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Preface

The Thread Analyzer User's Guide provides an introduction to the Thread Analyzer tool along
with two detailed tutorials. One tutorial focuses on data race detection and the other focuses on
deadlock detection. The manual also includes an appendix of APIs recognized by the Thread
Analyzer and an appendix of useful tips.

Supported Platforms
This Oracle Solaris Studio release supports platforms that use the SPARC family of processor
architectures running the Oracle Solaris operating system, as well as platforms that use the x86
family of processor architectures running Oracle Solaris or specific Linux systems.

This document uses the following terms to cite differences between x86 platforms:

■ “x86” refers to the larger family of 64-bit and 32-bit x86 compatible products.
■ “x64” points out specific 64-bit x86 compatible CPUs.
■ “32-bit x86” points out specific 32-bit information about x86 based systems.

Information specific to Linux systems refers only to supported Linux x86 platforms, while
information specific to Oracle Solaris systems refers only to supported Oracle Solaris platforms
on SPARC and x86 systems.

For a complete list of supported hardware platforms and operating system releases, see the
Oracle Solaris Studio 12.3 Release Notes.

Oracle Solaris Studio Documentation
You can find complete documentation for Oracle Solaris Studio software as follows:

■ Product documentation is located at the Oracle Solaris Studio documentation web site,
including release notes, reference manuals, user guides, and tutorials.

■ Online help for the Code Analyzer, the Performance Analyzer, the Thread Analyzer,
dbxtool, DLight, and the IDE is available through the Help menu, as well as through the F1
key and Help buttons on many windows and dialog boxes, in these tools.

■ Man pages for command-line tools describe a tool's command options.
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Resources for Developers
Visit the Oracle Technical Network web site to find these resources for developers using Oracle
Solaris Studio:

■ Articles on programming techniques and best practices
■ Links to complete documentation for recent releases of the software
■ Information on support levels
■ User discussion forums

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Typographic Conventions
The following table describes the typographic conventions that are used in this book.

TABLE P–1 Typographic Conventions

Typeface Description Example

AaBbCc123 The names of commands, files, and directories,
and onscreen computer output

Edit your .login file.

Use ls -a to list all files.

machine_name% you have mail.

AaBbCc123 What you type, contrasted with onscreen
computer output

machine_name% su

Password:

aabbcc123 Placeholder: replace with a real name or value The command to remove a file is rm
filename.

AaBbCc123 Book titles, new terms, and terms to be
emphasized

Read Chapter 6 in the User's Guide.

A cache is a copy that is stored
locally.

Do not save the file.

Note: Some emphasized items
appear bold online.
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Shell Prompts in Command Examples
The following table shows the default UNIX system prompt and superuser prompt for shells
that are included in the Oracle Solaris OS. Note that the default system prompt that is displayed
in command examples varies, depending on the Oracle Solaris release.

TABLE P–2 Shell Prompts

Shell Prompt

Bash shell, Korn shell, and Bourne shell $

Bash shell, Korn shell, and Bourne shell for superuser #

C shell machine_name%

C shell for superuser machine_name#

Preface
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What is the Thread Analyzer and What Does It
Do?

The Thread Analyzer is an Oracle Solaris Studio tool that you can use to analyze the execution
of a multithreaded program. The Thread Analyzer can detect multithreaded programming
errors such as data races and deadlocks in code that is written using the POSIX thread API, the
Solaris thread API, OpenMP directives, or a mix of these.

This chapter discusses the following topics:
■ “1.1 Getting Started With the Thread Analyzer” on page 11
■ “1.1.1 What is a Data Race?” on page 11
■ “1.1.2 What is a Deadlock?” on page 12
■ “1.2 The Thread Analyzer Usage Model” on page 12
■ “1.3 Thread Analyzer Interface” on page 15

1.1 Getting Started With the Thread Analyzer
The Thread Analyzer is a specialized view of the Performance Analyzer that is designed for
examining thread analysis experiments. A separate command, tha, is used to start the
Performance Analyzer with this specialized view, and the tool when started in this way is known
as the Thread Analyzer.

The Thread Analyzer can show data races and deadlocks in experiments that you can generate
specifically for examining these types of data, as explained in this document.

1.1.1 What is a Data Race?
The Thread Analyzer detects data races that occur during the execution of a multithreaded
process. A data race occurs when all of the following are true:
■ Two or more threads in a single process access the same memory location concurrently
■ At least one of the accesses is for writing

1C H A P T E R 1
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■ The threads are not using any exclusive locks to control their accesses to that memory

When these three conditions hold, the order of accesses is non-deterministic, and the
computation may give different results from run to run depending on that order. Some data
races may be benign (for example, when the memory access is used for a busy-wait), but many
data races are bugs in the program.

The Thread Analyzer works on a multithreaded program written using the POSIX thread API,
Solaris thread API, OpenMP, or a mix of these.

1.1.2 What is a Deadlock?
Deadlock describes a condition in which two or more threads are blocked forever because they
are waiting for each other. There are many causes of deadlocks. The Thread Analyzer detects
deadlocks that are caused by the inappropriate use of mutual exclusion locks. This type of
deadlock is commonly encountered in multithreaded applications.

A process with two or more threads can deadlock when all of the following conditions are true:

■ Threads that are already holding locks request new locks
■ The requests for new locks are made concurrently
■ Two or more threads form a circular chain in which each thread waits for a lock which is

held by the next thread in the chain

Here is a simple example of a deadlock condition:

– Thread 1 holds lock A and requests lock B
– Thread 2 holds lock B and requests lock A

A deadlock can be of two types: A potential deadlock or an actual deadlock. A potential
deadlock does not necessarily occur in a given run, but can occur in any execution of the
program depending on the scheduling of threads and the timing of lock requests by the threads.
An actual deadlock is one that occurs during the execution of a program. An actual deadlock
causes the threads involved to hang, but may or may not cause the whole process to hang.

1.2 The Thread Analyzer Usage Model
The following steps show the process by which you can troubleshoot your multithreaded
program with the Thread Analyzer.

1. Instrument the program, if doing data race detection.
2. Create a data-race-detection or deadlock-detection experiment.
3. Examine the experiment result and establish whether or not the multithreaded

programming conflicts revealed by the Thread Analyzer are legitimate bugs or benign
phenomena.

1.2 The Thread Analyzer Usage Model
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4. Fix the legitimate bugs and create additional experiments (step 2 above) with varied factors
such as different input data, a different number of threads, varied loop schedules or even
different hardware. This repetition helps locate non-deterministic problems.

Steps 1 through 3 above are described in the following sections.

1.2.1 Usage Model for Detecting Data Races
You must perform three steps to detect data races:

1. Instrument the code to enable data race detection
2. Create an experiment on the instrumented code
3. Examine the experiment for data races

1.2.1.1 Instrument the Code for Data Race Detection
To enable data race detection in an application, the code must first be instrumented to monitor
memory accesses at runtime. You can instrument your code at the application source-level
during compilation, or at the application binary-level by running an additional tool on the
binary.

Source-level instrumentation is done by the compiler when you use a special option. You can
also specify the optimization level and other compiler options to use. Source-level
instrumentation can result in faster runtime since the compiler can do some analysis and
instrument fewer memory accesses.

Binary-level instrumentation is useful when the source code is not available. You might also use
binary instrumentation if you have the source code, but cannot compile shared libraries that are
used by the application. Binary instrumentation using the discover tool instruments the binary
as well as all shared libraries as they are opened.

Source-level Instrumentation

To instrument at the source level, compile the source code with the special compiler option:

-xinstrument=datarace

With this compiler option, the code generated by the compiler will be instrumented for data
race detection.

The -g compiler option should also be used when building application binaries. This option
causes extra data to be generated which allows the Thread Analyzer to display source code and
line number information when reporting data races.

1.2 The Thread Analyzer Usage Model
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Binary-level Instrumentation

To instrument at the binary level, you must use the discover tool. If the binary is named a.out,
you can create an instrumented binary a.outi by executing:

discover -i datarace -o a.outi a.out

The discover tool automatically instruments all shared libraries as they are opened, whether
they are statically linked in the program or opened dynamically by dlopen(). By default,
instrumented copies of libraries are cached in the directory $HOME/SUNW_Bit_Cache.

Some useful discover command line options are shown below. See the discover(1) man page
for details.

-o file Output the instrumented binary to the specified file name

-N lib Do not instrument the specified library

-T Do not instrument any libraries

-D dir Change the cache directory to dir

For instrumenting a program's binary code to detect data races, the discover tool requires the
input binary to be compiled under the following conditions:

■ Operating system version must be at least Oracle Solaris 10 Update 5 or Oracle Solaris 11.
■ Compiler must be from a release no earlier than Oracle Solaris Studio 12 Update 1.
■ One of the compiler optimization flags (-xO1, -xO2, -xO3, -xO4, -xO5) must be used.
■ The -g compiler option should also be used to enable the Thread Analyzer to display source

code and line number information when reporting data races.

You might also be able to use the discover tool on an earlier Solaris version running on a
SPARC-based system if the binary was compiled with the compiler option -xbinopt=prepare.
See the cc(1), CC(1), or f95(1) man pages for information about this compiler option.

1.2.1.2 Create an Experiment on the Instrumented Application
To create a data-race-detection experiment, use the collect command with the -r race flag to
run the application and collect experiment data during the execution of the process. When you
use the -r race option, the collected data includes pairs of data accesses that constitute a race.

1.2.1.3 Examine the Experiment for Data Races
You can examine the data-race-detection experiment with the tha command, which starts the
Thread Analyzer graphical user interface. You can also use the er_print command-line
interface.

1.2 The Thread Analyzer Usage Model
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1.2.2 Usage Model for Detecting Deadlocks
Two steps are involved in detecting deadlocks:

1. Create a deadlock detection experiment.
2. Examine the experiment for deadlocks.

1.2.2.1 Create an Experiment for Detecting Deadlocks
To create a deadlock-detection experiment, use the collect command with the -r deadlock
flag to run the application and collect experiment data during the execution of the process.
When you use the -r deadlock option, the collected data includes lock holds and lock requests
that form a circular chain.

1.2.2.2 Examine the Experiment for Deadlocks
You can examine the deadlock-detection experiment with the tha command, which starts the
Thread Analyzer graphical user interface. You can also use the er_print command-line
interface.

1.2.3 Usage Model for Detecting Data Races and Deadlocks
If you want to detect data races and deadlocks at the same time, follow the three steps in “1.2.1
Usage Model for Detecting Data Races” on page 13 for detecting data races, but use the collect
command with the -r race,deadlock flag to run the application. The experiment will contain
both race-detection and deadlock-detection data.

1.3 Thread Analyzer Interface
You can start the Thread Analyzer by using the tha command.

The Thread Analyzer interface is the Performance Analyzer interface that is streamlined for
multithreaded program analysis. Instead of the usual Performance Analyzer tabs, you see the
Races, Deadlocks, Dual Source, Race Details, and Deadlock Details tabs. If you use the
Performance Analyzer to look at multithreaded program experiments you see the traditional
Performance Analyzer tabs such as Functions, Callers-Callees, Disassembly, along with the tabs
for data races and deadlocks.

1.3 Thread Analyzer Interface
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The Data Race Tutorial

The following is a detailed tutorial on how to detect and fix data races with the Thread Analyzer.

The tutorial is divided into the following sections:

■ “2.1 Data Race Tutorial Source Files” on page 17
■ “2.2 How to Use the Thread Analyzer to Find Data Races” on page 21
■ “2.3 Understanding the Experiment Results” on page 25
■ “2.4 Diagnosing the Cause of a Data Race” on page 31
■ “2.5 False Positives” on page 35
■ “2.6 Benign Data Races” on page 37

2.1 Data Race Tutorial Source Files
This tutorial relies on two programs, both of which contain data races:

■ The first program finds prime numbers. It is written with C and is parallelized with OpenMP
directives. The source file is called prime_omp.c.

■ The second program also finds prime numbers and is also written with C. However, it is
parallelized with POSIX threads instead of OpenMP directives. The source file is called
prime_pthr.c.

