https://support.oracle.com/
https://edelivery.oracle.com/

How to Copy a Repository From a zip File

3. Make sure the script file is executable.

$ chmod +x install-repo.ksh

4. Run the repository installation script.
The repository installation script, install-repo.ksh, uncompresses each repository file
(*repo*.zip) into the specified directory.

The install-repo.ksh script optionally performs the following additional tasks:

■ Verifies checksums of the repository files.

If you do not specify the -c option to verify checksums, verify the checksums manually
before you run the repository installation script. Run the following digest command, and
compare the output with the appropriate checksum from the digest.txt file:

$ digest -v -a sha256 *repo*.zip

■ Adds the repository content to existing content if the specified destination already contains a
repository.

■ Verifies the final repository.

If you do not specify the -v option to verify the repository, use the info, list, and verify
subcommands of the pkgrepo command to verify the repository after you run the repository
installation script.

■ Creates an ISO image file for mounting and distribution.

If you use the -I option to create an .iso file, the .iso file and the README file that explains
how to use the .iso file are in the specified destination directory (-d).

5. Verify the repository content.
If you did not specify the -v option in the previous step, use the info, list, and verify
subcommands of the pkgrepo command to check that the repository has been copied correctly.
If the pkgrepo verify command reports errors, try using the pkgrepo fix command to fix the
errors. See the pkgrepo(1) man page for more information.

6. Snapshot the new repository.

$ zfs snapshot rpool/VARSHARE/pkgrepos/solaris@sol-11_3_0

Example 1 Creating a New Repository From a zip File

In this example, no repository exists until the .zip files are unpacked. The script can take the
following options:

30 Copying and Creating Package Repositories in Oracle Solaris 11.3 • September 2018

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1pkgrepo-1

How to Copy a Repository From a zip File

-s Optional. Specifies the full path to the directory where the *repo*.zip
files are located. Default: The current directory.

-d Required. Specifies the full path to the directory where you want the
repository.

-i Optional. Specifies the files to use to populate this repository. The source
directory could contain multiple sets of *repo*.zip files. Default: The
newest image available in the source directory.

-c Optional. Compares the checksums of the *repo*.zip files with the
checksums in the specified file. If you specify -c with no argument, the
default file used is the digest.txt file for the -i image in the source
directory.

-v Optional. Verifies the final repository.

-I Optional. Creates an ISO image of the repository in the source directory.
Also leaves a mkiso.log log file in the source directory.

-h Optional. Displays a usage message.

$./install-repo.ksh -d /var/share/pkgrepos/solaris -c -v -I

Comparing digests of downloaded files...done. Digests match.

Uncompressing sol-11_3-ga-repo-1of4.zip...done.

Uncompressing sol-11_3-ga-repo-2of4.zip...done.

Uncompressing sol-11_3-ga-repo-3of4.zip...done.

Uncompressing sol-11_3-ga-repo-4of4.zip...done.

Repository can be found in /var/share/pkgrepos/solaris.

Initiating repository verification.

Building ISO image...done.

ISO image can be found at:

/tank/downloads/sol-11_3-ga-repo.iso

Instructions for using the ISO image can be found at:

/var/share/pkgrepos/solaris/README-repo-iso.txt

$ ls /var/share/pkgrepos/solaris

COPYRIGHT NOTICES pkg5.repository publisher README-iso.txt

The repository rebuild and verification can take some time, but the repository content is
retrievable after you get the "Repository can be found in" message.

If you receive a message that the repository verification could not be done, ensure that Oracle
Solaris 11.1.7 or later is installed.

Chapter 2 • Copying IPS Package Repositories 31

How to Copy a Repository From an iso File

Example 2 Adding to an Existing Repository From a zip File

In this example, the content of the repository zip files is added to the content in an existing
package repository.

$ pkgrepo -s /var/share/pkgrepos/solaris info

PUBLISHER PACKAGES STATUS UPDATED

solaris 4764 online 2014-03-18T05:30:57.221021Z

$./install-repo.ksh -d /var/share/pkgrepos/solaris -c -v -I

IPS repository exists at destination /var/share/pkgrepos/solaris

Current version: 0.175.2.0.0.35.0

Do you want to add to this repository? (y/n) y

Comparing digests of downloaded files...done. Digests match.

Uncompressing sol-11_3-ga-repo-1of4.zip...done.

Uncompressing sol-11_3-ga-repo-2of4.zip...done.

Uncompressing sol-11_3-ga-repo-3of4.zip...done.

Uncompressing sol-11_3-ga-repo-4of4.zip...done.

Repository can be found in /var/share/pkgrepos/solaris.

Initiating repository rebuild.

Initiating repository verification.

Building ISO image...done.

ISO image can be found at:

/tank/downloads/sol-11_3-ga-repo.iso

Instructions for using the ISO image can be found at:

/var/share/pkgrepos/solaris/README-repo-iso.txt

$ pkgrepo -s /var/share/pkgrepos/solaris info

PUBLISHER PACKAGES STATUS UPDATED

solaris 4768 online 2016-06-02T18:11:55.640930Z

How to Copy a Repository From an iso File

1. Create a ZFS file system for the new repository.
Create the repository in a shared location. Set atime to off when you create the repository file
system. Consider setting the compression property. See “Best Practices for Creating and Using
Local IPS Package Repositories” on page 14.

$ zfs create -o atime=off rpool/VARSHARE/pkgrepos

$ zfs create rpool/VARSHARE/pkgrepos/solaris

$ zfs get atime rpool/VARSHARE/pkgrepos/solaris

NAME PROPERTY VALUE SOURCE

rpool/VARSHARE/pkgrepos/solaris atime off inherited from rpool/VARSHARE/pkgrepos

2. Get the package repository image files.

32 Copying and Creating Package Repositories in Oracle Solaris 11.3 • September 2018

How to Copy a Repository From an iso File

Create an .iso file from the repository .zip files using the -I option as described in Example
1, “Creating a New Repository From a zip File,” on page 30.

3. Mount the image file.
Mount the repository .iso file to access the content.

$ mount -F hsfs /path/sol-11_3-repo.iso /mnt

To avoid the need to remount the .iso image each time the repository server system restarts,
copy the repository file content as described in the next step.

4. Copy the repository content to the new location.
To increase the performance of repository accesses and to avoid the need to remount the .iso
image each time the system restarts, copy the repository files from /mnt/repo/ to a ZFS file
system. You can do this copy with the rsync command or with the tar command.

■ Use the rsync command.
If you use the rsync command, be sure to specify /mnt/repo/ (including the trailing slash
character) and not /mnt/repo to copy the files and subdirectories in the repo directory. See
the rsync(1) man page.

$ rsync -aP /mnt/repo/ /var/share/pkgrepos/solaris

■ Use the tar command.
Using the tar command as shown in the following example can be a faster way to copy
the repository from the mounted file system to the repository ZFS file system.

$ cd /mnt/repo; tar cf - . | (cd /var/share/pkgrepos/solaris; tar xfp -)

5. Unmount the image file.
Make sure you are not still in the /mnt directory.

$ umount /mnt

6. Verify the new repository content.
Use the info, list, and verify subcommands of the pkgrepo command to check that the
repository has been copied correctly. If the pkgrepo verify command reports errors, try
using the pkgrepo fix command to fix the errors. See the pkgrepo(1) man page for more
information.

7. Snapshot the new repository.

Chapter 2 • Copying IPS Package Repositories 33

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1rsync-1
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1pkgrepo-1

Copying a Repository From the Internet

$ zfs snapshot rpool/VARSHARE/pkgrepos/solaris@sol-11_3_0

Copying a Repository From the Internet

This section describes how to make a local copy of the Oracle Solaris package repository by
copying the repository from an Internet location. The first procedure shows issuing the copy
command from the command line. The second procedure shows using an SMF service to
automatically copy and update a repository.

How to Explicitly Copy a Repository From the
Internet

1. Create a ZFS file system for the new repository.
Create the repository in a shared location. Set atime to off when you create the repository file
system. Consider setting the compression property. See “Best Practices for Creating and Using
Local IPS Package Repositories” on page 14.

$ zfs create -o atime=off rpool/VARSHARE/pkgrepos

$ zfs create rpool/VARSHARE/pkgrepos/solaris

$ zfs get atime rpool/VARSHARE/pkgrepos/solaris

NAME PROPERTY VALUE SOURCE

rpool/VARSHARE/pkgrepos/solaris atime off inherited from rpool/VARSHARE/pkgrepos

2. Create the required repository infrastructure.
Create the required IPS repository infrastructure so that you can copy the repository. The
image files used in the previous method include the repository infrastructure, so this step is not
needed. When you copy repository content using the pkgrecv command as described in this
method, you need to create the repository infrastructure and then copy the repository content
into that infrastructure. See the pkg(5) and pkgrepo(1) man pages.

$ pkgrepo create /var/share/pkgrepos/solaris

3. Set the default publisher.

$ pkgrepo -s /var/share/pkgrepos/solaris get publisher/prefix

SECTION PROPERTY VALUE

publisher prefix ""

$ pkgrepo -s /var/share/pkgrepos/solaris set publisher/prefix=solaris

34 Copying and Creating Package Repositories in Oracle Solaris 11.3 • September 2018

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN5pkg-5
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1pkgrepo-1

How to Explicitly Copy a Repository From the Internet

$ pkgrepo -s /var/share/pkgrepos/solaris get publisher/prefix

SECTION PROPERTY VALUE

publisher prefix solaris

4. Copy the repository content to the new location.
Use the pkgrecv command to copy the repository. This operation could affect your network
performance. The time required for this operation to complete depends on your network
bandwidth and connection speed. See also “Performance Considerations for Copying
Repositories” on page 23. If you update this repository later, only the changes are
transferred, and the process can take much less time.

The following command retrieves all versions of all packages from the package repository
specified by the -s option to the repository specified by the -d option. If you are copying from
a secure site, ensure that the required SSL certificate and key are installed, and specify the
required certificate and key options.

$ pkgrecv -s https://pkg.oracle.com/solaris/support -d /var/share/pkgrepos/solaris \

--clone -p '*' --key /path-to/key-file --cert /path-to/certificate-file '*'

The --clone option makes the destination repository an exact copy of the source repository,
which is significantly faster than the default pkgrecv copy mode. See the pkgrecv(1) man page
for information about the --clone option.

You should not use the -m latest option for this purpose. Do not try to specify a subset
of Oracle Solaris packages to receive. Using a repository that is too sparse can result
in errors when users attempt to update their images. See “Do Not Subset Repository
Content” on page 14.

If the pkgrecv operation is interrupted, follow the instructions in “Resuming an Interrupted
Package Receive” on page 60.

5. Verify the new repository content.
Use the info, list, and verify subcommands of the pkgrepo command to check that the
repository has been copied correctly. If the pkgrepo verify command reports errors, try
using the pkgrepo fix command to fix the errors. See the pkgrepo(1) man page for more
information.

6. Snapshot the new repository.

$ zfs snapshot rpool/VARSHARE/pkgrepos/solaris@sol-11_3_0

Chapter 2 • Copying IPS Package Repositories 35

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1pkgrecv-1
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1pkgrepo-1

How to Automatically Copy a Repository From the Internet

How to Automatically Copy a Repository From the
Internet

By default, the svc:/application/pkg/mirror SMF service performs a periodic pkgrecv
operation from the solaris publisher origins defined in this image to /var/share/pkg/
repositories/solaris. This pkgrecv operation starts at 2:30am one day each month. To
change this default behavior, configure the service as described in this procedure.

At the end of each successful run of this service, the repository catalogs are refreshed. You do
not need to refresh the repository to build a search index.

Because this service runs periodically, the repository is created and also kept updated. You do
not need to use the manual repository update instructions shown in this document.

Other systems can set their solaris publisher origin to this automatically updated repository or
to a clone of this repository. Only one system needs to have an Internet publisher origin and run
the mirror service to automatically receive updates.

1. Set publisher origins.
By default, the mirror service transfers packages from the solaris publisher configured in the
image rooted at /. Although you cannot directly specify publisher origins in the mirror service
configuration, you can configure the image root from which to retrieve this information. In that
image root, use pkg set-publisher to configure the publisher origins to use as the sources of
the pkgrecv transfer for the mirror repository.

a. (Optional) Set the image root.
If the publisher configuration you want to use for the mirror service is different from the
publisher configuration you want to use in this image, create a user image in a shared
location (not contained in any BE) and reset the value of the config/ref_image property
in the mirror service to that new image, as shown in the following example. The mirror
service will use the publisher configuration from the config/ref_image image.

$ svccfg -s pkg/mirror:default setprop config/ref_image = /var/share/pkg/

mirror_svc_ref_image

$ pkg image-create /var/share/pkg/mirror_svc_ref_image

b. (Optional) Set the publishers.
If you want to update your mirror repository with packages from other publishers in
addition to the solaris publisher, reset the value of the config/publishers property in
the mirror service, as shown in the following example that shows adding the ha-cluster
and solarisstudio publishers.

36 Copying and Creating Package Repositories in Oracle Solaris 11.3 • September 2018

How to Automatically Copy a Repository From the Internet

$ svccfg -s pkg/mirror:default setprop config/publishers = solaris,ha-cluster,

solarisstudio

c. Set the publisher origins.
Because this service runs periodically, you should set your publisher origins to a repository
that provides regular updates. For Oracle products, you probably want to set your publisher
origins to a support repository to retrieve Support Repository Updates (SRUs). In the
following example, the -R option is needed only if you are configuring publishers in an
alternate image root. The -k and -c options might not be needed, depending on the origin
URIs.

$ pkg -R /var/share/pkg/mirror_svc_ref_image set-publisher \

-g https://pkg.oracle.com/solaris/support/ -k ssl_key -c ssl_cert solaris
$ pkg -R /var/share/pkg/mirror_svc_ref_image set-publisher \

-g https://pkg.oracle.com/ha-cluster/support/ -k ssl_key -c ssl_cert ha-cluster
$ pkg -R /var/share/pkg/mirror_svc_ref_image set-publisher \

-g https://pkg.oracle.com/solarisstudio/support/ -k ssl_key -c ssl_cert solarisstudio

Use one of the following commands to verify the publishers configured in the new image:

$ pkg -R /var/share/pkg/mirror_svc_ref_image publisher

$ pkg -R /var/share/pkg/mirror_svc_ref_image publisher solaris ha-cluster

 solarisstudio

2. (Optional) Configure other properties of the mirror service.
You might want to modify other properties of the mirror service, such as the time the service
runs or the location of the mirror repository.

You might want to change the time the service runs to more closely match the time you expect
the publisher origins being mirrored to be updated. To change the time the service runs, modify
the value of the config/crontab_period property.

To change the location of the mirror repository, modify the value of the config/repository
property. If you change the location of the mirror repository, keep the repository in
a shared location. See “Best Practices for Creating and Using Local IPS Package
Repositories” on page 14. The default location, /var/share/pkg/repositories/solaris, is a
shared location, not contained in any BE.

3. Enable the mirror service.
Use the svcs mirror command to check the state of the mirror service.

■ The service is disabled and you want to use this service.

a. Refresh the service instance if you changed the configuration.

Chapter 2 • Copying IPS Package Repositories 37

How to Automatically Copy a Repository From the Internet

If you changed any of the configuration of the mirror service, as shown in the svccfg
setprop commands in the previous steps, refresh the service to commit the changed
values into the running snapshot. If the output from the svcprop -p config mirror
command does not show the values you want, make sure the output from the svccfg
-s mirror:default listprop config command shows the values you want. Use
either svcadm refresh mirror:default or svccfg -s mirror:default refresh to
commit the changed values into the running snapshot of the service. Use the svcprop
-p config mirror command again to confirm that the service is configured the way
you want it configured.

b. Enable the service instance.
Use the following command to enable the mirror service:

$ svcadm enable mirror:default

Use the svcs mirror command to confirm that the mirror service is online. The
service will run at the time set in the config/crontab_period property.

