
MySQL NDB Cluster 8.0 Release Notes
Abstract

This document contains release notes for the changes in each release of MySQL NDB Cluster that uses version 8.0
of the NDB (NDBCLUSTER) storage engine.

Each NDB Cluster 8.0 release is based on a mainline MySQL Server release and a particular version of the NDB
storage engine, as shown in the version string returned by executing SELECT VERSION() in the mysql client, or by
executing the ndb_mgm client SHOW or STATUS command; for more information, see MySQL NDB Cluster 8.0.

For general information about features added in NDB Cluster 8.0, see What is New in MySQL NDB Cluster 8.0. For
a complete list of all bug fixes and feature changes in MySQL NDB Cluster, please refer to the changelog section for
each individual NDB Cluster release.

For additional MySQL 8.0 documentation, see the MySQL 8.0 Reference Manual, which includes an overview of
features added in MySQL 8.0 that are not specific to NDB Cluster (What Is New in MySQL 8.0), and discussion of
upgrade issues that you may encounter for upgrades from MySQL 5.6 to MySQL 8.0 (Changes in MySQL 8.0). For
a complete list of all bug fixes and feature changes made in MySQL 8.0 that are not specific to NDB, see MySQL 8.0
Release Notes.

Updates to these notes occur as new product features are added, so that everybody can follow the development
process. If a recent version is listed here that you cannot find on the download page (https://dev.mysql.com/
downloads/), the version has not yet been released.

The documentation included in source and binary distributions may not be fully up to date with respect to release note
entries because integration of the documentation occurs at release build time. For the most up-to-date release notes,
please refer to the online documentation instead.

For legal information, see the Legal Notices.

For help with using MySQL, please visit the MySQL Forums, where you can discuss your issues with other MySQL
users.

Document generated on: 2024-05-09 (revision: 28345)

Table of Contents
Preface and Legal Notices ... 2
Changes in MySQL NDB Cluster 8.0.37 (2024-04-30, General Availability) ... 4
Changes in MySQL NDB Cluster 8.0.36 (2024-01-16, General Availability) ... 7
Changes in MySQL NDB Cluster 8.0.35 (2023-10-25, General Availability) .. 11
Changes in MySQL NDB Cluster 8.0.34 (2023-07-18, General Availability) .. 14
Changes in MySQL NDB Cluster 8.0.33 (2023-04-18, General Availability) .. 17
Changes in MySQL NDB Cluster 8.0.32 (2023-01-17, General Availability) .. 24
Changes in MySQL NDB Cluster 8.0.31 (2022-10-11, General Availability) .. 28
Changes in MySQL NDB Cluster 8.0.30 (2022-07-26, General Availability) .. 33
Changes in MySQL NDB Cluster 8.0.29 (2022-04-26, General Availability) .. 40
Changes in MySQL NDB Cluster 8.0.28 (2022-01-18, General Availability) .. 49
Changes in MySQL NDB Cluster 8.0.27 (2021-10-19, General Availability) .. 54
Changes in MySQL NDB Cluster 8.0.26 (2021-07-20, General Availability) .. 60
Changes in MySQL NDB Cluster 8.0.25 (2021-05-11, General Availability) .. 65
Changes in MySQL NDB Cluster 8.0.24 (2021-04-20, General Availability) .. 66
Changes in MySQL NDB Cluster 8.0.23 (2021-01-18, General Availability) .. 73

1

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-mgm.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-mgm-client-commands.html#ndbclient-show
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-mgm-client-commands.html#ndbclient-status
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-what-is-new.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-nutshell.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/upgrading-from-previous-series.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-relnotes-en/
https://docs.oracle.com/cd/E17952_01/mysql-8.0-relnotes-en/
https://dev.mysql.com/downloads/
https://dev.mysql.com/downloads/
http://forums.mysql.com

MySQL NDB Cluster 8.0 Release Notes

Changes in MySQL NDB Cluster 8.0.22 (2020-10-19, General Availability) .. 80
Changes in MySQL NDB Cluster 8.0.21 (2020-07-13, General Availability) .. 88
Changes in MySQL NDB Cluster 8.0.20 (2020-04-27, General Availability) .. 94
Changes in MySQL NDB Cluster 8.0.19 (2020-01-13, General Availability) .. 99
Changes in MySQL NDB Cluster 8.0.18 (2019-10-14, Release Candidate) .. 107
Changes in MySQL NDB Cluster 8.0.17 (2019-07-22, Release Candidate) .. 115
Changes in MySQL NDB Cluster 8.0.16 (2019-04-25, Development Milestone) 120
Changes in MySQL NDB Cluster 8.0.15 (Not released) .. 129
Changes in MySQL NDB Cluster 8.0.14 (2019-01-21, Development Milestone) 130
Changes in MySQL NDB Cluster 8.0.13 (2018-10-23, Development Milestone) 133
Release Series Changelogs: MySQL NDB Cluster 8.0 ... 143

Changes in MySQL NDB Cluster 8.0.36 (2024-01-16, General Availability) 143
Changes in MySQL NDB Cluster 8.0.35 (2023-10-25, General Availability) 147
Changes in MySQL NDB Cluster 8.0.34 (2023-07-18, General Availability) 148
Changes in MySQL NDB Cluster 8.0.33 (2023-04-18, General Availability) 151
Changes in MySQL NDB Cluster 8.0.32 (2023-01-17, General Availability) 157
Changes in MySQL NDB Cluster 8.0.31 (2022-10-11, General Availability) 160
Changes in MySQL NDB Cluster 8.0.30 (2022-07-26, General Availability) 165
Changes in MySQL NDB Cluster 8.0.29 (2022-04-26, General Availability) 170
Changes in MySQL NDB Cluster 8.0.28 (2022-01-18, General Availability) 178
Changes in MySQL NDB Cluster 8.0.27 (2021-10-19, General Availability) 182
Changes in MySQL NDB Cluster 8.0.26 (2021-07-20, General Availability) 188
Changes in MySQL NDB Cluster 8.0.24 (2021-04-20, General Availability) 193
Changes in MySQL NDB Cluster 8.0.23 (2021-01-18, General Availability) 201
Changes in MySQL NDB Cluster 8.0.22 (2020-10-19, General Availability) 206
Changes in MySQL NDB Cluster 8.0.21 (2020-07-13, General Availability) 213
Changes in MySQL NDB Cluster 8.0.20 (2020-04-27, General Availability) 219
Changes in MySQL NDB Cluster 8.0.19 (2020-01-13, General Availability) 223
Changes in MySQL NDB Cluster 8.0.18 (2019-10-14, Release Candidate) 230
Changes in MySQL NDB Cluster 8.0.17 (2019-07-22, Release Candidate) 238
Changes in MySQL NDB Cluster 8.0.16 (2019-04-25, Development Milestone) 242
Changes in MySQL NDB Cluster 8.0.14 (2019-01-21, Development Milestone) 251
Changes in MySQL NDB Cluster 8.0.13 (2018-10-23, Development Milestone) 254

Index .. 263

Preface and Legal Notices

This document contains release notes for the changes in each release of MySQL NDB Cluster that uses
version 8.0 of the NDB storage engine.

Legal Notices

Copyright © 1997, 2024, Oracle and/or its affiliates.

License Restrictions

This software and related documentation are provided under a license agreement containing restrictions
on use and disclosure and are protected by intellectual property laws. Except as expressly permitted
in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast,
modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any
means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

Warranty Disclaimer

2

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster.html

MySQL NDB Cluster 8.0 Release Notes

The information contained herein is subject to change without notice and is not warranted to be error-free.
If you find any errors, please report them to us in writing.

Restricted Rights Notice

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or
related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications
of such programs) and Oracle computer documentation or other Oracle data delivered to or accessed
by U.S. Government end users are "commercial computer software," "commercial computer software
documentation," or "limited rights data" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, the use, reproduction, duplication, release, display,
disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle programs (including
any operating system, integrated software, any programs embedded, installed, or activated on delivered
hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract.
The terms governing the U.S. Government's use of Oracle cloud services are defined by the applicable
contract for such services. No other rights are granted to the U.S. Government.

Hazardous Applications Notice

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Trademark Notice

Oracle, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names
may be trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Epyc, and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a
registered trademark of The Open Group.

Third-Party Content, Products, and Services Disclaimer

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services, except as set forth in an applicable agreement between you and
Oracle.

Use of This Documentation

This documentation is NOT distributed under a GPL license. Use of this documentation is subject to the
following terms:

3

MySQL NDB Cluster 8.0 Release Notes

You may create a printed copy of this documentation solely for your own personal use. Conversion to other
formats is allowed as long as the actual content is not altered or edited in any way. You shall not publish
or distribute this documentation in any form or on any media, except if you distribute the documentation in
a manner similar to how Oracle disseminates it (that is, electronically for download on a Web site with the
software) or on a CD-ROM or similar medium, provided however that the documentation is disseminated
together with the software on the same medium. Any other use, such as any dissemination of printed
copies or use of this documentation, in whole or in part, in another publication, requires the prior written
consent from an authorized representative of Oracle. Oracle and/or its affiliates reserve any and all rights
to this documentation not expressly granted above.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website
at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support for Accessibility

Oracle customers that have purchased support have access to electronic support through My Oracle
Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=trs if you are hearing impaired.

Changes in MySQL NDB Cluster 8.0.37 (2024-04-30, General
Availability)

MySQL NDB Cluster 8.0.37 is a new release of NDB 8.0, based on MySQL Server 8.0 and including
features in version 8.0 of the NDB storage engine, as well as fixing recently discovered bugs in previous
NDB Cluster releases.

Obtaining NDB Cluster 8.0. NDB Cluster 8.0 source code and binaries can be obtained from https://
dev.mysql.com/downloads/cluster/.

For an overview of changes made in NDB Cluster 8.0, see What is New in MySQL NDB Cluster 8.0.

This release also incorporates all bug fixes and changes made in previous NDB Cluster releases, as well
as all bug fixes and feature changes which were added in mainline MySQL 8.0 through MySQL 8.0.37 (see
Changes in MySQL 8.0.37 (2024-04-30, General Availability)).

• Functionality Added or Changed

• Bugs Fixed

Functionality Added or Changed

• Important Change: Now, when the removal of a data node file or directory fails with a file does not exist
(ENOENT) error, this is treated as a successful removal.

• Packaging: Added support for Fedora 40 and Ubuntu 24.04.

• ndbinfo Information Database: Added the transporter_details table to the ndbinfo information
database. This table is similar to the transporters table, but provides information about individual
transporters rather than in the aggregate.

For more information, see The ndbinfo transporter_details Table. (Bug #113163, Bug #36031560)

4

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster.html
https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/downloads/cluster/
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-what-is-new.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-relnotes-en/news-8-0-37.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbinfo-transporter-details.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbinfo.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbinfo-transporters.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbinfo-transporter-details.html

MySQL NDB Cluster 8.0 Release Notes

• NDB Client Programs: Added the --verbose option to the ndb_waiter test program to control the
verbosity level of the output. (Bug #34547034)

• Improved logging related to purging of the binary log, including start and completions times, and whether
it is the injector which has initiated the purge. (Bug #36176983)

Bugs Fixed

• NDB Client Programs: ndb_redo_log_reader could not read data from encrypted files. (Bug
#36313482)

• NDB Client Programs: The following command-line options did not function correctly for the
ndb_redo_log_reader utility program:

• --mbyte

• --page

• --pageindex

(Bug #36313427)

• NDB Client Programs: ndb_redo_log_reader exited with Record type = 0 not implemented
when reaching an unused page, all zero bytes, or a page which was only partially used (typically a page
consisting of the page header only). (Bug #36313259)

• NDB Client Programs: Invoking ndb_mgmd with the --bind-address option could in some cases cause
the program to terminate unexpectedly. (Bug #36263410)

• NDB Client Programs: Work begun in NDB 8.0.18 and 8.0.20 to remove the unnecessary text
NDBT_ProgramExit ... from the output of NDB programs is completed in this release. This message
should no longer appear in the release binaries of any such programs. (Bug #36169823)

References: See also: Bug #27096741.

• NDB Client Programs: The use of a strict 80-character limit for clang-format on the file
CommandInterpreter.cpp broke the formatting of the interactive help text in the NDB management
client. (Bug #36034395)

• An implicit rollback generated when refusing to discover a table in an ongoing transaction caused the
entire transaction to roll back. This could happen when a table definition changed while a transaction
was active. We also checked at such times to see whether the table already existed in the data
dictionary, which also meant that a subsequent read from same table within the same transaction would
(wrongly) allow discovery.

Now in such cases, we skip checking whether or not a given table already exists in the data dictionary;
instead, we now always refuse discovery of a table that is altered while a transaction is ongoing and
return an error to the user. (Bug #36191370)

• When a backup was restored using ndb_restore with --disable-indexes and --
restore-privilege-tables, the ordered index of the primary key was lost on the
mysql.ndb_sql_metadata table, and could not be rebuilt even with --rebuild-indexes. (Bug
#36157626)

• SSL_pending() data from an SSL-enabled NdbSocket was not adequately checked for. (Bug
#36076879)

5

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-waiter.html#option_ndb_waiter_verbose
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-waiter.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-redo-log-reader.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-redo-log-reader.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-redo-log-reader.html#option_ndb_redo_log_reader_mbyte
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-redo-log-reader.html#option_ndb_redo_log_reader_page
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-redo-log-reader.html#option_ndb_redo_log_reader_pageindex
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-redo-log-reader.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_disable-indexes
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_restore-privilege-tables
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_restore-privilege-tables
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_rebuild-indexes

MySQL NDB Cluster 8.0 Release Notes

• In certain cases, ndb_mgmd hung when attempting to sending a stop signal to ndbmtd. (Bug
#36066725)

• Starting a replica to apply changes when NDB was not yet ready or had no yet started led to an
unhelpful error message (Fatal error: Failed to run 'applier_start' hook). This
happened when the replica started and the applier start hook waited for the number of seconds specified
by --ndb-wait-setup for NDB to become ready; if it was not ready by then, the start hook reported
the failure. Now in such cases, we let processing continue, instead, and allow the error to be returned
from NDB, which better indicates its true source. (Bug #36054134)

• A mysqld process took much longer than expected to shut down when all data nodes were
unreachable. (Bug #36052113)

• It was possible in certain cases for the TRPMAN block to operate on transporters outside its own receive
thread. (Bug #36028782)

• A replica could not apply a row change while handling a Table definition changed error. Now any
such error is handled as a temporary error which can be retried multiple times. (Bug #35826145)

• Repeated incomplete incomplete attempts to perform a system restart in some cases left the cluster in a
state from which it could not recover without restoring it from backup. (Bug #35801548)

• The event buffer used by the NDB API maintains an internal pool of free memory to reduce the
interactions with the runtime and operating system, while allowing memory that is no longer needed to
be returned for other uses. This free memory is subtracted from the total allocated memory to determine
the memory is use which is reported and used for enforcing buffer limits and other purposes; this was
represented using a 32-bit value, so that if it exceeded 4 GB, the value wrapped, and the amount of free
memory appeared to be reduced. This had potentially adverse effects on event buffer memory release to
the runtime and OS, free memory reporting, and memory limit handling.

This is fixed by using a 64-bit value to represent the amount of pooled free memory. (Bug #35483764)

References: See also: Bug #35655162, Bug #35663761.

• START REPLICA, STOP REPLICA, and RESET REPLICA statements are now written to mysqld.log.
(Bug #35207235)

• NDB transporter handling in mt.cpp differentiated between neighbor transporters carrying signals
between nodes in the same node group, and all other transporters. This sometimes led to issues with
multiple transporters when a transporter connected nodes that were neighbors with nodes that were not.
(Bug #33800633)

• Removed unnecessary warnings generated by transient disconnections of data nodes during restore
operations. (Bug #33144487)

• In some cases, when trying to perform an online add index operation on an NDB table with no explicit
primary key (see Limitations of NDB online operations), the resulting error message did not make the
nature of the problem clear. (Bug #30766579)

References: See also: Bug #36382071.

• API nodes did not record any information in the log relating to disconnects due to missed heartbeats
from the data nodes. (Bug #29623286)

6

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-mgmd.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndbmtd.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#option_mysqld_ndb-wait-setup
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysqld.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-trpman.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/start-replica.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/stop-replica.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/reset-replica.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-online-operations.html#mysql-cluster-online-limitations

MySQL NDB Cluster 8.0 Release Notes

Changes in MySQL NDB Cluster 8.0.36 (2024-01-16, General
Availability)

MySQL NDB Cluster 8.0.36 is a new release of NDB 8.0, based on MySQL Server 8.0 and including
features in version 8.0 of the NDB storage engine, as well as fixing recently discovered bugs in previous
NDB Cluster releases.

Obtaining NDB Cluster 8.0. NDB Cluster 8.0 source code and binaries can be obtained from https://
dev.mysql.com/downloads/cluster/.

For an overview of changes made in NDB Cluster 8.0, see What is New in MySQL NDB Cluster 8.0.

This release also incorporates all bug fixes and changes made in previous NDB Cluster releases, as well
as all bug fixes and feature changes which were added in mainline MySQL 8.0 through MySQL 8.0.36 (see
Changes in MySQL 8.0.36 (2024-01-16, General Availability)).

• Compilation Notes

• Bugs Fixed

Compilation Notes

• NDB Cluster did not compile correctly on Ubuntu 23.10. (Bug #35847193)

• It is now possible to build NDB Cluster for the s390x platform.

Our thanks to Namrata Bhave for the contribution. (Bug #110807, Bug #35330936)

Bugs Fixed

• NDB Replication: An internal thread memory usage self-check was too strict, invoking unnecessary file
rotation and possibly increased memory usage. (Bug #35657932)

• NDB Replication: CREATE USER on a source cluster caused SQL nodes attached to the replica clusters
to exit. (Bug #34551954)

References: See also: Bug #112775, Bug #33172887, Bug #33542052, Bug #35928350.

• NDB Replication: Replication of an NDB table stopped under the following conditions:

• The table had no explicit primary key

• The table contained BIT columns

• A hash scan was used to find the rows to be updated or deleted

To fix this issue, we now make sure that the hash keys for the table match on the source and the replica.
(Bug #34199339)

• NDB Replication: Replicating a GRANT NDB_STORED_USER statement with replication filters enabled
caused the SQL node to exit. This occured since the replication filter caused all non-updating queries to
return an error, with the assumption that only changes needed to be replicated.

Our thanks to Mikael Ronström for the contribution. (Bug #112775, Bug #35928350)

References: See also: Bug #34551954, Bug #33172887, Bug #33542052.

7

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster.html
https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/downloads/cluster/
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-what-is-new.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-relnotes-en/news-8-0-36.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/create-user.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/bit-type.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/grant.html

MySQL NDB Cluster 8.0 Release Notes

• NDB Replication: On an NDB Replication setup where an SQL node in a replica cluster had
read_only=ON, a DROP DATABASE statement on the source cluster caused the SQL thread on the
replica server to hang with Waiting for schema metadata lock.

• NDB Cluster APIs: An event buffer overflow in the NDB API could cause a timeout while waiting for
DROP TABLE. (Bug #35655162)

References: See also: Bug #35662083.

• ndbinfo Information Database: An assumption made in the implementation of ndbinfo is that the data
nodes always use the same table ID for a given table at any point in time. This requires that a given table
ID is not moved between different tables in different versions of NDB Cluster, as this would expose an
inconsistency during a rolling upgrade. This constraint is fairly easily maintained when ndbinfo tables
are added only in the latest release, and never backported to a previous release series, but could be
problematic in the case of a backport.

