
Part No: E37074
March 2015

Oracle® Solaris Studio 12.4: C User's
Guide

Copyright © 1991, 2015, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except
as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform,
publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS. Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered
to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or
documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous
applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of
SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are
not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

Copyright © 1991, 2015, Oracle et/ou ses affiliés. Tous droits réservés.

Ce logiciel et la documentation qui l’accompagne sont protégés par les lois sur la propriété intellectuelle. Ils sont concédés sous licence et soumis à des restrictions d’utilisation et
de divulgation. Sauf disposition de votre contrat de licence ou de la loi, vous ne pouvez pas copier, reproduire, traduire, diffuser, modifier, breveter, transmettre, distribuer, exposer,
exécuter, publier ou afficher le logiciel, même partiellement, sous quelque forme et par quelque procédé que ce soit. Par ailleurs, il est interdit de procéder à toute ingénierie inverse
du logiciel, de le désassembler ou de le décompiler, excepté à des fins d’interopérabilité avec des logiciels tiers ou tel que prescrit par la loi.

Les informations fournies dans ce document sont susceptibles de modification sans préavis. Par ailleurs, Oracle Corporation ne garantit pas qu’elles soient exemptes d’erreurs et vous
invite, le cas échéant, à lui en faire part par écrit.

Si ce logiciel, ou la documentation qui l’accompagne, est concédé sous licence au Gouvernement des Etats-Unis, ou à toute entité qui délivre la licence de ce logiciel ou l’utilise pour
le compte du Gouvernement des Etats-Unis, la notice suivante s’applique:

U.S. GOVERNMENT END USERS. Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered
to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or
documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

Ce logiciel ou matériel a été développé pour un usage général dans le cadre d’applications de gestion des informations. Ce logiciel ou matériel n’est pas conçu ni n’est destiné
à être utilisé dans des applications à risque, notamment dans des applications pouvant causer des dommages corporels. Si vous utilisez ce logiciel ou matériel dans le cadre
d’applications dangereuses, il est de votre responsabilité de prendre toutes les mesures de secours, de sauvegarde, de redondance et autres mesures nécessaires à son utilisation dans
des conditions optimales de sécurité. Oracle Corporation et ses affiliés déclinent toute responsabilité quant aux dommages causés par l’utilisation de ce logiciel ou matériel pour ce
type d’applications.

Oracle et Java sont des marques déposées d’Oracle Corporation et/ou de ses affiliés. Tout autre nom mentionné peut correspondre à des marques appartenant à d’autres propriétaires
qu’Oracle.

Intel et Intel Xeon sont des marques ou des marques déposées d’Intel Corporation. Toutes les marques SPARC sont utilisées sous licence et sont des marques ou des marques
déposées de SPARC International, Inc. AMD, Opteron, le logo AMD et le logo AMD Opteron sont des marques ou des marques déposées d’Advanced Micro Devices. UNIX est une
marque déposée d’The Open Group.

Ce logiciel ou matériel et la documentation qui l’accompagne peuvent fournir des informations ou des liens donnant accès à des contenus, des produits et des services émanant
de tiers. Oracle Corporation et ses affiliés déclinent toute responsabilité ou garantie expresse quant aux contenus, produits ou services émanant de tiers. En aucun cas, Oracle
Corporation et ses affiliés ne sauraient être tenus pour responsables des pertes subies, des coûts occasionnés ou des dommages causés par l’accès à des contenus, produits ou services
tiers, ou à leur utilisation.

5

Contents

Using This Documentation .. 21

1 Introduction to the C Compiler .. 23
1.1 What's New in C Version 5.13 Oracle Solaris Studio 12.4 Release 23
1.2 Special x86 Notes .. 24
1.3 Binary Compatibility Verification ... 25
1.4 Compiling for 64–Bit Platforms ... 25
1.5 Standards Conformance .. 25
1.6 C Readme File .. 26
1.7 Man Pages .. 26
1.8 Organization of the Compiler ... 27
1.9 C-Related Programming Tools .. 29

2 C-Compiler Implementation-Specific Information .. 31
2.1 Constants .. 31

2.1.1 Integer Constants ... 31
2.1.2 Character Constants ... 32

2.2 Linker Scoping Specifiers ... 32
2.3 Thread Local Storage Specifier .. 33
2.4 Floating Point, Nonstandard Mode .. 34
2.5 Labels as Values .. 34
2.6 long long Data Type ... 36

2.6.1 Printing long long Data Types ... 36
2.6.2 Usual Arithmetic Conversions ... 37

2.7 Case Ranges in Switch Statements .. 37
2.8 Assertions ... 39
2.9 Supported Attributes ... 39

2.9.1 __has_attribute function-like macro .. 41
2.10 Warnings and Errors ... 41
2.11 Pragmas .. 41

Contents

6 Oracle Solaris Studio 12.4: C User's Guide • March 2015

2.11.1 align .. 41
2.11.2 c99 .. 42
2.11.3 does_not_read_global_data .. 42
2.11.4 does_not_return ... 43
2.11.5 does_not_write_global_data ... 43
2.11.6 dumpmacros .. 43
2.11.7 end_dumpmacros ... 44
2.11.8 error_messages .. 45
2.11.9 fini .. 45
2.11.10 hdrstop ... 46
2.11.11 ident .. 46
2.11.12 init ... 46
2.11.13 inline ... 47
2.11.14 int_to_unsigned .. 47
2.11.15 must_have_frame ... 48
2.11.16 nomemorydepend ... 48
2.11.17 no_side_effect .. 48
2.11.18 opt ... 49
2.11.19 pack ... 49
2.11.20 pipeloop ... 50
2.11.21 rarely_called .. 50
2.11.22 redefine_extname ... 51
2.11.23 returns_new_memory .. 52
2.11.24 unknown_control_flow .. 52
2.11.25 unroll ... 53
2.11.26 warn_missing_parameter_info .. 53
2.11.27 weak .. 54

2.12 Predefined Names .. 54
2.13 Preserving the Value of errno .. 55
2.14 Extensions .. 55

2.14.1 _Restrict Keyword ... 55
2.14.2 __asm Keyword ... 56
2.14.3 __inline and __inline__ ... 56
2.14.4 __builtin_constant_p() ... 56
2.14.5 __FUNCTION__ and __PRETTY_FUNCTION__ .. 57
2.14.6 untyped _Complex .. 57
2.14.7 __alignof__ ... 57

2.15 Environment Variables .. 57
2.15.1 SUN_PROFDATA ... 57

Contents

7

2.15.2 SUN_PROFDATA_DIR ... 58
2.15.3 TMPDIR ... 58

2.16 How to Specify Include Files ... 58
2.16.1 Using the -I- Option to Change the Search Algorithm 59

2.17 Compiling in Free-Standing Environments .. 61
2.18 Compiler Support for Intel MMX and Extended x86 Platform Intrinsics 63
2.19 Compiler Support for SPARC64™X and SPARC64™X+ Platform Intrinsics 64

2.19.1 SIMD Intrinsics ... 65
2.19.2 Decimal Floating-Point Intrinsics .. 66

3 Parallelizing C Code .. 71
3.1 Parallelizing Using OpenMP .. 71
3.2 Automatic Parallelization .. 71

3.2.1 Data Dependence and Interference .. 72
3.2.2 Private Scalars and Private Arrays .. 73
3.2.3 Storeback ... 75
3.2.4 Reduction Variables ... 75
3.2.5 Loop Transformations .. 76
3.2.6 Aliasing and Parallelization ... 79

3.3 Environment Variables ... 81
3.4 Parallel Execution Model .. 82
3.5 Speedups .. 82

3.5.1 Amdahl’s Law .. 83
3.6 Memory-Barrier Intrinsics ... 86

4 lint Source Code Checker .. 89
4.1 Basic and Enhanced lint Modes .. 89
4.2 Using lint ... 90
4.3 lint Command-Line Options ... 91

4.3.1 -# ... 92
4.3.2 -### .. 92
4.3.3 -a ... 92
4.3.4 -b ... 92
4.3.5 -C filename .. 92
4.3.6 -c ... 93
4.3.7 -dirout=dir .. 93
4.3.8 -err=warn .. 93
4.3.9 -errchk=l(, l) ... 93

Contents

8 Oracle Solaris Studio 12.4: C User's Guide • March 2015

4.3.10 -errfmt=f ... 94
4.3.11 -errhdr=h .. 94
4.3.12 -erroff=tag(, tag) ... 95
4.3.13 -errsecurity=level .. 96
4.3.14 -errtags=a .. 97
4.3.15 -errwarn=t ... 97
4.3.16 -F ... 97
4.3.17 -fd .. 98
4.3.18 -flagsrc=file .. 98
4.3.19 -h ... 98
4.3.20 -Idir ... 98
4.3.21 -k ... 98
4.3.22 -Ldir ... 98
4.3.23 -lx .. 98
4.3.24 -m ... 99
4.3.25 -m32|-m64 .. 99
4.3.26 -Ncheck=c .. 99
4.3.27 -Nlevel=n .. 100
4.3.28 -n .. 101
4.3.29 -ox .. 101
4.3.30 -p .. 101
4.3.31 -Rfile ... 101
4.3.32 -s .. 102
4.3.33 -u .. 102
4.3.34 -V .. 102
4.3.35 -v .. 102
4.3.36 -Wfile ... 102
4.3.37 -XCC=a ... 102
4.3.38 -Xalias_level[=l] .. 102
4.3.39 -Xarch=amd64 .. 103
4.3.40 -Xarch=v9 .. 103
4.3.41 -Xc99[=o] ... 103
4.3.42 -Xkeeptmp=a ... 103
4.3.43 -Xtemp=dir .. 104
4.3.44 -Xtime=a .. 104
4.3.45 -Xtransition=a .. 104
4.3.46 -Xustr={ascii_utf16_ushort|no} .. 104

Contents

9

4.3.47 -x .. 104
4.3.48 -y .. 104

4.4 lint Messages ... 105
4.4.1 Options to Suppress Messages ... 105
4.4.2 lint Message Formats ... 106

4.5 lint Directives .. 108
4.5.1 Predefined Values .. 108
4.5.2 Directives ... 108

4.6 lint Reference and Examples .. 111
4.6.1 Diagnostics Performed by lint .. 111
4.6.2 lint Libraries ... 115
4.6.3 lint Filters ... 116

5 Type-Based Alias Analysis ... 119
5.1 Introduction to Type-Based Analysis .. 119
5.2 Using Pragmas for Finer Control .. 120

5.2.1 #pragma alias_level level (list) .. 120
5.3 Checking With lint ... 123

5.3.1 Struct Pointer Cast of Scalar Pointer ... 123
5.3.2 Struct Pointer Cast of Void Pointer ... 123
5.3.3 Cast of Struct Field to Structure Pointer ... 124
5.3.4 Explicit Aliasing Required ... 124

5.4 Examples of Memory Reference Constraints ... 125
5.4.1 Example: Levels of Aliasing .. 125
5.4.2 Example: Compiling with Different Aliasing Levels 127
5.4.3 Example: Interior Pointers ... 129
5.4.4 Example: Struct Fields .. 130
5.4.5 Example: Unions ... 132
5.4.6 Example: Structs of Structs ... 133
5.4.7 Example: Using a Pragma ... 134

6 Transitioning to ISO C ... 135
6.1 New-Style Function Prototypes ... 135

6.1.1 Writing New Code ... 135
6.1.2 Updating Existing Code .. 136
6.1.3 Mixing Considerations .. 136

6.2 Functions With Varying Arguments ... 138
6.3 Promotions: Unsigned Versus Value Preserving .. 140

Contents

10 Oracle Solaris Studio 12.4: C User's Guide • March 2015

6.3.1 Some Background History ... 140
6.3.2 Compilation Behavior ... 141
6.3.3 Example: The Use of a Cast .. 141
6.3.4 Example: Same Result, No Warning .. 142
6.3.5 Integral Constants .. 142
6.3.6 Example: Integral Constants .. 143

6.4 Tokenization and Preprocessing .. 144
6.4.1 ISO C Translation Phases .. 144
6.4.2 Old C Translation Phases .. 145
6.4.3 Logical Source Lines .. 145
6.4.4 Macro Replacement ... 145
6.4.5 Using Strings .. 146
6.4.6 Token Pasting ... 147

6.5 const and volatile ... 147
6.5.1 Types for lvalue Only ... 148
6.5.2 Type Qualifiers in Derived Types ... 148
6.5.3 const Means readonly ... 149
6.5.4 Examples of const Usage ... 149
6.5.5 Examples of volatile Usage .. 149

6.6 Multibyte Characters and Wide Characters .. 150
6.6.1 Asian Languages Require Multibyte Characters 151
6.6.2 Encoding Variations ... 151
6.6.3 Wide Characters .. 151
6.6.4 C Language Features .. 152

6.7 Standard Headers and Reserved Names .. 153
6.7.1 Standard Headers ... 153
6.7.2 Names Reserved for Implementation Use ... 153
6.7.3 Names Reserved for Expansion .. 154
6.7.4 Names Safe to Use .. 154

6.8 Internationalization ... 155
6.8.1 Locales .. 155
6.8.2 setlocale() Function .. 155
6.8.3 Changed Functions ... 156
6.8.4 New Functions .. 157

6.9 Grouping and Evaluation in Expressions .. 158
6.9.1 Expression Definitions .. 158
6.9.2 K&R C Rearrangement License ... 158
6.9.3 ISO C Rules ... 159
6.9.4 Parentheses Usage ... 159

Contents

11

6.9.5 The As If Rule .. 160
6.10 Incomplete Types ... 160

6.10.1 Types ... 160
6.10.2 Completing Incomplete Types .. 161
6.10.3 Declarations .. 161
6.10.4 Expressions ... 161
6.10.5 Justification ... 162
6.10.6 Examples: Incomplete Types .. 162

6.11 Compatible and Composite Types .. 163
6.11.1 Multiple Declarations .. 163
6.11.2 Separate Compilation Compatibility ... 163
6.11.3 Single Compilation Compatibility ... 163
6.11.4 Compatible Pointer Types .. 164
6.11.5 Compatible Array Types .. 164
6.11.6 Compatible Function Types .. 164
6.11.7 Special Cases .. 165
6.11.8 Composite Types .. 165

7 Converting Applications for a 64-Bit Environment 167
7.1 Overview of the Data Model Differences .. 167
7.2 Implementing Single Source Code ... 168

7.2.1 Derived Types ... 168
7.2.2 Checking With lint ... 171

7.3 Converting to the LP64 Data Type Model ... 172
7.3.1 Integer and Pointer Size Change ... 172
7.3.2 Integer and Long Size Change ... 173
7.3.3 Sign Extension .. 173
7.3.4 Pointer Arithmetic Instead of Integers .. 175
7.3.5 Structures ... 175
7.3.6 Unions ... 176
7.3.7 Type Constants .. 176
7.3.8 Beware of Implicit Declarations ... 176
7.3.9 sizeof() Is an Unsigned long ... 177
7.3.10 Use Casts to Show Your Intentions .. 177
7.3.11 Check Format String Conversion Operation 178

7.4 Other Conversion Considerations .. 178
7.4.1 Note: Derived Types That Have Grown in Size 179
7.4.2 Check for Side Effects of Changes .. 179
7.4.3 Check Literal Uses of long Still Make Sense 179

Contents

12 Oracle Solaris Studio 12.4: C User's Guide • March 2015

7.4.4 Use #ifdef for Explicit 32-bit Versus 64-bit Prototypes 179
7.4.5 Calling Convention Changes .. 179
7.4.6 Algorithm Changes .. 180

7.5 Checklist for Getting Started .. 180

8 cscope: Interactively Examining a C Program ... 181
8.1 The cscope Process .. 181
8.2 Basic Use ... 182

8.2.1 Step 1: Set Up the Environment ... 182
8.2.2 Step 2: Invoke the cscope Program ... 183
8.2.3 Step 3: Locate the Code .. 183
8.2.4 Step 4: Edit the Code ... 188
8.2.5 Command-Line Options .. 189
8.2.6 View Paths ... 191
8.2.7 cscope and Editor Call Stacks .. 192
8.2.8 Examples ... 192
8.2.9 Command-Line Syntax for Editors .. 195

8.3 Unknown Terminal Type Error ... 196

A Compiler Options Grouped by Functionality ... 199
A.1 Options Summarized by Function ... 199

A.1.1 Optimization and Performance Options ... 199
A.1.2 Compile-Time and Link-Time Options .. 201
A.1.3 Data-Alignment Options ... 202
A.1.4 Numerics and Floating-Point Options ... 202
A.1.5 Parallelization Options ... 203
A.1.6 Source Code Options ... 203
A.1.7 Compiled Code Options ... 204
A.1.8 Compilation Mode Options ... 205
A.1.9 Diagnostic Options .. 206
A.1.10 Debugging Options .. 206
A.1.11 Linking and Libraries Options ... 207
A.1.12 Target Platform Options .. 208
A.1.13 x86-Specific Options .. 208
A.1.14 Obsolete Options ... 208

B C Compiler Options Reference .. 211
B.1 Option Syntax ... 211

Contents

13

B.2 cc Options .. 212
B.2.1 -# ... 212
B.2.2 -### .. 212
B.2.3 -Aname[(tokens)] .. 212
B.2.4 -ansi .. 213
B.2.5 -B[static|dynamic] ... 213
B.2.6 -C ... 213
B.2.7 -c ... 213
B.2.8 -Dname[(arg[,arg])][=expansion] .. 214
B.2.9 -d[y|n] ... 214
B.2.10 -dalign ... 214
B.2.11 -E ... 214
B.2.12 -errfmt[=[no%]error] .. 215
B.2.13 -errhdr[=h] .. 215
B.2.14 -erroff[=t] .. 215
B.2.15 -errshort[=i] ... 216
B.2.16 -errtags[=a] .. 216
B.2.17 -errwarn[=t] ... 217
B.2.18 -fast .. 218
B.2.19 -fd .. 219
B.2.20 -features=[v] ... 219
B.2.21 -flags ... 221
B.2.22 -flteval[={any|2}] ... 221
B.2.23 -fma[={none|fused}] .. 221
B.2.24 -fnonstd .. 222
B.2.25 -fns[={no|yes}] .. 222
B.2.26 -fopenmp .. 222
B.2.27 -fPIC .. 223
B.2.28 -fpic .. 223
B.2.29 -fprecision=p ... 223
B.2.30 -fround=r .. 223
B.2.31 -fsimple[=n] .. 224
B.2.32 -fsingle .. 225
B.2.33 -fstore ... 225
B.2.34 -ftrap=t[,t...] ... 225
B.2.35 -G ... 226
B.2.36 -g ... 226

Contents

14 Oracle Solaris Studio 12.4: C User's Guide • March 2015

B.2.37 -g[n] ... 227
B.2.38 -H ... 228
B.2.39 -h name ... 228
B.2.40 -I[-|dir] .. 228
B.2.41 -i ... 229
B.2.42 -include filename .. 229
B.2.43 -KPIC .. 229
B.2.44 -Kpic .. 230
B.2.45 -keeptmp .. 230
B.2.46 -Ldir ... 230
B.2.47 -lname .. 230
B.2.48 -library=sunperf ... 230
B.2.49 -m32|-m64 .. 231
B.2.50 -mc .. 231
B.2.51 -misalign .. 231
B.2.52 -misalign2 .. 232
B.2.53 -mr[,string] .. 232
B.2.54 -mt[={yes|no}] .. 232
B.2.55 -native ... 233
B.2.56 -nofstore .. 233
B.2.57 -O ... 233
B.2.58 -o filename ... 233
B.2.59 -P ... 234
B.2.60 -p ... 234
B.2.61 –pedantic{=[yes|no]} .. 234
B.2.62 –preserve_argvalues[=simple|none|complete] 234
B.2.63 –Qoption phase option[,option..] .. 234
B.2.64 -Q[y|n] ... 235
B.2.65 -qp .. 236
B.2.66 -Rdir[:dir] .. 236
B.2.67 -S ... 236
B.2.68 -s ... 236
B.2.69 -staticlib=[no%]sunperf .. 236
B.2.70 –std=value ... 236
B.2.71 –temp=path ... 237
B.2.72 -traceback[={%none|common|signals_list}] 237
B.2.73 -Uname .. 238

Contents

15

B.2.74 -V ... 239
B.2.75 -v ... 239
B.2.76 -Wc,arg .. 239
B.2.77 -w ... 240
B.2.78 -X[c|a|t|s] ... 240
B.2.79 -x386 .. 241
B.2.80 -x486 .. 241
B.2.81 -Xlinker arg .. 242
B.2.82 -xaddr32[=yes|no] ... 242
B.2.83 -xalias_level[=l] ... 242
B.2.84 -xanalyze={code|%none} .. 244
B.2.85 -xannotate[=yes|no] .. 244
B.2.86 –xarch=isa ... 245
B.2.87 -xautopar .. 249
B.2.88 -xbinopt={prepare|off} .. 249
B.2.89 -xbuiltin[=(%all|%default|%none)] ... 250
B.2.90 -xCC .. 250
B.2.91 -xc99[=o] ... 251
B.2.92 -xcache[=c] .. 251
B.2.93 –xcg[89|92] ... 252
B.2.94 -xchar[=o] ... 253
B.2.95 -xchar_byte_order[=o] .. 254
B.2.96 -xcheck[=o[,o]] ... 254
B.2.97 -xchip[=c] ... 257
B.2.98 -xcode[=v] ... 259
B.2.99 -xcrossfile ... 260
B.2.100 -xcsi ... 260
B.2.101 -xdebugformat=[stabs|dwarf] ... 261
B.2.102 -xdebuginfo=a[,a...] ... 261
B.2.103 -xdepend=[yes|no] ... 263
B.2.104 -xdryrun .. 263
B.2.105 -xdumpmacros[=value[,value...]] ... 263
B.2.106 -xe .. 266
B.2.107 -xF[=v[,v...]] .. 266
B.2.108 -xglobalize[={yes|no}] ... 267
B.2.109 -xhelp=flags ... 268
B.2.110 -xhwcprof .. 268

Contents

16 Oracle Solaris Studio 12.4: C User's Guide • March 2015

B.2.111 -xinline=list .. 269
B.2.112 -xinline_param=a[,a[,a]...] ... 270
B.2.113 -xinline_report[=n] .. 272
B.2.114 -xinstrument=[no%]datarace ... 272
B.2.115 -xipo[=a] ... 273
B.2.116 -xipo_archive=[a] ... 275
B.2.117 -xipo_build=[yes|no] ... 276
B.2.118 -xivdep[=p] .. 277
B.2.119 -xjobs{=n|auto} ... 277
B.2.120 -xkeep_unref[={[no%]funcs,[no%]vars}] 278
B.2.121 -xkeepframe[=[%all,%none,name,no%name]] 279
B.2.122 -xlang=language ... 279
B.2.123 -xldscope={v} .. 280
B.2.124 -xlibmieee ... 281
B.2.125 -xlibmil .. 281
B.2.126 -xlibmopt .. 281
B.2.127 -xlic_lib=sunperf .. 282
B.2.128 -xlicinfo .. 282
B.2.129 -xlinkopt[=level] .. 282
B.2.130 -xloopinfo ... 283
B.2.131 -xM .. 284
B.2.132 -xM1 .. 284
B.2.133 -xMD .. 285
B.2.134 -xMF filename .. 285
B.2.135 -xMMD ... 285
B.2.136 -xMerge ... 285
B.2.137 -xmaxopt[=v] .. 286
B.2.138 -xmemalign=ab .. 286
B.2.139 -xmodel=[a] .. 287
B.2.140 -xnolib ... 288
B.2.141 -xnolibmil ... 288
B.2.142 -xnolibmopt ... 288
B.2.143 -xnorunpath .. 289
B.2.144 -xO[1|2|3|4|5] ... 289
B.2.145 -xopenmp[={parallel|noopt|none}] .. 291
B.2.146 -xP .. 293
B.2.147 -xpagesize=n ... 293

Contents

17

B.2.148 -xpagesize_heap=n ... 294
B.2.149 -xpagesize_stack=n .. 294
B.2.150 -xpatchpadding[={fix|patch|size}] .. 295
B.2.151 -xpch=v .. 295
B.2.152 -xpchstop=[file|<include>] ... 300
B.2.153 -xpec[={yes|no}] .. 300
B.2.154 -xpentium .. 301
B.2.155 -xpg .. 301
B.2.156 -xprefetch[=val[,val]] ... 302
B.2.157 -xprefetch_auto_type=a ... 303
B.2.158 -xprefetch_level=l .. 303
B.2.159 -xprevise={yes|no} ... 304
B.2.160 –xprofile=p ... 304
B.2.161 -xprofile_ircache[=path] .. 307
B.2.162 -xprofile_pathmap .. 308
B.2.163 -xreduction ... 308
B.2.164 -xregs=r[,r…] ... 308
B.2.165 -xrestrict[=f] .. 310
B.2.166 –xs[={yes|no}] .. 311
B.2.167 -xsafe=mem ... 311
B.2.168 -xsegment_align=n ... 312
B.2.169 -xsfpconst ... 312
B.2.170 -xspace ... 312
B.2.171 -xstrconst ... 313
B.2.172 -xtarget=t ... 313
B.2.173 -xtemp=path .. 316
B.2.174 -xthreadvar[=o] .. 316
B.2.175 -xthroughput[={yes|no}] .. 317
B.2.176 -xtime ... 317
B.2.177 -xtransition ... 317
B.2.178 -xtrigraphs[={yes|no}] ... 318
B.2.179 -xunboundsym={yes|no} .. 319
B.2.180 -xunroll=n ... 319
B.2.181 -xustr={ascii_utf16_ushort|no} .. 319
B.2.182 -xvector[=a] .. 320
B.2.183 -xvis ... 321
B.2.184 -xvpara ... 322

Contents

18 Oracle Solaris Studio 12.4: C User's Guide • March 2015

B.2.185 -Yc, dir ... 322
B.2.186 -YA, dir ... 322
B.2.187 -YI, dir ... 322
B.2.188 -YP, dir ... 323
B.2.189 -YS, dir ... 323
B.2.190 -Zll .. 323

B.3 Options Passed to the Linker ... 323
B.4 User-Supplied Default Options File ... 323

C Features of C11 ... 325
C.1 Keywords ... 325
C.2 C11 Supported Features .. 325

C.2.1 _Alignas specifier ... 326
C.2.2 _Alignof operator ... 326
C.2.3 _Noreturn .. 326
C.2.4 _Static_assert .. 327
C.2.5 Universal Character Names (UCN) ... 327

D Features of C99 ... 329
D.1 Discussion and Examples .. 329

D.1.1 Precision of Floating Point Evaluators .. 330
D.1.2 C99 Keywords ... 331
D.1.3 __func__ Support ... 331
D.1.4 Universal Character Names (UCN) ... 332
D.1.5 Commenting Code With // .. 332
D.1.6 Disallowed Implicit int and Implicit Function Declarations 332
D.1.7 Declarations Using Implicit int ... 333
D.1.8 Flexible Array Members ... 333
D.1.9 Idempotent Qualifiers .. 334
D.1.10 inline Functions .. 335
D.1.11 Static and Other Type Qualifiers Allowed in Array Declarators 336
D.1.12 Variable Length Arrays (VLA): .. 337
D.1.13 Designated Initializers .. 337
D.1.14 Mixed Declarations and Code .. 338
D.1.15 Declaration in for-Loop Statement ... 339
D.1.16 Macros With a Variable Number of Arguments 339
D.1.17 _Pragma .. 340

Contents

19

E Implementation-Defined ISO/IEC C99 Behavior ... 343
E.1 Implementation-defined Behavior (J.3) .. 343

E.1.1 Translation (J.3.1) ... 343
E.1.2 Environment (J.3.2) ... 344
E.1.3 Identifiers (J.3.3) ... 346
E.1.4 Characters (J.3.4) .. 346
E.1.5 Integers (J.3.5) .. 347
E.1.6 Floating point (J.3.6) .. 348
E.1.7 Arrays and Pointers (J.3.7) .. 349
E.1.8 Hints (J.3.8) ... 349
E.1.9 Structures, Unions, Enumerations, and Bit-fields (J.3.9) 350
E.1.10 Qualifiers (J.3.10) .. 351
E.1.11 Preprocessing Directives (J.3.11) .. 351
E.1.12 Library Functions (J.3.12) ... 352
E.1.13 Architecture (J.3.13) ... 358
E.1.14 Locale-specific Behavior (J.4) .. 361

F Implementation-Defined ISO/IEC C90 Behavior ... 365
F.1 Implementation Compared to the ISO Standard .. 365

F.1.1 Translation (G.3.1) ... 365
F.1.2 Environment (G.3.2) ... 366
F.1.3 Identifiers (G.3.3) .. 366
F.1.4 Characters (G.3.4) .. 367
F.1.5 Integers (G.3.5) ... 368
F.1.6 Floating-Point (G.3.6) ... 370
F.1.7 Arrays and Pointers (G.3.7) ... 371
F.1.8 Registers (G.3.8) .. 372
F.1.9 Structures, Unions, Enumerations, and Bit-Fields (G.3.9) 372
F.1.10 Qualifiers (G.3.10) ... 374
F.1.11 Declarators (G.3.11) .. 374
F.1.12 Statements (G.3.12) .. 375
F.1.13 Preprocessing Directives (G.3.13) ... 375
F.1.14 Library Functions (G.3.14) ... 377
F.1.15 Locale-Specific Behavior (G.4) ... 383

G ISO C Data Representations .. 387
G.1 Storage Allocation ... 387
G.2 Data Representations .. 388

G.2.1 Integer Representations .. 388

Contents

20 Oracle Solaris Studio 12.4: C User's Guide • March 2015

G.2.2 Floating-Point Representations .. 390
G.2.3 Exceptional Values .. 391
G.2.4 Hexadecimal Representation of Selected Numbers 392
G.2.5 Pointer Representation ... 393
G.2.6 Array Storage ... 393
G.2.7 Arithmetic Operations on Exceptional Values 394

G.3 Argument-Passing Mechanism ... 395
G.3.1 32-Bit SPARC .. 396
G.3.2 64-Bit SPARC .. 396
G.3.3 x86/x64 ... 396

H Performance Tuning .. 399
H.1 libfast.a Library (SPARC) ... 399

I Oracle Solaris Studio C: Differences Between K&R C and ISO C 401
I.1 Incompatibilities ... 401
I.2 Keywords .. 406

Index ... 409

Using This Documentation 21

Using This Documentation

■ Overview – Describes the Oracle Solaris Studio 12.4 C Compiler
■ Audience – Application developers, system developers, architects, support engineers
■ Required knowledge – Programming experience, software development testing, aptitude to

build and compile software products

Product Documentation Library

Late-breaking information and known issues for this product are included in the documentation
library at http://docs.oracle.com/cd/E37069_01.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Feedback

Provide feedback about this documentation at http://www.oracle.com/goto/docfeedback.

http://docs.oracle.com/cd/E37069_01
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/goto/docfeedback

22 Oracle Solaris Studio 12.4: C User's Guide • March 2015

Chapter 1 • Introduction to the C Compiler 23

 1 ♦ ♦ ♦ C H A P T E R 1

Introduction to the C Compiler

This chapter provides basic information about the Oracle Solaris Studio C compiler.

1.1 What's New in C Version 5.13 Oracle Solaris Studio
12.4 Release

Note the following new and changed features in the current C compiler release.

■ New -xarch, -xchip, and -xtarget values for Intel Ivy Bridge processor on x86.
■ New -xarch, -xchip, and -xtarget values for SPARC T5, M5, M6, and M10+ processors.
■ Support for Ivy Bridge assembler instructions.
■ Support for Ivy Bridge intrinsic functions, which can be found in solstudio-install-dir/lib/

compilers/include/cc/immintrin.h.
■ Default value for -xarch=generic set to sse2 for -m32 on x86.
■ Support for -xlinkopt on x86. Inter-module, inter-procedural code ordering optimizations

for large enterprise applications tuned for modern Intel processors. An up to 5%
performance boost over a fully optimized binary can be seen for large applications.

■ Enhanced -xs option to control the trade-off of executable size versus the need to retain
object files in order to debug.

■ Support for -xanalyze and -xannotate on Linux.
■ Support for -fopenmp as a synonym for -xopenmp=parallel.
■ Support for -xregs on x86.
■ New compiler options:

■ -ansi is equivalent to -std=c89.
■ -fma enables automatic generation of floating-point fused multiply-add instructions.
■ -pedantic enforces strict conformance with errors/warnings for non-ANSI constructs.
■ (x86) -preserve_argvalues saves copies of register-based function arguments in the

stack.
■ -staticlib, when used with -library=sunperf, links statically with the Sun

performance libraries.

1.2 Special x86 Notes

24 Oracle Solaris Studio 12.4: C User's Guide • March 2015

■ -std specifies the C language standard. -std=c11 is the default compiler mode.
■ -xdebuginfo controls how much debugging and observability information is emitted.
■ -xglobalize controls globalization of file static variables but not functions.
■ -xinline_param allows for changing the heuristics used by the compiler for deciding

when to inline a function call.
■ -xinline_report generates a report written to standard output on the inlining of

functions by the compiler.
■ -xipo_build reduces compile time by avoiding optimizations during the initial pass

through the compiler, optimizing only at link time.
■ -xkeep_unref keeps definitions of unreferenced functions and variables.
■ -xlang overrides the default libc behavior as specified by the -std flag.
■ -xpatchpadding reserves an area of memory before the start of each function.
■ -xprevise produces a static analysis of the source code that can be viewed using the

Code Analyzer.
■ (Oracle Solaris) -xsegment_align causes the driver to include a special mapfile on the

link line.
■ -xthroughput indicates that the application will be run in situations where many

processes are simultaneously running on the system.
■ -xunboundsym specifies whether the program contains references to dynamically bound

symbols.

1.2 Special x86 Notes

Be aware of the following important issues when compiling for x86 Solaris platforms.

■ Programs compiled with -xarch set to sse, sse2, sse2a,sse3, or beyond must be run only
on platforms that provide these extensions and features.

■ With this release, the default instruction set and the meaning of -xarch=generic has
changed to sse2. Now, compiling without specifying a target platform option results in an
sse2 binary incompatible with older Pentium III or earlier systems.

■ If you compile and link in separate steps, always link using the compiler and with the same
-xarch setting to ensure that the correct startup routine is linked.

■ Numerical results on x86 might differ from results on SPARC due to the x86 80-bit floating-
point registers. To minimize these differences, use the -fstore option or compile with
-xarch=sse2 if the hardware supports SSE2.

■ Numerical results can also differ between Solaris and Linux because the intrinsic math
libraries (for example, sin(x)) are not the same.

1.3 Binary Compatibility Verification

Chapter 1 • Introduction to the C Compiler 25

1.3 Binary Compatibility Verification

On Solaris systems, beginning with Solaris Studio 11, program binaries compiled with the
Oracle Solaris Studio compilers are marked with architecture hardware flags indicating the
instruction sets assumed by the compiled binary. At runtime, these marker flags are checked to
verify that the binary can run on the hardware it is attempting to execute on.

Running programs that do not contain these architecture hardware flags on platforms that
are not enabled with the appropriate features or instruction set extensions could result in
segmentation faults or incorrect results occurring without any explicit warning messages.

This warning extends also to programs that employ .il inline assembly language functions
or __asm() assembler code that use SSE, SSE2, SSE2a, and SSE3 and newer instructions and
extensions.

1.4 Compiling for 64–Bit Platforms

Use the -m32 option to compile for the ILP32 32–bit model. Use the —m64 option to compile for
the LP64 64–bit model.

The ILP32 model specifies that C-language int, long, and pointer data types are all 32 bits
wide. The LP64 model specifies that long and pointer data types are all 64 bits wide. The
Oracle Solaris and Linux OS also support large files and large arrays under the LP64 memory
model.

When you compile with —m64, the resulting executable works only on 64-bit UltraSPARC or
x86 processors under Solaris OS or Linux OS running a 64-bit kernel. Compilation, linking,
and execution of 64-bit objects can only take place in a Solaris or Linux OS that supports 64-bit
execution.

1.5 Standards Conformance

The term C11 used in this book refers to the ISO/IEC 9899:2011 C programming language. The
term C99 refers to the ISO/IEC 9899:1999 C programming language. The term C90 refers to
the ISO/IEC 9899:1990 C programming language.

This compiler supports the language features, as described in Appendix C, “Features of C11”,
of the C11 standard on Solaris platforms when you specify -std=c11.

This compiler is in full compliance with the C99 standard on Solaris platforms when you
specify -std=c99 -pedantic.

1.6 C Readme File

26 Oracle Solaris Studio 12.4: C User's Guide • March 2015

This compiler also conforms with the ISO/IEC 9899:1990, Programming Languages- C
standard when you specify -std=c89 -pedantic.

Because the compiler also supports traditional K&R C (Kernighan and Ritchie, or pre-ANSI C),
it can ease your migration to ISO C.

For information about C90 implementation-specific behavior, see Appendix F,
“Implementation-Defined ISO/IEC C90 Behavior”.

For more information about C11 features, see Appendix C, “Features of C11”.

For more information about C99 features, see Appendix D, “Features of C99”.

1.6 C Readme File

The C compiler’s readme file is now part of the What's New in Oracle Solaris Studio 12.4
guide. It highlights important information about the compiler, including:

■ Information discovered after the manuals were printed
■ New and changed features
■ Software corrections
■ Problems and workarounds
■ Limitations and incompatibilities

You can access the What's New guide from the Oracle Solaris Studio 12.4 documentation page
at http://www.oracle.com/technetwork/server-storage/solarisstudio/documentation.

1.7 Man Pages

Online reference manual (man) pages provide immediate documentation about a command,
function, subroutine, and so on.

You can display the man page for the C compiler by running the command:

example% man cc

Throughout the C documentation, man page references appear with the topic name and man
section number: cc(1) is accessed with man cc. Other sections, denoted by ieee_flags(3M), for
example, are accessed using the -s option on the man command:

example% man -s 3M ieee_flags

http://www.oracle.com/technetwork/server-storage/solarisstudio/documentation

1.8 Organization of the Compiler

Chapter 1 • Introduction to the C Compiler 27

1.8 Organization of the Compiler

The C compilation system consists of a compiler, an assembler, and a link editor. The cc
command invokes each of these components automatically unless you use command-line
options to specify otherwise.

Table A-14 discusses all the options available with cc.

The following figure shows the organization of the C compilation system.

1.8 Organization of the Compiler

28 Oracle Solaris Studio 12.4: C User's Guide • March 2015

FIGURE 1-1 Organization of the C Compilation System

1.9 C-Related Programming Tools

Chapter 1 • Introduction to the C Compiler 29

The following table summarizes the components of the compilation system.

TABLE 1-1 Components of the C Compilation System

Component Description Notes on Use

cpp Preprocessor -Xs only

acomp Compiler

ssbd Static synchronization bug detection (SPARC)

iropt Code optimizer -O, -xO2, -xO3, -xO4, -xO5, -
fast

fbe Assembler

cg Code generator, inliner, assembler

ipo Interprocedural Optimizer

postopt Postoptimizer (SPARC)

ube Code generator (x86)

ld Linker

mcs Manipulate comment section -mr

1.9 C-Related Programming Tools

A number of tools are available to aid in developing, maintaining, and improving your C
programs. The two most closely tied to C, cscope and lint, are described in this book, and man
pages exist for each of these tools.

30 Oracle Solaris Studio 12.4: C User's Guide • March 2015

Chapter 2 • C-Compiler Implementation-Specific Information 31

 2 ♦ ♦ ♦ C H A P T E R 2

C-Compiler Implementation-Specific Information

This chapter documents areas specific to the C compiler. The information is organized into
language extensions and the environment.

The C compiler is compatible with some of the features of the C language described in the new
ISO C standard, ISO/IEC 9899:2011. If you need to compile code that is compatible with the
previous C standard, ISO/IEC 9899:1999, use -std=c99. If you need to compile code that is
compatible with theISO/IEC 9899:1990 C standard (and amendment 1), use -std=c89.

2.1 Constants

This section contains information related to constants that are specific to the Oracle Solaris
Studio C compiler.

2.1.1 Integer Constants
Decimal, octal, and hexadecimal integral constants can be suffixed to indicate type, as shown in
the following table.

TABLE 2-1 Data Type Suffixes

Suffix Type

u or U unsigned

l or L long

ll or LL long long (not available with -std=c89 -pedantic)

lu, LU, Lu, lU, ul, uL, Ul, or UL unsigned long

llu, LLU, LLu, llU, ull, ULL, uLL, Ull unsigned long long (not available with -std=c89 -
pedantic)

With the -std=c99 or -std=c11, the compiler uses the first item of the following list in which
the value can be represented, as required by the size of the constant:

2.2 Linker Scoping Specifiers

32 Oracle Solaris Studio 12.4: C User's Guide • March 2015

■ int

■ long int

■ long long int

The compiler issues a warning if the value exceeds the largest value a long long int can
represent.

With the -std=c89, the compiler uses the first item of the following list in which the value
can be represented, as required by the size of the constant, when assigning types to unsuffixed
constants:

■ int

■ long int

■ unsigned long int

■ long long int

■ unsigned long long int

2.1.2 Character Constants
A multiple-character constant that is not an escape sequence has a value derived from the
numeric values of each character. For example, the constant ’123’ has a value of:

0 ’3’ ’2’ ’1’

or 0x333231.

With the -Xs option, the value is:

0 ’1’ ’2’ ’3’

or 0x313233.

2.2 Linker Scoping Specifiers

The following declaration specifiers help hide declarations and definitions of extern symbols.
By using these specifiers, you no longer need to use mapfiles for linker scoping. You can also
control the default setting for variable scoping by specifying -xldscope on the command line.
For more information, see “B.2.123 -xldscope={v}” on page 280.

2.3 Thread Local Storage Specifier

Chapter 2 • C-Compiler Implementation-Specific Information 33

TABLE 2-2 Declaration Specifiers

Value Meaning

__global The symbol has global linker scoping and is the least restrictive linker scoping. All
references to the symbol bind to the definition in the first dynamic module that defines
the symbol. This linker scoping is the current linker scoping for extern symbols.

__symbolic The symbol has symbolic linker scoping and is more restrictive than global linker
scoping. All references to the symbol from within the dynamic module being linked
bind to the symbol defined within the module. Outside of the module, the symbol
appears as though it were global. This linker scoping corresponds to the linker option -
Bsymbolic. For more information about the linker, see ld(1).

__hidden The symbol has hidden linker scoping. Hidden linker scoping is more restrictive than
symbolic and global linker scoping. All references within a dynamic module bind to a
definition within that module. The symbol will not be visible outside of the module.

An object or function may be redeclared with a more restrictive specifier, but may not be
redeclared with a less restrictive specifier. A symbol may not be declared with a different
specifier once the symbol has been defined.

__global is the least restrictive scoping, __symbolic is more restrictive, and __hidden is the
most restrictive scoping.

2.3 Thread Local Storage Specifier
Take advantage of thread-local storage by declaring thread-local variables. A thread-local
variable declaration consists of a normal variable declaration with the addition of the variable
specifier __thread. For more information, see “B.2.174 -xthreadvar[=o]” on page 316.

You must include the __thread specifier in the first declaration of the thread variable in the
source file being compiled.

You can only use the __thread specifier in the declaration of an object with static storage
duration. You can statically initialize a thread variable as you would any other object of static-
storage duration.

Variables that you declare with the __thread specifier have the same linker binding as they
would without the __thread specifier. This includes tentative definitions, such as declarations
without initializers.

The address of a thread variable is not a constant. Therefore, the address-of operator (&) for
a thread variable is evaluated at run time and returns the address of the thread variable for the
current thread. As a consequence, objects of static storage duration are initialized dynamically
to the address of a thread variable.

The address of a thread variable is stable for the lifetime of the corresponding thread. Any
thread in the process can freely use the address of a thread variable during the variable’s

2.4 Floating Point, Nonstandard Mode

34 Oracle Solaris Studio 12.4: C User's Guide • March 2015

lifetime. You cannot use a thread variable’s address after its thread terminates. After a thread
terminates, all addresses of that thread’s variables are invalid.

2.4 Floating Point, Nonstandard Mode
This section provides a summary of IEEE 754 floating-point default arithmetic, which is
“nonstop.” Underflows are “gradual.” For more detailed information, see the Numerical
Computation Guide.

Nonstop means that execution does not halt on occurrences like division by zero, floating-point
overflow, or invalid operation exceptions. For example, consider the following, where x is zero
and y is positive:

z = y / x;

By default, z is set to the value +Inf, and execution continues. With the -fnonstd option,
however, this code causes an exit, such as a core dump.

The following example shows how gradual underflow works. Suppose you have the following
code:

x = 10;

for (i = 0; i < LARGE_NUMBER; i++)

x = x / 10;

The first time through the loop, x is set to 1; the second time to 0.1; the third time to 0.01; and
so on. Eventually, x reaches the lower limit of the machine’s capacity to represent its value.
What happens the next time the loop runs?

Say that the smallest number characterizable is 1.234567e-38

The next time the loop runs, the number is modified by “stealing” from the mantissa and
“giving” to the exponent so the new value is 1.23456e-39 and, subsequently, 1.2345e-40 and
so on. This behavior is known as “gradual underflow,” and is the default. In nonstandard mode,
none of this “stealing” takes place, and x is simply set to zero.

2.5 Labels as Values

The C compiler recognizes the extension to C known as computed goto. Computed goto
enables runtime determination of branching destinations. The address of a label can be acquired
by using the ’&&’ operator and assigned to a pointer of type void *:

void *ptr;

...

2.5 Labels as Values

Chapter 2 • C-Compiler Implementation-Specific Information 35

ptr = &&label1;

A later goto statement can branch to label1 through ptr:

goto *ptr;

Because ptr is computed at runtime, ptr can take on the address of any label that is in-scope
and the goto statement can branch to it.

One way of using computed goto is for the implementation of a jump table:

static void *ptrarray[] = { &&label1, &&label2, &&label3 };

Now the array elements can be selected by indexing:

goto *ptrarray[i];

Addresses of labels can be computed only from the current function scope. Attempting to take
addresses of labels out of the current function yields unpredictable results.

The jump table works similarly to a switch statement although the jump table can make it
more difficult to follow program flow. A notable difference is that the switch-statement jump-
destinations are all in the forward direction from the switch reserved word. Using computed
goto to implement a jump table enables branching in both forward and reverse directions.

#include <stdio.h>

void foo()

{

 void *ptr;

 ptr = &&label1;

 goto *ptr;

 printf("Failed!\n");

 return;

 label1:

 printf("Passed!\n");

 return;

}

int main(void)

{

 void *ptr;

 ptr = &&label1;

 goto *ptr;

 printf("Failed!\n");

 return 0;

 label1:

2.6 long long Data Type

36 Oracle Solaris Studio 12.4: C User's Guide • March 2015

 foo();

 return 0;

}

The following example also makes use of a jump table to control program flow:

#include <stdio.h>

int main(void)

{

 int i = 0;

 static void * ptr[3]={&&label1, &&label2, &&label3};

 goto *ptr[i];

 label1:

 printf("label1\n");

 return 0;

 label2:

 printf("label2\n");

 return 0;

 label3:

 printf("label3\n");

 return 0;

}

%example: a.out

%example: label1

Another application of computed goto is as an interpreter for threaded code. The label
addresses within the interpreter function can be stored in the threaded code for fast dispatching.

2.6 long long Data Type

When you compile with -std=c89 , the Oracle Solaris Studio C compiler includes the data
types long long and unsigned long long, which are similar to the data type long. The long
long data type stores 64 bits of information; long stores 32 bits of information when compiling
with -m32. The long data type stores 64 bits when compiling with -m64. The long long data
type is not available in -std=c89 -pedantic (a warning is issued).

2.6.1 Printing long long Data Types

To print or scan long long data types, prefix the conversion specifier with the letters ll. For
example, to print llvar, a variable of long long data type, in signed decimal format, use:

2.7 Case Ranges in Switch Statements

Chapter 2 • C-Compiler Implementation-Specific Information 37

printf("%lld\n", llvar);

2.6.2 Usual Arithmetic Conversions

Some binary operators convert the types of their operands to yield a common type, which
is also the type of the result. These conversions are called the usual arithmetic conversions.
For -std=c11 the usual arithmetic conversions are defined in the 9899:2011 ISO/IEC C
Programming Language standard. For -std=c99 the usual arithmetic conversions are defined in
the 9899:1999 ISO/IEC C Programming Language standard. For -std=c89 -pedantic the usual
arithmetic conversions are defined in the 9899:1990 ISO/IEC C Programming Language. For -
std=c89 -pedantic=no and -Xs flags the usual arithmetic conversions are defined as follows:

■ If either operand is type long double, the other operand is converted to long double.
■ Otherwise, if either operand has type double, the other operand is converted to double.
■ Otherwise, if either operand has type float, the other operand is converted to float.
■ Otherwise, the integral promotions are performed on both operands. Then, these rules are

applied:
■ If either operand has type unsigned long long int, the other operator is converted to

unsigned long long int.
■ If either operand has type long long int, the other operator is converted to long long

int.
■ If either operand has type unsigned long int, the other operand is converted to

unsigned long int.
■ Otherwise, when you compile with -m64, if one operand has type long int and the other

has type unsigned int, both operands are converted to unsigned long int.
■ Otherwise, if either operand has type long int, the other operand is converted to long

int.
■ Otherwise, if either operand has type unsigned int, the other operand is converted to

unsigned int.
■ Otherwise, both operands have type int.

2.7 Case Ranges in Switch Statements

In standard C, a case label in a switch statement can have only one associated value. Solaris
Studio C allows an extension found in some compilers, known as case ranges.

A case range specifies a range of values to associate with an individual case label. The case
range syntax is:

2.7 Case Ranges in Switch Statements

38 Oracle Solaris Studio 12.4: C User's Guide • March 2015

case low ... high :

A case range behaves as if case labels had been specified for each value in the given range from
low to high inclusive. (If low and high are equal, the case range specifies only the one value.)
The lower and upper values must conform to the requirements of the C standard, that is, they
must be valid integer constant expressions (C standard 6.8.4.2). Case ranges and case labels can
be freely intermixed, and multiple case ranges can be specified within a switch statement.

The following programming example illustrates case ranges in switch statements:

enum kind { alpha, number, white, other };

enum kind char_class(char c)

{

 enum kind result;

 switch(c) {

 case 'a' ... 'z':

 case 'A' ... 'Z':

 result = alpha;

 break;

 case '0' ... '9':

 result = number;

 break;

 case ' ':

 case '\n':

 case '\t':

 case '\r':

 case '\v':

 result = white;

 break;

 default:

 result = other;

 break;

 }

 return result; }

Error conditions in addition to existing requirements on case labels are as follows::

■ If the value of low is greater than the value of high, the compiler rejects the code with an
error message. Because the behavior of other compilers is not consistent, an error condition
is the only way to ensure that programs will not behave differently when compiled by other
compilers.

■ If the value of a case label falls within a case range that has already been used in the switch
statement, the compiler rejects the code with an error message.

■ If case ranges overlap, the compiler rejects the code with an error message.

If an endpoint of a case range is a numeric literal, leave whitespace around the ellipsis (...) to
avoid one of the dots being treated as a decimal point.

Example:

 case 0...4; // error

 case 5 ... 9; // ok

2.8 Assertions

Chapter 2 • C-Compiler Implementation-Specific Information 39

2.8 Assertions

A line of the form:

#assert predicate (token-sequence)

associates the token-sequence with the predicate in the assertion name space (separate from the
space used for macro definitions). The predicate must be an identifier token.

#assert predicate

asserts that predicate exists, but does not associate any token sequence with it.

The compiler provides the following predefined predicates by default when -pedantic is not in
effect:

#assert system (unix)

#assert machine (sparc)

#assert machine (i386)(x86)
#assert cpu (sparc)

#assert cpu (i386)(x86)

lint provides the following predefinition predicate by default when -pedantic is not in effect:

#assert lint (on)

Any assertion may be removed by using #unassert, which uses the same syntax as assert.
Using #unassert with no argument deletes all assertions on the predicate; specifying an
assertion deletes only that assertion.

An assertion may be tested in a #if statement with the following syntax:

#if #predicate(non-empty token-list)

For example, the predefined predicate system can be tested with the following line, which
evaluates true.

#if #system(unix)

2.9 Supported Attributes

The compiler implements the following attributes (__attribute__ ((keyword))) for
compatibility. Spelling the attribute keyword within double underscores, __keyword__, is also
accepted.

2.9 Supported Attributes

40 Oracle Solaris Studio 12.4: C User's Guide • March 2015

alias Makes a name an alias for a declared function or variable name

aligned Roughly equivalent to #pragma align. Generates a warning and is
ignored if used on variable length arrays.

always_inline Equivalent to #pragma inline and -xinline

const Equivalent to #pragma no_side_effect

constructor Equivalent to #pragma init

deprecated(msg) Results in a warning if the variable or function is used anywhere in the
source file. The optional argument msg must be a string and will be
included in the warning message if issued.

destructor Equivalent to #pragma fini

malloc Equivalent to #pragma returns_new_memory

noinline Equivalent to #pragma no_inline and -xinline

noreturn Equivalent to #pragma does_not_return

pure Equivalent to #pragma does_not_write_global_data

packed Equivalent to #pragma pack()

returns_twice Equivalent to #pragma unknown_control_flow

vector_size Indicates that a variable or a type name (created using typedef)
represents a vector.

visibility Provides linker scoping as described in “2.2 Linker
Scoping Specifiers” on page 32. Syntax is:
__attribute__((visibility(“visibility-type”))), where visibility-type
is one of:

default Same as __global linker scoping

hidden Same as __hidden linker scoping

internal Same as __symbolic linker scoping

weak Equivalent to #pragma weak

2.10 Warnings and Errors

Chapter 2 • C-Compiler Implementation-Specific Information 41

2.9.1 __has_attribute function-like macro

The predefined function-like macro

__has_attribute(attr)

evaluates to 1 if attr is a supported attribute. It evaluates to 0 otherwise. Example usage:

#ifndef __has_attribute // if we don't have __has_attribute, ignore it

 #define __has_attribute(x) 0

#endif

#if __has_attribute(deprecated)

 #define DEPRECATED __attribute__((deprecated))

#else

 #define DEPRECATED // attribute "deprecated" not available

#endif

void DEPRECATED old_func(int); // use the attribute if available

2.10 Warnings and Errors

The #error and #warning preprocessor directives can be used to generate compile-time
diagnostics.

#error token-string Issue error diagnostic token-string and terminate compilation

#warning token-
string

Issue warning diagnostic token-string and continue compilation

2.11 Pragmas

Preprocessing lines of the following form specify implementation-defined actions.

#pragma pp-tokens

The following #pragmas are recognized by the compilation system. The compiler ignores
unrecognized pragmas. Using the -v option will generate a warning for unrecognized pragmas.

2.11.1 align

#pragma align integer (variable[, variable])

2.11 Pragmas

42 Oracle Solaris Studio 12.4: C User's Guide • March 2015

The align pragma makes all the mentioned variables memory aligned to integer bytes,
overriding the default. The following limitations apply:

■ The integer value must be a power of 2 between 1 and 128. Valid values are: 1, 2, 4, 8, 16,
32, 64, and 128.

■ variable is a global or static variable.
■ If the specified alignment is smaller than the default, the default is used.
■ The pragma line must appear before the declaration of the variables which it mentions.

Otherwise, it is ignored.
■ Any variable that is mentioned but not declared in the text following the pragma line is

ignored. For example:

#pragma align 64 (aninteger, astring, astruct)

int aninteger;

static char astring[256];

struct astruct{int a; char *b;};

2.11.2 c99

#pragma c99(“implicit” | “no%implicit”)

This pragma controls diagnostics for implicit function declarations. If the c99 pragma value is
set to “implicit” (note the use of quotation marks), a warning is generated when the compiler
finds an implicit function declaration. If the c99 pragma value is set to “no%implicit” (note
the use of quotation marks) the compiler silently accepts implicit function declaration until the
pragma value is reset.

The value of the -std option affects the default state of this pragma. For -std=c11 or -std=c99,
the default state is #pragma c99(“implicit”). For -std=c89, the default state is #pragma
c99(“no%implicit”).

2.11.3 does_not_read_global_data

#pragma does_not_read_global_data (funcname [, funcname])

This pragma asserts that the specified list of routines do not read global data directly or
indirectly. This behavior results in better optimization of code around calls to such routines. In
particular, assignment statements or stores could be moved around such calls.

The specified functions must be declared with a prototype or empty parameter list prior to this
pragma. If the assertion about global access is not true, then the behavior of the program is
undefined.

2.11 Pragmas

Chapter 2 • C-Compiler Implementation-Specific Information 43

2.11.4 does_not_return

#pragma does_not_return (funcname [, funcname])

This pragma is an assertion to the compiler that the calls to the specified routines will not
return. The compiler can then perform optimizations consistent with that assumption. For
example, register life-times will terminate at the call sites, which in turn enables more
optimizations.

If the specified function does return, then the behavior of the program is undefined. This
pragma is permitted only after the specified functions are declared with a prototype or empty
parameter list, as shown in the following example:

extern void exit(int);

#pragma does_not_return(exit)

extern void __assert(int);

#pragma does_not_return(__assert)

2.11.5 does_not_write_global_data

#pragma does_not_write_global_data (funcname [, funcname])

This pragma asserts that the specified list of routines do not write global data directly or
indirectly. This behavior results in better optimization of code around calls to such routines. In
particular, assignment statements or stores could be moved around such calls.

The specified functions must be declared with a prototype or empty parameter list prior to this
pragma. If the assertion about global access is not true, then the behavior of the program is
undefined.

2.11.6 dumpmacros

#pragma dumpmacros(value[,value...])

Use this pragma when you want to see how macros are behaving in your program. This pragma
provides information such as macro defines, undefines, and instances of usage. It prints output
to the standard error (stderr) based on the order macros are processed. The dumpmacros
pragma is in effect through the end of the file or until it reaches a #pragma end_dumpmacros.
See “2.11.7 end_dumpmacros” on page 44. The following table lists the possible values for
value:

2.11 Pragmas

44 Oracle Solaris Studio 12.4: C User's Guide • March 2015

Value Meaning

defs Print all macro defines

undefs Print all macro undefines

use Print information about the macros used

loc Print location (path name and line number) also for defs, undefs, and use

conds Print use information for macros used in conditional directives

sys Print all macros defines, undefines, and use information for macros in system header
files

Note - The suboptions loc, conds, and sys are qualifiers for defs, undefs and use
options. By themselves, loc, conds, and sys have no effect. For example, #pragma
dumpmacros(loc,conds,sys) has no effect.

The dumpmacros pragma has the same effect as the command-line option,
however, the pragma overrides the command-line option. See “B.2.105 -
xdumpmacros[=value[,value...]]” on page 263.

The dumpmacros pragma does not nest so the following lines of code stop printing macro
information when the #pragma end_dumpmacros is processed:

#pragma dumpmacros(defs, undefs)

#pragma dumpmacros(defs, undefs)

...

#pragma end_dumpmacros

The effect of the dumpmacros pragma is cumulative. The following lines

#pragma dumpmacros(defs, undefs)

#pragma dumpmacros(loc)

have the same effect as:

#pragma dumpmacros(defs, undefs, loc)

If you use the option #pragma dumpmacros(use,no%loc), the name of each macro that is used is
printed only once. If you use the option #pragma dumpmacros(use,loc), the location and macro
name is printed every time a macro is used.

2.11.7 end_dumpmacros
#pragma end_dumpmacros

This pragma marks the end of a dumpmacros pragma and stops printing information about
macros. If you do not use an end_dumpmacros pragma after a dumpmacros pragma, the
dumpmacros pragma continues to generate output through the end of the file.

2.11 Pragmas

Chapter 2 • C-Compiler Implementation-Specific Information 45

2.11.8 error_messages

#pragma error_messages (on|off|default, tag… tag)

The error_messages pragma provides control within the source program over the messages
issued by the C compiler and lint. For the C compiler, the pragma has an effect on warning
messages only. The -w option of the C compiler overrides this pragma by suppressing all
warning messages.

■ #pragma error_messages (on, tag… tag)

The on option ends the scope of any preceding #pragma error_messages option, such as
the off option, and overrides the effect of the -erroff option.

■ #pragma error_messages (off, tag… tag)

The off option prevents the C compiler or the lint program from issuing the given messages
beginning with the token specified in the pragma. The scope of the pragma for any specified
error message remains in effect until overridden by another error_messages pragma, or the
end of compilation.

■ #pragma error_messages (default, tag… tag)

The default option ends the scope of any preceding #pragma error_messages directive for
the specified tags.

2.11.9 fini

#pragma fini (f1[, f2…,fn]

Causes the implementation to call functions f1 to fn (finalization functions) after it calls main()
routine. Such functions are expected to be of type void and to accept no arguments. They are
called either when a program terminates under program control or when the containing shared
object is removed from memory. As with initialization functions, finalization functions are
executed in the order processed by the link editors.

You should be careful when a finalization function affects the global-program state. For
example, unless an interface explicitly states what happens when you use a system-library
finalization function, you should capture and restore any global state information, such as the
value of errno, that the system-library finalization function may change.

Such functions are called once for every time they appear in a #pragma fini directive.

2.11 Pragmas

46 Oracle Solaris Studio 12.4: C User's Guide • March 2015

2.11.10 hdrstop

#pragma hdrstop

The hdrstop pragma must be placed after the last header file to identify the end of the viable
prefix in each source file that is to share the same precompiled-header file. For example,
consider the following files:

example% cat a.c

#include "a.h"

#include "b.h"

#include "c.h"

#include <stdio.h>

#include "d.h"

.

.

.

example% cat b.h

#include "a.h"

#include "b.h"

#include "c.h"

The viable source prefix ends at c.h so you would insert a #pragma hdrstop after c.h in each
file.

#pragma hdrstop must only appear at the end of the viable prefix of a source file that is
specified with the cc command. Do not specify #pragma hdrstop in any include file.

2.11.11 ident

#pragma ident string

Places string in the .comment section of the executable.

2.11.12 init

#pragma init (f1[, f2…,fn])

Causes the implementation to call functions f1 to fn (initialization functions) before it calls
main(). Such functions are expected to be of type void and to accept no arguments. They are
called while constructing the memory image of the program at the start of execution. Initializers
in a shared object are executed during the operation that brings the shared object into memory,

2.11 Pragmas

Chapter 2 • C-Compiler Implementation-Specific Information 47

either at program startup or some dynamic loading operation, such as dlopen(). The only
ordering of calls to initialization functions is the order in which they were processed by the link
editors, both static and dynamic.

Take extra precautions when an initialization function affects the global-program state. For
example, unless an interface explicitly states what happens when you use a system-library
initialization-function, you should capture and restore any global state information, such as the
value of errno, that the system-library initialization-function may change.

Such functions are called once for every time they appear in a #pragma init directive.

2.11.13 inline

#pragma [no_]inline (funcname[, funcname])

This pragma controls the inlining of routine names listed in the argument of the pragma. The
scope of this pragma is over the entire file. Only global inlining control is allowed — call-site
specific control is not permitted by this pragma.

#pragma inline provides a suggestion to the compiler to inline the calls in the current file
that match the list of routines listed in the pragma. This suggestion may be ignored in certain
situations. For example, the suggestion is ignored when the body of the function is in a different
module and the crossfile option is not used.

#pragma no_inline provides a suggestion to the compiler not to inline the calls in the current
file that match the list of routines listed in the pragma.

Both #pragma inline and #pragma no_inline are permitted only after the function is declared
with a prototype or empty parameter list, as shown in the following example.

static void foo(int);

static int bar(int, char *);

#pragma inline(foo, bar)

For more information, see the descriptions of compiler options -xldscope, -xinline, -xO, and
-xipo.

2.11.14 int_to_unsigned

#pragma int_to_unsigned (funcname)

For a function that returns a type of unsigned, in -Xt or -Xs mode, changes the function return
to be of type int.

2.11 Pragmas

48 Oracle Solaris Studio 12.4: C User's Guide • March 2015

2.11.15 must_have_frame
#pragma must_have_frame(funcname[,funcname])

This pragma requests that the specified list of functions always be compiled to have a complete
stack frame (as defined in the System V ABI). You must declare the prototype for a function
before listing that function with this pragma.

extern void foo(int);

extern void bar(int);

#pragma must_have_frame(foo, bar)

This pragma is permitted only after the prototype for the specified functions is declared. The
pragma must precede the end of the function.

void foo(int) {

 .

 #pragma must_have_frame(foo)

 .

 return;

 }

2.11.16 nomemorydepend

(SPARC) #pragma nomemorydepend

This pragma specifies that within any iteration of a loop, there are no memory dependences
caused by references to the same memory address. This pragma enables the compiler to
schedule instructions more effectively within a single iteration of a loop. If any memory
dependences exist within any iteration of a loop, the results of executing the program are
undefined. The compiler takes advantage of this information at optimization level of 3 or above.

The scope of this pragma begins with the pragma and ends with whichever of the following
situations occurs first: the beginning of the next block, the next for loop within the current
block, the end of the current block. The pragma applies to the next for loop prior to the end of
the pragma's scope.

2.11.17 no_side_effect

#pragma no_side_effect(funcname[, funcname…])

funcname specifies the name of a function within the current translation unit. The function must
be declared with a prototype or empty parameter list prior to the pragma. The pragma must

2.11 Pragmas

Chapter 2 • C-Compiler Implementation-Specific Information 49

be specified prior to the function’s definition. For the named function, funcname, the pragma
declares that the function has no side effects of any kind and returns a result value that depends
only on the passed arguments. In addition, funcname and any called descendants behave as
follows:

■ Do not access for reading or writing any part of the program state visible in the caller at the
point of the call.

■ Do not perform I/O.
■ Do not change any part of the program state not visible at the point of the call.

The compiler can use this information when doing optimizations using the function. If the
function does have side effects, the results of executing a program that calls this function are
undefined. The compiler takes advantage of this information at optimization level of 3 or above.

2.11.18 opt

#pragma opt level (funcname[, funcname])

funcname specifies the name of a function defined within the current translation unit. The value
of level specifies the optimization level for the named function. You can assign optimization
levels 0, 1, 2, 3, 4, or 5. You can disable optimization by setting level to 0. The functions must
be declared with a prototype or empty parameter list prior to the pragma. The pragma must
precede the definitions of the functions to be optimized.

The level of optimization for any function listed in the pragma is reduced to the value of -
xmaxopt. The pragma is ignored when -xmaxopt=off.

2.11.19 pack

#pragma pack(n)

Use #pragma pack(n)to affect member packing of a structure or a union. By default, members
of a structure or union are aligned on their natural boundaries; one byte for a char, two bytes for
a short, four bytes for an integer, and so on. If n is present, it must be a power of 2 specifying
the strictest natural alignment for any structure or union member. Zero is not accepted.

The #pragma pack(n) directive applies to all structure or union definitions that follow it
until the next pack directive. If the same structure or union is defined in different translation
units with different packing, your program may fail in unpredictable ways. In particular, you
should not use #pragma pack(n) prior to including a header that defines the interface of a
precompiled library. The recommended usage of #pragma pack(n) is to place it in your program

2.11 Pragmas

50 Oracle Solaris Studio 12.4: C User's Guide • March 2015

code immediately before any structure or union to be packed. Follow the packed structure
immediately with #pragma pack().

You can use #pragma pack(n) to specify an alignment boundary for a structure or union
member. For example, #pragma pack(2) aligns int, long, long long, float, double,
long double, and pointers on two byte boundaries instead of their natural alignment
boundaries.

If n is the same or greater than the strictest alignment on your platform, (four on x86 with -m32,
eight on SPARC with —m32, and 16 with -m64), the directive has the effect of natural alignment.
Also, if n is omitted, member alignment reverts to the natural alignment boundaries.

Note that when you use #pragma pack, the alignment of the packed structure or union itself
is the same as its more strictly aligned member. Therefore any declaration of that struct or
union will be at the pack alignment. For example, a struct with only chars has no alignment
restrictions, whereas a struct containing a double would be aligned on an 8-byte boundary.

Note - If you use #pragma pack to align struct or union members on boundaries other
than their natural boundaries, accessing these fields usually leads to a bus error on
SPARC. To avoid this error, be sure to also specify the -xmemalign option. See “B.2.138 -
xmemalign=ab” on page 286, for the optimal way to compile such programs.

2.11.20 pipeloop

#pragma pipeloop(n)

This pragma accepts a positive constant integer value, or 0, for the argument n. This pragma
specifies that a loop can be pipelined and the minimum dependence distance of the loop-carried
dependence is n. If the distance is 0, then the loop is effectively a Fortran-style doall loop and
should be pipelined on the target processors. If the distance is greater than 0, then the compiler
(pipeliner) will only try to pipeline n successive iterations. The compiler takes advantage of this
information at optimization level of 3 or above.

The scope of this pragma begins with the pragma and ends with whichever of the following
situations occurs first: the beginning of the next block, the next for loop within the current
block, the end of the current block. The pragma applies to the next for loop prior to the end of
the pragma's scope.

2.11.21 rarely_called

#pragma rarely_called(funcname[, funcname])

2.11 Pragmas

Chapter 2 • C-Compiler Implementation-Specific Information 51

This pragma provides a hint to the compiler that the specified functions are called infrequently.
The compiler can then perform profile-feedback style optimizations on the call-sites of
such routines without the overhead of a profile-collections phase. Because this pragma is a
suggestion, the compiler can choose not perform any optimizations based on this pragma.

The specified functions must be declared with a prototype or empty parameter list prior to this
pragma. The following example shows #pragma rarely_called:

extern void error (char *message);

#pragma rarely_called(error)

2.11.22 redefine_extname

#pragma redefine_extname old_extname new_extname

This pragma causes every externally defined occurrence of the name old_extname in the object
code to be replaced by new_extname. As a result, the linker sees the name new_extname only at
link time. If #pragma redefine_extname is encountered after the first use of old_extname, as a
function definition, an initializer, or an expression, the effect is undefined. (This pragma is not
supported in– Xs mode.)

When #pragma redefine_extname is available, the compiler provides a definition of the
predefined macro __PRAGMA_REDEFINE_EXTNAME, which you can use to write portable code that
works both with and without #pragma redefine_extname.

#pragma redefine_extname provides an efficient means of redefining a function interface
when the name of the function cannot be changed. For example, if the original function
definition must be maintained in a library for compatibility with existing programs along with
a new definition of the same function for use by new programs, you can add the new function
definition to the library by a new name. Subsequently, the header file that declares the function
uses #pragma redefine_extname so that all of the uses of the function are linked with the new
definition of that function.

#if defined(__STDC__)

#ifdef __PRAGMA_REDEFINE_EXTNAME

extern int myroutine(const long *, int *);

#pragma redefine_extname myroutine __fixed_myroutine

#else /* __PRAGMA_REDEFINE_EXTNAME */

static int

myroutine(const long * arg1, int * arg2)

{

 extern int __myroutine(const long *, int*);

 return (__myroutine(arg1, arg2));

}

2.11 Pragmas

52 Oracle Solaris Studio 12.4: C User's Guide • March 2015

#endif /* __PRAGMA_REDEFINE_EXTNAME */

#else /* __STDC__ */

#ifdef __PRAGMA_REDEFINE_EXTNAME

extern int myroutine();

#pragma redefine_extname myroutine __fixed_myroutine

#else /* __PRAGMA_REDEFINE_EXTNAME */

static int

myroutine(arg1, arg2)

 long *arg1;

 int *arg2;

{

 extern int __fixed_myroutine();

 return (__fixed_myroutine(arg1, arg2));

}

#endif /* __PRAGMA_REDEFINE_EXTNAME */

#endif /* __STDC__ */

2.11.23 returns_new_memory

#pragma returns_new_memory (funcname[, funcname])

This pragma asserts that the return value of the specified functions does not alias with any
memory at the call site. In effect, this call returns a new memory location. This information
enables the optimizer to better track pointer values and clarify memory location, resulting in
improved scheduling, pipelining, and parallelization of loops. However, if the assertion is false,
the behavior of the program is undefined.

This pragma is permitted only after the specified functions are declared with a prototype or
empty parameter list as shown in the following example.

void *malloc(unsigned);

#pragma returns_new_memory(malloc)

2.11.24 unknown_control_flow

#pragma unknown_control_flow (funcname[, funcname])

To describe procedures that alter the flow graphs of their callers, use the #pragma
unknown_control_flow directive. Typically, this directive accompanies declarations of
functions like setjmp(). On Oracle Solaris systems, the include file <setjmp.h> contains the
following code:

2.11 Pragmas

Chapter 2 • C-Compiler Implementation-Specific Information 53

extern int setjmp();

#pragma unknown_control_flow(setjmp)

Other functions with properties like those of setjmp() must be declared similarly.

In principle, an optimizer that recognizes this attribute could insert the appropriate edges in the
control flow graph, thus handling function calls safely in functions that call setjmp() while
maintaining the ability to optimize code in unaffected parts of the flow graph.

The specified functions must be declared with a prototype or empty parameter list prior to this
pragma.

2.11.25 unroll

#pragma unroll (unroll_factor)

This pragma accepts a positive constant integer value for the argument unroll_factor. Setting
unroll_factor other than 1 serves as a suggestion to the compiler that the specified loop should
be unrolled by the given factor when possible. If unroll_factor is 1, this directive commands
the compiler that the not to unroll the loop. The compiler takes advantage of this information at
optimization levels 3 or above.

The scope of this pragma begins with the pragma and ends with whichever of the following
situations occurs first: the beginning of the next block, the next for loop within the current
block, the end of the current block. The pragma applies to the next for loop prior to the end of
the pragma's scope.

2.11.26 warn_missing_parameter_info

#pragma [no_]warn_missing_parameter_info

When you specify #pragma warn_missing_parameter_info, the compiler issues a warning for
a function call whose function declaration contains no parameter type information. Consider the
following example:

example% cat -n t.c
 1 #pragma warn_missing_parameter_info

 2

 3 int foo();

 4

 5 int bar () {

 6

 7 int i;

2.12 Predefined Names

54 Oracle Solaris Studio 12.4: C User's Guide • March 2015

 8

 9 i = foo(i);

 10

 11 return i;

 12 }

% cc t.c -c -errtags

"t.c", line 9: warning: function foo has no prototype (E_NO_MISSED_PARAMS_ALLOWED)

example%

#pragma no_warn_missing_parameter_info turns off the effect of any previous #pragma
warn_missing_parameter_info.

By default, #pragma no_warn_missing_parameter_info is in effect.

2.11.27 weak

#pragma weak symbol1 [= symbol2]

This pragma defines a weak global symbol. It is used mainly when building libraries. The linker
does not produce an error message if it is unable to resolve a weak symbol.

#pragma weak symbol

defines symbol to be a weak symbol. The linker does not produce an error message if it does not
find a definition for symbol.

#pragma weak symbol1 = symbol2

defines symbol1 to be a weak symbol, which is an alias for the symbol symbol2. This form of
the pragma can only be used in the same translation unit where symbol2 is defined, either in the
source files or one of its included header files. Otherwise, a compilation error will result.

If your program calls but does not define symbol1 and symbol1 is a weak symbol in a library
being linked, the linker uses the definition from that library. However, if your program defines
its own version of symbol1, then the program’s definition is used and the weak global definition
of symbol1 in the library is not used. If the program directly calls symbol2, the definition from
the library is used. A duplicate definition of symbol2 causes an error.

2.12 Predefined Names

A current list of predefinitions is given in the cc(1) man page.

The __STDC__ identifier is predefined as an object-like macro as shown in the following table.

2.13 Preserving the Value of errno

Chapter 2 • C-Compiler Implementation-Specific Information 55

TABLE 2-3 Predefined Identifier __STDC__

Expands to: When compiled with

1 -Xc or -pedantic

0 -Xa,-Xt or -std without -pedantic flag

Not defined -Xs

The compiler issues a warning if __STDC__ is undefined (#undef __STDC__). __STDC__ is not
defined in -Xs mode.

2.13 Preserving the Value of errno

With -fast, the compiler is free to replace calls to floating-point functions with equivalent
optimized code that does not set the errno variable. Further, -fast also defines the macro
__MATHERR_ERRNO_DONTCARE, which requests the compiler ignore ensuring the validity of errno
and floating-point exceptions raised. As a result, user code that relies on the value of errno
or an appropriate floating-point exception after a floating-point function call could produce
inconsistent results.

One way around this problem is to avoid compiling such codes with -fast. However, if -fast
optimization is required and the code depends on the value of errno being set properly after
floating-point library calls, you should compile with the following options

-xbuiltin=none -U__MATHERR_ERRNO_DONTCARE -xnolibmopt -xnolibmil

These options should follow -fast on the command line to inhibit the compiler from
optimizing out such library calls and to ensure that errno is handled properly.

2.14 Extensions

The C compiler implements a number of extensions to the C language.

2.14.1 _Restrict Keyword

The C compiler supports the _Restrict keyword as an equivalent to the restrict keyword
in the C99 standard. The _Restrict keyword is available with any -std flag value when -
pedantic is not specified, whereas the restrict keyword is only available with -std=c99 or -
std=c11.

2.14 Extensions

56 Oracle Solaris Studio 12.4: C User's Guide • March 2015

For more information about supported C11 features, see Appendix C, “Features of C11”.

For more information about supported C99 features, see Appendix D, “Features of C99”.

2.14.2 __asm Keyword

The __asm keyword (note the initial double-underscore) is a synonym for the asm keyword. The
compiler will issue a warning for uses of the asm keyword when -pedantic is in effect. Use
__asm to avoid these warnings. The __asm statement has the form:

__asm("string");

where string is a valid assembly language statement.

The statement emits the given assembler text directly into the assembly file. A basic asm
statement declared at file scope, rather than function scope, is referred to as a global asm
statement. Other compilers refer to this as a toplevel asm statement.

Global asm statements are emitted in the order they are specified, retaining their order relative to
each other and maintaining their position relative to surrounding functions.

At higher optimization levels, the compiler may remove functions that it has determined are not
referenced. Because the compiler cannot evaluate which functions are referenced from within
global assembly language statements, they might be removed inadvertently.

Note that extended asm statements, those which provide a template and operand specifications,
are not allowed to be global. __asm and __asm__ are synonyms for the asm keyword and can be
used interchangeably.

When specifying architecture-specific instructions it might be necessary to specify an
appropriate -xarch value to avoid compilation errors.

2.14.3 __inline and __inline__

__inline and __inline__ are synonyms for the inline keyword (C standard, section 6.4.1)

2.14.4 __builtin_constant_p()

__builtin_constant_p is a compiler builtin function. It takes a single numeric argument
and returns 1 if the argument is a compile-time constant. A return value of 0 means that the
compiler can not determine whether the argument is a compile-time constant. A typical use of
this built-in function is in manual compile-time optimizations in macros.

2.15 Environment Variables

Chapter 2 • C-Compiler Implementation-Specific Information 57

2.14.5 __FUNCTION__ and __PRETTY_FUNCTION__

__FUNCTION__ and __PRETTY_FUNCTION__ are predefined identifiers that contain the name of
the lexically enclosing function. They are functionally equivalent to the predefined identifier,
__func__. On Oracle Solaris platforms, __FUNCTION__ and __PRETTY_FUNCTION__ are not
available in -Xs and -Xc modes or when -pedantic is in effect.

2.14.6 untyped _Complex

As an extension, untyped _Complex now defaults to double _Complex under the default
language standard option. With -pedantic (strict conformance with errors/warnings for non-
ANSI constructs), a warning is generated.

2.14.7 __alignof__

The __alignof__ operator allows you to inquire about how an object is aligned, or the
minimum alignment usually required by a type. Its syntax is just like sizeof.

For example, __alignof__ (float) is 4.

If the operand of __alignof__ is an object rather than a type, its value is the required alignment
for its type, taking into account any minimum alignment specified with an alignment related
__attribute__ extension.

2.15 Environment Variables

This section lists environment variables that enable you to control the compilation and runtime
environment.

See also the Oracle Solaris Studio OpenMP API User's Guide for descriptions of environment
variables related to OpenMP and automatic parallelization.

2.15.1 SUN_PROFDATA

Controls the name of the file in which the -xprofile=collect command stores execution-
frequency data.

2.16 How to Specify Include Files

58 Oracle Solaris Studio 12.4: C User's Guide • March 2015

2.15.2 SUN_PROFDATA_DIR

Controls in which directory the -xprofile=collect command places the execution-frequency
data file.

2.15.3 TMPDIR

cc normally creates temporary files in the directory /tmp. You can specify another directory by
setting the environment variable TMPDIR to the directory of your choice. However, if TMPDIR
is not a valid directory, cc uses /tmp. The -xtemp option has precedence over the TMPDIR
environment variable.

Bourne shell:

$ TMPDIR=dir; export TMPDIR

C shell:

% setenv TMPDIR dir

2.16 How to Specify Include Files
To include any of the standard header files supplied with the C compilation system, use this
format:

#include <stdio.h>

The angle brackets (<>) cause the preprocessor to search for the header file in the standard place
for header files on your system, usually the /usr/include directory.

The format is different for header files that you have stored in your own directories:

#include "header.h"

For statements of the form #include "foo.h" (where quotation marks are used), the compiler
searches for include files in the following order:

1. The current directory (that is, the directory containing the “including” file)
2. The directories named with -I options, if any
3. The /usr/include directory

If your header file is not in the same directory as the source files that include it, use the -I
compiler option to specify the path of the directory in which it is stored. For instance, suppose
you have included both stdio.h and header.h in the source file mycode.c:

#include <stdio.h>

2.16 How to Specify Include Files

Chapter 2 • C-Compiler Implementation-Specific Information 59

#include "header.h"

Suppose further that header.h is stored in the directory../defs. You might then want to use
this command:

% cc –I../defs mycode.c

It directs the preprocessor to search for header.h first in the directory containing mycode.c,
then in the directory ../defs, and finally in the standard place. It also directs the preprocessor
to search for stdio.h first in ../defs, then in the standard place. The difference is that the
current directory is searched only for header files whose names you have enclosed in quotation
marks.

You can specify the– I option more than once on the cc command-line. The preprocessor
searches the specified directories in the order they appear. You can specify multiple options to
cc on the same command line:

% cc– o prog– I../defs mycode.c

2.16.1 Using the -I- Option to Change the Search
Algorithm
The -I- option gives more control over the default search rules. Only the first -I- option on
the command line works as described in this section.

include files of the form #include "foo.h", search the directories in the following order:

1. The directories named with -I options (both before and after -I-)

2. The directories for compiler-provided C++ header files, ANSI C header files, and special-
purpose files

3. The /usr/include directory

include files of the form #include <foo.h>, search the directories in the following order:

1.The directories named in the -I options that appear after -I-

2. The directories for compiler-provided C++ header files, ANSI C header files, and special-
purpose files

3. The /usr/include directory

The following example shows the results of using -I- when compiling prog.c.

prog.c

#include "a.h"

#include <b.h>

2.16 How to Specify Include Files

60 Oracle Solaris Studio 12.4: C User's Guide • March 2015

#include "c.h"

c.h

#ifndef _C_H_1

#define _C_H_1

int c1;

#endif

int/a.h

#ifndef _A_H

#define _A_H

#include "c.h"

int a;

#endif

int/b.h

#ifndef _B_H

#define _B_H

#include <c.h>

int b;

#endif

int/c.h

#ifndef _C_H_2

#define _C_H_2

int c2;

#endif

The following command shows the default behavior of searching the current directory (the
directory of the including file) for include statements of the form #include "foo.h". When
processing the #include "c.h" statement in inc/a.h, the preprocessor includes the c.h header
file from the inc subdirectory. When processing the #include "c.h" statement in prog.c, the
preprocessor includes the c.h file from the directory containing prog.c. Note that the -H option
instructs the compiler to print the paths of the included files.

example% cc -c -Iinc -H prog.c

2.17 Compiling in Free-Standing Environments

Chapter 2 • C-Compiler Implementation-Specific Information 61

inc/a.h

 inc/c.h

inc/b.h

 inc/c.h

c.h

The next command shows the effect of the -I- option. The preprocessor does not look in the
including directory first when it processes statements of the form #include "foo.h". Instead,
it searches the directories named by the -I options in the order that they appear in the command
line. When processing the #include "c.h" statement in inc/a.h, the preprocessor includes the
./c.h header file instead of the inc/c.h header file.

example% cc -c -I. -I- -Iinc -H prog.c
inc/a.h

 ./c.h

inc/b.h

 inc/c.h

./c.h

2.16.1.1 Warnings

Never specify the compiler installation area, /usr/include, /lib, or /usr/lib, as search
directories.

For more information, see “B.2.40 -I[-|dir]” on page 228.

2.17 Compiling in Free-Standing Environments

The Oracle Solaris Studio C compiler supports compilation of programs that link with the
standard C library and execute in a runtime environment that includes the standard C library
and other runtime support libraries. The C standard terms such an environment a hosted
environment. An environment that does not provide the standard library functions is termed a
free-standing environment

The C compiler does not support the general case of compilation for free-standing environments
because certain runtime support functions that might be called from compiled code are
generally available only in the standard C library. The problem is that source code translation
by the compiler may introduce calls to runtime support functions in source code constructs
that do not contain function calls and these functions are generally not available for use in a
freestanding environment. Consider the following example:

% cat -n lldiv.c
 1 void

 2 lldiv(

 3 long long *x,

 4 long long *y,

2.17 Compiling in Free-Standing Environments

62 Oracle Solaris Studio 12.4: C User's Guide • March 2015

 5 long long *z)

 6 {

 7 *z = *x / *y ;

 8 }

% cc -c -m32 lldiv.c

% nm lldiv.o | grep " U "
 0x00000000 U __div64

% cc -c -m64 lldiv.c

% nm lldiv.o | grep " U "

In this example, when the source file lldiv.c is compiled to run on a 32–bit platform using the
-m32 option, translation of the statement at line 7 results in an external reference to a runtime
support function named __div64, which is only available in the 32–bit version of the standard C
library.

When the same source file is compiled to run on a 64–bit platform using the -m64 option, the
compiler uses the target machine's 64–bit arithmetic instruction set, obviating the need for a
runtime support function in the 64–bit version of the standard C library.

Although the use of the C compiler to target a free-standing environment is not supported
in the general case, the compiler can be used, with caveats, to compile code for a particular
freestanding environment, namely the Oracle Solaris kernel and device drivers.

Code that runs in the Oracle Solaris kernel, including device drivers, must be written so that
external function calls reference only functions that are available within the kernel. To make
this possible, the following guidelines are recommended:

■ Do not include header files for libraries that run only in user mode.
■ Do not call functions in the standard C library or in other user mode libraries unless the

same function is known to exist in the kernel.
■ Do not use floating point or complex types.
■ Do not use compiler options associated with runtime support libraries (such as, -xprofile,

-xopenmp, and -xautopar).
Relocatable object files associated with particular compiler options are documented in the
FILES section of the cc(1) man page. Runtime support libraries associated with C compiler
options are documented under the descriptions of the associated options.