■ The service is online and you want to run the service now.
If the service is online, refresh the service to run the service immediately. You should see
the svc-pkg-mirror method and the pkgrecv command being run by the pkg5srv user.

■ The service is online and you do not want to use this service.
Use the svcadm disable mirror command to disable this service. You might want to run
this service on only one system to maintain a master repository. On other systems, you
probably want to disable this service.

■ The service is in maintenance or is degraded.
Use the svcs -xvL mirror command to get more information to diagnose and fix the
problem.

4. Verify the repository content.
After the mirror service finishes a run, use the info, list, and verify subcommands of the
pkgrepo command to check that the repository has been copied or updated correctly. If the
pkgrepo verify command reports errors, try using the pkgrepo fix command to fix the errors.
See the pkgrepo(1) man page for more information.

Check the value of the config/crontab_period property of the mirror service to see when
the service will run. While the service is running, the svcs -p mirror command shows the
service state as online* and shows the processes started by this service. Wait until the service

38 Copying and Creating Package Repositories in Oracle Solaris 11.3 • September 2018

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1pkgrepo-1

How to Automatically Copy a Repository From the Internet

state shows as online and no processes are associated with the service before you verify the
repository.

5. Snapshot the new repository.

$ zfs snapshot rpool/VARSHARE/pkg/repositories/solaris@sol-11_3_0

Next Steps You might not want to copy content from multiple publishers at the same time. Instead of
setting multiple publishers in one config/publishers property, you could create multiple
instances of the pkg/mirror service. For example, the config/publishers property could be
set to solaris for the default instance, to ha-cluster for a new pkg/mirror:ha-cluster
instance, and to solarisstudio for a new pkg/mirror:solarisstudio instance. Similarly, the
config/crontab_period could be set differently for each instance. You could store the content
from each publisher in one repository, as shown in this procedure, or you could set a separate
config/repository value for each pkg/mirror instance.

See Also See Managing System Services in Oracle Solaris 11.3 for more information about SMF
commands.

Chapter 2 • Copying IPS Package Repositories 39

http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=SVSVF

40 Copying and Creating Package Repositories in Oracle Solaris 11.3 • September 2018

 3 ♦ ♦ ♦ C H A P T E R 3

Providing Access To Your Repository

This chapter describes how to enable systems to retrieve packages in your local repository by
using either of the following methods:

■ A file interface
■ An HTTP interface

One repository can be configured for both types of access.

This chapter also shows how to use an Oracle Solaris 10 or Linux system to serve Oracle
Solaris 11 package repository content.

Comparing Repository Access Interfaces

The following table offers information to help you decide how to provide access to your IPS
package repository. A single repository can be configured for both file access and HTTP or
HTTPS access.

TABLE 2 Repository Access Interfaces Comparison

Repository Access
Types

File HTTP HTTPS

Advantages Easy access for local users. Easy access for multiple
systems without using
NFS.

Restricted system access. Secure
transfer of content between
repository and installable image.
Configure with or without client
authentication.

Disadvantages Requires NFS. Less
flexibility to configure
access controls.

Not secure. Difficult to
restrict systems from
connecting.

More complex to configure,
particularly if you configure
client authentication.

Chapter 3 • Providing Access To Your Repository 41

Enabling Users to Retrieve Packages Using a File Interface

Enabling Users to Retrieve Packages Using a File Interface

This section describes how to serve local repository packages from a directory on your local
network.

How to Enable Users to Retrieve Packages Using
a File Interface

1. Configure an NFS share.
To enable systems to access the local repository by using NFS, create and publish an NFS share.

$ zfs share -o share.nfs=on rpool/VARSHARE/pkgrepos%ipsrepo

See the zfs_share(1M) man page for more information, such as additional share.nfs
properties that you could set.

2. Confirm that the share is published.
Use one of the following tests to confirm that the share is published:

■ Search for the repository in the shared file system table.

$ grep repo /etc/dfs/sharetab

/var/share/pkgrepos ipsrepo nfs sec=sys,rw

■ Determine whether the repository is accessible from a remote system.

$ dfshares

RESOURCE SERVER ACCESS TRANSPORT

 solaris:/var/share/pkgrepos solaris - -

3. Set the publisher origin.
Using the repository location and publisher name from the previous steps, run the following
command to set the origin for the publisher:

$ pkg set-publisher -g /var/share/pkgrepos/solaris/ solaris

See “Configuring Publishers” in Adding and Updating Software in Oracle Solaris 11.3 for more
information about configuring publishers.

42 Copying and Creating Package Repositories in Oracle Solaris 11.3 • September 2018

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1Mzfs-share-1m
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=AUOSSpublisher-config

Enabling Users to Retrieve Packages Using an HTTP Interface

Enabling Users to Retrieve Packages Using an HTTP
Interface

This section describes how to configure an HTTP interface for a package repository by
configuring a svc:/application/pkg/depot SMF service instance. The pkg/depot instance
runs the Apache instance.

TABLE 3 HTTP Repository Access Configuration Methods Comparison

Configuration
Method

pkg/server service pkg/depot service Manual Apache configuration

Advantages Requires the least amount
of configuration. See
“How to Configure a
pkg/server Service
Instance” on page 46.

Provides a scalable
package repository server
for simultaneous use
by a large number of
clients. See “How to
Enable Users to Retrieve
Packages Using an HTTP
Interface” on page 43.

Provides scalability and more
fine-grained control such
as caching, load balancing,
multiple repositories behind one
domain, and HTTPS access. See
Chapter 5, “Running the Package
Depot Server Behind a Web
Server”.

Disadvantages Does not scale well. This
method is most suitable for
package development with
access by a small number
of clients.

Requires a small amount
of additional configuration
after first configuring a
pkg/server instance.

This method is more complex to
configure.

How to Enable Users to Retrieve Packages Using
an HTTP Interface

To enable systems to access the local repository by using HTTP or HTTPS, this procedure
shows how to configure a svc:/application/pkg/depot SMF service instance. The pkg/depot
instance provides a scalable package repository server.

Before You Begin To get the svc:/application/pkg/depot SMF service and the pkg.depot-config(1M) man
page, make sure the pkg:/package/pkg/depot package is installed.

1. Create a pkg/server instance.
See “How to Configure a pkg/server Service Instance” on page 46. The svc:/
application/pkg/server instance for each repository provides the file system location of the
repository (in the pkg/inst_root property). Each pkg/server instance serves a single local
repository. A single pkg/depot instance can serve multiple repositories.

Chapter 3 • Providing Access To Your Repository 43

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1Mpkg.depot-config-1m

How to Enable Users to Retrieve Packages Using an HTTP Interface

By default, repository content is served by an instance of the pkg.depotd package depot server.
If you run svcs -p on the pkg/server instance, you see a pkg.depotd process associated with
this pkg/server instance:

$ svcs -p pkg/server:solaris

STATE STIME FMRI

online Jun_26 svc:/application/pkg/server:solaris

 Jun_26 16129 pkg.depotd

Running a pkg.depotd process under a pkg/server instance works well when a small number
of clients need to access the repository simultaneously. For greater scalability, configure
the repository to be served directly by the Apache depot server by associating a pkg/depot
instance, as described in the following steps.

2. Ensure that the value of the readonly property is true.
The default value of the pkg/readonly property is true. If this value has been changed, reset
the value to true.

3. Set the standalone property.
To configure the repository to be served directly by the Apache depot server, set the value of the
pkg/standalone property for the appropriate pkg/server service instance to false.

■ If the pkg/standalone property of a particular pkg/server instance is set to true, then the
repository is served by the pkg.depotd process.

■ If the pkg/standalone property of a particular pkg/server instance is set to false and
the pkg/readonly property is set to true, then the repository is served by the pkg/depot:
default instance, which runs the Apache instance.

Each pkg/server instance either runs pkg.depotd or instructs the pkg/depot service to serve
this repository and provides the file system location of the repository.
Use the -c option with the svcprop command because you have not yet refreshed the service:

$ svccfg -s pkg/server:solaris setprop pkg/standalone=false

$ svcprop -c -p pkg/standalone pkg/server:solaris

pkg/standalone boolean false

After you restart this pkg/server service instance, you no longer see processes associated with
this pkg/server instance. If you run svcs -p on the pkg/depot service, you see Apache worker
processes associated with the pkg/depot service:

$ svcs -p pkg/depot pkg/server:solaris

STATE STIME FMRI

online 12:26:38 svc:/application/pkg/server:default

online 12:26:40 svc:/application/pkg/depot:default

44 Copying and Creating Package Repositories in Oracle Solaris 11.3 • September 2018

How to Enable Users to Retrieve Packages Using an HTTP Interface

 12:26:39 6266 httpd.worker

 12:26:39 6269 httpd.worker

 12:26:39 6270 httpd.worker

 12:26:39 6272 httpd.worker

 12:26:39 6273 httpd.worker

4. Set the host name.
Set the value of the config/host property of the pkg/depot:default instance to the IP address
or host name of the system that hosts the repository file system.

$ svccfg -s pkg/depot:default setprop config/host=pkg.example.com

If you need to access this repository URI from other systems, specify the host name to use
as the argument to the Apache ServerName directive. See ServerName directive examples in
“How to Configure Secure Repositories” on page 95 and “Adding SSL Configuration to the
Apache Configuration File” on page 91.

5. (Optional) Set other properties.
For descriptions of pkg/depot properties, see the Options section of the pkg.depot-
config(1M) man page.

The following command lists the depot configuration properties and their values:

$ svcprop -p config pkg/depot

To set multiple service properties, use the following command to edit all of the properties at
once. Remember to remove the comment marker (#) from the beginning of any lines that you
change.

$ svccfg -s pkg/depot:default editprop

6. Start the pkg/depot instance.

■ If the pkg/depot instance is disabled, refresh and enable the instance:

$ svcadm refresh pkg/depot:default

$ svcadm enable pkg/depot:default

If the pkg/depot instance is not online, use the svcs -xvL pkg/depot command to get
more information to diagnose and fix the problem.

■ If the pkg/depot instance is online, refresh and restart the instance:

$ svcadm refresh pkg/depot:default

$ svcadm restart pkg/depot:default

Chapter 3 • Providing Access To Your Repository 45

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1Mpkg.depot-config-1m
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1Mpkg.depot-config-1m

How to Configure a pkg/server Service Instance

7. Restart the pkg/server instance.
The pkg/server instance should already be online.

$ svcadm refresh pkg/server:solaris

$ svcadm restart pkg/server:solaris

See Also ■ The pkg.depot-config(1M) man page provides more information about web server
configuration for pkg package repositories.

■ “Serving Multiple Repositories Using Web Server Access” on page 64 describes how to
serve multiple repositories from multiple locations or from a single location.

■ “Multiple Repositories Under One Domain” on page 84 describes how to run multiple
repositories under one domain name with different prefixes.

■ Chapter 5, “Running the Package Depot Server Behind a Web Server” describes how to
configure your web server for caching, load balancing, and serving multiple repositories.

■ “Configuring HTTPS Repository Access” on page 86 describes how to configure secure
repository access.

How to Configure a pkg/server Service Instance

You always need to configure a svc:/application/pkg/server SMF service instance. A pkg/
server instance is required to provide the file system location of the repository to either a pkg/
depot instance or a manual Apache configuration.

1. Create a pkg/server depot server instance.
You could configure the default instance of the pkg/server service. This procedure shows
how to create and configure a new instance.

Use the add subcommand to add a new instance of the pkg/server service named solaris.

$ svccfg -s pkg/server add solaris

2. Set the path to the repository.
Set the path where this instance of the service can find the repository data.

$ svccfg -s pkg/server:solaris setprop pkg/inst_root=/var/share/pkgrepos/solaris

3. (Optional) Set other properties.
For a complete list of pkg/server properties, see the pkg.depotd(1M) man page.

46 Copying and Creating Package Repositories in Oracle Solaris 11.3 • September 2018

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1Mpkg.depot-config-1m
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1Mpkg.depotd-1m

How to Configure a pkg/server Service Instance

To set multiple service properties, use the following command to edit all of the properties at
once. Remember to remove the comment marker (#) from the beginning of any lines that you
change.

$ svccfg -s pkg/server:solaris editprop

Note - When the value of the pkg/standalone property is false and the value of the pkg/
readonly property is true (see “How to Enable Users to Retrieve Packages Using an HTTP
Interface” on page 43), then only the pkg/inst_root property of the pkg/server instance
is used. All other configuration comes from properties on the pkg/depot service.

The following are examples of other properties that you could set:

■ Set the port property.
Set the port number on which the depot server instance should listen for incoming package
requests. By default, pkg.depotd listens for connections on port 80. To change the port,
reset the pkg/port property.

■ Increase the threads property value to increase scalability for a small
number of clients.
To increase concurrent client access for a repository served by the pkg.depotd depot
server, increase the value of the pkg/threads property.

The default value of the pkg/threads property is 60. The pkg/threads value is limited
by available memory. Allow for 20 threads used per concurrent client. Scaling efficiency
peaks at about 20 clients.

$ svccfg -s pkg/server:solaris setprop pkg/threads=400

4. Start the repository service.
Refresh and enable the pkg/server instance.

$ svcadm refresh pkg/server:solaris

$ svcadm enable pkg/server:solaris

If the pkg/server:solaris instance is not online, use the svcs -xvL pkg/server:solaris
command to get more information to diagnose and fix the problem.

5. Test that the repository server is working.
To determine whether the repository server is working, open a browser window on the
localhost location. By default, pkg.depotd listens for connections on port 80. If you have
changed the port, open a browser window on the localhost:port_number location.

Chapter 3 • Providing Access To Your Repository 47

How to Configure a pkg/server Service Instance

6. Set the publisher origin.
Set the publisher origin to the pkg/port location:

$ pkg set-publisher -g http://localhost:81/ solaris

See “Configuring Publishers” in Adding and Updating Software in Oracle Solaris 11.3 for more
information about configuring publishers.

Next Steps
Note - A pkg/server instance for repository access is suitable for use by a small number of
clients. For simultaneous access by a large number of clients, implement a pkg/depot instance.
A pkg/depot instance provides much greater scalability than a pkg/server instance. See “How
to Enable Users to Retrieve Packages Using an HTTP Interface” on page 43.

Updating Repositories with HTTP Locations

You cannot add packages to or remove packages from a repository by using the http location
of the repository if the value of the pkg/readonly property is true. Do not change the value of
the pkg/readonly property. Instead, to update a repository that has an http location configured,
use the file system location for that repository. The file system location is the value of the pkg/
inst_root property of the pkg/server service instance for this repository.

The following commands show that the repository at /var/share/pkgrepos/solaris can be
accessed at pkg.example.com:80:

$ svcprop -t -p pkg/inst_root -p pkg/port -p pkg/readonly -p pkg/standalone \

pkg/server:solaris

pkg/standalone boolean false

pkg/readonly boolean true

pkg/port count 80

pkg/inst_root astring /var/share/pkgrepos/solaris

$ svcprop -p config/host pkg/depot:default

pkg.example.com

The following commands show that you can get information about the repository by using the
http location. The solaris in the -s and -g arguments is the name of the pkg/server service
instance: pkg/server:solaris. If the value of pkg/standalone were true, the value of the -s
and -g arguments would be simply http://pkg.example.com/.

$ pkgrepo -s http://pkg.example.com/solaris info

PUBLISHER PACKAGES STATUS UPDATED

solaris 1404 online 2017-06-30T19:01:49.247256Z

$ pkgrepo -s http://pkg.example.com/solaris list entire

48 Copying and Creating Package Repositories in Oracle Solaris 11.3 • September 2018

http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=AUOSSpublisher-config

How to Configure a pkg/server Service Instance

PUBLISHER NAME O VERSION

solaris entire 0.5.11,5.11-0.175.3.18.0.6.0:

20170322T192451Z

$ pkg list -g http://pkg.example.com/solaris entire

NAME (PUBLISHER) VERSION IFO

entire 0.5.11-0.175.3.18.0.6.0 ---

The following commands show that you cannot add packages to or remove packages from the
repository by using the http location, but you can update the repository by using the underlying
file system location. Best practice is to always leave pkg/readonly set to true and use the
repository file system location to update the repository.

