
Part No: E39019
January 2015

Oracle® Solaris Studio 12.4: Numerical
Computation Guide

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except
as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform,
publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS. Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered
to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or
documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous
applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of
SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products, and services from third parties. Oracle Corporation and its affiliates are
not responsible or and expressly disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an applicable agreement
between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Copyright © 2015, Oracle et/ou ses affiliés. Tous droits réservés.

Ce logiciel et la documentation qui l’accompagne sont protégés par les lois sur la propriété intellectuelle. Ils sont concédés sous licence et soumis à des restrictions d’utilisation et
de divulgation. Sauf stipulation expresse de votre contrat de licence ou de la loi, vous ne pouvez pas copier, reproduire, traduire, diffuser, modifier, breveter, transmettre, distribuer,
exposer, exécuter, publier ou afficher le logiciel, même partiellement, sous quelque forme et par quelque procédé que ce soit. Par ailleurs, il est interdit de procéder à toute ingénierie
inverse du logiciel, de le désassembler ou de le décompiler, excepté à des fins d’interopérabilité avec des logiciels tiers ou tel que prescrit par la loi.

Les informations fournies dans ce document sont susceptibles de modification sans préavis. Par ailleurs, Oracle Corporation ne garantit pas qu’elles soient exemptes d’erreurs et vous
invite, le cas échéant, à lui en faire part par écrit.

Si ce logiciel, ou la documentation qui l’accompagne, est concédé sous licence au Gouvernement des Etats-Unis, ou à toute entité qui délivre la licence de ce logiciel ou l’utilise pour
le compte du Gouvernement des Etats-Unis, la notice suivante s’applique:

U.S. GOVERNMENT END USERS. Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered
to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or
documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

Ce logiciel ou matériel a été développé pour un usage général dans le cadre d’applications de gestion des informations. Ce logiciel ou matériel n’est pas conçu ni n’est destiné
à être utilisé dans des applications à risque, notamment dans des applications pouvant causer des dommages corporels. Si vous utilisez ce logiciel ou matériel dans le cadre
d’applications dangereuses, il est de votre responsabilité de prendre toutes les mesures de secours, de sauvegarde, de redondance et autres mesures nécessaires à son utilisation dans
des conditions optimales de sécurité. Oracle Corporation et ses affiliés déclinent toute responsabilité quant aux dommages causés par l’utilisation de ce logiciel ou matériel pour ce
type d’applications.

Oracle et Java sont des marques déposées d’Oracle Corporation et/ou de ses affiliés. Tout autre nom mentionné peut correspondre à des marques appartenant à d’autres propriétaires
qu’Oracle.

Intel et Intel Xeon sont des marques ou des marques déposées d’Intel Corporation. Toutes les marques SPARC sont utilisées sous licence et sont des marques ou des marques
déposées de SPARC International, Inc. AMD, Opteron, le logo AMD et le logo AMD Opteron sont des marques ou des marques déposées d’Advanced Micro Devices. UNIX est une
marque déposée d’The Open Group.

Ce logiciel ou matériel et la documentation qui l’accompagne peuvent fournir des informations ou des liens donnant accès à des contenus, des produits et des services émanant de
tiers. Oracle Corporation et ses affiliés déclinent toute responsabilité ou garantie expresse quant aux contenus, produits ou services émanant de tiers, sauf mention contraire stipulée
dans un contrat entre vous et Oracle. En aucun cas, Oracle Corporation et ses affiliés ne sauraient être tenus pour responsables des pertes subies, des coûts occasionnés ou des
dommages causés par l’accès à des contenus, produits ou services tiers, ou à leur utilisation, sauf mention contraire stipulée dans un contrat entre vous et Oracle.

Accessibilité de la documentation

Pour plus d’informations sur l’engagement d’Oracle pour l’accessibilité à la documentation, visitez le site Web Oracle Accessibility Program, à l'adresse http://www.oracle.com/
pls/topic/lookup?ctx=acc&id=docacc.

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc

Accès au support électronique

Les clients Oracle qui ont souscrit un contrat de support ont accès au support électronique via My Oracle Support. Pour plus d'informations, visitez le site http://www.oracle.com/
pls/topic/lookup?ctx=acc&id=info ou le site http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs si vous êtes malentendant.

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

5

Contents

Using This Documentation .. 13

1 Introduction ... 15
1.1 Floating-Point Environment ... 15

2 IEEE Arithmetic .. 17
2.1 IEEE Arithmetic Model .. 17

2.1.1 What Is IEEE Arithmetic? .. 17
2.2 IEEE Formats ... 18

2.2.1 Storage Formats .. 19
2.2.2 Single Format ... 19
2.2.3 Double Format .. 21
2.2.4 Quadruple Format ... 24
2.2.5 Double-Extended Format (x86) .. 26
2.2.6 Ranges and Precisions in Decimal Representation 29
2.2.7 Base Conversion in the Oracle Solaris Environment 32

2.3 Underflow .. 33
2.3.1 Underflow Thresholds .. 33
2.3.2 How Does IEEE Arithmetic Treat Underflow? 34
2.3.3 Why Gradual Underflow? ... 35
2.3.4 Error Properties of Gradual Underflow .. 35
2.3.5 Two Examples of Gradual Underflow Versus Abrupt Underflow 37
2.3.6 Does Underflow Matter? ... 38

2.4 IEEE Standard 754-2008 ... 39

3 The Math Libraries ... 41
3.1 Oracle Solaris Math Libraries .. 41

3.1.1 Standard Math Library ... 41
3.1.2 Vector Math Library .. 43

3.2 Oracle Solaris Studio Math Libraries ... 43

Contents

6 Oracle Solaris Studio 12.4: Numerical Computation Guide • January 2015

3.2.1 Oracle Math Library .. 44
3.2.2 Optimized Libraries ... 45

3.3 Single, Double, and Extended/Quadruple Precision .. 46
3.4 IEEE Support Functions .. 47

3.4.1 ieee_functions(3m) and ieee_sun(3m) ... 47
3.4.2 ieee_values(3m) .. 48
3.4.3 ieee_flags(3m) .. 50
3.4.4 ieee_retrospective(3m) ... 52
3.4.5 nonstandard_arithmetic(3m) ... 54

3.5 C99 Floating-Point Environment Functions ... 54
3.5.1 Exception Flag Functions .. 54
3.5.2 Rounding Control .. 55
3.5.3 Environment Functions ... 56

3.6 Implementation Features of libm and libsunmath .. 57
3.6.1 About the Algorithms ... 57
3.6.2 Argument Reduction for Trigonometric Functions 58
3.6.3 Data Conversion Routines ... 59
3.6.4 Random Number Facilities .. 59

4 Exceptions and Exception Handling .. 61
4.1 Exception Handling Objectives ... 61
4.2 What Is an Exception? .. 62

4.2.1 Notes for Table 4-1 .. 63
4.3 Detecting Exceptions .. 64

4.3.1 ieee_flags(3m) .. 65
4.3.2 C99 Exception Flag Functions ... 67

4.4 Locating an Exception .. 68
4.4.1 Using the Debugger to Locate an Exception 68
4.4.2 Using a Signal Handler to Locate an Exception 74
4.4.3 Using libm Exception Handling Extensions to Locate an Exception 79

4.5 Handling Exceptions .. 85
4.5.1 Substituting IEEE Trapped Under/Overflow Results 86

5 Compiler Code Generation .. 97
5.1 Supported Operation Systems, Hardware, and Memory Model 97
5.2 Code Generation Options .. 98
5.3 Default Address Model and Code Generation .. 99
5.4 Compilation Options .. 99

Contents

7

5.5 Reproducible Results .. 101
5.5.1 Transcendental Functions .. 101
5.5.2 Associative Operations ... 102
5.5.3 Indeterminate Evaluation ... 102
5.5.4 Non-Portable Types .. 102
5.5.5 Implicit Higher Precision .. 102

5.6 Independent Confirmation .. 103

A Examples ... 105
A.1 IEEE Arithmetic .. 105
A.2 The Math Libraries .. 107

A.2.1 Random Number Generator .. 107
A.2.2 IEEE Recommended Functions .. 109
A.2.3 IEEE Special Values .. 112
A.2.4 ieee_flags — Rounding Direction .. 114
A.2.5 C99 Floating-Point Environment Functions 115

A.3 Exceptions and Exception Handling .. 119
A.3.1 ieee_flags — Accrued Exceptions .. 119
A.3.2 ieee_handler: Trapping Exceptions ... 121
A.3.3 ieee_handler: Abort on Exceptions ... 128
A.3.4 libm Exception Handling Features ... 128
A.3.5 Using libm Exception Handling With Fortran Programs 133

A.4 Miscellaneous ... 136
A.4.1 sigfpe: Trapping Integer Exceptions .. 136
A.4.2 Calling Fortran From C .. 137
A.4.3 Useful Debugging Commands ... 139

B SPARC Behavior and Implementation ... 143
B.1 Floating-Point Hardware ... 143

B.1.1 Floating-Point Status Register and Queue .. 145
B.1.2 Special Cases Requiring Software Support 147

B.2 fpversion(1) Function: Finding Information About the FPU 151

C x86 Behavior and Implementation ... 153
C.1 Code Generation for Supported Systems .. 153
C.2 Differences from SPARC .. 154

Contents

8 Oracle Solaris Studio 12.4: Numerical Computation Guide • January 2015

D Addendum to What Every Computer Scientist Should Know About
Floating-Point Arithmetic ... 155

D.1 Differences Among IEEE 754 Implementations ... 156
D.1.1 Current IEEE 754 Implementations .. 157
D.1.2 Pitfalls in Computations on Extended-Based Systems 158
D.1.3 Programming Language Support for Extended Precision 163
D.1.4 Conclusion ... 167

E Standards Compliance .. 169
E.1 libm Special Cases ... 169

E.1.1 Other Compiler Flags Affecting Standard Conformance 172
E.1.2 Additional Notes on C99 Conformance ... 173

E.2 LIA-1 Conformance ... 174
E.2.1 a. TYPES (LIA 5.1): .. 174
E.2.2 b. PARAMETERS (LIA 5.1): .. 174
E.2.3 d. DIV/REM/MOD (LIA 5.1.3): ... 175
E.2.4 i. NOTATION (LIA 5.1.3): ... 175
E.2.5 j. EXPRESSION EVALUATION: ... 176
E.2.6 k. METHOD OF OBTAINING PARAMETERS: 176
E.2.7 n. NOTIFICATION: ... 176
E.2.8 o. SELECTION MECHANISM: .. 177

F References ... 179
F.1 Chapter 2: “IEEE Arithmetic” .. 179
F.2 Chapter 3: “The Math Libraries” ... 180
F.3 Chapter 4: “Exceptions and Exception Handling” ... 181
F.4 Standards .. 181
F.5 Test Programs .. 182

Glossary ... 183

Index ... 187

9

Figures

FIGURE 2-1 Single Storage Format .. 20
FIGURE 2-2 Double-Storage Format ... 22
FIGURE 2-3 Quadruple Format .. 24
FIGURE 2-4 Double-Extended Format (x86) .. 27
FIGURE 2-5 Comparison of a Set of Numbers Defined by Digital and Binary

Representation ... 30
FIGURE 2-6 Number Line .. 36
FIGURE B-1 SPARC Floating-Point Status Register ... 145

10 Oracle Solaris Studio 12.4: Numerical Computation Guide • January 2015

11

Tables

TABLE 2-1 IEEE Formats and Language Types ... 19
TABLE 2-2 Values Represented by Bit Patterns in IEEE Single Format 20
TABLE 2-3 Bit Patterns in Single-Storage Format and Their IEEE Values 21
TABLE 2-4 Values Represented by Bit Patterns in IEEE Double Format 22
TABLE 2-5 Bit Patterns in Double-Storage Format and Their IEEE Values 23
TABLE 2-6 Values Represented by Bit Patterns ... 25
TABLE 2-7 Bit Patterns in Quadruple Format ... 25
TABLE 2-8 Values Represented by Bit Patterns (x86) ... 27
TABLE 2-9 Bit Patterns in Double-Extended Format and Their Values (x86) 28
TABLE 2-10 Range and Precision of Storage Formats .. 31
TABLE 2-11 Underflow Thresholds .. 33
TABLE 2-12 ulp(1) in Four Different Precisions .. 36
TABLE 2-13 Gaps Between Representable Single-Format Floating-Point Numbers 36
TABLE 3-1 Contents of libm .. 42
TABLE 3-2 Contents of libmvec ... 43
TABLE 3-3 Contents of libsunmath .. 45
TABLE 3-4 Calling Single, Double, and Extended/Quadruple Functions 46
TABLE 3-5 ieee_functions(3m) .. 47
TABLE 3-6 ieee_sun(3m) ... 47
TABLE 3-7 Calling ieee_functions From Fortran .. 48
TABLE 3-8 Calling ieee_sun From Fortran .. 48
TABLE 3-9 IEEE Values: Single Precision .. 48
TABLE 3-10 IEEE Values: Double Precision .. 49
TABLE 3-11 IEEE Values: Quadruple Precision .. 49
TABLE 3-12 IEEE Values: Double-Extended Precision (x86) 50
TABLE 3-13 Parameter Values for ieee_flags ... 51
TABLE 3-14 ieee_flags Input Values for the Rounding Direction 51
TABLE 3-15 C99 Standard Exception Flag Functions ... 55
TABLE 3-16 libm Floating-Point Environment Functions .. 56
TABLE 3-17 Intervals for Single-Value Random Number Generators 59

Tables

12 Oracle Solaris Studio 12.4: Numerical Computation Guide • January 2015

TABLE 4-1 IEEE Floating-Point Exceptions ... 62
TABLE 4-2 Exception Bits ... 66
TABLE 4-3 Types for Arithmetic Exceptions ... 77
TABLE 4-4 Exception Codes for fex_set_handling .. 80
TABLE A-1 Some Debugging Commands (SPARC) .. 139
TABLE A-2 Some Debugging Commands (x86) ... 141
TABLE B-1 SPARC Systems Supported in Oracle Solaris 11 and later 143
TABLE B-2 UltraSPARC Systems Supported in Oracle Solaris 10 Update 10 but not

Oracle Solaris 11 ... 144
TABLE B-3 Floating-Point Status Register Fields ... 146
TABLE B-4 Exception Handling Fields ... 146
TABLE E-1 Special Cases and libm Functions ... 170
TABLE E-2 Solaris and C99/SUSv3 Differences ... 174
TABLE E-3 LIA‐1 Conformance ‐ Notation .. 175

Using This Documentation 13

Using This Documentation

■ Overview – Describes the floating-point environment supported by software and hardware
on SPARC-based systems and x86-based systems running the Oracle Solaris Operating
System.

■ Audience – Application developers, system developers, architects, support engineers.
■ Required knowledge – Programming experience, software development testing, aptitude to

build and compile software products

Product Documentation Library

Late-breaking information and known issues for this product are included in the documentation
library at http://docs.oracle.com/cd/E37069_01.

Feedback

Provide feedback about this documentation at http://www.oracle.com/goto/docfeedback.

http://docs.oracle.com/cd/E37069_01
http://www.oracle.com/goto/docfeedback

14 Oracle Solaris Studio 12.4: Numerical Computation Guide • January 2015

Chapter 1 • Introduction 15

 1 ♦ ♦ ♦ C H A P T E R 1

Introduction

Oracle's floating-point environment on SPARC and Intel x86 systems enables you to develop
robust, high-performance, portable numerical applications. The floating-point environment can
also help investigate unusual behavior of numerical programs written by others. These systems
implement the arithmetic model specified by IEEE Standard 754 for Binary Floating Point
Arithmetic. This manual explains how to use the options and flexibility provided by the IEEE
Standard on these systems.

1.1 Floating-Point Environment

The floating-point environment consists of data structures and operations made available
to the applications programmer by hardware, system software, and software libraries that
together implement IEEE Standard 754. IEEE Standard 754 makes it easier to write numerical
applications. It is a solid, well-thought-out basis for computer arithmetic that advances the art of
numerical programming.

For example, the hardware provides storage formats corresponding to the IEEE data formats,
operations on data in such formats, control over the rounding of results produced by these
operations, status flags indicating the occurrence of IEEE numeric exceptions, and the IEEE-
prescribed result when such an exception occurs in the absence of a user-defined handler for
it. System software supports IEEE exception handling. The software libraries, including the
math libraries, libm and libsunmath, implement functions such as exp(x) and sin(x) in a way
that follows the spirit of IEEE Standard 754 with respect to the raising of exceptions. When a
floating-point arithmetic operation has no well-defined result, the system communicates this
fact to the user by raising an exception. The math libraries also provide function calls that
handle special IEEE values like Inf (infinity) or NaN (Not a Number).

The three constituents of the floating-point environment interact in subtle ways, and those
interactions are generally invisible to the applications programmer. The programmer sees only
the computational mechanisms prescribed or recommended by the IEEE standard. In general,
this manual guides programmers to make full and efficient use of the IEEE mechanisms so that
they can write application software effectively.

Many questions about floating-point arithmetic concern elementary operations on numbers.
Consider the following questions:

1.1 Floating-Point Environment

16 Oracle Solaris Studio 12.4: Numerical Computation Guide • January 2015

■ What is the result of an operation when the infinitely precise result is not representable in
the computer system?

■ Are elementary operations like multiplication and addition commutative?

Another class of questions is connected to exceptions and exception handling. For example,
what happens when you do the following?:

■ Multiply two very large numbers
■ Divide by zero
■ Attempt to compute the square root of a negative number

In some other arithmetics, the first class of questions might not have the expected answers, or
the exceptional cases in the second class are treated the same: the program aborts on the spot. In
some very old machines, the computation proceeds, but with unuseful results.

The IEEE Standard 754 ensures that operations yield the mathematically expected results with
the expected properties. It also ensures that exceptional cases yield specified results, unless the
user specifically makes other choices.

In this manual, there are references to terms like NaN or subnormal number. The
“Glossary” on page 183 defines terms related to floating-point arithmetic.

Chapter 2 • IEEE Arithmetic 17

 2 ♦ ♦ ♦ C H A P T E R 2

IEEE Arithmetic

This chapter discusses the arithmetic model specified by the ANSI/IEEE Standard 754-1985 for
Binary Floating-Point Arithmetic (“the IEEE standard” or “IEEE 754” for short). All SPARC®

and x86 processors use IEEE arithmetic. Oracle Solaris Studio compilers support the features of
IEEE arithmetic. This chapter discusses the following topics:

■ “2.1 IEEE Arithmetic Model” on page 17
■ “2.2 IEEE Formats” on page 18
■ “2.3 Underflow” on page 33
■ “2.4 IEEE Standard 754-2008” on page 39

2.1 IEEE Arithmetic Model

This section describes the IEEE 754-1985 specification. The IEEE Standard was substantially
revised in 2008.

2.1.1 What Is IEEE Arithmetic?

IEEE 754 specifies:

■ Two basic floating-point formats: single and double.
The IEEE single format has a significand precision of 24 bits and occupies 32 bits overall.
The IEEE double format has a significand precision of 53 bits and occupies 64 bits overall.

■ Two classes of extended floating-point formats: single extended and double extended.
The standard does not prescribe the exact precision and size of these formats, but it does
specify the minimum precision and size. For example, an IEEE double extended format
must have a significand precision of at least 64 bits and occupy at least 79 bits overall.

■ Accuracy requirements on floating-point operations: add, subtract, multiply, divide, square
root, remainder, round numbers in floating-point format to integer values, convert between
different floating-point formats, convert between floating-point and integer formats, and
compare.

2.2 IEEE Formats

18 Oracle Solaris Studio 12.4: Numerical Computation Guide • January 2015

The remainder and compare operations must be exact. Each of the other operations must
deliver to its destination the exact result, unless there is no such result or that result does
not fit in the destination's format. In the latter case, the operation must minimally modify
the exact result according to the rules of prescribed rounding modes, presented below, and
deliver the result so modified to the operation's destination.

■ Accuracy, monotonicity and identity requirements for conversions between decimal strings
and binary floating-point numbers in either of the basic floating-point formats.
For operands lying within specified ranges, these conversions must produce exact results,
if possible, or minimally modify such exact results in accordance with the rules of the
prescribed rounding modes. For operands not lying within the specified ranges, these
conversions must produce results that differ from the exact result by no more than a
specified tolerance that depends on the rounding mode.

■ Five types of IEEE floating-point exceptions, and the conditions for indicating to the user
the occurrence of exceptions of these types.
The five types of floating-point exceptions are invalid operation, division by zero, overflow,
underflow, and inexact.

■ Four rounding directions: toward the nearest representable value, with “even” values
preferred whenever there are two nearest representable values; toward negative infinity
(down); toward positive infinity (up); and toward 0 (chop).

■ Rounding precision; for example, if a system delivers results in double extended format, the
user should be able to specify that such results are to be rounded to the precision of either
the single or double format.

The IEEE standard also recommends support for user handling of exceptions.

The features required by the IEEE standard make it possible to support interval arithmetic,
the retrospective diagnosis of anomalies, efficient implementations of standard elementary
functions like exp and cos, multiple precision arithmetic, and many other tools that are useful in
numerical computation.

IEEE 754 floating-point arithmetic offers users greater control over computation than does
any other kind of floating-point arithmetic. The IEEE standard simplifies the task of writing
numerically sophisticated, portable programs not only by imposing rigorous requirements on
conforming implementations, but also by allowing such implementations to provide refinements
and enhancements to the standard itself.

2.2 IEEE Formats

This section describes how floating-point data is stored in memory. It summarizes the precisions
and ranges of the different IEEE storage formats.

2.2 IEEE Formats

Chapter 2 • IEEE Arithmetic 19

2.2.1 Storage Formats

A floating-point format is a data structure specifying the fields that comprise a floating-point
numeral, the layout of those fields, and their arithmetic interpretation. A floating-point storage
format specifies how a floating-point format is stored in memory. The IEEE standard defines
the formats, but the choice of storage formats is left to the implementers.

Assembly language software sometimes relies on using the storage formats, but higher level
languages usually deal only with the linguistic notions of floating-point data types. These types
have different names in different high-level languages, and correspond to the IEEE formats as
shown in Table 2-1.

TABLE 2-1 IEEE Formats and Language Types

IEEE Precision C, C++ Fortran

single float REAL or REAL*4

double double DOUBLE PRECISION or REAL*8

double extended long double (x86) —

quadruple long double (SPARC) REAL*16

IEEE 754 specifies exactly the single and double floating-point formats, and it defines a class
of extended formats for each of these two basic formats. The long double and REAL*16 types
shown in Table 2-1 refer to one of the class of double extended formats defined by the IEEE
standard.

The following sections describe in detail each of the storage formats used for the IEEE floating-
point formats on SPARC and x86 platforms.

2.2.2 Single Format

The IEEE single format consists of three fields: a 23-bit fraction f; an 8-bit biased exponent
e; and a 1-bit sign s. These fields are stored contiguously in one 32-bit word, as shown in the
following figure. Bits 0:22 contain the 23-bit fraction, f, with bit 0 being the least significant
bit of the fraction and bit 22 being the most significant; bits 23:30 contain the 8-bit biased
exponent, e, with bit 23 being the least significant bit of the biased exponent and bit 30 being
the most significant; and the highest-order bit 31 contains the sign bit, s.

2.2 IEEE Formats

20 Oracle Solaris Studio 12.4: Numerical Computation Guide • January 2015

FIGURE 2-1 Single Storage Format

Table 2-2 shows the correspondence between the values of the three constituent fields s, e and
f, on the one hand, and the value represented by the single- format bit pattern on the other; u
means that the value of the indicated field is irrelevant to the determination of the value of the
particular bit patterns in single format.

TABLE 2-2 Values Represented by Bit Patterns in IEEE Single Format

Single-Format Bit Pattern Value

0 < e < 255 (–1)s × 2e–127 × 1.f (normal numbers)

e = 0; f ≠ 0

(at least one bit in f is nonzero)

(–1)s × 2–126 × 0.f (subnormal numbers)

e = 0; f = 0

(all bits in f are zero)

(–1)s × 0.0 (signed zero)

s = 0; e = 255; f = 0 (all bits in f are zero) +INF (positive infinity)

s = 1; e = 255; f = 0 (all bits in f are zero) –INF (negative infinity)

s = u; e = 255; f ≠ 0

(at least one bit in f is nonzero)

NaN (Not-a-Number)

Notice that when e < 255, the value assigned to the single format bit pattern is formed by
inserting the binary radix point immediately to the left of the fraction's most significant bit, and
inserting an implicit bit immediately to the left of the binary point, thus representing in binary
positional notation a mixed number (whole number plus fraction, wherein 0 ≤ fraction < 1).

The mixed number thus formed is called the single-format significand. The implicit bit is so
named because its value is not explicitly given in the single- format bit pattern, but is implied
by the value of the biased exponent field.

For the single format, the difference between a normal number and a subnormal number is that
the leading bit of the significand (the bit to left of the binary point) of a normal number is 1,
whereas the leading bit of the significand of a subnormal number is 0. Single-format subnormal
numbers were called single-format denormalized numbers in IEEE Standard 754.

The 23-bit fraction combined with the implicit leading significand bit provides 24 bits of
precision in single-format normal numbers.

2.2 IEEE Formats

Chapter 2 • IEEE Arithmetic 21

Examples of important bit patterns in the single-storage format are shown in Table 2-3.
The maximum positive normal number is the largest finite number representable in IEEE
single format. The minimum positive subnormal number is the smallest positive number
representable in IEEE single format. The minimum positive normal number is often referred to
as the underflow threshold. (The decimal values for the maximum and minimum normal and
subnormal numbers are approximate; they are correct to the number of figures shown.)

TABLE 2-3 Bit Patterns in Single-Storage Format and Their IEEE Values

Common Name Bit Pattern (Hex) Decimal Value

+0 00000000 0.0

–0 80000000 –0.0

1 3f800000 1.0

2 40000000 2.0

maximum normal number 7f7fffff 3.40282347e+38

minimum positive normal number 00800000 1.17549435e–38

maximum subnormal number 007fffff 1.17549421e–38

minimum positive subnormal number 00000001 1.40129846e–45

+∞ 7f800000 Infinity

–∞ ff800000 –Infinity

Not-a-Number 7fc00000 NaN

A NaN (Not a Number) can be represented with any of the many bit patterns that satisfy the
definition of a NaN. The hex value of the NaN shown in Table 2-3 is just one of the many bit
patterns that can be used to represent a NaN.

2.2.3 Double Format

The IEEE double format consists of three fields: a 52-bit fraction, f; an 11-bit biased exponent,
e; and a 1-bit sign, s. These fields are stored contiguously in two successively addressed 32-bit
words, as shown in the following figure.

In the SPARC architecture, the higher address 32-bit word contains the least significant 32 bits
of the fraction, while in the x86 architecture the lower address 32‐bit word contains the least
significant 32 bits of the fraction.

If f[31:0] denotes the least significant 32 bits of the fraction, then bit 0 is the least significant
bit of the entire fraction and bit 31 is the most significant of the 32 least significant fraction bits.

In the other 32-bit word, bits 0:19 contain the 20 most significant bits of the fraction, f[51:32],
with bit 0 being the least significant of these 20 most significant fraction bits, and bit 19 being
the most significant bit of the entire fraction; bits 20:30 contain the 11-bit biased exponent,

2.2 IEEE Formats

22 Oracle Solaris Studio 12.4: Numerical Computation Guide • January 2015

e, with bit 20 being the least significant bit of the biased exponent and bit 30 being the most
significant; and the highest-order bit 31 contains the sign bit, s.

The following figure numbers the bits as though the two contiguous 32-bit words were one
64‐bit word in which bits 0:51 store the 52-bit fraction, f; bits 52:62 store the 11-bit biased
exponent, e; and bit 63 stores the sign bit, s.

FIGURE 2-2 Double-Storage Format

The values of the bit patterns in these three fields determine the value represented by the overall
bit pattern.

Table 2-4 shows the correspondence between the values of the bits in the three constituent
fields, on the one hand, and the value represented by the double-format bit pattern on the
other; u means the value of the indicated field is irrelevant to the determination of value for the
particular bit pattern in double format.

TABLE 2-4 Values Represented by Bit Patterns in IEEE Double Format

Double-Format Bit Pattern Value

0 < e < 2047 (–1)s × 2e–1023 × 1.f (normal numbers)

e = 0; f ≠ 0

(at least one bit in f is nonzero)

(–1)s × 2–1022 × 0.f (subnormal numbers)

e = 0; f = 0

(all bits in f are zero)

(–1)s × 0.0 (signed zero)

s = 0; e = 2047; f = 0 (all bits in f are zero) +INF (positive infinity)

s = 1; e = 2047; f = 0 (all bits in f are zero) –INF (negative infinity)

s = u; e = 2047; f ≠ 0

(at least one bit in f is nonzero)

NaN (Not-a-Number)

Notice that when e < 2047, the value assigned to the double-format bit pattern is formed by
inserting the binary radix point immediately to the left of the fraction's most significant bit, and

2.2 IEEE Formats

Chapter 2 • IEEE Arithmetic 23

inserting an implicit bit immediately to the left of the binary point. The number thus formed is
called the significand. The implicit bit is so named because its value is not explicitly given in
the double-format bit pattern, but is implied by the value of the biased exponent field.

For the double format, the difference between a normal number and a subnormal number is
that the leading bit of the significand (the bit to the left of the binary point) of a normal number
is 1, whereas the leading bit of the significand of a subnormal number is 0. Double-format
subnormal numbers were called double-format denormalized numbers in IEEE Standard 754.

The 52-bit fraction combined with the implicit leading significand bit provides 53 bits of
precision in double-format normal numbers.

Examples of important bit patterns in the double-storage format are shown in Table 2-5. The
bit patterns in the second column appear as two 8-digit hexadecimal numbers. For the SPARC
architecture, the left one is the value of the lower addressed 32-bit word, and the right one
is the value of the higher addressed 32-bit word, while for the x86 architecture, the left one
is the higher addressed word, and the right one is the lower addressed word. The maximum
positive normal number is the largest finite number representable in the IEEE double format.
The minimum positive subnormal number is the smallest positive number representable in IEEE
double format. The minimum positive normal number is often referred to as the underflow
threshold. (The decimal values for the maximum and minimum normal and subnormal numbers
are approximate; they are correct to the number of figures shown.)

TABLE 2-5 Bit Patterns in Double-Storage Format and Their IEEE Values

Common Name Bit Pattern (Hex) Decimal Value

+ 0 00000000 00000000 0.0

– 0 80000000 00000000 –0.0

1 3ff00000 00000000 1.0

2 40000000 00000000 2.0

max normal number 7fefffff ffffffff 1.7976931348623157e+308

min positive normal
number

00100000 00000000 2.2250738585072014e–308

max subnormal number 000fffff ffffffff 2.2250738585072009e–308

min positive subnormal
number

00000000 00000001 4.9406564584124654e–324

+∞ 7ff00000 00000000 Infinity

–∞ fff00000 00000000 –Infinity

Not-a-Number 7ff80000 00000000 NaN

A NaN (Not a Number) can be represented by any of the many bit patterns that satisfy the
definition of NaN. The hex value of the NaN shown in Table 2-5 is just one of the many bit
patterns that can be used to represent a NaN.

2.2 IEEE Formats

24 Oracle Solaris Studio 12.4: Numerical Computation Guide • January 2015

2.2.4 Quadruple Format
The floating-point environment's quadruple-precision format also conforms to the IEEE
definition of double-extended format. This format is not in Oracle Solaris Studio C/C++
compilers for x86. The quadruple-precision format occupies four 32-bit words and consists of
three fields: a 112-bit fraction f; a 15-bit biased exponent e; and a 1-bit sign s. These are stored
contiguously as shown in the following figure.

The highest addressed 32-bit word contains the least significant 32-bits of the fraction, denoted
f[31:0]. The next two 32-bit words contain f[63:32] and f[95:64], respectively. Bits 0:15
of the next word contain the 16 most significant bits of the fraction, f[111:96], with bit 0
being the least significant of these 16 bits, and bit 15 being the most significant bit of the entire
fraction. Bits 16:30 contain the 15-bit biased exponent, e, with bit 16 being the least significant
bit of the biased exponent and bit 30 being the most significant; and bit 31 contains the sign bit,
s.

The following figure numbers the bits as though the four contiguous 32-bit words were one
128-bit word in which bits 0:111 store the fraction, f; bits 112:126 store the 15-bit biased
exponent, e; and bit 127 stores the sign bit, s.

FIGURE 2-3 Quadruple Format

The values of the bit patterns in the three fields f, e, and s, determine the value represented by
the overall bit pattern.

Table 2-6 shows the correspondence between the values of the three constituent fields and the
value represented by the bit pattern in quadruple-precision format. u means don't care, because
the value of the indicated field is irrelevant to the determination of values for the particular bit
patterns.

2.2 IEEE Formats

Chapter 2 • IEEE Arithmetic 25

TABLE 2-6 Values Represented by Bit Patterns

Quadruple Bit Pattern Value

0 < e < 32767 (–1)s × 2e–16383 × 1.f (normal numbers)

e = 0, f ≠ 0

(at least one bit in f is nonzero)

(–1)s × 2–16382 × 0.f (subnormal numbers)

e = 0, f = 0

(all bits in f are zero)

(–1)s × 0.0 (signed zero)

s = 0, e = 32767, f = 0

(all bits in f are zero)

+INF (positive infinity)

s = 1, e = 32767; f = 0

(all bits in f are zero)

-INF (negative infinity)

s = u, e = 32767, f ≠ 0

(at least one bit in f is nonzero)

NaN (Not-a-Number)

Examples of important bit patterns in the quadruple-precision double-extended storage
format are shown in Table 2-7. The bit patterns in the second column appear as four 8-digit
hexadecimal numbers. The left-most number is the value of the lowest addressed 32-bit word,
and the right-most number is the value of the highest addressed 32-bit word. The maximum
positive normal number is the largest finite number representable in the quadruple precision
format. The minimum positive subnormal number is the smallest positive number representable
in the quadruple precision format. The minimum positive normal number is often referred to
as the underflow threshold. (The decimal values for the maximum and minimum normal and
subnormal numbers are approximate; they are correct to the number of figures shown.)

TABLE 2-7 Bit Patterns in Quadruple Format

Common
Name

Bit Pattern (SPARC) Decimal Value

+0 00000000 00000000 00000000 00000000 0.0

–0 80000000 00000000 00000000 00000000 –0.0

1 3fff0000 00000000 00000000 00000000 1.0

2 40000000 00000000 00000000 00000000 2.0

max normal 7ffeffff ffffffff ffffffff ffffffff 1.1897314953572317650857593266280070e+4932

min normal 00010000 00000000 00000000 00000000 3.3621031431120935062626778173217526e–4932

max
subnormal

0000ffff ffffffff far-off ffffffff 3.3621031431120935062626778173217520e–4932

min pos
subnormal

00000000 00000000 00000000 00000001 6.4751751194380251109244389582276466e–4966

+∞ 7fff0000 00000000 00000000 00000000 +∞

–∞ ffff0000 00000000 00000000 00000000 –∞

2.2 IEEE Formats

26 Oracle Solaris Studio 12.4: Numerical Computation Guide • January 2015

Common
Name

Bit Pattern (SPARC) Decimal Value

Not-a-Number 7fff8000 00000000 00000000 00000000 NaN

The hex value of the NaN shown in Table 2-7 is just one of the many bit patterns that can be
used to represent NaNs.

2.2.5 Double-Extended Format (x86)

This floating-point environment's double-extended format conforms to the IEEE definition of
double-extended formats. It consists of four fields: a 63-bit fraction f; a 1-bit explicit leading
significand bit j; a 15-bit biased exponent e; and a 1-bit sign s. This format is not available as a
language type for Oracle Solaris Studio Fortran or for C/C++ for SPARC.

In the family of x86 architectures, these fields are stored contiguously in ten successively
addressed 8-bit bytes. However, the UNIX System V Application Binary Interface Intel 386
Processor Supplement (Intel ABI) requires that double-extended parameters and results occupy
three consecutively addressed 32-bit words in the stack, with the most significant 16 bits of the
highest addressed word being unused, as shown in the following figure.

The lowest addressed 32-bit word contains the least significant 32 bits of the fraction, f[31:0],
with bit 0 being the least significant bit of the entire fraction and bit 31 being the most
significant of the 32 least significant fraction bits. In the middle addressed 32-bit word, bits
0:30 contain the 31 most significant bits of the fraction, f[62:32], with bit 0 being the least
significant of these 31 most significant fraction bits, and bit 30 being the most significant bit
of the entire fraction; bit 31 of this middle addressed 32-bit word contains the explicit leading
significand bit, j.

In the highest addressed 32-bit word, bits 0:14 contain the 15-bit biased exponent, e, with bit 0
being the least significant bit of the biased exponent and bit 14 being the most significant; and
bit 15 contains the sign bit, s. Although the highest order 16 bits of this highest addressed 32-bit
word are unused by the family of x86 architectures, their presence is essential for conformity to
the Intel ABI, as indicated above.

The following figure numbers the bits as though the three contiguous 32-bit words were one
96-bit word in which bits 0:62 store the 63-bit fraction, f; bit 63 stores the explicit leading
significand bit, j; bits 64:78 store the 15-bit biased exponent, e; and bit 79 stores the sign bit, s.

2.2 IEEE Formats

Chapter 2 • IEEE Arithmetic 27

FIGURE 2-4 Double-Extended Format (x86)

The values of the bit patterns in the four fields f, j, e and s, determine the value represented by
the overall bit pattern.

Table 2-8 shows the correspondence between the hex representations of the four constituent
fields and the values represented by the bit patterns. u means the value of the indicated field is
irrelevant to the determination of value for the particular bit patterns.

TABLE 2-8 Values Represented by Bit Patterns (x86)

Double-Extended Bit Pattern (x86) Value

j = 0, 0 < e <32767 Unsupported

j = 1, 0 < e < 32767 (–1)s × 2e–16383 × 1.f (normal numbers)

j = 0, e = 0; f ≠ 0

(at least one bit in f is nonzero)

(–1)s × 2–16382 × 0.f (subnormal numbers)

j = 1, e = 0 (–1)s × 2–16382 × 1.f (pseudo-denormal numbers)

j = 0, e = 0, f = 0

(all bits in f are zero)

(–1)s × 0.0 (signed zero)

j = 1; s = 0; e = 32767; f = 0 (all bits in f are zero) +INF (positive infinity)

j = 1; s = 1; e = 32767; f = 0 (all bits in f are zero) –INF (negative infinity)

j = 1; s = u; e = 32767; f = .1uuu — uu QNaN (quiet NaNs)

j = 1; s = u; e = 32767; f = .0uuu — uu ≠ 0

(at least one of the u in f is nonzero)

SNaN (signaling NaNs)

Notice that bit patterns in double-extended format do nothave an implicit leading significand
bit. The leading significand bit is given explicitly as a separate field, j, in the double-extended
format. However, when e ≠ 0, any bit pattern with j = 0 is unsupported in the sense that using

2.2 IEEE Formats

28 Oracle Solaris Studio 12.4: Numerical Computation Guide • January 2015

such a bit pattern as an operand in floating-point operations provokes an invalid operation
exception.

The union of the disjoint fields j and f in the double extended format is called the significand.
When e < 32767 and j = 1, or when e = 0 and j = 0, the significand is formed by inserting the
binary radix point between the leading significand bit, j, and the fraction's most significant bit.

In the x86 double-extended format, a bit pattern whose leading significand bit j is 0 and whose
biased exponent field e is also 0 represents a subnormal number, whereas a bit pattern whose
leading significand bit j is 1 and whose biased exponent field e is nonzero represents a normal
number. Because the leading significand bit is represented explicitly rather than being inferred
from the value of the exponent, this format also admits bit patterns whose biased exponent is
0, like the subnormal numbers, but whose leading significand bit is 1. Each such bit pattern
actually represents the same value as the corresponding bit pattern whose biased exponent
field is 1, i.e., a normal number, so these bit patterns are called pseudo-denormals. Subnormal
numbers were called denormalized numbers in IEEE Standard 754-1985. Pseudo-denormals are
merely an artifact of the x86 double-extended format's encoding; they are implicitly converted
to the corresponding normal numbers when they appear as operands, and they are never
generated as results.

TABLE 2-9 Bit Patterns in Double-Extended Format and Their Values (x86)

Common Name Bit Pattern (x86) Decimal Value

+0 0000 00000000 00000000 0.0

–0 8000 00000000 00000000 –0.0

1 3fff 80000000 00000000 1.0

2 4000 80000000 00000000 2.0

max normal 7ffe ffffffff ffffffff 1.18973149535723176505e+4932

min positive normal 0001 80000000 00000000 3.36210314311209350626e–4932

max subnormal 0000 7fffffff ffffffff 3.36210314311209350608e–4932

min positive subnormal 0000 00000000 00000001 3.64519953188247460253e–4951

+∞ 7fff 80000000 00000000 +∞

–∞ ffff 80000000 00000000 –∞

quiet NaN with greatest fraction 7fff ffffffff ffffffff QNaN

quiet NaN with least fraction 7fff c0000000 00000000 QNaN

signaling NaN with greatest fraction 7fff bfffffff ffffffff SNaN

signaling NaN with least fraction 7fff 80000000 00000001 SNaN

Examples of important bit patterns in the double-extended storage format appear in the
preceding table. The bit patterns in the second column appear as one 4-digit hexadecimal
number, which is the value of the 16 least significant bits of the highest addressed 32-bit word
(recall that the most significant 16 bits of this highest addressed 32-bit word are unused, so their
value is not shown), followed by two 8-digit hexadecimal numbers, of which the left one is the

2.2 IEEE Formats

Chapter 2 • IEEE Arithmetic 29

value of the middle addressed 32-bit word, and the right one is the value of the lowest addressed
32-bit word. The maximum positive normal number is the largest finite number representable
in the x86 double-extended format. The minimum positive subnormal number is the smallest
positive number representable in the double-extended format. The minimum positive normal
number is often referred to as the underflow threshold. The decimal values for the maximum
and minimum normal and subnormal numbers are approximate; they are correct to the number
of figures shown.

A NaN (Not a Number) can be represented by any of the many bit patterns that satisfy the
definition of NaN. The hex values of the NaNs shown in the preceding table illustrate that the
leading (most significant) bit of the fraction field determines whether a NaN is quiet (leading
fraction bit = 1) or signaling (leading fraction bit = 0).

2.2.6 Ranges and Precisions in Decimal Representation

This section covers the notions of range and precision for a given storage format. It includes the
ranges and precisions corresponding to the IEEE single, double, and quadruple formats and to
the implementations of IEEE double-extended format on x86 architectures. For concreteness, in
defining the notions of range and precision, refer to the IEEE single format.

The IEEE standard specifies that 32 bits be used to represent a floating-point number in single
format. Because there are only finitely many combinations of 32 zeroes and ones, only finitely
many numbers can be represented by 32 bits.

It is natural to ask what are the decimal representations of the largest and smallest positive
numbers that can be represented in this particular format.

If you introduce the concept of range, you can rephrase the question instead to ask what is the
range, in decimal notation, of numbers that can be represented by the IEEE single format?

Taking into account the precise definition of IEEE single format, you can prove that the range
of floating-point numbers that can be represented in IEEE single format, if restricted to positive
normalized numbers, is as follows:

1.175...× (10-38) to 3.402... ×(10+38)

A second question refers to the precision of the numbers represented in a given format. These
notions are explained by looking at some pictures and examples.

The IEEE standard for binary floating-point arithmetic specifies the set of numerical values
representable in the single format. Remember that this set of numerical values is described as
a set of binary floating-point numbers. The significand of the IEEE single format has 23 bits,
which together with the implicit leading bit, yield 24 digits (bits) of (binary) precision.

One obtains a different set of numerical values by marking the numbers (representable by q
decimal digits in the significand) on the number line:

2.2 IEEE Formats

30 Oracle Solaris Studio 12.4: Numerical Computation Guide • January 2015

x = (x1.x2 x3...xq) × (10n)

The following figure exemplifies this situation:

FIGURE 2-5 Comparison of a Set of Numbers Defined by Digital and Binary Representation

Notice that the two sets are different. Therefore, estimating the number of significant decimal
digits corresponding to 24 significant binary digits, requires reformulating the problem.