As noted previously, the compiler might generate calls to runtime support functions as a result
of source code translation. For the specific case of the Oracle Solaris kernel, the set of runtime
support functions that might be called is smaller than the general case, since the kernel does not
use floating-point or complex types, math library functions, or compiler options associated with
runtime support libraries.

The following table lists runtime support functions that may be called in code compiled to run
in the Oracle Solaris kernel as a result of source code translation by the C compiler. The table
lists platforms on which source code translation generates calls, names of called functions,
and source constructs or compiler features that cause generation of function calls. Only 64–bit
platforms are listed, since all versions of Solaris that support the C compiler run a 64–bit kernel.

2.18 Compiler Support for Intel MMX and Extended x86 Platform Intrinsics

Chapter 2 • C-Compiler Implementation-Specific Information 63

When compiling for 32–bit instruction sets, additional machine-specific support functions may
be called, due to specific limitations of the instruction set.

TABLE 2-4 Runtime Support Functions

Function 64–bit Platform Reference From

__align_cpy_n SPARC returning large structs; n is 1,2,4,8,
or 16

_memcpy x86 returning large structs

_memcpy x86 and SPARC vectorization

_memmove x86 and SPARC vectorization

_memset x86 and SPARC vectorization

Note that some versions of the kernel do not provide _memmove(), _memcpy(), or _memset(),
but do provide kernel mode analogues of the user mode routines memmove(), memcpy(), and
memset().

It is important to note that when compiling Solaris kernel code for x86 platforms, the option
-xvector=%none must be used. By default, the C compiler generates code using XMM registers
on x86 platforms to improve performance of general user applications, including applications
that do not use C floating point arithmetic types. Use of XMM registers is inappropriate for
kernel code.

Additional information can be found in the Writing Device Drivers Guide, and the SPARC
Compliance Definition, version 2.4.

2.18 Compiler Support for Intel MMX and Extended x86
Platform Intrinsics

Prototypes declared in the mmintrin.h header file support the Intel MMX intrinsics, and are
provided for compatibility.

Specific header files provide prototypes for additional extended platform intrinsics, as shown in
the following table. The location of these headers depends on where the compiler is installed.
For example, if the compiler is located in /opt/Solarisstudio12.3/bin, the headers will be in
/opt/Solarisstudio12.3/prod/include/cc/sys.

TABLE 2-5 MMX and Extended x86 Intrinsics

x86 Platform Header File

SSE mmintrin.h

SSE2 xmmintrin.h

2.19 Compiler Support for SPARC64™X and SPARC64™X+ Platform Intrinsics

64 Oracle Solaris Studio 12.4: C User's Guide • March 2015

x86 Platform Header File

SSE3 pmmintrin.h

SSSE3 tmmintrin.h

SSE4A ammintrin.h

SSE4.1 smmintrin.h

SSE4.2 nmmintrin.h

AES encryption and PCLMULQDQ wmmintrin.h

AVX, CORE-AVX-I, AVX2 immintrin.h

Each header file includes the prototypes before it in the table. For example, on an SSE4.1
platform, including smmintrin.h in the user program declares the intrinsic names supporting
SSE4 .1, SSSE3, SSE3, SSE2, SSE, and MMX platforms because smmintrin.h includes
tmmintrin.h, which includes pmmintrin.h, and so on down to mmintrin.h.

Note that ammintrin.h is published by AMD and is not included in any of the Intel intrinsic
headers. ammintrin.h includes pmmintrin.h, so by including ammintrin.h, all AMD SSE4A
as well as Intel SSE3, SSE2, SSE and MMX functions are declared.

Alternatively, the single Oracle Solaris Studio header file sunmedia_intrin.h includes
declarations from all the Intel header files, but does not include the AMD header file
ammintrin.h.

Be aware that code deployed on a host platform (for example, SSE3) that calls any super-set
intrinsic function (for example, for AVX) will not load on Solaris platforms and could fail with
undefined behavior or incorrect results on Linux platforms. Deploy programs that call these
platform-specific intrinsics only on the platforms that support them.

These are system header files and should appear in your program as shown in this example:

#include <nmmintrin.h>

Refer to the latest Intel C++ compiler reference guides for details on these intrinsics.

2.19 Compiler Support for SPARC64™X and SPARC64™X
+ Platform Intrinsics

Oracle Solaris Studio compilers provide intrinsic types and functions to support special features
that SPARC64™X and SPARC64™X+ have, namely, SIMD data and Decimal Floating-Point
numbers.

You must specify both -xarch=[sparcace|sparcaceplus] and -m64 options to compile source
files which use these intrinsics.

2.19 Compiler Support for SPARC64™X and SPARC64™X+ Platform Intrinsics

Chapter 2 • C-Compiler Implementation-Specific Information 65

2.19.1 SIMD Intrinsics

The SIMD data provided by SPARC64™X and SPARC64™X+ can hold a pair of double or
unsigned long long values. The compiler has a few intrinsic types and functions to handle
these data.

2.19.1.1 Types and Operations

Prototypes declared in the sparcace_types.h header file support the following two SIMD data
types that SPARC64™X and SPARC64™X+ provide:

__m128d a pair of double-precision floating-point numbers

__m128i a pair of signed/unsigned 64-bit integers

SIMD data type

■ is handled as a basic type, not aggregate; it has no internal structures. You need to use a
intrinsic function to get a part of the data.

■ can be modified with type modifiers: const and/or volatile.
■ can be specified with storage class specifiers: auto, static, register, extern and/or

typedef.
■ can be elements of an aggregate: array, struct and/or union.

SIMD data type variables

■ can be a formal parameter of a function.
■ can be an actual argument of a function call.
■ can be the return value of a function.
■ can be lhs or rhs of assignment operator "=".
■ can be the operand of address operator "&".
■ can be the operand of sizeof operator.
■ can be the operand of typeof operator.

Literal syntax is not supported for SIMD data types; you can build a SIMD data type constant
with a proper intrinsic function.

2.19.1.2 Extensions to the Application Binary Interface

Passing/receiving a SIMD value to/from a function

Up to the first 8 SIMD arguments are passed via floating-point registers. The first halves
of SIMD arguments occupy %d0, %d4, %d8, ..., %d28. The second halves of SIMD arguments

2.19 Compiler Support for SPARC64™X and SPARC64™X+ Platform Intrinsics

66 Oracle Solaris Studio 12.4: C User's Guide • March 2015

occupy %d256, %d260, %d264, ..., %d284. If there are nine or more SIMD arguments, they are
passed via the stack area.

Returning a SIMD value from a function

The first half of a SIMD return value appears in %d0. The second half appears in %d256.

Storing a SIMD value in memory

A SIMD type value should be stored at a 16 byte-aligned address in order to be loaded/
stored with SIMD load(ldd,s)/store(std,s).

2.19.1.3 Intrinsic functions

The intrinsic functions declared in the sparcace_types.h header file are as follows:

__m128d __sparcace_set_m128d(double a, double b)

This function builds an __m128d type data from a pair of double-precision floating-point
numbers and returns the object.

__m128i __sparcace_set_m128i(unsigned long long a, unsigned long long b)

This function builds an __m128i type data from a pair of unsigned long long type
numbers and returns the object.

double __sparcace_extract_m128d(__m128d a, int imm

This function extracts a double-precision floating-point number from the __m128d type data
passed as the first parameter. The value extracted is controlled by the second parameter.
The second parameter must be an integer and must be a constant of 0 or 1.

unsigned long long __sparcace_extract_m128i(__m128i a, int imm)

This function extracts an unsigned long long type number from the __m128i type data
passed as the first parameter. The value extracted is controlled by the second parameter.
The second parameter must be an integer and must be a constant of 0 or 1.

2.19.2 Decimal Floating-Point Intrinsics

SPARC64™X and SPARC64™X+ support the Decimal Floating-Point data type and
operations. The data format conforms to 64bit DPD defined in IEEE 754-2008. The compiler
provides the type and various functions to handle the data.

2.19 Compiler Support for SPARC64™X and SPARC64™X+ Platform Intrinsics

Chapter 2 • C-Compiler Implementation-Specific Information 67

2.19.2.1 Types and Operations

To represent Decimal Floating-Point numbers, _Decimal64 intrinsic type is declared in
dpd_conf.h. You must include the header file prior to use of the type as in the following
example:

#include <dpd_conf.h>

int main(void) {

 _Decimal64 dd;

 ...

 return 0;

}

_Decimal64 type

■ can be modified with type modifiers: const and/or volatile.
■ can be specified with storage class specifiers: auto, static, register, extern and/or

typedef.
■ can be an element of an aggregate: array, struct and/or union.

_Decimal64 type variables

■ can be a formal parameter of a function.
■ can be an actual argument of a function call.
■ can be the return value of a function.
■ can be lhs or rhs of assignment operator "=".
■ can be the operand of address operator "&".
■ can be the operand of sizeof operator.
■ can be the operand of typeof operator.

Intrinsic functions are provided for other operations such as arithmetic, comparison, or type
conversion.

Literal syntax for _Decimal64 is not supported. Intrinsics for type conversion can be used
instead.

Memory alignment of an _Decimal64 type data is the same as a 64-bit Binary Floating-Point
number.

2.19.2.2 Macros and Pragmas

The __DEC_FP_INTR macro is defined as 1 when -xarch=[sparcace|sparcaceplus] and -m64
are specified. This macro is useful to determine whether the compiler supports the Decimal
Floating-Point intrinsics feature.

The DEC_EVAL_METHOD macro required by IEEE 754-2008 is defined as 1 when dpd_conf.h is
included.

2.19 Compiler Support for SPARC64™X and SPARC64™X+ Platform Intrinsics

68 Oracle Solaris Studio 12.4: C User's Guide • March 2015

The __STDC_DEC_FP__ macro is not defined, as the compiler does not fully support the
functionality described in ISO/IEC TR 24732.

The #pragma FLOAT_CONST_DECIMAL_64 required by IEEE 754-2008 is not supported.

2.19.2.3 Intrinsic functions

Intrinsic functions listed below are declared in dpd_conf.h. They are useful to operate
_Decimal64 type variables.

void __dpd64_store(const _Decimal64 src, _Decimal64 * const addr)

This function stores src into memory addressed by addr. addr must be aligned on an 8-byte
boundary, or the behavior is undefined regardless of the -xmemalign setting.

_Decimal64 __dpd64_load(const _Decimal64 * const addr)

This function loads _Decimal64 type value from memory addressed by addr, and returns it.
addr must be aligned on an 8-byte boundary, or the behavior is undefined regardless of the
-xmemalign setting.

_Decimal64 __dpd64_add(_Decimal64 src1, _Decimal64 src2)

This function adds src1 and src2, and returns the result. A floating-point exception is
thrown in accordance with the IEEE 754-2008 standard.

_Decimal64 __dpd64_sub(_Decimal64 src1, _Decimal64 src2)

This function subtracts src2 from src1, and returns the result. A floating-point exception is
thrown in accordance with the IEEE 754-2008 standard.

_Decimal64 __dpd64_mul(_Decimal64 src1, _Decimal64 src2)

This function multiplies src1 and src2, and returns the result. A floating-point exception is
thrown in accordance with the IEEE 754-2008 standard.

_Decimal64 __dpd64_div(_Decimal64 src1, _Decimal64 src2)

This function divides src1 by src2, and returns the result. A floating-point exception is
thrown in accordance with the IEEE 754-2008 standard.

_Decimal64 __dpd64_abs(_Decimal64 src)

This function computes the absolute value of src and returns the result. No floating-point
exception is thrown even if src is signaling NaN.

_Decimal64 __dpd64_neg(_Decimal64 src)

This function reverses the sign of src and returns the result. No floating-point exception is
thrown even if src is signaling NaN.

2.19 Compiler Support for SPARC64™X and SPARC64™X+ Platform Intrinsics

Chapter 2 • C-Compiler Implementation-Specific Information 69

int __dpd64_cmpeq(_Decimal64 src1, _Decimal64 src2)

This function returns non-0 when src1 is equal to src2, otherwise it returns 0. The
treatments of NaN, Inf and negative-Zero conforms to IEEE 754-2008.

int __dpd64_cmpne(_Decimal64 src1, _Decimal64 src2)

This function returns non-0 when src1 is not equal to src2, otherwise it returns 0. The
treatments of NaN, Inf and negative-Zero conforms to IEEE 754-2008.

int __dpd64_cmpgt(_Decimal64 src1, _Decimal64 src2)

This function returns non-0 when src1 is grater than src2, otherwise it returns 0. The
treatments of NaN, Inf and negative-Zero conforms to IEEE 754-2008.

int __dpd64_cmpge(_Decimal64 src1, _Decimal64 src2)

This function returns non-0 when src1 is grater than or equal to src2, otherwise it returns 0.
The treatments of NaN, Inf and negative-Zero conforms to IEEE 754-2008.

int __dpd64_cmplt(_Decimal64 src1, _Decimal64 src2)

This function returns non-0 when src1 is less than src2, otherwise it returns 0. The
treatments of NaN, Inf and negative-Zero conforms to IEEE 754-2008.

int __dpd64_cmple(_Decimal64 src1, _Decimal64 src2)

This function returns non-0 when src1 is less than or equal to src2, otherwise it returns 0.
The treatments of NaN, Inf and negative-Zero conforms to IEEE 754-2008.

_Decimal64 __dpd64_convert_from_int64(int64_t src)

This function converts a 64-bit signed integer value in src to a Decimal Floating-Point
value and returns the result.

_Decimal64 __dpd64_convert_from_uint64(uint64_t src)

This function converts a 64-bit unsigned integer value in src to a Decimal Floating-Point
value and returns the result.

_Decimal64 __dpd64_convert_from_double(double src)

This function converts a Binary Floating-Point value in src to a Decimal Floating-Point
value and returns the result.

int64_t __dpd64_convert_to_int64(_Decimal64 src)

This function converts a Decimal Floating-Point value in src to a 64-bit signed integer
value and returns the result.

uint64_t __dpd64_convert_to_uint64(_Decimal64 src)

This function converts a Decimal Floating-Point value in src to a 64-bit unsigned integer
value and returns the result.

2.19 Compiler Support for SPARC64™X and SPARC64™X+ Platform Intrinsics

70 Oracle Solaris Studio 12.4: C User's Guide • March 2015

double __dpd64_convert_to_double(_Decimal64 src)

This function converts a Decimal Floating-Point value in src to a Binary Floating-Point
value and returns the result.

int __dpd_getround(void)

This function retrieves the current rounding mode for _Decimal64. The value is defined in
dpd_conf.h, as follows:

__DPD_ROUND_NEAREST

round to nearest, ties to even

__DPD_ROUND_TOZERO

round toward zero

__DPD_ROUND_POSITIVE

round toward positive infinity

__DPD_ROUND_NEGATIVE

round toward negative infinity

__DPD_ROUND_NEARESTFROMZERO

round to nearest, ties away from zero

The initial value of the rounding mode for _Decimal64 is __DPD_ROUND_NEAREST. Note that
the -fround option does not alter the rounding mode for _Decimal64.

int __dpd_setround(int r)

This function set the rounding mode for _Decimal64 to r. r should be one those listed
above. It returns 0 on success or non-0 on failure.

Chapter 3 • Parallelizing C Code 71

 3 ♦ ♦ ♦ C H A P T E R 3

Parallelizing C Code

The Oracle Solaris Studio C compiler can optimize code to run on shared-memory
multiprocessor/multicore/multithreaded systems. The compiled code can execute in parallel
using the multiple processors on the system. Both explicit (using OpenMP) and automatic
parallelization methods are available. This chapter explains how you can take advantage of the
compiler’s parallelizing features.

3.1 Parallelizing Using OpenMP

The C compiler supports the OpenMP API for parallelization. The API consists of a set of
pragmas, runtime routines, and environment variables. Information on the OpenMP API
specification is at the OpenMP web site at http://www.openmp.org.

To enable the compiler’s OpenMP support and recognition of the OpenMP pragmas, compile
with the -xopenmp option. Without -xopenmp, the compiler treats the OpenMP pragmas as
comments. See “B.2.145 -xopenmp[={parallel|noopt|none}]” on page 291.

For information specific to this implementation of OpenMP, including pragmas, environment
variables, and runtime routines, see the Oracle Solaris Studio OpenMP API User's Guide.

3.2 Automatic Parallelization

The C compiler generates parallel code for those loops that it determines are safe to parallelize.
Typically, these loops have iterations that are independent of each other. For such loops, the
order in which iterations are executed or if they are executed in parallel, does not matter. Many,
though not all, vector loops fall into this category.

Because of the way aliasing works in C, determining the safety of parallelization is difficult.
To help the compiler, Solaris Studio C offers pragmas and additional pointer qualifications to
provide aliasing information known to the programmer that the compiler cannot determine. See
Chapter 5, “Type-Based Alias Analysis” for more information.

http://www.openmp.org

3.2 Automatic Parallelization

72 Oracle Solaris Studio 12.4: C User's Guide • March 2015

The following example illustrates how to enable and control parallelized C:

% cc -fast -xO4 -xautopar example.c -o example

This compiler command generates an executable called example, which can be executed
normally. To find out how to take advantage of multiprocessor execution, see “B.2.87 -
xautopar” on page 249.

3.2.1 Data Dependence and Interference

The C compiler performs analysis on loops in programs to determine whether executing
different iterations of the loops in parallel is safe. The purpose of this analysis is to determine
whether any two iterations of the loop could interfere with each other. Typically, this problem
occurs if one iteration of a loop could read a variable while another iteration is writing the very
same variable. Consider the following program fragment:

EXAMPLE 3-1 Loop With Dependence

for (i=1; i < 1000; i++) {

 sum = sum + a[i]; /* S1 */

}

In this example, any two successive iterations, i and i+1, will write and read the same variable
sum. Therefore, in order for these two iterations to execute in parallel some form of locking on
the variable would be required. Otherwise, allowing the two iterations to execute in parallel is
not safe.

However, the use of locks imposes overhead that might slow down the program. The C
compiler will not ordinarily parallelize the loop in the example above because there is a data
dependence between two iterations of the loop. Consider another example:

EXAMPLE 3-2 Loop Without Dependence

for (i=1; i < 1000; i++) {

 a[i] = 2 * a[i]; /* S1 */

}

In this case, each iteration of the loop references a different array element. Therefore different
iterations of the loop can be executed in any order. They may be executed in parallel without
any locks because no two data elements of different iterations can possibly interfere.

The analysis performed by the compiler to determine whether two different iterations of a loop
could reference the same variable is called data dependence analysis. Data dependences prevent
loop parallelization if one of the references writes to the variable. The dependence analysis
performed by the compiler can have three outcomes:

3.2 Automatic Parallelization

Chapter 3 • Parallelizing C Code 73

■ There is a dependence, in which case, executing the loop in parallel is not safe.
■ There is no dependence, in which case the loop may safely execute in parallel using an

arbitrary number of processors.
■ The dependence cannot be determined. The compiler assumes, for safety, that a dependence

might prevent parallel execution of the loop and will not parallelize the loop.

In the following example, whether two iterations of the loop write to the same element of array
a depends on whether array b contains duplicate elements. Unless the compiler can determine
this fact, it must assume there might be a dependence and not parallelize the loop.

EXAMPLE 3-3 Loop That Might Contain Dependencies

for (i=1; i < 1000; i++) {

 a[b[i]] = 2 * a[i];

}

3.2.2 Private Scalars and Private Arrays

For some data dependences, the compiler might still be able to parallelize a loop. Consider the
following example.

EXAMPLE 3-4 Parallelizable Loop With Dependence

for (i=1; i < 1000; i++) {

 t = 2 * a[i]; /* S1 */

 b[i] = t; /* S2 */

}

In this example, assuming that arrays a and b are non-overlapping arrays, there appears to be a
data dependence in any two iterations due to the variable t. The following statements execute
during iterations one and two.

EXAMPLE 3-5 Iterations One and Two

t = 2*a[1]; /* 1 */

b[1] = t; /* 2 */

t = 2*a[2]; /* 3 */

b[2] = t; /* 4 */

Because statements one and three modify the variable t, the compiler cannot execute them in
parallel. However, because the value of t is always computed and used in the same iteration, the
compiler can use a separate copy of t for each iteration. This method eliminates the interference
between different iterations due to such variables. In effect, variable t is used as a private
variable for each thread executing that iteration, as shown in the following example.

3.2 Automatic Parallelization

74 Oracle Solaris Studio 12.4: C User's Guide • March 2015

EXAMPLE 3-6 Variable t as a Private Variable for Each Thread

for (i=1; i < 1000; i++) {

 pt[i] = 2 * a[i]; /* S1 */

 b[i] = pt[i]; /* S2 */

}

In this example, each scalar variable reference t is replaced by an array reference pt. Each
iteration now uses a different element of pt, eliminating any data dependencies between any
two iterations. One problem with this is that it may lead to an extra large array. In practice,
the compiler only allocates one copy of the variable for each thread that participates in the
execution of the loop. Each such variable is, in effect, private to the thread.

The compiler can also privatize array variables to create opportunities for parallel execution of
loops. Consider the following example:

EXAMPLE 3-7 Parallelizable Loop With an Array Variable

for (i=1; i < 1000; i++) {

 for (j=1; j < 1000; j++) {

 x[j] = 2 * a[i]; /* S1 */

 b[i][j] = x[j]; /* S2 */

 }

}

In this example, different iterations of the outer loop modify the same elements of array x,
and thus the outer loop cannot be parallelized. However, if each thread executing the outer
loop iterations has a private copy of the entire array x, then no interference between any two
iterations of the outer loop would occur. The following example illustrates this point.

EXAMPLE 3-8 Parallelizable Loop Using a Privatized Array

for (i=1; i < 1000; i++) {

 for (j=1; j < 1000; j++) {

 px[i][j] = 2 * a[i]; /* S1 */

 b[i][j] = px[i][j]; /* S2 */

 }

}

As in the case of private scalars, you need to expand the array only up to the number of threads
executing in the system. This expansion is done automatically by the compiler by allocating one
copy of the original array in the private space of each thread.

3.2 Automatic Parallelization

Chapter 3 • Parallelizing C Code 75

3.2.3 Storeback
Privatization of variables can be very useful for improving the parallelism in the program.
However, if the private variable is referenced outside the loop then the compiler needs to verify
that it has the right value. Consider the following example:

EXAMPLE 3-9 Parallelized Loop Using Storeback

for (i=1; i < 1000; i++) {

 t = 2 * a[i]; /* S1 */

 b[i] = t; /* S2 */

}

x = t; /* S3 */

In this example, the value of t referenced in statement S3 is the final value of t computed by
the loop. After the variable t has been privatized and the loop has finished executing, the right
value of t needs to be stored back into the original variable. This process is called storeback,
and is accomplished by copying the value of t on the final iteration back to the original location
of variable t. In many cases the compiler can do this automatically, but sometimes the last value
cannot be computed easily.

EXAMPLE 3-10 Loop That Cannot Use Storeback

for (i=1; i < 1000; i++) {

 if (c[i] > x[i]) { /* C1 */

 t = 2 * a[i]; /* S1 */

 b[i] = t; /* S2 */

 }

}

x = t*t; /* S3 */

For correct execution, the value of t in statement S3 is not, usually the value of t on the final
iteration of the loop. In fact, it is the last iteration for which the condition C1 is true. Computing
the final value of t can be difficult in general. In cases like this example, the compiler will not
parallelize the loop.

3.2.4 Reduction Variables
There are cases when there is a real dependence between iterations of a loop that cannot be
removed by simply privatizing the variables causing the dependence. For example, look at the
following code where values are being accumulated from one iteration to the next.

EXAMPLE 3-11 Loop That Might Be Parallelized

for (i=1; i < 1000; i++) {

3.2 Automatic Parallelization

76 Oracle Solaris Studio 12.4: C User's Guide • March 2015

 sum += a[i]*b[i]; /* S1 */

}

In this example, the loop computes the vector product of two arrays into a common variable
called sum. This loop cannot be parallelized in a simple manner. The compiler can take
advantage of the associative nature of the computation in statement S1 and allocate a private
variable called psum[i] for each thread. Each copy of the variable psum[i] is initialized to
0. Each thread computes its own partial sum in its own copy of the variable psum[i]. Before
crossing the barrier, all the partial sums are added onto the original variable sum. In this
example, the variable sum is called a reduction variable because it computes a sum-reduction.
However, one danger of promoting scalar variables to reduction variables is that the manner
in which rounded values are accumulated can change the final value of sum. The compiler
performs this transformation only if you specifically give permission for it to do so.

3.2.5 Loop Transformations
The compiler performs several loop restructuring transformations to help improve the
parallelization of a loop in programs. Some of these transformations can also improve the
single processor execution of loops as well. The transformations performed by the compiler are
described in this section.

3.2.5.1 Loop Distribution

Loops often contain a few statements that cannot be executed in parallel and many statements
that can be executed in parallel. Loop Distribution attempts to remove the sequential statements
into a separate loop and gather the parallelizable statements into a different loop. This process is
illustrated in the following example:

EXAMPLE 3-12 Candidate for Loop Distribution

for (i=0; i < n; i++) {

 x[i] = y[i] + z[i]*w[i]; /* S1 */

 a[i+1] = (a[i-1] + a[i] + a[i+1]/3.0; /* S2 */

 y[i] = z[i] - x[i]; /* S3 */

}

Assuming that arrays x, y, w, a, and z do not overlap, statements S1 and S3 can be parallelized
but statement S2 cannot be. The following example shows how the loop looks after it is split or
distributed into two different loops.

EXAMPLE 3-13 Distributed Loop

/* L1: parallel loop */

for (i=0; i < n; i++) {

3.2 Automatic Parallelization

Chapter 3 • Parallelizing C Code 77

 x[i] = y[i] + z[i]*w[i]; /* S1 */

 y[i] = z[i] - x[i]; /* S3 */

}

/* L2: sequential loop */

for (i=0; i < n; i++) {

 a[i+1] = (a[i-1] + a[i] + a[i+1]/3.0; /* S2 */

}

After this transformation, loop L1 does not contain any statements that prevent the
parallelization of the loop and may be executed in parallel. Loop L2, however, still has a non-
parallelizable statement from the original loop.

Loop distribution is not always profitable or safe to perform. The compiler performs analysis to
determine the safety and profitability of distribution.

3.2.5.2 Loop Fusion

If the granularity of a loop, or the work performed by a loop, is small, the performance gain
from distribution might be insignificant because the overhead of parallel loop startup is too high
compared to the loop workload. In such situations, the compiler uses loop fusion to combine
several loops into a single parallel loop, increasing the granularity of the loop. Loop fusion is
easy and safe when loops with identical trip counts are adjacent to each other. Consider the
following example:

EXAMPLE 3-14 Loops With Small Work Loads

/* L1: short parallel loop */

for (i=0; i < 100; i++) {

 a[i] = a[i] + b[i]; /* S1 */

}

/* L2: another short parallel loop */

for (i=0; i < 100; i++) {

 b[i] = a[i] * d[i]; /* S2 */

}

The two short parallel loops are next to each other, and can be safely combined as follows:

EXAMPLE 3-15 The Two Loops Fused

/* L3: a larger parallel loop */

for (i=0; i < 100; i++) {

 a[i] = a[i] + b[i]; /* S1 */

 b[i] = a[i] * d[i]; /* S2 */

}

The new loop generates half the parallel loop execution overhead. Loop fusion can also help in
other ways. For example if the same data is referenced in two loops, then combining them can
improve the locality of reference.

3.2 Automatic Parallelization

78 Oracle Solaris Studio 12.4: C User's Guide • March 2015

However, loop fusion is not always safe to perform. If loop fusion creates a data dependence
that did not exist previously, the fusion could result in incorrect execution. Consider the
following example:

EXAMPLE 3-16 Unsafe Fusion Candidates

/* L1: short parallel loop */

for (i=0; i < 100; i++) {

 a[i] = a[i] + b[i]; /* S1 */

}

/* L2: a short loop with data dependence */

for (i=0; i < 100; i++) {

 a[i+1] = a[i] * d[i]; /* S2 */

}

If the loops in this example are fused, a data dependence is created from statement S2 to S1.
In effect, the value of a[i] in the right side of statement S1 is computed in statement S2. If
the loops are not fused, this dependence would not occur. The compiler performs safety and
profitability analysis to determine whether loop fusion should be done. Often, the compiler can
fuse an arbitrary number of loops. Increasing the granularity in this manner can sometimes push
a loop far enough up for it to be profitable for parallelization.

3.2.5.3 Loop Interchange

Parallelizing the outermost loop in a nest of loops is generally more profitable because the
overheads incurred are small. However, parallelizing the outermost loops is not always safe
due to dependences that might be carried by such loops. The following example illustrates this
situation.

EXAMPLE 3-17 Nested Loop That Cannot Be Parallelized

for (i=0; i <n; i++) {

 for (j=0; j <n; j++) {

 a[j][i+1] = 2.0*a[j][i-1];

 }

}

In this example, the loop with the index variable i cannot be parallelized because of a
dependency between two successive iterations of the loop. The two loops can be interchanged
and the parallel loop (the j-loop) becomes the outer loop:

EXAMPLE 3-18 Loops Interchanged

for (j=0; j<n; j++) {

 for (i=0; i<n; i++) {

 a[j][i+1] = 2.0*a[j][i-1];

3.2 Automatic Parallelization

Chapter 3 • Parallelizing C Code 79

 }

}

The resulting loop incurs an overhead of parallel work distribution only once, while previously
the overhead was incurred n times. The compiler performs safety and profitability analysis to
determine whether to perform loop interchange.

3.2.6 Aliasing and Parallelization

ISO C aliasing can often prevent loops from getting parallelized. Aliasing occurs when there are
two possible references to the same memory location. Consider the following example:

EXAMPLE 3-19 Loop With Two References to the Same Memory Location

void copy(float a[], float b[], int n) {

 int i;

 for (i=0; i < n; i++) {

 a[i] = b[i]; /* S1 */

 }

}

Because variables a and b are parameters, it is possible that a and b might be pointing to
overlapping regions of memory, for example, if copy were called as follows:

copy (x[10], x[11], 20);

In the called routine, two successive iterations of the copy loop might be reading and writing
the same element of the array x. However, if the routine copy were called as follows, there is no
possibility of overlap in any of the 20 iterations of the loop:

copy (x[10], x[40], 20);

The compiler cannot analyze this situation correctly without information about how the
routine is called. However, the Oracle Solaris Studio C compiler does provide a keyword
extension to standard ISO C to convey this kind of aliasing information. See “3.2.6.2 Restricted
Pointers” on page 80 for more information.

3.2.6.1 Array and Pointer References

Part of the aliasing problem is that the C language can define array referencing and definition
through pointer arithmetic. In order for the compiler to effectively parallelize loops
automatically, all data that is laid out as an array must be referenced using C array reference
syntax and not pointers. If pointer syntax is used, the compiler cannot determine the relationship
of the data between different iterations of a loop. Thus, the compiler will be conservative and
not parallelize the loop.

3.2 Automatic Parallelization

80 Oracle Solaris Studio 12.4: C User's Guide • March 2015

3.2.6.2 Restricted Pointers

In order for a compiler to effectively perform parallel execution of a loop, it needs to determine
whether certain lvalues designate distinct regions of storage. Aliases are lvalues whose regions
of storage are not distinct. Determining whether two pointers to objects are aliases is a difficult
and time consuming process because it could require analysis of the entire program. Consider
function vsq() in the following example:

EXAMPLE 3-20 Loop With Two Pointers

void vsq(int n, double * a, double * b) {

 int i;

 for (i=0; i<n; i++) {

 b[i] = a[i] * a[i];

 }

}

The compiler can parallelize the execution of the different iterations of the loops if it has
determined that pointers a and b access different objects. If there is an overlap in objects
accessed through pointers a and b then it would be unsafe for the compiler to execute the loops
in parallel. At compile time, the compiler cannot determine whether the objects accessed by a
and b overlap by simply analyzing the function vsq(). The compiler might need to analyze the
whole program to get this information.

Restricted pointers are used to specify pointers that designate distinct objects so that the
compiler can perform pointer alias analysis. The following example shows function vsq() in
which function parameters are declared as restricted pointers:

void vsq(int n, double * restrict a, double * restrict b)

Pointers a and b are declared as restricted pointers, so the compiler knows that a and b point to
distinct regions of storage. With this alias information, the compiler is able to parallelize the
loop.

The keyword restrict is a type-qualifier, like volatile, and it shall only qualify pointer types.
There are situations in which you may not want to change the source code. You can specify
that pointer-valued function-parameters be treated as restricted pointers by using the following
command line option:

-xrestrict=[func1,…,funcn]

If a function list is specified, then pointer parameters in the specified functions are treated as
restricted; otherwise, all pointer parameters in the entire C file are treated as restricted. For
example, -xrestrict=vsq, qualifies the pointers a and b given in the first example of the
function vsq() with the keyword restrict.

It is critical that you use restrict correctly. If pointers qualified as restricted pointers point
to objects which are not distinct, the compiler can incorrectly parallelize loops resulting in

3.3 Environment Variables

Chapter 3 • Parallelizing C Code 81

undefined behavior. For example, assume that pointers a and b of function vsq() point to
objects which overlap, such that b[i] and a[i+1] are the same object. If a and b are not
declared as restricted pointers the loops will be executed serially. If a and b are incorrectly
qualified as restricted pointers the compiler may parallelize the execution of the loops, which is
not safe, because b[i+1] should only be computed after b[i] is computed.

3.3 Environment Variables

Some environment variables related to parallelized C are the following. There are additional
environment variables defined by the OpenMP API specification and others that are specific to
the Oracle Solaris Studio implementation. See the Oracle Solaris Studio OpenMP API User's
Guide for descriptions of all parallelization related environment variables.

■ PARALLEL or OMP_NUM_THREADS

Set the PARALLEL or OMP_NUM_THREADS environment variable to specify the number of
threads to use for the program. Refer to the OpenMP API User's Guide for the default
number of threads, if these environment variables are not set.

You can use either PARALLEL or OMP_NUM_THREADS — they are equivalent.
■ SUNW_MP_THR_IDLE

Controls the status of idle threads in an OpenMP program that are waiting at a barrier or
waiting for new parallel regions to work on. See the Oracle Solaris Studio OpenMP API
User's Guide for details.

■ SUNW_MP_WARN

Set this environment variable to TRUE to print warning messages from OpenMP and other
parallelization runtime-systems. See the Oracle Solaris Studio OpenMP API User's Guide
for details.

■ STACKSIZE

The executing program maintains a main memory stack for the master thread and a
distinct stack for each slave thread. Stacks are temporary memory address spaces used to
hold arguments and automatic variables during subprogram executions. The STACKSIZE
environment variable can be used to control the size of the stack for a slave thread. Refer
to the OpenMP API User's Guide for the default slave thread stack size, if this environment
variable is not set.

Note that the setting of the STACKSIZE environment variable has no effect on programs using
the Oracle Solaris Pthreads API.
Stack overflow might occur if the size of a thread's stack is too small, causing silent data
corruption or a segmentation fault. See the -xcheck=stkovf compiler option for information
about how to detect and diagnose stack overflow.

3.4 Parallel Execution Model

82 Oracle Solaris Studio 12.4: C User's Guide • March 2015

3.4 Parallel Execution Model
The execution of parallel loops is performed by threads. The thread starting the initial execution
of the program is called the master thread. When the master thread encounters a parallel loop,
it creates a team of threads composed of itself and multiple slave threads. The iterations of the
loop are divided into chunks, and the chunks are distributed among the threads in the team.
When a thread finishes execution of its chunk(s), it synchronizes with the remaining threads of
the team. This synchronization is called a barrier. The master thread cannot continue executing
the remainder of the program until all the slave threads have finished their work on the parallel
loop and reached the barrier.At the end of the barrier, the master thread continues executing the
program serially, until it encounters another parallel loop.

During this process, various overheads can occur, such as those related to:

■ Thread creation
■ Work distribution
■ Barrier synchronization

For some parallel loops, the amount of useful work performed is not enough to justify the
overhead. For such loops, there may be appreciable slowdown from parallelization. However,
if the amount of useful work in the loop is large enough, then the parallel execution of the loop
will speed up the program.

3.5 Speedups
If the compiler does not parallelize a portion of a program where a significant amount of
time is spent, then no speedup occurs. For example, if a loop that accounts for five percent
of the execution time of a program is parallelized, then the overall speedup is limited to five
percent. However, any improvement depends on the size of the workload and parallel execution
overheads.

As a general rule, the larger the fraction of program execution that is parallelized, the greater
the likelihood of a speedup.

Each parallel loop incurs a small overhead during startup and shutdown. The start overhead
includes the cost of work distribution, and the shutdown overhead includes the cost of the
barrier synchronization. If the total amount of work performed by the loop is not big enough
then no speedup will occur. In fact, the loop might even slow down. If a large amount of
program execution is accounted by a large number of short parallel loops, then the whole
program may slow down instead of speeding up.

The compiler performs several loop transformations that try to increase the granularity of
the loops. Some of these transformations are loop interchange and loop fusion. If the amount
of parallelism in a program is small or is fragmented among small parallel regions, then the
speedup is usually less.

3.5 Speedups

Chapter 3 • Parallelizing C Code 83

Scaling up a problem size often improves the fraction of parallelism in a program. For example,
consider a problem that consists of two parts: a quadratic part that is sequential, and a cubic part
that is parallelizable. For this problem, the parallel part of the workload grows faster than the
sequential part. At some point the problem will speed up unless it runs into resource limitations.

Try some tuning and experimentation with directives, problem sizes, and program restructuring
in order to achieve the most benefit from parallel C.

3.5.1 Amdahl’s Law
Fixed problem-size speedup is generally governed by Amdahl's law, which simply says that
the amount of parallel speedup of a given problem is limited by the sequential portion of the
problem. The following equation describes the speedup, S, of a problem where F is the fraction
of time spent in sequential code and the remaining fraction of the time (1 - F) is divided up
uniformly among P processors. If the second term of the equation ((1 - F) / P) drops to zero, the
total speedup is limited by the first term, F, which remains fixed.

The following figure illustrates this concept diagrammatically. The darkly shaded portion
represents the sequential part of the program, and remains constant for one, two, four, and eight
processors. The lightly shaded portion represents the parallel portion of the program that can be
divided uniformly among an arbitrary number of processors.

FIGURE 3-1 Fixed Problem Speedups

3.5 Speedups

84 Oracle Solaris Studio 12.4: C User's Guide • March 2015

As the number of processors increases, the amount of time required for the parallel portion of
each program decreases whereas the serial portion of each program stays the same.

In reality, however, you might incur overheads due to communication and distribution of work
to multiple processors. These overheads might not be fixed for arbitrary numbers of processors
used.

The following figure illustrates the ideal speedups for a program containing 0%, 2%, 5%, and
10% sequential portions. No overhead is assumed.

FIGURE 3-2 Amdahl's Law Speedup Curve

3.5.1.1 Overheads

Once the overheads are incorporated in the model, the speedup curves change dramatically.
For the purposes of illustration, assume that overheads consist of two parts: a fixed part that is
independent of the number of processors, and a non-fixed part that grows quadratically with the
number of the processors used:

3.5 Speedups

Chapter 3 • Parallelizing C Code 85

In this equation, K1 and K2 are some fixed factors. Under these assumptions, the speedup curve
is shown in the following figure. Note that in this case, the speedups peak out. After a certain
point, adding more processors is detrimental to performance.

FIGURE 3-3 Speedup Curve With Overheads

The graph shows that all programs reach the greatest speedup at five processors and then lose
this benefit as up to eight processors are added. The x-axis measures the number of processors
and the y-axis measures the speedup.

3.5.1.2 Gustafson’s Law

Amdahl's law can be misleading for predicting parallel speedups in real problems. The fraction
of time spent in sequential sections of the program sometimes depends on the problem size.
That is, by scaling the problem size, you might improve the chances of speedup, as shown in the
following example.

EXAMPLE 3-21 Scaling the Problem Size Might Improve Chances of Speedup

/*

* initialize the arrays

*/

for (i=0; i < n; i++) {

 for (j=0; j < n; j++) {

 a[i][j] = 0.0;

3.6 Memory-Barrier Intrinsics

86 Oracle Solaris Studio 12.4: C User's Guide • March 2015

 b[i][j] = ...

 c[i][j] = ...

 }

}

/*

* matrix multiply

*/

for (i=0; i < n; i++) {

 for(j=0; j < n; j++) {

 for (k=0; k < n; k++) {

 a[i][j] = b[i][k]*c[k][j];

 }

 }

}

Assume an ideal overhead of zero and that only the second loop nest is executed in parallel. For
small problem sizes (that is, small values of n), the sequential and parallel parts of the program
are not so far from each other. However, as n grows larger, the time spent in the parallel part of
the program grows faster than the time spent in the sequential part. For this problem, increasing
the number of processors as the problem size increases is beneficial.

3.6 Memory-Barrier Intrinsics

The compiler provides the header file mbarrier.h, which defines various memory-barrier
intrinsics for SPARC and x86 processors. These intrinsics may be of use to developers writing
multithreaded code using their own synchronization primitives. Developers should refer to the
documentation of their processors to determine when and whether these intrinsics are necessary
for their particular situation.

Memory-ordering intrinsics supported by mbarrier.h are:

■ __machine_r_barrier() — This is a read barrier. It ensures that all the load operations
before the barrier will be completed before all the load operations after the barrier.

■ __machine_w_barrier() — This is a write barrier. It ensures that all the store operations
before the barrier will be completed before all the store operations after the barrier.

■ __machine_rw_barrier() — This is a read-write barrier. It ensures that all the load and
store operations before the barrier will be completed before all the load and store operations
after the barrier.

■ __machine_acq_barrier() — This is a barrier with acquire semantics. It ensures that
all the load operations before the barrier will be completed before all the load and store
operations after the barrier.

■ __machine_rel_barrier() — This is a barrier with release semantics. It ensures that all the
load and store operations before the barrier will be completed before all the store operations
after the barrier.

3.6 Memory-Barrier Intrinsics

Chapter 3 • Parallelizing C Code 87

■ __compiler_barrier() — Prevents the compiler from moving memory accesses across the
barrier.

All the barrier intrinsics except the __compiler_barrier() intrinsic generate memory-ordering
instructions. On x86 platforms, these are mfence, sfence, or lfence instructions. On SPARC
platforms, these are membar instructions.

The __compiler_barrier() intrinsic generates no instructions and instead informs the
compiler that all previous memory operations must be completed before any future memory
operations are initiated. The practical result is that all non-local variables and local variables
with the static storage class specifier will be stored back to memory before the barrier, and
reloaded after the barrier. The compiler will not mix memory operations from before the barrier
with those after. All other barriers implicitly include the behavior of the __compiler_barrier()
intrinsic.

In the following example, the presence of the __compiler_barrier() intrinsic stops the
compiler from merging the two loops:

#include "mbarrier.h"

int thread_start[16];

void start_work()

{

/* Start all threads */

 for (int i=0; i<8; i++)

 {

 thread_start[i]=1;

 }

 __compiler_barrier();

/* Wait for all threads to complete */

 for (int i=0; i<8; i++)

 {

 while (thread_start[i]==1){}

 }

}

88 Oracle Solaris Studio 12.4: C User's Guide • March 2015

Chapter 4 • lint Source Code Checker 89

 4 ♦ ♦ ♦ C H A P T E R 4

lint Source Code Checker

This chapter explains how you can use the lint program to check your C code for errors that
could cause a compilation failure or unexpected results at runtime. In many cases, lint warns
you about incorrect, error-prone, or nonstandard code that the compiler does not necessarily
flag.

The lint program issues every error and warning message produced by the C compiler. It
also issues warnings about potential bugs and portability problems. Many messages issued by
lint can assist you in improving your program’s effectiveness, including reducing its size and
required memory.

The lint program uses the same locale as the compiler and the output from lint is directed to
stderr. See “4.6.3 lint Filters” on page 116 for more information about how to use lint to
check code before you perform type-based alias-disambiguation.

4.1 Basic and Enhanced lint Modes

The lint program operates in two modes:

■ Basic, which is the default
■ Enhanced, which provides additional, detailed analysis of code

In both basic and enhanced modes, lint compensates for separate and independent compilation
in C by flagging inconsistencies in definition and use across files, including any libraries you
have used. In a large project environment where the same function might be used by different
programmers in hundreds of separate modules of code, lint can help discover bugs that
otherwise might be difficult to find. A function called with one less argument than expected,
for example, looks at the stack for a value the call has never pushed, with results correct in one
condition, incorrect in another, depending on whatever happens to be in memory at that stack
location. By identifying dependencies like this one and dependencies on machine architecture
as well, lint can improve the reliability of code run on your machine or someone else’s.

In enhanced mode, lint provides more detailed reporting than in basic mode. In basic mode,
lint’s capabilities include:

4.2 Using lint

90 Oracle Solaris Studio 12.4: C User's Guide • March 2015

■ Structure and flow analysis of the source program
■ Constant propagations and constant expression evaluations
■ Analysis of control flow and data flow
■ Analysis of data types usage

In enhanced mode, lint can detect these problems:

■ Unused #include directives, variables, and procedures
■ Memory usage after its deallocation
■ Unused assignments
■ Usage of a variable value before its initialization
■ Deallocation of nonallocated memory
■ Usage of pointers when writing in constant data segments
■ Nonequivalent macro redefinitions
■ Unreached code
■ Conformity of the usage of value types in unions
■ Implicit casts of actual arguments.

4.2 Using lint

Invoke the lint program and its options from the command line. To invoke lint in the basic
mode, use the following command:

% lint file1.c file2.c

Enhanced lint is invoked with the -Nlevel or -Ncheck option. For example, you can invoke
enhanced lint as follows:

% lint -Nlevel=3 file1.c file2.c

lint examines code in two passes. In the first pass, lint checks for error conditions within C
source files; in the second pass, it checks for inconsistencies across C source files. This process
is invisible to the user unless lint is invoked with -c:

% lint -c file1.c file2.c

This command directs lint to execute the first pass only and collect information relevant to
the second pass in intermediate files named file1.ln and file2.ln. The second pass covers
inconsistencies in definition and use across file1.c and file2.c

% ls
file1.c
file1.ln
file2.c
file2.ln

4.3 lint Command-Line Options

Chapter 4 • lint Source Code Checker 91

In this way, the -c option to lint is analogous to the -c option to cc, which suppresses the link
editing phase of compilation. The lint’s command-line syntax closely follows cc’s.

When the .ln files are linted the second pass is executed.

% lint file1.ln file2.ln

lint processes any number of .c or .ln files in their command-line order. For example, the
following command, directs lint to check file3.c for errors internal to it and all three files for
consistency.

% lint file1.ln file2.ln file3.c

lint searches directories for included header files in the same order as cc. You can use
the -I option to lint as you would the -I option to cc. See “2.16 How to Specify Include
Files” on page 58.

You can specify multiple options to lint on the same command line. Options can be
concatenated unless one of the options takes an argument or if the option has more than one
letter.

% lint -cp -Idir1 -Idir2 file1.c file2.c

This command directs lint to perform the following actions:

■ Execute the first pass only
■ Perform additional portability checks
■ Search the specified directories for included header files

lint has many options you can use to direct lint to perform certain tasks and report on certain
conditions.

Use the environment variable LINT_OPTIONS to define default set of options to lint.
LINT_OPTIONS is read by lint as if its value had been placed on the command line, immediately
following the name used to invoke lint.

 lint $LINT_OPTIONS ... other-arguments ...

The lint command also recognizes the SPRO_DEFAULTS_PATH environment variable to locate
a user-supplied default options file lint.defaults. See “B.4 User-Supplied Default Options
File” on page 323.

4.3 lint Command-Line Options

The lint program is a static analyzer. It cannot evaluate the runtime consequences of the
dependencies it detects. For example, certain programs might contain hundreds of unreachable

4.3 lint Command-Line Options

92 Oracle Solaris Studio 12.4: C User's Guide • March 2015

break statements that are of little importance that lint flags nevertheless. For example, you
could use the lint command-line options and special directives embedded as comments in the
source text, as follows:

■ Invoking lint with the -b option suppresses all the error messages about unreachable break
statements.

■ Precede any unreachable statement with the comment /*NOT REACHED*/ to suppress the
diagnostic for that statement.

The lint options are listed below alphabetically. Several lint options relate to suppressing
lint diagnostic messages. These options are also listed in Table 4-8, following the alphabetized
options, along with the specific messages they suppress. The options for invoking enhanced
lint begin with -N.

lint recognizes many cc command-line options, including -A, -D, -E, -g, -H, -O, -P, -U, -
ansi, -std=value, -pedantic, -Xa, -Xc, -Xs, -Xt, and -Y, although -g and -O are ignored.
Unrecognized options are warned about and ignored.

4.3.1 -#

Enables verbose mode, showing each component as it is invoked.

4.3.2 -###

Shows each component as it is invoked, but does not actually execute it.

4.3.3 -a

Suppresses certain messages. Refer to Table 4-8.

4.3.4 -b

Suppresses certain messages. Refer to Table 4-8.

4.3.5 -C filename

Creates a .ln file with the file name specified. These .ln files are the product of lint’s first
pass only. filename can be a complete path name.

4.3 lint Command-Line Options

Chapter 4 • lint Source Code Checker 93

4.3.6 -c

Creates a .ln file consisting of information relevant to lint’s second pass for every .c file
named on the command line. The second pass is not executed.

4.3.7 -dirout=dir

Specifies the directory dir where the lint output files (.ln files) will be placed. This option
affects the -c option.

4.3.8 -err=warn

-err=warn is a macro for -errwarn=%all. See “4.3.15 -errwarn=t” on page 97.

4.3.9 -errchk=l(, l)

Perform additional checking as specified by l. The default is -errchk=%none. Specifying
-errchk is equivalent to specifying -errchk=%all. l is a comma-separated list of
checks that consists of one or more of the flags in the following table, for example, -
errchk=longptr64,structarg.

TABLE 4-1 -errchk Flags

Value Meaning

%all Perform all of -errchk’s checks.

%none Perform none of -errchk’s checks. This is the default.

[no%]locfmtchk Check for printf-like format strings during the first pass of lint. Regardless of
whether you use -errchk=locfmtchk, lint always checks for printf-like format
strings in its second pass.

[no%]longptr64 Check portability to environment for which the size of long integers and pointers is 64
bits and the size of plain integers is 32 bits. Check assignments of pointer expressions
and long integer expressions to plain integers, even when explicit cast is used.

Note that system header files define types intended to manipulate pointers. With
the -m32 flag those types may be defined as base types like int that cannot safely
manipulate a pointer, thus leading to false warnings. For example, usages of size_t:

#include <stdlib.h>

size_t

myfiunk(uint32_t param)

{

4.3 lint Command-Line Options

94 Oracle Solaris Studio 12.4: C User's Guide • March 2015

Value Meaning

 return sizeof(uint64_t) * param;

}

.

$ lint -m32 -mux -errchk=longptr64 bug.c

(5) warning: assignment of 64-bit integer to 32-bit integer

$

[no%]structarg Check structural arguments passed by value and report the cases when formal
parameter type is not known.

[no%]parentheses Check the clarity of precedence within your code. Use this option to enhance the
maintainability of code. If -errchk=parentheses returns a warning, consider using
additional parentheses to clearly signify the precedence of operations within the code.

[no%]signext Check for situations in which the normal ISO C value-preserving rules allow the
extension of the sign of a signed-integral value in an expression of unsigned-integral
type. This option only produces error messages when you specify -errchk=longptr64
as well.

[no%]sizematch Check for the assignment of a larger integer to a smaller integer and issue a warning.
These warnings are also issued for assignment between same size integers that have
different signs (unsigned int gets a signed int).

4.3.10 -errfmt=f

Specifies the format of lint output. f can be one of the following: macro, simple, src, or tab.

TABLE 4-2 -errfmt Flags

Value Meaning

macro Displays the source code, the line number, and the place of the error, with macro unfolding

simple Displays the line number and the place number, in brackets, of the error, for one-line (simple)
diagnostic messages. Similar to the -s option, but includes error-position information

src Displays the source code, the line number, and the place of the error (no macro unfolding)

tab Displays in tabular format. This is the default.

The default is -errfmt=tab. Specifying -errfmt is equivalent to specifying -errfmt=tab.

If more than one format is specified, the last format specified is used, and lint warns about the
unused formats.

4.3.11 -errhdr=h

Enables lint to report certain messages for header files when you also specify -Ncheck. h is
a comma-separated list that consists of one or more of the following: dir, no%dir, %all, %none,
%user.

4.3 lint Command-Line Options

Chapter 4 • lint Source Code Checker 95

TABLE 4-3 -errhdr Flags

Value Meaning

dir Report the -Ncheck messages for header files included from the directory dir

no%dir Does not report the -Ncheck messages for header files included from the directory dir

%all Checks all used header files

%none Does not check header files

%user Checks all used user header files, that is, all header files except those in /usr/include and
its subdirectories, as well as those supplied by the compiler. This is the default.

Examples:

% lint -errhdr=inc1 -errhdr=../inc2

Checks used header files in directories inc1 and ../inc2.

% lint -errhdr=%all,no%../inc

Checks all used header files except those in the directory ../inc.

4.3.12 -erroff=tag(, tag)

Suppresses or enables lint error messages.

t is a comma-separated list that consists of one or more of the following: tag, no%tag, %all,
%none.

TABLE 4-4 -erroff Flags

Value Meaning

tag Suppresses the message specified by this tag. You can display the tag for a message by using the
-errtags=yes option.

no%tag Enables the message specified by this tag

%all Suppresses all messages

%none Enables all messages. This is the default.

The default is -erroff=%none. Specifying -erroff is equivalent to specifying -erroff=%all.

Examples:

% lint -erroff=%all,no%E_ENUM_NEVER_DEF,no%E_STATIC_UNUSED

Prints only the messages “enum never defined” and “static unused” and suppresses other
messages.

4.3 lint Command-Line Options

96 Oracle Solaris Studio 12.4: C User's Guide • March 2015

% lint -erroff=E_ENUM_NEVER_DEF,E_STATIC_UNUSED

Suppresses only the messages “enum never defined” and “static unused”.

4.3.13 -errsecurity=level

Use the -errsecurity option to check your code for security loopholes.

level must be one of the values shown in the following table.

TABLE 4-5 The -errsecurity Flags

level Value Meaning

core This level checks for source code constructs that are almost always either unsafe or
difficult to verify. Checks at this level include:

■ Use of variable format strings with the printf() and scanf() family of functions
■ Use of unbounded string (%s) formats in scanf() functions
■ Use of functions with no safe usage: gets(), cftime(), ascftime(), creat()
■ Incorrect use of open() with O_CREAT

Consider source code that produces warnings at this level to be a bug. The source
code in question should be changed. In all cases, straightforward safer alternatives
are available.

standard This level includes all checks from the core level plus constructs that might be safe but
have better alternatives available. This level is recommended when checking newly
written code. Additional checks at this level include:

■ Use of string copy functions other than strlcpy()
■ Use of weak random number functions
■ Use of unsafe functions to generate temporary files
■ Use of fopen() to create files
■ Use of functions that invoke the shell

Replace source code that produces warnings at this level with new or significantly
modified code. Balance addressing these warnings in legacy code against the risks
of destabilizing the application.

extended This level contains the most complete set of checks, including everything from the core
and standard levels. In addition, a number of warnings are generated about constructs
that may be unsafe in some situations. The checks at this level are useful as an aid in
reviewing code, but need not be used as a standard with which acceptable source code
must comply. Additional checks at this level include:

■ Calls to getc() or fgetc() inside a loop
■ Use of functions prone to pathname race conditions
■ Use of the exec() family of functions
■ Race conditions between stat() and other functions

Review source code that produces warnings at this level to determine whether the
potential security issue is present.

4.3 lint Command-Line Options

Chapter 4 • lint Source Code Checker 97

level Value Meaning

%none Disables -errsecurity checks

If you do not specify a setting for -errsecurity, the lint sets it to -errsecurity=%none. If
you do specify -errsecurity but not an argument, the lint sets it to -errsecurity=standard.

4.3.14 -errtags=a

Displays the message tag for each error message. a can be either yes or no. The default is -
errtags=no. Specifying -errtags is equivalent to specifying -errtags=yes.

Works with all -errfmt options.

4.3.15 -errwarn=t

If the indicated warning message is issued, lint exits with a failure status. t is a comma-
separated list that consists of one or more of the following: tag, no%tag, %all, %none. The order
of the tags is important. For example %all,no%tag causes lint to exit with a fatal status if any
warning except tag is issued. The following table list the -errwarn values.

TABLE 4-6 -errwarn Flags

tag Value Meaning

tag Cause lint to exit with a fatal status if the message specified by this tag is issued as a warning
message. Has no effect if tag is not issued.

no%tag Prevent lint from exiting with a fatal status if the message specified by tag is issued only as a
warning message. Has no effect if tag is not issued. Use this option to revert a warning message that
was previously specified by this option with tag or %all from causing lint to exit with a fatal status
when issued as a warning message.

%all Cause lint to exit with a fatal status if any warning messages are issued. %all can be followed by no
%tag to exempt specific warning messages from this behavior.

%none Prevents any warning message from causing lint to exit with a fatal status should any warning
message be issued.

The default is -errwarn=%none. Specifying -errwarn alone is equivalent to -errwarn=%all.

4.3.16 -F

Prints the path names as supplied on the command line rather than only their base names when
referring to the .c files named on the command line.

4.3 lint Command-Line Options

98 Oracle Solaris Studio 12.4: C User's Guide • March 2015

4.3.17 -fd

Reports about old-style function definitions or declarations.

4.3.18 -flagsrc=file

Executes lint with options contained in the file file. Multiple options can be specified in file,
one per line.

4.3.19 -h

Suppresses certain messages. Refer to Table 4-8.

4.3.20 -Idir

Searches the directory dir for included header files.

4.3.21 -k

Alter the behavior of /* LINTED [message] */ directives or NOTE(LINTED(message)) annotations.
Normally, lint suppresses warning messages for the code following these directives. Instead of
suppressing the messages, lint prints an additional message containing the comment inside the
directive or annotation.

4.3.22 -Ldir

Searches for a lint library in the directory dir when used with -l.

4.3.23 -lx

Accesses the lint library llib-lx.ln.

4.3 lint Command-Line Options

Chapter 4 • lint Source Code Checker 99

4.3.24 -m

Suppresses certain messages. Refer to Table 4-8.

4.3.25 -m32|-m64

Specifies the memory model for the program being analyzed. Also searches for lint libraries
that correspond to the selected memory model (32-bit or 64-bit).

Use -m32 to verify 32-bit C programs and -m64 to verify 64-bit C programs.

The ILP32 memory model (32-bit int, long, pointer data types) is the default on all Oracle
Solaris platforms and on Linux platforms that are not 64-bit enabled. The LP64 memory model
(64-bit long, pointer data types) is the default on Linux platforms that are 64-bit enabled. -m64
is permitted only on platforms that are enabled for the LP64 model.

Note that in previous compiler releases, the memory model, ILP32 or LP64, was implied by the
choice of the -Xarch option. Starting with the Oracle Solaris Studio 12 compilers, this behavior
is no longer the case. On most platforms, just adding -m64 to the command line is sufficient for
linting 64-bit programs.

4.3.26 -Ncheck=c

Checks header files for corresponding declarations, and checks macros. c is a comma-separated
list of checks that consists of one or more of the following: macro, extern, %all, %none, no
%macro, no%extern.

TABLE 4-7 -Ncheck Flags

Value Meaning

macro Checks for consistency of macro definitions across files

extern Checks for one-to-one correspondence of declarations between source files and their
associated header files (for example, for file1.c and file1.h). Ensures that there are neither
extraneous nor missing extern declarations in a header file.

%all Performs all of -Ncheck’s checks

%none Performs none of -Ncheck’s checks. This is the default.

no%macro Performs none of -Ncheck’s macro checks

no%extern Performs none of -Ncheck’s extern checks

The default is -Ncheck=%none. Specifying -Ncheck is equivalent to specifying -Ncheck=%all.

4.3 lint Command-Line Options

100 Oracle Solaris Studio 12.4: C User's Guide • March 2015

Values may be combined with a comma, for example, -Ncheck=extern,macro.

The following example performs all checks except macro checks.

% lint -Ncheck=%all,no%macro

4.3.27 -Nlevel=n

(Obsolete) The -Nlevel option will be removed in a future release.

Enables enhanced lint mode by specifying the level of enhanced lint analysis for reporting
problems. This option provides control of the amount of errors detected. The higher the level,
the longer the verification time. n is a number: 1, 2, 3, or 4. There is no default. If you do
not specify -Nlevel, lint uses its basic analysis mode. If you specify -Nlevel without an
argument, lint sets -Nlevel=4.

See “4.2 Using lint” on page 90 for an explanation of basic and enhanced lint modes.

4.3.27.1 -Nlevel=1

Analyzes single procedures. Reports unconditional errors that occur on some program execution
paths. Does not do global data and control flow analysis.

4.3.27.2 -Nlevel=2

Analyzes the whole program, including global data and control flow. Reports unconditional
errors that occur on some program execution paths.

4.3.27.3 -Nlevel=3

Analyzes the whole program, including constant propagation (cases when constants are used as
actual arguments) as well as the analysis performed under -Nlevel=2.

Verification of a C program at this analysis level takes two to four times longer than at the
preceding level. The extra time is required because lint assumes partial interpretation of the
program by creating sets of possible values for program variables. These sets of variables are
created on the basis of constants and conditional statements that contain constant operands
available in the program. The sets form the basis for creating other sets (a form of constant
propagation).

Sets received as the result of the analysis are evaluated for correctness according to the
following algorithm:

4.3 lint Command-Line Options

Chapter 4 • lint Source Code Checker 101

If a correct value exists among all possible values of an object, then that correct value is
used as the basis for further propagation; otherwise an error is diagnosed.

4.3.27.4 -Nlevel=4

Analyzes the whole program, and reports conditional errors that could occur when certain
program execution paths are used, as well as the analysis performed under -Nlevel=3.

At this analysis level, there are additional diagnostic messages. The analysis algorithm
generally corresponds to the analysis algorithm of -Nlevel=3 with the exception that any
invalid values now generate an error message. The amount of time required for analysis at this
level can increase as much as two orders (about 20 to 100 times more slowly). In this case,
the extra time required is directly proportional to the program complexity as characterized by
recursion, conditional statements and the like. As a result using this level of analysis might be
difficult for a program that exceeds 100,000 lines.

4.3.28 -n

Suppresses checks for compatibility with the default lint standard C library.

4.3.29 -ox

Causes lint to create a lint library with the name llib-lx.ln. This library is created from
all the .ln files that lint used in its second pass. The -c option nullifies any use of the -o
option. To produce a llib-lx.ln without extraneous messages, you can use the-x option. The
-v option is useful if the source files for the lint library are only external interfaces. The lint
library produced can be used later if lint is invoked with -lx.

By default, you create libraries in lint’s basic format. If you use lint’s enhanced mode, the
library created will be in enhanced format, and can only be used in enhanced mode.

4.3.30 -p

Enables certain messages relating to portability issues.

4.3.31 -Rfile

Write a .ln file to file, for use by cxref(1). This option disables the enhanced mode if it is
switched on.

4.3 lint Command-Line Options

102 Oracle Solaris Studio 12.4: C User's Guide • March 2015

4.3.32 -s

Produce simple diagnostics with "warning:" or "error:" prefixes. By default lint buffers some
messages to produce compound output.

4.3.33 -u

Suppresses certain messages. Refer to Table 4-8. This option is suitable for running lint on a
subset of files of a larger program.

4.3.34 -V

Writes the product name and releases to standard error.

4.3.35 -v

Suppresses certain messages. Refer to Table 4-8.

4.3.36 -Wfile

Write a .ln file to file, for use by cflow(1). This option disables the enhanced mode if it is
switched on.

4.3.37 -XCC=a

Accepts C++-style comments. In particular, // can be used to indicate the start of a comment. a
can be either yes or no. The default is -XCC=no. Specifying -XCC is equivalent to specifying -
XCC=yes.

Note - You only need to use this option when -std=c89 is in effect.

4.3.38 -Xalias_level[=l]

With this option,l is one of any, basic, weak, layout, strict, std, or strong. See Table B-13
for a detailed explanation of the different levels of disambiguation.

4.3 lint Command-Line Options

Chapter 4 • lint Source Code Checker 103

If you do not specify -Xalias_level, the default of the flag is -Xalias_level=any, which
means that no type-based alias-analysis is performed. If you specify -Xalias_level but do not
supply a level, the default is -Xalias_level=layout.

Be sure to run lint at a level of disambiguation that is no more strict than the level at which
you ran the compiler. If you run lint at a level of disambiguation that is more strict than the
level at which you compiled, the results will be difficult to interpret and possibly misleading.

See “4.6.3 lint Filters” on page 116 for a detailed explanation of disambiguation as well as
a list of pragmas designed to help with disambiguation.

4.3.39 -Xarch=amd64

(Solaris Operating System) Deprecated. Do not use. See “4.3.25 -m32|-m64” on page 99

4.3.40 -Xarch=v9

(Solaris Operating System) Deprecated. Do not use. See “4.3.25 -m32|-m64” on page 99

4.3.41 -Xc99[=o]

The -Xc99 flag controls compiler recognition of the implemented features from the C99
standard (ISO/IEC 9899:1999, Programming Language -C).

o can be one of the following: all, none.

-Xc99=none disables recognition of C99 features. -Xc99=all enables recognition of supported
C99 features.

Specifying -Xc99 without any arguments is the same as -Xc99=all.

The -Xc99 flag cannot be used if the -std or -pedantic flag has been specified.

4.3.42 -Xkeeptmp=a

Keeps temporary files created during linting instead of deleting them automatically. a can
be either yes or no. The default is -Xkeeptmp=no. Specifying -Xkeeptmp is equivalent to
specifying -Xkeeptmp=yes.

4.3 lint Command-Line Options

104 Oracle Solaris Studio 12.4: C User's Guide • March 2015

4.3.43 -Xtemp=dir

Sets the directory for temporary files to dir. Without this option, temporary files go into /tmp.

4.3.44 -Xtime=a

Reports the execution time for each lint pass. a can be either yes or no. The default is -
Xtime=no. Specifying -Xtime is equivalent to specifying -Xtime=yes.

4.3.45 -Xtransition=a

Issues warnings for the differences between K&R C and Oracle Solaris Studio ISO C. a can be
either yes or no. The default is -Xtransition=no. Specifying -Xtransition is equivalent to
specifying -Xtransition=yes.

4.3.46 -Xustr={ascii_utf16_ushort|no}

This option enables recognition of string literals of the form U"ASCII-string" as an array
of unsigned short int. The default is -Xustr=no, which disables compiler recognition of
U"ASCII-string string literals. "-Xustr=ascii_utf16_ushort enables compiler recognition of
U"ASCII-string" string literals.

4.3.47 -x

Suppresses certain messages. Refer to Table 4-8.

4.3.48 -y

Treats every .c file named on the command line as if it begins with the directive /*
LINTLIBRARY */ or the annotation NOTE(LINTLIBRARY). A lint library is normally created
using the /* LINTLIBRARY */ directive or the NOTE(LINTLIBRARY) annotation.

4.4 lint Messages

Chapter 4 • lint Source Code Checker 105

4.4 lint Messages

Most of lint’s messages are simple, one-line statements printed for each occurrence of the
problem they diagnose. Errors detected in included files are reported multiple times by the
compiler, but only once by lint no matter how many times the file is included in other source
files. Compound messages are issued for inconsistencies across files and, in a few cases, for
problems within them as well. A single message describes every occurrence of the problem in
the file or files being checked. When use of a lint filter requires that a message be printed for
each occurrence, compound diagnostics can be converted to the simple type by invoking lint
with the -s option. See “4.6.2 lint Libraries” on page 115 for more information.

lint’s messages are written to stderr.

4.4.1 Options to Suppress Messages

You can use several lint options to suppress lint diagnostic messages. Messages can be
suppressed with the -erroff option followed by one or more tags. These mnemonic tags can
be displayed with the -errtags=yes option.

The following table lists the options that suppress lint messages.

TABLE 4-8 lint Options to Suppress Messages

Option Messages Suppressed

-a assignment causes implicit narrowing conversion

conversion to larger integral type may sign-extend incorrectly

-b statement not reached (unreachable break and empty statements)

-h assignment operator "=" found where equality operator "==" was expected

constant operand to op: "!"

fallthrough on case statements

pointer cast may result in improper alignment

precedence confusion possible; parenthesize

statement has no consequent: if

statement has no consequent: else

-m declared global, could be static

-erroff=tag One or more lint messages specified by tag

-u name defined but never used

4.4 lint Messages

106 Oracle Solaris Studio 12.4: C User's Guide • March 2015

Option Messages Suppressed

name used but not defined

-v arguments unused in function

-x name declared but never used or defined

4.4.2 lint Message Formats

The lint program can, with certain options, show precise source file lines with pointers to the
line position where the error occurred. The option enabling this feature is -errfmt=f, which
causes lint to provide the following information:

■ Source lines and positions
■ Macro unfolding
■ Error-prone stacks

For example, the following program, Test1.c, contains an error.

1 #include <string.h>

2 static void cpv(char *s, char* v, unsigned n)

3 { int i;

4 for (i=0; i<=n; i++){

5 *v++ = *s++;}

6 }

7 void main(int argc, char* argv[])

8 {

9 if (argc != 0){

10 cpv(argv[0], argc, strlen(argv[0]));}

11}

Using lint on Test1.c with the —errfmt=src option produces the following output::

% lint -errfmt=src -Nlevel=2 Test1.c
 |static void cpv(char *s, char* v, unsigned n)

 | ^ line 2, Test1.c

 |

 | cpv(argv[0], argc, strlen(argv[0]));

 | ^ line 10, Test1.c

warning: improper pointer/integer combination: arg #2

 |

 |static void cpv(char *s, char* v, unsigned n)

 | ^ line 2, Test1.c

 |

 |cpv(argv[0], argc, strlen(argv[0]));

 | ^ line 10, Test1.c

 |

 | *v++ = *s++;

 | ^ line 5, Test1.c

warning: use of a pointer produced in a questionable way

4.4 lint Messages

Chapter 4 • lint Source Code Checker 107

 v defined at Test1.c(2) ::Test1.c(5)

 call stack:

 main() , Test1.c(10)

 cpv() , Test1.c(5)

The first warning indicates two source lines that are contradictory. The second warning shows
the call stack with the control flow leading to the error.

Another program, Test2.c, contains a different error:

1 #define AA(b) AR[b+l]

2 #define B(c,d) c+AA(d)

3

4 int x=0;

5

6 int AR[10]={1,2,3,4,5,6,77,88,99,0};

7

8 main()

9 {

10 int y=-5, z=5;

11 return B(y,z);

12 }

Using lint on Test2.c with the —errfmt= macrooption produces the following output,
showing the steps of macro substitution:

% lint -errfmt=macro Test2.c
 | return B(y,z);

 | ^ line 11, Test2.c

 |

 |#define B(c,d) c+AA(d)

 | ^ line 2, Test2.c

 |

 |#define AA(b) AR[b+l]

 | ^ line 1, Test2.c

error: undefined symbol: l

|

 | return B(y,z);

 | ^ line 11, Test2.c

 |

 |#define B(c,d) c+AA(d)

 | ^ line 2, Test2.c

 |

 |#define AA(b) AR[b+l]

 | ^ line 1, Test2.c

variable may be used before set: l

lint: errors in Test2.c; no output created

lint: pass2 not run - errors in Test2.c

4.5 lint Directives

108 Oracle Solaris Studio 12.4: C User's Guide • March 2015

4.5 lint Directives

4.5.1 Predefined Values

Running lint predefines the lint token. See also the cc(1) man page for a list of predefined
tokens.

4.5.2 Directives

lint directives in the form of /*...*/ are supported for existing annotations but will not be
supported for future annotations. Directives in the form of source code annotations, NOTE(...),
are recommended for all annotations.

Specify lint directives in the form of source code annotations by including the file note.h, for
example:

#include <note.h>

lint shares the Source Code Annotations scheme with several other tools. When you install
the Oracle Solaris Studio C compiler, you also automatically install the file /usr/lib/note/
SUNW_SPRO-lint, which contains the names of all the annotations that LockLint understands.
However, the Oracle Solaris Studio C source code checker, lint, also checks all the files in /
usr/lib/note and the Oracle Solaris Studio default location install-directory/prod/lib/note
for all valid annotations.

You may specify a location other than /usr/lib/note by setting the environment variable
NOTEPATH, as in:

setenv NOTEPATH $NOTEPATH:other_location

The following table lists the lint directives along with their actions.

TABLE 4-9 lint Directives

Directive Action

NOTE(ALIGNMENT(fname,n)) where n=1, 2,
4, 8, 16, 32, 64, 128

Makes lint set the following function result alignment in n bytes. For
example, malloc() is defined as returning a char* or void* when it
actually returns pointers that are word, or even doubleword, aligned.

Suppresses the following message:

■ improper alignment

NOTE(ARGSUSED(n))

/*ARGSUSEDn*/

This directive acts like the -v option for the next function.

4.5 lint Directives

Chapter 4 • lint Source Code Checker 109

Directive Action
Suppresses the following message for every argument but the first
n in the function definition it precedes. Default is 0. For the NOTE
format, n must be specified.

■ argument unused in function

NOTE(ARGUNUSED

(par_name[,par_name...]))

Makes lint not check the mentioned arguments for usage (this option
acts only for the next function).

Suppresses the following message for every argument listed in NOTE
or directive.

■ argument unused in function

NOTE(CONSTCOND)

/*CONSTCOND*/

Suppresses complaints about constant operands for the conditional
expression. Suppresses the following messages for the constructs it
precedes.

Also NOTE(CONSTANTCONDITION) or
/* CONSTANTCONDITION */.

constant in conditional context

constant operands to op: "!"

logical expression always false: op "&&"

logical expression always true: op "||"

NOTE(EMPTY) /*EMPTY*/ Suppresses complaints about a null statement consequent on an if
statement. This directive should be placed after the test expression
and before the semicolon. This directive is supplied to support empty
if statements when a valid else statement follows. It suppresses
messages on an empty else consequent.

Suppresses the following messages when inserted between the
controlling expression of the if and semicolon.

■ statement has no consequent: else

when inserted between the else and semicolon;
■ statement has no consequent: if

NOTE(FALLTHRU)

/*FALLTHRU*/

Suppresses complaints about a fall through to a case or default
labelled statement. This directive should be placed immediately
preceding the label.

Suppresses the following message for the case statement it precedes.
Also NOTE(FALLTHROUGH) or /* FALLTHROUGH */.

■ fallthrough on case statement

NOTE(LINTED (msg))

/*LINTED [msg]*/

Suppresses any intra-file warning except those dealing with unused
variables or functions. This directive should be placed on the line
immediately preceding where the lint warning occurred. The -k
option alters the way in which lint handles this directive. Instead
of suppressing messages, lint prints an additional message, if any,
contained in the comments. This directive is useful in conjunction
with the -s option for post-lint filtering.

4.5 lint Directives

110 Oracle Solaris Studio 12.4: C User's Guide • March 2015

Directive Action

When -k is not invoked, suppresses every warning pertaining to an
intra-file problem, except:

■ argument unused in function

■ declarations unused in block

■ set but not used in function

■ static unused

■ variable not used in function

for the line of code it precedes. msg is ignored.

NOTE(LINTLIBRARY)

/*LINTLIBRARY*/

When -o is invoked, writes to a library .ln file, only definitions in
the .c file it heads. This directive suppresses messages about unused
functions and function arguments in this file.

NOTE(NOTREACHED)

/*NOTREACHED*/

At appropriate points, stops comments about unreachable code.
This comment is typically placed just after calls to functions such as
exit(2).

Suppresses the following messages for the closing curly brace it
precedes at the end of the function.

■ statement not reached

for the unreached statements it precedes;
■ fallthrough on case statement

for the case it precedes that cannot be reached from the preceding
case;

■ function falls off bottom without returning value

NOTE(PRINTFLIKE(n))

NOTE(PRINTFLIKE(fun_name,n))

/*PRINTFLIKEn*/

Treats the nth argument of the function definition it precedes as a
[fs]printf() format string and issues the following messages for
mismatches between the remaining arguments and the conversion
specifications. lint issues these warnings by default for errors in the
calls to [fs]printf() functions provided by the standard C library.

For the NOTE format, n must be specified.

■ malformed format strings

for invalid conversion specifications in that argument, and
function argument type inconsistent with format

■ too few arguments for format

■ too many arguments for format

NOTE(PROTOLIB(n))

/*PROTOLIBn*/

When n is 1 and NOTE(LINTLIBRARY) or /* LINTLIBRARY */ is used,
writes to a library .ln file only the function prototype declarations in
the .c file it heads. The default is 0, which cancels the process.

For the NOTE format, n must be specified.

NOTE(SCANFLIKE(n))

NOTE(SCANLIKE(fun_name,n))

/*SCANFLIKEn*/

Same as NOTE(PRINTFLIKE(n)) or /* PRINTFLIKEn */, except
that the nth argument of the function definition is treated as a
[fs]scanf() format string. By default, lint issues warnings for
errors in the calls to [fs]scanf() functions provided by the standard
C library.

4.6 lint Reference and Examples

Chapter 4 • lint Source Code Checker 111

Directive Action

For the NOTE format, n must be specified.

NOTE(VARARGS(n))

NOTE(VARARGS(fun_name,n))

/*VARARGSn*/

Suppresses the usual checking for variable numbers of arguments
in the following function declaration. The data types of the first n
arguments are checked; a missing n is taken to be 0. The use of the
ellipsis (...) terminator in the definition is suggested in new or updated
code.

For the function whose definition it precedes, suppresses the
following message for calls to the function with n or more arguments.
For the NOTE format, n must be specified.

■ functions called with variable number of arguments

4.6 lint Reference and Examples
This section provides reference information on lint, including checks performed by lint, lint
libraries, and lint filters.

4.6.1 Diagnostics Performed by lint
lint-specific diagnostics are issued for three broad categories of conditions: inconsistent
use, nonportable code, and questionable constructs. This section reviews examples of lint’s
behavior in each of these areas, and suggests possible responses to the issues they raise.

4.6.1.1 Consistency Checks

Inconsistent use of variables, arguments, and functions is checked within files as well as across
them. Generally speaking, the same checks are performed for prototype uses, declarations,
and parameters as lint checks for old-style functions. If your program does not use function
prototypes, lint checks the number and types of parameters in each call to a function more
strictly than the compiler. lint also identifies mismatches of conversion specifications and
arguments in [fs]printf() and [fs]scanf() control strings.

Examples:

■ Within files, lint flags non-void functions that return without giving a value to the
invoking function. In the past, programmers often indicated that a function was not meant to
return a value by omitting the return type: fun() {}. That convention has no meaning to the
compiler, which assumes fun() has the return type int. Declare the function with the return
type void to eliminate the problem.

■ Across files, lint detects cases where a non-void function does not return a value but is
used in an expression as if it did, and the opposite problem where a function returns a value

4.6 lint Reference and Examples

112 Oracle Solaris Studio 12.4: C User's Guide • March 2015

that is sometimes or always ignored. If the value is always ignored, an inefficiency in the
function definition might be present, while sometimes ignoring the value could be bad
programming style (typically, not testing for error conditions). If you do not need to check
the return values of string functions like strcat(), strcpy(), and sprintf(), or output
functions like printf() and putchar(), cast the offending calls to void.

■ lint identifies variables or functions that are declared but not used or defined, used, but
not defined, or defined, but not used. When lint is applied to some but not all files of a
collection to be loaded together, it issues error messages about functions and variables that
are in the following situations:
■ Declared in those files but defined or used elsewhere
■ Used in those files but defined elsewhere
■ Defined in those files but used elsewhere

Invoke the-x option to suppress the first situation, and -u to suppress the latter two.

4.6.1.2 Portability Checks

Some nonportable code is flagged by lint in its default behavior, and a few more cases are
diagnosed when lint is invoked with -p or -pedantic. The latter causes lint to check for
constructs that do not conform to the ISO C standard. For the messages issued under -p and-
pedantic, see “4.6.2 lint Libraries” on page 115.

Examples:

■ In some C language implementations, character variables that are not explicitly declared
signed or unsigned are treated as signed quantities with a range typically from -128 to 127.
In other implementations, they are treated as nonnegative quantities with a range typically
from 0 to 255. The following test, where EOF has the value -1, always fails on machines
where character variables take on nonnegative values.

char c;

c = getchar();

if (c == EOF) ...

lint invoked with -p checks all comparisons that imply a plain char may have a negative
value. However, declaring c as a signed char in the example eliminates the diagnostic,
not the problem. getchar() must return all possible characters and a distinct EOF value, so
a char cannot store its value. This example, perhaps the most common one arising from
implementation-defined sign-extension, shows how a thoughtful application of lint’s
portability option can help you discover bugs not related to portability. In any case, declare
c as an int.

■ A similar issue arises with bit-fields. When constant values are assigned to bit-fields, the
field may be too small to hold the value. On a machine that treats bit-fields of type int as

4.6 lint Reference and Examples

Chapter 4 • lint Source Code Checker 113

unsigned quantities, the values allowed for int x:3 range from 0 to 7, whereas on machines
that treat them as signed quantities, they range from -4 to 3. However, a three-bit field
declared type int cannot hold the value 4 on the latter machines. lint invoked with -p
flags all bit-field types other than unsigned int or signed int. These are the only portable
bit-field types. The compiler supports int, char, short, and long bit-field types that may be
unsigned, signed, or plain. It also supports the enum bit-field type.

■ Problems can arise when a larger-sized type is assigned to a smaller-sized type. If
significant bits are truncated, accuracy is lost:

short s;

long l;

s = l;

lint flags all such assignments by default; the diagnostic can be suppressed by invoking
the -a option. Bear in mind that you may be suppressing other diagnostics when you invoke
lint with this or any other option. Check the list in “4.6.2 lint Libraries” on page 115
for the options that suppress more than one diagnostic.

■ A cast of a pointer to one object type to a pointer to an object type with stricter alignment
requirements might not be portable. lint flags the following example because, on most
machines, an int cannot start on an arbitrary byte boundary, whereas a char can.

int *fun(y)

char *y;

{

 return(int *)y;

}

You can suppress the diagnostic by invoking lint with -h, although, again, you may be
disabling other messages. Better still, eliminate the problem by using the generic pointer
void *.

■ ISO C leaves the order of evaluation of complicated expressions undefined. That is, when
function calls, nested assignment statements, or the increment and decrement operators
cause side effects when a variable is changed as a by-product of the evaluation of an
expression, the order in which the side effects take place is highly machine-dependent. By
default, lint flags any variable changed by a side effect and used elsewhere in the same
expression:

int a[10];

main()

{

 int i = 1;

 a[i++] = i;

}

4.6 lint Reference and Examples

114 Oracle Solaris Studio 12.4: C User's Guide • March 2015

In this example, the value of a[1] could be 1 with one compiler and 2 with a different
compiler. The bitwise logical operator & can give rise to this diagnostic when it is
mistakenly used in place of the logical operator &&:

if ((c = getchar()) != EOF & c != ’0’)

4.6.1.3 Questionable Constructs

lint flags a miscellany of legal constructs that might not represent what the programmer
intended. Examples:

■ An unsigned variable always has a nonnegative value. So the following test always fails:

unsigned x;

if (x < 0) ...

The following test:

unsigned x;

if (x > 0) ...

is equivalent to:

if (x != 0) ...

This result might not be the intended action. lint flags questionable comparisons of
unsigned variables with negative constants or 0. To compare an unsigned variable to the bit
pattern of a negative number, cast it to unsigned:

if (u == (unsigned) -1) ...

Or use the U suffix:

if (u == -1U) ...

■ lint flags expressions without side effects that are used in a context where side effects are
expected, that is, where the expression might not represent what the programmer intends. It
issues an additional warning whenever the equality operator is found where the assignment
operator is expected, that is, where a side effect is expected:

int fun()

{

 int a, b, x, y;

 (a = x) && (b == y);

}

■ lint cautions you to parenthesize expressions that mix both the logical and bitwise
operators (specifically, &, |, ^, <<, >>), where misunderstanding of operator precedence

4.6 lint Reference and Examples

Chapter 4 • lint Source Code Checker 115

may lead to incorrect results. For example, because the precedence of bitwise & falls below
logical ==, the expression:

if (x & a == 0) ...

is evaluated as:

if (x & (a == 0)) ...

This result is most likely not what was intended. Invoking lint with -h disables the
diagnostic.

4.6.2 lint Libraries

You can use lint libraries to check your program for compatibility with the library functions
you have called in it: the declaration of the function return type, the number and types of
arguments the function expects, and so on. The standard lint libraries correspond to libraries
supplied by the C compilation system, and generally are stored in a standard place on your
system. By convention, lint libraries have names of the form llib-lx.ln.

The lint standard C library, llib-lc.ln, is appended to the lint command line by default.
Checks for compatibility with it can be suppressed by invoking the -n option. Other lint
libraries are accessed as arguments to -l. The following example directs lint to check the
usage of functions and variables in file1.c and file2.c for compatibility with the lint library
llib-lx.ln.

% lint -lx file1.c file2.c

The library file, which consists only of definitions, is processed exactly as are ordinary source
files and ordinary .ln files, except that functions and variables used inconsistently in the library
file, or defined in the library file but not used in the source files, elicit no complaints.

To create your own lint library, insert the directive NOTE(LINTLIBRARY) at the head of
a C source file, then invoke lint for that file with the -o option and the library name
given to -l. The following example causes only definitions in the source files headed by
NOTE(LINTLIBRARY) to be written to the file llib-lx.ln.

% lint -ox file1.c file2.c

Note the analogy of lint -o to cc -o. A library can be created from a file of function
prototype declarations in the same way, except that both NOTE(LINTLIBRARY) and
NOTE(PROTOLIB(n))must be inserted at the head of the declarations file. If n is 1, prototype
declarations are written to a library .ln file just as are old-style definitions. If n is 0, the default,
the process is cancelled. Invoking lint with -y is another way of creating a lint library. The
following command line causes each source file named on that line to be treated as if it begins
with NOTE(LINTLIBRARY), and only its definitions to be written to llib-lx.ln.

4.6 lint Reference and Examples

116 Oracle Solaris Studio 12.4: C User's Guide • March 2015

% lint -y -ox file1.c file2.c

By default, lint searches for lint libraries in the standard place. To direct lint to search for a
lint library in a directory other than the standard place, specify the path of the directory with
the -L option:

% lint -Ldir -lx file1.c file2.c

In enhanced mode, lint produces .ln files which store additional information than .ln
files produced in basic mode. In enhanced mode, lint can read and understand all .ln
files generated by either basic or enhanced lint modes. In basic mode, lint can read and
understand .ln files generated only using basic lint mode.