2.1.1 Getting the Data Race Tutorial Source Files
You can download the source files used in this tutorial from the samples download area
(http://www.oracle.com/
technetwork/server-storage/solarisstudio/downloads/

solaris-studio-samples-1408618.html) of the Oracle Solaris Studio developer portal.

After you download and unpack the sample files, you can find the samples in the
SolarisStudioSampleApplications/ThreadAnalyzer directory. The samples are located in

2C H A P T E R 2
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the prime_omp and prime_pthr subdirectories. Each sample directory includes a Makefile and
a DEMO file of instructions, but this tutorial does not follow those instructions or use the
Makefile. Instead, you are instructed to execute commands individually.

To follow the tutorial, you can copy the prime_omp.c and prime_pthr.c files from the samples
directories to a different directory, or you can create your own files and copy the code from the
following code listings.

2.1.2 Source Code for prime_omp.c
The source code for prime_omp.c is shown below:

1 /*

2 * Copyright (c) 2006, 2010, Oracle and/or its affiliates. All Rights Reserved.

3 * @(#)prime_omp.c 1.3 (Oracle) 10/03/26

4 */

5

6 #include <stdio.h>

7 #include <math.h>

8 #include <omp.h>

9

10 #define THREADS 4

11 #define N 10000

12

13 int primes[N];

14 int pflag[N];

15

16 int is_prime(int v)

17 {

18 int i;

19 int bound = floor(sqrt(v)) + 1;

20

21 for (i = 2; i < bound; i++) {

22 /* no need to check against known composites */

23 if (!pflag[i])

24 continue;

25 if (v % i == 0) {

26 pflag[v] = 0;

27 return 0;

28 }

29 }

30 return (v > 1);

31 }

32

33 int main(int argn, char **argv)

34 {

35 int i;

36 int total = 0;

37

38 #ifdef _OPENMP

39 omp_set_dynamic(0);

40 omp_set_num_threads(THREADS);

41 #endif

42

2.1 Data Race Tutorial Source Files
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43 for (i = 0; i < N; i++) {

44 pflag[i] = 1;

45 }

46

47 #pragma omp parallel for

48 for (i = 2; i < N; i++) {

49 if ( is_prime(i) ) {

50 primes[total] = i;

51 total++;

52 }

53 }

54

55 printf("Number of prime numbers between 2 and %d: %d\n",
56 N, total);

57

58 return 0;

59 }

2.1.3 Source Code for prime_pthr.c
The source code for prime_pthr.c is shown below:

1 /*

2 * Copyright (c) 2006, 2010, Oracle and/or its affiliates. All Rights Reserved.

3 * @(#)prime_pthr.c 1.4 (Oracle) 10/03/26

4 */

5

6 #include <stdio.h>

7 #include <math.h>

8 #include <pthread.h>

9

10 #define THREADS 4

11 #define N 10000

12

13 int primes[N];

14 int pflag[N];

15 int total = 0;

16

17 int is_prime(int v)

18 {

19 int i;

20 int bound = floor(sqrt(v)) + 1;

21

22 for (i = 2; i < bound; i++) {

23 /* no need to check against known composites */

24 if (!pflag[i])

25 continue;

26 if (v % i == 0) {

27 pflag[v] = 0;

28 return 0;

29 }

30 }

31 return (v > 1);

32 }

33

34 void *work(void *arg)

2.1 Data Race Tutorial Source Files
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35 {

36 int start;

37 int end;

38 int i;

39

40 start = (N/THREADS) * (*(int *)arg);

41 end = start + N/THREADS;

42 for (i = start; i < end; i++) {

43 if ( is_prime(i) ) {

44 primes[total] = i;

45 total++;

46 }

47 }

48 return NULL;

49 }

50

51 int main(int argn, char **argv)

52 {

53 int i;

54 pthread_t tids[THREADS-1];

55

56 for (i = 0; i < N; i++) {

57 pflag[i] = 1;

58 }

59

60 for (i = 0; i < THREADS-1; i++) {

61 pthread_create(&tids[i], NULL, work, (void *)&i);

62 }

63

64 i = THREADS-1;

65 work((void *)&i);

66

67 for (i = 0; i < THREADS-1; i++) {

68 pthread_join(tids[i], NULL);

69 }

70

71 printf("Number of prime numbers between 2 and %d: %d\n",
72 N, total);

73

74 return 0;

75 }

2.1.3.1 Effect of Data Races in prime_omp.c and prime_pthr.c

The order of memory accesses is non-deterministic when code contains a race condition and
the computation gives different results from run to run. The correct answer in the prime_omp
and prime_pthr programs is 1229.

You can compile and run the examples so you can see that each execution of prime_omp or
prime_pthr produces incorrect and inconsistent results because of the data races in the code.

In the following example, type the commands in bold to compile and run the prime_omp
program:

% cc -xopenmp=noopt -o prime_omp prime_omp.c -lm

%

% ./prime_omp
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Number of prime numbers between 2 and 10000: 1229

% ./prime_omp

Number of prime numbers between 2 and 10000: 1228

% ./prime_omp

Number of prime numbers between 2 and 10000: 1180

In the following example, type the commands in bold to compile and run the prime_pthr
program:

% cc -mt -o prime_pthr prime_pthr.c -lm

%

% ./prime_pthr

Number of prime numbers between 2 and 10000: 1140

% ./prime_pthr

Number of prime numbers between 2 and 10000: 1122

% ./prime_pthr

Number of prime numbers between 2 and 10000: 1141

Notice the inconsistency of the results of the three runs of each program. You may need to run
the programs more than three times to see inconsistent results.

Next you instrument the code and create experiments so you can find where the data races are
occurring.

2.2 How to Use the Thread Analyzer to Find Data Races
The Thread Analyzer follows the same “collect-analyze” model that the Oracle Solaris Studio
Performance Analyzer uses.

There are three steps involved in using the Thread Analyzer:

1. “2.2.1 Instrument the Code” on page 21
2. “2.2.2 Create a Data Race Detection Experiment” on page 23
3. “2.2.3 Examine the Data Race Detection Experiment” on page 23

2.2.1 Instrument the Code
In order to enable data race detection in a program, the code must first be instrumented to
monitor memory accesses at runtime. The instrumentation can be done on application source
code, or on application binaries that have been compiled with certain Oracle compiler
optimization flags. The tutorial shows how to use both methods of instrumenting the programs.

2.2.1.1 To Instrument Source Code
To instrument the source code, you must compile the application with the special compiler
option -xinstrument=datarace. This option instructs the compiler to instrument the
generated code for data race detection.
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Add the -xinstrument=datarace compiler option to the existing set of options you use to
compile your program.

Note – Be sure to also specify the -g option when you compile your program with
-xinstrument=datarace to generate additional information to enable the Analyzer's full
capabilities. Do not specify a high level of optimization when compiling your program for race
detection. Compile an OpenMP program with -xopenmp=noopt. The information reported,
such as line numbers and call stacks, may be incorrect when a high optimization level is used.

You can use the following commands for instrumenting the source code for the tutorial:

% cc -xinstrument=datarace -g -xopenmp=noopt -o prime_omp_inst prime_omp.c -lm

% cc -xinstrument=datarace -g -o prime_pthr_inst prime_pthr.c -lm

Notice that in the example, the output file is specified with _inst at the end so that you can tell
that the binary is the instrumented binary. This is not required.

2.2.1.2 To Instrument Binary Code
To instrument a program's binary code instead of the source code, you need to use the
discover tool, which is included in Oracle Solaris Studio and is documented in the
discover(1) man page and Oracle Solaris Studio 12.3: Discover and Uncover User’s Guide.

See “Binary-level Instrumentation” on page 14 for more information about requirements for
binary instrumentation.

For the tutorial examples, type the following command to compile the code with optimization
level 3 to create binaries that can be used by discover.

% cc -xopenmp=noopt -g -o prime_omp_opt prime_omp.c -lm

% cc -g -O3 -o prime_pthr_opt prime_pthr.c -lm

Then run discover on the prime_omp_opt and prime_pthr_opt optimized binaries that you
created:

% discover -i datarace -o prime_omp_disc prime_omp_opt

% discover -i datarace -o prime_pthr_disc prime_pthr_opt

These commands create instrumented binaries, prime_omp_disc and prime_pthr_disc that
you can use with collect to create experiments that you can examine with the Thread
Analyzer.
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2.2.2 Create a Data Race Detection Experiment
Use the collect command with the -r race flag to run the program and create a data race
detection experiment during the execution of the process. For OpenMP programs, make sure
that the number of threads used is larger than one. In the tutorial samples, four threads are used.

To create experiments from the binaries that you created by instrumenting the source code:

% collect -r race -o prime_omp_inst.er prime_omp_inst

% collect -r race -o prime_pthr_inst.er prime_pthr_inst

To create experiments from the binaries that you created by using the discover tool:

% collect -r race -o prime_omp_disc.er prime_omp_disc

% collect -r race -o prime_pthr_disc.er prime_pthr_disc

To increase the likelihood of detecting data races, it is recommended that you create several
data race detection experiments using collect with the -r race flag. Use a different number of
threads and different input data for each experiment.

For example, in prime_omp.c, the number of threads is set by the following line:

#define THREADS 4

The number of threads can be changed by changing 4 in the above to some other integer larger
than 1, for example 8.

The following line in prime_omp.c limits the program to look for prime numbers between 2 and
3000:

#define N 3000

You can provide different input data by changing the value of N to make the program do more
or less work.

2.2.3 Examine the Data Race Detection Experiment
You can examine a data race detection experiment with the Thread Analyzer, the Performance
Analyzer, or the er_print utility. Both the Thread Analyzer and the Performance Analyzer
present a GUI interface; the Thread Analyzer presents a simplified set of default tabs, but is
otherwise identical to the Performance Analyzer.
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2.2.3.1 Using Thread Analyzer to View the Data Race Experiment
To start the Thread Analyzer, type the following command:

% tha

The Thread Analyzer GUI has a menu bar, a tool bar, and a split pane that contains tabs for the
various displays.

On the left-hand pane, the following three tabs are shown by default:

■ The Races tab shows a list of data races detected in the program, and associated call stack
traces. This tab is selected by default.

■ The Dual Source tab shows the two source locations corresponding to the two accesses of a
selected data race. The source line where a data race access occurred is highlighted.

■ The Experiments tab shows the load objects in the experiment, and lists error and warning
messages.

On the right-hand pane of the Thread Analyzer display, the following two tabs are shown:

■ The Summary tab shows summary information about a data race access selected from the
Races tab.

■ The Race Details tab shows detailed information about a data race or call stack trace selected
from the Races tab.

2.2.3.2 Using er_print to View the Data Race Experiment
The er_print utility presents a command-line interface. You can use the er_print utility in an
interactive session and specify sub-commands during the session. You can also use
command-line options to specify sub-commands non-interactively.

The following sub-commands are useful for examining races with the er_print utility:

■ -races

This reports any data races revealed in the experiment. Specify races at the (er_print)
prompt or -races on the er_print command line.

■ -rdetail race_id
This displays detailed information about the data race with the specified race_id. Specify
rdetail at the (er_print) prompt or -rdetail on the er_print command line. If the
specified race_id is all, then detailed information about all data races will be displayed.
Otherwise, specify a single race number such as 1 for the first data race.

■ -header

This displays descriptive information about the experiment, and reports any errors or
warnings. Specify header at the (er_print) prompt or -header on the command line.
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Refer to the collect(1), tha(1), analyzer(1), and er_print(1) man pages for more
information.

2.3 Understanding the Experiment Results
This section shows how to use both the er_print command line and the Thread Analyzer GUI
to display the following information about each detected data race:

■ The unique ID of the data race.
■ The virtual address, Vaddr, associated with the data race. If there is more than one virtual

address, then the label Multiple Addresses is displayed in parentheses.
■ The memory accesses to the virtual address, Vaddr by two different threads. The type of the

access (read or write) is shown, as well as the function, offset, and line number in the source
code where the access occurred.

■ The total number of call stack traces associated with the data race. Each trace refers to the
pair of thread call stacks at the time the two data race accesses occurred. If you are using the
GUI, the two call stacks are displayed in the Race Details tab when an individual call stack
trace is selected. If you are using the er_print utility, the two call stacks will be displayed by
the rdetail command.