Reformulate the problem in terms of converting floating-point numbers between binary
representations (the internal format used by the computer) and the decimal format (the format
users are usually interested in). In fact, you might want to convert from decimal to binary and
back to decimal, as well as convert from binary to decimal and back to binary.

It is important to notice that because the sets of numbers are different, conversions are in
general inexact. If done correctly, converting a number from one set to a number in the other
set results in choosing one of the two neighboring numbers from the second set (which one
specifically is a question related to rounding).

Consider some examples. Suppose you are trying to represent a number with the following
decimal representation in IEEE single format:

x = x1.x2 x3... × 10n

Because there are only finitely many real numbers that can be represented exactly in IEEE
single format, and not all numbers of the above form are among them, in general it will be
impossible to represent such numbers exactly. For example, let

y = 838861.2, z = 1.3

and run the following Fortran program:

2.2 IEEE Formats

Chapter 2 • IEEE Arithmetic 31

 REAL Y, Z

 Y = 838861.2

 Z = 1.3

 WRITE(*,40) Y

40 FORMAT("y: ",1PE18.11)

 WRITE(*,50) Z

50 FORMAT("z: ",1PE18.11)

The output from this program should be similar to the following:

y: 8.38861187500E+05

z: 1.29999995232E+00

The difference between the value 8.388612 × 105 assigned to y and the value printed out is
0.000000125, which is seven decimal orders of magnitude smaller than y. The accuracy of
representing y in IEEE single format is about 6 to 7 significant digits, or that y has about six
significant digits if it is to be represented in IEEE single format.

Similarly, the difference between the value 1.3 assigned to z and the value printed out is
0.00000004768, which is eight decimal orders of magnitude smaller than z. The accuracy of
representing z in IEEE single format is about 7 to 8 significant digits, or that z has about seven
significant digits if it is to be represented in IEEE single format.

Assume you convert a decimal floating point number a to its IEEE single format binary
representation b, and then translate b back to a decimal number c; how many orders of
magnitude are between a and a - c?

Rephrase the question:

What is the number of significant decimal digits of a in the IEEE single format representation,
or how many decimal digits are to be trusted as accurate when one represents x in IEEE single
format?

The number of significant decimal digits is always between 6 and 9, that is, at least 6 digits, but
not more than 9 digits are accurate (with the exception of cases when the conversions are exact,
when infinitely many digits could be accurate).

Conversely, if you convert a binary number in IEEE single format to a decimal number, and
then convert it back to binary, generally, you need to use at least 9 decimal digits to ensure that
after these two conversions you obtain the number you started from.

The complete picture is given in Table 2-10:

TABLE 2-10 Range and Precision of Storage Formats

Format Significant Digits
(Binary)

Smallest Positive
Normal Number

Largest Positive
Number

Significant Digits
(Decimal)

single 24 1.175... 10-38 3.402... 10+38 6-9

double 53 2.225... 10-308 1.797... 10+308 15-17

quadruple 113 3.362... 10-4932 1.189... 10+4932 33-36

2.2 IEEE Formats

32 Oracle Solaris Studio 12.4: Numerical Computation Guide • January 2015

Format Significant Digits
(Binary)

Smallest Positive
Normal Number

Largest Positive
Number

Significant Digits
(Decimal)

double
extended (x86)

64 3.362... 10-4932 1.189... 10+4932 18-21

2.2.7 Base Conversion in the Oracle Solaris
Environment

Base conversion refers to the transformation of a number represented in one base to a number
represented in another base. I/O routines such as printf and scanf in C and read, write, and
print in Fortran involve base conversion between numbers represented in bases 2 and 10:

■ Base conversion from base 10 to base 2 occurs when reading in a number in conventional
decimal notation and storing it in internal binary format.

■ Base conversion from base 2 to base 10 occurs when printing an internal binary value as an
ASCII string of decimal digits.

In the Oracle Solaris environment, the fundamental routines for base conversion in all
languages are contained in the standard C library, libc. These routines use table-driven
algorithms that yield correctly rounded conversion between any input and output formats
subject to modest restrictions on the lengths of the strings of decimal digits involved. In
addition to their accuracy, table-driven algorithms reduce the worst-case times for correctly
rounded base conversion.

The 1985 IEEE standard requires correct rounding for typical numbers whose magnitudes
range from 10–44 to 10+44 but permits slightly incorrect rounding for larger exponents. See
section 5.6 of IEEE Standard 754. The libc table-driven algorithms round correctly throughout
the entire range of single, double, and double extended formats, as required by the revised
754-2008.

In C, conversions between decimal strings and binary floating-point values are always rounded
correctly in accordance with IEEE 754: the converted result is the number representable in
the result's format that is nearest to the original value in the direction specified by the current
rounding mode. When the rounding mode is round-to-nearest and the original value lies exactly
halfway between two representable numbers in the result format, the converted result is the one
whose least significant digit is even. These rules apply to conversions of constants in source
code performed by the compiler as well as to conversions of data performed by the program
using standard library routines.

In Fortran, conversions between decimal strings and binary floating-point values are rounded
correctly following the same rules as C by default. For I/O conversions, the “round-ties-to-
even” rule in round-to-nearest mode can be overridden, either by using the ROUNDING= specifier
in the program or by compiling with the -iorounding flag. See the “Oracle Solaris Studio 12.4:
Fortran User’s Guide ” and the f95(1) man page for more information.

http://www.oracle.com/pls/topic/lookup?ctx=E37069&id=OSSFG
http://www.oracle.com/pls/topic/lookup?ctx=E37069&id=OSSFG

2.3 Underflow

Chapter 2 • IEEE Arithmetic 33

See Appendix F, “References ” for references on base conversion, particularly Coonen's thesis
and Sterbenz's book.

2.3 Underflow

Underflow occurs, roughly speaking, when the result of an arithmetic operation is so small that
it cannot be stored in its intended destination format without suffering a rounding error that is
larger than usual.

2.3.1 Underflow Thresholds

Table 2-11 shows the underflow thresholds for single, double, and double-extended precision.

TABLE 2-11 Underflow Thresholds

Destination Precision Underflow Threshold

single smallest normal number

largest subnormal number

1.17549435e–38

1.17549421e–38

double smallest normal number

largest subnormal number

2.2250738585072014e–308

2.2250738585072009e–308

quadruple smallest normal number

largest subnormal number

3.3621031431120935062626778173217526e–4932

3.3621031431120935062626778173217520e–4932

double-extended (x86) smallest normal number

largest subnormal number

3.36210314311209350626e–4932

3.36210314311209350590e–4932

The positive subnormal numbers are those numbers between the smallest normal number
and zero. Subtracting two (positive) tiny numbers that are near the smallest normal number
might produce a subnormal number. Or, dividing the smallest positive normal number by two
produces a subnormal result.

The presence of subnormal numbers provides greater precision to floating-point calculations
that involve small numbers, although the subnormal numbers themselves have fewer bits of
precision than normal numbers. Producing subnormal numbers (rather than returning the answer
zero) when the mathematically correct result has magnitude less than the smallest positive
normal number is known as gradual underflow.

There are several other ways to deal with such underflow results. One way, common in the
past, was to flush those results to zero. This method is known as abrupt underflow and was the
default on most mainframes before the advent of the IEEE Standard.

2.3 Underflow

34 Oracle Solaris Studio 12.4: Numerical Computation Guide • January 2015

The mathematicians and computer designers who drafted IEEE Standard 754 considered several
alternatives while balancing the desire for a mathematically robust solution with the need to
create a standard that could be implemented efficiently.

2.3.2 How Does IEEE Arithmetic Treat Underflow?

IEEE Standard 754 chooses gradual underflow as the preferred method for dealing with
underflow results. This method amounts to defining two representations for stored values,
normal and subnormal.

Recall that the IEEE format for a normal floating-point number is:

(-1)s × (2(e–bias)) × 1.f

where s is the sign bit, e is the biased exponent, and f is the fraction. Only s, e, and f need to be
stored to fully specify the number. Because the implicit leading bit of the significand is defined
to be 1 for normal numbers, it need not be stored.

The smallest positive normal number that can be stored, then, has the negative exponent of
greatest magnitude and a fraction of all zeros. Even smaller numbers can be accommodated
by considering the leading bit to be zero rather than one. In the double-precision format, this
effectively extends the minimum exponent from 10‐308 to 10‐324, because the fraction part
is 52 bits long (roughly 16 decimal digits.) These are the subnormal numbers; returning a
subnormal number, rather than flushing an underflowed result to zero, is gradual underflow.

Clearly, the smaller a subnormal number, the fewer nonzero bits in its fraction; computations
producing subnormal results do not enjoy the same bounds on relative round-off error as
computations on normal operands. However, the key fact about gradual underflow is that its use
implies the following:

■ Underflowed results need never suffer a loss of accuracy any greater than that which results
from ordinary round-off error.

■ Addition, subtraction, comparison, and remainder are always exact when the result is very
small.

Recall that the IEEE format for a subnormal floating-point number is:

(-1)s × (2(-bias+1)) × 0.f

where s is the sign bit, the biased exponent e is zero, and f is the fraction. Note that the implicit
power-of-two bias is one greater than the bias in the normal format, and the implicit leading bit
of the fraction is zero.

Gradual underflow allows you to extend the lower range of representable numbers. It is not
smallness that renders a value questionable, but its associated error. Algorithms exploiting

2.3 Underflow

Chapter 2 • IEEE Arithmetic 35

subnormal numbers have smaller error bounds than other systems. The next section provides
some mathematical justification for gradual underflow.

2.3.3 Why Gradual Underflow?
The purpose of subnormal numbers is not to avoid underflow/overflow entirely, as some
other arithmetic models do. Rather, subnormal numbers eliminate underflow as a cause for
concern for a variety of computations, typically, multiply followed by add. For a more detailed
discussion, see Underflow and the Reliability of Numerical Software by James Demmel and
Combating the Effects of Underflow and Overflow in Determining Real Roots of Polynomials
by S. Linnainmaa.

The presence of subnormal numbers in the arithmetic means that untrapped underflow, which
implies loss of accuracy, cannot occur on addition or subtraction. If x and y are within a factor
of two, then x – y is error-free. This is critical to a number of algorithms that effectively
increase the working precision at critical places in algorithms.

In addition, gradual underflow means that errors due to underflow are no worse than usual
round-off error. This is a much stronger statement than can be made about any other method of
handling underflow, and this fact is one of the best justifications for gradual underflow.

2.3.4 Error Properties of Gradual Underflow
Most of the time, floating-point results are rounded:

computed result = true result + round-off

One convenient measure of how large the round-off can be is called a unit in the last place,
abbreviated ulp. The least significant bit of the fraction of a floating-point number in its
standard representation is its last place. The value represented by this bit (e.g., the absolute
difference between the two numbers whose representations are identical except for this bit) is
a unit in the last place of that number. If the computed result is obtained by rounding the true
result to the nearest representable number, then clearly the round-off error is no larger than half
a unit in the last place of the computed result. In other words, in IEEE arithmetic with rounding
mode to nearest, it will be the computed result of the following:

0 ≤ |round-off| ≤½ulp

Note that an ulp is a relative quantity. An ulp of a very large number is itself very large, while
an ulp of a tiny number is itself tiny. This relationship can be made explicit by expressing an ulp
as a function: ulp(x) denotes a unit in the last place of the floating-point number x.

Moreover, an ulp of a floating-point number depends on the precision to which that number is
represented. For example, Table 2-12 shows the values of ulp(1) in each of the four floating-
point formats described above:

2.3 Underflow

36 Oracle Solaris Studio 12.4: Numerical Computation Guide • January 2015

TABLE 2-12 ulp(1) in Four Different Precisions

Precision Value

single ulp(1) = 2^-23 ~ 1.192093e-07

double ulp(1) = 2^-52 ~ 2.220446e-16

double extended (x86) ulp(1) = 2^-63 ~ 1.084202e-19

quadruple ulp(1) = 2^-112 ~ 1.925930e-34

Recall that only a finite set of numbers can be exactly represented in any computer arithmetic.
As the magnitudes of numbers get smaller and approach zero, the gap between neighboring
representable numbers narrows. Conversely, as the magnitude of numbers gets larger, the gap
between neighboring representable numbers widens.

For example, imagine you are using a binary arithmetic that has only 3 bits of precision. Then,
between any two powers of 2, there are 23 = 8 representable numbers, as shown in the following
figure.

FIGURE 2-6 Number Line

The number line shows how the gap between numbers doubles from one exponent to the next.

In the IEEE single format, the difference in magnitude between the two smallest positive
subnormal numbers is approximately 10- 45, whereas the difference in magnitude between the
two largest finite numbers is approximately 1031!

In Table 2-13, nextafter(x,+∞) denotes the next representable number after x as you move
along the number line towards +∞.

TABLE 2-13 Gaps Between Representable Single-Format Floating-Point Numbers

x nextafter(x, +•) Gap

0.0 1.4012985e–45 1.4012985e–45

1.1754944e–38 1.1754945e–38 1.4012985e–45

1.0 1.0000001 1.1920929e–07

2.0 2.0000002 2.3841858e–07

16.000000 16.000002 1.9073486e–06

128.00000 128.00002 1.5258789e–05

2.3 Underflow

Chapter 2 • IEEE Arithmetic 37

x nextafter(x, +•) Gap

1.0000000e+20 1.0000001e+20 8.7960930e+12

9.9999997e+37 1.0000001e+38 1.0141205e+31

Any conventional set of representable floating-point numbers has the property that the worst
effect of one inexact result is to introduce an error no worse than the distance to one of the
representable neighbors of the computed result. When subnormal numbers are added to the
representable set and gradual underflow is implemented, the worst effect of one inexact
or underflowed result is to introduce an error no greater than the distance to one of the
representable neighbors of the computed result.

In particular, in the region between zero and the smallest normal number, the distance between
any two neighboring numbers equals the distance between zero and the smallest subnormal
number. The presence of subnormal numbers eliminates the possibility of introducing a round-
off error that is greater than the distance to the nearest representable number.

Because no calculation incurs round-off error greater than the distance to any of the
representable neighbors of the computed result, many important properties of a robust
arithmetic environment hold, including these three:

■ x ≠ y if and only if x – y ≠ 0
■ (x – y) + y ≈ x, to within a rounding error in the larger of x and y
■ 1/(1/x) ≈ x, when x is a normalized number, implying 1/x ≠ 0 even for the largest

normalized x

An alternative underflow scheme is abrupt underflow, which flushes underflow results to zero.
Abrupt underflow violates the first and second properties whenever x – y underflows. Also,
abrupt underflow violates the third property whenever 1/x underflows.

Let λ represent the smallest positive normalized number, which is also known as the underflow
threshold. Then the error properties of gradual underflow and abrupt underflow can be
compared in terms of λ.

gradual underflow: |error| < ½ulp in λ

abrupt underflow: |error| ≈ λ

There is a significant difference between half a unit in the last place of λ, and λ itself.

2.3.5 Two Examples of Gradual Underflow Versus
Abrupt Underflow

The following are two well-known mathematical examples. The first example is code that
computes an inner product.

2.3 Underflow

38 Oracle Solaris Studio 12.4: Numerical Computation Guide • January 2015

sum = 0;

for (i = 0; i < n; i++) {

 sum = sum + a[i] * y[i];

}

return sum;

With gradual underflow, the result is as accurate as round-off allows. In abrupt underflow, a
small but nonzero sum could be delivered that looks plausible but is much worse. However,it
must be admitted that to avoid just these sorts of problems, clever programmers scale their
calculations if they are able to anticipate where minuteness might degrade accuracy.

The second example, deriving a complex quotient, is not amenable to scaling:

 assuming |r / s|≤1

.

It can be shown that, despite round-off, the computed complex result differs from the exact
result by no more than what would have been the exact result if p + i • q and r + i • s each had
been perturbed by no more than a few ulps. This error analysis holds in the face of underflows,
except that when both a and b underflow, the error is bounded by a few ulps of |a + i • b|
Neither conclusion is true when underflows are flushed to zero.

This algorithm for computing a complex quotient is robust, and amenable to error analysis, in
the presence of gradual underflow. A similarly robust, easily analyzed, and efficient algorithm
for computing the complex quotient in the face of abrupt underflow does not exist. In abrupt
underflow, the burden of worrying about low-level, complicated details shifts from the
implementer of the floating-point environment to its users.

The class of problems that succeed in the presence of gradual underflow, but fail with abrupt
underflow, is larger than the users of abrupt underflow might realize. Many of the frequently
used numerical techniques fall in this class, such as the following:

■ Linear equation solving
■ Polynomial equation solving
■ Numerical integration
■ Convergence acceleration
■ Complex division

2.3.6 Does Underflow Matter?

Despite these examples, it can be argued that underflow rarely matters, and so, why bother?
However, this argument turns upon itself.

2.4 IEEE Standard 754-2008

Chapter 2 • IEEE Arithmetic 39

In the absence of gradual underflow, user programs need to be sensitive to the implicit
inaccuracy threshold. For example, in single precision, if underflow occurs in some parts of a
calculation, and abrupt underflow is used to replace underflowed results with 0, then accuracy
can be guaranteed only to around 10-31, not 10-38, the usual lower range for single-precision
exponents.

This means that programmers need to implement their own method of detecting when they
are approaching this inaccuracy threshold, or else abandon the quest for a robust, stable
implementation of their algorithm.

Some algorithms can be scaled so that computations don't take place in the constricted area near
zero. However, scaling the algorithm and detecting the inaccuracy threshold can be difficult and
time-consuming, even if it is not necessary for most data.

2.4 IEEE Standard 754-2008
This section discusses differences between 754-1985 and its successor 754-2008. Oracle, like
other system implementers, will conform to the recommendations of 754-2008 over time, as
those recommendations are defined in standards for programming languages.

In 2008, the IEEE adopted a revised IEEE Standard for Floating-Point Arithmetic, which
superseded the earlier 754-1985 IEEE Standard for Binary Floating-Point Arithmetic and the
854-1987 IEEE Standard for Radix-Independent Floating-Point Arithmetic.

From a hardware point of view, the new standard is upward compatible with the older
ones; existing hardware can be made compatible with the new standard if augmented by
enough software. However to fully implement all the recommendations of the new standard
requires significant development of language definitions, which is occurring over a period
of years; commercial implementations of those definitions will then follow. Future versions
of this Numerical Computation Guide for Oracle Solaris Studio will describe new features
recommended by the revised standard as they become available in the Oracle Solaris Studio C,
C++, and Fortran compilers.

The following are some important changes already in Oracle Solaris Studio 12.4 :

■ 754-2008 specifies 128-bit binary (and decimal) floating-point formats; the 128-bit binary
format corresponds to Studio Fortran REAL*16 and to Studio C and C++ long double on
SPARC.

■ 754-2008 requires conversion between binary and decimal formats and character sequences
to be correctly rounded, whereas 754-1985 allowed slightly larger error bounds for numbers
with very large or very small exponents.

■ 754-2008 recommends operations to convert between binary formats and hexadecimal
character sequences.

■ 754-2008 requires a number of operations that were optional in 754-1985; these are already
in Oracle Solaris Studio compilers.

2.4 IEEE Standard 754-2008

40 Oracle Solaris Studio 12.4: Numerical Computation Guide • January 2015

■ 54-2008 specifies fused multiply-add operations; these are available in hardware in recent
SPARC servers supported by Oracle Solaris Studio 13.

The following are some important changes that are not in Oracle Solaris Studio 12.4 :

■ 754-2008 recommends a number of new operations.
■ 754-2008 recommends that correctly-rounded versions of a number of elementary

transcendental functions be available.
■ 754-2008 recommends expression evaluation attributes.
■ 754-2008 no longer specifies floating-point trap handling; instead higher-level alternate

exception handling attributes are recommended that can be used in a machine-independent
way.

Chapter 3 • The Math Libraries 41

 3 ♦ ♦ ♦ C H A P T E R 3

The Math Libraries

This chapter describes the math libraries provided with the Oracle Solaris OS and Oracle
Solaris Studio software. Besides listing each of the libraries along with its contents, this chapter
discusses some of the features supported by the math libraries provided with the compiler
collection, including IEEE supporting functions, random number generators, and functions that
convert data between IEEE and non-IEEE formats.

The contents of the libm and libsunmath libraries are also listed on the Intro(3M) man page.

This chapter divides the topics into the following sections:

■ “3.1 Oracle Solaris Math Libraries” on page 41
■ “3.2 Oracle Solaris Studio Math Libraries” on page 43
■ “3.3 Single, Double, and Extended/Quadruple Precision” on page 46
■ “3.4 IEEE Support Functions” on page 47
■ “3.5 C99 Floating-Point Environment Functions” on page 54
■ “3.6 Implementation Features of libm and libsunmath” on page 57

3.1 Oracle Solaris Math Libraries

This section describes the math libraries that are bundled with the Oracle Solaris 10 OS. These
libraries are provided as shared objects and are installed in the standard location for Oracle
Solaris libraries.

3.1.1 Standard Math Library

The Oracle Solaris standard math library, libm, contains elementary mathematical functions
and support routines required by the various standards to which the Oracle Solaris operating
environment conforms.

The Oracle Solaris 10 OS includes two versions of libm: libm.so.1 and libm.so.2. libm.so.1
provides the functions required by those standards supported by the Oracle Solaris 9 OS and

3.1 Oracle Solaris Math Libraries

42 Oracle Solaris Studio 12.4: Numerical Computation Guide • January 2015

earlier versions. libm.so.2 provides the functions required by those standards supported by the
Oracle Solaris 10 OS (including C99). libm.so.1 is provided for backward compatibility so
that programs compiled and linked on the Oracle Solaris 9 OS and earlier systems will continue
to run unchanged. The contents of libm.so.1 are documented in the section 3M man pages on
those systems. The remainder of this chapter refers to libm.so.2. See the ld(1) and compiler
manual pages for more information about dynamic linking and the options and environment
variables that determine which shared objects are loaded when a program is run.

Table 3-1 lists the functions in libm. For each mathematical function, the table gives only
the name of the double precision version of the function. The library also contains a single
precision version having the same name followed by an f and an extended/quadruple precision
version having the same name followed by an l.

TABLE 3-1 Contents of libm

Type Function Name

Algebraic functions cbrt, fdim, fma, fmax, fmin, hypot, sqrt

Elementary transcendental functions asin, acos, atan, atan2, asinh, acosh, atanh, exp, exp2,
expm1, pow, log, log1p, log10, log2, sin, cos, sincos, tan,
sinh, cosh, tanh

Higher transcendental functions j0, j1, jn, y0, y1, yn, erf, erfc, gamma, lgamma, gamma_r,
lgamma_r, tgamma

Integral rounding functions ceil, floor, llrint, llround, lrint, lround, modf, nearbyint,
rint, round, trunc

IEEE standard recommended functions copysign, fmod, ilogb, nextafter, remainder, scalbn, fabs

IEEE classification functions isnan

Old style floating-point functions frexp, ldexp, logb, scalb, significand

Error handling routine (user‐defined) matherr

Complex functions cabs, cacos, cacosh, carg, casin, casinh, catan, catanh, ccos,
ccosh, cexp, cimag, clog, conj, cpow, cproj, creal, csin,
csinh, csqrt, ctan, ctanh

C99 floating-point environment functions feclearexcept, fegetenv, fegetexceptflag, fegetprec,
fegetround, feholdexcept, feraiseexcept, fesetenv,
fesetexceptflag, fesetprec, fesetround, fetestexcept,
feupdateenv

Floating-point exception handling functions fex_getexcepthandler, fex_get_handling, fex_get_log,
fex_get_log_depth, fex_log_entry, fex_merge_flags, fex_
setexcepthandler, fex_set_handling, fex_set_log, fex_set_
log_depth

Other C99 functions nan, nexttoward, remquo, scalbln

Note the following about Table 3-1:

1. The functions gamma_r and lgamma_r are re-entrant versions of gamma and lgamma.

3.2 Oracle Solaris Studio Math Libraries

Chapter 3 • The Math Libraries 43

2. The functions fegetprec and fesetprec are only available on x86 systems. These functions
are not specified by the C99 standard.

3. Error bounds and observed errors for the transcendental functions in libm are tabulated on
the libm(3LIB) man page.

3.1.2 Vector Math Library

The library libmvec provides routines that evaluate common mathematical functions for an
entire vector of arguments. An application might invoke the routines in libmvec explicitly, or
the compiler might invoke these routines when the -xvector flag is used.

libmvec is implemented as a primary shared object, libmvec.so.1, and several auxiliary shared
objects that provide alternate versions of some or all of the vector functions. When a program
linked with libmvec is run, the runtime linker automatically selects the version that offers the
best performance on the host platform. For this reason, a program that uses the functions in
libmvec might deliver slightly different results when run on different systems.

Table 3-2 lists the functions in libmvec.

TABLE 3-2 Contents of libmvec

Type Function Name

Algebraic functions vhypot_, vhypotf_, vrhypot_, vrhypotf_, vrsqrt_, vrsqrtf_, vsqrt_, vsqrtf_

Exponential and related
functions

vexp_, vexpf_, vlog_, vlogf_, vpow_, vpowf_

Trigonometric functions vatan_, vatanf_, vatan2_, vatan2f_, vcos_, vcosf_, vsin_, vsinf_, vsincos_,
vsincosf_

Complex functions vc_abs_, vc_exp_, vc_log_, vc_pow_, vz_abs_, vz_exp_, vz_log_, vz_pow_

3.2 Oracle Solaris Studio Math Libraries
This section describes the math libraries that are included with the Oracle Solaris Studio
compilers.

The default base installation directory for Oracle Solaris Studio 12.4 is /opt/
solarisstudio12.4.

32-bit static archives are installed by default in the directory /opt/solarisstudio12.4/lib/
compilers/. Corresponding 64-bit static archives are installed in /opt/solarisstudio12.4/
lib/compilers/sparcv9/ or /opt/solarisstudio12.4/lib/compilers/amd64/ for SPARC
and x86 respectively.

3.2 Oracle Solaris Studio Math Libraries

44 Oracle Solaris Studio 12.4: Numerical Computation Guide • January 2015

32-bit static archives optimized for particular -xarch processors are installed in subdirectories of
the form /opt/solarisstudio12.4/lib/compilers/xarch/.

Corresponding 64-bit static archives are installed in /opt/solarisstudio12.4/lib/
compilers/xarch/sparcv9 or /opt/solarisstudio12.4/lib/compilers/xarch/amd64.

The variable xarch is the name of the instruction set variant, from a list of supported variants
that changes from time to time. Oracle Solaris Studio 12.4 directories for SPARC include the
following:

■ sparc

■ sparcv9

■ sparcvis

■ sparcvis2

■ sparcvis3

■ sparcfmaf

■ sparc4

Oracle Solaris Studio 12.4 directories for x86 include the following:

■ 386

■ amd64

■ sse2

■ sse4_1

■ sse4_2

The directory /opt/solarisstudio12.4/lib/ contains Oracle Solaris Studio math libraries that are
provided as 32-bit shared objects.

Corresponding 64-bit shared objects are installed in /opt/solarisstudio12.4/lib/sparcv9/
or /opt/solarisstudio12.4/lib/amd64/.

Header files for Oracle Solaris Studio math libraries are installed in the directory /opt/
solarisstudio12.4/lib/compilers/include/cc/ Note that the /opt/solarisstudio12.4/subdirectories
for static archives, shared objects, and include files have changed in Oracle Solaris Studio 12.4
compared to previous Oracle Solaris Studio releases.

3.2.1 Oracle Math Library

The libsunmath math library contains functions that are not specified by any standard but are
useful in numerical software. It also contains many of the functions that are in libm.so.2 but
not in libm.so.1. libsunmath is provided as both a shared object and a static archive.

3.2 Oracle Solaris Studio Math Libraries

Chapter 3 • The Math Libraries 45

Table 3-3 lists the functions in libsunmath that are not in libm.so.2. For each mathematical
function, the table gives only the name of the double precision version of the function as it
would be called from a C program.

TABLE 3-3 Contents of libsunmath

Type Function Name

Elementary transcendental functions exp10

Trigonometric functions in degrees asind, acosd, atand, atan2d, sind, cosd, sincosd, tand

Trigonometric functions scaled in π asinpi, acospi, atanpi, atan2pi, sinpi, cospi, sincospi, tanpi

Trigonometric functions with double
precision π argument reduction

asinp, acosp, atanp,sinp, cosp, sincosp, tanp

Financial functions annuity, compound

Integral rounding functions aint, anint, irint, nint

IEEE standard recommended
functions

signbit

IEEE classification functions fp_class, isinf, isnormal, issubnormal, iszero

Functions that supply useful IEEE
values

min_subnormal, max_subnormal, min_normal, max_normal, infinity,
signaling_nan, quiet_nan

Additive random number generators i_addran_, i_addrans_, i_init_addrans_, i_get_addrans_, i_set_
addrans_, r_addran_, r_addrans_, r_init_addrans_, r_get_addrans_, r_
set_addrans_, d_addran_, d_addrans_, d_init_addrans_, d_get_addrans_,
d_set_addrans_, u_addrans_

Linear congruential random number
generators

i_lcran_, i_lcrans_, i_init_lcrans_, i_get_lcrans_, i_set_lcrans_, r_
lcran_, r_lcrans_, d_lcran_, d_lcrans_, u_lcrans_

Multiply-with-carry random number
generators

i_mwcran_, i_mwcrans_, i_init_mwcrans_, i_get_mwcrans_, i_set_
mwcrans, i_lmwcran_, i_lmwcrans_, i_llmwcran_, i_llmwcrans_,
u_mwcran_, u_mwcrans_, u_lmwcran_, u_lmwcrans, u_llmwcran_, u_
llmwcrans_, r_mwcran_, r_mwcrans_, d_mwcran_, d_mwcrans_, smwcran_

Random number shufflers i_shufrans_, r_shufrans_, d_shufrans_, u_shufrans_

Data conversion convert_external

Control rounding mode and floating-
point exception flags

ieee_flags

Floating-point trap handling ieee_handler, sigfpe

Show status ieee_retrospective

Enable/disable nonstandard
arithmetic

standard_arithmetic, nonstandard_arithmetic

3.2.2 Optimized Libraries

The libmopt library provides faster versions of some of the functions in libm and libsunmath.
libmopt is provided as a static archive only. The routines contained in libmopt replace

3.3 Single, Double, and Extended/Quadruple Precision

46 Oracle Solaris Studio 12.4: Numerical Computation Guide • January 2015

corresponding routines in libm. Typically, the libmopt versions are noticeably faster. Unlike
the libm versions, however, which support any of ANSI/POSIX®, SVID, X/Open, or C99/
IEEE-style treatment of exceptional cases, the libmopt routines only support C99/IEEE-
style handling of these cases. (See Appendix E, “Standards Compliance”.) Also, while all
mathematical functions in libm deliver results with reasonable accuracy regardless of the
floating-point rounding direction mode, the result of calling any function in libmopt with a
rounding direction other than round-to-nearest is undefined. A program that uses libmopt must
ensure that the default round-to-nearest mode is in effect whenever any standard math function
is called. To link a program with libmopt, use the -xlibmopt flag.

3.3 Single, Double, and Extended/Quadruple Precision

Most numerical functions are available in single, double, and extended (x86) or quadruple
precision. Examples of calling different precision versions of various functions from different
languages are shown in Table 3-4.

TABLE 3-4 Calling Single, Double, and Extended/Quadruple Functions

Language Single Double Extended/Quadruple

C, C++ #include <math.h> float x,y,

z; x = sinf(y); x = fmodf(y,z);

#include <sunmath.h> float x; x

= max_normalf(); x = r_addran_

();

#include <math.h> double x,y,

z; x = sin(y); x = fmod(y,z);

#include <sunmath.h> double x; x

= max_normal(); x = d_addran_();

#include <math.h> long double x,

y,z; x = sinl(y); x = fmodl(y,

z); #include <sunmath.h> long

double x; x = max_normall();

Fortran REAL x,y,z x = sin(y) x = r_

fmod(y,z) x = r_max_normal() x

= r_addran()

REAL*8 x,y,z x = sin(y) x = d_

fmod(y,z) x = d_max_normal() x =

d_addran()

REAL*16 x,y,z x = sin(y) x = q_

fmod(y,z) x = q_max_normal()

In C, names of single precision functions are formed by appending f to the double precision
name, and names of extended or quadruple precision functions are formed by adding l. Because
Fortran calling conventions differ, libsunmath provides r_…, d_…, and q_… functions for
single, double, and quadruple precision, respectively. Fortran intrinsic functions can be called
by the generic name for all three precisions.

Not all functions have q_… versions. Refer to math.h and sunmath.h for names and definitions
of libm and libsunmath functions.

In Fortran programs, remember to declare r_… functions as real, d_… functions as double
precision, and q_… functions as REAL*16. Otherwise, type mismatches might result.

Note - Oracle Solaris Studio Fortran does not support extended double precision.

3.4 IEEE Support Functions

Chapter 3 • The Math Libraries 47

3.4 IEEE Support Functions

This section describes the IEEE recommended functions, the functions that supply
useful values, ieee_flags, ieee_retrospective, and standard_arithmetic and
nonstandard_arithmetic. Refer to Chapter 4, “Exceptions and Exception Handling” for more
information on the functions ieee_flags and ieee_handler.

3.4.1 ieee_functions(3m) and ieee_sun(3m)

The functions described by ieee_functions(3m) and ieee_sun(3m) provide capabilities either
required by the IEEE standard or recommended in its appendix. These are implemented as
efficient bit mask operations.

TABLE 3-5 ieee_functions(3m)

Function Description

math.h Header file

copysign(x,y) x with y's sign bit

fabs(x) Absolute value of x

fmod(x, y) Remainder of x with respect to y

ilogb(x) Base 2 unbiased exponent of x in integer format

nextafter(x,y) Next representable number after x, in the direction y

remainder(x,y) Remainder of x with respect to y

scalbn(x,n) x × 2n

TABLE 3-6 ieee_sun(3m)

Function Description

sunmath.h Header file

fp_class(x) Classification function

isinf(x) Classification function

isnormal(x) Classification function

issubnormal(x) Classification function

iszero(x) Classification function

signbit(x) Classification function

nonstandard_arithmetic(void) Enable nonstandard mode

standard_arithmetic(void) Enable standard mode

ieee_retrospective(*f) n/a

3.4 IEEE Support Functions

48 Oracle Solaris Studio 12.4: Numerical Computation Guide • January 2015

The remainder(x,y) is the operation specified in IEEE Standard 754-1985. The difference
between remainder(x,y) and fmod(x,y) is that the sign of the result returned by
remainder(x,y) might not agree with the sign of either x or y, whereas fmod(x,y) always
returns a result whose sign agrees with x. Both functions return exact results and do not
generate inexact exceptions.

TABLE 3-7 Calling ieee_functions From Fortran

IEEE Function Single Precision Double Precision Quadruple Precision

copysign(x,y) t=r_copysign(x,y) z=d_copysign(x,y) z=q_copysign(x,y)

ilogb(x) i=ir_ilogb(x) i=id_ilogb(x) i=iq_ilogb(x)

nextafter(x,y) t=r_nextafter(x,y) z=d_nextafter(x,y) z=q_nextafter(x,y)

scalbn(x,n) t=r_scalbn(x,n) z=d_scalbn(x,n) z=q_scalbn(x,n)

signbit(x) i=ir_signbit(x) i=id_signbit(x) i=iq_signbit(x)

TABLE 3-8 Calling ieee_sun From Fortran

IEEE Function Single Precision Double Precision Quadruple Precision

signbit(x) i=ir_signbit(x) i=id_signbit(x) i=iq_signbit(x)

Note - You must declare d_function as double precision and q_function as REAL*16 in the
Fortran program that uses them.

3.4.2 ieee_values(3m)

IEEE values like infinity, NaN, maximum and minimum positive floating-point numbers are
provided by the functions described by the ieee_values(3m) man page. Table 3-9, Table 3-10,
Table 3-11, and Table 3-12 show the decimal values and hexadecimal IEEE representations of
the values provided by ieee_values(3m) functions.

TABLE 3-9 IEEE Values: Single Precision

IEEE value Decimal value hexadecimal
representation

C, C++ Fortran

max normal 3.40282347e+38 7f7fffff r = max_normalf(); r = r_max_normal()

min normal 1.17549435e–38 00800000 r = min_normalf(); r = r_min_normal()

max subnormal 1.17549421e–38 007fffff r = max_subnormalf(); r = r_max_

subnormal()

min subnormal 1.40129846e–45 00000001 r = min_subnormalf(); r = r_min_

subnormal()

3.4 IEEE Support Functions

Chapter 3 • The Math Libraries 49

IEEE value Decimal value hexadecimal
representation

C, C++ Fortran

∞ Infinity 7f800000 r = infinityf(); r = r_infinity()

quiet NaN NaN 7fffffff r = quiet_nanf(0); r = r_quiet_nan(0)

signaling NaN NaN 7f800001 r = signaling_nanf(0); r = r_

signaling_nan(0)

TABLE 3-10 IEEE Values: Double Precision

IEEE value Decimal Value hexadecimal representation C, C++ Fortran

max normal 1.7976931348623157e+308

7fefffff ffffffff

d = max_normal(); d = d_max_

normal()

min normal 2.2250738585072014e–308

00100000 00000000

d = min_normal(); d = d_min_

normal()

max subnormal 2.2250738585072009e–308

000fffff ffffffff

d = max_subnormal(); d = d_max_

subnormal()

min subnormal 4.9406564584124654e–324

00000000 00000001

d = min_subnormal(); d = d_min_

subnormal()

∞ Infinity

7ff00000 00000000

d = infinity(); d = d_infinity()

quiet NaN NaN

7fffffff ffffffff

d = quiet_nan(0); d = d_quiet_

nan(0)

signaling NaN NaN

7ff00000 00000001

d = signaling_nan(0); d = d_

signaling_nan(0)

TABLE 3-11 IEEE Values: Quadruple Precision

IEEE value Decimal value hexadecimal representation C, C++ (SPARC)

Fortran (all)

max normal 1.1897314953572317650857593266280070e+4932

7ffeffff ffffffff ffffffff ffffffff

q = max_normall(); q = q_max_

normal()

min normal 3.3621031431120935062626778173217526e–4932

00010000 00000000 00000000 00000000

q = min_normall(); q = q_min_

normal()

max subnormal 3.3621031431120935062626778173217520e–4932

0000ffff ffffffff ffffffff ffffffff

q = max_subnormall(); q = q_max_

subnormal()

min subnormal 6.4751751194380251109244389582276466e–4966

00000000 00000000 00000000 00000001

q = min_subnormall(); q = q_min_

subnormal()

∞ Infinity q = infinityl(); q = q_infinity()

3.4 IEEE Support Functions

50 Oracle Solaris Studio 12.4: Numerical Computation Guide • January 2015

IEEE value Decimal value hexadecimal representation C, C++ (SPARC)

Fortran (all)

7fff0000 00000000 00000000 00000000

quiet NaN NaN

7fff8000 00000000 00000000 00000000

q = quiet_nanl(0); q = q_quiet_

nan(0)

signaling NaN NaN

7fff0000 00000000 00000000 00000001

q = signaling_nanl(0); q = q_

signaling_nan(0)

TABLE 3-12 IEEE Values: Double-Extended Precision (x86)

IEEE value Decimal value hexadecimal representation (80
bits)

C, C++

max normal 1.18973149535723176505e+4932

7ffe ffffffff ffffffff

x = max_normall();

min positive normal 3.36210314311209350626e–4932

0001 80000000 00000000

x = min_normall();

max subnormal 3.36210314311209350608e–4932

0000 7fffffff ffffffff

x = max_subnormall();

min positive subnormal 1.82259976594123730126e–4951

0000 00000000 00000001

x = min_subnormall();

∞ Infinity

7fff 80000000 00000000

x = infinityl();

quiet NaN NaN

7fff c0000000 00000000

x = q

signaling NaN NaN

7fff 80000000 00000001

x = signaling_nanl(0);

3.4.3 ieee_flags(3m)

ieee_flags (3m) is the Oracle interface to:

■ Query or set rounding direction mode
■ Query or set rounding precision mode
■ Examine, clear, or set accrued exception flags

The syntax for a call to ieee_flags(3m) is:

i = ieee_flags(action, mode, in, out);

3.4 IEEE Support Functions

Chapter 3 • The Math Libraries 51

The ASCII strings that are the possible values for the parameters are shown in Table 3-13:

TABLE 3-13 Parameter Values for ieee_flags

Parameter C or C++ Type All Possible Values

action char * get, set, clear, clearall

mode char * direction, precision, exception

in char * nearest, tozero, negative, positive, extended, double, single,
inexact, division, underflow, overflow, invalid, all, common

out char ** nearest, tozero, negative, positive, extended, double, single,
inexact, division, underflow, overflow, invalid, all, common

The ieee_flags(3m) man page describes the parameters in complete detail.

Some of the arithmetic features that can be modified by using ieee_flags are covered in the
following paragraphs. Chapter 4 contains more information on ieee_flags and IEEE exception
flags.

When mode is direction, the specified action applies to the current rounding direction.
The possible rounding directions are: round towards nearest, round towards zero, round
towards +•, or round towards −•. The IEEE default rounding direction is round towards
nearest. This means that when the mathematical result of an operation lies strictly between two
adjacent representable numbers, the one nearest to the mathematical result is delivered. (If the
mathematical result lies exactly halfway between the two nearest representable numbers, then
the result delivered is the one whose least significant bit is zero. The round towards nearest
mode is sometimes called round to nearest even to emphasize this.)

Rounding towards zero is the way many pre-IEEE computers work, and corresponds
mathematically to truncating the result. For example, if 2/3 is rounded to 6 decimal digits, the
result is .666667 when the rounding mode is round towards nearest, but .666666 when the
rounding mode is round towards zero.

When using ieee_flags to examine, clear, or set the rounding direction, possible values for the
four input parameters are shown in Table 3-14.

TABLE 3-14 ieee_flags Input Values for the Rounding Direction

Parameter Possible value (mode is direction)

action get, set, clear, clearall

in nearest, tozero, negative, positive

out nearest, tozero, negative, positive

When mode is precision, the specified action applies to the current rounding precision. On
x86-based systems, the possible rounding precisions are: single, double, and extended. The

3.4 IEEE Support Functions

52 Oracle Solaris Studio 12.4: Numerical Computation Guide • January 2015

default rounding precision is extended; in this mode, arithmetic operations that deliver a result
to an x87 floating-point register round their result to the full 64-bit precision of the extended
double register format. When the rounding precision is single or double, arithmetic operations
that deliver a result to an x87 floating-point register round their result to 24 or 53 significant
bits, respectively. Although most programs produce results that are at least as accurate, if not
more so, when extended rounding precision is used, some programs that require strict adherence
to the semantics of IEEE arithmetic will not work correctly in extended rounding precision
mode and must be run with the rounding precision set to single or double as appropriate.

Rounding precision cannot be set on systems using SPARC processors. On these systems,
calling ieee_flags with mode = precision has no effect on computation.

Finally, when mode is exception, the specified action applies to the current IEEE exception
flags. See Chapter 4, “Exceptions and Exception Handling” for more information about using
ieee_flags to examine and control the IEEE exception flags.

3.4.4 ieee_retrospective(3m)

The libsunmath function ieee_retrospective prints information about unrequited exceptions
and nonstandard IEEE modes. It reports:

■ Outstanding exceptions.
■ Enabled traps.
■ If rounding direction or precision is set to other than the default.
■ If nonstandard arithmetic is in effect.

The necessary information is obtained from the hardware floating-point status register.

ieee_retrospective prints information about exception flags that are raised, and exceptions
for which a trap is enabled. These two distinct, if related, pieces of information should
not be confused. If an exception flag is raised, then that exception occurred at some point
during program execution. If a trap is enabled for an exception, then the exception might
not have actually occurred, but if it had, a SIGFPE signal would have been delivered. The
ieee_retrospective message is meant to alert you about exceptions that might need to be
investigated, if the exception flag is raised, or to remind you that exceptions might have been
handled by a signal handler, if the exception's trap is enabled. Chapter 4, “Exceptions and
Exception Handling” discusses exceptions, signals, and traps, and shows how to investigate the
cause of a raised exception.