By default, lint uses libraries from the /lib and /usr/lib directories. These libraries are in
the basic lint format. You can run a makefile once, and create enhanced lint libraries in a
new format, which will enable enhanced lint to work more effectively. To run the makefile
and create the new libraries, use the following command:

% cd install-directory/prod/src/lintlib; make

where install-directory is the installation directory. After the makefile is run, lint uses the new
libraries in enhanced mode, instead of the libraries in the /lib or /usr/lib directory.

The specified directory is searched before the standard locations.

4.6.3 lint Filters

A lint filter is a project-specific post-processor that typically uses an awk script or similar
program to read the output of lint and discard messages that your project has deemed as not
identifying real problems, for example, string functions, that, return values that are sometimes
or always ignored. lint filters generate customized diagnostic reports when lint options and
directives do not provide sufficient control over output.

Two options to lint are particularly useful in developing a filter:

■ The -s option causes compound diagnostics to be converted into simple, one-line
messages issued for each occurrence of the problem diagnosed. The easily parsed message
format is suitable for analysis by an awk script.

■ The -k option causes certain comments you have written in the source file to be printed
in output. It can be useful both in documenting project decisions and specifying the post-
processor’s behavior. In the latter instance, if the comment identifies an expected lint
message and the reported message is the same, the message can be filtered out. To use
-k, insert the NOTE(LINTED(msg))directive on the line preceding the code you want to
comment, where msg refers to the comment to be printed when lint is invoked with -k.

4.6 lint Reference and Examples

Chapter 4 • lint Source Code Checker 117

Refer to the list of directives in Table 4-9 for an explanation of what lint does when -k is
not invoked for a file containing NOTE(LINTED(msg)).

118 Oracle Solaris Studio 12.4: C User's Guide • March 2015

Chapter 5 • Type-Based Alias Analysis 119

 5 ♦ ♦ ♦ C H A P T E R 5

Type-Based Alias Analysis

This chapter explains how to use the -xalias_level option and several pragmas to enable
the compiler to perform type-based alias analysis and optimizations. You use these extensions
to express type-based information about the way pointers are used in your C program. The
C compiler uses this information, in turn, for alias disambiguation of pointer-based memory
references in your program.

See “B.2.83 -xalias_level[=l]” on page 242 for a detailed explanation of this command’s
syntax. Also, see “4.3.38 -Xalias_level[=l]” on page 102 for an explanation of the lint
program’s type-based alias-analysis capabilities.

5.1 Introduction to Type-Based Analysis

You can use the -xalias_level option to specify one of seven alias levels. Each level specifies
a certain set of properties related to the way you use pointers in your C program.

As you compile with higher levels of the -xalias_level option, the compiler makes
increasingly extensive assumptions about the pointers in your code. You have greater
programming freedom when the compiler makes fewer assumptions. However, the
optimizations that result from these narrow assumptions might not result in significant runtime
performance improvement. If you code in accordance with the compiler assumptions of the
more advanced levels of the -xalias_level option, the resulting optimizations are more likely
to enhance runtime performance.

The -xalias_level option specifies which alias level applies to each translation unit. For cases
where more detail is beneficial, you can use new pragmas to override whatever alias levels are
in effect so that you can explicitly specify the aliasing relationships between individual types or
pointer variables in the translation unit.

5.2 Using Pragmas for Finer Control

120 Oracle Solaris Studio 12.4: C User's Guide • March 2015

5.2 Using Pragmas for Finer Control

For cases in which type-based analysis can benefit from more detail, you can use the pragmas
described in this section to override the alias level in effect and specify the aliasing relationships
between individual types or pointer variables in the translation unit. These pragmas provide the
most benefit when the use of pointers in a translation unit is consistent with one of the available
alias levels while a few specific pointer variables are used in an irregular way not allowed by
one of the available levels.

Note - If you do not declare the named type or variable prior to the pragma, a warning message
is issued and the pragma is ignored. The results of the program are undefined if the pragma
appears after the first memory reference to which its meaning applies.

The terms listed in the following table are used in the pragma definitions.

Term Meaning

level Any of the alias levels listed under “B.2.83 -xalias_level[=l]” on page 242.

type Any of the following:

■ char, short, int, long, long long, float, double, long double
■ void, which denotes all pointer types
■ typedef name, which is the name of a defined type from a typedef declaration
■ struct name, which is the keyword struct followed by a struct tag name
■ union, which is the keyword union followed by a union tag name

pointer_name The name of any variable of pointer type in the translation unit.

5.2.1 #pragma alias_level level (list)

Replace level with one of the seven alias levels: any, basic, weak, layout, strict, std, or
strong. You can replace list with either a single type or pointer, or a comma-delimited list of
types or pointers. For example, you can issue #pragma alias_level as follows:

■ #pragma alias_level level (type [, type])
■ #pragma alias_level level (pointer [, pointer])

This pragma specifies that the indicated alias level applies either to all of the memory
references of the translation unit for the listed types, or to all of the dereferences of the
translation unit where any of the named pointer variables are being dereferenced.

If you specify more than one alias level to be applied to a particular dereference, the level that
is applied by the pointer name, if any, has precedence over all other levels. The level applied

5.2 Using Pragmas for Finer Control

Chapter 5 • Type-Based Alias Analysis 121

by the type name, if any, has precedence over the level applied by the option. In the following
example, the std level applies to p if the program is compiled with #pragma alias_level set
higher than any.

typedef int * int_ptr;

int_ptr p;

#pragma alias_level strong (int_ptr)

#pragma alias_level std (p)

5.2.1.1 #pragma alias (type, type [, type]…)

This pragma specifies that all the listed types alias each other. In the following example, the
compiler assumes that the indirect access *pt aliases the indirect access *pf.

#pragma alias (int, float)

int *pt;

float *pf;

5.2.1.2 #pragma alias (pointer, pointer [, pointer]…)

This pragma specifies that at the point of any dereference of any of the named pointer variables,
the pointer value being dereferenced can point to the same object as any of the other named
pointer variables. However, the pointer is not limited to only the objects contained in the named
variables and can point to objects that are not included in the list. This pragma overrides the
aliasing assumptions of any applied alias levels. In the following example, any indirect accesses
of p and q after the pragma are considered to alias regardless of their type.

#pragma alias(p, q)

5.2.1.3 #pragma may_point_to (pointer, variable [, variable]…)

This pragma specifies that at the point of any dereference of the named pointer variable, the
pointer value being dereferenced can point to the objects that are contained in any of the
named variables. However, the pointer is not limited to only the objects contained in the named
variables and can point to objects that are not included in the list. This pragma overrides
the aliasing assumptions of any applied alias levels. In the following example, the compiler
assumes that any indirect access of *p, aliases any direct accesses a, b, and c.

#pragma alias may_point_to(p, a, b, c)

5.2 Using Pragmas for Finer Control

122 Oracle Solaris Studio 12.4: C User's Guide • March 2015

5.2.1.4 #pragma noalias (type, type [, type]…)

This pragma specifies that the listed types do not alias each other. In the following example, the
compiler assumes that any indirect access of *p does not alias the indirect access *ps.

struct S {

 float f;

 ...} *ps;

#pragma noalias(int, struct S)

int *p;

5.2.1.5 #pragma noalias (pointer, pointer [, pointer]…)

This pragma specifies that at the point of any dereference of any of the named pointer variables,
the pointer value being dereferenced does not point to the same object as any of the other
named pointer variables. This pragma overrides all other applied alias levels. In the following
example, the compiler assumes that any indirect access of *p does not alias the indirect access
*q regardless of the types of the two pointers.

#pragma noalias(p, q)

5.2.1.6 #pragma may_not_point_to (pointer, variable [, variable]…)

This pragma specifies that at the point of any dereference of the named pointer variable, the
pointer value being dereferenced does not point to the objects that are contained in any of the
named variables. This pragma overrides all other applied alias levels. In the following example,
the compiler assumes that any indirect access of *p does not alias the direct accesses a, b, or c.

#pragma may_not_point_to(p, a, b, c)

5.2.1.7 #pragma ivdep

The ivdep pragmas tell a compiler to ignore some or all loop-carried dependences on array
references that it finds in a loop for purposes of optimization. This enables a compiler
to perform various loop optimizations such as microvectorization, distribution, software
pipelining, and so on, which would not be otherwise possible. It is used in cases where the user
knows either that the dependences do not matter or that they never occur in practice.

The interpretation of #pragma ivdep directives depend upon the value of the —xivdep option.

5.3 Checking With lint

Chapter 5 • Type-Based Alias Analysis 123

5.3 Checking With lint

The lint program recognizes the same levels of type-based alias-disambiguation as the
compiler’s -xalias_level command. The lint program also recognizes the pragmas related to
type-based alias-disambiguation documented in this chapter. For a detailed explanation of the
lint -Xalias_level command, see “4.3.38 -Xalias_level[=l]” on page 102.

Four situations that lint detects and generates warnings are:

■ Casting a scalar pointer to a struct pointer
■ Casting a void pointer to a struct pointer
■ Casting a structure field to a scalar pointer
■ Casting a struct pointer to a struct pointer at the level of -Xalias_level=strict without

explicit aliasing

5.3.1 Struct Pointer Cast of Scalar Pointer

In the following example, the pointer p of type integer is cast as a pointer of type struct foo.
With lint -Xalias_level=weak (or higher), this example generates an error.

struct foo {

 int a;

 int b;

 };

struct foo *f;

int *p;

void main()

{

 f = (struct foo *)p; /* struct pointer cast of scalar pointer error */

}

5.3.2 Struct Pointer Cast of Void Pointer

In the following example, the void pointer vp, is cast as a struct pointer. With lint -
Xalias_level=weak (or higher), this example generates a warning.

struct foo {

 int a;

 int b;

 };

struct foo *f;

5.3 Checking With lint

124 Oracle Solaris Studio 12.4: C User's Guide • March 2015

void *vp;

void main()

{

 f = (struct foo *)vp; /* struct pointer cast of void pointer warning */

}

5.3.3 Cast of Struct Field to Structure Pointer

In the following example, the address of structure member foo.b is being cast as a struct
pointer and then assigned to f2. With lint -Xalias_level=weak (or higher), this example
generates an error.

struct foo{

 int a;

 int b;

 };

struct foo *f1;

struct foo *f2;

void main()

{

 f2 = (struct foo *)&f1->b; /* cast of a scalar pointer to struct pointer error*/

}

5.3.4 Explicit Aliasing Required

In the following example, the pointer f1 of type struct fooa is being cast as a pointer of type
struct foob. With lint -Xalias_level=strict (or higher) such a cast requires explicit
aliasing, unless the struct types are identical (the same number of fields of the same type). In
addition, at alias levels standard and strong, the assumptions is that the tags must match for
aliasing to occur. Use #pragma alias (struct fooa, struct foob) before the assignment to f1
and lint stops generating the warning.

struct fooa {

 int a;

};

struct foob {

 int b;

};

struct fooa *f1;

struct foob *f2;

void main()

5.4 Examples of Memory Reference Constraints

Chapter 5 • Type-Based Alias Analysis 125

{

 f1 = (struct fooa *)f2; /* explicit aliasing required warning */

}

5.4 Examples of Memory Reference Constraints

This section provides examples of code that are likely to appear in your source files. Each
example is followed by a discussion of the compiler’s assumptions about the code as dictated
by the applied level of type-based analysis.

5.4.1 Example: Levels of Aliasing

Consider the following code. It can be compiled with different levels of aliasing to demonstrate
the aliasing relationship of the shown types.

struct foo {

 int f1;

 short f2;

 short f3;

 int f4;

} *fp;

struct bar {

 int b1;

 int b2;

 int b3;

} *bp;

int *ip;

short *sp;

If this example is compiled with the -xalias_level=any option, the compiler considers the
following indirect accesses as aliases to each other:

*ip, *sp, *fp, *bp, fp->f1, fp->f2, fp->f3, fp->f4, bp->b1, bp->b2, bp->b3

If this example is compiled with the -xalias_level=basic option, the compiler considers the
following indirect accesses as aliases to each other:

*ip, *bp, fp->f1, fp->f4, bp->b1, bp->b2, bp->b3

Additionally, *sp, fp->f2, and fp->f3 can alias each other, and *sp and *fp can alias each
other.

However, under -xalias_level=basic, the compiler assumes the following:

5.4 Examples of Memory Reference Constraints

126 Oracle Solaris Studio 12.4: C User's Guide • March 2015

■ *ip does not alias *sp.
■ *ip does not alias fp->f2 and fp->f3.
■ *sp does not alias fp->f1, fp->f4, bp->b1, bp->b2, and bp->b3.

The compiler makes these assumptions because the access types of the two indirect accesses are
different basic types.

If this example is compiled with the -xalias_level=weak option, the compiler assumes the
following alias information:

■ *ip can alias *fp, fp->f1, fp->f4, *bp, bp->b1, bp->b2, and bp->b3.
■ *sp can alias *fp, fp->f2 and fp->f3.
■ fp->f1 can alias bp->b1.
■ fp->f4 can alias bp->b3.

The compiler assumes that fp->fp1 does not alias bp->b2 because f1 is a field with offset 0
in a structure, whereas b2 is a field with a 4-byte offset in a structure. Similarly, the compiler
assumes that fp->f1 does not alias bp->b3, and fp->f4 does not alias either bp->b1 or bp->b2.

If this example is compiled with the -xalias_level=layout option, the compiler assumes the
following information:

■ *ip can alias *fp, *bp, fp->f1, fp->f4, bp->b1, bp->b2, and bp->b3.
■ *sp can alias *fp, fp->f2, and fp->f3.
■ fp->f1 can alias bp->b1 and *bp.
■ *fp and *bp can alias each other.

fp->f4 does not alias bp->b3 because f4 and b3 are not corresponding fields in the common
initial sequence of foo and bar.

If this example is compiled with the -xalias_level=strict option, the compiler assumes the
following alias information:

■ *ip can alias *fp, fp->f1, fp->f4, *bp, bp->b1, bp->b2, and bp->b3.
■ *sp can alias *fp, fp->f2, and fp->f3.

With -xalias_level=strict, the compiler assumes that *fp, *bp, fp->f1, fp->f2, fp->f3, fp-
>f4, bp->b1, bp->b2, and bp->b3 do not alias each other because foo and bar are not the same
when field names are ignored. However, fp aliases fp->f1 and bp aliases bp->b1.

If this example is compiled with the -xalias_level=std option, the compiler assumes the
following alias information:

■ *ip can alias *fp, fp->f1, fp->f4, *bp, bp->b1, bp->b2, and bp->b3.
■ *sp can alias *fp, fp->f2, and fp->f3.

5.4 Examples of Memory Reference Constraints

Chapter 5 • Type-Based Alias Analysis 127

However, fp->f1 does not alias bp->b1, bp->b2, or bp->b3 because foo and bar are not the
same when field names are considered.

If this example is compiled with the -xalias_level=strong option, the compiler assumes the
following alias information:

■ *ip does not alias fp->f1, fp->f4, bp->b1, bp->b2, and bp->b3 because a pointer, such as
*ip, should not point to the interior of a structure.

■ Similarly, *sp does not alias fp->f1 or fp->f3.
■ *ip does not alias *fp, *bp, and *sp due to differing types.
■ *sp does not alias *fp, *bp, and *ip due to differing types.

5.4.2 Example: Compiling with Different Aliasing Levels

Consider the following example source code. It demonstrates the aliasing relationship of the
shown types when compiled with different levels of aliasing.

struct foo {

 int f1;

 int f2;

 int f3;

} *fp;

struct bar {

 int b1;

 int b2;

 int b3;

} *bp;

If this example is compiled with the -xalias_level=any option, the compiler assumes the
following alias information:

*fp, *bp, fp->f1, fp->f2, fp->f3, bp->b1, bp->b2 and bp->b3 all can alias each other because
any two memory accesses alias each other at the level of -xalias_level=any.

If this example is compiled with the -xalias_level=basic option, the compiler assumes the
following alias information:

*fp, *bp, fp->f1, fp->f2, fp->f3, bp->b1, bp->b2 and bp->b3 all can alias each other. Any two
field accesses using pointers *fp and *bp can alias each other in this example because all the
structure fields are the same basic type.

If this example is compiled with the -xalias_level=weak option, the compiler assumes the
following alias information:

■ *fp and *fp can alias each other.

5.4 Examples of Memory Reference Constraints

128 Oracle Solaris Studio 12.4: C User's Guide • March 2015

■ fp->f1 can alias bp->b1, *bp and *fp.
■ fp->f2 can alias bp->b2, *bp and *fp.
■ fp->f3 can alias bp->b3, *bp and *fp.

However, -xalias_level=weak imposes the following restrictions:

■ fp->f1 does not alias bp->b2 or bp->b3 because f1 has an offset of zero, which is different
from that of b2 (four bytes) and b3 (eight bytes).

■ fp->f2 does not alias bp->b1 or bp->b3 because f2 has an offset of four bytes, which is
different from b1 (zero bytes) and b3 (eight bytes).

■ fp->f3 does not alias bp->b1 or bp->b2 because f3 has an offset of eight bytes, which is
different from b1 (zero bytes) and b2 (four bytes).

If this example is compiled with the -xalias_level=layout options, the compiler assumes the
following alias information:

■ *fp and *bp can alias each other.
■ fp->f1 can alias bp->b1, *bp, and *fp.
■ fp->f2 can alias bp->b2, *bp, and *fp.
■ fp->f3 can alias bp->b3, *bp, and *fp.

However, -xalias_level=layout imposes the following restrictions:

■ fp->f1 does not alias bp->b2 or bp->b3 because field f1 corresponds to field b1 in the
common initial sequence of foo and bar.

■ fp->f2 does not alias bp->b1 or bp->b3 because f2 corresponds to field b2 in the common
initial sequence of foo and bar.

■ fp->f3 does not alias bp->b1 or bp->b2 because f3 corresponds to field b3 in the common
initial sequence of foo and bar.

If this example is compiled with the -xalias_level=strict option, the compiler assumes the
following alias information:

■ *fp and *bp can alias each other.
■ fp->f1 can alias bp->b1, *bp, and *fp.
■ fp->f2 can alias bp->b2, *bp, and *fp.
■ fp->f3 can alias bp->b3, *bp, and *fp.

However, -xalias_level=strict imposes the following restrictions:

■ fp->f1 does not alias bp->b2 or bp->b3 because field f1 corresponds to field b1 in the
common initial sequence of foo and bar.

■ fp->f2 does not alias bp->b1 or bp->b3 because f2 corresponds to field b2 in the common
initial sequence of foo and bar.

5.4 Examples of Memory Reference Constraints

Chapter 5 • Type-Based Alias Analysis 129

■ fp->f3 does not alias bp->b1 or bp->b2 because f3 corresponds to field b3 in the common
initial sequence of foo and bar.

If this example is compiled with the -xalias_level=std option, the compiler assumes the
following alias information:

fp->f1, fp->f2, fp->f3, bp->b1, bp->b2, and bp->b3 do not alias each other.

If this example is compiled with the -xalias_level=strong option, the compiler assumes the
following alias information:

fp->f1, fp->f2, fp->f3, bp->b1, bp->b2, and bp->b3 do not alias each other.

5.4.3 Example: Interior Pointers
Consider the following example source code that demonstrates that certain levels of aliasing
cannot handle interior pointers. For a definition of interior pointers see Table B-13.

struct foo {

 int f1;

 struct bar *f2;

 struct bar *f3;

 int f4;

 int f5;

 struct bar fb[10];

} *fp;

struct bar

 struct bar *b2;

 struct bar *b3;

 int b4;

} *bp;

bp=(struct bar*)(&fp->f2);

The dereference in this example is not supported by weak, layout, strict, or std. After the
pointer assignment bp=(struct bar*)(&fp->f2), the following pair of memory accesses
touches the same memory locations:

■ fp->f2 and bp->b2 access the same memory location
■ fp->f3 and bp->b3 access the same memory location
■ fp->f4 and bp->b4 access the same memory location

However, with the options weak, layout, strict, and std, the compiler assumes that fp->f2
and bp->b2 do not alias. The compiler makes this assumption because b2 has an offset of zero,
which is different from the offset of f2 (four bytes), and foo and bar do not have a common
initial sequence. Similarly, the compiler also assumes that bp->b3 does not alias fp->f3, and
bp->b4 does not alias fp->f4.

5.4 Examples of Memory Reference Constraints

130 Oracle Solaris Studio 12.4: C User's Guide • March 2015

Thus, the pointer assignment bp=(struct bar*)(&fp->f2)creates a situation in which the
compiler’s assumptions about alias information are incorrect. This situation could lead to
incorrect optimization.

Try compiling after you make the modifications shown in the following example.

struct foo {

 int f1;

 struct bar fb; /* Modified line */

#define f2 fb.b2 /* Modified line */

#define f3 fb.b3 /* Modified line */

#define f4 fb.b4 /* Modified line */

 int f5;

 struct bar fb[10];

} *fp;

struct bar

 struct bar *b2;

 struct bar *b3;

 int b4;

} *bp;

bp=(struct bar*)(&fp->f2);

After the pointer assignment bp=(struct bar*)(&fp->f2), the following pair of memory
accesses touches the same memory locations:

■ fp->f2 and bp->b2
■ fp->f3 and bp->b3
■ fp->f4 and bp->b4

The changes shown in this code example illustrate that the expression fp->f2 is another form
of the expression fp->fb.b2. Because fp->fb is of type bar, fp->f2 accesses the b2 field of
bar. Furthermore, bp->b2 also accesses the b2 field of bar. Therefore, the compiler assumes
that fp->f2 aliases bp->b2. Similarly, the compiler assumes that fp->f3 aliases bp->b3, and fp-
>f4 aliases bp->b4. As a result, the aliasing assumed by the compiler matches the actual aliases
caused by the pointer assignment.

5.4.4 Example: Struct Fields

Consider the following example source code.

struct foo {

 int f1;

 int f2;

} *fp;

struct bar {

5.4 Examples of Memory Reference Constraints

Chapter 5 • Type-Based Alias Analysis 131

 int b1;

 int b2;

} *bp;

struct cat {

 int c1;

 struct foo cf;

 int c2;

 int c3;

} *cp;

struct dog {

 int d1;

 int d2;

 struct bar db;

 int d3;

} *dp;

If this example is compiled with the -xalias_level=weak option, the compiler assumes the
following alias information:

■ fp->f1 can alias bp->b1, cp->c1, dp->d1, cp->cf.f1, and df->db.b1.
■ fp->f2 can alias bp->b2, cp->cf.f1, dp->d2, cp->cf.f2, df->db.b2, cp->c2.
■ bp->b1 can alias fp->f1, cp->c1, dp->d1, cp->cf.f1, and df->db.b1.
■ bp->b2 can alias fp->f2, cp->cf.f1, dp->d2, cp->cf.f1, and df->db.b2.

fp->f2 can alias cp->c2 because *dp can alias *cp and *fp can alias dp->db.

■ cp->c1 can alias fp->f1, bp->b1, dp->d1, and dp->db.b1.
■ cp->cf.f1 can alias fp->f1, fp->f2, bp->b1, bp->b2, dp->d2, and dp->d1.

cp->cf.f1 does not alias dp->db.b1.

■ cp->cf.f2 can alias fp->f2, bp->b2, dp->db.b1, and dp->d2.
■ cp->c2 can alias dp->db.b2.

cp->c2 does not alias dp->db.b1 and cp->c2 does not alias dp->d3.

With respect to offsets, cp->c2 can alias db->db.b1 only if *dp aliases cp->cf. However, if *dp
aliases cp->cf, then dp->db.b1 must alias beyond the end of foo cf, which is prohibited by
object restrictions. Therefore, the compiler assumes that cp->c2 cannot alias db->db.b1.

cp->c3 can alias dp->d3.

Notice that cp->c3 does not alias dp->db.b2. These memory references do not alias because the
offsets of the fields of the types involved in the dereferences differ and do not overlap. Based on
this, the compiler assumes they cannot alias.

■ dp->d1 can alias fp->f1, bp->b1, and cp->c1.

5.4 Examples of Memory Reference Constraints

132 Oracle Solaris Studio 12.4: C User's Guide • March 2015

■ dp->d2 can alias fp->f2, bp->b2, and cp->cf.f1.
■ dp->db.b1 can alias fp->f1, bp->b1, and cp->c1.
■ dp->db.b2 can alias fp->f2, bp->b2, cp->c2, and cp->cf.f1.
■ dp->d3 can alias cp->c3.

Notice that dp->d3 does not alias cp->cf.f2. These memory references do not alias because the
offsets of the fields of the types involved in the dereferences differ and do not overlap. Based on
this analysis, the compiler assumes they cannot alias.

If this example is compiled with the -xalias_level=layout option, the compiler assumes only
the following alias information:

■ fp->f1, bp->b1, cp->c1 and dp->d1 all can alias each other.
■ fp->f2, bp->b2 and dp->d2 all can alias each other.
■ fp->f1 can alias cp->cf.f1 and dp->db.b1.
■ bp->b1 can alias cp->cf.f1 and dp->db.b1.
■ fp->f2 can alias cp->cf.f2 and dp->db.b2.
■ bp->b2 can alias cp->cf.f2 and dp->db.b2.

If this example is compiled with the -xalias_level=strict option, the compiler assumes only
the following alias information:

■ fp->f1 and bp->b1 can alias each other.
■ fp->f2 and bp->b2 can alias each other.
■ fp->f1 can alias cp->cf.f1 and dp->db.b1.
■ bp->b1 can alias cp->cf.f1 and dp->db.b1.
■ fp->f2 can alias cp->cf.f2 and dp->db.b2.
■ bp->b2 can alias cp->cf.f2 and dp->db.b2.

If this example is compiled with the -xalias_level=std option, the compiler assumes only the
following alias information:

■ fp->f1 can alias cp->cf.f1.
■ bp->b1 can alias dp->db.b1.
■ fp->f2 can alias cp->cf.f2.
■ bp->b2 can alias dp->db.b2.

5.4.5 Example: Unions
Consider the following example source code.

struct foo {

5.4 Examples of Memory Reference Constraints

Chapter 5 • Type-Based Alias Analysis 133

 short f1;

 short f2;

 int f3;

} *fp;

struct bar {

 int b1;

 int b2;

} *bp;

union moo {

 struct foo u_f;

 struct bar u_b;

} u;

The compiler’s assumptions based on various alias levels are the following:

■ If this example is compiled with the -xalias_level=weak option, fp->f3 and bp->b2 can
alias each other.

■ If this example is compiled with the -xalias_level=layout option, no fields can alias each
other.

■ If this example is compiled with the -xalias_level=strict option, fp->f3 and bp->b2 can
alias each other.

■ If this example is compiled with the -xalias_level=std option, no fields can alias each
other.

5.4.6 Example: Structs of Structs

Consider the following example source code.

struct bar;

struct foo {

 struct foo *ffp;

 struct bar *fbp;

} *fp;

struct bar {

 struct bar *bbp;

 long b2;

} *bp;

The compiler’s assumptions based on various alias levels are the following:

■ If this example is compiled with the -xalias_level=weak option, only fp->ffp and bp-
>bbp can alias each other.

■ If this example is compiled with the -xalias_level=layout option, only fp->ffp and bp-
>bbp can alias each other.

5.4 Examples of Memory Reference Constraints

134 Oracle Solaris Studio 12.4: C User's Guide • March 2015

■ If this example is compiled with the -xalias_level=strict option, no fields can alias
because the two struct types are still different even after their tags are removed.

■ If this example is compiled with the -xalias_level=std option, no fields can alias because
the two types and the tags are not the same.

5.4.7 Example: Using a Pragma

Consider the following example source code:

struct foo;

struct bar;

#pragma alias (struct foo, struct bar)

struct foo {

 int f1;

 int f2;

} *fp;

struct bar {

 short b1;

 short b2;

 int b3;

} *bp;

The pragma in this example tells the compiler that foo and bar are allowed to alias each other.
The compiler makes the following assumptions about alias information:

■ fp->f1 can alias with bp->b1, bp->b2, and bp->b3
■ fp->f2 can alias with bp->b1, bp->b2, and bp->b3

Chapter 6 • Transitioning to ISO C 135

 6 ♦ ♦ ♦ C H A P T E R 6

Transitioning to ISO C

This chapter provides information that you can use to help you port applications for K&R
(Kernigan and Ritchie) style C to conform with ISO/IEC C standard. The chapter was written
specifically to aid in porting to 9899:1990 ISO/IEC C standard, but can effectively aid in
porting to the 9899:1999 or 9899:2011 versions of ISO/IEC C standards.

This version of the C compiler defaults to accepting code that conforms with 9899:2011, i.e. -
std=c11. To compile for 9899:1999 use -std=c99, and to compile for 9899:1990 use -std=c89.

To compile a program that is maximally conformant to the ISO C dialect specified by the -std
flag, you must also specify the -pedantic flag.

6.1 New-Style Function Prototypes
The 1990 ISO C standard’s most sweeping change to the language is the function prototype
borrowed from the C++ language. By specifying the number and types of parameters for each
function, every regular compile gets the benefits of argument and parameter checking (similar
to those of lint) for each function call, while arguments are automatically converted (just as
with an assignment) to the type expected by the function. The 1990 ISO C standard includes
rules that govern the mixing of old- and new-style function declarations since there are many,
many lines of existing C code that could and should be converted to use prototypes.

The 1999 ISO C standard made old-style function declarations obsolete.

6.1.1 Writing New Code
When you write an entirely new program, use new-style function declarations (function
prototypes) in headers and new-style function declarations and definitions in other C source
files. However, if someone might port the code to a system with a pre-ISO C compiler, use the
macro __STDC__ (which is defined only for ISO C compilation systems) in both header and
source files. Refer to “6.1.3 Mixing Considerations” on page 136 for an example.

An ISO C-conforming compiler must issue a diagnostic whenever two incompatible
declarations for the same object or function are in the same scope. If all functions are declared

6.1 New-Style Function Prototypes

136 Oracle Solaris Studio 12.4: C User's Guide • March 2015

and defined with prototypes and the appropriate headers are included by the correct source files,
all calls should agree with the definition of the functions. This protocol eliminates one of the
most common C programming mistakes.

6.1.2 Updating Existing Code

If you have an existing application and want the benefits of function prototypes, a number of
possibilities for updating exist, depending on how much of the code you would like to change:

1. Recompile without making any changes.
Even with no coding changes, the compiler warns you about mismatches in parameter type
and number when invoked with the– v option.

2. Add function prototypes only to the headers.
All calls to global functions are covered.

3. Add function prototypes to the headers and start each source file with function prototypes
for its local (static) functions.
All calls to functions are covered, but this method requires typing the interface for each
local function twice in the source file.

4. Change all function declarations and definitions to use function prototypes.

For most programmers, choices 2 and 3 are probably the best cost/benefit compromise.
Unfortunately, these options are precisely the ones that require detailed knowledge of the rules
for mixing old and new styles.

6.1.3 Mixing Considerations

For function prototype declarations to work with old-style function definitions, both must
specify functionally identical interfaces or have compatible types using ISO C’s terminology.

For functions with varying arguments, you cannot mix ISO C’s ellipsis notation and the old-
style varargs() function definition. For functions with a fixed number of parameters, you can
specify the types of the parameters as they were passed in previous implementations.

In K&R C, each argument was converted just before it was passed to the called function
according to the default argument promotions. These promotions specified that all integral
types narrower than int were promoted to int size, and any float argument was promoted
to double, which simplified both the compiler and libraries. Function prototypes are more
expressive, as the specified parameter type is what is passed to the function.

Thus, if a function prototype is written for an existing (old-style) function definition,the
function prototype should not contain any parameters with any of the following types: char,
signed char, unsigned char, float, short, signed short, unsigned short.

6.1 New-Style Function Prototypes

Chapter 6 • Transitioning to ISO C 137

Two complications remain with writing prototypes: typedef names and the promotion rules for
narrow unsigned types.

If parameters in old-style functions were declared using typedef names, such as off_t and
ino_t, you must know whether the typedef name designates a type that is affected by the
default argument promotions. For these two, off_t is a long, you can use it in a function
prototype; ino_t used to be an unsigned short, so if it were used in a prototype, the compiler
issues a diagnostic because the old-style definition and the prototype specify different and
incompatible interfaces.

Determining what should be used instead of an unsigned short is complicated. The biggest
incompatibility between K&R C and the 1990 ISO C compiler is the promotion rule for the
widening of unsigned char and unsigned short to an int value. (See “6.3 Promotions:
Unsigned Versus Value Preserving” on page 140.) The parameter type that matches this old-
style parameter depends on the compilation mode used when you compile:

■ -Xs and– Xt should use unsigned int
■ –Xa, – Xc, and -std=anyvalue should use int

The best approach is to change the old-style definition to specify either int or unsigned int
and use the matching type in the function prototype. You can always assign its value to a local
variable with the narrower type, if necessary, after you enter the function.

Be careful about the use of ID’s in prototypes that may be affected by preprocessing. Consider
the following example:

#define status 23

void my_exit(int status); /* Normally, scope begins */

 /* and ends with prototype */

Do not mix function prototypes with old-style function declarations that contain narrow types.

void foo(unsigned char, unsigned short);

void foo(i, j) unsigned char i; unsigned short j; {...}

Appropriate use of __STDC__ produces a header file that can be used for both the old and new
compilers:

header.h:

 struct s { /* . . . */ };

 #ifdef __STDC__

 void errmsg(int, ...);

 struct s *f(const char *);

 int g(void);

 #else

 void errmsg();

 struct s *f();

 int g();

 #endif

6.2 Functions With Varying Arguments

138 Oracle Solaris Studio 12.4: C User's Guide • March 2015

The following function uses prototypes and can still be compiled on an older system:

struct s *

#ifdef __STDC__

 f(const char *p)

#else

 f(p) char *p;

#endif

{

 /* . . . */

}

The following example shows an updated source file (as with choice 3 above). The local
function still uses an old-style definition, but a prototype is included for newer compilers:

source.c:

 #include “header.h”

 typedef /* . . . */ MyType;

 #ifdef __STDC__

 static void del(MyType *);

 /* . . . */

 static void

 del(p)

 MyType *p;

 {

 /* . . . */

 }

 /* . . . */

6.2 Functions With Varying Arguments

In previous implementations, you could not specify the parameter types that a function
expected, but ISO C encourages you to use prototypes to do just that. To support functions
such as printf(), the syntax for prototypes includes a special ellipsis (…) terminator. Because
an implementation might need to do unusual things to handle a varying number of arguments,
ISO C requires that all declarations and the definition of such a function include the ellipsis
terminator.

Because the “…” part of the parameters have no name, a special set of macros contained in
stdarg.h gives the function access to these arguments. Earlier versions of such functions had to
use similar macros contained in varargs.h.

Assume that the function you want to write is an error handler called errmsg() that returns
void, and whose only fixed parameter is an int that specifies details about the error message.
This parameter can be followed by a file name, a line number, or both. These items are followed
by format and arguments, similar to those of printf(), that specify the text of the error
message.

6.2 Functions With Varying Arguments

Chapter 6 • Transitioning to ISO C 139

For this example to compile with earlier compilers requires extensive use of the macro
__STDC__, which is defined only for ISO C compilers. The function’s declaration in the
appropriate header file is:

#ifdef __STDC__

 void errmsg(int code, ...);

#else

 void errmsg();

#endif

The file that contains the definition of errmsg() is where the old and new styles can get
complex. First, the header to include depends on the compilation system:

#ifdef __STDC__

#include <stdarg.h>

#else

#include <varargs.h>

#endif

#include <stdio.h>

stdio.h is included because we call fprintf() and vfprintf() later.

Next comes the definition for the function. The identifiers va_alist and va_dcl are part of the
old-style varargs.h interface.

void

#ifdef __STDC__

errmsg(int code, ...)

#else

errmsg(va_alist) va_dcl /* Note: no semicolon! */

#endif

{

 /* more detail below */

}

Because the old-style variable argument mechanism did not allow you to specify any fixed
parameters, they must be accessed before the varying portion. Also, due to the lack of a name
for the “…” part of the parameters, the new va_start() macro has a second argument, which is
the name of the parameter that comes just before the “…” terminator.

As an extension, Oracle Solaris Studio ISO C allows functions to be declared and defined with
no fixed parameters, as in:

int f(...);

For such functions, va_start() should be invoked with an empty second argument, for
example:

va_start(ap,)

The following example is the body of the function:

{

6.3 Promotions: Unsigned Versus Value Preserving

140 Oracle Solaris Studio 12.4: C User's Guide • March 2015

 va_list ap;

 char *fmt;

#ifdef __STDC__

 va_start(ap, code);

#else

 int code;

 va_start(ap);

 /* extract the fixed argument */

 code = va_arg(ap, int);

#endif

 if (code & FILENAME)

 (void)fprintf(stderr, "\"%s\": ", va_arg(ap, char *));

 if (code & LINENUMBER)

 (void)fprintf(stderr, "%d: ", va_arg(ap, int));

 if (code & WARNING)

 (void)fputs("warning: ", stderr);

 fmt = va_arg(ap, char *);

 (void)vfprintf(stderr, fmt, ap);

 va_end(ap);

}

Both the va_arg() and va_end() macros work the same for the old-style and ISO C versions.
Because va_arg() changes the value of ap, the call to vfprintf() cannot be:

(void)vfprintf(stderr, va_arg(ap, char *), ap);

The definitions for the macros FILENAME, LINENUMBER, and WARNING are presumably contained
in the same header as the declaration of errmsg().

A sample call to errmsg() could be:

errmsg(FILENAME, "<command line>", "cannot open: %s\n",

argv[optind]);

6.3 Promotions: Unsigned Versus Value Preserving
The following information appears in the Rationale section that accompanies the 1990 ISO C
Standard: “QUIET CHANGE”. A program that depends on unsigned preserving arithmetic
conversions will behave differently, probably without complaint. This change is considered to
be the most serious made by the Committee to a widespread current practice.

This section explores how this change affects our code.

6.3.1 Some Background History
In the first edition of The C Programming Language, unsigned specified exactly one type,
with no unsigned chars, unsigned shorts, or unsigned longs. Most C compilers added these

6.3 Promotions: Unsigned Versus Value Preserving

Chapter 6 • Transitioning to ISO C 141

these very soon thereafter. Some compilers did not implement unsigned long but included the
other two. Naturally, implementations chose different rules for type promotions when these new
types mixed with others in expressions.

In most C compilers, the simpler rule unsigned preserving is used. When an unsigned type
needs to be widened, it is widened to an unsigned type; when an unsigned type mixes with a
signed type, the result is an unsigned type.

The other rule, specified by ISO C, is known as value preserving. in which the result type
depends on the relative sizes of the operand types. When an unsigned char or unsigned short
is widened, the result type is int if an int is large enough to represent all the values of the
smaller type. Otherwise, the result type is unsigned int. The value preserving rule produces
fewer unexpected arithmetic results for most expressions.

6.3.2 Compilation Behavior

Only in the transition or ISO modes (-Xt or -Xs) does the ISO C compiler use the unsigned
preserving promotions. When -std=anyvalue is specified or in the other two modes,
conforming (–Xc) and ISO (–Xa), the value preserving promotion rules are used.

6.3.3 Example: The Use of a Cast

In the following code, assume that an unsigned char is smaller than an int.

int f(void)

{

 int i = -2;

 unsigned char uc = 1;

 return (i + uc) < 17;

}

The code causes the compiler to issue the following warning when you use the -xtransition
option:

line 6: warning: semantics of "<" change in ISO C; use explicit cast

The result of the addition has type int (value preserving) or unsigned int (unsigned
preserving), but the bit pattern does not change between these two. On a two’s-complement
machine:

 i: 111...110 (-2)

+ uc: 000...001 (1)

===================

6.3 Promotions: Unsigned Versus Value Preserving

142 Oracle Solaris Studio 12.4: C User's Guide • March 2015

 111...111 (-1 or UINT_MAX)

This bit representation corresponds to -1 for int and UINT_MAX for unsigned int. Thus, if the
result has type int, a signed comparison is used and the less-than test is true. If the result has
type unsigned int, an unsigned comparison is used and the less-than test is false.

The addition of a cast serves to specify which of the two behaviors is desired:

value preserving:

 (i + (int)uc) < 17

unsigned preserving:

 (i + (unsigned int)uc) < 17

Because differing compilers chose different meanings for the same code, this expression can be
ambiguous. The addition of a cast is as much to help the reader as it is to eliminate the warning
message.

The same situation applies to the promotion of bit-field values. In ISO C, if the number of bits
in an int or unsigned int bit-field is less than the number of bits in an int, the promoted type
is int; otherwise, the promoted type is unsigned int. In most older C compilers, the promoted
type is unsigned int for explicitly unsigned bit-fields, and int otherwise.

Similar use of casts can eliminate situations that are ambiguous.

6.3.4 Example: Same Result, No Warning

In the following code, assume that both unsigned short and unsigned char are narrower than
int.

int f(void)

{

 unsigned short us;

 unsigned char uc;

 return uc < us;

}

In this example, both automatics are either promoted to int or to unsigned int, so the
comparison is sometimes unsigned and sometimes signed. However, the C compiler does not
warn you because the result is the same for the two choices.

6.3.5 Integral Constants

As with expressions, the rules for the types of certain integral constants have changed. In K&R
C, an unsuffixed decimal constant had type int only if its value fit in an int. An unsuffixed
octal or hexadecimal constant had type int only if its value fit in an unsigned int. Otherwise,

6.3 Promotions: Unsigned Versus Value Preserving

Chapter 6 • Transitioning to ISO C 143

an integral constant had type long. At times, the value did not fit in the resulting type. In the
1990 ISO/IEC C standard, the constant type is the first type encountered in the following list
that corresponds to the value:

■ Unsuffixed decimal: int, long, unsigned long
■ Unsuffixed octal or hexadecimal: int, unsigned int, long, unsigned long
■ U suffixed: unsigned int, unsigned long
■ L suffixed: long, unsigned long
■ UL suffixed: unsigned long

When you use the -xtransition option,the ISO C compiler warns you about any expression
whose behavior might change according to the typing rules of the constants involved. The old
integral constant typing rules are used only in the transition mode. The ISO and conforming
modes use the new rules.

Note - The rules for typing unsuffixed decimal constants has changed in accordance with the
1999 ISO C standard. See “2.1.1 Integer Constants” on page 31.

6.3.6 Example: Integral Constants

In the following code, assume ints are 16 bits.

int f(void)

{

 int i = 0;

 return i > 0xffff;

}

Because the hexadecimal constant’s type is either int (with a value of– 1 on a two’s-
complement machine) or an unsigned int (with a value of 65535), the comparison is true in -
Xs and -Xt modes, and false in -Xa and -Xc modes or when -std flag is specified.

Again, an appropriate cast clarifies the code and suppresses a warning:

-Xt, -Xs modes:

 i > (int)0xffff

-Xa, -Xc modes, or when -std flag is specified:

 i > (unsigned int)0xffff

 or

 i > 0xffffU

The U suffix character is a new feature of ISO C and probably produces an error message with
older compilers.

6.4 Tokenization and Preprocessing

144 Oracle Solaris Studio 12.4: C User's Guide • March 2015

6.4 Tokenization and Preprocessing

Probably the least specified part of previous versions of C concerned the operations that
transformed each source file from a bunch of characters into a sequence of tokens, ready
to parse. These operations included recognition of white space (including comments),
bundling consecutive characters into tokens, handling preprocessing directive lines, and macro
replacement. However, their respective ordering was never guaranteed.

6.4.1 ISO C Translation Phases

The order of these translation phases is specified by ISO C.

Every trigraph sequence in the source file is replaced. ISO C has exactly nine trigraph
sequences that were invented solely as a concession to deficient character sets. They are three-
character sequences that name a character not in the ISO 646-1983 character set:

TABLE 6-1 Trigraph Sequences

Trigraph Sequence Converts to

??= #

??- ~

??([

??)]

??! |

??< {

??> }

??/ \

??’ ^

These sequences must be understood by ISO C compilers, but are not recommended. When you
use the -xtransition option, the ISO C compiler warns you whenever it replaces a trigraph
while in transition (–Xt) mode, even in comments. For example, consider the following:

/* comment *??/

/* still comment? */

The ??/ becomes a backslash. This character and the following newline are removed. The
resulting characters are:

/* comment */* still comment? */

The first / from the second line is the end of the comment. The next token is the *.

6.4 Tokenization and Preprocessing

Chapter 6 • Transitioning to ISO C 145

1. Every backslash/new-line character pair is deleted.
2. The source file is converted into preprocessing tokens and sequences of white space. Each

comment is effectively replaced by a space character.
3. Every preprocessing directive is handled and all macro invocations are replaced. Each

#included source file is run through the earlier phases before its contents replace the
directive line.

4. Every escape sequence (in character constants and string literals) is interpreted.
5. Adjacent string literals are concatenated.
6. Every preprocessing token is converted into a regular token. The compiler properly parses

these and generates code.
7. All external object and function references are resolved, resulting in the final program.

6.4.2 Old C Translation Phases
Previous C compilers did not follow such a simple sequence of phases, and the order in which
these steps were applied was not predictable. A separate preprocessor recognized tokens and
white space at essentially the same time as it replaced macros and handled directive lines. The
output was then completely retokenized by the compiler proper, which then parsed the language
and generated code.

The tokenization process within the preprocessor was a moment-by-moment operation and
macro replacement was done as a character-based, not token-based, operation. Therefore, the
tokens and white space could greatly vary during preprocessing.

A number of differences arise from these two approaches. The rest of this section discusses
how code behavior can change due to line splicing, macro replacement, stringizing, and token
pasting, which occur during macro replacement.

6.4.3 Logical Source Lines
In K&R C, backslash/new-line pairs were allowed only as a means to continue a directive,
a string literal, or a character constant to the next line. ISO C extended the notion so that a
backslash/new-line pair can continue anything to the next line. The result is a logical source
line. Therefore, any code that relies on the separate recognition of tokens on either side of a
backslash/new-line pair does not behave as expected.

6.4.4 Macro Replacement
The macro replacement process was not described in detail prior to ISO C. This vagueness
spawned a great many divergent implementations. Any code that relied on anything more
complex than manifest constant replacement and simple function–like macros was probably

6.4 Tokenization and Preprocessing

146 Oracle Solaris Studio 12.4: C User's Guide • March 2015

not truly portable. This manual cannot uncover all the differences between the old C macro
replacement implementation and the ISO C version. Nearly all uses of macro replacement with
the exception of token pasting and stringizing produce exactly the same series of tokens as
before. Furthermore, the ISO C macro replacement algorithm can do things not possible in the
old C version. The following example causes any use of name to be replaced with an indirect
reference through name.

#define name (*name)

The old C preprocessor would produce a huge number of parentheses and stars and eventually
produce an error about macro recursion.

The major change in the macro replacement approach taken by ISO C is to require macro
arguments, other than those that are operands of the macro substitution operators # and ##, to
be expanded recursively prior to their substitution in the replacement token list. However, this
change seldom produces an actual difference in the resulting tokens.

6.4.5 Using Strings

Note - In ISO C, the examples below marked with a ? produce a warning about use of old
features when you use the -xtransition option. Only in the transition mode (–Xt and -Xs)
is the result the same as in previous versions of C.

In K&R C, the following code produced the string literal "x y!":

#define str(a) "a!" ?

str(x y)

Thus, the preprocessor searched inside string literals and character constants for characters that
looked like macro parameters. ISO C recognized the importance of this feature, but could not
condone operations on parts of tokens. In ISO C, all invocations of the above macro produce the
string literal "a!". To achieve the old effect in ISO C, use the # macro substitution operator and
the concatenation of string literals.

#define str(a) #a "!"

str(x y)

This code produces the two string literals "x y" and "!" which, after concatenation, produce
the identical "x y!".

There is no direct replacement for the analogous operation for character constants. The major
use of this feature was similar to the following example:

#define CNTL(ch) (037 & ’ch’) ?

CNTL(L)

This example produces the following result, which evaluates to the ASCII control-L character.

6.5 const and volatile

Chapter 6 • Transitioning to ISO C 147

(037 & ’L’)

The best solution is to change all uses of this macro as follows:

#define CNTL(ch) (037 & (ch))

CNTL(’L’)

This code is more readable and more useful, as it can also be applied to expressions.

6.4.6 Token Pasting

K&R C had at least two ways to combine two tokens. Both invocations in the following code
produced a single identifier x1 out of the two tokens x and 1.

#define self(a) a

#define glue(a,b) a/**/b ?

self(x)1

glue(x,1)

Again, ISO C could not sanction either approach. In ISO C, both invocations would produce
the two separate tokens x and 1. The second of the two methods can be rewritten for ISO C by
using the ## macro substitution operator:

#define glue(a,b) a ## b

glue(x, 1)

and ## should be used as macro substitution operators only when __STDC__ is defined.
Because ## is an actual operator, the invocation can be much freer with respect to white space
in both the definition and invocation.

The compiler issues a warning diagnostic for an undefined ## operation (C standard, section
3.4.3), where undefined is a ## result that, when preprocessed, consists of multiple tokens rather
than one single token (C standard, section 6.10.3.3(3)). The result of an undefined ## operation
is now defined as the first individual token generated by preprocessing the string created by
concatenating the ## operands.

No direct approach reproduces the first of the two old-style pasting schemes but because it put
the burden of the pasting at the invocation, it was used less frequently than the other form.

6.5 const and volatile

The keyword const was one of the C++ features included in ISO C. When the analogous
keyword, volatile, was invented by the ISO C Committee, the type qualifier category was
created.

6.5 const and volatile

148 Oracle Solaris Studio 12.4: C User's Guide • March 2015

6.5.1 Types for lvalue Only
const and volatile are part of an identifier’s type, not its storage class. However, they are
often removed from the topmost part of the type when an object’s value is fetched in the
evaluation of an expression, exactly at the point when an lvalue becomes an rvalue. These
terms arise from the prototypical assignment left-hand-side=right-hand-side; in which the left
side must still refer directly to an object (an lvalue) and the right side need only be a value (an
rvalue). Thus, only expressions that are lvalues can be qualified by const or volatile or both.

6.5.2 Type Qualifiers in Derived Types
The type qualifiers may modify type names and derived types. Derived types are those parts
of declarations in C that can be applied repeatedly to build more and more complex types:
pointers, arrays, functions, structures, and unions. Except for functions, one or both type
qualifiers can be used to change the behavior of a derived type.

The following example declares and initializes an object with type const int whose value is
not changed by a correct program.

const int five = 5;

The order of the keywords is not significant to C. For example, the following declarations are
identical to the first example in its effect:

int const five = 5;

const five = 5;

The following declaration declares an object with type pointer to const int, which initially
points to the previously declared object.

const int *pci = &five;

The pointer itself does not have a qualified type, but rather it points to a qualified type. It can be
changed to point to essentially any int during program execution. pci cannot be used to modify
the object to which it points unless a cast is used, as in the following example:

*(int *)pci = 17;

If pci actually points to a const object, the behavior of this code is undefined.

The following declaration indicates that somewhere in the program is a definition of a global
object with type const pointer to int.

extern int *const cpi;

In this case, cpi’s value will not be changed by a correct program, but it can be used to modify
the object to which it points. Notice that const comes after the * in the declaration. The
following pair of declarations produces the same effect:

6.5 const and volatile

Chapter 6 • Transitioning to ISO C 149

typedef int *INT_PTR;

extern const INT_PTR cpi;

These declarations can be combined as in the following declaration in which an object is
declared to have type const pointer to const int:

const int *const cpci;

6.5.3 const Means readonly

In hindsight, readonly would have been a better choice for a keyword than const. If one reads
const in this manner, declarations such as the following example, are easily understood to
mean that the second parameter is only used to read character values, while the first parameter
overwrites the characters to which it points. :

char *strcpy(char *, const char *);

Furthermore, despite the fact that in the example the type of cpi is a pointer to a const int, you
can still change the value of the object to which it points through some other means, unless it
actually points to an object declared with const int type.

6.5.4 Examples of const Usage

The two main uses for const are to declare large compile-time initialized tables of information
as unchanging, and to specify that pointer parameters do not modify the objects to which they
point.

The first use potentially allows portions of the data for a program to be shared by other
concurrent invocations of the same program. It might cause attempts to modify this invariant
data to be detected immediately by means of some sort of memory protection fault, because the
data resides in a read-only portion of memory.

The second use of const helps locate potential errors before generating a memory fault. For
example, functions that temporarily place a null character into the middle of a string are
detected at compile time, if passed a pointer to a string that cannot be so modified.

6.5.5 Examples of volatile Usage

So far, the examples have shown const to be conceptually simple. But what does volatile
really mean? For the compiler, it means don't take any code generation shortcuts when

6.6 Multibyte Characters and Wide Characters

150 Oracle Solaris Studio 12.4: C User's Guide • March 2015

accessing such an object. On the other hand, ISO C makes it the programmer's responsibility to
declare volatile every object that has the appropriate special properties.

The usual four examples of volatile objects are:

■ An object that is a memory-mapped I/O port
■ An object that is shared between multiple concurrent processes
■ An object that is modified by an asynchronous signal handler
■ An automatic storage duration object declared in a function that calls setjmp, and whose

value is changed between the call to setjmp and a corresponding call to longjmp

The first three examples are all instances of an object with a particular behavior: its value can
be modified at any point during the execution of the program. Thus, the following seemingly
infinite loop is valid as long as flag has a volatile qualified type.

flag = 1;

while (flag);

Presumably, some asynchronous event sets flag to zero in the future. Otherwise, because
the value of flag is unchanged within the body of the loop, the compilation system is free to
change the above loop into a truly infinite loop that completely ignores the value of flag.

The fourth example, involving variables local to functions that call setjmp, is more involved.
The details about the behavior of setjmp and longjmp indicates that the values for objects
matching the fourth case are unpredictable. For the most desirable behavior, longjmp must
examine every stack frame between the function calling setjmp and the function calling
longjmp for saved register values. The possibility of asynchronously created stack frames
makes this job even harder.

When an automatic object is declared with a volatile qualified type, the compiler must
generate code that exactly matches what the programmer wrote. Therefore, the most recent
value for such an automatic object is always in memory and not just in a register, and is
guaranteed to be up-to-date when longjmp is called.

6.6 Multibyte Characters and Wide Characters

At first, the internationalization of ISO C affected only library functions. However, the final
stage of internationalization, multibyte characters and wide characters, also affected the
language proper.

The 1990 ISO/IEC C standard provides five library functions that manage multibyte characters
and wide characters, the 1999 ISO/IEC C standard provides many more such functions.

6.6 Multibyte Characters and Wide Characters

Chapter 6 • Transitioning to ISO C 151

6.6.1 Asian Languages Require Multibyte Characters

The basic difficulty in an Asian-language computer environment is the huge number of
ideograms needed for I/O. To work within the constraints of usual computer architectures, these
ideograms are encoded as sequences of bytes. The associated operating systems, application
programs, and terminals understand these byte sequences as individual ideograms. Moreover,
all of these encodings allow intermixing of regular single-byte characters with the ideogram
byte sequences. The level of difficulty recognizing distinct ideograms depends on the encoding
scheme used.

The term “multibyte character” is defined by ISO C to denote a byte sequence that encodes an
ideogram, no matter what encoding scheme is employed. All multibyte characters are members
of the “extended character set.” A regular single-byte character is just a special case of a
multibyte character. The only requirement placed on the encoding is that no multibyte character
can use a null character as part of its encoding.

ISO C specifies that program comments, string literals, character constants, and header names
are all sequences of multibyte characters.

6.6.2 Encoding Variations

The encoding schemes fall into two camps. The first is one in which each multibyte character
is self-identifying, that is, any multibyte character can simply be inserted between any pair of
multibyte characters.

The second scheme is one in which the presence of special shift bytes changes the interpretation
of subsequent bytes. An example is the method used by some character terminals to enter
and leave line-drawing mode. For programs written in multibyte characters with a shift-state-
dependent encoding, ISO C requires that each comment, string literal, character constant, and
header name must both begin and end in the unshifted state.

6.6.3 Wide Characters

Some of the inconvenience of handling multibyte characters would be eliminated if all
characters were of a uniform number of bytes or bits. Because such a character set can contain
thousands or tens of thousands of ideograms, a 16-bit or 32-bit sized integer value should be
used to hold all members. (The full Chinese alphabet includes more than 65,000 ideograms!)
ISO C includes the typedef name wchar_t as the implementation-defined integer type large
enough to hold all members of the extended character set.

Each wide character has a corresponding multibyte character, and vice versa. The wide
character that corresponds to a regular single-byte character is required to have the same

6.6 Multibyte Characters and Wide Characters

152 Oracle Solaris Studio 12.4: C User's Guide • March 2015

value as its single-byte value, including the null character. However, the macro EOF might not
necessarily be stored in a wchar_t, just as EOF might not be representable as a char.

6.6.4 C Language Features

To give even more flexibility to the programmer in an Asian-language environment, ISO C
provides wide character constants and wide string literals. These have the same form as their
non-wide versions, except that they are immediately prefixed by the letter L:

■ ’x’ regular character constant
■ ’¥’ regular character constant
■ L’x’ wide character constant
■ L’¥’ wide character constant
■ "abc¥xyz" regular string literal
■ L"abcxyz" wide string literal

Multibyte characters are valid in both the regular and wide versions. The sequence of bytes
necessary to produce the ideogram¥ is encoding-specific. If it consists of more than one
byte, the value of the character constant ’¥’ is implementation-defined, just as the value of
’ab’ is implementation-defined. Except for escape sequences, a regular string literal contains
exactly the bytes specified between the quotes, including the bytes of each specified multibyte
character.

When the compilation system encounters a wide character constant or wide string literal, each
multibyte character is converted into a wide character, as if by calling the mbtowc() function.
Thus, the type of L’¥’ is wchar_t; the type of abc¥xyz is array of wchar_t with length eight.
Just as with regular string literals, each wide string literal has an extra zero-valued element
appended, but in these cases, it is a wchar_t with value zero.

Just as regular string literals can be used as a shorthand method for character array initialization,
wide string literals can be used to initialize wchar_t arrays:

wchar_t *wp = L"a¥z";

wchar_t x[] = L"a¥z";

wchar_t y[] = {L’a’, L’¥’, L’z’, 0};

wchar_t z[] = {’a’, L’¥’, ’z’, ’\0’};

In this example, the three arrays x, y, and z, and the array pointed to by wp, have the same
length. All are initialized with identical values.

Finally, adjacent wide string literals are concatenated, just as with regular string literals.
However, with the 1990 ISO/IEC C standard, adjacent regular and wide string literals produce
undefined behavior. Also, the 1990 ISO/IEC C standard specifies that a compiler is not required
to produce an error if it does not accept such concatenations.

6.7 Standard Headers and Reserved Names

Chapter 6 • Transitioning to ISO C 153

6.7 Standard Headers and Reserved Names
Early in the standardization process, the ISO Standards Committee chose to include library
functions, macros, and header files as part of ISO C.

This section presents the various categories of reserved names and some rationale for their
reservations. At the end is a set of rules to follow that can steer your programs clear of any
reserved names.

6.7.1 Standard Headers

The standard headers are: assert.h, ctype.h, errno.h, float.h, limits.h, locale.h,
math.h, setjmp.h, signal.h, stdarg.h, stddef.h, stdio.h, stdlib.h, string.h,

time.h.

Most implementations provide more headers, but a strictly conforming 1990 ISO/IEC C
program can only use the ones listed.

Other standards disagree slightly regarding the contents of some of these headers. For example,
POSIX (IEEE 1003.1) specifies that fdopen is declared in stdio.h. To allow these two
standards to coexist, POSIX requires the macro _POSIX_SOURCE to be #defined prior to the
inclusion of any header to guarantee that these additional names exist. The X/Open Portability
Guide also uses this macro scheme for its extensions. X/Open’s macro is _XOPEN_SOURCE.

ISO C requires the standard headers to be both self-sufficient and idempotent. No standard
header needs any other header to be #included before or after it, and each standard header
can be #included more than once without causing problems. The Standard also requires
that its headers be #included only in safe contexts, so that the names used in the headers are
guaranteed to remain unchanged.

6.7.2 Names Reserved for Implementation Use
The ISO C standard places further restrictions on implementations regarding their libraries. In
the past, most programmers avoided using names like read and write for their own functions
on UNIX Systems. ISO C requires that only names reserved by the standard be introduced by
references within the implementation.

Thus, the standard reserves a subset of all possible names for implementations to use. This class
of names consists of identifiers that begin with an underscore and continue with either another
underscore or a capital letter. The class of names contains all names matching the following
regular expression:

_[_A-Z][0-9_a-zA-Z]*

6.7 Standard Headers and Reserved Names

154 Oracle Solaris Studio 12.4: C User's Guide • March 2015

Strictly speaking, if your program uses such an identifier, its behavior is undefined. Thus,
programs using _POSIX_SOURCE (or _XOPEN_SOURCE) have undefined behavior.

However, undefined behavior is a matter of degree. If, in a POSIX-conforming implementation
you use _POSIX_SOURCE, your program’s undefined behavior consists of certain additional
names in certain headers, and your program still conforms to an accepted standard. This
deliberate loophole in the ISO C standard allows implementations to conform to seemingly
incompatible specifications. On the other hand, an implementation that does not conform
to the POSIX standard is free to behave in any manner when encountering a name such as
_POSIX_SOURCE.

The standard also reserves all other names that begin with an underscore for use in header files
as regular file scope identifiers and as tags for structures and unions, but not in local scopes.
The common practice of having functions named _filbuf and _doprnt to implement hidden
parts of the library is allowed.

6.7.3 Names Reserved for Expansion
In addition to all the names explicitly reserved, the 1990 ISO/IEC C standard also reserves
names for implementations and future standards that match certain patterns:

TABLE 6-2 Names Reserved for Expansion

File Reserved Name Pattern

errno.h E[0-9A-Z].*

ctype.h (to|is)[a-z].*

locale.h LC_[A-Z].*

math.h current function names[fl]

signal.h (SIG|SIG_)[A-Z].*

stdlib.h str[a-z].*

string.h (str|mem|wcs)[a-z].*

In this list, names that begin with a capital letter are macros and are reserved only when the
associated header is included. The rest of the names designate functions and cannot be used to
name any global objects or functions.

6.7.4 Names Safe to Use
Four simple rules you can follow to keep from colliding with any ISO C reserved names are:

■ #include all system headers at the top of your source files (except possibly after a #define
of _POSIX_SOURCE or _XOPEN_SOURCE, or both).

6.8 Internationalization

Chapter 6 • Transitioning to ISO C 155

■ Do not define or declare any names that begin with an underscore.
■ Use an underscore or a capital letter somewhere within the first few characters of all file

scope tags and regular names. Beware of the va_ prefix found in stdarg.h or varargs.h.
■ Use a digit or a non-capital letter somewhere within the first few characters of all macro

names. Almost all names beginning with an E are reserved if errno.h is #included.

These rules are just a general guideline to follow, as most implementations will continue to add
names to the standard headers by default.

6.8 Internationalization
“6.6 Multibyte Characters and Wide Characters” on page 150 introduced the
internationalization of the standard libraries. This section discusses the affected library
functions and provides some guidelines on how programs should be written to take advantage
of these features. The section discusses internationalization only with respect to the 1990
ISO/IEC C standard. The 1999 ISO/IEC C standard has no significant extension to support
internationalization besides those discussed here.

6.8.1 Locales
At any time, a C program has a current locale: a collection of information that describes the
conventions appropriate to some nationality, culture, and language. Locales have names that
are strings. The only two standardized locale names are "C" and "". Each program begins in
the "C" locale, which causes all library functions to behave just as they have historically. The
"" locale is the implementation’s best guess at the correct set of conventions appropriate to the
program’s invocation. "C" and "" can cause identical behavior. Other locales may be provided
by implementations.

For the purposes of practicality and expediency, locales are partitioned into a set of categories.
A program can change the complete locale, or just one or more categories. Generally, each
category affects a set of functions disjoint from the functions affected by other categories, so
temporarily changing one category for a limited duration can make sense.

6.8.2 setlocale() Function
The setlocale() function is the interface to the program’s locale. Any program that uses the
invocation country’s conventions should place a call such as the following example early in the
program’s execution path.

#include <locale.h>

/*...*/

setlocale(LC_ALL, "");

6.8 Internationalization

156 Oracle Solaris Studio 12.4: C User's Guide • March 2015

This call causes the program’s current locale to change to the appropriate local version, because
LC_ALL is the macro that specifies the entire locale instead of one category. The standard
categories are:

LC_COLLATE Sorting information

LC_CTYPE Character classification information

LC_MONETARY Currency printing information

LC_NUMERIC Numeric printing information

LC_TIME Date and time printing information

Any of these macros can be passed as the first argument to setlocale() to specify that
category.

The setlocale() function returns the name of the current locale for a given category (or
LC_ALL) and serves in an inquiry-only capacity when its second argument is a null pointer.
Thus, code similar to the following example can be used to change the locale or a portion
thereof for a limited duration:

#include <locale.h>

/*...*/

char *oloc;

/*...*/

oloc = setlocale(LC_category, NULL);
if (setlocale(LC_category, "new") != 0)

{

 /* use temporarily changed locale */

 (void)setlocale(LC_category, oloc);
}

Most programs do not need this capability.

6.8.3 Changed Functions
Wherever possible and appropriate, existing library functions were extended to include locale-
dependent behavior. These functions came in two groups:

■ Those declared by the ctype.h header (character classification and conversion), and
■ Those that convert to and from printable and internal forms of numeric values, such as

printf() and strtod().

All ctype.h predicate functions, except isdigit() and isxdigit(), can return nonzero (true)
for additional characters when the LC_CTYPE category of the current locale is other than "C". In
a Spanish locale, isalpha(’ñ’) should be true. Similarly, the character conversion functions,

6.8 Internationalization

Chapter 6 • Transitioning to ISO C 157

tolower() and toupper(), should appropriately handle any extra alphabetic characters
identified by the isalpha() function. The ctype.h functions are almost always macros that are
implemented using table lookups indexed by the character argument. Their behavior is changed
by resetting the tables to the new locale’s values, and therefore have no performance impact.

Those functions that write or interpret printable floating values can change to use a decimal-
point character other than period (.) when the LC_NUMERIC category of the current locale is
other than "C". There is no provision for converting any numeric values to printable form with
thousands separator-type characters. When converting from a printable form to an internal form,
implementations are allowed to accept such additional forms, again in other than the "C" locale.
Those functions that make use of the decimal-point character are the printf() and scanf()
families, atof(), and strtod(). Those functions that are allowed implementation-defined
extensions are atof(), atoi(), atol(), strtod(), strtol(), strtoul(), and the scanf()
family.

6.8.4 New Functions

Certain locale-dependent capabilities were added as new standard functions. Besides
setlocale(), which allows control over the locale itself, the standard includes the following
new functions:

localeconv() Numeric/monetary conventions

strcoll() Collation order of two strings

strxfrm() Translate string for collation

strftime() Format date and time

In addition, there are the multibyte functions mblen(), mbtowc(), mbstowcs(), wctomb(), and
wcstombs().

The localeconv() function returns a pointer to a structure containing information useful for
formatting numeric and monetary information appropriate to the current locale’s LC_NUMERIC
and LC_MONETARY categories. This is the only function whose behavior depends on more
than one category. For numeric values, the structure describes the decimal-point character,
the thousands separator, and where the separators should be located. Fifteen other structure
members describe how to format a monetary value.

The strcoll() function is analogous to the strcmp() function except that the two strings are
compared according to the LC_COLLATE category of the current locale. The strxfrm() function
can also be used to transform a string into another, such that any two such after-translation
strings can be passed to strcmp() and result in an ordering analogous to what strcoll() would
have returned if passed the two pre-translation strings.

6.9 Grouping and Evaluation in Expressions

158 Oracle Solaris Studio 12.4: C User's Guide • March 2015

The strftime() function provides formatting similar to that used with sprintf() of the values
in a struct tm, along with some date and time representations that depend on the LC_TIME
category of the current locale. This function is based on the ascftime() function released as
part of UNIX System V Release 3.2.

6.9 Grouping and Evaluation in Expressions

K&R C gives compilers a license to rearrange expressions involving adjacent operators that are
mathematically commutative and associative, even in the presence of parentheses. However,
ISO C does not grant compilers this same freedom.

This section discusses the differences between these two definitions of C and clarifies the
distinctions between an expression’s side effects, grouping, and evaluation by considering the
expression statement from the following code fragment.

int i, *p, f(void), g(void);

/*...*/

i = *++p + f() + g();

6.9.1 Expression Definitions

The side effects of an expression are its modifications to memory and its accesses to volatile
qualified objects. The side effects in the example expression are the updating of i and p and any
side effects contained within the functions f() and g().

An expression’s grouping is the way values are combined with other values and operators. The
example expression’s grouping is primarily the order in which the additions are performed.

An expression’s evaluation includes everything necessary to produce its resulting value. To
evaluate an expression, all specified side effects must occur anywhere between the previous and
next sequence point, and the specified operations are performed with a particular grouping. For
the example expression, the updating of i and p must occur after the previous statement and by
the ; of this expression statement. The calls to the functions can occur in either order, any time
after the previous statement but before their return values are used. In particular, the operators
that cause memory to be updated have no requirement to assign the new value before the value
of the operation is used.

6.9.2 K&R C Rearrangement License

The K&R C rearrangement license applies to the example expression because addition is
mathematically commutative and associative. To distinguish between regular parentheses and

6.9 Grouping and Evaluation in Expressions

Chapter 6 • Transitioning to ISO C 159

the actual grouping of an expression, the left and right curly braces designate grouping. The
three possible groupings for the expression are:

i = { {*++p + f()} + g() };

i = { *++p + {f() + g()} };

i = { {*++p + g()} + f() };

All of these are valid given K&R C rules. Moreover, all of these groupings are valid even if the
expression were written instead, for example, in either of these ways:

i = *++p + (f() + g());

i = (g() + *++p) + f();

If this expression is evaluated on an architecture for which either overflows cause an exception,
or addition and subtraction are not inverses across an overflow, these three groupings behave
differently if one of the additions overflows.

For such expressions on these architectures, the only recourse available in K&R C was to split
the expression to force a particular grouping. The following possible rewrites respectively
enforce the previous three groupings:

i = *++p; i += f(); i += g()

i = f(); i += g(); i += *++p;

i = *++p; i += g(); i += f();

6.9.3 ISO C Rules
ISO C does not allow operations to be rearranged that are mathematically commutative and
associative, but that are not actually so on the target architecture. Thus, the precedence and
associativity of the ISO C grammar completely describes the grouping for all expressions. All
expressions must be grouped as they are parsed. The expression under consideration is grouped
in this manner:

i = { {*++p + f()} + g() };

This code still does not mean that f() must be called before g(), or that p must be incremented
before g() is called.

In ISO C, expressions need not be split to guard against unintended overflows.

6.9.4 Parentheses Usage
ISO C is often erroneously described as honoring parentheses or evaluating according to
parentheses due to an incomplete understanding or an inaccurate presentation.

Because ISO C expressions have the grouping specified by their parsing, parentheses serve only
as a way of controlling how an expression is parsed. The natural precedence and associativity of
expressions carry exactly the same weight as parentheses.

6.10 Incomplete Types

160 Oracle Solaris Studio 12.4: C User's Guide • March 2015

The previous expression could have been written as follows with no different effect on its
grouping or evaluation.

i = (((*(++p)) + f()) + g());

6.9.5 The As If Rule

Some reasons for the K&R C rearrangement rules are:

■ The rearrangements provide many more opportunities for optimizations, such as compile-
time constant folding.

■ The rearrangements do not change the result of integral-typed expressions on most
machines.

■ Some of the operations are both mathematically and computationally commutative and
associative on all machines.

The ISO C Committee eventually decided that the rearrangement rules were intended to be an
instance of the as if rule when applied to the described target architectures. ISO C’s as if rule is
a general license that permits an implementation to deviate arbitrarily from the abstract machine
description as long as the deviations do not change the behavior of a valid C program.

Thus, all the binary bitwise operators (other than shifting) are allowed to be rearranged on any
machine because such regroupings are not noticeable. On typical two’s-complement machines
in which overflow wraps around, integer expressions involving multiplication or addition can
be rearranged for the same reason.

Therefore, this change in C does not have a significant impact on most C programmers.

6.10 Incomplete Types

The ISO C standard introduced the term “incomplete type” to formalize a fundamental, yet
misunderstood, portion of C, implicit from its beginnings. This section describes incomplete
types, where they are permitted, and why they are useful.

6.10.1 Types

ISO separates C’s types into three distinct sets: function, object, and incomplete. Function types
are obvious; object types cover everything else, except when the size of the object is not known.
The Standard uses the term “object type” to specify that the designated object must have a
known size, but note that incomplete types other than void also refer to an object.

6.10 Incomplete Types

Chapter 6 • Transitioning to ISO C 161

There are only three variations of incomplete types: void, arrays of unspecified length, and
structures and unions with unspecified content. The type void differs from the other two in that
it is an incomplete type that cannot be completed, and it serves as a special function return and
parameter type.

6.10.2 Completing Incomplete Types

An array type is completed by specifying the array size in a following declaration in the same
scope that denotes the same object. When an array without a size is declared and initialized in
the same declaration, the array has an incomplete type only between the end of its declarator
and the end of its initializer.

An incomplete structure or union type is completed by specifying the content in a following
declaration in the same scope for the same tag.

6.10.3 Declarations

Certain declarations can use incomplete types, but others require complete object types. Those
declarations that require object types are array elements, members of structures or unions, and
objects local to a function. All other declarations permit incomplete types. In particular, the
following constructs are permitted:

■ Pointers to incomplete types
■ Functions returning incomplete types
■ Incomplete function parameter types
■ typedef names for incomplete types

The function return and parameter types are special. Except for void, an incomplete type used
in such a manner must be completed by the time the function is defined or called. A return type
of void specifies a function that returns no value, and a single parameter type of void specifies
a function that accepts no arguments.

Because array and function parameter types are rewritten to be pointer types, a seemingly
incomplete array parameter type is not actually incomplete. The typical declaration of main’s
argv, namely, char *argv[], as an unspecified length array of character pointers, is rewritten to
be a pointer to character pointers.

6.10.4 Expressions

Most expression operators require complete object types. The only three exceptions are the
unary & operator, the first operand of the comma operator, and the second and third operands of

6.10 Incomplete Types

162 Oracle Solaris Studio 12.4: C User's Guide • March 2015

the ?: operator. Most operators that accept pointer operands also permit pointers to incomplete
types unless pointer arithmetic is required. The list includes the unary * operator.

For example, given the following expression, &*p is a valid subexpression that makes use of this
situation.

void *p

6.10.5 Justification

Besides void, C has no other way to handle incomplete types: forward references to structures
and unions. If two structures need pointers to each other, the only way to do so is with
incomplete types:

struct a { struct b *bp; };

struct b { struct a *ap; };

All strongly typed programming languages that have some form of pointer and heterogeneous
data types provide some method of handling this case.

6.10.6 Examples: Incomplete Types

Defining typedef names for incomplete structure and union types is frequently useful. If you
have a complicated bunch of data structures that contain many pointers to each other, having
a list of typedefs to the structures up front, possibly in a central header, can simplify the
declarations.

typedef struct item_tag Item;

typedef union note_tag Note;

typedef struct list_tag List;

. . .

struct item_tag { . . . };

. . .

struct list_tag {

 struct list_tag {

};

Moreover, for those structures and unions whose contents should not be available to the rest of
the program, a header can declare the tag without the content. Other parts of the program can
use pointers to the incomplete structure or union without any problems unless they attempt to
use any of its members.

A frequently used incomplete type is an external array of unspecified length. Generally, you do
not need to know the extent of an array to make use of its contents.

6.11 Compatible and Composite Types

Chapter 6 • Transitioning to ISO C 163

6.11 Compatible and Composite Types
With K&R C, and even more so with ISO C, two declarations that refer to the same entity can
be other than identical. The term “compatible type” is used in ISO C to denote those types
that are “close enough”. This section describes compatible types as well as “composite types”,
which are the result of combining two compatible types.

6.11.1 Multiple Declarations
If a C program were only allowed to declare each object or function once, compatible types
would not be necessary. Linkage, which allows two or more declarations to refer to the same
entity, function prototypes, and separate compilation all need such a capability. Separate
translation units (source files) have different rules for type compatibility from within a single
translation unit.

6.11.2 Separate Compilation Compatibility
Because each compilation probably looks at different source files, most of the rules for
compatible types across separate compiles are structural in nature:

■ Matching scalar (integral, floating, and pointer) types must be compatible, as if they were in
the same source file.

■ Matching structures, unions, and enums must have the same number of members. Each
matching member must have a compatible type (in the separate compilation sense),
including bit-field widths.

■ Matching structures must have the members in the same order. The order of union and enum
members does not matter.

■ Matching enum members must have the same value.
An additional requirement is that the names of members, including the lack of names
for unnamed members, match for structures, unions, and enums, but not necessarily their
respective tags.

6.11.3 Single Compilation Compatibility
When two declarations in the same scope describe the same object or function, the two
declarations must specify compatible types. These two types are then combined into a single
composite type that is compatible with the first two.

The compatible types are defined recursively. At the bottom are type specifier keywords. These
rules say that unsigned short is the same as unsigned short int, and that a type without type

6.11 Compatible and Composite Types

164 Oracle Solaris Studio 12.4: C User's Guide • March 2015

specifiers is the same as one with int. All other types are compatible only if the types from
which they are derived are compatible. For example, two qualified types are compatible if the
qualifiers, const and volatile, are identical, and the unqualified base types are compatible.

6.11.4 Compatible Pointer Types
For two pointer types to be compatible, the types they point to must be compatible and the two
pointers must be identically qualified. Recall that the qualifiers for a pointer are specified after
the *, so that these following two declarations declare two differently qualified pointers to the
same type, int.

int *const cpi;

int *volatile vpi;

6.11.5 Compatible Array Types
For two array types to be compatible, their element types must be compatible. If both array
types have a specified size, they must match, that is, an incomplete array type (see “6.10
Incomplete Types” on page 160) is compatible both with another incomplete array type and
an array type with a specified size.

6.11.6 Compatible Function Types
To make functions compatible, follow these rules:

■ For two function types to be compatible, their return types must be compatible. If either or
both function types have prototypes. The rules are more complicated.

■ For two function types with prototypes to be compatible, they also must have the same
number of parameters, including use of the ellipsis (…) notation, and the corresponding
parameters must be parameter-compatible.

■ For an old-style function definition to be compatible with a function type with a prototype,
the prototype parameters must not end with an ellipsis (…). Each of the prototype parameters
must be parameter-compatible with the corresponding old-style parameter, after application
of the default argument promotions.

■ For an old-style function declaration (not a definition) to be compatible with a function
type with a prototype, the prototype parameters must not end with an ellipsis (…). All of the
prototype parameters must have types that would be unaffected by the default argument
promotions.

■ For two types to be parameter-compatible, the types must be compatible after the top-level
qualifiers, if any, have been removed, and after a function or array type has been converted
to the appropriate pointer type.

6.11 Compatible and Composite Types

Chapter 6 • Transitioning to ISO C 165

6.11.7 Special Cases

signed int behaves the same as int, except possibly for bit-fields in which a plain int may
denote an unsigned-behaving quantity.

Note that each enumeration type must be compatible with some integral type. For portable
programs, this means that enumeration types are separate types. In general, the ISO C standard
views them in that manner.

6.11.8 Composite Types

The construction of a composite type from two compatible types is also recursively defined.
The ways compatible types can differ from each other are due either to incomplete arrays or to
old-style function types. As such, the simplest description of the composite type is that it is the
type compatible with both of the original types, including every available array size and every
available parameter list from the original types.

166 Oracle Solaris Studio 12.4: C User's Guide • March 2015

Chapter 7 • Converting Applications for a 64-Bit Environment 167

 7 ♦ ♦ ♦ C H A P T E R 7

Converting Applications for a 64-Bit
Environment

This chapter provides the information you need for writing code for the 32–bit or the 64-bit
compilation environment.

Once you try to write or modify code for both the 32-bit and 64-bit compilation environments,
you face two basic issues:

■ Data type consistency between the different data-type models
■ Interaction between the applications using different data-type models

Maintaining a single code-source with as few #ifdefs as possible is usually better than
maintaining multiple source trees. Therefore, this chapter provides guidelines for writing code
that works correctly in both 32-bit and 64-bit compilation environments. In some cases, the
conversion of current code requires only a recompilation and relinking with the 64-bit libraries.
However, for those cases where code changes are required, this chapter discusses the tools and
strategies that make conversion easier.

7.1 Overview of the Data Model Differences

The biggest difference between the 32-bit and the 64-bit compilation environments is the
change in data-type models.

The C data-type model for 32-bit applications is the ILP32 model, so named because integers,
longs, and pointers are 32-bit data types. The LP64 data model, so named because longs and
pointers grow to 64-bits, is the creation of a consortium of companies across the industry. The
remaining C types, int, long long, short, and char, are the same in both data-type models.

Regardless of the data-type model, the standard relationship between C integral types holds
true:

sizeof (char) <= sizeof (short) <= sizeof (int) <= sizeof (long)

The following table lists the basic C data types and their corresponding sizes in bits for both the
ILP32 and LP64 data models.

7.2 Implementing Single Source Code

168 Oracle Solaris Studio 12.4: C User's Guide • March 2015

TABLE 7-1 Data Type Size for ILP32 and LP64

C Data Type ILP32 LP64

char 8 8

short 16 16

int 32 32

long 32 64

long long 64 64

pointer 32 64

enum 32 32

float 32 32

double 64 64

long double 128 128

current 32-bit applications typically assume that integers, pointers, and longs are the same size.
However, the size of longs and pointers changes in the LP64 data model, which can cause many
ILP32 to LP64 conversion problems.

In addition, declarations and casts are very important. How expressions are evaluated can be
affected when the types change. The effects of standard C conversion rules are influenced
by the change in data-type sizes. To adequately show what you intend, you need to explicitly
declare the types of constants. You can also use casts in expressions to make certain that the
expression is evaluated the way you intend. This practice is particularly important with sign
extension, where explicit casting is essential for demonstrating intent.

7.2 Implementing Single Source Code

The following sections describe some of the available resources that you can use to write
single-source code that supports 32-bit and 64-bit compilation.

7.2.1 Derived Types

Using the system derived types to make code safe for both the 32-bit and the 64-bit compilation
environment is good programming practice. When you use derived data-types, only the system
derived types need to change for data model changes, or porting.

The system include files <sys/types.h> and <inttypes.h> contain constants, macros, and
derived types that are helpful in making applications 32-bit and 64-bit safe.

7.2 Implementing Single Source Code

Chapter 7 • Converting Applications for a 64-Bit Environment 169

7.2.1.1 <sys/types.h>

Include <sys/types.h> in an application source file to gain access to the definition of _LP64
and _ILP32. This header also contains a number of basic derived types that should be used
whenever appropriate. In particular, the following are of special interest:

■ clock_t represents the system times in clock ticks.
■ dev_t is used for device numbers.
■ off_t is used for file sizes and offsets.
■ ptrdiff_t is the signed integral type for the result of subtracting two pointers.
■ size_t reflects the size, in bytes, of objects in memory.
■ ssize_t is used by functions that return a count of bytes or an error indication.
■ time_t counts time in seconds.

All of these types remain 32-bit quantities in the ILP32 compilation environment and grow to
64-bit quantities in the LP64 compilation environment.

7.2.1.2 <inttypes.h>

The include file <inttypes.h> provides constants, macros, and derived types that help you
make your code compatible with explicitly sized data items, independent of the compilation
environment. It contains mechanisms for manipulating 8-bit, 16-bit, 32-bit, and 64-bit objects.
The following is a discussion of the basic features provided by <inttypes.h>:

■ Fixed-width integer types.
■ Helpful types such as uintptr_t
■ Constant macros
■ Limits
■ Format string macros

The following sections provide more information about the basic features of <inttypes.h>.

Fixed-Width Integer Types

The fixed-width integer types that <inttypes.h> provides include signed integer types such
as int8_t, int16_t, int32_t, and int64_t, and unsigned integer types such as uint8_t,
uint16_t, uint32_t, and uint64_t.

Derived types, defined as the smallest integer types that can hold the specified number of bits,
include int_least8_t,…, int_least64_t, uint_least8_t,…, uint_least64_t.

Using an int or unsigned int for such operations as loop counters and file descriptors is
safe. Using a long for an array index is also safe. However, do not use these fixed-width types

7.2 Implementing Single Source Code

170 Oracle Solaris Studio 12.4: C User's Guide • March 2015

indiscriminately. Use fixed-width types for explicit binary representations of the following
items:

■ On-disk data
■ Over the data wire
■ Hardware registers
■ Binary interface specifications
■ Binary data structures

Helpful Types Such as unintptr_t

The <inttypes.h> file includes signed and unsigned integer types large enough to hold a
pointer. These are given as intptr_t and uintptr_t. In addition, <inttypes.h> provides
intmax_t and uintmax_t, which are the longest (in bits) signed and unsigned integer types
available.

Use the uintptr_t type as the integral type for pointers instead of a fundamental type such as
unsigned long. Even though an unsigned long is the same size as a pointer in both the ILP32
and LP64 data models, using uintptr_t means that only the definition of uintptr_t is affected
if the data model changes. This method makes your code portable to many other systems and is
also a clearer way to express your intentions in C.

The intptr_t and uintptr_t types are extremely useful for casting pointers when you want
to perform address arithmetic. Use intptr_t and uintptr_t types instead of long or unsigned
long for this purpose.

Constant Macros

Use the macros INT8_C(c), …, INT64_C(c), UINT8_C(c),…, UINT64_C(c) to specify the size
and sign of a given constant. Basically, these macros place an l, ul, ll, or ull at the end of the
constant, if necessary. For example, INT64_C(1) appends ll to the constant 1 for ILP32 and an
l for LP64.

Use the INTMAX_C(c) and UINTMAX_C(c) macros to make a constant the biggest type. These
macros can be very useful for specifying the type of constants described in “7.3 Converting to
the LP64 Data Type Model” on page 172.

Limits

The limits defined by <inttypes.h> are constants that specify the minimum and maximum
values of various integer types. These limits include minimum and maximum values for each
of the fixed-width types such as INT8_MIN,…, INT64_MIN, INT8_MAX,…, INT64_MAX, and their
unsigned counterparts.

7.2 Implementing Single Source Code

Chapter 7 • Converting Applications for a 64-Bit Environment 171

The <inttypes.h> file also provides the minimum and maximum values for each of the least-
sized types. These types include INT_LEAST8_MIN,…, INT_LEAST64_MIN, INT_LEAST8_MAX,…,
INT_LEAST64_MAX, as well as their unsigned counterparts.

Finally, <inttypes.h> defines the minimum and maximum values of the largest supported
integer types. These types include INTMAX_MIN and INTMAX_MAX and their corresponding
unsigned versions.