Now we ensure that, if a given ndbinfo table added in a newer release series is later backported to an
older one, the table uses the same ID as in the newer release. (Bug #28533342)

• NDB Client Programs: Trying to start ndb_mgmd with --bind-address=localhost failed with the
error Illegal bind address, which was returned from the MGM API when attempting to parse the
bind adress to split it into host and port parts. localhost is now accepted as a valid address in such
cases. (Bug #36005903)

• When a node failure is detected, transaction coordinator (TC) instances check their own transactions
to determine whether they need handling to ensure completion, implemented by checking whether
each transaction involves the failed node, and if so, marking it for immediate timeout handling. This
causes the transaction to be either rolled forward (commit) or back (abort), depending on whether it
had started committing, using the serial commit protocol. When the TC was in the process of getting
permission to commit (CS_PREPARE_TO_COMMIT), sending commit requests (CS_COMMITTING), or
sending completion requests (CS_COMPLETING), timeout handling waited until the transaction was in a
stable state before commencing the serial commit protocol.

Prior to the fix for Bug#22602898, all timeouts during CS_COMPLETING or CS_COMMITTING resulted in
switching to the serial commit-complete protocol, so skipping the handling in any of the three states cited
previously did not stop the prompt handling of the node failure. It was found later that this fix removed
the blanket use of the serial commit-complete protocol for commit-complete timeouts, so that when
handling for these states was skipped, no node failure handling action was taken, with the result that
such transactions hung in a commit or complete phase, blocking checkpoints.

The fix for Bug#22602898 removed this stable state handling to avoid it accidentally triggering, but
this change also stopped it from triggering when needed in this case where node failure handling
found a transaction in a transient state. We solve this problem by modifying CS_COMMIT_SENT and
CS_COMPLETE_SENT stable state handling to perform node failure processing if a timeout has occurred
for a transaction with a failure number different from the current latest failure number, ensuring that all
transactions involving the failed node are in fact eventually handled. (Bug #36028828)

References: See also: Bug #22602898.

• Removed a possible race condition between start_clients_thread() and
update_connections(), due to both of these seeing the same transporter in the DISCONNECTING
state. Now we make sure that disconnection is in fact completed before we set indicating that that the
transporter has disconnected, so that update_connections() cannot close the NdbSocket before it
has been completely shut down. (Bug #36009860)

8

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/server-system-variables.html#sysvar_read_only
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/drop-database.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/drop-table.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbinfo.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-mgmd.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-mgmd.html#option_ndb_mgmd_bind-address

MySQL NDB Cluster 8.0 Release Notes

• When a transporter was overloaded, the send thread did not yield to the CPU as expected, instead
retrying the transporter repeatedly until reaching the hard-coded 200 microsecond timeout. (Bug
#36004838)

• The QMGR block's GSN_ISOLATE_ORD signal handling was modified by the fix for a previous issue to
handle the larger node bitmap size necessary for supporting up to 144 data nodes. It was observed
afterwards that it was possible that the original sender was already shut down when ISOLATE_ORD was
processed, in which case its node version might have been reset to zero, causing the inline bitmap path
to be taken, resulting in incorrect processing.

The signal handler now checks to decide whether the incoming signal uses a long section to represent
nodes to isolate, and to act accordingly. (Bug #36002814)

References: See also: Bug #30529132.

• A MySQL server disconnected from schema distribution was unable to set up event operations
because the table columns could not be found in the event. This could be made to happen by using
ndb_drop_table or another means to drop a table directly from NDB that had been created using the
MySQL server.

We fix this by making sure in such cases that we properly invalidate the NDB table definition from the
dictionary cache. (Bug #35948153)

• Messages like Metadata: Failed to submit table 'mysql.ndb_apply_status' for
synchronization were submitted to the error log each minute, which filled up the log unnecessarily,
since mysql.ndb_apply_status is a utility table managed by the binary logging thread, with no need
to be checked for changes. (Bug #35925503)

• The DBSPJ function releaseGlobal() is responsible for releasing excess pages maintained in
m_free_page_list; this function iterates over the list, releases the objects, and after 16 iterations
takes a realtime break. In parallel with the realtime break, DBSPJ spawned a new invocation of
releaseGlobal() by sending a CONTINUEB signal to itself with a delay, which could lead to an
overflow of the Long-Time Queue since there is no control over the number of signals being sent.

We fix this by not sending the extra delayed CONTINUEB signal when a realtime break is taken. (Bug
#35919302)

• API node failure handling during a data node restart left its subscriptions behind. (Bug #35899768)

• Removed the file storage/ndb/tools/restore/consumer_restorem.cpp, which was unused.
(Bug #35894084)

• Removed unnecessary output printed by ndb_print_backup_file. (Bug #35869988)

• Removed a possible accidental read or write on a reused file descriptor in the transporter code. (Bug
#35860854)

• When a timed read function such as read_socket(), readln_socket(), NdbSocket::read(), or
NdbSocket::readln() was called using an invalid socket it returned 0, indicating a timeout, rather
than the expected -1, indicating an unrecoverable failure. This was especially apparent when using the
poll() function, which, as a result of this issue, did not treat an invalid socket appropriately, but rather
simply never fired any event for that socket. (Bug #35860646)

• It was possible for the readln_socket() function in storage/ndb/src/common/util/
socket_io.cpp to read one character too many from the buffer passed to it as an argument. (Bug
#35857936)

9

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-qmgr.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-drop-table.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbspj.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-print-backup-file.html

MySQL NDB Cluster 8.0 Release Notes

• It was possible for ssl_write() to receive a smaller send buffer on retries than expected due to
consolidate() calculating how many full buffers could fit into it. Now we pre-pack these buffers prior
to consolidation. (Bug #35846435)

• During online table reorganization, rows that are moved to new fragments are tagged for later deletion
in the copy phase. This tagging involves setting the REORG_MOVED bit in the tuple header; this affects
the tuple header checksum which must therefore be recalculated after it is modified. In some cases
this is calculated before REORG_MOVED is set, which can result in later access to the same tuple failing
with a tuple header checksum mismatch. This issue was observed when executing ALTER TABLE
REORGANIZE PARTITION concurrently with a table insert of blob values, and appears to have been a
side effect of the introduction of configurable query threads in MySQL 8.0.23.

Now we make sure in such cases that REORG_MOVED is set before the checksum is calculated. (Bug
#35783683)

• Following a node connection failure, the transporter registry's error state was not cleared before initiating
a reconnect, which meant that the error causing the connection to be disconnected originally might still
be set; this was interpreted as a failure to reconnect. (Bug #35774109)

• When encountering an ENOMEM (end of memory) error, the TCP transporter continued trying to send
subsequent buffers which could result in corrupted data or checksum failures.

We fix this by removing the ENOMEM handling from the TCP transporter, and waiting for sufficient
memory to become available instead. (Bug #35700332)

• Setup of the binary log injector sometimes deadlocked with concurrent DDL. (Bug #35673915)

• The slow disconnection of a data node while a management server was unavailable could sometimes
interfere with the rolling restart process. This became especially apparent when the cluster was hosted
by NDB Operator, and the old mgmd pod did not recognize the IP address change of the restarted data
node pod; this was visible as discrepancies in the output of SHOW STATUS on different management
nodes.

We fix this by making sure to clear any cached address when connecting to a data node so that the data
node's new address (if any) is used instead. (Bug #35667611)

• The maximum permissible value for the oldest restorable global checkpoint ID is MAX_INT32
(4294967295). Such an ID greater than this value causes the data node to shut down, requiring a
backup and restore on a cluster started with --initial.

Now, approximately 90 days before this limit is reached under normal usage, an appropriate warning is
issued, allowing time to plan the required corrective action. (Bug #35641420)

References: See also: Bug #35749589.

• Transactions whose size exceeded binlog_cache_size caused duplicate warnings. (Bug #35441583)

• NDB Cluster installation packages contained two copies of the INFO_SRC file. (Bug #35400142)

• Table map entries for some tables were written in the binary log, even though log_replica_updates
was set to OFF. (Bug #35199996)

• The NDB source code is now formatted according to the rules used by clang-format, which it aligns it
in this regard with the rest of the MySQL sources. (Bug #33517923)

• During setup of utility tables, the schema event handler sometimes hung waiting for the global schema
lock (GSL) to become available. This could happen when the physical tables had been dropped from the

10

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/alter-table-partition-operations.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/alter-table-partition-operations.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/show-status.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndbd.html#option_ndbd_initial
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/replication-options-binary-log.html#sysvar_binlog_cache_size
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/replication-options-binary-log.html#sysvar_log_replica_updates

MySQL NDB Cluster 8.0 Release Notes

cluster, or when the connection was lost for some other reason. Now we use a try lock when attempting
to acquire the GSL in such cases, thus causing another setup check attempt to be made at a later time if
the global schema lock is not available. (Bug #32550019, Bug #35949017)

• Subscription reports were sent out too early by SUMA during a node restart, which could lead to schema
inconsistencies between cluster SQL nodes. In addition, an issue with the ndbinfo restart_info
table meant that restart phases for nodes that did not belong to any node group were not always
reported correctly. (Bug #30930132)

• Online table reorganization inserts rows from existing table fragments into new table fragments; then,
after committing the inserted rows, it deletes the original rows. It was found that the inserts caused SUMA
triggers to fire, and binary logging to occur, which led to the following issues:

• Inconsistent behavior, since DDL is generally logged as one or more statements, if at all, rather than
by row-level effect.

• It was incorrect, since only writes were logged, but not deletes.

• It was unsafe since tables with blobs did not receive associated the row changes required to form valid
binary log events.

• It used CPU and other resources needlessly.

For tables with no blob columns, this was primarily a performance issue; for tables having blob columns,
it was possible for this behavior to result in unplanned shutdowns of mysqld processes performing binary
logging and perhaps even data corruption downstream. (Bug #19912988)

References: See also: Bug #16028096, Bug #34843617.

• NDB API events are buffered to match the rates of production and consumption by user code. When
the maximum size set to avoid unbounded memory usage when the rate is mismatched for an extended
time was reached, event buffering stopped until the buffer usage dropped below a lower threshold; this
manifested as an inability to find the container for latest epoch in when handling NODE_FAILREP events.
To fix this problem, we add a TE_OUT_OF_MEMORY event to the buffer to inform the consumer that there
may be missing events.

Changes in MySQL NDB Cluster 8.0.35 (2023-10-25, General
Availability)

MySQL NDB Cluster 8.0.35 is a new release of NDB 8.0, based on MySQL Server 8.0 and including
features in version 8.0 of the NDB storage engine, as well as fixing recently discovered bugs in previous
NDB Cluster releases.

Obtaining NDB Cluster 8.0. NDB Cluster 8.0 source code and binaries can be obtained from https://
dev.mysql.com/downloads/cluster/.

For an overview of changes made in NDB Cluster 8.0, see What is New in MySQL NDB Cluster 8.0.

This release also incorporates all bug fixes and changes made in previous NDB Cluster releases, as well
as all bug fixes and feature changes which were added in mainline MySQL 8.0 through MySQL 8.0.35 (see
Changes in MySQL 8.0.35 (2023-10-25, General Availability)).

Bugs Fixed

• NDB Replication: Updates to primary keys of character types were not correctly represented in the
BEFORE and AFTER trigger values sent to the NDB binary log injector. This issue was previously fixed in

11

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-suma.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbinfo-restart-info.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-suma.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster.html
https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/downloads/cluster/
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-what-is-new.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-relnotes-en/news-8-0-35.html

MySQL NDB Cluster 8.0 Release Notes

part, but it was discovered subsequently that the problem still occurred when the mysqld was run with
the binary logging options having the values listed here:

• --ndb-log-update-minimal=ON

• --ndb-log-update-as-write=OFF

The minimal binary log format excluded all primary key columns from the AFTER values reflecting the
updated row, the rationale for this being a flawed assumption that the primary key remained constant
when an update trigger was received. This did not take into account the fact that, if the primary key uses
a character data type, an update trigger is received if character columns are updated to values treated
as equal by the comparison rules of the collation used.

To be able to replicate such changes, we need to include them in the AFTER values; this fix ensures that
we do so. (Bug #34540016)

References: See also: Bug #27522732, Bug #34312769, Bug #34388068.

• NDB Cluster APIs: The header files ndb_version.h and mgmapi.h required C++ to compile, even
though they should require C only. (Bug #35709497)

• NDB Cluster APIs: Ndb::pollEvents2() did not set NDB_FAILURE_GCI (~(Uint64)0) to indicate
cluster failure. (Bug #35671818)

References: See also: Bug #31926584. This issue is a regression of: Bug #18753887.

• NDB Client Programs: When ndb_select_all failed to read all data from the table, it always tried to
re-read it. This could lead to the two problems listed here:

• Returning a non-empty partial result eventually led to spurious reports of duplicate rows.

• The table header was printed on every retry.

Now when ndb_select_all is unsuccessful at reading all the table data, its behavior is as follows:

• When the result is non-empty, ndb_select_all halts with an error (and does not retry the scan of
the table).

• When the result is empty, ndb_select_all retries the scan, reusing the old header.

(Bug #35510814)

• NDB Cluster did not compile using Clang 15. (Bug #35763112)

• When a TransporterRegistry (TR) instance connects to a management server, it first uses the
MGM API, and then converts the connection to a Transporter connection for further communication.
The initial connection had an excessively long timeout (60 seconds) so that, in the case of a cluster
having two management servers where one was unavailable, clients were forced to wait until this
management server timed out before being able to connect to the available one.

We fix this by setting the MGM API connection timeout to 5000 milliseconds, which is equal to the
timeout used by the TR for getting and setting dynamic ports. (Bug #35714466)

• Values for causes of conflicts used in conflict resolution exceptions tables were misaligned such that the
order of ROW_ALREADY_EXISTS and ROW_DOES_NOT_EXIST was reversed. (Bug #35708719)

• When TLS is used over the TCP transporter, the ssl_writev() method may return
TLS_BUSY_TRY_AGAIN in cases where the underlying SSL_write() returned either

12

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysqld.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#option_mysqld_ndb-log-update-minimal
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#option_mysqld_ndb-log-update-as-write
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndb.html#ndb-ndb-pollevents2
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-select-all.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-select-all.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-select-all.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-select-all.html

MySQL NDB Cluster 8.0 Release Notes

SSL_ERROR_WANT_READ or SSL_ERROR_WANT_WRITE, which is used to indicate to the upper layers
that it is necessary to try the write again later.

Since TCP_Transporter::doSend() may write in a loop in which multiple blocks of buffered
data are written using a sequence of writev() calls, we may have successfully written
some buffered data before encountering an SSL_ERROR_WANT_WRITE. In such cases the
handling of the TLS_BUSY_TRY_AGAIN was simply to return from the loop, without first calling
iovec_data_sent(sum_sent) in order to inform the buffering layer of what was sent.

This resulted in later tries to resend a chunk which had already been sent, calling writev() with both
duplicated data and an incorrect length argument. This resulted in a combination of checksum errors and
SSL writev() failing with bad length errors reported in the logs.

We fix this by breaking out of the send loop rather than just returning, so that execution falls through to
the point in the code where such status updates are supposed to take place. (Bug #35693207)

• When DUMP 9993 was used in an attempt to release a signal block from a data node where a block had
not been set previously using DUMP 9992, the data node shut down unexpectedly. (Bug #35619947)

• Improved NDBFS debugging output for bad requests. (Bug #35500304)

References: This issue is a regression of: Bug #28922609.

• When other events led to NDBFS dumping requests to the log, some of the names of the request types
were printed as Unknown action. (Bug #35499931)

• ndb_restore did not update compare-as-equal primary key values changed during backup. (Bug
#35420131)

• Backups using NOWAIT did not start following a restart of the data node. (Bug #35389533)

• The data node process printed a stack trace during program exit due to conditions other than software
errors, leading to possible confusion in some cases. (Bug #34836463)

References: See also: Bug #34629622.

• When a data node process received a Unix signal (such as with kill -6), the signal handler function
showed a stack trace, then called ErrorReporter, which also showed a stack trace. Now in such
cases, ErrorReporter checks for this situation and does not print a stack trace of its own when called
from the signal handler. (Bug #34629622)

References: See also: Bug #34836463.

• In cases where the distributed global checkpoint (GCP) protocol stops making progress, this
is detected and optionally handled by the GCP monitor, with handling as determined by the
TimeBetweenEpochsTimeout and TimeBetweenGlobalCheckpointsTimeout data node
parameters.

The LCP protocol is mostly node-local, but depends on the progress of the GCP protocol at the end of
a local checkpoint (LCP); this means that, if the GCP protocol stalls, LCPs may also stall in this state. If
the LCP watchdog detects that the LCP is stalled in this end state, it should defer to the GCP monitor to
handle this situation, since the GCP Monitor is distribution-aware.

If no GCP monitor limit is set (TimeBetweenEpochsTimeout is equal 0), no handling of GCP stalls
is performed by the GCP monitor. In this case, the LCP watchdog was still taking action which could
eventually lead to cluster failure; this fix corrects this misbehavior so that the LCP watchdog no longer
takes any such action. (Bug #29885899)

13

https://dev.mysql.com/doc/ndb-internals/en/dump-command-9993.html
https://dev.mysql.com/doc/ndb-internals/en/dump-command-9992.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-timebetweenglobalcheckpointstimeout

MySQL NDB Cluster 8.0 Release Notes

• Previously, when a timeout was detected during transaction commit and completion, the transaction
coordinator (TC) switched to a serial commit-complete execution protocol, which slowed commit-
complete processing for large transactions, affecting GCP_COMMIT delays and epoch sizes. Instead of
switching in such cases, the TC now continues waiting for parallel commit-complete, periodically logging
a transaction summary, with states and nodes involved. (Bug #22602898)

References: See also: Bug #35260944.

• When an ALTER TABLE adds columns to a table, the maxRecordSize used by local checkpoints to
allocate buffer space for rows may change; this is set in a GET_TABINFOCONF signal and used again
later in BACKUP_FRAGMENT_REQ. If, during the gap between these two signals, an ALTER TABLE
changed the number of columns, the value of maxRecordSize used could be stale, thus be inaccurate,
and so lead to further issues.

Now we always update maxRecordSize (from DBTUP) on receipt of a BACKUP_FRAGMENT_REQ signal,
before attempting the allocation of the row buffer. (Bug #105895, Bug #33680100)

Changes in MySQL NDB Cluster 8.0.34 (2023-07-18, General
Availability)

MySQL NDB Cluster 8.0.34 is a new release of NDB 8.0, based on MySQL Server 8.0 and including
features in version 8.0 of the NDB storage engine, as well as fixing recently discovered bugs in previous
NDB Cluster releases.

Obtaining NDB Cluster 8.0. NDB Cluster 8.0 source code and binaries can be obtained from https://
dev.mysql.com/downloads/cluster/.

For an overview of changes made in NDB Cluster 8.0, see What is New in MySQL NDB Cluster 8.0.

This release also incorporates all bug fixes and changes made in previous NDB Cluster releases, as well
as all bug fixes and feature changes which were added in mainline MySQL 8.0 through MySQL 8.0.34 (see
Changes in MySQL 8.0.34 (2023-07-18, General Availability)).