$ pkgrecv -s testrepo -d http://pkg.example.com/solaris testpkg

Processing packages for publisher solaris ...

Retrieving and evaluating 1 package(s)...

PROCESS ITEMS GET (MB) SEND (MB)

testpkg 0/1 0.0/0.0 0.0/0.0

pkgrecv: 'open' failed for transaction ID 'id': Publisher 'solaris' has no
repositories that support the 'open/0' operation.

$ pkgrecv -s testrepo -d /var/share/pkgrepos/solaris testpkg

Processing packages for publisher solaris ...

Retrieving and evaluating 1 package(s)...

PROCESS ITEMS GET (MB) SEND (MB)

Completed 1/1 0.0/0.0 0.0/0.0

$ pkg list -g http://pkg.example.com/solaris testpkg

NAME (PUBLISHER) VERSION IFO

testpkg 1.0 ---

$ pkgrepo -s http://pkg.example.com/solaris remove testpkg

pkgrepo remove: Network repositories are not currently supported for this operation.

$ pkgrepo -s /var/share/pkgrepos/solaris remove testpkg

Removing packages for publisher solaris ...

Deleting search index Done

Updating catalog Done

Analyzing removed packages 1/1

Analyzing repository packages 1430/1430

Removing package manifests 1/1

Removing package files 1/1

$ pkg list -g http://pkg.example.com/solaris testpkg

pkg list: no packages matching 'testpkg' known

$ pkg list -g /var/share/pkgrepos/solaris testpkg

pkg list: no packages matching 'testpkg' known

Chapter 3 • Providing Access To Your Repository 49

Using an Oracle Solaris 10 or Linux System to Serve Repository Content

Using an Oracle Solaris 10 or Linux System to Serve
Repository Content

In addition to accessing your repository through an Oracle Solaris 11 system, you can access
your IPS package repository through an Oracle Solaris 10 system or a Linux system.

The repository must be created on an Oracle Solaris 11 system. The repository can remain on
the Oracle Solaris 11 system and be accessed from an Oracle Solaris 10 or Linux system, or you
can copy the repository directory to the Oracle Solaris 10 or Linux system.

A file system repository can be hosted on almost any operating system and then shared over
NFS, SMB, or any other remote file system mechanism that Oracle Solaris supports.

The following procedure shows how to provide HTTP access to an IPS repository from an
Oracle Solaris 10 or Linux system. In addition to Oracle Solaris 10 and Linux repository hosts,
you could use this partial configuration as an Apache configuration for Oracle Solaris 11
11/11, Oracle Solaris 11.1, Oracle Solaris 11.2, or Oracle Solaris 11.3 repository hosts. You
might want to do this, for example, if you have an existing web server and do not want to run a
separate web server instance as part of the svc:/application/pkg/depot service.

How to Provide HTTP Access to an IPS Repository
From an Oracle Solaris 10 or Linux System

When HTTP access to a repository is provided from a system that is not an Oracle Solaris 11
system, pkg search and BUI support are not available. Users can install and update packages
and get information about packages through the pkg list, pkg info, and pkg contents
commands.

Before You Begin This procedure uses the pkg.depot-config command, which is available only in Oracle Solaris
11.2 or later. You must install the package/pkg/depot package to get the pkg.depot-config
command.

1. Create a partial web server configuration file.
Use the pkg.depot-config command to create the configuration to enable a web server on the
Oracle Solaris 10 or Linux system to serve basic pkg installation operations for systems using
an existing web service.

/usr/lib/pkg.depot-config -F -d prefix=repository_dir -r runtime_dir

50 Copying and Creating Package Repositories in Oracle Solaris 11.3 • September 2018

How to Provide HTTP Access to an IPS Repository From an Oracle Solaris 10 or Linux System

The prefix is a prefix into the depot-config web server namespace where the repository_dir
repository can be accessed. The runtime_dir is created if it does not already exist. See the pkg.
depot-config(1M) man page for more information about how to use the pkg.depot-config
command.

This command creates the following output in the runtime_dir directory, as shown in Example
3, “Serving Package Content From a Linux System Using an HTTP Interface,” on page 51:

■ A filed named depot.conf that contains rewrite rules.
■ An htdocs directory.

2. Install the partial web server configuration file.
Copy the partial configuration that is output by the pkg.depot-config command to the
Apache configuration directory. On an Oracle Solaris 10 repository host, copy the depot.conf
configuration fragment file to /etc/apache2/2.2/conf.d, for example. For a Linux repository
host, consult your OS documentation to determine how to use this partial configuration file. The
htdocs files must be accessible from the DocumentRoot of the repository host.

3. Set the publisher origin.
On each Oracle Solaris system that needs to access the repository, set the publisher origin to the
http address of the repository host system, as shown in the following example. Use pkg list
or pkg info to test your access to the repository.

Example 3 Serving Package Content From a Linux System Using an HTTP Interface

In this example, the repository is in /var/share/pkgrepos on an Oracle Solaris 11.3 system.
This repository contains one package from the mypub publisher.

$ pkgrepo -s /var/share/pkgrepos/myrepo info

PUBLISHER PACKAGES STATUS UPDATED

mypub 1 online 2015-06-08T05:23:00.489687Z

The following command creates the configuration.

$ /usr/lib/pkg.depot-config -F -d customconfig=/var/share/pkgrepos/myrepo \

-r /tmp/runtime

Created /tmp/runtime/depot.conf

The -F option produces a partial Apache configuration file that can be installed on the
Linux system to enable access to the IPS package repository from the Linux system. This
configuration information is only a partial configuration, designed to be included from an
existing Apache configuration file. For a complete httpd.conf configuration, you need many
additional Apache settings that are not included in this partial configuration.

Chapter 3 • Providing Access To Your Repository 51

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1Mpkg.depot-config-1m
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1Mpkg.depot-config-1m

How to Provide HTTP Access to an IPS Repository From an Oracle Solaris 10 or Linux System

The -d option specifies the path to the repository. This repository directory will be included in
the depot server configuration. The customconfig portion of the argument is used as a prefix
into the depot-config web server namespace where this repository can be accessed.

The -r option specifies the output directory for the configuration files.

The pkg.depot-config command created the following configuration files:

/tmp/runtime/depot.conf

/tmp/runtime/htdocs

/tmp/runtime/htdocs/customconfig

/tmp/runtime/htdocs/customconfig/mypub

/tmp/runtime/htdocs/customconfig/mypub/publisher

/tmp/runtime/htdocs/customconfig/mypub/publisher/1

/tmp/runtime/htdocs/customconfig/mypub/publisher/1/index.html

/tmp/runtime/htdocs/customconfig/publisher

/tmp/runtime/htdocs/customconfig/publisher/1

/tmp/runtime/htdocs/customconfig/publisher/1/index.html

/tmp/runtime/htdocs/customconfig/status

/tmp/runtime/htdocs/customconfig/status/0

/tmp/runtime/htdocs/customconfig/status/0/index.html

/tmp/runtime/htdocs/versions

/tmp/runtime/htdocs/versions/0

/tmp/runtime/htdocs/versions/0/index.html

The pkg.depot-config command created the following /tmp/runtime/depot.conf file:

RewriteEngine on

RewriteLog "/var/log/pkg/depot/rewrite.log"

RewriteLogLevel 0

Allow these because they are encoded in the package/manifest names

when looking up v4 repositories.

AllowEncodedSlashes On

The default of 500 MaxKeepAliveRequests is too low to be useful.

MaxKeepAliveRequests 10000

Per-repository versions, publishers, and status responses.

RewriteRule ^/customconfig/versions/0 /versions/0/index.html [PT,NE]

RewriteRule ^/customconfig/publisher/0 /customconfig/publisher/1/index.html [PT,NE]

RewriteRule ^/customconfig/status/0 /customconfig/status/0/index.html [PT,NE]

Rules to handle responses for default publishers.

RewriteRule ^/mypub/manifest/0/.*$ %{THE_REQUEST} [NE,C]

RewriteRule ^GET\ /mypub/manifest/0/([^@]+)@([^\]+)(\ HTTP/1.1)$ /customconfig/mypub/

publisher/mypub/pkg/$1/$2 [NE,PT,C]

RewriteRule ^/customconfig/mypub/(.*)$ %{DOCUMENT_ROOT}/customconfig/mypub/$1 [NE,L]

RewriteRule ^/mypub/file/(.*$) /customconfig/mypub/file/$1 [NE]

52 Copying and Creating Package Repositories in Oracle Solaris 11.3 • September 2018

How to Provide HTTP Access to an IPS Repository From an Oracle Solaris 10 or Linux System

RewriteRule ^/customconfig/catalog/1/(.*$) /customconfig/mypub/publisher/mypub/catalog/

$1 [NE,PT]

Write per-publisher rules for publisher, version, file, and manifest responses.

Serve the static versions and publisher responses.

RewriteRule ^/customconfig/mypub/versions/0 %{DOCUMENT_ROOT}/versions/0/index.html

 [L,NE]

RewriteRule ^/customconfig/mypub/publisher/0 %{DOCUMENT_ROOT}/customconfig/mypub/

publisher/1/index.html [L,NE]

RewriteRule ^/customconfig/mypub/catalog/1/(.*)$ /customconfig/mypub/publisher/mypub/

catalog/$1 [NE,PT]

RewriteRule ^/customconfig/mypub/file/1/(..)(.*)$ /customconfig/mypub/publisher/mypub/

file/$1/$1$2 [NE,PT]

RewriteRule ^/customconfig/mypub/manifest/0/.*$ %{THE_REQUEST} [NE,C]

RewriteRule ^GET\ /customconfig/mypub/manifest/0/([^@]+)@([^\]+)(\

 HTTP/1.1)$ /customconfig/mypub/publisher/mypub/pkg/$1/$2 [NE,PT,C]

RewriteRule ^/customconfig/mypub/(.*)$ %{DOCUMENT_ROOT}/customconfig/mypub/$1 [NE,L]

Create an alias to serve /var/share/pkgrepos/myrepo content.

Map the web server URI namespace to a location on the file system.

Alias /customconfig/mypub /var/share/pkgrepos/myrepo

Enable the web server to see that file system location.

<Directory "/var/share/pkgrepos/myrepo">

 AllowOverride None

 Order allow,deny

 Allow from all

</Directory>

Versions response.

RewriteRule ^/.*[/]?versions/0/?$ %{DOCUMENT_ROOT}/versions/0/index.html [L]

Allow for 'OPTIONS * HTTP/1.0' requests.

RewriteCond %{REQUEST_METHOD} OPTIONS [NC]

RewriteRule * - [L]

Location matches based on the final Rewrite paths for file,

manifest, catalog, and publisher responses.

<LocationMatch ".*/file/../[a-zA-Z0-9]+$">

 Header set Cache-Control "must-revalidate, no-transform, max-age=31536000"

 Header set Content-Type application/data

</LocationMatch>

<LocationMatch ".*/publisher/.*/pkg/.*">

 Header set Cache-Control "must-revalidate, no-transform, max-age=31536000"

 Header set Content-Type text/plain;charset=utf-8

</LocationMatch>

<LocationMatch ".*/catalog/catalog.*.C">

 Header set Cache-Control "must-revalidate, no-transform, max-age=86400"

Chapter 3 • Providing Access To Your Repository 53

How to Provide HTTP Access to an IPS Repository From an Oracle Solaris 10 or Linux System

 Header set Content-Type text/plain;charset=utf-8

</LocationMatch>

<LocationMatch ".*/catalog.attrs">

 Header set Cache-Control no-cache

</LocationMatch>

<LocationMatch ".*/publisher/\d/.*">

 Header set Cache-Control "must-revalidate, no-transform, max-age=31536000"

 Header set Content-Type application/vnd.pkg5.info

</LocationMatch>

Copy /tmp/runtime to the Linux system. The depot.conf configuration fragment file must be
added to the Apache configuration on the Linux system, and the htdocs files must be accessible
from the DocumentRoot of the Linux system.

On Oracle Solaris systems that need to access this repository, set the origin of the mypub
publisher to the http address of the Linux system.

$ pkg set-publisher -g http://linux-system-name:8080/mypub mypub

You could have used the -P option to the pkg.depot-config command to root the repository
further down the URI namespace. For example, the following pkg.depot-config command
enables you to have a mypub origin of http://linux-system-name:8080/ips-repos/mypub:

$ /usr/lib/pkg.depot-config -F -P ips-repos -d customconfig=/var/share/pkgrepos/myrepo -

r /tmp/runtime

54 Copying and Creating Package Repositories in Oracle Solaris 11.3 • September 2018

 4 ♦ ♦ ♦ C H A P T E R 4

Maintaining Your Local IPS Package Repository

This chapter describes how to do the following tasks:

■ Update packages in an IPS repository
■ Maintain multiple identical repositories
■ Serve multiple different repositories using HTTP access
■ Set or update properties of a repository
■ Add packages to a repository from a second source

Updating Your Local Repository

The procedures shown in this section illustrate the following best practices for updating IPS
package repositories:

■ Keep each repository updated with all support updates for that release. Support updates
contain security updates and other important fixes. See “Best Practices for Creating
and Using Local IPS Package Repositories” on page 14 and “Oracle Solaris Repository
Content” on page 19 for more information.
Users can update to a version earlier than the latest version in the repository by specifying
the version of the pkg:/entire constraint package to install. See “Updating to a Version
Older Than the Newest Version Allowed” in Adding and Updating Software in Oracle
Solaris 11.3.
For information about keeping your repository as small as possible see “Minimal Required
Repository” on page 15 and the remove and replace instructions in Step 3 in “How to
Update a Local IPS Package Repository” on page 56.

■ Update a copy of the repository. This practice helps ensure that systems do not access the
repository while the repository is being updated. Create a snapshot of your repository before
you update the repository, clone the snapshot, perform the update, and replace the original
repository with the updated clone.

Chapter 4 • Maintaining Your Local IPS Package Repository 55

http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=AUOSSupdateconstraints
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=AUOSSupdateconstraints
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=AUOSSupdateconstraints

How to Update a Local IPS Package Repository

If you are maintaining multiple copies of package repositories with the same content, use the
following procedure to update one of those identical repositories. See “Maintaining Multiple
Identical Local Repositories” on page 60 for the procedure to update the additional
repositories from this master repository.

How to Update a Local IPS Package Repository

Note - You do not need to perform this procedure if you use the svc:/application/pkg/
mirror SMF service to periodically update your repository. See “How to Automatically Copy a
Repository From the Internet” on page 36 for instructions for using the mirror service.

Use the following steps to minimize disruption to clients. With this procedure, the update takes
place out of sight, replacing the repository with the updated repository is fast, and clients do not
need to change their solaris publisher origin or add a new origin.

1. Make a ZFS snapshot of the package repository.
Make sure you have a current snapshot of the repository to be updated.

Note - This step is especially important if you are going to use pkgrecv --clone to update
the repository, because the clone operation leaves the destination repository altered if an error
occurs.

$ zfs list -rt all rpool/VARSHARE/pkgrepos/solaris

NAME USED AVAIL REFER MOUNTPOINT

rpool/VARSHARE/pkgrepos/solaris 17.6G 78.4G 34K /var/share/pkgrepos/

solaris

rpool/VARSHARE/pkgrepos/solaris@initial 0 - 17.6G -

If you already have a snapshot of the repository, use the zfs diff command to check whether
the snapshot is the same as the repository dataset.

$ zfs diff rpool/VARSHARE/pkgrepos/solaris@initial

$

If the zfs diff command produces no output, then the snapshot is the same as its parent
dataset, and you can use that snapshot for the update.
If the zfs diff command produces output, or if you do not have a snapshot of the repository,
then take a new snapshot as shown in Step 6 in “How to Explicitly Copy a Repository From the
Internet” on page 34. Use this new snapshot for the update.