Format String Macros

The <inttypes.h> file includes the macros that specify the printf(3S) and scanf(3S) format
specifiers. Essentially, these macros prepend the format specifier with an l or ll to identify the
argument as a long or long long, given that the number of bits in the argument is built into the
name of the macro.

Some macros for printf(3S) print both the smallest and largest integer types in decimal, octal,
unsigned, and hexadecimal formats, as shown in the following example.

int64_t i;

printf("i =%" PRIx64 "\n", i);

Similarly, macros for scanf(3S) read both the smallest and largest integer types in decimal,
octal, unsigned, and hexadecimal formats.

uint64_t u;

scanf("%" SCNu64 "\n", &u);

Do not use these macros indiscriminately. They are best used in conjunction with the fixed-
width types discussed in “ Fixed-Width Integer Types” on page 169.

7.2.2 Checking With lint
The lint program’s -errchk option detects potential 64-bit porting problems. You can also
specify cc -v, which directs the compiler to perform additional and more strict semantic
checks. The -v option also enables certain lint-like checks on the named files.

When you enhance code to be 64-bit safe, use the header files present in the Oracle Solaris
operating system because these files have the correct definition of the derived types and data
structures for the 64-bit compilation environment.

Use lint to check code that is written for both the 32-bit and the 64-bit compilation
environment. Specify the -errchk=longptr64 option to generate LP64 warnings. Also use the
-errchk=longptr64 flag, which checks portability to an environment for which the size of long
integers and pointers is 64 bits and the size of plain integers is 32 bits. The -errchk=longptr64
flag checks assignments of pointer expressions and long integer expressions to plain integers,
even when explicit casts are used.

7.3 Converting to the LP64 Data Type Model

172 Oracle Solaris Studio 12.4: C User's Guide • March 2015

Use the -errchk=longptr64,signext option to find code where the normal ISO C value-
preserving rules allow the extension of the sign of a signed-integral value in an expression of
unsigned-integral type.

Use the -m64 option of lint when you want to check code that you intend to run in the Oracle
Solaris 64-bit compilation environment only.

lint warnings show the line number of the offending code, a message that describes the
problem, and an indication of whether a pointer is involved. The warning message also
indicates the sizes of the involved data types. When you know a pointer is involved and you
know the size of the data types, you can find specific 64-bit problems and avoid the preexisting
problems between 32-bit and smaller types.

Be aware, however, that even though lint gives warnings about potential 64-bit problems,
it cannot detect all problems. Also, in many cases, code that is intentional and correct for the
application generates a warning.

You can suppress the warning for a given line of code by placing a comment of the form
“NOTE(LINTED(“<optional message”>))” on the previous line. This comment directive is
useful when you want lint to ignore certain lines of code such as casts and assignments.
Exercise extreme care when you use the “NOTE(LINTED(“<optional message”>))” comment
because it can mask real problems. When you use NOTE, include #include<note.h>. Refer to
the lint man page for more information.

7.3 Converting to the LP64 Data Type Model

The examples that follow illustrate some of the more common problems you are likely to
encounter when you convert code. Where appropriate, the corresponding lint warnings are
shown.

7.3.1 Integer and Pointer Size Change

Because integers and pointers are the same size in the ILP32 compilation environment, some
code relies on this assumption. Pointers are often cast to int or unsigned int for address
arithmetic. Instead, cast your pointers to long because long and pointers are the same size
in both ILP32 and LP64 data-type models. Rather than explicitly using unsigned long, use
uintptr_t instead. It expresses your intent more closely and makes the code more portable,
insulating it against future changes. Consider the following example:

char *p;

p = (char *) ((int)p & PAGEOFFSET);

%

warning: conversion of pointer loses bits

7.3 Converting to the LP64 Data Type Model

Chapter 7 • Converting Applications for a 64-Bit Environment 173

The modified version is:

char *p;

p = (char *) ((uintptr_t)p & PAGEOFFSET);

7.3.2 Integer and Long Size Change

Because integers and longs are never really distinguished in the ILP32 data-type model, your
existing code probably uses them indiscriminately. Modify any code that uses integers and
longs interchangeably so it conforms to the requirements of both the ILP32 and LP64 data-type
models. While an integer and a long are both 32-bits in the ILP32 data-type model, a long is 64
bits in the LP64 data-type model.

Consider the following example:

int waiting;

long w_io;

long w_swap;

...

waiting = w_io + w_swap;

%

warning: assignment of 64-bit integer to 32-bit integer

Furthermore, large arrays of long or unsigned long can cause serious performance degradation
in the LP64 data-type model as compared to arrays of int or unsigned int. Large arrays of
long or unsigned long can also cause significantly more cache misses and consume more
memory.

Therefore, if int works just as well as long for the application purposes, use int rather than
long.

This argument also applies to using arrays of int instead of arrays of pointers. Some C
applications suffer from serious performance degradation after conversion to the LP64 data-type
model because they rely on many large arrays of pointers.

7.3.3 Sign Extension

Sign extension is a common problem when you convert to the 64-bit compilation environment
because the type conversion and promotion rules are somewhat obscure. To prevent sign
extension problems, use explicit casting to achieve the intended results.

To understand why sign extension occurs, consider the conversion rules for ISO C. The
conversion rules that seem to cause the most sign extension problems between the 32-bit and
the 64-bit compilation environment come into effect during the following operations:

7.3 Converting to the LP64 Data Type Model

174 Oracle Solaris Studio 12.4: C User's Guide • March 2015

■ Integral promotion

You can use a char, short, enumerated type, or bit-field, whether signed or unsigned, in
any expression that calls for an integer.
If an integer can hold all possible values of the original type, the value is converted to an
integer; otherwise, the value is converted to an unsigned integer.

■ Conversion between signed and unsigned integers
When an integer with a negative sign is promoted to an unsigned integer of the same or
larger type, it is first promoted to the signed equivalent of the larger type, then converted to
the unsigned value.

When the following example is compiled as a 64-bit program, the addr variable becomes sign-
extended, even though both addr and a.base are unsigned types.

%cat test.c

struct foo {

unsigned int base:19, rehash:13;

};

main(int argc, char *argv[])

{

 struct foo a;

 unsigned long addr;

 a.base = 0x40000;

 addr = a.base << 13; /* Sign extension here! */

 printf("addr 0x%lx\n", addr);

 addr = (unsigned int)(a.base << 13); /* No sign extension here! */

 printf("addr 0x%lx\n", addr);

}

This sign extension occurs because the conversion rules are applied as follows:

■ a.base is converted from an unsigned int to an int because of the integral promotion rule.
Thus, the expression a.base << 13 is of type int, but no sign extension has yet occurred.

■ The expression a.base << 13 is of type int, but it is converted to a long and then to an
unsigned long before being assigned to addr, because of signed and unsigned integer
promotion rules. The sign extension occurs when it is converted from an int to a long.

% cc -o test64 -m64 test.c

% ./test64

addr 0xffffffff80000000

addr 0x80000000

%

When this same example is compiled as a 32-bit program it does not display any sign extension:

cc -o test -m32 test.c

%test

7.3 Converting to the LP64 Data Type Model

Chapter 7 • Converting Applications for a 64-Bit Environment 175

addr 0x80000000

addr 0x80000000

For a more detailed discussion of the conversion rules, refer to the ISO C standard. Also
included in this standard are useful rules for ordinary arithmetic conversions and integer
constants.

7.3.4 Pointer Arithmetic Instead of Integers
Using pointer arithmetic usually works better than integers because pointer arithmetic is
independent of the data model, whereas integers might not be. Also, you can usually simplify
your code by using pointer arithmetic. Consider the following example:

int *end;

int *p;

p = malloc(4 * NUM_ELEMENTS);

end = (int *)((unsigned int)p + 4 * NUM_ELEMENTS);

%

warning: conversion of pointer loses bits

The modified version is:

int *end;

int *p;

p = malloc(sizeof (*p) * NUM_ELEMENTS);

end = p + NUM_ELEMENTS;

7.3.5 Structures
Check the internal data structures in an applications for holes. Use extra padding between
fields in the structure to meet alignment requirements. This extra padding is allocated when
long or pointer fields grow to 64 bits for the LP64 data-type model. In the 64-bit compilation
environment on SPARC platforms, all types of structures are aligned to the size of the largest
member within them. When you repack a structure, follow the simple rule of moving the long
and pointer fields to the beginning of the structure. Consider the following structure definition:

struct bar {

 int i;

 long j;

 int k;

 char *p;

}; /* sizeof (struct bar) = 32 */

The following example shows the same structure with the long and pointer data types defined at
the beginning of the structure:

struct bar {

7.3 Converting to the LP64 Data Type Model

176 Oracle Solaris Studio 12.4: C User's Guide • March 2015

 char *p;

 long j;

 int i;

 int k;

}; /* sizeof (struct bar) = 24 */

7.3.6 Unions

Be sure to check unions because their fields can change size between the ILP32 and the LP64
data-type models. Consider the following example:

typedef union {

 double _d;

 long _l[2];

} llx_t;

The modified version is:

typedef union {

 double _d;

 int _l[2];

} llx_t;

7.3.7 Type Constants

A lack of precision can cause the loss of data in some constant expressions. Be explicit when
you specify the data types in your constant expression. Specify the type of each integer constant
by adding some combination of {u,U,l,L}. You can also use casts to specify the type of a
constant expression. Consider the following example:

int i = 32;

long j = 1 << i; /* j will get 0 because RHS is integer */

 /* expression */

The modified version is:

int i = 32;

long j = 1L << i;

7.3.8 Beware of Implicit Declarations

If you use -std=c90 or -xc99=none, the C compiler assumes that any function or variable
that is used in a module and is not defined or declared externally is an integer. Any long and
pointer data used in this way is truncated by the compiler’s implicit integer declaration. Place
the appropriate extern declaration for the function or variable in a header and not in the C

7.3 Converting to the LP64 Data Type Model

Chapter 7 • Converting Applications for a 64-Bit Environment 177

module. Include this header in any C module that uses the function or variable. Even if the
function or variable is defined by the system headers, you still need to include the proper header
in the code. Consider the following example:

int

main(int argc, char *argv[])

{

 char *name = getlogin();

 printf("login = %s\n", name);

 return (0);

}

%

warning: improper pointer/integer combination: op "="

warning: cast to pointer from 32-bit integer

implicitly declared to return int

getlogin printf

The proper headers are now in the following modified version

#include <unistd.h>

#include <stdio.h>

int

main(int argc, char *argv[])

{

 char *name = getlogin();

 (void) printf("login = %s\n", name);

 return (0);

}

7.3.9 sizeof() Is an Unsigned long

In the LP64 data-type model, sizeof() has the effective type of an unsigned long.
Occasionally, sizeof() is passed to a function expecting an argument of type int, or assigned
or cast to an integer. In some cases, this truncation causes loss of data.

long a[50];

unsigned char size = sizeof (a);

%

warning: 64-bit constant truncated to 8 bits by assignment

warning: initializer does not fit or is out of range: 0x190

7.3.10 Use Casts to Show Your Intentions

Relational expressions can be tricky because of conversion rules. You should be very explicit
about how you want the expression to be evaluated by adding casts wherever necessary.

7.4 Other Conversion Considerations

178 Oracle Solaris Studio 12.4: C User's Guide • March 2015

7.3.11 Check Format String Conversion Operation

Make sure the format strings for printf(3S), sprintf(3S), scanf(3S), and sscanf(3S) can
accommodate long or pointer arguments. For pointer arguments, the conversion operation
given in the format string should be %p to work in both the 32-bit and 64-bit compilation
environments. Consider the following example:

char *buf;

struct dev_info *devi;

...

(void) sprintf(buf, "di%x", (void *)devi);

%

warning: function argument (number) type inconsistent with format

sprintf (arg 3) void *: (format) int

The modified version is:

char *buf;

struct dev_info *devi;

...

(void) sprintf(buf, ”di%p", (void *)devi);

For long arguments, the long size specification, l, should be prepended to the conversion
operation character in the format string. Furthermore, check to be sure that the storage pointed
to by buf is large enough to contain 16 digits.

size_t nbytes;

u_long align, addr, raddr, alloc;

printf("kalloca:%d%%%d from heap got%x.%x returns%x\n",

nbytes, align, (int)raddr, (int)(raddr + alloc), (int)addr);

%

warning: cast of 64-bit integer to 32-bit integer

warning: cast of 64-bit integer to 32-bit integer

warning: cast of 64-bit integer to 32-bit integer

The modified version is:

size_t nbytes;

u_long align, addr, raddr, alloc;

printf("kalloca:%lu%%%lu from heap got%lx.%lx returns%lx\n",

nbytes, align, raddr, raddr + alloc, addr);

7.4 Other Conversion Considerations

The remaining guidelines highlight common problems encountered when converting an
application to a full 64-bit program.

7.4 Other Conversion Considerations

Chapter 7 • Converting Applications for a 64-Bit Environment 179

7.4.1 Note: Derived Types That Have Grown in Size
A number of derived types now represent 64-bit quantities in the 64-bit application compilation
environment. This change does not affect 32-bit applications; however, any 64-bit applications
that consume or export data described by these types need to be re-evaluated. For example,
in applications that directly manipulate the utmp(4) or utmpx(4) files, do not attempt to
directly access these files. For correct operation in the 64-bit application environment,use the
getutxent(3C) and related family of functions instead.

7.4.2 Check for Side Effects of Changes
Be aware that a type change in one area can result in an unexpected 64-bit conversion in
another area. For example, check all the callers of a function that previously returned an int
and now returns an ssize_t.

7.4.3 Check Literal Uses of long Still Make Sense

A variable that is defined as a long is 32 bits in the ILP32 data-type model and 64 bits in the
LP64 data-type model. Where possible, avoid problems by redefining the variable and use a
more portable derived type.

Related to this issue, a number of derived types have changed under the LP64 data-type
model. For example, pid_t remains a long in the 32-bit environment, but under the 64-bit
environment, a pid_t is an int.

7.4.4 Use #ifdef for Explicit 32-bit Versus 64-bit
Prototypes
In some cases, specific 32-bit and 64-bit versions of an interface are unavoidable. You can
distinguish these versions by specifying the _LP64 or _ILP32 feature test macros in the headers.
Similarly, code that runs in 32-bit and 64-bit environments needs to use the appropriate
#ifdefs, depending on the compilation mode.

7.4.5 Calling Convention Changes
When you pass structures by value and compile the code for a 64-bit environment, the structure
is passed in registers rather than as a pointer to a copy if it is small enough. This process can
cause problems if you try to pass structures between C code and handwritten assembly code.

7.5 Checklist for Getting Started

180 Oracle Solaris Studio 12.4: C User's Guide • March 2015

Floating-point parameters work in a similar fashion: some floating-point values passed by value
are passed in floating-point registers.

7.4.6 Algorithm Changes

After your code is safe for the 64-bit environment, review your code again to verify that the
algorithms and data structures still make sense. The data types are larger, so data structures
might use more space. The performance of your code might change as well. Given these
concerns, you might need to modify your code appropriately.

7.5 Checklist for Getting Started

Use the following checklist to help you convert your code to 64-bit.

■ Review all data structures and interfaces to verify that these are still valid in the 64-bit
environment.

■ Include <inttypes.h> in your code to provide the _ILP32 or _LP64 definitions as well as
many basic derived types. For systems programs, include <sys/types.h> (or at a minimum,
<sys/isa_defs.h>) to obtain the definitions of _ILP32 or _LP64.

■ Move function prototypes and external declarations with non-local scope to headers and
include these headers in your code.

■ Run lint using the -m64 and -errchk=longptr64 and signext options. Review each
warning individually. Keep in mind that not all warnings require a change to the code.
Depending on the changes, run lint again in both 32-bit and 64-bit modes.

■ Compile code as both 32-bit and 64-bit unless the application is being provided only as 64-
bit.

■ Test the application by executing the 32-bit version on the 32-bit operating system, and the
64-bit version on the 64-bit operating system. You can also test the 32-bit version on the 64-
bit operating system.

Chapter 8 • cscope: Interactively Examining a C Program 181

 8 ♦ ♦ ♦ C H A P T E R 8

cscope: Interactively Examining a C Program

cscope is an interactive program that locates specified elements of code in C, lex, or yacc
source files. With cscope, you can search and edit your source files more efficiently than you
could with a typical editor. cscope has the advantage of supporting function calls, when a
function is being called and when it is doing the calling, as well as C language identifiers and
keywords.

This chapter provides information about the cscope browser provided with this release.

Note - The cscope program has not yet been updated to understand codes written for the 1999
ISO/IEC C standard. For example, it does not yet recognize the new keywords introduced in the
1999 ISO/IEC C standard.

8.1 The cscope Process

When cscope is called for a set of C, lex, or yacc source files, it builds a symbol cross-
reference table for the functions, function calls, macros, variables, and preprocessor symbols
in those files. You can then query that table about the locations of symbols you specify. First,
from a menu you choose the type of search you would like to have performed. You might, for
instance, want cscope to find all the functions that call a specified function.

When cscope has completed this search, it prints a list. Each list entry contains the name of
the file, the number of the line, and the text of the line in which cscope has found the specified
code. The list can also include the names of the functions that call the specified function. You
then have the option of requesting another search or examining one of the listed lines with the
editor. If you choose the latter, cscope invokes the editor for the file in which the line appears,
with the cursor on that line. You can then view the code in context and edit the file as any other
file. You can then return to the menu from the editor to request a new search.

Because the procedure you follow depends on the task at hand, no single set of instructions
is relevant for using cscope. For an extended example of its use, review the cscope session
described in the next section, which shows how you can locate a bug in a program without
learning all the code.

8.2 Basic Use

182 Oracle Solaris Studio 12.4: C User's Guide • March 2015

8.2 Basic Use

Suppose you are given responsibility for maintaining the program prog. You are told that an
error message, out of storage, sometimes appears just as the program starts up. Now you want
to use cscope to locate the parts of the code that are generating the message. Here is how you
do it.

8.2.1 Step 1: Set Up the Environment

cscope is a screen-oriented tool that can only be used on terminals listed in the Terminal
Information Utilities (terminfo) database. Be sure you have set the TERM environment variable
to your terminal type so that cscope can verify that it is listed in the terminfo database. If you
have not done so, assign a value to TERM and export it to the shell as follows:

In a Bourne shell, type:

$ TERM=term_name; export TERM

In a C shell, type:

% setenv TERM term_name

You may now want to assign a value to the EDITOR environment variable. By default, cscope
invokes the vi editor. (The examples in this chapter illustrate vi usage.) If you prefer not to
use vi, set the EDITOR environment variable to the editor of your choice and export EDITOR, as
follows:

In a Bourne shell, type:

$ EDITOR=emacs; export EDITOR

In a C shell, type:

% setenv EDITOR emacs

You may have to write an interface between cscope and your editor. For details, see “8.2.9
Command-Line Syntax for Editors” on page 195.

If you want to use cscope only for browsing (without editing), you can set the VIEWER
environment variable to pg and export VIEWER. cscope will then invoke pg instead of vi.

An environment variable called VPATH can be set to specify directories to be searched for source
files. See “8.2.6 View Paths” on page 191.

8.2 Basic Use

Chapter 8 • cscope: Interactively Examining a C Program 183

8.2.2 Step 2: Invoke the cscope Program

By default, cscope builds a symbol cross-reference table for all the C, lex, and yacc source
files in the current directory, and for any included header files in the current directory or the
standard place. So, if all the source files for the program to be browsed are in the current
directory, and if its header files are there or in the standard place, invoke cscope without
arguments:

% cscope

To browse through selected source files, invoke cscope with the names of those files as
arguments:

% cscope file1.c file2.c file3.h

For other ways to invoke cscope, see “8.2.5 Command-Line Options” on page 189.

cscope builds the symbol cross-reference table the first time it is used on the source files for
the program to be browsed. By default, the table is stored in the file cscope.out in the current
directory. On a subsequent invocation, cscope rebuilds the cross-reference only if a source file
has been modified or the list of source files is different. When the cross-reference is rebuilt,
the data for the unchanged files is copied from the old cross-reference, which makes rebuilding
faster than the initial build, and reduces startup time for subsequent invocations.

8.2.3 Step 3: Locate the Code

Now let’s return to the task we undertook at the beginning of this section: to identify the
problem that is causing the error message out of storage to be printed. You have invoked
cscope, the cross-reference table has been built. The cscope menu of tasks appears on the
screen.

The cscope Menu of Tasks:

% cscope

cscope Press the ? key for help

Find this C symbol:

Find this global definition:

Find functions called by this function:

Find functions calling this function:

Find this text string:

Change this text string:

Find this egrep pattern:

Find this file:

8.2 Basic Use

184 Oracle Solaris Studio 12.4: C User's Guide • March 2015

Find files #including this file:

Press the Return key to move the cursor down the screen (with wraparound at the bottom of
the display), and ^p (Control-p) to move the cursor up; or use the up (ua) and down (da) arrow
keys. You can manipulate the menu and perform other tasks with the following single-key
commands:

TABLE 8-1 cscope Menu Manipulation Commands

Tab Move to the next input field.

Return Move to the next input field.

^n Move to the next input field.

^p Move to the previous input field.

^y Search with the last text typed.

^b Move to the previous input field and search pattern.

^f Move to the next input field and search pattern.

^c Toggle ignore/use letter case when searching. For example, a search for FILE matches file and
File when ignoring the letter case.

^r Rebuild cross-reference.

! Start an interactive shell. Type ^d to return to cscope.

^l Redraw the screen.

? Display the list of commands.

^d Exit cscope.

If the first character of the text for which you are searching matches one of these commands,
you can escape the command by entering a \ (backslash) before the character.

Now move the cursor to the fifth menu item, Find this text string, enter the text out of
storage, and press the Return key.

cscope Function: Requesting a Search for a Text String:

$ cscope

cscope Press the ? key for help

Find this C symbol

Find this global definition

Find functions called by this function

Find functions calling this function

Find this text string: out of storage

Change this text string

Find this egrep pattern

Find this file

8.2 Basic Use

Chapter 8 • cscope: Interactively Examining a C Program 185

Find files #including this file

Note - Follow the same procedure to perform any other task listed in the menu except the sixth,
Change this text string. Because this task is slightly more complex than the others, there is a
different procedure for performing it. For a description of how to change a text string, see “8.2.8
Examples” on page 192.

cscope searches for the specified text, finds one line that contains it, and reports its finding.

cscope Function: Listing Lines Containing the Text String:

Text string: out of storage

 File Line

1 alloc.c 63 (void) fprintf(stderr, "\n%s: out of storage\n", argv0);

Find this C symbol:

Find this global definition:

Find functions called by this function:

Find functions calling this function:

Find this text string:

Change this text string:

Find this egrep pattern:

Find this file:

Find files #including this file:

After cscope shows you the results of a successful search, you have several options. You may
want to change one of the lines or examine the code surrounding it in the editor. Or, if cscope
has found so many lines that a list of them does not fit on the screen at once, you may want to
look at the next part of the list. The following table shows the commands available after cscope
has found the specified text:

TABLE 8-2 Commands for Use After an Initial Search

1 -9 Edit the file referenced by this line. The number you type corresponds to an item in the list of lines
printed by cscope.

Space Display the next set of matching lines.

+ Display the next set of matching lines.

^v Display the next set of matching lines.

— Display the previous set of matching lines.

^e Edit the displayed files in order.

> Append the list of lines being displayed to a file.

| Pipe all lines to a shell command.

Again, if the first character of the text for which you are searching matches one of these
commands, you can escape the command by entering a backslash before the character.

8.2 Basic Use

186 Oracle Solaris Studio 12.4: C User's Guide • March 2015

Now examine the code around the newly found line. Enter 1 (the number of the line in the
list). The editor is invoked with the file alloc.c with the cursor at the beginning of line 63 of
alloc.c.

cscope Function: Examining a Line of Code:

{

 return(alloctest(realloc(p, (unsigned) size)));

}

/* check for memory allocation failure */

static char *

alloctest(p)

char *p;

{

 if (p == NULL) {

 (void) fprintf(stderr, "\n%s: out of storage\n", argv0);

 exit(1);

 }

 return(p);

}

~

~

~

~

~

~

~

"alloc.c" 67 lines, 1283 characters

You can see that the error message is generated when the variable p is NULL. To determine how
an argument passed to alloctest() could have been NULL, you must first identify the functions
that call alloctest().

Exit the editor by using normal quit conventions. You are returned to the menu of tasks. Now
type alloctest after the fourth item, Find functions calling this function.

cscope Function: Requesting a List of Functions That Call alloctest():

Text string: out of storage

 File Line

1 alloc.c 63(void)fprintf(stderr,"\n%s: out of storage\n",argv0);

Find this C symbol:

Find this global definition:

Find functions called by this function:

Find functions calling this function: alloctest
Find this text string:

Change this text string:

Find this egrep pattern:

8.2 Basic Use

Chapter 8 • cscope: Interactively Examining a C Program 187

Find this file:

Find files #including this file:

cscope finds and lists three such functions.

cscope Function: Listing Functions That Call alloctest():

Functions calling this function: alloctest

File Function Line

1 alloc.c mymalloc 33 return(alloctest(malloc((unsigned) size)));

2 alloc.c mycalloc 43 return(alloctest(calloc((unsigned) nelem, (unsigned) size)));

3 alloc.c myrealloc 53 return(alloctest(realloc(p, (unsigned) size)));

Find this C symbol:

Find this global definition:

Find functions called by this function:

Find functions calling this function:

Find this text string:

Change this text string:

Find this egrep pattern:

Find this file:

Find files #including this file:

Now you want to know which functions call mymalloc(). cscope finds ten such functions. It
lists nine of them on the screen and instructs you to press the space bar to see the rest of the list.

cscope Function: Listing Functions That Call mymalloc():

Functions calling this function: mymalloc

File Function Line

1 alloc.c stralloc 24 return(strcpy(mymalloc

 (strlen(s) + 1), s));

2 crossref.c crossref 47 symbol = (struct symbol *)mymalloc

 (msymbols * sizeof(struct symbol));

3 dir.c makevpsrcdirs 63 srcdirs = (char **) mymalloc

 (nsrcdirs * sizeof(char*));

4 dir.c addincdir 167 incdirs = (char **)mymalloc

 (sizeof(char *));

5 dir.c addincdir 168 incnames = (char **)

 mymalloc(sizeof(char *));

6 dir.c addsrcfile 439 p = (struct listitem *) mymalloc

 (sizeof(struct listitem));

7 display.c dispinit 87 displine = (int *) mymalloc

 (mdisprefs * sizeof(int));

8 history.c addcmd 19 h = (struct cmd *) mymalloc

 (sizeof(struct cmd));

9 main.c main 212 s = mymalloc((unsigned)

 (strlen(reffile) +strlen(home) + 2));

* 9 more lines - press the space bar to display more *

Find this C symbol:

Find this global definition:

8.2 Basic Use

188 Oracle Solaris Studio 12.4: C User's Guide • March 2015

Find functions called by this function:

Find functions calling this function:

Find this text string:

Change this text string:

Find this egrep pattern:

Find this file:

Find files #including this file:

Because you know that the error message out of storage is generated at the beginning of the
program, you can guess that the problem may have occurred in the function dispinit()
(display initialization).

To view dispinit(), the seventh function on the list, type 7.

cscope Function: Viewing dispinit() in the Editor:

void

dispinit()

{

 /* calculate the maximum displayed reference lines */

 lastdispline = FLDLINE - 4;

 mdisprefs = lastdispline - REFLINE + 1;

 if (mdisprefs > 9) {

 mdisprefs = 9;

 }

 /* allocate the displayed line array */

 displine = (int *) mymalloc(mdisprefs * sizeof(int));

}

^L/* display a page of the references */

void

display()

{

 char file[PATHLEN + 1]; /* file name */

 char function[PATHLEN + 1];/* function name */

 char linenum[NUMLEN + 1]; /* line number */

 int screenline; /* screen line number */

 int width; /* source line display width */

 register int i, j;

"display.c" 622 lines, 14326 characters

mymalloc() failed because it was called either with a very large number or a negative number.
By examining the possible values of FLDLINE and REFLINE, you can see that there are situations
in which the value of mdisprefs is negative, that is, in which you are trying to call mymalloc()
with a negative number.

8.2.4 Step 4: Edit the Code
On a windowing terminal, you may have multiple windows of arbitrary size. The error message
out of storage might have appeared as a result of running prog in a window with too few lines.

8.2 Basic Use

Chapter 8 • cscope: Interactively Examining a C Program 189

In other words, that may have been one of the situations in which mymalloc() was called with
a negative number. Now you want to be sure that when the program aborts in this situation in
the future, it does so after printing the more meaningful error message screen too small. Edit the
function dispinit() as follows.

cscope Function: Correcting the Problem:

void

dispinit()

{

/* calculate the maximum displayed reference lines */

 lastdispline = FLDLINE - 4;

 mdisprefs = lastdispline - REFLINE + 1;

 if (mdisprefs > 9) {

 mdisprefs = 9;

 }

/* allocate the displayed line array */

 displine = (int *) mymalloc(mdisprefs * sizeof(int));

}

^L/* display a page of the references */

void

display()

{

 char file[PATHLEN + 1]; /* file name */

 char function[PATHLEN + 1];/* function name */

 char linenum[NUMLEN + 1]; /* line number */

 int screenline; /* screen line number */

 int width; /* source line display width */

 register int i, j;

"display.c" 622 lines, 14326 characters

You have fixed the problem we began investigating at the beginning of this section. Now if
prog is run in a window with too few lines, it does not simply fail with the unedifying error
message out of storage. Instead, it checks the window size and generates a more meaningful
error message before exiting.

8.2.5 Command-Line Options

As noted, cscope builds a symbol cross-reference table for the C, lex, and source files in the
current directory by default. That is,

% cscope

is equivalent to:

% cscope *.[chly]

We have also seen that you can browse through selected source files by invoking cscope with
the names of those files as arguments:

8.2 Basic Use

190 Oracle Solaris Studio 12.4: C User's Guide • March 2015

% cscope file1.c file2.c file3.h

cscope provides command-line options with greater flexibility in specifying source files to be
included in the cross-reference. When you invoke cscope with the– s option and any number
of directory names (separated by commas):

% cscope– s dir1,dir2,dir3

cscope builds a cross-reference for all the source files in the specified directories as well as the
current directory. To browse through all of the source files whose names are listed in file (file
names separated by spaces, tabs, or new-lines), invoke cscope with the– i option and the name
of the file containing the list:

% cscope– i file

If your source files are in a directory tree, use the following commands to browse through all of
them:

% find .– name ’*.[chly]’– print | sort > file
% cscope– i file

If this option is selected, however, cscope ignores any other files appearing on the command-
line.

The– I option can be used for cscope in the same way as the– I option to cc. See “2.16 How
to Specify Include Files” on page 58.

You can specify a cross-reference file other than the default cscope.out by invoking the– f
option. This is useful for keeping separate symbol cross-reference files in the same directory.
You may want to do this if two programs are in the same directory, but do not share all the same
files:

% cscope– f admin.ref admin.c common.c aux.c libs.c

% cscope– f delta.ref delta.c common.c aux.c libs.c

In this example, the source files for two programs, admin and delta, are in the same directory,
but the programs consist of different groups of files. By specifying different symbol cross-
reference files when you invoke cscope for each set of source files, the cross-reference
information for the two programs is kept separate.

You can use the– pn option to specify that cscope display the path name, or part of the path
name, of a file when it lists the results of a search. The number you give to– p stands for the
last n elements of the path name you want to be displayed. The default is 1, the name of the file
itself. So if your current directory is home/common, the command:

% cscope– p2

causes cscope to display common/file1.c, common/file2.c, and so forth when it lists the
results of a search.

8.2 Basic Use

Chapter 8 • cscope: Interactively Examining a C Program 191

If the program you want to browse contains a large number of source files, you can use the– b
option, so that cscope stops after it has built a cross-reference; cscope does not display a menu
of tasks. When you use cscope– b in a pipeline with the batch(1) command, cscope builds the
cross-reference in the background:

% echo ’cscope -b’ | batch

Once the cross-reference is built, and as long as you have not changed a source file or the list of
source files in the meantime, you need only specify:

% cscope

for the cross-reference to be copied and the menu of tasks to be displayed in the normal way.
You can use this sequence of commands when you want to continue working without having to
wait for cscope to finish its initial processing.

The– d option instructs cscope not to update the symbol cross-reference. You can use it to save
time if you are sure that no such changes have been made; cscope does not check the source
files for changes.

Note - Use the – d option with care. If you specify – d under the erroneous impression that
your source files have not been changed, cscope refers to an outdated symbol cross-reference in
responding to your queries.

Check the cscope(1) man page for other command-line options.

8.2.6 View Paths

As we have seen, cscope searches for source files in the current directory by default. When
the environment variable VPATH is set, cscope searches for source files in directories that
comprise your view path. A view path is an ordered list of directories, each of which has the
same directory structure below it.

For example, suppose you are part of a software project. There is an official set of source
files in directories below /fs1/ofc. Each user has a home directory (/usr/you). If you make
changes to the software system, you may have copies of just those files you are changing in
/usr/you/src/cmd/prog1. The official versions of the entire program can be found in the
directory /fs1/ofc/src/cmd/prog1.

Suppose you use cscope to browse through the three files that comprise prog1, namely, f1.c,
f2.c, and f3.c. You would set VPATH to /usr/you and /fs1/ofc and export it, as in:

In a Bourne shell, type:

$ VPATH=/usr/you:/fs1/ofc; export VPATH

8.2 Basic Use

192 Oracle Solaris Studio 12.4: C User's Guide • March 2015

In a C shell, type:

% setenv VPATH /usr/you:/fs1/ofc

You then make your current directory /usr/you/src/cmd/prog1, and invoke cscope:

% cscope

The program locates all the files in the view path. In case duplicates are found, cscope uses the
file whose parent directory appears earlier in VPATH. Thus, if f2.c is in your directory, and all
three files are in the official directory, cscope examines f2.c from your directory, and f1.c and
f3.c from the official directory.

The first directory in VPATH must be a prefix of the directory you will be working in, usually
$HOME. Each colon-separated directory in VPATH must be absolute: it should begin at /.

8.2.7 cscope and Editor Call Stacks

cscope and editor calls can be stacked. That is, when cscope puts you in the editor to view a
reference to a symbol and there is another reference of interest, you can invoke cscope again
from within the editor to view the second reference without exiting the current invocation of
either cscope or the editor. You can then back up by exiting the most recent invocation with the
appropriate cscope and editor commands.

8.2.8 Examples

This section presents examples of how cscope can be used to perform three tasks: changing a
constant to a preprocessor symbol, adding an argument to a function, and changing the value
of a variable. The first example demonstrates the procedure for changing a text string, which
differs slightly from the other tasks on the cscope menu. That is, once you have entered the text
string to be changed, cscope prompts you for the new text, displays the lines containing the old
text, and waits for you to specify which of these lines you want it to change.

8.2.8.1 Changing a Constant to a Preprocessor Symbol

Suppose you want to change a constant, 100, to a preprocessor symbol, MAXSIZE. Select the
sixth menu item, Change this text string, and enter \100. The 1 must be escaped with a
backslash because it has a special meaning (item 1 on the menu) to cscope. Now press Return.
cscope prompts you for the new text string. Type MAXSIZE.

cscope Function: Changing a Text String:

8.2 Basic Use

Chapter 8 • cscope: Interactively Examining a C Program 193

cscope Press the ? key for help

Find this C symbol:

Find this global definition:

Find functions called by this function:

Find functions calling this function:

Find this text string:

Change this text string: \100

Find this egrep pattern:

Find this file:

Find files #including this file:

To: MAXSIZE

cscope displays the lines containing the specified text string, and waits for you to select those in
which you want the text to be changed.

cscope Function: Prompting for Lines to be Changed:

cscope Press the ? key for help

Find this C symbol:

Find this global definition:

Find functions called by this function:

Find functions calling this function:

Find this text string:

Change this text string: \100

Find this egrep pattern:

Find this file:

Find files #including this file:

To: MAXSIZE

You know that the constant 100 in lines 1, 2, and 3 of the list (lines 4, 26, and 8 of the listed
source files) should be changed to MAXSIZE. You also know that 0100 in read.c and 100.0 in
err.c (lines 4 and 5 of the list) should not be changed. You select the lines you want changed
with the following single-key commands:

TABLE 8-3 Commands for Selecting Lines to Be Changed

1-9 Mark or unmark the line to be changed.

* Mark or unmark all displayed lines to be changed.

Space Display the next set of lines.

+ Display the next set of lines.

– Display the previous set of lines.

a Mark all lines to be changed.

^d Change the marked lines and exit.

Esc Exit without changing the marked lines.

8.2 Basic Use

194 Oracle Solaris Studio 12.4: C User's Guide • March 2015

In this case, enter 1, 2, and 3. The numbers you type are not printed on the screen. Instead,
cscope marks each list item you want to be changed by printing a > (greater than) symbol after
its line number in the list.

cscope Function: Marking Lines to be Changed:

Change "100" to "MAXSIZE"

 File Line

1>init.c 4 char s[100];

2>init.c 26 for (i = 0; i < 100; i++)

3>find.c 8 if (c < 100) {

4 read.c 12 f = (bb & 0100);

5 err.c 19 p = total/100.0; /* get percentage */

Find this C symbol:

Find this global definition:

Find functions called by this function:

Find functions calling this function:

Find this text string:

Change this text string:

Find this egrep pattern:

Find this file:

Find files #including this file:

Select lines to change (press the ? key for help):

Now type ^d to change the selected lines. cscope displays the lines that have been changed and
prompts you to continue.

cscope Function: Displaying Changed Lines of Text:

Changed lines:

 char s[MAXSIZE];

 for (i = 0; i < MAXSIZE; i++)

 if (c < MAXSIZE) {

Press the RETURN key to continue:

When you press Return in response to this prompt, cscope redraws the screen, restoring it to its
state before you selected the lines to be changed.

The next step is to add the #define for the new symbol MAXSIZE. Because the header file in
which the #define is to appear is not among the files whose lines are displayed, you must
escape to the shell by typing !. The shell prompt appears at the bottom of the screen. Then enter
the editor and add the #define.

cscope Function: Exiting to the Shell:

Text string: 100

 File Line

8.2 Basic Use

Chapter 8 • cscope: Interactively Examining a C Program 195

1 init.c 4 char s[100];

2 init.c 26 for (i = 0; i < 100; i++)

3 find.c 8 if (c < 100) {

4 read.c 12 f = (bb & 0100);

5 err.c 19 p = total/100.0; /* get percentage */

Find this C symbol:

Find this global definition:

Find functions called by this function:

Find functions calling this function:

Find this text string:

Change this text string:

Find this egrep pattern:

Find this file:

Find files #including this file:

$ vi defs.h

To resume the cscope session, quit the editor and type ^d to exit the shell.

8.2.8.2 Adding an Argument to a Function

Adding an argument to a function involves two steps: editing the function itself and adding the
new argument to every place in the code where the function is called.

First, edit the function by using the second menu item, Find this global definition. Next,
find out where the function is called. Use the fourth menu item, Find functions calling
this function, to obtain a list of all the functions that call it. With this list, you can either
invoke the editor for each line found by entering the list number of the line individually, or
invoke the editor for all the lines automatically by typing ^e. Using cscope to make this kind of
change ensures that none of the functions you need to edit are overlooked.

8.2.8.3 Changing the Value of a Variable

At times, you may want to see how a proposed change affects your code.

Suppose you want to change the value of a variable or preprocessor symbol. Before doing so,
use the first menu item, Find this C symbol, to obtain a list of references that are affected.
Then use the editor to examine each one. This step helps you predict the overall effects of your
proposed change. Later, you can use cscope in the same way to verify that your changes have
been made.

8.2.9 Command-Line Syntax for Editors

cscope invokes the vi editor by default. You can override the default setting by assigning your
preferred editor to the EDITOR environment variable and exporting EDITOR, as described in

8.3 Unknown Terminal Type Error

196 Oracle Solaris Studio 12.4: C User's Guide • March 2015

“8.2.1 Step 1: Set Up the Environment” on page 182. However, cscope expects the editor it
uses to have a command-line syntax of the form:

% editor +linenum filename

as does vi. If the editor you want to use does not have this command-line syntax, you must
write an interface between cscope and the editor.

Suppose you want to use ed. Because ed does not allow specification of a line number on the
command-line, you cannot use it to view or edit files with cscope unless you write a shell script
that contains the following line:

/usr/bin/ed $2

Let’s name the shell script myedit. Now set the value of EDITOR to your shell script and export
EDITOR:

In a Bourne shell, type:

$ EDITOR=myedit; export EDITOR

In a C shell, type:

% setenv EDITOR myedit

When cscope invokes the editor for the list item you have specified, say, line 17 in main.c, it
invokes your shell script with the command-line:

% myedit +17 main.c

myedit then discards the line number ($1) and calls ed correctly with the file name ($2). Of
course, you are not moved automatically to line 17 of the file and must execute the appropriate
ed commands to display and edit the line.

8.3 Unknown Terminal Type Error

If you see the error message:

Sorry, I don’t know how to deal with your "term" terminal

your terminal may not be listed in the Terminal Information Utilities (terminfo) database that
is currently loaded. Make sure you have assigned the correct value to TERM. If the message
reappears, try reloading the Terminal Information Utilities.

If this message is displayed:

Sorry, I need to know a more specific terminal type than "unknown"

8.3 Unknown Terminal Type Error

Chapter 8 • cscope: Interactively Examining a C Program 197

set and export the TERM variable as described in “8.2.1 Step 1: Set Up the
Environment” on page 182.

198 Oracle Solaris Studio 12.4: C User's Guide • March 2015

Appendix A • Compiler Options Grouped by Functionality 199

 A ♦ ♦ ♦ A P P E N D I X A

Compiler Options Grouped by Functionality

This chapter summarizes the C compiler options by function. Detailed explanations of the
options and the compiler command-line syntax are provided in Table A-14.

A.1 Options Summarized by Function

In this section, the compiler options are grouped by function to provide a quick reference. For
a detailed description of each option, refer to Appendix B, “C Compiler Options Reference”.
Some flags serve more than one purpose and appear more than once.

The options apply to all platforms except as noted. Features that are unique to SPARC-based
systems are identified as (SPARC), and the features that are unique to x86/x64–based systems
are identified as (x86). Options that apply to Oracle Solaris platforms only are marked (Solaris).
Options for Linux-only platforms are marked (Linux).

A.1.1 Optimization and Performance Options

TABLE A-1 Optimization and Performance Options

Option Action

-fast Selects the optimum combination of compilation options for speed of
executable code.

-fma Enables automatic generation of floating-point fused multiply-add instructions.

-library=sunperf Links with the Sun Performance Library.

-p Prepares the object code to collect data for profiling.

-xalias_level Enables the compiler to perform type-based alias analysis and optimizations.

-xannotate (Oracle Solaris) Instructs the compiler to create binaries that can be used
by the optimization and observability tools binopt(1), code-analyzer(1),
discover(1), collect(1), and uncover(1).

-xbinopt Prepares the binary for later optimizations, transformations and analysis.

-xbuiltin Improves the optimization of code that calls standard library functions.

A.1 Options Summarized by Function

200 Oracle Solaris Studio 12.4: C User's Guide • March 2015

Option Action

-xdepend Analyzes loops for inter-iteration data dependencies and does loop
restructuring.

-xF Enables reordering of data and functions by the linker.

-xglobalize Controls globalization of file static variables but not functions.

-xhwcprof (SPARC) Enables compiler support for hardware counter-based profiling.

-xinline Tries to inline only those functions specified.

-xinline_param Manually changes the heuristics used by the compiler for deciding when to
inline a function call.

-xinline_report Generates a report written to standard output on the inlining of functions by the
compiler.

-xinstrument Compiles and instruments your program for analysis by the Thread Analyzer.

-xipo Performs whole-program optimizations by invoking an interprocedural analysis
component.

-xipo_archive Allows crossfile optimization to include archive (.a) libraries.

-xipo_build Reduces compile time by avoiding optimizations during the initial pass through
the compiler, optimizing only at link time.

-xkeepframe Prohibits stack related optimizations for the named functions.

-xjobs Sets how many processes the compiler creates.

-xlibmil Inlines some library routines for faster execution.

-xlic_lib=sunperf Obsolete. Use -library=sunperf to link to the Sun Performance Library.

-xlinkopt Performs link-time optimizations on relocatable object files.

-xlibmopt Enables library of optimized math routines.

-xmaxopt Limits the level of pragma opt to the level specified.

-xnolibmil Does not inline math library routines.

-xnolibmopt Does not enable library of optimized math routines.

-xO Optimizes the object code.

-xnorunpath Prevents inclusion of a runtime search path for shared libraries in the
executable.

-xpagesize Sets the preferred page size for the stack and the heap.

-xpagesize_stack Sets the preferred page size for the stack.

-xpagesize_heap Sets the preferred page size for the heap.

-xpch Reduces compile time for applications whose source files share a common set
of include files.

-xpec Generates a Portable Executable Code (PEC) binary which can be used with
additional tuning and troubleshooting.

-xpchstop Can be used in conjunction with -xpch to specify the last include file of the
viable prefix.

-xprefetch Enables prefetch instructions.

-xprefetch_level Controls the aggressiveness of automatic insertion of prefetch instructions as set
by -xprefetch=auto

A.1 Options Summarized by Function

Appendix A • Compiler Options Grouped by Functionality 201

Option Action

-xprefetch_auto_type Controls how indirect prefetches are generated.

-xprofile Collects data for a profile or uses a profile to optimize.

-xprofile_ircache Improves compilation time of -xprofile=use phase by reusing compilation
data saved from the -xprofile=collect phase.

-xprofile_pathmap Support for multiple programs or shared libraries in a single profile directory.

-xrestrict Treats pointer-valued function parameters as restricted pointers.

-xsafe (SPARC) Allows the compiler to assume no memory-based traps occur.

-xspace Does no optimizations or parallelization of loops that increase code size.

-xthroughput Specifies that the application will be run in situations where many processes are
simultaneously running on the system.

-xunroll Suggests to the optimizer to unroll loops n times.

A.1.2 Compile-Time and Link-Time Options

The following table lists the options that must be specified both at link-time and at compile-
time.

TABLE A-2 Compile-Time and Link-Time Options

Option Action

-fast Selects the optimum combination of compilation options for speed of executable
code.

-fopenmp Equivalent to -xopenmp=parallel.

-m32 | -m64 Specifies the memory model for the compiled binary object.

-mt Macro option that expands to -D_REENTRANT -lthread.

-p Prepares the object code to collect data for profiling with prof(1)

-xarch Specify instruction set architecture.

-xautopar Enables automatic parallelization for multiple processors.

-xhwcprof (SPARC) Enables compiler support for hardware counter-based profiling.

-xipo Performs whole-program optimizations by invoking an interprocedural analysis
component.

-xlinkopt Performs link-time optimizations on relocatable object files.

-xmemalign (SPARC) Specify maximum assumed memory alignment and behavior of
misaligned data accesses.

-xopenmp Supports the OpenMP interface for explicit parallelization including a set of source
code directives, run-time library routines, and environment variables

-xpagesize Sets the preferred page size for the stack and the heap.

-xpagesize_stack Sets the preferred page size for the stack.

-xpagesize_heap Sets the preferred page size for the heap.

A.1 Options Summarized by Function

202 Oracle Solaris Studio 12.4: C User's Guide • March 2015

Option Action

-xpatchpadding Reserve an area of memory before the start of each function.

-xpg Prepares the object code to collect data for profiling with gprof(1).

-xprofile Collects data for a profile or uses a profile to optimize.

-xs (Oracle Solaris) Link debug information from object files into executable.

-xvector=lib Enable automatic generation of calls to the vector library functions.

A.1.3 Data-Alignment Options

TABLE A-3 Data-Alignment Options

Option Action

-xchar_byte_order Produce an integer constant by placing the characters of a multi-character
character-constant in the specified byte order.

-xdepend Analyzes loops for inter-iteration data dependencies and does loop restructuring.

-xmemalign (SPARC) Specify maximum assumed memory alignment and behavior of
misaligned data accesses.

-xsegment_align Cause the driver to include a special mapfile on the link line.

A.1.4 Numerics and Floating-Point Options

TABLE A-4 Numerics and Floating-Point Options

Option Action

-flteval (x86) Controls floating point evaluation.

-fma Enables automatic generation of floating-point fused multiply-add instructions.

-fnonstd Causes nonstandard initialization of floating-point arithmetic hardware.

-fns Turns on nonstandard floating-point mode.

-fprecision (x86) Initializes the rounding-precision mode bits in the Floating-point Control Word

-fround Sets the IEEE 754 rounding mode that is established at runtime during the program
initialization.

-fsimple Allows the optimizer to make simplifying assumptions concerning floating-point
arithmetic.

-fsingle Causes the compiler to evaluate float expressions as single precision rather than
double precision.

-fstore (x86) Causes the compiler to convert the value of a floating-point expression or
function to the type on the left-hand side of an assignment

-ftrap Sets the IEEE 754 trapping mode in effect at startup.

-nofstore (x86) Does not convert the value of a floating-point expression or function to the type
on the left-hand side of an assignment

A.1 Options Summarized by Function

Appendix A • Compiler Options Grouped by Functionality 203

Option Action

-xdepend Analyzes loops for inter-iteration data dependencies and does loop restructuring.

-xlibmieee Forces IEEE 754 style return values for math routines in exceptional cases.

-xsfpconst Represents unsuffixed floating-point constants as single precision

-xvector Enable automatic generation of calls to the vector library functions.

A.1.5 Parallelization Options

TABLE A-5 Parallelization Options

Option Action

-fopenmp Equivalent to -xopenmp=parallel.

-mt Macro option that expands to -D_REENTRANT -lthread.

-xautopar Enables automatic parallelization for multiple processors.

-xcheck Adds runtime checks for stack overflow and initializes local variables.

-xdepend Analyzes loops for inter-iteration data dependencies and does loop restructuring.

-xloopinfo Shows which loops are parallelized and which are not.

-xopenmp Supports the OpenMP interface for explicit parallelization including a set of source
code directives, run-time library routines, and environment variables

-xreduction Enables reduction recognition during automatic parallelization.

-xrestrict Treats pointer-valued function parameters as restricted pointers.

-xthreadvar Controls the implementation of thread local variables.

-xthroughput Specify that the application will be run in situations where many processes are
simultaneously running on the system.

-xvpara Warns about loops that have #pragma MP directives specified but might not be properly
specified for parallelization.

-Zll Creates the program database for lock_lint, but does not generate executable code.

A.1.6 Source Code Options

TABLE A-6 Source Code Options

Option Action

-A Associates name as a predicate with the specified tokens as if by a #assert
preprocessing directive.

-ansi Equivalent to -std=c89.

-C Prevents the preprocessor from removing comments, except those on the preprocessing
directive lines.

-D Associates name with the specified tokens as if by a #define preprocessing directive.

-E Runs the source file through the preprocessor only and sends the output to stdout.

A.1 Options Summarized by Function

204 Oracle Solaris Studio 12.4: C User's Guide • March 2015

Option Action

-fd Reports K&R-style function definitions and declarations.

-H Prints to standard error, one per line, the path name of each file included during the
current compilation.

-I Adds directories to the list that is searched for #include files with relative file names.

-include Causes the compiler to treat the argument filename as if it appears in the first line of a
primary source file as a #include preprocessor directive.

-P Runs the source file through the C preprocessor only.

-pedantic Enforce strict conformance with errors/warnings for non-ANSI constructs.

-preserve_argvalues (x86) Save copies of register-based function arguments in the stack.

-std Specify C language standard.

-U Removes any initial definition of the preprocessor symbol name.

-X The -X options specify varying degrees of compliance to the ISO C standard.

-xCC Accepts the C++-style comments.

-xc99 Controls compiler recognition of supported C99 features.

-xchar Helps with migration from systems where char is defined as unsigned.

-xcsi Allows the C compiler to accept source code written in locales that do not conform to
the ISO C source character code requirements

-xM Runs only the preprocessor on the named C programs, requesting that it generate
makefile dependencies and send the result to the standard output

-xM1 Collects dependencies like -xM, but excludes /usr/include files.

-xMD Generates makefile dependencies like -xM but includes compilation.

-xMF Specifies a filename which stores makefile dependency information.

-xMMD Generates makefile dependencies but excludes system headers.

-xP Prints prototypes for all K&R C functions defined in this module

-xpg Prepares the object code to collect data for profiling with gprof(1).

-xtrigraphs Determines recognition of trigraph sequences.

-xustr Enables recognition of string literals composed of sixteen-bit characters.

A.1.7 Compiled Code Options

TABLE A-7 Compiled Code Options

Option Action

-c Directs the compiler to suppress linking with ld(1) and to produce a .o file in the
current working directory for each source file

-o Names the output file

-S Directs the compiler to produce an assembly source file but not to assemble the
program.

A.1 Options Summarized by Function

Appendix A • Compiler Options Grouped by Functionality 205

A.1.8 Compilation Mode Options

TABLE A-8 Compilation Mode Options

Option Action

-# Enables verbose mode, which shows how command options expand and shows each
component as it is invoked.

-### Shows each component as it would be invoked, but does not actually execute it. Also
shows how command options expand.

-ansi Equivalent to -std=c89.

-features Enables or disables various C-language features.

-keeptmp Retains temporary files created during compilation instead of deleting them
automatically.

-std Specify C language standard.

-temp Define the directory for temporary files.

-V Directs cc to print the name and version ID of each component as the compiler
executes.

-W Passes arguments to C compilation-system components.

-X The -X options specify varying degrees of compliance to the ISO C standard.

-xc99 Controls compiler recognition of supported C99 features.

-xchar Preserves the sign of a char

-xhelp Displays on-line help information.

-xjobs Sets how many processes the compiler creates.

-xlang Override the default libc behavior as specified by the -std flag.

-xpch Reduces compile time for applications whose source files share a common set of
include files.

-xpchstop Can be used in conjunction with -xpch to specify the last include file of the viable
prefix.

-xtime Reports the time and resources used by each compilation component.

-Y Specifies a new directory for the location of a C compilation-system component.

-YA Changes the default directory searched for components.

-YI Changes the default directory searched for include files.

-YP Changes the default directory for finding library files.

-YS Changes the default directory for startup object files.

A.1 Options Summarized by Function

206 Oracle Solaris Studio 12.4: C User's Guide • March 2015

A.1.9 Diagnostic Options

TABLE A-9 Diagnostic Options

Option Action

-errfmt Prefix error messages with string “error:” for ready distinction from warning messages.

-errhdr Limits the warnings from header files to a specified group.

-erroff Suppresses compiler warning messages.

-errshort Control how much detail is in the error message produced by the compiler when it
discovers a type mismatch.

-errtags Displays the message tag for each warning message.

-errwarn If the indicated warning message is issued, cc exits with a failure status.

-pedantic Enforce strict conformance with errors/warnings for non-ANSI constructs.

-v Directs the compiler to perform stricter semantic checks and to enable other lint-like
checks.

-w Suppresses compiler warning messages.

-xanalyze Produce a static analysis of the source code that can be viewed using the Code
Analyzer.

-xe Performs only syntax and semantic checking on the source file, but does not produce
any object or executable code.

-xprevise Produce a static analysis of the source code that can be viewed using the Code
Analyzer.

-xs (Oracle Solaris) Link debug information from object files into executable.

-xtransition Issues warnings for the differences between K&R C and Oracle Solaris Studio ISO C.

-xvpara Warns about loops that have #pragma MP directives specified but might not be properly
specified for parallelization.

A.1.10 Debugging Options

TABLE A-10 Debugging Options

Option Action

-g Produces additional symbol table information for the debugger.

-g3 Produces addition debugging information.

-s Removes all symbolic debugging information from the output object file.

-xcheck Adds runtime checks for stack overflow and initializes local variables.

-xdebugformat Generates debugging information in dwarf format instead of stabs format.

-xdebuginfo Control how much debugging and observability information is emitted.

-xglobalize Control globalization of file static variables but not functions.

-xkeep_unref Keep definitions of unreferenced functions and variables.

A.1 Options Summarized by Function

Appendix A • Compiler Options Grouped by Functionality 207

Option Action

-xpagesize Sets the preferred page size for the stack and the heap.

-xpagesize_stack Sets the preferred page size for the stack.

-xpagesize_heap Sets the preferred page size for the heap.

-xs Disables Auto-Read of object files for dbx.

-xvis (SPARC) Enables compiler recognition of the assembly-language templates defined
in the VIS instruction set

A.1.11 Linking and Libraries Options

TABLE A-11 Linking and Libraries Options Table

Option Action

-B Specifies whether bindings of libraries for linking are static or dynamic.

-d Specifies dynamic or static linking in the link editor.

-G Passes the option to the link editor to produce a shared object rather than a dynamically
linked executable.

-h Assigns a name to a shared dynamic library as a way to have different versions of a
library.

-i Passes the option to the linker to ignore any LD_LIBRARY_PATH setting.

-L Adds directories to the list that the linker searches for libraries.

-l Links with object library libname.so, or libname.a.

-mc Removes duplicate strings from the .comment section of the object file.

-mr Removes all strings from the .comment section. Can also insert a string in that section
of the object file.

-Q Determines whether to emit identification information to the output file.

-R Passes a colon-separated list of directories used to specify library search directories to
the runtime linker.

-staticlib Specify whether linking with the Sun performance libraries will be static or dynamic.

-xMerge Merges data segments into text segments.

-xcode Specify code address space.

-xlang Override the default libc behavior as specified by the -std flag.

-xldscope Controls the default scope of variable and function definitions to create faster and safer
shared libraries.

-xnolib Does not link any libraries by default

-xnolibmil Does not inline math library routines.

-xpatchpadding Reserve an area of memory before the start of each function.

-xsegment_align Cause the driver to include a special mapfile on the link line.

-xstrconst This option may be deprecated in a future release. Use -features=[no%]conststrings
instead.

A.1 Options Summarized by Function

208 Oracle Solaris Studio 12.4: C User's Guide • March 2015

Option Action
Inserts string literals into the read-only data section of the text segment instead of the
default data segment.

-xunboundsym Specify whether the program contains references to dynamically bound symbols.

A.1.12 Target Platform Options

TABLE A-12 Target Platform Options

Option Action

-m32 |-m64 Specifies the memory model for the compiled binary object.

-xarch Specify instruction set architecture.

-xcache Defines the cache properties for use by the optimizer.

-xchip Specifies the target processor for use by the optimizer.

-xregs Specifies the usage of registers for the generated code.

-xtarget Specifies the target system for instruction set and optimization.

A.1.13 x86-Specific Options

TABLE A-13 x86-Specific Options

Option Action

-flteval Controls floating point evaluation.

-fprecision Initializes the rounding-precision mode bits in the Floating-point Control Word

-fstore Causes the compiler to convert the value of a floating-point expression or function to
the type on the left-hand side of an assignment

-nofstore Does not convert the value of a floating-point expression or function to the type on the
left-hand side of an assignment

-preserve_argvalues (x86) Save copies of register-based function arguments in the stack.

-xmodel Modifies the form of 64-bit objects for the Oracle Solaris x86 platforms

A.1.14 Obsolete Options

The following table lists the options that have been deprecated. Note that the compiler might
still accept these options, but might not do so in future releases. Begin using the suggested
alternative option as soon as possible.

A.1 Options Summarized by Function

Appendix A • Compiler Options Grouped by Functionality 209

TABLE A-14 Obsolete Options Table

Option Action

-dalign Use -xmemalign=8s instead.

-KPIC (SPARC) Use -xcode=pic32 instead.

-Kpic (SPARC) Use -xcode=pic13 instead.

-misalign Use -xmemalign=1i instead.

-misalign2 Use -xmemalign=2i instead.

-x386 Use -xchip=generic instead.

-x486 Use -xchip=generic instead.

-xa Use -xprofile=tcov instead.

-xanalyze Produce a static analysis of the source code that can be viewed using the Code
Analyzer.

-xarch=v7,v8,v8a Obsolete.

-xcg Use -O instead to take advantage of the default values for -xarch, -xchip, and -
xcache.

--xcrossfile Obsolete. Use -xipo instead.

-xlicinfo Obsolete; there is no alternative option.

-xnativeconnect Obsolete, there is no alternative option.

-xprefetch=yes Use -xprefetch=auto,explicit instead.

-xprefetch=no Use -xprefetch=no%auto,no%explicit instead.

-xsb Obsolete, there is no alternative option.

-xsbfast Obsolete, there is no alternative option.

-xtarget=386 Use -xtarget=generic instead.

-xtarget=486 Use -xtarget=generic instead.

-xvector=yes Use -xvector=lib instead.

-xvector=no Use -xvector=none instead.

210 Oracle Solaris Studio 12.4: C User's Guide • March 2015

Appendix B • C Compiler Options Reference 211

 B ♦ ♦ ♦ A P P E N D I X B

C Compiler Options Reference

This chapter describes the C compiler options in alphabetical order. See Appendix A,
“Compiler Options Grouped by Functionality” for options grouped by functionality. For
example, Table A-1 lists all the optimization and performance options.

The C compiler recognizes by default some of the constructs of the 2011 ISO/IEC C standard.
The supported features are detailed in Appendix C, “Features of C11”. Use the -std command
if you want to limit the compiler to a previous version of ISO/IEC C standard.

B.1 Option Syntax

The syntax of the cc command is:

% cc [options] filenames [libraries]...

where:

■ options represents one or more of the options described in Table A-14.
■ filenames represents one or more files used in building the executable program

The C compiler accepts a list of C source files and object files contained in the list of files
specified by filenames. The resulting executable code is placed in a.out, unless the -o
option is used. In this case, the code is placed in the file named by the -o option.
Use the C compiler to compile and link any combination of the following:
■ C source files, with a .c suffix
■ Inline template files, with a .il suffix (only when specified with .c files)
■ C preprocessed source files, with a .i suffix
■ Object-code files, with .o suffixes
■ Assembler source files, with .s suffixes

After linking, the C compiler places the linked files, now in executable code, into a file
named a.out, or into the file specified by the -o option. When the compiler produces
object code for each .i or .c input file, it always creates an object (.o) file in the current
working directory.

B.2 cc Options

212 Oracle Solaris Studio 12.4: C User's Guide • March 2015

libraries represents any of a number of standard or user-provided libraries containing
functions, macros, and definitions of constants.

Use the option -YP, dir to change the default directories used for finding libraries. dir is a
colon-separated path list. The default library search order can be seen by using the -### or -
xdryrun option and examining the -Y option of the ld invocation.

cc uses getopt to parse command-line options. Options are treated as a single letter or a single
letter followed by an argument. See thegetopt(3c) man page.

B.2 cc Options

This section describes the cc options, arranged alphabetically. These descriptions are also
available 0n the cc(1) man page. Use the cc -flags option for a one-line summary of these
descriptions.

Options noted as being unique to one or more platforms are accepted without error and ignored
on all other platforms.

B.2.1 -#

Enables verbose mode, showing how command options expand. Shows each component as it is
invoked.

B.2.2 -###

Shows each component as it would be invoked, but does not actually execute it. Also shows
how command options would expand.

B.2.3 -Aname[(tokens)]

Associates name as a predicate with the specified tokens as if by a #assert preprocessing
directive. Preassertions:

■ system(unix)

■ machine(sparc) (SPARC)
■ machine(i386) (x86)
■ cpu(sparc) (SPARC)

B.2 cc Options

Appendix B • C Compiler Options Reference 213

■ cpu(i386) (x86)

These preassertions are not valid in -pedantic mode.

-A followed only by a dash (-) causes all predefined macros (other than those that begin with
__) and predefined assertions to be ignored.

B.2.4 -ansi

Equivalent to -std=c89.

B.2.5 -B[static|dynamic]

Specifies whether bindings of libraries for linking are static or dynamic, indicating whether
libraries are non-shared or shared, respectively.

–Bdynamic causes the link editor to look for files named libx.so and then for files named
libx.a when given the -lx option.

–Bstatic causes the link editor to look only for files named libx.a. This option may be
specified multiple times on the command line as a toggle. This option and its argument are
passed to ld(1).

Note - Many system libraries, such as libc, are only available as dynamic libraries in the
Oracle Solaris 64-bit compilation environment. Therefore, do not use -Bstatic as the last
toggle on the command line.

This option and its argument are passed to the linker.

B.2.6 -C

Prevents the C preprocessor from removing comments, except those on the preprocessing
directive lines.

B.2.7 -c

Directs the C compiler to suppress linking with ld(1) and to produce a .o file for each source
file. You can explicitly name a single object file using the-o option. When the compiler

B.2 cc Options

214 Oracle Solaris Studio 12.4: C User's Guide • March 2015

produces object code for each .i or .c input file, it always creates an object (.o) file in the
current working directory. If you suppress the linking step, you also suppress the removal of the
object files.

B.2.8 -Dname[(arg[,arg])][=expansion]

Define a macro with optional arguments as if the macro is defined by a #define preprocessing
directive. If no =expansion is specified, the compiler assumes 1.

See the cc(1) man page for a list of compiler predefined macros.

B.2.9 -d[y|n]

-dy specifies dynamic linking, which is the default, in the link editor.

-dn specifies static linking in the link editor.

This option and its arguments are passed to ld(1).

Note - This option causes fatal errors if you use it in combination with dynamic libraries. Most
system libraries are only available as dynamic libraries.

B.2.10 -dalign

(SPARC) Obsolete. You should not use this option. Use -xmemalign=8s instead. See “B.2.138
-xmemalign=ab” on page 286 for more information. For a complete list of obsolete options,
see “A.1.14 Obsolete Options” on page 208. This option is silently ignored on x86 platforms.

B.2.11 -E

Runs the source file through the preprocessor only and sends the output to stdout. The
preprocessor is built directly into the compiler, except in -Xs mode, where /usr/ccs/lib/cpp
is invoked. Includes the preprocessor line numbering information. See also the description of
the -P option.

B.2 cc Options

Appendix B • C Compiler Options Reference 215

B.2.12 -errfmt[=[no%]error]

Use this option if you want to prefix the string “error:” to the beginning of error messages so
they are more easily distinguishable from warning messages. The prefix is also attached to
warnings that are converted to errors by -errwarn.

TABLE B-1 -errfmt Flags

Flag Meaning

error Add the prefix “error:” to all error messages.

no%error Do not add the prefix “error:” to any error messages.

If you do not specify this option, the compiler sets it to -errfmt=no%error. If you specify
-errfmt but do not supply a value, the compiler sets it to -errfmt=error.

B.2.13 -errhdr[=h]

Limits the warnings from header files to the group of header files indicated by the flags in the
following table:

TABLE B-2 —errhdr option

Value Meaning

%all Check all header files used.

%none Do not check header files.

%user Checks all used user header files, that is, all header files except those in /usr/include and its
subdirectories, as well as those supplied by the compiler. This is the default.

B.2.14 -erroff[=t]

This command suppresses C compiler warning messages and has no effect on error messages.
This option applies to all warning messages regardless of whether they have been designated by
-errwarn to cause a non-zero exit status.

t is a comma-separated list that consists of one or more of the following: tag, no%tag, %all,
%none. Order is important; for example, %all,no%tag suppresses all warning messages except
tag. The following table lists the -erroff values.

B.2 cc Options

216 Oracle Solaris Studio 12.4: C User's Guide • March 2015

TABLE B-3 -erroff Flags

Flag Meaning

tag Suppresses the warning message specified by tag. You can display the tag for a message by using the -
errtags=yes option.

no%tag Enables the warning message specified by tag.

%all Suppresses all warning messages.

%none Enables all warning messages (default).

The default is -erroff=%none. Specifying -erroff is equivalent to specifying -erroff=%all.

Only warning messages from the C compiler front-end that display a tag when the -errtags
option is used can be suppressed with the -erroff option. You can achieve finer control over
error message suppression. See “2.11.8 error_messages” on page 45.

B.2.15 -errshort[=i]

Use this option to control how much detail is in the error message produced by the compiler
when it discovers a type mismatch. This option is particularly useful when the compiler
discovers a type mismatch that involves a large aggregate.

i can be one of the values listed in the following table.

TABLE B-4 -errshort Flags

Flag Meaning

short Error messages are printed in short form with no expansion of types. Aggregate members are not
expanded, neither are function argument and return types.

full Error messages are printed in full verbose form showing the full expansion of the mismatched types.

tags Error messages are printed with tag names for types which have tag names. If there is no tag name, the
type is shown in expanded form.

If you do not specify -errshort, the compiler sets the option to -errshort=full. If you specify
-errshort but do not provide a value, the compiler sets the option to -errshort=tags.

This option does not accumulate. It accepts the last value specified on the command line.

B.2.16 -errtags[=a]

Displays the message tag for each warning message of the C compiler front-end that can be
suppressed with the -erroff option or made a fatal error with the -errwarn option. Messages

B.2 cc Options

Appendix B • C Compiler Options Reference 217

from the C compiler driver and other components of the C compilation system do not have error
tags, and cannot be suppressed with -erroff and made fatal with -errwarn.

a can be either yes or no. The default is -errtags=no. Specifying -errtags is equivalent to
specifying -errtags=yes.

B.2.17 -errwarn[=t]

Use the -errwarn option to cause the C compiler to exit with a failure status for the given
warning messages.

t is a comma-separated list that consists of one or more of the following: tag, no%tag, %all,
%none. Order is important; for example %all,no%tag causes cc to exit with a fatal status if any
warning except tag is issued.

The warning messages generated by the C compiler change from release to release as the
compiler error checking improves and features are added. Code that compiles using -errwarn=
%all without error might not compile without error in the next release of the compiler.

Only warning messages from the C compiler front-end that display a tag when the -errtags
option is used can be specified with the -errwarn option to cause the C compiler to exit with a
failure status.

The following table details the -errwarn values:

TABLE B-5 -errwarn Flags

Flag Meaning

tag Cause cc to exit with a fatal status if the message specified by tag is issued as a warning message.
Has no effect if tag is not issued.

no%tag Prevent cc from exiting with a fatal status if the message specified by tag is issued only as a warning
message. Has no effect if the message specified by tag is not issued. Use this option to revert a
warning message that was previously specified by this option with tag or %all from causing cc to exit
with a fatal status when issued as a warning message.

%all Cause the compiler to exit with a fatal status if any warning messages are issued. %all can be
followed by no%tag to exempt specific warning messages from this behavior.

%none Prevents any warning message from causing the compiler to exit with a fatal status should any
warning message be issued.

The default is -errwarn=%none. Specifying -errwarn alone is equivalent to -errwarn=%all.

B.2 cc Options

218 Oracle Solaris Studio 12.4: C User's Guide • March 2015

B.2.18 -fast

This option is a macro that can be effectively used as a starting point for tuning an executable
for maximum runtime performance. The -fast option macro can change from one release of
the compiler to the next and expands to options that are target platform specific. Use the -#
option or -xdryrun to examine the expansion of -fast, and incorporate the appropriate options
of -fast into the ongoing process of tuning the executable.

The expansion of -fast includes the -xlibmopt option, which enables the compiler
to use a library of optimized math routines. For more information, see “B.2.126 -
xlibmopt” on page 281.

The -fast option impacts the value of errno. See “2.13 Preserving the Value of
errno” on page 55 for more information.

Modules that are compiled with -fast must also be linked with -fast. For a complete list of
all compiler options that must be specified at both compile time and at link time, see “A.1.2
Compile-Time and Link-Time Options” on page 201.

The –fast option is unsuitable for programs intended to run on a different target than the
compilation machine. In such cases, follow -fast with the appropriate -xtarget option. For
example:

cc -fast -xtarget=generic ...

For C modules that depend on exception handling specified by SUID, follow -fast by -
xnolibmil:

% cc -fast -xnolibmil

With -xlibmil, exceptions cannot be noted by setting errno or calling matherr(3m).

The –fast option is unsuitable for programs that require strict conformance to the IEEE 754
Standard.

The following table lists the set of options selected by -fast across platforms.

TABLE B-6 -fast Expansion Flags

Option SPARC x86

-fma=fused X X

-fns X X

-fsimple=2 X X

-fsingle X X

-nofstore - X

B.2 cc Options

Appendix B • C Compiler Options Reference 219

Option SPARC x86

-xalias_level=basic X X

-xbuiltin=%all X X

-xlibmil X X

-xlibmopt X X

-xmemalign=8s X -

-xO5 X X

-xregs=frameptr - X

-xtarget=native X X

Note - Some optimizations make certain assumptions about program behavior. If the program
does not conform to these assumptions, the application might fail or produce incorrect results.
Refer to the description of the individual options to determine whether your program is suitable
for compilation with -fast.

The optimizations performed by these options might alter the behavior of programs from that
defined by the ISO C and IEEE standards. See the description of the specific option for details.

The -fast flag acts like a macro expansion on the command line. Therefore, you can override
the optimization level and code generation option aspects by following -fast with the desired
optimization level or code generation option. Compiling with the -fast -xO4 pair is like
compiling with the -xO2 -xO4 pair. The latter specification takes precedence.

On x86, the -fast option includes -xregs=frameptr. See the discussion of this option for
details, especially when compiling mixed C, Fortran, and C++ source codes.

Do not use this option for programs that depend on IEEE standard exception handling; you can
get different numerical results, premature program termination, or unexpected SIGFPE signals.

To see the actual expansion of —fast on a running platform, use the following command:

% cc -fast -xdryrun |& grep ###

B.2.19 -fd

Reports K&R-style function definitions and declarations.

B.2.20 -features=[v]

The following table lists acceptable values for v.

B.2 cc Options

220 Oracle Solaris Studio 12.4: C User's Guide • March 2015

TABLE B-7 The -features Flags

Value Meaning

[no%]conststrings Enables the placement of string literals in read-only memory. The default is
-features=conststrings which places string literals into the read-only data
section. Note that compiling a program that attempts to write to the memory
location of a string literal will now cause a segmentation fault when compiled
with this option. no% prefix disables this suboption.

[no%]extensions Allows/disallows zero-sized struct/union declarations and void functions with
return statements returning a value to work.

extinl Generates extern inline functions as global functions. This is the default, which
conforms to the 1999 C standard.

no%extinl Generates extern inline functions as static functions. Compile new codes with -
features=no%extinl to obtain the same treatment of extern inline functions as
provided by older versions of the C and C++ compilers.

[no%]typeof Enables/disables recognition of the typeof operator. The typeof operator
returns the type of its argument (either an expression or a type). It is specified
syntactically like the sizeof operator, but it behaves semantically like a type
defined with typedef.

Accordingly, it can be used anywhere a typedef can be used. For example, it can
be used in a declaration, a cast, or inside of a sizeof or typeof. The default is -
features=typeof.

The no% prefix disables this feature.

%none The -features=%none option is deprecated and should be replaced by -
features=no% followed by the suboption..

Old C and C++ objects (created with Solaris Studio compilers prior to this release) can be
linked with new C and C++ objects with no change of behavior for the old objects. To get
standard conforming behavior, you must recompile old code with the current compiler.

B.2.20.1 —features=typeof Examples

 typeof(int) i;/* declares variable "i" to be type int*/

 typeof(i+10) j;/* declares variable "j" to be type int,

 the type of the expression */

 i = sizeof(typeof(j)); /* sizeof returns the size of

 the type associated with variable "j" */

 int a[10];

 typeof(a) b;/* declares variable "b" to be array of

 size 10 */

The typeof operator can be especially useful in macro definitions, where arguments may be of
arbitrary type. For example:

 #define SWAP(a,b)

B.2 cc Options

Appendix B • C Compiler Options Reference 221

 { typeof(a) temp; temp = a; a = b; b = temp; }

B.2.21 -flags

Prints a brief summary of each available compiler option.

B.2.22 -flteval[={any|2}]

(x86) Use this option to control how floating-point expressions are evaluated.

TABLE B-8 -flteval Flags

Flag Meaning

2 Floating-point expressions are evaluated as long double.

any Floating point-expressions are evaluated depending on the combination of the types of
the variables and constants that make up an expression.

If you do not specify -flteval, the compiler sets it to -flteval=any. If you do specify -
flteval but do not provide a value, the compiler sets it to -flteval=2.

-flteval=2 is only usable with -xarch=sse, pentium_pro, ssea, or pentium_proa. -
flteval=2 is also not compatible in combination with options -fprecision or -nofstore.

See also “D.1.1 Precision of Floating Point Evaluators” on page 330.

B.2.23 -fma[={none|fused}]

Enables automatic generation of floating-point fused multiply-add instructions. -fma=none
disables generation of these instructions. -fma=fused allows the compiler to attempt to find
opportunities to improve the performance of the code by using floating-point fused multiply-
add instructions.

The default is -fma=none.

The minimum architecture requirement is -xarch=sparcfmaf on SPARC and -xarch=avx2
on x86 to generate fused multiply-add instructions. The compiler marks the binary program if
fused multiply-add instructions are generated in order to prevent the program from executing on
platforms that do not support fused multiply-add instructions. When the minimum architecture
is not used, then -fma=fused has no effect.

B.2 cc Options

222 Oracle Solaris Studio 12.4: C User's Guide • March 2015

Fused multiply-add instructions eliminate the intermediate rounding step between the
multiply and add. Consequently, programs may produce different results when compiled with
-fma=fused, although precision will tend to increase rather than decrease.

B.2.24 -fnonstd

This option is a macro for -fns and -ftrap=common.

B.2.25 -fns[={no|yes}]

On SPARC platforms, this option enables nonstandard floating-point mode.

For x86 platforms, this option selects SSE flush-to-zero mode and, where available, denormals-
are-zero mode, which causes subnormal results to be flushed to zero, and, where available,
this option also causes subnormal operands to be treated as zero. This option has no effect on
traditional x86 floating-point operations that do not utilize the SSE or SSE2 instruction set.

The default is -fns=no, standard floating-point mode. -fns is the same as -fns=yes.

Optional use of =yes or =no provides a way of toggling the -fns flag following some other
macro flag that includes -fns, such as -fast.

On some SPARC systems, the nonstandard floating point mode disables “gradual underflow,”
causing tiny results to be flushed to zero rather than producing subnormal numbers. It also
causes subnormal operands to be replaced silently by zero. On those SPARC systems that do
not support gradual underflow and subnormal numbers in hardware, use of this option can
significantly improve the performance of some programs.

When nonstandard mode is enabled, floating point arithmetic may produce results that do not
conform to the requirements of the IEEE 754 standard. See the Numerical Computation Guide
for more information.

On SPARC systems, this option is effective only if used when compiling the main program.

B.2.26 -fopenmp

Same as -xopenmp=parallel.

B.2 cc Options

Appendix B • C Compiler Options Reference 223

B.2.27 -fPIC

Equivalent to -KPIC

B.2.28 -fpic

Equivalent to -Kpic

B.2.29 -fprecision=p

(x86) -fprecision={single, double, extended}

Initializes the rounding-precision mode bits in the Floating-point Control Word to single (24
bits), double (53 bits), or extended (64 bits), respectively. The default floating-point rounding-
precision mode is extended.

Note that on x86, only the precision, not exponent, range is affected by the setting of floating-
point rounding precision mode.

This option is effective only on x86 systems and only if used when compiling the main
program, but is ignored if compiling for 64–bit (-m64) or SSE2–enabled (-xarch=sse2)
processors. It is also ignored on SPARC systems.

B.2.30 -fround=r

Sets the IEEE 754 rounding mode that is established at runtime during the program
initialization.

r must be one of: nearest, tozero, negative, positive.

The default is -fround=nearest.

The meanings are the same as those for the ieee_flags subroutine.

When r is tozero, negative, or positive, this flag sets the rounding direction mode to round-
to-zero, round-to-negative-infinity, or round-to-positive-infinity respectively when a program
begins execution. When r is nearest or the -fround flag is not used, the rounding direction
mode is not altered from its initial value (round-to-nearest by default).

This option is effective only if used when compiling the main program.

B.2 cc Options

224 Oracle Solaris Studio 12.4: C User's Guide • March 2015

B.2.31 -fsimple[=n]

Enables the optimizer to make simplifying assumptions concerning floating-point arithmetic.

The compiler defaults to -fsimple=0. Specifying -fsimple, is equivalent to -fsimple=1.

If n is present, it must be 0, 1, or 2.

TABLE B-9 -fsimple Flags

Value Meaning

-fsimple=0 Permits no simplifying assumptions. Preserve strict IEEE 754 conformance.

-fsimple=1 Allows conservative simplifications. The resulting code does not strictly
conform to IEEE 754.

With -fsimple=1, the optimizer can assume the following:

■ IEEE 754 default rounding/trapping modes do not change after process
initialization.

■ Computations producing no visible result other than potential floating-
point exceptions may be deleted.

■ Computations with Infinity or NaNs as operands need not propagate NaNs
to their results. For example, x*0 may be replaced by 0.

■ Computations do not depend on sign of zero.

With -fsimple=1, the optimizer is not allowed to optimize completely
without regard to roundoff or exceptions. In particular, a floating-point
computation cannot be replaced by one that produces different results with
rounding modes held constant at runtime.

-fsimple=2 Includes all the functionality of -fsimple=1 and also enables use of SIMD
instructions to compute reductions when -xvector=simd is in effect.

The compiler attempts aggressive floating-point optimizations that might
cause many programs to produce different numeric results due to changes
in rounding. For example, -fsimple=2 permits the optimizer to replace all
computations of x/y in a given loop with x*z, where x/y is guaranteed to be
evaluated at least once in the loop, z=1/y, and the values of y and z are known
to have constant values during execution of the loop.

Even with -fsimple=2, the optimizer is not permitted to introduce a floating-point exception in
a program that otherwise produces none.

See Techniques for Optimizing Applications: High Performance Computing by Rajat Garg and
Ilya Sharapov for a more detailed explanation of how optimization can affect precision.

B.2 cc Options

Appendix B • C Compiler Options Reference 225

B.2.32 -fsingle

(-Xt and -Xs modes only) By default -Xs and -Xt follow the K&R C rules for float
expressions, by promoting them to double and evaluating them in double precision. Use -
fsingle when specifying -Xs or -Xt to cause the compiler to evaluate float expressions as
single precision.

B.2.33 -fstore

(x86) Causes the compiler to convert the value of a floating-point expression or function to the
type on the left-hand side of an assignment, when that expression or function is assigned to a
variable, or when the expression is cast to a shorter floating-point type, rather than leaving the
value in a register. Due to rounding and truncation, the results might be different from those that
are generated from the register value. This is the default mode.

Use the -nofstore flag to disable this option.

B.2.34 -ftrap=t[,t...]

Sets the IEEE trapping mode in effect at startup but does not install a SIGFPE handler. You can
use ieee_handler(3M) or fex_set_handling(3M) to simultaneously enable traps and install a
SIGFPE handler. If you specify more than one value, the list is processed sequentially from left
to right.

t can be one of the values listed in the following table.

TABLE B-10 -ftrap Flags

Flag Meaning

[no%]division Trap on division by zero.

[no%]inexact Trap on inexact result.

[no%]invalid Trap on invalid operation.

[no%]overflow Trap on overflow.

[no%]underflow Trap on underflow.

%all Trap on all of the above.

%none Trap on none of the above.

common Trap on invalid, division by zero, and overflow.

B.2 cc Options

226 Oracle Solaris Studio 12.4: C User's Guide • March 2015

Note that the no% prefix is used only to modify the meaning of the %all and common values,
and must be used with one of these values, as shown in the example. The no% prefix does not
explicitly cause a particular trap to be disabled.

If you do not specify –ftrap, the compiler assumes –ftrap=%none.

Example: –ftrap=%all,no%inexact sets all traps except inexact.

If you compile one routine with -ftrap=t, you should compile all routines of the program with
the same option to avoid unexpected results.

Use the -ftrap=inexact trap with caution. Use of –ftrap=inexact results in the trap
being issued whenever a floating-point value cannot be represented exactly. For example, the
following statement generates this condition:

x = 1.0 / 3.0;

This option is effective only if used when compiling the main program. Be cautious when using
this option. To enable the IEEE traps, use -ftrap=common.

B.2.35 -G

Produces a shared object rather than a dynamically linked executable. This option is passed to
ld(1), and cannot be used with the -dn option.

When you use the -G option, the compiler does not pass any default -l options to ld. If you
want the shared library to have a dependency on another shared library, you must pass the
necessary -l option on the command line.

If you are creating a shared object by specifying -G along with other compiler options that must
be specified at both compile time and link time, make sure that those same options are also
specified when you link with the resulting shared object.

When you create a shared object, all the 64–bit SPARC object files that are compiled with
-m64 must also be compiled with an explicit -xcode value as documented in “B.2.98 -
xcode[=v]” on page 259.

B.2.36 -g

See -g[n].

B.2 cc Options

Appendix B • C Compiler Options Reference 227

B.2.37 -g[n]

Produces additional symbol table information for debugging with dbx(1) and the Performance
Analyzer, analyzer(1).

If you specify -g, and the optimization level is -xO3 or lower, the compiler provides best-
effort symbolic information with almost full optimization. Tail-call optimization and back-end
inlining are disabled.

If you specify -g and the optimization level is -xO4, the compiler provides best-effort symbolic
information with full optimization.

Compile with the -g option to use the full capabilities of the Performance Analyzer. While
some performance analysis features do not require -g, you must compile with -g to view
annotated source, some function level information, and compiler commentary messages. See the
analyzer(1) man page and the Performance Analyzer manual for more information.

The commentary messages that are generated with -g describe the optimizations and
transformations that the compiler made while compiling your program. Use the er_src(1)
command to display the messages, which are interleaved with the source code.

Note - If you compile and link your program in separate steps, then including the —g option in
one step and excluding it from the other step will not affect the correctness of the program, but
it will affect the ability to debug the program. Any module that is not compiled with —g, but is
linked with —g will not be prepared properly for debugging. Note that compiling the module that
contains the function main with the —g option is usually necessary for debugging.

-g is implemented as a macro that expands to various other, more primitive, options. See -
xdebuginfo for the details of the expansions.

-g Produce standard debugging information.

-gnone Do not produce any debugging information. This is the default.

-g1 Produce file and line number as well as simple parameter information
that is considered crucial during post-mortem debugging.

-g2 Same as -g.

-g3 Produce additional debugging information, which currently consists only
of macro definition information. This added information can result in
an increase in the size of the debug information in the resulting .o and
executable when compared to using only -g.

B.2 cc Options

228 Oracle Solaris Studio 12.4: C User's Guide • March 2015

For more information about debugging, see the Debugging a Program With dbx manual.

B.2.38 -H

Prints to standard error, one per line, the path name of each file included during the current
compilation. The display is indented to show which files are included by other files.

In the following example, the program sample.c includes the files stdio.h and math.h. math.h
includes the file floatingpoint.h, which itself includes functions that use sys/ieeefp.h.

% cc -H sample.c
 /usr/include/stdio.h

 /usr/include/math.h

 /usr/include/floatingpoint.h

 /usr/include/sys/ieeefp.h

B.2.39 -h name

Assigns a name to a shared dynamic library as a way to have different versions of a library.
name should be the same as the file name provided with the -o option. The space between -h
and name is optional.