• IPv6 Support

• Functionality Added or Changed

• Bugs Fixed

IPv6 Support

• NDB did not start if IPv6 support was not enabled on the host, even when no nodes in the cluster used
any IPv6 addresses. (Bug #106485, Bug #33324817, Bug #33870642, WL #15661)

Functionality Added or Changed

• Important Change; NDB Cluster APIs: The NdbRecord interface allows equal changes of primary key
values; that is, you can update a primary key value to its current value, or to a value which compares as
equal according to the collation rules being used, without raising an error. NdbRecord does not itself try
to prevent the update; instead, the data nodes check whether a primary key is updated to an unequal
value and in this case reject the update with Error 897: Update attempt of primary key via
ndbcluster internal api.

Previously, when using any other mechanism than NdbRecord in an attempt to update a primary key
value, the NDB API returned error 4202 Set value on tuple key attribute is not allowed,

14

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/alter-table.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbtup.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster.html
https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/downloads/cluster/
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-what-is-new.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-relnotes-en/news-8-0-34.html
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndbrecord.html

MySQL NDB Cluster 8.0 Release Notes

even setting a value identical to the existing one. With this release, the check when performing updates
by other means is now passed off to the data nodes, as it is already by NdbRecord.

This change applies to performing primary key updates with NdbOperation::setValue(),
NdbInterpretedCode::write_attr(), and other methods of these two classes which set column
values (including NdbOperation methods incValue(), subValue(), NdbInterpretedCode
methods add_val(), sub_val(), and so on), as well as the OperationOptions::OO_SETVALUE
extension to the NdbOperation interface. (Bug #35106292)

Bugs Fixed

• NDB Cluster APIs: Printing of debug log messages was enabled by default for
Ndb_cluster_connection. (Bug #35416908)

References: See also: Bug #35927.

• NDB Cluster APIs: While setting up an NdbEventOperation, it is possible to pass a pointer to a
buffer provided by the application; when data is later received, it should be available in that specified
location.

The received data was properly placed in the provided buffer location, but the NDB API also allocated
internal buffers which, subsequently, were not actually needed, ultimately wasting resources. This
problem primarily manifested itself in applications subscribing to data changes from NDB using the
NdbEventOperation::getValue() and getPreValue() functions with the buffer provided by
application.

To remedy this issue, we no longer allocate internal buffers in such cases. (Bug #35292716)

• When dropping an NdbEventOperation after use, the ndbcluster plugin now first explicitly clears
the object's custom data area. (Bug #35424845)

• After a socket polled as readable in NdbSocket::readln(), it was possible for SSL_peek() to block
in the kernel when the TLS layer held no application data. We fix this by releasing the lock on the user
mutex during SSL_peek(), as well as when polling. (Bug #35407354)

• When handling the connection (or reconnection) of an API node, it was possible for data nodes to
inform the API node that it was permitted to send requests too quickly, which could result in requests not
being delivered and subsequently timing out on the API node with errors such as Error 4008 Receive
from Ndb failed or Error 4012 Request ndbd time-out, maybe due to high load or
communication problems. (Bug #35387076)

• Made the following improvements in warning output:

• Now, in addition to local checkpoint (LCP) elapsed time, the maximum time allowed without any
progress is also printed.

• Table IDs and fragment IDs are undefined and thus not relevant when an LCP has reached
WAIT_END_LCP state, and are no longer printed at that point.

• When the maximum limit was reached, the same information was shown twice, as both warning and
crash information.

(Bug #35376705)

• Memory consumption of long-lived threads running inside the ndbcluster plugin grew when accessing
the data dictionary. (Bug #35362906)

15

https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndboperation.html#ndb-ndboperation-setvalue
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndbinterpretedcode.html#ndb-ndbinterpretedcode-write-attr
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndboperation.html#ndb-ndboperation-incvalue
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndboperation.html#ndb-ndboperation-subvalue
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndbinterpretedcode.html#ndb-ndbinterpretedcode-add-val
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndbinterpretedcode.html#ndb-ndbinterpretedcode-sub-val
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndboperation.html
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndb-cluster-connection.html
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndbeventoperation.html
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndbeventoperation.html#ndb-ndbeventoperation-getvalue
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndbeventoperation.html#ndb-ndbeventoperation-getprevalue
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndbeventoperation.html

MySQL NDB Cluster 8.0 Release Notes

• A failure to connect could lead ndb_restore to exit with code 1, without reporting any error message.
Now we supply an appropriate error message in such cases. (Bug #35306351)

• When deferred triggers remained pending for an uncommitted transaction, a subsequent transaction
could waste resources performing unnecessary checks for deferred triggers; this could lead to an
unplanned shutdown of the data node if the latter transaction had no committable operations.

This was because, in some cases, the control state was not reinitialized for management objects used
by DBTC.

We fix this by making sure that state initialization is performed for any such object before it is used. (Bug
#35256375)

• A pushdown join between queries featuring very large and possibly overlapping IN() and NOT IN()
lists caused SQL nodes to exit unexpectedly. One or more of the IN() (or NOT IN()) operators
required in excess of 2500 arguments to trigger this issue. (Bug #35185670, Bug #35293781)

• The buffers allocated for a key of size MAX_KEY_SIZE were of insufficient size. (Bug #35155005)

• The fix for a previous issue added a check to ensure that fragmented signals are never sent to V_QUERY
blocks, but this check did not take into account that, when the receiving node is not a data node, the
block number is not applicable. (Bug #35154637)

References: This issue is a regression of: Bug #34776970.

• ndbcluster plugin log messages now use SYSTEM as the log level and NDB as the subsystem for
logging. This means that informational messages from the ndbcluster plugin are always printed; their
verbosity can be controlled by using --ndb_extra_logging. (Bug #35150213)

• We no longer print an informational message Validating excluded objects to the
SQL node's error log every ndb_metadata_check_interval seconds (default 60) when
log_error_verbosity is greater than or equal to 3 (INFO level). It was found that such messages
flooded the error log, making it difficult to examine and using excess disk space, while not providing any
additional benefit. (Bug #35103991)

• Some calls made by the ndbcluster handler to push_warning_printf() used severity level
ERROR, which caused an assertion in debug builds. This fix changes all such calls to use severity
WARNING instead. (Bug #35092279)

• When a connection between a data node and an API or management node was established but
communication was available only from the other node to the data node, the data node considered the
other node “live”, since it was receiving heartbeats, but the other node did not monitor heartbeats and
so reported no problems with the connection. This meant that the data node assumed wrongly that the
other node was (fully) connected.

We solve this issue by having the API or management node side begin to monitor data node liveness
even before receiving the first REGCONF signal from it; the other node sends a REGREQ signal every 100
milliseconds, and only if it receives no REGCONF from the data node in response within 60 seconds is the
node reported as disconnected. (Bug #35031303)

• The log contained a high volume of messages having the form DICT: index index number stats
auto-update requested, logged by the DBDICT block each time it received a report from DBTUX
requesting an update. These requests often occur in quick succession during writes to the table, with

16

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbtc.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/comparison-operators.html#operator_in
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#sysvar_ndb_extra_logging
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#sysvar_ndb_metadata_check_interval
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/server-system-variables.html#sysvar_log_error_verbosity
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbdict.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbtux.html

MySQL NDB Cluster 8.0 Release Notes

the additional possibility in this case that duplicate requests for updates to the same index were being
logged.

Now we log such messages just before DBDICT actually performs the calculation. This removes
duplicate messages and spaces out messages related to different indexes. Additional debug log
messages are also introduced by this fix, to improve visibility of the decisions taken and calculations
performed. (Bug #34760437)

• A comparison check in Dblqh::handle_nr_copy() for the case where two keys were not binary-
identical could still compare as equal by collation rules if the key had any character columns, but did
not actually check for the existence of the keys. This meant it was possible to call xfrm_key() with an
undefined key. (Bug #34734627)

References: See also: Bug #34681439. This issue is a regression of: Bug #30884622.

• Local checkpoints (LCPs) wait for a global checkpoint (GCP) to finish for a fixed time during the end
phase, so they were performed sometimes even before all nodes were started.

In addition, this bound, calculated by the GCP coordinator, was available only on the coordinator itself,
and only when the node had been started (start phase 101).

These two issues are fixed by calculating the bound earlier in start phase 4; GCP participants also
calculate the bound whenever a node joins or leaves the cluster. (Bug #32528899)

Changes in MySQL NDB Cluster 8.0.33 (2023-04-18, General
Availability)

MySQL NDB Cluster 8.0.33 is a new release of NDB 8.0, based on MySQL Server 8.0 and including
features in version 8.0 of the NDB storage engine, as well as fixing recently discovered bugs in previous
NDB Cluster releases.

Obtaining NDB Cluster 8.0. NDB Cluster 8.0 source code and binaries can be obtained from https://
dev.mysql.com/downloads/cluster/.

For an overview of changes made in NDB Cluster 8.0, see What is New in MySQL NDB Cluster 8.0.

This release also incorporates all bug fixes and changes made in previous NDB Cluster releases, as well
as all bug fixes and feature changes which were added in mainline MySQL 8.0 through MySQL 8.0.33 (see
Changes in MySQL 8.0.33 (2023-04-18, General Availability)).

• Parallel Event Execution (Multithreaded Replica)

• Functionality Added or Changed

• Bugs Fixed

Parallel Event Execution (Multithreaded Replica)

• NDB Replication: NDB Cluster replication now supports the MySQL multithreaded applier (MTA) on
replica servers. This makes it possible for binary log transactions to be applied in parallel on the replica,
increasing peak replication throughput. To enable this on the replica, it is necessary to perform the
following steps:

• Set the --ndb-log-transaction-dependency option, added in this release, to ON. This must be
done on startup of the source mysqld.

17

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster.html
https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/downloads/cluster/
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-what-is-new.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-relnotes-en/news-8-0-33.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#option_mysqld_ndb-log-transaction-dependency
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysqld.html

MySQL NDB Cluster 8.0 Release Notes

• Set the binlog_transaction_dependency_tracking server system variable to WRITESET, also
on the source, which causes transaction dependencies to be determined at the source. This can be
done at runtime.

• Make sure the replica uses multiple worker threads; this is determined by the value of the
replica_parallel_workers server system variable, which NDB now honors (previously, NDB
effectively ignored any value set for this variable). The default is 4, and can be changed on the replica
at runtime.

You can adjust the size of the buffer used to store the transaction dependency history on the source
using the --binlog-transaction-dependency-history-size option. The source should also
have replica_parallel_type set to LOGICAL_CLOCK (the default).

Additionally, on the replica, replica_preserve_commit_order must be ON (the default).

For more information about the MySQL replication applier, see Replication Threads. For more
information about NDB Cluster replication and the multithreaded applier, see NDB Cluster Replication
Using the Multithreaded Applier. (Bug #27960, Bug #11746675, Bug #35164090, Bug #34229520, WL
#14885, WL #15145, WL #15455, WL #15457)

Functionality Added or Changed

• NDB Cluster APIs: The Node.js library used to build the MySQL NoSQL Connector for JavaScript has
been upgraded to version 18.12.1. (Bug #35095122)

• MySQL NDB ClusterJ: Performance has been improved for accessing tables using a single-column
partition key when the column is of type CHAR or VARCHAR. (Bug #35027961)

• Beginning with this release, ndb_restore implements the --timestamp-printouts option, which
causes all error, info, and debug node log messages to be prefixed with timestamps. (Bug #34110068)

Bugs Fixed

• Microsoft Windows: Two memory leaks found by code inspection were removed from NDB process
handles on Windows platforms. (Bug #34872901)

• Microsoft Windows: On Windows platforms, the data node angel process did not detect whether a child
data node process exited normally. We fix this by keeping an open process handle to the child and using
this when probing for the child's exit. (Bug #34853213)

• NDB Replication: When using a multithreaded applier, the start_pos and end_pos columns of
the ndb.apply_status table (see ndb_apply_status Table) did not contain the correct position
information. (Bug #34806344)

• NDB Cluster APIs; MySQL NDB ClusterJ: MySQL ClusterJ uses a scratch buffer for primary key
hash calculations which was limited to 10000 bytes, which proved too small in some cases. Now we
malloc() the buffer if its size is not sufficient.

This also fixes an issue with the Ndb object methods startTransaction() and computeHash() in
the NDB API: Previously, if either of these methods was passed a temporary buffer of insufficient size,
the method failed. Now in such cases a temporary buffer is allocated.

Our thanks to Mikael Ronström for this contribution. (Bug #103814, Bug #32959894)

• NDB Cluster APIs: When dropping an event operation (NdbEventOperation) in the NDB API, it was
sometimes possible for the dropped event operation to remain visible to the application after instructing

18

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/replication-options-replica.html#sysvar_replica_parallel_workers
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/replication-options-binary-log.html#sysvar_binlog_transaction_dependency_history_size
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/replication-options-replica.html#sysvar_replica_parallel_type
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/replication-options-replica.html#sysvar_replica_preserve_commit_order
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/replication-threads.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-replication-mta.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-replication-mta.html
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-nodejs.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/char.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/char.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_timestamp-printouts
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-replication-schema.html#ndb-replication-ndb-apply-status
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndb.html
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndb.html#ndb-ndb-starttransaction
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndb.html#ndb-ndb-computehash
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndbeventoperation.html

MySQL NDB Cluster 8.0 Release Notes

the data nodes to stop sending events related to this event operation, but before all pending buffered
events were consumed and discarded. This could be observed in certain cases when performing an
online alter operation, such as ADD COLUMN or RENAME COLUMN, along with concurrent writes to the
affected table.

Further analysis showed that the dropped events were accessible when iterating through event
operations with Ndb::getGCIEventOperations(). Now, this method skips dropped events when
called iteratively. (Bug #34809944)

• NDB Cluster APIs: Event::getReport() always returned ER_UPDATED for an event opened from
NDB, instead of returning the flags actually used by the report object. (Bug #34667384)

• Before a new NDB table definition can be stored in the data dictionary, any existing definition
must be removed. Table definitions have two unique values, the table name and the NDB Cluster
se_private_id. During installation of a new table definition, we check whether there is any existing
definition with the same table name and, if so, remove it. Then we check whether the table removed and
the one being installed have the same se_private_id; if they do not, any definition that is occupying
this se_private_id is considered stale, and removed as well.

Problems arose when no existing definition was found by the search using the table's name, since
no definition was dropped even if one occupied se_private_id, leading to a duplicate key error
when attempting to store the new table. The internal store_table() function attempted to clear the
diagnostics area, remove the stale definition of se_private_id, and try to store it once again, but the
diagnostics area was not actually cleared, thus leaking the error is thus leaked and presenting it to the
user.

To fix this, we remove any stale table definition, regardless of any action taken (or not) by
store_table(). (Bug #35089015)

• Fixed the following two issues in the output of ndb_restore:

• The backup file format version was shown for both the backup file format version and the version of
the cluster which produced the backup.

• To reduce confusion between the version of the file format and the version of the cluster which
produced the backup, the backup file format version is now shown using hexadecimal notation.

(Bug #35079426)

References: This issue is a regression of: Bug #34110068.

• Removed a memory leak in the DBDICT kernel block caused when an internal foreign key definition
record was not released when no longer needed. This could be triggered by either of the following
events:

• Drop of a foreign key constraint on an NDB table

• Rejection of an attempt to create a foreign key constraint on an NDB table

Such records use the DISK_RECORDS memory resource; you can check this on a running
cluster by executing SELECT node_id, used FROM ndbinfo.resources WHERE
resource_name='DISK_RECORDS' in the mysql client. This resource uses SharedGlobalMemory,
exhaustion of which could lead not only to the rejection of attempts to create foreign keys, but of
queries making use of joins as well, since the DBSPJ block also uses shared global memory by way of
QUERY_MEMORY. (Bug #35064142)

19

https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndb.html#ndb-ndb-getgcieventoperations
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-event.html#ndb-event-getreport
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbdict.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-sharedglobalmemory
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbspj.html

MySQL NDB Cluster 8.0 Release Notes

• When attempting a copying alter operation with --ndb-allow-copying-alter-table = OFF, the
reason for rejection of the statement was not always made clear to the user. (Bug #35059079)

• When a transaction coordinator is starting fragment scans with many fragments to scan, it may take
a realtime break (RTB) during the process to ensure fair CPU access for other requests. When the
requesting API disconnected and API failure handling for the scan state occurred before the RTB
continuation returned, continuation processing could not proceed because the scan state had been
removed.

We fix this by adding appropriate checks on the scan state as part of the continuation process. (Bug
#35037683)

• Sender and receiver signal IDs were printed in trace logs as signed values even though they are
actually unsigned 32-bit numbers. This could result in confusion when the top bit was set, as it cuased
such numbers to be shown as negatives, counting upwards from -MAX_32_BIT_SIGNED_INT. (Bug
#35037396)

• A fiber used by the DICT block monitors all indexes, and triggers index statistics calculations if requested
by DBTUX index fragment monitoring; these calculations are performed using a schema transaction.
When the DICT fiber attempts but fails to seize a transaction handle for requesting a schema transaction
to be started, fiber exited, so that no more automated index statistics updates could be performed
without a node failure. (Bug #34992370)

References: See also: Bug #34007422.

• Schema objects in NDB use composite versioning, comprising major and minor subversions. When a
schema object is first created, its major and minor versions are set; when an existing schema object is
altered in place, its minor subversion is incremented.

At restart time each data node checks schema objects as part of recovery; for foreign key objects, the
versions of referenced parent and child tables (and indexes, for foreign key references not to or from a
table's primary key) are checked for consistency. The table version of this check compares only major
subversions, allowing tables to evolve, but the index version also compares minor subversions; this
resulted in a failure at restart time when an index had been altered.

We fix this by comparing only major subversions for indexes in such cases. (Bug #34976028)

References: See also: Bug #21363253.

• ndb_import sometimes silently ignored hint failure for tables having large VARCHAR primary keys. For
hinting which transaction coordinator to use, ndb_import can use the row's partitioning key, using a
4092 byte buffer to compute the hash for the key.

This was problematic when the key included a VARCHAR column using UTF8, since the hash buffer may
require in bytes up to 24 times the number of maximum characters in the column, depending on the
column's collation; the hash computation failed but the calling code in ndb_import did not check for
this, and continued using an undefined hash value which yielded an undefined hint.

This did not lead to any functional problems, but was not optimal, and the user was not notified of it.

We fix this by ensuring that ndb_import always uses sufficient buffer for handling character columns
(regardless of their collations) in the key, and adding a check in ndb_import for any failures in hash
computation and reporting these to the user. (Bug #34917498)

• When the ndbcluster plugin creates the ndb_schema table, the plugin inserts a row containing
metadata, which is needed to keep track of this NDB Cluster instance, and which is stored as a set of
key-value pairs in a row in this table.

20

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#option_mysqld_ndb-allow-copying-alter-table
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbdict.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbtux.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-import.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/char.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-import.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-import.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-import.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-import.html

MySQL NDB Cluster 8.0 Release Notes

The ndb_schema table is hidden from MySQL and so not possible to query using SQL, but contains
a UUID generated by the same MySQL server that creates the ndb_schema table; the same UUID is
also stored as metadata in the data dictionary of each MySQL Server when the ndb_schema table is
installed on it.

When a mysqld connects (or reconnects) to NDB, it compares the UUID in its own data dictionary with
the UUID stored in NDB in order to detect whether it is reconnecting to the same cluster; if not, the entire
contents of the data dictionary are scrapped in order to make it faster and easier to install all tables fresh
from NDB.