2. Make a ZFS clone of the snapshot.

56 Copying and Creating Package Repositories in Oracle Solaris 11.3 • September 2018

How to Update a Local IPS Package Repository

Clone the repository snapshot to create a copy of the repository that you can update.

$ zfs clone rpool/VARSHARE/pkgrepos/solaris@initial rpool/VARSHARE/pkgrepos/solaris_tmp

The %ipsrepo in the following listing is the share from “How to Enable Users to Retrieve
Packages Using a File Interface” on page 42.

$ zfs list -rt all rpool/VARSHARE/pkgrepos

NAME USED AVAIL REFER MOUNTPOINT

rpool/VARSHARE/pkgrepos 17.6G 78.4G 33K /var/share/pkgrepos

rpool/VARSHARE/pkgrepos%ipsrepo - - - /var/share/pkgrepos

rpool/VARSHARE/pkgrepos/solaris 17.6G 78.4G 17.6G /var/share/pkgrepos/

solaris

rpool/VARSHARE/pkgrepos/solaris@initial 0 - 17.6G -

rpool/VARSHARE/pkgrepos/solaris_tmp 76K 78.4G 17.6G /var/share/pkgrepos/

solaris_tmp

3. Update the ZFS clone of the package repository.
Just as you created the original repository either from a file or from an HTTP location, you can
update your repository either from a file or from an HTTP location.

(Optional) To minimize the size of the repository, replace the repository rather than add
packages with every repository update. Use one of the following two methods to replace the
repository in the snapshot clone:

■ Use the --clone option of the pkgrecv command as described in "Update from a
repository" below.

■ Remove all solaris content from the repository and add only the content that is needed
to support current systems. Do not try to select a subset of repository content to remove.
Remove all solaris content and then add all content that you need for current systems
according to the list in “Minimal Required Repository” on page 15. Do not remove all
content from the clone; remove only the content under the publisher/solaris directory as
shown in the following command:

$ rm -rf /var/share/pkgrepos/solaris_tmp/publisher/solaris/*

Use one of the following methods to update the repository in the snapshot clone:

■ Update from a zip file.

a. Follow the instructions in Example 2, “Adding to an Existing Repository
From a zip File,” on page 32.
Specify the -v option to the install-repo.ksh script to verify the repository.

Chapter 4 • Maintaining Your Local IPS Package Repository 57

How to Update a Local IPS Package Repository

If the specified destination already contains a package repository, the content of the
zip file is added to the content of the existing repository, and a pkgrepo rebuild is
performed to update catalogs and indexes.

b. Continue with Step 6 below.

■ Update from an ISO file.

a. Create the ISO file.
Create an .iso file from the repository .zip files using the -I option as described in
Example 1, “Creating a New Repository From a zip File,” on page 30.

b. Mount the ISO image.

$ mount -F hsfs ./sol-11_3-incr-repo.iso /mnt

c. Copy the ISO file content to the repository clone.
Use either rsync or tar as shown in “How to Copy a Repository From an iso
File” on page 32.

$ rsync -aP /mnt/repo/ /var/share/pkgrepos/solaris_tmp

d. Unmount the ISO image.

■ Update from a repository.
Copy content from another repository to the repository clone. If you are copying from a
secure site, ensure that the required SSL certificate and key are installed, and specify the
required certificate and key options.

$ pkgrecv -s https://pkg.oracle.com/solaris/support \

-d /var/share/pkgrepos/solaris_tmp \

--key /path-to/key-file --cert /path-to/certificate-file '*'

See the pkgrecv(1) man page for more information about the pkgrecv command. Only
packages that have changed are updated, so the time to update your repository can be
much less than the time to populate the original repository. See the performance tips in
“Performance Considerations for Copying Repositories” on page 23.

The --clone option of the pkgrecv command makes the repository copy significantly
faster by performing a differences-only update of the destination repository instead of a
series of incremental additions. The --clone option makes an exact copy of the source
repository, including deleting packages from the destination repository that are not in the

58 Copying and Creating Package Repositories in Oracle Solaris 11.3 • September 2018

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1pkgrecv-1

How to Update a Local IPS Package Repository

source repository. If you use the --clone option, make sure the source repository contains
everything you need according to the list in “Minimal Required Repository” on page 15. If
an error occurs, roll back to the most recent repository snapshot.

If the pkgrecv operation is interrupted, follow the instructions in “Resuming an Interrupted
Package Receive” on page 60.

4. Verify the updated repository.
Use the pkgrepo verify command to verify the updated repository. See the pkgrepo(1) man
page for more information about the pkgrepo verify and pkgrepo fix commands.

5. Catalog new packages and update search indexes.
Catalog any new packages found in the newly updated repository and update all search indexes.

$ pkgrepo refresh -s /var/share/pkgrepos/solaris_tmp

6. Make a ZFS snapshot the newly updated clone of the package repository.

$ zfs snapshot rpool/VARSHARE/pkgrepos/solaris_tmp@S11U3SRU2

7. Replace the working repository with the updated clone.

$ svcadm disable -st pkg/server:solaris

$ zfs promote rpool/VARSHARE/pkgrepos/solaris_tmp

$ zfs rename rpool/VARSHARE/pkgrepos/solaris rpool/VARSHARE/pkgrepos/solaris_old

$ zfs rename rpool/VARSHARE/pkgrepos/solaris_tmp rpool/VARSHARE/pkgrepos/solaris

See the svcadm(1M) man page for more information about the svcadm command.

8. Restart the SMF service.
If you are providing the repository through an HTTP interface, restart the SMF service. Be sure
to specify the appropriate service instance when you restart the service.

$ svcadm restart pkg/server:solaris

9. Remove the old repository.
When you are satisfied that your updated repository is working correctly, you can remove the
old repository.

$ zfs destroy rpool/VARSHARE/pkgrepos/solaris_old

Chapter 4 • Maintaining Your Local IPS Package Repository 59

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1pkgrepo-1
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1Msvcadm-1m

Maintaining Multiple Identical Local Repositories

Resuming an Interrupted Package Receive

If the pkgrecv operation is interrupted, use the -c option to retrieve content that was already
downloaded and resume the content download. The value of cache_dir is supplied in an
informational message when the transfer is interrupted, as shown in the following example:

PROCESS ITEMS GET (MB) SEND (MB)

...

pkgrecv: http protocol error: code: 503 reason: Service Unavailable

URL: 'https://pkg.oracle.com/solaris/support/file/file_hash

pkgrecv: Cached files were preserved in the following directory:

 /var/tmp/pkgrecv-fOGaIg

Use pkgrecv -c to resume the interrupted download.

$ pkgrecv -c /var/tmp/pkgrecv-fOGaIg \

-s https://pkg.oracle.com/solaris/support -d /var/share/pkgrepos/solaris_tmp \

--key /path-to/key-file --cert /path-to/certificate-file '*'
Processing packages for publisher solaris ...

Retrieving and evaluating 156 package(s)...

Maintaining Multiple Identical Local Repositories

You might want to maintain multiple copies of package repositories with the same content to
achieve the following goals:

■ Increase the availability of the repository by maintaining copies on different nodes.
■ Enhance the performance of repository accesses if you have many users or your users are

spread across a great distance.
■ Configure load balancing, as described in “Configuring Load Balancing” on page 84.

Make sure that the repository that will be the source for the clone repositories is current. If
necessary, use the “How to Update a Local IPS Package Repository” on page 56 procedure
to update the source repository. Then use one of the following clone procedures:

■ “How to Clone a Local IPS Package Repository” on page 61 – Create clones of the
source repository

■ “How to Update a Cloned Local IPS Package Repository” on page 63 – Update existing
clone repositories

The clone procedures are very similar to the “How to Explicitly Copy a Repository From the
Internet” on page 34 and “How to Update a Local IPS Package Repository” on page 56

60 Copying and Creating Package Repositories in Oracle Solaris 11.3 • September 2018

How to Clone a Local IPS Package Repository

procedures. The pkgrecv operation shown in both of the clone procedures copies the source
repository files exactly (--clone), with the following effects:

■ Timestamps for the catalogs of cloned repositories are exactly the same as timestamps for
the catalogs of the source repository.
If your repositories are load balanced, the catalogs in all of the repositories must be exactly
the same to avoid problems when the load balancer switches clients from one node to
another. See “Configuring Load Balancing” on page 84 for information about load
balancing.

■ Packages that are in the destination repository but not in the source repository are removed
from the destination repository.
Do not use a sparse repository as the source for a clone operation unless your goal is to
create an exact copy of only that sparse repository.

■ The repository copy operation is significantly faster than the default repository copy
operation.

Note - The goal and result of the clone procedure is that all repositories are exact duplicates.
Configure all clone repository locations as origins on every system. IPS automatically selects
the location with the best connection for each client.

How to Clone a Local IPS Package Repository

This procedure assumes that you are creating new duplicate repositories. If you are updating
duplicate repositories that already exist, use the “How to Update a Cloned Local IPS Package
Repository” on page 63 procedure.

This procedure is very similar to the “How to Explicitly Copy a Repository From the
Internet” on page 34 procedure. Some of the steps in this procedure are abbreviated. For more
detail, see “How to Explicitly Copy a Repository From the Internet” on page 34.

Before You Begin Make sure that the repository that will be the source for the clone repositories is current. If
necessary, use the “How to Update a Local IPS Package Repository” on page 56 procedure
to update the source repository before you create the clone repositories.

1. Create a ZFS file system for the new clone repository.
Create the repository in a shared location. Set atime to off when you create the repository file
system. Consider setting the compression property. See “Best Practices for Creating and Using
Local IPS Package Repositories” on page 14.

Chapter 4 • Maintaining Your Local IPS Package Repository 61

How to Clone a Local IPS Package Repository

If other repositories exist on the same system as this clone repository, you might need to use a
different ZFS filesystem name.

$ zfs create -o atime=off rpool/VARSHARE/pkgrepos

$ zfs create rpool/VARSHARE/pkgrepos/solaris

2. Create the required repository infrastructure.
Create the required IPS repository infrastructure so that you can copy the source repository.

$ pkgrepo create /var/share/pkgrepos/solaris

3. Set the default publisher.

$ pkgrepo -s /var/share/pkgrepos/solaris set publisher/prefix=solaris

4. Copy the repository content to the new location.
Use the pkgrecv command to duplicate the updated source repository to the new clone
repository.

$ pkgrecv -s /net/host1/var/share/pkgrepos/solaris \
-d /net/host2/var/share/pkgrepos/solaris --clone -p '*'

The -p option clones content from all publishers, in case content was added from a new
publisher when the source repository was updated. See the pkgrecv(1) man page for
information about the --clone option.
If the pkgrecv operation is interrupted, follow the instructions in “Resuming an Interrupted
Package Receive” on page 60.

5. Verify the new repository content.
Use the info, list, and verify subcommands of the pkgrepo command to check that the
repository has been copied correctly. If the pkgrepo verify command reports errors, try
using the pkgrepo fix command to fix the errors. See the pkgrepo(1) man page for more
information.

6. Snapshot the new repository.

$ zfs snapshot rpool/VARSHARE/pkgrepos/solaris@sol-11_3_19

7. Restart the SMF service.
If you are providing the repository through an HTTP interface, restart the SMF service. Be sure
to specify the appropriate service instance when you restart the service.

See Also If you are providing the repository through an HTTP interface, see the following related
documentation:

62 Copying and Creating Package Repositories in Oracle Solaris 11.3 • September 2018

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1pkgrecv-1
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1pkgrepo-1

How to Update a Cloned Local IPS Package Repository

■ “Serving Multiple Repositories Using Web Server Access” on page 64 describes how to
serve multiple repositories using multiple pkg.depotd daemons running on different ports.

■ “Multiple Repositories Under One Domain” on page 84 describes how to run multiple
repositories under one domain name with different prefixes.

How to Update a Cloned Local IPS Package
Repository

This procedure assumes that you are updating duplicate repositories that already exist. If
you are creating new duplicate repositories, use the “How to Clone a Local IPS Package
Repository” on page 61 procedure.

This procedure is very similar to the “How to Update a Local IPS Package
Repository” on page 56 procedure except that this procedure copies the source repository
exactly by using the --clone option. The steps in this procedure are very abbreviated. For
detail, see “How to Update a Local IPS Package Repository” on page 56.

Before You Begin Make sure that the repository that will be the source for the clone repositories is current. If
necessary, use the “How to Update a Local IPS Package Repository” on page 56 procedure
to update the source repository before you update the clone repositories.

1. Copy the destination repository.
Make sure you have a current snapshot of the destination repository. Make a ZFS clone of this
snapshot.

This step is especially important when making a clone, because the clone (--clone) operation
leaves the destination repository altered if an error occurs.

2. Update the copy of the destination repository.
Use the pkgrecv command to duplicate the updated master repository to the copy of the
destination repository.

$ pkgrecv -s /net/host1/var/share/pkgrepos/solaris \
-d /net/host2/var/share/pkgrepos/solaris_tmp --clone -p '*'

The -p option clones content from all publishers, in case content was added from a new
publisher when the source repository was updated. See the pkgrecv(1) man page for
information about the --clone option.

If an error occurs, roll back to the most recent repository snapshot.

Chapter 4 • Maintaining Your Local IPS Package Repository 63

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1pkgrecv-1

Serving Multiple Repositories Using Web Server Access

If the pkgrecv operation is interrupted, follow the instructions in “Resuming an Interrupted
Package Receive” on page 60.

3. Replace the working destination repository with the updated clone.

4. Verify the updated repository.
Use the pkgrepo verify command to verify the updated destination repository.

5. Snapshot the newly updated repository.

6. Restart the SMF service.
If you are providing the repository through an HTTP interface, restart the SMF service. Be sure
to specify the appropriate service instance when you restart the service.

7. Remove the old repository.
When you are satisfied that your updated repository is working correctly, remove the old
repository.

See Also If you are providing the repository through an HTTP interface, see the following related
documentation:

■ “Serving Multiple Repositories Using Web Server Access” on page 64 describes how to
serve multiple repositories using multiple pkg.depotd daemons running on different ports.

■ “Multiple Repositories Under One Domain” on page 84 describes how to run multiple
repositories under one domain name with different prefixes.

Serving Multiple Repositories Using Web Server Access
The procedures in this section show how to extend the information provided in “Enabling
Users to Retrieve Packages Using an HTTP Interface” on page 43 to support serving multiple
repositories.

The following methods are two different ways to serve multiple IPS package repositories
using HTTP access. For both methods, start by creating additional instances of the pkg/server
service with unique repository paths.

■ Multiple locations. Users access each repository by viewing pages at separate locations.
■ Single location. Users access all repositories from one location.

In addition to providing access to multiple repositories, remember that a single repository
can provide packages from multiple publishers, as shown in “Adding Packages to Your
Repository” on page 74.

64 Copying and Creating Package Repositories in Oracle Solaris 11.3 • September 2018

How to Serve Multiple Repositories From Separate Locations

How to Serve Multiple Repositories From Separate
Locations

In this example, the solarisstudio repository exists in addition to the solaris repository. The
solaris repository is accessible from http://localhost/ using port 81, as specified in the
solaris instance of the pkg/server service. See “Enabling Users to Retrieve Packages Using
an HTTP Interface” on page 43.

1. Create a new repository server instance.
Use the add subcommand of the svccfg command to add a new instance of the pkg/server
service.

$ svccfg -s pkg/server add studio

2. Set the path to the repository.
Set the path where this instance of the service can find the repository data.

$ svccfg -s pkg/server:studio setprop pkg/inst_root=/var/share/pkgrepos/solarisstudio

3. (Optional) Set the port number for the new instance.

$ svccfg -s pkg/server:studio setprop pkg/port=82

4. (Optional) Set the Apache proxy base.
See “Configuring a Simple Prefixed Proxy” on page 83 for an example of setting the pkg/
proxy_base.