A program can explicitly call ieee_retrospective at any time. Fortran programs compiled
with f95 in -f77 compatibility mode automatically call ieee_retrospective before they
exit. C/C++ programs and Fortran programs compiled with f95 in the default mode do not
automatically call ieee_retrospective.

3.4 IEEE Support Functions

Chapter 3 • The Math Libraries 53

Note, though, that the f95 compiler enables trapping on common exceptions by default,
so unless a program either explicitly disables trapping or installs a SIGFPE handler, it will
immediately abort when such an exception occurs. In -f77 compatibility mode, the compiler
does not enable trapping, so when floating-point exceptions occur, the program continues
execution and reports those exceptions via the ieee_retrospective output on exit.

The syntax for calling this function is as follows:

■ C, C++ - ieee_retrospective(fp);
■ Fortran - call ieee_retrospective()

For the C function, the argument fp specifies the file to which the output will be written. The
Fortran function always prints output on stderr.

The following example shows four of the six ieee_retrospective warning messages:

Note: IEEE floating-point exception flags raised:

 Inexact; Underflow;

Rounding direction toward zero

IEEE floating-point exception traps enabled:

 overflow;

See the Numerical Computation Guide, ieee_flags(3M),

ieee_handler(3M), ieee_sun(3m)

A warning message appears only if trapping is enabled or an exception was raised.

You can suppress ieee_retrospective messages from Fortran programs by one of three
methods. One approach is to clear all outstanding exceptions, disable traps, and restore round-
to-nearest, extended precision, and standard modes before the program exits. To do this, call
ieee_flags, ieee_handler, and standard_arithmetic as follows:

character*8 out

i = ieee_flags('clearall', '', '', out)

call ieee_handler('clear', 'all', 0)

call standard_arithmetic()

Note - Clearing outstanding exceptions without investigating their cause is not recommended.

Another way to avoid seeing ieee_retrospective messages is to redirect stderr to a
file. Of course, this method should not be used if the program sends output other than
ieee_retrospective messages to stderr.

The third approach is to include a dummy ieee_retrospective function in the program, for
example:

subroutine ieee_retrospective

return

end

3.5 C99 Floating-Point Environment Functions

54 Oracle Solaris Studio 12.4: Numerical Computation Guide • January 2015

3.4.5 nonstandard_arithmetic(3m)

As discussed in Chapter 2, “IEEE Arithmetic”, IEEE arithmetic handles underflowed results
using gradual underflow. On some SPARC-based systems, gradual underflow is often
implemented partly with software emulation of the arithmetic. If many calculations underflow,
this can cause performance degradation.

To obtain some information about whether this is a case in a specific program, you can use
ieee_retrospective or ieee_flags to determine if underflow exceptions occur, and check the
amount of system time used by the program. If a program spends an unusually large amount of
time in the operating system, and raises underflow exceptions, gradual underflow might be the
cause. In this case, using non-IEEE arithmetic might speed up program execution.

The function nonstandard_arithmetic enables non-IEEE arithmetic modes on processors that
support them. On SPARC systems, this function sets the NS (nonstandard arithmetic) bit in the
floating-point status register. On x86 systems supporting the SSE instructions, this function sets
the FTZ (flush to zero) bit in the MXCSR register; it also sets the DAZ (denormals are zero)
bit in the MXCSR register on those processors that support this bit. Note that the effects of
nonstandard modes vary from one processor to another and can cause otherwise robust software
to malfunction. Nonstandard mode is not recommended for normal use.

The function standard_arithmetic resets the hardware to use the default IEEE arithmetic.
Both functions have no effect on processors that provide only the default IEEE 754 style of
arithmetic. SPARC T4 is one such processor.

3.5 C99 Floating-Point Environment Functions

This section describes the <fenv.h> floating-point environment functions in C99. In the
Oracle Solaris 10 OS, these functions are available in libm. They provide many of the same
capabilities as the ieee_flags function, but they use a more natural C interface, and because
they are defined by C99, they are more portable.

Note - For consistent behavior, do not use both C99 floating-point environment functions and
exception handling extensions in libm and the ieee_flags and ieee_handler functions in
libsunmath in the same program.

3.5.1 Exception Flag Functions

The fenv.h file defines macros for each of the five IEEE floating-point exception flags:
FE_INEXACT, FE_UNDERFLOW, FE_OVERFLOW, FE_DIVBYZERO, and FE_INVALID. In addition, the

3.5 C99 Floating-Point Environment Functions

Chapter 3 • The Math Libraries 55

macro FE_ALL_EXCEPT is defined to be the bitwise “or” of all five flag macros. In the following
descriptions, the excepts parameter might be a bitwise “or” of any of the five flag macros or
the value FE_ALL_EXCEPT. For the fegetexceptflag and fesetexceptflag functions, the flagp
parameter must be a pointer to an object of type fexcept_t. This type is defined in fenv.h.

C99 defines the exception flag functions in the following table:

TABLE 3-15 C99 Standard Exception Flag Functions

Function Action

feclearexcept(excepts) clear specified flags

fetestexcept(excepts) return settings of specified flags

feraiseexcept(excepts) raise specified exceptions

fegetexceptflag(flagp, excepts) save specified flags in *flagp

fesetexceptflag(flagp, excepts) restore specified flags from *flagp

The feclearexcept function clears the specified flags. The fetestexcept function returns a
bitwise “or” of the macro values corresponding to the subset of flags specified by the excepts
argument that are set. For example, if the only flags currently set are inexact, underflow, and
division by zero, then the following would set i to FE_DIVBYZERO.

i = fetestexcept(FE_INVALID | FE_DIVBYZERO);

The feraiseexcept function causes a trap if any of the specified exceptions' trap is enabled.
Otherwise, it merely sets the corresponding flags. See Chapter 4, “Exceptions and Exception
Handling” for more information on exception traps.

The fegetexceptflag and fesetexceptflag functions provide a convenient way
to temporarily save the state of certain flags and later restore them. In particular, the
fesetexceptflag function does not cause a trap; it merely restores the values of the specified
flags.

3.5.2 Rounding Control

The fenv.h file defines macros for each of the four IEEE rounding direction modes:
FE_TONEAREST, FE_UPWARD (toward positive infinity), FE_DOWNWARD (toward negative infinity),
and FE_TOWARDZERO. C99 defines two functions to control rounding direction modes:
fesetround sets the current rounding direction to the direction specified by its argument
(which must be one of the four macros above), and fegetround returns the value of the macro
corresponding to the current rounding direction.

On x86-based systems, the fenv.h file defines macros for each of three rounding precision
modes: FE_FLTPREC (single precision), FE_DBLPREC (double precision), and FE_LDBLPREC

3.5 C99 Floating-Point Environment Functions

56 Oracle Solaris Studio 12.4: Numerical Computation Guide • January 2015

(extended double precision). Although they are not part of C99, libm on x86 provides two
functions to control the rounding precision mode: fesetprec sets the current rounding precision
to the precision specified by its argument which must be one of the three macros above, and
fegetprec returns the value of the macro corresponding to the current rounding precision.

3.5.3 Environment Functions

The fenv.h file defines the data type fenv_t, which represents the entire floating-point
environment including exception flags, rounding control modes, exception handling modes,
and, on SPARC, nonstandard mode. In the descriptions that follow, the envp parameter must be
a pointer to an object of type fenv_t.

C99 defines four functions to manipulate the floating-point environment. libm provides
an additional function that can be useful in multi-threaded programs. These functions are
summarized in the following table:

TABLE 3-16 libm Floating-Point Environment Functions

Function Action

fegetenv(envp) save environment in *envp

fesetenv(envp) restore environment from *envp

feholdexcept(envp) save environment in *envp and establish nonstop mode

feupdateenv(envp) restore environment from *envp and raise exceptions

fex_merge_flags(envp) “or” exception flags from *envp

The fegetenv and fesetenv functions respectively save and restore the floating-point
environment. The argument to fesetenv can be either a pointer to an environment previously
saved by a call to fegetenv or feholdexcept or the constant FE_DFL_ENV defined in fenv.h.
The latter represents the default environment with all exception flags clear, rounding to nearest
and to extended double precision on x86-based systems, nonstop exception handling mode (i.e.,
traps disabled), and nonstandard mode disabled.

The feholdexcept function saves the current environment and then clears all exception flags
and establishes nonstop exception handling mode for all exceptions. The feupdateenv function
restores a saved environment (which might be one saved by a call to fegetenv or feholdexcept
or the constant FE_DFL_ENV), then raises those exceptions whose flags were set in the previous
environment. If the restored environment has traps enabled for any of those exceptions, a trap
occurs; otherwise the flags are set. These two functions can be used in conjunction to make a
subroutine call appear to be atomic with regard to exceptions, as the following code sample
shows:

#include <fenv.h>

3.6 Implementation Features of libm and libsunmath

Chapter 3 • The Math Libraries 57

void myfunc(...) {

 fenv_t env;

 /* save the environment, clear flags, and disable traps */

 feholdexcept(&env);

 /* do a computation that may incur exceptions */

 ...

 /* check for spurious exceptions */

 if (fetestexcept(...)) {

 /* handle them appropriately and clear their flags */

 ...

 feclearexcept(...);

 }

 /* restore the environment and raise relevant exceptions */

 feupdateenv(&env);

}

The fex_merge_flags function performs a logical OR of the exception flags from the saved
environment into the current environment without provoking any traps. This function can be
used in a multi-threaded program to preserve information in the parent thread about flags that
were raised by a computation in a child thread. See Appendix A, “Examples” for an example
showing the use of fex_merge_flags.

3.6 Implementation Features of libm and libsunmath

This section describes implementation features of libm and libsunmath:

■ Argument reduction using infinitely precise π, and trigonometric functions scaled in π
■ Data conversion routines for converting floating-point data between IEEE and non-IEEE

formats
■ Random number generators

3.6.1 About the Algorithms

The elementary functions in libm and libsunmath on SPARC-based systems are implemented
with table-driven and polynomial/rational approximation algorithms. These algorithms are
subject to change between releases for better performance or accuracy. Some elementary
functions in libm and libsunmath on x86-based systems are implemented using the elementary
function kernel instructions provided in the x86 instruction set; other functions are implemented
using the same table-driven or polynomial/rational approximation algorithms used on SPARC-
based systems.

Both the table-driven and polynomial/rational approximation algorithms for the common
elementary functions in libm and the common single precision elementary functions in

3.6 Implementation Features of libm and libsunmath

58 Oracle Solaris Studio 12.4: Numerical Computation Guide • January 2015

libsunmath deliver results that are accurate to within one unit in the last place (ulp). On
SPARC-based systems, the common quadruple precision elementary functions in libsunmath
deliver results that are accurate to within one ulp, except for the expm1l and log1pl functions,
which deliver results accurate to within two ulps. (The common functions include the
exponential, logarithm, and power functions and circular trigonometric functions of radian
arguments. Other functions, such as the hyperbolic trig functions and higher transcendental
functions, are less accurate.) These error bounds have been obtained by direct analysis of
the algorithms. Users can also test the accuracy of these routines using BeEF, the Berkeley
Elementary Function test programs, available from netlib in the ucbtest package http://
www.netlib.org/fp/ucbtest.tgz.

3.6.2 Argument Reduction for Trigonometric Functions

Trigonometric functions for radian arguments outside the range [–π/4,π/4] are usually computed
by reducing the argument to the indicated range by subtracting integral multiples of π/2.

Because π is not a machine-representable number, it must be approximated. The error in the
final computed trigonometric function depends on the rounding errors in argument reduction
with an approximate π as well as the rounding, and approximation errors in computing the
trigonometric function of the reduced argument. Even for fairly small arguments, the relative
error in the final result might be dominated by the argument reduction error, while even for
fairly large arguments, the error due to argument reduction might be no worse than the other
errors.

There is widespread misapprehension that trigonometric functions of all large arguments are
inherently inaccurate, and all small arguments relatively accurate. This is based on the simple
observation that large enough machine-representable numbers are separated by a distance
greater than π.

There is no inherent boundary at which computed trigonometric function values suddenly
become bad, nor are the inaccurate function values useless. Provided that the argument
reduction be done consistently, the fact that the argument reduction is performed with an
approximation to π is practically undetectable, because all essential identities and relationships
are as well preserved for large arguments as for small.

libm and libsunmath trigonometric functions use an “infinitely” precise π for argument
reduction. The value 2/π is computed to 916 hexadecimal digits and stored in a lookup table to
use during argument reduction.

The group of functions sinpi, cospi, and tanpi (see Table 3-3) scales the input argument by π
to avoid inaccuracies introduced by range reduction.

http://www.netlib.org/fp/ucbtest.tgz
http://www.netlib.org/fp/ucbtest.tgz

3.6 Implementation Features of libm and libsunmath

Chapter 3 • The Math Libraries 59

3.6.3 Data Conversion Routines

In libm and libsunmath, there is a flexible data conversion routine, convert_external, used to
convert binary floating-point data between IEEE and non-IEEE formats.

Formats supported include those used by SPARC (IEEE), IBM PC, VAX, IBM S/370, and Cray.

Refer to the man page on convert_external(3m) for an example of taking data generated on
a Cray, and using the function convert_external to convert the data into the IEEE format
expected on SPARC-based systems.

3.6.4 Random Number Facilities

There are three facilities for generating uniform pseudo-random numbers in 32-bit integer,
single precision floating-point, and double precision floating-point formats:

■ The functions described in the addrans(3m) manual page are based on a family of table-
driven additive random number generators.

■ The functions described in the lcrans(3m) manual page are based on a linear congruential
random number generator.

■ The functions described in the mwcrans(3m) manual page are based on multiply-with-carry
random number generators. These functions also include generators that supply uniform
pseudo-random numbers in 64-bit integer formats.

In addition, the functions described on the shufrans(3m) manual page can be used in
conjunction with any of these generators to shuffle an array of pseudo-random numbers, thereby
providing even more randomness for applications that need it. Note that there is no facility for
shuffling arrays of 64-bit integers.

Each of the random number facilities includes routines that generate one random number at a
time, i.e., one per function call, as well as routines that generate an array of random numbers in
a single call. The functions that generate one random number at a time deliver numbers that lie
in the ranges shown in Table 3-17.

TABLE 3-17 Intervals for Single-Value Random Number Generators

Function Lower Bound Upper Bound

i_addran_ -2147483648 2147483647

r_addran_ 0 0.9999999403953552246

d_addran_ 0 0.9999999999999998890

i_lcran_ 1 2147483646

r_lcran_ 4.656612873077392578E-10 1

3.6 Implementation Features of libm and libsunmath

60 Oracle Solaris Studio 12.4: Numerical Computation Guide • January 2015

Function Lower Bound Upper Bound

d_lcran_ 4.656612875245796923E-10 0.9999999995343387127

i_mwcran_ 0 2147483647

u_mwcran_ 0 4294967295

i_llmwcran_ 0 9223372036854775807

u_llmwcran_ 0 18446744073709551615

r_mwcran_ 0 0.9999999403953552246

d_mwcran_ 0 0.9999999999999998890

The functions that generate an entire array of random numbers in a single call allow the user
to specify the interval in which the generated numbers will lie. Appendix A, “Examples” gives
several examples that show how to generate arrays of random numbers uniformly distributed
over different intervals.

Note that the addrans and mwcrans generators are generally more efficient than the lcrans
generators, but their theory is not as refined. “Random Number Generators: Good Ones Are
Hard To Find”, by S. Park and K. Miller, Communications of the ACM, October 1988, discusses
the theoretical properties of linear congruential algorithms. Additive random number generators
are discussed in Volume 2 of Knuth's The Art of Computer Programming.

Chapter 4 • Exceptions and Exception Handling 61

 4 ♦ ♦ ♦ C H A P T E R 4

Exceptions and Exception Handling

This chapter describes IEEE floating-point exceptions and shows how to detect, locate, and
handle them. This chapter also lists the exceptions defined by IEEE 754 along with their default
results and describes the features of the floating-point environment that support status flags,
trapping, and exception handling. This chapter divides these topics into the following sections:

■ “4.1 Exception Handling Objectives” on page 61
■ “4.2 What Is an Exception?” on page 62
■ “4.3 Detecting Exceptions” on page 64
■ “4.4 Locating an Exception” on page 68
■ “4.5 Handling Exceptions” on page 85

4.1 Exception Handling Objectives

The floating-point environment provided by the Oracle Solaris Studio compilers and the Oracle
Solaris OS on SPARC-based systems and x86-based systems supports all of the exception
handling facilities required by the IEEE standard as well as many of the recommended optional
facilities. One objective of these facilities is explained in the IEEE 754 Standard (IEEE 854,
page 18) as follows:

... to minimize for users the complications arising from exceptional
conditions. The arithmetic system is intended to continue to function on a
computation as long as possible, handling unusual situations with reasonable
default responses, including setting appropriate flags.

To achieve this objective, the standards specify default results for exceptional operations
and require that an implementation provide status flags, which can be sensed, set, or cleared
by a user, to indicate that exceptions have occurred. The standards also recommend that an
implementation provide a means for a program to trap (i.e., interrupt normal control flow)
when an exception occurs. The program can optionally supply a trap handler that handles
the exception in an appropriate manner, for example by providing an alternate result for the
exceptional operation and resuming execution. The following sections describe in more detail
about how the features of the floating-point environment supports these exceptions.

4.2 What Is an Exception?

62 Oracle Solaris Studio 12.4: Numerical Computation Guide • January 2015

4.2 What Is an Exception?
It is hard to define exceptions. To quote W. Kahan,

An arithmetic exception arises when an attempted atomic arithmetic
operation has no result that would be acceptable universally. The meanings
of atomic and acceptable vary with time and place. (See Handling Arithmetic
Exceptions by W. Kahan.)

For example, an exception arises when a program attempts to take the square root of a negative
number. This example is one case of an invalid operation exception. When such an exception
occurs, the system responds in one of two ways:

■ If the exception's trap is disabled (the default case), the system records the fact that the
exception occurred and continues executing the program using the default result specified
by IEEE 754 for the excepting operation.

■ If the exception's trap is enabled, the system generates a SIGFPE signal. If the program has
installed a SIGFPE signal handler, the system transfers control to that handler; otherwise, the
program aborts.

IEEE 754 defines five basic types of floating-point exceptions: invalid operation, division
by zero, overflow, underflow and inexact. The first three (invalid, division, and overflow) are
sometimes collectively called common exceptions. These exceptions can seldom be ignored
when they occur. The ieee_handler(3m) man page explains an easy way to trap on common
exceptions only. The other two exceptions (underflow and inexact) are seen more often. In
fact, most floating-point operations incur the inexact exception. These exceptions can usually,
though not always, be safely ignored. Oracle Solaris Studio 12.4 C, C++, and f77 compilers
disable all IEEE traps by default. The f95 compiler enables traps for the common exceptions by
default. 754-standard conforming can be restored by compiling with f95 -ftrap=none.

Table 4-1 condenses information found in IEEE Standard 754. It describes the five floating-
point exceptions and the default response of an IEEE arithmetic environment when these
exceptions are raised.

TABLE 4-1 IEEE Floating-Point Exceptions

IEEE

Exception

Reason Why This Arises Example Default Result When

Trap is Disabled

Invalid operation An operand is invalid for the
operation about to be performed.

(On x86, this exception is also
raised when the floating-point stack
underflows or overflows, though that
is not part of the IEEE standard.)

■ 0 × ∞
■ 0 / 0
■ ∞ / ∞
■ x REM 0
■ Square root of negative operand
■ Any operation with a signaling

NaN operand
■ Unordered comparison (see

note 1)

Quiet NaN

4.2 What Is an Exception?

Chapter 4 • Exceptions and Exception Handling 63

IEEE

Exception

Reason Why This Arises Example Default Result When

Trap is Disabled
■ Invalid conversion (see note 2)

Division by zero An exact infinite result is produced
by an operation on finite operands.

■ x / 0 for finite, nonzero x
■ log(0)

Correctly signed infinity

Overflow The correctly rounded result would
be larger in magnitude than the
largest finite number representable
in the destination format (i.e., the
exponent range is exceeded).

■ Double precision:

■ DBL_MAX + 1.0e294
■ exp(709.8)

■ Single precision:

■ (float)DBL_MAX
■ FLT_MAX + 1.0e32
■ expf(88.8)

Depends on rounding mode (RM),
and the sign of the intermediate
result. See item 4 in “4.2.1 Notes for
Table 4-1” on page 63.

Underflow Either the exact result or the
correctly rounded result would
be smaller in magnitude than
the smallest normal number
representable in the destination
format (see note 3).

■ Double precision:

■ nextafter(min_normal,-•)
■ nextafter(min_subnormal,

-•)
■ DBL_MIN §3.0
■ exp(-708.5)

■ Single precision:

■ (float)DBL_MIN
■ nextafterf(FLT_MIN, -•)
■ expf(-87.4)

Subnormal or zero

Inexact The rounded result of a valid
operation is different from the
infinitely precise result. (Most
floating-point operations raise this
exception.)

■ 2.0 / 3.0
■ (float)1.12345678
■ log(1.1)
■ DBL_MAX + DBL_MAX, when no

overflow trap

The result of the operation (rounded,
overflowed, or underflowed)

4.2.1 Notes for Table 4-1

1. Unordered comparison: Any pair of floating-point values can be compared, even if they are
not of the same format. Four mutually exclusive relations are possible: less than, greater
than, equal, or unordered. Unordered means that at least one of the operands is a NaN (not a
number).
Every NaN compares “unordered” with everything, including itself. The following
table shows which predicates cause the invalid operation exception when the relation is
unordered.

Math Predicate C, C++ Predicate Fortran Predicate Invalid Expression (If
Unordered)

= == .EQ. no

4.3 Detecting Exceptions

64 Oracle Solaris Studio 12.4: Numerical Computation Guide • January 2015

Math Predicate C, C++ Predicate Fortran Predicate Invalid Expression (If
Unordered)

≠ != .NE. no

> > .GT. yes

≥ >= .GE. yes

< < .LT. yes

≤ <= .LE. yes

2. Invalid conversion: Attempt to convert NaN or infinity to an integer, or integer overflow on
conversion from floatin g-point format.

3. The smallest normal numbers representable in the IEEE single, double, and extended
formats are 2-126, 2-1022, and 2-16382, respectively. See Chapter 2, “IEEE Arithmetic” for
a description of the IEEE floating-point formats.

4. The following table lists the default result when the trap is disabled for overflow. The below
results depend on the rounding mode and the sign of the intermediate result.

Rounding Mode Positive Negative

Nearest +∞ -∞

Zero +∞ -max

Down +max -∞

Up +∞ -max

The x86 floating-point environment provides another exception not mentioned in the IEEE
standards: the denormal operand exception. This exception is raised whenever a floating-point
operation is performed on a subnormal number.

Exceptions are prioritized in the following order: invalid (highest priority), overflow, division,
underflow, inexact (lowest priority). On x86-based systems, the denormal operand exception
has the lowest priority of all.

The only combinations of standard exceptions that can occur simultaneously in a single
operation are overflow with inexact and underflow with inexact. On x86-based systems, the
denormal operand exception can occur with any of the five standard exceptions. If trapping on
overflow, underflow, and inexact is enabled, the overflow and underflow traps take precedence
over the inexact trap; they all take precedence over a denormal operand trap on x86-based
systems.

4.3 Detecting Exceptions

As required by the IEEE standard, the floating-point environments on SPARC-based systems
and x86-based systems provide status flags that record the occurrence of floating-point
exceptions. A program can test these flags to determine which exceptions have occurred.

4.3 Detecting Exceptions

Chapter 4 • Exceptions and Exception Handling 65

The flags can also be explicitly set and cleared. The ieee_flags function provides one way
to access these flags. In programs written in C or C++, the C99 floating-point environment
functions provide another.

On SPARC-based systems, each exception has two flags associated with it, current and accrued.
The current exception flags always indicate the exceptions raised by the last floating-point
instruction to complete execution. These flags are also accumulated (i.e., “or”‐ed) into the
accrued exception flags thereby providing a record of all untrapped exceptions that have
occurred since the program began execution or since the accrued flags were last cleared
by the program. When a floating-point instruction incurs a trapped exception, the current
exception flag corresponding to the exception that caused the trap is set, but the accrued flags
are unchanged. Both the current and accrued exception flags are contained in the floating-point
status register, %fsr.

On x86-based systems, the floating-point status word (SW) provides flags for accrued
exceptions as well as flags for the status of the floating-point stack. On x86-based systems that
support SSE2 instructions, the MXCSR register contains flags that record accrued exceptions
raised by those instructions.

4.3.1 ieee_flags(3m)

ieee_flags provides an interface for IEE 754 exception flags that is similar Oracle Solaris
Studio C, C++, and Fortran. However, this interface is only available on the Oracle Solaris OS.
Use the “4.3.2 C99 Exception Flag Functions” on page 67 for C and C++ programs that are
intended to be more widely portable.

The syntax for a call to ieee_flags(3m) is:

i = ieee_flags(action, mode, in, out);

A program can test, set, or clear the accrued exception status flags using the ieee_flags
function by supplying the string "exception" as the second argument. For example, to clear the
overflow exception flag from Fortran, write:

 character*8 out

 call ieee_flags('clear', 'exception', 'overflow', out)

To determine whether an exception has occurred from C or C++, use:

 i = ieee_flags("get", "exception", in, out);

When the action is "get", the string returned in out is one of the following:

■ "not available" — if information on exceptions is not available
■ "" (an empty string) — if there are no accrued exceptions or, in the case of x86, the

denormal operand is the only accrued exception
■ The name of the exception named in the third argument, in, if that exception has occurred

4.3 Detecting Exceptions

66 Oracle Solaris Studio 12.4: Numerical Computation Guide • January 2015

■ Otherwise, the name of the highest priority exception that has occurred

For example, in the following Fortran call the string returned in out is "division" if the
division-by-zero exception has occurred. Otherwise it is the name of the highest priority
exception that has occurred:

 character*8 out

 i = ieee_flags('get', 'exception', 'division', out)

Note that in is ignored unless it names a particular exception. For example, the argument "all"
is ignored in the following C call:

 i = ieee_flags("get", "exception", "all", out);

Besides returning the name of an exception in out, ieee_flags returns an integer value that
combines all of the exception flags currently raised. This value is the bitwise “or” of all the
accrued exception flags, where each flag is represented by a single bit as shown in Table 4-2.
The positions of the bits corresponding to each exception are given by the fp_exception_type
values defined in the file sys/ieeefp.h. (Note that these bit positions are machine-dependent
and need not be contiguous.)

TABLE 4-2 Exception Bits

Exception Bit Position Accrued Exception Bit

invalid fp_invalid i & (1 << fp_invalid)

overflow fp_overflow i & (1 << fp_overflow)

division fp_division i & (1 << fp_division)

underflow fp_underflow i & (1 << fp_underflow)

inexact fp_inexact i & (1 << fp_inexact)

denormalized fp_denormalized i & (1 << fp_denormalized) (x86 only)

This fragment of a C or C++ program shows one way to decode the return value.

/*

 * Decode integer that describes all accrued exceptions.

 * fp_inexact etc. are defined in <sys/ieeefp.h>

 */

char *out;

int invalid, division, overflow, underflow, inexact;

code = ieee_flags("get", "exception", "", &out);

printf ("out is %s, code is %d, in hex: 0x%08X\n",

 out, code, code);

inexact = (code >> fp_inexact) & 0x1;

division = (code >> fp_division) & 0x1;

underflow = (code >> fp_underflow) & 0x1;

overflow = (code >> fp_overflow) & 0x1;

invalid = (code >> fp_invalid) & 0x1;

4.3 Detecting Exceptions

Chapter 4 • Exceptions and Exception Handling 67

printf("%d %d %d %d %d \n", invalid, division, overflow,

 underflow, inexact);

4.3.2 C99 Exception Flag Functions
C/C++ programs can test, set, and clear the floating-point exception flags using the C99
floating-point environment functions. The header file fenv.h defines five macros corresponding
to the five standard exceptions: FE_INEXACT, FE_UNDERFLOW, FE_OVERFLOW, FE_DIVBYZERO,
and FE_INVALID. It also defines the macro FE_ALL_EXCEPT to be the bitwise “or” of all five
exception macros. These macros can be combined to test or clear any subset of the exception
flags or raise any combination of exceptions. The following examples show the use of these
macros with several of the C99 floating-point environment functions. See the feclearexcept(3M)
manual page for more information.

Note - For consistent behavior, do not use both the C99 floating-point environment functions
and extensions in libm and the ieee_flags and ieee_handler functions in libsunmath in the
same program.

To clear all five exception flags, use the following:

feclearexcept(FE_ALL_EXCEPT);

To test whether the invalid operation or division by zero flags have been raised, use the
following:

int i;

i = fetestexcept(FE_INVALID | FE_DIVBYZERO);

if (i & FE_INVALID)

 /* invalid flag was raised */

else if (i & FE_DIVBYZERO)

 /* division-by-zero flag was raised */

The fegetexceptflag and fesetexceptflag functions provide a way to save and restore a
subset of the flags. The next example shows one way to use these functions.

fexcept_t flags;

/* save the underflow, overflow, and inexact flags */

fegetexceptflag(&flags, FE_UNDERFLOW | FE_OVERFLOW | FE_INEXACT);

/* clear these flags */

feclearexcept(FE_UNDERFLOW | FE_OVERFLOW | FE_INEXACT);

/* do a computation that can underflow or overflow */

...

/* check for underflow or overflow */

if (fetestexcept(FE_UNDERFLOW | FE_OVERFLOW) != 0) {

 ...

}

/* restore the underflow, overflow, and inexact flags */

4.4 Locating an Exception

68 Oracle Solaris Studio 12.4: Numerical Computation Guide • January 2015

fesetexceptflag(&flags, FE_UNDERFLOW | FE_OVERFLOW, | FE_INEXACT);

4.4 Locating an Exception
One way to locate where an exception occurs is to test the exception flags at various points
throughout a program. However, isolating an exception precisely by this approach can require
many tests and carry a significant overhead.

An easier way to determine where an exception occurs is to enable its trap. When an exception
whose trap is enabled occurs, the operating system notifies the program by sending a SIGFPE
signal. See the signal(5) manual page. Thus, by enabling trapping for an exception, you
can determine where the exception occurs either by running under a debugger and stopping
on receipt of a SIGFPE signal or by establishing a SIGFPE handler that prints the address
of the instruction where the exception occurred. Note that trapping must be enabled for an
exception to generate a SIGFPE signal. When trapping is disabled and an exception occurs, the
corresponding flag is set and execution continues with the default result specified in Table 4-1,
but no signal is delivered.

4.4.1 Using the Debugger to Locate an Exception

This section gives examples showing how to use dbx to investigate the cause of a floating-point
exception and locate the instruction that raised it. Recall that in order to use the source-level
debugging features of dbx, programs should be compiled with the -g flag. Refer to the “Oracle
Solaris Studio 12.4: Debugging a Program With dbx ” for more information.

Consider the following C program:

#include <stdio.h>

#include <math.h>

double sqrtm1(double x)

{

 return sqrt(x) - 1.0;

}

int main(void)

{

 double x, y;

 x = -4.2;

 y = sqrtm1(x);

 printf("%g %g\n", x, y);

 return 0;

}

Compiling and running this program produces:

http://www.oracle.com/pls/topic/lookup?ctx=E37069&id=OSSDP
http://www.oracle.com/pls/topic/lookup?ctx=E37069&id=OSSDP

4.4 Locating an Exception

Chapter 4 • Exceptions and Exception Handling 69

-4.2 NaN

The appearance of a NaN in the output suggests that an invalid operation exception might have
occurred. To determine whether this is the case, you can recompile with the -ftrap option to
enable trapping on invalid operations and use dbx to run the program and stop when a SIGFPE
signal is delivered. Alternatively, you can use dbx without recompiling the program by linking
with a startup routine that enables the invalid operation trap or by manually enabling the trap.

4.4.1.1 Using dbx to Locate the Instruction Causing an Exception

The simplest way to locate the code that causes a floating-point exception is to recompile with
the -g and -ftrap flags and then use dbx to track down the location where the exception occurs.
First, recompile the program as follows:

example% cc -g -ftrap=invalid ex.c -lm

Compiling with -g allows you to use the source-level debugging features of dbx. Specifying
-ftrap=invalid causes the program to run with trapping enabled for invalid operation
exceptions. Next, invoke dbx, issue the catch fpe command to stop when a SIGFPE is issued,
and run the program. On SPARC-based systems, the result resembles this:

example% dbx a.out
Reading a.out

Reading ld.so.1

Reading libm.so.2

Reading libc.so.1

(dbx) catch fpe

(dbx) run
Running: a.out

(process id 2773)

signal FPE (invalid floating point operation) in __sqrt at 0x7fa9839c

0x7fa9839c: __sqrt+0x005c: srlx %o1, 63, %l5

Current function is sqrtm1

 5 return sqrt(x) - 1.0;

(dbx) print x
x = -4.2

(dbx)

The output shows that the exception occurred in the sqrtm1 function as a result of attempting to
take the square root of a negative number.

You can also use dbx to identify the cause of an exception in code that has not been compiled
with -g, such as a library routine. In this case, dbx will not be able to give the source file and
line number, but it can show the instruction that raised the exception. Again, the first step is to
recompile the main program with -ftrap:

example% cc -ftrap=invalid ex.c -lm

4.4 Locating an Exception

70 Oracle Solaris Studio 12.4: Numerical Computation Guide • January 2015

Now invoke dbx, use the catch fpe command, and run the program. When an invalid operation
exception occurs, dbx stops at an instruction following the one that caused the exception. To
find the instruction that caused the exception, disassemble several instructions and look for the
last floating-point instruction prior to the instruction at which dbx has stopped. On SPARC-
based systems, the result might resemble the following transcript.

example% dbx a.out
Reading a.out

Reading ld.so.1

Reading libm.so.2

Reading libc.so.1

(dbx) catch fpe

(dbx) run
Running: a.out

(process id 2931)

signal FPE (invalid floating point operation) in __sqrt at 0x7fa9839c

0x7fa9839c: __sqrt+0x005c: srlx %o1, 63, %l5

(dbx) dis __sqrt+0x50/4
dbx: warning: unknown language, 'c' assumed

0x7fa98390: __sqrt+0x0050: neg %o4, %o1

0x7fa98394: __sqrt+0x0054: srlx %o2, 63, %l6

0x7fa98398: __sqrt+0x0058: fsqrtd %f0, %f2

0x7fa9839c: __sqrt+0x005c: srlx %o1, 63, %l5

(dbx) print $f0f1
$f0f1 = -4.2

(dbx) print $f2f3
$f2f3 = -NaN.0

(dbx)

The output shows that the exception was caused by an fsqrtd instruction. Examining the
source register shows that the exception was a result of attempting to take the square root of a
negative number.

On x86-based systems, because instructions do not have a fixed length, finding the correct
address from which to disassemble the code might involve some trial and error. In this example,
the exception occurs close to the beginning of a function, so we can disassemble from there.
Note that this output assumes the program has been compiled with the -xlibmil flag. The
following output might be a typical result.

example% dbx a.out
Reading a.out

Reading ld.so.1

Reading libc.so.1

(dbx) catch fpe

(dbx) run
Running: a.out

(process id 18566)

signal FPE (invalid floating point operation) in sqrtm1 at 0x80509ab

0x080509ab: sqrtm1+0x001b: fstpl 0xffffffe0(%ebp)

(dbx) dis sqrtm1+0x16/5
dbx: warning: unknown language, 'c' assumed

0x080509a6: sqrtm1+0x0016: fsqrt

4.4 Locating an Exception

Chapter 4 • Exceptions and Exception Handling 71

0x080509a8: sqrtm1+0x0018: addl $0x00000008,%esp

0x080509ab: sqrtm1+0x001b: fstpl 0xffffffe0(%ebp)

0x080509ae: sqrtm1+0x001e: fwait

0x080509af: sqrtm1+0x001f: movsd 0xffffffe0(%ebp),%xmm0

(dbx) print $st0
$st0 = -4.20000000000000017763568394002504647e+00

(dbx)

The output reveals that the exception was caused by a fsqrt instruction. Examination of the
floating-point registers reveals that the exception was a result of attempting to take the square
root of a negative number.

4.4.1.2 Enabling Traps Without Recompilation

In the preceding examples, trapping on invalid operation exceptions was enabled by
recompiling the main subprogram with the -ftrap flag. In some cases, recompiling the main
program might not be possible, so you might need to resort to other means to enable trapping.
There are several ways to do this.

When you are using dbx, you can enable traps manually by directly modifying the floating-
point status register. This can be somewhat tricky because the operating system does not enable
the floating-point unit until the first time it is used within a program, at which point the floating-
point state is initialized with all traps disabled. Thus, you cannot manually enable trapping
until after the program has executed at least one floating-point instruction. In our example, the
floating-point unit has already been accessed by the time the sqrtm1 function is called, so we
can set a breakpoint on entry to that function, enable trapping on invalid operation exceptions,
instruct dbx to stop on the receipt of a SIGFPE signal, and continue execution. On SPARC-based
systems, the steps are as follows. Note the use of the assign command to modify the %fsr to
enable trapping on invalid operation exceptions:

example% dbx a.out
Reading a.out

... etc.

(dbx) stop in sqrtm1
dbx: warning: 'sqrtm1' has no debugger info -- will trigger on first instruction

(2) stop in sqrtm1

(dbx) run
Running: a.out

(process id 23086)

stopped in sqrtm1 at 0x106d8

0x000106d8: sqrtm1 : save %sp, -0x70, %sp

(dbx) assign $fsr=0x08000000
dbx: warning: unknown language, 'c' assumed

(dbx) catch fpe

(dbx) cont
signal FPE (invalid floating point operation) in __sqrt at 0xff36b3c4

0xff36b3c4: __sqrt+0x003c: be __sqrt+0x98

(dbx)

On x86-based systems, the same process might look like this:

4.4 Locating an Exception

72 Oracle Solaris Studio 12.4: Numerical Computation Guide • January 2015

example% dbx a.out
Reading a.out

... etc.

(dbx) stop in sqrtm1
dbx: warning: 'sqrtm1' has no debugger info -- will trigger on first instruction

(2) stop in sqrtm1

(dbx) run
Running: a.out

(process id 25055)

stopped in sqrtm1 at 0x80506b0

0x080506b0: sqrtm1 : pushl %ebp

(dbx) assign $fctrl=0x137e
dbx: warning: unknown language, 'c' assumed

(dbx) catch fpe

(dbx) cont
signal FPE (invalid floating point operation) in sqrtm1 at 0x8050696

0x08050696: sqrtm1+0x0016: fstpl -16(%ebp)

(dbx)

In the example above, the assign command unmasks (that is, enables trapping on) the invalid
operation exception in the floating-point control word. If a program uses SSE2 instructions,
you must unmask exceptions in the MXCSR register to enable trapping on exceptions raised by
those instructions.

You can also enable trapping without recompiling the main program or using dbx by
establishing an initialization routine that enables traps. This might be useful, for example, if you
want to abort the program when an exception occurs without running under a debugger. There
are two ways to establish such a routine.

If the object files and libraries that comprise the program are available, you can enable trapping
by relinking the program with an appropriate initialization routine. First, create a C source file
similar to the following:

#include <ieeefp.h>

#pragma init (trapinvalid)

void trapinvalid()

{

 /* FP_X_INV et al are defined in ieeefp.h */

 fpsetmask(FP_X_INV);

}

Compile this file to create an object file and link the original program with this object file:

example% cc -c init.c

example% cc ex.o init.o -lm

example% a.out
Arithmetic Exception

If relinking is not possible but the program has been dynamically linked, you can enable
trapping by using the shared object preloading facility of the runtime linker. To do this on
SPARC-based systems, create the same C source file as above, but compile as follows:

4.4 Locating an Exception

Chapter 4 • Exceptions and Exception Handling 73

example% cc -Kpic -G -ztext init.c -o init.so -lc

To enable trapping, add the path name of the init.so object to the list of preloaded shared
objects specified by the environment variable LD_PRELOAD:

example% env LD_PRELOAD=./init.so a.out
Arithmetic Exception

See the “Oracle Solaris 11.2 Linkers and Libraries Guide ” for more information about creating
and preloading shared objects.

In principle, you can change the way any floating-point control modes are initialized by
preloading a shared object as described above. However, initialization routines in shared
objects, whether preloaded or explicitly linked, are executed by the runtime linker before
it passes control to the startup code that is part of the main executable. The startup code
then establishes any nondefault modes selected via the -ftrap, -fround, -fns (SPARC), or
-fprecision (x86) compiler flags; executes any initialization routines that are part of the main
executable, including those that are statically linked; and finally passes control to the main
program. Therefore, on SPARC, remember the following:

■ Any floating-point control modes established by initialization routines in shared objects,
such as the traps enabled in the example above, will remain in effect throughout the
execution of the program unless they are overridden.

■ Any nondefault modes selected via the compiler flags will override modes established by
initialization routines in shared objects (but default modes selected via compiler flags will
not override previously established modes).

■ Any modes established either by initialization routines that are part of the main executable
or by the main program itself will override both.

On x86-based systems, the situation is slightly more complicated. In general, the startup code
automatically supplied by the compiler resets all floating-point modes to the default by calling
the __fpstart routine (found in the standard C library, libc) before establishing any nondefault
modes selected by the -fround, -ftrap, or -fprecision flags and passing control to the main
program. As a consequence, in order to enable trapping or change any other default floating-
point mode on x86-based systems by preloading a shared object with an initialization routine,
you must override the __fpstart routine so that it does not reset the default floating-point
modes. The substitute __fpstart routine should still perform the rest of the initialization
functions that the standard routine does, however. The following code shows one way to do
this. This code assumes that the host platform is running the Oracle Solaris 10 OS or later
releases.

#include <ieeefp.h>

#include <sys/sysi86.h>

#pragma init (trapinvalid)

void trapinvalid()

{

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=OSLLG

4.4 Locating an Exception

74 Oracle Solaris Studio 12.4: Numerical Computation Guide • January 2015

 /* FP_X_INV et al are defined in ieeefp.h */

 fpsetmask(FP_X_INV);

}

extern int __fltrounds(), __flt_rounds;

extern int _fp_hw, _sse_hw;

void __fpstart()

{

 /* perform the same floating point initializations as

 the standard __fpstart() function but leave all

 floating point modes as is */

 __flt_rounds = __fltrounds();

 (void) sysi86(SI86FPHW, &_fp_hw);

 /* set the following variable to 0 instead if the host

 platform does not support SSE2 instructions */

 _sse_hw = 1;

}

4.4.2 Using a Signal Handler to Locate an Exception

The previous section presented several methods for enabling trapping at the outset of a program
in order to locate the first occurrence of an exception. In contrast, you can isolate any particular
occurrence of an exception by enabling trapping within the program itself. If you enable
trapping but do not install a SIGFPE handler, the program will abort on the next occurrence of
the trapped exception. Alternatively, if you install a SIGFPE handler, the next occurrence of the
trapped exception will cause the system to transfer control to the handler, which can then print
diagnostic information, such as the address of the instruction where the exception occurred,
and either abort or resume execution. In order to resume execution with any prospect for a
meaningful outcome, the handler might need to supply a result for the exceptional operation as
described in the next section.

You can use ieee_handler to simultaneously enable trapping on any of the five IEEE floating-
point exceptions and either request that the program abort when the specified exception occurs
or establish a SIGFPE handler. You can also install a SIGFPE handler using one of the lower-level
functions sigfpe(3), signal(3c), or sigaction(2); however, these functions do not enable trapping
as ieee_handler does. Remember that a floating-point exception triggers a SIGFPE signal only
when its trap is enabled.