One such case occurs when all NDB data nodes have been restarted with --initial, thus removing
all data and tables. Another happens when the ndb_schema table has been restored from a backup
without restoring any of its data, since this means that the row for the ndb_schema table would be
missing.

To deal with these types of situations, we now make sure that, when synchronization has completed,
there is always a row in the NDB dictionary with a UUID matching the UUID stored in the MySQL server
data dictionary. (Bug #34876468)

• When running an NDB Cluster with multiple management servers, termination of the ndb_mgmd
processes required an excessive amount of time when shutting down the cluster. (Bug #34872372)

• Schema distribution timeout was detected by the schema distribution coordinator after dropping and re-
creating the mysql.ndb_schema table when any nodes that were subscribed beforehand had not yet
resubscribed when the next schema operation began. This was due to a stale list of subscribers being
left behind in the schema distribution data; these subscribers were assumed by the coordinator to be
participants in subsequent schema operations.

We fix this issue by clearing the list of known subscribers whenever the mysql.ndb_schema table is
dropped. (Bug #34843412)

• When requesting a new global checkpoint (GCP) from the data nodes, such as by the NDB Cluster
handler in mysqld to speed up delivery of schema distribution events and responses, the request was
sent 100 times. While the DBDIH block attempted to merge these duplicate requests into one, it was
possible on occasion to trigger more than one immediate GCP. (Bug #34836471)

• When the DBSPJ block receives a query for execution, it sets up its own internal plan for how to do so.
This plan is based on the query plan provided by the optimizer, with adaptions made to provide the most
efficient execution of the query, both in terms of elapsed time and of total resources used.

Query plans received by DBSPJ often contain star joins, in which several child tables depend on a
common parent, as in the query shown here:

SELECT STRAIGHT_JOIN * FROM t AS t1
INNER JOIN t AS t2 ON t2.a = t1.k
INNER JOIN t AS t3 ON t3.k = t1.k;

In such cases DBSPJ could submit key-range lookups to t2 and t3 in parallel (but does not do so). An
inner join also has the property that each inner joined row requires a match from the other tables in the
same join nest, else the row is eliminated from the result set. Thus, by using the key-range lookups, we
may retrieve rows from one such lookup which have no matches in the other, which effort is ultimately
wasted. Instead, DBSPJ sets up a sequential plan for such a query.

It was found that this worked as intended for queries having only inner joins, but if any of the tables are
left-joined, we did not take complete advantage of the preceding inner joined tables before issuing the
outer joined tables. Suppose the previous query is modified to include a left join, like this:

21

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysqld.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndbd.html#option_ndbd_initial
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-mgmd.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysqld.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbdih.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbspj.html

MySQL NDB Cluster 8.0 Release Notes

SELECT STRAIGHT_JOIN * FROM t AS t1
INNER JOIN t AS t2 ON t2.a = t1.k
LEFT JOIN t AS t3 ON t3.k = t1.k;

Using the following query against the ndbinfo.counters table, it is possible to observe how many
rows are returned for each query before and after query execution:

SELECT counter_name, SUM(val)
FROM ndbinfo.counters
WHERE block_name="DBSPJ" AND counter_name = "SCAN_ROWS_RETURNED";

It was thus determined that requests on t2 and t3 were submitted in parallel. Now in such cases, we
wait for the inner join to complete before issuing the left join, so that unmatched rows from t1 can be
eliminated from the outer join on t1 and t3. This results in less work to be performed by the data nodes,
and reduces the volumne handled by the transporter as well. (Bug #34782276)

• SPJ handling of a sorted result was found to suffer a significant performance impact compared to the
same result set when not sorted. Further investigation showed that most of the additional performance
overhead for sorted results lay in the implementation for sorted result retrieval, which required an
excessive number of SCAN_NEXTREQ round trips between the client and DBSPJ on the data nodes. (Bug
#34768353)

• DBSPJ now implements the firstMatch optimization for semijoins and antijoins, such as those found
in EXISTS and NOT EXISTS subqueries. (Bug #34768191)

• When the DBSPJ block sends SCAN_FRAGREQ and SCAN_NEXTREQ signals to the data nodes, it tries
to determine the optimum number of fragments to scan in parallel without starting more parallel scans
than needed to fill the available batch buffers, thus avoiding any need to send additional SCAN_NEXTREQ
signals to complete the scan of each fragment.

The DBSPJ block's statistics module calculates and samples the parallelism which was optimal for
fragment scans just completed, for each completed SCAN_FRAGREQ, providing a mean and standard
deviation of the sampled parallelism. This makes it possible to calculate a lower 95th percentile of the
parallelism (and batch size) which makes it possible to complete a SCAN_FRAGREQ without needing
additional SCAN_NEXTREQ signals.

It was found that the parallelism statistics seemed unable to provide a stable parallelism estimate and
that the standard deviation was unexpectedly high. This often led to the parallelism estimate being a
negative number (always rounded up to 1).

The flaw in the statistics calculation was found to be an underlying assumption that each sampled
SCAN_FRAGREQ contained the same number of key ranges to be scanned, which is not necessarily
the case. Typically a full batch of rows for the first SCAN_FRAGREQ, and relatively few rows for the final
SCAN_NEXTREQ returning the remaining rows; this resulted in wide variation in parallelism samples
which made the statistics obtained from them unreliable.

We fix this by basing the statistics on the number of keys actually sent in the SCAN_FRAGREQ, and
counting the rows returned from this request. Based on this it is possible to obtain record-per-key
statistics to be calculated and sampled. This makes it possible to calculate the number of fragments
which can be scanned, without overflowing the batch buffers. (Bug #34768106)

• It was possible in certain cases that both the NDB binary logging thread and metadata synchronization
attempted to synchronize the ndb_apply_status table, which led to a race condition. We fix this by
making sure that the ndb_apply_status table is monitored and created (or re-created) by the binary
logging thread only. (Bug #34750992)

22

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbinfo-counters.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbspj.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbspj.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbspj.html

MySQL NDB Cluster 8.0 Release Notes

• While starting a schema operation, the client is responsible for detecting timeouts until the coordinator
has received the first schema event; from that point, any schema operation timeout should be detected
by the coordinator. A problem occurred while the client was checking the timeout; it mistakenly set the
state indicating that timeout had occurred, which caused the coordinator to ignore the first schema event
taking longer than approximately one second to receive (that is, to write the send event plus handle in
the binary logging thread). This had the effect that, in these cases, the coordinator was not involved in
the schema operation.

We fix this by change the schema distribution timeout checking to be atomic, and to let it be performed
by either the client or the coordinator. In addition, we remove the state variable used for keeping track of
events received by the coordinator, and rely on the list of participants instead. (Bug #34741743)

• An SQL node did not start up correctly after restoring data with ndb_restore, such that, when it
was otherwise ready to accept connections, the binary log injector thread never became ready. It
was found that, when a mysqld was started after a data node initial restore from which new table IDs
were generated, the utility table's (ndb_*) MySQL data dictionary definition might not match the NDB
dictionary definition.

The existing mysqld definition is dropped by name, thus removing the unique ndbcluster-ID key
in the MySQL data dictionary but the new table ID could also already be occupied by another (stale)
definition. The resulting mistmatch prevented setup of the binary log.

To fix this problem we now explicitly drop any ndbcluster-ID definitions that might clash in such
cases with the table being installed. (Bug #34733051)

• After receiving a SIGTERM signal, ndb_mgmd did not wait for all threads to shut down before exiting.
(Bug #33522783)

References: See also: Bug #32446105.

• When multiple operations are pending on a single row, it is not possible to commit an operation which is
run concurrently with an operation which is pending abort. This could lead to data node shutdown during
the commit operation in DBACC, which could manifest when a single transaction contained more than
MaxDMLOperationsPerTransaction DML operations.

In addition, a transaction containing insert operations is rolled back if a statement that uses a locking
scan on the prepared insert fails due to too many DML operations. This could lead to an unplanned data
node shutdown during tuple deallocation due to a missing reference to the expected DBLQH deallocation
operation.

We solve this issue by allowing commit of a scan operation in such cases, in order to release locks
previously acquired during the transaction. We also add a new special case for this scenario, so that the
deallocation is performed in a single phase, and DBACC tells DBLQH to deallocate immediately; in DBLQH,
execTUP_DEALLOCREQ() is now able to handle this immediate deallocation request. (Bug #32491105)

References: See also: Bug #28893633, Bug #32997832.

• Cluster nodes sometimes reported Failed to convert connection to transporter warnings
in logs, even when this was not really necessary. (Bug #14784707)

• When started with no connection string on the command line, ndb_waiter printed Connecting
to mgmsrv at (null). Now in such cases, it prints Connecting to management server at
nodeid=0,localhost:1186 if no other default host is specified.

The --help option and other ndb_waiter program output was also improved. (Bug #12380163)

23

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysqld.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysqld.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-mgmd.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbacc.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-maxdmloperationspertransaction
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dblqh.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-waiter.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-waiter.html#option_ndb_waiter_help
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-waiter.html

MySQL NDB Cluster 8.0 Release Notes

• NdbSpin_Init() calculated the wrong number of loops in NdbSpin, and contained logic errors. (Bug
#108448, Bug #32497174, Bug #32594825)

References: See also: Bug #31765660, Bug #32413458, Bug #102506, Bug #32478388.

Changes in MySQL NDB Cluster 8.0.32 (2023-01-17, General
Availability)

MySQL NDB Cluster 8.0.32 is a new release of NDB 8.0, based on MySQL Server 8.0 and including
features in version 8.0 of the NDB storage engine, as well as fixing recently discovered bugs in previous
NDB Cluster releases.

Obtaining NDB Cluster 8.0. NDB Cluster 8.0 source code and binaries can be obtained from https://
dev.mysql.com/downloads/cluster/.

For an overview of changes made in NDB Cluster 8.0, see What is New in MySQL NDB Cluster 8.0.

This release also incorporates all bug fixes and changes made in previous NDB Cluster releases, as well
as all bug fixes and feature changes which were added in mainline MySQL 8.0 through MySQL 8.0.32 (see
Changes in MySQL 8.0.32 (2023-01-17, General Availability)).

• Functionality Added or Changed

• Bugs Fixed

Functionality Added or Changed

• Added the --config-binary-file option for ndb_config, which enables this program to read
configuration information from the management server's binary configuration cache. This can be useful,
for example, in determining whether or not the current version of the config.ini file has actually
been read by the management server and applied to the cluster. See the description of the option in the
MySQL NDB Cluster documentation, for more information and examples. (Bug #34773752)

Bugs Fixed

• Packaging: The man page for ndbxfrm was not present following installation. (Bug #34520046)

• Solaris; NDB Client Programs: ndb_top was not built for Solaris platforms. (Bug #34186837)

• MySQL NDB ClusterJ: ClusterJ could not be built on Ubuntu 22.10 with GCC 12.2. (Bug #34666985)

• In some contexts, a data node process may be sent SIGCHLD by other processes. Previously, the data
node process bound a signal handler treating this signal as an error, which could cause the process to
shut down unexpectedly when run in the foreground in a Kubernetes environment (and possibly under
other conditions as well). This occurred despite the fact that a data node process never starts child
processes itself, and thus there is no need to take action in such cases.

To fix this, the handler has been modified to use SIG_IGN, which should result in cleanup of any child
processes.

Note

mysqld and ndb_mgmd processes do not bind any handlers for SIGCHLD.

(Bug #34826194)

24

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster.html
https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/downloads/cluster/
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-what-is-new.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-relnotes-en/news-8-0-32.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-config.html#option_ndb_config_config-binary-file
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-config.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndbxfrm.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-top.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysqld.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-mgmd.html

MySQL NDB Cluster 8.0 Release Notes

• The running node from a node group scans each fragment (CopyFrag) and sends the rows to the
starting peer in order to synchronize it. If a row from the fragment is locked exclusively by a user
transaction, it blocks the scan from reading the fragment, causing the copyFrag to stall.

If the starting node fails during the CopyFrag phase then normal node failure handling takes place. The
cordinator node's transaction coordinator (TC) performs TC takeover of the user transactions from the
TCs on the failed node. Since the scan that aids copying the fragment data over to the starting node is
considered internal only, it is not a candidate for takeover, thus the takeover TC marks the CopyFrag
scan as closed at the next opportunity, and waits until it is closed.

The current issue arose when the CopyFrag scan was in the waiting for row lock state, and
the closing of the marked scan was not performed. This led to TC takeover stalling while waiting for the
close, causing unfinished node failure handling, and eventually a GCP stall potentially affecting redo
logging, local checkpoints, and NDB Replication.

We fix this by closing the marked CopyFrag scan whenever a node failure occurs while the CopyFrag
is waiting for a row lock. (Bug #34823988)

References: See also: Bug #35037327.

• In certain cases, invalid signal data was not handled correctly. (Bug #34787608)

• Sending of fragmented signals to virtual (V_QUERY) blocks is not supported, since the different
signal fragments may end up in different block instances. When DBTC or DBSPJ sends a
LQHKEYREQ or SCAN_FRAGREQ signal that may end up using V_QUERY, it checks whether the
signal is fragmented and in that case changes the receiver to an instance of DBLQH. The function
SimulatedBlock::sendBatchedFragmentedSignal() is intended to use the same check to
decide whether to fragment a given signal, but did not, with the result that signals were fragmented
which were not expected to be, sent using V_QUERY, and in that case likely to fail when received.

We fix this problem by making the size check in SimulatedBlock::sendFirstFragment(), used
by sendBatchedFragmentedSignal(), match the checks performed in DBTC and DBSPJ. (Bug
#34776970)

• When the DBSPJ block submits SCAN_FRAGREQ requests to the local data managers, it usually scans
only a subset of the fragments in parallel based on recsPrKeys statistics, if these are available, or just
make a guess if no statistics are available.

SPJ contains logic which may take advantage of the result collected from the first round of fragments
scanned; parallelism statistics are collected after SCAN_FRAGCONF replies are received, and first-match
elimination may eliminate keys needed to scan in subsequent rounds.

Scanning local fragments is expected to have less overhead than scanning remote fragments, so it is
preferable to err on the side of scan-parallelism for the local fragments. To take advantage of this, now
two rounds are made over the fragments, the first one allowing SCAN_FRAGREQ signals to be sent to
local fragments only, the second allowing such singals to be sent to any fragment expecting it. (Bug
#34768216)

References: See also: Bug #34768191.

• When pushing a join to the data nodes, the query request is distributed to the SPJ blocks of all data
nodes having local fragments for the first table (the SPJ root) in the pushed query. Each SPJ block
retrieves qualifying rows from the local fragments of this root table, then uses the retrieved rows to

25

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbtc.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbspj.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dblqh.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbspj.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbspj.html

MySQL NDB Cluster 8.0 Release Notes

generate a request to its joined child tables. If no qualifying rows are retrieved from the local fragments
of the root, SPJ has no further work to perform.

This implies that for a pushed join in which the root returns few rows, there are likely to be idling SPJ
workers not taking full advantage of the available parallelism. Now for such queries we do not include
very small tables in the pushed join, so that, if the next table in the join plan is larger, we start with that
one instead. (Bug #34723413)

• The safety check for a copying ALTER TABLE operation uses the sum of per-fragment commit count
values to determine whether any writes have been committed to a given table over a period of time.
Different replicas of the same fragment do not necessarily have the same commit count over time, since
a fragment replica's commit count is reset during node restart.

Read primary tables always route read requests to a table's primary fragment replicas. Read backup and
fully replicated tables optimize reads by allowing CommittedRead operations to be routed to backup
fragment replicas. This results in the set of commit counts read not always being stable for Read backup
and fully replicated tables, which can cause false positive failures for the copying ALTER TABLE safety
check.

This is solved by performing the copying ALTER TABLE safety check using a locking scan. Locked reads
are routed to the same set of primary (main) fragments every time, which causes these counts to be
stable. (Bug #34654470)

• Following execution of DROP NODEGROUP in the management client, attempting to creating or altering an
NDB table specifying an explicit number of partitions or using MAX_ROWS was rejected with Got error
771 'Given NODEGROUP doesn't exist in this cluster' from NDB. (Bug #34649576)

• TYPE_NOTE_TRUNCATED and TYPE_NOTE_TIME_TRUNCATED were treated as errors instead of being
ignored, as was the case prior to NDB 8.0.27. This stopped building of interpreted code for pushed
conditions, with the condition being returned to the server.

We fix this by reverting the handling of these status types to ignoring them, as was done previously. (Bug
#34644930)

• When reorganizing a table with ALTER TABLE ... REORGANIZE PARTITION following
addition of new data nodes to the cluster, fragments were not redistributed properly when the
ClassicFragmentation configuration parameter was set to OFF. (Bug #34640773)

• Fixed an uninitialized padding variable in src/common/util/ndb_zlib.cpp. (Bug #34639073)

• When the NDB_STORED_USER privilege was granted to a user with an empty password, the user's
password on each of the other SQL nodes was expired. (Bug #34626727)

• In a cluster with multiple management nodes, when one management node connected and later
disconnected, any remaining management nodes were not aware of this node and were eventually
forced to shut down when stopped nodes reconnected; this happened whenever the cluster still had live
data nodes.

On investigation it was found that node disconnection handling was done in the NF_COMPLETEREP path
in ConfigManager but the expected NF_COMPLETEREP signal never actually arrived. We solve this by
handling disconnecting management nodes when the NODE_FAILREP signal arrives, rather than waiting
for NF_COMPLETEREP. (Bug #34582919)

• The --diff-default option and related options for ndb_config did not produce any usable output.
(Bug #34549189)

References: This issue is a regression of: Bug #32233543.

26

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/alter-table.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-mgm-client-commands.html#ndbclient-drop-nodegroup
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/alter-table-partition-operations.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbmtd-classicfragmentation
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-config.html#option_ndb_config_diff-default
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-config.html

MySQL NDB Cluster 8.0 Release Notes

• Encrypted backups created on a system using one endian could not be restored on systems with the
other endian; for example, encrypted backups taken on an x86 system could not be restored on a
SPARC system, nor the reverse. (Bug #34446917)

• A query using a pushed join with an IN subquery did not return the expected result with
ndb_join_pushdown=ON and the BatchSize SQL node parameter set to a very small value such as
1. (Bug #34231718)

• When defining a binary log transaction, the transaction is kept in an in-memory binary log cache before it
is flushed to the binary log file. If a binary log transaction exceeds the size of the cache, it is written to a
temporary file which is set up early in the initialization of the binary log thread. This write introduces extra
disk I/O in the binary log injector path. The number of disk writes performed globally by the binary log
injector can be found by checking the value of the Binlog_cache_disk_use system status variable,
but otherwise, the NDB handler's binary log injector thread had no way to observe this.

Since Binlog_cache_disk_use is accessible by the binary log injector, it can be checked both before
and after the transaction is committed to see whether there were any changes to its value. If any cache
spills have taken place, this is reflected by the difference of the two values, and the binary log injector
thread can report it. (Bug #33960014)

• When closing a file using compressed or encrypted format after reading the entire file, verify its
checksum. (Bug #32550145)

• When reorganizing a table with ALTER TABLE ... REORGANIZE PARTITION following addition of
new data nodes to the cluster, unique hash indexes were not redistributed properly. (Bug #30049013)

• For a partial local checkpoint, each fragment LCP must be to be able to determine the precise state of
the fragment at the start of the LCP and the precise difference in the fragment between the start of the
current LCP and the start of the previous one. This is tracked using row header information and page
header information; in cases where physical pages are removed this is also tracked in logical page map
information.