2.3.1 Data Races in prime_omp.c

To examine data races in prime_omp.c, you can use one of the experiments you created in “2.2.2
Create a Data Race Detection Experiment” on page 23.

To show the data race information in the prime_omp_instr.er experiment with er_print, type
the following command.

% er_print prime_omp_inst.er

At the (er_print) prompt, type races to see output similar to the following:

(er_print)races

Total Races: 2 Experiment: prime_omp_inst.er

Race #1, Vaddr: 0x21ca8

Access 1: Write, is_prime,

line 26 in "prime_omp.c"
Access 2: Read, is_prime,

line 23 in "prime_omp.c"
Total Callstack Traces: 1

Race #2, Vaddr: (Multiple Addresses)

Access 1: Write, main,
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line 50 in "prime_omp.c"
Access 2: Write, main,

line 50 in "prime_omp.c"
Total Callstack Traces: 2

(er_print)

Two data races occurred during this particular run of the program.

To open the prime_omp_inst.er experiment in the Thread Analyzer, type the following
command:

% tha prime_omp_inst.er

The following screen shot shows the races that were detected in prime_omp.c as displayed by
the Thread Analyzer.

Two data races are shown in prime_omp.c:

■ Race #1 shows a race between a write in the function is_prime on line 26 and a read in the
same function on line 23. If you look at the source code you can see that on these lines, the
pflag[ ] array is being accessed. In the Thread Analyzer, you can click the Dual Source tab
to easily see the source code at both line numbers along with metrics showing the number of
race accesses on the affected lines of code.

■ Race #2 shows a race between two writes to line 50 of the main function. Click the Dual
Source tab to see that there are multiple attempts to access the value of the primes [ ] array
in line 50.
Race #2 represents a group of data races that occur in different elements of the array
primes[ ]. This is indicated by the Vaddr specified as Multiple Addresses.

FIGURE 2–1 Data Races Detected in prime_omp.c
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The Dual Source tab in the Thread Analyzer allows you to see the two source locations
associated with a data race at the same time. For example, select Race #2 for prime_pthr.c in
the Races tab and then click on the Dual Source tab. You will see something similar to the
following.

Tip – You might need to drag the mouse on the header of each source panel to see the Race
Accesses metrics in the left margin of the Dual Source tab.

2.3.2 Data Races in prime_pthr.c

To examine data races in prime_pthr.c, you can use one of the experiments you created in
“2.2.2 Create a Data Race Detection Experiment” on page 23.

To show the data race information in the prime_pthr_instr.er experiment with er_print,
type the following command:

% er_print prime_pthr_inst.er

At the (er_print) prompt, type races to see output similar to the following:

(er_print) races

Total Races: 4 Experiment: prime_pthr_inst.er

FIGURE 2–2 Source Code of Data Races Detected in prime_omp.c
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Race #1, Vaddr: (Multiple Addresses)

Access 1: Write, is_prime + 0x00000270,

line 27 in "prime_pthr.c"
Access 2: Write, is_prime + 0x00000270,

line 27 in "prime_pthr.c"
Total Callstack Traces: 2

Race #2, Vaddr: 0xffbfe714

Access 1: Write, main + 0x0000025C,

line 60 in "prime_pthr.c"
Access 2: Read, work + 0x00000070,

line 40 in "prime_pthr.c"
Total Callstack Traces: 1

Race #3, Vaddr: (Multiple Addresses)

Access 1: Write, work + 0x00000150,

line 44 in "prime_pthr.c"
Access 2: Write, work + 0x00000150,

line 44 in "prime_pthr.c"
Total Callstack Traces: 2

Race #4, Vaddr: 0x21a90

Access 1: Write, work + 0x00000198,

line 45 in "prime_pthr.c"
Access 2: Write, work + 0x00000198,

line 45 in "prime_pthr.c"
Total Callstack Traces: 2

(er_print)

Four data races occurred during this particular run of the program.

To open the prime_pthr_inst.er experiment in the Thread Analyzer, type the following
command:

% tha prime_pthr_inst.er

The following screen shot shows the races detected in prime_pthr.c as displayed by the Thread
Analyzer. Notice that they are the same as the races shown by er_print.

2.3 Understanding the Experiment Results

Oracle Solaris Studio 12.3: Thread Analyzer User's Guide • December 201128



Four data races are shown in prime_pthr.c:

■ Race #1 is a data race between a write to the pflag[ ] array in function is_prime on line 27
and another write to pflag[ ] on the same line.

■ Race #2 is a data race between a write on line 60 to the memory location named i in main()

and a read on line 40 from the same memory location (named *arg in work()).
■ Race #3 is a data race between a write to primes[total] on line 44 and another write to

primes[total] the same line.
■ Race #4 is a data race between a write to total on line 45 and another write to total on the

same line.

If you select Race #2 and then click the Dual Source tab, you see the two source locations,
similar to the following screen shot.

FIGURE 2–3 Data Races Detected in prime_pthr.c
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The first access for Race #2 is at line 60 and is shown in the top panel. The second access is at line
40 and is shown in the bottom panel. The Race Accesses metric is highlighted at the left of the
source code. This metric gives a count of the number of times a data race access was reported on
that line.

2.3.3 Call Stack Traces of Data Races
Each data race listed in the Races tab of the Thread Analyzer also has one or more associated
Call Stack Traces. The call stacks show the execution paths through the code that lead to a data
race. When you click a Call Stack Trace, the Race Details tab in the right panel shows the
function calls that lead to the data race.

FIGURE 2–4 Source Code Details of a Data Race
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2.4 Diagnosing the Cause of a Data Race
This section provides a basic strategy to diagnosing the cause of data races.

2.4.1 Check Whether or Not the Data Race is a False Positive
A false positive data race is a data race that is reported by the Thread Analyzer, but has actually
not occurred. The Thread Analyzer tries to reduce the number of false positives reported.
However, there are cases where the tool is not able to do a precise job and may report false
positive data races.

You can ignore a false positive data race because it is not a genuine data race and, therefore,
does not affect the behavior of the program.

See “2.5 False Positives” on page 35 for some examples of false positive data races. For
information on how to remove false positive data races from the report, see “A.1 Thread
Analyzer User APIs” on page 67.

2.4.2 Check Whether or Not the Data Race is Benign
A benign data race is an intentional data race whose existence does not affect the correctness of
the program.

Some multithreaded applications intentionally use code that may cause data races. Since the
data races are there by design, no fix is required. In some cases, however, it is quite tricky to get
such codes to run correctly. These data races should be reviewed carefully.

FIGURE 2–5 Races Tab with Call Stack Traces for prime_omp.c
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See “2.5 False Positives” on page 35 for more detailed information about benign races.

2.4.3 Fix the Bug, Not the Data Race
The Thread Analyzer can help find data races in the program, but it cannot automatically find
bugs in the program nor suggest ways to fix the data races found. A data race may have been
introduced by a bug. It is important to find and fix the bug. Merely removing the data race is not
the right approach, and could make further debugging even more difficult.

2.4.3.1 Fixing Bugs in prime_omp.c

Here's how to fix the bug in prime_omp.c. See “2.1.2 Source Code for prime_omp.c” on page 18
for a complete file listing.

Move lines 50 and 51 into a critical section in order to remove the data race on elements of
the array primes[ ].

47 #pragma omp parallel for

48 for (i = 2; i < N; i++) {

49 if ( is_prime(i) ) {

#pragma omp critical

{

50 primes[total] = i;

51 total++;

}

52 }

53 }

You could also move lines 50 and 51 into two critical sections as follows, but this change fails
to correct the program:

47 #pragma omp parallel for

48 for (i = 2; i < N; i++) {

49 if ( is_prime(i) ) {

#pragma omp critical

{

50 primes[total] = i;

}

#pragma omp critical

{

51 total++;

}

52 }

53 }

The critical sections around lines 50 and 51 get rid of the data race because the threads are using
exclusive locks to control their accesses to the primes[ ] array. However, the program is still
incorrect. Two threads might update the same element of primes[ ] using the same value of
total, and some elements of primes[ ] may not be assigned a value at all.
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The second data race, between a read from pflag[ ] from line 23 and a write to pflag[ ] from
line 26, is actually a benign race because it does not lead to incorrect results. It is not essential to
fix benign data races.

2.4.3.2 Fixing Bugs in prime_pthr.c

Here's how to fix the bug in prime_pthr.c. See “2.1.3 Source Code for prime_pthr.c” on
page 19 for a complete file listing.

Use a single mutex to remove the data race on prime[ ] at line 44, as well as the data race on
total at line 45.

The data race between the write to i on line 60 and the read from the same memory location
(named *arg) on line 40, as well as the data race on pflag[ ] on line 27, reveal a problem in the
shared access to the variable i by different threads. The initial thread in prime_pthr.c creates
the child threads in a loop in lines 60-62, and dispatches them to work on the function work().
The loop index i is passed to work() by address. Since all threads access the same memory
location for i, the value of i for each thread will not remain unique, but will change as the initial
thread increments the loop index. As different threads use the same value of i, the data races
occur. One way to fix the problem is to pass i to work() by value, instead of by address.

Here is the corrected version of prime_pthr.c:

1 /*

2 * Copyright (c) 2006, 2010, Oracle and/or its affiliates. All Rights Reserved.

3 * @(#)prime_pthr_fixed.c 1.3 (Oracle) 10/03/26

4 */

5

6 #include <stdio.h>

7 #include <math.h>

8 #include <pthread.h>

9

10 #define THREADS 4

11 #define N 10000

12

13 int primes[N];

14 int pflag[N];

15 int total = 0;

16 pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

17

18 int is_prime(int v)

19 {

20 int i;

21 int bound = floor(sqrt(v)) + 1;

22

23 for (i = 2; i < bound; i++) {

24 /* no need to check against known composites */

25 if (!pflag[i])

26 continue;

27 if (v % i == 0) {

28 pflag[v] = 0;

29 return 0;
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30 }

31 }

32 return (v > 1);

33 }

34

35 void *work(void *arg)

36 {

37 int start;

38 int end;

39 int i;

40

41 start = (N/THREADS) * ((int)arg) ;

42 end = start + N/THREADS;

43 for (i = start; i < end; i++) {

44 if ( is_prime(i) ) {

45 pthread_mutex_lock(&mutex);

46 primes[total] = i;

47 total++;

48 pthread_mutex_unlock(&mutex);

49 }

50 }

51 return NULL;

52 }

53

54 int main(int argn, char **argv)

55 {

56 int i;

57 pthread_t tids[THREADS-1];

58

59 for (i = 0; i < N; i++) {

60 pflag[i] = 1;

61 }

62

63 for (i = 0; i < THREADS-1; i++) {

64 pthread_create(&tids[i], NULL, work, (void *)i);

65 }

66

67 i = THREADS-1;

68 work((void *)i);

69

70 for (i = 0; i < THREADS-1; i++) {

71 pthread_join(tids[i], NULL);

72 }

73

74 printf("Number of prime numbers between 2 and %d: %d\n",
75 N, total);

76

77 return 0;

78 }
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2.5 False Positives
Occasionally, the Thread Analyzer may report data races that have not actually occurred in the
program. These are called false positives. In most cases, false positives are caused by
user-defined synchronizations or by memory that is recycled by different threads. For more
information, see “2.5.1 User-Defined Synchronizations” on page 35 and “2.5.2 Memory That is
Recycled by Different Threads” on page 36.

2.5.1 User-Defined Synchronizations
The Thread Analyzer can recognize most standard synchronization APIs and constructs
provided by OpenMP, POSIX threads, and Solaris threads. However, the tool cannot recognize
user-defined synchronizations, and may report false data races if your code contains such
synchronizations.

Note – In order to avoid reporting this kind of false positive data race, the Thread Analyzer
provides a set of APIs that can be used to notify the tool when user-defined synchronizations are
performed. See “A.1 Thread Analyzer User APIs” on page 67 for more information.

To illustrate why you might need to use the APIs, consider the following. The Thread Analyzer
cannot recognize implementation of locks using CAS instructions, post and wait operations
using busy-waits, and so on. Here is a typical example of a class of false positives where the
program employs a common way of using POSIX thread condition variables:

/* Initially ready_flag is 0 */

/* Thread 1: Producer */

100 data = ...