4.4.2.1 ieee_handler (3m)

The syntax of a call to ieee_handler is:

i = ieee_handler(action, exception, handler)

4.4 Locating an Exception

Chapter 4 • Exceptions and Exception Handling 75

The two input parameters action and exception are strings. The third input parameter, handler,
is of type sigfpe_handler_type, which is defined in floatingpoint.h.

The three input parameters can take the following values:

Input Parameter C or C++ Type Possible Value

action char * get, set, clear

exception char * invalid, division, overflow,

underflow, inexact,

all, common

handler sigfpe_handler_type user-defined routine

SIGFPE_DEFAULT

SIGFPE_IGNORE

SIGFPE_ABORT

When the requested action is "set", ieee_handler establishes the handling function
specified by handler for the exceptions named by exception. The handling function can
be SIGFPE_DEFAULT or SIGFPE_IGNORE, both of which select the default IEEE behavior,
SIGFPE_ABORT, which causes the program to abort on the occurrence of any of the named
exceptions, or the address of a user-supplied subroutine, which causes that subroutine to be
invoked (with the parameters described in the sigaction(2) manual page for a signal handler
installed with the SA_SIGINFO flag set) when any of the named exceptions occurs. If the handler
is SIGFPE_DEFAULT or SIGFPE_IGNORE, ieee_handler also disables trapping on the specified
exceptions; for any other handler, ieee_handler enables trapping.

On x86 platforms, the floating-point hardware traps whenever an exception's trap is enabled and
its corresponding flag is raised. Therefore, to avoid spurious traps, a program should clear the
flag for each specified exception before calling ieee_handler to enable trapping.

When the requested action is "clear", ieee_handler revokes whatever handling function is
currently installed for the specified exception and disables its trap. This is the same as "set"ting
SIGFPE_DEFAULT. The third parameter is ignored when action is "clear".

For both the "set" and "clear" actions, ieee_handler returns 0 if the requested action is
available and a nonzero value otherwise.

When the requested action is "get", ieee_handler returns the address of the handler currently
installed for the specified exception or SIGFPE_DEFAULT, if no handler is installed.

The following examples show a few code fragments illustrating the use of ieee_handler. This
C code causes the program to abort on division by zero:

4.4 Locating an Exception

76 Oracle Solaris Studio 12.4: Numerical Computation Guide • January 2015

#include <sunmath.h>

/* uncomment the following line on x86 systems */

 /* ieee_flags("clear", "exception", "division", NULL); */

 if (ieee_handler("set", "division", SIGFPE_ABORT) != 0)

 printf("ieee trapping not supported here \n");

The following is the equivalent Fortran code:

#include <floatingpoint.h>

c uncomment the following line on x86 systems

c ieee_flags('clear', 'exception', 'division', %val(0))

 i = ieee_handler('set', 'division', SIGFPE_ABORT)

 if(i.ne.0) print *,'ieee trapping not supported here'

This C fragment restores IEEE default exception handling for all exceptions:

#include <sunmath.h>

 if (ieee_handler("clear", "all", 0) != 0)

 printf("could not clear exception handlers\n");

The following is the same action in Fortran:

 i = ieee_handler('clear', 'all', 0)

 if (i.ne.0) print *, 'could not clear exception handlers'

4.4.2.2 Reporting an Exception From a Signal Handler

When a SIGFPE handler installed via ieee_handler is invoked, the operating system provides
additional information indicating the type of exception that occurred, the address of the
instruction that caused it, and the contents of the machine's integer and floating-point registers.
The handler can examine this information and print a message identifying the exception and the
location at which it occurred.

To access the information supplied by the system, declare the handler as follows. The remainder
of this chapter presents sample code in C; see Appendix A, “Examples” for examples of SIGFPE
handlers in Fortran.

#include <siginfo.h>

#include <ucontext.h>

void handler(int sig, siginfo_t *sip, ucontext_t *uap)

{

 ...

}

When the handler is invoked, the sig parameter contains the number of the signal that was sent.
Signal numbers are defined in sys/signal.h; the SIGFPE signal number is 8.

The sip parameter points to a structure that records additional information about the signal. For
a SIGFPE signal, the relevant members of this structure are sip‐>si_code and sip->si_addr

4.4 Locating an Exception

Chapter 4 • Exceptions and Exception Handling 77

(see /usr/include/sys/siginfo.h). The significance of these members depends on the system
and on what event triggered the SIGFPE signal.

The sip->si_code member is one of the SIGFPE signal types listed in Table 4-3. The tokens
shown are defined in sys/machsig.h.

TABLE 4-3 Types for Arithmetic Exceptions

SIGFPE Type IEEE Type

FPE_INTDIV n/a

FPE_INTOVF n/a

FPE_FLTRES inexact

FPE_FLTDIV division

FPE_FLTUND underflow

FPE_FLTINV invalid

FPE_FLTOVF overflow

As the previous table shows, each type of IEEE floating-point exception has a corresponding
SIGFPE signal type. Integer division by zero (FPE_INTDIV) and integer overflow (FPE_INTOVF)
are also included among the SIGFPE types, but because they are not IEEE floating-point
exceptions you cannot install handlers for them via ieee_handler. You can install handlers for
these SIGFPE types via sigfpe(3); note, though, that integer overflow is ignored by default on
all SPARC and x86 platforms. Special instructions can cause the delivery of a SIGFPE signal of
type FPE_INTOVF, but Sun compilers do not generate these instructions.

For a SIGFPE signal corresponding to an IEEE floating-point exception, the sip‐>si_code
member indicates which exception occurred. On x86-based systems, it actually indicates the
highest priority unmasked exception whose flag is raised. This is normally the same as the
exception that last occurred. The sip->si_addr member holds the address of the instruction
that caused the exception on SPARC-based systems, and on x86-based systems it holds the
address of the instruction at which the trap was taken, usually the next floating-point instruction
following the one that caused the exception.

Finally, the uap parameter points to a structure that records the state of the system at the time
the trap was taken. The contents of this structure are system-dependent; see /usr/include/
sys/siginfo.h for definitions of some of its members.

Using the information provided by the operating system, we can write a SIGFPE handler that
reports the type of exception that occurred and the address of the instruction that caused it.
Example 4-1 shows such a handler.

EXAMPLE 4-1 SIGFPE Handler

#include <stdio.h>

4.4 Locating an Exception

78 Oracle Solaris Studio 12.4: Numerical Computation Guide • January 2015

#include <sys/ieeefp.h>

#include <sunmath.h>

#include <siginfo.h>

#include <ucontext.h>

void handler(int sig, siginfo_t *sip, ucontext_t *uap)

{

 unsigned code, addr;

 code = sip->si_code;

 addr = (unsigned) sip->si_addr;

 fprintf(stderr, "fp exception %x at address %x\n", code,

 addr);

}

int main()

{

 double x;

 /* trap on common floating point exceptions */

 if (ieee_handler("set", "common", handler) != 0)

 printf("Did not set exception handler\n");

 /* cause an underflow exception (will not be reported) */

 x = min_normal();

 printf("min_normal = %g\n", x);

 x = x / 13.0;

 printf("min_normal / 13.0 = %g\n", x);

 /* cause an overflow exception (will be reported) */

 x = max_normal();

 printf("max_normal = %g\n", x);

 x = x * x;

 printf("max_normal * max_normal = %g\n", x);

 ieee_retrospective(stderr);

 return 0;

}

On SPARC systems, the output from this program resembles the following:

min_normal = 2.22507e-308

min_normal / 13.0 = 1.7116e-309

max_normal = 1.79769e+308

fp exception 4 at address 10d0c

max_normal * max_normal = 1.79769e+308

Note: IEEE floating-point exception flags raised:

 Inexact; Underflow;

IEEE floating-point exception traps enabled:

 overflow; division by zero; invalid operation;

See the Numerical Computation Guide, ieee_flags(3M), ieee_handler(3M)

On x86 platforms, the operating system saves a copy of the accrued exception flags and then
clears them before invoking a SIGFPE handler. Unless the handler takes steps to preserve them,
the accrued flags are lost once the handler returns. Thus, the output from the preceding program
does not indicate that an underflow exception was raised, when compiled with -xarch=386:

4.4 Locating an Exception

Chapter 4 • Exceptions and Exception Handling 79

min_normal = 2.22507e-308

min_normal / 13.0 = 1.7116e-309

max_normal = 1.79769e+308

fp exception 4 at address 8048fe6

max_normal * max_normal = 1.79769e+308

 Note: IEEE floating-point exception traps enabled:

 overflow; division by zero; invalid operation;

 See the Numerical Computation Guide, ieee_handler(3M)

But by default, or when compiled with -xarch=sse2, tjos test program loops because the PC
never gets past the loop instruction. For Oracle Solaris Studio 12.4 , it would suffice to add a
line of code to increment the PC:

uap → UC_mcontext.gregs[REG_PC= +=5;

The above code is only covered for -xarch=sse2 and only if the SSE2 instruction happens to be
5 bytes long. A completely general SSE2 solution involves decoding the optimized code to find
the beginning of the next instruction. Use fex_set_handling instead.

In most cases, the instruction that causes the exception does not deliver the IEEE default
result when trapping is enabled: in the preceding outputs, the value reported for max_normal
* max_normal is not the default result for an operation that overflows (i.e., a correctly signed
infinity). In general, a SIGFPE handler must supply a result for an operation that causes a
trapped exception in order to continue the computation with meaningful values. See “4.5
Handling Exceptions” on page 85 for one way to do this.

4.4.3 Using libm Exception Handling Extensions to
Locate an Exception

C/C++ programs can use the exception handling extensions to the C99 floating-point
environment functions in libm to locate exceptions in several ways. These extensions include
functions that can establish handlers and simultaneously enable traps, just as ieee_handler
does, but they provide more flexibility. They also support logging of retrospective diagnostic
messages regarding floating-point exceptions to a selected file.

4.4.3.1 fex_set_handling(3m)

The fex_set_handling function allows you to select one of several options, or modes, for
handling each type of floating-point exception. The syntax of a call to fex_set_handling is:

ret = fex_set_handling(ex, mode, handler);

The ex argument specifies the set of exceptions to which the call applies. It must be a bitwise
“or” of the values listed in the first column of Table 4-4. (These values are defined in fenv.h.)

4.4 Locating an Exception

80 Oracle Solaris Studio 12.4: Numerical Computation Guide • January 2015

TABLE 4-4 Exception Codes for fex_set_handling

Value Exception

FEX_INEXACT inexact result

FEX_UNDERFLOW underflow

FEX_OVERFLOW overflow

FEX_DIVBYZERO division by zero

FEX_INV_ZDZ 0/0 invalid operation

FEX_INV_IDI infinity/infinity invalid operation

FEX_INV_ISI infinity-infinity invalid operation

FEX_INV_ZMI 0*infinity invalid operation

FEX_INV_SQRT square root of negative number

FEX_INV_SNAN operation on signaling NaN

FEX_INV_INT invalid integer conversion

FEX_INV_CMP invalid unordered comparison

For convenience, fenv.h also defines the following values: FEX_NONE (no exceptions),
FEX_INVALID (all invalid operation exceptions), FEX_COMMON (overflow, division by zero, and all
invalid operations), and FEX_ALL (all exceptions).

The mode argument specifies the exception handling mode to be established for the indicated
exceptions. There are five possible modes:

■ FEX_NONSTOP mode provides the IEEE 754 default nonstop behavior. This is equivalent to
leaving the exception's trap disabled. Note that unlike ieee_handler, fex_set_handling
allows you to establish nondefault handling for certain types of invalid operation exceptions
and retain IEEE default handling for the rest.

■ FEX_NOHANDLER mode is equivalent to enabling the exception's trap without providing a
handler. When an exception occurs, the system transfers control to a previously installed
SIGFPE handler, if present, or aborts.

■ FEX_ABORT mode causes the program to call abort(3c) when the exception occurs.
■ FEX_SIGNAL installs the handling function specified by the handler argument for the

indicated exceptions. When any of these exceptions occurs, the handler is invoked with the
same arguments as if it had been installed by ieee_handler.

■ FEX_CUSTOM installs the handling function specified by handler for the indicated exceptions.
Unlike FEX_SIGNAL mode, when an exception occurs, the handler is invoked with a
simplified argument list. The arguments consist of an integer whose value is one of the
values listed in Table 4-4 and a pointer to a structure that records additional information
about the operation that caused the exception. The contents of this structure are described in
the next section and in the fex_set_handling(3m) manual page.

Note that the handler parameter is ignored if the specified mode is FEX_NONSTOP,
FEX_NOHANDLER, or FEX_ABORT. fex_set_handling returns a nonzero value if the specified

4.4 Locating an Exception

Chapter 4 • Exceptions and Exception Handling 81

mode is established for the indicated exceptions, and returns zero otherwise. In the following
examples, the return value is ignored.

The following examples suggest ways to use fex_set_handling to locate certain types of
exceptions. To abort on a 0/0 exception, use the following:

fex_set_handling(FEX_INV_ZDZ, FEX_ABORT, NULL);

To install a SIGFPE handler for overflow and division by zero, use the following:

fex_set_handling(FEX_OVERFLOW | FEX_DIVBYZERO, FEX_SIGNAL,

 handler);

In the previous example, the handler function could print the diagnostic information supplied
via the sip parameter to a SIGFPE handler, as shown in the previous subsection. By contrast,
the following example prints the information about the exception that is supplied to a
handler installed in FEX_CUSTOM mode. See the fex_set_handling(3m) manual page for more
information.

EXAMPLE 4-2 Printing Information Supplied to Handler Installed in FEX_CUSTOM Mode

#include <fenv.h>

void handler(int ex, fex_info_t *info)

{

 switch (ex) {

 case FEX_OVERFLOW:

 printf("Overflow in ");

 break;

 case FEX_DIVBYZERO:

 printf("Division by zero in ");

 break;

 default:

 printf("Invalid operation in ");

 }

 switch (info->op) {

 case fex_add:

 printf("floating point add\n");

 break;

 case fex_sub:

 printf("floating point subtract\n");

 break;

 case fex_mul:

 printf("floating point multiply\n");

 break;

 case fex_div:

 printf("floating point divide\n");

 break;

 case fex_sqrt:

 printf("floating point square root\n");

4.4 Locating an Exception

82 Oracle Solaris Studio 12.4: Numerical Computation Guide • January 2015

 break;

 case fex_cnvt:

 printf("floating point conversion\n");

 break;

 case fex_cmp:

 printf("floating point compare\n");

 break;

 default:

 printf("unknown operation\n");

 }

 switch (info->op1.type) {

 case fex_int:

 printf("operand 1: %d\n", info->op1.val.i);

 break;

 case fex_llong:

 printf("operand 1: %lld\n", info->op1.val.l);

 break;

 case fex_float:

 printf("operand 1: %g\n", info->op1.val.f);

 break;

 case fex_double:

 printf("operand 1: %g\n", info->op1.val.d);

 break;

 case fex_ldouble:

 printf("operand 1: %Lg\n", info->op1.val.q);

 break;

 }

 switch (info->op2.type) {

 case fex_int:

 printf("operand 2: %d\n", info->op2.val.i);

 break;

 case fex_llong:

 printf("operand 2: %lld\n", info->op2.val.l);

 break;

 case fex_float:

 printf("operand 2: %g\n", info->op2.val.f);

 break;

 case fex_double:

 printf("operand 2: %g\n", info->op2.val.d);

 break;

 case fex_ldouble:

 printf("operand 2: %Lg\n", info->op2.val.q);

 break;

 }

}

...

fex_set_handling(FEX_COMMON, FEX_CUSTOM, handler);

The handler in the preceding example reports the type of exception that occurred, the type of
operation that caused it, and the operands. It does not indicate where the exception occurred. To
find out where the exception occurred, you can use retrospective diagnostics.

4.4 Locating an Exception

Chapter 4 • Exceptions and Exception Handling 83

4.4.3.2 Retrospective Diagnostics

Another way to locate an exception using the libm exception handling extensions is to enable
logging of retrospective diagnostic messages regarding floating-point exceptions. When you
enable logging of retrospective diagnostics, the system records information about certain
exceptions. This information includes the type of exception, the address of the instruction that
caused it, the manner in which it will be handled, and a stack trace similar to that produced by
a debugger. The stack trace recorded with a retrospective diagnostic message contains only
instruction addresses and function names; for additional debugging information such as line
numbers, source file names, and argument values, you must use a debugger.

The log of retrospective diagnostics does not contain information about every single exception
that occurs; if it did, a typical log would be huge, and it would be impossible to isolate unusual
exceptions. Instead, the logging mechanism eliminates redundant messages. A message is
considered redundant under either of the following two circumstances:

■ The same exception has been previously logged at the same location, i.e., with the same
instruction address and stack trace

■ FEX_NONSTOP mode is in effect for the exception and its flag has been previously raised.

In particular, in most programs, only the first occurrence of each type of exception will be
logged. When FEX_NONSTOP handling mode is in effect for an exception, clearing its flag via any
of the C99 floating-point environment functions allows the next occurrence of that exception to
be logged, provided it does not occur at a location at which it was previously logged.

To enable logging, use the fex_set_log function to specify the file to which messages should
be delivered. For example, to log messages to the standard error file, use:

fex_set_log(stderr);

The following code example combines logging of retrospective diagnostics with the shared
object preloading facility illustrated in the previous section. By creating the following C source
file, compiling it to a shared object, preloading the shared object by supplying its path name
in the LD_PRELOAD environment variable, and specifying the names of one or more exceptions
(separated by commas) in the FTRAP environment variable, you can simultaneously abort the
program on the specified exceptions and obtain retrospective diagnostic output showing where
each exception occurs.

EXAMPLE 4-3 Combined Logging of Retrospective Diagnostics With Shared Object Preloading

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <fenv.h>

static struct ftrap_string {

 const char *name;

4.4 Locating an Exception

84 Oracle Solaris Studio 12.4: Numerical Computation Guide • January 2015

 int value;

} ftrap_table[] = {

 { "inexact", FEX_INEXACT },

 { "division", FEX_DIVBYZERO },

 { "underflow", FEX_UNDERFLOW },

 { "overflow", FEX_OVERFLOW },

 { "invalid", FEX_INVALID },

 { NULL, 0 }

};

#pragma init (set_ftrap)

void set_ftrap()

{

 struct ftrap_string *f;

 char *s, *s0;

 int ex = 0;

 if ((s = getenv("FTRAP")) == NULL)

 return;

 if ((s0 = strtok(s, ",")) == NULL)

 return;

 do {

 for (f = ftrap_table[0]; f->name != NULL; f++) {

 if (!strcmp(s0, f->name))

 ex |= f->value;

 }

 } while ((s0 = strtok(NULL, ",")) != NULL);

 fex_set_handling(ex, FEX_ABORT, NULL);

 fex_set_log(stderr);

}

Using the preceding code with the example program given at the beginning of this section
produces the following results on SPARC-based systems:

env FTRAP=invalid LD_PRELOAD=./init.so a.out

Floating point invalid operation (sqrt) at 0x7fa98398 __sqrt, abort

 0x7fa9839c __sqrt

 0x00010880 sqrtm1

 0x000108ec main

Abort

The preceding output shows that the invalid operation exception was raised as a result of a
square root operation in the routine sqrtm1.

As noted above, to enable trapping from an initialization routine in a shared object on x86
platforms, you must override the standard __fpstart routine.

Appendix A, “Examples” gives more examples showing typical log outputs. For general
information, see the fex_set_log(3m) man page.

4.5 Handling Exceptions

Chapter 4 • Exceptions and Exception Handling 85

4.5 Handling Exceptions

Historically, most numerical software has been written without regard to exceptions, and
many programmers have become accustomed to environments in which exceptions cause a
program to abort immediately. High-quality software packages such as LAPACK are carefully
designed to avoid exceptions such as division by zero and invalid operations and to scale their
inputs aggressively to preclude overflow and potentially harmful underflow. Neither of these
approaches to dealing with exceptions is appropriate in every situation. However, ignoring
exceptions can pose problems when you write a program or subroutine that is intended to be
used by someone else, for example, who might not have access to the source code. Attempting
to avoid all exceptions can require many defensive tests and branches and carry a significant
cost. For more information, see Demmel and Li, “Faster Numerical Algorithms via Exception
Handling,” IEEE Trans. Comput. 43 (1994), pp. 983–992.

The default exception response, status flags, and optional trapping facility of IEEE arithmetic
are intended to provide a third alternative: continuing a computation in the presence of
exceptions and either detecting them after the fact or intercepting and handling them as they
occur. As described above, ieee_flags or the C99 floating-point environment functions can
be used to detect exceptions after the fact, and ieee_handler or fex_set_handling can be
used to enable trapping and install a handler to intercept exceptions as they occur. In order to
continue the computation, however, the IEEE standard recommends that a trap handler be able
to provide a result for the operation that incurred an exception. A SIGFPE handler installed via
ieee_handler or fex_set_handling in FEX_SIGNAL mode can accomplish this using the uap
parameter supplied to a signal handler by the Solaris operating environment. An FEX_CUSTOM
mode handler installed via fex_set_handling can provide a result using the info parameter
supplied to such a handler.

Recall that a SIGFPE signal handler can be declared in C as follows:

#include <siginfo.h>

#include <ucontext.h>

void handler(int sig, siginfo_t *sip, ucontext_t *uap)

{

 ...

}

When a SIGFPE signal handler is invoked as a result of a trapped floating-point exception,
the uap parameter points to a data structure that contains a copy of the machine's integer
and floating-point registers as well as other system-dependent information describing the
exception. If the signal handler returns normally, the saved data are restored and the program
resumes execution at the point at which the trap was taken. Thus, by accessing and decoding
the information in the data structure that describes the exception and possibly modifying the
saved data, a SIGFPE handler can substitute a user-supplied value for the result of an exceptional
operation and continue computation.

An FEX_CUSTOM mode handler can be declared as follows:

4.5 Handling Exceptions

86 Oracle Solaris Studio 12.4: Numerical Computation Guide • January 2015

#include <fenv.h>

void handler(int ex, fex_info_t *info)

{

 ...

}

When a FEX_CUSTOM handler is invoked, the ex parameter indicates which type of exception
occurred (it is one of the values listed in Table 4-4) and the info parameter points to a data
structure that contains more information about the exception. Specifically, this structure
contains a code representing the arithmetic operation that caused the exception and structures
recording the operands, if they are available. It also contains a structure recording the default
result that would have been substituted if the exception were not trapped and an integer value
holding the bitwise “or” of the exception flags that would have accrued. The handler can
modify the latter members of the structure to substitute a different result or change the set
of flags that are accrued. (Note that if the handler returns without modifying these data, the
program will continue with the default untrapped result and flags just as if the exception were
not trapped.)

As an illustration, the following section shows how to substitute a scaled result for an operation
that underflows or overflows. See Appendix A, “Examples” for further examples.

4.5.1 Substituting IEEE Trapped Under/Overflow
Results

The IEEE standard recommends that when underflow and overflow are trapped, the system
should provide a way for a trap handler to substitute an exponent-wrapped result, i.e., a value
that agrees with what would have been the rounded result of the operation that underflowed
or overflowed except that the exponent is wrapped around the end of its usual range, thereby
effectively scaling the result by a power of two. The scale factor is chosen to map underflowed
and overflowed results as nearly as possible to the middle of the exponent range so that
subsequent computations will be less likely to underflow or overflow further. By keeping track
of the number of underflows and overflows that occur, a program can scale the final result to
compensate for the exponent wrapping. This under/overflow “counting mode” can be used to
produce accurate results in computations that would otherwise exceed the range of the available
floating-point formats. See P. Sterbenz, Floating-Point Computation for more information.

On SPARC-based systems, when a floating-point instruction incurs a trapped exception, the
system leaves the destination register unchanged. Thus, in order to substitute the exponent-
wrapped result, an under/overflow handler must decode the instruction, examine the operand
registers, and generate the scaled result itself. The following example shows a handler that
performs these steps.

4.5 Handling Exceptions

Chapter 4 • Exceptions and Exception Handling 87

EXAMPLE 4-4 Substituting IEEE Trapped Under/Overflow Handler Results for SPARC-Based
Systems

#include <stdio.h>

#include <ieeefp.h>

#include <math.h>

#include <sunmath.h>

#include <siginfo.h>

#include <ucontext.h>

#ifdef V8PLUS

/* The upper 32 floating point registers are stored in an area

 pointed to by uap->uc_mcontext.xrs.xrs_prt. Note that this

 pointer is valid ONLY when uap->uc_mcontext.xrs.xrs_id ==

 XRS_ID (defined in sys/procfs.h). */

#include <assert.h>

#include <sys/procfs.h>

#define FPxreg(x) ((prxregset_t*)uap->uc_mcontext.xrs.xrs_ptr)

->pr_un.pr_v8p.pr_xfr.pr_regs[(x)]

#endif

#define FPreg(x) uap->uc_mcontext.fpregs.fpu_fr.fpu_regs[(x)]

/*

* Supply the IEEE 754 default result for trapped under/overflow

*/

void

ieee_trapped_default(int sig, siginfo_t *sip, ucontext_t *uap)

{

 unsigned instr, opf, rs1, rs2, rd;

 long double qs1, qs2, qd, qscl;

 double ds1, ds2, dd, dscl;

 float fs1, fs2, fd, fscl;

 /* get the instruction that caused the exception */

 instr = uap->uc_mcontext.fpregs.fpu_q->FQu.fpq.fpq_instr;

 /* extract the opcode and source and destination register

 numbers */

 opf = (instr >> 5) & 0x1ff;

 rs1 = (instr >> 14) & 0x1f;

 rs2 = instr & 0x1f;

 rd = (instr >> 25) & 0x1f;

 /* get the operands */

 switch (opf & 3) {

 case 1: /* single precision */

 fs1 = *(float*)&FPreg(rs1);

 fs2 = *(float*)&FPreg(rs2);

 break;

 case 2: /* double precision */

#ifdef V8PLUS

 if (rs1 & 1)

 {

4.5 Handling Exceptions

88 Oracle Solaris Studio 12.4: Numerical Computation Guide • January 2015

 assert(uap->uc_mcontext.xrs.xrs_id == XRS_ID);

 ds1 = *(double*)&FPxreg(rs1 & 0x1e);

 }

 else

 ds1 = *(double*)&FPreg(rs1);

 if (rs2 & 1)

 {

 assert(uap->uc_mcontext.xrs.xrs_id == XRS_ID);

 ds2 = *(double*)&FPxreg(rs2 & 0x1e);

 }

 else

 ds2 = *(double*)&FPreg(rs2);

#else

 ds1 = *(double*)&FPreg(rs1);

 ds2 = *(double*)&FPreg(rs2);

#endif

 break;

 case 3: /* quad precision */

#ifdef V8PLUS

 if (rs1 & 1)

 {

 assert(uap->uc_mcontext.xrs.xrs_id == XRS_ID);

 qs1 = *(long double*)&FPxreg(rs1 & 0x1e);

 }

 else

 qs1 = *(long double*)&FPreg(rs1);

 if (rs2 & 1)

 {

 assert(uap->uc_mcontext.xrs.xrs_id == XRS_ID);

 qs2 = *(long double*)&FPxreg(rs2 & 0x1e);

 }

 else

 qs2 = *(long double*)&FPreg(rs2);

#else

 qs1 = *(long double*)&FPreg(rs1);

 qs2 = *(long double*)&FPreg(rs2);

#endif

 break;

 }

 /* set up scale factors */

 if (sip->si_code == FPE_FLTOVF) {

 fscl = scalbnf(1.0f, -96);

 dscl = scalbn(1.0, -768);

 qscl = scalbnl(1.0, -12288);

 } else {

 fscl = scalbnf(1.0f, 96);

 dscl = scalbn(1.0, 768);

 qscl = scalbnl(1.0, 12288);

 }

4.5 Handling Exceptions

Chapter 4 • Exceptions and Exception Handling 89

 /* disable traps and generate the scaled result */

 fpsetmask(0);

 switch (opf) {

 case 0x41: /* add single */

 fd = fscl * (fscl * fs1 + fscl * fs2);

 break;

 case 0x42: /* add double */

 dd = dscl * (dscl * ds1 + dscl * ds2);

 break;

 case 0x43: /* add quad */

 qd = qscl * (qscl * qs1 + qscl * qs2);

 break;

 case 0x45: /* subtract single */

 fd = fscl * (fscl * fs1 - fscl * fs2);

 break;

 case 0x46: /* subtract double */

 dd = dscl * (dscl * ds1 - dscl * ds2);

 break;

 case 0x47: /* subtract quad */

 qd = qscl * (qscl * qs1 - qscl * qs2);

 break;

 case 0x49: /* multiply single */

 fd = (fscl * fs1) * (fscl * fs2);

 break;

 case 0x4a: /* multiply double */

 dd = (dscl * ds1) * (dscl * ds2);

 break;

 case 0x4b: /* multiply quad */

 qd = (qscl * qs1) * (qscl * qs2);

 break;

 case 0x4d: /* divide single */

 fd = (fscl * fs1) / (fs2 / fscl);

 break;

 case 0x4e: /* divide double */

 dd = (dscl * ds1) / (ds2 / dscl);

 break;

 case 0x4f: /* divide quad */

 qd = (qscl * qs1) / (qs2 / dscl);

 break;

 case 0xc6: /* convert double to single */

 fd = (float) (fscl * (fscl * ds1));

 break;

 case 0xc7: /* convert quad to single */

4.5 Handling Exceptions

90 Oracle Solaris Studio 12.4: Numerical Computation Guide • January 2015

 fd = (float) (fscl * (fscl * qs1));

 break;

 case 0xcb: /* convert quad to double */

 dd = (double) (dscl * (dscl * qs1));

 break;

 }

 /* store the result in the destination */

 if (opf & 0x80) {

 /* conversion operation */

 if (opf == 0xcb) {

 /* convert quad to double */

#ifdef V8PLUS

 if (rd & 1)

 {

 assert(uap->uc_mcontext.xrs.xrs_id == XRS_ID);

 (double)&FPxreg(rd & 0x1e) = dd;

 }

 else

 (double)&FPreg(rd) = dd;

#else

 (double)&FPreg(rd) = dd;

#endif

 } else

 /* convert quad/double to single */

 (float)&FPreg(rd) = fd;

 } else {

 /* arithmetic operation */

 switch (opf & 3) {

 case 1: /* single precision */

 (float)&FPreg(rd) = fd;

 break;

 case 2: /* double precision */

#ifdef V8PLUS

 if (rd & 1)

 {

 assert(uap->uc_mcontext.xrs.xrs_id == XRS_ID);

 (double)&FPxreg(rd & 0x1e) = dd;

 }

 else

 (double)&FPreg(rd) = dd;

#else

 (double)&FPreg(rd) = dd;

#endif

 break;

 case 3: /* quad precision */

#ifdef V8PLUS

 if (rd & 1)

 {

 assert(uap->uc_mcontext.xrs.xrs_id == XRS_ID);

 (long double)&FPxreg(rd & 0x1e) = qd;

4.5 Handling Exceptions

Chapter 4 • Exceptions and Exception Handling 91

 }

 else

 (long double)&FPreg(rd & 0x1e) = qd;

#else

 (long double)&FPreg(rd & 0x1e) = qd;

#endif

 break;

 }

 }

}

int

main()

{

 volatile float a, b;

 volatile double x, y;

 ieee_handler("set", "underflow", ieee_trapped_default);

 ieee_handler("set", "overflow", ieee_trapped_default);

 a = b = 1.0e30f;

 a *= b; /* overflow; will be wrapped to a moderate number */

 printf("%g\n", a);

 a /= b;

 printf("%g\n", a);

 a /= b; /* underflow; will wrap back */

 printf("%g\n", a);

 x = y = 1.0e300;

 x *= y; /* overflow; will be wrapped to a moderate number */

 printf("%g\n", x);

 x /= y;

 printf("%g\n", x);

 x /= y; /* underflow; will wrap back */

 printf("%g\n", x);

 ieee_retrospective(stdout);

 return 0;

}

In this example, the variables a, b, x, and y have been declared volatile only to prevent
the compiler from evaluating a * b, etc., at compile time. In typical usage, the volatile
declarations would not be needed.

The output from the preceding program is as follows:

159.309

1.59309e-28

1

4.14884e+137

4.14884e-163

1

 Note: IEEE floating-point exception traps enabled:

 underflow; overflow;

4.5 Handling Exceptions

92 Oracle Solaris Studio 12.4: Numerical Computation Guide • January 2015

 See the Numerical Computation Guide, ieee_handler(3M)

On x86-based systems, the floating-point hardware provides the exponent-wrapped result
when a floating-point instruction incurs a trapped underflow or overflow and its destination
is a register. When trapped underflow or overflow occurs on a floating-point store instruction,
however, the hardware traps without completing the store and without popping the stack, if
the store instruction is a store-and-pop. Thus, in order to implement counting mode, an under/
overflow handler must generate the scaled result and fix up the stack when a trap occurs on a
store instruction. Example 4-5 illustrates such a handler.

EXAMPLE 4-5 Substituting IEEE Trapped Under/Overflow Handler Results for x86-Based Systems

#include <stdio.h>

#include <ieeefp.h>

#include <math.h>

#include <sunmath.h>

#include <siginfo.h>

#include <ucontext.h>

/* offsets into the saved fp environment */

#define CW 0 /* control word */

#define SW 1 /* status word */

#define TW 2 /* tag word */

#define OP 4 /* opcode */

#define EA 5 /* operand address */

#define FPenv(x) uap->uc_mcontext.fpregs.fp_reg_set.

fpchip_state.state[(x)]

#define FPreg(x) *(long double *)(10*(x)+(char*)&uap->

uc_mcontext.fpregs.fp_reg_set.fpchip_state.state[7])/*

* Supply the IEEE 754 default result for trapped under/overflow

*/

void

ieee_trapped_default(int sig, siginfo_t *sip, ucontext_t *uap)

{

 double dscl;

 float fscl;

 unsigned sw, op, top;

 int mask, e;

 /* preserve flags for untrapped exceptions */

 sw = uap->uc_mcontext.fpregs.fp_reg_set.fpchip_state.status;

 FPenv(SW) |= (sw & (FPenv(CW) & 0x3f));

 /* if the excepting instruction is a store, scale the stack

 top, store it, and pop the stack if need be */

fpsetmask(0);

 op = FPenv(OP) >> 16;

 switch (op & 0x7f8) {

 case 0x110:

 case 0x118:

 case 0x150:

4.5 Handling Exceptions

Chapter 4 • Exceptions and Exception Handling 93

 case 0x158:

 case 0x190:

 case 0x198:

 fscl = scalbnf(1.0f, (sip->si_code == FPE_FLTOVF)?

 -96 : 96);

*(float *)FPenv(EA) = (FPreg(0) * fscl) * fscl;

 if (op & 8) {

 /* pop the stack */

 FPreg(0) = FPreg(1);

 FPreg(1) = FPreg(2);

 FPreg(2) = FPreg(3);

 FPreg(3) = FPreg(4);

 FPreg(4) = FPreg(5);

 FPreg(5) = FPreg(6);

 FPreg(6) = FPreg(7);

 top = (FPenv(SW) >> 10) & 0xe;

 FPenv(TW) |= (3 << top);

 top = (top + 2) & 0xe;

 FPenv(SW) = (FPenv(SW) & ~0x3800) | (top << 10);

 }

 break;

 case 0x510:

 case 0x518:

 case 0x550:

 case 0x558:

 case 0x590:

 case 0x598:

 dscl = scalbn(1.0, (sip->si_code == FPE_FLTOVF)?

 -768 : 768);

*(double *)FPenv(EA) = (FPreg(0) * dscl) * dscl;

 if (op & 8) {

 /* pop the stack */

 FPreg(0) = FPreg(1);

 FPreg(1) = FPreg(2);

 FPreg(2) = FPreg(3);

 FPreg(3) = FPreg(4);

 FPreg(4) = FPreg(5);

 FPreg(5) = FPreg(6);

 FPreg(6) = FPreg(7);

 top = (FPenv(SW) >> 10) & 0xe;

 FPenv(TW) |= (3 << top);

 top = (top + 2) & 0xe;

 FPenv(SW) = (FPenv(SW) & ~0x3800) | (top << 10);

 }

 break;

 }

}

int main()

{

 volatile float a, b;

 volatile double x, y;

4.5 Handling Exceptions

94 Oracle Solaris Studio 12.4: Numerical Computation Guide • January 2015

 ieee_handler("set", "underflow", ieee_trapped_default);

 ieee_handler("set", "overflow", ieee_trapped_default);

 a = b = 1.0e30f;

 a *= b;

 printf("%g\n", a);

 a /= b;

 printf("%g\n", a);

 a /= b;

 printf("%g\n", a);

 x = y = 1.0e300;

 x *= y;

 printf("%g\n", x);

 x /= y;

 printf("%g\n", x);

 x /= y;

 printf("%g\n", x);

 ieee_retrospective(stdout);

 return 0;

}

As on SPARC-based systems and compiled with -xarch=386, the output from the preceding
program on x86 is:

159.309

1.59309e-28

1

4.14884e+137

4.14884e-163

1

 Note: IEEE floating-point exception traps enabled:

 underflow; overflow;

 See the Numerical Computation Guide, ieee_handler(3M)

Note - With -xarch=sse2, this program loops. It would have be completely rewritten for
-xarch=sse2.

C/C++ programs can use the fex_set_handling function in libm to install a FEX_CUSTOM
handler for underflow and overflow. On SPARC-based systems, the information supplied to
such a handler always includes the operation that caused the exception and the operands, and
this information is sufficient to allow the handler to compute the IEEE exponent-wrapped
result, as shown above. On x86-based systems, the available information might not always
indicate which particular operation caused the exception; when the exception is raised by one
of the transcendental instructions, for example, the info->op parameter is set to fex_other.
(See the fenv.h file for definitions.) Moreover, the x86 hardware delivers an exponent-
wrapped result automatically, and this can overwrite one of the operands if the destination of the
excepting instruction is a floating-point register.

4.5 Handling Exceptions

Chapter 4 • Exceptions and Exception Handling 95

Fortunately, the fex_set_handling feature provides a simple way for a handler installed
in FEX_CUSTOM mode to substitute the IEEE exponent-wrapped result for an operation that
underflows or overflows. When either of these exceptions is trapped, the handler can set

info->res.type = fex_nodata;

to indicate that the exponent-wrapped result should be delivered. The following is an example
showing such a handler:

#include <stdio.h>

#include <fenv.h>

void handler(int ex, fex_info_t *info) {

 info->res.type = fex_nodata;

}

int main()

{

 volatile float a, b;

 volatile double x, y;

 fex_set_log(stderr);

 fex_set_handling(FEX_UNDERFLOW | FEX_OVERFLOW, FEX_CUSTOM,

 handler);

 a = b = 1.0e30f;

 a *= b; /* overflow; will be wrapped to a moderate number */

 printf("%g\n", a);

 a /= b;

 printf("%g\n", a);

 a /= b; /* underflow; will wrap back */

 printf("%g\n", a);

 x = y = 1.0e300;

 x *= y; /* overflow; will be wrapped to a moderate number */

 printf("%g\n", x);

 x /= y;

 printf("%g\n", x);

 x /= y; /* underflow; will wrap back */

 printf("%g\n", x);

 return 0;

}

The output from the preceding program resembles the following:

Floating point overflow at 0x00010924 main, handler: handler

 0x00010928 main

159.309

1.59309e-28

Floating point underflow at 0x00010994 main, handler: handler

 0x00010998 main

1

Floating point overflow at 0x000109e4 main, handler: handler

 0x000109e8 main

4.5 Handling Exceptions

96 Oracle Solaris Studio 12.4: Numerical Computation Guide • January 2015

4.14884e+137

4.14884e-163

Floating point underflow at 0x00010a4c main, handler: handler

 0x00010a50 main

1

The previous program example works on SPARC, on x86 with -xarch=sse2, and on x86 with
-xarch=386.

Chapter 5 • Compiler Code Generation 97

 5 ♦ ♦ ♦ C H A P T E R 5

Compiler Code Generation

This chapter describes the compiler code generation features of the Oracle Solaris Studio
12.4 compilers specifically related to numerical computation. The chapter is divided into the
following topics:

■ “5.1 Supported Operation Systems, Hardware, and Memory Model” on page 97
■ “5.2 Code Generation Options” on page 98
■ “5.3 Default Address Model and Code Generation” on page 99
■ “5.4 Compilation Options” on page 99
■ “5.5 Reproducible Results” on page 101
■ “5.6 Independent Confirmation” on page 103

5.1 Supported Operation Systems, Hardware, and Memory
Model

Oracle Solaris Studio 12.4 supports Oracle Solaris 10 starting with update 10 and Oracle Solaris
11, and Oracle and Red Hat Enterprise Linux releases 5 and 6.

Oracle Solaris Studio supports the same hardware as the corresponding Oracle Solaris release.
For SPARC, Oracle Solaris 10 and 11 support only SPARC processors that support a 64-bit
address space memory model. For x86, Oracle Solaris 11 supports only x86 processors that
support a 64-bit address space memory model. Oracle Solaris 10 also supports many x86
processors that only support a 32-bit address space memory model.

All 64-bit processors can execute programs compiled for either 32-bit or 64-bit address spaces.
Oracle Solaris 10 and 11 support executing 32-bit programs on a 64-bit operating system.

32-bit and 64-bit addressing is selected at compile time with the -m32 and -m64 command-line
options. These affect the size of C integer and pointer variables. The operating system provides
some 32-bit and 64-bit runtime libraries, and the compilers provide additional libraries for
specific languages.

A program that requires a 64-bit address space must be compiled with -m64. Many programs
could be compiled with either one of the address models and run correctly, so it is natural to

5.2 Code Generation Options

98 Oracle Solaris Studio 12.4: Numerical Computation Guide • January 2015

ask which model is faster. A C program that moves a lot of integer and pointer data to and from
memory might be half as fast when using -m64. But the 64-bit application binary interfaces
(ABIs) have more registers than the 32-bit ABIs, so fewer memory moves might be necessary.
For most programs, the performance difference is not significant but to be sure of a particular
program, it is best to compile both ways and test for correctness and performance.

Note - In Sun Studio 11 and older releases, the memory model was not an explicit option like
-m32 or -m64, but was built into the -xarch options which had different names corresponding to
the memory model. With Sun Studio 12, the memory model options and architecture options
have been separate.

5.2 Code Generation Options

Oracle Solaris Studio 12.4 supports many different SPARC and x86 processor chips. For each
of these processor chips, there is an -xtarget= command-line compiler option. The --xtarget=
option specifies the instruction set implemented, the particular processor chip implementing that
instruction set, and the size of the various caches. -xtarget serves as a macro for the following:

-xarch=architecture The compiler optimizes code by using the -xarch= option to determine
which instructions are implemented in hardware and thus suitable for
code generation.

-xchip=chip The compiler optimizes code by using the -xchip= option to determine
which specific chip is intended and thus how instructions should be
scheduled.

-xcache=cache-size The compiler optimizes code by using the -xcache= option to determine
how to block loops to minimize memory traffic.

By optimizing for a particular target, you get the best code for that target, which might be very
bad for a different target with a different instruction set and scheduling constraints. When one
executable is intended to be run on many different target systems, then the default generic code
generation is best, and it can also be explicitly selected with the option -xtarget=generic.

Some of the -xtarget= names are less than obvious. To specify a particular target, you can use
the -native option with the Oracle Solaris Studio compilers, which will select the -xtarget=
automatically for the system being compiled on. On SPARC systems, similar information
is displayed by the fpversion command. For more information, see Appendix B, “SPARC
Behavior and Implementation”.

5.3 Default Address Model and Code Generation

Chapter 5 • Compiler Code Generation 99

5.3 Default Address Model and Code Generation

In Oracle Solaris Studio 12.4 and previous releases, the default address space model is -m32 for
32-bits for Oracle Solaris OS. However, on Linux the default is -m32 for 32-bit hardware and
-m64 for 64-bit hardware.

For SPARC, the default is -xarch=sparc.

For x86, the default is -xarch=sse2.

Note - In previous Studio releases, the x86 default was -xarch-386 for -m32 and -xarch=sse2 for
-m64.