A page included in the current LCP, before the LCP scan reaches it, is released due to the commit or
rollback of some operation on the fragment, also releasing the last used storage on the page.

Since the released page could not be found by the scan, the release itself set the LCP_SCANNED_BIT
of the page map entry it was mapped into, in order to indicate that the page was already handled from
the point of view of the current LCP, causing subsequent allocation and release of the pages mapped
to the entry during the LCP to be ignored. The state of the entry at the start of the LCP was also set as
allocated in the page map entry.

These settings are cleared only when the next LCP is prepared. Any page release associated with the
page map entry before the clearance would violate the requirement that the bit is not set; we resolve this
issue by removing the (incorrect) requirement. (Bug #23539857)

• A data node could hit an overly strict assertion when the thread liveness watchdog triggered while
the node was already shutting down. We fix the issue by relaxing this assertion in such cases. (Bug
#22159697)

• Removed a leak of long message buffer memory that occurred each time an index was scanned for
updating index statistics. (Bug #108043, Bug #34568135)

27

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/comparison-operators.html#operator_in
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#sysvar_ndb_join_pushdown
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/server-status-variables.html#statvar_Binlog_cache_disk_use
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/alter-table-partition-operations.html

MySQL NDB Cluster 8.0 Release Notes

• Backup::get_total_memory(), used to calculate proposed disk write speeds for checkpoints,
wrongly considered DataMemory that may not have been used in the calculation of memory used by
LDMs.

We fix this by obtaining the total DataMemory used by the LDM threads instead. as reported by DBTUP.
(Bug #106907, Bug #34035805)

• Fixed an uninitialized variable in Suma.cpp. (Bug #106081, Bug #33764143)

Changes in MySQL NDB Cluster 8.0.31 (2022-10-11, General
Availability)

MySQL NDB Cluster 8.0.31 is a new release of NDB 8.0, based on MySQL Server 8.0 and including
features in version 8.0 of the NDB storage engine, as well as fixing recently discovered bugs in previous
NDB Cluster releases.

Obtaining NDB Cluster 8.0. NDB Cluster 8.0 source code and binaries can be obtained from https://
dev.mysql.com/downloads/cluster/.

For an overview of changes made in NDB Cluster 8.0, see What is New in MySQL NDB Cluster 8.0.

This release also incorporates all bug fixes and changes made in previous NDB Cluster releases, as well
as all bug fixes and feature changes which were added in mainline MySQL 8.0 through MySQL 8.0.31 (see
Changes in MySQL 8.0.31 (2022-10-11, General Availability)).

• Transparent Data Encryption (TDE)

• RPM Notes

• Functionality Added or Changed

• Bugs Fixed

Transparent Data Encryption (TDE)

• This release implements Transparent Data Encryption (TDE), which provides protection by encryption
of NDB data at rest. This includes all NDB table data and log files which are persisted to disk, and is
intended to protect against recovering data subsequent to unauthorized access to NDB Cluster data files
such as tablespace files or logs.

To enforce encryption on files storing NDB table data, set EncryptedFileSystem to 1, which causes
all data to be encrypted and decrypted as necessary, as it is written to and read from these files. These
include LCP data files, redo log files, tablespace files, and undo log files.

When using file system encryption with NDB, you must also perform the following tasks:

• Provide a password to each data node when starting or restarting it, using either one of the data node
options --filesystem-password or --filesystem-password-from-stdin. This password
uses the same format and is subject to the same constraints as the password used for an encrypted
NDB backup (see the description of the ndb_restore --backup-password option).

You can provide the encryption password on the command line, or in a my.cnf file. See NDB File
System Encryption Setup and Usage, for more information and examples.

Only tables using the NDB storage engine are subject to encryption by this feature; see NDB File System
Encryption Limitations. Other tables, such as those used for NDB schema distribution, replication, and

28

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-datamemory
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbtup.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster.html
https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/downloads/cluster/
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-what-is-new.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-relnotes-en/news-8-0-31.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-encryptedfilesystem
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndbd.html#option_ndbd_filesystem-password
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndbd.html#option_ndbd_filesystem-password-from-stdin
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_backup-password
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-tde-setup.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-tde-setup.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-tde-limitations.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-tde-limitations.html

MySQL NDB Cluster 8.0 Release Notes

binary logging, typically use InnoDB; see InnoDB Data-at-Rest Encryption. For information about
encryption of binary log files, see Encrypting Binary Log Files and Relay Log Files.

Files generated or used by NDB processes, such as operating system logs, crash logs, and core dumps,
are not encrypted. Files used by NDB but not containing any user table data are also not encrypted;
these include LCP control files, schema files, and system files (see NDB Cluster Data Node File
System). The management server configuration cache is also not encrypted.

In addition, NDB 8.0.31 adds a new utility ndb_secretsfile_reader for extracting key information
from encrypted files.

This enhancement builds on work done in NDB 8.0.22 to implement encrypted NDB backups. For more
information, see the description of the RequireEncryptedBackup configuration parameter, as well as
Using The NDB Cluster Management Client to Create a Backup.

Note

Upgrading an encrypted filesystem to NDB 8.0.31 or later from a previous release
requires a rolling initial restart of the data nodes, due to improvements in key
handling.

(Bug #34417282, WL #14687, WL #15051, WL #15204)

RPM Notes

• ndbinfo Information Database: Upgrades of SQL nodes from NDB 7.5 or NDB 7.6 to NDB 8.0
using RPM files did not enable the ndbinfo plugin properly. This was due to the fact that, since the
ndbcluster plugin is disabled during an upgrade of mysqld, so is the ndbinfo plugin; this led to
.frm files associated with ndbinfo tables being left behind following the upgrade.

Now in such cases, any ndbinfo table .frm files from the earlier release are removed, and the plugin
enabled. (Bug #34432446)

Functionality Added or Changed

• Important Change; NDB Client Programs: A number of NDB program options were never
implemented and have now been removed. The options and the programs from which they have been
dropped are listed here:

• --ndb-optimized-node-selection: ndbd, ndbmtd, ndb_mgm, ndb_delete_all, ndb_desc,
ndb_drop_index, ndb_drop_table, ndb_show_tables, ndb_blob_tool, ndb_config,
ndb_index_stat, ndb_move_data, ndbinfo_select_all, ndb_select_count

• --character-sets-dir: ndb_mgm, ndb_mgmd, ndb_config, ndb_delete_all, ndb_desc,
ndb_drop_index, ndb_drop_table, ndb_show_tables, ndb_blob_tool, ndb_config,
ndb_index_stat, ndb_move_data, ndbinfo_select_all, ndb_select_count, ndb_waiter

• --core-file: ndb_mgm, ndb_mgmd, ndb_config, ndb_delete_all, ndb_desc,
ndb_drop_index, ndb_drop_table, ndb_show_tables, ndb_blob_tool, ndb_config,
ndb_index_stat, ndb_move_data, ndbinfo_select_all, ndb_select_count, ndb_waiter

• --connect-retries and --connect-retry-delay: ndb_mgmd

• --ndb-nodeid: ndb_config

29

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/innodb-storage-engine.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/innodb-data-encryption.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/replication-binlog-encryption.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-ndbd-filesystem.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-ndbd-filesystem.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-secretsfile-reader.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-requireencryptedbackup
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-backup-using-management-client.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysqld.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbinfo.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndbd.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndbmtd.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-mgm.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-delete-all.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-desc.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-drop-index.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-drop-table.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-show-tables.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-blob-tool.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-config.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-index-stat.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-move-data.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndbinfo-select-all.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-select-count.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-mgm.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-mgmd.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-config.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-delete-all.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-desc.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-drop-index.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-drop-table.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-show-tables.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-blob-tool.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-config.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-index-stat.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-move-data.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndbinfo-select-all.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-select-count.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-waiter.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-mgm.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-mgmd.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-config.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-delete-all.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-desc.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-drop-index.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-drop-table.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-show-tables.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-blob-tool.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-config.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-index-stat.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-move-data.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndbinfo-select-all.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-select-count.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-waiter.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-mgmd.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-config.html

MySQL NDB Cluster 8.0 Release Notes

See the descriptions of the indicated program and program options in NDB Cluster Programs, for more
information. (Bug #34059253)

• Important Change: The ndbcluster plugin is now included in all MySQL server builds, with the
exception of builds for 32-bit platforms. As part of this work, we address a number of issues with cmake
options for NDB Cluster, making the plugin option for NDBCLUSTER behave as other plugin options, and
adding a new option WITH_NDB to control the build of NDB for MySQL Cluster.

This release makes the following changes in cmake options relating to MySQL Cluster:

• Adds the WITH_NDB option (default OFF). Enabling this option causes the MySQL Cluster binaries to
be built.

• Deprecates the WITH_NDBCLUSTER option; use WITH_NDB instead.

• Removes the WITH_PLUGIN_NDBCLUSTER option. Use WITH_NDB, instead, to build MySQL Cluster.

• Changes the WITH_NDBCLUSTER_STORAGE_ENGINE option so that it now controls (only) whether
the ndbcluster plugin itself is built. This option is now automatically set to ON when WITH_NDB is
enabled for the build, so it should no longer be necessary to set it when compiling MySQL with NDB
Cluster support.

For more information, see CMake Options for Compiling NDB Cluster. (WL #14788, WL #15157)

• Added the --detailed-info option for ndbxfrm. This is similar to the --info option, but in addition
prints out the file's header and trailer. (Bug #34380739)

• This release makes it possible to enable and disable binary logging with compressed transactions
using ZSTD compression for NDB tables in a mysql or other client session while the MySQL
server is running. To enable the feature, set the ndb_log_transaction_compression system
variable introduced in this release to ON. The level of compression used can be controlled using the
ndb_log_transaction_compression_level_zstd system variable, which is also added in this
release; the default compression level is 3.

Note

Although changing the values of the binlog_transaction_compression
and binlog_transaction_compression_level_zstd system variables
from a client session has no effect on binary logging of NDB tables, setting
--binlog-transaction-compression=ON on the command line or in a
my.cnf file causes ndb_log_transaction_compression to be enabled,
regardless of any setting for --ndb-log-transaction-compression. In
this case, to disable binary log transaction compression for (only) NDB tables,
set ndb_log_transaction_compression=OFF in a MySQL client session
following startup of mysqld.

For more information, see Binary Log Transaction Compression. (Bug #32704705, Bug #32927582, WL
#15138, WL #15139)

Bugs Fixed

• When pushing a condition as part of a pushed join, it is a requirement that all table.column references
are to one of the following:

• The table to which the condition itself is pushed

30

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/source-configuration-options.html#option_cmake_with_ndb
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/source-configuration-options.html#option_cmake_with_ndbcluster
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/source-configuration-options.html#option_cmake_with_plugin_ndbcluster
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/source-configuration-options.html#option_cmake_with_ndbcluster_storage_engine
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/source-configuration-options.html#cmake-mysql-cluster-options
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndbxfrm.html#option_ndbxfrm_detailed-info
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndbxfrm.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndbxfrm.html#option_ndbxfrm_info
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#sysvar_ndb_log_transaction_compression
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#sysvar_ndb_log_transaction_compression_level_zstd
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/replication-options-binary-log.html#sysvar_binlog_transaction_compression
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/replication-options-binary-log.html#sysvar_binlog_transaction_compression_level_zstd
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/replication-options-binary-log.html#sysvar_binlog_transaction_compression
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysqld.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/binary-log-transaction-compression.html

MySQL NDB Cluster 8.0 Release Notes

• A table which is an ancestor of the root of the pushed join

• A table which is an ancestor of the table in the pushed query tree

In the last case, when finding possible ancestors, we did not fully identify all candidates for such tables,
in either or both of these two ways:

1. Any tables being required ancestors due to nest-level dependencies were not added as ancestors

2. Tables having all possible ancestors as either required ancestors or key parents are known to be
directly joined with our ancestor, and to provide these as ancestors themselves; thus, such tables
should be made available as ancestors as well.

This patch implements both cases 1 and 2. In the second case, we take a conservative approach and
add only those tables having a single row lookup access type, but not those using index scans.
(Bug #34508948)

• Execution of and EXPLAIN for some large join queries with ndb_join_pushdown enabled (the default)
were rejected with NDB error QRY_NEST_NOT_SUPPORTED FirstInner/Upper has to be an
ancestor or a sibling. (Bug #34486874)

• When the NDB join pushdown handler finds a table which cannot be pushed down it tries to produce
an explanatory message communicating the reason for the rejection, which includes the names of the
tables involved. In some cases the optimizer had already optimized away the table which meant that it
could no longer be accessed by the NDB handler, resulting in failure of the query.

We fix this by introducing a check for such cases and printing a more generic message which does not
include the table name if no table is found. (Bug #34482783)

• The EncryptedFilesystem parameter was not defined with CI_RESTART_INITIAL, and so was not
shown in the output of ndb_config as requiring --initial, even though the parameter does in fact
require an initial restart to take effect. (Bug #34456384)

• When finding tables possible to push down in a pushed join, the pushability of a table may depend on
whether later tables are pushed as well. In such cases we take an optimistic approach and assume
that later tables are also pushed. If this assumption fails, we might need to “unpush” a table and any
other tables depending on it. Such a cascading “unpush” may be due to either or both of the following
conditions:

• A key reference referred to a column from a table which later turned out to not be pushable.

• A pushed condition referred to a column from a table which later turn out to not be pushable.

We previously handled the first case, but handling of the second was omitted from work done in NDB
8.0.27 to enable pushing of conditions referring to columns from other tables that were part of the same
pushed join. (Bug #34379950)

• NdbScanOperation errors are returned asynchronously to the client, possibly while the client is
engaged in other processing. A successful call to NdbTransaction::execute() guarantees only that
the scan request has been assembled and sent to the transaction coordinator without any errors; it does
not wait for any sort of CONF or REF signal to be returned from the data nodes. In this particular case, the
expected TAB_SCANREF signal was returned asynchronously into the client space, possibly while the
client was still performing other operations.

We make this behavior more deterministic by not setting the NdbTransaction error code when a
TAB_SCANREF error is received. (Bug #34348706)

31

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/explain.html
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-error-codes-application-error.html#ndberrno-QRY_NEST_NOT_SUPPORTED
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-encryptedfilesystem
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-config.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndbd.html#option_ndbd_initial
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndbscanoperation.html
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndbtransaction.html#ndb-ndbtransaction-execute
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndbtransaction.html

MySQL NDB Cluster 8.0 Release Notes

• When attempting to update a VARCHAR column that was part of an NDB table's primary key, the length
of the value read from the database supplied to the cmp_attr() method was reportedly incorrectly.
In addition to fixing this issue, we also remove an incorrect length check which required the binary byte
length of the arguments to this method to be the same, which is not true of attributes being compared
as characters, whose comparison semantics are defined by their character sets and collations. (Bug
#34312769)

• When compiling NDB Cluster on OEL7 and OEL8 using -Og for debug builds, gcc raised a null pointer
subtraction error. (Bug #34199675, Bug #34199732)

References: See also: Bug #33855533.

• ndb_blob_tool did not perform proper handling of errors raised while reading data. (Bug #34194708)

• As part of setting up the signal execution strategy, we calculate a safe quota for the maximum numbers
signals to execute from each job buffer. As each executed signal is assumed to generate up to four
outward bound signals, we might need to limit the signal quota so that we do not overfill the out buffers.
Effectively, in each round of signal execution we cannot execute more signals than 1/4 of the signals that
can fit in the out buffers.

This calculation did not take into account work done in NDB 8.0.23 introducing the possibility of having
multiple writers, all using the same available free space in the same job buffer. Thus the signal quota
needed to be further divided among the workers writing to the same buffers.

Now the computation of the maximum numbers signals to execute takes into account the resulting
possibly greater number of writers to each queue. (Bug #34065930)

• When the NDB scheduler detects that job buffers are full, and starts to allocate from reserved buffers, it is
expected to yield the CPU while waiting for the consumer. Just before yielding, it performs a final check
for this condition, before sleeping. Problems arose when this check indicated that the job buffers were
not full, so that the scheduler was allowed to continue executing signals, even though the limit on how
many signals it was permitted to execute was still 0. This led to a round of executing no signals, followed
by another yield check, and so on, keeping the CPU occupied for no reason while waiting for something
to be consumed by the receiver threads.

The root cause of the problem was that different metrics were employed for calculating the limit on
signals to execute (which triggered the yield check when this limit was 0), and for the yield callback
which subsequently checked whether the job buffers were actually full.

Prior to the implementation of scalable job buffers in MySQL NDB Cluster 8.0.23, NDB waited for more
job buffer up to 10 times; this was inadvertently changed so that it gave up after waiting one time only,
despite log messages indicating that NDB had slept ten times. As part of this fix, we revert that change,
so that, as before, we wait up to ten times for more job buffer before giving up. As an additional part
of this work, we also remove extra (and unneeded) code previously added to detect spin waits. (Bug
#34038016)

References: See also: Bug #33869715, Bug #34025532.

• Job buffers act as the communication links between data node internal block threads. When the data
structures for these were initialized, a 32K page was allocated to each such link, even if these threads
never (by design) communicate with each other. This wasted memory resources, and had a small
performance impact since the job buffer pages were checked frequently for available signals, so that us

32

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/char.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-blob-tool.html

MySQL NDB Cluster 8.0 Release Notes

was necessary to load the unused job buffer pages into the translation lookaside buffer and L1, L2, and
L3 caches.

Now, instead, we set up an empty job buffer as a sentinel to which all the communication links refer
initially. Actual (used) job buffer pages are now allocated only when we actually write signals into them,
in the same way that new memory pages are allocated when a page gets full. (Bug #34032102)

• A data node could be forced to shut down due to a full job buffer, even when the local buffer was still
available. (Bug #34028364)

• Made checks of pending signals by the job scheduler more consistent and reliable. (Bug #34025532)

References: See also: Bug #33869715, Bug #34038016.

• The combination of batching with multiple in-flight operations per key, use of IgnoreError, and
transient errors occurring on non-primary replicas led in some cases to inconsistencies within DBTUP
resulting in replica misalignment and other issues. We now prevent this from happening by detecting
when operations are failing on non-primary replicas, and forcing AbortOnError handling (rollback) in
such cases for the containing transaction. (Bug #34013385)

• Handling by ndb_restore of temporary errors raised by DDL operations has been improved and made
consistent. In all such cases, ndb_restore now retries the operation up to MAX_RETRIES (11) times
before giving up. (Bug #33982499)

• Removed the causes of many warnings raised when compiling NDB Cluster. (Bug #33797357, Bug
#33881953)

• When the rate of changes was high, event subscribers were slow to acknowledge receipt, or both, it was
possible for the SUMA block to run out of space for buffering events. (Bug #30467140)

• ALTER TABLE ... COMMENT="NDB_TABLE=READ_BACKUP=1" or ALTER
TABLE..COMMENT="NDB_TABLE=READ_BACKUP=0" performs a non-copying (online) ALTER operation
on a table to add or remove its READ_BACKUP property (see NDB_TABLE Options), which increments
the index version of all indexes on the table. Existing statistics, stored using the previous index version,
were orphaned and never deleted; this led to wasted memory and inefficient searches when collecting
index statistics.