101 pthread_mutex_lock (&mutex);

102 ready_flag = 1;

103 pthread_cond_signal (&cond);

104 pthread_mutex_unlock (&mutex);

...

/* Thread 2: Consumer */

200 pthread_mutex_lock (&mutex);

201 while (!ready_flag) {

202 pthread_cond_wait (&cond, &mutex);

203 }

204 pthread_mutex_unlock (&mutex);

205 ... = data;

The pthread_cond_wait() call is usually made within a loop that tests the predicate to protect
against program errors and spurious wake-ups. The test and set of the predicate is often
protected by a mutex lock. In the above code, Thread 1 produces the value for the variable data
at line 100, sets the value of ready_flag to one at line 102 to indicate that the data has been
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produced, and then calls pthread_cond_signal() to wake up the consumer thread, Thread 2.
Thread 2 tests the predicate (!ready_flag) in a loop. When it finds that the flag is set, it consumes
the data at line 205.

The write of ready_flag at line 102 and read of ready_flag at line 201 are protected by the
same mutex lock, so there is no data race between the two accesses and the tool recognizes that
correctly.

The write of data at line 100 and the read of data at line 205 are not protected by mutex locks.
However, in the program logic, the read at line 205 always happens after the write at line 100
because of the flag variable ready_flag. Consequently, there is no data race between these two
accesses to data. However, the tool reports that there is a data race between the two accesses if
the call to pthread_cond_wait() (line 202) is actually not called at run time. If line 102 is
executed before line 201 is ever executed, then when line 201 is executed, the loop entry test fails
and line 202 is skipped. The tool monitors pthread_cond_signal() calls and
pthread_cond_wait() calls and can pair them to derive synchronization. When the
pthread_cond_wait() at line 202 is not called, the tool does not know that the write at line 100
is always executed before the read at line 205. Therefore, it considers them as executed
concurrently and reports a data race between them.

The libtha(3C) man page and “A.1 Thread Analyzer User APIs” on page 67 explain how to
use the APIs to avoid reports of this kind of false positive data race.

2.5.2 Memory That is Recycled by Different Threads
Some memory management routines recycle memory that is freed by one thread for use by
another thread. The Thread Analyzer is sometimes not able to recognize that the life span of the
same memory location used by different threads do not overlap. When this happens, the tool
may report a false positive data race. The following example illustrates this kind of false positive.

/*----------*/ /*----------*/

/* Thread 1 */ /* Thread 2 */

/*----------*/ /*----------*/

ptr1 = mymalloc(sizeof(data_t));

ptr1->data = ...

...

myfree(ptr1);

ptr2 = mymalloc(sizeof(data_t));

ptr2->data = ...

...

myfree(ptr2);

Thread 1 and Thread 2 execute concurrently. Each thread allocates a chunk of memory that is
used as its private memory. The routine mymalloc() may supply the memory freed by a
previous call to myfree(). If Thread 2 calls mymalloc() before Thread 1 calls myfree(), then
ptr1 and ptr2 get different values and there is no data race between the two threads. However,

2.5 False Positives

Oracle Solaris Studio 12.3: Thread Analyzer User's Guide • December 201136



if Thread 2 calls mymalloc() after Thread 1 calls myfree(), then ptr1 and ptr2 may have the
same value. There is no data race because Thread 1 no longer accesses that memory. However, if
the tool does not know mymalloc() is recycling memory, it reports a data race between the write
of ptr1 data and the write of ptr2 data. This kind of false positive often happens in C++
applications when the C++ runtime library recycles memory for temporary variables. It also
often happens in user applications that implement their own memory management routines.
Currently, the Thread Analyzer is able to recognize memory allocation and free operations
performed with the standard malloc(), calloc(), and realloc() interfaces.

2.6 Benign Data Races
Some multithreaded applications intentionally allow data races in order to get better
performance. A benign data race is an intentional data race whose existence does not affect the
correctness of the program. The following examples demonstrate benign data races.

Note – In addition to benign data races, a large class of applications allow data races because they
rely on lock-free and wait-free algorithms which are difficult to design correctly. The Thread
Analyzer can help determine the locations of data races in these applications.

2.6.1 A Program for Finding Primes
The threads in prime_omp.c check whether an integer is a prime number by executing the
function is_prime().

16 int is_prime(int v)

17 {

18 int i;

19 int bound = floor(sqrt(v)) + 1;

20

21 for (i = 2; i < bound; i++) {

22 /* no need to check against known composites */

23 if (!pflag[i])

24 continue;

25 if (v % i == 0) {

26 pflag[v] = 0;

27 return 0;

28 }

29 }

30 return (v > 1);

31 }

The Thread Analyzer reports that there is a data race between the write to pflag[ ] on line 26
and the read of pflag[ ] on line 23. However, this data race is benign as it does not affect the
correctness of the final result. At line 23, a thread checks whether or not pflag[i], for a given
value of i is equal to zero. If pflag[i] is equal to zero, that means that i is a known composite
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number (in other words, i is known to be non-prime). Consequently, there is no need to check
whether or not v is divisible by i; you only need to check whether or not v is divisible by some
prime number. Therefore, if pflag[i] is equal to zero, the thread continues to the next value of
i. If pflag[i] is not equal to zero and v is divisible by i, the thread assigns zero to pflag[v] to
indicate that v is not a prime number.

It does not matter, from a correctness point of view, if multiple threads check the same
pflag[ ] element and write to it concurrently. The initial value of a pflag[ ] element is one.
When the threads update that element, they assign it the value zero. That is, the threads store
zero in the same bit in the same byte of memory for that element. On current architectures, it is
safe to assume that those stores are atomic. This means that, when that element is read by a
thread, the value read is either one or zero. If a thread checks a given pflag[ ] element (line 23)
before it has been assigned the value zero, it then executes lines 25–28. If, in the meantime,
another thread assigns zero to that same pflag[ ] element (line 26), the final result is not
changed. Essentially, this means that the first thread executed lines 25–28 unnecessarily, but the
final result is the same.

2.6.2 A Program that Verifies Array-Value Types
A group of threads call check_bad_array() concurrently to check whether any element of
array data_array is “bad”. Each thread checks a different section of the array. If a thread finds
that an element is bad, it sets the value of a global shared variable is_bad to true.

20 volatile int is_bad = 0;

...

100 /*

101 * Each thread checks its assigned portion of data_array, and sets

102 * the global flag is_bad to 1 once it finds a bad data element.

103 */

104 void check_bad_array(volatile data_t *data_array, unsigned int thread_id)

105 {

106 int i;

107 for (i=my_start(thread_id); i<my_end(thread_id); i++) {

108 if (is_bad)

109 return;

110 else {

111 if (is_bad_element(data_array[i])) {

112 is_bad = 1;

113 return;

114 }

115 }

116 }

117 }

There is a data race between the read of is_bad on line 108 and the write to is_bad on line 112.
However, the data race does not affect the correctness of the final result.

The initial value of is_bad is zero. When the threads update is_bad, they assign it the value
one. That is, the threads store one in the same bit in the same byte of memory for is_bad. On
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current architectures, it is safe to assume that those stores are atomic. Therefore, when is_bad

is read by a thread, the value read will either be zero or one. If a thread checks is_bad (line 108)
before it has been assigned the value one, then it continues executing the for loop. If, in the
meantime, another thread has assigned the value one to is_bad (line 112), that does not change
the final result. It just means that the thread executed the for loop longer than necessary.

2.6.3 A Program Using Double-Checked Locking
A singleton ensures that only one object of a certain type exists throughout the program.
Double-checked locking is a common, efficient way to initialize a singleton in multithreaded
applications. The following code illustrates such an implementation.

100 class Singleton {

101 public:

102 static Singleton* instance();

103 ...

104 private:

105 static Singleton* ptr_instance;

106 };

107

108 Singleton* Singleton::ptr_instance = 0;

...

200 Singleton* Singleton::instance() {

201 Singleton *tmp;

202 if (ptr_instance == 0) {

203 Lock();

204 if (ptr_instance == 0) {

205 tmp = new Singleton;

206

207 /* Make sure that all writes used to construct new

208 Singleton have been completed. */

209 memory_barrier();

210

211 /* Update ptr_instance to point to new Singleton. */

212 ptr_instance = tmp;

213

214 }

215 Unlock();

216 }

217 return ptr_instance;

The read of ptr_instance on line 202 is intentionally not protected by a lock. This makes the
check to determine whether or not the Singleton has already been instantiated in a
multithreaded environment more efficient. Notice that there is a data race on variable
ptr_instance between the read on line 202 and the write on line 212, but the program works
correctly. However, writing a correct program that allows data races requires extra care. For
example, in the above double-checked-locking code, the call to memory_barrier() at line 209 is
used to ensure that ptr_instance is not seen to be non-null by the threads until all writes to
construct the Singleton have been completed.
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The Deadlock Tutorial

This tutorial explains how to use the Thread Analyzer to detect potential deadlocks and actual
deadlocks in your multithreaded program.

The tutorial covers the following topics:

■ “3.1 About Deadlocks” on page 41
■ “3.2 Getting the Deadlock Tutorial Source Files” on page 42
■ “3.3 The Dining Philosophers Scenario” on page 45
■ “3.4 How to Use the Thread Analyzer to Find Deadlocks” on page 48
■ “3.5 Understanding the Deadlock Experiment Results” on page 51
■ “3.6 Fixing the Deadlocks and Understanding False Positives” on page 56

3.1 About Deadlocks
The term deadlock describes a condition in which two or more threads are blocked forever
because they are waiting for each other. There are many causes of deadlocks such as erroneous
program logic and inappropriate use of synchronizations such as locks and barriers. This
tutorial focuses on deadlocks that are caused by the inappropriate use of mutexes, or mutual
exclusion locks. This type of deadlock is commonly encountered in multithreaded applications.

A process with two or more threads can enter deadlock when the following three conditions
hold:

■ Threads that are already holding locks request new locks
■ The requests for new locks are made concurrently
■ Two or more threads form a circular chain in which each thread waits for a lock which is

held by the next thread in the chain
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Here is a simple example of a deadlock condition:

– Thread 1 holds lock A and requests lock B
– Thread 2 holds lock B and requests lock A

A deadlock can be of two types: A potential deadlock or an actual deadlock and they are
distinguished as follows:

■ A potential deadlock does not necessarily occur in a given run, but can occur in any
execution of the program depending on the scheduling of threads and the timing of lock
requests by the threads.

■ An actual deadlock is one that occurs during the execution of a program. An actual deadlock
causes the threads involved to hang, but may or may not cause the whole process to hang.

3.2 Getting the Deadlock Tutorial Source Files
You can download the source files used in this tutorial from the samples download area
(http://www.oracle.com/
technetwork/server-storage/solarisstudio/downloads/

solaris-studio-samples-1408618.html) of the Oracle Solaris Studio developer portal.

After you download and unpack the sample files, you can find the samples in the
SolarisStudioSampleApplications/ThreadAnalyzer directory. The samples are located in
the din_philo subdirectory. The din_philo directory includes a Makefile and a DEMO file of
instructions, but this tutorial does not follow those instructions or use the Makefile. Instead,
you are instructed to execute commands individually.

To follow the tutorial, you can copy the din_philo.c file from the
SolarisStudioSampleApplications/ThreadAnalyzer/din_philo directory to a different
directory, or you can create your own file and copy the code from the following code listing.

The din_philo.c sample program which simulates the dining-philosophers problem is a C
program that uses POSIX threads. The program can exhibit both potential and actual
deadlocks.

3.2.1 Source Code Listing for din_philo.c
The source code for din_philo.c is shown below:

1 /*

2 * Copyright (c) 2006, 2010, Oracle and/or its affiliates. All Rights Reserved.