The new x86 default -m32 -xarch=sse2 implements the same ABI as the previous default -m32
-xarch=386. Floating-point operands and results are passed in x87 floating-point registers.
However, the following single-precision and double-precision floating-point operations are
usually performed in sse2 registers.

■ +

■ -

■ *

■ /

■ sqrt

■ convert

x87 registers are still used for long double operations and hardware elementary transcendental
function evaluations.

This means that the results of x86 default-compiled floating-point computations might vary
slightly with Oracle Solaris Studio 12.4 relative to previous Studio releases, even on the same
hardware and operating system.

5.4 Compilation Options

Oracle Solaris Studio 12.4 compilers accept many options that affect code generation. The
following list highlights certain code generation options that are not valid for all programs. In
the case of large programs written by many authors over many years, it is often the case that
nobody can say with certainty which code transformations do and do not adversely affect the
logic of the program, and so the following must be used with care.

-fast Macro for many different generally useful transformations. It is easier to
remember -fast than all its constituents. The definition of -fast varies

5.4 Compilation Options

100 Oracle Solaris Studio 12.4: Numerical Computation Guide • January 2015

from release to release. Not all its transformations are legitimate for all
programs. If -fast is used, it might be followed by additional options
that undo some of its effects, e.g. using -fast -fsimple=0 -fns=no
-xvector=no to disable three options discussed below. Compiling with
-dryrun is a good way to see which options are actually enabled by a
particular compiler's command line options.

-fsimple Permits certain simplifying assumptions about floating-point modes,
exceptions, and roundoff that are not true for all programs. The compilers
use these assumptions to justify various value-changing transformations,
which vary between releases.-fsimple=0 is the default and is safest.
-fsimple=1 is safe for many programs and -fsimple=2 is risky for many.
Simply testing program execution with a few inputs is not sufficient to
verify suitability of -fsimple=2. Its effects might be beneficial for some
input data and not others.

-fns Does not affect code generation but causes programs to begin execution
with nonstandard underflow mode enabled. This is contrary to the IEEE
standard and so nonstandard results might be obtained, including invalid
results and infinite loops. Many programs run the same no matter how
underflow is handled. These programs might run faster with -fns if the
run-time hardware is slower for standard underflow. Recent SPARC
servers have no performance advantage for nonstandard mode.

-ftrap=common Does not affect code generation but causes programs to begin execution
with traps enabled for overflow, division by zero, and invalid IEEE
exceptions; this is contrary to the IEEE standard and might cause
early termination of programs that depend on nonstop IEEE exception
handling. -ftrap=none is the default for C, C++, and F77, but not F95.

-fnonstd Macro for -fns and -ftrap=common.

-xvector Used to enable vector math library transformations with -xvector=lib,
and SIMD transformations with -xvector=simd. -xvector=lib will
change numerical results as slightly different vector-oriented libmvec
implementations of common elementary transcendental functions are
used instead of the libm versions. These vector versions assume default
rounding is in effect.

-xreduction Enables a broader range of program loops to be parallelized when
parallelization is enabled with -xautopar or -xopenmp. Reduction
operations are those like summing a vector or computing the dot product
of two vectors; the sums can be taken in any order in exact arithmetic,
but will produce slightly different results in finite precision floating-
point arithmetic. Indeed, the order of accumulation might not even be

5.5 Reproducible Results

Chapter 5 • Compiler Code Generation 101

deterministic and so results might vary slightly from run to run even with
the same program and same data and same hardware.

See the man pages and user's guides of each compiler for more information.

5.5 Reproducible Results
As is discussed in section D.11 of the Numerical Computation Guide, even standard-
conforming implementations of IEEE arithmetic might produce different results. Often these
results are equally good, but equally often it is tedious or difficult to prove that. For many
purposes, it's better to sacrifice some performance to reduce the amount of error analysis
necessary to validate results. It's not obvious when minor or major differences in output are
equally good, and whether they are due to user program errors, compiler optimization errors, or
hardware errors.

There are several principal root causes of varying results of IEEE floating-point arithmetic. The
following lists these causes and describes some approaches to reducing gratuitous variation
across the releases and supported platforms of Oracle Solaris Studio. Note that each approach
increases reproducibility while potentially reducing performance. Sometimes the performance
loss can be noticeable.

5.5.1 Transcendental Functions
Most of the common math library functions standardized by programming languages, such
ass exponential, logarithmic, and trigonometric functions, are expensive to round correctly,
compared to rational arithmetic or algebraic functions like square root (sqrt()). Nearly
correctly rounded functions are suitable for most purposes, and much faster. But the fastest
nearly-correctly-rounded functions differ on different platforms.

■ Use portable code for the functions used by the application. One source of such code is
the Freely-Distributable Math Library, fdlibm. It can be obtained from the Netlib software
repository.

■ Avoid the -xvector option. The vectorized versions of transcendental functions are
optimized for a particular platform and produce slightly different results on different
platforms.

■ Avoid the x86 hardware transcendental instructions. Even though these instructions have
error bounds almost as small as possible, they are not quite correctly rounded. Also, the
Intel and AMD versions differ occasionally, even though both are quite good. With Oracle
Solaris Studio C/C++ compilers, -xbuiltin=%default can be used, especially after -fast,
to make sure that none of the transcendental instructions are substituted inline by the
compiler for built-in transcendental functions. Likewise the -xnolibmil option after -fast
disables inline templates; libm.il from Oracle Solaris Studio might have some templates
that invoke the transcendental instructions.

5.5 Reproducible Results

102 Oracle Solaris Studio 12.4: Numerical Computation Guide • January 2015

5.5.2 Associative Operations
Addition and multiplication are associative in real arithmetic - sums and products may be
computed in any order. But in the presence of roundoff, the order of evaluation affects the
computed answer.

■ Avoid the -xreduction parallelization option. Oracle Solaris Studio optimizes reductions in
a way that is not deterministic.

■ Avoid Fortran's DOT and MATMUL operations. These intrinsics in Fortran 90 and later are
implemented by different methods on different platforms and will round differently. If
parallelization is also enabled, the results might not be deterministic due to reduction
optimizations. Dot product and matrix multiplication operations can be coded in portable
Fortran such as that available in the LAPACK library from the Netlib software repository.

5.5.3 Indeterminate Evaluation
In many languages, the order of external expression evaluation is not specified by the language.
Thus if ranf(x)() is a random number generator, the expression ranf(x) * a + ranf(x) *
b() might give different results for different compilers, or different optimization levels of the
same compiler, if the order of evaluation of the two ranf(x)() invocations changes.

Avoid expressions with two external references - split such expressions into several statements
with at most one external reference in each. Thus

z = ranf(x) * a + ranf(x) * b()

can be replaced by

t = ranf(x) * a()

z = t + ranf(x) * b().

5.5.4 Non-Portable Types

long double in C/C++ is implemented differently on SPARC and x86 in Studio, with 113
significant bits and 64 significant bits respectively. Programs with explicit long double
variables are thus bound to behave differently on SPARC and x86.

5.5.5 Implicit Higher Precision
In some situations, expressions might be evaluated in higher precision than is explicit in the
source code. This can happen when x87 extended precision registers are used to evaluate

5.6 Independent Confirmation

Chapter 5 • Compiler Code Generation 103

expressions involving single or double precision variables. It can also happen when fused
multiply-add operations are substituted for pairs of multiplications and additions.

■ Avoid optimizing multiply-add pairs as fused multiply-add operations. Use -fma=none after
-fast.

■ If -xarch=386 must be used and there is no explicit use of long double types, then it might
be possible to mitigate the effects of extended-precision expression evaluation by compiling
with -fprecision=single if all variables are float, or -fprecision=double if all variables
are double. However if Fortran complex*8 variables are in use under -xarch=386, then there
is no way to insure that all expression evaluations occur in single precision. Using -m64 is
preferable to -m32 because function values are passed in registers of the same precision as
the functions.

5.6 Independent Confirmation

The foregoing discussion of reproducibility is based on the assumption that the result to be
reproduced is correct, perhaps one of many correct results. But how do we ultimately know for
sure? Some programs have proofs, but often the proof is more complicated than the program.
Why believe it more than the program? Some programs model physical systems that have
conservation laws that can be checked, but what if the interesting physical discovery to be made
is that the conservation law is incomplete or incorrect?

Any important decision should be confirmed by independent means. In the most important
cases of decisions made with the aid of computers, independent means might need to
encompass a different machine, with a different instruction set, running a different operating
system, with a program written in a different computer language, implementing a different
algorithm, then all done by a different investigator on another continent who thinks in a
different natural language. How far one wants to go in this direction depends on how much an
incorrect conclusion would cost.

Thus when writing a program to test base conversion, for instance, at least take care to use test
algorithms utterly different from any likely to be used in the base conversion functions to be
tested. Thus even slow, simple algorithms have their place in Computer Science — for testing
fast complicated algorithms.

104 Oracle Solaris Studio 12.4: Numerical Computation Guide • January 2015

Appendix A • Examples 105

 A ♦ ♦ ♦ A P P E N D I X A

Examples

This appendix provides examples of how to accomplish some popular tasks. The examples
are written either in Fortran or ANSI C, and many depend on the current versions of libm and
libsunmath. These examples were tested with Oracle Solaris Studio 12.4 on an Oracle Solaris
10 Update 10 OS or later release. C examples are compiled using the -lsunmath -lm options.

A.1 IEEE Arithmetic

The following examples show one way you can examine the hexadecimal representations of
floating-point numbers. Note that you can also use the debuggers to look at the hexadecimal
representations of stored data.

The following C program prints a double precision approximation to π and single precision
infinity:

EXAMPLE A-1 Double Precision Example

#include <math.h>

#include <sunmath.h>

int main() {

 union {

 float flt;

 unsigned un;

 } r;

 union {

 double dbl;

 unsigned un[2];

 } d;

 /* double precision */

 d.dbl = M_PI;

 (void) printf("DP Approx pi = %08x %08x = %18.17e \n",

 d.un[0], d.un[1], d.dbl);

 /* single precision */

 r.flt = infinityf();

A.1 IEEE Arithmetic

106 Oracle Solaris Studio 12.4: Numerical Computation Guide • January 2015

 (void) printf("Single Precision %8.7e : %08x \n",

 r.flt, r.un);

 return 0;

}

On SPARC-based systems, compiled with -lsunmath, the output of the preceding program
looks like the following:

DP Approx pi = 400921fb 54442d18 = 3.14159265358979312e+00

Single Precision Infinity: 7f800000

The following Fortran program prints the smallest normal numbers in each format:

EXAMPLE A-2 Print Smallest Normal Numbers in Each Format (Continued)

 program print_ieee_values

c

c the purpose of the implicit statements is to ensure

c that the floatingpoint pseudo-intrinsic functions

c are declared with the correct type

c

 implicit real*16 (q)

 implicit double precision (d)

 implicit real (r)

 real*16 z

 double precision x

 real r

c

 z = q_min_normal()

 write(*,7) z, z

 7 format('min normal, quad: ',1pe47.37e4,/,' in hex ',z32.32)

c

 x = d_min_normal()

 write(*,14) x, x

 14 format('min normal, double: ',1pe23.16,' in hex ',z16.16)

c

 r = r_min_normal()

 write(*,27) r, r

 27 format('min normal, single: ',1pe14.7,' in hex ',z8.8)

c

 end

On SPARC-based systems, the corresponding output reads as follows:

min normal, quad: 3.3621031431120935062626778173217526026E-4932

 in hex 00010000000000000000000000000000

min normal, double: 2.2250738585072014-308 in hex 0010000000000000

min normal, single: 1.1754944E-38 in hex 00800000

A.2 The Math Libraries

Appendix A • Examples 107

A.2 The Math Libraries

This section shows examples that use functions from the math library.

A.2.1 Random Number Generator

The following example calls a random number generator to generate an array of numbers and
uses a timing function to measure the time it takes to compute the EXP of the given numbers:

EXAMPLE A-3 Random Number Generator

#ifdef DP

#define GENERIC double precision

#else

#define GENERIC real

#endif

#define SIZE 400000

 program example

c

 implicit GENERIC (a-h,o-z)

 GENERIC x(SIZE), y, lb, ub

 real tarray(2), u1, u2

c

c compute EXP on random numbers in [-ln2/2,ln2/2]

 lb = -0.3465735903

 ub = 0.3465735903

c

c generate array of random numbers

#ifdef DP

 call d_init_addrans()

 call d_addrans(x,SIZE,lb,ub)

#else

 call r_init_addrans()

 call r_addrans(x,SIZE,lb,ub)

#endif

c

c start the clock

 call dtime(tarray)

 u1 = tarray(1)

c

c compute exponentials

 do 16 i=1,SIZE

 y = exp(x(i))

 16 continue

c

c get the elapsed time

 call dtime(tarray)

A.2 The Math Libraries

108 Oracle Solaris Studio 12.4: Numerical Computation Guide • January 2015

 u2 = tarray(1)

 print *,'time used by EXP is ',u2-u1

 print *,'last values for x and exp(x) are ',x(SIZE),y

c

 call flush(6)

 end

To compile the preceding example, place the source code in a file with the suffix F (not f) so
that the compiler will automatically invoke the preprocessor, and specify either -DSP or -DDP on
the command line to select single or double precision.

This example shows how to use the d_addrans function to generate blocks of random data
uniformly distributed over a user-specified range:

EXAMPLE A-4 Using the d_addrans Function

/*

 * test SIZE*LOOPS random arguments to sin in the range

 * [0, threshold] where

 * threshold = 3E30000000000000 (3.72529029846191406e-09)

 */

#include <math.h>

#include <sunmath.h>

#define SIZE 10000

#define LOOPS 100

int main()

{

 double x[SIZE], y[SIZE];

 int i, j, n;

 double lb, ub;

 union {

 unsigned u[2];

 double d;

 } upperbound;

 upperbound.u[0] = 0x3e300000;

 upperbound.u[1] = 0x00000000;

 /* initialize the random number generator */

 d_init_addrans_();

 /* test (SIZE * LOOPS) arguments to sin */

 for (j = 0; j < LOOPS; j++) {

 /*

 * generate a vector, x, of length SIZE,

 * of random numbers to use as

 * input to the trig functions.

 */

 n = SIZE;

 ub = upperbound.d;

A.2 The Math Libraries

Appendix A • Examples 109

 lb = 0.0;

 d_addrans_(x, &n, &lb, &ub);

 for (i = 0; i < n; i++)

 y[i] = sin(x[i]);

 /* is sin(x) == x? It ought to, for tiny x. */

 for (i = 0; i < n; i++)

 if (x[i] != y[i])

 printf(

 " OOPS: %d sin(%18.17e)=%18.17e \n",

 i, x[i], y[i]);

 }

 printf(" comparison ended; no differences\n");

 ieee_retrospective_();

 return 0;

}

A.2.2 IEEE Recommended Functions
The following Fortran example uses some functions recommended by the IEEE standard:

EXAMPLE A-5 IEEE Recommended Functions

c

c Demonstrate how to call 5 of the more interesting IEEE

c recommended functions from Fortran. These are implemented

c with "bit-twiddling", and so are as efficient as you could

c hope. The IEEE standard for floating-point arithmetic

c doesn't require these, but recommends that they be

c included in any IEEE programming environment.

c

c For example, to accomplish

c y = x * 2**n,

c since the hardware stores numbers in base 2,

c shift the exponent by n places.

c

c Refer to

c ieee_functions(3m)

c libm_double(3f)

c libm_single(3f)

c

c The 5 functions demonstrated here are:

c

c ilogb(x): returns the base 2 unbiased exponent of x in

c integer format

c signbit(x): returns the sign bit, 0 or 1

c copysign(x,y): returns x with y's sign bit

c nextafter(x,y): next representable number after x, in

A.2 The Math Libraries

110 Oracle Solaris Studio 12.4: Numerical Computation Guide • January 2015

c the direction y

c scalbn(x,n): x * 2**n

c

c function double precision single precision

c --

c ilogb(x) i = id_ilogb(x) i = ir_ilogb(r)

c signbit(x) i = id_signbit(x) i = ir_signbit(r)

c copysign(x,y) x = d_copysign(x,y) r = r_copysign(r,s)

c nextafter(x,y) z = d_nextafter(x,y) r = r_nextafter(r,s)

c scalbn(x,n) x = d_scalbn(x,n) r = r_scalbn(r,n)

 program ieee_functions_demo

 implicit double precision (d)

 implicit real (r)

 double precision x, y, z, direction

 real r, s, t, r_direction

 integer i, scale

 print *

 print *, 'DOUBLE PRECISION EXAMPLES:'

 print *

 x = 32.0d0

 i = id_ilogb(x)

 write(*,1) x, i

 1 format(' The base 2 exponent of ', F4.1, ' is ', I2)

 x = -5.5d0

 y = 12.4d0

 z = d_copysign(x,y)

 write(*,2) x, y, z

 2 format(F5.1, ' was given the sign of ', F4.1,

 * ' and is now ', F4.1)

 x = -5.5d0

 i = id_signbit(x)

 print *, 'The sign bit of ', x, ' is ', i

 x = d_min_subnormal()

 direction = -d_infinity()

 y = d_nextafter(x, direction)

 write(*,3) x

 3 format(' Starting from ', 1PE23.16E3,

 - ', the next representable number ')

 write(*,4) direction, y

 4 format(' towards ', F4.1, ' is ', 1PE23.16E3)

 x = d_min_subnormal()

 direction = 1.0d0

 y = d_nextafter(x, direction)

 write(*,3) x

 write(*,4) direction, y

 x = 2.0d0

 scale = 3

A.2 The Math Libraries

Appendix A • Examples 111

 y = d_scalbn(x, scale)

 write (*,5) x, scale, y

 5 format(' Scaling ', F4.1, ' by 2**', I1, ' is ', F4.1)

 print *

 print *, 'SINGLE PRECISION EXAMPLES:'

 print *

 r = 32.0

 i = ir_ilogb(r)

 write (*,1) r, i

 r = -5.5

 i = ir_signbit(r)

 print *, 'The sign bit of ', r, ' is ', i

 r = -5.5

 s = 12.4

 t = r_copysign(r,s)

 write (*,2) r, s, t

 r = r_min_subnormal()

 r_direction = -r_infinity()

 s = r_nextafter(r, r_direction)

 write(*,3) r

 write(*,4) r_direction, s

 r = r_min_subnormal()

 r_direction = 1.0e0

 s = r_nextafter(r, r_direction)

 write(*,3) r

 write(*,4) r_direction, s

 r = 2.0

 scale = 3

 s = r_scalbn(r, scale)

 write (*,5) r, scale, y

 print *

 end

The output from this program is shown in the following example.

EXAMPLE A-6 Output of Example A-5

DOUBLE PRECISION EXAMPLES:

The base 2 exponent of 32.0 is 5

-5.5 was given the sign of 12.4 and is now 5.5

The sign bit of -5.5 is 1

Starting from 4.9406564584124654E-324, the next representable

 number towards -Inf is 0.0000000000000000E+000

Starting from 4.9406564584124654E-324, the next representable

 number towards 1.0 is 9.8813129168249309E-324

A.2 The Math Libraries

112 Oracle Solaris Studio 12.4: Numerical Computation Guide • January 2015

Scaling 2.0 by 2**3 is 16.0

SINGLE PRECISION EXAMPLES:

The base 2 exponent of 32.0 is 5

The sign bit of -5.5 is 1

-5.5 was given the sign of 12.4 and is now 5.5

Starting from 1.4012984643248171E-045, the next representable

 number towards -Inf is 0.0000000000000000E+000

Starting from 1.4012984643248171E-045, the next representable

 number towards 1.0 is 2.8025969286496341E-045

Scaling 2.0 by 2**3 is 16.0

If using the f95 compiler with the -f77 compatibility option, the following additional messages
are displayed.

 Note: IEEE floating-point exception flags raised:

 Inexact; Underflow;

 IEEE floating-point exception traps enabled:

 overflow; division by zero; invalid operation;

 See the Numerical Computation Guide, ieee_flags(3M), ieee_handler(3M)

A.2.3 IEEE Special Values

The following C program calls several of the ieee_values(3m) functions:

#include <math.h>

#include <sunmath.h>

int main()

{

 double x;

 float r;

 x = quiet_nan(0);

 printf("quiet NaN: %.16e = %08x %08x \n",

 x, ((int *) &x)[0], ((int *) &x)[1]);

 x = nextafter(max_subnormal(), 0.0);

 printf("nextafter(max_subnormal,0) = %.16e\n",x);

 printf(" = %08x %08x\n",

 ((int *) &x)[0], ((int *) &x)[1]);

 r = min_subnormalf();

 printf("single precision min subnormal = %.8e = %08x\n",

 r, ((int *) &r)[0]);

 return 0;

}

Remember to specify both -lsunmath and -lm when linking.

A.2 The Math Libraries

Appendix A • Examples 113

On SPARC-based systems, the output looks like the following:

quiet NaN: NaN = 7ff80000 00000000

nextafter(max_subnormal,0) = 2.2250738585072004e-308

 = 000fffff fffffffe

single precision min subnormal = 1.40129846e-45 = 00000001

Because the x86 architecture is “little-endian”, the output on x86 is slightly different, such
that the high and low order words of the hexadecimal representations of the double precision
numbers are reversed:

quiet NaN: NaN = ffffffff 7fffffff

nextafter(max_subnormal,0) = 2.2250738585072004e-308

 = fffffffe 000fffff

single precision min subnormal = 1.40129846e-45 = 00000001

Fortran programs that use ieee_values functions should take care to declare those functions'
types:

 program print_ieee_values

c

c the purpose of the implicit statements is to insure

c that the floating-point pseudo-instrinsic

c functions are declared with the correct type

c

 implicit real*16 (q)

 implicit double precision (d)

 implicit real (r)

 real*16 z, zero, one

 double precision x

 real r

c

 zero = 0.0

 one = 1.0

 z = q_nextafter(zero, one)

 x = d_infinity()

 r = r_max_normal()

c

 print *, z

 print *, x

 print *, r

c

 end

On SPARC, the output reads as follows:

6.475175119438025110924438958227646E-4966

Inf

3.4028235E+38

A.2 The Math Libraries

114 Oracle Solaris Studio 12.4: Numerical Computation Guide • January 2015

A.2.4 ieee_flags — Rounding Direction

The following example demonstrates how to set the rounding mode to round towards zero:

#include <math.h>

#include <sunmath.h>

int main()

{

 int i;

 double x, y;

 char *out_1, *out_2, *dummy;

 /* get prevailing rounding direction */

 i = ieee_flags("get", "direction", "", &out_1);

 x = sqrt(.5);

 printf("With rounding direction %s, \n", out_1);

 printf("sqrt(.5) = 0x%08x 0x%08x = %16.15e\n",

 ((int *) &x)[0], ((int *) &x)[1], x);

 /* set rounding direction */

 if (ieee_flags("set", "direction", "tozero", &dummy) != 0)

 printf("Not able to change rounding direction!\n");

 i = ieee_flags("get", "direction", "", &out_2);

 x = sqrt(.5);

 /*

 * restore original rounding direction before printf, since

 * printf is also affected by the current rounding direction

 */

 if (ieee_flags("set", "direction", out_1, &dummy) != 0)

 printf("Not able to change rounding direction!\n");

 printf("\nWith rounding direction %s,\n", out_2);

 printf("sqrt(.5) = 0x%08x 0x%08x = %16.15e\n",

 ((int *) &x)[0], ((int *) &x)[1], x);

 return 0;

}

The following output of the previous rounding direction short program shows the effects of
rounding towards zero on SPARC:

demo% cc rounding_direction.c -lsunmath -lm

demo% a.out
With rounding direction nearest,

sqrt(.5) = 0x3fe6a09e 0x667f3bcd = 7.071067811865476e-01

With rounding direction tozero,

sqrt(.5) = 0x3fe6a09e 0x667f3bcc = 7.071067811865475e-01

demo%

A.2 The Math Libraries

Appendix A • Examples 115

The following output of the previous rounding direction short program shows the effects of
rounding towards zero on x86:

demo% cc rounding_direction.c -lsunmath -lm

demo% a.out
With rounding direction nearest,

sqrt(.5) = 0x667f3bcd 0x3fe6a09e = 7.071067811865476e-01

With rounding direction tozero,

sqrt(.5) = 0x667f3bcc 0x3fe6a09e = 7.071067811865475e-01

demo%

To set rounding direction towards zero from a Fortran program, use the following example:

program ieee_flags_demo

character*16 out

i = ieee_flags('set', 'direction', 'tozero', out)

if (i.ne.0) print *, 'not able to set rounding direction'

i = ieee_flags('get', 'direction', '', out)

print *, 'Rounding direction is: ', out

end

The output is as follows:

demo% f95 ieee_flags_demo.f

demo% a.out
 Rounding direction is: tozero

If the program is compiled using the f95 compiler with the -f77 compatibility option, the
output includes the following additional messages.

demo% f95 ieee_flags_demo.f -f77

demo% a.out
 Note: Rounding direction toward zero

 IEEE floating-point exception traps enabled:

 overflow; division by zero; invalid operation;

 See the Numerical Computation Guide, ieee_flags(3M), ieee_handler(3M)

A.2.5 C99 Floating-Point Environment Functions

The next example illustrates the use of several of the C99 floating-point environment functions.
The norm function computes the Euclidean norm of a vector and uses the environment functions
to handle underflow and overflow. The main program calls this function with vectors that are
scaled to ensure that underflows and overflows occur, as the retrospective diagnostic output
shows

A.2 The Math Libraries

116 Oracle Solaris Studio 12.4: Numerical Computation Guide • January 2015

EXAMPLE A-7 C99 Floating-Point Environment Functions

#include <stdio.h>

#include <math.h>

#include <sunmath.h>

#include <fenv.h>

/*

* Compute the euclidean norm of the vector x avoiding

* premature underflow or overflow

*/

double norm(int n, double *x)

{

 fenv_t env;

 double s, b, d, t;

 int i, f;

 /* save the environment, clear flags, and establish nonstop

 exception handling */

 feholdexcept(&env);

 /* attempt to compute the dot product x.x */

 d = 1.0; /* scale factor */

 s = 0.0;

 for (i = 0; i < n; i++)

 s += x[i] * x[i];

 /* check for underflow or overflow */

 f = fetestexcept(FE_UNDERFLOW | FE_OVERFLOW);

 if (f & FE_OVERFLOW) {

 /* first attempt overflowed, try again scaling down */

 feclearexcept(FE_OVERFLOW);

 b = scalbn(1.0, -640);

 d = 1.0 / b;

 s = 0.0;

 for (i = 0; i < n; i++) {

 t = b * x[i];

 s += t * t;

 }

 }

 else if (f & FE_UNDERFLOW && s < scalbn(1.0, -970)) {

 /* first attempt underflowed, try again scaling up */

 b = scalbn(1.0, 1022);

 d = 1.0 / b;

 s = 0.0;

 for (i = 0; i < n; i++) {

 t = b * x[i];

 s += t * t;

 }

 }

 /* hide any underflows that have occurred so far */

 feclearexcept(FE_UNDERFLOW);

A.2 The Math Libraries

Appendix A • Examples 117

 /* restore the environment, raising any other exceptions

 that have occurred */

 feupdateenv(&env);

 /* take the square root and undo any scaling */

 return d * sqrt(s);

}

int main()

{

 double x[100], l, u;

 int n = 100;

 fex_set_log(stdout);

 l = 0.0;

 u = min_normal();

 d_lcrans_(x, &n, &l, &u);

 printf("norm: %g\n", norm(n, x));

 l = sqrt(max_normal());

 u = l * 2.0;

 d_lcrans_(x, &n, &l, &u);

 printf("norm: %g\n", norm(n, x));

 return 0;

}

On SPARC-based systems, compiling and running this program produces output like the
following:

demo% cc norm.c -lsunmath -lm

demo% a.out
Floating point underflow at 0x000153a8 __d_lcrans_, nonstop mode

 0x000153b4 __d_lcrans_

 0x00011594 main

Floating point underflow at 0x00011244 norm, nonstop mode

 0x00011248 norm

 0x000115b4 main

norm: 1.32533e-307

Floating point overflow at 0x00011244 norm, nonstop mode

 0x00011248 norm

 0x00011660 main

norm: 2.02548e+155

The following code example shows the effect of the fesetprec function on x86-based systems.
This function is not available on SPARC-based systems. The while loops attempt to determine
the available precision by finding the largest power of two that rounds off entirely when it is
added to one. As the first loop shows, this technique does not always work as expected on
architectures like x86-based systems that evaluate all intermediate results in extended precision.
Thus, the fesetprec function can be used to guarantee that all results will be rounded to the
desired precision, as the second loop shows.

A.2 The Math Libraries

118 Oracle Solaris Studio 12.4: Numerical Computation Guide • January 2015

EXAMPLE A-8 fesetprec Function (x86)

#include <math.h>

#include <fenv.h>

int main()

{

 double x;

 x = 1.0;

 while (1.0 + x != 1.0)

 x *= 0.5;

 printf("%d significant bits\n", -ilogb(x));

 fesetprec(FE_DBLPREC);

 x = 1.0;

 while (1.0 + x != 1.0)

 x *= 0.5;

 printf("%d significant bits\n", -ilogb(x));

 return 0;

}

Compiling on x86 systems with cc A8.c -lm -xarch=386 creates

64 significant bits

53 significant bit

Finally, the following example shows one way to use the environment functions in a
multithreaded program to propagate floating-point modes from a parent thread to a child
thread and recover exception flags raised in the child thread when it joins with the parent. See
the “Multithreaded Programming Guide ” for more information on writing multi-threaded
programs.

EXAMPLE A-9 Using Environment Functions in a Multithread Program

#include <thread.h>

#include <fenv.h>

fenv_t env;

void * child(void *p)

{

 /* inherit the parent's environment on entry */

 fesetenv(&env);

 ...

 /* save the child's environment before exit */

 fegetenv(&env);

}

void parent()

{

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=MTP

A.3 Exceptions and Exception Handling

Appendix A • Examples 119

 thread_t tid;

 void *arg;

 ...

 /* save the parent's environment before creating the child */

 fegetenv(&env);

 thr_create(NULL, NULL, child, arg, NULL, &tid);

 ...

 /* join with the child */

 thr_join(tid, NULL, &arg);

 /* merge exception flags raised in the child into the

 parent's environment */

 fex_merge_flags(&env);

 ...

}

A.3 Exceptions and Exception Handling

A.3.1 ieee_flags — Accrued Exceptions

Generally, a user program examines or clears the accrued exception bits. The following
example is a C program that examines the accrued exception flags.

EXAMPLE A-10 Examining the Accrued Exception Flags

#include <sunmath.h>

#include <sys/ieeefp.h>

int main()

{

 int code, inexact, division, underflow, overflow, invalid;

 double x;

 char *out;

 /* cause an underflow exception */

 x = max_subnormal() / 2.0;

 /* this statement insures that the previous */

 /* statement is not optimized away */

 printf("x = %g\n",x);

 /* find out which exceptions are raised */

 code = ieee_flags("get", "exception", "", &out);

 /* decode the return value */

 inexact = (code >> fp_inexact) & 0x1;

 underflow = (code >> fp_underflow) & 0x1;

 division = (code >> fp_division) & 0x1;

A.3 Exceptions and Exception Handling

120 Oracle Solaris Studio 12.4: Numerical Computation Guide • January 2015

 overflow = (code >> fp_overflow) & 0x1;

 invalid = (code >> fp_invalid) & 0x1;

 /* "out" is the raised exception with the highest priority */

 printf(" Highest priority exception is: %s\n", out);

 /* The value 1 means the exception is raised, */

 /* 0 means it isn't. */

 printf("%d %d %d %d %d\n", invalid, overflow, division,

 underflow, inexact);

 ieee_retrospective_();

 return 0;

}

The output from running the previous program is as follows:

demo% a.out
x = 1.11254e-308

 Highest priority exception is: underflow

0 0 0 1 1

 Note:IEEE floating-point exception flags raised:

 Inexact; Underflow;

 See the Numerical Computation Guide, ieee_flags(3M)

The same can be done from Fortran:

EXAMPLE A-11 Examining the Accrued Exception Flags – Fortran

/*

A Fortran example that:

 * causes an underflow exception

 * uses ieee_flags to determine which exceptions are raised

 * decodes the integer value returned by ieee_flags

 * clears all outstanding exceptions

Remember to save this program in a file with the suffix .F, so that

the c preprocessor is invoked to bring in the header file

floatingpoint.h.

*/

#include <floatingpoint.h>

 program decode_accrued_exceptions

 double precision x

 integer accrued, inx, div, under, over, inv

 character*16 out

 double precision d_max_subnormal

c Cause an underflow exception

 x = d_max_subnormal() / 2.0

c Find out which exceptions are raised

 accrued = ieee_flags('get', 'exception', '', out)

c Decode value returned by ieee_flags using bit-shift intrinsics

 inx = and(rshift(accrued, fp_inexact) , 1)

 under = and(rshift(accrued, fp_underflow), 1)

 div = and(rshift(accrued, fp_division) , 1)

A.3 Exceptions and Exception Handling

Appendix A • Examples 121

 over = and(rshift(accrued, fp_overflow) , 1)

 inv = and(rshift(accrued, fp_invalid) , 1)

c The exception with the highest priority is returned in "out"

 print *, "Highest priority exception is ", out

c The value 1 means the exception is raised; 0 means it is not

 print *, inv, over, div, under, inx

c Clear all outstanding exceptions

 i = ieee_flags('clear', 'exception', 'all', out)

 end

The output is as follows:

 Highest priority exception is underflow

 0 0 0 1 1

While it is unusual for a user program to set exception flags, it can be done. This is
demonstrated in the following C example.

#include <sunmath.h>

int main()

{

 int code;

 char *out;

 if (ieee_flags("clear", "exception", "all", &out) != 0)

 printf("could not clear exceptions\n");

 if (ieee_flags("set", "exception", "division", &out) != 0)

 printf("could not set exception\n");

 code = ieee_flags("get", "exception", "", &out);

 printf("out is: %s , fp exception code is: %X \n",

 out, code);

 return 0;

}

On SPARC, the output from the preceding program is:

out is: division , fp exception code is: 2

On x86, the output is:

out is: division , fp exception code is: 4

A.3.2 ieee_handler: Trapping Exceptions

Note - The following examples apply only to the Oracle Solaris OS.

A.3 Exceptions and Exception Handling

122 Oracle Solaris Studio 12.4: Numerical Computation Guide • January 2015

The following is a Fortran program that installs a signal handler to locate an exception, for
SPARC-based systems only:

EXAMPLE A-12 Trap on Underflow (SPARC)

 program demo

c declare signal handler function

 external fp_exc_hdl

 double precision d_min_normal

 double precision x

c set up signal handler

 i = ieee_handler('set', 'common', fp_exc_hdl)

 if (i.ne.0) print *, 'ieee trapping not supported here'

c cause an underflow exception (it will not be trapped)

 x = d_min_normal() / 13.0

 print *, 'd_min_normal() / 13.0 = ', x

c cause an overflow exception

c the value printed out is unrelated to the result

 x = 1.0d300

 x = x * x

 print *, '1.0d300*1.0d300 = ', x

 end

c

c the floating-point exception handling function

c

 integer function fp_exc_hdl(sig, sip, uap)

 integer sig, code, addr

 character label*16

c

c The structure /siginfo/ is a translation of siginfo_t

c from <sys/siginfo.h>

c

 structure /fault/

 integer address

 end structure

 structure /siginfo/

 integer si_signo

 integer si_code

 integer si_errno

 record /fault/ fault

 end structure

 record /siginfo/ sip

c See <sys/machsig.h> for list of FPE codes

c Figure out the name of the SIGFPE

 code = sip.si_code

 if (code.eq.3) label = 'division'

 if (code.eq.4) label = 'overflow'

 if (code.eq.5) label = 'underflow'

 if (code.eq.6) label = 'inexact'

 if (code.eq.7) label = 'invalid'

 addr = sip.fault.address

c Print information about the signal that happened

A.3 Exceptions and Exception Handling

Appendix A • Examples 123

 write (*,77) code, label, addr

 77 format ('floating-point exception code ', i2, ',',

 * a17, ',', ' at address ', z8)

 end

When the previous code is compiled with -f77, the output is as follows:

 d_min_normal() / 13.0 = 1.7115952757748-309

floating-point exception code 4, overflow , at address 1131C

 1.0d300*1.0d300 = 1.0000000000000+300

 Note: IEEE floating-point exception flags raised:

 Inexact; Underflow;

 IEEE floating-point exception traps enabled:

 overflow; division by zero; invalid operation;

 See the Numerical Computation Guide, ieee_flags(3M),

 ieee_handler(3M)

The following is a more complex C example on a SPARC-based system:

EXAMPLE A-13 Trap on Invalid, Division by 0, Overflow, Underflow, and Inexact (SPARC)

/*

 * Generate the 5 IEEE exceptions: invalid, division,

 * overflow, underflow and inexact.

 *

 * Trap on any floating point exception, print a message,

* and continue.*

 * Note that you could also inquire about raised exceptions by

* i = ieee("get","exception","",&out);* where out contains the name of the highest

 exception

 * raised, and i can be decoded to find out about all the

 * exceptions raised.

 */

#include <sunmath.h>

#include <signal.h>

#include <siginfo.h>

#include <ucontext.h>

extern void trap_all_fp_exc(int sig, siginfo_t *sip,

 ucontext_t *uap);

int main()

{

 double x, y, z;

 char *out;

 /*

 * Use ieee_handler to establish "trap_all_fp_exc"

 * as the signal handler to use whenever any floating

 * point exception occurs.

 */

 if (ieee_handler("set", "all", trap_all_fp_exc) != 0)

A.3 Exceptions and Exception Handling

124 Oracle Solaris Studio 12.4: Numerical Computation Guide • January 2015

 printf(" IEEE trapping not supported here.\n");

 /* disable trapping (uninteresting) inexact exceptions */

 if (ieee_handler("set", "inexact", SIGFPE_IGNORE) != 0)

 printf("Trap handler for inexact not cleared.\n");

 /* raise invalid */

 if (ieee_flags("clear", "exception", "all", &out) != 0)

 printf(" could not clear exceptions\n");

 printf("1. Invalid: signaling_nan(0) * 2.5\n");

 x = signaling_nan(0);

 y = 2.5;

 z = x * y;

 /* raise division */

 if (ieee_flags("clear", "exception", "all", &out) != 0)

 printf(" could not clear exceptions\n");

 printf("2. Div0: 1.0 / 0.0\n");

 x = 1.0;

 y = 0.0;

 z = x / y;

 /* raise overflow */

 if (ieee_flags("clear", "exception", "all", &out) != 0)

 printf(" could not clear exceptions\n");

 printf("3. Overflow: -max_normal() - 1.0e294\n");

 x = -max_normal();

 y = -1.0e294;

 z = x + y;

 /* raise underflow */

 if (ieee_flags("clear", "exception", "all", &out) != 0)

 printf(" could not clear exceptions\n");

 printf("4. Underflow: min_normal() * min_normal()\n");

 x = min_normal();

 y = x;

 z = x * y;

 /* enable trapping on inexact exception */

 if (ieee_handler("set", "inexact", trap_all_fp_exc) != 0)

 printf("Could not set trap handler for inexact.\n");

 /* raise inexact */

 if (ieee_flags("clear", "exception", "all", &out) != 0)

 printf(" could not clear exceptions\n");

 printf("5. Inexact: 2.0 / 3.0\n");

 x = 2.0;

 y = 3.0;

 z = x / y;

 /* don't trap on inexact */

 if (ieee_handler("set", "inexact", SIGFPE_IGNORE) != 0)

 printf(" could not reset inexact trap\n");

 /* check that we're not trapping on inexact anymore */

 if (ieee_flags("clear", "exception", "all", &out) != 0)

 printf(" could not clear exceptions\n");

 printf("6. Inexact trapping disabled; 2.0 / 3.0\n");

A.3 Exceptions and Exception Handling

Appendix A • Examples 125

 x = 2.0;

 y = 3.0;

 z = x / y;

 /* find out if there are any outstanding exceptions */

 ieee_retrospective_();

 /* exit gracefully */

 return 0;

}

void trap_all_fp_exc(int sig, siginfo_t *sip, ucontext_t *uap) {

 char *label = "undefined";

/* see /usr/include/sys/machsig.h for SIGFPE codes */

 switch (sip->si_code) {

 case FPE_FLTRES:

 label = "inexact";

 break;

 case FPE_FLTDIV:

 label = "division";

 break;

 case FPE_FLTUND:

 label = "underflow";

 break;

 case FPE_FLTINV:

 label = "invalid";

 break;

 case FPE_FLTOVF:

 label = "overflow";

 break;

 }

 printf(

 " signal %d, sigfpe code %d: %s exception at address %x\n",

 sig, sip->si_code, label, sip->__data.__fault.__addr);

}

The output is similar to the following:

1. Invalid: signaling_nan(0) * 2.5

 signal 8, sigfpe code 7: invalid exception at address 10da8

2. Div0: 1.0 / 0.0

 signal 8, sigfpe code 3: division exception at address 10e44

3. Overflow: -max_normal() - 1.0e294

 signal 8, sigfpe code 4: overflow exception at address 10ee8

4. Underflow: min_normal() * min_normal()

 signal 8, sigfpe code 5: underflow exception at address 10f80

5. Inexact: 2.0 / 3.0

 signal 8, sigfpe code 6: inexact exception at address 1106c

6. Inexact trapping disabled; 2.0 / 3.0

Note: IEEE floating-point exception traps enabled:

 underflow; overflow; division by zero; invalid operation;

See the Numerical Computation Guide, ieee_handler(3M)

A.3 Exceptions and Exception Handling

126 Oracle Solaris Studio 12.4: Numerical Computation Guide • January 2015

The following code shows how you can use ieee_handler and the include files to modify the
default result of certain exceptional situations on SPARC:

EXAMPLE A-14 Modifying the Default Result of Exceptional Situations

/*

 * Cause a division by zero exception and use the

 * signal handler to substitute MAXDOUBLE (or MAXFLOAT)

 * as the result.

 *

 * compile with the flag -Xa

 */

#include <values.h>

#include <siginfo.h>

#include <ucontext.h>

void division_handler(int sig, siginfo_t *sip, ucontext_t *uap);

int main() {

 double x, y, z;

 float r, s, t;

 char *out;

 /*

 * Use ieee_handler to establish division_handler as the

 * signal handler to use for the IEEE exception division.

 */

 if (ieee_handler("set","division",division_handler)!=0) {

 printf(" IEEE trapping not supported here.\n");

 }

 /* Cause a division-by-zero exception */

 x = 1.0;

 y = 0.0;

 z = x / y;

 /*

 * Check to see that the user-supplied value, MAXDOUBLE,

 * is indeed substituted in place of the IEEE default

 * value, infinity.

 */

 printf("double precision division: %g/%g = %g \n",x,y,z);

 /* Cause a division-by-zero exception */

 r = 1.0;

 s = 0.0;

 t = r / s;

 /*

 * Check to see that the user-supplied value, MAXFLOAT,

 * is indeed substituted in place of the IEEE default

 * value, infinity.

A.3 Exceptions and Exception Handling

Appendix A • Examples 127

 */

 printf("single precision division: %g/%g = %g \n",r,s,t);

 ieee_retrospective_();

 return 0;

}

void division_handler(int sig, siginfo_t *sip, ucontext_t *uap) {

 int inst;

 unsigned rd, mask, single_prec=0;

 float f_val = MAXFLOAT;

 double d_val = MAXDOUBLE;

 long *f_val_p = (long *) &f_val;

 /* Get instruction that caused exception. */

 inst = uap->uc_mcontext.fpregs.fpu_q->FQu.fpq.fpq_instr;

 /*

 * Decode the destination register. Bits 29:25 encode the

 * destination register for any SPARC floating point

 * instruction.

 */

 mask = 0x1f;

 rd = (mask & (inst >> 25));

 /*

 * Is this a single precision or double precision

 * instruction? Bits 5:6 encode the precision of the

 * opcode; if bit 5 is 1, it's sp, else, dp.