We address these issues by cleaning up the index samples; we delete any samples whose sample
version is greater than or less than the current sample version. In addition, when no existing statistics
are found by index ID and version, and when indexes are dropped. In this last case, we relax the bounds
for the delete operation and remove all entries corresponding to the index ID in question, as opposed to
both index ID and index version.

This fix cleans up the sample table which stores the bulk of index statistics data. The head table, which
consists of index metadata rather than actual statistics, still contains orphaned rows, but since these
occupy an insignificant amount of memory, they do not adversely affect statistics search efficiency, and
stale entries are cleaned up when index IDs and versions are reused.

See also NDB API Statistics Counters and Variables. (Bug #29611297)

Changes in MySQL NDB Cluster 8.0.30 (2022-07-26, General
Availability)

MySQL NDB Cluster 8.0.30 is a new release of NDB 8.0, based on MySQL Server 8.0 and including
features in version 8.0 of the NDB storage engine, as well as fixing recently discovered bugs in previous
NDB Cluster releases.

33

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbtup.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-suma.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/alter-table.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/create-table-ndb-comment-options.html#create-table-ndb-comment-table-options
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndb-api-statistics.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster.html

MySQL NDB Cluster 8.0 Release Notes

Obtaining NDB Cluster 8.0. NDB Cluster 8.0 source code and binaries can be obtained from https://
dev.mysql.com/downloads/cluster/.

For an overview of changes made in NDB Cluster 8.0, see What is New in MySQL NDB Cluster 8.0.

This release also incorporates all bug fixes and changes made in previous NDB Cluster releases, as well
as all bug fixes and feature changes which were added in mainline MySQL 8.0 through MySQL 8.0.30 (see
Changes in MySQL 8.0.30 (2022-07-26, General Availability)).

• Functionality Added or Changed

• Bugs Fixed

Functionality Added or Changed

• Important Change; NDB Replication: The replica_allow_batching system variable affects how
efficiently the replica applies epoch transactions. When this is set to OFF, by default, every discrete
replication event in the binary log is applied and executed separately, which generally leads to poor
performance.

Beginning with this release, the default value for replica_allow_batching is changed from OFF to
ON.

• NDB Replication: NDB Cluster Replication supports conflict detection and resolution for use in circular
replication setups to determine whether or not to apply a given operation when it uses the same primary
key as another operation. Previously, it was possible to resolve primary key conflicts for update and
delete operations, but for write operations with the same primary key, the only handling performed was
to reject any write operation having the same primary key as an existing one, and to apply only if no write
operation existed that had the same primary key exists.

This release introduces two new conflict resolution functions NDB$MAX_INS() and NDB
$MAX_DEL_WIN_INS(). Each of these functions provides handling of primary key conflicts between
insert (write) operations following the steps shown here:

1. If there is no conflicting write, apply this one (this is the same behavior as NDB$MAX() and NDB
$MAX_DELETE_WIN()).

2. In the event of a conflict, apply “greatest timestamp wins” conflict resolution, as follows:

a. If the timestamp for the incoming write is greater than that of the conflicting write, apply the
incoming write operation.

b. If the timestamp for the incoming write is not greater, reject the incoming write operation.

NDB$MAX_INS() handles conflicting update and delete operations in the same way as NDB$MAX(), and
NDB$MAX_DEL_WIN_INS() does so in the same way as NDB$MAX_DELETE_WIN().

This enhancement provides support for configuring conflict detection when handling conflicting
replicated write operations, so that a replicated INSERT with a higher timestamp column value is applied
idempotently, and a replicated INSERT with a lower timestamp column value is rejected.

As with the other conflict resolution functions, rejected operations can optionally be logged in an
exceptions table, and rejected operations increment a counter; for “greater timestamp wins” handling,
this is the status variable Ndb_conflict_fn_max_ins, and for the “same timestamp wins” strategy,
the counter incremented is Ndb_conflict_fn_max_del_win_ins.

For more information, see Conflict Resolution Functions. (Bug #33398980, WL #14942)

34

https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/downloads/cluster/
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-what-is-new.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-relnotes-en/news-8-0-30.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#sysvar_replica_allow_batching
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-replication-conflict-resolution.html#mysql-cluster-replication-ndb-max-ins
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-replication-conflict-resolution.html#mysql-cluster-replication-ndb-max-del-win-ins
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-replication-conflict-resolution.html#mysql-cluster-replication-ndb-max-del-win-ins
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-replication-conflict-resolution.html#mysql-cluster-replication-ndb-max
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-replication-conflict-resolution.html#mysql-cluster-replication-ndb-max-delete-win
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-replication-conflict-resolution.html#mysql-cluster-replication-ndb-max-delete-win
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/insert.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#statvar_Ndb_conflict_fn_max_ins
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#statvar_Ndb_conflict_fn_max_del_win_ins
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-replication-conflict-resolution.html#conflict-resolution-functions

MySQL NDB Cluster 8.0 Release Notes

• NDB Replication: Previously, the size of batches used when writing to a replica NDB Cluster was
controlled by the --ndb-batch-size, and the batch size used for writing blob data to the replica was
determined by ndb-blob-write-batch-bytes. This scheme led to issues due to the fact that the
replica used the global values of these variables; this meant that changing either or both of them on the
replica also affected the values used by all other sessions. Another shortcoming of this arrangement was
that it was not possible to set different default for these options exclusive to the replica applier, which
should preferably have a higher default value than other sessions.

This release solves these problems by adding two new system variables which are specific to the replica
applier. ndb_replica_batch_size now controls the batch size used for the replica applier, and
ndb_replica_blob_write_batch_bytes variable now determines the blob write batch size used to
perform batch writes of blobs on the replica.

This change should improve the behavior of MySQL NDB Cluster Replication using default settings, and
lets the user fine tune NDB replication without affecting user threads performing other tasks, such as
processing SQL queries.

For more information, see the descriptions of the new system variables. See also Preparing the NDB
Cluster for Replication. (WL #15070, WL #15071)

References: See also: Bug #21040523.

• NDB Cluster APIs: Removed a number of potential memory leaks by using std::uniqe_ptr for
managing any Event returned by Dictionary::getEvent().

As part of this fix, we add a releaseEvent() method to Dictionary to clean up events created with
getEvent() after they are no longer needed. (Bug #33855045)

• NDB Cluster APIs: The Node.JS package included with NDB Cluster has been updated to version
16.5.0. (Bug #33770627)

• Empty lines in CSV files are now accepted as valid input by ndb_import. (Previously, empty lines in
such files were always rejected.) Now, if an empty value can be used as the value for a single imported
column, ndb_import uses it in the same manner as LOAD DATA. (Bug #34119833)

• NDB stores blob column values differently from other types; by default, only the first 256 bytes of the
value are stored in the table (“inline”), with any remainder kept in a separate blob parts table. This is
true for columns of MySQL type BLOB, MEDIUMBLOB, LONGBLOB, TEXT, MEDIUMTEXT, and LONGTEXT.
(TINYBLOB and TINYTEXT are exceptions, since they are always inline-only.) NDB handles JSON
column values in a similar fashion, the only difference being that, for a JSON column, the first 4000 bytes
of the value are stored inline.

Previously, it was possible to control the inline size for blob columns of NDB tables only by using the
NDB API (Column::setInlineSize() method). This now can be done in the mysql client (or other
application supplying an SQL interface) using a column comment which consists of an NDB_COLUMN
string containing a BLOB_INLINE_SIZE specification, as part of a CREATE TABLE statement like this
one:

CREATE TABLE t (
 a BIGINT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 b BLOB COMMENT 'NDB_COLUMN=BLOB_INLINE_SIZE=3000'
) ENGINE NDBCLUSTER;

In table t created by the statement just shown, column b (emphasized text in the preceding example)
is a BLOB column whose first 3000 bytes are stored in t itself, rather than just the first 256 bytes. This
means that, if no value stored in b exceeds 3000 bytes in length, no extra work is required to read or

35

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#option_mysqld_ndb-batch-size
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#option_mysqld_ndb-blob-write-batch-bytes
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#sysvar_ndb_replica_batch_size
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#sysvar_ndb_replica_blob_write_batch_bytes
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-replication-preparation.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-replication-preparation.html
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-event.html
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-dictionary.html#ndb-dictionary-getevent
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-dictionary.html#ndb-dictionary-releaseevent
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-dictionary.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-import.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-import.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/load-data.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/blob.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/blob.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/json.html
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-column.html#ndb-column-setinlinesize
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/create-table.html

MySQL NDB Cluster 8.0 Release Notes

write any excess data from the NDB blob parts table when storing or retrieving the column value. This
can improve performance significantly when performing many operations on blob columns.

You can see the effects of this option by querying the ndbinfo.blobs table, or examining the output of
ndb_desc.

The maximum supported value for BLOB_INLINE_SIZE is 29980. Setting it to any value less than 1
causes the default inline size to be used for the column.

You can also alter a column as part of a copying ALTER TABLE; ALGORITHM=INPLACE is not supported
for such operations.

BLOB_INLINE_SIZE can be used alone, or together with MAX_BLOB_PART_SIZE in the same
NDB_COMMENT string. Unlike the case with MAX_BLOB_PART_SIZE, setting BLOB_INLINE_SIZE is
supported for JSON columns of NDB tables.

For more information, see NDB_COLUMN Options, as well as String Type Storage Requirements. (Bug
#33755627, WL #15044)

• A new --missing-ai-column option is added to ndb_import. This enables ndb_import to
accept a CSV file from which the data for an AUTO_INCREMENT column is missing and to supply these
values itself, much as LOAD DATA does. This can be done with one or more tables for which the CSV
representation contains no values for such a column.

This option works only when the CSV file contains no nonempty values for the AUTO_INCREMENT
column to be imported. (Bug #102730, Bug #32553029)

• This release adds Performance Schema instrumentation for transaction batch memory used by
NDBCLUSTER, making it possible to monitor memory used by transactions. For more information, see
Transaction Memory Usage. (WL #15073)

Bugs Fixed

• Important Change: When using the ThreadConfig multithreaded data node parameter to specify the
threads to be created on the data nodes, the receive thread (recv) in some cases was placed in the
same worker thread as block threads such as DBLQH(0) and DBTC(0). This represented a regression
from NDB 8.0.22 and earlier, where the receive thread is colocated only with THRMAN and TRPMAN, as
expected in such cases.

Now, when setting the value of ThreadConfig, you must include main, rep, recv, and ldm explicitly;
to avoid using one or more of the main, rep, or ldm thread types, you must set count=0 explicitly for
each applicable thread type.

In addition, a minimum value of 1 is now enforced for the recv count; setting the replication thread (rep)
count to 1 also requires setting count=1 for the main thread.

These changes can have serious implications for upgrades from previous NDB Cluster releases. For
more information, see Upgrading and Downgrading NDB Cluster, as well as the description of the
ThreadConfig parameter, in the MySQL Manual. (Bug #33869715)

References: See also: Bug #34038016, Bug #34025532.

• macOS: ndb_import could not be compiled on MacOS/ARM because the ndbgeneral library was not
explicitly included in LINK_LIBRARIES. (Bug #33931512)

• NDB Disk Data: The LGMAN kernel block did not initialize its local encrypted filesystem state, and did not
check EncryptedFileSystem for undo log files, so that their encryption status was never actually set.

36

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbinfo-blobs.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-desc.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/alter-table.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/create-table-ndb-comment-options.html#create-table-ndb-comment-column-options
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/storage-requirements.html#data-types-storage-reqs-strings
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-import.html#option_ndb_import_missing-ai-column
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-import.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-import.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/load-data.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ps-tables.html#mysql-cluster-trx-batch-memory
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbmtd-threadconfig
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-upgrade-downgrade.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbmtd-threadconfig
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-import.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-lgman.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-encryptedfilesystem

MySQL NDB Cluster 8.0 Release Notes

This meant that, for release builds, it was possible for the undo log files to be encrypted on some
systems, even though they should not have been; in debug builds, undo log files were always encrypted.
This could lead to problems when using Disk Data tables and upgrading to or from NDB 8.0.29. (A
workaround is to perform initial restarts of the data nodes when doing so.)

This issue could also cause unexpected CPU load for I/O threads when there were a great many Disk
Data updates to write to the undo log, or at data node startup while reading the undo log.

Note

The EncryptedFileSystem parameter, introduced in NDB 8.0.29, is
considered experimental and is not supported in production.

(Bug #34185524)

• NDB Replication: Updating a row of an NDB table having only the hidden primary key (but no explicit
PK) on the source could lead to a stoppage of the SQL thread on the replica. (Bug #33974581)

• NDB Cluster APIs: The internal function NdbThread_SetThreadPrio() sets the thread priority
(thread_prio) for a given thread type when applying the setting of the ThreadConfig configuration
parameter. It was possible for this function in some cases to return an error when it had actually
succeeded, which could have a an unfavorable impact on the performance of some NDB API
applications. (Bug #34038630)

• NDB Cluster APIs: The following NdbInterpretedCode methods did not function correctly when a
nonzero value was employed for the label argument:

• branch_col_and_mask_eq_mask()

• branch_col_and_mask_eq_zero()

• branch_col_and_mask_ne_mask()

• branch_col_and_mask_ne_zero()

(Bug #33888962)

• MySQL NDB ClusterJ: ClusterJ support for systems with ARM-based Apple silicon is now enabled by
default. (Bug #34148474)

• Compilation of NDB Cluster on Debian 11 and Ubuntu 22.04 halted during the link time optimization
phase due to source code warnings being treated as errors. (Bug #34252425)

• NDB does not support in-place changes of default values for columns; such changes can be made only
by using a copying ALTER TABLE. Changing of the default value in such cases was already detected,
but the additional or removal of default value was not.

We fix this issue by detecting when default value is added or removed during ALTER TABLE, and
refusing to perform the operation in place. (Bug #34224193)

• After creating a user on SQL node A and granting it the NDB_STORED_USER privilege, dropping this user
from SQL node B led to inconsistent results. In some cases, the drop was not distributed, so that after
the drop the user still existed on SQL node A.

The cause of this issue is that NDB maintains a cache of all local users with NDB_STORED_USER, but
when a user was created on SQL node B, this cache was not updated. Later, when executing DROP

37

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbmtd-threadconfig
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndbinterpretedcode.html
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndbinterpretedcode.html#ndb-ndbinterpretedcode-branch-col-and-mask-eq-mask
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndbinterpretedcode.html#ndb-ndbinterpretedcode-branch-col-and-mask-eq-zero
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndbinterpretedcode.html#ndb-ndbinterpretedcode-branch-col-and-mask-ne-mask
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndbinterpretedcode.html#ndb-ndbinterpretedcode-branch-col-and-mask-ne-zero
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/alter-table.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/privileges-provided.html#priv_ndb-stored-user
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/drop-user.html

MySQL NDB Cluster 8.0 Release Notes

USER, this led SQL node B to determine that the drop did not have to be distributed. We fix this by
ensuring that this cache is updated whenever a new distributed user is created. (Bug #34183149)

• When the internal ndbd_exit() function was invoked on a data node, information and error messages
sent to the event logger just prior to the ndbd_exit() call were not printed in the log as expected. (Bug
#34148712)

• NDB Cluster did not compile correctly on Ubuntu 22.04 due to changes in OpenSSL 3.0. (Bug
#34109171)

• NDB Cluster would not compile correctly using GCC 8.4 due to a change in Bison fallthrough handling.
(Bug #34098818)

• Compiling the ndbcluster plugin or the libndbclient library required a number of files kept under
directories specific to data nodes (src/kernel) and management servers (src/mgmsrv). These have
now been moved to more suitable locations. Files moved that may be of interest are listed here:

• ndbd_exit_codes.cpp is moved to storage/ndb/src/mgmapi

• ConfigInfo.cpp is moved to storage/ndb/src/common/mgmcommon

• mt_thr_config.cpp is moved to storage/ndb/src/common

• NdbinfoTables.cpp is moved to storage/ndb/src/common/debugger

(Bug #34045289)

• When an error occurred during the begin schema transaction phase, an attempt to update the index
statistics automatically was made without releasing the transaction handle, leading to a leak. (Bug
#34007422)

References: See also: Bug #34992370.

• Path lengths were not always calculated correctly by the data nodes. (Bug #33993607)

• When ndb_restore performed an NDB API operation with any concurrent NDB API events taking
place, contention could occur in the event of limited resources in DBUTIL. This led to temporary errors
in NDB. In such cases, ndb_restore now attempts to retry the NDB API operation which failed. (Bug
#33984717)

References: See also: Bug #33982499.

• Removed a duplicate check of a table pointer found in the internal method
Dbtc::execSCAN_TABREQ(). (Bug #33945967)

• The internal function NdbReceiver::unpackRecAttr(), which unpacks attribute values from a
buffer from a GSN_TRANSID_AI signal, did not check to ensure that attribute sizes fit within the buffer.
This could corrupt the buffer which could in turn lead to reading beyond the buffer and copying beyond
destination buffers. (Bug #33941167)

• Improved formatting of log messages such that the format string verification employed by some
compilers is no longer bypassed. (Bug #33930738)

• Some NDB internal signals were not always checked properly. (Bug #33896428)

• Fixed a number of issues in the source that raised -Wunused-parameter warnings when compiling
NDB Cluster with GCC 11.2. (Bug #33881953)

38

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/drop-user.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbutil.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html

MySQL NDB Cluster 8.0 Release Notes

• When an SQL node was not yet connected to NDBCLUSTER, an excessive number of warnings were
written to the MySQL error log when the SQL node could not discover an NDB table. (Bug #33875273)

• The NDB API statistics variables Ndb_api_wait_nanos_count,
Ndb_api_wait_nanos_count_replica, and Ndb_api_wait_nanos_count_session are used
for determining CPU times and wait times for applications. These counters are intended to show the time
spent waiting for responses from data nodes, but they were not entirely accurate because time spent
waiting for key requests was not included.

For more information, see NDB API Statistics Counters and Variables. (Bug #33840016)

References: See also: Bug #33850590.

• It was possible in some cases for a duplicate engine-se_private_id entry to be installed in the
MySQL data dictionary for an NDB table, even when the previous table definition should have been
dropped.

When data nodes drop out of the cluster and need to rejoin, each SQL node starts to synchronize the
schema definitions in its own data dictionary. The se_private_id for an NDB table installed in the data
dictionary is the same as its NDB table ID. It is common for tables to be updated with different IDs, such
as when executing an ALTER TABLE, DROP TABLE, or CREATE TABLE statement. The previous table
definition, obtained by referencing the table in schema.table format, is usually sufficient for a drop
and thus for the new table to be installed with a new ID, since it is assumed that no other installed table
definition uses that ID. An exception to this could occur during synchronization, if a data node shutdown
allowed the previous table definition of a table having the same ID other than the one to be installed to
remain, then the old definition was not dropped.