5. Set the repository name and description.
Make sure the repository name and description are set as shown in “Modifying Repository
Property Values” on page 73.

6. Start the repository service.
Restart the package depot server service.

$ svcadm refresh pkg/server:studio

$ svcadm enable pkg/server:studio

7. Check that the new instance is online.

$ svcs pkg/server

STATE STIME FMRI

online 14:54:16 svc:/application/pkg/server:default

Chapter 4 • Maintaining Your Local IPS Package Repository 65

How to Serve Multiple Repositories From a Single Location

online 14:54:20 svc:/application/pkg/server:studio

online 14:54:20 svc:/application/pkg/server:solaris

If the pkg/server:studio instance is not online, use the svcs -xvL pkg/server:studio
command to get more information to diagnose and fix the problem.

8. Test that the repository server is working.
Open a browser window on the http://localhost:82/ location.

If you did not set the port number, the default is 80. View your repository at http://
localhost:80/ or http://localhost/.

If the port number is also being used by another pkg/server instance, append the publisher
name to the location to see the new packages. For example, view your repository at http://
localhost:81/solarisstudio/.

9. Set the publisher origin.
Set the publisher origin to one of the following values:

■ The pkg/inst_root location.

$ pkg set-publisher -g /var/share/pkgrepos/solarisstudio/ solarisstudio

■ The pkg/port location.

$ pkg set-publisher -g http://localhost:82/ solarisstudio

See Also See “Multiple Repositories Under One Domain” on page 84 for information about running
multiple repositories under one domain name with different prefixes such as http://pkg.
example.com/solaris and http://pkg.example.com/studio.

How to Serve Multiple Repositories From a Single
Location

This procedure describes using a svc:/application/pkg/depot service. Running a pkg/depot
service is more scalable than running the pkg.depotd process under a pkg/server service.

Many of the steps in this procedure are the same as the steps in the previous procedure. See the
previous procedure for details.

Before You Begin To get the svc:/application/pkg/depot SMF service and the pkg.depot-config(1M) man
page, make sure the pkg:/package/pkg/depot package is installed.

66 Copying and Creating Package Repositories in Oracle Solaris 11.3 • September 2018

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1Mpkg.depot-config-1m

How to Serve Multiple Repositories From a Single Location

1. Create a new repository server instance.
The pkg/server instance provides the file system location of the repository for the pkg/depot
instance.

2. Set the path to the repository.
Each pkg/server instance that is managed by a particular pkg/depot instance must have a
unique pkg/inst_root value.

3. Check the readonly property for the new instance.
The default value of the pkg/readonly property is true. If this value has been changed, reset
the value to true.

$ svccfg -s pkg/server:studio listprop pkg/readonly

pkg/readonly boolean true

4. Set the standalone property for the new instance.
By default, the value of the pkg/standalone property is true. Any pkg/server instances
whose pkg/standalone property is set to false can be served from the same location by a pkg/
depot service instance.

$ svccfg -s pkg/server:studio

svc:/application/pkg/server:studio> setprop pkg/standalone=false

svc:/application/pkg/server:studio> refresh

svc:/application/pkg/server:studio> select solaris

svc:/application/pkg/server:solaris> setprop pkg/standalone=false

svc:/application/pkg/server:solaris> refresh

svc:/application/pkg/server:solaris> exit

$

Make sure the value of the pkg/inst_root property is unique for each instance of pkg/server
whose pkg/standalone property is set to false.

5. (Optional) Set the port number for the pkg/depot instance.
By default, the port number of the pkg/depot:default service is 80. To change the port
number, set the config/port property of pkg/depot:default. The pkg/port values for pkg/
server instances that are managed by the pkg/depot:default service are not used.

6. (Optional) Set the system name for the pkg/depot instance.
Set the value of the config/host property of the pkg/depot:default service to the IP address
or host name of the system that hosts the repository file system.

$ svccfg -s pkg/depot:default setprop config/host=pkg.example.com

Chapter 4 • Maintaining Your Local IPS Package Repository 67

How to Serve Multiple Repositories From a Single Location

If you need to access this repository URI from other systems, specify the host name to use as
the argument to the Apache ServerName directive. For more information, see the pkg.depot-
config(1M) man page.

7. Start the pkg/depot instance.

■ If the pkg/depot instance is disabled, refresh and enable the instance:

$ svcadm refresh pkg/depot:default

$ svcadm enable pkg/depot:default

If the pkg/depot instance is not online, use the svcs -xvL pkg/depot command to get
more information to diagnose and fix the problem.

■ If the pkg/depot instance is online, refresh and restart the instance:

$ svcadm refresh pkg/depot:default

$ svcadm restart pkg/depot:default

8. Test that the repository server is working.
When users open the http://localhost:80/ location, they see the http://localhost/
solaris repository listed with the solaris publisher, and they see the http://localhost/
studio repository listed with the solarisstudio publisher.

If one repository provides packages for multiple publishers, all publishers are listed.

In the following example, pkg/server instances solaris, ha-cluster, and exa-family all
have pkg/standalone set to false and pkg/readonly set to true. The pkg/inst_root location
of the pkg/server:solaris instance provides packages from two publishers: solaris and

68 Copying and Creating Package Repositories in Oracle Solaris 11.3 • September 2018

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1Mpkg.depot-config-1m
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1Mpkg.depot-config-1m

How to Serve Multiple Repositories From a Single Location

solarisstudio. The config/port value of this pkg/depot instance is set to 88. The following
figure shows the display at localhost:88.

The pkg/depot:default service has associated httpd.worker processes. The pkg/server
instances do not:

$ svcs -p pkg/depot pkg/server

STATE STIME FMRI

online 16:44:31 svc:/application/pkg/server:solaris

online 16:44:32 svc:/application/pkg/server:ha-cluster

online 16:44:32 svc:/application/pkg/server:exa-family

online 16:45:03 svc:/application/pkg/depot:default

 16:45:02 6834 httpd.worker

 16:48:04 6948 httpd.worker

 16:48:04 6949 httpd.worker

 16:48:04 6950 httpd.worker

 16:48:05 6953 httpd.worker

 16:53:11 7043 httpd.worker

9. Set the publisher origin.
Set the publisher origin to one of the following values:

■ The unique pkg/inst_root location.

Chapter 4 • Maintaining Your Local IPS Package Repository 69

Checking and Setting Repository Properties

$ pkg set-publisher -g /var/share/pkgrepos/solarisstudio/ solarisstudio

■ The location defined by the value of config/port plus the pkg/server instance name.

$ pkg set-publisher -g http://localhost:80/studio/ solarisstudio

Next Steps If you change the content of a repository that is managed by a pkg/depot instance, as
discussed in “Updating Your Local Repository” on page 55 and “Customizing Your Local
Repository” on page 74, perform both of the following steps:

■ Run pkgrepo refresh on the repository.
■ Run svcadm restart on the pkg/depot instance.

You can create additional instances of the pkg/depot service where each instance hosts one or
more repositories.

To generate a standalone configuration rather than configuring pkg/server and pkg/depot
service instances, see the pkg.depot-config(1M) man page.

Checking and Setting Repository Properties

This section describes how to display information about an IPS repository and how to change
repository property values.

Viewing Properties that Apply to the Entire
Repository
The following command displays a list of the package publishers known by the local repository.
The STATUS column indicates whether the publisher’s package data is currently being
processed.

$ pkgrepo info -s /var/share/pkgrepos/solaris

PUBLISHER PACKAGES STATUS UPDATED

solaris 4506 online 2013-07-11T23:32:46.379726Z

The following command displays property information that applies to the entire repository.
See the pkgrepo(1) man page for a complete list of repository properties and their descriptions,
including specifications of their values.

$ pkgrepo get -s /var/share/pkgrepos/solaris

70 Copying and Creating Package Repositories in Oracle Solaris 11.3 • September 2018

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1Mpkg.depot-config-1m
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1pkgrepo-1

Checking and Setting Repository Properties

SECTION PROPERTY VALUE

publisher prefix solaris

repository check-certificate-revocation False

repository signature-required-names ()

repository trust-anchor-directory /etc/certs/CA/

repository version 4

publisher/prefix

The name of the default publisher. Though a repository can contain packages from multiple
publishers, only one of the publishers can be set as the default publisher. This default
publisher name is used for the following purposes:
■ To identify a package when no publisher is specified in the package FMRI in the pkg

command
■ To assign a publisher to a package when the package is published to the repository

using the pkgsend publish command (see the pkgsend(1) man page) and no publisher
is specified in the package manifest

repository/check-certificate-revocation

A flag for checking the certificate. When set to True, the pkgrepo verify command
attempts to determine whether the certificate has been revoked since being issued. This
value must match the value of the check-certificate-revocation image property
described in “Additional Image Properties” in Adding and Updating Software in Oracle
Solaris 11.3 and in the pkg(1) man page.

repository/signature-required-names

A list of names that must be seen as common names of certificates while validating the
signatures of a package. This list is used by the pkgrepo verify command. This value
must match the value of the signature-required-names image property described in
“Image Properties for Signed Packages” in Adding and Updating Software in Oracle
Solaris 11.3 and in the pkg(1) man page.

repository/trust-anchor-directory

The absolute path name of the directory that contains the trust anchors for packages in
this repository. The default is /etc/certs/CA/. Except for the leading / character, this
value must match the value of the trust-anchor-directory image property described in
“Additional Image Properties” in Adding and Updating Software in Oracle Solaris 11.3 and
in the pkg(1) man page. The value of the image property is relative to the image, so that
default value is etc/certs/CA.
If you create your own SSL Certificate Authority certificates, put those certificates
in the directory named by repository/trust-anchor-directory and refresh the
ca-certificates service as described in “Creating a Self-Signed Server Certificate
Authority” on page 92 and “How to Use a Custom Certificate Authority Certificate”

Chapter 4 • Maintaining Your Local IPS Package Repository 71

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1pkgsend-1
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=AUOSSglmoy
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=AUOSSglmoy
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1pkg-1
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=AUOSSgkkne
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=AUOSSgkkne
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1pkg-1
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=AUOSSglmoy
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1pkg-1
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=PKDEVcustomca

Checking and Setting Repository Properties

in Packaging and Delivering Software With the Image Packaging System in Oracle Solaris
11.3. Put the CA certificates directly in the directory named by repository/trust-
anchor-directory; do not put the certificates in another subdirectory.

repository/version

The format version of the repository. This value cannot be set with the pkgrepo set
command shown in “Modifying Repository Property Values” on page 73. This value
can be set with the pkgrepo create command. Version 4 repositories are created by
default. Version 4 repositories support storage of packages for multiple publishers.

Viewing Repository Publisher Properties

The following command displays property information about the solaris publisher in the local
repository. Parentheses indicate that the value can be a list of values.

$ pkgrepo get -p solaris -s /var/share/pkgrepos/solaris

PUBLISHER SECTION PROPERTY VALUE

solaris publisher alias

solaris publisher prefix solaris

solaris repository collection-type core

solaris repository description ""

solaris repository legal-uris ()

solaris repository mirrors ()

solaris repository name ""

solaris repository origins ()

solaris repository refresh-seconds ""

solaris repository registration-uri ""

solaris repository related-uris ()

publisher/prefix

The name of the publisher specified in the -p option. If no -p option is specified, this value
is the name of the default publisher for this repository, as described in the previous section.

repository/collection-type

The type of packages in this repository. If the value is core, this repository contains all of
the dependencies declared by packages in the repository. If the value is supplemental, this
repository does not contain all of the dependencies declared by packages in the repository.

repository/description

The purpose and contents of this repository. If this repository is available from an HTTP
interface, this value displays in the About section near the top of the main page.

72 Copying and Creating Package Repositories in Oracle Solaris 11.3 • September 2018

http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=PKDEVcustomca
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=PKDEVcustomca

Checking and Setting Repository Properties

repository/legal-uris

A list of locations for documents that provide legal information about the repository.

repository/mirrors

A list of locations of repositories that contain the same package content as this repository.

repository/name

The name of this repository. If this repository is available from an HTTP interface, this
value displays at the top of the main page and in the window title.

repository/origins

A list of locations of repositories that contain the same package content and metadata as
this repository.

repository/refresh-seconds

The number of seconds for systems to wait between checks for updated package data in this
repository.

repository/registration-uri

The location of a resource that must be used to obtain credentials for access to this
repository.

repository/related-uris

A list of locations of repositories that contain other packages that might be of interest.

The following command displays information about the specified section/property in the pkg.
oracle.com repository.

$ pkgrepo get -p solaris -s http://pkg.oracle.com/solaris/release \

repository/name repository/description

PUBLISHER SECTION PROPERTY VALUE

solaris repository description This\ repository\ serves\ the\ Oracle\ Solaris\ 11\

 Package\ repository.

solaris repository name Oracle\ Solaris\ 11\ Package\ Repository

Modifying Repository Property Values

“Viewing Repository Publisher Properties” on page 72 shows that the repository name
and description property values are not set for the solaris publisher in the local repository. If
this repository is available from an HTTP interface and you use a browser to view the content
of this repository, you see a default name and no description. After you set these values, the

Chapter 4 • Maintaining Your Local IPS Package Repository 73

Customizing Your Local Repository

publisher repository/name value is displayed near the top of the page and as the page title, and
the publisher repository/description value is displayed in the About section just below the
name. You must use the -p option to specify at least one publisher when you set these values. If
this repository contains content from more than one publisher, you can set different values for
each publisher, or you can specify -p all.

$ pkgrepo set -p solaris -s /var/share/pkgrepos/solaris \

repository/description="Local copy of the Oracle Solaris 11 repository." \

repository/name="Oracle Solaris 11"

$ pkgrepo get -p solaris -s /var/share/pkgrepos/solaris repository/name repository/

description

PUBLISHER SECTION PROPERTY VALUE

solaris repository description Local\ copy\ of\ the\ Oracle\ Solaris\ 11\

 repository.

solaris repository name Oracle\ Solaris\ 11

Customizing Your Local Repository

You can use the pkgrecv command to add packages and their publisher data to your repository.
You can use the pkgrepo command to remove packages and publishers from your repository.

Adding Packages to Your Repository

You can add publishers to a repository. For example, you could maintain solaris, ha-cluster,
and solarisstudio packages in one repository.

If you add custom packages, publish those packages under a custom publisher name. Do not
publish custom packages as an existing publisher such as solaris. If you publish packages
that do not have a publisher specified, those packages will be added to the default publisher for
the repository. Publish custom packages to a test repository with the correct default publisher.
Then use the pkgrecv command to add those packages and their publisher information to your
production repository. See “Publish the Package” in Packaging and Delivering Software With
the Image Packaging System in Oracle Solaris 11.3 for instructions.

In the following example, the isvpub publisher data and all of the packages from the
ISVproducts.p5p package archive are added to the local repository. A package archive is a
file that contains publisher information and one or more packages provided by that publisher.
See “Deliver as a Package Archive File” in Packaging and Delivering Software With the
Image Packaging System in Oracle Solaris 11.3. Most pkgrepo operations are not available
for package archives. A package archive contains packages but does not contain repository

74 Copying and Creating Package Repositories in Oracle Solaris 11.3 • September 2018

http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=PKDEVgluep
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=PKDEVgluep
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=PKDEVgluem
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=PKDEVgluem

Customizing Your Local Repository

configuration. However, the pkgrepo list and pkgrepo contents commands work with
package archives. The pkgrepo contents command is discussed in “Examining Packages In
Your Repository” on page 76.

In the pkgrepo list output, the publisher is shown because it is not the publisher that is highest
ranked in search order in this image.

$ pkgrepo -s /tmp/ISVproducts.p5p list

PUBLISHER NAME O VERSION

isvpub isvtool 1.1,5.11:20131120T021902Z

isvpub isvtool 1.0,5.11:20131120T010105Z

A value in the O column indicates whether the package is obsolete (o) or renamed (r).