 */

 mask = 0x1;

 single_prec = (mask & (inst >> 5));

 /* put user-defined value into destination register */

 if (single_prec) {

 uap->uc_mcontext.fpregs.fpu_fr.fpu_regs[rd] =

 f_val_p[0];

 } else {

 uap->uc_mcontext.fpregs.fpu_fr.fpu_dregs[rd/2] = d_val;

 }

}

The following output is as expected:

double precision division: 1/0 = 1.79769e+308

single precision division: 1/0 = 3.40282e+38

Note: IEEE floating-point exception traps enabled:

 division by zero;

See the Numerical Computation Guide, ieee_handler(3M)

A.3 Exceptions and Exception Handling

128 Oracle Solaris Studio 12.4: Numerical Computation Guide • January 2015

A.3.3 ieee_handler: Abort on Exceptions

You can use ieee_handler to force a program to abort in case of certain floating-point
exceptions:

#include <floatingpoint.h>

 program abort

c

 ieeer = ieee_handler('set', 'division', SIGFPE_ABORT)

 if (ieeer .ne. 0) print *, ' ieee trapping not supported'

 r = 14.2

 s = 0.0

 r = r/s

c

 print *, 'you should not see this; system should abort'

c

 end

A.3.4 libm Exception Handling Features

The following examples show how to use some of the exception handling features provided by
libm. The first example is based on the following task: given a number x and coefficients a0,
a1,..., aN, and b0, b1,..., bN-1, evaluate the function f(x) and its first derivative f'(x), where f()
is the continued fraction:

f(x) =a0 + b0 / (x + a1 + b1 / (x + ... / (x + aN-1 + bN-1 / (x + aN))...)).

Computing f() is straightforward in IEEE arithmetic: even if one of the intermediate divisions
overflows or divides by zero, the default value specified by the standard (a correctly signed
infinity) turns out to yield the correct result. Computing f'(), on the other hand, can be
more difficult because the simplest form for evaluating it can have removable singularities.
If the computation encounters one of these singularities, it will attempt to evaluate one of the
indeterminate forms 0/0, 0*infinity, or infinity/infinity, all of which raise invalid operation
exceptions. W. Kahan has proposed a method for handling these exceptions via a feature called
presubstitution.

Presubstitution is an extension of the IEEE default response to exceptions that lets the user
specify in advance the value to be substituted for the result of an exceptional operation. Using
the exception handling facilities in libm, a program can implement presubstitution easily by
installing a handler in the FEX_CUSTOM exception handling mode. This mode allows the handler
to supply any value for the result of an exceptional operation simply by storing that value in the
data structure pointed to by the info parameter passed to the handler. The following example
is a sample program to compute the continued fraction and its derivative using presubstitution
implemented with a FEX_CUSTOM handler.

A.3 Exceptions and Exception Handling

Appendix A • Examples 129

EXAMPLE A-15 Computing the Continued Fraction and Its Derivative Using the FEX_CUSTOM Handler

#include <stdio.h>

#include <sunmath.h>

#include <fenv.h>

volatile double p;

void handler(int ex, fex_info_t *info)

{

 info->res.type = fex_double;

 if (ex == FEX_INV_ZMI)

 info->res.val.d = p;

 else

 info->res.val.d = infinity();

}

/*

* Evaluate the continued fraction given by coefficients a[j] and

* b[j] at the point x; return the function value in *pf and the

* derivative in *pf1

*/

void continued_fraction(int N, double *a, double *b,

 double x, double *pf, double *pf1)

{

 fex_handler_t oldhdl; /* for saving/restoring handlers */

 volatile double t;

 double f, f1, d, d1, q;

 int j;

 fex_getexcepthandler(&oldhdl, FEX_DIVBYZERO | FEX_INVALID);

 fex_set_handling(FEX_DIVBYZERO, FEX_NONSTOP, NULL);

 fex_set_handling(FEX_INV_ZDZ | FEX_INV_IDI | FEX_INV_ZMI,

 FEX_CUSTOM, handler);

 f1 = 0.0;

 f = a[N];

 for (j = N - 1; j >= 0; j--) {

 d = x + f;

 d1 = 1.0 + f1;

 q = b[j] / d;

 /* the following assignment to the volatile variable t

 is needed to maintain the correct sequencing between

 assignments to p and evaluation of f1 */

 t = f1 = (-d1 / d) * q;

 p = b[j-1] * d1 / b[j];

 f = a[j] + q;

 }

 fex_setexcepthandler(&oldhdl, FEX_DIVBYZERO | FEX_INVALID);

 *pf = f;

 *pf1 = f1;

}

A.3 Exceptions and Exception Handling

130 Oracle Solaris Studio 12.4: Numerical Computation Guide • January 2015

/* For the following coefficients, x = -3, 1, 4, and 5 will all

 encounter intermediate exceptions */

double a[] = { -1.0, 2.0, -3.0, 4.0, -5.0 };

double b[] = { 2.0, 4.0, 6.0, 8.0 };

int main()

{

 double x, f, f1;

 int i;

 feraiseexcept(FE_INEXACT); /* prevent logging of inexact */

 fex_set_log(stdout);

 fex_set_handling(FEX_COMMON, FEX_ABORT, NULL);

 for (i = -5; i <= 5; i++) {

 x = i;

 continued_fraction(4, a, b, x, &f, &f1);

 printf("f(% g) = %12g, f'(% g) = %12g\n", x, f, x, f1);

 }

 return 0;

}

Several comments about the program are in order. On entry, the function continued_fraction
saves the current exception handling modes for division by zero and all invalid operation
exceptions. It then establishes nonstop exception handling for division by zero and a
FEX_CUSTOM handler for the three indeterminate forms. This handler will substitute infinity
for both 0/0 and infinity/infinity, but it will substitute the value of the global variable p for
0*infinity. Note that p must be recomputed each time through the loop that evaluates the
function in order to supply the correct value to substitute for a subsequent 0*infinity invalid
operation. Note also that p must be declared volatile to prevent the compiler from eliminating
it, since it is not explicitly mentioned elsewhere in the loop. Finally, to prevent the compiler
from moving the assignment to p above or below the computation that can incur the exception
for which p provides the presubstitution value, the result of that computation is also assigned to
a volatile variable (called t in the program). The final call to fex_setexcepthandler restores
the original handling modes for division by zero and the invalid operations.

The main program enables logging of retrospective diagnostics by calling the fex_set_log
function. Before it does so, it raises the inexact flag; this has the effect of preventing the logging
of inexact exceptions. Recall that in FEX_NONSTOP mode, an exception is not logged if its flag
is raised, as explained in the section “4.4.3.2 Retrospective Diagnostics” on page 83. The
main program also establishes FEX_ABORT mode for the common exceptions to ensure that
any unusual exceptions not explicitly handled by continued_fraction will cause program
termination. Finally, the program evaluates a particular continued fraction at several different
points. As the following sample output shows, the computation does indeed encounter
intermediate exceptions:

f(-5) = -1.59649, f'(-5) = -0.1818

f(-4) = -1.87302, f'(-4) = -0.428193

Floating point division by zero at 0x08048dbe continued_fraction, nonstop mode

 0x08048dc1 continued_fraction

 0x08048eda main

A.3 Exceptions and Exception Handling

Appendix A • Examples 131

Floating point invalid operation (inf/inf) at 0x08048dcf continued_fraction, handler: handler

 0x08048dd2 continued_fraction

 0x08048eda main

Floating point invalid operation (0*inf) at 0x08048dd2 continued_fraction, handler: handler

 0x08048dd8 continued_fraction

 0x08048eda main

f(-3) = -3, f'(-3) = -3.16667

f(-2) = -4.44089e-16, f'(-2) = -3.41667

f(-1) = -1.22222, f'(-1) = -0.444444

f(0) = -1.33333, f'(0) = 0.203704

f(1) = -1, f'(1) = 0.333333

f(2) = -0.777778, f'(2) = 0.12037

f(3) = -0.714286, f'(3) = 0.0272109

f(4) = -0.666667, f'(4) = 0.203704

f(5) = -0.777778, f'(5) = 0.0185185

The exceptions that occur in the computation of f'(x) at x = 1, 4, and 5 do not result in
retrospective diagnostic messages because they occur at the same site in the program as the
exceptions that occur when x = –3.

The preceding program might not represent the most efficient way to handle the exceptions
that can occur in the evaluation of a continued fraction and its derivative. One reason is that the
presubstitution value must be recomputed in each iteration of the loop regardless of whether or
not it is needed. In this case, the computation of the presubstitution value involves a floating-
point division, and on modern SPARC and x86 processors, floating-point division is a relatively
slow operation. Moreover, the loop itself already involves two divisions, and because most
SPARC and x86 processors cannot overlap the execution of two different division operations,
divisions are likely to be a bottleneck in the loop; adding another division would exacerbate the
bottleneck.

It is possible to rewrite the loop so that only one division is needed, and in particular, the
computation of the presubstitution value need not involve a division. To rewrite the loop
in this way, one must precompute the ratios of adjacent elements of the coefficients in the
b array. This would remove the bottleneck of multiple division operations, but it would not
eliminate all of the arithmetic operations involved in the computation of the presubstitution
value. Furthermore, the need to assign both the presubstitution value and the result of the
operation to be presubstituted to volatile variables introduces additional memory operations
that slow the program. While those assignments are necessary to prevent the compiler from
reordering certain key operations, they effectively prevent the compiler from reordering other
unrelated operations, too. Thus, handling the exceptions in this example via presubstitution
requires additional memory operations and precludes some optimizations that might otherwise
be possible. Can these exceptions be handled more efficiently?

In the absence of special hardware support for fast presubstitution, the most efficient way to
handle exceptions in this example may be to use flags, as the following version does:

EXAMPLE A-16 Using Flags to Handle Exceptions (Continued)

#include <stdio.h>

A.3 Exceptions and Exception Handling

132 Oracle Solaris Studio 12.4: Numerical Computation Guide • January 2015

#include <math.h>

#include <fenv.h>

/*

* Evaluate the continued fraction given by coefficients a[j] and

* b[j] at the point x; return the function value in *pf and the

* derivative in *pf1

*/

void continued_fraction(int N, double *a, double *b,

 double x, double *pf, double *pf1)

{

 fex_handler_t oldhdl;

 fexcept_t oldinvflag;

 double f, f1, d, d1, pd1, q;

 int j;

 fex_getexcepthandler(&oldhdl, FEX_DIVBYZERO | FEX_INVALID);

 fegetexceptflag(&oldinvflag, FE_INVALID);

 fex_set_handling(FEX_DIVBYZERO | FEX_INV_ZDZ | FEX_INV_IDI |

 FEX_INV_ZMI, FEX_NONSTOP, NULL);

 feclearexcept(FE_INVALID);

 f1 = 0.0;

 f = a[N];

 for (j = N - 1; j >= 0; j--) {

 d = x + f;

 d1 = 1.0 + f1;

 q = b[j] / d;

 f1 = (-d1 / d) * q;

 f = a[j] + q;

 }

 if (fetestexcept(FE_INVALID)) {

 /* recompute and test for NaN */

 f1 = pd1 = 0.0;

 f = a[N];

 for (j = N - 1; j >= 0; j--) {

 d = x + f;

 d1 = 1.0 + f1;

 q = b[j] / d;

 f1 = (-d1 / d) * q;

 if (isnan(f1))

 f1 = b[j] * pd1 / b[j+1];

 pd1 = d1;

 f = a[j] + q;

 }

 }

 fesetexceptflag(&oldinvflag, FE_INVALID);

 fex_setexcepthandler(&oldhdl, FEX_DIVBYZERO | FEX_INVALID);

 *pf = f;

 *pf1 = f1;

A.3 Exceptions and Exception Handling

Appendix A • Examples 133

}

In this version, the first loop attempts the computation of f(x) and f'(x) in the default nonstop
mode. If the invalid flag is raised, the second loop recomputes f(x) and f'(x) explicitly testing
for the appearance of a NaN. Usually, no invalid operation exception occurs, so the program
only executes the first loop. This loop has no references to volatile variables and no extra
arithmetic operations, so it will run as fast as the compiler can make it go. The cost of this
efficiency is the need to write a second loop nearly identical to the first to handle the case when
an exception occurs. This trade-off is typical of the dilemmas that floating-point exception
handling can pose.

A.3.5 Using libm Exception Handling With Fortran
Programs

The exception handling facilities in libm are primarily intended to be used from C/C++
programs, but by using the Sun Fortran language interoperability features, you can call some
libm functions from Fortran programs as well.

Note - For consistent behavior, do not use both the libm exception handling functions and the
ieee_flags and ieee_handler functions in the same program.

The following example shows a Fortran version of the program to evaluate a continued fraction
and its derivative using presubstitution (SPARC only):

EXAMPLE A-17 Evaluating a Continued Fraction and Its Derivative Using Presubstitution (SPARC)

c

c Presubstitution handler

c

 subroutine handler(ex, info)

 structure /fex_numeric_t/

 integer type

 union

 map

 integer i

 end map

 map

 integer*8 l

 end map

 map

 real f

 end map

 map

 real*8 d

 end map

 map

A.3 Exceptions and Exception Handling

134 Oracle Solaris Studio 12.4: Numerical Computation Guide • January 2015

 real*16 q

 end map

 end union

 end structure

 structure /fex_info_t/

 integer op, flags

 record /fex_numeric_t/ op1, op2, res

 end structure

 integer ex

 record /fex_info_t/ info

 common /presub/ p

 double precision p, d_infinity

 volatile p

c 4 = fex_double; see <fenv.h> for this and other constants

 info.res.type = 4

c x'80' = FEX_INV_ZMI

 if (loc(ex) .eq. x'80') then

 info.res.d = p

 else

 info.res.d = d_infinity()

 endif

 return

 end

c

c Evaluate the continued fraction given by coefficients a(j) and

c b(j) at the point x; return the function value in f and the

c derivative in f1

c

 subroutine continued_fraction(n, a, b, x, f, f1)

 integer n

 double precision a(*), b(*), x, f, f1

 common /presub/ p

 integer j, oldhdl

 dimension oldhdl(24)

 double precision d, d1, q, p, t

 volatile p, t

 data ixff2/x'ff2'/

 data ix2/x'2'/

 data ixb0/x'b0'/

 external fex_getexcepthandler, fex_setexcepthandler

 external fex_set_handling, handler

c$pragma c(fex_getexcepthandler, fex_setexcepthandler)

c$pragma c(fex_set_handling)

c x'ff2' = FEX_DIVBYZERO | FEX_INVALID

 call fex_getexcepthandler(oldhdl, %val(ixff2))

c x'2' = FEX_DIVBYZERO, 0 = FEX_NONSTOP

 call fex_set_handling(%val(ix2), %val(0), %val(0))

c x'b0' = FEX_INV_ZDZ | FEX_INV_IDI | FEX_INV_ZMI, 3 = FEX_CUSTOM

 call fex_set_handling(%val(ixb0), %val(3), handler)

 f1 = 0.0d0

 f = a(n+1)

 do j = n, 1, -1

A.3 Exceptions and Exception Handling

Appendix A • Examples 135

 d = x + f

 d1 = 1.0d0 + f1

 q = b(j) / d

 f1 = (-d1 / d) * q

c

c the following assignment to the volatile variable t

c is needed to maintain the correct sequencing between

c assignments to p and evaluation of f1

 t = f1

 p = b(j-1) * d1 / b(j)

 f = a(j) + q

 end do

 call fex_setexcepthandler(oldhdl, %val(ixff2))

 return

 end

c Main program

c

 program cf

 integer i

 double precision a, b, x, f, f1

 dimension a(5), b(4)

 data a /-1.0d0, 2.0d0, -3.0d0, 4.0d0, -5.0d0/

 data b /2.0d0, 4.0d0, 6.0d0, 8.0d0/

 data ixffa/x'ffa'/

 external fex_set_handling

c$pragma c(fex_set_handling)

c x'ffa' = FEX_COMMON, 1 = FEX_ABORT

 call fex_set_handling(%val(ixffa), %val(1), %val(0))

 do i = -5, 5

 x = dble(i)

 call continued_fraction(4, a, b, x, f, f1)

 write (*, 1) i, f, i, f1

 end do

 1 format('f(', I2, ') = ', G12.6, ', f''(', I2, ') = ', G12.6)

 end

The output from this program compiled with the -f77 flag reads as follows:

f(-5) = -1.59649 , f'(-5) = -.181800

f(-4) = -1.87302 , f'(-4) = -.428193

f(-3) = -3.00000 , f'(-3) = -3.16667

f(-2) = -.444089E-15, f'(-2) = -3.41667

f(-1) = -1.22222 , f'(-1) = -.444444

f(0) = -1.33333 , f'(0) = 0.203704

f(1) = -1.00000 , f'(1) = 0.333333

f(2) = -.777778 , f'(2) = 0.120370

f(3) = -.714286 , f'(3) = 0.272109E-01

f(4) = -.666667 , f'(4) = 0.203704

f(5) = -.777778 , f'(5) = 0.185185E-01

 Note: IEEE floating-point exception flags raised:

 Inexact; Division by Zero; Underflow; Invalid Operation;

A.4 Miscellaneous

136 Oracle Solaris Studio 12.4: Numerical Computation Guide • January 2015

 IEEE floating-point exception traps enabled:

 overflow; division by zero; invalid operation;

 See the Numerical Computation Guide, ieee_flags(3M),

ieee_handler(3M)

A.4 Miscellaneous

A.4.1 sigfpe: Trapping Integer Exceptions

The previous section showed examples of using ieee_handler. In general, when there is a
choice between using ieee_handler or sigfpe, the former is recommended.

Note - sigfpe is available only in the Oracle Solaris OS.

There are instances, such as trapping integer arithmetic exceptions, when sigfpe is the handler
to be used. Example A-18 traps on integer division by zero, on SPARC-based systems.

EXAMPLE A-18 Trapping Integer Exceptions

/* Generate the integer division by zero exception */

#include <signal.h>

#include <siginfo.h>

#include <ucontext.h>

void int_handler(int sig, siginfo_t *sip, ucontext_t *uap);

int main() {

int a, b, c;

/*

* Use sigfpe(3) to establish "int_handler" as the signal handler

* to use on integer division by zero

*/

/*

* Integer division-by-zero aborts unless a signal

* handler for integer division by zero is set up

*/

sigfpe(FPE_INTDIV, int_handler);

a = 4;

b = 0;

c = a / b;

printf("%d / %d = %d\n\n", a, b, c);

return 0;

}

void int_handler(int sig, siginfo_t *sip, ucontext_t *uap) {

printf("Signal %d, code %d, at addr %x\n",

sig, sip->si_code, sip->__data.__fault.__addr);

/*

A.4 Miscellaneous

Appendix A • Examples 137

* automatically for floating-point exceptions but not for

* integer division by zero.

*/

uap->uc_mcontext.gregs[REG_PC] =

uap->uc_mcontext.gregs[REG_nPC];

}

A.4.2 Calling Fortran From C

The following is a simple example of a C driver calling Fortran subroutines. Refer to “Oracle
Solaris Studio 12.4: C User’s Guide ” and “Oracle Solaris Studio 12.4: Fortran User’s Guide ”
for more information on working with C and Fortran. The following is the C driver (save it in a
file named driver.c):

EXAMPLE A-19 Calling Fortran From C

/*

 * a demo program that shows:

 * 1. how to call f95 subroutine from C, passing an array argument

 * 2. how to call single precision f95 function from C

 * 3. how to call double precision f95 function from C

 */

extern int demo_one_(double *);

extern float demo_two_(float *);

extern double demo_three_(double *);

int main()

{

 double array[3][4];

 float f, g;

 double x, y;

 int i, j;

 for (i = 0; i < 3; i++)

 for (j = 0; j < 4; j++)

 array[i][j] = i + 2*j;

 g = 1.5;

 y = g;

 /* pass an array to a fortran function (print the array) */

 demo_one_(&array[0][0]);

 printf(" from the driver\n");

 for (i = 0; i < 3; i++) {

 for (j = 0; j < 4; j++)

 printf(" array[%d][%d] = %e\n",

 i, j, array[i][j]);

 printf("\n");

 }

http://www.oracle.com/pls/topic/lookup?ctx=E37069&id=OSSCG
http://www.oracle.com/pls/topic/lookup?ctx=E37069&id=OSSCG
http://www.oracle.com/pls/topic/lookup?ctx=E37069&id=OSSFG

A.4 Miscellaneous

138 Oracle Solaris Studio 12.4: Numerical Computation Guide • January 2015

 /* call a single precision fortran function */

 f = demo_two_(&g);

 printf(

 " f = sin(g) from a single precision fortran function\n");

 printf(" f, g: %8.7e, %8.7e\n", f, g);

 printf("\n");

 /* call a double precision fortran function */

 x = demo_three_(&y);

 printf(

 " x = sin(y) from a double precision fortran function\n");

 printf(" x, y: %18.17e, %18.17e\n", x, y);

 ieee_retrospective_();

 return 0;

}

Save the Fortran subroutines in a file named drivee.f:

subroutine demo_one(array)

double precision array(4,3)

print *, 'from the fortran routine:'

do 10 i =1,4

 do 20 j = 1,3

 print *, ' array[', i, '][', j, '] = ', array(i,j)

20 continue

print *

10 continue

return

end

real function demo_two(number)

real number

demo_two = sin(number)

return

end

double precision function demo_three(number)

double precision number

demo_three = sin(number)

return

end

Perform the compilation and linking:

cc -c driver.c

f95 -c drivee.f
 demo_one:

 demo_two:

 demo_three:

f95 -o driver driver.o drivee.o

The output looks like this:

A.4 Miscellaneous

Appendix A • Examples 139

 from the fortran routine:

 array[1][1] = 0.0E+0

 array[1][2] = 1.0

 array[1][3] = 2.0

 array[2][1] = 2.0

 array[2][2] = 3.0

 array[2][3] = 4.0

 array[3][1] = 4.0

 array[3][2] = 5.0

 array[3][3] = 6.0

 array[4][1] = 6.0

 array[4][2] = 7.0

 array[4][3] = 8.0

 from the driver

 array[0][0] = 0.000000e+00

 array[0][1] = 2.000000e+00

 array[0][2] = 4.000000e+00

 array[0][3] = 6.000000e+00

 array[1][0] = 1.000000e+00

 array[1][1] = 3.000000e+00

 array[1][2] = 5.000000e+00

 array[1][3] = 7.000000e+00

 array[2][0] = 2.000000e+00

 array[2][1] = 4.000000e+00

 array[2][2] = 6.000000e+00

 array[2][3] = 8.000000e+00

 f = sin(g) from a single precision fortran function

 f, g: 9.9749500e-01, 1.5000000e+00

 x = sin(y) from a double precision fortran function

 x, y: 9.97494986604054446e-01, 1.50000000000000000e+00

A.4.3 Useful Debugging Commands
The following table shows examples of debugging commands for the SPARC architecture.

TABLE A-1 Some Debugging Commands (SPARC)

Action dbx adb

Set breakpoint at function stop in myfunct myfunct:b

Set breakpoint at line number stop at 29 n/a

Set breakpoint at absolute address n/a 23a8:b

Set breakpoint at relative address n/a main+0x40:b

A.4 Miscellaneous

140 Oracle Solaris Studio 12.4: Numerical Computation Guide • January 2015

Action dbx adb

Run until breakpoint met run :r

Examine source code list <pc,10?ia

Examine a fp register : IEEE single precision print $f0 <f0=X

Examine a fp register : decimal equivalent
(Hex)

print -fx $f0 <f0=f

Examine a fp register : IEEE double precision print $f0f1 <f0=X; <f1=X

Examine a fp register : decimal equivalent
(Hex)

print -flx $f0f1 <f0=F

Examine all fp registers regs -F $x for f0-f15

$X for f16-f31

Examine all registers regs $r; $x; $X

Examine fp status register print -fllx $fsr <fsr=X

Put single precision 1.0 in f0 assign $f0=1.0 3f800000>f0

Put double prec 1.0 in f0/f1 assign $f0f1=1.0 3ff00000>f0; 0>f1

Continue execution cont :c

Single step step (or next) :s

Exit the debugger quit $q

When displaying floating-point numbers, you should keep in mind that the size of registers is
32 bits, a single precision floating-point number occupies 32 bits (hence it fits in one register),
and a double precision floating-point number occupies 64 bits (therefore two registers are used
to hold a double precision number). In the hexadecimal representation, 32 bits corresponds to 8
hexadecimal digits. In the following snapshot of FPU registers displayed with adb, the display
is organized as follows:

<name of fpu register> <IEEE hex value> <single precision> <double precision>

The third column holds the single precision decimal interpretation of the hexadecimal pattern
shown in the second column. The fourth column interprets pairs of registers. For example, the
fourth column of the f11 line interprets f10 and f11 as a 64-bit IEEE double precision number.

Because f10 and f11 are used to hold a double precision value, the interpretation (on the f10
line) of the first 32 bits of that value, 7ff00000, as +NaN, is irrelevant. The interpretation of all
64 bits, 7ff00000 00000000, as +Infinity, happens to be the meaningful translation.

The adb command $x, that was used to display the first 16 floating-point data registers, also
displayed fsr (the floating-point status register):

$x
fsr 40020

f0 400921fb +2.1426990e+00

f1 54442d18 +3.3702806e+12 +3.1415926535897931e+00

f2 2 +2.8025969e-45

A.4 Miscellaneous

Appendix A • Examples 141

f3 0 +0.0000000e+00 +4.2439915819305446e-314

f4 40000000 +2.0000000e+00

f5 0 +0.0000000e+00 +2.0000000000000000e+00

f6 3de0b460 +1.0971904e-01

f7 0 +0.0000000e+00 +1.2154188766544394e-10

f8 3de0b460 +1.0971904e-01

f9 0 +0.0000000e+00 +1.2154188766544394e-10

f10 7ff00000 +NaN

f11 0 +0.0000000e+00 +Infinity

f12 ffffffff -NaN

f13 ffffffff -NaN -NaN

f14 ffffffff -NaN

f15 ffffffff -NaN -NaN

The following table shows examples of debugging commands for the x86 architecture:

TABLE A-2 Some Debugging Commands (x86)

Action dbx adb

Set breakpoint at function stop in myfunct myfunct:b

Set breakpoint at line number stop at 29 n/a

Set breakpoint at absolute address n/a 23a8:b

Set breakpoint at relative address n/a main+0x40:b

Run until breakpoint met run :r

Examine source code list <pc,10?ia

Examine fp registers print $st0

...

print $st7

$x

Examine all registers refs -F $r

Examine fp status register print -fx $fstat <fstat=X

Continue execution cont :c

Single step step (or next) :s

Exit the debugger quit $q

The following examples show two ways to set a breakpoint at the beginning of the code
corresponding to a routine myfunction in adb. First you can use:

myfunction:b

Second, you can determine the absolute address that corresponds to the beginning of the piece
of code corresponding to myfunction, and then set a break at that absolute address:

myfunction=X

 23a8

23a8:b

A.4 Miscellaneous

142 Oracle Solaris Studio 12.4: Numerical Computation Guide • January 2015

The main subroutine in a Fortran program compiled with f95 is known as MAIN_ to adb. To set a
breakpoint at MAIN_ in adb:

 MAIN_:b

When examining the contents of floating-point registers, the hex value shown by the dbx
command regs -F is the base-16 representation, not the number's decimal representation.
For SPARC-based systems, the adb commands $x and $X display both the hexadecimal
representation, and the decimal value. For x86-based systems, the adb command $x displays
only the decimal value. For SPARC-based systems, the double precision values show the
decimal value next to the odd-numbered register.

Because the operating system disables the floating-point unit until it is first used by a process,
you cannot modify the floating-point registers until they have been accessed by the program
being debugged.

The corresponding output on x86 looks like the following:

$x
80387 chip is present.

cw 0x137f

sw 0x3920

cssel 0x17 ipoff 0x2d93 datasel 0x1f dataoff 0x5740

 st[0] +3.24999988079071044921875 e-1 VALID

 st[1] +5.6539133243479549034419688 e73 EMPTY

 st[2] +2.0000000000000008881784197 EMPTY

 st[3] +1.8073218308070440556016047 e-1 EMPTY

 st[4] +7.9180300235748291015625 e-1 EMPTY

 st[5] +4.201639036693904927233234 e-13 EMPTY

 st[6] +4.201639036693904927233234 e-13 EMPTY

 st[7] +2.7224999213218694649185636 EMPTY

Note - For x86, cw is the control word and sw is the status word.

Appendix B • SPARC Behavior and Implementation 143

 B ♦ ♦ ♦ A P P E N D I X B

SPARC Behavior and Implementation

This chapter discusses issues related to the floating-point units used in SPARC-based
workstations and describes a way to determine which code generation flags are best suited for a
particular workstation.

B.1 Floating-Point Hardware
This section lists a number of SPARC processors and describes the instruction sets and
exception handling features they support.

The following tables list the hardware floating-point implementations used by recent SPARC
systems:

TABLE B-1 SPARC Systems Supported in Oracle Solaris 11 and later

Chip Typical Systems Best Code Generation Options

T1 T1000, T2000, T6300,
CP3060

-xarch=sparcvis2 -xchip=ultraT1

T2 T5120, T5220, T6320,
CP3260

-xarch=sparcvis2 -xchip=ultraT2

T2+ T5140, T5240, T5440 -xarch=sparcvis2 -xchip=ultraT2plus

T3 T3-1, T3-2, T3-4 -xarch=sparcvis3 -xchip=T3

T4 T4-1, T4-1B, T4-2, T4-4 -xarch=sparc4 -xchip=T4

T5 T5-1B, T5-2, T5-4, T5-8 -xarch=sparc4 -xchip=T5

M5 M5-32 -xarch=sparc4 -xchip=M5

M6 M6-32 -xarch=sparc4 -xchip=M6

M7 M7-32 -xarch=sparc5 -xchip=M7

SPARC64-VI M4000, M5000, M8000,
M9000

-xarch=sparcfmaf -xchip=sparc64vi

SPARC64-VII M3000, M4000, M5000,
M8000, M9000

-xarch=spracima -xchip=sparc64vii

SPARC64-VII+ M3000, M4000, M5000,
M8000, M9000

-xarch=sparcima -xchip=sparc64viiplus

SPARC64-X M10-1, M10-4, M10-4S -xarch=sparcace -xchip=sparc64x

B.1 Floating-Point Hardware

144 Oracle Solaris Studio 12.4: Numerical Computation Guide • January 2015

TABLE B-2 UltraSPARC Systems Supported in Oracle Solaris 10 Update 10 but not Oracle Solaris 11

UltraSPARC Chip Typical Systems Best Code Generation Options

I Ex000 -xarch=sparcvis -xchip=ultra

II Ex000, E10000 -xarch=sparcvis -xchip=ultra2

IIi Ultra-5, Ultra-10 -xarch=sparcvis -xchip=ultra2i

IIe Sun Blade 100 -xarch=sparcvis -xchip=ultra2e

III Sun Blade 1000, 2000 -xarch=sparcvis2 -xchip=ultra3

IIIi Sun Blade 1500, 2500 -xarch=sparcvis2 -xchip=ultra3i

IIICu Sun Blade 1000, 2000 -xarch=sparcvis2 -xchip=ultra3cu

IV V490, V890, Ex900, E20K, E25K -xarch=sparcvis2 -xchip=ultra4

IV+ V490, V890, Ex900, E20K, E25K -xarch=sparcvis2 -xchip=ultra4plus

Although it is not supported, programs compiled with Oracle Solaris Studio 12.4 on Oracle
Solaris 10 Update 10 or earlier Oracle Solaris releases often run on older SPARC systems that
support earlier Oracle Solaris Studio releases. To create an executable to test on such platforms,
try compiling with the following options:

-m32 -xarch=generic -xchip=generic

For a supported solution, compile on the earliest Oracle Solaris release that you need to use and
compile with the latest Oracle Solaris Studio version supported on that Oracle Solaris release.

The last column in the preceding table shows the compiler flags to use to obtain the fastest
code for each FPU. These flags control two independent attributes of code generation: the
-xarch flag determines the instruction set the compiler may use, and the -xchip flag determines
the assumptions the compiler will make about a processor's performance characteristics
in scheduling the code. A program compiled with the default -xarch or with the explicit
-xarch=sparc runs on any SPARC-based system listed above, although it might not take full
advantage of the features of later processors. Likewise, a program compiled with a particular
-xchip value runs on any SPARC-based system that supports the instruction set specified with
-xarch, but it might run more slowly on systems with processors other than the one specified.

The UltraSPARC I, UltraSPARC II, UltraSPARC IIe, UltraSPARC IIi, UltraSPARC III,
UltraSPARC IIIi, UltraSPARC IV, and UltraSPARC IV+ floating-point units implement the
floating-point instruction set defined in the SPARC Architecture Manual Version 9 except for
the quad precision instructions; in particular, they provide 32 double precision floating-point
registers. Compiling with -xarch=sparc enables the compiler to use all these features. These
processors also provide extensions to the standard instruction set. Successive generations of
these additional instructions are enabled by these -xarch values:

■ sparcvis

■ sparcvis2

■ sparcvis2

B.1 Floating-Point Hardware

Appendix B • SPARC Behavior and Implementation 145

■ sparc4

■ sparc5

Many of these additional instructions are rarely generated automatically by the compilers, but
they can be used in assembly code.

The -xarch and -xchip options can be specified simultaneously using the -xtarget macro
option. The -xtarget flag simply expands to a suitable combination of -xarch, -xchip, and
-xcache flags. The default code generation option is -xtarget=generic. See the cc(1), CC(1),
and f95(1) man pages and the “Oracle Solaris Studio 12.4: Fortran User’s Guide ”, “Oracle
Solaris Studio 12.4: C User’s Guide ”, and “Oracle Solaris Studio 12.4: C++ User’s Guide
” compiler manuals for more information including a complete list of -xarch, -xchip, and
-xtarget values.

B.1.1 Floating-Point Status Register and Queue
All SPARC floating-point units, regardless of which version of the SPARC architecture they
implement, provide a floating-point status register (FSR) that contains status and control bits
associated with the FPU. All SPARC FPUs that implement deferred floating-point traps provide
a floating-point queue (FQ) that contains information about currently executing floating-point
instructions. The FSR can be accessed by user software to detect floating-point exceptions that
have occurred and to control rounding direction, trapping, and nonstandard arithmetic modes.
The FQ is used by the operating system kernel to process floating-point traps and is normally
invisible to user software.

Software accesses the floating-point status register via STFSR and LDFSR instructions that store
the FSR in memory and load it from memory, respectively. In SPARC assembly language, these
instructions are written as follows:

 st %fsr, [addr] ! store FSR at specified address

 ld [addr], %fsr ! load FSR from specified address

The inline template file libm.il located in the directory containing the libraries supplied with
the Sun Studio compilers contains examples showing the use of STFSR and LDFSR instructions.

The following figure shows the layout of bit fields in the floating-point status register.

FIGURE B-1 SPARC Floating-Point Status Register

http://www.oracle.com/pls/topic/lookup?ctx=E37069&id=OSSFG
http://www.oracle.com/pls/topic/lookup?ctx=E37069&id=OSSCG
http://www.oracle.com/pls/topic/lookup?ctx=E37069&id=OSSCG
http://www.oracle.com/pls/topic/lookup?ctx=E37069&id=OSSCP
http://www.oracle.com/pls/topic/lookup?ctx=E37069&id=OSSCP

B.1 Floating-Point Hardware

146 Oracle Solaris Studio 12.4: Numerical Computation Guide • January 2015

In versions 7 and 8 of the SPARC architecture, the FSR occupies 32 bits as shown. In version 9,
the FSR is extended to 64 bits, of which the lower 32 match the figure; the upper 32 are largely
unused, containing only three additional floating-point condition code fields.

In the figure, res refers to bits that are reserved, ver is a read-only field that identifies the
version of the FPU, and ftt and qne are used by the system when it processes floating-point
traps. The remaining fields are described in the following table

TABLE B-3 Floating-Point Status Register Fields

Field Contains

RM rounding direction mode

TEM trap enable modes

NS nonstandard mode

fcc floating-point condition code

aexc accrued exception flags

cexc current exception flags

The RM field holds two bits that specify the rounding direction for floating-point operations.
The NS bit enables nonstandard arithmetic mode on SPARC FPUs that implement it; on others,
this bit is ignored. The fcc field holds floating-point condition codes generated by floating-
point compare instructions and used by branch and conditional move operations. Finally,
the TEM, aexc, and cexc fields contain five bits that control trapping and record accrued and
current exception flags for each of the five IEEE 754 floating-point exceptions. These fields are
subdivided as shown in the following table.

TABLE B-4 Exception Handling Fields

Field Corresponding bits in register

TEM, trap enable modes NVM

27

OFM

26

UFM

25

DZM

24

NXM

23

aexc, accrued exception flags nva

9

ofa

8

ufa

7

dza

6

nxa

5

cexc, current exception flags nvc

4

ofc

3

ufc

2

dzc

1

nxc

0

(The symbols NV, OF, UF, DZ, and NX above stand for the invalid operation, overflow,
underflow, division-by-zero, and inexact exceptions respectively.)

B.1 Floating-Point Hardware

Appendix B • SPARC Behavior and Implementation 147

B.1.2 Special Cases Requiring Software Support

In most cases, SPARC floating-point units execute instructions completely in hardware without
requiring software support. There are four situations, however, when the hardware will not
successfully complete a floating-point instruction:

■ The floating-point unit is disabled.
■ The instruction is not implemented by the hardware, such as quad precision instructions on

any SPARC FPU.
■ The hardware is unable to deliver the correct result for the instruction's operands.
■ The instruction would cause an IEEE 754 floating-point exception and that exception's trap

is enabled.

In each situation, the initial response is the same: the process traps to the system kernel, which
determines the cause of the trap and takes the appropriate action. The term “trap” refers to an
interruption of the normal flow of control. In the first three situations, the kernel emulates the
trapping instruction in software. Note that the emulated instruction can also incur an exception
whose trap is enabled.

In the first three situations above, if the emulated instruction does not incur an IEEE floating-
point exception whose trap is enabled, the kernel completes the instruction. If the instruction
is a floating-point compare, the kernel updates the condition codes to reflect the result; if the
instruction is an arithmetic operation, it delivers the appropriate result to the destination register.
It also updates the current exception flags to reflect any (untrapped) exceptions raised by the
instruction, and it “or”s those exceptions into the accrued exception flags. It then arranges to
continue execution of the process at the point at which the trap was taken.

When an instruction executed by hardware or emulated by the kernel software incurs an IEEE
floating-point exception whose trap is enabled, the instruction is not completed. The destination
register, floating-point condition codes, and accrued exception flags are unchanged, the current
exception flags are set to reflect the particular exception that caused the trap, and the kernel
sends a SIGFPE signal to the process.

The following pseudo-code summarizes the handling of floating-point traps. Note that the aexc
field can normally only be cleared by software.

FPop provokes a trap;

if trap type is fp_disabled, unimplemented_FPop, or

 unfinished_FPop then

 emulate FPop;

texc = all IEEE exceptions generated by FPop;

if (texc and TEM) = 0 then

 f[rd] = fp_result; // if fpop is an arithmetic op

 fcc = fcc_result; // if fpop is a compare

 cexc = texc;

 aexc = (aexc or texc);

B.1 Floating-Point Hardware

148 Oracle Solaris Studio 12.4: Numerical Computation Guide • January 2015

else

 cexc = trapped IEEE exception generated by FPop;

 throw SIGFPE;

A program will encounter severe performance degradation when many floating-point
instructions must be emulated by the kernel. The relative frequency with which this happens
can depend on several factors including the type of trap.

Under normal circumstances, the fp_disabled trap should occur only once per process. The
system kernel disables the floating-point unit when a process is first started, so the first floating-
point operation executed by the process will cause a trap. After processing the trap, the kernel
enables the floating-point unit, and it remains enabled for the duration of the process. (It is
possible to disable the floating-point unit for the entire system, but this is not recommended and
is done only for kernel or hardware debugging purposes.)

An unimplemented_FPop trap occurs any time the floating-point unit encounters an instruction
it does not implement. Since most current SPARC floating-point units implement at least
the instruction set defined by the SPARC Architecture Manual Version 8, except for the quad
precision instructions, and the Oracle Solaris Studio compilers do not generate quad precision
instructions, this type of trap should not occur on most systems compiled with -xarch=sparc.

The remaining two trap types, unfinished_FPop and trapped IEEE exceptions, are usually
associated with special computational situations involving NaNs, infinities, and subnormal
numbers.

B.1.2.1 IEEE Floating-Point Exceptions, NaNs, and Infinities

When a floating-point instruction encounters an IEEE floating-point exception whose trap
is enabled, the instruction is not completed. Instead the system delivers a SIGFPE signal to
the process. If the process has established a SIGFPE signal handler, that handler is invoked,
and otherwise, the process aborts. Since trapping is most often enabled for the purpose of
aborting the program when an exception occurs, either by invoking a signal handler that prints
a message and terminates the program or by resorting to the system default behavior when
no signal handler is installed, most programs do not incur many trapped IEEE floating-point
exceptions. As described in Chapter 4, “Exceptions and Exception Handling”, however, it
is possible to arrange for a signal handler to supply a result for the trapping instruction and
continue execution. Note that severe performance degradation can result if many floating-point
exceptions are trapped and handled in this way.

Some SPARC floating-point units will also trap on at least some cases involving infinite or NaN
operands or IEEE floating-point exceptions even when trapping is disabled or an instruction
would not cause an exception whose trap is enabled. This happens when the hardware does
not support such special cases. Instead it generates an unfinished_FPop trap and leaves the
kernel emulation software to complete the instruction. Different SPARC FPUs vary as to the
conditions that result in an unfinished_FPop trap. For example, most early SPARC FPUs

B.1 Floating-Point Hardware

Appendix B • SPARC Behavior and Implementation 149

trap on all IEEE floating-point exceptions regardless of whether trapping is enabled, while
UltraSPARC FPUs can trap pessimistically when a floating-point exception's trap is enabled
and the hardware is unable to determine whether an instruction would raise that exception.But
any recent SPARC processors handle all exceptional cases in hardware and never generate an
unfinished_FPop traps.

Since most unfinished_FPop traps occur in conjunction with floating-point exceptions, a
program can avoid incurring an excessive number of these traps by employing exception
handling: testing the exception flags, trapping and substituting results, or aborting on
exceptions. Take care to balance the cost of handling exceptions with that of allowing
exceptions to result in unfinished_FPop traps.

B.1.2.2 Subnormal Numbers and Nonstandard Arithmetic

The most common situations in which some SPARC floating-point units will trap with an
unfinished_FPop involve subnormal numbers. Many older SPARC floating-point units will
trap whenever a floating-point operation involves subnormal operands or must generate a
nonzero subnormal result, i.e., a result that incurs gradual underflow. Because underflow is
somewhat rare but difficult to program around, and because the accuracy of underflowed
intermediate results often has little effect on the overall accuracy of the final result of a
computation, the SPARC architecture defines a nonstandard arithmetic mode that provides a
way for a user to avoid the performance degradation associated with unfinished_FPop traps
involving subnormal numbers.

The SPARC architecture does not precisely define nonstandard arithmetic mode. It merely
states that when this mode is enabled, processors that support it might produce results that do
not conform to the IEEE 754 standard. However, all existing SPARC implementations that
support this mode use it to disable gradual underflow, replacing all subnormal operands and
results with zero.

Not all SPARC implementations provide a nonstandard mode. SPARC implementations that
do not support this mode simply ignore it, so numerical and exception results are the same in
nonstandard more. Gradual underflow incurs no performance loss on these processors.

To determine whether gradual underflows are affecting the performance of a program, you
should first determine whether underflows are occurring at all and then check how much system
time is used by the program. To determine whether underflows are occurring, you can use the
math library function ieee_retrospective() to see if the underflow exception flag is raised
when the program exits. Fortran programs call ieee_retrospective() by default. C and C++
programs need to call ieee_retrospective() explicitly prior to exit. If any underflows have
occurred, ieee_retrospective() prints a message similar to the following:

Note: IEEE floating-point exception flags raised:

 Inexact; Underflow;

See the Numerical Computation Guide, ieee_flags(3M)

B.1 Floating-Point Hardware

150 Oracle Solaris Studio 12.4: Numerical Computation Guide • January 2015

If the program encounters underflows, you might want to determine how much system time the
program is using by timing the program execution with the time command:

demo% /bin/time myprog > myprog.output

real 305.3

user 32.4

sys 271.9

If the system time, the third figure of the previous output, is unusually high, multiple
underflows might be the cause. If so, and if the program does not depend on the accuracy of
gradual underflow, you can enable nonstandard mode for better performance.