To correct this issue, we now check whether the ID of the table to be installed in the data dictionary
differs from that of the previous one, in which case we also check whether an old table definition already
exists with that ID, and, if it does, we drop the old table before continuing. (Bug #33824058)

• After receiving a COPY_FRAGREQ signal, DBLQH sometimes places the signal in a queue by copying
the signal object into a stored object. Problems could arise when this signal object was used to send
another signal before the incoming COPY_FRAGREQ was stored; this led to saving a corrupt signal that,
when sent, prevented a system restart from completing. We fix this by using a static copy of the signal
for storage and retrieval, rather than the original signal object. (Bug #33581144)

• When the mysqld binary supplied with NDB Cluster was run without NDB support enabled, the ndbinfo
and ndb_transid_mysql_connection_map plugins were still enabled, and for example, still shown
with status ACTIVE in the output of SHOW PLUGINS. (Bug #33473346)

• Attempting to seize a redo log page could in theory fail due to a wrong bound error. (Bug #32959887)

• When a data node was started using the --foreground option, and with a node ID not configured to
connect from a valid host, the data node underwent a forced shutdown instead of reporting an error.
(Bug #106962, Bug #34052740)

39

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#statvar_Ndb_api_wait_nanos_count
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#statvar_Ndb_api_wait_nanos_count_replica
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#statvar_Ndb_api_wait_nanos_count_session
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndb-api-statistics.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/alter-table.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/drop-table.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/create-table.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dblqh.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysqld.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/show-plugins.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndbd.html#option_ndbd_foreground

MySQL NDB Cluster 8.0 Release Notes

• NDB tables were skipped in the MySQL Server upgrade phase and were instead migrated by the
ndbcluster plugin at a later stage. As a result, triggers associated with NDB tables were not created
during upgrades from 5.7 based versions.

This occurred because it is not possible to create such triggers when the NDB tables are migrated by the
ndbcluster plugin, since metadata about the triggers is lost in the upgrade finalization phase of the
MySQL Server upgrade in which all .TRG files are deleted.

To fix this issue, we make the following changes:

• Migration of NDB tables with triggers is no longer deferred during the Server upgrade phase.

• NDB tables with triggers are no longer removed from the data dictionary during setup even when initial
system starts are detected.

(Bug #106883, Bug #34058984)

• When initializing a file, NDBFS enabled autosync but never called do_sync_after_write() (then
called sync_on_write()), so that the file was never synchronized to disk until it was saved. This
meant that, for a system whose network disk was stalled for some time, the file could use up system
memory on buffered file data.

We fix this by calling do_sync_after_write() each time NDBFS writes to a file.

As part of this work, we increase the autosync size from 1 MB to 16 MB when initializing files.

Note

NDB supports O_SYNC on platforms that provide it, but does not implement
OM_SYNC for opening files.

(Bug #106697, Bug #33946801, Bug #34131456)

Changes in MySQL NDB Cluster 8.0.29 (2022-04-26, General
Availability)

MySQL NDB Cluster 8.0.29 is a new release of NDB 8.0, based on MySQL Server 8.0 and including
features in version 8.0 of the NDB storage engine, as well as fixing recently discovered bugs in previous
NDB Cluster releases.

Obtaining NDB Cluster 8.0. NDB Cluster 8.0 source code and binaries can be obtained from https://
dev.mysql.com/downloads/cluster/.

For an overview of changes made in NDB Cluster 8.0, see What is New in MySQL NDB Cluster 8.0.

This release also incorporates all bug fixes and changes made in previous NDB Cluster releases, as well
as all bug fixes and feature changes which were added in mainline MySQL 8.0 through MySQL 8.0.29 (see
Changes in MySQL 8.0.29 (2022-04-26, General Availability)).

Important

This release is no longer available for download. It was removed due to a critical
issue that could cause data in InnoDB tables having added columns to be
interpreted incorrectly. Please upgrade to MySQL Cluster 8.0.30 instead.

• Compilation Notes

40

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-ndbfs.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster.html
https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/downloads/cluster/
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-what-is-new.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-relnotes-en/news-8-0-29.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/innodb-storage-engine.html

MySQL NDB Cluster 8.0 Release Notes

• ndbinfo Information Database

• Performance Schema Notes

• Functionality Added or Changed

• Bugs Fixed

Compilation Notes

• NDB could not be built using GCC 11 due to an array out of bounds error. (Bug #33459671)

• Removed a number of -Wstringop-truncation warnings raised when compiling NDB with GCC
9 as well as suppression of such warnings. Also removed unneeded includes from the header file
ndb_global.h. (Bug #32233543)

ndbinfo Information Database

• Eight new tables providing NDB dictionary information about database objects have been added to the
ndbinfo information database. This makes it possible to obtain a great deal of information of this type
by issuing queries in the mysql client, without the need to use ndb_desc, ndb_select_all, and
similar utilities. (It is still be necessary to use ndb_desc to obtain fragment distribution information.)
These tables are listed here, together with the NDB objects about which they provide information:

• blobs: Blob tables

• dictionary_columns: Table columns

• dictionary_tables: Tables

• events: Event subscriptions

• files: Files used by disk data tables

• foreign_keys: Foreign keys

• hash_maps: Hash maps

• index_columns: Table indexes

An additional change in ndbinfo is that only files and hash_maps are defined as views; the
remaining six tables listed previously are in fact base tables, even though they are not named using the
ndb$ prefix. As a result, these tables are not hidden as other ndbinfo base tables are.

For more information, see the descriptions of the tables in ndbinfo: The NDB Cluster Information
Database. (WL #11968)

Performance Schema Notes

• ndbcluster plugin threads can now be seen in the Performance Schema. The threads and
setup_threads tables show all three of these threads: the binary logging thread (ndb_binlog
thread), the index statistics thread (ndb_index_stat thread), and the metadata thread
(ndb_metadata thread).

This makes it possible to obtain the thread IDs and thread OS IDs of these threads for use in queries on
these and other Performance Schema tables.

For more information and examples, see ndbcluster Plugin Threads. (WL #15000)

41

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbinfo.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-desc.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-select-all.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-desc.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbinfo-blobs.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbinfo-dictionary-columns.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbinfo-dictionary-tables.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbinfo-events.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbinfo-files.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbinfo-foreign-keys.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbinfo-hash-maps.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbinfo-index-columns.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbinfo.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbinfo.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/performance-schema-threads-table.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/performance-schema-setup-threads-table.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ps-tables.html#mysql-cluster-plugin-threads

MySQL NDB Cluster 8.0 Release Notes

Functionality Added or Changed

• NDB Cluster APIs: The NDB API now implements a List::clear() method which clears all data
from a list. This makes it simpler to reuse an existing list with the Dictionary methods listEvents(),
listIndexes(), and listObjects().

In addition, the List destructor has been modified such that it now calls clear() before attempting the
removal of any elements or attributes from the list being destroyed. (Bug #33676070)

• The client receive thread was enabled only when under high load, where the criterion for determining
“high load” was that the number of clients waiting in the poll queue (the receive queue) was greater than
min_active_clients_recv_thread (default: 8).

This was a poor metric for determining high load, since a single client, such as the binary log injector
thread handling incoming replication events, could experience high load on its own as well. The same
was true of a pushed join query (in which very large batches of incoming TRANSID_AI signals are
received).

We change the receive thread such that it now sleeps in the poll queue rather than being deactivated
completely, so that it is now always available for handling incoming signals, even when the client is not
under high load. (Bug #33752914)

• It is now possible to restore the ndb_apply_status table from an NDB backup, using ndb_restore
with the --with-apply-status option added in this release. In some cases, this information can be
useful in new setting up new replication links.

--with-apply-status restores all rows of the ndb_apply_status table except for the row for
which the server_id value is 0; use --restore-epoch to restore this row.

To use the --with-apply-status option, you must also supply --restore-data when invoking
ndb_restore.

For more information, see the description of the --with-apply-status option in the Reference
Manual, as well as ndb_apply_status Table. (Bug #32604161, Bug #33594652)

• Previously, when a user query attempted to open an NDB table with a missing (or broken) index, the
MySQL server raised NDB error 4243 Index not found. Now when such an attempt is made, it is
handled as described here:

• If the query does not make use of the problematic index, the query succeeds with no errors or
warnings.

• If the query attempts to use the missing or broken index, the query is rejected with a warning from
NDB (Index idx is not available in NDB. Use "ALTER TABLE tbl ALTER INDEX
idx INVISIBLE" to prevent MySQL from attempting to access it, or use
"ndb_restore --rebuild-indexes" to rebuild it), and an error (ER_NOT_KEYFILE).

The rationale for this change is that constraint violations or missing data sometimes make it impossible
to restore an index on an NDB table, in which case, running ndb_restore with --disable-indexes
restores the data without the index. With this change, once the data is restored from backup, it is
possible to use SQL to fix any corrupt data and rebuild the index. (Bug #28584066, WL #14867)

Bugs Fixed

• Important Change: The maximum value supported for the --ndb-batch-size server option has been
increased from 31536000 to 2147483648 (2 GB). (Bug #21040523)

42

https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-list.html#ndb-list-clear
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-dictionary.html#ndb-dictionary-listevents
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-dictionary.html#ndb-dictionary-listindexes
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-dictionary.html#ndb-dictionary-listobjects
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-list.html
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-list.html#ndb-list-clear
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_with-apply-status
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_restore-epoch
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_restore-data
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-replication-schema.html#ndb-replication-ndb-apply-status
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-error-codes-application-error.html#ndberrno-4243
https://docs.oracle.com/cd/E17952_01/mysql-errors-8.0-en/server-error-reference.html#error_er_not_keyfile
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_disable-indexes
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#option_mysqld_ndb-batch-size

MySQL NDB Cluster 8.0 Release Notes

• Performance: When profiling multithreaded data nodes (ndbmtd) performing a transaction including a
large number of inserts, it was found that more than 50% of CPU time was spent in the internal method
Dblqh::findTransaction(). It was found that, when there were many operations belonging to
uncommitted transactions in the hash list searched by this method, the hash buckets overfilled, the result
being that an excessive number of CPU cycles were consumed searching through the hash buckets.

To address this problem, we fix the number of hash buckets at 4095, and scale the size of a hash bucket
relative to the maximum number of operations, so that only relatively few items should now be placed in
the same bucket. (Bug #33803541)

References: See also: Bug #33803487.

• Performance: When inserting a great many rows into an empty or small table in the same transaction,
the rate at which rows were inserted quickly declined to less than 50% of the initial rate; subsequently, it
was found that roughly 50% of all CPU time was spent in Dbacc::getElement(), and the root cause
identified to be the timing of resizing the structures used for storing elements by DBACC, growing with the
insertion of more rows in the same transaction, and shrinking following a commit.

We fix this issue by checking for a need to resize immediately following the insertion or deletion of an
element. This also handles the subsequent rejection of an insert. (Bug #33803487)

References: See also: Bug #33803541.

• Performance: A considerable amount of time was being spent searching the event buffer data hash
(using the internal method EventBufData_hash::search()), due to the following issues:

• The number of buckets proved to be too low under high load, when the hash bucket list could become
very large.

• The hash buckets were implemented using a linked list. Traversing a long linked list can be highly
inefficient.

We fix these problems by using a vector (std::vector) rather than a linked list, and by making the
array containing the set of hash buckets expandable. (Bug #33796754)

• Performance: The internal function computeXorChecksum() was implemented such that great
care was taken to aid the compiler in generating optimal code, but it was found that it consumed
excessive CPU resources, and did not perform as well as a simpler implementation. This function is
now reimplemented with a loop summing up XOR results over an array, which appears to result in better
optimization with both GCC and Clang compilers. (Bug #33757412)

• Microsoft Windows: The CompressedLCP data node configuration parameter had no effect on
Windows platforms.

Note

When upgrading to this release, Windows users should verify the setting for
CompressedLCP; if it was previously enabled, you may experience an increase
in CPU usage by I/O threads following the upgrade, when under load, when
restoring data as part of a node restart, or in both cases. If this behavior is not
desired, disable CompressedLCP.

(Bug #33727690)

• Microsoft Windows: The internal function Win32AsyncFile::rmrfReq() did not always check for
both ERROR_FILE_NOT_FOUND and ERROR_PATH_NOT_FOUND when either condition was likely. (Bug
#33727647)

43

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndbmtd.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbacc.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/logical-operators.html#operator_xor
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-compressedlcp

MySQL NDB Cluster 8.0 Release Notes

• Microsoft Windows: Corrected several minor issues that occurred with file handling on Windows
platforms. (Bug #33727629)

• NDB Replication: When performing certain schema operations on an NDB table, including those
involving a copying ALTER TABLE, the epoch column in the mysql.ndb_apply_status table on the
replica was updated to 0, although this should happen only for transactions originating from storage
engines other than NDBCLUSTER.

To fix this, we now update (only) the binary log position when writing a row into ndb_apply_status
from the same server ID as the previous one, but do not overwrite the current epoch when applying
schema operations. (Bug #14139386)

• NDB Cluster APIs: Hash key generation using the internal API method
NdbBlob::getBlobKeyHash() ignored the most significant byte of the key. This unnecessarily
caused uneven distribution in the NDB API blob hash list, resulting in a increased need for comparing
key values, and thus more CPU usage. (Bug #33803583)

References: See also: Bug #33783274.

• NDB Cluster APIs: Removed an unnecessary assertion that could be hit when iterating through the list
returned by Dictionary::listEvents(). (Bug #33630835)

• Builds on Ubuntu 21.10 using GCC 11 stopped with -Werror=maybe-uninitialized. (Bug
#33976268)

• In certain cases, NDB did not handle node IDs of data nodes correctly. (Bug #33916404)

• In some cases, NDB did not validate all node IDs of data nodes correctly. (Bug #33896409)

• In some cases, array indexes were not handled correctly. (Bug #33896389, Bug #33896399, Bug
#33916134)

• In some cases, integers were not handled correctly. (Bug #33896356)

• As part of work done in NDB 8.0.23 to implement the AutomaticThreadConfig configuration
parameter, the maximum numbers of LQH and TC threads supported by ndbmtd were raised from 129
each to 332 and 160, respectively. This adversely affected the performance of execSEND_PACKED()
methods implemented by several NDB kernel blocks, which complete sending of packed signals when
the scheduler is about to suspend execution of the current block thread. This was due to continuing
simply to iterate over the arrays of such threads despite the arrays' increased size. We fix this by using a
bitmask to track the thread states alongside the full arrays. (Bug #33856371)

• When operating on blob columns, NDB must add extra operations to read and write the blob head column
and blob part rows. These operations are added to the tail of the transaction's operation list automatically
when the transaction is executed.

To insert a new operation prior to a given operation, it was necessary to traverse the operation list from
the beginning until the desired operation was found, with a cost proportional to the length L of the list of
preceding operations. This is approximately L2 / 2, increasing as more operations are added to the list;
when a large number of operations modifying blobs were defined in a batch, this traversal cost was paid
for each operation. This had a noticeable impact on performance when reading and writing blobs.

We fix this by using list splicing in NdbTransaction::execute() to eliminate unnecessary traversals
of this sort when defining blob operations. (Bug #33797931)

• The block thread scheduler makes frequent calls to update_sched_config() to update its scheduling
strategy. That involves checking the fill degree of the job buffer queues used to send signals between

44

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/alter-table.html
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-dictionary.html#ndb-dictionary-listevents
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbmtd-automaticthreadconfig
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndbmtd.html
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndbtransaction.html#ndb-ndbtransaction-execute

MySQL NDB Cluster 8.0 Release Notes

the nodes' internal block threads. When these queues are about to fill up, the thread scheduler assigns
a smaller value to max_signals for the next round, in order to reduce the pressure on the job buffers.
When the minimum free threshold has been reached, the scheduler yields the CPU while waiting for the
consumer threads to free some job buffer slots.

The fix in NDB 8.0.18 for a previous issue introduced a mechanism whereby the main thread was
allowed to continue executing even when this lower threshold had been reached; in some cases the
main thread consumed all job buffers, including those held in reserve, leading to an unplanned shutdown
of the data node due to resource exhaustion. (Bug #33792362, Bug #33872577)

References: This issue is a regression of: Bug #29887068.

• Setting up a cluster with one LDM thread and one query thread using the ThreadConfig parameter (for
example, ThreadConfig=ldm={cpubind=1},query={cpubind=2}) led to unplanned shutdowns of
data nodes.

This was due to internal thread variables being assigned the wrong values when there were no main or
request threads explicitly assigned. Now we make sure in such cases that these are assigned the thread
number of the first receive thread, as expected. (Bug #33791270)

• NdbEventBuffer hash key generation for non-character data reused the same 256 hash keys; in
addition, strings of zero length were ignored when calculating hash keys. (Bug #33783274)

• The collection of NDB API statistics based on the EventBytesRecvdCount event counter incurred
excessive overhead. Now this counter is updated using a value which is aggregated as the event buffer
is filled, rather than traversing all of the event buffer data in a separate function call.

For more information, see NDB API Statistics Counters and Variables. (Bug #33778923)

• The internal method THRConfig::reorganize_ldm_bindings() behaved unexpectedly, in some
cases changing thread bindings after AutomaticThreadConfig had already bound the threads to the
correct CPUs. We fix this by removing the method, no longer using it when parsing configuration data or
adding threads. (Bug #33764260)

• The receiver thread ID was hard-coded in the internal method
TransporterFacade::raise_thread_prio() such that it always acted to raise the priority of the
receiver thread, even when called from the send thread. (Bug #33752983)

• A fix in NDB 8.0.28 addressed an issue with the code used by various NDB components, including
Ndb_index_stat, that checked whether the data nodes were up and running. In clusters with multiple
SQL nodes, this resulted in an increase in the frequency of race conditions between index statistics
threads trying to create a table event on the ndb_index_stat_head table; that is, it was possible for
two SQL nodes to try to create the event at the same time, with the losing SQL node raising Error 746
Event name already exists. Due to this error, the binary logging thread ended up waiting for the
index statistics thread to signal that its own setup was complete, and so the second SQL node timed out
with Could not create index stat system tables after --ndb-wait-setup seconds. (Bug
#33728909)

References: This issue is a regression of: Bug #32019119.

• On a write error, the message printed by ndbxfrm referenced the source file rather than the destination
file. (Bug #33727551)

• A complex nested join was rejected with the error FirstInner/Upper has to be an ancestor
or a sibling, which is thrown by the internal NdbQueryOperation interface used to define a
pushed join in the SPJ API, indicating that the join-nest dependencies for the interface were not properly
defined.

45

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbmtd-threadconfig
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndb-api-statistics.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbmtd-automaticthreadconfig
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#option_mysqld_ndb-wait-setup
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndbxfrm.html

MySQL NDB Cluster 8.0 Release Notes

The query showing the issue had the join nest structure t2, t1, (t3, (t5, t4)). Neither of the join
conditions on t5 or t4 had any references or explicit dependencies on table t3, but each had an implicit
dependency on t3 in virtue of being in a nest within the same nest as t3.

When preparing a pushed join, NDB tracks all required table dependencies between tables and join-nests
by adding them to the m_ancestor bitmask for each table. For nest level dependencies, they should all
be added to the first table in the relevant nest. When the relevant dependencies for a specific table are
calculated, they include the set of all tables being explicitly refered in the join condition, plus any implicit
dependencies due to the join nests the table is a member of, limited by the uppermost table referred to in
the join condition.

For this particular join query we did not properly take into account that there might not be any references
to tables in the closest upper nest (the nest starting with t3); in such cases we are dependent on all
nests up to the nest containing the uppermost table referenced. We fix the issue by introducing a while-
loop in which we add ancestor nest dependencies until we reach this uppermost table. (Bug #33670002)

• When the transient memory pool (TransientPool) used internally by NDB grew above 256 MB,
subsequent attempts to shrink the pool caused an error which eventually led to an unplanned shutdown
of the data node. (Bug #33647601)

• Check that the connection to NDB has been set up before querying about statistics for partitions. (Bug
#33643512)

• When the ordered index PRIMARY was not created for the ndb_sql_metadata table, application of
stored grants could not proceed due to the missing index.