3 * @(#)din_philo.c 1.4 (Oracle) 10/03/26

4 */

5

6 #include <pthread.h>
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7 #include <stdio.h>

8 #include <unistd.h>

9 #include <stdlib.h>

10 #include <errno.h>

11 #include <assert.h>

12

13 #define PHILOS 5

14 #define DELAY 5000

15 #define FOOD 100

16

17 void *philosopher (void *id);

18 void grab_chopstick (int,

19 int,

20 char *);

21 void down_chopsticks (int,

22 int);

23 int food_on_table ();

24

25 pthread_mutex_t chopstick[PHILOS];

26 pthread_t philo[PHILOS];

27 pthread_mutex_t food_lock;

28 int sleep_seconds = 0;

29

30

31 int

32 main (int argn,

33 char **argv)

34 {

35 int i;

36

37 if (argn == 2)

38 sleep_seconds = atoi (argv[1]);

39

40 pthread_mutex_init (&food_lock, NULL);

41 for (i = 0; i < PHILOS; i++)

42 pthread_mutex_init (&chopstick[i], NULL);

43 for (i = 0; i < PHILOS; i++)

44 pthread_create (&philo[i], NULL, philosopher, (void *)i);

45 for (i = 0; i < PHILOS; i++)

46 pthread_join (philo[i], NULL);

47 return 0;

48 }

49

50 void *

51 philosopher (void *num)

52 {

53 int id;

54 int i, left_chopstick, right_chopstick, f;

55

56 id = (int)num;

57 printf ("Philosopher %d is done thinking and now ready to eat.\n", id);

58 right_chopstick = id;

59 left_chopstick = id + 1;

60

61 /* Wrap around the chopsticks. */

62 if (left_chopstick == PHILOS)

63 left_chopstick = 0;

64

65 while (f = food_on_table ()) {
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66

67 /* Thanks to philosophers #1 who would like to take a nap

68 * before picking up the chopsticks, the other philosophers

69 * may be able to eat their dishes and not deadlock.

70 */

71 if (id == 1)

72 sleep (sleep_seconds);

73

74 grab_chopstick (id, right_chopstick, "right ");
75 grab_chopstick (id, left_chopstick, "left");
76

77 printf ("Philosopher %d: eating.\n", id);

78 usleep (DELAY * (FOOD - f + 1));

79 down_chopsticks (left_chopstick, right_chopstick);

80 }

81

82 printf ("Philosopher %d is done eating.\n", id);

83 return (NULL);

84 }

85

86 int

87 food_on_table ()

88 {

89 static int food = FOOD;

90 int myfood;

91

92 pthread_mutex_lock (&food_lock);

93 if (food > 0) {

94 food--;

95 }

96 myfood = food;

97 pthread_mutex_unlock (&food_lock);

98 return myfood;

99 }

100

101 void

102 grab_chopstick (int phil,

103 int c,

104 char *hand)

105 {

106 pthread_mutex_lock (&chopstick[c]);

107 printf ("Philosopher %d: got %s chopstick %d\n", phil, hand, c);

108 }

109

110 void

111 down_chopsticks (int c1,

112 int c2)

113 {

114 pthread_mutex_unlock (&chopstick[c1]);

115 pthread_mutex_unlock (&chopstick[c2]);

116 }
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3.3 The Dining Philosophers Scenario
The dining philosophers scenario is a classic which is structured as follows. Five philosophers,
numbered zero to four, are sitting at a round table, thinking. As time passes, different
individuals become hungry and decide to eat. There is a platter of noodles on the table but each
philosopher only has one chopstick to use. In order to eat, they must share chopsticks. The
chopstick to the right of each philosopher (as they sit facing the table) has the same number as
that philosopher.

Each philosopher first reaches for his own chopstick which is the one with his number. When
he has his assigned chopstick, he reaches for the chopstick assigned to his neighbor. After he has
both chopsticks, he can eat. After eating, he returns the chopsticks to their original positions on
the table, one on either side. The process is repeated until there are no more noodles.

3.3.1 How the Philosophers Can Deadlock
An actual deadlock occurs when every philosopher is holding his own chopstick and waiting for
the one from his neighbor to become available:

– Philosopher 0 is holding chopstick 0, but is waiting for chopstick 1
– Philosopher 1 is holding chopstick 1, but is waiting for chopstick 2
– Philosopher 2 is holding chopstick 2, but is waiting for chopstick 3
– Philosopher 3 is holding chopstick 3, but is waiting for chopstick 4

FIGURE 3–1 Dining Philosophers
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– Philosopher 4 is holding chopstick 4, but is waiting for chopstick 0

In this situation, nobody can eat and the philosophers are in a deadlock. Run the program a
number of times. You will see that the program might hang sometimes, and run to completion
at other times. The program might hang as shown in the following sample run:

prompt% cc din_philo.c

prompt% a.out

Philosopher 0 is done thinking and now ready to eat.

Philosopher 2 is done thinking and now ready to eat.

Philosopher 2: got right chopstick 2

Philosopher 2: got left chopstick 3

Philosopher 0: got right chopstick 0

Philosopher 0: got left chopstick 1

Philosopher 0: eating.

Philosopher 4 is done thinking and now ready to eat.

Philosopher 4: got right chopstick 4

Philosopher 2: eating.

Philosopher 3 is done thinking and now ready to eat.

Philosopher 1 is done thinking and now ready to eat.

Philosopher 0: got right chopstick 0

Philosopher 3: got right chopstick 3

Philosopher 2: got right chopstick 2

Philosopher 1: got right chopstick 1

(hang)

Execution terminated by pressing CTRL-C

3.3.2 Introducing a Sleep Time for Philosopher 1
One way to avoid deadlocks is for Philosopher 1 to wait before reaching for his chopstick. In
terms of the code, he can be put to sleep for a specified amount of time (sleep_seconds) before
reaching for his chopstick. If he sleeps long enough, then the program may finish without any
actual deadlock. You can specify the number of seconds he sleeps as an argument to the
executable. If you do not specify an argument, the philosopher does not sleep.

The following pseudo-code shows the logic for each philosopher:

while (there is still food on the table)

{

if (sleep argument is specified and I am philosopher #1)

{

sleep specified amount of time

}

grab right fork

grab left fork

eat some food

put down left fork

put down right fork

}
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The following listing shows one run of the program in which Philosopher 1 waits 30 seconds
before reaching for his chopstick. The program runs to completion and all five philosophers
finish eating.

% a.out 30

Philosopher 0 is done thinking and now ready to eat.

Philosopher 0: got right chopstick 0

Philosopher 0: got left chopstick 1

Philosopher 4 is done thinking and now ready to eat.

Philosopher 4: got right chopstick 4

Philosopher 3 is done thinking and now ready to eat.

Philosopher 3: got right chopstick 3

Philosopher 0: eating.

Philosopher 2 is done thinking and now ready to eat.

Philosopher 2: got right chopstick 2

Philosopher 1 is done thinking and now ready to eat.

Philosopher 0: got right chopstick 0

Philosopher 0: got left chopstick 1

Philosopher 0: eating.

Philosopher 0: got right chopstick 0

Philosopher 0: got left chopstick 1

Philosopher 0: eating.

Philosopher 0: got right chopstick 0

Philosopher 0: got left chopstick 1

Philosopher 0: eating.

Philosopher 0: got right chopstick 0

Philosopher 0: got left chopstick 1

Philosopher 0: eating.

Philosopher 0: got right chopstick 0

Philosopher 0: got left chopstick 1

Philosopher 0: eating.

Philosopher 0: got right chopstick 0

Philosopher 0: got left chopstick 1

Philosopher 0: eating.

Philosopher 0: got right chopstick 0

Philosopher 0: got left chopstick 1

Philosopher 0: eating.

Philosopher 0: got right chopstick 0

Philosopher 0: got left chopstick 1

Philosopher 0: eating.

Philosopher 0: got right chopstick 0

Philosopher 0: got left chopstick 1

Philosopher 0: eating.

...

Philosopher 0: got right chopstick 0

Philosopher 0: got left chopstick 1

Philosopher 0: eating.

Philosopher 0: got right chopstick 0

Philosopher 0: got left chopstick 1

Philosopher 0: eating.

Philosopher 0: got right chopstick 0

Philosopher 0: got left chopstick 1

Philosopher 0: eating.

Philosopher 0: got right chopstick 0

Philosopher 0: got left chopstick 1

Philosopher 0: eating.

Philosopher 0: got right chopstick 0
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Philosopher 0: got left chopstick 1

Philosopher 0: eating.

Philosopher 0: got right chopstick 0

Philosopher 0: got left chopstick 1

Philosopher 0: eating.

Philosopher 0: got right chopstick 0

Philosopher 0: got left chopstick 1

Philosopher 0: eating.

Philosopher 0: got right chopstick 0

Philosopher 0: got left chopstick 1

Philosopher 0: eating.

Philosopher 0 is done eating.

Philosopher 4: got left chopstick 0

Philosopher 4: eating.

Philosopher 4 is done eating.

Philosopher 3: got left chopstick 4

Philosopher 3: eating.

Philosopher 3 is done eating.

Philosopher 2: got left chopstick 3

Philosopher 2: eating.

Philosopher 2 is done eating.

Philosopher 1: got right chopstick 1

Philosopher 1: got left chopstick 2

Philosopher 1: eating.

Philosopher 1 is done eating.

%

Execution terminated normally

Try running the program several times and specifying different sleep arguments. What happens
when Philosopher 1 waits only a short time before reaching for his chopstick? How about when
he waits longer? Try specifying different sleep arguments to the executable a.out. Rerun the
program with or without a sleep argument several times. Sometimes the program hangs, while
it runs to completion at other times. Whether the program hangs or not depends on the
scheduling of threads and the timings of requests for locks by the threads.

3.4 How to Use the Thread Analyzer to Find Deadlocks
You can use the Thread Analyzer to check for potential and actual deadlocks in your program.
The Thread Analyzer follows the same collect-analyze model that the Oracle Solaris Studio
Performance Analyzer uses.

There are three steps involved in using the Thread Analyzer:

■ Compile the source code.
■ Create a deadlock-detection experiment.
■ Examine the experiment results.
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3.4.1 Compile the Source Code
Compile your code and be sure to specify -g. Do not specify a high-level of optimization
because information such as line numbers and call stacks, may be reported incorrectly at a high
optimization level. Compile an OpenMP program with -g -xopenmp=noopt, and compile a
POSIX threads program with just -g -mt.

See cc(1), CC(1), or f95(1) man pages for more information about these options.

For this tutorial, compile the code using the following command:

% cc -g -o din_philo din_philo.c

3.4.2 Create a Deadlock Detection Experiment
Use the Thread Analyzer's collect command with the -r deadlock option. This option
creates a deadlock-detection experiment during the execution of the program.

For this tutorial, create a deadlock detection experiment named din_philo.1.er using the
following command:

% collect -r deadlock -o din_philo.1.er din_philo

You can increase the likelihood of detecting deadlocks by creating several deadlock-detection
experiments. Use a different number of threads and different input data for the various
experiments. For example, in the din_philo.c code, you could change the values in the
following lines:

13 #define PHILOS 5

14 #define DELAY 5000

15 #define FOOD 100

You could then compile as before and collect another experiment.

See collect(1) and collector(1) man pages for more information.

3.4.3 Examine the Deadlock Detection Experiment
You can examine a deadlock detection experiment with the Thread Analyzer, the Performance
Analyzer, or the er_print utility. Both the Thread Analyzer and the Performance Analyzer
present a GUI interface; the Thread Analyzer presents a simplified set of default tabs, but is
otherwise identical to the Performance Analyzer.
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3.4.3.1 Using Thread Analyzer to View the Deadlock Detection Experiment
To start the Thread Analyzer and open the din_philo.1.er experiment , type the following
command:

% tha din_philo.1.er

The Thread Analyzer includes a menu bar, a tool bar, and a split pane that contains tabs for the
various displays.

The following tabs are shown by default in the left-hand pane when you open an experiment
that was collected for deadlock detection:

■ The Deadlocks tab
This tab shows a list of potential and actual deadlocks that the Thread Analyzer detected in
the program. This tab is selected by default. The threads involved for each deadlock are
shown. These threads form a circular chain where each thread holds a lock and requests
another lock that the next thread in the chain holds.

■ The Dual Source tab
Select a thread in the circular chain on the Deadlocks tab and then click on the Dual Source
tab. The Dual Source tab shows the source location where the thread held a lock, and the
source location where the same thread requested a lock. The source lines where the thread
held and requested locks are highlighted.