There are two ways to do this. First, you can compile with the -fns flag, which is implied
as part of the macros -fast and -fnonstd, to enable nonstandard mode at program startup.
Second, the value-added math library libsunmath provides two functions to enable and disable
nonstandard mode, respectively: calling nonstandard_arithmetic() enables nonstandard
mode (if it is supported), while calling standard_arithmetic() restores IEEE behavior. The C
and Fortran syntax for calling these functions is as follows:

C, C++ nonstandard_arithmetic();

standard_arithmetic();

Fortran call nonstandard_arithmetic()

call standard_arithmetic()

Caution - Since nonstandard arithmetic mode defeats the accuracy benefits of gradual
underflow, you should use it with caution. For more information about gradual underflow, see
Chapter 2, “IEEE Arithmetic”.

B.1.2.3 Nonstandard Arithmetic and Kernel Emulation

On SPARC floating-point units that implement nonstandard mode, enabling this mode causes
the hardware to treat subnormal operands as zero and flush subnormal results to zero. The
kernel software that is used to emulate trapped floating-point instructions, however, does
not implement nonstandard mode, in part because the effect of this mode is undefined and
implementation-dependent and because the added cost of handling gradual underflow is
negligible compared to the cost of emulating a floating-point operation in software.

If a floating-point operation that would be affected by nonstandard mode is interrupted (for
example, it has been issued but not completed when a context switch occurs or another floating-
point instruction causes a trap), it will be emulated by kernel software using standard IEEE

B.2 fpversion(1) Function: Finding Information About the FPU

Appendix B • SPARC Behavior and Implementation 151

arithmetic. Thus, under unusual circumstances, a program running in nonstandard mode might
produce slightly varying results depending on system load. This behavior has not been observed
in practice. It would affect only those programs that are very sensitive to whether one particular
operation out of millions is executed with gradual underflow or with abrupt underflow.

B.2 fpversion(1) Function: Finding Information About the
FPU

The fpversion utility distributed with the compilers identifies the installed CPU and estimates
the processor and system bus clock speeds. fpversion determines the CPU and FPU types by
interpreting the identification information stored by the CPU and FPU. It estimates their clock
speeds by timing a loop that executes simple instructions that run in a predictable amount of
time. The loop is executed many times to increase the accuracy of the timing measurements.
For this reason, fpversion is not instantaneous. It can take several seconds to run.

fpversion also reports the best -xtarget code generation option to use for the host system.

On a T4-2 server, fpversion displays information similar to the following. There might be
variations due to differences in timing or machine configuration.

demo% fpversion
 A SPARC-based CPU is available.

 Kernel says CPU's clock rate is 1500.0 MHz.

 Kernel says main memory's clock rate is 150.0 MHz.

 Sun-4 floating-point controller version 0 found.

 An UltraSPARC chip is available.

 Use "-xtarget=T4 -xcache=16/32/4/8:128/32/8/8:4096/64/16/64" code-generation option.

Hostid = hardware_host_id

See the fpversion(1) manual page for more information.

152 Oracle Solaris Studio 12.4: Numerical Computation Guide • January 2015

Appendix C • x86 Behavior and Implementation 153

 C ♦ ♦ ♦ A P P E N D I X C

x86 Behavior and Implementation

This appendix discusses x86/x64 and SPARC compatibility issues related to the floating-point
units used in x86/x64 based systems.

C.1 Code Generation for Supported Systems

Oracle Solaris supports many systems from Oracle, Sun, and other system vendors, that contain
x86 processors from Intel, AMD, and other chip vendors. A particular Oracle Solaris release
supports a number of specific systems containing such chips. For a particular Oracle Solaris
release, see its corresponding Hardware Compatibility List.

Oracle Solaris 11 supports x86 processors that support 64-bit addressing. Oracle Solaris 10
Update 10 supports those 64-bit processors and many 32-bit-only x86 processors with hardware
floating-point and 120 MHz or faster clock rates.

Compile with the -m32 -xarch=generic -xchip=generic flags to generate code that is
satisfactory for the largest number of systems. The following table lists some specific code
generation options for a few typical Oracle and Sun x86 systems:

System Code Generation Options

Ultra 20 -xarch=sse2a -xchip=opteron

X2200 -xarch=amdsse4a -xchip=amdfam10

X6250 -xarch=sse3 -xchip=core2

X4170 -xarch=aes -xchip=westmere

X2-4 -xarch=sse4_2 -xchip=nehalem

X3-2 -xarch=avx -xchip=sandybridge

X4-2 X4-4 -xarch=avx_i -xchip=ivybridge

? -xarch=avx2 -xchip=haswell

There are hundreds of distinct x86 chips, each with complicated nomenclature.

C.2 Differences from SPARC

154 Oracle Solaris Studio 12.4: Numerical Computation Guide • January 2015

Using cc -dryrun -native is the best way to find out what the compiler would do to optimize
a particular system. When generating code intended for a few varied x86 systems, using options
for the oldest system is often satisfactory for all.

C.2 Differences from SPARC

Oracle Solaris Studio compilers generate code that usually performs similarly on SPARC and
x86. However, be aware of the following important differences on x86-based systems:

■ The x87 floating-point registers are 80 bits wide. Because intermediate results of arithmetic
computations can be in double extended (80-bit) precision when the x87 floating-point
register stack is in use, computation results can differ. The -fstore flag minimizes these
discrepancies. However, using the -fstore flag introduces a penalty in performance. While
Oracle Solaris Studio 12.4 does not use x87 registers by default for single and double
precision expression evaluation, they are used if -xarch=386 is specified, or if the x87
hardware transcendental instructions are used, or if double-extended variables are used.

■ Each time a single or double precision floating-point number is loaded onto the x87
floating-point register stack or stored into memory, a conversion to or from double extended
(80-bit) precision occurs. Thus loads and stores of floating-point numbers can cause
exceptions. With -m32, floating-point subroutine operands and results are passed in x87
registers.

■ When the x87 floating-point register stack is in use, gradual underflow is implemented in
hardware with microcode assist; there is no nonstandard mode.

■ There is no fpversion utility.
■ The double extended (80-bit) format admits certain bit patterns that do not represent any

floating-point values (see Table 2-8). The hardware generally treats these "unsupported
formats" as signaling NaNs, but the math libraries are not consistent in their handling of
such representations. Since these bit patterns are never generated by the hardware, they
can only be created by invalid memory references. such as reading beyond the end of an
array, or from explicit coercions of data in memory from one type to another, via C's union
construct, for example. Therefore, in most numerical programs, these bit patterns do not
arise.

Appendix D • Addendum to What Every Computer Scientist Should Know About Floating-Point Arithmetic 155

 D ♦ ♦ ♦ A P P E N D I X D

Addendum to What Every Computer Scientist
Should Know About Floating-Point Arithmetic

Every reader of this Numerical Computation Guide will find helpful the paper What Every
Computer Scientist Should Know About Floating-Point Arithmetic, by David Goldberg,
published in the March, 1991 issue of Computing Surveys (see http://dl.acm.org/
citation.cfm?id=103163).

The following is the abstract:

Floating-point arithmetic is considered as esoteric subject by many people. This is rather
surprising, because floating-point is ubiquitous in computer systems: Almost every language
has a floating-point datatype; computers from PCs to supercomputers have floating-point
accelerators; most compilers will be called upon to compile floating-point algorithms from
time to time; and virtually every operating system must respond to floating-point exceptions
such as overflow. This paper presents a tutorial on the aspects of floating-point that have a
direct impact on designers of computer systems. It begins with background on floating-point
representation and rounding error, continues with a discussion of the IEEE floating point
standard, and concludes with examples of how computer system builders can better support
floating point.

This appendix is not part of the published Goldberg paper. It has been added to clarify certain
points and correct possible misconceptions about the IEEE standard that the reader might infer
from the paper. This material was not written by David Goldberg, but it appears here with his
permission. Standards 754-1985 and 854-1987 have been replaced by 754-2008 which specifies
both binary and decimal floating-point arithmetic. This doesn't affect the Goldberg paper.

This appendix specifically discusses “D.1 Differences Among IEEE 754
Implementations” on page 156. This topic covers the following subtopics:

■ “D.1.1 Current IEEE 754 Implementations” on page 157
■ “D.1.2 Pitfalls in Computations on Extended-Based Systems” on page 158
■ “D.1.3 Programming Language Support for Extended Precision” on page 163
■ “D.1.4 Conclusion” on page 167

http://dl.acm.org/citation.cfm?id=103163
http://dl.acm.org/citation.cfm?id=103163

D.1 Differences Among IEEE 754 Implementations

156 Oracle Solaris Studio 12.4: Numerical Computation Guide • January 2015

D.1 Differences Among IEEE 754 Implementations
The Goldberg paper has shown that floating-point arithmetic must be implemented carefully,
since programmers might depend on its properties for the correctness and accuracy of their
programs. In particular, the IEEE standard requires a careful implementation, and it is possible
to write useful programs that work correctly and deliver accurate results only on systems that
conform to the standard. The reader might be tempted to conclude that such programs should be
portable to all IEEE systems. Indeed, portable software would be easier to write if the remark
“When a program is moved between two machines and both support IEEE arithmetic, then if
any intermediate result differs, it must be because of software bugs, not from differences in
arithmetic,” were true.

Unfortunately, the IEEE standard does not guarantee that the same program will deliver
identical results on all conforming systems. Most programs will actually produce different
results on different systems for a variety of reasons. For one, many programs use elementary
functions supplied by a system library, and the standard doesn't completely specify these
functions. The 1985 standard did not completely specify conversion of numbers between
decimal and binary formats, and did not specify transcendental functions at all.

Many programmers might not realize that even a program that uses only the numeric formats
and operations prescribed by the IEEE standard can compute different results on different
systems. In fact, the authors of the standard intended to allow different implementations to
obtain different results. Their intent is evident in the definition of the term destination in the
IEEE 754 standard: “A destination may be either explicitly designated by the user or implicitly
supplied by the system (for example, intermediate results in subexpressions or arguments for
procedures). Some languages place the results of intermediate calculations in destinations
beyond the user's control. Nonetheless, this standard defines the result of an operation in
terms of that destination's format and the operands' values.” (IEEE 754-1985, p. 7) In other
words, the IEEE standard requires that each result be rounded correctly to the precision of the
destination into which it will be placed, but the standard does not require that the precision of
that destination be determined by a user's program. Thus, different systems might deliver their
results to destinations with different precisions, causing the same program to produce different
results, sometimes dramatically so, even though those systems all conform to the standard.

Several of the examples in the referenced paper depend on some knowledge of the way
floating-point arithmetic is rounded. In order to rely on examples such as these, a programmer
must be able to predict how a program will be interpreted, and in particular, on an IEEE system,
what the precision of the destination of each arithmetic operation might be. Alas, the loophole
in the IEEE standard's definition of destination undermines the programmer's ability to know
how a program will be interpreted. Consequently, several of the examples given in the Goldberg
paper, when implemented as apparently portable programs in a high-level language, might not
work correctly on IEEE systems that normally deliver results to destinations with a different
precision than the programmer expects. Other examples might work, but proving that they work
might lie beyond the average programmer's ability.

In this appendix, existing implementations of IEEE 754 arithmetic are classified based on the
precisions of the destination formats they normally use. Some examples are reviewed from the

D.1 Differences Among IEEE 754 Implementations

Appendix D • Addendum to What Every Computer Scientist Should Know About Floating-Point Arithmetic 157

paper to show that delivering results in a wider precision than a program expects can cause it
to compute wrong results even though it is provably correct when the expected precision is
used. One of the proofs is revisted in the paper to illustrate the intellectual effort required to
cope with unexpected precision even when it doesn't invalidate our programs. These examples
show that despite all that the IEEE standard prescribes, the differences it allows among different
implementations can prevent you from writing portable, efficient numerical software whose
behavior we can accurately predict. To develop such software, then, programming languages
and environments must first be created that limit the variability the IEEE standard permits to
enable you to express the floating-point semantics upon which their programs depend. The 2008
version of the 1985 standard makes such recommendations for programming languages.

D.1.1 Current IEEE 754 Implementations

Current implementations of IEEE 754 arithmetic can be divided into two groups distinguished
by the degree to which they support different floating-point formats in hardware. Extended-
based systems, exemplified by the Intel x86 family of processors and compiled with the
-xarch=386 option, provide full support for an extended double precision format but only
partial support for single and double precision: they provide instructions to load or store data in
single and double precision, converting it on-the-fly to or from the extended double format, and
they provide special modes (not the default) in which the results of arithmetic operations are
rounded to single or double precision even though they are kept in registers in extended double
format. Motorola 68000 series processors round results to both the precision and range of the
single or double formats in these modes. Intel x86 and compatible processors round results to
the precision of the single or double formats but retain the same range as the extended double
format. Single/double systems, including most RISC processors, provide full support for single
and double precision formats but no support for an IEEE-compliant extended double precision
format. The x86 SSE2 extensions provide a single/double system in the SSE2 registers, and still
support extended precision in extended-precision registers.

To see how a computation might behave differently on an extended-based system than on
a single/double system, consider a C version of the example "Systems Aspects" from the
Goldberg paper as follows:

int main() {

 double q;

 q = 3.0/7.0;

 if (q == 3.0/7.0) printf("Equal\n");

 else printf("Not Equal\n");

 return 0;

}

The constants 3.0 and 7.0 are interpreted as double precision floating-point numbers, and the
expression 3.0/7.0 inherits the double data type. On a single/double system, the expression will
be evaluated in double precision since that is the most efficient format to use. Thus, q will be
assigned the value 3.0/7.0 rounded correctly to double precision. In the next line, the expression

D.1 Differences Among IEEE 754 Implementations

158 Oracle Solaris Studio 12.4: Numerical Computation Guide • January 2015

3.0/7.0 will again be evaluated in double precision, and the result will be equal to the value just
assigned to q, so the program will print “Equal” as expected.

On an extended-based system, even though the expression 3.0/7.0 has type double, the quotient
will be computed in a register in extended double format, and thus in the default mode, it will
be rounded to extended double precision. When the resulting value is assigned to the variable
q, however, it might then be stored in memory, and since q is declared double, the value will
be rounded to double precision. In the next line, the expression 3.0/7.0 can again be evaluated
in extended precision yielding a result that differs from the double precision value stored in q,
causing the program to print “Not equal”.

Other outcomes are possible, too: the compiler could decide to store and thus round the value
of the expression 3.0/7.0 in the second line before comparing it with q, or it could keep q in a
register in extended precision without storing it. An optimizing compiler might evaluate the
expression 3.0/7.0 at compile time, perhaps in double precision or perhaps in extended double
precision. With one x86 compiler, the program prints “Equal” when compiled with optimization
and “Not Equal” when compiled for debugging. Finally, some compilers for extended-based
systems automatically change the rounding precision mode to cause operations producing
results in registers to round those results to single or double precision, albeit possibly with a
wider range. Thus, on these systems, the behavior of the program cannot be predicted simply
by reading its source code and applying a basic understanding of IEEE 754 arithmetic. Neither
can the hardware or the compiler be accused of failing to provide an IEEE 754 compliant
environment. The hardware has delivered a correctly rounded result to each destination, as it is
required to do, and the compiler has assigned some intermediate results to destinations that are
beyond the user's control, as it is allowed to do.

The rest of this section describes x86 behavior compiled with -xarch=386, which was the
default in Oracle Solaris Studio 12 and earlier releases. In Oracle Solaris Studio 12.4 , the
default is -xarch=sse2.

D.1.2 Pitfalls in Computations on Extended-Based
Systems
Conventional wisdom maintains that extended-based systems must produce results that are
at least as accurate, if not more accurate than those delivered on single/double systems, since
the former always provide at least as much precision and often more than the latter. Trivial
examples as well as more subtle programs based on the examples discussed in the following
section show that this wisdom is naive at best: some apparently portable programs, which
are indeed portable across single/double systems, deliver incorrect results on extended-based
systems precisely because the compiler and hardware conspire to occasionally provide more
precision than the program expects.

Current programming languages make it difficult for a program to specify the precision it
expects. As the section “Languages and Compilers” in the Goldberg paper mentions, many
programming languages don't specify that each occurrence of an expression like 10.0*x in the

D.1 Differences Among IEEE 754 Implementations

Appendix D • Addendum to What Every Computer Scientist Should Know About Floating-Point Arithmetic 159

same context should evaluate to the same value. Some languages, such as Ada, were influenced
in this respect by variations among different arithmetics prior to the IEEE standard. More
recently, languages like ANSI C have been influenced by standard-conforming extended-based
systems. In fact, the ANSI C standard explicitly allows a compiler to evaluate a floating-point
expression to a precision wider than that normally associated with its type. As a result, the
value of the expression 10.0*x can vary in ways that depend on a variety of factors: whether
the expression is immediately assigned to a variable or appears as a subexpression in a larger
expression; whether the expression participates in a comparison; whether the expression is
passed as an argument to a function, and if so, whether the argument is passed by value or
by reference; the current precision mode; the level of optimization at which the program was
compiled; the precision mode and expression evaluation method used by the compiler when the
program was compiled; and so on.

Language standards are not entirely to blame for the vagaries of expression evaluation.
Extended-based systems run most efficiently when expressions are evaluated in extended
precision registers whenever possible, yet values that must be stored are stored in the narrowest
precision required. Constraining a language to require that 10.0*x evaluate to the same value
everywhere would impose a performance penalty on those systems. Unfortunately, allowing
those systems to evaluate 10.0*x differently in syntactically equivalent contexts imposes a
penalty of its own on programmers of accurate numerical software by preventing them from
relying on the syntax of their programs to express their intended semantics.

The following example explores whether real programs depend on the assumption that a given
expression always evaluates to the same value. Recall the algorithm presented in Theorem 4 of
the Goldberg paper for computing ln(1 + x), written in Fortran:

real function log1p(x)

real x

if (1.0 + x .eq. 1.0) then

 log1p = x

else

 log1p = log(1.0 + x) * x / ((1.0 + x) - 1.0)

endif

return

On an extended-based system, a compiler might evaluate the expression 1.0 + x in the third
line in extended precision and compare the result with 1.0. When the same expression is
passed to the log function in the sixth line, however, the compiler might store its value in
memory, rounding it to single precision. Thus, if x is not so small that 1.0 + x rounds to 1.0
in extended precision but small enough that 1.0 + x rounds to 1.0 in single precision, then
the value returned by log1p(x) will be zero instead of x, and the relative error will be one—
rather larger than 5ε. Similarly, suppose the rest of the expression in the sixth line, including
the reoccurrence of the subexpression 1.0 + x, is evaluated in extended precision. In that case,
if x is small but not quite small enough that 1.0 + x rounds to 1.0 in single precision, then
the value returned by log1p(x) can exceed the correct value by nearly as much as x, and again
the relative error can approach one. For a concrete example, take x to be 2-24 + 2-47, so x is the
smallest single precision number such that 1.0 + x rounds up to the next larger number, 1 +

D.1 Differences Among IEEE 754 Implementations

160 Oracle Solaris Studio 12.4: Numerical Computation Guide • January 2015

2-23. Then log(1.0 + x) is approximately 2-23. Because the denominator in the expression in the
sixth line is evaluated in extended precision, it is computed exactly and delivers x, so log1p(x)
returns approximately 2-23, which is nearly twice as large as the exact value.

This actually happens with at least one compiler. When the preceding code is compiled by the
Sun WorkShop Compilers 4.2.1 Fortran 77 compiler for x86 systems using the -O optimization
flag, the generated code computes 1.0 + x exactly as described. As a result, the function
delivers zero for log1p(1.0e-10) and 1.19209E-07 for log1p(5.97e-8).

For the algorithm of Theorem 4 to work correctly, the expression 1.0 + x must be evaluated
the same way each time it appears. The algorithm can fail on extended-based systems only
when 1.0 + x is evaluated to extended double precision in one instance and to single or double
precision in another. Since log is a generic intrinsic function in Fortran, a compiler could
evaluate the expression 1.0 + x in extended precision throughout, computing its logarithm in
the same precision, but evidently you cannot assume that the compiler will do so. You can also
imagine a similar example involving a user-defined function. In that case, a compiler could still
keep the argument in extended precision even though the function returns a single precision
result, but few if any existing Fortran compilers do this, either. You might therefore attempt
to ensure that 1.0 + x is evaluated consistently by assigning it to a variable. Unfortunately, if
you declare that variable real, you might still be foiled by a compiler that substitutes a value
kept in a register in extended precision for one appearance of the variable and a value stored in
memory in single precision for another. Instead, you would need to declare the variable with
a type that corresponds to the extended precision format. Standard FORTRAN 77 does not
provide a way to do this, and while Fortran 95 offers the SELECTED_REAL_KIND mechanism
for describing various formats, it does not explicitly require implementations that evaluate
expressions in extended precision to allow variables to be declared with that precision. In short,
there is no portable way to write this program in standard Fortran that is guaranteed to prevent
the expression 1.0 + x from being evaluated in a way that invalidates the proof.

There are other examples that can malfunction on extended-based systems even when each
subexpression is stored and thus rounded to the same precision. The cause is double-rounding.
In the default precision mode, an extended-based system will initially round each result to
extended double precision. If that result is then stored to double precision, it is rounded again.
The combination of these two roundings can yield a value that is different than what would
have been obtained by rounding the first result correctly to double precision. This can happen
when the result as rounded to extended double precision is a “halfway case”, i.e., it lies exactly
halfway between two double precision numbers, so the second rounding is determined by the
round-ties-to-even rule. If this second rounding rounds in the same direction as the first, the
net rounding error will exceed half a unit in the last place. Note, though, that double-rounding
only affects double precision computations. You can prove that the sum, difference, product, or
quotient of two p-bit numbers, or the square root of a p-bit number, rounded first to q bits and
then to p bits gives the same value as if the result were rounded just once to p bits provided q ≥
2p + 2. Thus, extended double precision is wide enough that single precision computations don't
suffer double-rounding.

D.1 Differences Among IEEE 754 Implementations

Appendix D • Addendum to What Every Computer Scientist Should Know About Floating-Point Arithmetic 161

Some algorithms that depend on correct rounding can fail with double-rounding. In fact, even
some algorithms that don't require correct rounding and work correctly on a variety of machines
that don't conform to IEEE 754 can fail with double-rounding. The most useful of these are
the portable algorithms for performing simulated multiple precision arithmetic mentioned in
Theorem 5, of the Goldberg paper. For example, the procedure described in Theorem 6 for
splitting a floating-point number into high and low parts doesn't work correctly in double-
rounding arithmetic: try to split the double precision number 252 + 3 × 226 – 1 into two parts
each with at most 26 bits. When each operation is rounded correctly to double precision, the
high order part is 252 + 227 and the low order part is 226 – 1, but when each operation is rounded
first to extended double precision and then to double precision, the procedure produces a
high order part of 252 + 228 and a low order part of –226 – 1. The latter number occupies 27
bits, so its square can't be computed exactly in double precision. It would still be possible to
compute the square of this number in extended double precision, but the resulting algorithm
would no longer be portable to single/double systems. Also, later steps in the multiple precision
multiplication algorithm assume that all partial products have been computed in double
precision. Handling a mixture of double and extended double variables correctly would make
the implementation significantly more expensive.

Likewise, portable algorithms for adding multiple precision numbers represented as arrays of
double precision numbers can fail in double-rounding arithmetic. These algorithms typically
rely on a technique similar to Kahan's summation formula. As the informal explanation of the
summation formula given the section “Errors In Summation” of the Goldberg paper suggests, if
s and y are floating-point variables with |s| ≥ |y| and you compute the following:

t = s + y;

e = (s - t) + y;

then in most arithmetics, e recovers exactly the round-off error that occurred in computing
t. This technique doesn't work in double-rounded arithmetic, however: if s = 252 + 1 and y
= 1/2 – 2-54, then s + y rounds first to 252 + 3/2 in extended double precision, and this value
rounds to 252 + 2 in double precision by the round-ties-to-even rule; thus the net rounding
error in computing t is 1/2 + 2-54, which is not representable exactly in double precision and
so can't be computed exactly by the expression shown above. Here again, it would be possible
to recover the roundoff error by computing the sum in extended double precision, but then a
program would have to do extra work to reduce the final outputs back to double precision, and
double-rounding could afflict this process, too. For this reason, although portable programs for
simulating multiple precision arithmetic by these methods work correctly and efficiently on a
wide variety of machines, they do not work as advertised on extended-based systems.

Finally, some algorithms that at first sight appear to depend on correct rounding might in fact
work correctly with double-rounding. In these cases, the cost of coping with double-rounding
lies not in the implementation but in the verification that the algorithm works as advertised. To
illustrate, the following variant of Theorem 7 is proven:

D.1 Differences Among IEEE 754 Implementations

162 Oracle Solaris Studio 12.4: Numerical Computation Guide • January 2015

D.1.2.1 Theorem 7'

If m and n are integers representable in IEEE 754 double precision with |m| < 252 and n has the
special form n = 2i + 2j, then (m #n) ⊗ n = m, provided both floating-point operations are either
rounded correctly to double precision or rounded first to extended double precision and then to
double precision.

Note - In this theorem, # and ⊗ represent computed division and computed multiplication
respectively.

D.1.2.2 Proof

Assume without loss that m > 0. Let q = m # n. Scaling by powers of two, we can consider an
equivalent setting in which 252 ≤ m < 253 and likewise for q, so that both m and q are integers
whose least significant bits occupy the units place (i.e., ulp(m) = ulp(q) = 1). Before scaling,
we assumed m < 252, so after scaling, m is an even integer. Also, because the scaled values of m
and q satisfy m/2 < q < 2m, the corresponding value of n must have one of two forms depending
on which of m or q is larger: if q < m, then evidently 1 < n < 2, and since n is a sum of two
powers of two, n = 1 + 2-k for some k; similarly, if q > m, then 1/2 < n < 1, so n = 1/2 + 2-(k+1).
As n is the sum of two powers of two, the closest possible value of n to one is n = 1 + 2-52.
Because m/(1 + 2-52) is no larger than the next smaller double precision number less than m, we
can't have q = m.)

Let e denote the rounding error in computing q, so that q = m/n + e, and the computed value
q ⊗ n will be the (once or twice) rounded value of m + ne. Consider first the case in which
each floating-point operation is rounded correctly to double precision. In this case, |e| < 1/2.
If n has the form 1/2 + 2-(k+1), then ne = nq – m is an integer multiple of 2-(k+1) and |ne| < 1/4
+ 2-(k+1). This implies that |ne| ≤ 1/4. Recall that the difference between m and the next larger
representable number is 1 and the difference between m and the next smaller representable
number is either 1 if m > 252 or 1/2 if m = 252. Thus, as |ne| ≤ 1/4, m + ne will round to m. (Even
if m = 252 and ne = –1/4, the product will round to m by the round-ties-to-even rule.) Similarly,
if n has the form 1 + 2-k, then ne is an integer multiple of 2-k and |ne| < 1/2 + 2-(k+1); this implies
|ne| ≤ 1/2. We can't have m = 252 in this case because m is strictly greater than q, so m differs
from its nearest representable neighbors by ±1. Thus, as |ne| ≤ 1/2, again m + ne will round to
m. (Even if |ne| = 1/2, the product will round to m by the round-ties-to-even rule because m is
even.) This completes the proof for correctly rounded arithmetic.

In double-rounding arithmetic, it might still happen that q is the correctly rounded quotient
(even though it was actually rounded twice), so |e| < 1/2 as above. In this case, we can appeal
to the arguments of the previous paragraph provided we consider the fact that q ⊗ n will be
rounded twice. To account for this, note that the IEEE standard requires that an extended double
format carry at least 64 significant bits, so that the numbers m ± 1/2 and m ± 1/4 are exactly
representable in extended double precision. Thus, if n has the form 1/2 + 2-(k+1), so that |ne|

D.1 Differences Among IEEE 754 Implementations

Appendix D • Addendum to What Every Computer Scientist Should Know About Floating-Point Arithmetic 163

≤ 1/4, then rounding m + ne to extended double precision must produce a result that differs
from m by at most 1/4, and as noted above, this value will round to m in double precision.
Similarly, if n has the form 1 + 2-k, so that |ne| ≤ 1/2, then rounding m + ne to extended double
precision must produce a result that differs from m by at most 1/2, and this value will round to
m in double precision. Recall that m > 252 in this case.

Finally, we are left to consider cases in which q is not the correctly rounded quotient due
to double-rounding. In these cases, we have |e| < 1/2 + 2-(d + 1) in the worst case, where d is
the number of extra bits in the extended double format. All existing extended-based systems
support an extended double format with exactly 64 significant bits; for this format, d = 64 – 53
= 11. Because double-rounding only produces an incorrectly rounded result when the second
rounding is determined by the round-ties-to-even rule, q must be an even integer. Thus if n has
the form 1/2 + 2-(k + 1), then ne = nq – m is an integer multiple of 2-k, and |ne| < (1/2 + 2-(k + 1))
(1/2 + 2-(d + 1)) = 1/4 + 2-(k + 2) + 2-(d + 2) + 2-(k + d + 2).

If k ≤ d, this implies |ne| ≤ 1/4. If k > d, we have |ne| ≤ 1/4 + 2-(d + 2). In either case, the first
rounding of the product will deliver a result that differs from m by at most 1/4, and by previous
arguments, the second rounding will round to m. Similarly, if n has the form 1 + 2-k, then ne is
an integer multiple of 2-(k - 1), and |ne| < 1/2 + 2-(k + 1) + 2-(d + 1) + 2-(k + d + 1).

If k ≤ d, this implies |ne| ≤ 1/2. If k > d, we have |ne| ≤ 1/4 + 2-(d + 1). In either case, the first
rounding of the product will deliver a result that differs from m by at most 1/2, and again by
previous arguments, the second rounding will round to m. ♦

The preceding proof shows that the product can incur double-rounding only if the quotient does,
and even then, it rounds to the correct result. The proof also shows that extending our reasoning
to include the possibility of double-rounding can be challenging even for a program with
only two floating-point operations. For a more complicated program, it might be impossible
to systematically account for the effects of double-rounding, not to mention more general
combinations of double and extended double precision computations.

D.1.3 Programming Language Support for Extended
Precision

The preceding examples should not be taken to suggest that extended precision in itself is
harmful. Many programs can benefit from extended precision when the programmer is able
to use it selectively. Unfortunately, current programming languages do not provide sufficient
means for a programmer to specify when and how extended precision should be used. To
indicate what support is needed, consider the ways in which you might want to manage the use
of extended precision.

In a portable program that uses double precision as its nominal working precision, there are five
ways we might want to control the use of a wider precision:

D.1 Differences Among IEEE 754 Implementations

164 Oracle Solaris Studio 12.4: Numerical Computation Guide • January 2015

1. Compile to produce the fastest code, using extended precision where possible on extended-
based systems. Clearly most numerical software does not require more of the arithmetic
than that the relative error in each operation is bounded by the “machine epsilon”. When
data in memory are stored in double precision, the machine epsilon is usually taken to be
the largest relative roundoff error in that precision, since the input data are assumed to have
been rounded when they were entered and the results will likewise be rounded when they
are stored. Thus, while computing some of the intermediate results in extended precision
might yield a more accurate result, extended precision is not essential. In this case, we
might prefer that the compiler use extended precision only when it will not appreciably
slow the program and use double precision otherwise.

2. Use a format wider than double if it is reasonably fast and wide enough, otherwise resort to
something else. Some computations can be performed more easily when extended precision
is available, but they can also be carried out in double precision with only somewhat greater
effort. Consider computing the Euclidean norm of a vector of double precision numbers. By
computing the squares of the elements and accumulating their sum in an IEEE 754 extended
double format with its wider exponent range, we can trivially avoid premature underflow
or overflow for vectors of practical lengths. On extended-based systems, this is the fastest
way to compute the norm. On single/double systems, an extended double format would
have to be emulated in software, if one were supported at all, and such emulation would be
much slower than simply using double precision, testing the exception flags to determine
whether underflow or overflow occurred, and if so, repeating the computation with explicit
scaling. Note that to support this use of extended precision, a language must provide both
an indication of the widest available format that is reasonably fast, so that a program can
choose which method to use, and environmental parameters that indicate the precision and
range of each format, so that the program can verify that the widest fast format is wide
enough, e.g., that it has wider range than double.

3. Use a format wider than double even if it has to be emulated in software. For more
complicated programs than the Euclidean norm example, the programmer might want to
avoid the need to write two versions of the program and instead rely on extended precision
even if it is slow. Again, the language must provide environmental parameters so that the
program can determine the range and precision of the widest available format.

4. Don't use a wider precision; round results correctly to the precision of the double format,
albeit possibly with extended range. For programs that are most easily written to depend on
correctly rounded double precision arithmetic, including some of the examples mentioned
above, a language must provide a way for the programmer to indicate that extended
precision must not be used, even though intermediate results can be computed in registers
with a wider exponent range than double. Intermediate results computed in this way can
still incur double-rounding if they underflow when stored to memory: if the result of an
arithmetic operation is rounded first to 53 significant bits, then rounded again to fewer
significant bits when it must be denormalized, the final result might differ from what would
have been obtained by rounding just once to a denormalized number. Of course, this form
of double-rounding is highly unlikely to affect any practical program adversely.

5. Round results correctly to both the precision and range of the double format. This strict
enforcement of double precision would be most useful for programs that test either
numerical software or the arithmetic itself near the limits of both the range and precision

D.1 Differences Among IEEE 754 Implementations

Appendix D • Addendum to What Every Computer Scientist Should Know About Floating-Point Arithmetic 165

of the double format. Such careful test programs tend to be difficult to write in a portable
way; they become even more difficult and error prone when they must employ dummy
subroutines and other tricks to force results to be rounded to a particular format. Thus,
a programmer using an extended-based system to develop robust software that must be
portable to all IEEE 754 implementations would quickly come to appreciate being able to
emulate the arithmetic of single/double systems without extraordinary effort.

No current language supports all five of these options. In fact, few languages have attempted
to give the programmer the ability to control the use of extended precision at all. One notable
exception is the ISO/IEC 9899:1999 Programming Languages - C standard, a major revision to
the C language.

The C99 standard allows an implementation to evaluate expressions in a format wider
than that normally associated with their type, but the C99 standard recommends using
one of only three expression evaluation methods. The three recommended methods are
characterized by the extent to which expressions are “promoted” to wider formats, and the
implementation is encouraged to identify which method it uses by defining the preprocessor
macro FLT_EVAL_METHOD: if FLT_EVAL_METHOD is 0, each expression is evaluated in a format
that corresponds to its type; if FLT_EVAL_METHOD is 1, float expressions are promoted to
the format that corresponds to double; and if FLT_EVAL_METHOD is 2, float and double
expressions are promoted to the format that corresponds to long double. (An implementation
is allowed to set FLT_EVAL_METHOD to –1 to indicate that the expression evaluation method is
indeterminable.) The C99 standard also requires that the <math.h> header file define the types
float_t and double_t, which are at least as wide as float and double, respectively, and are
intended to match the types used to evaluate float and double expressions. For example, if
FLT_EVAL_METHOD is 2, both float_t and double_t are long double. Finally, the C99 standard
requires that the <float.h> header file define preprocessor macros that specify the range and
precision of the formats corresponding to each floating-point type.

The combination of features required or recommended by the C99 standard supports some
of the five options listed above but not all. For example, if an implementation maps the
long double type to an extended double format and defines FLT_EVAL_METHOD to be 2, the
programmer can reasonably assume that extended precision is relatively fast, so programs like
the Euclidean norm example can simply use intermediate variables of type long double (or
double_t). On the other hand, the same implementation must keep anonymous expressions
in extended precision even when they are stored in memory (e.g., when the compiler must
spill floating-point registers), and it must store the results of expressions assigned to variables
declared double to convert them to double precision even if they could have been kept in
registers. Thus, neither the double nor the double_t type can be compiled to produce the fastest
code on current extended-based hardware.

Likewise, the C99 standard provides solutions to some of the problems illustrated by the
examples in this section but not all. A C99 standard version of the log1p function is guaranteed
to work correctly if the expression 1.0 + x is assigned to a variable (of any type) and that
variable used throughout. A portable, efficient C99 standard program for splitting a double
precision number into high and low parts, however, is more difficult: how can we split at the

D.1 Differences Among IEEE 754 Implementations

166 Oracle Solaris Studio 12.4: Numerical Computation Guide • January 2015

correct position and avoid double-rounding if we cannot guarantee that double expressions are
rounded correctly to double precision? One solution is to use the double_t type to perform the
splitting in double precision on single/double systems and in extended precision on extended-
based systems, so that in either case the arithmetic will be correctly rounded. Theorem 14
says that we can split at any bit position provided we know the precision of the underlying
arithmetic, and the FLT_EVAL_METHOD and environmental parameter macros should give us this
information.

The following fragment shows one possible implementation:

#include <math.h>

#include <float.h>

#if (FLT_EVAL_METHOD==2)

#define PWR2 LDBL_MANT_DIG - (DBL_MANT_DIG/2)

#elif ((FLT_EVAL_METHOD==1) || (FLT_EVAL_METHOD==0))

#define PWR2 DBL_MANT_DIG - (DBL_MANT_DIG/2)

#else

#error FLT_EVAL_METHOD unknown!

#endif

...

 double x, xh, xl;

 double_t m;

 m = scalbn(1.0, PWR2) + 1.0; // 2**PWR2 + 1

 xh = (m * x) - ((m * x) - x);

 xl = x - xh;

To find this solution, you must know that double expressions can be evaluated in extended
precision, that the ensuing double-rounding problem can cause the algorithm to malfunction,
and that extended precision can be used instead according to Theorem 14. A more obvious
solution is simply to specify that each expression be rounded correctly to double precision.
On extended-based systems, this merely requires changing the rounding precision mode, but
unfortunately, the C99 standard does not provide a portable way to do this. Early drafts of
the Floating-Point C Edits, the working document that specified the changes to be made to
the C90 standard to support floating-point, recommended that implementations on systems
with rounding precision modes provide fegetprec and fesetprec functions to get and set the
rounding precision, analogous to the fegetround and fesetround functions that get and set the
rounding direction. This recommendation was removed before the changes were made to the
C99 standard.

Coincidentally, the C99 standard's approach to supporting portability among systems with
different integer arithmetic capabilities suggests a better way to support different floating-
point architectures. Each C99 standard implementation supplies an <stdint.h> header file
that defines those integer types the implementation supports, named according to their sizes
and efficiency: for example, int32_t is an integer type exactly 32 bits wide, int_fast16_t
is the implementation's fastest integer type at least 16 bits wide, and intmax_t is the widest
integer type supported. One can imagine a similar scheme for floating-point types: for example,

D.1 Differences Among IEEE 754 Implementations

Appendix D • Addendum to What Every Computer Scientist Should Know About Floating-Point Arithmetic 167

float53_t could name a floating-point type with exactly 53 bit precision but possibly wider
range, float_fast24_t could name the implementation's fastest type with at least 24 bit
precision, and floatmax_t could name the widest reasonably fast type supported. The fast types
could allow compilers on extended-based systems to generate the fastest possible code subject
only to the constraint that the values of named variables must not appear to change as a result of
register spilling. The exact width types would cause compilers on extended-based systems to set
the rounding precision mode to round to the specified precision, allowing wider range subject
to the same constraint. Finally, double_t could name a type with both the precision and range
of the IEEE 754 double format, providing strict double evaluation. Together with environmental
parameter macros named accordingly, such a scheme would readily support all five options
described above and allow programmers to indicate easily and unambiguously the floating-
point semantics their programs require.

Must language support for extended precision be so complicated? On single/double systems,
four of the five options listed above coincide, and there is no need to differentiate fast and exact
width types. Extended-based systems, however, pose difficult choices: they support neither
pure double precision nor pure extended precision computation as efficiently as a mixture of
the two, and different programs call for different mixtures. Moreover, the choice of when to use
extended precision should not be left to compiler writers, who are often tempted by benchmarks
and sometimes told outright by numerical analysts to regard floating-point arithmetic as
“inherently inexact” and therefore neither deserving nor capable of the predictability of integer
arithmetic. Instead, the choice must be presented to programmers, and they will require
languages capable of expressing their selection.

D.1.4 Conclusion
The foregoing remarks are not intended to disparage extended-based systems but to expose
several fallacies, the first being that all IEEE 754 systems must deliver identical results for the
same program. We have focused on differences between extended-based systems and single/
double systems, but there are further differences among systems within each of these families.
For example, some single/double systems provide a single instruction to multiply two numbers
and add a third with just one final rounding. This operation, called a fused multiply-add, can
cause the same program to produce different results across different single/double systems,
and, like extended precision, it can even cause the same program to produce different results
on the same system depending on whether and when it is used. A fused multiply-add can
also foil the splitting process of Theorem 6, although it can be used in a non-portable way to
perform multiple precision multiplication without the need for splitting. Even though the IEEE
standard didn't anticipate such an operation, it nevertheless conforms: the intermediate product
is delivered to a “destination” beyond the user's control that is wide enough to hold it exactly,
and the final sum is rounded correctly to fit its single or double precision destination.

The idea that IEEE 754 prescribes precisely the result a given program must deliver is
nonetheless appealing. Many programmers like to believe that they can understand the behavior
of a program and prove that it will work correctly without reference to the compiler that
compiles it or the computer that runs it. In many ways, supporting this belief is a worthwhile

D.1 Differences Among IEEE 754 Implementations

168 Oracle Solaris Studio 12.4: Numerical Computation Guide • January 2015

goal for the designers of computer systems and programming languages. Unfortunately, when
it comes to floating-point arithmetic, the goal is virtually impossible to achieve. The authors of
the IEEE standards knew that, and they didn't attempt to achieve it. As a result, despite nearly
universal conformance to most of the IEEE 754 standard throughout the computer industry,
programmers of portable software must continue to cope with unpredictable floating-point
arithmetic.

If programmers are to exploit the features of IEEE 754, they will need programming languages
that make floating-point arithmetic predictable. The C99 standard improves predictability
to some degree at the expense of requiring programmers to write multiple versions of their
programs, one for each FLT_EVAL_METHOD. Whether future languages will choose instead to
allow programmers to write a single program with syntax that unambiguously expresses the
extent to which it depends on IEEE 754 semantics remains to be seen. Existing extended-based
systems threaten that prospect by tempting us to assume that the compiler and the hardware can
know better than the programmer how a computation should be performed on a given system.
That assumption is the second fallacy: the accuracy required in a computed result depends not
on the machine that produces it but only on the conclusions that will be drawn from it, and of
the programmer, the compiler, and the hardware, at best only the programmer can know what
those conclusions may be.

Appendix E • Standards Compliance 169

 E ♦ ♦ ♦ A P P E N D I X E

Standards Compliance

The Oracle Solaris Studio compiler products together with the header files and libraries in the
Solaris 10 operating environment support multiple standards including: System V Interface
Definition Edition 3 (SVID), X/Open, ANSI C (C90), POSIX.1-2001 (SUSv3) and ISO C
(C99). (See standards(5) for a more complete discussion.) Some of these standards allow
implementations to vary in certain respects. In some cases, the specifications of these standards
conflict. For the math libraries, the variances and conflicts are primarily related to special cases
and exceptions. This appendix documents the behavior of the functions inlibm in these cases
and discusses conditions under which a C program can expect behavior that conforms to each
standard. The final section of this appendix documents the conformance of the Sun Studio C
and Fortran language products to LIA-1.