The following pkgrecv command retrieves all packages from the source repository. If you list
names of packages to retrieve, or you specify a pattern other than '*', you should specify the -r
option to ensure you retrieve all necessary dependency packages.

$ pkgrecv -s /tmp/ISVproducts.p5p -d /var/share/pkgrepos/solaris '*'

Processing packages for publisher isvpub ...

Retrieving and evaluating 2 package(s)...

PROCESS ITEMS GET (MB) SEND (MB)

Completed 2/2 0.0/0.0 0.0/0

After you change the content of a repository, refresh the repository and restart any package
depot server service instance configured for this repository.

$ pkgrepo -s /var/share/pkgrepos/solaris refresh -p isvpub

Initiating repository refresh.

$ svcadm refresh pkg/server:solaris

$ svcadm restart pkg/server:solaris

The following pkgrepo info command shows one package because the two packages that were
retrieved are different versions of the same package. The pkgrepo list command shows both
packages.

$ pkgrepo -s /var/share/pkgrepos/solaris info

PUBLISHER PACKAGES STATUS UPDATED

solaris 4768 online 2014-01-02T19:19:06.983979Z

isvpub 1 online 2014-03-20T23:24:37.196773Z

$ pkgrepo -s /var/share/pkgrepos/solaris list -p isvpub

PUBLISHER NAME O VERSION

isvpub isvtool 1.1,5.11:20131120T021902Z

isvpub isvtool 1.0,5.11:20131120T010105Z

Add the new repository location for the isvpub publisher by using the pkg set-publisher
command.

Chapter 4 • Maintaining Your Local IPS Package Repository 75

Customizing Your Local Repository

If this repository is available from an HTTP interface and you use a browser to view the content
of this repository, you can view this new package by specifying the publisher in the location.
For example, you can specify http://localhost:81/isvpub/.

Examining Packages In Your Repository

In addition to the pkgrepo info and pkgrepo list commands shown in “Adding Packages to
Your Repository” on page 74, you can use the pkgrepo contents command to examine the
content of packages in your repository.

For a single package, the output from the pkgrepo contents command is the same as the
output from the pkg contents -m command. The pkgrepo contents command displays
the output for each matching package in the specified repository, while the pkg contents
command displays output only for versions of matching packages that are installable in this
image. If you specify the -t option, the pkgrepo contents command shows only the specified
actions.

The following example does not need to specify the version of the package because only one
version of this package exists in the specified repository. This package contains depend actions
to provide the set of Oracle Solaris packages required for installation and operation of Oracle
Database 12.

$ pkgrepo -s http://pkg.oracle.com/solaris/release/ \

contents -t depend oracle-rdbms-server-12cR1-preinstall

depend fmri=x11/library/libxi type=group

depend fmri=x11/library/libxtst type=group

depend fmri=x11/session/xauth type=group

depend fmri=compress/unzip type=require

depend fmri=developer/assembler type=require

depend fmri=developer/build/make type=require

Removing Packages From Your Repository

Do not remove packages that are delivered by an Oracle publisher. Adding and Updating
Software in Oracle Solaris 11.3 shows methods for installing only the packages you want and
avoiding installing packages that you do not want.

You can use the pkgrepo remove command to remove packages that were not delivered by an
Oracle publisher. You can use the pkgrepo remove-publisher command to remove a publisher
and all of the packages delivered by that publisher. See the pkgrepo(1) man page for details.

76 Copying and Creating Package Repositories in Oracle Solaris 11.3 • September 2018

http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=AUOSS
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=AUOSS
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1pkgrepo-1

Customizing Your Local Repository

These operations should be performed on a copy of the repository, as described in “How to
Update a Local IPS Package Repository” on page 56.

Chapter 4 • Maintaining Your Local IPS Package Repository 77

78 Copying and Creating Package Repositories in Oracle Solaris 11.3 • September 2018

 5 ♦ ♦ ♦ C H A P T E R 5

Running the Package Depot Server Behind a
Web Server

If you only want to scale to serve more clients concurrently, use the pkg/depot service as
described in “How to Enable Users to Retrieve Packages Using an HTTP Interface” on page 43.
Use the instructions in this chapter if you want to configure additional capabilities such as
caching, load balancing, multiple repositories under one domain, and secure access.

Running the package depot server behind an Apache web server instance provides a web server
configuration that employs the best practices described in this chapter, including the following
benefits:

■ Provides depot scalability without the need for manual web server configuration or reverse
proxies.

■ Improves performance and availability. Increases transfer rates and decreases CPU load.
Running the depot server behind a web proxy can improve the performance and availability
of the repository by enabling load balancing over multiple depots and enabling content
caching.

■ Allows hosting multiple repositories under one domain name. The pkg(5) depot server
enables you to easily provide access to a repository in the local network or on the Internet.
However, the depot server does not support serving multiple repositories under one domain
name or sophisticated prefixes. To host multiple repositories under one domain name, run
the depot server behind a web proxy.

■ Enables providing a secure depot server. Run the depot server behind a Secure Sockets
Layer (SSL) protocol enabled Apache instance that supports client certificates.

Depot Server Apache Configuration

The examples in this chapter use the Apache web server as the proxy software. Activate the
Apache web server by enabling the svc:/network/http:apache22 service. See Apache HTTP
Server Version 2.2 Documentation for additional information.

Chapter 5 • Running the Package Depot Server Behind a Web Server 79

http://httpd.apache.org/docs/2.2/
http://httpd.apache.org/docs/2.2/

Depot Server Apache Configuration

You should be able to apply the principles shown in these examples to any proxy server
software.

The Oracle Solaris 11.3 OS includes the Apache web server in the web/server/apache-22
package, which delivers a basic httpd.conf file in /etc/apache2/2.2. In general, you can use
the following command to locate the httpd.conf file:

$ pkg search -Hl -o path ':file:path:*httpd.conf'

etc/apache2/2.2/httpd.conf

etc/apache2/2.2/original/httpd.conf

Required Apache Configuration Setting

If you run the package depot server behind an Apache web server instance, include the
following setting in your httpd.conf file to not decode encoded forward slashes:

AllowEncodedSlashes NoDecode

Package names can contain URL encoded forward slashes because forward slashes are used
to express hierarchical package names. For example, the package name pkg://solaris/
developer/build/make becomes http://pkg.oracle.com/solaris/release/manifest/0/
developer%2Fbuild%2Fmake to the web server. To prevent these forward slashes from being
interpreted as directory delimiters, instruct Apache not to decode the %2F encoded slashes.

Omitting this setting can result in 404 Not Found errors and can very negatively impact search
functionality.

Recommended Generic Apache Configuration
Settings

The following settings affect performance and security.

■ Reduce the over-the-wire size of metadata.
HTTP clients can tell the server that they accept compressed data in an HTTP request.
Enabling the Apache DEFLATE filter can dramatically reduce the over-the-wire size of
metadata such as catalogs and manifests. Metadata such as catalogs and manifests often
compress 90%.

AddOutputFilterByType DEFLATE text/html application/javascript text/css text/plain

80 Copying and Creating Package Repositories in Oracle Solaris 11.3 • September 2018

Configuring Caching for the Depot Server

■ Allow more pipelined requests.

Increase the MaxKeepAliveRequests value to allow clients to make a larger number of
pipelined requests without closing the connection.

MaxKeepAliveRequests 10000

■ Set the maximum wait time for response.
The proxy timeout sets how long Apache waits for the back-end depot to respond. For most
operations, 30 seconds is satisfactory. Searches with a very large number of results can take
significantly longer. You might want a higher timeout value to accommodate such searches.

ProxyTimeout 30

■ Disable forward proxying.
Make sure that forward proxying is disabled.

ProxyRequests Off

Configuring Caching for the Depot Server

Minimal configuration is required to set up the depot server behind a caching proxy. With
the exception of the catalog attributes file (see “Cache Considerations for the Catalog
Attributes File” on page 82) and repository search results (see “Cache Considerations for
Search” on page 82), all files served are unique and therefore safe to cache indefinitely if
necessary. Also, all depot responses contain the appropriate HTTP headers to ensure files in the
cache do not become stale by mistake.

See the Apache Caching Guide for more information about configuring Apache as a caching
proxy, including using the htcacheclean command to control the size of the cache. See
Developing System Services in Oracle Solaris 11.3 for information about how to create a
periodic or scheduled SMF service to run htcacheclean.

Use the CacheRoot directive to specify the directory to contain the cached files. Make sure the
specified directory is writable by the Apache process. No explicit error message is output if
Apache cannot write to this directory.

CacheRoot /tank/proxycache

Apache allows you to enable caching for specific directories. You probably want your
repository server to cache all of the content on the server, as shown in the following directive.

CacheEnable disk /

Chapter 5 • Running the Package Depot Server Behind a Web Server 81

http://httpd.apache.org/docs/2.2/caching.html
http://httpd.apache.org/docs/2.2/programs/htcacheclean.html
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=SVCDV

Configuring Caching for the Depot Server

Use the CacheMaxFileSize directive to set the maximum size of any single file to be cached.
The Apache default of 1 MB might be too small for most repositories. The following directive
sets the maximum size of a cached file to 1 GB.

CacheMaxFileSize 1000000000

Adjust the directory structure of the on-disk cache for the best performance with the underlying
file system. In a ZFS dataset, multiple directory levels affect performance more than the number
of files in one directory. Therefore, configure one directory level with a large number of files in
each directory. Use the CacheDirLevels and CacheDirLength directives to control the directory
structure. Set CacheDirLevels to 1. Set CacheDirLength to a value that results in a good
balance between the number of directories and the number of files per directory. The value of
2 set below will generate 4096 directories. See the Apache Disk-based Caching documentation
for more information.

CacheDirLevels 1

CacheDirLength 2

Cache Considerations for the Catalog Attributes
File

The repository catalog attributes file (catalog.attrs) contains the current status of the
repository catalog. This file can be large enough to warrant caching. However, this file becomes
stale if the catalog of the back-end repository has changed. You can use one of the following
two methods to address this issue.

■ Do not cache this file. This solution works best if the repository server runs in a high-
bandwidth environment where the additional traffic is not an important consideration. The
following partial httpd.conf file shows how to specify not to cache the catalog.attrs
file:

<LocationMatch ".*/catalog.attrs">

 Header set Cache-Control no-cache

</LocationMatch>

■ Prune this file from the cache whenever the catalog of the back-end repository is updated.

Cache Considerations for Search

Searching a package repository generates custom responses based on the request. Therefore,
search results are not well suited for being cached. The depot server sets the appropriate HTTP

82 Copying and Creating Package Repositories in Oracle Solaris 11.3 • September 2018

http://httpd.apache.org/docs/2.2/caching.html#disk

Configuring a Simple Prefixed Proxy

headers to make sure search results do not become stale in a cache. However, the expected
bandwidth savings from caching are small. The following partial httpd.conf file shows how to
specify not to cache search results.

<LocationMatch ".*/search/\d/.*">

 Header set Cache-Control no-cache

</LocationMatch>

Configuring a Simple Prefixed Proxy

This example shows the basic configuration for a non-load-balanced depot server. This example
connects http://pkg.example.com/myrepo to internal.example.com:10000.

See “Serving Multiple Repositories Using Web Server Access” on page 64 for instructions
about setting other properties you need that are not described in this example.

Configure the depot server with a pkg/proxy_base setting that names the URL where the depot
server can be accessed. Use the following commands to set the pkg/proxy_base:

$ svccfg -s pkg/server add repo

$ svccfg -s pkg/server:repo setprop pkg/proxy_base = astring: http://pkg.example.com/

myrepo

$ svcadm refresh pkg/server:repo

$ svcadm enable pkg/server:repo

The pkg(5) client opens 20 parallel connections to the depot server when performing network
operations. Make sure the number of depot threads matches the expected connections to the
server at any given time. Use the following commands to set the number of threads per depot:

$ svccfg -s pkg/server:repo setprop pkg/threads = 200

$ svcadm refresh pkg/server:repo

$ svcadm restart pkg/server:repo

Use nocanon to suppress canonicalization of URLs. This setting is important in order for search
to work well. Also, limit the number of back-end connections to the number of threads the
depot server provides. The following partial httpd.conf file shows how to proxy one depot
server:

Redirect /myrepo http://pkg.example.com/myrepo/

ProxyPass /myrepo/ http://internal.example.com:10000/ nocanon max=200

Chapter 5 • Running the Package Depot Server Behind a Web Server 83

Multiple Repositories Under One Domain

Multiple Repositories Under One Domain

The most important reason to run the depot server behind a proxy is to easily run several
repositories under one domain name with different prefixes. The example from “Configuring a
Simple Prefixed Proxy” on page 83 can be easily extended to support multiple repositories.

In this example, three different prefixes of one domain name are connected to three different
package repositories:

■ http://pkg.example.com/repo_one is connected to internal.example.com:10000
■ http://pkg.example.com/repo_two is connected to internal.example.com:20000
■ http://pkg.example.com/xyz/repo_three is connected to internal.example.com:30000

The pkg(5) depot server is an SMF managed service. Therefore, to run multiple depot servers
on the same system, simply create a new service instance:

$ svccfg -s pkg/server add repo1

$ svccfg -s pkg/server:repo1 setprop pkg/property=value
$...

Like the previous example, each depot server runs with 200 threads.

Redirect /repo_one http://pkg.example.com/repo_one/

ProxyPass /repo_one/ http://internal.example.com:10000/ nocanon max=200

Redirect /repo_two http://pkg.example.com/repo_two/

ProxyPass /repo_two/ http://internal.example.com:20000/ nocanon max=200

Redirect /xyz/repo_three http://pkg.example.com/xyz/repo_three/

ProxyPass /xyz/repo_three/ http://internal.example.com:30000/ nocanon max=200

Configuring Load Balancing

You might want to run depot servers behind an Apache load balancer. One benefit of load
balancing is to increase the availability of your repository. This section shows two examples of
load balancing.

If your repositories are load balanced, the catalogs in all of the repositories must be exactly
the same to avoid problems when the load balancer switches clients from one node to another.
To ensure that the catalogs are exactly the same, clone the repositories that participate in load
balancing by using the pkgrecv --clone command as described in “Maintaining Multiple
Identical Local Repositories” on page 60.

84 Copying and Creating Package Repositories in Oracle Solaris 11.3 • September 2018

Configuring Load Balancing

One Repository Server With Load Balancing

This example connects http://pkg.example.com/myrepo to internal1.example.com:10000
and internal2.example.com:10000.

Configure the depot server with an appropriate proxy_base setting as shown in “Configuring a
Simple Prefixed Proxy” on page 83.

Limit the number of back-end connections to the number of threads each depot is running
divided by the number of depots in the load-balancer setup. Otherwise, Apache opens more
connections to a depot than are available and they stall, which can decrease performance.
Specify the maximum number of parallel connections to each depot with the max= parameter.
The following example shows two depots, each running 200 threads. See “Configuring a
Simple Prefixed Proxy” on page 83 for an example of how to set the number of depot
threads.

<Proxy balancer://pkg-example-com-myrepo>

 # depot on internal1

 BalancerMember http://internal1.example.com:10000 retry=5 max=100

 # depot on internal2

 BalancerMember http://internal2.example.com:10000 retry=5 max=100

</Proxy>

Redirect /myrepo http://pkg.example.com/myrepo/

ProxyPass /myrepo/ balancer://pkg-example-com-myrepo/ nocanon

One Load-Balanced and One Non-Load-Balanced
Repository Server

This example includes all of the directives you need to add to the httpd.conf file for a
repository server that hosts a load-balanced and a non-load-balanced depot server setup.