■ The Experiments tab
This tab shows the load objects in the experiment, and lists any error and warning messages.

The following tabs are shown on the right-hand pane of the Thread Analyzer display:

■ The Summary tab which shows summary information about a deadlock selected from the
Deadlocks tab.

■ The Deadlock Details tab which shows detailed information about a thread context selected
from the Deadlocks tab.

3.4.3.2 Using er_print to View the Deadlock Detection Experiment
The er_print utility presents a command-line interface. You can use the er_print utility in an
interactive session and specify sub-commands during the session. You can also use
command-line options to specify sub-commands non-interactively.

The following sub-commands are useful for examining deadlocks with the er_print utility:

■ -deadlocks

This option reports any potential and actual deadlocks detected in the experiment. Specify
deadlocks at the (er_print) prompt or -deadlocks on the er_print command line.

■ -ddetail deadlock_id

3.4 How to Use the Thread Analyzer to Find Deadlocks

Oracle Solaris Studio 12.3: Thread Analyzer User's Guide • December 201150



This option returns detailed information about the deadlock with the specified deadlock_id.
Specify ddetail at the (er_print) prompt or -ddetail on the er_print command line. If
the specified deadlock_id is all, then detailed information about all deadlocks is displayed.
Otherwise, specify a single deadlock number such as 1 for the first deadlock.

■ -header

This option displays descriptive information about the experiment and reports any errors or
warnings. Specify header at the (er_print) prompt or -header on the command line.

Refer to the collect(1), tha(1), analyzer(1), and er_print(1) man pages for more
information.

3.5 Understanding the Deadlock Experiment Results
This section explains how to use the Thread Analyzer to investigate the deadlocks in the dining
philosopher program.

3.5.1 Examining Runs That Deadlock
The following listing shows a run of the dining philosophers program that results in an actual
deadlock.

% cc -g -o din_philo din_philo.c

% collect -r deadlock -o din_philo.1.er din_philo

Creating experiment database din_philo.1.er ...

Philosopher 1 is done thinking and now ready to eat.

Philosopher 2 is done thinking and now ready to eat.

Philosopher 3 is done thinking and now ready to eat.

Philosopher 0 is done thinking and now ready to eat.

Philosopher 1: got right chopstick 1

Philosopher 3: got right chopstick 3

Philosopher 0: got right chopstick 0

Philosopher 1: got left chopstick 2

Philosopher 3: got left chopstick 4

Philosopher 4 is done thinking and now ready to eat.

Philosopher 1: eating.

Philosopher 3: eating.

Philosopher 3: got right chopstick 3

Philosopher 4: got right chopstick 4

Philosopher 2: got right chopstick 2

Philosopher 0: got left chopstick 1

Philosopher 0: eating.

Philosopher 1: got right chopstick 1

Philosopher 4: got left chopstick 0

Philosopher 4: eating.

Philosopher 0: got right chopstick 0

Philosopher 3: got left chopstick 4

Philosopher 3: eating.

Philosopher 4: got right chopstick 4
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Philosopher 2: got left chopstick 3

Philosopher 2: eating.

Philosopher 3: got right chopstick 3

Philosopher 1: got left chopstick 2

Philosopher 1: eating.

Philosopher 2: got right chopstick 2

Philosopher 0: got left chopstick 1

Philosopher 0: eating.

Philosopher 1: got right chopstick 1

Philosopher 4: got left chopstick 0

Philosopher 4: eating.

Philosopher 0: got right chopstick 0

Philosopher 3: got left chopstick 4

Philosopher 3: eating.

...

Philosopher 4: got right chopstick 4

Philosopher 2: got left chopstick 3

Philosopher 2: eating.

Philosopher 2: got right chopstick 2

Philosopher 3: got right chopstick 3

(hang)

Execution terminated by pressing CTRL-C

Type the following commands to examine the experiment with er_print utility:

% er_print din_philo.1.er

(er_print) deadlocks

Deadlock #1, Potential deadlock

Thread #2

Lock being held: 0x215a0, at: grab_chopstick + 0x0000002C, line 106 in "din_philo.c"
Lock being requested: 0x215b8, at: grab_chopstick + 0x0000002C, line 106 in "din_philo.c"

Thread #3

Lock being held: 0x215b8, at: grab_chopstick + 0x0000002C, line 106 in "din_philo.c"
Lock being requested: 0x215d0, at: grab_chopstick + 0x0000002C, line 106 in "din_philo.c"

Thread #4

Lock being held: 0x215d0, at: grab_chopstick + 0x0000002C, line 106 in "din_philo.c"
Lock being requested: 0x215e8, at: grab_chopstick + 0x0000002C, line 106 in "din_philo.c"

Thread #5

Lock being held: 0x215e8, at: grab_chopstick + 0x0000002C, line 106 in "din_philo.c"
Lock being requested: 0x21600, at: grab_chopstick + 0x0000002C, line 106 in "din_philo.c"

Thread #6

Lock being held: 0x21600, at: grab_chopstick + 0x0000002C, line 106 in "din_philo.c"
Lock being requested: 0x215a0, at: grab_chopstick + 0x0000002C, line 106 in "din_philo.c"

Deadlock #2, Actual deadlock

Thread #2

Lock being held: 0x215a0, at: grab_chopstick + 0x0000002C, line 106 in "din_philo.c"
Lock being requested: 0x215b8, at: grab_chopstick + 0x0000002C, line 106 in "din_philo.c"

Thread #3

Lock being held: 0x215b8, at: grab_chopstick + 0x0000002C, line 106 in "din_philo.c"
Lock being requested: 0x215d0, at: grab_chopstick + 0x0000002C, line 106 in "din_philo.c"

Thread #4

Lock being held: 0x215d0, at: grab_chopstick + 0x0000002C, line 106 in "din_philo.c"
Lock being requested: 0x215e8, at: grab_chopstick + 0x0000002C, line 106 in "din_philo.c"

Thread #5

Lock being held: 0x215e8, at: grab_chopstick + 0x0000002C, line 106 in "din_philo.c"
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Lock being requested: 0x21600, at: grab_chopstick + 0x0000002C, line 106 in "din_philo.c"
Thread #6

Lock being held: 0x21600, at: grab_chopstick + 0x0000002C, line 106 in "din_philo.c"
Lock being requested: 0x215a0, at: grab_chopstick + 0x0000002C, line 106 in "din_philo.c"

Deadlocks List Summary: Experiment: din_philo.1.er Total Deadlocks: 2

(er_print)

The following screen shot shows the Thread Analyzer's presentation of the deadlock
information.

The Thread Analyzer reports two deadlocks for din_philo.c, one potential and the other
actual. On closer inspection, you find that the two deadlocks are identical.

The circular chain involved in the deadlock is as follows:

Thread 2: holds lock at address 0x215a0, requests lock at address 0x215b8
Thread 3: holds lock at address 0x215b8, requests lock at address 0x215d0
Thread 4: holds lock at address 0x215d0, requests lock at address 0x215e8
Thread 5: holds lock at address 0x215e8, requests lock at address 0x21600
Thread 6: holds lock at address 0x21600, requests lock at address 0x215a0

Select the first thread in the chain (Thread #2) and then click on the Dual Source tab to see
where in the source code Thread #2 acquired the lock at address 0x215a0, and where in the
source code it requested the lock at address 0x215b8.

FIGURE 3–2 Deadlock Detected in din_philo.c
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The following screen shot shows the Dual Source tab for Thread #2. The top half of the screen
shot shows that Thread #2 acquired the lock at address 0x215a0 by calling
pthread_mutex_lock() on line 106. The bottom half of the screen shot shows that the same
thread requested the lock at address 0x215b8 by calling pthread_mutex_lock() on line 106.
Each of the two calls to pthread_mutex_lock() used a different lock as the argument. In
general, the lock-acquire and lock-request operations may not be on the same source line.

The default metric (Exclusive Deadlocks metric) is shown to the left of each source line in the
screen shot. This metric gives a count of the number of times a lock-acquire or lock-request
operation, which was involved in a deadlock, was reported on that source line. Only source lines
that are part of a deadlock chain would have a value for this metric that is larger than zero.

3.5.2 Examining Runs That Complete Despite Deadlock
Potential
The dining philosophers program can avoid actual deadlock and terminate normally if you
supply a large enough sleep argument. Normal termination, however, does not mean the
program is safe from deadlocks. It simply means that the locks that were held and requested did
not form a deadlock chain during a given run. If the timing changes in other runs, an actual
deadlock can occur. The following listing shows a run of the dining philosophers program that
terminates normally because of the 40 second sleep time. However, the er_print utility and the
Thread Analyzer report potential deadlocks.

% cc -g -o din_philo_pt din_philo.c

% collect -r deadlock -o din_philo_pt.1.er din_philo_pt 40

FIGURE 3–3 Potential Deadlock in din_philo.c
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Creating experiment database tha.2.er ...

Philosopher 0 is done thinking and now ready to eat.

Philosopher 2 is done thinking and now ready to eat.

Philosopher 1 is done thinking and now ready to eat.

Philosopher 3 is done thinking and now ready to eat.

Philosopher 2: got right chopstick 2

Philosopher 3: got right chopstick 3

Philosopher 0: got right chopstick 0

Philosopher 4 is done thinking and now ready to eat.

Philosopher 0: got left chopstick 1

Philosopher 0: eating.

Philosopher 3: got left chopstick 4

Philosopher 3: eating.

Philosopher 0: got left chopstick 1

Philosopher 0: eating.

Philosopher 0: got right chopstick 0

Philosopher 2: got left chopstick 3

Philosopher 2: eating.

...

Philosopher 4: got right chopstick 4

Philosopher 3: got right chopstick 3

Philosopher 2: got right chopstick 2

Philosopher 4: got left chopstick 0

Philosopher 4: eating.

Philosopher 4 is done eating.

Philosopher 3: got left chopstick 4

Philosopher 3: eating.

Philosopher 0: got right chopstick 0

Philosopher 0: got left chopstick 1

Philosopher 0: eating.

Philosopher 3 is done eating.

Philosopher 2: got left chopstick 3

Philosopher 2: eating.

Philosopher 0 is done eating.

Philosopher 2 is done eating.

Philosopher 1: got right chopstick 1

Philosopher 1: got left chopstick 2

Philosopher 1: eating.

Philosopher 1 is done eating.

%

Execution terminated normally

Type the following commands shown in bold to examine the experiment with er_print utility:

% er_print din_philo_pt.1.er

(er_print) deadlocks

Deadlock #1, Potential deadlock

Thread #2

Lock being held: 0x215a0, at: grab_chopstick + 0x0000002C, line 106 in "din_philo.c"
Lock being requested: 0x215b8, at: grab_chopstick + 0x0000002C, line 106 in "din_philo.c"

Thread #3

Lock being held: 0x215b8, at: grab_chopstick + 0x0000002C, line 106 in "din_philo.c"
Lock being requested: 0x215d0, at: grab_chopstick + 0x0000002C, line 106 in "din_philo.c"

Thread #4

Lock being held: 0x215d0, at: grab_chopstick + 0x0000002C, line 106 in "din_philo.c"
Lock being requested: 0x215e8, at: grab_chopstick + 0x0000002C, line 106 in "din_philo.c"

Thread #5
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Lock being held: 0x215e8, at: grab_chopstick + 0x0000002C, line 106 in "din_philo.c"
Lock being requested: 0x21600, at: grab_chopstick + 0x0000002C, line 106 in "din_philo.c"

Thread #6

Lock being held: 0x21600, at: grab_chopstick + 0x0000002C, line 106 in "din_philo.c"
Lock being requested: 0x215a0, at: grab_chopstick + 0x0000002C, line 106 in "din_philo.c"

Deadlocks List Summary: Experiment: din_philo_pt.1.er Total Deadlocks: 1

(er_print)

The following screen shot shows the potential deadlock information in the Thread Analyzer
interface.