E.1 libm Special Cases

Table E-1 lists all of the cases in which two or more of the standards mentioned above
specify conflicting behavior for functions in libm. Which behavior a C program will observe
depends on the compiler flags that are used when the program is compiled and linked. Possible
behaviors include raising floating-point exceptions, calling the user-supplied function matherr
with information about the special case that occurred and the value to be returned (see
matherr(3M)), printing a message on the standard error file, and setting the global variable
errno (see intro(2) and perror(3C)).

The first column in Table E-1 defines the special case. The second column shows the value
to which errno will be set if it is set at all. The possible values for errno are defined in
<errno.h>; the only two values used by the math library are EDOM for domain errors and ERANGE
for range errors. When the second column shows both EDOM and ERANGE, the value to which
errno is set is determined by the relevant standard as described below and shown in the fourth
or fifth column. The third column shows the error code that will be indicated in any error
message that is printed. The fourth, fifth, and sixth columns show the function values that will
nominally be returned as defined by various standards. In some cases, a user-supplied matherr
routine can override these values and supply another return value.

The specific responses to these special cases are determined by the compiler flags specified
when a program is linked as follows. If either -xlibmieee or -xc99=lib is specified, then when

E.1 libm Special Cases

170 Oracle Solaris Studio 12.4: Numerical Computation Guide • January 2015

any of the special cases in Table E-1 occurs, any appropriate floating-point exceptions are
raised, and the function value listed in the sixth column of the table is returned.

If neither -xlibmieee nor -xc99=lib is used, then the behavior depends on the language
conformance flag specified when the program is linked.

Specifying the -Xa flag selects X/Open conformance. When any of the special cases in the table
occurs, any appropriate floating-point exceptions are raised, errno is set, and the function value
listed in the fifth column of the table is returned. If a user-defined matherr routine is supplied,
the behavior is undefined. Note that -Xa is the default when no other language conformance flag
is given.

Specifying the -Xc flag selects strict C90 conformance. When a special case occurs, any
appropriate floating-point exceptions are raised, errno is set, and the function value listed in the
fifth column of the table is returned. matherr is not invoked in this case.

Finally, specifying either the -Xs or the -Xt flag selects SVID conformance. When a special case
occurs, any appropriate floating-point exceptions are raised, matherr is called, and if matherr
returns zero, then errno is set and an error message is printed. The function value listed in the
fourth column of the table is returned unless it is overridden by matherr.

See the cc(1) manual page and “Oracle Solaris Studio 12.4: C User’s Guide ” for more
information about the -xc99, -Xa, -Xc, -Xs, and -Xt flags.

TABLE E-1 Special Cases and libm Functions

Function errno error
message

SVID X/Open, C90 IEEE, C99, SUSv3

acos(|x|>1) EDOM DOMAIN 0.0 0.0 NaN

acosh(x<1) EDOM DOMAIN NaN NaN NaN

asin(|x|>1) EDOM DOMAIN 0.0 0.0 NaN

atan2(+/-0,+/-0) EDOM DOMAIN 0.0 0.0 +/‐0.0,+/‐pi

atanh(|x|>1) EDOM DOMAIN NaN NaN NaN

atanh(+/-1) EDOM/ERANGE SING +/‐HUGE1
(EDOM)

+/‐HUGE_VAL2
(ERANGE)

+/‐infinity

cosh overflow ERANGE ‐ HUGE HUGE_VAL infinity

exp overflow ERANGE ‐ HUGE HUGE_VAL infinity

exp underflow ERANGE ‐ 0.0 0.0 0.0

fmod(x,0) EDOM DOMAIN x NaN NaN

gamma(0 or ‐integer) EDOM SING HUGE HUGE_VAL infinity

gamma overflow ERANGE ‐ HUGE HUGE_VAL infinity

hypot overflow ERANGE ‐ HUGE HUGE_VAL infinity

j0(X_TLOSS3<|x|< inf) ERANGE TLOSS 0.0 0.0 computed answer

j1(X_TLOSS<|x|< inf) ERANGE TLOSS 0.0 0.0 computed answer

http://www.oracle.com/pls/topic/lookup?ctx=E37069&id=OSSCG

E.1 libm Special Cases

Appendix E • Standards Compliance 171

Function errno error
message

SVID X/Open, C90 IEEE, C99, SUSv3

jn(n,X_TLOSS<|x|< inf) ERANGE TLOSS 0.0 0.0 computed answer

ldexp overflow ERANGE - +-infinity +/-infinity +/-infinity

ldexp underflow ERANGE - +/-0.0 +/-0.0 +/-0.0

lgamma(0 or ‐integer) EDOM SING HUGE HUGE_VAL infinity

lgamma overflow ERANGE ‐ HUGE HUGE_VAL infinity

log(0) EDOM/ERANGE SING ‐HUGE (EDOM) ‐HUGE_VAL (ERANGE) ‐infinity

log(x<0) EDOM DOMAIN ‐HUGE ‐HUGE_VAL NaN

log10(0) EDOM/ERANGE SING ‐HUGE (EDOM) ‐HUGE_VAL (ERANGE) ‐infinity

log10(x<0) EDOM DOMAIN ‐HUGE ‐HUGE_VAL NaN

log1p(‐1) EDOM/ERANGE SING ‐HUGE (EDOM) ‐HUGE_VAL (ERANGE) ‐infinity

log1p(x<‐1) EDOM DOMAIN NaN NaN NaN

logb(0) EDOM - -HUGE_VAL -HUGE_VAL -infinity

nextafter overflow ERANGE - +-HUGE_VAL +/-HUGE_VAL +/-infinity

pow(0,0) EDOM DOMAIN 0.0 1.0 (no error) 1.0 (no error)

pow(NaN,0) EDOM DOMAIN NaN NaN 1.0 (no error)

pow(0,x<0) EDOM DOMAIN 0.0 ‐HUGE_VAL +/‐infinity

pow(x<0, non‐integer) EDOM DOMAIN 0.0 NaN NaN

pow overflow ERANGE ‐ +/‐HUGE +/‐HUGE_VAL +/‐infinity

pow underflow ERANGE ‐ +/‐0.0 +/‐0.0 +/‐0.0

remainder(x,0) or

remainder(inf,y)

EDOM DOMAIN NaN NaN NaN

scalb overflow ERANGE ‐ +‐HUGE_VAL +/‐HUGE_VAL +/‐infinity

scalb underflow ERANGE ‐ +/‐0.0 +/‐0.0 +/‐0.0

scalb(0,+inf) or

scalb(inf,-inf)

EDOM/ERANGE ‐ NaN

(ERANGE)

NaN

(EDOM)

NaN

scalb(|x|>0,+inf) ERANGE ‐ +‐infinity +/‐infinity

(no error)

+/‐infinity

(no error)

scalb(|x|<inf, ‐inf) ERANGE ‐ +/‐0.0 +/‐0.0

(no error)

+/‐0.0

(no error)

sinh overflow ERANGE ‐ +/‐HUGE +/‐HUGE_VAL +/‐infinity

sqrt(x<0) EDOM DOMAIN 0.0 NaN NaN

y0(0) EDOM DOMAIN ‐HUGE ‐HUGE_VAL ‐infinity

y0(x<0) EDOM DOMAIN ‐HUGE ‐HUGE_VAL NaN

y0(X_TLOSS<x<inf) ERANGE TLOSS 0.0 0.0 correct answer

y1(0) EDOM DOMAIN ‐HUGE ‐HUGE_VAL ‐infinity

y1(x<0) EDOM DOMAIN ‐HUGE ‐HUGE_VAL NaN

E.1 libm Special Cases

172 Oracle Solaris Studio 12.4: Numerical Computation Guide • January 2015

Function errno error
message

SVID X/Open, C90 IEEE, C99, SUSv3

y1(X_TLOSS<x<inf) ERANGE TLOSS 0.0 0.0 correct answer

yn(n,0) EDOM DOMAIN ‐HUGE ‐HUGE_VAL ‐infinity

yn(n,x<0) EDOM DOMAIN ‐HUGE ‐HUGE_VAL NaN

yn(n,X_TLOSS<x< inf) ERANGE TLOSS 0.0 0.0 correct answer

Notes:

1. HUGE is defined in <math.h>. SVID requires that HUGE be equal to MAXFLOAT, which is
approximately 3.4e+38.

2. HUGE_VAL is defined in <iso/math_iso.h>, which is included in <math.h>. HUGE_VAL
evaluates to infinity.

3. X_TLOSS is defined in <values.h>.

E.1.1 Other Compiler Flags Affecting Standard
Conformance
The compiler flags listed above directly select which of several standards will be followed in
handling the special cases listed in Table E-1. Other compiler flags can indirectly affect whether
a program observes the behavior described above.

First, both the -xlibmil and -xlibmopt flags substitute faster implementations of some of the
functions in libm. These faster implementations do not conform to SVID, X/Open, or C90.
Neither do they set errno or call matherr. They do, however, raise floating-point exceptions
as appropriate and deliver the results specified by IEEE 754 and/or C99. Similar comments
apply to the -xvector flag, since it can cause the compiler to transform calls to standard math
functions into calls to vector math functions.

Second, the -xbuiltin flag allows the compiler to treat the standard math functions defined
in <math.h> as intrinsic and substitute inline code for better performance. The substitute code
might not conform to SVID, X/Open, C90, or C99. It need not set errno, call matherr, or raise
floating-point exceptions.

Third, when the C preprocessor token __MATHERR_ERRNO_DONTCARE is defined, a number of
#pragma directives in <math.h> are compiled. These directives tell the compiler to assume
that the standard math functions have no side effects. Under this assumption, the compiler can
reorder calls to the math functions and references to global data such as errno or data that
might be modified by a user-supplied matherr routine so as to violate the expected behavior
described above. For example, consider the code fragment:

#include <errno.h>

#include <math.h>

E.1 libm Special Cases

Appendix E • Standards Compliance 173

...

errno = 0;

x = acos(2.0);

if (errno) {

 printf(“error\n”);

}

If this code is compiled with __MATHERR_ERRNO_DONTCARE defined, the compiler might assume
that errno is not modified by the call to acos and transform the code accordingly, removing the
call to printf entirely.

Note that the -fast macro flag includes the flags -xbuiltin, -xlibmil, -xlibmopt, and
-D__MATHERR_ERRNO_DONTCARE.

Finally, since all of the math functions in libm raise floating-point exceptions as needed,
running a program with trapping on those exceptions enabled will generally result in behavior
other than that specified by the standards listed above. Thus, the -ftrap compiler flag can also
affect standard conformance.

E.1.2 Additional Notes on C99 Conformance

C99 specifies two possible methods by which an implementation can handle special cases
such as those in Table E-1. An implementation indicates which of the two methods it supports
by defining the identifier math_errhandling to evaluate to an integer expression having
the value MATH_ERRNO (1) or MATH_ERREXCEPT (2) or the bitwise “or” of these. (These values
are defined in <math.h>.) If the expression (math_errhandling & MATH_ERRNO) is nonzero,
then the implementation handles cases in which the argument of a function lies outside its
mathematical domain by setting errno to EDOM and handles cases in which the result value of
a function would underflow, overflow, or equal infinity exactly by setting errno to ERANGE. If
the expression (math_errhandling & MATH_ERREXCEPT) is nonzero, then the implementation
handles cases in which the argument of a function lies outside its mathematical domain by
raising the invalid operation exception and handles cases in which the result value of a function
would underflow, overflow or equal infinity exactly by raising the underflow, overflow, or
division-by-zero exception, respectively.

On Oracle Solaris, <math.h> defines math_errhandling to be MATH_ERREXCEPT. Although
the functions listed in Table E-1 may perform other actions for the special cases shown there,
all libm functions---including the float and long double functions, complex functions, and
additional functions specified by C99---respond to special cases by raising floating-point
exceptions. This is the only method for handling special cases that is supported uniformly for all
C99 functions.

Finally, note that there are three functions for which either C99 or SUSv3 requires different
behavior from the Oracle Solaris default. The differences are summarized in the following table.

E.2 LIA-1 Conformance

174 Oracle Solaris Studio 12.4: Numerical Computation Guide • January 2015

The table lists only the double version of each function, but the differences apply to the float
and long double versions as well. In each case, the SUSv3 specification is followed when a
program is linked with -xc99=lib and the Solaris default is followed otherwise.

TABLE E-2 Solaris and C99/SUSv3 Differences

Function Solaris behavior C99/SUSv3 behavior

pow pow(1.0, +/-inf) returns NaN

pow(-1.0, +/-inf) returns NaN

pow(1.0, NaN) returns NaN

pow(1.0, +/-inf) returns 1

pow(-1.0, +/-inf) returns 1

pow(1.0, NaN) returns 1

logb logb(subnormal) returns Emin logb(x) = ilogb(x) when x issubnormal

ilogb ilogb(+/-0), ilogb(+/-inf),

ilogb(NaN) raise no exceptions

ilogb(+/-0), ilogb(+/-inf),

ilogb(NaN) raise invalid operation

E.2 LIA-1 Conformance

In this section, LIA-1 refers to ISO/IEC 10967-1:1994 Information Technology - Language
Independent Arithmetic - Part 1: Integer and floating-point arithmetic.

The C and Fortran 95 compilers (cc and f95) contained in the Sun Studio compilers release
conform to LIA-1 in the following senses (paragraph letters correspond to those in LIA‐1 section
8):

E.2.1 a. TYPES (LIA 5.1):

The LIA-1 conformant types are C int and Fortran INTEGER. Other types can conform as well,
but they are not specified here. Further specifications for specific languages await language
bindings to LIA-1 from the cognizant language standards organizations.

E.2.2 b. PARAMETERS (LIA 5.1):

#include <values.h> /* defines MAXINT */

#define TRUE 1

#define FALSE 0

#define BOUNDED TRUE

#define MODULO TRUE

#define MAXINT 2147483647

#define MININT ‐2147483648

E.2 LIA-1 Conformance

Appendix E • Standards Compliance 175

 logical bounded, modulo

 integer maxint, minint

 parameter (bounded = .TRUE.)

 parameter (modulo = .TRUE.)

 parameter (maxint = 2147483647)

 parameter (minint = ‐2147483648)

E.2.3 d. DIV/REM/MOD (LIA 5.1.3):

C / and %, and Fortran / and mod(), provide DIVtI(x,y) and REMtI(x,y). Also, modaI(x,y) is
available with the following code:

int modaI(int x, int y) {

 int t = x % y;

 if (y < 0 && t > 0)

 t ‐= y;
 else if (y > 0 && t < 0)

 t += y;

 return t;

 }

It is also available with the following code:

 integer function modaI(x, y)

 integer x, y, t

 t = mod(x, y)

 if (y .lt. 0 .and. t .gt. 0) t = t ‐ y
 if (y .gt. 0 .and. t .lt. 0) t = t + y

 modaI = t

 return

 end

E.2.4 i. NOTATION (LIA 5.1.3):

The following table shows the notation by which the LIA integer operations can be realized.

TABLE E-3 LIA‐1 Conformance ‐ Notation

LIA C Fortran if different

addI(x,y) x+y n/a

subI(x,y) x‐y n/a

mulI(x,y) x*y n/a

divtI(x,y) x/y n/a

remtI(x,y) x%y mod(x,y)

modaI(x,y) see above n/a

E.2 LIA-1 Conformance

176 Oracle Solaris Studio 12.4: Numerical Computation Guide • January 2015

LIA C Fortran if different

negI(x) ‐x n/a

absI(x) #include <stdlib.h>

abs(x)

abs(x)

signI(x) #define signI(x) (x > 0

? 1 : (x < 0 ? ‐1 : 0))

see below

eqI(x,y) x==y x.eq.y

neqI(x,y) x!=y x.ne.y

lssI(x,y) x<y x.lt.y

leqI(x,y) x<=y x.le.y

gtrI(x,y) x>y x.gt.y

geqI(x,y) x>=y x.ge.y

The following code shows the Fortran notation for signI(x).

integer function signi(x)

integer x, t

if (x .gt. 0) t=1

if (x .lt. 0) t=‐1
if (x .eq. 0) t=0

return

end

E.2.5 j. EXPRESSION EVALUATION:

By default, when no optimization is specified, expressions are evaluated in int (C) or
INTEGER (Fortran) precision. Parentheses are respected. The order of evaluation of associative
unparenthesized expressions such as a + b + c or a * b * c is not specified.

E.2.6 k. METHOD OF OBTAINING PARAMETERS:

Include the definitions in “E.2.2 b. PARAMETERS (LIA 5.1):” on page 174 in your source
code.

E.2.7 n. NOTIFICATION:

Integer exceptions are x/0 and x%0 or mod(x,0). By default, these exceptions generate SIGFPE.
When no signal handler is specified for SIGFPE, the process terminates and dumps memory.

E.2 LIA-1 Conformance

Appendix E • Standards Compliance 177

E.2.8 o. SELECTION MECHANISM:

signal(3) or signal(3F) can be used to enable user exception handling for SIGFPE.

178 Oracle Solaris Studio 12.4: Numerical Computation Guide • January 2015

Appendix F • References 179

 F ♦ ♦ ♦ A P P E N D I X F

References

The following manuals provide more information about SPARC® floating-point hardware:

■ UltraSPARC Architecture 2005 (base ISA for T1) (http://www.oracle.com/

technetwork/systems/opensparc/1537734)

■ UltraSPARC Architecture 2007 (base ISA for T2, T2+, T3) (http://

www.oracle.com/technetwork/systems/hardware/usparcarchdoc2007-329425.pdf)

■ Oracle SPARC Architecture 2011 (base ISA for T4, T5, M5, M6) (http://

www.oracle.com/technetwork/server-storage/sun-sparc-enterprise/

documentation/140521-ua2011-d096-p-ext-2306580.pdf)

The remaining references are organized by chapter. Information on obtaining Standards
documents and test programs is included at the end.

F.1 Chapter 2: “IEEE Arithmetic”

Cody et al., “A Proposed Radix- and Word-length-independent Standard for Floating-Point
Arithmetic,” IEEE Computer, August 1984.

Coonen, J.T., “An Implementation Guide to a Proposed Standard for Floating Point
Arithmetic”, Computer, Vol. 13, No. 1, Jan. 1980, pp 68-79.

Demmel, J., “Underflow and the Reliability of Numerical Software”, SIAM J. Scientific
Statistical Computing, Volume 5 (1984), 887-919.

Hough, D., “Applications of the Proposed IEEE 754 Standard for Floating-Point Arithmetic”,
Computer, Vol. 13, No. 1, Jan. 1980, pp 70-74.

Kahan, W., and Coonen, J.T., “The Near Orthogonality of Syntax, Semantics, and Diagnostics
in Numerical Programming Environments”, published in The Relationship between Numerical
Computation and Programming Languages, Reid, J.K., (editor), North-Holland Publishing
Company, 1982.

Kahan, W., “Implementation of Algorithms”, Computer Science Technical Report No. 20,
University of California, Berkeley CA, 1973. Available from National Technical Information

http://www.oracle.com/technetwork/systems/opensparc/1537734
http://www.oracle.com/technetwork/systems/opensparc/1537734
http://www.oracle.com/technetwork/systems/hardware/usparcarchdoc2007-329425.pdf
http://www.oracle.com/technetwork/systems/hardware/usparcarchdoc2007-329425.pdf
http://www.oracle.com/technetwork/server-storage/sun-sparc-enterprise/documentation/140521-ua2011-d096-p-ext-2306580.pdf
http://www.oracle.com/technetwork/server-storage/sun-sparc-enterprise/documentation/140521-ua2011-d096-p-ext-2306580.pdf
http://www.oracle.com/technetwork/server-storage/sun-sparc-enterprise/documentation/140521-ua2011-d096-p-ext-2306580.pdf

F.2 Chapter 3: “The Math Libraries”

180 Oracle Solaris Studio 12.4: Numerical Computation Guide • January 2015

Service, NTIS Document No. AD–769 124 (339 pages), 1-703-487-4650 (ordinary orders) or
1-800-336-4700 (rush orders.)

Karpinski, R., “Paranoia: a Floating-Point Benchmark”, Byte, February 1985.

Knuth, D.E., The Art of Computer Programming, Vol.2: Semi-Numerical Algorithms, Addison-
Wesley, Reading, Mass, 1969, p 195.

Linnainmaa, S., “Combatting the effects of Underflow and Overflow in Determining Real
Roots of Polynomials”, SIGNUM Newsletter 16, (1981), 11-16.

Rump, S.M., “How Reliable are Results of Computers?”, translation of “Wie zuverlassig sind
die Ergebnisse unserer Rechenanlagen?”, Jahrbuch Uberblicke Mathematik 1983, pp 163-168,
C Bibliographisches Institut AG 1984.

Sterbenz, P, Floating-Point Computation, Prentice-Hall, Englewood Cliffs, NJ, 1974. (Out of
print; most university libraries have copies.)

Stevenson, D. et al., Cody, W., Hough, D. Coonen, J., various papers proposing and analyzing a
draft standard for binary floating-point arithmetic, IEEE Computer, March 1981.

The Proposed IEEE Floating-Point Standard, special issue of the ACM SIGNUM Newsletter,
October 1979.

F.2 Chapter 3: “The Math Libraries”

Cody, William J. and Waite, William, Software Manual for the Elementary Functions, Prentice-
Hall, Inc., Englewood Cliffs, New Jersey, 07632, 1980.

Coonen, J.T., Contributions to a Proposed Standard for Binary Floating-Point Arithmetic, PhD
Dissertation, University of California, Berkeley, 1984.

Tang, Peter Ping Tak, Some Software Implementations of the Functions Sin and Cos, Technical
Report ANL-90/3, Mathematics and Computer Science Division, Argonne National Laboratory,
Argonne, Illinois, February 1990.

Tang, Peter Ping Tak, Table-driven Implementations of the Exponential Function EXPM1 in
IEEE Floating-Point Arithmetic, Preprint MCS-P125-0290, Mathematics and Computer Science
Division, Argonne National Laboratory, Argonne, Illinois, February, 1990.

Tang, Peter Ping Tak, Table-driven Implementation of the Exponential Function in IEEE
Floating-Point Arithmetic, ACM Transactions on Mathematical Software, Vol. 15, No. 2, June
1989, pp 144-157 communication, July 18, 1988.

Tang, Peter Ping Tak, Table-driven Implementation of the Logarithm Function in IEEE
Floating-Point Arithmetic, preprint MCS-P55-0289, Mathematics and Computer Science

F.3 Chapter 4: “Exceptions and Exception Handling”

Appendix F • References 181

Division, Argonne National Laboratory, Argonne, Illinois, February 1989 (to appear in ACM
Trans. on Math. Soft.)

Park, Stephen K. and Miller, Keith W., “Random Number Generators: Good Ones Are Hard To
Find”, Communications of the ACM, Vol. 31, No. 10, October 1988, pp 1192 - 1201.

F.3 Chapter 4: “Exceptions and Exception Handling”
Coonen, J.T, “Underflow and the Denormalized Numbers”, Computer, 14, No. 3, March 1981,
pp 75-87.

Demmel, J., and X. Li, “Faster Numerical Algorithms via Exception Handling”, IEEE Trans.
Comput. Vol. 48, No. 8, August 1994, pp 983-992.

Kahan, W., “A Survey of Error Analysis”, Information Processing 71, North-Holland,
Amsterdam, 1972, pp 1214-1239.

F.4 Standards
American National Standard for Information Systems ISO/IEC 9899:1999 Programming
Languages - C (C99), American National Standards Institute, 1430 Broadway, New York, NY
10018.

IEEE Standard for Floating-Point Arithmetic, ANSI/IEEE Std 754-2008, published by the
Institute of Electrical and Electronics Engineers, Inc, 3 Park Avenue, New York, NY 10016,
2008.

IEEE Standard Glossary of Mathematics of Computing Terminology, ANSI/IEEE Std
1084-1986, published by the Institute of Electrical and Electronics Engineers, Inc, 345 East
47th Street, New York, NY 10017, 1986.

IEEE Standard Portable Operating System Interface for Computer Environments (POSIX®),
IEEE Std 1003.1-1988, The Institute of Electrical and Electronics Engineers, Inc., 345 East 47th
Street, New York, NY 10017.

System V Application Binary Interface (ABI), AT&T (1-800-432-6600), 1989.

SPARC System V ABI Supplement (SPARC ABI), AT&T (1-800-432-6600), 1990.

System V Interface Definition, 3rd edition, (SVID89, or SVID Issue 3), Volumes I–IV, Part
number 320-135, AT&T (1-800-432-6600), 1989.

X/OPEN Portability Guide, Set of 7 Volumes, Prentice-Hall, Inc., Englewood Cliffs, New
Jersey 07632, 1989.

F.5 Test Programs

182 Oracle Solaris Studio 12.4: Numerical Computation Guide • January 2015

F.5 Test Programs

A number of test programs for floating-point arithmetic and math libraries are available from
Netlib in the ucbtest package. These programs include versions of Paranoia, Z. Alex Liu's
Berkeley Elementary Function test program, the IEEE test vectors, and programs based on
number-theoretic methods developed by Prof. W. Kahan that generate hard test cases for
correctly rounded multiplication, division, and square root.

ucbtest is located at http://www.netlib.org/fp/ucbtest.tgz.

http://www.netlib.org/fp/ucbtest.tgz

Glossary 183

Glossary

A-E

abrupt
underflow

When a floating-point operation underflows, always return zero, even if the result would be in
the range of subnormal numbers.

accuracy A measure of how well one number approximates another. For example, the accuracy of a
computed result often reflects the extent to which errors in the computation cause it to differ
from the mathematically exact result. Accuracy can be expressed in terms of significant digits
(e.g., “The result is accurate to six digits”) or more generally in terms of the preservation of
relevant mathematical properties (e.g., “The result has the correct algebraic sign”).

biased
exponent

The sum of the base-2 exponent and a constant (bias) chosen to make the stored exponent's
range non-negative. For example, the exponent of 2-100 is stored in IEEE single precision
format as (-100) + (single precision bias of 127) = 27.

binade The interval between any two consecutive powers of two.

chaining A hardware feature of some pipeline architectures that allows the result of an operation to be
used immediately as an operand for a second operation, simultaneously with the writing of
the result to its destination register. The total cycle time of two chained operations is less than
the sum of the stand-alone cycle times for the instructions. For example, the TI 8847 supports
chaining of consecutive fadd, fsub, and fmul (of the same precision). Chained faddd/fmuld
requires 12 cycles, while consecutive unchained faddd/fmuld requires 17 cycles.

common
exceptions

The three floating point exceptions overflow, invalid, and division-by-zero are collectively
referred to as the common exceptions for the purposes of ieee_flags(3m) and
ieee_handler(3m). They are called common exceptions because they are commonly trapped
as errors.

context
switch

In multitasking operating systems, such as the SunOS™ operating system, processes run for a
fixed time quantum. At the end of the time quantum, the CPU receives a signal from the timer,
interrupts the currently running process, and prepares to run a new process. The CPU saves the
registers for the old process, and then loads the registers for the new process. Switching from
the old process state to the new is known as a context switch. Time spent switching contexts is
system overhead; the time required depends on the number of registers, and on whether there
are special instructions to save the registers associated with a process.

default result

184 Oracle Solaris Studio 12.4: Numerical Computation Guide • January 2015

default result The value that is delivered as the result of a floating-point operation that caused an exception
when no other handling has been specified for that exception.

denormalized
number

Older nomenclature for subnormal number.

double
precision

Using two words to represent a number in order to keep or increase precision. On SPARC®

workstations, double precision is the 64-bit IEEE double precision.

exception An arithmetic exception arises when an attempted atomic arithmetic operation has no result that
is acceptable universally. The meanings of atomic and acceptable vary with time and place.

exponent The component of a floating-point number that signifies the integer power to which the base is
raised in determining the value of the represented number.

F-I

floating-
point number
system

A system for representing a subset of real numbers in which the spacing between representable
numbers is not a fixed, absolute constant. Such a system is characterized by a base, a sign, a
significand, and an exponent (usually biased). The value of the number is the signed product of
its significand and the base raised to the power of the unbiased exponent.

gradual
underflow

When a floating-point operation underflows into the range of subnormal numbers, return a
subnormal number instead of 0. This method of handling underflow minimizes the loss of
accuracy in floating-point calculations on small numbers.

hidden bits Extra bits used by hardware to ensure correct rounding, not accessible by software. For
example, IEEE double precision operations use three hidden bits to compute a 56-bit result that
is then rounded to 53 bits.

IEEE
Standard 754

The standard for binary floating-point arithmetic developed by the Institute of Electrical and
Electronics Engineers, published in 1985, revised in 2008.

in-line
template

A fragment of assembly language code that is substituted for the function call it defines,
during the inlining pass of Sun Studio compilers. Used (for example) by the math library in
in-line template files (libm.il) in order to access hardware implementations of trigonometric
functions and other elementary functions from C programs.

L-P

NaN Stands for Not a Number. A symbolic entity that is encoded in floating-point format.

normal
number

In IEEE arithmetic, a number with a biased exponent that is neither zero nor maximal (all 1's),
representing a subset of the normal range of real numbers with a bounded small relative error.

stderr

Glossary 185

pipelining A hardware feature where operations are reduced to multiple stages, each of which takes
(typically) one cycle to complete. The pipeline is filled when new operations can be issued
each cycle. If there are no dependencies among instructions in the pipe, new results can be
delivered each cycle. Chaining implies pipelining of dependent instructions. If dependent
instructions cannot be chained, when the hardware does not support chaining of those particular
instructions, then the pipeline stalls.

precision A quantitative measure of the density of representable numbers. For example, in a binary
floating point format that has a precision of 53 significant bits, there are 253 representable
numbers between any two adjacent powers of two (within the range of normal numbers). Do
not confuse precision with accuracy, which expresses how closely one number approximates
another.

Q-R

quiet NaN A NaN (not a number) that propagates through almost every arithmetic operation without
raising new exceptions.

radix The base number of any system of numbers. For example, 2 is the radix of a binary system,
and 10 is the radix of the decimal system of numeration. SPARC workstations use radix-2
arithmetic; IEEE Std 754 is a radix-2 arithmetic standard.

round Inexact results must be rounded up or down to obtain representable values. When a result is
rounded up, it is increased to the next representable value. When rounded down, it is reduced to
the preceding representable value.

roundoff
error

The error introduced when a real number is rounded to a machine-representable number. Most
floating-point calculations incur roundoff error. For any one floating-point operation, IEEE Std
754 specifies that the result shall not incur more than one rounding error.

S-T

signaling
NaN

A NaN (not a number) that raises the invalid operation exception whenever it appears as an
operand.

significand The component of a floating-point number that is multiplied by a signed power of the base to
determine the value of the number. In a normalized number, the significand consists of a single
nonzero digit to the left of the radix point and a fraction to the right.

single
precision

Using one computer word to represent a number.

stderr Standard Error is the Unix file pointer to standard error output. This file is opened when a
program is started.

store 0

186 Oracle Solaris Studio 12.4: Numerical Computation Guide • January 2015

store 0 Same as abrupt underflow. See abrupt underflow.

subnormal
number

In IEEE arithmetic, a nonzero floating point number with a biased exponent of zero. The
subnormal numbers are those between zero and the smallest normal number.

two's
complement

The radix complement of a binary numeral, formed by subtracting each digit from 1, then
adding 1 to the least significant digit and executing any required carries. For example, the two's
complement of 1101 is 0011.

U-Z

ulp Stands for unit in last place. In binary formats, the least significant bit of the significand, bit 0,
is the unit in the last place.

ulp(x) Stands for ulp of x truncated in working format.

underflow A condition that occurs when the result of a floating-point arithmetic operation is so small that
it cannot be represented as a normal number in the destination floating-point format with only
normal roundoff.

word An ordered set of characters that are stored, addressed, transmitted and operated on as a single
entity within a given computer. In the context of SPARC workstations, a word is 32 bits.

wrapped
number

In IEEE arithmetic, a number created from a value that otherwise overflows or underflows by
adding a fixed offset to its exponent to position the wrapped value in the normal number range.
Wrapped results are not currently produced on SPARC workstations.

187

Index

Numbers and Symbols
-fast, 150
-fnonstd, 150

A
abort on exception

C example, 128
abrupt underflow, 33

flush underflow results, 37, 37
accuracy

floating-point operations, 17
significant digits (number of), 29
threshold, 39

addrans

random number utilities, 59
argument reduction

trigonometric functions, 58

B
base conversion

base 10 to base 2, 32
base 2 to base 10, 32
formatted I/O, 32

C
C driver

example, call FORTRAN subroutines from C, 137
clock speed, 151
conversion between number sets, 30
conversions between decimal strings and binary
floating-point numbers, 18
convert_external

binary floating-point, 59

data conversion, 59

D
data types

relation to IEEE formats, 19
dbx, 68
decimal representation

maximum positive normal number, 29
minimum positive normal number, 29
precision, 29
ranges, 29

double-precision representation
C example, 105
FORTRAN example, 106

E
examine the accrued exception bits

C example, 119
examine the accrued exception flags

C example, 120

F
floating-point

exceptions list, 18
rounding direction, 18
rounding precision, 18

floating-point accuracy
decimal strings and binary floating-point
numbers, 17

floating-point exceptions, 15
abort on exceptions, 128
accrued exception bits, 119
common exceptions, 62

Index

188 Oracle Solaris Studio 12.4: Numerical Computation Guide • January 2015

default result, 62
definition, 62
flags, 65

accrued, 65
current, 65

ieee_functions, 48
ieee_retrospective, 52
list of exceptions, 62
priority, 64
trap precedence, 64

floating-point queue (FQ), 145
floating-point status register (FSR), 140, 145
floatingpoint.h

define handler types
C and C++, 75

flush to zero (seeabrupt underflow), 33

G
generate an array of numbers

FORTRAN example, 107
gradual underflow

error properties, 35

I
IEEE double extended format

biased exponent
x86 architecture, 26

bit-field assignment
x86 architecture, 26

fraction
x86 architecture, 26

Inf
SPARC architecture, 25
x86 architecture, 27

NaN
x86 architecture, 29

normal number
SPARC architecture, 25
x86 architecture, 27

quadruple precision
SPARC architecture, 24

sign bit
x86 architecture, 26

significand
explicit leading bit (x86 architecture), 26

subnormal number
SPARC architecture, 25
x86 architecture, 27

IEEE double format
biased exponent, 21
bit patterns and equivalent values, 23
bit-field assignment, 21
denormalized number, 23
fraction, 21, 21

storage on SPARC, 21
storage on x86, 21

implicit bit, 23
Inf, infinity, 22
NaN, not a number, 23
normal number, 23
precision, 23
sign bit, 22
significand, 22
subnormal number, 23

IEEE formats
relation to language data types, 19

IEEE single format
biased exponent, 19
biased exponent,implicit bit, 20
bit assignments, 19
bit patterns and equivalent values, 21
bit-field assignment, 19
denormalized number, 20
fraction, 19
Inf, negative infinity, 20
Inf,positive infinity, 20
mixed number, significand, 20
NaN, not a number, 21
normal number

maximum positive, 21
normal number bit pattern, 20
precision, normal number, 20
sign bit, 19
subnormal number bit pattern, 20

IEEE Standard 754
double extended format, 17
double format, 17
single format, 17

ieee_flags

Index

189

accrued exception flag, 50
examine accrued exception bits-C example, 119
rounding direction, 50
rounding precision, 50, 51
set exception flags-C example, 121
truncate rounding, 51

ieee_functions

bit mask operations, 47
floating-point exceptions, 48

ieee_handler, 74
abort on exception

FORTRAN example, 128
example, calling sequence, 69
trap on common exceptions, 62
trap on exception

C example, 121
ieee_retrospective

check underflow exception flag, 149
floating-point exceptions, 52
floating-point status register (FSR), 52
getting information about nonstandard IEEE
modes, 52
getting information about outstanding
exceptions, 52
nonstandard_arithmetic in effect, 52
precision, 52
rounding, 52
suppress exception messages, 53

ieee_sun

IEEE classification functions, 47
ieee_values

quadruple-precision values, 48
representing floating-point values, 48
representing Inf, 48
representing NaN, 48
representing normal number, 48
single-precision values, 48

ieee_values functions
C example, 112

Inf, 15, 170
default result of divide by zero, 63

L
lcrans

random number utilities, 59
libm

list of functions, 42
libm functions

double precision, 46
quadruple precision, 46
single precision, 46

libsunmath

list of functions, 45

N
NaN, 15, 26, 170
nonstandard_arithmetic

gradual underflow, 54
turn off IEEE gradual underflow, 150
underflow, 54

normal number
maximum positive, 21
minimum positive, 33, 37

number line
binary representation, 29
decimal representation, 29
powers of 2, 36

O
operating system math library

libm.a, 41

P
pi

infinitely precise value, 58

Q
quietNaN

default result of invalid operation, 62

R
random number generators, 107

Index

190 Oracle Solaris Studio 12.4: Numerical Computation Guide • January 2015

random number utilities
shufrans, 59

represent double-precision value
C example, 106
FORTRAN example, 106

represent single-precision value
C example, 106

round-off error
accuracy

loss of, 34
rounding direction, 18

C example, 114
rounding precision, 18

S
set exception flags

C example, 121
shufrans

shuffle pseudo-random numbers, 59
single format, 19
single precision representation

C example, 105
standard_arithmetic

turn on IEEE behavior, 150
subnormal number, 37

floating-point calculations, 33
System V Interface Definition (SVID), 169

T
trap

abort on exception, 128
ieee_retrospective, 52

trap on exception
C example, 121, 123

trap on floating-point exceptions
C example, 121

trigonometric functions
argument reduction, 58, 58

U
underflow

floating-point calculations, 33
gradual, 33
nonstandard_arithmetic, 54
threshold, 37

underflow thresholds
double extended precision, 33
double precision, 33
single precision, 33

unit in last place (ulp), 58
unordered comparison

floating-point values, 63
NaN, 63

	Oracle® Solaris Studio 12.4: Numerical Computation Guide
	Contents
	Using This Documentation
	Product Documentation Library
	Feedback

	Chapter 1 • Introduction
	1.1 Floating-Point Environment

	Chapter 2 • IEEE Arithmetic
	2.1 IEEE Arithmetic Model
	2.1.1 What Is IEEE Arithmetic?

	2.2 IEEE Formats
	2.2.1 Storage Formats
	2.2.2 Single Format
	2.2.3 Double Format
	2.2.4 Quadruple Format
	2.2.5 Double-Extended Format (x86)
	2.2.6 Ranges and Precisions in Decimal Representation
	2.2.7 Base Conversion in the Oracle Solaris Environment

	2.3 Underflow
	2.3.1 Underflow Thresholds
	2.3.2 How Does IEEE Arithmetic Treat Underflow?
	2.3.3 Why Gradual Underflow?
	2.3.4 Error Properties of Gradual Underflow
	2.3.5 Two Examples of Gradual Underflow Versus Abrupt Underflow
	2.3.6 Does Underflow Matter?

	2.4 IEEE Standard 754-2008

	Chapter 3 • The Math Libraries
	3.1 Oracle Solaris Math Libraries
	3.1.1 Standard Math Library
	3.1.2 Vector Math Library

	3.2 Oracle Solaris Studio Math Libraries
	3.2.1 Oracle Math Library
	3.2.2 Optimized Libraries

	3.3 Single, Double, and Extended/Quadruple Precision
	3.4 IEEE Support Functions
	3.4.1 ieee_functions(3m) and ieee_sun(3m)
	3.4.2 ieee_values(3m)
	3.4.3 ieee_flags(3m)
	3.4.4 ieee_retrospective(3m)
	3.4.5 nonstandard_arithmetic(3m)

	3.5 C99 Floating-Point Environment Functions
	3.5.1 Exception Flag Functions
	3.5.2 Rounding Control
	3.5.3 Environment Functions

	3.6 Implementation Features of libm and libsunmath
	3.6.1 About the Algorithms
	3.6.2 Argument Reduction for Trigonometric Functions
	3.6.3 Data Conversion Routines
	3.6.4 Random Number Facilities

	Chapter 4 • Exceptions and Exception Handling
	4.1 Exception Handling Objectives
	4.2 What Is an Exception?
	4.2.1 Notes for Table 4-1

	4.3 Detecting Exceptions
	4.3.1 ieee_flags(3m)
	4.3.2 C99 Exception Flag Functions

	4.4 Locating an Exception
	4.4.1 Using the Debugger to Locate an Exception
	4.4.1.1 Using dbx to Locate the Instruction Causing an Exception
	4.4.1.2 Enabling Traps Without Recompilation

	4.4.2 Using a Signal Handler to Locate an Exception
	4.4.2.1 ieee_handler (3m)
	4.4.2.2 Reporting an Exception From a Signal Handler

	4.4.3 Using libm Exception Handling Extensions to Locate an Exception
	4.4.3.1 fex_set_handling(3m)
	4.4.3.2 Retrospective Diagnostics

	4.5 Handling Exceptions
	4.5.1 Substituting IEEE Trapped Under/Overflow Results

	Chapter 5 • Compiler Code Generation
	5.1 Supported Operation Systems, Hardware, and Memory Model
	5.2 Code Generation Options
	5.3 Default Address Model and Code Generation
	5.4 Compilation Options
	5.5 Reproducible Results
	5.5.1 Transcendental Functions
	5.5.2 Associative Operations
	5.5.3 Indeterminate Evaluation
	5.5.4 Non-Portable Types
	5.5.5 Implicit Higher Precision

	5.6 Independent Confirmation

	Appendix A • Examples
	A.1 IEEE Arithmetic
	A.2 The Math Libraries
	A.2.1 Random Number Generator
	A.2.2 IEEE Recommended Functions
	A.2.3 IEEE Special Values
	A.2.4 ieee_flags — Rounding Direction
	A.2.5 C99 Floating-Point Environment Functions

	A.3 Exceptions and Exception Handling
	A.3.1 ieee_flags — Accrued Exceptions
	A.3.2 ieee_handler: Trapping Exceptions
	A.3.3 ieee_handler: Abort on Exceptions
	A.3.4 libm Exception Handling Features
	A.3.5 Using libm Exception Handling With Fortran Programs

	A.4 Miscellaneous
	A.4.1 sigfpe: Trapping Integer Exceptions
	A.4.2 Calling Fortran From C
	A.4.3 Useful Debugging Commands

	Appendix B • SPARC Behavior and Implementation
	B.1 Floating-Point Hardware
	B.1.1 Floating-Point Status Register and Queue
	B.1.2 Special Cases Requiring Software Support
	B.1.2.1 IEEE Floating-Point Exceptions, NaNs, and Infinities
	B.1.2.2 Subnormal Numbers and Nonstandard Arithmetic
	B.1.2.3 Nonstandard Arithmetic and Kernel Emulation

	B.2 fpversion(1) Function: Finding Information About the FPU

	Appendix C • x86 Behavior and Implementation
	C.1 Code Generation for Supported Systems
	C.2 Differences from SPARC

	Appendix D • Addendum to What Every Computer Scientist Should Know About Floating-Point Arithmetic
	D.1 Differences Among IEEE 754 Implementations
	D.1.1 Current IEEE 754 Implementations
	D.1.2 Pitfalls in Computations on Extended-Based Systems
	D.1.2.1 Theorem 7'
	D.1.2.2 Proof

	D.1.3 Programming Language Support for Extended Precision
	D.1.4 Conclusion

	Appendix E • Standards Compliance
	E.1 libm Special Cases
	E.1.1 Other Compiler Flags Affecting Standard Conformance
	E.1.2 Additional Notes on C99 Conformance

	E.2 LIA-1 Conformance
	E.2.1 a. TYPES (LIA 5.1):
	E.2.2 b. PARAMETERS (LIA 5.1):
	E.2.3 d. DIV/REM/MOD (LIA 5.1.3):
	E.2.4 i. NOTATION (LIA 5.1.3):
	E.2.5 j. EXPRESSION EVALUATION:
	E.2.6 k. METHOD OF OBTAINING PARAMETERS:
	E.2.7 n. NOTIFICATION:
	E.2.8 o. SELECTION MECHANISM:

	Appendix F • References
	F.1 Chapter 2: “IEEE Arithmetic”
	F.2 Chapter 3: “The Math Libraries”
	F.3 Chapter 4: “Exceptions and Exception Handling”
	F.4 Standards
	F.5 Test Programs

	Glossary
	Index