In this example, two different prefixes of one domain name are connected to three different
package repositories:

■ http://pkg.example.com/repo_one is connected to internal1.example.com:10000 and
internal2.example.com:10000

■ http://pkg.example.com/repo_two is connected to internal1.example.com:20000

AddOutputFilterByType DEFLATE text/html application/javascript text/css text/plain

AllowEncodedSlashes NoDecode

Chapter 5 • Running the Package Depot Server Behind a Web Server 85

Configuring HTTPS Repository Access

MaxKeepAliveRequests 10000

ProxyTimeout 30

ProxyRequests Off

<Proxy balancer://pkg-example-com-repo_one>

 # depot on internal1

 BalancerMember http://internal1.example.com:10000 retry=5 max=100

 # depot on internal2

 BalancerMember http://internal2.example.com:10000 retry=5 max=100

</Proxy>

Redirect /repo_one http://pkg.example.com/repo_one/

ProxyPass /repo_one/ balancer://pkg-example-com-repo_one/ nocanon

Redirect /repo_two http://pkg.example.com/repo_two/

ProxyPass /repo_two/ http://internal.example.com:20000/ nocanon max=200

Configuring HTTPS Repository Access

Any system can download packages from a repository that is configured to serve packages over
HTTP. In some cases, you need to restrict access. One way to restrict access to the repository is
to run the depot server behind an SSL-enabled Apache instance that supports client certificates.

Using SSL provides the following benefits:

■ Ensures encrypted transfer of package data between the client and the server
■ Enables you to grant access to repositories based on the certificate the client presents to the

server

To set up a secure repository server, you must create a custom certificate chain:

1. Create a certificate authority (CA), which is the head of the certificate chain, as described in
“Creating a Certificate Authority for Client Certificates” on page 88.

2. Issue certificates from this CA to the clients that are allowed to access the
repository, as described in “Creating Client Certificates Used for Accessing the
Repository” on page 89.

One copy of the CA is stored on the repository server. Whenever a client presents a certificate
to the server, that client certificate is verified against the CA on the server to determine whether
to grant access.

86 Copying and Creating Package Repositories in Oracle Solaris 11.3 • September 2018

Configuring HTTPS Repository Access

This section describes the following steps to create the certificate chain and configure the
Apache front end to verify client certificates:

■ “Creating a Keystore” on page 87
■ “Creating a Certificate Authority for Client Certificates” on page 88
■ “Adding SSL Configuration to the Apache Configuration File” on page 91
■ “Creating a Self-Signed Server Certificate Authority” on page 92
■ “Creating a PKCS12 Keystore to Access a Secure Repository With Firefox” on page 94

For information about Apache web server privileges in Oracle Solaris, see “Locking Down
Resources by Using Extended Privileges” in Securing Users and Processes in Oracle Solaris
11.3.

Creating a Keystore

To manage certificates and keys, create a keystore. The keystore stores the CA, the CA key, and
client certificates and keys.

The tool used for keystore management is pktool. See the pktool(1) man page for more
information.

The default keystore location for pktool is /var/user/username, where username is the name
of the current system user. This keystore default location can be problematic when a keystore
is managed by multiple users. In addition, IPS package repository management should have
a dedicated keystore to avoid confusing certificates. To set a custom location for the pktool
keystore for the IPS package repository, set the environment variable SOFTTOKEN_DIR. Reset the
SOFTTOKEN_DIR variable as necessary to manage multiple keystores.

Use the following commands to create a directory for the keystore. Set the owner, group, and
permissions appropriately if multiple users need to manage the keystore.

$ mkdir /path-to-keystore
$ export SOFTTOKEN_DIR=/path-to-keystore

Access to the keystore is protected by a passphrase that you must enter every time you invoke
the pktool command. The default passphrase for a newly created keystore is changeme. Be sure
to change the changeme passphrase to a more secure passphrase.

Use the following command to set the passphrase (PIN) for the keystore:

$ pktool setpin

Enter token passphrase: changeme

Create new passphrase:

Chapter 5 • Running the Package Depot Server Behind a Web Server 87

http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=OSSUPrbactask-lockdown-1
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=OSSUPrbactask-lockdown-1
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=OSSUPrbactask-lockdown-1
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1pktool-1

Configuring HTTPS Repository Access

Re-enter new passphrase:

Passphrase changed.

$ ls /path-to-keystore
pkcs11_softtoken

Creating a Certificate Authority for Client
Certificates

The CA is the top-level certificate in your certificate chain. The CA is required to generate
client certificates and to validate the certificates presented by clients to access a repository.

Third-party CAs are managed by a handful of trusted companies such as VeriSign. This trusted
management enables clients to verify the identity of a server against one of their CAs. The
example in this section does not include verifying the identity of the repository server. This
example only shows verifying client certificates. Therefore, this example uses a self-signed
certificate to create the CA and does not use any third-party CAs.

The CA requires a common name (CN). If you run only one repository, you might want to set
the CN to the name of your organization (for example, "Oracle Software Delivery"). If you
have multiple repositories, each repository must have its own CA. In this case, set the CN to a
name that uniquely identifies the repository for which you are creating the CA. For example,
if you have a release repository and a support repository, only certificates from the release CA
will allow access to the release repository, and only certificates from the support CA will allow
access to the support repository.

To identify the certificate in the keystore, set a descriptive label for the certificate. A good
practice is to set the certificate label to CN_ca, where CN is the CN of the certificate.

Use the following command to create the CA certificate, where name is the certificate CN and
CAlabel is the certificate label:

$ pktool gencert label=CAlabel subject="CN=name" serial=0x01

The CA will be stored in your keystore. Use the following command to show the contents of
your keystore:

$ pktool list

You will need to extract the CA certificate from the keystore when you configure Apache as
described in “Adding SSL Configuration to the Apache Configuration File” on page 91.
Use the following command to extract the CA certificate to a file named ca_file.pem:

$ pktool export objtype=cert label=CAlabel outformat=pem \

88 Copying and Creating Package Repositories in Oracle Solaris 11.3 • September 2018

Configuring HTTPS Repository Access

outfile=ca_file.pem

Creating Client Certificates Used for Accessing
the Repository

After you have generated the CA, you can generate client certificates.

Generating a Certificate Signing Request

To generate a client certificate, generate a Certificate Signing Request (CSR). The CSR contains
all of the information that you need to pass securely to the server.

If you only want to check whether the client possesses a valid certificate issued by you, you
do not need to encode any information. When the client presents its certificate to the server,
the server validates the certificate against the CA, verifying whether that client certificate
was generated by you. However, SSL requires a subject for the CSR. If you do not need to
pass any other information to the server, you can just set the subject to the country where the
certificate has been issued. For example, you could set the subject to C=US.

A good practice is to encode the user name of the client into the certificate to enable the server
to identify the client. The user name is the name of the user to whom you are giving access to
the repository. You can use the CN for this purpose. Specify a label for this CSR so that you
can find and extract the key for the final certificate as described in “Extracting the Certificate
Key” on page 90.

Use the following command to generate the CSR:

$ pktool gencsr subject="C=US,CN=username" label=label format=pem \
outcsr=cert.csr

Use the following OpenSSL command to inspect the CSR in the file cert.csr:

$ openssl req -text -in cert.csr

Signing the CSR

The CSR must be signed by the CA to create a certificate. To sign the CSR, provide the
following information:

Chapter 5 • Running the Package Depot Server Behind a Web Server 89

Configuring HTTPS Repository Access

■ Set the issuer of the certificate to the same string that you used for the subject when you
created the CA using the gencert command, as shown in “Creating a Certificate Authority
for Client Certificates” on page 88.

■ Set a hexadecimal serial number. In this example, the CA serial number was specified as
0x01, so the first client certificate should be given the serial number 0x02. Increment the
serial number for each new client certificate that you generate.
Each CA and its descendant client certificates has its own set of serial numbers. If you have
multiple CAs configured in your keystore, be careful to set client certificate serial numbers
correctly.

■ Set the signkey to the label of the CA in the keystore.
■ Set outcert to the name of the certificate file. A good practice is to name the certificate and

key after the repository to be accessed.

Use the following command to sign the CSR:

$ pktool signcsr signkey=CAlabel csr=cert.csr \
serial=0x02 outcert=reponame.crt.pem issuer="CN=name"

The certificate is created in the file reponame.crt.pem. Use the following OpenSSL command
to inspect the certificate:

$ openssl x509 -text -in reponame.crt.pem

Extracting the Certificate Key

Extract the key for this certificate from the keystore. Set the label to the same label value
you specified when you ran gencsr to generate the CSR in “Generating a Certificate Signing
Request” on page 89. Use the following command to export the key from the keystore:

$ pktool export objtype=key label=label outformat=pem \
outfile=reponame.key.pem

Transfer the certificate and key to the clients that need to access the SSL-protected repository.

Enabling Systems to Access the Protected Repository

To access the SSL-protected repository, clients must have a copy of the certificate and key and
must specify the certificate and key in the publisher configuration.

Copy the certificate (reponame.crt.pem) and key (reponame.key.pem) to each client. For
example, you could copy them to the /var/pkg/ssl directory on each client.

90 Copying and Creating Package Repositories in Oracle Solaris 11.3 • September 2018

Configuring HTTPS Repository Access

Use the following command to specify the generated certificate and key in your publisher
configuration:

$ pkg set-publisher -k reponame.key.pem -c reponame.crt.pem \
-p https://repolocation

Note that SSL authentication is only supported for HTTPS repository URIs. SSL authentication
is not supported for file repository URIs.

Adding SSL Configuration to the Apache
Configuration File

To use client certificate based authentication for your repository, first set up a
generic depot server Apache configuration as described in “Depot Server Apache
Configuration” on page 79. Then add the following SSL configuration at the end of your
httpd.conf file:

Let Apache listen on the standard HTTPS port

Listen 443

VirtualHost configuration for request on port 443

<VirtualHost 0.0.0.0:443>

 # DNS domain name of the server, needs to match your server certificate

 ServerName pkg-sec.example.com

 # enable SSL

 SSLEngine On

 # enable all available TLSv1 flavors, but not SSLv2 or SSLv3

 SSLProtocol all -SSLv2 -SSLv3

 # Location of the server certificate and key.

 # You either have to get one from a certificate signing authority like

 # VeriSign or create your own CA for testing purposes (see "Creating a

 # Self-Signed CA for Testing Purposes")

 SSLCertificateFile /path/to/server.crt

 SSLCertificateKeyFile /path/to/server.key

 # Intermediate CA certificate file. Required if your server certificate

 # is not signed by a top-level CA directly but an intermediate authority

 # Comment out this section if you are using a test certificate or your

 # server certificate doesn't require it.

 # For more info:

 # http://httpd.apache.org/docs/2.2/mod/mod_ssl.html#sslcertificatechainfile

Chapter 5 • Running the Package Depot Server Behind a Web Server 91

Configuring HTTPS Repository Access

 SSLCertificateChainFile /path/to/ca_intermediate.pem

 # CA certs for client verification.

 # This is where the CA certificate created in step 3 needs to go.

 # If you have multiple CAs for multiple repos, just concatenate the

 # CA certificate files

 SSLCACertificateFile /path/to/ca_cert.pem

 # If the client presents a certificate, verify it here. If it doesn't,

 # ignore.

 # This is required to be able to use client-certificate based and

 # anonymous SSL traffic on the same VirtualHost.

 # This statement could also go into the <Location> tags but putting it

 # here avoids re-negotiation which can cause security issues with older

 # servers/clients:

 # http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2009-3555

 SSLVerifyClient optional

 <Location /repo>

 SSLVerifyDepth 1

 # This is the SSL requirement for this location.

 # Requirements can be made based on various information encoded

 # in the certificate. Two variants are the most useful for use

 # with IPS repositories:

 # a) SSLRequire (%{SSL_CLIENT_I_DN_CN} =~ m/reponame/)

 # only allow access if the CN in the client certificate matches

 # "reponame", useful for different certificates for different

 # repos

 #

 # b) SSLRequire (%{SSL_CLIENT_VERIFY} eq "SUCCESS")

 # grant access if clients certificate is signed by one of the

 # CAs specified in SSLCACertificateFile

 SSLRequire (%{SSL_CLIENT_VERIFY} eq "SUCCESS")

 # proxy request to depot running at internal.example.com:12345

 ProxyPass http://internal.example.com:12345 nocanon max=500

 </Location>

</VirtualHost>

Creating a Self-Signed Server Certificate Authority

For testing purposes, you can use a self-signed server certificate authority (CA) rather than a
third-party CA. The steps to create a self-signed server CA for Apache are very similar to the
steps to create a CA for client certificates described in “Creating a Certificate Authority for
Client Certificates” on page 88.

92 Copying and Creating Package Repositories in Oracle Solaris 11.3 • September 2018

Configuring HTTPS Repository Access

Use the following command to create a server CA. Set the subject to the DNS name of the
server.

$ pktool gencert label=apacheCA subject="CN=apachetest" \

serial=0x01

Use the following command to create a CSR for a server CA. If the server is accessible
under several names or you want to make it available under its IP address directly, use
the subjectAltName directive as described in Subject Alternative Name in the OpenSSL
documentation.

$ pktool gencsr label=apache subject="CN=pkg-sec.internal.example.com" \

altname="IP=192.0.2.0,DNS=pkg-sec.internal.example.com" \

format=pem outcsr=apache.csr

Use the following command to sign the CSR. Use server.crt for SSLCertificateFile.

$ pktool signcsr signkey=apacheCA csr=apache.csr serial=0x02 \

outcert=server.crt issuer="CN=apachetest"

Use the following command to extract the key. Use server.key for SSLCertificateKeyFile.

$ pktool export objtype=key label=apache outformat=pem \

outfile=server.key

To ensure that your client will accept this server key, add the CA certificate (apacheCA) to
the accepted CA directory on the client and restart the ca-certificates service to create the
required links for OpenSSL.

Use the following command to extract the CA certificate:

$ pktool export label=apacheCA objtype=cert outformat=pem \

outfile=test_server_ca.pem

Copy the CA certificate to the CA certificate directory on the client:

$ cp /path-to/test_server_ca.pem /etc/certs/CA/

Refresh the CA certificates service:

$ svcadm refresh ca-certificates

Before you proceed, ensure that your new CA cert has been linked. After refreshing, the ca-
certificate service rebuilds the links in the /etc/openssl/certs directory. Run the following
command to check whether your new CA cert has been linked:

$ ls -l /etc/openssl/certs | grep test_server_ca.pem

Chapter 5 • Running the Package Depot Server Behind a Web Server 93

https://www.openssl.org/docs/man1.0.2/man5/x509v3_config.html

Configuring HTTPS Repository Access

lrwxrwxrwx 1 root root 40 May 1 09:51 e89d96e0.0 -> ../../certs/CA/

test_server_ca.pem

The hash value, e89d96e0.0, might be different for you since it is based on the subject of your
certificate.

Creating a PKCS12 Keystore to Access a Secure
Repository With Firefox

The PEM certificates created in “Creating Client Certificates Used for Accessing the
Repository” on page 89 will work to access the secured repository with the pkg client.
However, to access the browser user interface (BUI), you must convert the certificate and key to
a format that Firefox can import. Firefox accepts PKCS12 keystores.

Use the following OpenSSL command to create the PKCS12 keystore for Firefox:

$ openssl pkcs12 -export -in /path-to/certificate.pem \
-inkey /path-to/key.pem -out name.p12

To import the PKCS12 keystore that you just created, select the following Firefox menus, tabs,
and buttons: Edit > Preferences > Advanced > Encryption > View certificates > Authorities >
Import.

Import one certificate at a time.

Complete Secure Repositories Example

This example configures three secure repositories named repo1, repo2, and repo3. The repo1
and repo2 repositories are configured with dedicated certificates. Therefore, certificates for
repo1 will not work on repo2, and certificates for repo2 will not work on repo1. The repo3
repository is configured to accept either certificate.

The example assumes you have a proper server certificate for your Apache instance
already available. If you do not have a server certificate for your Apache instance, see
the instructions for creating a test certificate in “Creating a Self-Signed Server Certificate
Authority” on page 92.