The linker assigns the specified name to the library and records the name in the library file
as the intrinsic name of the library. If there is no -hname option, then no intrinsic name is
recorded in the library file.

When the runtime linker loads the library into an executable file, it copies the intrinsic name
from the library file into the executable's, list of needed shared library files. Every executable
has such a list. If no intrinsic name of a shared library is provided, the linker copies the path of
the shared library file instead.

B.2.40 -I[-|dir]

-I dir adds dir to the list of directories that are searched for #include files with relative file
names prior to /usr/include, that is, those directory paths not beginning with a / (slash).

Directories for multiple -I options are searched in the order specified.

For more information on the search pattern of the compiler, see “2.16.1 Using the -I- Option to
Change the Search Algorithm” on page 59.

B.2 cc Options

Appendix B • C Compiler Options Reference 229

B.2.41 -i

Passes the option to the linker to ignore any LD_LIBRARY_PATH or LD_LIBRARY_PATH_64 setting.

B.2.42 -include filename

This option causes the compiler to treat filename as if it appears in the first line of a primary
source file as a #include preprocessor directive. Consider the source file t.c:

main()

{

 ...

}

If you compile t.c with the command cc -include t.h t.c, the compilation proceeds as if the
source file contains the following:

#include "t.h"

main()

{

 ...

}

The compiler first searches for filename is the current working directory rather than the
directory containing the main source file, as is the case when a file is explicitly included. For
example, the following directory structure contains two header files with the same name, but at
different locations:

foo/

 t.c

 t.h

 bar/

 u.c

 t.h

If your working directory is foo/bar and you compile with the command cc ../t.c -include
t.h, the compiler includes t.h from foo/bar, not foo/ as would be the case with a #include
directive from within the source file t.c.

If the compiler cannot find the file specified with -include in the current working directory, it
searches the normal directory paths for the file. If you specify multiple -include options, the
files are included in the order in which they appear on the command line.

B.2.43 -KPIC

(SPARC) Obsolete. You should not use this option. Use -xcode=pic32 instead.

B.2 cc Options

230 Oracle Solaris Studio 12.4: C User's Guide • March 2015

For more information, see “B.2.98 -xcode[=v]” on page 259. For a complete list of obsolete
options, see “A.1.14 Obsolete Options” on page 208.

(x86) -KPIC is identical to -Kpic.

B.2.44 -Kpic

(SPARC) Obsolete. You should not use this option. Use -xcode=pic13 instead. For more
information, see “B.2.98 -xcode[=v]” on page 259. For a complete list of obsolete options,
see “A.1.14 Obsolete Options” on page 208.

(x86) Produces position-independent code. Use this option to compile source files when
building a shared library. Each reference to a global datum is generated as a dereference of a
pointer in the global offset table. Each function call is generated in pc-relative addressing mode
through a procedure linkage table.

B.2.45 -keeptmp

Retains temporary files created during compilation instead of deleting them automatically.

B.2.46 -Ldir

Adds dir to the list of directories searched for libraries by ld(1). This option and its arguments
are passed to ld(1).

Note - Never specify the compiler installation area (/usr/include, /lib, or /usr/lib) as
search directories.

B.2.47 -lname

Links with object library libname.so, or libname.a. The order of libraries in the command is
important, as symbols are resolved from left to right.

This option must follow the sourcefile arguments.

B.2.48 -library=sunperf

Link with the Oracle Solaris Studio performance libraries.

B.2 cc Options

Appendix B • C Compiler Options Reference 231

B.2.49 -m32|-m64
Specifies the memory model for the compiled binary object.

Use -m32 to create 32-bit executables and shared libraries. Use -m64 to create 64-bit executables
and shared libraries.

The ILP32 memory model (32-bit int, long, pointer data types) is the default on all Oracle
Solaris platforms and on Linux platforms that are not 64-bit enabled. The LP64 memory model
(64-bit long, pointer data types) is the default on Linux platforms that are 64-bit enabled. -m64
is permitted only on platforms that are enabled for the LP64 model.

Object files or libraries compiled with -m32 cannot be linked with object files or libraries
compiled with-m64.

Modules that are compiled with -m32 |-m64 must also be linked with -m32 |-m64. For a complete
list of compiler options that must be specified at both compile time and at link time, see “A.1.2
Compile-Time and Link-Time Options” on page 201

When compiling applications with large amounts of static data using -m64 on x86/x64
platforms, -xmodel=medium may also be required. Be aware that some Linux platforms do not
support the medium model.

Note that in previous compiler releases, the memory model, ILP32 or LP64, was implied by the
choice of the instruction set with -xarch. Starting with the Oracle Solaris Studio 12 compilers,
this default is no longer the case. On most platforms, just adding -m64 to the command line is
sufficient to create 64-bit objects.

On Oracle Solaris, -m32 is the default. On Linux systems supporting 64-bit programs, -m64
-xarch=sse2 is the default.

See also the description of -xarch.

B.2.50 -mc

Removes duplicate strings from the .comment section of the object file. When you use the -mc
flag, mcs -c is invoked.

B.2.51 -misalign

(SPARC) Obsolete. You should not use this option. Use the -xmemalign=1i option instead.
For more information, see “B.2.138 -xmemalign=ab” on page 286. For a complete list of
obsolete options, see “A.1.14 Obsolete Options” on page 208.

B.2 cc Options

232 Oracle Solaris Studio 12.4: C User's Guide • March 2015

B.2.52 -misalign2

(SPARC) Obsolete. You should not use this option. Use the -xmemalign=2i option instead.
For more information, see “B.2.138 -xmemalign=ab” on page 286. For a complete list of
obsolete options, see “A.1.14 Obsolete Options” on page 208.

B.2.53 -mr[,string]

-mr removes all strings from the .comment section. When you use this flag, mcs -d -a is
invoked.

-mr,string removes all strings from the .comment section and inserts string in that section of the
object file. If string contains embedded blanks, it must be enclosed in quotation marks. A null
string results in an empty .comment section. This option is passed as -d -astring to mcs.

B.2.54 -mt[={yes|no}]

Use this option to compile and link multithreaded code using the Oracle Solaris threads or
POSIX threads API. The -mt=yes option assures that libraries are linked in the appropriate
order.

This option passes -D_REENTRANT to the preprocessor.

To use Oracle Solaris threads, include the thread.h header file and compile with the —mt=yes
option. To use POSIX threads on Oracle Solaris platforms, include the pthread.h header file
and compile with the —mt=yes option.

On Linux platforms, only the POSIX threads API is available. (libthread is not available on
Linux platforms.) Consequently, —mt=yes on Linux platforms adds —lpthread instead of —
lthread. To use POSIX threads on Linux platforms, compile with —mt.

Note that when compiling with —G, neither —lthread nor —lpthread are automatically included
by —mt=yes. You will need to explicitly list these libraries when building a shared library.

The -xopenmp option and the -xautopar option include -mt=yes automatically.

If you compile with -mt=yes and link in a separate step, you must use the -mt=yes option
in the link step as well as the compile step. If you compile and link one translation unit with
-mt=yes, you must compile and link all units of the program with -mt=yes

B.2 cc Options

Appendix B • C Compiler Options Reference 233

-mt=yes is the default behavior of the compiler. If this behavior is not desired, compile with -
mt=no.

The option —mt is equivalent to —mt=yes.

See also “B.2.140 -xnolib” on page 288, and the Oracle Solaris Multithreaded
Programming Guide, and Linker and Libraries Guide

B.2.55 -native

This option is a synonym for -xtarget=native.

B.2.56 -nofstore

(x86) Does not convert the value of a floating-point expression or function to the type on the
left-hand side of an assignment when that expression or function is assigned to a variable or is
cast to a shorter floating-point type. Instead, it leaves the value in a register. See also “B.2.33 -
fstore” on page 225.

B.2.57 -O

Use default optimization level -xO3. The -O macro expands to -xO3.

The -xO3 optimization level yields higher runtime performance. However, this may be
inappropriate for programs that rely on all variables being automatically considered volatile.
Typical programs that might have this assumption are device drivers and older multithreaded
applications that implement their own synchronization primitives. The workaround is to
compile with -xO2 instead of -O.

B.2.58 -o filename

Names the output file filename, instead of the default a.out. filename cannot be the same as the
input source file since the compiler will not overwrite a source file.

filename must have an appropriate suffix. When used with —c, filename specifies the target
.o object file; with —G it specifies the target .so library file. This option and its argument are
passed to the linker, ld.

B.2 cc Options

234 Oracle Solaris Studio 12.4: C User's Guide • March 2015

B.2.59 -P

Runs the source file through the C preprocessor only. It then puts the output in a file with a .i
suffix. Unlike -E, this option does not include preprocessor-type line number information in the
output. See also the -E option.

B.2.60 -p

The option is now obsolete. Use “B.2.155 -xpg” on page 301 instead.

B.2.61 –pedantic{=[yes|no]}

Strict conformance with errors/warnings for non-ANSI constructs. The -std flag can be used
to specify which ANSI standard is in effect. The -Xc, -Xa, -Xt, -Xs, and -xc99 flags cannot be
specified with the -pedantic flag. Doing so will result in an error being issued by the compiler.

When -pedantic is not specified, the default is -pedantic=no.

-pedantic is equivalent to -pedantic=yes.

B.2.62 –preserve_argvalues[=simple|none|complete]

(x86) Saves copies of register-based function arguments in the stack.

When none is specified or if the -preserve_argvalues option is not specified on the command
line, the compiler behaves as usual.

When simple is specified, up to six integer arguments are saved.

When complete is specified, the values of all function arguments in the stack trace are visible to
the user in the proper order.

The values are not updated during the function lifetime on assignments to formal parameters.

B.2.63 –Qoption phase option[,option..]

Passes option to the compilation phase.

B.2 cc Options

Appendix B • C Compiler Options Reference 235

To pass multiple options, specify them in order as a comma-separated list. Options that are
passed to components with -Qoption might be reordered. Options that the driver recognizes are
kept in the correct order. Do not use -Qoption for options that the driver already recognizes.

phase can be one of the values in the following list.

acomp Compiler

cg Code generator (SPARC)

cpp Preprocessor

driver cc driver

fbe Assembler

ipo Interprocedural optimizer

iropt Optimizer

ld Link editor (ld)

mcs mcs — manipulate comment section of object file when —mc or —mr
specified.

postopt Postoptimizer

ssbd Compiler phase for lock_lint

ube Code generator (x86)

See also —Wc,arg, which provides equivalent functionality. —Qoption is provided for
compatibility with other compilers.

B.2.64 -Q[y|n]

Determines whether to emit identification information to the output file. -Qy is the default.

If -Qy is used, identification information about each invoked compilation tool is added to the
.comment section of output files, which is accessible with mcs. This option can be useful for
software administration.

-Qn suppresses this information.

B.2 cc Options

236 Oracle Solaris Studio 12.4: C User's Guide • March 2015

B.2.65 -qp

Same as -p.

B.2.66 -Rdir[:dir]

Passes a colon-separated list of directories used to specify library search directories to the
runtime linker. If present and not null, the directory list is recorded in the output object file and
passed to the runtime linker.

If both LD_RUN_PATH and the -R option are specified, the -R option takes precedence.

B.2.67 -S

Directs cc to produce an assembly source file but not to assemble or link the program. The
assembler-language output is written to corresponding files suffixed .s.

B.2.68 -s

Removes all symbolic debugging information from the output object file. This option cannot be
specified with -g.

Passed to ld(1).

B.2.69 -staticlib=[no%]sunperf

When used with -library=sunperf, -staticlib=sunperf will link statically with the
Sun performance libraries. By default and when -library=no%sunperf is specified, -
library=sunperf results in dynamic linking of the Sun performance libraries.

For compatibility with CC, %all and %none are also accepted values for -staticlib, where
%all is equivalent to sunperf and %none is equivalent to no%sunperf.

B.2.70 –std=value

C language standard selection flag.

B.2 cc Options

Appendix B • C Compiler Options Reference 237

value is defined as one of the following:

c89 C source language accepted is that defined by the ISO C90 standard.

c99 C source language accepted is that defined by the ISO C99 standard.

c11 C source language accepted is that defined by the ISO C11 standard.

The first default is c11, implying acceptance of the C source language as defined by ANSI C11
with extensions. There is no second default. Instead, specification of -std without a value will
generate an error.

When any of the flags -Xc, -Xa, -Xt, or -xtransition are specified, the -std first default is
not in effect and the compiler defaults to -xc99=all,no_lib. When -Xs is specified, the first
default is not in effect and the compiler defaults to -xc99=none. When -xc99 is specified, the -
std first default is not in effect and the compiler is as specified by -xc99.

The -Xc, -Xa, -Xt, -Xs, and -xc99 flags cannot be used if the -std flag has been specified.
Doing so will result in an error being issued by the compiler.

If you compile and link in separate steps you must use the same values for -std flag in both
steps.

B.2.71 –temp=path

Defines the directory for temporary files.

This option sets the path name of the directory for storing the temporary files which are
generated during the compilation process. The compiler gives precedence to the value set by
-temp over the value of TMPDIR.

B.2.71.1 See Also

–keeptmp

B.2.72 -traceback[={%none|common|signals_list}]

Issues a stack trace if a severe error occurs in execution.

B.2 cc Options

238 Oracle Solaris Studio 12.4: C User's Guide • March 2015

The -traceback option causes the executable to issue a stack trace to stderr, dump core, and
exit if certain signals are generated by the program. If multiple threads generate a signal, a stack
trace will only be produced for the first one.

To use traceback, add the -traceback option to the compiler command line when linking. The
option is also accepted at compile time but is ignored unless an executable binary is generated.
Using -traceback with -G to create a shared library is an error.

TABLE B-11 -traceback Options

Option Meaning

common Specifies that a stack trace should be issued if any of a set of common signals occurs:
sigill, sigfpe, sigbus, sigsegv, or sigabrt.

signals_list Specifies a comma-separated list of names of signals that should generate a stack trace,
in lower case. The following signals that cause the generation of a core file can be
caught: sigquit, sigill, sigtrap, sigabrt, sigemt, sigfpe, sigbus, sigsegv, sigsys,
sigxcpu, sigxfsz.

Any of these signals can be preceded with no% to disable catching the signal.

For example: -traceback=sigsegv,sigfpe will produce a stack trace and core
dump if either sigsegv or sigfpe occurs.

%none or none Disables traceback.

If the option is not specified, the default is -traceback=%none

-traceback alone, without a = sign, implies -traceback=common

If you don't want the core dump, set the coredumpsize limit to zero as follows:

% limit coredumpsize 0

The -traceback option has no effect on runtime performance.

B.2.73 -Uname

Undefines the preprocessor symbol name. This option removes any initial definition of the
preprocessor symbol name created by -D on the same command line, including the ones placed
there by the command-line driver.

-U has no effect on any preprocessor directives in source files. You can give multiple -U
options on the command line.

If the same name is specified for both -D and -U on the command line, name is undefined,
regardless of the order in which the options appear. In the following example, -U undefines
__sun:

B.2 cc Options

Appendix B • C Compiler Options Reference 239

cc -U__sun text.c

Preprocessor statements of the following form in test.c will not take effect because __sun is
undefined.

#ifdef(__sun)

See “B.2.8 -Dname[(arg[,arg])][=expansion]” on page 214 for a list of predefined symbols.

B.2.74 -V

Directs cc to print the name and version ID of each component as the compiler executes.

B.2.75 -v

Directs the compiler to perform stricter semantic checks and to enable other lint-like checks.
For example, the following code compiles and executes without problem.

#include <stdio.h>

main(void)

{

 printf("Hello World.\n");

}

With the -v option it still compiles. However, the compiler displays this warning:

"hello.c", line 5: warning: function has no return statement:

 main

-v does not give all the warnings that lint(1) does. You can see the difference by running the
above example through lint.

B.2.76 -Wc,arg

Passes the argument arg to a specified component c. See Table 1-1 for a list of components.

Arguments must be separated from the preceding only by a comma. All -W arguments are
passed after the rest of the command-line arguments. To include a comma as part of an
argument, use the escape character \ (backslash) immediately before the comma. All -W
arguments are passed after the regular command-line arguments.

For example, -Wa,-o,objfile passes -o and objfile to the assembler in that order. Also, -Wl,-
I,name causes the linking phase to override the default name of the dynamic linker, /usr/lib/
ld.so.1.

B.2 cc Options

240 Oracle Solaris Studio 12.4: C User's Guide • March 2015

The order in which the arguments are passed to a tool with respect to the other specified
command line options might change an subsequent compiler releases.

The possible values for c are listed in the following table

TABLE B-12 -W Flags

Flag Meaning

a Assembler: (fbe); (gas)

c C code generator: (cg) (SPARC) ;

d cc driver

l Link editor (ld)

m mcs

O (Capital o) Interprocedural optimizer

o (Lowercase o) Postoptimizer

p Preprocessor (cpp)

u C code generator (ube) (x86)

0 (Zero) Compiler (acomp)

2 Optimizer: (iropt)

Note that you cannot use -Wd to pass cc options to the c compiler.

B.2.77 -w

Suppresses compiler warning messages.

This option overrides the error_messages pragma.

B.2.78 -X[c|a|t|s]

(Obsolete) The -Xs option will be removed in a future release. It is recommended that C code
that requires -Xs to build and compile correctly be migrated to conform with at least the C99
dialect of the ISO C standard, that is, compilable with -std=c99.

The -Xc, -Xa, -Xt, and -Xs flags cannot be used if the -std or -xlang flag has been specified.

When not using the -std flag, the -X (note uppercase X) options specify varying degrees of
compliance to the 1990 and 1999 ISO C standard. The value of -xc99 affects which version
of the ISO C standard the -X option applies. The -xc99 option defaults to -xc99=all which

B.2 cc Options

Appendix B • C Compiler Options Reference 241

supports the 1999 ISO/IEC C standard. -xc99=none supports the 1990 ISO/IEC C standard. See
D.1 for a discussion of supported 1999 ISO/IEC features. See Appendix H for a discussion of
differences between ISO/IEC C and K&R C.

The default mode of the compiler is -std=c11 without the -pedantic flag. If the -xc99 flag has
been specified or is in effect, then -Xa is the default mode of the compiler.

-Xc

(c = conformance) Issues errors and warnings for programs that use non-ISO C constructs. This
option is strictly conformant ISO C without K&R C compatibility extensions. The predefined
macro __STDC__ has a value of 1 with the-Xc option.

-Xa

ISO C plus K&R C compatibility extensions with semantic changes required by ISO C. Where
K&R C and ISO C specify different semantics for the same construct, the compiler uses the ISO
C interpretation. If the -Xa option is used in conjunction with the -xtransition option, the
compiler issues warnings about the different semantics. The predefined macro __STDC__has a
value of -0 with the-Xa option.

-Xt

(t = transition) This option uses ISO C plus K&R C compatibility extensions without semantic
changes required by ISO C. Where K&R C and ISO C specify different semantics for the same
construct, the compiler uses the K&R C interpretation. If you use the -Xt option in conjunction
with the -xtransition option, the compiler issues warnings about the different semantics. The
predefined macro __STDC__ has a value of 0 with the -Xt option.

-Xs

(s = K&R C) Attempts to warn about all language constructs that have differing behavior
between ISO C and K&R C. The compiler language includes all features compatible with K&R
C. This option invokes cpp for preprocessing. __STDC__ is not defined in this mode.

B.2.79 -x386

(x86) Obsolete. You should not use this option. Use -xchip=generic instead. For a complete
list of obsolete options, see “A.1.14 Obsolete Options” on page 208.

B.2.80 -x486

(x86) Obsolete. You should not use this option. Use -xchip=generic instead. For a complete
list of obsolete options, see “A.1.14 Obsolete Options” on page 208.

B.2 cc Options

242 Oracle Solaris Studio 12.4: C User's Guide • March 2015

B.2.81 -Xlinker arg

Pass arg to linker ld(1). Equivalent to —z arg

B.2.82 -xaddr32[=yes|no]

(Solaris x86/x64 only) The -xaddr32=yes compilation flag restricts the resulting executable or
shared object to a 32-bit address space.

An executable that is compiled in this manner results in the creation of a process that is
restricted to a 32-bit address space.

When -xaddr32=no is specified a usual 64 bit binary is produced.

If the -xaddr32 option is not specified, -xaddr32=no is assumed.

If only -xaddr32 is specified -xaddr32=yes is assumed.

This option is only applicable to -m64 compilations and only on Oracle Solaris platforms
supporting SF1_SUNW_ADDR32 software capability. Because Linux kernels do not support
address space limitation, this option is not available on Linux.

When linking, if a single object file was compiled with -xaddr32=yes, the whole output file is
assumed to be compiled with -xaddr32=yes.

A shared object that is restricted to a 32-bit address space must be loaded by a process that
executes within a restricted 32-bit mode address space.

For more information refer to the SF1_SUNW_ADDR32 software capabilities definition, described
in the Linker and Libraries Guide.

B.2.83 -xalias_level[=l]

The compiler uses the -xalias_level option to determine what assumptions it can make in
order to perform optimizations using type-based alias-analysis. This option places the indicated
alias level into effect for the translation units being compiled.

If you do not specify the -xalias_level command, the compiler assumes -xalias_level=any.
If you specify -xalias_level without a value, the default is -xalias_level=layout.

B.2 cc Options

Appendix B • C Compiler Options Reference 243

The -xalias_level option requires optimization level -xO3 or above. If optimization is set
lower, a warning is issued and the -xalias_level option is ignored.

Remember that if you issue the -xalias_level option but you fail to adhere to all of the
assumptions and restrictions about aliasing described for any of the alias levels, the behavior of
your program is undefined.

Replace l with one of the terms in the following table.

TABLE B-13 Levels of Alias-Disambiguation

Flag Meaning

any The compiler assumes that all memory references can alias at this level. There is no type-based alias
analysis at the level of -xalias_level=any.

basic If you use the -xalias_level=basic option, the compiler assumes that memory references that
involve different C basic types do not alias each other. The compiler also assumes that references to
all other types can alias each other as well as any C basic type. The compiler assumes that references
using char * can alias any other type.

For example, at the -xalias_level=basic level, the compiler assumes that a pointer variable of type
int * is not going to access a float object. Therefore the compiler can safely perform optimizations
that assume a pointer of type float * will not alias the same memory that is referenced with a
pointer of type int *.

weak If you use the -xalias_level=weak option, the compiler assumes that any structure pointer can point
to any structure type.

Any structure or union type that contains a reference to any type that is either referenced in an
expression in the source being compiled or is referenced from outside the source being compiled
must be declared prior to the expression in the source being compiled.

You can satisfy this restriction by including all the header files of a program that contain types that
reference any of the types of the objects referenced in any expression of the source being compiled.

At the level of -xalias_level=weak, the compiler assumes that memory references that involve
different C basic types do not alias each other. The compiler assumes that references using char *
alias memory references that involve any other type.

layout If you use the -xalias_level=layout option, the compiler assumes that memory references that
involve types with the same sequence of types in memory can alias each other.

The compiler assumes that two references with types that do not look the same in memory do not
alias each other. The compiler assumes that any two memory accesses through different struct types
alias if the initial members of the structures look the same in memory. However, at this level, you
should not use a pointer to a struct to access some field of a dissimilar struct object that is beyond
any of the common initial sequence of members that look the same in memory between the two
structs. The compiler assumes that such references do not alias each other.

At the level of -xalias_level=layout the compiler assumes that memory references that involve
different C basic types do not alias each other. The compiler assumes that references using char *
can alias memory references involving any other type.

strict If you use the -xalias_level=strict option, the compiler assumes that memory references, that
involve types such as structs or unions, that are the same when tags are removed, can alias each
other. Conversely, the compiler assumes that memory references involving types that are not the
same even after tags are removed do not alias each other.

B.2 cc Options

244 Oracle Solaris Studio 12.4: C User's Guide • March 2015

Flag Meaning
However, any structure or union type that contains a reference to any type that is part of any object
referenced in an expression in the source being compiled, or is referenced from outside the source
being compiled, must be declared prior to the expression in the source being compiled.

You can satisfy this restriction by including all the header files of a program that contain types that
reference any of the types of the objects referenced in any expression of the source being compiled.
At the level of -xalias_level=strict the compiler assumes that memory references that involve
different C basic types do not alias each other. The compiler assumes that references using char *
can alias any other type.

std If you use the -xalias_level=std option, the compiler assumes that types and tags need to be the
same to alias, however, references using char * can alias any other type. This rule is the same as
the restrictions on the dereferencing of pointers that are found in the 1999 ISO C standard. Programs
that properly use this rule will be very portable and should see good performance gains under
optimization.

strong If you use the -xalias_level=strong option, the same restrictions apply as at the std level, but
additionally, the compiler assumes that pointers of type char * are used only to access an object
of type char. Also, the compiler assumes that there are no interior pointers. An interior pointer is
defined as a pointer that points to a member of a struct.

B.2.84 -xanalyze={code|%none}

(Obsolete) This option will be removed in a future release. Use -xprevise instead.

Produce a static analysis of the source code that can be viewed using the Oracle Solaris Studio
Code Analyzer.

When compiling with —xanalyze=code and linking in a separate step, include —xanalyze=code
also on the link step.

The default is —xanalyze=%none.

On Linux, -xanalyze=code needs to be specified along with -xannotate.

See the Oracle Solaris Studio Code Analyzer documentation for more information.

B.2.85 -xannotate[=yes|no]

Create binaries that can later be used by the optimization and observability tools binopt(1),
code-analyzer(1), discover(1), collect(1), and uncover(1).

The default on Oracle Solaris is -xannotate=yes. The default on Linux is -xannotate=no.
Specifying -xannotate without a value is equivalent to -xannotate=yes.

B.2 cc Options

Appendix B • C Compiler Options Reference 245

For optimal use of the optimization and observability tools, -xannotate=yes must be in effect
at both compile and link time. Compile and link with -xannotate=no to produce slightly
smaller binaries and libraries when optimization and observability tools will not be used.

B.2.86 –xarch=isa

Specifies the target instruction set architecture (ISA).

This option limits the code generated by the compiler to the instructions of the specified
instruction set architecture. This option does not guarantee use of any target–specific
instructions. However, use of this option could affect the portability of a binary program.

Note - Use the -m64 or -m32 option to specify the intended memory model, LP64 (64-bits) or
ILP32 (32-bits) respectively. The -xarch option no longer indicates the memory model, except
for compatibility with previous releases, as indicated below.

If you compile and link in separate steps, make sure you specify the same value for -xarch in
both steps.

When specifying the _asm statement, or compiling with .il inline templates files that use
architecture-specific instructions, it might be necessary to specify an appropriate -xarch value
to avoid compilation errors.

B.2.86.1 -xarch Flags for SPARC and x86

The following table lists the -xarch keywords common to both SPARC and x86 platforms.

TABLE B-14 Flags Common to SPARC and x86 Platforms

Flag Meaning

generic Uses the instruction set common to most processors. This is the default.

generic64 Compile for good performance on most 64-bit platforms.
This option is equivalent to -m64 -xarch=generic and is provided for compatibility with earlier
releases.

native Compile for good performance on this system. The compiler chooses the appropriate setting for
the current system processor it is running on.

native64 Compile for good performance on this system.
This option is equivalent to -m64 -xarch=native and is provided for compatibility with earlier
releases.

B.2.86.2 -xarch Flags for SPARC

The following table describes the -xarch keywords on SPARC platforms.

B.2 cc Options

246 Oracle Solaris Studio 12.4: C User's Guide • March 2015

TABLE B-15 -xarch Flags for SPARC Platforms

Flag Meaning

sparc Compile for the SPARC-V9 ISA, but without the Visual Instruction Set (VIS), and without other
implementation-specific ISA extensions. This option enables the compiler to generate code for
good performance on the V9 ISA.

sparcvis Compile for SPARC-V9 plus the Visual Instruction Set (VIS) version 1.0, and with UltraSPARC
extensions. This option enables the compiler to generate code for good performance on the Ultra
SPARC architecture.

sparcvis2 Enables the compiler to generate object code for the UltraSPARC architecture, plus the Visual
Instruction Set (VIS) version 2.0, and with UltraSPARC III extensions.

sparcvis3 Compile for the SPARC VIS version 3 of the SPARC-V9 ISA. Enables the compiler to use
instructions from the SPARC-V9 instruction set, plus the UltraSPARC extensions, including the
Visual Instruction Set (VIS) version 1.0, the UltraSPARC-III extensions, including the Visual
Instruction Set (VIS) version 2.0, the fused multiply-add instructions, and the Visual Instruction
Set (VIS) version 3.0

sparcfmaf Enables the compiler to use instructions from the SPARC-V9 instruction set, plus the Ultra
SPARC extensions, including the Visual Instruction Set (VIS) version 1.0, the UltraSPARC-
III extensions, including the Visual Instruction Set (VIS) version 2.0, and the SPARC64 VI
extensions for floating-point multiply-add.

You must use -xarch=sparcfmaf in conjunction with fma=fused and some optimization
level to get the compiler to attempt to find opportunities to use the multiply-add instructions
automatically.

sparcace Compile for the sparcace version of the SPARC-V9 ISA. Enables the compiler to use
instructions from the SPARC-V9 instruction set, plus the UltraSPARC extensions, including the
Visual Instruction Set (VIS) version 1.0, the UltraSPARC-III extensions, including the Visual
Instruction Set (VIS) version 2.0, the SPARC64 VI extensions for floating-point multiply-add,
the SPARC64 VII extensions for integer multiply-add, and the SPARC64 X extensions for ACE
floating-point.

sparcaceplus Compile for the sparcaceplus version of the SPARC-V9 ISA. Enables the compiler to use
instructions from the SPARC-V9 instruction set, plus the UltraSPARC extensions, including the
Visual Instruction Set (VIS) version 1.0, the UltraSPARC-III extensions, including the Visual
Instruction Set (VIS) version 2.0, the SPARC64 VI extensions for floating-point multiply-add, the
SPARC64 VII extensions for integer multiply-add, the SPARC64 X extensions for SPARCACE
floating-point, and the SPARC64 X+ extensions for SPARCACE floating-point.

sparcima Compile for the sparcima version of the SPARC-V9 ISA. Enables the compiler to use
instructions from the SPARC-V9 instruction set, plus the UltraSPARC extensions, including the
Visual Instruction Set (VIS) version 1.0, the UltraSPARC-III extensions, including the Visual
Instruction Set (VIS) version 2.0, the SPARC64 VI extensions for floating-point multiply-add,
and the SPARC64 VII extensions for integer multiply-add.

sparc4 Compile for the SPARC4 version of the SPARC-V9 ISA. Enables the compiler to use instructions
from the SPARC-V9 instruction set, plus the extensions, which includes VIS 1.0, the Ultra
SPARC-III extensions, which includes VIS2.0, the fused floating-point multiply-add instructions,
VIS 3.0, and SPARC4 instructions.

sparc4b Compile for the SPARC4B version of the SPARC-V9 ISA. Enables the compiler to use
instructions from the SPARC-V9 instruction set, plus the UltraSPARC extensions, which includes
VIS 1.0, the UltraSPARC-III extensions, which includes VIS2.0, the SPARC64 VI extensions
for floating-point multiply-add, the SPARC64 VII extensions for integer multiply-add, and the
PAUSE and CBCOND instructions from the SPARC T4 extensions.

sparc4c Compile for the SPARC4C version of the SPARC-V9 ISA. Enables the compiler to use
instructions from the SPARC-V9 instruction set, plus the UltraSPARC extensions, which includes
VIS 1.0, the UltraSPARC-III extensions, which includes VIS2.0, the SPARC64 VI extensions for

B.2 cc Options

Appendix B • C Compiler Options Reference 247

Flag Meaning
floating-point multiply-add, the SPARC64 VII extensions for integer multiply-add, the VIS3B
subset of the VIS 3.0 instructions a subset of the SPARC T3 extensions, called the VIS3B subset
of VIS 3.0, and the PAUSE and CBCOND instructions from the SPARC T4 extensions.

sparc5 Compile for the SPARC5 version of the SPARC-V9 ISA. Enables the compiler to use instructions
from the SPARC-V9 instruction set, plus the extensions, which includes VIS 1.0, the Ultra
SPARC-III extensions, which includes VIS2.0, the fused floating-point multiply-add instructions,
VIS 3.0, SPARC4, and SPARC5 instructions.

v9 Is equivalent to -m64 -xarch=sparc. Legacy makefiles and scripts that use -xarch=v9 to obtain the
64-bit memory model need only use -m64.

v9a Is equivalent to -m64 -xarch=sparcvis and is provided for compatibility with earlier releases.

v9b Is equivalent to -m64 -xarch=sparcvis2 and is provided for compatibility with earlier releases.

Also note the following:

■ Object binary files (.o) compiled with generic, sparc, sparcvis2, sparcvis3,
sparcfmaf, sparcima can be linked and can execute together but can only run on a
processor supporting all the instruction sets linked.

■ For any particular choice, the generated executable might not run or might run much more
slowly on legacy architectures. Also, because quad-precision (long double) floating-point
instructions are not implemented in any of these instruction set architectures, the compiler
does not use these instructions in the code it generates.

B.2.86.3 -xarch Flags for x86

The following table lists the -xarch flags on x86 platforms.

TABLE B-16 The -xarch Flags on x86

Flag Meaning

amd64 (Solaris only) Is equivalent to -m64 -xarch=sse2. Legacy makefiles and scripts that
use -xarch=amd64 to obtain the 64-bit memory model need only use -m64.

amd64a (Solaris only) Is equivalent to -m64 -xarch=sse2a

pentium_pro Limits the instruction set to the 32–bit Pentium Pro architecture.

pentium_proa Adds the AMD extensions (3DNow!, 3DNow! extensions, and MMX extensions) to
the 32-bit pentium_pro architecture.

sse Adds the SSE instruction set to the pentium_pro architecture.

ssea Adds the AMD extensions (3DNow!, 3DNow! extensions, and MMX extensions) to
the 32-bit SSE architecture.

sse2 Adds the SSE2 instruction set to the pentium_pro architecture.

sse2a Adds the AMD extensions (3DNow!, 3DNow! extensions, and MMX extensions) to
the 32-bit SSE2 architecture.

sse3 Adds the SSE3 instruction set to SSE2 instruction set.

B.2 cc Options

248 Oracle Solaris Studio 12.4: C User's Guide • March 2015

Flag Meaning

sse3a Adds the AMD extended instructions including 3DNow! to the SSE3 instruction set.

ssse3 Supplements the pentium_pro, SSE, SSE2, and SSE3 instruction sets with the SSSE3
instruction set.

sse4_1 Supplements the pentium_pro, SSE, SSE2, SSE3, and SSSE3 instruction sets with the
SSE4.1 instruction set.

sse4_2 Supplements the pentium_pro, SSE, SSE2, SSE3,SSSE3, and SSE4.1 instruction sets
with the SSE4.2 instruction set.

amdsse4a Uses the AMD SSE4a Instruction set.

aes Uses Intel Advanced Encryption Standard instruction set.

avx Uses Intel Advanced Vector Extensions instruction set.

avx_i Uses Intel Advanced Vector Extensions instruction set with the RDRND, FSGSBASE
and F16C instruction sets.

avx2 Uses Intel Advanced Vector Extensions 2 instruction set.

If any part of a program is compiled or linked on an x86 platform with —m64, then all parts of
the program must be compiled with one of these options as well. For details on the various Intel
instruction set architectures (SSE, SSE2, SSE3, SSSE3, and so on) refer to the Intel 64 and
IA-32 Architectures Software Developer Manuals at http://www.intel.com.

See also “1.2 Special x86 Notes” on page 24 and “1.3 Binary Compatibility
Verification” on page 25.

B.2.86.4 Interactions

Although this option can be used alone, it is part of the expansion of the -xtarget
option and may be used to override the –xarch value that is set by a specific -xtarget
option. For example, -xtarget=ultra2 expands to -xarch=sparcvis -xchip=ultra2 -
xcache=16/32/1:512/64/1. In the following command -xarch=generic overrides the -
xarch=sparcvis that is set by the expansion of -xtarget=ultra2.

example% cc -xtarget=ultra2 -xarch=generic foo.c

B.2.86.5 Warnings

If you use this option with optimization, the appropriate choice can provide good performance
of the executable on the specified architecture. An inappropriate choice, however, might result
in serious degradation of performance or in a binary program that is not executable on the
intended target platform.

If you compile and link in separate steps, make sure you specify the same value for -xarch in
both steps.

http://www.intel.com

B.2 cc Options

Appendix B • C Compiler Options Reference 249

B.2.87 -xautopar

Note - This option does not enable OpenMP parallelization directives.

Enables automatic parallelization of loops. Does dependence analysis (analyze loops for inter-
iteration data dependence) and loop restructuring. If optimization is not at -xO3 or higher,
optimization is raised to -xO3 and a warning is issued.

Avoid-xautopar if you do your own thread management.

To achieve faster execution, this option requires a system with multiple hardware threads. Use
the OMP_NUM_THREADS or PARALLEL environment variable to specify the number of threads you
want to use. Refer to the OpenMP API User's Guide for information about these environment
variables and their default values.

For best performance, the number of threads used to execute a parallel region should not exceed
the number of hardware threads (or virtual processors) available on the machine. On Oracle
Solaris systems, this number can be determined by using the psrinfo(1M) command. On Linux
systems, this number can be determined by inspecting the file /proc/cpuinfo.

If you use-xautopar and compile and link in one step, then linking automatically includes the
microtasking library (libmtsk.so) and the threads-safe C runtime library. If you use-xautopar
and compile and link in separate steps, then you must also link with -xautopar. For a complete
list of all compiler options that must be specified at both compile time and at link time, see
Table A-2.

B.2.88 -xbinopt={prepare|off}

(SPARC) This option is now obsolete and will be removed in a future release of the compiler.
See “B.2.85 -xannotate[=yes|no]” on page 244

Instructs the compiler to prepare the binary for later optimizations, transformations and
analysis. This option may be used for building executables or shared objects. This option must
be used with optimization level -xO1 or higher to be effective. There is a modest increase in size
of the binary when built with this option.

If you compile in separate steps, -xbinopt must appear on both compile and link steps:

example% cc -c -xO1 -xbinopt=prepare a.c b.c

example% cc -o myprog -xbinopt=prepare a.o

If some source code is not available for compilation, this option may still be used to compile
the remainder of the code. It should then be used in the link step that creates the final binary.

B.2 cc Options

250 Oracle Solaris Studio 12.4: C User's Guide • March 2015

In such a situation, only the code compiled with this option can be optimized, transformed or
analyzed.

Compiling with -xbinopt=prepare and -g increases the size of the executable by including
debugging information. The default is -xbinopt=off.

For more information, see the binopt(1) man page.

B.2.89 -xbuiltin[=(%all|%default|%none)]

Use the -xbuiltinoption to improve the optimization of code that calls standard library
functions. Many standard library functions, such as the ones defined in math.h and stdio.h,
are commonly used by various programs. The -xbuiltin option enables the compiler to
substitute intrinsic functions or inline system functions where profitable for performance. See
the er_src(1) man page for an explanation of how to read compiler commentary in object files
to determine the functions for which the compiler actually makes a substitution.

Note that these substitutions can cause the setting of errno to become unreliable. If your
program depends on the value of errno, avoid this option. See also “2.13 Preserving the Value
of errno” on page 55.

-xbuiltin=%default only inlines functions that do not set errno. The value of errno is always
correct at any optimization level, and can be checked reliably. With -xbuiltin=%default at
-xO3 or lower, the compiler will determine which calls are profitable to inline, and not inline
others. The -xbuiltin=%none option turns off all substitutions of library functions.

If you do not specify -xbuiltin, the default is -xbuiltin=%default when compiling with an
optimization level -xO1 and higher, and -xbuiltin=%none at -xO0. If you specify -xbuiltin
without an argument, the default is -xbuiltin=%all and the compiler substitutes intrinsics or
inlines standard library functions much more aggressively.

If you compile with -fast, then -xbuiltin is set to %all.

Note - -xbuiltin only inlines global functions defined in system header files, and not static
functions defined by the user.

B.2.90 -xCC

When you specify -std=c89 and -xCC, the compiler accepts the C++-style comments. In
particular, // can be used to indicate the start of a comment.

B.2 cc Options

Appendix B • C Compiler Options Reference 251

B.2.91 -xc99[=o]

The -xc99 option controls compiler recognition of the implemented features from the C99
standard (ISO/IEC 9899:1999, Programming Language - C).

The following table lists accepted values for o. Multiple values can be separated by commas.

TABLE B-17 -xc99 Flags

Flag Meaning

lib Enable the 1999 C standard library semantics of routines that appeared in both the 1990
and 1999 C standard. no_lib disables recognition of these semantics.

all Turn on recognition of supported C99 language features and enable the 1999 C
standard library semantics of routines that appear in both the 1990 and 1999 C
standard.

none Turn off recognition of C99 language features, and do not enable the 1999 C standard
library semantics of routines that appeared in both the 1990 and 1999 C standard.

If you do not specify -xc99, the compiler defaults to -xc99=all,no_lib. If you specify -xc99
without any values, the option is set to-xc99=all.

The -xc99 flag cannot be used if the -std or -xlang flag has been specified.

B.2.92 -xcache[=c]
Defines cache properties for use by the optimizer. This option does not guarantee that any
particular cache property is used.

Note - Although this option can be used alone, it is part of the expansion of the -xtarget
option; its primary use is to override a value supplied by the -xtarget option.

An optional property, [/ti], sets the number of threads that can share the cache. If you do not
specify a value for t, the default is 1.

c must be one of the following:

■ generic

■ native

■ s1/l1/a1[/t1]
■ s1/l1/a1[/t1]:s2/l2/a2[/t2]
■ s1/l1/a1[/t1]:s2/l2/a2[/t2]:s3/l3/a3[/t3]

The s/l/a/t properties are defined as follows:

B.2 cc Options

252 Oracle Solaris Studio 12.4: C User's Guide • March 2015

si The size of the data cache at level i, in kilobytes

li The line size of the data cache at level i, in bytes

ai The associativity of the data cache at level i

ti The number of hardware threads sharing the cache at level i

The following table lists the-xcache values.

TABLE B-18 -xcache Flags

Flag Meaning

generic This is the default value. It directs the compiler to use
cache properties for good performance on most x86
and SPARC processors without major performance
degradation on any of them.

With each new release, these best timing properties will
be adjusted, if appropriate.

native Set the parameters for the best performance on the host
environment.

s1/l1/a1[/t1] Define level 1 cache properties.

s1/l1/a1[/t1]:s2/l2/a2[/t2] Define levels 1 and 2 cache properties.

s1/l1/a1[/t1]:s2/l2/a2[/t2]:
s3/l3/a3[/t3]

Define levels 1, 2, and 3 cache properties.

Example:-xcache=16/32/4:1024/32/1 specifies the following:

■ Level 1 cache with:
■ 16K bytes
■ 32 bytes line size
■ Four–way associativity

■ Level 2 cache with:
■ 1024 bytes
■ 32 bytes line size
■ Direct mapping associativity

B.2.93 –xcg[89|92]

(SPARC) Obsolete. You should not use this option. Compiling with this option generates code
that runs slower on current SPARC platforms. Use -O instead and take advantage of compiler
defaults for -xarch, -xchip, and -xcache.

B.2 cc Options

Appendix B • C Compiler Options Reference 253

B.2.94 -xchar[=o]

The option is provided solely for the purpose of easing the migration of code from systems
where the char type is defined as unsigned. Unless you are migrating from such a system, do
not use this option. Only code that relies on the sign of a char type needs to be rewritten to
explicitly specify signed or unsigned.

The following table lists the accepted values for o:

TABLE B-19 -xchar Flags

Flag Meaning

signed Treat character constants and variables declared as char as signed. This option affects
the behavior of compiled code, but note the behavior of library routines.

s Equivalent to signed

unsigned Treat character constants and variables declared as char as unsigned. This option
affects the behavior of compiled code, but not the behavior of library routines.

u Equivalent to unsigned.

If you do not specify -xchar, the compiler assumes -xchar=s.

If you specify -xchar but do not specify a value, the compiler assumes -xchar=s.

The -xchar option changes the range of values for the type char only for code compiled with -
xchar. This option does not change the range of values for type char in any system routine or
header file. In particular, the value of CHAR_MAX and CHAR_MIN, as defined by limits.h, do not
change when this option is specified. Therefore, CHAR_MAX and CHAR_MIN no longer represent
the range of values encodable in a plain char.

If you use -xchar, be particularly careful when you compare a char against a predefined system
macro because the value in the macro may be signed. This situation is most common for any
routine that returns an error code that is accessed through a macro. Error codes are typically
negative values so when you compare a char against the value from such a macro, the result is
always false. A negative number can never be equal to any value of an unsigned type.

Do not use -xchar to compile routines for any interface exported through a library. The ABIs
for all target platforms of Oracle Solaris Studio specify type char as signed, and system
libraries behave accordingly. The effect of making char unsigned has not been extensively
tested with system libraries. Instead of using this option, modify your code so that it does
not depend on whether type char is signed or unsigned. The sign of type char varies among
compilers and operating systems.

B.2 cc Options

254 Oracle Solaris Studio 12.4: C User's Guide • March 2015

B.2.95 -xchar_byte_order[=o]
Produce an integer constant by placing the characters of a multicharacter character-constant in
the specified byte order. Use one of the following values for o:

■ low: Places the characters of a multicharacter character-constant in low-to-high byte order.
■ high: Places the characters of a multicharacter character-constant in high-to-low byte order.
■ default: Places the characters of a multicharacter character-constant in an order

determined by the compilation mode (-Xv). For more information, see “2.1.2 Character
Constants” on page 32 and “B.2.78 -X[c|a|t|s]” on page 240.

B.2.96 -xcheck[=o[,o]]
Adds runtime checks for stack overflow and initializes local variables.

The following table lists values for o.

TABLE B-20 -xcheck Flags

Flag Meaning

%none Perform none of the -xcheck checks.

%all Perform all of the -xcheck checks.

stkovf[action] Generate code to detect stack overflow errors at runtime, optionally specifying an
action to be taken when a stack overflow error is detected.

A stack overflow error occurs when a thread's stack pointer is set beyond the thread's
allocated stack bounds. The error may not be detected if the new top of stack address is
writable.

A stack overflow error is detected if a memory access violation occurs as a direct result
of the error, raising an associated signal (usually SIGSEGV). The signal thus raised is
said to be associated with the error.

If -xcheck=stkovf[action] is specified, the compiler generates code to detect stack
overflow errors in cases involving stack frames larger than the system page size. The
code includes a library call to force a memory access violation instead of setting the
stack pointer to an invalid but potentially mapped address (see _stack_grow(3C)).

The optional action, if specified, must be either :detect or :diagnose.

If action is :detect, a detected stack overflow error is handled by executing the signal
handler normally associated with the error.

If action is :diagnose, a detected stack overflow error is handled by catching the
associated signal and calling stack_violation(3C) to diagnose the error. This is the
default behavior if no action is specified.

If a memory access violation is diagnosed as a stack overflow error, the following
message is printed to stderr:

B.2 cc Options

Appendix B • C Compiler Options Reference 255

Flag Meaning

ERROR: stack overflow detected: pc=<inst_addr>, sp=<sp_addr>

where <inst_addr> is the address of the instruction where the error was detected, and
<sp_addr> is the value of the stack pointer at the time that the error was detected. After
checking for stack overflow and printing the above message if appropriate, control
passes to the signal handler normally associated with the error.

-xcheck=stkovf:detect adds a stack bounds check on entry to routines with stack
frames larger than system page size (see _stack_grow(3C)). The relative cost of the
additional bounds check should be negligible in most applications.

-xcheck=stkovf:diagnose adds a system call to thread creation (see sigaltstack(2)).
The relative cost of the additional system call depends on how frequently the
application creates and destroys new threads.

-xcheck=stkovf is supported only on Oracle Solaris. The C runtime library on Linux
does not support stack overflow detection.

no%stkovf Disable stack-overflow checking.

init_local Initialize local variables.

no%init_local Do not initialize local variables.

If you do not specify -xcheck, the compiler defaults to-xcheck=%none. If you specify -xcheck
without any arguments, the compiler defaults to-xcheck=%all.

The -xcheck option does not accumulate on the command line. The compiler sets the flag
in accordance with the last occurrence of the command. Thus, to enable both stack overflow
diagnosis an local variable initialization, use the following option:

cc -xcheck=stkovf:diagnose,init_local ...

B.2.96.1 Initialization Values for -xcheck=init_local

With -xcheck=init_local, the compiler initializes local variables declared without an
initializer to a predefined value as shown in the following table. (Note that these values might
change and should not be relied upon.)

Basic Types

TABLE B-21 init_local Initialization for Basic Types

Type Initialization Value

char, _Bool 0x85

short 0x8001

int, long, enum (-m32) 0xff80002b

B.2 cc Options

256 Oracle Solaris Studio 12.4: C User's Guide • March 2015

Type Initialization Value

long (-m64) 0xfff00031ff800033

long long 0xfff00031ff800033

pointer 0x00000001 (-m32)

0x0000000000000001 (-m64)

float, float _Imaginary 0xff800001

float _Complex 0xff80000fff800011

double SPARC: 0xfff00003ff800005

x86: 0xfff00005ff800003

double _Imaginary 0xfff00013ff800015

long double, long double _Imaginary SPARC: 0xffff0007ff800009 / 0xfff0000bff80000d

x86: 12 bytes (-m32): 0x80000009ff800005 / 0x0000ffff

x86: 16 bytes (-m64): 0x80000009ff800005 /
0x0000ffff00000000

double _Complex 0xfff00013ff800015 / 0xfff00017ff800019

long double _Complex SPARC: 0xffff001bff80001d / 0xfff0001fff800021 /
0xffff0023ff800025 / 0xfff00027ff800029

x86: 12 bytes (-m32): 0x7fffb01bff80001d / 0x00007fff
/ 0x7fffb023ff800025 / 0x00007fff

x86: 16 bytes (-m64): 0x00007fff00080000 /
0x1b1d1f2100000000 / 0x00007fff00080000 /
0x2927252300000000

Local variables declared for use with the computed goto, which are simple void * pointers,
will be initialized according to the description for pointers in the table.

The following local variable types are never initialized: const qualified, register, label
numbers for computed gotos, local labels.

Initializing Structs, Unions, and Arrays

Fields in a struct that are basic types are initialized as described in the table, as is the first
declared pointer or float field in a union, to maximize the likelihood that an uninitialized
reference generates a visible error.

Array elements are also initialized as described in the table.

Nested struct, union, and array fields are initialized as described in the table except for the
following cases: a struct containing bit-fields, a union without a pointer or float field, or an

B.2 cc Options

Appendix B • C Compiler Options Reference 257

array of types that cannot be fully initialized. These exceptions will be initialized with the value
used for local variables of type double.

B.2.97 -xchip[=c]

Specifies the target processor for use by the optimizer.

Although this option can be used alone, it is part of the expansion of the-xtarget option. Its
primary use is to override a value supplied by the-xtarget option.

This option specifies timing properties by specifying the target processor. Some effects are:

■ The ordering of instructions, that is, scheduling
■ The way the compiler uses branches
■ The instructions to use in cases where semantically equivalent alternatives are available

The following table lists the -xchip values for c for SPARC platforms:

TABLE B-22 SPARC -xchip Flags

Flag Meaning

generic Use timing properties for good performance on most SPARC architectures.

This is the default value. It directs the compiler to use the best timing properties for
good performance on most processors, without major performance degradation on
any of them.

native Sets the parameters for the best performance on the host environment.

sparc64vi Optimize for the SPARC64 VI processor.

sparc64vii Optimize for the SPARC64 VII processor.

sparc64viiplus Optimize for the SPARC64 VII+ processor.

sparc64x Optimize for the SPARC64 X processor.

sparc64xplus Optimize for the SPARC64 X+ processor.

ultra Uses timing properties of the UltraSPARC processors.

ultra2 Uses timing properties of the UltraSPARC II processors.

ultra2e Uses timing properties of the UltraSPARC IIe processors.

ultra2i Uses timing properties of the UltraSPARC IIi processors.

ultra3 Uses timing properties of the UltraSPARC III processors.

ultra3cu Uses timing properties of the UltraSPARC III Cu processors.

ultra3i Uses the timing properties of the UltraSPARC IIIi processors.

ultra4 Uses timing properties of the UltraSPARC IV processors.

ultra4plus Uses the timing properties of the UltraSPARC IVplus processor.

B.2 cc Options

258 Oracle Solaris Studio 12.4: C User's Guide • March 2015

Flag Meaning

ultraT1 Uses the timing properties of the UltraSPARC T1 processor.

ultraT2 Uses the timing properties of the UltraSPARC T2 processor.

ultraT2plus Uses the timing properties of the UltraSPARC T2+ processor.

T3 Uses the timing properties of the SPARC T3 processor.

T4 Uses the timing properties of the SPARC T4 processor.

T5 Uses the timing properties of the SPARC T5 processor.

T7 Uses the timing properties of the SPARC T7 processor.

M5 Uses the timing properties of the SPARC M5 processor.

M6 Uses the timing properties of the SPARC M6 processor.

M7 Uses the timing properties of the SPARC M7 processor.

Note - The following SPARC -xchip values are obsolete and may be removed in a future
release: ultra, ultra2, ultra2e, ultra2i, ultra3, ultra3cu, ultra3i, ultra4, and
ultra4plus.

The following table lists the -xchip values for the x86 platforms:

TABLE B-23 x86 -xchip Flags

Flag Meaning

generic Use timing properties for good performance on most x86 architectures.

This is the default value. It directs the compiler to use the best timing properties
for good performance on most processors without major performance degradation
on any of them.

native Set the parameters for the best performance on the host environment.

core2 Optimize for the Intel Core2 processor.

nehalem Optimize for the Intel Nehalem processor.

opteron Optimize for the AMD Opteron processor.

penryn Optimize for the Intel Penryn processor.

pentium Uses timing properties of the x86 Pentium architecture

pentium_pro Uses timing properties of the x86 Pentium Pro architecture

pentium3 Uses the timing properties of the x86 Pentium 3 architecture.

pentium4 Uses the timing properties of the x86 Pentium 4 architecture.

amdfam10 Optimize for the AMD AMDFAM10 processor.

sandybridge Intel Sandy Bridge processor

ivybridge Intel Ivy Bridge processor

haswell Intel Haswell processor

westmere Intel Westmere processor

B.2 cc Options

Appendix B • C Compiler Options Reference 259

B.2.98 -xcode[=v]

(SPARC) Specify code address space.

Note - Build shared objects by specifying -xcode=pic13 or -xcode=pic32. While you can build
workable shared objects with -m64 -xcode=abs64 they will be inefficient. Shared objects built
with -m64, -xcode=abs32, or -m64, -xcode=abs44 will not work.

The following table lists the values for v.

TABLE B-24 The -xcode Flags

Value Meaning

abs32 This is the default on 32-bit architectures. Generates 32-bit absolute addresses. Code + data + BSS
size is limited to 2**32 bytes.

abs44 This is the default on 64-bit architectures. Generates 44-bit absolute addresses. Code + data + BSS
size is limited to 2**44 bytes. Available only on 64–bit architectures.

abs64 Generates 64-bit absolute addresses. Available only on 64-bit architectures.

pic13 Generates position-independent code for use in shared libraries (small model). Equivalent to -
Kpic. Permits references to at most 2**11 unique external symbols on 32-bit architectures, 2**10
on 64-bit architectures.

pic32 Generates position-independent code for use in shared libraries (large model). Equivalent to -KPIC.
Permits references to at most 2**30 unique external symbols on 32-bit architectures, 2**29 on 64-
bit architectures.

The default is -xcode=abs32 for 32–bit architectures. The default for 64–bit architectures is-
xcode=abs44.

When building shared dynamic libraries, the default -xcode values of abs44 and abs32 will not
work with 64–bit architectures. Specify -xcode=pic13 or -xcode=pic32 instead. Two nominal
performance costs with -xcode=pic13 and -xcode=pic32 on SPARC are:.

■ A routine compiled with either -xcode=pic13 or -xcode=pic32 executes a few extra
instructions upon entry to set a register to point at a table (_GLOBAL_OFFSET_TABLE_) used
for accessing a shared library’s global or static variables.

■ Each access to a global or static variable involves an extra indirect memory reference
through _GLOBAL_OFFSET_TABLE_. If the compilation includes -xcode=pic32, there are two
additional instructions per global and static memory reference.

When considering these costs, remember that the use of -xcode=pic13 and -xcode=pic32 can
significantly reduce system memory requirements due to the effect of library code sharing.
Every page of code in a shared library compiled -xcode=pic13 or -xcode=pic32 can be shared
by every process that uses the library. If a page of code in a shared library contains even a single

B.2 cc Options

260 Oracle Solaris Studio 12.4: C User's Guide • March 2015

non-pic (that is, absolute) memory reference, the page becomes nonsharable, and a copy of the
page must be created each time a program using the library is executed.

The easiest way to tell whether a .o file has been compiled with -xcode=pic13 or -
xcode=pic32 is by using the nm command:

% nm file.o | grep _GLOBAL_OFFSET_TABLE_ U _GLOBAL_OFFSET_TABLE_

A .o file containing position-independent code contains an unresolved external reference to
_GLOBAL_OFFSET_TABLE_, as indicated by the letter U.

To determine whether to use -xcode=pic13 or -xcode=pic32, check the size of the Global
Offset Table (GOT) by using elfdump -c looking for the section header sh_name: .got.
The sh_size value is the size of the GOT. If the GOT is less than 8,192 bytes, specify -
xcode=pic13. Otherwise specify -xcode=pic32.See the elfdump(1) man page for more
information.

Follow these guidelines to determine how you should use -xcode:

■ If you are building an executable, do not use -xcode=pic13 or -xcode=pic32.
■ If you are building an archive library only for linking into executables, do not use -

xcode=pic13 or -xcode=pic32.
■ If you are building a shared library, start with -xcode=pic13 and, once the GOT size

exceeds 8,192 bytes, use -xcode=pic32.
■ If you are building an archive library for linking into shared libraries, use -xcode=pic32.

B.2.99 -xcrossfile

Obsolete, do not use. Use -xipo instead. -xcrossfile is an alias for —xipo=1.

B.2.100 -xcsi

Allows the C compiler to accept source code written in locales that do not conform to the ISO C
source character code requirements. These locales include ja_JP.PCK.

The compiler translation phases required to handle such locales may result in significantly
longer compilation times. You should only use this option when you compile source files that
contain source characters from one of these locales.

The compiler does not recognize source code written in locales that do not conform to the ISO
C source character code requirements unless you specify -xcsi.

B.2 cc Options

Appendix B • C Compiler Options Reference 261

B.2.101 -xdebugformat=[stabs|dwarf]

Specify -xdebugformat=dwarf if you maintain software which reads debugging information
in the DWARF format. This option causes the compiler to generate debugging information by
using the DWARF standard format and is the default.

TABLE B-25 The -xdebugformat Flags

Value Meaning

stabs -xdebugformat=stabs generates debugging information using the STABS standard
format.

dwarf -xdebugformat=dwarf generates debugging information using the DWARF standard
format (default).

If you do not specify -xdebugformat, the compiler assumes -xdebugformat=dwarf. This option
requires an argument.

This option affects the format of the data that is recorded with the -g option. Some small
amount of debugging information is recorded even without -g, and the format of that
information is also controlled with this option. Therefore, -xdebugformat has an effect even
when -g is not used.

The dbx and Performance Analyzer software understand both STABS and DWARF format so
using this option does not have any effect on the functionality of either tool.

See the dumpstabs(1) and dwarfdump(1) man pages for more information.

B.2.102 -xdebuginfo=a[,a...]
Control how much debugging and observability information is emitted.

The term tagtype refers to tagged types: structs, unions, enums, and classes.

The following list contains the possible values for suboptions a. The prefix no% applied to a
suboption disables that suboption. The default is -xdebuginfo=%none. Specifying -xdebuginfo
without a suboption is forbidden.

%none No debugging information is generated. This is the default.

[no%]line Emit line number and file information.

[no%]param Emit location list info for parameters. Emit full type information for
scalar values (for example, int, char *) and type names but not full
definitions of tagtypes.

B.2 cc Options

262 Oracle Solaris Studio 12.4: C User's Guide • March 2015

[no%]variable Emit location list information for lexically global and local variables,
including file and function statics but excluding class statics and externs.
Emit full type information for scalar values such as int and char * and
type names but not full definitions of tagtypes.

[no%]decl Emit information for function and variable declarations, member
functions, and static data members in class declarations.

[no%]tagtype Emit full type definitions of tagtypes referenced from param and
variable datasets, as well as template definitions.

[no%]macro Emit macro information.

[no%]codetag Emit DWARF codetags (also known as Stabs N_PATCH). This is information
regarding bitfields, structure copy, and spills used by RTC and discover.

[no%]hwcpro Generate information critical to hardware counter profiling. This
information includes ldst_map, a mapping from ld/st instructions to the
symbol table entry being referenced, and branch_target table of branch-
target addresses used to verify that backtracking did not cross a branch-
target. See -xhwcprof for more information.

Note - ldst_map requires the presence of tagtype information. The driver will issue an error if
this requirement is not met.

These are macros which expand to combinations of -xdebuginfo and other options as follows:

-g = -g2

-gnone =

 -xdebuginfo=%none

 -xglobalize=no

 -xpatchpadding=fix

 -xkeep_unref=no%funcs,no%vars

-g1 =

 -xdebuginfo=line,param,codetag

 -xglobalize=no

 -xpatchpadding=fix

 -xkeep_unref=no%funcs,no%vars

-g2 =

 -xdebuginfo=line,param,decl,variable,tagtype,codetag

 -xglobalize=yes

 -xpatchpadding=fix

 -xkeep_unref=funcs,vars

-g3 =

 -xdebuginfo=line,param,decl,variable,tagtype,codetag,macro

B.2 cc Options

Appendix B • C Compiler Options Reference 263

 -xglobalize=yes

 -xpatchpadding=fix

 -xkeep_unref=funcs,vars

B.2.103 -xdepend=[yes|no]
Analyzes loops for interiteration data dependencies and does loop restructuring, including loop
interchange, loop fusion, and scalar replacement.

-xdepend defaults to -xdepend=on for all optimization levels -xO3 and above. Specifying an
explicit setting of -xdepend overrides any default setting.

Specifying -xdepend without an argument is equivalent to -xdepend=yes.

Dependency analysis can help on single-processor systems. However, if you use -xdepend
on single-processor systems, you should not also specify -xautopar because the -xdepend
optimization will be done for a multiprocessor system.

B.2.104 -xdryrun

This option is a macro for -###.

B.2.105 -xdumpmacros[=value[,value...]]
Use this option when you want to see how macros are behaving in your program. This option
provides information such as macro defines, undefines, and instances of usage. It prints
output to the standard error (stderr), based on the order in which macros are processed. The
-xdumpmacros option is in effect through the end of the file or until it is overridden by the
dumpmacros or end_dumpmacros pragma. See “2.11.6 dumpmacros” on page 43.

The following table lists the valid arguments for value. The prefix no% disables the associated
value.

TABLE B-26 -xdumpmacros Values

Value Meaning

[no%]defs Print all macro defines.

[no%]undefs Print all macro undefines.

[no%]use Print information about macros used.

[no%]loc Print location (path name and line number) also for defs, undefs, and use.

[no%]conds Print use information for macros used in conditional directives.

B.2 cc Options

264 Oracle Solaris Studio 12.4: C User's Guide • March 2015

Value Meaning

[no%]sys Print all macros defines, undefines, and use information for macros in system header
files.

%all Sets the option to -xdumpmacros=defs,undefs,use,loc,conds,sys. A good way to
use this argument is in conjunction with the [no%] form of the other arguments. For
example, -xdumpmacros=%all,no%sys would exclude system header macros from the
output but still provide information for all other macros.

%none Do not print any macro information.

The option values accumulate, so specifying -xdumpmacros=sys -xdumpmacros=undefs has the
same effect as -xdumpmacros=undefs,sys.

Note - The sub-options loc, conds, and sys are qualifiers for defs, undefs and use options. By
themselves, loc, conds, and sys have no effect. For example, -xdumpmacros=loc,conds,sys
has no effect.

Specifying -xdumpmacros without any arguments defaults to -xdumpmacros=defs,undefs,sys.
The default when not specifying -xdumpmacros is -xdumpmacros=%none.

If you use the option -xdumpmacros=use,no%loc, the name of each macro that is used is printed
only once. However, if you want more detail, use the option -xdumpmacros=use,loc so the
location and macro name is printed every time a macro is used.

Consider the following file t.c:

example% cat t.c
#ifdef FOO

#undef FOO

#define COMPUTE(a, b) a+b

#else

#define COMPUTE(a,b) a-b

#endif

int n = COMPUTE(5,2);

int j = COMPUTE(7,1);

#if COMPUTE(8,3) + NN + MM

int k = 0;

#endif

The following examples show the output for file t.c based on the defs, undefs, sys, and loc
arguments.

example% cc -c -xdumpmacros -DFOO t.c
#define __SunOS_5_9 1

#define __SUNPRO_C 0x512

#define unix 1

#define sun 1

#define sparc 1

#define __sparc 1

#define __unix 1

B.2 cc Options

Appendix B • C Compiler Options Reference 265

#define __sun 1

#define __BUILTIN_VA_ARG_INCR 1

#define __SVR4 1

#define __SUNPRO_CC_COMPAT 5

#define __SUN_PREFETCH 1

#define FOO 1

#undef FOO

#define COMPUTE(a, b) a + b

example% cc -c -xdumpmacros=defs,undefs,loc -DFOO -UBAR t.c
command line: #define __SunOS_5_9 1

command line: #define __SUNPRO_C 0x512

command line: #define unix 1

command line: #define sun 1

command line: #define sparc 1

command line: #define __sparc 1

command line: #define __unix 1

command line: #define __sun 1

command line: #define __BUILTIN_VA_ARG_INCR 1

command line: #define __SVR4 1

command line: #define __SUN_PREFETCH 1

command line: #define FOO 1

command line: #undef BAR

t.c, line 2: #undef FOO

t.c, line 3: #define COMPUTE(a, b) a + b

The following examples show how the use, loc, and conds arguments report macro behavior in
file t.c:

example% cc -c -xdumpmacros=use t.c
used macro COMPUTE

example% cc -c -xdumpmacros=use,loc t.c
t.c, line 7: used macro COMPUTE

t.c, line 8: used macro COMPUTE

example% cc -c -xdumpmacros=use,conds t.c
used macro FOO

used macro COMPUTE

used macro NN

used macro MM

example% cc -c -xdumpmacros=use,conds,loc t.c
t.c, line 1: used macro FOO

t.c, line 7: used macro COMPUTE

t.c, line 8: used macro COMPUTE

t.c, line 9: used macro COMPUTE

t.c, line 9: used macro NN

t.c, line 9: used macro MM

Consider the file y.c:

example% cat y.c
#define X 1

B.2 cc Options

266 Oracle Solaris Studio 12.4: C User's Guide • March 2015

#define Y X

#define Z Y

int a = Z;

The following example shows the output from -xdumpmacros=use,loc based on the macros in
y.c:

example% cc -c -xdumpmacros=use,loc y.c
y.c, line 4: used macro Z

y.c, line 4: used macro Y

y.c, line 4: used macro X

Pragma dumpmacros/end_dumpmacros overrides the scope of the -xdumpmacros command-line
option.

B.2.106 -xe

Performs syntax and semantic checking on the source file but does not produce any object or
executable code.

B.2.107 -xF[=v[,v...]]
Enables optimal reordering of functions and variables by the linker.

This option instructs the compiler to place functions or data variables into separate section
fragments, which enables the linker, using directions in a mapfile specified by the linker’s -M
option, to reorder these sections to optimize program performance. This optimization is most
effective when page-fault time constitutes a significant fraction of program runtime.

Reordering of variables can help solve the following problems that negatively affect runtime
performance:

■ Cache and page contention caused by unrelated variables that are near each other in
memory.

■ Unnecessarily large work-set size as a result of related variables that are not near each other
in memory.

■ Unnecessarily large work-set size as a result of unused copies of weak variables that
decrease the effective data density.

Reordering variables and functions for optimal performance requires the following operations:

1. Compiling and linking with -xF.
2. Following the instructions about generating mapfiles for functions or for data in the Oracle

Solaris Studio Performance Analyzer manual and Oracle Solaris Linker and Libraries
Guide.

3. Relinking with the new mapfile by using the linker’s -M option.

B.2 cc Options

Appendix B • C Compiler Options Reference 267

4. Re-executing under the Analyzer to verify improvement.

B.2.107.1 Values

The following table lists the values for v.

TABLE B-27 -xF Values

Value Meaning

func Fragment functions into separate sections.

gbldata Fragment global data (variables with external linkage) into separate sections.

lcldata Fragment local data (variables with internal linkage) into separate sections.

%all Fragment functions, global data, and local data.

%none Fragment nothing.

Precede the values (other than %all and %none) with no% to disable the suboption. For example
no%func.

If you do not specify -xF, the default is -xF=%none. If you specify -xF without any arguments,
the default is -xF=%none,func.

Using -xF=lcldata inhibits some address calculation optimizations, so you should use this flag
only when it is experimentally justified.

See the analyzer(1), and ld(1) man pages.

B.2.108 -xglobalize[={yes|no}]
Control globalization of file static variables but not functions.

Globalization is a technique needed by fix and continue and interprocedural optimization
whereby file static symbols are promoted to global while a prefix is added to the name to keep
identically named symbols distinct.

The default is -xglobalize=no. Specifying -xglobalize is equivalent to specifying -
xglobalize=yes.

B.2.108.1 Interactions

See -xpatchpadding.

-xipo requires globalization as well and will override -xglobalize.

B.2 cc Options

268 Oracle Solaris Studio 12.4: C User's Guide • March 2015

B.2.109 -xhelp=flags

Displays online help information.

-xhelp=flags displays a summary of the compiler options.

B.2.110 -xhwcprof

(SPARC) Enables compiler support for hardware counter-based profiling.

When -xhwcprof is enabled, the compiler generates information that helps tools associate
profiled load and store instructions with the data-types and structure members (in conjunction
with symbolic information produced with -g to which they refer. It associates profile data with
the data space of the target rather than the instruction space. It provides insight into behavior
that is not easily obtained from only instruction profiling.

You can compile a specified set of object files with -xhwcprof. However, -xhwcprof is most
useful when applied to all object files in the application, identifying and correlating all memory
references distributed in the application’s object files.

If you are compiling and linking in separate steps, use -xhwcprof at link time as well. Future
extensions to -xhwcprof might require its use at link time. For a complete list of all compiler
options that must be specified at both compile time and at link time, see Table A-2.

An instance of -xhwcprof=enable or -xhwcprof=disable overrides all previous instances of -
xhwcprof in the same command line.

-xhwcprof is disabled by default. Specifying -xhwcprof without any arguments is the
equivalent to -xhwcprof=enable.

-xhwcprof requires that optimization be enabled and that the debug data format be set to
DWARF (-xdebugformat=dwarf), which is the default with current Oracle Solaris Studio
compilers. The occurrence of -xhwcprof and -xdebugformat=stabs on the same command line
is not permitted.

-xhwcprof uses -xdebuginfo to automatically enable the minimum amount of debugging
information it needs, so -g is not required.

The combination of -xhwcprof and -g increases compiler temporary file storage requirements
by more than the sum of the increases due to -xhwcprof and -g specified alone.

-xhwcprof is implemented as a macro that expands to various other, more primitive, options as
follows:

-xhwcprof

 -xdebuginfo=hwcprof,tagtype,line

B.2 cc Options

Appendix B • C Compiler Options Reference 269

-xhwcprof=enable

 -xdebuginfo=hwcprof,tagtype,line

-xhwcprof=disable

 -xdebuginfo=no%hwcprof,no%tagtype,no%line

The following command compiles example.c and specifies support for hardware counter
profiling and symbolic analysis of data types and structure members using DWARF symbols:

example% cc -c -O -xhwcprof -g -xdebugformat=dwarf example.c

For more information on hardware counter-based profiling, see the Oracle Solaris Studio
Performance Analyzer manual.

B.2.111 -xinline=list

The format of the list for -xinline is as follows: [{%auto,func_name,no%func_name}[,
{%auto,func_name,no%func_name}]...]

-xinline tries to inline only those functions specified in the optional list. The list is either
empty, or contains a comma-separated list of func_name, no%func_name, or %auto, where
func_name is a function name. -xinline only has an effect at -xO3 or higher.

TABLE B-28 -xinline Flags

Flag Meaning

%auto Specifies that the compiler is to attempt to automatically inline all functions in the
source file. %auto takes effect only at -xO4 or higher optimization levels. %auto is
silently ignored at -xO3 or lower optimization levels.

func_name Specifies that the compiler is to attempt to inline the named function.

no%func_name Specifies that the compiler is not to inline the named function.

The list of values accumulates from left to right. For a specification of -xinline=%auto,no%foo
the compiler attempts to inline all functions except foo. For a specification of -xinline=%bar,
%myfunc,no%bar the compiler only tries to inline myfunc.

When you compile with optimization set at -xO4 or above, the compiler normally tries to inline
all references to functions defined in the source file. You can restrict the set of functions the
compiler attempts to inline by specifying the -xinline option. Specifying only -xinline=
without naming any functions or %auto indicates that none of the routines in the source files
are to be inlined. If you specify func_name and no%func_name without specifying %auto, the
compiler only attempts to inline those functions specified in the list. If %auto is specified in the
list of values with the -xinline option at optimization level set at -xO4 or above, the compiler
attempts to inline all functions that are not explicitly excluded by no%func_name.

A function is not inlined if any of the following conditions apply. No warning is issued.

B.2 cc Options

270 Oracle Solaris Studio 12.4: C User's Guide • March 2015

■ Optimization is less than -xO3.
■ The routine cannot be found.
■ Inlining the routine does not look practicable to the optimizer.
■ The source for the routine is not in the file being compiled (however, see -xipo).

If you specify multiple -xinline options on the command line, they do not accumulate. The
last -xinline on the command line specifies the functions that the compiler attempts to inline.

See also -xldscope.

B.2.112 -xinline_param=a[,a[,a]...]

Use this option to manually change the heuristics used by the compiler for deciding when to
inline a function call.

This option only has an effect at -O3 or higher. The following sub-options have an effect only at
-O4 or higher when automatic inlining is on.

In the following sub-options n must be a positive integer; a can be one of the following:

TABLE B-29 -xinline_param Sub-options

Sub-option Meaning

default Set the values of all the sub-options to their default values.

max_inst_hard[:n] Automatic inlining only considers functions smaller than n pseudo
instructions (counted in compiler's internal representation) as possible
inline candidates.

Under no circumstances will a function larger than this be considered for
inlining.

max_inst_soft[:n] Set inlined function's size limit to n pseudo instructions (counted in
compiler's internal representation).

Functions of greater size than this may sometimes be inlined.

When interacting with max_inst_hard, the value of max_inst_soft should
be equal to or smaller than the value of max_inst_hard, i.e, max_inst_
soft <= max_inst_hard.

In general, the compiler's automatic inliner only inlines calls whose called
function's size is smaller than the value of max_inst_soft. In some cases a
function may be inlined when its size is larger than the value of max_inst_
soft but smaller than that of max_inst_hard. An example of this would be
if the parameters passed into a function were constants.

When deciding whether to change the value of max_inst_hard or max_
inst_soft for inlining one specific call site to a function, use -xinline_
report=2 to report detailed inlining message and follow the suggestion in
the inlining message.

B.2 cc Options

Appendix B • C Compiler Options Reference 271

Sub-option Meaning

max_function_inst[:n] Allow functions to increase due to automatic inlining by up to n pseudo
instructions (counted in compiler's internal representation).

max_growth[:n] The automatic inliner is allowed to increase the size of the program by up
to n% where the size is measured in pseudo instructions.

min_counter[:n] The minimum call site frequency counter as measured by profiling
feedback (-xprofile) in order to consider a function for automatic
inlining.

This option is valid only when the application is compiled with profiling
feedback (-xprofile=use).

level[:n] Use this suboption to control the degree of automatic inlining that is
applied. The compiler will inline more functions with higher settings for -
xinline_param=level.

n must be one of 1, 2, or 3.

The default value of n is 2 when this option is not specified, or when the
options is specified without :n.

Specify the level of automatic inline:

 level:1 basic inlining
 level:2 medium inlining (default)
 level:3 aggressive inlining

The level decides the specified values for the combination of the
following inlining parameters:

 max_growth
 + max_function_inst
 + max_inst
 + max_inst_call

When level = 1, all the parameters are half the values of the default.

When level = 2, all the parameters are the default value.

When level = 3, all the parameters are double the values of the default.

max_recursive_depth[:n] When a function calls itself either directly or indirectly, it is said to be
making a recursive call.

This suboption allows a recursive call to be automatically inlined up to n
levels.

max_recursive_inst[:n] Specifies the maximum number of pseudo instructions (counted in
compiler's internal representation) the caller of a recursive function can
grow to by performing automatic recursive inlining.

When interactions between max_recursive_inst and max_recursive_
depth occur, recursive function calls will be inlined until either the max_
recursive_depth number of recursive calls, or until the size of the
function being inlined into exceeds max_recursive_inst. The settings
of these two parameters control the degree of inlining of small recursive
functions.

B.2 cc Options

272 Oracle Solaris Studio 12.4: C User's Guide • March 2015

If -xinline_param=default is specified, the compiler will set all the values of the subopitons
to the default values.

If the option is not specified, the default is -xinline_param=default.

The list of values and options accumulate from left to right. So for a specification of -
xinline_param=max_inst_hard:30,..,max_inst_hard:50, the value max_inst_hard:50 will
be passed to the compiler.

If multiple -xinline_param options are specified on the command line, the list of sub-options
likewise accumulate from left to right. For example, the effect of

 -xinline_param=max_inst_hard:50,min_counter:70 ...

 -xinline_param=max_growth:100,max_inst_hard:100

will be the same as that of

-xinline_param=max_inst_hard:100,min_counter:70,max_growth:100

B.2.113 -xinline_report[=n]

This option generates a report written to standard output on the inlining of functions by the
compiler. The type of report depends on the value of n, which must be 0, 1, or 2.

0 No report is generated.

1 A summary report of default values of inlining parameters is generated.

2 A detailed report of inlining messages is generated, showing which
callsites are inlined and which are not, with a short reason for not inlining
a callsite. In some cases, this report will include suggested values for -
xinline_param that can be used to inline a callsite that is not inlined.

When -xinline_report is not specified, the default value for n is 0. When -xinline_report is
specified without =n, the default value is 1.

When -xlinkopt is present, the inlining messages about the callsites that are not inlined might
not be accurate.

B.2.114 -xinstrument=[no%]datarace

Specify this option to compile and instrument your program for analysis by the Thread
Analyzer. For more information on the Thread Analyzer, see the tha(1) man page for details.

B.2 cc Options

Appendix B • C Compiler Options Reference 273

You can then use the Performance Analyzer to run the instrumented program with collect -r
races to create a data-race-detection experiment. If you run the instrumented code stand-alone,
it runs more slowly.

You can specify -xinstrument=no%datarace to turn off preparation of source code for the
thread analyzer. This is the default.

You must specify -xinstrument= with an argument.

If you compile and link in separate steps, you must specify -xinstrument=datarace in both the
compilation and linking steps.

This option defines the preprocessor token __THA_NOTIFY. You can specify #ifdef
__THA_NOTIFY to guard calls to libtha(3) routines.

This option also sets -g.

B.2.115 -xipo[=a]

Replace a with 0, 1, or 2. -xipo without any arguments is equivalent -xipo=1. -xipo=0 is the
default setting and disables -xipo. With -xipo=1, the compiler performs inlining across all
source files.

With -xipo=2, the compiler performs interprocedural aliasing analysis as well as optimizations
of memory allocation and layout to improve cache performance.

The compiler performs partial-program optimizations by invoking an interprocedural analysis
component. It performs optimizations across all object files in the link step, and is not limited
to just the source files of the compile command. However, whole-program optimizations
performed with -xipo do not include assembly (.s) source files.

You must specify -xipo both at compile time and at link time. For a complete list of all
compiler options that must be specified at both compile time and at link time, see Table A-2.

The -xipo option generates significantly larger object files due to the additional information
needed to perform optimizations across files. However, this additional information does not
become part of the final executable binary file. Any increase in the size of the executable
program is due to the additional optimizations performed. The object files created in the
compilation steps have additional analysis information compiled within them to permit crossfile
optimizations to take place at the link step.

If you have .o files compiled with the -xipo option from different compiler versions, mixing
these files can result in failure with an error message about "IR version mismatch". When using
the -xipo option, all the files should be compiled with the same version of the compiler.

B.2 cc Options

274 Oracle Solaris Studio 12.4: C User's Guide • March 2015

-xipo is particularly useful when compiling and linking large multifile applications. Object
files compiled with this flag have analysis information compiled within them that enables
interprocedural analysis across source and precompiled program files.

Analysis and optimization is limited to the object files compiled with -xipo, and does not
extend to object files or libraries.

-xipo is multiphased, so you need to specify -xipo for each step if you compile and link in
separate steps.

Other important information about -xipo:

■ It requires an optimization level of at least -xO4.
■ Objects that are compiled without -xipo can be linked freely with objects that are compiled

with -xipo.

B.2.115.1 -xipo Examples

In this example, compilation and linking occur in a single step:

cc -xipo -xO4 -o prog part1.c part2.c part3.c

The optimizer performs crossfile inlining across all three source files. This process is done
in the final link step, so the compilation of the source files need not all take place in a single
compilation. It could take place over a number of separate compilations, each specifying -xipo.

In this example, compilation and linking occur in separate steps:

cc -xipo -xO4 -c part1.c part2.c

cc -xipo -xO4 -c part3.c

cc -xipo -xO4 -o prog part1.o part2.o part3.o

A restriction is that libraries, even if compiled with -xipo, do not participate in crossfile
interprocedural analysis, as shown in the following example:

cc -xipo -xO4 one.c two.c three.c

ar -r mylib.a one.o two.o three.o

...

cc -xipo -xO4 -o myprog main.c four.c mylib.a

In this example, interprocedural optimizations are performed between one.c, two.c and
three.c, and between main.c and four.c, but not between main.c or four.c and the routines
on mylib.a. (The first compilation might generate warnings about undefined symbols, but the
interprocedural optimizations are performed because it is a compile and link step.)

B.2 cc Options

Appendix B • C Compiler Options Reference 275

B.2.115.2 When Not To Use -xipo=2 Interprocedural Analysis

The compiler tries to perform whole-program analysis and optimizations as it works with the
set of object files in the link step. The compiler makes the following two assumptions for any
function (or subroutine) foo() defined in this set of object files:

■ foo() is not called explicitly by another routine that is defined outside this set of object files
at runtime.

■ The calls to foo() from any routine in the set of object files are not interposed upon by a
different version of foo() defined outside this set of object files.

Do not compile with either -xipo=1 or -xipo=2 if assumption 2 is not true.

As an example, consider interposing on the function malloc() with your own version and
compiling with -xipo=2. Consequently, all the functions in any library that reference malloc()
that are linked with your code have to be compiled with -xipo=2 also and their object files need
to participate in the link step. Because this process might not be possible for system libraries, do
not compile your version of malloc() with -xipo=2.

As another example, suppose that you build a shared library with two external calls, foo() and
bar() inside two different source files. Furthermore, suppose that bar() calls foo(). If foo()
could be interposed at runtime, then do not compile the source file for foo() or for bar() with -
xipo=1 or -xipo=2. Otherwise, foo() could be inlined into bar(), which could cause incorrect
results.

B.2.116 -xipo_archive=[a]

The -xipo_archive option enables the compiler to optimize object files that are passed to the
linker with object files that were compiled with -xipo and that reside in the archive library (.a)
before producing an executable. Any object files contained in the library that were optimized
during the compilation are replaced with their optimized version.

The following table lists the values for a.

TABLE B-30 -xipo_archive Flags

Value Meaning

writeback The compiler optimizes object files passed to the linker with object files compiled
with -xipo that reside in the archive library (.a) before producing an executable.
Any object files contained in the library that were optimized during the compilation
are replaced with an optimized version.

For parallel links that use a common set of archive libraries, each link should create
its own copy of archive libraries to be optimized before linking.

readonly The compiler optimizes object files passed to the linker with object files compiled
with -xipo that reside in the archive library (.a) before producing an executable.

B.2 cc Options

276 Oracle Solaris Studio 12.4: C User's Guide • March 2015

Value Meaning

The option -xipo_archive=readonly enables cross-module inlining and
interprocedural data flow analysis of object files in an archive library specified at
link time. However, it does not enable cross-module optimization of the archive
library's code except for code that has been inserted into other modules by cross-
module inlining.

To apply cross-module optimization to code within an archive library, -xipo_
archive=writeback is required. Note that this option modifies the contents of the
archive library from which the code was extracted.

none This is the default. There is no processing of archive files. The compiler does not
apply cross-module inlining or other cross-module optimizations to object files
compiled using -xipo and extracted from an archive library at link time. To do that,
both -xipo and either -xipo_archive=readonly or -xipo_archive=writeback must
be specified at link time.

If you do not specify a setting for -xipo_archive, the compiler sets it to -xipo_archive=none.

You must specify -xipo_archive= with a value.

B.2.117 -xipo_build=[yes|no]

Building -xipo without -xipo_build involves two passes through the compiler—once when
producing the object files, and then again later at link time when performing the cross file
optimization. Setting -xipo_build reduces compile time by avoiding optimizations during the
initial pass and optimizing only at link time. Optimization is not needed for the object files, as
with -xipo it will be performed at link time. If unoptimized object files built with -xipo_build
are linked without including -xipo to perform optimization, the application will fail to link with
an unresolved symbol error.

B.2.117.1 -xipo_build Examples

The following example performs a fast build of .o files, followed by crossfile optimization at
link time:

% cc -O -xipo -xipo_build -o code1.o -c code1.c

% cc -O -xipo -xipo_build -o code2.o -c code2.c

% cc -O -xipo -o a.out code1.o code2.o

The -xipo_build will turn off -O when creating the .o files, to build these quickly. Full -O
optimization will be performed at link time as part of -xipo crossfile optimization.

The following example links without using -xipo.

% cc -O -o a.out code1.o code2.o

B.2 cc Options

Appendix B • C Compiler Options Reference 277

If either code1.o or code2.o were generated with -xipo_build, the result will be a link-time
failure indicating the symbol __unoptimized_object_file is unresolved.

When building .o files separately, the default behavior is -xipo_build=no. However, when the
executable or library is built in a single pass from source files, -xipo_build will be implicitly
enabled. For example:

% cc -fast -xipo a.c b.c c.c

will implicitly enable -xipo_build=yes for the first passes that generate a.o, b.o, and c.o.
Include the option -xipo_build=no to disable this behavior.