3.6 Fixing the Deadlocks and Understanding False Positives
One way to remove potential and actual deadlocks is to use a system of tokens so that a
philosopher must receive a token before attempting to eat. The number of available tokens must
be less than the number of philosophers at the table. After a philosopher receives a token, he can
attempt to eat in accordance with the rules of the table. After eating, each philosopher returns
the token and repeats the process. The following pseudo-code shows the logic for each
philosopher when using the token system.

while (there is still food on the table)

{

get token

grab right fork

grab left fork

eat some food

put down left fork

put down right fork

FIGURE 3–4 Potential deadlock in din_philo.c
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return token

}

The following sections detail two different implementations for the system of tokens.

3.6.1 Regulating the Philosophers With Tokens
The following listing shows the fixed version of the dining philosophers program that uses the
token system. This solution incorporates four tokens, one less than the number of diners, so no
more than four philosophers can attempt to eat at the same time. This version of the program is
called din_philo_fix1.c:

Tip – If you downloaded the sample applications, you can copy the din_philo_fix1.c file from
the SolarisStudioSampleApplications/ThreadAnalyzer/din_philo directory.

1 /*

2 * Copyright (c) 2006, 2010, Oracle and/or its affiliates. All Rights Reserved.

3 * @(#)din_philo_fix1.c 1.3 (Oracle) 10/03/26

4 */

5

6 #include <pthread.h>

7 #include <stdio.h>

8 #include <unistd.h>

9 #include <stdlib.h>

10 #include <errno.h>

11 #include <assert.h>

12

13 #define PHILOS 5

14 #define DELAY 5000

15 #define FOOD 100

16

17 void *philosopher (void *id);

18 void grab_chopstick (int,

19 int,

20 char *);

21 void down_chopsticks (int,

22 int);

23 int food_on_table ();

24 void get_token ();

25 void return_token ();

26

27 pthread_mutex_t chopstick[PHILOS];

28 pthread_t philo[PHILOS];

29 pthread_mutex_t food_lock;

30 pthread_mutex_t num_can_eat_lock;

31 int sleep_seconds = 0;

32 uint32_t num_can_eat = PHILOS - 1;

33

34

35 int

36 main (int argn,

37 char **argv)
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38 {

39 int i;

40

41 pthread_mutex_init (&food_lock, NULL);

42 pthread_mutex_init (&num_can_eat_lock, NULL);

43 for (i = 0; i < PHILOS; i++)

44 pthread_mutex_init (&chopstick[i], NULL);

45 for (i = 0; i < PHILOS; i++)

46 pthread_create (&philo[i], NULL, philosopher, (void *)i);

47 for (i = 0; i < PHILOS; i++)

48 pthread_join (philo[i], NULL);

49 return 0;

50 }

51

52 void *

53 philosopher (void *num)

54 {

55 int id;

56 int i, left_chopstick, right_chopstick, f;

57

58 id = (int)num;

59 printf ("Philosopher %d is done thinking and now ready to eat.\n", id);

60 right_chopstick = id;

61 left_chopstick = id + 1;

62

63 /* Wrap around the chopsticks. */

64 if (left_chopstick == PHILOS)

65 left_chopstick = 0;

66

67 while (f = food_on_table ()) {

68 get_token ();

69

70 grab_chopstick (id, right_chopstick, "right ");
71 grab_chopstick (id, left_chopstick, "left");
72

73 printf ("Philosopher %d: eating.\n", id);

74 usleep (DELAY * (FOOD - f + 1));

75 down_chopsticks (left_chopstick, right_chopstick);

76

77 return_token ();

78 }

79

80 printf ("Philosopher %d is done eating.\n", id);

81 return (NULL);

82 }

83

84 int

85 food_on_table ()

86 {

87 static int food = FOOD;

88 int myfood;

89

90 pthread_mutex_lock (&food_lock);

91 if (food > 0) {

92 food--;

93 }

94 myfood = food;

95 pthread_mutex_unlock (&food_lock);

96 return myfood;
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97 }

98

99 void

100 grab_chopstick (int phil,

101 int c,

102 char *hand)

103 {

104 pthread_mutex_lock (&chopstick[c]);

105 printf ("Philosopher %d: got %s chopstick %d\n", phil, hand, c);

106 }

107

108

109

110 void

111 down_chopsticks (int c1,

112 int c2)

113 {

114 pthread_mutex_unlock (&chopstick[c1]);

115 pthread_mutex_unlock (&chopstick[c2]);

116 }

117

118

119 void

120 get_token ()

121 {

122 int successful = 0;

123

124 while (!successful) {

125 pthread_mutex_lock (&num_can_eat_lock);

126 if (num_can_eat > 0) {

127 num_can_eat--;

128 successful = 1;

129 }

130 else {

131 successful = 0;

132 }

133 pthread_mutex_unlock (&num_can_eat_lock);

134 }

135 }

136

137 void

138 return_token ()

139 {

140 pthread_mutex_lock (&num_can_eat_lock);

141 num_can_eat++;

142 pthread_mutex_unlock (&num_can_eat_lock);

143 }

Try compiling this fixed version of the dining philosophers program and running it several
times. The system of tokens limits the number of diners attempting to use the chopsticks and
thus avoids actual and potential deadlocks.

To compile, use the following command:

cc -g -o din_philo_fix1 din_philo_fix1.c

To collect an experiment:
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collect -r deadlock din_philo_fix1 -o din_philo_fix1.1.er

3.6.1.1 A False Positive Report
Even when using the system of tokens, the Thread Analyzer reports a potential deadlock for this
implementation even though none exists. This is a false positive. Consider the following screen
shot which details the potential deadlock.

Select the first thread in the chain (Thread #2) and then click on the Dual Source tab to see the
source code location in which Thread #2 held the lock at address 0x216a8, and where in the
source code it requested the lock at address 0x216c0. The following figure shows the Dual
Source tab for Thread #2.

FIGURE 3–5 False Positive Report of a Potential Deadlock
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The get_token() function in din_philo_fix1.c uses a while loop to synchronize the threads.
A thread will not leave the while loop until it successfully gets a token (this occurs when
num_can_eat is greater than zero). The while loop limits the number of simultaneous diners to
four. However, the synchronization implemented by the while loop is not recognized by the
Thread Analyzer. It assumes that all five philosophers attempt to grab the chopsticks and eat
concurrently, so it reports a potential deadlock. The following section details how to limit the
number of simultaneous diners by using synchronizations which the Thread Analyzer
recognizes.

3.6.2 An Alternative System of Tokens
The following listing shows an alternative implementation of the system of tokens. This
implementation still uses four tokens, so no more than four diners attempt to eat at the same
time. However, this implementation uses the sem_wait() and sem_post() semaphore routines
to limit the number of eating philosophers. This version of the source file is called
din_philo_fix2.c.

Tip – If you downloaded the sample applications, you can copy the din_philo_fix2.c file from
the SolarisStudioSampleApplications/ThreadAnalyzer/din_philo directory.

The following listing details din_philo_fix2.c:

1 /*

2 * Copyright (c) 2006, 2010, Oracle and/or its affiliates. All Rights Reserved.

3 * @(#)din_philo_fix2.c 1.3 (Oracle) 10/03/26

4 */

FIGURE 3–6 False Positive Potential Deadlock's Source
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5

6 #include <pthread.h>

7 #include <stdio.h>

8 #include <unistd.h>

9 #include <stdlib.h>

10 #include <errno.h>

11 #include <assert.h>

12 #include <semaphore.h>

13

14 #define PHILOS 5

15 #define DELAY 5000

16 #define FOOD 100

17

18 void *philosopher (void *id);

19 void grab_chopstick (int,

20 int,

21 char *);

22 void down_chopsticks (int,

23 int);

24 int food_on_table ();

25 void get_token ();

26 void return_token ();

27

28 pthread_mutex_t chopstick[PHILOS];

29 pthread_t philo[PHILOS];

30 pthread_mutex_t food_lock;

31 int sleep_seconds = 0;

32 sem_t num_can_eat_sem;

33

34

35 int

36 main (int argn,

37 char **argv)

38 {

39 int i;

40

41 pthread_mutex_init (&food_lock, NULL);

42 sem_init(&num_can_eat_sem, 0, PHILOS - 1);

43 for (i = 0; i < PHILOS; i++)

44 pthread_mutex_init (&chopstick[i], NULL);

45 for (i = 0; i < PHILOS; i++)

46 pthread_create (&philo[i], NULL, philosopher, (void *)i);

47 for (i = 0; i < PHILOS; i++)

48 pthread_join (philo[i], NULL);

49 return 0;

50 }

51

52 void *

53 philosopher (void *num)

54 {

55 int id;

56 int i, left_chopstick, right_chopstick, f;

57

58 id = (int)num;

59 printf ("Philosopher %d is done thinking and now ready to eat.\n", id);

60 right_chopstick = id;

61 left_chopstick = id + 1;

62

63 /* Wrap around the chopsticks. */
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64 if (left_chopstick == PHILOS)

65 left_chopstick = 0;

66

67 while (f = food_on_table ()) {

68 get_token ();

69

70 grab_chopstick (id, right_chopstick, "right ");
71 grab_chopstick (id, left_chopstick, "left");
72

73 printf ("Philosopher %d: eating.\n", id);

74 usleep (DELAY * (FOOD - f + 1));

75 down_chopsticks (left_chopstick, right_chopstick);

76

77 return_token ();

78 }

79

80 printf ("Philosopher %d is done eating.\n", id);

81 return (NULL);

82 }

83

84 int

85 food_on_table ()

86 {

87 static int food = FOOD;

88 int myfood;

89

90 pthread_mutex_lock (&food_lock);

91 if (food > 0) {

92 food--;

93 }

94 myfood = food;

95 pthread_mutex_unlock (&food_lock);

96 return myfood;

97 }

98

99 void

100 grab_chopstick (int phil,

101 int c,

102 char *hand)

103 {

104 pthread_mutex_lock (&chopstick[c]);

105 printf ("Philosopher %d: got %s chopstick %d\n", phil, hand, c);

106 }

107

108 void

109 down_chopsticks (int c1,

110 int c2)

111 {

112 pthread_mutex_unlock (&chopstick[c1]);

113 pthread_mutex_unlock (&chopstick[c2]);

114 }

115

116

117 void

118 get_token ()

119 {

120 sem_wait(&num_can_eat_sem);

121 }

122
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123 void

124 return_token ()

125 {

126 sem_post(&num_can_eat_sem);

127 }

This new implementation uses the semaphore num_can_eat_sem to limit the number of
philosophers who can eat at the same time. The semaphore num_can_eat_sem is initialized to
four, one less than the number of philosophers. Before attempting to eat, a philosopher calls
get_token() which in turn calls sem_wait(&num_can_eat_sem). The call to sem_wait() causes
the calling philosopher to wait until the semaphore's value is positive, then changes the
semaphore's value by subtracting one from the value. When a philosopher is done eating, he
calls return_token() which in turn calls sem_post(&num_can_eat_sem). The call to
sem_post() changes the semaphore's value by adding one. The Thread Analyzer recognizes the
calls to sem_wait() and sem_post(), and determines that not all philosophers attempt to eat
concurrently.

Note – You must compile din_philo_fix2.c with -lrt to link with the appropriate semaphore
routines.

To compile din_philo_fix2.c, use the following command:

cc -g -lrt -o din_philo_fix2 din_philo_fix2.c

If you run this new implementation of the program din_philo_fix2 several times, you will find
that it terminates normally each time and does not hang.

To create an experiment on this new binary:

collect -r deadlock -o din_philo_fix2.1.er din_philo_fix2

You will find that the Thread Analyzer does not report any actual or potential deadlocks in the
din_philo_fix2.1.er experiment, as the following figure shows.
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See Appendix A, “APIs Recognized by the Thread Analyzer,” for a listing of the threading and
memory allocation APIs that the Thread Analyzer recognizes.

FIGURE 3–7 Deadlocks Not Reported in din_philo_fix2.c
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APIs Recognized by the Thread Analyzer

The Thread Analyzer can recognize most standard synchronization APIs and constructs
provided by OpenMP directives, POSIX threads, and Solaris threads. However, the tool cannot
recognize user-defined synchronizations, and may report false positive data races if you employ
such synchronizations. For example, the tool cannot recognize spin locking that is
implemented through hand-coded assembly-language code.