The three repositories are set up under https://pkg-sec.example.com/repo1, https://pkg-
sec.example.com/repo2, and https://pkg-sec.example.com/repo3. These repositories point

94 Copying and Creating Package Repositories in Oracle Solaris 11.3 • September 2018

How to Configure Secure Repositories

to depot servers set up at http://internal.example.com on ports 10001, 10002, and 10003
respectively. Make sure the SOFTTOKEN_DIR environment variable is set correctly as described in
“Creating a Keystore” on page 87.

How to Configure Secure Repositories

1. Create a CA certificate for repo1.

$ pktool gencert label=repo1_ca subject="CN=repo1" serial=0x01

$ pktool export objtype=cert label=repo1_ca outformat=pem \

outfile=repo1_ca.pem

2. Create a CA certificate for repo2.

$ pktool gencert label=repo2_ca subject="CN=repo2" serial=0x01

$ pktool export objtype=cert label=repo2_ca outformat=pem \

outfile=repo2_ca.pem

3. Create a combined CA certificate file.

$ cat repo1_ca.pem > repo_cas.pem

$ cat repo2_ca.pem >> repo_cas.pem

$ cp repo_cas.pem /path-to-certs

4. Create one client certificate/key pair to allow user myuser to access repository
repo1.

$ pktool gencsr subject="C=US,CN=myuser" label=repo1_0001 format=pem \

outcsr=repo1_myuser.csr

$ pktool signcsr signkey=repo1_ca csr=repo1_myuser.csr \

serial=0x02 outcert=repo1_myuser.crt.pem issuer="CN=repo1"

$ pktool export objtype=key label=repo1_0001 outformat=pem \

outfile=repo1_myuser.key.pem

$ cp repo1_myuser.key.pem /path-to-certs
$ cp repo1_myuser.crt.pem /path-to-certs

5. Create one client certificate/key pair to allow user myuser to access repository
repo2.

$ pktool gencsr subject="C=US,CN=myuser" label=repo2_0001 format=pem \

outcsr=repo2_myuser.csr

$ pktool signcsr signkey=repo2_ca csr=repo2_myuser.csr \

serial=0x02 outcert=repo2_myuser.crt.pem issuer="CN=repo2"

$ pktool export objtype=key label=repo2_0001 outformat=pem \

outfile=repo2_myuser.key.pem

$ cp repo2_myuser.key.pem /path-to-certs

Chapter 5 • Running the Package Depot Server Behind a Web Server 95

How to Configure Secure Repositories

$ cp repo2_myuser.crt.pem /path-to-certs

6. Configure Apache.
Add the following SSL configuration at the end of your httpd.conf file:

Let Apache listen on the standard HTTPS port

Listen 443

<VirtualHost 0.0.0.0:443>

 # DNS domain name of the server

 ServerName pkg-sec.example.com

 # enable SSL

 SSLEngine On

 # enable all available TLSv1 flavors, but not SSLv2 or SSLv3

 SSLProtocol all -SSLv2 -SSLv3

 # Location of the server certificate and key.

 # You either have to get one from a certificate signing authority like

 # VeriSign or create your own CA for testing purposes (see "Creating a

 # Self-Signed CA for Testing Purposes")

 SSLCertificateFile /path/to/server.crt

 SSLCertificateKeyFile /path/to/server.key

 # Intermediate CA certificate file. Required if your server certificate

 # is not signed by a top-level CA directly but an intermediate authority.

 # Comment out this section if you don't need one or if you are using a

 # test certificate

 SSLCertificateChainFile /path/to/ca_intermediate.pem

 # CA certs for client verification.

 # This is where the CA certificate created in step 3 needs to go.

 # If you have multiple CAs for multiple repos, just concatenate the

 # CA certificate files

 SSLCACertificateFile /path/to/certs/repo_cas.pem

 # If the client presents a certificate, verify it here. If it doesn't,

 # ignore.

 # This is required to be able to use client-certificate based and

 # anonymous SSL traffic on the same VirtualHost.

 SSLVerifyClient optional

 <Location /repo1>

 SSLVerifyDepth 1

 SSLRequire (%{SSL_CLIENT_I_DN_CN} =~ m/repo1/)

 # proxy request to depot running at internal.example.com:10001

 ProxyPass http://internal.example.com:10001 nocanon max=500

96 Copying and Creating Package Repositories in Oracle Solaris 11.3 • September 2018

How to Configure Secure Repositories

 </Location>

 <Location /repo2>

 SSLVerifyDepth 1

 SSLRequire (%{SSL_CLIENT_I_DN_CN} =~ m/repo2/)

 # proxy request to depot running at internal.example.com:10002

 ProxyPass http://internal.example.com:10002 nocanon max=500

 </Location>

 <Location /repo3>

 SSLVerifyDepth 1

 SSLRequire (%{SSL_CLIENT_VERIFY} eq "SUCCESS")

 # proxy request to depot running at internal.example.com:10003

 ProxyPass http://internal.example.com:10003 nocanon max=500

 </Location>

</VirtualHost>

7. Test access to repo1.

$ pkg set-publisher -k /path-to-certs/repo1_myuser.key.pem \
-c /path-to-certs/repo1_myuser.crt.pem \
-p https://pkg-sec.example.com/repo1/

8. Test access to repo2.

$ pkg set-publisher -k /path-to-certs/repo2_myuser.key.pem \
-c /path-to-certs/repo2_myuser.crt.pem \
-p https://pkg-sec.example.com/repo2/

9. Test access to repo3.
Use the repo1 certificate to test access to repo3.

$ pkg set-publisher -k /path-to-certs/repo1_myuser.key.pem \
-c /path-to-certs/repo1_myuser.crt.pem \
-p https://pkg-sec.example.com/repo3/

Use the repo2 certificate to test access to repo3.

$ pkg set-publisher -k /path-to-certs/repo2_myuser.key.pem \
-c /path-to-certs/repo2_myuser.crt.pem \
-p https://pkg-sec.example.com/repo3/

Chapter 5 • Running the Package Depot Server Behind a Web Server 97

98 Copying and Creating Package Repositories in Oracle Solaris 11.3 • September 2018

Index

A
accessing

file interface, 42
HTTP interface, 43
HTTPS interface, 86

Apache web server configuration, 50, 79
caching, 81
catalog caching, 82
disable forward proxying, 81
error 404 Not Found, 80
HTTPS repository access, 86
increase pipelined requests, 81
proxying, 83
raise response timeout, 81
reduce size of metadata, 80
required, 80

authorizations, 21
automatic update, 36
availability, 18, 60, 84

C
CA, 86, 88, 92

creating, 88
extracting, 88

caching, 81
catalog.attrs file, 82
certificate authority (CA) See CA
certificate chain, 86
certificate key

extracting, 90
certificate management, 87

See also pktool command

creating a certificate authority, 88
creating a client certificate, 89
creating a keystore, 87
generating a certificate signing request, 89

certificate policy, 71
certificate signing request (CSR) See CSR
certificates

client See client certificates
installing, 26
updating, 28

certification authority See CA
checksums, 30
client certificates, 86
clone

repository, 61, 63
ZFS file system, 56

copying
using a zip file, 29
using an iso file, 32
using mirror service, 36
using pkgrecv, 34

CPU (Critical Patch Update), 19
Critical Patch Update (CPU), 19
crt.pem file, 90
CSR, 89, 92

generating, 89
signing, 89

D
depot.conf Apache configuration file, 50

99

Index

E
Enterprise Manager Ops Center, 25
/etc/certs/CA/ trust anchor directory, 71

G
gencert command, 89

H
HTTP interface

About section, 72
repository description, 72
repository name, 73

httpd.conf file, 79, 91
HTTPS repository access, 86

I
image-create command, 36
iso files, 32

creating, 30

K
key management, 87

See also pktool command
creating a keystore, 87

key.pem file, 90
keys

installing, 26
updating, 28

keystore
creating, 87
default and custom locations, 87
PKCS12, 94
SOFTTOKEN_DIR, 87

L
Linux, 50
load balancing, 60, 84

M
mirror service, 36

N
NFS share, 42

O
openssl command, 89
Ops Center, 25
Oracle Linux, 50
Oracle Solaris 10, 50

P
package archive, 74
package depot server

Apache depot server, 43, 66
caching, 81
load-balanced, 84
non-load-balanced, 83
pkg.depotd depot server, 43
pkg/inst_root property, 46
pkg/port property, 46
pkg/proxy_base property, 83
pkg/readonly property, 66
pkg/standalone property, 43, 66
pkg/threads property, 43, 83
proxy base, 65, 83

package retrieval
file interface, 42
HTTP interface, 43
HTTPS interface, 86

partial repository, 14
performance

availability, 18, 60, 84
copying repositories, 23
search, 80, 81, 83

permissions, 21
PKCS12 keystore, 94
pkg image-create command, 36

100 Copying and Creating Package Repositories in Oracle Solaris 11.3 • September 2018

Index

pkg set-publisher command, 37, 42, 48
pkg.depot-config command, 50
pkg.depotd package depot server daemon, 43
pkg/depot service See package web server
pkg/inst_root property, 46
pkg/port property, 46
pkg/proxy_base property, 83
pkg/readonly property, 66
pkg/server service See package depot server
pkg/standalone property, 43, 66
pkg/threads property, 43, 83
pkgrecv command, 24, 35, 58, 74

--clone option, 62, 63
cloning a repository, 61, 63
resume interrupted, 60

pkgrepo command
contents, 74, 76
create, 34, 62, 72
fix, 24, 30
get, 72
info, 30, 32, 74
list, 30, 74
refresh, 59, 74
remove, 76
remove-publisher, 76
set, 72, 73
verify, 24, 30

pktool command
export, 89
gencert, 88
gencsr, 89
list, 88
setpin, 87
signcsr, 89

privileges, 21
proxy, 23
publisher

default, 71
properties, 72
setting for file origin, 42
setting for HTTP origin, 48

setting for HTTPS origin, 90
setting for mirror service, 37

R
repository

adding packages, 74
availability, 18, 60, 84
best practices, 14
certificate policy, 71
cloning, 23, 60, 61, 63
copying from a zip file, 29
copying from an iso file, 32
copying performance, 23
copying using mirror service, 36
copying using pkgrecv, 34
creating an iso file, 30
creating new structure, 34, 62
default publisher, 71
file access, 42
HTTP access, 43
HTTPS access, 86
location, 29

persistent, 18
shared, 17

partial, 14
properties, 70

modifying, 73
publisher properties, 72
search index, 59
security, 18
separate file system, 17, 29
signature policy, 71
snapshots, 18, 30, 56
sparse, 14
subset, 14
support repository, 14, 19, 37, 55
trust anchor directory, 71
updating automatically, 36
updating best practices, 55
updating using a zip file, 32, 57
updating using an iso file, 58
updating using mirror service, 36

101

Index

updating using pkgrecv, 58
verification, 18, 24, 30
web server, 79

repository files
verifying, 30

retrieval
file interface, 42
HTTP interface, 43
HTTPS interface, 86

rights profiles, 21
roles, 21

S
search performance, 80, 81, 83
searching, 59
secure repository, 86
secure sockets layer See SSL
security

rights, 21
Service Management Facility (SMF) services See SMF
services
set-publisher command, 37, 42, 48, 90
signature policy, 71
SMF services

ca-certificates, 93
pkg/depot, 43, 66
pkg/mirror, 17, 36
pkg/server, 46
restarting repository service, 47

snapshots, 18, 30, 56
sparse repository, 14
SRU, 14, 19, 37, 55
SSL, 86
subset repository, 14
support repository, 14, 19, 37, 55

certificate
installing, 26
updating, 28

key
installing, 26
updating, 28

Support Repository Update (SRU) See SRU

svc:/application/pkg/depot, 43, 66
svc:/application/pkg/mirror, 17, 36
svc:/application/pkg/server, 46
svc:/system/ca-certificates, 93
svcadm command, 37, 47
svccfg command, 36

adding a service instance, 46
svcs command, 37

T
trust anchor directory, 71

U
updating

automatically, 36
best practices, 55
using mirror service, 36
using pkgrecv, 58

user image, 36

V
/var/pkg/ssl directory, 90
verify repository, 18, 24, 30
verify repository files, 30

W
web server

caching, 81
partial configuration, 50

Z
ZFS

clone, 56
storage pool capacity, 23

ZFS settings

102 Copying and Creating Package Repositories in Oracle Solaris 11.3 • September 2018

Index

atime, 23
compression, 23

zip files, 29

103

104 Copying and Creating Package Repositories in Oracle Solaris 11.3 • September 2018

	Copying and Creating Package Repositories in Oracle® Solaris 11.3
	Contents
	Using This Documentation
	Product Documentation Library
	Feedback

	Chapter 1 • Image Packaging System Package Repositories
	Local IPS Repositories
	Best Practices for Creating and Using Local IPS Package Repositories
	Do Not Subset Repository Content
	Minimal Required Repository
	Most Complete Repository

	Create Repositories in a Separate ZFS File System in a Shared, Persistent Location
	Verify and Snapshot the Repository
	Provide Security and High Availability

	Oracle Solaris Repository Content
	System Requirements
	Repository Management Privileges

	Chapter 2 • Copying IPS Package Repositories
	Performance Considerations for Copying Repositories
	Troubleshooting Local Package Repositories
	Comparing Repository Content Sources
	How to Install a Certificate and Key for the Oracle Solaris Support Repository
	How to Update the Certificate and Key for the Oracle Solaris Support Repository

	Copying a Repository From a File
	How to Copy a Repository From a zip File
	How to Copy a Repository From an iso File

	Copying a Repository From the Internet
	How to Explicitly Copy a Repository From the Internet
	How to Automatically Copy a Repository From the Internet

	Chapter 3 • Providing Access To Your Repository
	Comparing Repository Access Interfaces
	Enabling Users to Retrieve Packages Using a File Interface
	How to Enable Users to Retrieve Packages Using a File Interface

	Enabling Users to Retrieve Packages Using an HTTP Interface
	How to Enable Users to Retrieve Packages Using an HTTP Interface
	How to Configure a pkg/server Service Instance
	Updating Repositories with HTTP Locations

	Using an Oracle Solaris 10 or Linux System to Serve Repository Content
	How to Provide HTTP Access to an IPS Repository From an Oracle Solaris 10 or Linux System

	Chapter 4 • Maintaining Your Local IPS Package Repository
	Updating Your Local Repository
	How to Update a Local IPS Package Repository
	Resuming an Interrupted Package Receive

	Maintaining Multiple Identical Local Repositories
	How to Clone a Local IPS Package Repository
	How to Update a Cloned Local IPS Package Repository

	Serving Multiple Repositories Using Web Server Access
	How to Serve Multiple Repositories From Separate Locations
	How to Serve Multiple Repositories From a Single Location

	Checking and Setting Repository Properties
	Viewing Properties that Apply to the Entire Repository
	Viewing Repository Publisher Properties
	Modifying Repository Property Values

	Customizing Your Local Repository
	Adding Packages to Your Repository
	Examining Packages In Your Repository
	Removing Packages From Your Repository

	Chapter 5 • Running the Package Depot Server Behind a Web Server
	Depot Server Apache Configuration
	Required Apache Configuration Setting
	Recommended Generic Apache Configuration Settings

	Configuring Caching for the Depot Server
	Cache Considerations for the Catalog Attributes File
	Cache Considerations for Search

	Configuring a Simple Prefixed Proxy
	Multiple Repositories Under One Domain
	Configuring Load Balancing
	One Repository Server With Load Balancing
	One Load-Balanced and One Non-Load-Balanced Repository Server

	Configuring HTTPS Repository Access
	Creating a Keystore
	Creating a Certificate Authority for Client Certificates
	Creating Client Certificates Used for Accessing the Repository
	Generating a Certificate Signing Request
	Signing the CSR
	Extracting the Certificate Key
	Enabling Systems to Access the Protected Repository

	Adding SSL Configuration to the Apache Configuration File
	Creating a Self-Signed Server Certificate Authority
	Creating a PKCS12 Keystore to Access a Secure Repository With Firefox
	Complete Secure Repositories Example
	How to Configure Secure Repositories

	Index