B.2.118 -xivdep[=p]

Disable or set interpretation of #pragma ivdep pragmas (ignore vector dependencies).

The ivdep pragmas tell a compiler to ignore some or all loop-carried dependences on array
references that it finds in a loop for purposes of optimization. This enables a compiler
to perform various loop optimizations such as microvectorization, distribution, software
pipelining, and so on., which would not be otherwise possible. It is used in cases where the user
knows either that the dependences do not matter or that they never occur in practice.

The interpretation of #pragma ivdep directives depend upon the value of the —xivdep option.

The following list gives the values for p and their meaning.

loop ignore assumed loop-carried vector dependences

loop_any ignore all loop-carried vector dependences

back ignore assumed backward loop-carried vector dependences

back_any ignore all backward loop-carried vector dependences

none do not ignore any dependences (disables ivdep pragmas)

These interpretations are provided for compatibility with other vendor's interpretations of the
ivdep pragma.

B.2.119 -xjobs{=n|auto}

Compile with multiple processes. If this flag is not specified, the default behavior is -
xjobs=auto.

B.2 cc Options

278 Oracle Solaris Studio 12.4: C User's Guide • March 2015

Specify the -xjobs option to set how many processes the compiler creates to complete its work.
This option can reduce the build time on a multi-cpu machine. Currently, -xjobs works only
with the -xipo option. When you specify -xjobs=n, the interprocedural optimizer uses n as the
maximum number of code generator instances it can invoke to compile different files.

Generally, a safe value for n is 1.5 multiplied by the number of available processors. Using a
value that is many times the number of available processors can degrade performance because
of context switching overheads among spawned jobs. Also, using a very high number can
exhaust the limits of system resources such as swap space.

When -xjobs=auto is specified, the compiler will automatically choose the appropriate number
of parallel jobs.

You must always specify -xjobs with a value. Otherwise, an error diagnostic is issued and
compilation aborts.

If -xjobs is not specified, the default behavior is -xjobs=auto. This can be overridden by
adding -xjobs=n to the command line. Multiple instances of -xjobs on the command line
override each other until the right-most instance is reached.

B.2.119.1 -xjobs Examples

The following example links with up to three parallel processes for -xipo:

% cc -xipo -xO4 -xjobs=3 t1.o t2.o t3.o

The following example links serially with a single process for -xipo:

% cc -xipo -xO4 -xjobs=1 t1.o t2.o t3.o

The following example links in parallel, with the compiler choosing the number of jobs for -
xipo:

% cc -xipo -xO4 t1.o t2.o t3.o

Note that this is exactly the same behavior as when explicitly specifying -xjobs=auto:

% cc -xipo -xO4 -xjobs=auto t1.o t2.o t3.o

B.2.120 -xkeep_unref[={[no%]funcs,[no%]vars}]

Keep definitions of unreferenced functions and variables. The no% prefix allows the compiler to
potentially remove the definitions.

The default is no%funcs,no%vars. Specifying -xkeep_unref is equivalent to specifying -
xkeep_unref=funcs,vars, meaning that -keep_unref keeps everything.

B.2 cc Options

Appendix B • C Compiler Options Reference 279

B.2.121 -xkeepframe[=[%all,%none,name,no%name]]

Prohibit stack related optimizations for the named functions (name).

%all Prohibit stack related optimizations for all the code.

%none Allow stack related optimizations for all the code.

This option is accumulative and can appear multiple times on the command line. For example,
—xkeepframe=%all —xkeepframe=no%func1 indicates that the stack frame should be kept for
all functions except func1. Also, —xkeepframe overrides —xregs=frameptr. For example, —
xkeepframe=%all —xregs=frameptr indicates that the stack should be kept for all functions,
but the optimizations for —xregs=frameptr would be ignored.

If not specified on the command line, the compiler assumes -xkeepframe=%none as the default.
If specified but without a value, the compiler assumes -xkeepframe=%all

B.2.122 -xlang=language

The -xlang flag can be used to override the default libc behavior as specified by the -std flag.
language must be one of the following:

c89 Specify runtime library behavior of libc to be in conformance with the
C90 standard.

c99 Specify runtime library behavior of libc be in conformance with the C99
standard.

c11 Equivalent to c99. The runtime library behavior of libc for c99 and c11
are identical.

When -xlang is not specified, the default value is c99 when -std=c99 has been specified and
c11 when -std=c11 has been specified. Otherwise the default value is c89.

The -Xc, -Xa, -Xt, -Xs, and -xc99 flags cannot be used if -xlang has been specified. Doing so
will result in an error being issued by the compiler.

If you compile and link in separate steps you must use the same values for -xlang in both steps.

To determine which driver to use for mixed-language linking, use the following language
hierarchy:

C++ Use the CC command. See the C++ Uder's Guide for details.

B.2 cc Options

280 Oracle Solaris Studio 12.4: C User's Guide • March 2015

Fortran 95 (or
Fortran 90)

Use the f95 command. See the Fortran User's Guide for details.

Fortran 77 Use f95 -xlang=f77. See the Fortran User's Guide for details.

C Use the cc command.

B.2.123 -xldscope={v}
Specify the -xldscope option to change the default linker scoping for the definition of extern
symbols. Changing the default can result in faster and safer shared libraries because the
implementation is better hidden.

v must be one of the following:

TABLE B-31 -xldscope Flags

Flag Meaning

global Global linker scoping is the least restrictive linker scoping. All references to the
symbol bind to the definition in the first dynamic module that defines the symbol.
This linker scoping is the current linker scoping for extern symbols.

symbolic Symbolic linker scoping is more restrictive than global linker scoping. All
references to the symbol from within the dynamic module being linked bind to
the symbol defined within the module. Outside of the module, the symbol appears
as though it were global. This linker scoping corresponds to the linker option -
Bsymbolic. See theld(1) man page for more information about the linker.

hidden Hidden linker scoping is more restrictive than symbolic and global linker scoping.
All references within a dynamic module bind to a definition within that module.
The symbol will not be visible outside of the module.

If you do not specify -xldscope, the compiler assumes -xldscope=global. The compiler issues
an error if you specify -xldscope without an argument. Multiple instances of this option on the
command line override each other until the rightmost instance is reached.

If you intend to allow a client to override a function in a library, you must be sure that the
function is not generated inline during the library build. The compiler inlines a function in the
following situations:

■ You specify the function name with -xinline.
■ You compile at -xO4 or higher, in which case inlining can happen automatically.
■ You use the inline specifier.
■ You use the inline pragma.
■ You use cross-file optimization.

For example, suppose library ABC has a default allocator function that can be used by library
clients, and is also used internally in the library:

B.2 cc Options

Appendix B • C Compiler Options Reference 281

void* ABC_allocator(size_t size) { return malloc(size); }

If you build the library at -xO4 or higher, the compiler inlines calls to ABC_allocator that occur
in library components. If a library user attempts to replace ABC_allocator with a customized
version, the replacement will not occur in library components that called ABC_allocator. The
final program will include different versions of the function.

Library functions declared with the __hidden or __symbolic specifiers can be generated inline
when building the library. These functions are not supposed to be overridden by users. For more
information, see “2.2 Linker Scoping Specifiers” on page 32.

Library functions declared with the __global specifier should not be declared inline, and
should be protected from inlining by use of the -xinline compiler option.

See also -xinline, -xO, -xipo, #pragma inline.

B.2.124 -xlibmieee

Forces IEEE 754 style return values for math routines in exceptional cases. In such cases, no
exception message is printed, and you should not rely on errno.

B.2.125 -xlibmil

Inlines some library routines for faster execution. This option selects the appropriate assembly
language inline templates for the floating-point option and platform for your system.

-xlibmil inlines a function regardless of any specification of the function as part of the -
xinline flag.

However, these substitutions can cause the setting of errno to become unreliable. If your
program depends on the value of errno, avoid this option. See also “2.13 Preserving the Value
of errno” on page 55.

B.2.126 -xlibmopt

Enables the compiler to use a library of optimized math routines. You must use default rounding
mode by specifying -fround=nearest when you use this option.

The math routine library is optimized for performance and usually generates faster code. The
results may be slightly different from those produced by the normal math library. If so, they
usually differ in the last bit.

B.2 cc Options

282 Oracle Solaris Studio 12.4: C User's Guide • March 2015

Note that these substitutions can cause the setting of errno to become unreliable. If your
program depends on the value of errno, avoid this option. For more information, see “2.13
Preserving the Value of errno” on page 55.

The order on the command line for this library option is not significant.

This option is set by the -fast option.

See also -fast and -xnolibmopt.

B.2.127 -xlic_lib=sunperf

(Obsolete) Use -library=sunperf to link with the Sun Performance Library.

B.2.128 -xlicinfo

This option is silently ignored by the compiler.

B.2.129 -xlinkopt[=level]
Instructs the compiler to perform link-time optimizations on relocatable object files. These
optimizations are performed at link time by analyzing the object binary code. The object files
are not rewritten but the resulting executable code might differ from the original object codes.

You must use -xlinkopt on at least some of the compilation commands for -xlinkopt to
be useful at link time. The optimizer can still perform some limited optimizations on object
binaries that are not compiled with -xlinkopt.

-xlinkopt optimizes code coming from static libraries that appear on the compiler command
line, but does not optimize code coming from shared (dynamic) libraries that appear on the
command line. You can also use -xlinkopt when you build shared libraries (compiling with -G
).

level sets the level of optimizations performed, and must be 0, 1, or 2. The optimization levels
are listed in the following table:

TABLE B-32 -xlinkopt Flags

Flag Meaning

0 The post-optimizer is disabled. (This is the default.)

1 Perform optimizations based on control flow analysis, including instruction cache
coloring and branch optimizations, at link time.

B.2 cc Options

Appendix B • C Compiler Options Reference 283

Flag Meaning

2 Perform additional data flow analysis, including dead-code elimination and address
computation simplification, at link time.

If you compile in separate steps, -xlinkopt must appear on both compile and link steps.

example% cc -c -xlinkopt a.c b.c

example% cc -o myprog -xlinkopt=2 a.o

For a complete list of all compiler options that must be specified at both compile time and at
link time, see Table A-2.

Note that the level parameter is only used when the compiler is linking. In the example, the
post- optimization level used is 2 even though the object binaries were compiled with an
implied level of 1.

Specifying -xlinkopt without a level parameter implies -xlinkopt=1.

The -xlinkopt option requires profile feedback (-xprofile) in order to optimize the program.
Profiling reveals the most- and least-used parts of the code, which enables the optimizer
to focus its effort accordingly. Link-time optimization is particularly important with large
applications where optimal placement of code can substantially reduce instruction cache misses.
Additionally, -xlinkopt is most effective when used to compile the whole program. Use this
option as follows:

example% cc -o progt -xO5 -xprofile=collect:prog file.c

example% progt

example% cc -o prog -xO5 -xprofile=use:prog -xlinkopt file.c

For details about using profile feedback, see “B.2.160 –xprofile=p” on page 304.

Do not use the -zcombreloc linker option when you compile with -xlinkopt.

Note that compiling with this option increases link time slightly. Object file sizes also increase,
but the size of the executable remains the same. Compiling with -xlinkopt and -g increases the
size of the executable by including debugging information.

B.2.130 -xloopinfo

Shows which loops are parallelized. Provides a brief reason for not parallelizing a loop. The
-xloopinfo option is valid only if -xautopar is specified; otherwise, the compiler issues a
warning.

To achieve faster execution, this option requires a multiprocessor system. On a single-processor
system, the generated code usually runs slower.

B.2 cc Options

284 Oracle Solaris Studio 12.4: C User's Guide • March 2015

B.2.131 -xM

Runs only the C preprocessor on the named C programs, requesting that the preprocessor
generate makefile dependencies and send the result to the standard output. See the make(1) man
page for details about make files and dependencies.

For example:

#include <unistd.h>

void main(void)

{}

generates this output:

e.o: e.c

e.o: /usr/include/unistd.h

e.o: /usr/include/sys/types.h

e.o: /usr/include/sys/machtypes.h

e.o: /usr/include/sys/select.h

e.o: /usr/include/sys/time.h

e.o: /usr/include/sys/types.h

e.o: /usr/include/sys/time.h

e.o: /usr/include/sys/unistd.h

If you specify -xM and -xMF, the compiler appends all makefile dependency information to the
file specified with -xMF.

B.2.132 -xM1

Generates makefile dependencies like -xM, but excludes /usr/include files. For example:

more hello.c
#include<stdio.h>

main()

{

 (void)printf(“hello\n”);

}

cc– xM hello.c
hello.o: hello.c

hello.o: /usr/include/stdio.h

Compiling with -xM1 does not report header file dependencies:

cc– xM1 hello.c
hello.o: hello.c

-xM1 is not available under -Xs mode.

If you specify -xM1 and -xMF, the compiler appends all makefile dependency information to the
file specified with -xMF.

B.2 cc Options

Appendix B • C Compiler Options Reference 285

B.2.133 -xMD

Generates makefile dependencies like -xM but compilation continues. -xMD generates an output
file for the makefile-dependency information derived from the -o output filename, if specified,
or the input source filename, replacing (or adding) the filename suffix with .d. If you specify -
xMD and -xMF, the preprocessor writes all makefile dependency information to the file specified
with -xMF. Compiling with -xMD -xMF or -xMD -o filename with more than one source file is not
allowed and generates an error. The dependency file is overwritten if it already exists.

B.2.134 -xMF filename

Use this option to specify a file for the makefile-dependency output. You cannot specify
individual filenames for multiple input files with -xMF on one command line. Compiling with -
xMD -xMF or -xMMD -xMF with more than one source file is not allowed and generates an error.
The dependency file is overwritten if it already exists.

This option cannot be used with -xM or -xM1.

B.2.135 -xMMD

Use this option to generate makefile dependencies excluding system header files. This option
provides the same functionality as -xM1, but compilation continues. -xMMD generates an output
file for the makefile-dependency information derived from the -o output filename, if specified,
or the input source filename, replacing (or adding) the filename suffix with .d . If you specify
-xMF, the compiler uses the filename you provide instead. Compiling with -xMMD -xMF or -
xMMD -o filename with more than one source file is not allowed and generates an error. The
dependency file is overwritten if it already exists.

B.2.136 -xMerge

Merges data segments into text segments. Data initialized in the object file produced by this
compilation is read-only and (unless linked with ld -N) is shared between processes.

The three options -xMerge -ztext -xprofile=collect should not be used together. While
-xMerge forces statically initialized data into read-only storage, -ztext prohibits position-
dependent symbol relocations in read-only storage, and -xprofile=collect generates statically
initialized, position-dependent symbol relocations in writable storage.

B.2 cc Options

286 Oracle Solaris Studio 12.4: C User's Guide • March 2015

B.2.137 -xmaxopt[=v]
This option limits the level of pragma opt to the level specified. v is one of off, 1, 2, 3, 4, 5. The
default value is -xmaxopt=off which causes pragma opt to be ignored. Specifying -xmaxopt
without supplying an argument is the equivalent of specifying -xmaxopt=5.

If you specify both -xO and -xmaxopt, the optimization level set with -xO must not exceed the -
xmaxopt value.

B.2.138 -xmemalign=ab

(SPARC) Use the -xmemalign option to control the assumptions that the compiler makes about
the alignment of data. By controlling the code generated for potentially misaligned memory
accesses and by controlling program behavior in the event of a misaligned access, you can more
easily port your code to the SPARC platform.

Specify the maximum assumed memory alignment and behavior of misaligned data accesses.
You must provide a value for both a (alignment) and b (behavior). a specifies the maximum
assumed memory alignment and b specifies the behavior for misaligned memory accesses. The
following table lists the alignment and behavior values for -xmemalign.

TABLE B-33 The -xmemalign Alignment and Behavior Flags

a b

1 Assume at most 1 byte alignment. i Interpret access and continue execution.

2 Assume at most 2 byte alignment. s Raise signal SIGBUS.

4 Assume at most 4 byte alignment. f For 64–bit SPARC (-m64) only:

Raise signal SIGBUS for alignments less or equal
to 4. Otherwise, interpret access and continue
execution. For 32–bit programs, the f flag is
equivalent to i.

8 Assume at most 8 byte alignment.

16 Assume at most 16 byte alignment

You must specify -xmemalign whenever you want to link to an object file that was compiled
with the value of b set to either i or f. For a complete list of all compiler options that must be
specified at both compile time and at link time, see Table A-2.

For memory accesses where the alignment is determinable at compile time, the compiler
generates the appropriate load/store instruction sequence for that alignment of data.

For memory accesses where the alignment cannot be determined at compile time, the compiler
must assume an alignment to generate the needed load/store sequence. The -xmemalign

B.2 cc Options

Appendix B • C Compiler Options Reference 287

option enables you to specify the maximum memory alignment of data to be assumed by the
compiler in these situations. It also specifies the error behavior to be followed at run time when
a misaligned memory access does take place.

If actual data alignment at runtime is less than the specified alignment, the misaligned access
attempt (a memory read or write) generates a trap. The two possible responses to the trap are

■ The OS converts the trap to a SIGBUS signal. If the program does not catch the signal, the
program stops. Even if the program catches the signal, the misaligned access attempt will
not have succeeded.

■ The OS handles the trap by interpreting the misaligned access and returning control to the
program as if the access had succeeded normally.

The following default values apply only when no -xmemalign option is present:

■ -xmemalgin=8i for all 32–bit platforms (-m32).
■ -xmemalign=8s for all 64–bit platforms (-m64).

The default when -xmemalign option is present but no value is given is -xmemalign=1i for all
platforms.

The following table describes how you can use -xmemalign to handle different alignment
situations.

TABLE B-34 Examples of -xmemalign

Command Situation

-xmemalign=1s There are many misaligned accesses so trap handling is too slow.

-xmemalign=8i There are occasional, intentional, misaligned accesses in code that is
otherwise correct.

-xmemalign=8s There should be no misaligned accesses in the program.

-xmemalign=2s You want to check for possible odd-byte accesses.

-xmemalign=2i You want to check for possible odd-byte access and you want the program
to work.

B.2.139 -xmodel=[a]

(x86) The -xmodel option enables the compiler to modify the form of 64-bit objects for Oracle
Solaris x86 platforms and should only be specified for the compilation of such objects.

This option is valid only when -m64 is also specified on 64–bit enabled x64 processors.

The following table lists the values for a.

B.2 cc Options

288 Oracle Solaris Studio 12.4: C User's Guide • March 2015

TABLE B-35 -xmodel Flags

Value Meaning

small This option generates code for the small model in which the virtual address
of code executed is known at link time and all symbols are known to be
located in the virtual addresses in the range from 0 to 2^31 - 2^24 - 1.

kernel Generates code for the kernel model in which all symbols are defined to be
in the range from 2^64 - 2^31 to 2^64 - 2^24.

medium Generates code for the medium model in which no assumptions are made
about the range of symbolic references to data sections. Size and address of
the text section have the same limits as the small code model. Applications
with large amounts of static data might require -xmodel=medium when
compiling with -m64.

This option is not cumulative so the compiler sets the model value according to the rightmost
instance of -xmodel on the command line.

If you do not specify -xmodel, the compiler assumes -xmodel=small. Specifying -xmodel
without an argument is an error.

You do not have to compile all translation units with this option. You can compile select files as
long as you ensure the object you are accessing is within reach.

Be aware that not all Linux systems support the medium model.

B.2.140 -xnolib

Does not link any libraries by default; that is, no -l options are passed to ld(1). Normally, the
cc driver passes -lc to ld.

When you use -xnolib, you have to pass all the -l options yourself.

B.2.141 -xnolibmil

Does not inline math library routines. Use this option after the –fast option for example:

% cc– fast– xnolibmil....

B.2.142 -xnolibmopt

Prevents the use of an optimized math library by the compiler by disabling any previously
specified -xlibmopt option. For example, use this option after -fast, which enables -
xlibmopt.

B.2 cc Options

Appendix B • C Compiler Options Reference 289

% cc -fast -xnolibmopt ...

B.2.143 -xnorunpath
Do not build a runtime search path for shared libraries into the executable.

This option is recommended for building executables that will be shipped to customers who
might have a different path for the shared libraries that are used by the program.

B.2.144 -xO[1|2|3|4|5]
Sets the compiler optimization level.Note the uppercase letter O followed by the digit 1, 2,
3, 4, or 5. Generally, the higher the level of optimization, the better the runtime performance.
However, higher optimization levels can result in longer compilation time and larger executable
files.

In a few cases, -xO2 might perform better than the others, and -xO3 might outperform -xO4.

If the optimizer runs out of memory, it tries to recover by retrying the current procedure at a
lower level of optimization and resumes subsequent procedures at the original level specified in
the command-line option.

The default is no optimization, which is only possible if you do not specify an optimization
level. If you specify an optimization level, you cannot disable optimization.

If you are trying to avoid setting an optimization level, be sure not to specify any option that
implies an optimization level. For example, -fast is a macro option that sets optimization
at -xO5. All other options that imply an optimization level issue a warning message that
optimization has been set. The only way to compile without any optimization is to delete all
options from the command line or makefile that specify an optimization level.

If you use -g and the optimization level is -xO3 or lower, the compiler provides best-effort
symbolic information with almost full optimization. Tail-call optimization and back-end
inlining are disabled.

If you use -g and the optimization level is -xO4 or higher, the compiler provides best-effort
symbolic information with full optimization.

Debugging with -g does not suppress -xOn, but -xOn limits -g in certain ways. For example,
the optimization options reduce the utility of debugging so that you cannot display variables
from dbx, but you can still use the dbx where command to get a symbolic traceback. For more
information, see “Debugging Optimized Code” in Chapter 1 of Debugging a Program With dbx.

If you specify both -xO and -xmaxopt, the optimization level set with -xO must not exceed the -
xmaxopt value.

B.2 cc Options

290 Oracle Solaris Studio 12.4: C User's Guide • March 2015

If you optimize at -xO3 or -xO4 with very large procedures (thousands of lines of code in the
same procedure), the optimizer may require a large amount of virtual memory. In such cases,
machine performance might degrade.

B.2.144.1 SPARC Optimizations

The following table lists the optimization levels on SPARC platforms.

TABLE B-36 -xO Flags on SPARC Platforms

Value Meaning

-xO1 Does basic local optimization (peephole).

-xO2 Does basic local and global optimization. This is induction variable elimination,
local and global common subexpression elimination, algebraic simplification, copy
propagation, constant propagation, loop-invariant optimization, register allocation,
basic block merging, tail recursion elimination, dead code elimination, tail call
elimination, and complex expression expansion.

The -xO2 level does not assign global, external, or indirect references or definitions
to registers. It treats these references and definitions as if they were declared
volatile. In general, the -xO2 level results in minimum code size.

-xO3 Performs like -xO2, but also optimizes references or definitions for external
variables. Loop unrolling and software pipelining are also performed. This level
does not trace the effects of pointer assignments. When compiling either device
drivers or programs that modify external variables from within signal handlers,
you might need to use the volatile type qualifier to protect the object from
optimization. The -xO3 level usually results in increased code size.

-xO4 Performs like -xO3, but also automatically inlines functions contained in the same
file; this usually improves execution speed. To control which functions are inlined,
see “B.2.111 -xinline=list” on page 269.

This level traces the effects of pointer assignments, and usually results in increased
code size.

-xO5 Attempts to generate the highest level of optimization. Uses optimization
algorithms that take more compilation time or that do not have as high a certainty
of improving execution time. Optimization at this level is more likely to improve
performance if it is done with profile feedback. For more information, see “B.2.160
–xprofile=p” on page 304.

B.2.144.2 x86 Optimization Levels

The following table lists the optimization levels on x86 platforms.

TABLE B-37 -xO Flags on x86 Platforms

Value Meaning

-xO1 Preloads arguments from memory, cross-jumping (tail-merging), as well
as single pass default optimizations.

B.2 cc Options

Appendix B • C Compiler Options Reference 291

Value Meaning

-xO2 Schedules both high-level and low-level instructions and performs
improved spill analysis, loop memory-reference elimination, register
lifetime analysis, enhanced register allocation, and elimination of global
common subexpressions.

-xO3 Performs loop strength reduction and induction variable elimination, as
well as the optimization done by level 2.

-xO4 Performs automatic inlining of functions contained in the same file
in addition to performing -xO3 optimizations. This automatic inlining
usually improves execution speed but sometimes can make it worse.
This level usually results in increased code size.

-xO5 Generates the highest level of optimization. Uses optimization
algorithms that take more compilation time or that do not have as
high a certainty of improving execution time. Some of these include
generating local calling convention entry points for exported functions,
further optimizing spill code, and adding analysis to improve instruction
scheduling.

For more information about debugging, see the “Oracle Solaris Studio: Debugging a Program
With dbx” manual. For more information on optimization, see the “Oracle Solaris Studio
Performance Analyzer” manual.

See also -xldscope and -xmaxopt.

B.2.145 -xopenmp[={parallel|noopt|none}]

 Enable explicit parallelization with OpenMP directives.

The following table details the -xopenmp values:

TABLE B-38 -xopenmp Flags

Value Meaning

parallel Enables recognition of OpenMP pragmas. The optimization level under -xopenmp=
parallel is -xO3. The compiler raises the optimization level to-xO3 if necessary
and issues a warning.

This flag also defines the preprocessor macro _OPENMP. The _OPENMP macro is
defined to have the decimal value yyyymm where yyyy and mm are the year and
month designations of the version of the OpenMP API that the implementation
supports. Refer to the Oracle Solaris Studio OpenMP API User's Guide for the
value of the _OPENMP macro for a particular release.

noopt Enables recognition of OpenMP pragmas. The compiler does not raise the
optimization level if it is lower than -O3.

If you explicitly set the optimization lower than -O3, as in cc -O2 -xopenmp=noopt,
the compiler issues an error. If you do not specify an optimization level with -

B.2 cc Options

292 Oracle Solaris Studio 12.4: C User's Guide • March 2015

Value Meaning

xopenmp=noopt, the OpenMP pragmas are recognized, the program is parallelized
accordingly, but no optimization is done.

This flag also defines the preprocessor token _OPENMP.

none Does not enable recognition of OpenMP pragmas, makes no change to the
optimization level of your program, and does not define any preprocessor macros.
This is the default when -xopenmp is not specified.

If you specify -xopenmp but do not specify a value, the compiler assumes -xopenmp=parallel.
If you do not specify -xopenmp at all, the compiler assumes -xopenmp=none.

If you are debugging an OpenMP program with dbx, compile with -g -xopenmp=noopt so you
can breakpoint within parallel regions and display the contents of variables.

The default for -xopenmp might change in a future release. You can avoid warning messages by
explicitly specifying an appropriate optimization level.

Use the OMP_NUM_THREADS environment variable to specify the number of threads to use when
running an OpenMP program. If OMP_NUM_THREADS is not set, the default number of threads
used to execute a parallel region is the number of cores available on the machine, capped at 32.
You can specify a different number of threads by setting the OMP_NUM_THREADS environment
variable, or by calling the omp_set_num_threads() OpenMP runtime routine, or by using
the num_threads clause on the parallel region directive. For best performance, the number of
threads used to execute a parallel region should not exceed the number of hardware threads
(or virtual processors) available on the machine. On Oracle Solaris systems, this number can
be determined by using the psrinfo(1M) command. On Linux systems, this number can be
determined by inspecting the file /proc/cpuinfo. See the OpenMP API User's Guide for more
information.

Nested parallelism is disabled by default. To enable nested parallelism, you must set the
OMP_NESTED environment variable to TRUE. See the OpenMP API User's Guide for details.

If you compile and link in separate steps, specify -xopenmp in both the compilation step and the
link step. When used with the link step, the -xopenmp option will link with the OpenMP runtime
support library, libmtsk.so.

For up-to-date functionality and performance, make sure that the latest patch of the OpenMP
runtime library, libmtsk.so, is installed on the system.

For more information about the OpenMP Fortran 95, C, and C++ application program interface
(API) for building multithreaded applications, see the Oracle Solaris Studio OpenMP API
User's Guide.

B.2 cc Options

Appendix B • C Compiler Options Reference 293

B.2.146 -xP

The compiler performs only syntax and semantic checking on the source file in order to print
prototypes for all K&R C functions. This option does not produce any object or executable
code. For example, specifying -xP with the following source file,

f()

{

}

main(argc,argv)

int argc;

char *argv[];

{

}

produces this output:

int f(void);

int main(int, char **);

B.2.147 -xpagesize=n

Sets the preferred page size for the stack and the heap.

SPARC: The following values are valid: 4k, 8K, 64K, 512K, 2M, 4M, 32M, 256M, 2G, 16G, or
default.

x86: The following values are valid: 4K, 2M. 4M, 1G, or default.

If you do not specify a valid page size, the request is silently ignored at runtime. You must
specify a valid page size for the target platform.

Use the pagesize(1) Oracle Solaris command to determine the number of bytes in a page.
The operating system offers no guarantee that the page size request will be honored. However,
appropriate segment alignment can be used to increase the likelihood of obtaining the requested
page size. See the -xsegment_align option on how to set the segment alignment. You can use
pmap(2) or meminfo(2) to determine page size of the target platform.

The -xpagesize option has no effect unless you use it at compile time and at link time. For
a complete list of all compiler options that must be specified at both compile time and at link
time, see Table A-2.

If you specify -xpagesize=default, the Oracle Solaris operating system sets the page size.

Compiling with this option has the same effect as setting the LD_PRELOAD environment variable
to mpss.so.1 with the equivalent options, or running the Oracle Solaris command ppgsz(1)

B.2 cc Options

294 Oracle Solaris Studio 12.4: C User's Guide • March 2015

with the equivalent options before running the program. See the related Oracle Solaris man
pages for details.

This option is a macro for -xpagesize_heap and -xpagesize_stack. These two options accept
the same arguments as -xpagesize. You can set both options with the same value by specifying
-xpagesize or you can specify them individually with different values.

B.2.148 -xpagesize_heap=n

Set the page size in memory for the heap.

This option accepts the same values as —xpagesize. If you do not specify a valid page size, the
request is silently ignored at run-time.

Use the getpagesize(3C) command on the Oracle Solaris operating system to determine the
number of bytes in a page. The Oracle Solaris operating system offers no guarantee that the
page size request will be honored. You can use pmap(1) or meminfo(2) to determine page size of
the target platform.

If you specify -xpagesize_heap=default, the Oracle Solaris operating system sets the page
size.

Compiling with this option has the same effect as setting the LD_PRELOAD environment variable
to mpss.so.1 with the equivalent options, or running the Oracle Solaris command ppgsz(1)
with the equivalent options before running the program. See the related Oracle Solaris man
pages for details.

The -xpagesize_heap option has no effect unless you use it at compile time and at link time.
For a complete list of all compiler options that must be specified at both compile time and at
link time, see Table A-2.

B.2.149 -xpagesize_stack=n

Set the page size in memory for the stack.

This option accepts the same values as —xpagesize. If you do not specify a valid page size, the
request is silently ignored at run-time.

Use the getpagesize(3C) command on the Oracle Solaris operating system to determine the
number of bytes in a page. The Oracle Solaris operating system offers no guarantee that the
page size request will be honored. You can use pmap(1) or meminfo(2) to determine page size of
the target platform.

If you specify -xpagesize_stack=default, the Oracle Solaris operating system sets the page
size.

B.2 cc Options

Appendix B • C Compiler Options Reference 295

Compiling with this option has the same effect as setting the LD_PRELOAD environment variable
to mpss.so.1 with the equivalent options, or running the Oracle Solaris command ppgsz(1)
with the equivalent options before running the program. See the related Oracle Solaris man
pages for details.

The -xpagesize_stack option has no effect unless you use it at compile time and at link time.
For a complete list of all compiler options that must be specified at both compile time and at
link time, see Table A-2.

B.2.150 -xpatchpadding[={fix|patch|size}]

Reserve an area of memory before the start of each function. If fix is specified, the compiler
will reserve the amount of space required by fix and continue. This is the first default. If either
patch or no value is specified, the compiler will reserve a platform-specific default value. A
value of -xpatchpadding=0 will reserve 0 bytes of space. The maximum value for size on x86
is 127 bytes and on SPARC is 2048 bytes.

B.2.151 -xpch=v

This compiler option activates the precompiled-header feature. v can be auto, autofirst,
collect:pch_filename, or use:pch_filename. You can take advantage of this feature through
the -xpch and -xpchstop options in combination with the #pragma hdrstop directive.

Use the -xpch option to create a precompiled-header file and improve your compilation time.
The precompiled-header file reduces compile time for applications whose source files share a
common set of include files containing a large amount of source code. A precompiled header
works by collecting information about a sequence of header files from one source file, and then
using that information when recompiling that source file, and when compiling other source files
that have the same sequence of headers. The information that the compiler collects is stored in a
precompiled-header file.

For more information, see:

■ “B.2.152 -xpchstop=[file|<include>]” on page 300.
■ “2.11.10 hdrstop” on page 46.

B.2.151.1 Creating a Precompiled-Header File Automatically

The compiler can generate the precompiled- header file for you automatically in one of two
ways. One way is for the compiler to create the precompiled-header file from the first include
file it finds in the source file. The other way is for the compiler to select from the set of include

B.2 cc Options

296 Oracle Solaris Studio 12.4: C User's Guide • March 2015

files found in the source file starting with the first include file and extending through a well-
defined point that determines which include file is the last one. Use one of the flags described
in the following table to determine which method the compiler uses to automatically generate a
precompiled header.

TABLE B-39 The -xpch Flags

Flag Meaning

-xpch=auto The content of the precompiled-header file is based on the longest viable
prefix that the compiler finds in the source file. This flag produces a
precompiled-header file that consists of the largest possible number
of header files. For more information, see “B.2.151.5 The Viable
Prefix” on page 297

-xpch=autofirst This flag produces a precompiled-header file that contains only the first
header found in the source file.

B.2.151.2 Creating a Precompiled-Header File Manually

To create your precompiled-header file manually, start by first using -xpch, and specifying the
collect mode. The compilation command that specifies -xpch=collect must only specify one
source file. In the following example, the -xpch option creates a precompiled-header file called
myheader.cpch based on the source file a.c.

cc -xpch=collect:myheader a.c

A valid precompiled-header file name always has the suffix .cpch. When you specify
pch_filename, you can add the suffix or have the compiler add it for you. For example, if you
specify cc -xpch=collect:foo a.c, the precompiled-header file is called foo.cpch.

B.2.151.3 How the Compiler Handles an Existing Precompiled-Header
File

If the compiler cannot use the precompiled-header file with -xpch=auto and -xpch=autofirst,
it generates a new precompiled-header file. If the compiler cannot use the precompiled-header
file with -xpch=use, a warning is issued and the compilation is done using the real headers.

B.2.151.4 Directing the Compiler to Use a Specific Precompiled-Header
File

You can also direct the compiler to use a specific precompiled header by specifying -
xpch=use:pch_filename. You can specify any number of source files with the same sequence of
include files as the source file that was used to create the precompiled-header file. For example,
your command in use mode might be: cc -xpch=use:foo.cpch foo.c bar.c foobar.c.

B.2 cc Options

Appendix B • C Compiler Options Reference 297

You should only use an existing precompiled-header file if the following items are true. If any
of the following is not true, you should re-create the precompiled-header file:

■ The compiler that you are using to access the precompiled-header file is the same as the
compiler that created the precompiled-header file. A precompiled-header file created by one
version of the compiler might not be usable by another version of the compiler.

■ Except for the -xpch option, the compiler options you specify with -xpch=use must match
the options that were specified when the precompiled-header file was created.

■ The set of included headers you specify with -xpch=use is identical to the set of headers
that were specified when the precompile header was created.

■ The contents of the included headers that you specify with -xpch=use is identical to the
contents of the included headers that were specified when the precompiled header was
created.

■ The current directory (that is, the directory in which the compilation is occurring and
attempting to use a given precompiled-header file) is the same as the directory in which the
precompiled-header file was created.

■ The initial sequence of preprocessing directives, including #include directives, in the file
you specified with -xpch=collect are the same as the sequence of preprocessing directives
in the files you specify with -xpch=use.

B.2.151.5 The Viable Prefix

In order to share a precompiled-header file across multiple source files, those source files must
share a common set of include files as their initial sequence of tokens. A token is a keyword,
name or punctuation mark. Comments and code that is excluded by #if directives are not
recognized by the compiler as tokens. This initial sequence of tokens is known as the viable
prefix. In other words, the viable prefix is the top portion of the source file that is common to all
source files. The compiler uses this viable prefix as the basis for creating a precompiled-header
file and thereby determining which header files from the source are precompiled.

The viable prefix that the compiler finds during the current compilation must match the viable
prefix that it used to create the precompiled-header file. In other words, a viable prefix must be
interpreted consistently across all the source files that use the same precompiled-header file.

The viable prefix of a source file can only consist of comments and any of the following
preprocessor directives:

#include

#if/ifdef/ifndef/else/elif/endif

#define/undef

#ident (if identical, passed through as is)

#pragma (if identical)

Any of these directives may reference macros. The #else, #elif, and #endif directives must
match within the viable prefix. Comments are ignored.

B.2 cc Options

298 Oracle Solaris Studio 12.4: C User's Guide • March 2015

The compiler determines the end point of the viable prefix automatically when you specify -
xpch=auto or -xpch=autofirst. It is defined as follows.

■ The first declaration/definition
■ The first #line directive
■ A #pragma hdrstop directive
■ After the named include file if you specify -xpch=auto and -xpchstop
■ The first include file if you specify -xpch=autofirst

Note - An end point within a preprocessor conditional compilation statement generates a
warning and disables the automatic creation of a precompiled-header file. Also, if you specify
both the #pragma hdrstop and the -xpchstop option, then the compiler uses the earlier of the
two stop points to terminate the viable prefix.

For -xpch=collect or -xpch=use, the viable prefix ends with a #pragma hdrstop.

Within the viable prefix of each file that shares a precompiled-header file, each corresponding
#define and #undef directive must reference the same symbol. In the case of #define, each
one must reference the same value. Their order of appearance within each viable prefix must
be the same as well. Each corresponding pragma must also be the same and appear in the same
order across all the files sharing a precompiled header.

B.2.151.6 Screening a Header File for Problems

A header file is precompilable when it is interpreted consistently across different source files;
specifically, when it contains only complete declarations. That is, a declaration in any one file
must stand alone as a valid declaration. Incomplete type declarations, such as struct S;, are
valid declarations. The complete type declaration can appear in some other file. Consider these
example header files:

file a.h

struct S {

#include "x.h" /* not allowed */

};

file b.h

struct T; // ok, complete declaration

struct S {

 int i;

[end of file, continued in another file] /* not allowed*/

A header file that is incorporated into a precompiled-header file must not violate the following
constraints. The results of compiling a program that violates any of these constraints is
undefined.

B.2 cc Options

Appendix B • C Compiler Options Reference 299

■ The header file must not use __DATE__ and __TIME__.
■ The header file must not contain #pragma hdrstop.

A header is also precompilable if it contains variable and function definitions. as well.

B.2.151.7 Precompiled-Header File Cache

When the compiler creates a precompiled-header file automatically, the compiler writes it to
the SunWS_cache directory. This directory always resides in the location where the object file is
created. Updates to the file are performed under a lock so that it works properly under dmake.

If you need to force the compiler to rebuild automatically generated precompiled-header files,
you can clear the precompiled-header file cache-directory with the CCadmin tool. See the
CCadmin(1) man page for more information.

B.2.151.8 Caveats

■ Do not specify conflicting -xpch flags on the command line. For example, specifying
both -xpch=collect and -xpch=auto, or specifying both -xpch=autofirst with -
xpchstop=<include> generates an error.

■ If you specify -xpch=autofirst or you specify -xpch=auto without -xpchstop, any
declaration, definition, or #line directive that appears prior to the first include file, or
appears prior to the include file that is specified with -xpchstop for -xpch=auto, generates
a warning and disables the automatic generation of the precompiled-header file.

■ A #pragma hdrstop before the first include file under -xpch=autofirst or -xpch=auto
disables the automatic generation of the precompiled-header file.

B.2.151.9 Precompiled-Header File Dependencies and make Files

The compiler generates dependency information for precompiled-header files when you specify
-xpch=collect. You need to create the appropriate rules in your make files to take advantage of
these dependencies. Consider this sample make file:

%.o : %.c shared.cpch

 $(CC) -xpch=use:shared -xpchstop=foo.h -c $<

default : a.out

foo.o + shared.cpch : foo.c

 $(CC) -xpch=collect:shared -xpchstop=foo.h foo.c -c

a.out : foo.o bar.o foobar.o

 $(CC) foo.o bar.o foobar.o

B.2 cc Options

300 Oracle Solaris Studio 12.4: C User's Guide • March 2015

clean :

 rm -f *.o shared.cpch .make.state a.out

These make rules, along with the dependencies generated by the compiler, force a manually
created precompiled- header file to be re-created if any source file you used with -
xpch=collect, or any of the headers that are part of the precompiled-header file, have changed.
This constraint prevents the use of an out-of-date precompiled-header file.

You do not have to create any additional make rules in your makefiles for -xpch=auto or -
xpch=autofirst.

B.2.152 -xpchstop=[file|<include>]

Use the -xpchstop=file option to specify the last include file of the viable prefix for the
precompiled-header file. Using -xpchstop on the command line is equivalent to placing a
hdrstop pragma after the first include-directive that references file in each of the source files
that you specify with the cc command.

Use -xpchstop=<include> with -xpch-auto to create a precompiled-header file that is based
on header files up through and including <include>. This flag overrides the default -xpch=auto
behavior of using all header files that are contained in the entire viable prefix.

In the following example, the -xpchstop option specifies that the viable prefix for
the precompiled-header file ends with the include of projectheader.h. Therefore,
privateheader.h is not a part of the viable prefix.

example% cat a.c

 #include <stdio.h>

 #include <strings.h>

 #include "projectheader.h"

 #include "privateheader.h"

 .

 .

 .

example% cc -xpch=collect:foo.cpch a.c -xpchstop=projectheader.h -c

See also -xpch.

B.2.153 -xpec[={yes|no}]

(Solaris only) Generates a Portable Executable Code (PEC) binary. This option puts the
program intermediate representations in the object file and the binary. This binary may be used
later for tuning and troubleshooting.

B.2 cc Options

Appendix B • C Compiler Options Reference 301

A binary that is built with -xpec is usually five to ten times larger than if it is built without
-xpec.

If you do not specify -xpec, the compiler assumes -xpec=no. If you specify -xpec, but do not
supply a flag, the compiler assumes -xpec=yes.

B.2.154 -xpentium

(x86) Generates code for the Pentium processor.

B.2.155 -xpg

Prepares the object code to collect data for profiling with gprof(1). It invokes a runtime
recording mechanism that produces a gmon.out file at normal termination.

Note - -xpg does not provide any additional benefit if used with -xprofile. The two options do
not prepare or use data provided by the other.

Profiles are generated by using prof(1) or gprof(1) on 64–bit Oracle Solaris platforms or just
gprof on 32–bit Oracle Solaris platforms and include approximate user CPU times derived
from PC sample data (see pcsample(2)) for routines in the main executable and routines in
shared libraries specified as linker arguments when the executable is linked. Other shared
libraries (libraries opened after process startup using dlopen(3DL)) are not profiled.

On 32–bit Oracle Solaris systems, profiles generated using prof(1) are limited to routines in
the executable. 32–bit shared libraries can be profiled by linking the executable with -xpg and
using gprof(1).

On x86 systems, -xpg is incompatible with -xregs=frameptr. These two options should not
be used together. Note also that -xregs=frameptr is included in -fast. Compile with -fast -
xregs=no%frameptr -xpg when using -fast with -xpg.

Current Oracle Solaris releases do not include system libraries compiled with -p. As a result,
profiles collected current Solaris platforms do not include call counts for system library
routines.

If you specify -xpg at compile time, you must also specify it at link time. See “A.1.2 Compile-
Time and Link-Time Options” on page 201 for a complete list of options that must be specified
at both compile time and link time.

Note - Binaries compiled with -xpg for gprof profiling should not be used with binopt(1), as
they are incompatible and can result in internal errors.

B.2 cc Options

302 Oracle Solaris Studio 12.4: C User's Guide • March 2015

B.2.156 -xprefetch[=val[,val]]
Enables prefetch instructions on those architectures that support prefetch.

Explicit prefetching should be used only under special circumstances that are supported by
measurements.

The following table lists the values of val.

TABLE B-40 -xprefetch Flags

Flag Meaning

latx:factor (SPARC) Adjust the compiler’s assumed prefetch-to-load and prefetch-to-store
latencies by the specified factor. You can only combine this flag with -xprefetch=
auto. See “B.2.156.1 Prefetch Latency Ratio (SPARC)” on page 302

[no%]auto [Disable] Enable automatic generation of prefetch instructions.

[no%]explicit [Disable] Enable explicit prefetch macros.

yes Obsolete - do not use. Use -xprefetch=auto,explicit instead.

no Obsolete - do not use. Use -xprefetch=no%auto,no%explicit instead.

The default is -xprefetch=auto,explicit. This default adversely affects applications
that have essentially non-linear memory access patterns. Specify -xprefetch=no%auto,no
%explicit to override the default.

The sun_prefetch.h header file provides the macros that you can use to specify explicit
prefetch instructions. The prefetches are approximately at the place in the executable that
corresponds to where the macros appear.

B.2.156.1 Prefetch Latency Ratio (SPARC)

The prefetch latency is the hardware delay between the execution of a prefetch instruction and
the time the data being prefetched is available in the cache.

The factor must be a positive number of the form n.n.

The compiler assumes a prefetch latency value when determining how far apart to place a
prefetch instruction and the load or store instruction that uses the prefetched data. The assumed
latency between a prefetch and a load might not be the same as the assumed latency between a
prefetch and a store.

The compiler tunes the prefetch mechanism for optimal performance across a wide range of
machines and applications. This tuning may not always be optimal. For memory-intensive
applications, especially applications intended to run on large multiprocessors, you might be able
to obtain better performance by increasing the prefetch latency values. To increase the values,

B.2 cc Options

Appendix B • C Compiler Options Reference 303

use a factor that is greater than 1 (one). A value between .5 and 2.0 will most likely provide the
maximum performance.

For applications with data sets that reside entirely within the external cache, you might be able
to obtain better performance by decreasing the prefetch latency values. To decrease the values,
use a factor that is less than one.

To use the latx:factor suboption, start with a factor value near 1.0 and run performance tests
against the application. Increase or decrease the factor, as appropriate, and run the performance
tests again. Continue adjusting the factor and running the performance tests until you achieve
optimum performance. When you increase or decrease the factor in small steps, you will see no
performance difference for a few steps, then a sudden difference, then performance will level
off again.

B.2.157 -xprefetch_auto_type=a

The value for a is [no%]indirect_array_access.

Use -xprefetch_auto_type=indirect_array_access to enable the compiler to generate
indirect prefetches for the loops indicated by the option -xprefetch_level in the same fashion
the prefetches for direct memory accesses are generated.

If you do not specify a setting for -xprefetch_auto_type, the compiler sets it to -
xprefetch_auto_type=no%indirect_array_access.

Options such as -xalias_level can affect the aggressiveness of computing the indirect
prefetch candidates and therefore the aggressiveness of the automatic indirect prefetch insertion
due to better memory alias disambiguation information.

B.2.158 -xprefetch_level=l

Use the -xprefetch_level option to control the aggressiveness of automatic insertion of
prefetch instructions as determined with -xprefetch=auto. l must be 1, 2, or 3. The compiler
becomes more aggressive, or in other words, introduces more prefetches with each higher level
of -xprefetch_level.

The appropriate value for the -xprefetch_level depends on the number of cache misses
the application has. Higher -xprefetch_level values have the potential to improve the
performance of applications.

This option is effective only when it is compiled with -xprefetch=auto with optimization level
3 or greater, and generate codes for a platform that supports prefetch (v8plus, v8plusa, v9,
v9a, v9b, sse2, sse2a, sse3, amdsse4a, sse4_1, sse4_2, aes, avx, avx_i, avx2, generic64, and
native64).

B.2 cc Options

304 Oracle Solaris Studio 12.4: C User's Guide • March 2015

-xprefetch_level=1 enables automatic generation of prefetch instructions. -
xprefetch_level=2 enables additional generation beyond level 1. -xprefetch_level=3
enables additional generation beyond level 2.

The default is -xprefetch_level=1 when you specify -xprefetch=auto.

B.2.159 -xprevise={yes|no}

Compile with this option to produce a static analysis of the source code that can be viewed
using the Code Analyzer.

When compiling with -xprevise=yes and linking in a separate step, include -xprevise=yes
also on the link step.

The default is -xprevise=no.

On Linux, -xprevise=yes needs to be specified along with -xannotate.

See the Oracle Solaris Studio Code Analyzer documentation for further information.

B.2.160 –xprofile=p

Collects data for a profile or uses a profile to optimize.

p must be collect[:profdir], use[:profdir], or tcov[:profdir].

This option causes execution frequency data to be collected and saved during execution. The
data can be used in subsequent runs to improve performance. Profile collection is safe for
multithreaded applications. That is, profiling a program that does its own multitasking (-mt)
produces accurate results. This option is valid only when you specify -xO2 or greater level of
optimization. If compilation and linking are performed in separate steps, the same -xprofile
option must appear on the link step as well as the compile step.

collect[:profdir] Collects and saves execution frequency for later use by the optimizer
with -xprofile=use. The compiler generates code to measure statement
execution-frequency.

-xMerge, -ztext, and -xprofile=collect should not be used together.
While -xMerge forces statically initialized data into read-only storage,
-ztext prohibits position-dependent symbol relocations in read-only
storage, and -xprofile=collect generates statically initialized, position-
dependent symbol relocations in writable storage.

B.2 cc Options

Appendix B • C Compiler Options Reference 305

The profile directory name profdir, if specified, is the pathname of
the directory where profile data are to be stored when a program or
shared library containing the profiled object code is executed. If the
profdir pathname is not absolute, it is interpreted relative to the current
working directory when the program is compiled with the option
-xprofile=use:profdir.

If no profile directory name is specified with —
xprofile=collect:prof_dir or —xprofile=tcov:prof_dir, profile
data are stored at run time in a directory named program.profile

where program is the basename of the profiled process's main
program. In this case, the environment variables SUN_PROFDATA and
SUN_PROFDATA_DIR can be used to control where the profile data are
stored at run time. If set, the profile data are written to the directory given
by $SUN_PROFDATA_DIR/$SUN_PROFDATA. If a profile directory name is
specified at compilation time, SUN_PROFDATA_DIR and SUN_PROFDATA
have no effect at run time. These environment variables similarly control
the path and names of the profile data files written by tcov, as described
in the tcov(1) man page.
If these environment variables are not set, the profile data is written
to the directory profdir.profile in the current directory, where
profdir is the name of the executable or the name specified in the -
xprofile=collect:profdir flag. -xprofile does not append .profile
to profdir if profdir already ends in .profile. If you run the program
several times, the execution frequency data accumulates in the
profdir.profile directory; that is output from prior executions is not
lost.
If you are compiling and linking in separate steps, make sure that any
object files compiled with -xprofile=collect are also linked with -
xprofile=collect.
The following example collects and uses profile data in the directory
myprof.profile located in the same directory where the program is
built:

demo: cc -xprofile=collect:myprof.profile -xO5 prog.c -o prog

demo: ./prog

demo: cc -xprofile=use:myprof.profile -xO5 prog.c -o prog

The following example collects profile data in the directory /bench/
myprof.profile and later uses the collected profile data in a feedback
compilation at optimization level -xO5:

demo: cc -xprofile=collect:/bench/myprof.profile

\ -xO5 prog.c -o prog
...run prog from multiple locations..

B.2 cc Options

306 Oracle Solaris Studio 12.4: C User's Guide • March 2015

demo: cc -xprofile=use:/bench/myprof.profile

\ -xO5 prog.c -o prog

use[:profdir] Uses execution frequency data collected from code compiled with —
xprofile=collect[:profdir] or —xprofile=tcov[:profdir] to optimize
for the work performed when the profiled code was executed. profdir is
the pathname of a directory containing profile data collected by running
a program that was compiled with —xprofile=collect[:profdir] or —
xprofile=tcov[:profdir].

To generate data that can be used by both tcov and —
xprofile=use[:profdir], a profile directory must be specified at
compilation time, using the option —xprofile=tcov[:profdir]. The same
profile directory must be specified in both —xprofile=tcov:profdir and
—xprofile=use:profdir. To minimize confusion, specify profdir as an
absolute pathname.
The profdir path name is optional. If profdir is not specified, the name
of the executable binary is used. a.out is used if -o is not specified.
The compiler looks for profdir.profile/feedback, or a.out.profile/
feedback when profdir is not specified. For example:

demo: cc -xprofile=collect -o myexe prog.c

demo: cc -xprofile=use:myexe -xO5 -o myexe prog.c

The program is optimized by using the execution frequency data
previously generated and saved in the feedback files written by a
previous execution of the program compiled with -xprofile=collect.

Except for the -xprofile option, the source files and other compiler
options must be exactly the same as those used for the compilation that
created the compiled program that generated the feedback file. The same
version of the compiler must be used for both the collect build and the
use build as well.

If compiled with -xprofile=collect:profdir, the same profile
directory name profdir must be used in the optimizing compilation: -
xprofile=use:profdir.

See also -xprofile_ircache for speeding up compilation between
collect and use phases.

tcov[:profdir] Instrument object files for basic block coverage analysis using tcov(1).
If the optional profdir argument is specified, the compiler will create
a profile directory at the specified location. The data stored in the
profile directory can be used either by tcov(1) or by the compiler with
-xprofile=use:profdir. If the optional profdir path name is omitted, a
profile directory will be created when the profiled program is executed.

B.2 cc Options

Appendix B • C Compiler Options Reference 307

The data stored in the profile directory can be used only by tcov(1). The
location of the profile directory can be controlled using environment
variables SUN_PROFDATA and SUN_PROFDATA_DIR.
If the location specified by profdir is not an absolute path name, it is
interpreted at compilation time relative to the current working directory.
The directory whose location is specified by profdir must be accessible
from all machines where the profiled program is to be executed. The
profile directory should not be deleted until its contents are no longer
needed, because data stored there by the compiler cannot be restored
except by recompilation.
Example 1: If object files for one or more programs are compiled
with -xprofile=tcov:/test/profdata, a directory named /test/
profdata.profile will be created by the compiler and used to store data
describing the profiled object files. The same directory will also be used
at execution time to store execution data associated with the profiled
object files.

Example 2: If a program named myprog is compiled with -
xprofile=tcov and executed in the directory /home/joe, the directory /
home/joe/myprog.profile will be created at runtime and used to store
runtime profile data.

B.2.161 -xprofile_ircache[=path]

(SPARC) Use -xprofile_ircache[=path] with -xprofile=collect|use to improve
compilation time during the use phase by reusing compilation data saved from the collect
phase.

With large programs, compilation time in the use phase can improve significantly because the
intermediate data is saved. Note that the saved data could increase disk space requirements
considerably.

When you use -xprofile_ircache[=path], path overrides the location where the cached files
are saved. By default, these files are saved in the same directory as the object file. Specifying
a path is useful when the collect and use phases happen in two different directories. The
following example shows a typical sequence of commands:

example% cc -xO5 -xprofile=collect -xprofile_ircache t1.c t2.c

example% a.out // run collects feedback data

example% cc -xO5 -xprofile=use -xprofile_ircache t1.c t2.c

B.2 cc Options

308 Oracle Solaris Studio 12.4: C User's Guide • March 2015

B.2.162 -xprofile_pathmap

(SPARC) Use the -xprofile_pathmap=collect_prefix:use_prefix option when you are also
specifying the -xprofile=use command. Use -xprofile_pathmap when both of the following
are true and the compiler is unable to find profile data for an object file that is compiled with -
xprofile=use.

■ You are compiling the object file with -xprofile=use in a directory that is different from
the directory in which the object file was previously compiled with -xprofile=collect.

■ Your object files share a common base name in the profile but are distinguished from each
other by their location in different directories.

The collect-prefix is the prefix of the UNIX path name of a directory tree in which object files
were compiled using -xprofile=collect.

The use-prefix is the prefix of the UNIX pathname of a directory tree in which object files are to
be compiled using -xprofile=use.

If you specify multiple instances of -xprofile_pathmap, the compiler processes them in the
order of their occurrence. Each use-prefix specified by an instance of -xprofile_pathmap is
compared with the object file pathname until either a matching use-prefix is identified or the last
specified use-prefix is found not to match the object file path name.

B.2.163 -xreduction

Analyzes loops for reduction in automatic parallelization. This option is valid only if -
xautopar is also specified. Otherwise the compiler issues a warning.

When a reduction recognition is enabled, the compiler parallelizes reductions such as dot
products and maximum and minimum finding. These reductions yield roundoffs different from
those obtained by unparallelized code.

See also the Oracle Solaris Studio OpenMP API User's Guide.

B.2.164 -xregs=r[,r…]

Specifies the usage of registers for the generated code.

r is a comma-separated list that consists of one or more of the following suboptions: appl,
float,frameptr.

B.2 cc Options

Appendix B • C Compiler Options Reference 309

Prefixing a suboption with no% disables that suboption.

Note that —xregs suboptions are restricted to specific hardware platforms.

Example: -xregs=appl,no%float

TABLE B-41 -xregs Sub-options

Value Meaning

appl (SPARC) Allows the compiler to generate code using the application registers as
scratch registers. The application registers are:

g2, g3, g4 (on 32–bit platforms)

g2, g3 (on 64–bit platforms)

You should compile all system software and libraries using -xregs=no%appl. System
software (including shared libraries) must preserve these registers’ values for the
application. Their use is intended to be controlled by the compilation system and must
be consistent throughout the application.

In the SPARC ABI, these registers are described as application registers. Using these
registers can improve performance because fewer load and store instructions are
needed. However, such use can conflict with some old library programs written in
assembly code.

float (SPARC) Allows the compiler to generate code by using the floating-point registers
as scratch registers for integer values. Floating-point values may use these registers
regardless of this option. If you want your code to be free of all references to floating
point registers, use -xregs=no%float and make sure your code does not use floating-
point types in any way.

(x86) Allow the compiler to generate code by using the floating-point registers as
scratch registers. Floating-point values may use these registers regardless of this
option. To generate binary code free of all references to floating point registers, use
-xregs=no%float and make sure your source code does not in any way use floating
point types. During code generation the compilers will attempt to diagnose code that
results in the use of floating point, simd, or x87 instructions.

frameptr (x86) Allows the compiler to use the frame-pointer register (%ebp on IA32, %rbp on
AMD64) as a general-purpose register.

The default is -xregs=no%frameptr

The C++ compiler ignores -xregs=frameptr unless exceptions are also disabled with
—features=no%except. Note that -xregs=frameptr is part of -fast.

With -xregs=framptr the compiler is free to use the frame-pointer register to improve
program performance. However, some features of the debugger and performance
measurement tools might be limited as a result. Stack tracing, debuggers, and
performance analyzers cannot report on functions compiled with —xregs=frameptr

Mixed C, Fortran, and C++ code should not be compiled with —xregs=frameptr if a
C++ function, called directly or indirectly from a C or Fortran function, can throw an
exception. If compiling such mixed source code with —fast, add —xregs=no%frameptr
after the —fast option on the command line.

B.2 cc Options

310 Oracle Solaris Studio 12.4: C User's Guide • March 2015

Value Meaning

With more available registers on 64–bit platforms, compiling with —xregs=frameptr
has a better chance of improving 32–bit code performance than 64–bit code.

The compiler ignores -xregs=frameptr and issues a warning if you also specify -
xpg. Also, —xkeepframe overrides —xregs=frameptr. For example, —xkeepframe=
%all —xregs=frameptr indicates that the stack should be kept for all functions, but the
optimizations for —xregs=frameptr would be ignored.

The SPARC default is -xregs=appl,float.

The x86 default is -xregs=no%frameptr,float.

On x86 systems, -xpg is incompatible with -xregs=frameptr. These two options should not be
used together. Note also that -xregs=frameptr is included in -fast.

You should compile code intended for shared libraries that will link with applications with -
xregs=no%appl,float. At the very least, the shared library should explicitly document how it
uses the application registers so that applications linking with those libraries are aware of these
register assignments.

For example, an application using the registers in some global sense (such as using a register
to point to some critical data structure) would need to be aware of how a library with code
compiled without -xregs=no%appl is using the application registers in order to safely link with
that library.

B.2.165 -xrestrict[=f]

Treats pointer-valued function parameters as restricted pointers. f is %all, %none, or a comma-
separated list of one or more function names: {%all|%none|fn[,fn...]}.

If a function list is specified with this option, pointer parameters in the specified functions are
treated as restricted. If -xrestrict=%all is specified, all pointer parameters in the entire C file
are treated as restricted. Refer to “3.2.6.2 Restricted Pointers” on page 80 for more information.

This command-line option can be used on its own, but it is best used with optimization. For
example, the command treats all pointer parameters in the file prog.c as restricted pointers:

%cc -xO3 -xrestrict=%all prog.c

The command treats all pointer parameters in the function agc in the file prog.c as restricted
pointers:

%cc -xO3 -xrestrict=agc prog.c

B.2 cc Options

Appendix B • C Compiler Options Reference 311

The default is %none. Specifying -xrestrict is equivalent to specifying -xrestrict=%all.

B.2.166 –xs[={yes|no}]

dbx

(Oracle Solaris) Link debug information from object files into executable.

-xs is the same as -xs=yes.

The default for -xdebugformat=dwarf is the same as -xs=yes.

The default for -xdebugformat=stabs is the same as -xs=no.

This option controls the trade-off of executable size versus the need to retain object files in
order to debug. For dwarf, use -xs=no to keep the executable small but depend on the object
files. For stabs, use -xs or -xs=yes to avoid dependence on the object files at the cost of a
larger executable. This option has almost no effect on dbx performance or the runtime per
formance of the program.

When the compile command forces linking (that is, -c is not specified) there will be no
object file(s) and the debug information must be placed in the executable. In this case, -xs=no
(implicit or explicit) will be ignored.

The feature is implemented by having the compiler adjust the section flags and/or section
names in the object file that it emits, which then tells the linker what to do for that object file's
debug information. It is therefore a compiler option, not a linker option. It is possible to have an
executable with some object files compiled -xs=yes and others compiled -xs=no.

Linux compilers accept but ignore -xs. Linux compilers do not accept -xs={yes|no}.

B.2.167 -xsafe=mem

(SPARC) Allows the compiler to assume no memory protection violations occur.

This option grants permission to use non-faulting load instruction on the SPARC V9
architecture.

Note - Because non-faulting loads do not cause a trap when a fault such as address
misalignment or segmentation violation occurs, you should use this option only for programs
in which such faults cannot occur. Because few programs incur memory-based traps, you can
safely use this option for most programs. Do not use this option for programs that explicitly
depend on memory-based traps to handle exceptional conditions.

B.2 cc Options

312 Oracle Solaris Studio 12.4: C User's Guide • March 2015

This option takes effect only when used with optimization level -xO5 and one of the following
-xarch values: sparc, sparcvis, sparcvis2, or sparcvis3 for both -m32 and -m64.

B.2.168 -xsegment_align=n

(Oracle Solaris) This option causes the driver to include a special mapfile on the link line.
The mapfile aligns the text, data, and bss segments to the value specified by n. When using
very large pages, it is important that the heap and stack segments are aligned on an appropriate
boundary. If these segments are not aligned, small pages will be used up to the next boundary,
which could cause a performance degradation. The mapfile ensures that the segments are
aligned on an appropriate boundary.

The n value must be one of the following:

SPARC: The following values are valid: 8K, 64K, 512K, 2M, 4M, 32M, 256M, 1G, and none.

x86: The following values are valid: 4K, 8K, 64K, 512K, 2M, 4M, 32M, 256M, 1G, and none.

The default for both SPARC and x86 is none.

Recommended usage is as follows:

SPARC 32-bit compilation: -xsegment_align=64K

SPARC 64-bit compilation: -xsegment_align=4M

x86 32-bit compilation: -xsegment_align=8K

x86 64-bit compilation: -xsegment_align=4M

The driver will include the appropriate mapfile. For example, if the user specifies -
xsegment_align=4M, the driver adds -M install-directory/lib/compilers/mapfiles/
map.4M.align to the link line, where install-directory is the installation directory. The
aforementioned segments will then be aligned on a 4M boundary.

B.2.169 -xsfpconst

Represents unsuffixed floating-point constants as single precision instead of the default mode of
double precision. Not valid with -pedantic.

B.2.170 -xspace

Does no optimizations or parallelization of loops that increase code size.

B.2 cc Options

Appendix B • C Compiler Options Reference 313

Example: The compiler will not unroll loops or parallelize loops if it increases code size.

B.2.171 -xstrconst

This option is deprecated and might be removed in a future release. —xstrconst is an alias for —
features=conststrings.

B.2.172 -xtarget=t

Specifies the target system for instruction set and optimization.

The value of t must be one of the following: native, generic, native64, generic64, or system-
name.

Each specific value for -xtarget expands into a specific set of values for the -xarch, -xchip,
and -xcache options. Use the -xdryrun option to determine the expansion of -xtarget=native
on a running system.

For example, -xtarget=ultra4 is equivalent to -xchip=ultra4 -
xcache=64/32/4:8192/128/2 -xarch=sparcvis2

Note - The expansion of -xtarget for a specific host platform might not expand to the same -
xarch, -xchip, or -xcache settings as -xtarget=native when compiling on that platform.

TABLE B-42 -xtarget Values for All Platforms

Value Meaning

native Equivalent to

—m32 —xarch=native —xchip=native —xcache=native

to give best performance on the host 32–bit system.

native64 Equivalent to

—m64 —xarch=native64 —xchip=native64 —xcache=native64

to give best performance on the host 64–bit system.

generic Equivalent to

—m32 —xarch=generic —xchip=generic —xcache=generic

to give best performance on most 32–bit systems.

generic64 Equivalent to

—m64 —xarch=generic64 —xchip=generic64 —xcache=generic64

B.2 cc Options

314 Oracle Solaris Studio 12.4: C User's Guide • March 2015

Value Meaning
to give best performance on most 64–bit systems.

system-name Gets the best performance for the specified platform.

Select a system name from the following lists for which represents the actual system
you are targeting.

The performance of some programs may benefit by providing the compiler with an accurate
description of the target computer hardware. When program performance is critical, the proper
specification of the target hardware could be very important, especially when running on the
newer SPARC processors. However, for most programs and older SPARC processors, the
performance gain is negligible and a generic specification is sufficient.

B.2.172.1 -xtarget Values on SPARC Platforms

Compiling for 64-bit Oracle Solaris software on SPARC or UltraSPARC V9 is indicated by the
-m64 option. If you specify -xtarget with a flag other than native64 or generic64, you must
also specify the -m64 option as follows: -xtarget=ultra... -m64. Otherwise the compiler uses a
32-bit memory model.

TABLE B-43 -xtarget Expansions on SPARC

-xtarget= -xarch -xchip -xcache

ultra sparcvis ultra 16/32/1:512/64/1

ultra1/140 sparcvis ultra 16/32/1:512/64/1

ultra1/170 sparcvis ultra 16/32/1:512/64/1

ultra1/200 sparcvis ultra 16/32/1:512/64/1

ultra2 sparcvis ultra2 16/32/1:512/64/1

ultra2/1170 sparcvis ultra 16/32/1:512/64/1

ultra2/1200 sparcvis ultra 16/32/1:1024/64/1

ultra2/1300 sparcvis ultra2 16/32/1:2048/64/1

ultra2/2170 sparcvis ultra 16/32/1:512/64/1

ultra2/2200 sparcvis ultra 16/32/1:1024/64/1

ultra2/2300 sparcvis ultra2 16/32/1:2048/64/1

ultra2e sparcvis ultra2e 16/32/1:256/64/4

ultra2i sparcvis ultra2i 16/32/1:512/64/1

ultra3 sparcvis2 ultra3 64/32/4:8192/512/1

ultra3cu sparcvis2 ultra3cu 64/32/4:8192/512/2

ultra3i sparcvis2 ultra3i 64/32/4:1024/64/4

ultra4 sparcvis2 ultra4 64/32/4:8192/128/2

ultra4plus sparcvis2 ultra4plus 64/32/4:

B.2 cc Options

Appendix B • C Compiler Options Reference 315

-xtarget= -xarch -xchip -xcache

2048/64/4/2:

32768/64/4

ultraT1 sparc ultraT1 8/16/4/4:

3072/64/12/32

ultraT2 sparcvis2 ultraT2 8/16/4:4096/64/16

ultraT2plus sparcvis2 ultraT2plus 8/16/4:4096/64/16

T3 sparcvis3 ultraT3 8/16/4:6144/64/24

T4 sparc4 T4 16/32/4:128/32/8:

4096/64/16

sparc64vi sparcfmaf sparc64vi 128/64/2:5120/64/10

sparc64vii sparcima sparc64vii 64/64/2:5120/256/10

sparc64viiplus sparcima sparc64viiplus 64/64/2:

11264/256/11

sparc64x sparcace sparc64x 64/128/4/2:24576/128/24/32

sparc64xplus sparcaceplus sparc64xplus 64/128/4/2:24576/128/24/32

T5 sparc4 T5 16/32/4/8:128/32/8/8:

8192/64/16/128

T7 sparc5 T7 16/32/4/8:256/64/8/16:

8192/64/8/32

M5 sparc4 M5 16/32/4/8:128/32/8/8:

49152/64/12/48

M6 sparc4 M6 16/32/4/8:128/32/8/8:

49152/64/12/96

M7 sparc5 M7 16/32/4/8:256/64/8/16:

8192/64/8/32

Note - The following SPARC -xtarget values are obsolete and may be removed in a
future release: ultra, ultra1/140, ultra1/170, ultra1/200, ultra2, ultra2e, ultra2i,
ultra2/1170, ultra2/1200, ultra2/1300, ultra2/2170, ultra2/2200, ultra2/2300, ultra3,
ultra3cu, ultra3i, ultra4, and ultra4plus.

B.2.172.2 -xtarget Values on x86 Platforms

Compiling for 64-bit Oracle Solaris software on 64-bit x86 platforms is indicated by the -m64
option. If you specify -xtarget with a flag other than native64 or generic64, you must also
specify the -m64 option as follows:

-xtarget=opteron ... -m64

Otherwise the compiler uses a 32-bit memory model.

B.2 cc Options

316 Oracle Solaris Studio 12.4: C User's Guide • March 2015

TABLE B-44 -xtarget Expansions on x86

-xtarget= -xarch -xchip -xcache

pentium 386 pentium generic

pentium_pro pentium_pro pentium_pro generic

pentium3 sse pentium3 16/32/4:256/32/4

pentium4 sse2 pentium4 8/64/4:256/128/8

opteron sse2a opteron 64/64/2:1024/64/16

woodcrest ssse3 core2 32/64/8:4096/64/16

barcelona amdsse4a amdfam10 64/64/2:512/64/16

penryn sse4_1 penryn 2/64/8:6144/64/24

nehalem sse4_2 nehalem 32/64/8:256/64/8:

8192/64/16

westmere aes westmere 32/64/8:256/64/8:30720/64/24

sandybridge avx sandybridge 32/64/8/2:256/64/8/2:

20480/64/20/16

ivybridge avx_i ivybridge 32/64/8/2:256/64/8/2:

20480/64/20/16

haswell avx2 haswell 32/64/8/2:256/64/8/2:

20480/64/20/16

B.2.173 -xtemp=path

Equivalent to -temp=path.

B.2.174 -xthreadvar[=o]

Specify -xthreadvar to control the implementation of thread local variables. Use this option in
conjunction with the __thread declaration specifier to take advantage of the compiler’s thread-
local storage facility. After you declare the thread variables with the __thread specifier, specify
-xthreadvar to enable the use of thread-local storage with position dependent code (non-PIC
code) in dynamic (shared) libraries. For more information about how to use __thread, see “2.3
Thread Local Storage Specifier” on page 33.

o must be dynamic or no%dynamic.

TABLE B-45 -xthreadvar Flags

Flag Meaning

[no%]dynamic Compile variables for dynamic loading.

B.2 cc Options

Appendix B • C Compiler Options Reference 317

Flag Meaning

Access to thread variables is significantly faster when -xthreadvar=no%dynamic but
you cannot use the object file within a dynamic library. That is, you can only use the
object file in an executable file.

If you do not specify -xthreadvar, the default used by the compiler depends upon whether
position-independent code is enabled. If position-independent code is enabled, the option is
set to -xthreadvar=dynamic. If position-independent code is disabled, the option is set to -
xthreadvar=no%dynamic.

If you specify -xthreadvar but do not specify any values, the option is set to -
xthreadvar=dynamic.

If a dynamic library contains non-position-independent code, you must specify -xthreadvar.

The linker cannot support the thread-variable equivalent of non-PIC code in dynamic libraries.
Non-PIC thread variables are significantly faster, and therefore should be the default for
executables.

See also the descriptions of -xcode, -KPIC, and -Kpic

B.2.175 -xthroughput[={yes|no}]

The -xthroughput option tells the compiler that the application will be run in situations where
many processes are simultaneously running on the system

If -xthroughput=yes, the compiler will favor optimizations that slightly reduce performance
for a single process while improving the amount of work achieved by all the processes on the
system. As an example, the compiler might choose to be less aggressive in prefetching data.
Such a choice would reduce the memory bandwidth consumed by the process, and as such the
process may run slower, but it would also leave more memory bandwidth to be shared among
other processes.

The default is -xthroughput=no.

B.2.176 -xtime

Reports the time and resources used by each compilation component.

B.2.177 -xtransition

Issues warnings for the differences between K&R C and Solaris Studio ISO C.

B.2 cc Options

318 Oracle Solaris Studio 12.4: C User's Guide • March 2015

The -xtransition option issues warnings in conjunction with the -Xa and -Xt options. You
can eliminate all warning messages about differing behavior through appropriate coding. The
following warnings no longer appear unless you issue the -xtransition option:

■ \a is ISO C “alert” character

■ \x is ISO C hex escape

■ bad octal digit

■ base type is really type tag: name
■ comment is replaced by “##”
■ comment does not concatenate tokens

■ declaration introduces new type in ISO C: type tag
■ macro replacement within a character constant

■ macro replacement within a string literal

■ no macro replacement within a character constant

■ no macro replacement within a string literal

■ operand treated as unsigned

■ trigraph sequence replaced

■ ISO C treats constant as unsigned: operator
■ semantics of operator change in ISO C; use explicit cast

B.2.178 -xtrigraphs[={yes|no}]

The -xtrigraphs option determines whether the compiler recognizes trigraph sequences as
defined by the ISO C standard.

By default, the compiler assumes -xtrigraphs=yes and recognizes all trigraph sequences
throughout the compilation unit.

If your source code has a literal string containing question marks (?) that the compiler is
interpreting as a trigraph sequence, you can use the -xtrigraph=no suboption to disable the
recognition of trigraph sequences. The -xtrigraphs=no option disables recognition of all
trigraphs throughout the entire compilation unit.

Consider the following example source file named trigraphs_demo.c.

#include <stdio.h>

int main ()

{

 (void) printf("(\?\?) in a string appears as (??)\n");

 return 0;

B.2 cc Options

Appendix B • C Compiler Options Reference 319

}

The following examples shows the output if you compile this code with -xtrigraphs=yes.

example% cc -xtrigraphs=yes trigraphs_demo.c

example% a.out
(??) in a string appears as (]

The following example shows the output if you compile this code with -xtrigraphs=no.

example% cc -xtrigraphs=no trigraphs_demo.c

example% a.out
(??) in a string appears as (??)

B.2.179 -xunboundsym={yes|no}
Specify whether the program contains references to dynamically bound symbols.

-xunboundsym=yes means the program contains references dynamically bound symbols.

-xunboundsym=no means the program does not contain references to dynamically bound
symbols.

The default is -xunboundsym=no.

B.2.180 -xunroll=n

Suggests to the optimizer to unroll loops n times. n is a positive integer. When n is 1, it requires
the compiler not to unroll loops. When n is greater than 1, -xunroll=n suggests that the
compiler unroll loops n times where appropriate.

B.2.181 -xustr={ascii_utf16_ushort|no}
Use this option if you need to support an internationalized application that uses ISO10646
UTF-16 string literals. In other words, use this option if your code contains a string literal that
you want the compiler to convert to UTF-16 strings in the object file. Without this option, the
compiler neither produces nor recognizes 16–bit character string literals. This option enables
recognition of the U"ASCII_string" string literals as an array of type unsigned short int.
Because such strings are not yet part of any standard, this option enables recognition of non-
standard C.

You can turn off compiler recognition of U”ASCII_string” string literals by specifying -
xustr=no. The right-most instance of this option on the command line overrides all previous
instances.

B.2 cc Options

320 Oracle Solaris Studio 12.4: C User's Guide • March 2015

The default is -xustr=no. If you specify -xustr without an argument, the compiler won’t
accept it and instead issues a warning. The default can change if the C or C++ standards define
a meaning for the syntax.

You can specify -xustr=ascii_utf16_ushort without also specifying a U"ASCII_string"
string literals.

Specifying the flag -xustr=ascii_utf16_ushort results in an error if -std=c11 (including the
default) is in effect. One of -Xc, -Xa, -Xt, -Xs, -xc99, -std=c99, -std=c89, or -ansi must also
be specified when -xustr=ascii_utf16_ushort is specified.

Not all files have to be compiled with this option.

The following example shows a string literal in quotes that is prepended by U. It also shows a
command line that specifies -xustr.

example% cat file.c

const unsigned short *foo = U"foo";

const unsigned short bar[] = U"bar";

const unsigned short *fun() { return foo;}

example% cc -xustr=ascii_utf16_ushort file.c -c

An 8-bit character literal can be prepended with U to form a 16-bit UTF-16 character of type
unsigned short. Examples:

const unsigned short x = U'x';

const unsigned short y = U'\x79';

B.2.182 -xvector[=a]
Enable automatic generation of calls to the vector library functions or the generation of the
SIMD (Single Instruction Multiple Data) instructions on x86 processors that support SIMD.
You must use default rounding mode by specifying -fround=nearest when you use this option.

The following table lists the values of a. The no% prefix disables the associated suboption.

TABLE B-46 The -xvector Flags

Value Meaning

[no%]lib (Oracle Solaris) Enable the compiler to transform math library calls within loops into
single calls to the equivalent vector math routines when such transformations are
possible. This could result in a performance improvement for loops with large loop
counts. Use no%lib to disable this option.

[no%]simd (SPARC) For -xarch=sparcace and -xarch=sparcaceplus, directs the compiler
to use floating point and integral SIMD instructions to improve the performance
of certain loops. Contrary to that of the other SPARC platforms, -xvector=simd
is always effective under -xarch=sparcace and -xarch=sparcaceplus with the
specification of any -xvector option, except -xvector=none and -xvector=no%simd.

B.2 cc Options

Appendix B • C Compiler Options Reference 321

Value Meaning

In addition -O greater than 3 is required for -xvector=simd, otherwise it is skipped
without any warning.

For all other -xarch values, directs the compiler to use the Visual Instruction Set
[VIS1, VIS2, ViS3, etc.] SIMD instructions to improve the performance of certain
loops. Basically with explicit -xvector=simd option, the compiler will perform loop
transformation enabling the generation of special vectorized SIMD instructions to
reduce the number of loop iterations. The -xvector=simd option is effective only if -
O is greater than 3 and -xarch is sparcvis3 and above. Otherwise -xvector=simd is
skipped without any warning.

[no%]simd (x86) Direct the compiler to use the native x86 SSE SIMD instructions to improve
performance of certain loops. Streaming extensions are used on x86 by default at
optimization level 3 and above where beneficial. Use no%simd to disable it this option.

The compiler will use SIMD only if streaming extensions exist in the target
architecture; that is, if target ISA is at least SSE2. For example, you can specify -
xtarget=woodcrest, —xarch=generic64, -xarch=sse2, -xarch=sse3, or -fast
on a modern platform to use it. If the target ISA has no streaming extensions, the
suboption will have no effect.

%none Disable this option completely.

yes This is deprecated, specify -xvector=lib instead.

no This is deprecated, specify -xvector=%none instead.

The default is -xvector=simd on x86 and -xvector=%none on SPARC platforms. If you specify
-xvector without a suboption, the compiler assumes -xvector=simd,lib on x86 Solaris, -
xvector=lib on SPARC Solaris, and -xvector=simd on Linux platforms.

The -xvector option requires optimization level -xO3 or greater. Compilation will not proceed
if the optimization level is unspecified or lower than -xO3, and a message is issued.

Note - Compile with -xvector=%none when compiling Oracle Solaris kernel code for x86
platforms.

The compiler includes the libmvec libraries in the load step. If you compile and link in separate
steps, use the same -xvector option on both commands.

B.2.183 -xvis

(SPARC) Use the -xvis=[yes|no] command when you are using the vis.h header to generate
VIS instructions, or when using assembler inline code (.il) that use VIS instructions. The
default is -xvis=no. Specifying -xvis is equivalent to specifying -xvis=yes.

The VIS instruction set is an extension to the SPARC-V9 instruction set. Even though the
UltraSPARC processors are 64-bit, there are many cases, especially in multimedia applications,

B.2 cc Options

322 Oracle Solaris Studio 12.4: C User's Guide • March 2015

when the data are limited to 8 or 16 bits in size. The VIS instructions can process four 16-bit
data with one instruction so they greatly improve the performance of applications that handle
new media such as imaging, linear algebra, signal processing, audio, video, and networking.

B.2.184 -xvpara

Issues warnings about potential parallel-programming related problems that might cause
incorrect results when using OpenMP. Use with -xopenmp and OpenMP API directives.

The compiler issues warnings when it detects the following situations:

■ Loops are parallelized using MP directives with data dependencies between different loop
iterations

■ OpenMP data-sharing attributes clauses are problematic. For example, declaring a variable
"shared" whose accesses in an OpenMP parallel region might cause a data race, or declaring
a variable "private" whose value in a parallel region is used after the parallel region.

No warnings appear if all parallelization directives are processed without problems.

Example:

cc -xopenmp -vpara any.c

B.2.185 -Yc, dir

Specifies a new directory dir for the location of component c. c can consist of any of the
characters representing components that are listed under the -W option.

If the location of a component is specified, then the new path name for the tool is dir/tool. If
more than one -Y option is applied to any one item, then the last occurrence holds.

B.2.186 -YA, dir

Specifies a directory dir to search for all compiler components. If a component is not found in
dir, the search reverts to the directory where the compiler is installed.

B.2.187 -YI, dir

Changes the default directory that is searched for include files.

B.3 Options Passed to the Linker

Appendix B • C Compiler Options Reference 323

B.2.188 -YP, dir

Changes the default directory for finding library files.

B.2.189 -YS, dir

Changes the default directory for startup object files.

B.2.190 -Zll

(SPARC) Creates the program database for lock_lint but does not generate executable code.
Refer to the lock_lint(1) man page for more details.

B.3 Options Passed to the Linker

cc recognizes -a, -e, -r, -t, -u, and -z and passes these options and their arguments to ld.
cc passes any unrecognized options to ld with a warning. On Oracle Solaris platforms, the -i
option and its arguments are also passed to the linker.

B.4 User-Supplied Default Options File

The default compiler options file enables the user to specify a set of default options that are
applied to all compiles, unless otherwise overridden. For example, the file could specify that all
compiles default at —xO2, or automatically include the file setup.il.

At startup, the compiler searches for a default options file listing default options it should
include for all compiles. The environment variable SPRO_DEFAULTS_PATH specifies a colon
separated list of directories to search for the defaults file.

If the environment variable is not set, a standard set of defaults is used. If the environment
variable is set but is empty, no defaults are used.

The defaults file name must be of the form compiler.defaults, where compiler is one of the
following: cc, c89, c99, CC, ftn, or lint. For example, the defaults for the C compiler
would be cc.defaults

B.4 User-Supplied Default Options File

324 Oracle Solaris Studio 12.4: C User's Guide • March 2015

If a defaults file for the compiler is found in the directories listed in SPRO_DEFAULTS_PATH,
the compiler will read the file and process the options prior to processing the options on the
command line. The first defaults file found will be used and the search terminated.

System administrators may create system-wide default files in Studio-install-path/lib/
compilers/etc/config. If the environment variable is set, the installed defaults file will not be
read.

The format of a defaults file is similar to the command line. Each line of the file may contain
one or more compiler options separated by white space. Shell expansions, such as wild cards
and substitutions, will not be applied to the options in the defaults file.

The value of the SPRO_DEFAULTS_PATH and the fully expanded command line will be displayed
in the verbose output produced by options —#, —###, and —dryrun.

Options specified by the user on the command line will usually override options read from
the defaults file. For example, if the defaults file specifies compiling with —xO4 and the user
specifies —xO2 on the command line, —xO2 will be used.

Some options appearing in the default options file will be appended after the options specified
on the command line. These are the preprocessor option —I, linker options —B, —L, —R, and —
l, and all file arguments, such as source files, object files, archives, and shared objects.

The following is an example of how a user-supplied default compiler option startup file might
be used.

demo% cat /project/defaults/cc.defaults
-I/project/src/hdrs —L/project/libs —llibproj —xvpara

demo% setenv SPRO_DEFAULTS_PATH /project/defaults

demo% cc —c —I/local/hdrs —L/local/libs —lliblocal tst.c

This command is now equivalent to:

cc -fast —xvpara —c —I/local/hdrs —L/local/libs —lliblocal tst.c \

 —I/project/src/hdrs —L/project/libs —llibproj

While the compiler defaults file provides a convenient way to set the defaults for an entire
project, it can become the cause of hard to diagnose problems. Set the environment variable
SPRO_DEFAULTS_PATH to an absolute path rather than the current directory to avoid such
problems.

The interface stability of the default options file is uncommitted. The order of option processing
is subject to change in a future release.

Appendix C • Features of C11 325

 C ♦ ♦ ♦ A P P E N D I X C

Features of C11

This appendix discusses the features of the ISO/IEC 9899:2011, Programming Language - C
standard currently supported by the C compiler.

The -std=c11 flag controls compiler recognition of 9899:2011 ISO/C. For more information
about the syntax of the -std flag, see “B.2.70 –std=value” on page 236.

C.1 Keywords

■ _Alignas

■ _Alignof

■ _Noreturn

■ _Static_assert

■ _Thread_local

C.2 C11 Supported Features

■ _Alignas specifier
■ _Alignof operator
■ _Noreturn

■ _Static_assert

■ _Thread_local storage specifier
■ Allow typedef redefinition
■ anonymous structs/unions
■ Updated set of UCN characters allowed
■ __STDC_ANALYZABLE__ macro
■ __STDC_NO_ATOMICS__ macro
■ __STDC_NO_THREADS__ macro

C.2 C11 Supported Features

326 Oracle Solaris Studio 12.4: C User's Guide • March 2015

C.2.1 _Alignas specifier
Feature: 6.7.5 Alignment specifier

_Alignas (type-name)
_Alignas (constant-expression)

The _Alignas specifier cannot be used in a declaration of a typedef, a bit-field, a function, a
parameter, or an object declared with the register storage-class specifier.