A.1 Thread Analyzer User APIs
If your code includes user-defined synchronizations, insert user APIs supported by the Thread
Analyzer into the program to identify those synchronizations. This identification allows the
Thread Analyzer to recognize the synchronizations and reduce the number of false positives.
The Thread Analyzer user APIs are defined in libtha.so and are listed below.

TABLE A–1 Thread Analyzer User APIs

tha_notify_acquire_lock() This routine can be called immediately before the program tries to
acquire a user-defined lock.

tha_notify_lock_acquired() This routine can be called immediately after a user-defined lock is
successfully acquired.

tha_notify_acquire_writelock() This routine can be called immediately before the program tries to
acquire a user-defined read/write lock in write mode.

tha_notify_writelock_acquired() This routine can be called immediately after a user-defined
read/write lock is successfully acquired in write mode.

tha_notify_acquire_readlock() This routine can be called immediately before the program tries to
acquire a user-defined read/write lock in read mode.

tha_notify_readlock_acquired() This routine can be called immediately after a user-defined
read/write lock is successfully acquired in read mode.
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TABLE A–1 Thread Analyzer User APIs (Continued)
tha_notify_release_lock() This routine can be called immediately before a user-defined lock

or read/write lock is to be released.

tha_notify_lock_released() This routine can be called immediately after a user-defined lock or
read/write lock is successfully released.

tha_notify_sync_post_begin() This routine can be called immediately before a user-defined post
synchronization is performed.

tha_notify_sync_post_end() This routine can be called immediately after a user-defined post
synchronization is performed.

tha_notify_sync_wait_begin() This routine can be called immediately before a user-defined wait
synchronization is performed.

tha_notify_sync_wait_end() This routine can be called immediately after a user-defined wait
synchronization is performed.

tha_check_datarace_mem() This routine instructs the Thread Analyzer to monitor or ignore
accesses to a specified block of memory when doing data race
detection.

tha_check_datarace_thr() This routine instructs the Thread Analyzer to monitor or ignore
memory accesses by one or more threads when doing data race
detection.

A C/C++ version and a Fortran version of the APIs are provided. Each API call takes a single
argument id, whose value should uniquely identify the synchronization object.

In the C/C++ version of the APIs, the type of the argument is uintptr_t, which is 4 bytes long
in 32-bit mode and 8 bytes long in 64-bit mode. You need to add #include

<tha_interface.h> to your C/C++ source file when calling any of the APIs.

In the Fortran version of the APIs, the type of the argument is integer of kind tha_sobj_kind

which is 8-bytes long in both 32-bit and 64–bit mode. You need to add #include

"tha_finterface.h" to your Fortran source file when calling any of the APIs.

To uniquely identify a synchronization object, the argument id should have a different value for
each different synchronization object. One way to do this is to use the value of the address of the
synchronization object as the id. The following code example shows how to use the API to avoid
a false positive data race.

EXAMPLE A–1 Example Using Thread Analyzer APIs to Avoid False Positive Data Races

# include <tha_interface.h>

...

/* Initially, the ready_flag value is zero */

...

/* Thread 1: Producer */

100 data = ...
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EXAMPLE A–1 Example Using Thread Analyzer APIs to Avoid False Positive Data Races (Continued)

101 pthread_mutex_lock (&mutex);

tha_notify_sync_post_begin ((uintptr_t) &ready_flag);

102 ready_flag = 1;

tha_notify_sync_post_end ((uintptr_t) &ready_flag);

103 pthread_cond_signal (&cond);

104 pthread_mutex_unlock (&mutex);

/* Thread 2: Consumer */

200 pthread_mutex_lock (&mutex);

tha_notify_sync_wait_begin ((uintptr_t) &ready_flag);

201 while (!ready_flag) {

202 pthread_cond_wait (&cond, &mutex);

203 }

tha_notify_sync_wait_end ((uintptr_t) &ready_flag);

204 pthread_mutex_unlock (&mutex);

205 ... = data;

For more information on the user APIs, see the libtha(3) man page.

A.2 Other Recognized APIs
The following sections detail the threading APIs which the Thread Analyzer recognizes.

A.2.1 POSIX Thread APIs
See the Multithreaded Programming Guide in the Oracle Solaris documentation for more
information about these APIs.

pthread_mutex_lock()

pthread_mutex_trylock()

pthread_mutex_unlock()

pthread_rwlock_rdlock()

pthread_rwlock_tryrdlock()

pthread_rwlock_wrlock()

pthread_rwlock_trywrlock()

pthread_rwlock_unlock()

pthread_create()

pthread_join()

pthread_cond_signal()

pthread_cond_broadcast()

pthread_cond_wait()

A.2 Other Recognized APIs
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pthread_cond_timedwait()

pthread_cond_reltimedwait_np()

pthread_barrier_init()

pthread_barrier_wait()

pthread_spin_lock()

pthread_spin_unlock()

pthread_spin_trylock()

pthread_mutex_timedlock()

pthread_mutex_reltimedlock_np()

pthread_rwlock_timedrdlock()

pthread_rwlock_reltimedrdlock_np()

pthread_rwlock_timedwrlock()

pthread_rwlock_reltimedwrlock_np()

sem_post()

sem_wait()

sem_trywait()

sem_timedwait()

sem_reltimedwait_np()

A.2.2 Solaris Thread APIs
See the Multithreaded Programming Guide in the Oracle Solaris documentation for more
information about these APIs.

mutex_lock()

mutex_trylock()

mutex_unlock()

rw_rdlock()

rw_tryrdlock()

rw_wrlock()

rw_trywrlock()

rw_unlock()

thr_create()

thr_join()

cond_signal()

cond_broadcast()

cond_wait()

cond_timedwait()

cond_reltimedwait()

sema_post()

sema_wait()

sema_trywait()

A.2 Other Recognized APIs
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A.2.3 Memory-Allocation APIs
calloc()

malloc()

realloc()

valloc()

memalign()

See the malloc(3C) man page for information about the memory allocation APIs.

A.2.4 Memory Operations APIs
memcpy()

memmove()

memchr()

memcmp()

memset()

See the memcpy(3C) man page for information about the memory operations APIs.

A.2.5 String Operations APIs
strcat()

strncat()

strlcat()

strcasecmp()

strncasecmp()

strchr()

strrchr()

strcmp()

strncmp()

strcpy()

strncpy()

strlcpy()

strcspn()

strspn()

strdup()

strlen()

strpbrk()

strstr()

strtok()

See the strcat(3C) man page for information about the string operations APIs.

A.2 Other Recognized APIs
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A.2.6 OpenMP APIs
The Thread Analyzer recognizes OpenMP synchronizations, such as barriers, locks, critical
regions, atomic regions, and taskwait.

See the Oracle Solaris Studio 12.3: OpenMP API User’s Guide for more information.

A.2 Other Recognized APIs
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Useful Tips

This appendix includes some tips for using the Thread Analyzer.

B.1 Compiling the Application
Tips for compiling an application before collecting an experiment:
■ Use the -g compiler option when building application binaries. This will allow the Thread

Analyzer to report line number information for data races.
■ Compile with an optimization level less than -xO3 when building application binaries.

Compiler transformations may distort line number information and make the results
difficult to understand.

■ The Thread Analyzer interposes on the memory-allocation routines shown in “A.2.3
Memory-Allocation APIs” on page 71. Linking to archive versions of memory allocation
libraries may result in false positive data races being reported.

B.2 Instrumenting the Application for Data Race Detection
Tips for instrumenting an application for data race detection before collecting an experiment:
■ If you get an error message from the compiler saying that the compiler option

-xinstrument=datarace is illegal, you are using an older version of the Sun Studio
compiler that does not support the Thread Analyzer. You can check the version of the
compiler you are using by typing the command cc -Version. The earliest version that
supports Thread Analyzer is dated June 2006.

■ The collect -r race command issues a warning if the binary is not instrumented for data
race detection, as shown here:

% collect -r races a.out

WARNING: Target ‘a.out’ is not instrumented for datarace

detection; reported datarace data may be misleading
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■ You can determine whether a binary is instrumented for data race detection by using the nm
command and looking for calls to tha routines. If routines whose names begin with __tha_

are shown, the binary is instrumented. Example output is shown below.
Source-level instrumentation:

% cc -xopenmp -g -xinstrument=datarace source.c

% nm a.out | grep __tha_

[71] | 135408| 0|FUNC |GLOB |0 |UNDEF |__tha_get_stack_id

[53] | 135468| 0|FUNC |GLOB |0 |UNDEF |__tha_src_read_w_frame

[61] | 135444| 0|FUNC |GLOB |0 |UNDEF |__tha_src_write_w_frame

Binary-level instrumentation:

% cc -xopenmp -g source.c

% discover -i datarace -o a.out.i a.out

% nm a.out.i | grep __tha_

[88] | 0| 0|NOTY |GLOB |0 |UNDEF |__tha_read_w_pc_frame

[49] | 0| 0|NOTY |GLOB |0 |UNDEF |__tha_write_w_pc_frame

■ To use discover, the input binary must be compiled with one of the compiler optimization
flags (-xO1, -xO2, -xO3, -xO4, -xO5). The compiler must be from a release no earlier
than Oracle Solaris Studio 12 Update 1. The operating system must be at least Oracle Solaris
10 Update 5 or Oracle Solaris 11. Otherwise, you may get a warning as shown here.

% discover -i datarace -o a.out.i a.out

discover (warning): a.out has no annotations. Results may be

incomplete. See discover documentation for compiler flag/OS

recommendation

You might also be able to use the discover tool on an earlier Solaris version running on a
SPARC-based system if the binary was compiled with the compiler option
-xbinopt=prepare. See the cc(1), CC(1), or f95(1) man pages for information about this
compiler option.

B.3 Running the Application With collect
Tips for running an instrumented application to detect data races and deadlocks.
■ Make sure that the Oracle Solaris system has all the required patches installed. The collect

command lists any missing required patches. For OpenMP applications, the latest version of
libmtsk.so is required.

■ If you get an error message from collect saying that the -r race or -r deadlock argument
is not recognized, you are using an older version of collect that does not support the
Thread Analyzer. You can check the version of collect you are using by typing the
collect -Version command. The earliest version that supports Thread Analyzer is dated
June 2006.

■ Instrumentation might cause a significant slowdown in execution time, 50 times or more,
and an increase in memory consumption. You can try reducing the execution time by using
a smaller data set. You can also try reducing the execution time by increasing the number of
threads.

B.3 Running the Application With collect
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■ To detect data races, make sure that the application is using more than one thread. For
OpenMP, the number of threads can be specified by setting the environment variable
OMP_NUM_THREADS to the desired number of threads, and setting the environment variable
OMP_DYNAMIC to FALSE.

B.4 Reporting of Data Races
Tips for reporting of data races:

■ The Thread Analyzer detects data races at runtime. The runtime behavior of an application
depends on the input data set used and operating system scheduling. Run the application
under collect with different numbers of threads and with different input data sets. Also
repeat experiments with a single data set to maximize the tool's chance of detecting data
races.

■ The Thread Analyzer detects data races between different threads that are spawned from a
single process. It does not detect data races between different processes.

■ The Thread Analyzer does not report the name of the variable accessed in a data race.
However, you can determine the name of the variable by inspecting the source lines where
the two data race accesses occurred, and determining which variables are written to and
read from on those source lines.

■ In some cases, the Thread Analyzer might report data races that did not actually occur in the
program. These data races are called false positives. This usually happens when a
user-implemented synchronization is used or when memory is recycled between threads.
For example, if your code includes hand-coded assembly that implements spin locks, the
Thread Analyzer will not recognize these synchronization points. Insert calls to Thread
Analyzer user APIs in your source code to notify the Thread Analyzer about user-defined
synchronizations. See “2.5 False Positives” on page 35 and Appendix A, “APIs Recognized
by the Thread Analyzer,” for more information.

■ Data races reported using source-level instrumentation and binary-level instrumentation
might not be identical. In binary-level instrumentation, shared libraries are instrumented by
default as they are opened, whether they are statically linked in the program or opened
dynamically by dlopen(). In source-level instrumentation, libraries are instrumented only
if their sources are compiled with -xinstrument=datarace.

B.4 Reporting of Data Races
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