The constant expression shall evaluate to an integer constant expression The constant
expression must evaluate to an integer constant expression that is a power of 2 between 1 and
128. Valid values are: 0, 1,2, 4, 8, 16, 32, 64, and 128. The value must evaluate to an alignment
that is the same or stricter than the alignment that would be required for the type of the object or
member being declared.

_Alignas (type-name) is equivalent of _Alignas (_Alignof (type-name)).

An alignment specifier of 0 has no effect.

The effective alignment is that of the strictest alignment specifier.

An object declared with an alignment specifier must be specified with the same alignment
specifier, or no alignment specifier, on every other declaration of that object. The alignment of
an object must be specified the same in every source file declaring the same object, or behavior
is undefined.

C.2.2 _Alignof operator

Feature: 6.5.3.4 _Alignof operators

_Alignof (type-name)

The _Alignof operator evaluates to an integer constant representing the alignment requirement
of its operand type. The operand is not evaluated. The _Alignof operator cannot be used on a
function or incomplete type.

C.2.3 _Noreturn

Feature: 6.7.4 Function Specifiers, _Noreturn

Place the _Noreturn specifier in the declaration of a function that never returns, for example:

_Noreturn void leave () {

C.2 C11 Supported Features

Appendix C • Features of C11 327

 abort();

 }

C.2.4 _Static_assert

Feature: 6.7.10 Static assertions

_Static_assert (constant-expression , string-literal) ;

C.2.5 Universal Character Names (UCN)

Update the set of characters allowed in UCNs as per Annex D of ISO/IEC 9899:2011. Refer to
ISO/IEC 9899:2011 Annex D for the full list of characters allowed.

328 Oracle Solaris Studio 12.4: C User's Guide • March 2015

Appendix D • Features of C99 329

 D ♦ ♦ ♦ A P P E N D I X D

Features of C99

This appendix discusses some of the features of the ISO/IEC 9899:1999, Programming
Language - C standard.

The -std=c99 flag controls compiler recognition of 9899:1999 ISO/C. For more information
about the syntax of the -std flag, see “B.2.70 –std=value” on page 236.

D.1 Discussion and Examples

This appendix provides discussions and examples for some of the following supported features:

■ Sub-clause 5.2.4.2.2 Characteristics of floating types <float.h>
■ Sub-clause 6.2.5 _Bool
■ Sub-clause 6.2.5 _Complex type
■ Sub-clause 6.3.2.1 Conversion of arrays to pointers not limited to lvalues
■ Sub-clause 6.4.1 Keywords
■ Sub-clause 6.4.2.2 Predefined identifiers
■ 6.4.3 Universal character names
■ Sub-clause 6.4.4.2 Hexadecimal floating-point literals
■ Sub-clause 6.4.9 Comments
■ Sub-clause 6.5.2.2 Function calls
■ Sub-clause 6.5.2.5 Compound literals
■ Sub-clause 6.7.2 Type specifiers
■ Sub-clause 6.7.2.1 Structure and union specifiers
■ Sub-clause 6.7.3 Type Qualifier
■ Sub-clause 6.7.4 Function specifiers
■ Sub-clause 6.7.5.2 Array declarator
■ Sub-clause 6.7.8 Initialization
■ Sub-clause 6.8.2 Compound statement
■ Sub-clause 6.8.5 Iteration statements
■ Sub-clause 6.10.3 Macro replacement

D.1 Discussion and Examples

330 Oracle Solaris Studio 12.4: C User's Guide • March 2015

■ Sub-clause 6.10.6 STDC pragmas
■ Sub-clause 6.10.8 __STDC_IEC_559 and __STDC_IEC_559_COMPLEX macros
■ Sub-clause 6.10.9 Pragma operator

D.1.1 Precision of Floating Point Evaluators

Feature: 5.2.4.2.2 Characteristics of floating types <float.h>

The values of operations with floating operands, and the values that are subject to both the
usual arithmetic conversions and to floating constants, are evaluated to a format whose
range and precision may be greater than required by the type. The use of evaluation formats
is characterized by the implementation-defined value of FLT_EVAL_METHOD, shown in the
following table.

TABLE D-1 FLT_EVAL_METHOD Values

Value Meaning

-1 Indeterminable.

0 The compiler evaluates all operations and constants just to the range and precision of
the type.

1 The compiler evaluates operations and constants of type float and double to the range
and precision of a double. Evaluate long double operations and constants to the range
and precision of a long double.

2 The compiler evaluates all operations and constants to the range and precision of a
long double.

When you include float.h on SPARC architectures, FLT_EVAL_METHOD expands to 0 by default
and all floating-point expressions are evaluated according to their type.

When you include float.h on x86 architectures, FLT_EVAL_METHOD expands to -1 by default
(except when -xarch=sse2 or -xarch=amd64). All floating-point constant expressions are
evaluated according to their type and all other floating-point expressions are evaluated as long
double.

When you specify -flteval=2 and include float.h, FLT_EVAL_METHOD expands
to 2 and all floating expressions are evaluated as long double. See “B.2.22 -
flteval[={any|2}]” on page 221 for more information.

When you specify -xarch=sse2 (or any later version of the SSE2 processor family
such as sse3, ssse3, sse4_1, sse4_2, and so on) or -m64 on x86, and include float.h,
FLT_EVAL_METHOD expands to 0. All floating-point expressions are evaluated according to their
type.

D.1 Discussion and Examples

Appendix D • Features of C99 331

The -Xt option does not affect the expansion of FLT_EVAL_METHOD, even though float
expressions are evaluated as double. See “B.2.78 -X[c|a|t|s]” on page 240 for more
information.

The -fsingle option causes float expressions to be evaluated with single precision. See “B.2.32
-fsingle” on page 225 for more information.

When you specify -fprecision on x86 architectures with -xarch=sse2 (or any later version of
the SSE2 processor family such as sse3, ssse3, sse4_1, sse4_2, and so on) or -m64 and include
float.h, FLT_EVAL_METHOD expands to -1.

D.1.2 C99 Keywords

Feature: 6.4.1 Keywords

The C99 standard introduces the following new keywords. The compiler issues a warning if you
use these keywords as identifiers while compiling with -std=c89. With -std=c99 or -std=c11
the compiler issues a warning or error messages for use of these keywords as identifiers
depending on the context.

■ inline

■ _Imaginary

■ _Complex

■ _Bool

■ restrict

D.1.2.1 Using the restrict Keyword

An object that is accessed through a restrict qualified pointer requires that all accesses to that
object use, directly or indirectly, the value of that particular restrict qualified pointer. Any
access to the object through any other means might result in undefined behavior. The intended
use of the restrict qualifier is to enable the compiler to make assumptions that promote
optimizations.

See “3.2.6.2 Restricted Pointers” on page 80 for examples and an explanation about how to use
the restrict qualifier effectively.

D.1.3 __func__ Support

Feature: 6.4.2.2 Predefined identifiers

D.1 Discussion and Examples

332 Oracle Solaris Studio 12.4: C User's Guide • March 2015

The compiler provides support for the predefined identifier __func__, defined as an array of
chars which contains the name of the current function in which __func__ appears.

D.1.4 Universal Character Names (UCN)

Feature: 6.4.3 Universal character names

UCN allows the use of any character in a C source, not just English characters. A UCN has the
following format:

■ \u4_hex_digits_value
■ \U8_hex_digits_value

A UCN must not specify a value less than 00A0 other than 0024 ($), 0040 (@), or 0060 (?), nor
a value in the range D800 through DFFF inclusive.

UCN may be used in identifiers, character constants, and string literals to designate characters
that are not in the C basic character set.

The UCN \Unnnnnnnn designates the character whose eight-digit short identifier (as specified
by ISO/IEC 10646) is nnnnnnnn. Similarly, the universal character name \unnnn designates
the character whose four-digit short identifier is nnnn (and whose eight-digit short identifier is
0000nnnn).

D.1.5 Commenting Code With //

Feature: 6.4.9 Comments

The characters // introduce a comment that includes all multibyte characters up to, but not
including, the next new-line character except when the // characters appear within a character
constant, a string literal, or a comment.

D.1.6 Disallowed Implicit int and Implicit Function
Declarations

Feature: 6.5.2.2 Function calls

Implicit declarations are no longer allowed in the 1999 C standard as they were in the 1990
C standard. Previous versions of the C compiler issued warning messages about implicit
definitions only with -v (verbose). These messages and new additional warnings about implicit
definitions are now issued whenever identifiers are implicitly defined as int or functions.

D.1 Discussion and Examples

Appendix D • Features of C99 333

This change is very likely to be noticed by nearly all users of this compiler because it can
lead to a large number of warning messages. Common causes include a failure to include the
appropriate system header files that declare functions being used, for example,printf, which
needs <stdio.h> included. The 1990 C standard behavior of accepting implicit declarations
silently can be restored using -std=c89.

The C compiler now generates a warning for an implicit function declaration, as shown in the
following example.

example% cat test.c
void main()

{

 printf("Hello, world!\n");

}

example% cc test.c
"test.c", line 3: warning: implicit function declaration: printf

example%

D.1.7 Declarations Using Implicit int

Feature: 6.7.2 Type specifiers:

At least one type specifier shall be given in the declaration specifiers in each declaration.
For more information, see “D.1.6 Disallowed Implicit int and Implicit Function
Declarations” on page 332.

The C compiler now issues warnings on any implicit int declaration as shown in the following
example:

example% more test.c
volatile i;

const foo()

{

 return i;

}

example% cc test.c "test.c", line 1: warning: no explicit type given
 "test.c", line 3: warning: no explicit type given

example%

D.1.8 Flexible Array Members

Feature: 6.7.2.1 Structure and union specifiers

This feature is also known as the struct hack. Allows the last member of a struct to be an array
of zero length, such as int foo[]; This type of a struct is commonly used as the header to
access malloc()'d memory.

D.1 Discussion and Examples

334 Oracle Solaris Studio 12.4: C User's Guide • March 2015

For example, in this structure, struct s { int n; double d[]; } S;, the array, d, is an
incomplete array type. The C compiler does not count any memory offset for this member of S.
In other words, sizeof(struct s) is the same as the offset of S.n.

d can be used like any ordinary array-member for example, S.d[10] = 0;.

Without the C compiler’s support for an incomplete array type, you would define and declare a
structure as the following example, called DynamicDouble, shows:

typedef struct { int n; double d[1];) DynamicDouble;

Note that the array d is not an incomplete array type and is declared with one member.

Next, you declare a pointer dd and allocate memory:

DynamicDouble *dd = malloc(sizeof(DynamicDouble)+(actual_size-1)*sizeof(double));

You then store the size of the offset in S.n thus:

dd->n = actual_size;

Because the compiler supports incomplete array types, you can achieve the same result without
declaring the array with one member:

typedef struct { int n; double d[]; } DynamicDouble;

You now declare a pointer dd and allocate memory as before, except that you no longer have to
subtract one from actual_size:

DynamicDouble *dd = malloc (sizeof(DynamicDouble) + (actual_size)*sizeof(double));

The offset is stored, as before, in S.n :

dd->n = actual_size;

D.1.9 Idempotent Qualifiers
Feature: 6.7.3 Type qualifiers

If the same qualifier appears more than once in the same specifier-qualifier-list, either directly
or through one or more typedefs, the behavior is the same as when the type qualifier appears
only once.

In C90, the following code would cause an error:

%example cat test.c

const const int a;

int main(void) {

D.1 Discussion and Examples

Appendix D • Features of C99 335

 return(0);

}

%example cc -std=c89 test.c
"test.c", line 1: invalid type combination

However, with C99, the C compiler accepts multiple qualifiers.

%example cc -std=c99 test.c
%example

D.1.10 inline Functions
Feature: 6.7.4 Function specifiers

Inline functions as defined by the 1999 C ISO standard are fully supported.

Note that according to the C standard, inline is only a suggestion to the C compiler. The C
compiler can choose not to inline anything, and compile calls to the actual function.

The Oracle Solaris Studio C compiler does not inline C function calls unless compiling at
optimization level -xO3 or above, and only if the optimizer's heuristics determine that it is
profitable to do so. The C compiler does not provide a way to force a function to be inlined.

Static inline functions are simple. Either a function defined with the inline function specifier is
inlined at a reference, or a call is made to the actual function. The compiler can choose which
to do at each reference. The compiler determines whether it is profitable to inline at -xO3 and
above. If not profitable to inline (or at an optimization of less than -xO3), a reference to the
actual function will be compiled and the function definition will be compiled into the object
code. Note that if the program uses the address of the function, the actual function will be
compiled in the object code and not inlined.

Extern inline functions are more complicated. Two types of extern inline functions are: an
inline definition and an extern inline function.

An inline definition is a function defined with the keyword inline, without either the keywords
static or extern, and with all prototypes appearing within the source (or included files)
also containing the keyword inline without either the keywords static or extern. For an
inline definition the compiler must not create a global definition of the function. That means
any reference to an inline definition that is not inlined will be a reference to a global function
defined elsewhere. Put another way, the object file produced by compiling this translation unit
(source file) will not contain a global symbol for the inline definition. And any reference to the
function that is not inlined will be to an extern (global) symbol provided by some other object
file or library at link time.

An extern inline function is declared by a file scope declaration with the extern storage-
class-specifier (that is, the function definition or prototype). For an extern inline function

D.1 Discussion and Examples

336 Oracle Solaris Studio 12.4: C User's Guide • March 2015

the compiler will provide a global definition of the function in the resulting object file. The
compiler may choose to inline any references to that function seen in the translation unit (source
file) where the function definition has been provided, or the compiler can choose to call the
global function.

The behavior of any program that relies on whether a function call is actually inlined is
undefined.

Note also that an inline function with external linkage may not declare or reference a static
variable anywhere in the translation-unit.

D.1.10.1 Oracle Solaris Studio C compiler gcc compatibility for inline
functions

To obtain behavior from the Oracle Solaris Studio C compiler that is compatible with the
GNU C compiler's implementation of extern inline functions for most programs, use the -
features=no%extinl flag. When this flag is specified the Oracle Solaris Studio C compiler will
treat the function as if it were declared as a static inline function.

The one place this is not compatible will be when the address of the function is taken. With gcc
this will be an address of a global function, and with Oracle Solaris Studio's C compiler the
local static definition address will be used.

D.1.11 Static and Other Type Qualifiers Allowed in Array
Declarators

Feature: 6.7.5.2 Array declarator

The keyword static can now appear in the Array declarator of a parameter in a function
declarator to indicate that the compiler can assume at least that many elements will be passed
to the function being declared. Allows the optimizer to make assumptions about which it
otherwise could not determine.

The C compiler adjusts array parameters into pointers therefore void foo(int a[]) is the same
as void foo(int *a).

If you specify type qualifiers such as void foo(int * restrict a);, the C compiler expresses
it with array syntax void foo(int a[restrict]); which is essentially the same as declaring a
restricted pointer.

The C compiler also uses a static qualifier to preserve information about the array size. For
example, if you specify void foo(int a[10]) the compiler still expresses it as void foo(int

D.1 Discussion and Examples

Appendix D • Features of C99 337

*a). Use a static qualifier as follows, void foo(int a[static 10]), to let the compiler
know that pointer a is not NULL and that it provides access to an integer array of at least ten
elements.

D.1.12 Variable Length Arrays (VLA):

Feature: 6.7.5.2 Array declarators

VLAs are allocated on the stack as if by calling the alloca function. Their lifetime, regardless
of their scope, is the same as any data allocated on the stack by calling alloca; until the
function returns. The space allocated is freed when the stack is released upon returning from the
function in which the VLA is allocated.

Not all constraints are yet enforced for variable length arrays. Constraint violations lead to
undefined results.

#include <stdio.h>

void foo(int);

int main(void) {

 foo(4);

 return(0);

}

void foo (int n) {

 int i;

 int a[n];

 for (i = 0; i < n; i++)

 a[i] = n-i;

 for (i = n-1; i >= 0; i--)

 printf("a[%d] = %d\n", i, a[i]);

}

example% cc test.c

example% a.out

a[3] = 1

a[2] = 2

a[1] = 3

a[0] = 4

D.1.13 Designated Initializers

Feature: 6.7.8 Initialization

Designated initializers provide a mechanism for initializing sparse arrays, a practice common in
numerical programming.

D.1 Discussion and Examples

338 Oracle Solaris Studio 12.4: C User's Guide • March 2015

Designated initializers enable initialization of sparse structures, common in systems
programming, and initialization of unions through any member, regardless of whether it is the
first member.

Consider these examples. This first example shows how designated initializers are used to
initialize an array:

 enum { first, second, third };

 const char *nm[] = {

 [third] = "third member",

 [first] = "first member",

 [second] = "second member",

 };

The following example demonstrates how designated initializers are used to initialize the fields
of a struct object:

division_t result = { .quot = 2, .rem = -1 };

The following example shows how designated initializers can be used to initialize complicated
structures that might otherwise be misunderstood:

 struct { int z[3], count; } w[] = { [0].z = {1}, [1].z[0] = 2 };

An array can be created from both ends by using a single designator:

int z[MAX] = {1, 3, 5, 7, 9, [MAX-5] = 8, 6, 4, 2, 0};

If MAX is greater than ten, the array will contain zero-valued elements in the middle; if MAX is
less than ten, some of the values provided by the first five initializers will be overridden by the
second five.

Any member of a union can be initialized:

union { int i; float f;} data = { .f = 3.2 };

D.1.14 Mixed Declarations and Code

Feature: 6.8.2 Compound statement

The C compiler accepts mixing type declarations with executable code as shown by the
following example:

#include <stdio.h>

int main(void){

 int num1 = 3;

 printf("%d\n", num1);

 int num2 = 10;

D.1 Discussion and Examples

Appendix D • Features of C99 339

 printf("%d\n", num2);

 return(0);

}

D.1.15 Declaration in for-Loop Statement

Feature: 6.8.5 Iteration statements

The C compiler accepts a type declaration as the first expression in a for loop-statement:

for (int i=0; i<10; i++){ //loop body };

The scope of any variable declared in the initialization statement of the for loop is the entire
loop (including controlling and iteration expressions).

D.1.16 Macros With a Variable Number of Arguments

Feature: 6.10.3 Macro replacement

The C compiler accepts #define preprocessor directives of the following form:

#define identifier (...) replacement_list
#define identifier (identifier_list, ...) replacement_list

If the identifier_list in the macro definition ends with an ellipses, it means that there will be
more arguments in the invocation than there are parameters in the macro definition, excluding
the ellipsis. Otherwise, the number of parameters in the macro definition, including those
arguments that contain no preprocessing tokens, matches the number of arguments. Use the
identifier __VA_ARGS__ in the replacement list of a #define preprocessing directive that uses the
ellipsis notation in its arguments. The following example demonstrates the variable argument
list macro facilities.

#define debug(...) fprintf(stderr, __VA_ARGS__)

#define showlist(...) puts(#__VA_ARGS__)

#define report(test, ...) ((test)?puts(#test):\

 printf(__VA_ARGS__))

debug(“Flag”);

debug(“X = %d\n”,x);

showlist(The first, second, and third items.);

report(x>y, “x is %d but y is %d”, x, y);

which results in the following:

fprintf(stderr, “Flag”);

fprintf(stderr, “X = %d\n”, x);

puts(“The first, second, and third items.”);

((x>y)?puts(“x>y”):printf(“x is %d but y is %d”, x, y));

D.1 Discussion and Examples

340 Oracle Solaris Studio 12.4: C User's Guide • March 2015

D.1.17 _Pragma

Feature: 6.10.9 Pragma operator

A unary operator expression of the form: _Pragma (string-literal) is processed as follows:

■ The L prefix of the string literal is deleted, if it is present.
■ The leading and trailing double-quotes are deleted.
■ Each escape sequence ’ is replaced by a double-quote.
■ Each escape sequence \\ is replaced by a single backslash.

The resulting sequence of preprocessing tokens are processed as if they were the preprocessor
tokens in a pragma directive.

The original four preprocessing tokens in the unary operator expression are removed.

_Pragma offers an advantage over #pragma in that _Pragma can be used in a macro definition.

_Pragma("string") behaves exactly the same as #pragma string. Consider the following
example. First, the example’s source code is listed and then the example’s source is listed after
the preprocessor has made its pass.

example% cat test.c

#include <omp.h>

#include <stdio.h>

#define Pragma(x) _Pragma(#x)

#define OMP(directive) Pragma(omp directive)

void main()

{

 omp_set_dynamic(0);

 omp_set_num_threads(2);

 OMP(parallel)

 {

 printf("Hello!\n");

 }

}

example% cc test.c -P -xopenmp -xO3

example% cat test.i

The following shows the source after the preprocessor has finished.

void main()

{

 omp_set_dynamic(0);

 omp_set_num_threads(2);

 # pragma omp parallel

D.1 Discussion and Examples

Appendix D • Features of C99 341

 {

 printf("Hello!\n");

 }

}

example% cc test.c -xopenmp

example% ./a.out
Hello!

Hello!

example%

342 Oracle Solaris Studio 12.4: C User's Guide • March 2015

Appendix E • Implementation-Defined ISO/IEC C99 Behavior 343

 E ♦ ♦ ♦ A P P E N D I X E

Implementation-Defined ISO/IEC C99 Behavior

The ISO/IEC 9899:1999, Programming Languages- C standard specifies the form and
establishes the interpretation of programs written in C. However, this standard leaves a number
of issues as implementation-defined, that is, as varying from compiler to compiler. This chapter
details these areas. The section numbers are provided as part of the headings in this appendix
for ready comparison to the ISO/IEC 9899:1999 standard itself:

■ Each section heading uses the same section text and letter.number identifier as found in the
ISO standard.

■ Each section provides the requirement (preceded by a bullet) from the ISO standard which
describes what it is that the implementation shall define. This requirement is then followed
by an explanation of our implementation.

■ To obtain 9899:1999 ISO C behavior specify the -std=c99 flag.

E.1 Implementation-defined Behavior (J.3)

A conforming implementation is required to document its choice of behavior in each of the
areas listed in this subclause. The following are implementation-defined:

E.1.1 Translation (J.3.1)
■ How a diagnostic is identified (3.10, 5.1.1.3).

Error and warning messages have the following format:
filename, line number: message
Where filename is the name of the file that contains the error or warning,
line number is the number of the line on which the error or warning is found, and message is
the diagnostic message.

■ Whether each non-empty sequence of white-space characters other than new-line is retained
or replaced by one space character in translation phase 3 (5.1.1.2).
A sequence of non-empty characters consisting of a tab (\t), form-feed (\f), or vertical-feed
(\v) are replaced by a single space character.

E.1 Implementation-defined Behavior (J.3)

344 Oracle Solaris Studio 12.4: C User's Guide • March 2015

E.1.2 Environment (J.3.2)
■ The mapping between physical source file multi-byte characters and the source character set

in translation phase 1 (5.1.1.2).
There are eight bits in a character for the ASCII portion; locale-specific multiples of eight
bits for locale-specific extended portion.

■ The name and type of the function called at program startup in a free-standing environment
(5.1.2.1).
The implementation is hosted environment.

■ The effect of program termination in a free-standing environment (5.1.2.1).
The implementation is in a hosted environment.

■ An alternative manner in which the main function may be defined (5.1.2.2.1).

There is no alternative way to define main other than that defined in the standard.
■ The values given to the strings pointed to by the argv argument to main (5.1.2.2.1).

argv is an array of pointers to the command-line arguments, where argv[0] represents the
program name if it is available.

■ What constitutes an interactive device (5.1.2.3).

An interactive device is one for which the system library call isatty() returns a nonzero
value

■ The set of signals, their semantics, and their default handling (7.14).

The following table shows the semantics for each signal as recognized by the signal
function:

TABLE E-1 Semantics of signal Function Signals

Signal Number Default Event Semantics of Signal

SIGHUP 1 Exit hangup

SIGINT 2 Exit interrupt (rubout)

SIGQUIT 3 Core quit (ASCII FS)

SIGILL 4 Core illegal instruction (not reset when caught)

SIGTRAP 5 Core trace trap (not reset when caught)

SIGIOT 6 Core IOT instruction

SIGABRT 6 Core Used by abort

SIGEMT 7 Core EMT instruction

SIGFPE 8 Core floating-point exception

SIGKILL 9 Exit kill (cannot be caught or ignored)

SIGBUS 10 Core bus error

SIGSEGV 11 Core segmentation violation

SIGSYS 12 Core bad argument to system call

E.1 Implementation-defined Behavior (J.3)

Appendix E • Implementation-Defined ISO/IEC C99 Behavior 345

Signal Number Default Event Semantics of Signal

SIGPIPE 13 Exit write on a pipe with no one to read it

SIGALRM 14 Exit alarm clock

SIGTERM 15 Exit software termination signal from kill

SIGUSR1 16 Exit user defined signal 1

SIGUSR2 17 Exit user defined signal 2

SIGCLD 18 Ignore child status change

SIGCHLD 18 Ignore child status change alias (POSIX)

SIGPWR 19 Ignore power-fail restart

SIGWINCH 20 Ignore window size change

SIGURG 21 Ignore urgent socket condition

SIGPOLL 22 Exit pollable event occurred

SIGIO 22 Sigpoll socket I/O possible

SIGSTOP 23 Stop stop (cannot be caught or ignored)

SIGTSTP 24 Stop user stop requested from tty

SIGCONT 25 Ignore stopped process has been continued

SIGTTIN 26 Stop background tty read attempted

SIGTTOU 27 Stop background tty write attempted

SIGVTALRM 28 Exit virtual timer expired

SIGPROF 29 Exit profiling timer expired

SIGXCPU 30 Core exceeded cpu limit

SIGXFSZ 31 Core exceeded file size limit

SIGWAITING 32 Ignore reserved signal no longer used by threading code

SIGLWP 33 Ignore reserved signal no longer used by threading code

SIGFREEZE 34 Ignore Checkpoint suspend

SIGTHAW 35 Ignore Checkpoint resume

SIGCANCEL 36 Ignore Cancellation signal used by threads library

SIGLOST 37 Ignore resource lost (record-lock lost)

SIGXRES 38 Ignore Resource control exceeded (see setrctl(2))

SIGJVM1 39 Ignore Reserved for Java Virtual Machine 1

SIGJVM2 40 Ignore Reserved for Java Virtual Machine 2

■ Signal values other than SIGFPE, SIGILL, and SIGSEGV that correspond to a computational
exception (7.14.1.1).

SIGILL, SIGFPE, SIGSEGV, SIGTRAP, SIGBUS, and SIGEMT, see Table E-1.
■ Signals for which the equivalent of signal(sig, SIG_IGN); is executed at program startup

(7.14.1.1).

E.1 Implementation-defined Behavior (J.3)

346 Oracle Solaris Studio 12.4: C User's Guide • March 2015

SIGILL, SIGFPE, SIGSEGV, SIGTRAP, SIGBUS, and SIGEMT, see Table E-1.
■ The set of environment names and the method for altering the environment list used by the

getenv function (7.20.4.5).

The environment names are listed in the man page environ(5).
■ The manner of execution of the string by the system function (7.20.4.6).

From the system(3C) man page:

The system() function causes string to be given to the shell as input, as if string had been
typed as a command at a terminal. The invoker waits until the shell has completed, then
returns the exit status of the shell in the format specified by waitpid(2).

If string is a null pointer, system() checks if the shell exists and is executable. If the shell is
available, system() returns a non-zero value; otherwise, it returns 0.

E.1.3 Identifiers (J.3.3)
■ Which additional multibyte characters may appear in identifiers and their correspondence to

universal character names (6.4.2).
None

■ The number of significant initial characters in an identifier (5.2.4.1, 6.4.2).
1023

E.1.4 Characters (J.3.4)
■ The number of bits in a byte (3.6).

There are 8 bits in a byte.
■ The values of the members of the execution character set (5.2.1).

Mapping is identical between source and execution characters.
■ The unique value of the member of the execution character set produced for each of the

standard alphabetic escape sequences (5.2.2).

TABLE E-2 Standard Alphabetic Escape Sequence Unique Values

Escape Sequence Unique Value

\a (alert) 7

\b (backspace) 8

\f (form feed) 12

\n (new line) 10

\r (carriage return) 13

\t (horizontal tab) 9

E.1 Implementation-defined Behavior (J.3)

Appendix E • Implementation-Defined ISO/IEC C99 Behavior 347

Escape Sequence Unique Value

\v (vertical tab) 11

■ The value of a char object into which has been stored any character other than a member of
the basic execution character set (6.2.5).
It is the numerical value of the low order 8 bits associated with the character assigned to the
char object.

■ Which of signed char or unsigned char has the same range, representation, and behavior as
“plain” char (6.2.5, 6.3.1.1).
A signed char is treated as a “plain” char.

■ The mapping of members of the source character set (in character constants and string
literals) to members of the execution character set (6.4.4.4, 5.1.1.2).
Mapping is identical between source and execution characters.

■ The value of an integer character constant containing more than one character or containing
a character or escape sequence that does not map to a single-byte execution character
(6.4.4.4).
A multiple-character constant that is not an escape sequence has a value derived from the
numeric values of each character.

■ The value of a wide character constant containing more than one multibyte character,
or containing a multibyte character or escape sequence not represented in the extended
execution character set (6.4.4.4).
A multiple-character wide character constant that is not an escape sequence has a value
derived from the numeric values of each character.

■ The current locale used to convert a wide character constant consisting of a single multi-
byte character that maps to a member of the extended execution character set into a
corresponding wide character code (6.4.4.4).

The valid locale specified by LC_ALL, LC_CTYPE, or LANG environment variable.
■ The current locale used to convert a wide string literal into corresponding wide character

codes (6.4.5).

The valid locale specified by LC_ALL, LC_CTYPE, or LANG environment variable.
■ The value of a string literal containing a multi-byte character or escape sequence not

represented in the execution character set (6.4.5).
Each byte of the multi-byte character forms a character of the string literal, with a value
equivalent to the numerical value of that byte in the multi-byte character.

E.1.5 Integers (J.3.5)

■ Any extended integer types that exist in the implementation (6.2.5).
None

E.1 Implementation-defined Behavior (J.3)

348 Oracle Solaris Studio 12.4: C User's Guide • March 2015

■ Whether signed integer types are represented using sign and magnitude, two’s complement,
or one’s complement, and whether the extraordinary value is a trap representation or an
ordinary value (6.2.6.2).
Signed integer types are represented as two’s complement. Extraordinary value is an
ordinary value.

■ The rank of any extended integer type relative to another extended integer type with the
same precision (6.3.1.1).
Not applicable to this implementation.

■ The result of, or the signal raised by, converting an integer to a signed integer type when the
value cannot be represented in an object of that type (6.3.1.3).
When an integer is converted to a shorter signed integer, the low order bits are copied from
the longer integer to the shorter signed integer. The result may be negative.
When an unsigned integer is converted to a signed integer of equal size, the low order bits
are copied from the unsigned integer to the signed integer. The result may be negative.

■ The results of some bit-wise operations on signed integers (6.5).
The result of a bit-wise operation applied to a signed type is the bit-wise operation of the
operands, including the sign bit. Thus, each bit in the result is set if—and only if—each of
the corresponding bits in both of the operands is set.

E.1.6 Floating point (J.3.6)

■ The accuracy of the floating-point operations and of the library functions in <math.h> and
<complex.h> that return floating-point results (5.2.4.2.2).
The accuracy of floating-point operations is consistent with the settings of
FLT_EVAL_METHOD. The accuracy of the library functions in <math.h> and <complex.h> is as
specified in the libm(3LIB) man page.

■ The rounding behaviors characterized by non-standard values of FLT_ROUNDS (5.2.4.2.2).
Not applicable to this implementation.

■ The evaluation methods characterized by non-standard negative values of FLT_EVAL_METHOD
(5.2.4.2.2).
Not applicable to this implementation.

■ The direction of rounding when an integer is converted to a floating-point number that
cannot exactly represent the original value (6.3.1.4).
It honors the prevailing rounding direction mode.

■ The direction of rounding when a floating-point number is converted to a narrower floating-
point number (6.3.1.5).
It honors the prevailing rounding direction mode.

E.1 Implementation-defined Behavior (J.3)

Appendix E • Implementation-Defined ISO/IEC C99 Behavior 349

■ How the nearest representable value or the larger or smaller representable value
immediately adjacent to the nearest representable value is chosen for certain floating
constants (6.4.4.2).
Floating-point constant is always rounded to the nearest representable value.

■ Whether and how floating expressions are contracted when not disallowed by the
FP_CONTRACT pragma (6.5).
Not applicable to this implementation.

■ The default state for the FENV_ACCESS pragma (7.6.1).

For -fsimple=0, the default value is ON. Otherwise for all other values of -fsimple, the
default value for FENV_ACCESS is OFF.

■ Additional floating-point exceptions, rounding modes, environments, and classifications,
and their macro names (7.6, 7.12).
Not applicable to this implementation.

■ The default state for the FP_CONTRACT pragma (7.12.2).

For -fsimple=0, the default value is OFF. Otherwise for all other values of -fsimple, the
default value for FP_CONTRACT is ON.

■ Whether the “inexact” floating-point exception can be raised when the rounded result
actually does equal the mathematical result in an IEC 60559 conformant implementation
(F.9).
Results are indeterminable.

■ Whether the underflow (and ”inexact) floating-point exception can be raised when a result
is tiny but not inexact in an IEC 60559 conformant implementation(F.9).
The hardware does not raise underflow or inexact in such cases when trapping on underflow
is disabled (the default).

E.1.7 Arrays and Pointers (J.3.7)
■ The result of converting a pointer to an integer or to 64 bits, vice versa (6.3.2.3).

The bit pattern does not change when converting pointers and integers. Except when
the results cannot be represented in the integer or pointer type, and then the results are
undefined.

■ The size of the result of subtracting two pointers to elements of the same array (6.5.6).

int as defined in stddef.h. long for -m64

E.1.8 Hints (J.3.8)
■ The extent to which suggestions made by using the register storage-class specifier are

effective (6.7.1).

E.1 Implementation-defined Behavior (J.3)

350 Oracle Solaris Studio 12.4: C User's Guide • March 2015

The number of effective register declarations depends on patterns of use and definition
within each function and is bounded by the number of registers available for allocation.
Neither the compiler nor the optimizer is required to honor register declarations.

■ The extent to which suggestions made by using the inline function specifier are effective
(6.7.4).

The inline keyword is effective in causing the inlining of code only when using
optimization, and only when the optimizer determines it is profitable to inline. See “A.1.1
Optimization and Performance Options” on page 199 for a list of optimization options.

E.1.9 Structures, Unions, Enumerations, and Bit-fields
(J.3.9)
■ Whether a “plain” int bit-field is treated as signed int bit-field or as an unsigned int bit-

field (6.7.2, 6.7.2.1).

It is treated as an unsigned int.
■ Allowable bit-field types other than _Bool, signed int, and unsigned int (6.7.2.1).

A bit field can be declared as any integer type.
■ Whether a bit-field can straddle a storage-unit boundary (6.7.2.1).

Bit-fields do not straddle storage-unit boundaries.
■ The order of allocation of bit-fields within a unit (6.7.2.1).

Bit-fields are allocated within a storage unit from high-order to low-order.
■ The alignment of non-bit-field members of structures (6.7.2.1). This should present no

problem unless binary data written by one implementation is read by another.

TABLE E-3 Padding and Alignment of Structure Members

Type Alignment Boundary Byte Alignment

char and _Bool byte 1

short halfword 2

int word 4

long -m32 word 4

long -m64 doubleword 8

float word 4

double -m64 doubleword 8

double (SPARC) -m32 doubleword 8

double (x86) -m32 doubleword 4

long double (SPARC) -m32 doubleword 8

long double (x86) -m32 word 4

E.1 Implementation-defined Behavior (J.3)

Appendix E • Implementation-Defined ISO/IEC C99 Behavior 351

Type Alignment Boundary Byte Alignment

long double -m64 quadword 16

pointer -m32 word 4

pointer -m64 quadword 8

long long —m64 doubleword 8

long long (x86) -m32 word 4

long long (SPARC) -m32 doubleword 8

_Complex float word 4

_Complex double -m64 doubleword 8

_Complex double (SPARC) -m32 doubleword 8

_Complex double (x86) -m32 doubleword 4

_Complex long double -m64 quadword 16

_Complex long double (SPARC)
-m32

quadword 8

_Complex long double (x86) -m32 quadword 4

_Imaginary float word 4

_Imaginary double -m64 doubleword 8

_Imaginary double (x86) -m32 doubleword 4

_Imaginary (SPARC) -m32 doubleword 8

_Imaginary long double (SPARC)
-m32

doubleword 8

_Imaginary long double -m64 quadword 16

_Imaginary long double (x86) -
m32

word 4

■ The integer type compatible with each enumerated type (6.7.2.2).

This is an int.

E.1.10 Qualifiers (J.3.10)
■ What constitutes an access to an object that has volatile-qualified type (6.7.3).

Each reference to the name of an object constitutes one access to the object.

E.1.11 Preprocessing Directives (J.3.11)
■ How sequences in both forms of header names are mapped to headers or external source file

names (6.4.7).

E.1 Implementation-defined Behavior (J.3)

352 Oracle Solaris Studio 12.4: C User's Guide • March 2015

Source file characters are mapped to their corresponding ASCII values.
■ Whether the value of a character constant in a constant expression that controls conditional

inclusion matches the value of the same character constant in the execution character set
(6.10.1).
A character constant within a preprocessing directive has the same numeric value as it has
within any other expression.

■ Whether the value of a single-character character constant in a constant expression that
controls conditional inclusion may have a negative value (6.10.1).
Character constants in this context may have negative values.

■ The places that are searched for an included < > delimited header, and how the places are
specified other header is identified (6.10.2).
The location of header files depends upon the options specified on the command line, and in
which file the #include directive appears. For more information, see “2.16 How to Specify
Include Files” on page 58.

■ How the named source file is searched for in an included " " delimited header (6.10.2).
The location of header files depends upon the options specified on the command line, and in
which file the #include directive appears. For more information, see “2.16 How to Specify
Include Files” on page 58.

■ The method by which preprocessing tokens (possibly resulting from macro expansion) in a
#include directive are combined into a header name (6.10.2).
All the tokens making up the header name (including white space) are treated as the file
path used when searching for the header as described in “2.16 How to Specify Include
Files” on page 58.

■ The nesting limit for #include processing (6.10.2).
No limit is imposed by the compiler.

■ Whether the # operator inserts a \ character before the \ character that begins a universal
character name in a character constant or string literal (6.10.3.2).
No.

■ The behavior on each recognized non-STDC #pragma directive (6.10.6).
See “2.11 Pragmas” on page 41 for a description of the behavior of each recognized non-
STDC #pragma directive.

■ The definitions for __DATE__ and __TIME__ when respectively, the date and time of
translation are not available (6.10.8).
These macros are always available from the environment.

E.1.12 Library Functions (J.3.12)

■ Any library facilities available to a free-standing program, other than the minimal set
required by clause 4 (5.1.2.1).

E.1 Implementation-defined Behavior (J.3)

Appendix E • Implementation-Defined ISO/IEC C99 Behavior 353

The implementation is on a hosted environment.
■ The format of the diagnostic printed by the assert macro (7.2.1.1).

The diagnostic is structured as follows:
Assertion failed: statement. file filename, line number, function name

statement is the statement which failed the assertion. filename is the value of __FILE__. line
number is the value of __LINE__. function name is the value of __func__.

■ The representation of the floating-point status flags stored by the fegetexceptflag function
(7.6.2.2).

Each exception stored in the status flag by fegetexceptflag expands to an integer constant
expression with values such that bitwise-inclusive ORs of all combinations of the constants
result in distinct values.

■ Whether the feraiseexcept function raises the “inexact” floating-point exception in
addition to the “overflow” or “underflow” floating-point exception (7.6.2.3).
No, “inexact” is not raised.

■ Strings other than “C” and “” that may be passed as the second argument to the setlocale
function (7.11.1.1).
Intentionally left blank.

■ The types defined for float_t and double_t when the value of the FLT_EVAL_METHOD
macro is less than zero or greater than two (7.12).
■ For SPARC, the types are as follows:

typedef float float_t;

typedef double double_t;

■ For x86 the types are as follows:

typedef long double float_t;

typedef long double double_t;

Domain errors for the mathematics functions, other that those required by this International
Standard (7.12.1).

ilogb(), ilogbf() and ilogbl() raise the invalid exception if the input argument is 0, +/-Inf
or NaN.

■ The values returned by the mathematics functions on domain errors (7.12.1).
The values returned on domain errors are as specified in Annex F of ISO/IEC 9899:1999,
Programming Languages - C.

■ The values returned by the mathematics functions on underflow range errors, whether errno
is set to the value of the macro ERANGE when the integer expression math_errhandling
& MATH_ERRNO is nonzero, and whether the “underflow” floating-point exception is raised
when the integer expression math_errhandling & MATH_ERREXCEPT is nonzero. (7.12.1).

E.1 Implementation-defined Behavior (J.3)

354 Oracle Solaris Studio 12.4: C User's Guide • March 2015

For underflow range errors: if the value can be represented as a subnormal number, the
subnormal number is returned; otherwise +-0 is returned as appropriate.

As for whether errno is set to the value of the macro ERANGE when the integer expression
math_errhandling & MATH_ERRNO is nonzero, since (math_errhandling & MATH_ERRNO) ==
0 in our implementation, this part does not apply.
Whether the “underflow” floating-point exception is raised when the integer expression
math_errhandling & MATH_ERREXCEPT is nonzero (7.12.1), the exception is raised when a
floating-point underflow is coupled with loss of accuracy.

■ Whether a domain error occurs or zero is returned when an fmod function has a second
argument of zero(7.12.10.1).
A domain error occurs.

■ The base-2 logarithm of the modulus used by the remquo functions in reducing the quotient
(7.12.10.3).
31.

■ Whether the equivalent of signal(sig, SIG_DFL); is executed prior to the call of a signal
handler, and, if not, the blocking of signals that is performed (7.14.1.1).
The equivalent of signal(sig, SIG_DFL); is executed prior to the call of a signal handler.

■ The null pointer constant to which the macro NULL expands (7.17).
NULL expands to 0.

■ Whether the last line of a text stream requires a terminating new-line character (7.19.2).
The last line does not need to end in a newline.

■ Whether space characters that are written out to a text stream immediately before a new-line
character appear when read in (7.19.2).
All characters appear when the stream is read.

■ The number of null characters that may be appended to data written to a binary stream
(7.19.2).
No null characters are appended to a binary stream.

■ Whether the file position indicator of an append-mode stream is initially positioned at the
beginning or end of the file (7.19.3).
The file position indicator is initially positioned at the end of the file.

■ Whether a write on a text stream causes the associated file to be truncated beyond that point
(7.19.3).
A write on a text stream does not cause a file to be truncated beyond that point unless a
hardware device forces it to happen.

■ The characteristics of file buffering (7.19.3).

Output streams, with the exception of the standard error stream (stderr), are by default-
buffered if the output refers to a file, and line-buffered if the output refers to a terminal. The
standard error output stream (stderr) is by default unbuffered.

E.1 Implementation-defined Behavior (J.3)

Appendix E • Implementation-Defined ISO/IEC C99 Behavior 355

A buffered output stream saves many characters, and then writes the characters as a block.
An unbuffered output stream queues information for immediate writing on the destination
file or terminal immediately. Line-buffered output queues each line of output until the line is
complete (a newline character is requested).

■ Whether a zero-length file actually exists (7.19.3).
A zero-length file does exist since it has a directory entry.

■ The rules for composing valid file names (7.19.3).
A valid file name can be from 1 to 1,023 characters in length and can use all character
except the characters null and / (slash).

■ Whether the same file can be simultaneously open multiple times (7.19.3).
The same file can be opened multiple times.

■ The nature and choice of encodings used for multibyte characters in files (7.19.3).
The encodings used for multibyte characters are the same for each file.

■ The effect of the remove() function on an open file (7.19.4.1).
The file is deleted on the last call which closes the file. A program cannot open a file which
has already been removed.

■ The effect if a file with the new name exists prior to a call to the rename function (7.19.4.2).
If the file exists, it is removed and the new file is written over the previously existing file.

■ Whether an open temporary file is removed upon abnormal program termination (7.19.4.3).
If the process is killed in the period between file creation and unlinking, a permanent file
may be left behind. See the freopen(3C) man page.

■ Which changes of mode are permitted (if any), and under what circumstances (7.19.5.4).
The following changes of mode are permitted, depending upon the access mode of the file
descriptor underlying the stream:
■ When + is specified, the file descriptor mode must be O_RDWR.
■ When r is specified, the file descriptor mode must be O_RDONLY or O_RDWR.
■ When a or w is specified, the file descriptor mode must be O_WRONLY or O_RDWR.

See the freopen(3C) man page.

The style used to print an infinity or NaN, and the meaning of any n-char or n-wchar
sequence printed for a NaN (7.19.6.1, 7.24.2.1).
[-]Inf, [-]NaN. With F conversion specifier, [-]INF, [-]NAN.

■ The output for %p conversion in the fprintf or fwprintf function (7.19.6.1, 7.24.2.1).

The output for %p is equivalent to %x.
■ The interpretation of a - character that is neither the first nor the last character, nor the

second where a ^ character is the first, in the scanlist for %[conversion in the fscanf() or
fwscanf() function (7.19.6.2, 7.24.2.1).
If a - is in the scanlist and is not the first character, nor the second where the first character
is a ^, nor the last character, it indicates a range of characters to be matched.

E.1 Implementation-defined Behavior (J.3)

356 Oracle Solaris Studio 12.4: C User's Guide • March 2015

See the fscanf(3C) man page.
■ The set of sequences matched by a %p conversion and the interpretation of the

corresponding input item in the fscanf() or fwscanf() function (7.19.6.2, 7.24.2.2).
Matches the set of sequences that is the same as the set of sequences that is produced by
the %p conversion of the corresponding printf(3C) functions. The corresponding argument
must be a pointer to a pointer to void. If the input item is a value converted earlier during
the same program execution, the pointer that results will compare equal to that value;
otherwise the behavior of the %p conversion is undefined.

See the fscanf(3C) man page.
■ The value to which the macro errno is set by the fgetpos, fsetpos, or ftell functions on

failure (7.19.9.1, 7.19.9.3, 7.19.9.4).
■ EBADF The file descriptor underlying stream is not valid. See the fgetpos(3C) man page.
■ ESPIPE The file descriptor underlying stream is associated with a pipe, a FIFO, or a

socket. See the fgetpos(3C) man page.
■ EOVERFLOW The current value of the file position cannot be represented correctly in an

object of type fpos_t. See the fgetpos(3C) man page.
■ EBADF The file descriptor underlying stream is not valid. See the fsetpos(3C) man page.
■ ESPIPE The file descriptor underlying stream is associated with a pipe, a FIFO, or a

socket. See the fsetpos(3C) man page.
■ EBADF The file descriptor underlying stream is not an open file descriptor. See the

ftell(3C) man page.
■ ESPIPE The file descriptor underlying stream is associated with a pipe, a FIFO, or a

socket. See the ftell(3C) man page.
■ EOVERFLOW The current file offset cannot be represented correctly in an object of type

long. See the ftell(3C) man page.

The meaning of any n-char or n-wchar sequence in a string representing a NaN that is
converted by the strtod(), strtof(), strtold(), wcstod(), wcstof(), or wcstold() function
(7.20.1.3, 7.24.4.1.1).
No special meaning is given to the n-char sequence.

■ Whether or not the strtod, strtof, strtold, wcstod, wcstof, or wcstold function sets
errno to ERANGE when underflow occurs (7.20.1.3, 7.24.4.1.1).

Yes, errno is set to ERANGE on underflow.
■ Whether the calloc, malloc, and realloc functions return a null pointer or a pointer to an

allocated object when the size requested is zero (7.20.3).

Either a null pointer or a unique pointer that can be passed to free() is returned.

See the malloc(3C) man page.
■ Whether open streams with unwritten buffered data are flushed, open streams are closed, or

temporary files are removed when the abort or _Exit function is called (7.20.4.1, 7.20.4.4).

E.1 Implementation-defined Behavior (J.3)

Appendix E • Implementation-Defined ISO/IEC C99 Behavior 357

The abnormal termination processing includes at least the effect of fclose(3C) on all open
streams. See the abort(3C) man page.

Open streams are closed and do not flush open streams. See the _Exit(2) man page.
■ The termination status returned to the host environment by the abort, exit, or _Exit

function (7.20.4.1, 7.20.4.3, 7.20.4.4).

The status made available to wait(3C) or waitpid(3C) by abort will be that of a process
terminated by the SIGABRT signal. See the abort(3C), exit(1), and _Exit(2) man pages.

The termination status returned by exit, or _Exit, depends on the what the parent process
of the calling process is doing.

If the parent process of the calling process is executing a wait(3C), wait3(3C), waitid(2),
or waitpid(3C), and has neither set its SA_NOCLDWAIT flag nor set SIGCHLD to SIG_IGN,
it is notified of the calling process’s termination and the low-order eight bits (that is, bits
0377) of status are made available to it. If the parent is not waiting, the child’s status is
made available to it when the parent subsequently executes wait(), wait3(), waitid(), or
waitpid().

■ The value returned by the system function when its argument is not a null pointer
(7.20.4.6).

The exit status of the shell in the format specified by waitpid(3C).
■ The local time zone and Daylight Saving Time (7.23.1).

The local time zone is set by the environment variable TZ.
■ The range and precision of times representable in clock_t and time_t (7.23).

The precision of clock_t and time_t is one millionth of a second. The range is
-2147483647-1 to 4294967295 millionths of a second on x86 and SPARC-V8. And
-9223372036854775807LL-1 to 18446744073709551615 on SPARC-v9.

■ The era for the clock function (7.23.2.1).
The era for the clock is represented as clock ticks with the origin at the beginning of the
execution of the program.

■ The replacement string for the %Z specifier to the strftime, and wcsftime functions in the
“C” locale (7.23.3.5, 7.24.5.1).
The time zone name or abbreviation, or by no characters if no time zone is determinable.

■ Whether or when the trigonometric, hyperbolic, base-e exponential, base-e logarithmic,
error, and log gamma functions raise the “inexact” floating-point exception in an IEC 60559
conformant implementation (F.9).
The inexact exception is generally raised when the result is not exactly representable. The
inexact exception can be raised even when the result is exactly representable.

■ Whether the functions in <math.h> honor the rounding direction mode in an IEC 60559
conformant implementation (F.9).
No attempt is made to force the default rounding direction mode for all functions in
<math.h>.

E.1 Implementation-defined Behavior (J.3)

358 Oracle Solaris Studio 12.4: C User's Guide • March 2015

E.1.13 Architecture (J.3.13)

■ The values or expressions assigned to the macros specified in the headers <float.h>,
<limits.h>, and <stdint.h> (5.2.4.2, 7.18.2, 7.18.3).
■ Here are the values or expressions for the macros specified in <float.h>:

#define CHAR_BIT 8 /* max # of bits in a “char” */

#define SCHAR_MIN (-128) /* min value of a “signed char” */

#define SCHAR_MAX 127 /* max value of a “signed char” */

#define CHAR_MIN SCHAR_MIN /* min value of a “char” */

#define CHAR_MAX SCHAR_MAX /* max value of a “char” */

#define MB_LEN_MAX 5

#define SHRT_MIN (-32768) /* min value of a “short int” */

#define SHRT_MAX 32767 /* max value of a “short int” */

#define USHRT_MAX 65535 /* max value of “unsigned short int” */

#define INT_MIN (-2147483647-1) /* min value of an “int” */

#define INT_MAX 2147483647 /* max value of an “int” */

#define UINT_MAX 4294967295U /* max value of an “unsigned int” */

#define LONG_MIN (-2147483647L-1L)

#define LONG_MAX 2147483647L /* max value of a “long int” */

#define ULONG_MAX 4294967295UL /* max value of “unsigned long int” */

#define LLONG_MIN (-9223372036854775807LL-1LL)

#define LLONG_MAX 9223372036854775807LL

#define ULLONG_MAX 18446744073709551615ULL

#define FLT_RADIX 2

#define FLT_MANT_DIG 24

#define DBL_MANT_DIG 53

#define LDBL_MANT_DIG 64

#if defined(__sparc)

#define DECIMAL_DIG 36

#elif defined(__i386)

#define DECIMAL_DIG 21

#endif

#define FLT_DIG 6

#define DBL_DIG 15

#if defined(__sparc)

#define LDBL_DIG 33

#elif defined(__i386)

#define LDBL_DIG 18

#endif

#define FLT_MIN_EXP (-125)

#define DBL_MIN_EXP (-1021)

E.1 Implementation-defined Behavior (J.3)

Appendix E • Implementation-Defined ISO/IEC C99 Behavior 359

#define LDBL_MIN_EXP (-16381)

#define FLT_MIN_10_EXP (-37)

#define DBL_MIN_10_EXP (-307)

#define LDBL_MIN_10_EXP (-4931)

#define FLT_MAX_EXP (+128)

#define DBL_MAX_EXP (+1024)

#define LDBL_MAX_EXP (+16384)

#define FLT_EPSILON 1.192092896E-07F

#define DBL_EPSILON 2.2204460492503131E-16

#if defined(__sparc)

#define LDBL_EPSILON 1.925929944387235853055977942584927319E-34L

#elif defined(__i386)

#define LDBL_EPSILON 1.0842021724855044340075E-19L

#endif

#define FLT_MIN 1.175494351E-38F

#define DBL_MIN 2.2250738585072014E-308

#if defined(__sparc)

#define LDBL_MIN 3.362103143112093506262677817321752603E-4932L

#elif defined(__i386)

#define LDBL_MIN 3.3621031431120935062627E-4932L

#endif

■ Here are the values or expressions for the macros specified in <limits.h>:

#define INT8_MAX (127)

#define INT16_MAX (32767)

#define INT32_MAX (2147483647)

#define INT64_MAX (9223372036854775807LL)

#define INT8_MIN (-128)

#define INT16_MIN (-32767-1)

#define INT32_MIN (-2147483647-1)

#define INT64_MIN (-9223372036854775807LL-1)

#define UINT8_MAX (255U)

#define UINT16_MAX (65535U)

#define UINT32_MAX (4294967295U)

#define UINT64_MAX (18446744073709551615ULL)

#define INT_LEAST8_MIN INT8_MIN

#define INT_LEAST16_MIN INT16_MIN

E.1 Implementation-defined Behavior (J.3)

360 Oracle Solaris Studio 12.4: C User's Guide • March 2015

#define INT_LEAST32_MIN INT32_MIN

#define INT_LEAST64_MIN INT64_MIN

#define INT_LEAST8_MAX INT8_MAX

#define INT_LEAST16_MAX INT16_MAX

#define INT_LEAST32_MAX INT32_MAX

#define INT_LEAST64_MAX INT64_MAX

#define UINT_LEAST8_MAX UINT8_MAX

#define UINT_LEAST16_MAX UINT16_MAX

#define UINT_LEAST32_MAX UINT32_MAX

#define UINT_LEAST64_MAX UINT64_MAX

■ Here are the values or expressions for the macros specified in <stdint.h>:

#define INT_FAST8_MIN INT8_MIN

#define INT_FAST16_MIN INT16_MIN

#define INT_FAST32_MIN INT32_MIN

#define INT_FAST64_MIN INT64_MIN

#define INT_FAST8_MAX INT8_MAX

#define INT_FAST16_MAX INT16_MAX

#define INT_FAST32_MAX INT32_MAX

#define INT_FAST64_MAX INT64_MAX

#define UINT_FAST8_MAX UINT8_MAX

#define UINT_FAST16_MAX UINT16_MAX

#define UINT_FAST32_MAX UINT32_MAX

#define UINT_FAST64_MAX UINT64_MAX

■ The number, order, and encoding of bytes in any object (when not explicitly specified in this
International Standard) (6.2.6.1).
The implementation-defined number, order, and encodings of objects not explicitly
specified in the 1999 C standard have been defined elsewhere in this chapter.

■ The value of the result of the sizeof operator (6.5.3.4).

The following table lists the results for sizeof.

TABLE E-4 Results From the sizeof Operator in Bytes

Type Size in Bytes

char and _Bool 1

short 2

int 4

long 4

E.1 Implementation-defined Behavior (J.3)

Appendix E • Implementation-Defined ISO/IEC C99 Behavior 361

Type Size in Bytes

long -m64 8

long long 8

float 4

double 8

long double (SPARC) 16

long double (x86) -m32 12

long double (x86) -m64 16

pointer 4

pointer -m64 8

_Complex float 8

_Complex double 16

_Complex long double (SPARC) 32

_Complex long double (x86) -m32 24

_Complex long double (x86) -m64 32

_Imaginary float 4

_Imaginary double 8

_Imaginary long double (SPARC) 16

_Imaginary long double (x86) -m32 12

_Imaginary long double (x86) -m64 16

E.1.14 Locale-specific Behavior (J.4)

The following characteristics of a hosted environment are locale-specific and are required to be
documented by the implementation:

■ Additional members of the source and execution character sets beyond the basic character
set (5.2.1).
Locale-specific (no extension in C locale).

■ The presence, meaning, and representation of additional multibyte characters in the
execution character set beyond the basic character set (5.2.1.2).
There are no multibyte characters present in the execution characters set in the default or C
locales.

■ The shift states used for the encoding of multibyte characters (5.2.1.2).
There are no shift states.

■ The direction of writing of successive printing characters (5.2.2).
Printing is always left to right.

■ The decimal-point character (7.1.1).

E.1 Implementation-defined Behavior (J.3)

362 Oracle Solaris Studio 12.4: C User's Guide • March 2015

Locale-specific (“.” in C locale).
■ The set of printing characters (7.4, 7.25.2).

Locale-specific (“.” in C locale).
■ The set of control characters (7.4, 7.25.2).

The control character set is comprised of horizontal tab, vertical tab, form feed, alert,
backspace, carriage return, and new line.

■ The sets of characters tested for by the isalpha, isblank, islower, ispunct, isspace,
isupper, iswalpha, iswblank, iswlower, iswpunct, iswspace, or iswupper functions
(7.4.1.2, 7.4.1.3, 7.4.1.7, 7.4.1.9, 7.4.1.10, 7.4.1.11, 7.25.2.1.2, 7.25.2.1.3, 7.25.2.1.7,
7.25.2.1.9, 7.25.2.1.10, 7.25.2.1.11).

See the isalpha(3C) and iswalpha(3C) man pages for descriptions of isalpha() and
iswalpha() as well as information on the related macros mentioned above. Note that their
behaviors can be modified by changing locale.

■ The native environment (7.11.1.1).

The native environment is specified by the LANG and LC_* environment variables as
described in the setlocale(3C) man page. However, if these environment variables are not
set, the native environment is set to the C locale.

■ Additional subject sequences accepted by the numeric conversion functions (7.20.1,
7.24.4.1).

The radix character is defined in the program’s locale (category LC_NUMERIC), and may be
defined as something other than a period (.).

■ The collation sequence of the execution character set (7.21.4.3, 7.24.4.4.2).
Locale-specific (ASCII collation in C locale).

■ The contents of the error message strings set up by the strerror function (7.21.6.2).

If the application is linked with -lintl, then messages returned by this function are in the
native language specified by the LC_MESSAGES locale category. Otherwise they are in the C
locale.

■ The formats for time and date (7.23.3.5, 7.24.5.1).
Locale-specific. Formats for the C locale are shown in the tables below.
The names of the months are specified below:

TABLE E-5 The Names of the Months

January May September

February June October

March July November

April August December

The names of the days of the week are specified below:

E.1 Implementation-defined Behavior (J.3)

Appendix E • Implementation-Defined ISO/IEC C99 Behavior 363

TABLE E-6 Days and Abbreviated Days of the Week

Days Abbreviated Days

Sunday Thursday Sun Thu

Monday Friday Mon Fri

Tuesday Saturday Tue Sat

Wednesday Wed

The format for time is:

%H:%M:%S

The format for date is:

%m/%d/ with the -pedantic flag.

The formats for AM and PM designation are: AM PM

■ Character mappings that are supported by the towctrans function (7.25.1).
The rules of the coded character set defined by character mapping information in the
program’s locale (category LC_CTYPE) may provide for character mappings other than
tolower and toupper. Refer to the Oracle Solaris Internationalization Guide For
Developers, for details of available locales and their definitions.

■ Character classifications that are supported by the iswctype function (7.25.1).
See the Oracle Solaris Internationalization Guide For Developers, for details of available
locales and any non-standard reserved character classifications

364 Oracle Solaris Studio 12.4: C User's Guide • March 2015

Appendix F • Implementation-Defined ISO/IEC C90 Behavior 365

 F ♦ ♦ ♦ A P P E N D I X F

Implementation-Defined ISO/IEC C90 Behavior

The ISO/IEC 9899:1990, Programming Languages- C standard specifies the form and
establishes the interpretation of programs written in C. However, this standard leaves a number
of issues as implementation-defined, that is, as varying from compiler to compiler. This chapter
details these areas. They can be readily compared to the ISO/IEC 9899:1990 standard itself:

■ Each item uses the same section text as found in the ISO standard.
■ Each item is preceded by its corresponding section number in the ISO standard.

F.1 Implementation Compared to the ISO Standard

F.1.1 Translation (G.3.1)

The numbers in parentheses correspond to section numbers in the ISO/IEC 9899:1990 standard.

F.1.1.1 (5.1.1.3) Identification of diagnostics:

Error messages have the following format:

filename, line line number: message

Warning messages have the following format:

filename, line line number: warning message

Where:

■ filename is the name of the file containing the error or warning
■ line number is the number of the line on which the error or warning is found
■ message is the diagnostic message

F.1 Implementation Compared to the ISO Standard

366 Oracle Solaris Studio 12.4: C User's Guide • March 2015

F.1.2 Environment (G.3.2)

F.1.2.1 (5.1.2.2.1) Semantics of arguments to main:

int main (int argc, char *argv[])

{

....

}

argc is the number of command-line arguments with which the program is invoked with. After
any shell expansion, argc is always equal to at least 1, the name of the program.

argv is an array of pointers to the command-line arguments.

F.1.2.2 (5.1.2.3) What constitutes an interactive device:

An interactive device is one for which the system library call isatty() returns a nonzero value.

F.1.3 Identifiers (G.3.3)

F.1.3.1 (6.1.2) The number of significant initial characters (beyond 31)
in an identifier without external linkage:

The first 1,023 characters are significant. Identifiers are case-sensitive.

(6.1.2) The number of significant initial characters (beyond 6) in an
identifier with external linkage:

The first 1,023 characters are significant. Identifiers are case-sensitive.

F.1 Implementation Compared to the ISO Standard

Appendix F • Implementation-Defined ISO/IEC C90 Behavior 367

F.1.4 Characters (G.3.4)

F.1.4.1 (5.2.1) The members of the source and execution character
sets, except as explicitly specified in the Standard:

Both sets are identical to the ASCII character sets, plus locale-specific extensions.

F.1.4.2 (5.2.1.2) The shift states used for the encoding of multibyte
characters:

There are no shift states.

F.1.4.3 (5.2.4.2.1) The number of bits in a character in the execution
character set:

There are 8 bits in a character for the ASCII portion; locale-specific multiple of 8 bits for
locale-specific extended portion.

F.1.4.4 (6.1.3.4) The mapping of members of the source character set
(in character and string literals) to members of the execution
character set:

Mapping is identical between source and execution characters.

F.1.4.5 (6.1.3.4) The value of an integer character constant that
contains a character or escape sequence not represented in
the basic execution character set or the extended character
set for a wide character constant:

It is the numerical value of the rightmost character. For example, ’\q’ equals ’q’. A warning is
emitted if such an escape sequence occurs.

F.1 Implementation Compared to the ISO Standard

368 Oracle Solaris Studio 12.4: C User's Guide • March 2015

F.1.4.6 (3.1.3.4) The value of an integer character constant that
contains more than one character or a wide character
constant that contains more than one multibyte character:

A multiple-character constant that is not an escape sequence has a value derived from the
numeric values of each character.

F.1.4.7 (6.1.3.4) The current locale used to convert multibyte
characters into corresponding wide characters (codes) for a
wide character constant:

The valid locale specified by LC_ALL, LC_CTYPE, or LANG environment variable.

F.1.4.8 (6.2.1.1) Whether a plain char has the same range of values as
signed char or unsigned char:

A char is treated as a signed char.

F.1.5 Integers (G.3.5)

F.1.5.1 (6.1.2.5) The representations and sets of values of the various
types of integers:

TABLE F-1 Representations and Sets of Values of Integers

Integer Bits Minimum Maximum

char 8 -128 127

signed char 8 -128 127

unsigned char 8 0 255

short 16 -32768 32767

signed short 16 -32768 32767

unsigned short 16 0 65535

F.1 Implementation Compared to the ISO Standard

Appendix F • Implementation-Defined ISO/IEC C90 Behavior 369

Integer Bits Minimum Maximum

int 32 -2147483648 2147483647

signed int 32 -2147483648 2147483647

unsigned int 32 0 4294967295

long -m32 32 -2147483648 2147483647

long -m64 64 -9223372036854775808 9223372036854775807

signed long -m32 32 -2147483648 2147483647

signed long -m64 64 -9223372036854775808 9223372036854775807

unsigned long -m32 32 0 4294967295

unsigned long -m64 64 0 18446744073709551615

long long 64 -9223372036854775808 9223372036854775807

signed long long† 64 -9223372036854775808 9223372036854775807

unsigned long long† 64 0 18446744073709551615

†Not valid with -pedantic

F.1.5.2 (6.2.1.2) The result of converting an integer to a shorter
signed integer, or the result of converting an unsigned integer
to a signed integer of equal length, if the value cannot be
represented:

When an integer is converted to a shorter signed integer, the low order bits are copied from the
longer integer to the shorter signed integer. The result may be negative.

When an unsigned integer is converted to a signed integer of equal size, the low order bits are
copied from the unsigned integer to the signed integer. The result may be negative.

F.1.5.3 (6.3) The results of bitwise operations on signed integers:

The result of a bitwise operation applied to a signed type is the bitwise operation of the
operands, including the sign bit. Thus, each bit in the result is set if—and only if—each of the
corresponding bits in both of the operands is set.

F.1.5.4 (6.3.5) The sign of the remainder on integer division:

The result is the same sign as the dividend; thus, the remainder of -23/4 is -3.

F.1 Implementation Compared to the ISO Standard

370 Oracle Solaris Studio 12.4: C User's Guide • March 2015

F.1.5.5 (6.3.7) The result of a right shift of a negative-valued signed
integral type:

The result of a right shift is a signed right shift.

F.1.6 Floating-Point (G.3.6)

F.1.6.1 (6.1.2.5) The representations and sets of values of the various
types of floating-point numbers:

TABLE F-2 Values for a float

float

Bits 32

Min 1.17549435E-38

Max 3.40282347E+38

Epsilon 1.19209290E-07

TABLE F-3 Values for a double

double

Bits 64

Min 2.2250738585072014E-308

Max 1.7976931348623157E+308

Epsilon 2.2204460492503131E-16

TABLE F-4 Values for long double

long double

Bits 128 (SPARC)

80 (x86)

Min 3.362103143112093506262677817321752603E-4932 (SPARC)

3.3621031431120935062627E-4932 (x86)

Max 1.189731495357231765085759326628007016E+4932 (SPARC)

1.1897314953572317650213E4932 (x86)

Epsilon 1.925929944387235853055977942584927319E-34 (SPARC)

F.1 Implementation Compared to the ISO Standard

Appendix F • Implementation-Defined ISO/IEC C90 Behavior 371

1.0842021724855044340075E-19 (x86)

F.1.6.2 (6.2.1.3) The direction of truncation when an integral number
is converted to a floating-point number that cannot exactly
represent the original value:

Numbers are rounded to the nearest value that can be represented.

F.1.6.3 (6.2.1.4) The direction of truncation or rounding when a
floating- point number is converted to a narrower floating-
point number:

Numbers are rounded to the nearest value that can be represented.

F.1.7 Arrays and Pointers (G.3.7)

F.1.7.1 (6.3.3.4, 7.1.1) The type of integer required to hold the
maximum size of an array; that is, the type of the sizeof
operator, size_t:

unsigned int as defined in stddef.h (for —m32).

unsigned long (for -m64)

F.1.7.2 (6.3.4) The result of casting a pointer to an integer, or vice
versa:

The bit pattern does not change for pointers and values of type int, long, unsigned int and
unsigned long.

F.1.7.3 (6.3.6, 7.1.1) The type of integer required to hold the difference
between two pointers to members of the same array,
ptrdiff_t:

int as defined in stddef.h (for —m32).

F.1 Implementation Compared to the ISO Standard

372 Oracle Solaris Studio 12.4: C User's Guide • March 2015

long (for -m64)

F.1.8 Registers (G.3.8)

F.1.8.1 (6.5.1) The extent to which objects can actually be placed in
registers by use of the register storage-class specifier:

The number of effective register declarations depends on patterns of use and definition within
each function and is bounded by the number of registers available for allocation. Neither the
compiler nor the optimizer is required to honor register declarations.

F.1.9 Structures, Unions, Enumerations, and Bit-Fields
(G.3.9)

F.1.9.1 (6.3.2.3) A member of a union object is accessed using a
member of a different type:

The bit pattern stored in the union member is accessed, and the value interpreted, according to
the type of the member by which it is accessed.

F.1.9.2 (6.5.2.1) The padding and alignment of members of structures.

TABLE F-5 Padding and Alignment of Structure Members

Type Alignment Boundary Byte Alignment

char and _Bool Byte 1

short Halfword 2

int Word 4

long -m32 Word 4

long -m64 Doubleword 8

long long -m32 Doubleword (SPARC)

Word (x86)

8 (SPARC)

4 (x86)

long long -m64 Doubleword 8

float Word 4

F.1 Implementation Compared to the ISO Standard

Appendix F • Implementation-Defined ISO/IEC C90 Behavior 373

Type Alignment Boundary Byte Alignment

double -m32 Doubleword (SPARC)

Word (x86)

8 (SPARC)

4 (x86)

double -m64 Doubleword 8

long double -m32 Doubleword (SPARC)

Word (x86)

8 (SPARC)

4 (x86)

long double -m64 Quadword 16

pointer -m32 Word 4

pointer -m64 Quadword 8

float _Complex Word 4

double _Complex -m32 Doubleword (SPARC)

Word (x86)

8 (SPARC)

4 (x86)

double _Complex -m64 Doubleword 8

long double _Complex -m32 Doubleword (SPARC)

Word (x86)

8 (SPARC)

4 (x86)

long double _Complex -m64 Quadword 16

float _Imaginary Word 4

double _Imaginary -m32 Doubleword (SPARC)

Word (x86)

8 (SPARC)

4 (x86)

double _Imaginary -m64 Doubleword 8

long double _Imaginary -m32 Doubleword (SPARC)

Word (x86)

8 (SPARC)

4 (x86)

long double _Imaginary -m64 Doubleword 16

Structure members are padded internally, so that every element is aligned on the appropriate
boundary.

Alignment of structures is the same as its more strictly aligned member. For example, a struct
with only chars has no alignment restrictions, whereas a struct containing a double compiled
with —m64 would be aligned on an 8-byte boundary.

F.1.9.3 (6.5.2.1) Whether a plain int bit-field is treated as a signed int
bit-field or as an unsigned int bit-field:

It is treated as an unsigned int.

F.1 Implementation Compared to the ISO Standard

374 Oracle Solaris Studio 12.4: C User's Guide • March 2015

F.1.9.4 (6.5.2.1) The order of allocation of bit-fields within an int:

Bit-fields are allocated within a storage unit from high-order to low-order.

F.1.9.5 (6.5.2.1) Whether a bit-field can straddle a storage-unit
boundary:

Bit-fields do not straddle storage-unit boundaries.

F.1.9.6 (6.5.2.2) The integer type chosen to represent the values of an
enumeration type:

This is an int.

F.1.10 Qualifiers (G.3.10)

F.1.10.1 (6.5.5.3) What constitutes an access to an object that has
volatile-qualified type:

Each reference to the name of an object constitutes one access to the object.

F.1.11 Declarators (G.3.11)

F.1.11.1 (6.5.4) The maximum number of declarators that may modify
an arithmetic, structure, or union type:

No limit is imposed by the compiler.

F.1 Implementation Compared to the ISO Standard

Appendix F • Implementation-Defined ISO/IEC C90 Behavior 375

F.1.12 Statements (G.3.12)

F.1.12.1 (6.6.4.2) The maximum number of case values in a switch
statement:

No limit is imposed by the compiler.

F.1.13 Preprocessing Directives (G.3.13)

F.1.13.1 (6.8.1) Whether the value of a single-character character
constant in a constant expression that controls conditional
inclusion matches the value of the same character constant in
the execution character set:

A character constant within a preprocessing directive has the same numeric value as it has
within any other expression.

F.1.13.2 (6.8.1) Whether such a character constant may have a
negative value:

Character constants in this context may have negative values .

F.1.13.3 (6.8.2) The method for locating includable source files:

A file whose name is delimited by < > is searched for first in the directories named by the -I
option, and then in the standard directory. The standard directory is /usr/include, unless the -
YI option is used to specify a different default location.

A file whose name is delimited by quotes is searched for first in the directory of the source file
that contains the #include, then in directories named by the -I option, and last in the standard
directory.

If a file name enclosed in < > or double quotes begins with a / character, the file name is
interpreted as a path name beginning in the root directory. The search for this file is in the root
directory only.

F.1 Implementation Compared to the ISO Standard

376 Oracle Solaris Studio 12.4: C User's Guide • March 2015

F.1.13.4 (6.8.2) The support of quoted names for includable source
files:

Quoted file names in include directives are supported.

F.1.13.5 (6.8.2) The mapping of source file character sequences:

Source file characters are mapped to their corresponding ASCII values.

F.1.13.6 (6.8.6) The behavior on each recognized #pragma directive:

The following pragmas are supported. See “2.11 Pragmas” on page 41 for more information.

■ align integer (variable[, variable])
■ c99 (“implicit” | “no%implicit”)
■ does_not_read_global_data (funcname [, funcname])
■ does_not_return (funcname[, funcname])
■ does_not_write_global_data (funcname[, funcname])
■ error_messages (on|off|default, tag1[tag2... tagn])
■ fini (f1[, f2..., fn])
■ hdrstop

■ ident string
■ init (f1[, f2..., fn])
■ inline (funcname[, funcname])
■ int_to_unsigned (funcname)
■ MP serial_loop
■ MP serial_loop_nested
■ MP taskloop
■ no_inline (funcname[, funcname])
■ no_warn_missing_parameter_info

■ nomemorydepend

■ no_side_effect (funcname[, funcname])
■ opt_level (funcname[, funcname])
■ pack(n)
■ pipeloop(n)
■ rarely_called (funcname[, funcname])
■ redefine_extname old_extname new_extname
■ returns_new_memory (funcname[, funcname])

F.1 Implementation Compared to the ISO Standard

Appendix F • Implementation-Defined ISO/IEC C90 Behavior 377

■ unknown_control_flow (name[, name])
■ unroll (unroll_factor)
■ warn_missing_parameter_info

■ weak symbol1 [= symbol2]

F.1.13.7 (6.8.8) The definitions for __DATE__ and __TIME__ when,
respectively, the date and time of translation are not available:

These macros are always available from the environment.

F.1.14 Library Functions (G.3.14)

F.1.14.1 (7.1.6) The null pointer constant to which the macro NULL
expands:

NULL equals 0.

F.1.14.2 (7.2) The diagnostic printed by and the termination behavior
of the assert function:

The diagnostic is:

Assertion failed: statement. file filename, line number

Where:

■ statement is the statement which failed the assertion
■ filename is the name of the file containing the failure
■ line number is the number of the line on which the failure occurs

F.1.14.3 (7.3.1) The sets of characters tested for by the isalnum,
isalpha, iscntrl, islower, isprint, and isupper functions:

TABLE F-6 Character Sets Tested by isalpha, islower, etc.

isalnum ASCII characters A-Z, a-z and 0-9

isalpha ASCII characters A-Z and a-z, plus locale-specific single-byte letters

F.1 Implementation Compared to the ISO Standard

378 Oracle Solaris Studio 12.4: C User's Guide • March 2015

iscntrl ASCII characters with value 0-31 and 127

islower ASCII characters a-z

isprint Locale-specific single-byte printable characters

isupper ASCII characters A-Z

F.1.14.4 (7.5.1) The values returned by the mathematics functions on
domain errors:

TABLE F-7 Values Returned on Domain Errors

Error Math Functions Compiler Modes

-Xs, -Xt -pedantic, -Xa, -Xc

DOMAIN acos(|x|>1) 0.0 0.0

DOMAIN asin(|x|>1) 0.0 0.0

DOMAIN atan2(+-0,+-0) 0.0 0.0

DOMAIN y0(0) -HUGE -HUGE_VAL

DOMAIN y0(x<0) -HUGE -HUGE_VAL

DOMAIN y1(0) -HUGE -HUGE_VAL

DOMAIN y1(x<0) -HUGE -HUGE_VAL

DOMAIN yn(n,0) -HUGE -HUGE_VAL

DOMAIN yn(n,x<0) -HUGE -HUGE_VAL

DOMAIN log(x<0) -HUGE -HUGE_VAL

DOMAIN log10(x<0) -HUGE -HUGE_VAL

DOMAIN pow(0,0) 0.0 1.0

DOMAIN pow(0,neg) 0.0 -HUGE_VAL

DOMAIN pow(neg,non-integal) 0.0 NaN

DOMAIN sqrt(x<0) 0.0 NaN

DOMAIN fmod(x,0) x NaN

DOMAIN remainder(x,0) NaN NaN

DOMAIN acosh(x<1) NaN NaN

DOMAIN atanh(|x|>1) NaN NaN

F.1.14.5 (7.5.1) Whether the mathematics functions set the integer
expression errno to the value of the macro ERANGE on
underflow range errors:

Mathematics functions, except scalbn, set errno to ERANGE when underflow is detected.

F.1 Implementation Compared to the ISO Standard

Appendix F • Implementation-Defined ISO/IEC C90 Behavior 379

F.1.14.6 (7.5.6.4) Whether a domain error occurs or zero is returned
when the fmod function has a second argument of zero:

In this case, it returns the first argument with domain error.

F.1.14.7 (7.7.1.1) The set of signals for the signal function:

The following table shows the semantics for each signal as recognized by the signal function:

TABLE F-8 Semantics for signal Signals

Signal No. Default Event

SIGHUP 1 Exit hangup

SIGINT 2 Exit interrupt

SIGQUIT 3 Core quit

SIGILL 4 Core illegal instruction (not reset when caught)

SIGTRAP 5 Core trace trap (not reset when caught)

SIGIOT 6 Core IOT instruction

SIGABRT 6 Core Used by abort

SIGEMT 7 Core EMT instruction

SIGFPE 8 Core floating point exception

SIGKILL 9 Exit kill (cannot be caught or ignored)

SIGBUS 10 Core bus error

SIGSEGV 11 Core segmentation violation

SIGSYS 12 Core bad argument to system call

SIGPIPE 13 Exit write on a pipe with no one to read it

SIGALRM 14 Exit alarm clock

SIGTERM 15 Exit software termination signal from kill

SIGUSR1 16 Exit user defined signal 1

SIGUSR2 17 Exit user defined signal 2

SIGCLD 18 Ignore child status change

SIGCHLD 18 Ignore child status change alias

SIGPWR 19 Ignore power-fail restart

SIGWINCH 20 Ignore window size change

SIGURG 21 Ignore urgent socket condition

SIGPOLL 22 Exit pollable event occurred

F.1 Implementation Compared to the ISO Standard

380 Oracle Solaris Studio 12.4: C User's Guide • March 2015

Signal No. Default Event

SIGIO 22 Exit socket I/O possible

SIGSTOP 23 Stop stop (cannot be caught or ignored)

SIGTSTP 24 Stop user stop requested from tty

SIGCONT 25 Ignore stopped process has been continued

SIGTTIN 26 Stop background tty read attempted

SIGTTOU 27 Stop background tty write attempted

SIGVTALRM 28 Exit virtual timer expired

SIGPROF 29 Exit profiling timer expired

SIGXCPU 30 Core exceeded cpu limit

SIGXFSZ 31 Core exceeded file size limit

SIGWAITINGT 32 Ignore process’s lwps are blocked

F.1.14.8 (7.7.1.1) The default handling and the handling at program
startup for each signal recognized by the signal function:

See above.

F.1.14.9 (7.7.1.1) If the equivalent of signal(sig, SIG_DFL); is not
executed prior to the call of a signal handler, the blocking of
the signal that is performed:

The equivalent of signal(sig,SIG_DFL) is always executed.

F.1.14.10 (7.7.1.1) Whether the default handling is reset if the SIGILL
signal is received by a handler specified to the signal
function:

Default handling is not reset in SIGILL.

F.1.14.11 (7.9.2) Whether the last line of a text stream requires a
terminating new-line character:

The last line does not need to end in a newline.

F.1 Implementation Compared to the ISO Standard

Appendix F • Implementation-Defined ISO/IEC C90 Behavior 381

F.1.14.12 (7.9.2) Whether space characters that are written out to a text
stream immediately before a new-line character appear when
read in:

All characters appear when the stream is read.

F.1.14.13 (7.9.2) The number of null characters that may be appended to
data written to a binary stream:

No null characters are appended to a binary stream.

F.1.14.14 (7.9.3) Whether the file position indicator of an append mode
stream is initially positioned at the beginning or end of the
file:

The file position indicator is initially positioned at the end of the file.

F.1.14.15 (7.9.3) Whether a write on a text stream causes the associated
file to be truncated beyond that point:

A write on a text stream does not cause a file to be truncated beyond that point unless a
hardware device forces it to happen.

F.1.14.16 (7.9.3) The characteristics of file buffering:

Output streams, with the exception of the standard error stream (stderr), are by default-
buffered if the output refers to a file, and line-buffered if the output refers to a terminal. The
standard error output stream (stderr) is by default unbuffered.

A buffered output stream saves many characters, and then writes the characters as a block. An
unbuffered output stream queues information for immediate writing on the destination file or
terminal immediately. Line-buffered output queues each line of output until the line is complete
(a newline character is requested).

F.1 Implementation Compared to the ISO Standard

382 Oracle Solaris Studio 12.4: C User's Guide • March 2015

F.1.14.17 (7.9.3) Whether a zero-length file actually exists:

A zero-length file does exist since it has a directory entry.

F.1.14.18 (7.9.3) The rules for composing valid file names:

A valid file name can be from 1 to 1,023 characters in length and can use all character except
the characters null and / (slash).

F.1.14.19 (7.9.3) Whether the same file can be open multiple times:

The same file can be opened multiple times.

F.1.14.20 (7.9.4.1) The effect of the remove function on an open file:

The file is deleted on the last call which closes the file. A program cannot open a file which has
already been removed.

F.1.14.21 (7.9.4.2) The effect if a file with the new name exists prior to a
call to the rename function:

If the file exists, it is removed and the new file is written over the previously existing file.

F.1.14.22 (7.9.6.1) The output for %p conversion in the fprintf function:

The output for %p is equivalent to %x.

F.1.14.23 (7.9.6.2) The input for %p conversion in the fscanf function:

The input for %p is equivalent to %x.

F.1 Implementation Compared to the ISO Standard

Appendix F • Implementation-Defined ISO/IEC C90 Behavior 383

F.1.14.24 (7.9.6.2) The interpretation of a- character that is neither the
first nor the last character in the scan list for %[conversion in
the fscanf function:

The- character indicates an inclusive range; thus, [0-9] is equivalent to [0123456789].

F.1.15 Locale-Specific Behavior (G.4)

F.1.15.1 (7.12.1) The local time zone and Daylight Savings Time:

The local time zone is set by the environment variable TZ.

F.1.15.2 (7.12.2.1) The era for the clock function

The era for the clock is represented as clock ticks with the origin at the beginning of the
execution of the program.

The following characteristics of a hosted environment are locale-specific:

F.1.15.3 (5.2.1) The content of the execution character set, in addition
to the required members:

Locale-specific (no extension in C locale).

F.1.15.4 (5.2.2) The direction of printing:

Printing is always left to right.

F.1.15.5 (7.1.1) The decimal-point character:

Locale-specific (“.” in C locale).

F.1 Implementation Compared to the ISO Standard

384 Oracle Solaris Studio 12.4: C User's Guide • March 2015

F.1.15.6 (7.3) The implementation-defined aspects of character testing
and case mapping functions:

Same as 4.3.1.

F.1.15.7 (7.11.4.4) The collation sequence of the execution character
set:

Locale-specific (ASCII collation in C locale).

F.1.15.8 (7.12.3.5) The formats for time and date:

Locale-specific. Formats for the C locale are shown in the tables below. The names of the
months are:

TABLE F-9 Names of Months

January May September

February June October

March July November

April August December

The names of the days of the week are:

TABLE F-10 Days and Abbreviated Days of the Week

Days Abbreviated Days

Sunday Thursday Sun Thu

Monday Friday Mon Fri

Tuesday Saturday Tue Sat

Wednesday Wed

The format for time is:

%H:%M:%S

The format for date is:

%m/%d/%y

F.1 Implementation Compared to the ISO Standard

Appendix F • Implementation-Defined ISO/IEC C90 Behavior 385

The formats for AM and PM designation are: AM PM

386 Oracle Solaris Studio 12.4: C User's Guide • March 2015

Appendix G • ISO C Data Representations 387

 G ♦ ♦ ♦ A P P E N D I X G

ISO C Data Representations

This appendix describes how ISO C represents data in storage and the mechanisms for passing
arguments to functions. It can serve as a guide to programmers who want to write or use
modules in languages other than C and have those modules interface with C code.

G.1 Storage Allocation

The following table shows the data types and how they are represented. Sizes are in bytes.

Note - Storage allocated on the stack (identifiers with internal, or automatic, linkage) should be
limited to 2 gigabytes or less.

TABLE G-1 Storage Allocation for Data Types

C Type LP64 (-m64) size LP64 alignment ILP32 (-m32) size ILP 32 alignment

Integer

_Bool

char

signed char

unsigned char

1 1 1 1

short

signed short

unsigned short

2 2 2 2

int

signed int

unsigned int

enum

4 4 4 4

long 8 8 4 4

G.2 Data Representations

388 Oracle Solaris Studio 12.4: C User's Guide • March 2015

C Type LP64 (-m64) size LP64 alignment ILP32 (-m32) size ILP 32 alignment

signed long

unsigned long

long long

signed long long

unsigned

long long

8 8 8 4 (x86) / 8 (SPARC)

Pointer

any-type *

any-type (*) ()
8 8 4 4

Floating Point

float

double

long double

4

8

16

4

8

16

4

8

12 (x86) /
16 (SPARC)

4

4 (x86) / 8 (SPARC)

4 (x86) / 8 (SPARC)

Complex

float _Complex

double _Complex

long double

_Complex

8

16

32

4

8

16

8

16

24 (x86) /
32 (SPARC)

4

4 (x86) / 8 (SPARC)

4 (x86) / 16
(SPARC)

Imaginary

float _Imaginary

double _Imaginary

long double

_Imaginary

4

8

16

4

8

16

4

8

12 (x86) /
16 (SPARC)

4

4 (x86) / 8 (SPARC)

4 (x86) / 16
(SPARC)

G.2 Data Representations

Bit numbering of any given data element depends on the architecture in use: SPARCstation™
machines use bit 0 as the least significant bit, with byte 0 being the most significant byte. The
tables in this section describe the various representations.

G.2.1 Integer Representations

Integer types used in ISO C are short, int, long, and long long:

G.2 Data Representations

Appendix G • ISO C Data Representations 389

TABLE G-2 Representation of short

Bits Content

8- 15 Byte 0 (SPARC)

Byte 1 (x86)

0- 7 Byte 1 (SPARC)

Byte 0 (x86)

TABLE G-3 Representation of int

Bits Content

24- 31 Byte 0 (SPARC)

Byte 3 (x86)

16- 23 Byte 1 (SPARC)

Byte 2 (x86)

8- 15 Byte 2 (SPARC)

Byte 1 (x86)

0- 7 Byte 3 (SPARC)

Byte 0 (x86)

TABLE G-4 Representation of long Compiled with -m32

Bits Content

24- 31 Byte 0 (SPARC)

Byte 3 (x86)

16- 23 Byte 1 (SPARC)

Byte 2 (x86)

8- 15 Byte 2 (SPARC)

Byte 1 (x86)

0- 7 Byte 3 (SPARC)

Byte 0 (x86)

TABLE G-5 Representation of long (-m64) and long long (both -m32 and -m64)

Bits
Content

56- 63 Byte 0 (SPARC)

Byte 7 (x86)

48- 55 Byte 1 (SPARC)

G.2 Data Representations

390 Oracle Solaris Studio 12.4: C User's Guide • March 2015

Bits
Content

Byte 6 (x86)

40- 47 Byte 2 (SPARC)

Byte 5 (x86)

32- 39 Byte 3 (SPARC)

Byte 4 (x86)

24- 31 Byte 4 (SPARC)

Byte 3 (x86)

16- 23 Byte 5 (SPARC)

Byte 2 (x86)

8- 15 Byte 6 (SPARC)

Byte 1 (x86)

0- 7 Byte 7 (SPARC)

Byte 0 (x86)

G.2.2 Floating-Point Representations

float, double, and long double data elements are represented according to the ISO IEEE
754-1985 standard. The representation is:

(-1)s *2(e - bias) *[j.f]

where:

■ s is the sign
■ e is the biased exponent
■ j is the leading bit, determined by the value of e. In the case of long double (x86), the

leading bit is explicit; in all other cases, it is implicit.
■ f = fraction
■ u means that the bit can be either 0 or 1 (used in the tables in this section).

For IEEE Single and Double, j is always implicit. When the biased exponent is 0, j is 0, and the
resulting number is subnormal as long as f is not 0. When the biased exponent is greater than 0,
j is 1 as long as the number is finite.

For Intel 80–bit Extended, j is always explicit.

The following tables show the position of the bits.

G.2 Data Representations

Appendix G • ISO C Data Representations 391

TABLE G-6 float Representation

Bits Name

31 sign

23- 30 biased exponent

0- 22 fraction

TABLE G-7 double Representation

Bits Name

63 sign

52- 62 biased exponent

0- 51 fraction

TABLE G-8 long double Representation (SPARC)

Bits Name

127 sign

112- 126 biased exponent

0- 111 fraction

TABLE G-9 long double Representation (x86)

Bits Name

80- 95 not used

79 sign

64- 78 biased exponent

63 leading bit

0- 62 fraction

For further information, refer to the Numerical Computation Guide.

G.2.3 Exceptional Values

float and double numbers are said to contain a “hidden,” or implied, bit, providing for one
more bit of precision than would otherwise be the case. In the case of long double, the leading
bit is implicit (SPARC) or explicit (x86); this bit is 1 for normal numbers, and 0 for subnormal
numbers.

TABLE G-10 float Representations

normal number (0<e<255): (-1)s2 (e-127)1.f

G.2 Data Representations

392 Oracle Solaris Studio 12.4: C User's Guide • March 2015

subnormal number

(e=0, f!=0):

(-1)s2 (-126)0.f

zero (e=0, f=0): (-1)s0.0

signaling NaN s=u, e=255(max); f=.0uuu-uu; at least one bit must be nonzero

quiet NaN s=u, e=255(max); f=.1uuu-uu

Infinity s=u, e=255(max); f=.0000-00 (all zeroes)

TABLE G-11 double Representations

normal number (0<e<2047): (-1)s2 (e-1023)1.f

subnormal number (e=0, f!=0): (-1)s2 (-1022)0.f

zero (e=0, f=0): (-1)s0.0

signaling NaN s=u, e=2047(max); f=.0uuu-uu; at least one bit must be nonzero

quiet NaN s=u, e=2047(max); f=.1uuu-uu

Infinity s=u, e=2047(max); f=.0000-00 (all zeroes)

TABLE G-12 long double Representations

normal number (0<e<32767): (-1)s2 (e- 16383)1.f

subnormal number (e=0, f!=0): (-1)s2 (-16382)0.f

zero (e=0, f=0): (-1)s0.0

signaling NaN s=u, e=32767(max); f=.0uuu-uu; at least one bit must be nonzero

quiet NaN s=u, e=32767(max); f=.1uuu-uu

Infinity s=u, e=32767(max); f=.0000-00 (all zeroes)

G.2.4 Hexadecimal Representation of Selected Numbers

The following tables show the hexadecimal representations.

TABLE G-13 Hexadecimal Representation of Selected Numbers (SPARC)

Value float double long double

+0

-0

00000000

80000000

0000000000000000

8000000000000000

00000000000000000000000000000000

80000000000000000000000000000000

+1.0

-1.0

3F800000

BF800000

3FF0000000000000

BFF0000000000000

3FFF00000000000000000000000000000

BFFF00000000000000000000000000000

+2.0

+3.0

40000000

40400000

4000000000000000

4008000000000000

40000000000000000000000000000000

40080000000000000000000000000000

G.2 Data Representations

Appendix G • ISO C Data Representations 393

Value float double long double

+Infinity

-Infinity

7F800000

FF800000

7FF0000000000000

FFF0000000000000

7FFF00000000000000000000000000000

FFFF00000000000000000000000000000

NaN 7FBFFFFF 7FF7FFFFFFFFFFFF 7FFF7FFFFFFFFFFFFFFFFFFFFFFFFFFF

TABLE G-14 Hexadecimal Representation of Selected Numbers (x86)

Value float double long double

+0

-0

00000000

80000000

0000000000000000

0000000080000000

00000000000000000000

80000000000000000000

+1.0

-1.0

3F800000

BF800000

000000003FF00000

00000000BFF00000

3FFF8000000000000000

BFFF8000000000000000

+2.0

+3.0

40000000

40400000

0000000040000000

0000000040080000

40008000000000000000

4000C000000000000000

+Infinity

-Infinity

7F800000

FF800000

000000007FF00000

00000000FFF00000

7FFF8000000000000000

FFFF8000000000000000

NaN 7FBFFFFF FFFFFFFF7FF7FFFF 7FFFBFFFFFFFFFFFFFFF

For further information, refer to the Numerical Computation Guide.

G.2.5 Pointer Representation

A pointer in C occupies four bytes. A pointer in C occupies 8 bytes on 64–bit SPARC v9
architectures. The NULL value pointer is equal to zero.

G.2.6 Array Storage

Arrays are stored with their elements in a specific storage order. The elements are actually
stored in a linear sequence of storage elements.

C arrays are stored in row-major order. The last subscript in a multidimensional array varies the
fastest.

String data types are arrays of char elements. The maximum number of characters allowed in a
string literal or wide string literal (after concatenation) is 4,294,967,295.

See “G.1 Storage Allocation” on page 387 for information on the size limit of storage
allocated on the stack.

G.2 Data Representations

394 Oracle Solaris Studio 12.4: C User's Guide • March 2015

TABLE G-15 Array Types and Storage

Type Maximum Number
of Elements for -m32

Maximum Number
of Elements for -m64

char 4,294,967,295 2,305,843,009,213,693,951

short 2,147,483,647 1,152,921,504,606,846,975

int 1,073,741,823 576,460,752,303,423,487

long 1,073,741,823 288,230,376,151,711,743

float 1,073,741,823 576,460,752,303,423,487

double 536,870,911 288,230,376,151,711,743

long double 268,435,451 144,115,188,075,855,871

long long 536,870,911 288,230,376,151,711,743

Static and global arrays can accommodate many more elements.

G.2.7 Arithmetic Operations on Exceptional Values

This section describes the results derived from applying the basic arithmetic operations to
combinations of exceptional and ordinary floating-point values. The information that follows
assumes that no traps or any other exception actions are taken.

The following table explains the abbreviations.

TABLE G-16 Abbreviation Usage

Abbreviation Meaning

Num Subnormal or normal number

Inf Infinity (positive or negative)

NaN Not a number

Uno Unordered

The following tables describe the types of values that result from arithmetic operations
performed with combinations of different types of operands.

TABLE G-17 Addition and Subtraction Results

Right Operand: 0 Right Operand: Num Right Operand: Inf Right Operand: NaN

Left Operand: 0 0 Num Inf NaN

Left Operand: Num Num See† Inf NaN

Left Operand: Inf Inf Inf See† NaN

G.3 Argument-Passing Mechanism

Appendix G • ISO C Data Representations 395

Right Operand: 0 Right Operand: Num Right Operand: Inf Right Operand: NaN

Left Operand: NaN NaN NaN NaN NaN

†Num + Num could be Inf, rather than Num, when the result is too large (overflow). Inf + Inf = NaN when the infinities are of opposite sign.

TABLE G-18 Multiplication Results

Right Operand:0 Right Operand:Num Right Operand:Inf Right Operand:NaN

Left Operand:0 0 0 NaN NaN

Left Operand: Num 0 Num Inf NaN

Left Operand: Inf NaN Inf Inf NaN

Left Operand: NaN NaN NaN NaN NaN

TABLE G-19 Division Results

Right Operand:0 Right
Operand:Num

Right Operand:Inf Right Operand:NaN

Left Operand:0 NaN 0 0 NaN

Left Operand: Num Inf Num 0 NaN

Left Operand: Inf Inf Inf NaN NaN

Left Operand: NaN NaN NaN NaN NaN

TABLE G-20 Comparison Results

Right Operand:0 Right Operand:+Num Right Operand:+Inf Right Operand:
+NaN

Left Operand:0 = < < Uno

Left Operand: +Num > The result of
the comparison

< Uno

Left Operand: +Inf > > = Uno

Left Operand: +NaN Uno Uno Uno Uno

Note - NaN compared with NaN is unordered, and results in inequality. +0 compares equal to –
0.

G.3 Argument-Passing Mechanism

This section describes how arguments are passed in ISO C.

■ All arguments to C functions are passed by value.
■ Actual arguments are passed in the reverse order from which they are declared in a function

declaration.

G.3 Argument-Passing Mechanism

396 Oracle Solaris Studio 12.4: C User's Guide • March 2015

■ Actual arguments that are expressions are evaluated before the function reference. The
result of the expression is then placed in a register or pushed onto the stack.

G.3.1 32-Bit SPARC

Functions return integer results in register %o0, float results in register %f0, and double
results in registers %f0 and %f1.

long long integers are passed in registers with the higher word order in %oN, and the lower
order word in %o(N+1). In-register results are returned in %o0 and %o1, with similar ordering.

All arguments, except double and long double, are passed as 4-byte values. A double
is passed as an 8-byte value. The first six 4-byte values (double counts as 8) are passed in
registers %o0 through %o5. The rest are passed onto the stack. Structures are passed by making
a copy of the structure and passing a pointer to the copy. A long double is passed in the same
manner as a structure.

Registers described are as seen by the caller.

G.3.2 64-Bit SPARC
All integral arguments are passed as 8-byte values.

Floating-point arguments are passed in floating-point registers when possible.

G.3.3 x86/x64
Intel 386 psABI and AMD64 psABI are observed.

Functions return results in the following registers:

TABLE G-21 Registers Used by x86 Functions to Return Types (-m32)

Type Returned Register

int %eax

long long %edx and %eax

float, double,
and long double

%st(0)

float _Complex %eax for the real part and %edx for the imaginary part

double _Complex and
long double _Complex

The same as a struct that contains two elements
of the corresponding floating-point type.

G.3 Argument-Passing Mechanism

Appendix G • ISO C Data Representations 397

Refer to the AMD64 psABI for details at http://www.x86-64.org/documentation/abi.pdf

All arguments except structs, unions, long longs, doubles and long doubles are passed as
four-byte values; a long long is passed as an 8-byte value, a double is passed as an 8-byte
value, and a long double is passed as a 12-byte value.

structs and unions are copied onto the stack. The size is rounded up to a multiple of four
bytes. Functions returning structs and unions are passed a hidden first argument, pointing to
the location into which the returned struct or union is stored.

Upon return from a function, the caller is responsible for popping arguments from the stack
except for the extra argument for struct and union returns that is popped by the called
function.

http://www.x86-64.org/documentation/abi.pdf

398 Oracle Solaris Studio 12.4: C User's Guide • March 2015

Appendix H • Performance Tuning 399

 H ♦ ♦ ♦ A P P E N D I X H

Performance Tuning

This appendix describes performance tuning of C program. See also the Oracle Solaris Studio
Performance Analyzer manual.

H.1 libfast.a Library (SPARC)

 libfast.a provides a fast but MT-Unsafe version of the standard C library functions
malloc(), free(), realloc(), calloc(), valloc(), and memalign(). Because it is optimized
for fast allocation in single-threaded applications, it may not be appropriate for applications
requiring concurrent multi-threaded allocation or space-efficient memory reuse.

libfast_r.a is a MT-Safe version of libfast.a, though it does not support concurrent
memory allocation by multiple threads. Only one thread at a time can allocate or free memory.

Both versions are supported on both 32-bit and 64-bit Oracle Solaris. They are supported on
both SPARC and x86 platforms.

Freeing a block allocated by libfast malloc() does not make its storage available for
allocating a new block of a different size. Because of this, libfast may not be suitable for use
in multi-phase applications.

Use profiling to determine whether the routines in the following checklist are important to
the performance of your application, then use this checklist to decide whether libfast.a or
libfast_r.a benefits the performance.

■ Do use libfast.a or libfast_r.a if the performance of memory allocation is important,
and the size of the most commonly allocated blocks equals or is slightly less than a power of
two. The important routines are: malloc(), free(), and realloc().

■ Do not use libfast.a if the application is multithreaded. Use libfast_r.a instead.

When linking the application, add the option -lfast or -lfast_r to the cc command used
at link time. The cc command links the routines in libfast.a or libfast_r.a ahead of their
counterparts in the standard C library.

400 Oracle Solaris Studio 12.4: C User's Guide • March 2015

Appendix I • Oracle Solaris Studio C: Differences Between K&R C and ISO C 401

 I ♦ ♦ ♦ A P P E N D I X I

Oracle Solaris Studio C: Differences Between
K&R C and ISO C

This appendix describes the differences between the previous K&R Oracle Solaris Studio C and
Oracle Solaris Studio ISO C.

For more information see “1.5 Standards Conformance” on page 25.

I.1 Incompatibilities

TABLE I-1 K&R C Incompatibilities With ISO C

Topic Solaris Studio C (K&R) Solaris Studio ISO C

envp argument to
main()

Allows envp as third argument to main(). Allows this third argument; however, this
usage is not strictly conforming to the ISO
C standard.

Keywords Treats the identifiers const, volatile, and
signed as ordinary identifiers.

const, volatile, and signed are
keywords.

extern and static
functions declarations
inside a block

Promotes these function declarations to file
scope.

The ISO standard does not guarantee that
block scope function declarations are
promoted to file scope.

Identifiers Allows dollar signs ($) in identifiers. $ not allowed.

long float types Accepts long float declarations and treats
these as double.

Does not accept these declarations.

Multi-character
character-constants

int mc = ’abcd’;

yields:

abcd

int mc = ’abcd’;

yields:

dcba

Integer constants Accepts 8 or 9 in octal escape sequences. Does not accept 8 or 9 in octal escape
sequences.

Assignment operators Treats the following operator pairs as two
tokens and, as a consequence, permits white
space between them:

*=, /=, %=, +=, -=, <<=, >>=, &=, ^=,

|=

Treats them as single tokens, and therefore
disallows white space in between.

I.1 Incompatibilities

402 Oracle Solaris Studio 12.4: C User's Guide • March 2015

Topic Solaris Studio C (K&R) Solaris Studio ISO C

Unsigned preserving
semantics for
expressions

Supports unsigned preserving, that is,
unsigned char/shorts are converted into
unsigned int.

Supports value-preserving, that is,
unsigned char/short(s) are converted
into int.

Single/double
precision calculations

Promotes the operands of floating-point
expressions to double.

Functions that are declared to return floats
always promote their return values to
doubles.

Allows operations on floats to be
performed in single precision calculations.

Allows float return types for these
functions.

Name spaces of
struct/union

members

Allows struct, union, and arithmetic types
using member selection operators (’.’, ’-
>’) to work on members of other structs or
unions.

Requires that every unique struct/union
have its own unique name space.

A cast as an lvalue Supports casts of integral and pointer types as
lvalues. For example:

(char *)ip = &char;

Does not support this feature.

Implied int
declarations

Supports declarations without an explicit type
specifier. A declaration such as num; is treated
as implied int. For example:

num; /*num implied as an int*/

int num2; /* num2 explicitly*/

/* declared an int */

The num; declaration (without the explicit
type specifier int) is not supported, and
generates a syntax error.

Empty declarations Allows empty declarations, for example:

int;

Except for tags, disallows empty
declarations.

Type specifiers on type
definitions

Allows type specifiers such as unsigned,
short, long on typedefs declarations. For
example:

typedef short small;

unsigned small x;

Does not allow type specifiers to modify
typedef declarations.

Types allowed on bit
fields

Allows bit fields of all integral types,
including unnamed bit fields.

The ABI requires support of unnamed bit
fields and the other integral types.

Supports bit-fields only of the type int,
unsigned int and signed int. Other
types are undefined.

Treatment of tags
in incomplete
declarations

Ignores the incomplete type declaration. In
the following example, f1 refers to the outer
struct:

struct x { . . . } s1;

{struct x; struct y {struct x f1; }

s2; struct x

{ . . . };}

In an ISO-conforming implementation, an
incomplete struct or union type specifier
hides an enclosing declaration with the
same tag.

I.1 Incompatibilities

Appendix I • Oracle Solaris Studio C: Differences Between K&R C and ISO C 403

Topic Solaris Studio C (K&R) Solaris Studio ISO C

Mismatch on
struct/union/enum

declarations

Allows a mismatch on the struct/enum/
union type of a tag in nested struct/union
declarations. In the following example, the
second declaration is treated as a struct:

struct x {. . . }s1;

{union x s2;. . .}

Treats the inner declaration as a new
declaration, hiding the outer tag.

Labels in expressions Treats labels as (void *) lvalues. Does not allow labels in expressions.

switch condition type Allows floats and doubles by converting
them to ints.

Evaluates only integral types (int, char,
and enumerated) for the switch condition
type.

Syntax of conditional
inclusion directives

The preprocessor ignores trailing tokens after
an #else or #endif directive.

Disallows such constructs.

Token-pasting and
the ## preprocessor
operator

Does not recognize the ## operator. Token-
pasting is accomplished by placing a
comment between the two tokens being
pasted:

#define PASTE(A,B) A/*any comment*/B

Defines ## as the preprocessor operator
that performs token-pasting, for example:

#define PASTE(A,B) A##B

Furthermore, the preprocessor does not
recognize the method. Instead, it treats the
comment between the two tokens as white
space.

Preprocessor
rescanning

The preprocessor recursively substitutes:

#define F(X) X(arg)

F(F)

yields

arg(arg)

A macro is not replaced if it is found in
the replacement list during the rescan:

#define F(X)X(arg)F(F)

yields:

F(arg)

typedef names in
formal parameter lists

You can use typedef names as formal
parameter names in a function declaration.
“Hides” the typedef declaration.

Disallows the use of an identifier declared
as a typedef name as a formal parameter.

Implementation
specific initializations
of aggregates

Uses a bottom-up algorithm when parsing and
processing partially elided initializers within
braces:

struct{ int a[3]; int b; }\ w[]={{1},
2};

yields

sizeof(w)=16

w[0].a=1,0,0

w[0].b=2

Uses a top-down parsing algorithm. For
example:

struct{int a[3];int b;}\

w[]={{1},2};

yields

sizeof(w)=32w[0].a=1,0,0w[0].

=0w[1].a=2,0,0w[1].b=0

Comments spanning
include files

Allows comments that start in an #include
file to be terminated by the file that includes
the first file.

Comments are replaced by a white-space
character in the translation phase of the

I.1 Incompatibilities

404 Oracle Solaris Studio 12.4: C User's Guide • March 2015

Topic Solaris Studio C (K&R) Solaris Studio ISO C
compilation, which occurs before the
#include directive is processed.

Formal parameter
substitution within a
character constant

Substitutes characters within a character
constant when it matches the replacement list
macro:

#define charize(c)’c’

charize(Z)

yields:

’Z’

The character is not replaced:

#define charize(c) ’c’charize(Z)

yields:

’c’

Formal parameter
substitution within a
string constant

The preprocessor substitutes a formal
parameter when enclosed within a string
constant:

#define stringize(str) ’str’

stringize(foo)

yields:

”foo”

The # preprocessor operator should be
used:

#define stringize(str) ’str’

stringize(foo)

yields:

”str”

Preprocessor built into
the compiler “front-
end”

Compiler invokes cpp(1) followed by all the
other components of the compilation system
depending on the options specified.

The ISO C translation phases 1-4, which
cover the processing of preprocessor
directives, is built directly into acomp,
so cpp is not directly invoked during
compilation, except in -Xs mode.

Line concatenation
with backslash

Does not recognize the backslash character in
this context.

Requires that a newline character
immediately preceded by a backslash
character be spliced together.

Trigraphs in string
literals

Does not support this ISO C feature.

asm keyword asm is a keyword. asm is treated as an ordinary identifier.

Linkage of identifiers Does not treat uninitialized static
declarations as tentative declarations. As a
consequence, the second declaration will
generate a ’redeclaration’ error, as in:

static int i = 1;

static int i;

Treats uninitialized static declarations as
tentative declarations.

Name spaces Distinguishes only three: struct/union/enum
tags, members of struct/union/enum, and
everything else.

Recognizes four distinct name spaces:
label names, tags (the names that follow
the keywords struct, union or enum),
members of struct/union/enum, and
ordinary identifiers.

long double type Not supported. Allows long double type declaration.

Floating point
constants

The floating point suffixes, f, l, F, and L, are
not supported.

I.1 Incompatibilities

Appendix I • Oracle Solaris Studio C: Differences Between K&R C and ISO C 405

Topic Solaris Studio C (K&R) Solaris Studio ISO C

Unsuffixed integer
constants can have
different types

The integer constant suffixes u and U are not
supported.

Wide character
constants

Does not accept the ISO C syntax for wide
character constants, as in:

wchar_t wc = L’x’;

Supports this syntax.

’\a’ and ’\x’ Treats them as the characters ’a’ and ’x’. Treats ’\a’ and ’\x’ as special escape
sequences.

Concatenation of
string literals

Does not support the ISO C concatenation of
adjacent string literals.

Wide character string
literal syntax

Does not support the ISO C wide character,
string literal syntax shown in this example:

wchar_t *ws = L"hello";

Supports this syntax.

Pointers: void *
versus char *

Supports the ISO C void * feature.

Unary plus operator Does not support this ISO C feature.

Function prototypes—
ellipses

Not supported. ISO C defines the use of ellipses "..." to
denote a variable argument parameter list.

Type definitions Disallows typedefs to be redeclared in an
inner block by another declaration with the
same type name.

Allows typedefs to be redeclared in an
inner block by another declaration with
the same type name.

Initialization of extern
variables

Does not support the initialization of
variables explicitly declared as extern.

Treats the initialization of variables
explicitly declared as extern, as
definitions.

Initialization of
aggregates

Does not support the ISO C initialization of
unions or automatic structures.

Prototypes Does not support this ISO C feature.

Syntax of
preprocessing directive

Recognizes only those directives with a # in
the first column.

ISO C allows leading white-space
characters before a # directive.

The # preprocessor
operator

Does not support the ISO C # preprocessor
operator.

#error directive Does not support this ISO C feature.

Preprocessor directives Supports two pragmas, unknown_control_
flow and makes_regs_inconsistent along
with the #ident directive. The preprocessor
issues warnings when it finds unrecognized
pragmas.

Does not specify its behavior for
unrecognized pragmas.

Predefined macro
names

These ISO C-defined macro names are not
defined:

__STDC__

__DATE__

__TIME__

I.2 Keywords

406 Oracle Solaris Studio 12.4: C User's Guide • March 2015

Topic Solaris Studio C (K&R) Solaris Studio ISO C

__LINE__

I.2 Keywords

The following tables list the keywords for the ISO C Standard, the Oracle Solaris Studio ISO C
compiler, and the Oracle Solaris Studio C compiler.

The first table lists the keywords defined by the ISO C standard.

TABLE I-2 ISO C Standard Keywords

_Alignas2 _Alignof2 _Atomic2 _Bool1

_Complex1 _Generic2 _Imaginary1 _Noreturn2

_Static_assert2 _Thread_local2 auto break

case char const continue

default do double else

enum extern float for

goto if inline1 int

long register restrict return

short signed sizeof static

struct switch typedef union

unsigned void volatile while

1 Defined with-std=c99 and -std=c11 only

2 Defined with -std=c11 only

The C compiler also defines one additional keyword, asm. However, asm is not supported in -
pedantic mode.

Keywords in K&R Oracle Solaris Studio C are listed in the following table.

TABLE I-3 K&R Keywords

asm auto break case

char continue default do

double else enum extern

float for fortran goto

if int long register

I.2 Keywords

Appendix I • Oracle Solaris Studio C: Differences Between K&R C and ISO C 407

return short sizeof static

struct switch typedef union

unsigned void while

408 Oracle Solaris Studio 12.4: C User's Guide • March 2015

409

Index

Numbers and Symbols
-#, 92, 212
-###, 92, 212
-A, 212
-a, 92
-ansi, 213
-B, 213
-b, 92
-C, 92, 213
-c, 93, 213
-d, 214
-dirout, 93
-E, 214
-err, 93
-errchk, 93
-errfmt, 94, 215
-errhdr, 94
-erroff, 95, 215
-errsecurity, 96
-errshort, 216
-errtags, 97, 216
-errwarn, 97, 217
-F, 97
-fast, 218
-fd, 98, 219
-features, 219
-flags, 221
-flagsrc, 98
-flteval, 221
-fns, 222
-fopenmp, 222
-fprecision, 223
-fround, 223

-fsimple, 224
-fsingle, 225
-fstore, 225
-ftrap, 225
-G, 226
-g, 226
-gn, 227
-H, 228
-h, 98, 228
-I, 98, 228
-i, 229
-include, 229
-k, 98
-keeptmp, 230
-L, 98, 230
-l, 98, 230
-library=sunperf, 230
-m, 99
-mc, 231
-mr, 232
-n, 101
-native, 233
-Ncheck, 99
-Nlevel, 100
-nofstore, 233
-O, 233
-o, 101, 233
-P, 234
-p, 101
-pedantic, 234
-preserve_argvalues, 234
-Q, 235
-qp, 236

Index

410 Oracle Solaris Studio 12.4: C User's Guide • March 2015

-R, 101, 236
-S, 236
-s, 102, 236
-tempdir, compiler option, 237
-U, 238
-u, 102
-V, 102, 239
-v, 102, 239
-W, 102, 239
-w, 240
-X, 240
-x, 104
-Xalias_level, 102
-xalias_level, 242
-xanalyze, compiler option, 244
-xarch=isa, compiler option, 245
-xautopar, 249
-xbinopt, 249
-xbinopt and, 249
-xbuiltin, 250
-Xc99, 103
-xc99, 251
-XCC, 102
-xCC, 250
-xchar, 253
-xchar_byte_order, 254
-xcheck, 254
-xchip, 257
-xcode, 259
-xcsi, 260
-xdebugformat, 261
-xdebuginfo, 261
-xdepend, 263
-xdryrun, 263
-xe, 266
-xF, 266
-xglobalize, 267
-xhelp, 268
-xhwcprof, 268
-xinline, 269
-xinline_param, 270
-xinline_report, 272

-xipo, 273
-xipo_archive, 275
-xipo_build, 276
-xivdep, compiler option, 277
-xjobs, 277
-Xkeeptmp, 103
-xlang, 279
-xldscope, 280
-xlibmieee, 281
-xlibmil, 281
-xlibmopt, 281
-Xlinker, compiler option, 242
-xlinkopt, 282
-xloopinfo, 283
-xM, 284
-xM1, 284
-xmaxopt, 286
-xmemalign, 286
-xMerge, 285
-xMF, 285
-xMMD, 285
-xmodel, 287
-xnolib, 288
-xnolibmil, 288
-xnolibmopt, 288
-xO, 289
-xopenmp, 291
-xP, 293
-xpagesize, 293
-xpagesize_heap, 294
-xpagesize_stack, 294
-xpch, 295
-xpchstop, 300
-xpec, 300
-xpentium, 301
-xpg, 301
-xprefetch, 302
-xprefetch_auto_type, 303
-xprefetch_level, 303
-xprofile, 304
-xprofile_ircache, 307
-xprofile_pathmap, 308

Index

411

-xpxpatchpadding, compiler option, 295
-xreduction, 308
-xregs, 308
-xrestrict, 310
-xs, 311
-xsafe, 311
-xsfpconst, 312
-xspace, 312
-xstrconst, 313
-xtarget, 313
-Xtemp, 104
-xtemp, 316
-xthreadvar , 316
-xthreadvar, compiler option, 316
-xthroughput, 317
-Xtime, 104
-xtime, 317
-Xtransition, 104
-xtransition, 317
-xtrigraphs, 318
-xunboundsym, 319
-xunroll, 319
-Xustr, 104
-xustr, 319
-xvector, 320
-xvis, 321
-xvpara, 322
-Y, 322
-y, 104
-YA, 322
-YI, 322
-YP, 323
-YS, 323
-Zll, 323
// comment indicators

in C99, 332
with -xCC, 250

/tmp, 58
__alignof keyword, 57
__asm keyword, 56, 56
__DATE__, 352, 377, 377
__func__, 331

__global, 33
__hidden, 33
__symbolic, 33
__thread, 33
__TIME__, 352, 377, 377
_Exit function, 356
_Pragma, 340
_Restrict, 55

A
abort function, 357
acomp (C compiler), 29
alias disambiguation, 119, 134
alignment of structures, 372
any level alias disambiguation, 243
arithmetic conversions, 37, 37
array

declarators per C99, 336
incomplete array types per C99, 333

ascftime function, 96
assembler, 29
assembly in source, 56
assembly language templates, 321
#assert, 39, 212
ATS: Automatic Tuning System, 300
attributes, 39

B
basic level alias disambiguation, 243
basic mode of lint, 89
behavior, implementation-defined, 365, 385
binary optimization, 249
binding, static vs. dynamic, 213
binopt, 244
bit-field

as impacted by transition to ISO C, 165
portability of constants assigned to, 112
promotion of, 142
treating as signed or unsigned, 373

bits, in execution character set, 367
bitwise operations on signed integers, 369
buffering, 381

Index

412 Oracle Solaris Studio 12.4: C User's Guide • March 2015

C
C compiler

changing default dirs searched for libraries, 212
compilation modes and dependencies, 55
compiling a program, 211, 212
components, 29
options passed to linker, 323

C programming tools, 29
C99

// comment indicators, 332
__func__ support, 331
_Pragma, 340
array declarator, 336
flexible array members, 333
FLT_EVAL_METHOD, 330
idempotent qualifiers, 334
implicit function declaration in, 332
inline function specifier, 335
list of keywords, 331
mixed declarations and code, 338
Studio compiler implementation of, 343
type declaration in for loop, 339
type specifier requirement, 333
variable length arrays, 337

cache, as used by optimizer, 251
calloc function, 356
case statements, 375
cc command-line options, 212

-#, 212
-###, 212
-A, 212
-ansi, 213
-B, 213
-C, 213
-c, 213
-d, 214, 226

interaction with -G, 226
-E, 214
-errfmt, 215
-erroff, 215
-errshort, 216
-errtags, 216
-errwarn, 217
-fast, 218

-fd, 219
-features, 219
-flags, 221
-flteval, 221

interaction with FLT_EVAL_METHOD, 330
-fma

as part of -fast expansion, 218
-fns, 222

as part of -fast expansion, 218
-fopenmp, 222
-fprecision, 223

interaction with FLT_EVAL_METHOD, 331
-fround, 223

interaction with -xlibmopt, 281
-fsimple, 224

as part of -fast expansion, 218
-fsingle, 225

as part of -fast expansion, 218
interaction with FLT_EVAL_METHOD, 331

-fstore, 225
-ftrap, 225
-G, 226
-g, 226
-gn, 227
-H, 228
-h, 228
-I, 228
-i, 229
-include, 229
-keeptmp, 230
-KPIC, 230
-Kpic, 230
-L, 230
-l, 230
-library=sunperf, 230
-mc, 231
-mr, 232
-mt, 232
-native, 233
-nofstore, 233

as part of -fast expansion, 218
-O, 233

Index

413

-o, 233
-P, 234
-pedantic, 234
-preserve_argvalues, 234
-Q, 235
-Qoption, 234
-qp, 236
-R, 236
-S, 236
-s, 236
-std, 236
-temp, 237
-traceback, 237
-U, 238
-V, 239
-v, 239
-W, 239
-w, 240
-X, 240

interaction with FLT_EVAL_METHOD, 331
-xaddr32, 242
-xalias_level, 242

as part of -fast expansion, 219
examples, 125, 134
explanation, 119

-xannotate, 244
-xarch

interaction with FLT_EVAL_METHOD, 330
-xautopar, 249
-xbinopt, 249
-xbuiltin, 250

as part of -fast expansion, 219
-xc99, 251
-xCC, 250
-xchar, 253
-xchar_byte_order, 254
-xcheck, 254
-xchip, 257
-xcode, 259
-xcsi, 260
-xdebugformat, 261
-xdebuginfo, 261

-xdepend, 263
-xdryrun, 263
-xdumpmacros, 263
-xe, 266
-xF, 266
-xglobalize, 267
-xhelp, 268
-xhwcprof, 268
-xinline, 269
-xinline_param, 270
-xinline_report, 272
-xipo, 273
-xipo_archive, 275
-xipo_build, 276
-xjobs, 277
-xkeepframe, 279
-xlang, 279
-xldscope, 32, 280
-xlibmieee, 281
-xlibmil, 281

as part of -fast expansion, 219
-xlibmopt, 281

as part of -fast expansion, 219
-xlinkopt, 282

interaction with -G, 282
-xloopinfo, 283
-xM, 284
-xM1, 284
-xmaxopt, 286

interaction with -xO, 286
-xMD, 285
-xmemalign, 286

as part of -fast expansion, 219
-xMerge, 285
-xMF, 285
-xMMD, 285
-xmodel, 287
-xnolib, 288
-xnolibmil, 288
-xnolibmopt, 288

interaction with -xlibmopt, 282
-xO, 289

Index

414 Oracle Solaris Studio 12.4: C User's Guide • March 2015

interaction with -xmaxopt, 289
-xopenmp, 291
-xP, 293
-xpagesize, 293
-xpagesize_heap, 294
-xpagesize_stack, 294
-xpch, 295
-xpchstop, 300
-xpec, 300
-xpentium, 301
-xpg, 301
-xprefetch, 302
-xprefetch_auto_type, 303
-xprefetch_level, 303
-xprevise, 304
-xprofile, 304
-xprofile_ircache, 307
-xprofile_pathmap, 308
-xreduction, 308
-xregs, 308
-xrestrict, 310
-xs, 311
-xsafe, 311
-xsegment_align, 312
-xsfpconst, 312
-xspace, 312
-xstrconst, 313
-xtarget, 313
-xtemp, 316
-xthroughput, 317
-xtime, 317
-xtransition, 317

warning for trigraphs, 144
-xtrigraphs, 318
-xunboundsym, 319
-xunroll, 319
-xustr, 319
-xvector, 320
-xvis, 321
-xvpara, 322
-Y, 322
-YA, 322

-YI, 322
-YP, 212, 323
-YS, 323
-Zll, 323

cftime function, 96
cg (code generator), 29
char

signedness of, 253
character

bits in set, 367
decimal point, 383
mapping set, 367
multibyte, shift status, 367
set, collation sequence, 384
single-character character-constant, 375
source and execution of set, 367
space, 381
testing of sets, 377

clock function, 357, 383
code generator, 29
code optimization

by using -fast, 218
optimizer, 29
with -xO, 289

comments
preventing removal by preprocessor, 213
using // by issuing -xCC, 250
using // in C99, 332

compatibility options, 240
compiler commentary in object file, reading with
er_src utility, 250
computed goto, 34
consistency checks by lint, 111
const, 147, 164
constants

promotion of integral, 142
specific to Solaris Studio C ISO C, 32
specific to Solaris Studio ISO C, 31

conversions, 37, 37
integers, 369

cool tools URL, 300
coverage analysis (tcov), 306
cpp (C preprocessor), 29
creat function, 96

Index

415

cscope, 181, 181, 196
command-line use, 183, 183, 189, 191
editing source files, 182, 182, 188, 189, 195, 196
environment setup, 182, 182, 196
environment variables, 191, 192
searching source files, 181, 181, 182, 183, 188
usage examples, 182, 189, 192, 195

D
data reordering, 266
data types

long long, 36
unsigned long long, 36

date and time formats, 384
dbx tool

link debug information from object files into
executable, 311
symbol table information for, 226, 227

debugger data format, 261
debugging information, removing, 236
decimal-point character, 383
declaration specifiers

__global, 33
__hidden, 33
__symbolic, 33
__thread, 33

declarators, 374
default

compiler behavior, 241
handling and SIGILL, 380
locale, 368

default dirs searched for libraries, 212
#define, 214
diagnostics, format, 365
directives See pragmas
domain errors, math functions, 378
dwarf debugger-data format, 261
dynamic linking, 214

E
edit, source files See cscope
EDITOR, 182, 196
elfdump, 260

ellipsis notation, 136, 138, 164
enhanced mode of lint, 89
environment variable

EDITOR as used by cscope, 182, 196
LANG

in C90, 368
in C99, 347, 362

LC_ALL

in C90, 368
in C99, 347

LC_CTYPE

in C90, 368
in C99, 347

OMP_NUM_THREADS, 81
PARALLEL, 81
STACKSIZE, 81
SUN_PROFDATA, 57
SUN_PROFDATA_DIR, 58
SUNW_MP_WARN, 81
TERM as used by cscope, 182
TMPDIR, 58
TZ, 383
VPATH as used by cscope, 182

er_src utility, 250
ERANGE, 378
ERANGE macro, 353
errno

C98 implementation of, 378
header file, 154, 155
impact of -fast on, 218, 218
impact of -xbuiltin on, 250
impact of -xlibmieee on, 281
impact of -xlibmil on, 281
impact of -xlibmopt on, 282
impact of finalization functions on, 45
impact of initialization functions on, 47
preserving value of, 55
setting value to ERANGE on underflow, 353, 356,
356

#error, 41
error messages, 365

adding prefix "error\
" to, 215

controlling length for a type mismatch, 216

Index

416 Oracle Solaris Studio 12.4: C User's Guide • March 2015

suppressing in lint, 95
exec function, 96
expressions, grouping and evaluation in, 158, 160

F
fbe (assembler), 29
fclose function, 357
fegetexceptflag function, 353
feraiseexcept function, 353
fgetc function, 96
fgetpos function, 356
files

temporary, 58
filters for lint, 116, 117
float.h

in C90, 330
macros defined in, 358

floating point, 370
gradual underflows, 34
nonstop, 34
representations, 370
truncation, 371, 371
values, 370

FLT_EVAL_METHOD

evaluation format in C99, 330
impact on accuracy of library functions, 348
impact on float_t and double_t, 353
non-standard negative values of, 348

fmod function, 354
fopen function, 96
for loop that contains a type declaration, 339
fprintf function, 355, 382
free function, 356
free-standing environments, 61
fscanf function, 355, 382
fsetpos function, 356
ftell function, 356
function, 352

_Exit, 356
abort, 357
ascftime, 96
calloc, 356
cftime, 96

clock, 357, 383
creat, 96
declaration specifier, 32
exec, 96
fclose, 357
fegetexceptflag, 353
feraiseexcept, 353
fgetc, 96
fgetpos, 356
fmod, 354, 379
fopen, 96
fprintf, 355, 382
free, 356
fscanf, 355, 382
fsetpos, 356
ftell, 356
fwprintf, 355
fwscanf, 355
getc, 96
getenv, 346
gets, 96
getutxent, 179
ilogb, 353
ilogbf, 353
ilogbl, 353
implicit declaration of, 332
isalnum, 377
isalpha, 362, 377
isatty, 344
iscntrl, 377
islower, 377
isprint, 377
isupper, 377
iswalpha, 362
iswctype, 363
main, 344
malloc, 356
printf, 356
prototypes, 111, 135, 138
prototypes, lint checks for, 115
realloc, 356
remove, 355, 382

Index

417

rename, 355, 382
reordering, 266
scanf, 96
setlocale, 353
signal, 344
sizeof, 177
stat, 96
strerror, 362
strftime, 357
strlcpy, 96
strtod, 356
strtof, 356
strtold, 356
system, 346, 357
towctrans, 363
using varying argument lists, 138, 140
wait, 357
wait3, 357
waitid, 357
waitpid, 357
wcsftime, 357
wcstod, 356
wcstof, 356
wcstold, 356

fwprintf function, 355
fwscanf function, 355

G
getc function, 96
getenv function, 346
gets function, 96
getutxent function, 179
gradual underflows, 34

H
header files

float.h in C90, 330
format for #include directives, 58
how to include, 58, 59
Intel MMX intrinsics declarations, 63

list of standard headers, 153
standard place, 58, 59
sunmedia_intrin.h, 63
with lint, 91, 91

heap, setting page size for, 293

I
idempotent qualifier in C99, 334
ilogb function, 353
ilogbf function, 353
ilogbl function, 353
implementation-defined behavior, 365, 385
#include, adding header files with, 58
incomplete types, 160, 162
inline expansion templates, 281, 288
inline function specifier for C99, 335
inlining, 281
integers, 368, 370
integral constants, promotion of, 142
interactive device, 366
internationalization, 150, 152, 155, 158
interprocedural analysis pass, 273
intrinsics, Intel MMX, 63
ipo (C compiler), 29
iropt (code optimizer), 29
isalnum function, 377
isalpha function, 362, 377
isatty function, 344
iscntrl function, 377
islower function, 377
ISO C vs. K&R C, 240, 241
ISO/IEC 9899:

1999 Programming Language C, 26, 329
2011 Programming Language C, 325

ISO/IEC 9899:1990 standard, 31
ISO/IEC 9899:1999 standard, 31
ISO/IEC 9899:2011 standard, 31
isprint function, 377
isupper function, 377
iswalpha function, 362
iswctype function, 363

Index

418 Oracle Solaris Studio 12.4: C User's Guide • March 2015

J
ja_JP.PCK locale, 260

K
K&R C vs. ISO C, 240, 241
keywords, 56

list for C99, 331

L
LANG environment variable

in C90, 368
in C99, 347, 362

layout level alias disambiguation, 243
LC_ALL environment variable

in C90, 368
in C99, 347

LC_CTYPE environment variable
in C90, 368
in C99 , 347

ld (C compiler), 29
libfast.a, 399
libraries

building shared libraries, 260
default dirs searched by cc, 212
intrinsic name, 228
libfast.a, 399
lint, 115, 116
llib-lx.ln, 115
renaming shared, 228
shared or non shared, 213
specifying dynamic or static links, 213
sun_prefetch.h, 302

library bindings, 213
limit of memory allocation on stack, 387
limits.h

macros defined in, 359
link, static vs. dynamic, 214
link-time optimization, 282
link-time options, list of, 201
linker

options received from compiler, 323
specifying dynamic or static linking in, 214
suppressing linking with, 213

lint
basic mode

introduced, 89
invoking, 90

consistency checks, 111
diagnostics, 111, 115
directives, 108, 111
enhanced mode

introduced, 89
invoking, 90

filters, 116, 117
header files, finding, 91
how lint examines code, 90
introduction to, 89
libraries, 115, 116
lint command-line options

-#, 92
-### , 92
-a , 92
-b , 92
-C , 92
-c , 93
-dirout , 93
-err=warn , 93
-errchk , 93
-errfmt , 94
-errhdr, 94
-erroff , 95
-errsecurity , 96
-errtags , 97
-errwarn , 97
-F , 97
-fd , 98
-flagsrc , 98
-h , 98
-I , 98
-k , 98
-L , 98
-l , 98
-m, 99
-n, 101
-Ncheck, 99
-Nlevel, 100

Index

419

-o, 101
-p, 101
-R, 101
-s, 102
-u, 102
-V, 102
-v, 102
-W, 102
-x, 104
-Xalias_level, 102
-Xc99, 103
-XCC, 102
-Xkeeptmp, 103
-Xtemp, 104
-Xtime, 104
-Xtransition, 104
-Xustr, 104
-y, 104

LINT_OPTIONS, 91
messages

formats of, 106, 107
message ID (tag), identifying, 97, 105
suppressing, 105

portability checks, 112, 114
predefinition, 39
questionable constructs, 114, 115

LINT_OPTIONS environment variable, 91
llib-lx.ln library, 115
local time zone, 383
locale, 155, 155, 157

behavior, 383
default, 368
ja_JP.PCK, 260
use of non-conforming, 260

long double

passing in ISO C, 396
long int, 37
long long, 36, 37

arithmetic promotions, 37
passing, 396, 396
representation of, 389
returning, 396
suffix, 31
value preserving, 32

loops, 263

M
macro expansion, 145
macros

__DATE__, 352, 377
__TIME__, 352, 377
ERANGE, 353
FLT_EVAL_METHOD, 330, 353
NULL, 354
those specified infloat.h, 358
those specified inlimits.h, 359
those specified instdint.h, 360

main function, 344
main, semantics of rags, 366
makefile dependencies, 284
malloc function, 356
man pages, accessing, 26
math functions, domain errors, 378
mbarrier.h, 86
mcs (C compiler), 29
memory allocation on the stack, 387
memory barrier intrinsics, 86
message ID (tag), 215, 216
messages

error, 365
mixed-language linking

-xlang, 279
mode, compiler, 241, 241
MP C, 71
multibyte characters and wide characters, 150, 152
multimedia types, handling of, 321
multiprocessing, 71

-xjobs, 277
multithreading, 232

N
newline, terminating, 380
nonstop

floating-point arithmetic, 34
null characters not appended to data, 381
NULL macro, 354

Index

420 Oracle Solaris Studio 12.4: C User's Guide • March 2015

NULL, value of, 377

O
object file

linking with ld, 213
producing object file for each source file, 213
reading compiler commentary with er_src
utility, 250
suppressing removal of, 213

obsolete options, list of, 208
OMP_NUM_THREADS, 81
OpenMP

-xopenmp command, 291
how to compile for, 71

optimization
-fast and, 218
-xipo and, 273
-xO and, 289
at link time, 282
for SPARC, 399
optimizer, 29
pragma opt and, 49
with -xmaxopt, 286

options
lint, 104

options, command-line, 212
See also cc command-line options
alphabetical reference, 212
grouped by functionality, 199
lint, 91

P
padding of structures, 372
page size, setting for stack or heap, 293
PARALLEL, 81
parallelization, 71, 71

See also OpenMP
checking for properly parallelized loops with -
xvpara, 322
creating a program database with -Zll, 323
environment variables for, 81
finding parallelized loops with -xloopinfo, 283

specifying OpenMP pragmas with -xopenmp, 291
turning on reduction recognition with -
xreduction, 308
turning on with -xautopar for multiple
processors, 249

pass, name and version of each, 239
PEC: Portable Executable Code, 300
Pentium, 316
performance

optimizing for SPARC, 399
optimizing with -fast, 218
optimizing with-xO, 289

portability checks performed by lint, 112, 114
portability, of code, 112, 114
POSIX threads, 232
postopt (C compiler), 29
pragmas, 41, 120

#pragma alias, 121
#pragma alias_level, 120
#pragma align, 41
#pragma c99, 42
#pragma does_not_read_global_data, 42
#pragma does_not_return, 43
#pragma does_not_write_global_data, 43
#pragma dumpmacros, 43
#pragma end_dumpmacros, 44
#pragma error_messages, 45
#pragma fini, 45
#pragma hdrstop, 46
#pragma ident, 46
#pragma init, 46
#pragma inline, 47
#pragma int_to_unsigned, 47
#pragma may_not_point_to, 122
#pragma may_point_to, 121
#pragma must_have_frame, 48
#pragma no_inline, 47
#pragma no_side_effect, 48, 49
#pragma noalias, 122, 122
#pragma nomemorydepend, 48
#pragma opt, 49
#pragma pack, 49
#pragma pipeloop, 50

Index

421

#pragma rarely_called, 50
#pragma redefine_extname, 51
#pragma returns_new_memory, 52
#pragma unknown_control_flow, 52
#pragma unroll, 53
#pragma warn_missing_parameter_info, 53
#pragma weak, 54

preassertions for -Aname, 212
precompiled-header file, 295
prefetch, 302
preprocessing, 144, 147

directives, 55, 58, 59, 214, 375
how to preserve comments, 213
predefined names, 54, 55
stringizing, 146
token pasting, 147

preserving signedness of chars, 253
printf function, 356
printing, 36, 383
profiling

-xprofile, 304
programming tools for C, 29
promotion, 140, 143

bit-fields, 142
default arguments, 136
integral constants, 142
unsigned versus value preserving, 141

Q
qualifiers, 374

R
readme file, 26
realloc function, 356
remove function, 355, 382
removing symbolic debugging information, 236
rename function, 355, 382
renaming shared libraries, 228
reordering functions and data, 266
representation

floating point, 370
integers, 368

reserved names, 153, 155
for expansion, 154
for implementation use, 153
guidelines for choosing, 154

restrict keyword
as part of supported C99 features, 331
as recognized by -Xs, 80
as type qualifier in parallelized code, 80

right shift, 370
rounding behavior, 34

S
scanf function, 96
search, source files See cscope
setlocale function, 353
setlocale(3C), 155, 157
shared libraries, naming, 228
signal, 379, 380
signal function, 344
signed, 368
signedness of chars, 253
sizeof function, 177
slave thread default setting for STACKSIZE, 81
Solaris threads, 232
source files

checking with lint, 117
editing See cscope
locating, 375
searching See cscope

space characters, 381
ssbd (C compiler), 29
stabs debugger-data format, 261
stack

memory allocation maximum, 387
setting page size for, 293

STACKSIZE environment variable, 81
standards conformance, 25, 31
stat function, 96
static linking, 214
std, 236
std level alias disambiguation, 244
__STDC__ value under -Xc, 241
stdint.h

Index

422 Oracle Solaris Studio 12.4: C User's Guide • March 2015

macros defined in, 360
storage allocation for types, 387
streams, 380
strerror function, 362
strftime function, 357
strict level alias disambiguation, 243
string literals in text segment, 313
strlcpy function, 96
strong level alias disambiguation, 244
strtod function, 356
strtof function, 356
strtold function, 356
structure

alignment, 372
padding, 372

sun_prefetch.h, 302
SUN_PROFDATA

definition, 57
SUN_PROFDATA_DIR

definition, 58
SUNW_MP_WARN environment variable, 81
symbol declaration specifier, 32
symbolic debugging information, removing, 236
system function, 346, 357

T
tcov

with -xprofile, 306
Temporary files, 58
TERM environment variable as used by cscope, 182
text

segment and string literals, 313
stream, 380

thread local storage of variables, 33
threads See parallelization
time and date formats, 384
TMPDIR environment variable, 58, 58
tokens, 144, 147
tools for programming with C, 29
towctrans function, 363
traceback, 237
trigraph sequences, 144
type-based alias-disambiguation, 119, 134

types
compatible and composite, 163, 165
const and volatile qualifier, 147, 150
declaration in for loop, 339
declarations and code, 338
incomplete, 160, 162
specifier requirement in declaration, 333
storage allocation for, 387

TZ, 383

U
ube (C compiler), 29
unsigned, 368
unsigned long long, 36
unsigned preserving (promotion), 141
using assembly in source, 56

V
value

floating point, 370
integers, 368

value preserving (promotion), 141
varargs(5), 136
variable declaration specifier, 32
variable length arrays in C99, 337
variable, thread-local storage specifier, 33
viable prefix, 297
VIS Software Developers Kit, 321
volatile

compatible declarations with, 164
definition and examples, 149, 150
explanation of keyword and usage, 147, 149
in C90, 374

VPATH environment variable, 182

W
wait function, 357
wait3 function, 357
waitid function, 357
waitpid function, 357
#warning, 41

Index

423

warning messages, 365
wcsftime function, 357
wcstod function, 356
wcstof function, 356
wcstold function, 356
weak level alias disambiguation, 243
whole-program optimizations, 273
wide character constants, 152, 152
wide characters, 151, 152
wide string literals, 152, 152
write on text stream, 381

Z
zero-length file, 382

424 Oracle Solaris Studio 12.4: C User's Guide • March 2015

	Oracle® Solaris Studio 12.4: C User's Guide
	Contents
	Using This Documentation
	Product Documentation Library
	Access to Oracle Support
	Feedback

	Chapter 1 • Introduction to the C Compiler
	1.1 What's New in C Version 5.13 Oracle Solaris Studio 12.4 Release
	1.2 Special x86 Notes
	1.3 Binary Compatibility Verification
	1.4 Compiling for 64–Bit Platforms
	1.5 Standards Conformance
	1.6 C Readme File
	1.7 Man Pages
	1.8 Organization of the Compiler
	1.9 C-Related Programming Tools

	Chapter 2 • C-Compiler Implementation-Specific Information
	2.1 Constants
	2.1.1 Integer Constants
	2.1.2 Character Constants

	2.2 Linker Scoping Specifiers
	2.3 Thread Local Storage Specifier
	2.4 Floating Point, Nonstandard Mode
	2.5 Labels as Values
	2.6 long long Data Type
	2.6.1 Printing long long Data Types
	2.6.2 Usual Arithmetic Conversions

	2.7 Case Ranges in Switch Statements
	2.8 Assertions
	2.9 Supported Attributes
	2.9.1 __has_attribute function-like macro

	2.10 Warnings and Errors
	2.11 Pragmas
	2.11.1 align
	2.11.2 c99
	2.11.3 does_not_read_global_data
	2.11.4 does_not_return
	2.11.5 does_not_write_global_data
	2.11.6 dumpmacros
	2.11.7 end_dumpmacros
	2.11.8 error_messages
	2.11.9 fini
	2.11.10 hdrstop
	2.11.11 ident
	2.11.12 init
	2.11.13 inline
	2.11.14 int_to_unsigned
	2.11.15 must_have_frame
	2.11.16 nomemorydepend
	2.11.17 no_side_effect
	2.11.18 opt
	2.11.19 pack
	2.11.20 pipeloop
	2.11.21 rarely_called
	2.11.22 redefine_extname
	2.11.23 returns_new_memory
	2.11.24 unknown_control_flow
	2.11.25 unroll
	2.11.26 warn_missing_parameter_info
	2.11.27 weak

	2.12 Predefined Names
	2.13 Preserving the Value of errno
	2.14 Extensions
	2.14.1 _Restrict Keyword
	2.14.2 __asm Keyword
	2.14.3 __inline and __inline__
	2.14.4 __builtin_constant_p()
	2.14.5 __FUNCTION__ and __PRETTY_FUNCTION__
	2.14.6 untyped _Complex
	2.14.7 __alignof__

	2.15 Environment Variables
	2.15.1 SUN_PROFDATA
	2.15.2 SUN_PROFDATA_DIR
	2.15.3 TMPDIR

	2.16 How to Specify Include Files
	2.16.1 Using the -I- Option to Change the Search Algorithm
	2.16.1.1 Warnings

	2.17 Compiling in Free-Standing Environments
	2.18 Compiler Support for Intel MMX and Extended x86 Platform Intrinsics
	2.19 Compiler Support for SPARC64™X and SPARC64™X+ Platform Intrinsics
	2.19.1 SIMD Intrinsics
	2.19.1.1 Types and Operations
	2.19.1.2 Extensions to the Application Binary Interface
	2.19.1.3 Intrinsic functions

	2.19.2 Decimal Floating-Point Intrinsics
	2.19.2.1 Types and Operations
	2.19.2.2 Macros and Pragmas
	2.19.2.3 Intrinsic functions

	Chapter 3 • Parallelizing C Code
	3.1 Parallelizing Using OpenMP
	3.2 Automatic Parallelization
	3.2.1 Data Dependence and Interference
	3.2.2 Private Scalars and Private Arrays
	3.2.3 Storeback
	3.2.4 Reduction Variables
	3.2.5 Loop Transformations
	3.2.5.1 Loop Distribution
	3.2.5.2 Loop Fusion
	3.2.5.3 Loop Interchange

	3.2.6 Aliasing and Parallelization
	3.2.6.1 Array and Pointer References
	3.2.6.2 Restricted Pointers

	3.3 Environment Variables
	3.4 Parallel Execution Model
	3.5 Speedups
	3.5.1 Amdahl’s Law
	3.5.1.1 Overheads
	3.5.1.2 Gustafson’s Law

	3.6 Memory-Barrier Intrinsics

	Chapter 4 • lint Source Code Checker
	4.1 Basic and Enhanced lint Modes
	4.2 Using lint
	4.3 lint Command-Line Options
	4.3.1 -#
	4.3.2 -###
	4.3.3 -a
	4.3.4 -b
	4.3.5 -C filename
	4.3.6 -c
	4.3.7 -dirout=dir
	4.3.8 -err=warn
	4.3.9 -errchk=l(, l)
	4.3.10 -errfmt=f
	4.3.11 -errhdr=h
	4.3.12 -erroff=tag(, tag)
	4.3.13 -errsecurity=level
	4.3.14 -errtags=a
	4.3.15 -errwarn=t
	4.3.16 -F
	4.3.17 -fd
	4.3.18 -flagsrc=file
	4.3.19 -h
	4.3.20 -Idir
	4.3.21 -k
	4.3.22 -Ldir
	4.3.23 -lx
	4.3.24 -m
	4.3.25 -m32|-m64
	4.3.26 -Ncheck=c
	4.3.27 -Nlevel=n
	4.3.27.1 -Nlevel=1
	4.3.27.2 -Nlevel=2
	4.3.27.3 -Nlevel=3
	4.3.27.4 -Nlevel=4

	4.3.28 -n
	4.3.29 -ox
	4.3.30 -p
	4.3.31 -Rfile
	4.3.32 -s
	4.3.33 -u
	4.3.34 -V
	4.3.35 -v
	4.3.36 -Wfile
	4.3.37 -XCC=a
	4.3.38 -Xalias_level[=l]
	4.3.39 -Xarch=amd64
	4.3.40 -Xarch=v9
	4.3.41 -Xc99[=o]
	4.3.42 -Xkeeptmp=a
	4.3.43 -Xtemp=dir
	4.3.44 -Xtime=a
	4.3.45 -Xtransition=a
	4.3.46 -Xustr={ascii_utf16_ushort|no}
	4.3.47 -x
	4.3.48 -y

	4.4 lint Messages
	4.4.1 Options to Suppress Messages
	4.4.2 lint Message Formats

	4.5 lint Directives
	4.5.1 Predefined Values
	4.5.2 Directives

	4.6 lint Reference and Examples
	4.6.1 Diagnostics Performed by lint
	4.6.1.1 Consistency Checks
	4.6.1.2 Portability Checks
	4.6.1.3 Questionable Constructs

	4.6.2 lint Libraries
	4.6.3 lint Filters

	Chapter 5 • Type-Based Alias Analysis
	5.1 Introduction to Type-Based Analysis
	5.2 Using Pragmas for Finer Control
	5.2.1 #pragma alias_level level (list)
	5.2.1.1 #pragma alias (type, type [, type]…)
	5.2.1.2 #pragma alias (pointer, pointer [, pointer]…)
	5.2.1.3 #pragma may_point_to (pointer, variable [, variable]…)
	5.2.1.4 #pragma noalias (type, type [, type]…)
	5.2.1.5 #pragma noalias (pointer, pointer [, pointer]…)
	5.2.1.6 #pragma may_not_point_to (pointer, variable [, variable]…)
	5.2.1.7 #pragma ivdep

	5.3 Checking With lint
	5.3.1 Struct Pointer Cast of Scalar Pointer
	5.3.2 Struct Pointer Cast of Void Pointer
	5.3.3 Cast of Struct Field to Structure Pointer
	5.3.4 Explicit Aliasing Required

	5.4 Examples of Memory Reference Constraints
	5.4.1 Example: Levels of Aliasing
	5.4.2 Example: Compiling with Different Aliasing Levels
	5.4.3 Example: Interior Pointers
	5.4.4 Example: Struct Fields
	5.4.5 Example: Unions
	5.4.6 Example: Structs of Structs
	5.4.7 Example: Using a Pragma

	Chapter 6 • Transitioning to ISO C
	6.1 New-Style Function Prototypes
	6.1.1 Writing New Code
	6.1.2 Updating Existing Code
	6.1.3 Mixing Considerations

	6.2 Functions With Varying Arguments
	6.3 Promotions: Unsigned Versus Value Preserving
	6.3.1 Some Background History
	6.3.2 Compilation Behavior
	6.3.3 Example: The Use of a Cast
	6.3.4 Example: Same Result, No Warning
	6.3.5 Integral Constants
	6.3.6 Example: Integral Constants

	6.4 Tokenization and Preprocessing
	6.4.1 ISO C Translation Phases
	6.4.2 Old C Translation Phases
	6.4.3 Logical Source Lines
	6.4.4 Macro Replacement
	6.4.5 Using Strings
	6.4.6 Token Pasting

	6.5 const and volatile
	6.5.1 Types for lvalue Only
	6.5.2 Type Qualifiers in Derived Types
	6.5.3 const Means readonly
	6.5.4 Examples of const Usage
	6.5.5 Examples of volatile Usage

	6.6 Multibyte Characters and Wide Characters
	6.6.1 Asian Languages Require Multibyte Characters
	6.6.2 Encoding Variations
	6.6.3 Wide Characters
	6.6.4 C Language Features

	6.7 Standard Headers and Reserved Names
	6.7.1 Standard Headers
	6.7.2 Names Reserved for Implementation Use
	6.7.3 Names Reserved for Expansion
	6.7.4 Names Safe to Use

	6.8 Internationalization
	6.8.1 Locales
	6.8.2 setlocale() Function
	6.8.3 Changed Functions
	6.8.4 New Functions

	6.9 Grouping and Evaluation in Expressions
	6.9.1 Expression Definitions
	6.9.2 K&R C Rearrangement License
	6.9.3 ISO C Rules
	6.9.4 Parentheses Usage
	6.9.5 The As If Rule

	6.10 Incomplete Types
	6.10.1 Types
	6.10.2 Completing Incomplete Types
	6.10.3 Declarations
	6.10.4 Expressions
	6.10.5 Justification
	6.10.6 Examples: Incomplete Types

	6.11 Compatible and Composite Types
	6.11.1 Multiple Declarations
	6.11.2 Separate Compilation Compatibility
	6.11.3 Single Compilation Compatibility
	6.11.4 Compatible Pointer Types
	6.11.5 Compatible Array Types
	6.11.6 Compatible Function Types
	6.11.7 Special Cases
	6.11.8 Composite Types

	Chapter 7 • Converting Applications for a 64-Bit Environment
	7.1 Overview of the Data Model Differences
	7.2 Implementing Single Source Code
	7.2.1 Derived Types
	7.2.1.1 <sys/types.h>
	7.2.1.2 <inttypes.h>
	Fixed-Width Integer Types
	Helpful Types Such as unintptr_t
	Constant Macros
	Limits
	Format String Macros

	7.2.2 Checking With lint

	7.3 Converting to the LP64 Data Type Model
	7.3.1 Integer and Pointer Size Change
	7.3.2 Integer and Long Size Change
	7.3.3 Sign Extension
	7.3.4 Pointer Arithmetic Instead of Integers
	7.3.5 Structures
	7.3.6 Unions
	7.3.7 Type Constants
	7.3.8 Beware of Implicit Declarations
	7.3.9 sizeof() Is an Unsigned long
	7.3.10 Use Casts to Show Your Intentions
	7.3.11 Check Format String Conversion Operation

	7.4 Other Conversion Considerations
	7.4.1 Note: Derived Types That Have Grown in Size
	7.4.2 Check for Side Effects of Changes
	7.4.3 Check Literal Uses of long Still Make Sense
	7.4.4 Use #ifdef for Explicit 32-bit Versus 64-bit Prototypes
	7.4.5 Calling Convention Changes
	7.4.6 Algorithm Changes

	7.5 Checklist for Getting Started

	Chapter 8 • cscope: Interactively Examining a C Program
	8.1 The cscope Process
	8.2 Basic Use
	8.2.1 Step 1: Set Up the Environment
	8.2.2 Step 2: Invoke the cscope Program
	8.2.3 Step 3: Locate the Code
	8.2.4 Step 4: Edit the Code
	8.2.5 Command-Line Options
	8.2.6 View Paths
	8.2.7 cscope and Editor Call Stacks
	8.2.8 Examples
	8.2.8.1 Changing a Constant to a Preprocessor Symbol
	8.2.8.2 Adding an Argument to a Function
	8.2.8.3 Changing the Value of a Variable

	8.2.9 Command-Line Syntax for Editors

	8.3 Unknown Terminal Type Error

	Appendix A • Compiler Options Grouped by Functionality
	A.1 Options Summarized by Function
	A.1.1 Optimization and Performance Options
	A.1.2 Compile-Time and Link-Time Options
	A.1.3 Data-Alignment Options
	A.1.4 Numerics and Floating-Point Options
	A.1.5 Parallelization Options
	A.1.6 Source Code Options
	A.1.7 Compiled Code Options
	A.1.8 Compilation Mode Options
	A.1.9 Diagnostic Options
	A.1.10 Debugging Options
	A.1.11 Linking and Libraries Options
	A.1.12 Target Platform Options
	A.1.13 x86-Specific Options
	A.1.14 Obsolete Options

	Appendix B • C Compiler Options Reference
	B.1 Option Syntax
	B.2 cc Options
	B.2.1 -#
	B.2.2 -###
	B.2.3 -Aname[(tokens)]
	B.2.4 -ansi
	B.2.5 -B[static|dynamic]
	B.2.6 -C
	B.2.7 -c
	B.2.8 -Dname[(arg[,arg])][=expansion]
	B.2.9 -d[y|n]
	B.2.10 -dalign
	B.2.11 -E
	B.2.12 -errfmt[=[no%]error]
	B.2.13 -errhdr[=h]
	B.2.14 -erroff[=t]
	B.2.15 -errshort[=i]
	B.2.16 -errtags[=a]
	B.2.17 -errwarn[=t]
	B.2.18 -fast
	B.2.19 -fd
	B.2.20 -features=[v]
	B.2.20.1 —features=typeof Examples

	B.2.21 -flags
	B.2.22 -flteval[={any|2}]
	B.2.23 -fma[={none|fused}]
	B.2.24 -fnonstd
	B.2.25 -fns[={no|yes}]
	B.2.26 -fopenmp
	B.2.27 -fPIC
	B.2.28 -fpic
	B.2.29 -fprecision=p
	B.2.30 -fround=r
	B.2.31 -fsimple[=n]
	B.2.32 -fsingle
	B.2.33 -fstore
	B.2.34 -ftrap=t[,t...]
	B.2.35 -G
	B.2.36 -g
	B.2.37 -g[n]
	B.2.38 -H
	B.2.39 -h name
	B.2.40 -I[-|dir]
	B.2.41 -i
	B.2.42 -include filename
	B.2.43 -KPIC
	B.2.44 -Kpic
	B.2.45 -keeptmp
	B.2.46 -Ldir
	B.2.47 -lname
	B.2.48 -library=sunperf
	B.2.49 -m32|-m64
	B.2.50 -mc
	B.2.51 -misalign
	B.2.52 -misalign2
	B.2.53 -mr[,string]
	B.2.54 -mt[={yes|no}]
	B.2.55 -native
	B.2.56 -nofstore
	B.2.57 -O
	B.2.58 -o filename
	B.2.59 -P
	B.2.60 -p
	B.2.61 –pedantic{=[yes|no]}
	B.2.62 –preserve_argvalues[=simple|none|complete]
	B.2.63 –Qoption phase option[,option..]
	B.2.64 -Q[y|n]
	B.2.65 -qp
	B.2.66 -Rdir[:dir]
	B.2.67 -S
	B.2.68 -s
	B.2.69 -staticlib=[no%]sunperf
	B.2.70 –std=value
	B.2.71 –temp=path
	B.2.71.1 See Also

	B.2.72 -traceback[={%none|common|signals_list}]
	B.2.73 -Uname
	B.2.74 -V
	B.2.75 -v
	B.2.76 -Wc,arg
	B.2.77 -w
	B.2.78 -X[c|a|t|s]
	B.2.79 -x386
	B.2.80 -x486
	B.2.81 -Xlinker arg
	B.2.82 -xaddr32[=yes|no]
	B.2.83 -xalias_level[=l]
	B.2.84 -xanalyze={code|%none}
	B.2.85 -xannotate[=yes|no]
	B.2.86 –xarch=isa
	B.2.86.1 -xarch Flags for SPARC and x86
	B.2.86.2 -xarch Flags for SPARC
	B.2.86.3 -xarch Flags for x86
	B.2.86.4 Interactions
	B.2.86.5 Warnings

	B.2.87 -xautopar
	B.2.88 -xbinopt={prepare|off}
	B.2.89 -xbuiltin[=(%all|%default|%none)]
	B.2.90 -xCC
	B.2.91 -xc99[=o]
	B.2.92 -xcache[=c]
	B.2.93 –xcg[89|92]
	B.2.94 -xchar[=o]
	B.2.95 -xchar_byte_order[=o]
	B.2.96 -xcheck[=o[,o]]
	B.2.96.1 Initialization Values for -xcheck=init_local
	Basic Types
	Initializing Structs, Unions, and Arrays

	B.2.97 -xchip[=c]
	B.2.98 -xcode[=v]
	B.2.99 -xcrossfile
	B.2.100 -xcsi
	B.2.101 -xdebugformat=[stabs|dwarf]
	B.2.102 -xdebuginfo=a[,a...]
	B.2.103 -xdepend=[yes|no]
	B.2.104 -xdryrun
	B.2.105 -xdumpmacros[=value[,value...]]
	B.2.106 -xe
	B.2.107 -xF[=v[,v...]]
	B.2.107.1 Values

	B.2.108 -xglobalize[={yes|no}]
	B.2.108.1 Interactions

	B.2.109 -xhelp=flags
	B.2.110 -xhwcprof
	B.2.111 -xinline=list
	B.2.112 -xinline_param=a[,a[,a]...]
	B.2.113 -xinline_report[=n]
	B.2.114 -xinstrument=[no%]datarace
	B.2.115 -xipo[=a]
	B.2.115.1 -xipo Examples
	B.2.115.2 When Not To Use -xipo=2 Interprocedural Analysis

	B.2.116 -xipo_archive=[a]
	B.2.117 -xipo_build=[yes|no]
	B.2.117.1 -xipo_build Examples

	B.2.118 -xivdep[=p]
	B.2.119 -xjobs{=n|auto}
	B.2.119.1 -xjobs Examples

	B.2.120 -xkeep_unref[={[no%]funcs,[no%]vars}]
	B.2.121 -xkeepframe[=[%all,%none,name,no%name]]
	B.2.122 -xlang=language
	B.2.123 -xldscope={v}
	B.2.124 -xlibmieee
	B.2.125 -xlibmil
	B.2.126 -xlibmopt
	B.2.127 -xlic_lib=sunperf
	B.2.128 -xlicinfo
	B.2.129 -xlinkopt[=level]
	B.2.130 -xloopinfo
	B.2.131 -xM
	B.2.132 -xM1
	B.2.133 -xMD
	B.2.134 -xMF filename
	B.2.135 -xMMD
	B.2.136 -xMerge
	B.2.137 -xmaxopt[=v]
	B.2.138 -xmemalign=ab
	B.2.139 -xmodel=[a]
	B.2.140 -xnolib
	B.2.141 -xnolibmil
	B.2.142 -xnolibmopt
	B.2.143 -xnorunpath
	B.2.144 -xO[1|2|3|4|5]
	B.2.144.1 SPARC Optimizations
	B.2.144.2 x86 Optimization Levels

	B.2.145 -xopenmp[={parallel|noopt|none}]
	B.2.146 -xP
	B.2.147 -xpagesize=n
	B.2.148 -xpagesize_heap=n
	B.2.149 -xpagesize_stack=n
	B.2.150 -xpatchpadding[={fix|patch|size}]
	B.2.151 -xpch=v
	B.2.151.1 Creating a Precompiled-Header File Automatically
	B.2.151.2 Creating a Precompiled-Header File Manually
	B.2.151.3 How the Compiler Handles an Existing Precompiled-Header File
	B.2.151.4 Directing the Compiler to Use a Specific Precompiled-Header File
	B.2.151.5 The Viable Prefix
	B.2.151.6 Screening a Header File for Problems
	B.2.151.7 Precompiled-Header File Cache
	B.2.151.8 Caveats
	B.2.151.9 Precompiled-Header File Dependencies and make Files

	B.2.152 -xpchstop=[file|<include>]
	B.2.153 -xpec[={yes|no}]
	B.2.154 -xpentium
	B.2.155 -xpg
	B.2.156 -xprefetch[=val[,val]]
	B.2.156.1 Prefetch Latency Ratio (SPARC)

	B.2.157 -xprefetch_auto_type=a
	B.2.158 -xprefetch_level=l
	B.2.159 -xprevise={yes|no}
	B.2.160 –xprofile=p
	B.2.161 -xprofile_ircache[=path]
	B.2.162 -xprofile_pathmap
	B.2.163 -xreduction
	B.2.164 -xregs=r[,r…]
	B.2.165 -xrestrict[=f]
	B.2.166 –xs[={yes|no}]
	B.2.167 -xsafe=mem
	B.2.168 -xsegment_align=n
	B.2.169 -xsfpconst
	B.2.170 -xspace
	B.2.171 -xstrconst
	B.2.172 -xtarget=t
	B.2.172.1 -xtarget Values on SPARC Platforms
	B.2.172.2 -xtarget Values on x86 Platforms

	B.2.173 -xtemp=path
	B.2.174 -xthreadvar[=o]
	B.2.175 -xthroughput[={yes|no}]
	B.2.176 -xtime
	B.2.177 -xtransition
	B.2.178 -xtrigraphs[={yes|no}]
	B.2.179 -xunboundsym={yes|no}
	B.2.180 -xunroll=n
	B.2.181 -xustr={ascii_utf16_ushort|no}
	B.2.182 -xvector[=a]
	B.2.183 -xvis
	B.2.184 -xvpara
	B.2.185 -Yc, dir
	B.2.186 -YA, dir
	B.2.187 -YI, dir
	B.2.188 -YP, dir
	B.2.189 -YS, dir
	B.2.190 -Zll

	B.3 Options Passed to the Linker
	B.4 User-Supplied Default Options File

	Appendix C • Features of C11
	C.1 Keywords
	C.2 C11 Supported Features
	C.2.1 _Alignas specifier
	C.2.2 _Alignof operator
	C.2.3 _Noreturn
	C.2.4 _Static_assert
	C.2.5 Universal Character Names (UCN)

	Appendix D • Features of C99
	D.1 Discussion and Examples
	D.1.1 Precision of Floating Point Evaluators
	D.1.2 C99 Keywords
	D.1.2.1 Using the restrict Keyword

	D.1.3 __func__ Support
	D.1.4 Universal Character Names (UCN)
	D.1.5 Commenting Code With //
	D.1.6 Disallowed Implicit int and Implicit Function Declarations
	D.1.7 Declarations Using Implicit int
	D.1.8 Flexible Array Members
	D.1.9 Idempotent Qualifiers
	D.1.10 inline Functions
	D.1.10.1 Oracle Solaris Studio C compiler gcc compatibility for inline functions

	D.1.11 Static and Other Type Qualifiers Allowed in Array Declarators
	D.1.12 Variable Length Arrays (VLA):
	D.1.13 Designated Initializers
	D.1.14 Mixed Declarations and Code
	D.1.15 Declaration in for-Loop Statement
	D.1.16 Macros With a Variable Number of Arguments
	D.1.17 _Pragma

	Appendix E • Implementation-Defined ISO/IEC C99 Behavior
	E.1 Implementation-defined Behavior (J.3)
	E.1.1 Translation (J.3.1)
	E.1.2 Environment (J.3.2)
	E.1.3 Identifiers (J.3.3)
	E.1.4 Characters (J.3.4)
	E.1.5 Integers (J.3.5)
	E.1.6 Floating point (J.3.6)
	E.1.7 Arrays and Pointers (J.3.7)
	E.1.8 Hints (J.3.8)
	E.1.9 Structures, Unions, Enumerations, and Bit-fields (J.3.9)
	E.1.10 Qualifiers (J.3.10)
	E.1.11 Preprocessing Directives (J.3.11)
	E.1.12 Library Functions (J.3.12)
	E.1.13 Architecture (J.3.13)
	E.1.14 Locale-specific Behavior (J.4)

	Appendix F • Implementation-Defined ISO/IEC C90 Behavior
	F.1 Implementation Compared to the ISO Standard
	F.1.1 Translation (G.3.1)
	F.1.1.1 (5.1.1.3) Identification of diagnostics:

	F.1.2 Environment (G.3.2)
	F.1.2.1 (5.1.2.2.1) Semantics of arguments to main:
	F.1.2.2 (5.1.2.3) What constitutes an interactive device:

	F.1.3 Identifiers (G.3.3)
	F.1.3.1 (6.1.2) The number of significant initial characters (beyond 31) in an identifier without external linkage:
	(6.1.2) The number of significant initial characters (beyond 6) in an identifier with external linkage:

	F.1.4 Characters (G.3.4)
	F.1.4.1 (5.2.1) The members of the source and execution character sets, except as explicitly specified in the Standard:
	F.1.4.2 (5.2.1.2) The shift states used for the encoding of multibyte characters:
	F.1.4.3 (5.2.4.2.1) The number of bits in a character in the execution character set:
	F.1.4.4 (6.1.3.4) The mapping of members of the source character set (in character and string literals) to members of the execution character set:
	F.1.4.5 (6.1.3.4) The value of an integer character constant that contains a character or escape sequence not represented in the basic execution character set or the extended character set for a wide character constant:
	F.1.4.6 (3.1.3.4) The value of an integer character constant that contains more than one character or a wide character constant that contains more than one multibyte character:
	F.1.4.7 (6.1.3.4) The current locale used to convert multibyte characters into corresponding wide characters (codes) for a wide character constant:
	F.1.4.8 (6.2.1.1) Whether a plain char has the same range of values as signed char or unsigned char:

	F.1.5 Integers (G.3.5)
	F.1.5.1 (6.1.2.5) The representations and sets of values of the various types of integers:
	F.1.5.2 (6.2.1.2) The result of converting an integer to a shorter signed integer, or the result of converting an unsigned integer to a signed integer of equal length, if the value cannot be represented:
	F.1.5.3 (6.3) The results of bitwise operations on signed integers:
	F.1.5.4 (6.3.5) The sign of the remainder on integer division:
	F.1.5.5 (6.3.7) The result of a right shift of a negative-valued signed integral type:

	F.1.6 Floating-Point (G.3.6)
	F.1.6.1 (6.1.2.5) The representations and sets of values of the various types of floating-point numbers:
	F.1.6.2 (6.2.1.3) The direction of truncation when an integral number is converted to a floating-point number that cannot exactly represent the original value:
	F.1.6.3 (6.2.1.4) The direction of truncation or rounding when a floating- point number is converted to a narrower floating-point number:

	F.1.7 Arrays and Pointers (G.3.7)
	F.1.7.1 (6.3.3.4, 7.1.1) The type of integer required to hold the maximum size of an array; that is, the type of the sizeof operator, size_t:
	F.1.7.2 (6.3.4) The result of casting a pointer to an integer, or vice versa:
	F.1.7.3 (6.3.6, 7.1.1) The type of integer required to hold the difference between two pointers to members of the same array, ptrdiff_t:

	F.1.8 Registers (G.3.8)
	F.1.8.1 (6.5.1) The extent to which objects can actually be placed in registers by use of the register storage-class specifier:

	F.1.9 Structures, Unions, Enumerations, and Bit-Fields (G.3.9)
	F.1.9.1 (6.3.2.3) A member of a union object is accessed using a member of a different type:
	F.1.9.2 (6.5.2.1) The padding and alignment of members of structures.
	F.1.9.3 (6.5.2.1) Whether a plain int bit-field is treated as a signed int bit-field or as an unsigned int bit-field:
	F.1.9.4 (6.5.2.1) The order of allocation of bit-fields within an int:
	F.1.9.5 (6.5.2.1) Whether a bit-field can straddle a storage-unit boundary:
	F.1.9.6 (6.5.2.2) The integer type chosen to represent the values of an enumeration type:

	F.1.10 Qualifiers (G.3.10)
	F.1.10.1 (6.5.5.3) What constitutes an access to an object that has volatile-qualified type:

	F.1.11 Declarators (G.3.11)
	F.1.11.1 (6.5.4) The maximum number of declarators that may modify an arithmetic, structure, or union type:

	F.1.12 Statements (G.3.12)
	F.1.12.1 (6.6.4.2) The maximum number of case values in a switch statement:

	F.1.13 Preprocessing Directives (G.3.13)
	F.1.13.1 (6.8.1) Whether the value of a single-character character constant in a constant expression that controls conditional inclusion matches the value of the same character constant in the execution character set:
	F.1.13.2 (6.8.1) Whether such a character constant may have a negative value:
	F.1.13.3 (6.8.2) The method for locating includable source files:
	F.1.13.4 (6.8.2) The support of quoted names for includable source files:
	F.1.13.5 (6.8.2) The mapping of source file character sequences:
	F.1.13.6 (6.8.6) The behavior on each recognized #pragma directive:
	F.1.13.7 (6.8.8) The definitions for __DATE__ and __TIME__ when, respectively, the date and time of translation are not available:

	F.1.14 Library Functions (G.3.14)
	F.1.14.1 (7.1.6) The null pointer constant to which the macro NULL expands:
	F.1.14.2 (7.2) The diagnostic printed by and the termination behavior of the assert function:
	F.1.14.3 (7.3.1) The sets of characters tested for by the isalnum, isalpha, iscntrl, islower, isprint, and isupper functions:
	F.1.14.4 (7.5.1) The values returned by the mathematics functions on domain errors:
	F.1.14.5 (7.5.1) Whether the mathematics functions set the integer expression errno to the value of the macro ERANGE on underflow range errors:
	F.1.14.6 (7.5.6.4) Whether a domain error occurs or zero is returned when the fmod function has a second argument of zero:
	F.1.14.7 (7.7.1.1) The set of signals for the signal function:
	F.1.14.8 (7.7.1.1) The default handling and the handling at program startup for each signal recognized by the signal function:
	F.1.14.9 (7.7.1.1) If the equivalent of signal(sig, SIG_DFL); is not executed prior to the call of a signal handler, the blocking of the signal that is performed:
	F.1.14.10 (7.7.1.1) Whether the default handling is reset if the SIGILL signal is received by a handler specified to the signal function:
	F.1.14.11 (7.9.2) Whether the last line of a text stream requires a terminating new-line character:
	F.1.14.12 (7.9.2) Whether space characters that are written out to a text stream immediately before a new-line character appear when read in:
	F.1.14.13 (7.9.2) The number of null characters that may be appended to data written to a binary stream:
	F.1.14.14 (7.9.3) Whether the file position indicator of an append mode stream is initially positioned at the beginning or end of the file:
	F.1.14.15 (7.9.3) Whether a write on a text stream causes the associated file to be truncated beyond that point:
	F.1.14.16 (7.9.3) The characteristics of file buffering:
	F.1.14.17 (7.9.3) Whether a zero-length file actually exists:
	F.1.14.18 (7.9.3) The rules for composing valid file names:
	F.1.14.19 (7.9.3) Whether the same file can be open multiple times:
	F.1.14.20 (7.9.4.1) The effect of the remove function on an open file:
	F.1.14.21 (7.9.4.2) The effect if a file with the new name exists prior to a call to the rename function:
	F.1.14.22 (7.9.6.1) The output for %p conversion in the fprintf function:
	F.1.14.23 (7.9.6.2) The input for %p conversion in the fscanf function:
	F.1.14.24 (7.9.6.2) The interpretation of a- character that is neither the first nor the last character in the scan list for %[conversion in the fscanf function:

	F.1.15 Locale-Specific Behavior (G.4)
	F.1.15.1 (7.12.1) The local time zone and Daylight Savings Time:
	F.1.15.2 (7.12.2.1) The era for the clock function
	F.1.15.3 (5.2.1) The content of the execution character set, in addition to the required members:
	F.1.15.4 (5.2.2) The direction of printing:
	F.1.15.5 (7.1.1) The decimal-point character:
	F.1.15.6 (7.3) The implementation-defined aspects of character testing and case mapping functions:
	F.1.15.7 (7.11.4.4) The collation sequence of the execution character set:
	F.1.15.8 (7.12.3.5) The formats for time and date:

	Appendix G • ISO C Data Representations
	G.1 Storage Allocation
	G.2 Data Representations
	G.2.1 Integer Representations
	G.2.2 Floating-Point Representations
	G.2.3 Exceptional Values
	G.2.4 Hexadecimal Representation of Selected Numbers
	G.2.5 Pointer Representation
	G.2.6 Array Storage
	G.2.7 Arithmetic Operations on Exceptional Values

	G.3 Argument-Passing Mechanism
	G.3.1 32-Bit SPARC
	G.3.2 64-Bit SPARC
	G.3.3 x86/x64

	Appendix H • Performance Tuning
	H.1 libfast.a Library (SPARC)

	Appendix I • Oracle Solaris Studio C: Differences Between K&R C and ISO C
	I.1 Incompatibilities
	I.2 Keywords

	Index