We fix this by protecting creation of utility tables (including ndb_sql_metadata) by wrapping the
associated CREATE TABLE statement with a schema transaction, thus handling rejection of the
statement by rollback. In addition, in the event the newly-created table is not created correctly, it is
dropped. These changes avoid leaving behind a table that is only partially created, so that the next
attempt to create the utility table starts from the beginning of the process. (Bug #33634453)

• Removed -Wmaybe-uninitialized warnings which occurred when compiling NDB Cluster with GCC
11.2. (Bug #33611915)

• NDB accepted an arbitrary (and invalid) string of characters following a numeric parameter value in the
config.ini global configuration. For example, it was possible to use either OverloadLimit=10
"M12L" or OverloadLimit=10 M (which contains a space) and have it interpreted as
OverloadLimit=10M.

It was also possible to use a bare letter suffix in place of an expected numeric value, such
as OverloadLimit=M, and have it interpreted as zero. This happened as well with an
arbitrary string whose first letter was one of the MySQL standard modifiers K, M, or G; thus,
OverloadLimit=MAX_UINT also had the effect of setting OverloadLimit to zero.

Now, only one of the suffixes K, M, or G is accepted with a numeric parameter value, and it must follow
the numeric value immediately, with no intervening whitespace characters or quotation marks. In other
words, to set OverloadLimit to 10 megabytes, you must use one of OverloadLimit=10000000,
OverloadLimit=10M, or OverloadLimit=10000K.

Note

To maintain availability, you should check your config.ini file for any
settings that do not conform to the rule enforced as a result of this change and
correct them prior to upgrading. Otherwise, the cluster may not be able to start
afterwards, until you rectify the issue.

46

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/create-table.html

MySQL NDB Cluster 8.0 Release Notes

(Bug #33589961)

• Enabling AutomaticThreadConfig with fewer than 8 CPUs available led to unplanned shutdowns of
data nodes. (Bug #33588734)

• Removed the unused source files buddy.cpp and buddy.hpp from storage/ndb/src/common/
transporter/. (Bug #33575155)

• The NDB stored grants mechanism now sets the session variable print_identified_with_as_hex
to true, so that password hashes stored in the ndb_sql_metadata table are formatted as
hexadecimal values rather than being formatted as strings. (Bug #33542052)

• Binary log thread event handling includes optional high-verbosity logging, which, when enabled and the
connection to NDB lost, produces an excess of log messages like these:

datetime 2 [Note] [MY-010866] [Server] NDB Binlog: cluster failure for epoch 55/0.
datetime 2 [Note] [MY-010866] [Server] NDB Binlog: cluster failure for epoch 55/0.

Such repeated log messages, not being of much help in diagnosing errors, have been removed. This
leaves a similar log message in such cases, from the handling of schema distribution event operation
teardown. (Bug #33492244)

• Historically, a number of different methods have been used to enforce compile-time checks of various
interdependencies and assumptions in the NDB codebase in a portable way. Since the standard
static_assert() function is now always available, the NDB_STATIC_ASSERT and STATIC_ASSERT
macros have been replaced with direct usage of static_assert(). (Bug #33466577)

• When the internal AbstractQueryPlan interface determined the access type to be used for a specific
table, it tried to work around an optimizer problem where the ref access type was specified for a table
and later turned out to be accessible by eq_ref. The workaround introduced a new issue by sometimes
determining eq_ref access for a table actually needing ref access; in addition, the prior fix did not take
into account UNIQUE USING HASH indexes, which need either eq_ref or full table scan access, even
when the MySQL Optimizer regards it as a ref access.

We fix this by first removing the workaround (which had been made obsolete by the proper fix for the
previous issue), and then by introducing the setting of eq_ref or full_table_scan access for hash
indexes. (Bug #33451256)

References: This issue is a regression of: Bug #28965762.

• When a pushed join is prepared but not executed, the Ndb_pushed_queries_dropped status variable
is incremented. Now, in addition to this, NDB now emits a warning Prepared pushed join could
not be executed... which is passed to ER_GET_ERRMSG. (Bug #33449000)

• The deprecated -r option for ndbd has been removed. In addition, this change also removes
extraneous text from the output of ndbd --help. (Bug #33362935)

References: See also: Bug #31565810.

• ndb_import sometimes could not parse correctly a .csv file containing Windows/DOS-style (\r\n)
linefeeds. (Bug #32006725)

47

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbmtd-automaticthreadconfig
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/server-system-variables.html#sysvar_print_identified_with_as_hex
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#statvar_Ndb_pushed_queries_dropped
https://docs.oracle.com/cd/E17952_01/mysql-errors-8.0-en/server-error-reference.html#error_er_get_errmsg
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndbd.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndbd.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndbd.html#option_ndbd_help
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-import.html

MySQL NDB Cluster 8.0 Release Notes

• The ndb_import tool handled only the hidden primary key which is defined by NDB when a table does
not have an explicit primary key. This caused an error when inserting a row containing NULL for an auto-
increment primary key column, even though the same row was accepted by LOAD DATA INFILE.

We fix this by adding support for importing a table with one or more instances of NULL in an auto-
increment primary key column. This includes a check that a table has no more than one auto-increment
column; if this column is nullable, it is redefined by ndb_import as NOT NULL, and any occurrence of
NULL in this column is replaced by a generated auto-increment value before inserting the row into NDB.
(Bug #30799495)

• When a node failure is detected, surviving nodes in the same nodegroup as this node attempt to resend
any buffered change data to event subscribers. In cases in which there were no outstanding epoch
deliveries, that is, the list of unacknowledged GCIs was empty, the surviving nodes made the incorrect
assumption that this list would never be empty. (Bug #30509416)

• When executing a copying ALTER TABLE of the parent table for a foreign key and the SQL node
terminates prior to completion, there remained an extraneous temporary table with (additional,
temporary) foreign keys on all child tables. One consequence of this issue was that it was not possible to
restore a backup made using mysqldump --no-data.

To fix this, NDB now performs cleanup of temporary tables whenever a mysqld process connects (or
reconnects) to the cluster. (Bug #24935788, Bug #29892252)

• An unplanned data node shutdown occurred following a bus error on Mac OS X for ARM. We fix this by
moving the call to NdbCondition_Signal() (in AsyncIoThread.cpp) such that it executes prior to
NdbMutex_Unlock()—that is, into the mutex, so that the condition being signalled is not lost during
execution. (Bug #105522, Bug #33559219)

• In DblqhMain.cpp, a missing return in the internal execSCAN_FRAGREQ() function led to an
unplanned shutdown of the data node when inserting a nonfatal error. In addition, the condition !
seize_op_rec(tcConnectptr) present in the same function was never actually checked. (Bug
#105051, Bug #33401830, Bug #33671869)

• It was possible to set any of MaxNoOfFiredTriggers, MaxNoOfLocalScans, and
MaxNoOfLocalOperations concurrently with TransactionMemory, although this is not allowed.

In addition, it was not possible to set any of MaxNoOfConcurrentTransactions,
MaxNoOfConcurrentOperations, or MaxNoOfConcurrentScans concurrently with
TransactionMemory, although there is no reason to prevent this.

In both cases, the concurrent settings behavior now matches the documentation for the
TransactionMemory parameter. (Bug #102509, Bug #32474988)

• When a redo log part is unable to accept an operation's log entry immediately, the operation (a prepare,
commit, or abort) is queued, or (prepare only) optionally aborted. By default operations are queued.

This mechanism was modified in 8.0.23 as part of decoupling local data managers and redo log parts,
and introduced a regression whereby it was possible for queued operations to remain in the queued
state until all activity on the log part quiesced. When this occurred, operations could remain queued until
DBTC declared them timed out, and aborted them. (Bug #102502, Bug #32478380)

48

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-import.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/load-data.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-import.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/alter-table.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysqldump.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysqldump.html#option_mysqldump_no-data
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysqld.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-maxnooffiredtriggers
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-maxnooflocalscans
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-maxnooflocaloperations
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-transactionmemory
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-maxnoofconcurrenttransactions
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-maxnoofconcurrentoperations
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-maxnoofconcurrentscans
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbtc.html

MySQL NDB Cluster 8.0 Release Notes

Changes in MySQL NDB Cluster 8.0.28 (2022-01-18, General
Availability)

MySQL NDB Cluster 8.0.28 is a new release of NDB 8.0, based on MySQL Server 8.0 and including
features in version 8.0 of the NDB storage engine, as well as fixing recently discovered bugs in previous
NDB Cluster releases.

Obtaining NDB Cluster 8.0. NDB Cluster 8.0 source code and binaries can be obtained from https://
dev.mysql.com/downloads/cluster/.

For an overview of changes made in NDB Cluster 8.0, see What is New in MySQL NDB Cluster 8.0.

This release also incorporates all bug fixes and changes made in previous NDB Cluster releases, as well
as all bug fixes and feature changes which were added in mainline MySQL 8.0 through MySQL 8.0.28 (see
Changes in MySQL 8.0.28 (2022-01-18, General Availability)).

• Compilation Notes

• Functionality Added or Changed

• Bugs Fixed

Compilation Notes

• NDB did not compile using GCC 11 on Ubuntu 21.10. (Bug #33424843)

Functionality Added or Changed

• Added the ndbinfo index_stats table, which provides very basic information about NDB index
statistics. It is intended primarily for use in our internal testing, but may be helpful in conjunction with
ndb_index_stat and other tools. (Bug #32906654)

• Previously, ndb_import always tried to import data into a table whose name was derived from the
name of the CSV file being read. This release adds a --table option (short form: -t) for this program,
which overrides this behavior and specifies the name of the target table directly. (Bug #30832382)

Bugs Fixed

• Important Change: The deprecated data node option --connect-delay has been removed. This
option was a synonym for --connect-retry-delay, which was not honored in all cases; this issue
has been fixed, and the option now works correctly. In addition, the short form -r for this option has
been deprecated, and you should expect it to be removed in a future release. (Bug #31565810)

References: See also: Bug #33362935.

• Microsoft Windows: On Windows, added missing debug and test suite binaries for MySQL Server
(commercial) and MySQL NDB Cluster (commercial and community). (Bug #32713189)

• NDB Replication: The mysqld option --slave-skip-errors can be used to allow the replication
applier SQL thread to skip over certain numbered errors automatically. This is not recommended in
production because it allows replicas to diverge since whole transactions in the binary log are not
applied; for NDBCLUSTER with its epoch transactions, this results in entire epochs of changes not being
applied, likely leading to inconsistent data.

Ndb also checks the sequence of epochs applied, and stops the replica applier with an error if there is a
sequence problem. Where --slave-skip-errors is in use, and an error is skipped, this results in a

49

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster.html
https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/downloads/cluster/
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-what-is-new.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-relnotes-en/news-8-0-28.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbinfo-index-stats.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-index-stat.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-import.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-import.html#option_ndb_import_table
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndbd.html#option_ndbd_connect-delay
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndbd.html#option_ndbd_connect-retry-delay
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysqld.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/replication-options-replica.html#option_mysqld_slave-skip-errors

MySQL NDB Cluster 8.0 Release Notes

whole epoch transaction being skipped; this is detected on any subsequent attempt to apply an epoch
transaction, which results in the replica applier SQL thread being stopped.

A new option --ndb-applier-allow-skip-epoch is added in this release to allow users to ignore
wholly skipped epoch transactions, so that they can use the --slave-skip-errors option as with
other MySQL storage engines. This is intended for use in testing, and not in a production setting. Use of
these options is entirely at your own risk.

When mysqld is started with the new option (together with --slave-skip-errors), detection of
a missing epoch generates a warning, but the replica applier SQL thread continues applying. (Bug
#33398973)

• NDB Replication: The log_name column of the ndb_apply_status table was created as
VARBINARY, despite being defined as VARCHAR, using the latin1 character set, causing hex-decoded
output when querying the table using some tools.

We fix this by detecting the faulty column type in ndb_apply_status and reinstalling the table
definition into the data dictionary while connecting to NDB, when mysqld checks the layout of this table.
(Bug #33380726)

• NDB Cluster APIs: Several new basic example C++ NDB API programs have been added to the
distribution, under storage/ndb/ndbapi-examples/ndbapi_basic/ in the source tree. These
are shorter and should be easier to understand for newcomers to the NDB API than the existing API
examples. They also follow recent C++ standards and practices. These examples have also been added
to the NDB API documentation; see Basic NDB API Examples, for more information. (Bug #33378579,
Bug #33517296)

• NDB Cluster APIs: It is no longer possible to use the DIVERIFYREQ signal asynchronously. (Bug
#33161562)

• Timing of wait for scans log output during online reorganization was not performed correctly.
As part of this fix, we change timing to generate one message every 10 seconds rather than scaling
indefinitely, so as to supply regular updates. (Bug #35523977)

• Added missing values checks in ndbd and ndbmtd. (Bug #33661024)

• Online table reorganization increases the number of fragments of a table, and moves rows between
them. This is done in the following steps:

1. Copy rows to new fragments

2. Update distribution information (hashmap count and total fragments)

3. Wait for scan activity using old distribution to stop

4. Delete rows which have moved out of existing partitions

5. Remove reference to old hashmap

6. Wait for scan activity started since step 2 to stop

Due to a counting error, it was possible for the reorganization to hang in step 6; the scan reference count
was not decremented, and thus never reached zero as expected. (Bug #33523991)

• A UNIQUE index created with USING HASH does not support ordered or range access operations, but
rather only those operations in which the full key is specified, returning at most a single row. Even so,
for such an index on an NDB table, range access was still used on the index. (Bug #33466554, Bug
#33474345)

50

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#option_mysqld_ndb-applier-allow-skip-epoch
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysqld.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/binary-varbinary.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/char.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysqld.html
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-examples-basic.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndbd.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndbmtd.html

MySQL NDB Cluster 8.0 Release Notes

• The same pushed join on NDB tables returned an incorrect result when the batched_key_access
optimizer switch was enabled.

This issue arose as follows: When the batch key access (BKA) algorithm is used to join two tables,
a set of batched keys is first collected from one of the tables; a multirange read (MRR) operation is
constructed against the other. A set of bounds (ranges) is specified on the MRR, using the batched keys
to construct each bound.

When result rows are returned it is necessary to identify which range each returned row comes from.
This is used to identify the outer table row to perform the BKA join with. When the MRR operation in
question was a root of a pushed join operation, SPJ was unable to retrieve this identifier (RANGE_NO).
We fix this by implementing the missing SPJ API functionality for returning such a RANGE_NO from a
pushed join query. (Bug #33416308)

• Each query against the ndinfo.index_stats table leaked an NdbRecord. We fix this by changing
the context so that it owns the NdbRecord object which it creates and then to release the NdbRecord
when going out of scope, and by supporting the creation of one and only one record per context. (Bug
#33408123)

• A problem with concurrency occurred when updating cached table statistics with changed rows, when
several threads updating same table the threads competed for the NDB_SHARE mutex in order to update
the cached row count.

We fix this by reimplementing the storage of changed rows using an atomic counter rather than trying to
take the mutex and update the actual shared value, which reduces the need to serialize the threads. In
addition, we now append the number of changed rows to the row count only when removing the statistics
from the cache and provide a separate mutex protecting only the cached statistics. (Bug #33384978)

References: See also: Bug #32169848.

• If the schema distribution client detected a timeout before freeing the schema object when the
coordinator received the schema event, the coordinator processed the stale schema event instead of
returning.

The coordinator did not know whether a schema distribution timeout was detected by the client, and
started processing the schema event as soon as the schema object was valid. To fix this, we indicate the
state of the schema object and change its state when the client detects the schema distribution timeout
and when the schema event is received by the coordinator, so that both the coordinator and the client
are aware of this, and remain synchronized. (Bug #33318201)

• The MySQL Optimizer uses two different methods, handler::read_cost() and
Cost_model::page_read_cost(), to estimate the cost for different access methods, but the cost
values returned by these were not always comparable; in some cases this led to the wrong index being
chosen and longer execution time for effected queries. To fix this for NDB, we override the optimizer's
page_read_cost() method with one specific to NDBCLUSTER. It was also found while working on this
issue that the NDB handler did not implement the read_time() method, used by read_cost(); this
method is now implemented by ha_ndbcluster, and thus the optimizer can now properly take into
account the cost difference for NDB when using a unique key as opposed to an ordered index (range
scan). (Bug #33317872)

• When opening NDB tables for queries, the index statistics are retrieved to help the optimizer select the
optimal query plan. Each client accessing the stats acquires the global index statistics mutex both before

51

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/switchable-optimizations.html#optflag_batched-key-access
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbspj.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbinfo-index-stats.html
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndbrecord.html

MySQL NDB Cluster 8.0 Release Notes

and after accessing the statistics. This causes mutex contention affecting query performance, whether or
not there are queries are operating on the same tables, or on different ones.

We fix this by protecting the count of index statistics references with an atomic counter. The problem
was clearly visible when benchmarking with more than 32 clients, when throughput did not increase with
additional clients. With this fix, the throughput continues to scale with up to 64 clients. (Bug #33317320)

• In certain cases, an event's category was not properly detected. (Bug #33304814)

• It was not possible to add new data nodes running ndbd to an existing cluster with data nodes running
ndbd. (Bug #33193393)

• For a user granted the NDB_STORED_USER privilege, the password_last_changed column in the
mysql.user table was updated each time the SQL node was restarted. (Bug #33172887)

• DBDICT did not always perform table name checks correctly. (Bug #33161548)

• Added a number of missing ID and other values checks in ndbd and ndbmtd. (Bug #33161486, Bug
#33162047)

• Added a number of missing ID and other values checks in ndbd and ndbmtd. (Bug #33161259, Bug
#33161362)

• SET_LOGLEVELORD signals were not always handled correctly. (Bug #33161246)

• DUMP 11001 did not always handle all of its arguments correctly. (Bug #33157513)

• File names were not always verified correctly. (Bug #33157475)

• Added a number of missing checks in the data nodes. (Bug #32983723, Bug #33157488, Bug
#33161451, Bug #33161477, Bug #33162082)

• Added a number of missing ID and other values checks in ndbd and ndbmtd. (Bug #32983700, Bug
#32893708, Bug #32957478, Bug #32983256, Bug #32983339, Bug #32983489, Bug #32983517, Bug
#33157527, Bug #33157531, Bug #33161271, Bug #33161298, Bug #33161314, Bug #33161331, Bug
#33161372, Bug #33161462, Bug #33161511, Bug #33161519, Bug #33161537, Bug #33161570, Bug
#33162059, Bug #33162065, Bug #33162074, Bug #33162082, Bug #33162092, Bug #33162098, Bug
#33304819)

• The management server did not always handle events of the wrong size correctly. (Bug #32957547)

• When ndb_mgmd is started without the --config-file option, the user is expected to provide the
connection string for another management server in the same cluster, so that the management server
being started can obtain configuration information from the other. If the host address in the connection
string could not be resolved, then the ndb_mgmd being started hung indefinitely while trying to establish
a connection.

This issue occurred because a failure to connect was treated as a temporary error, which led to the
ndb_mgmd retrying the connection, which subsequently failed, and so on, repeatedly. We fix this by
treating a failure in host name resolution by ndb_mgmd as a permanent error, and immediately exiting.
(Bug #32901321)

• The order of parameters used in the argument to ndb_import --csvopt is now handled consistently,
with the rightmost parameter always taking precedence. This also applies to duplicate instances of a
parameter. (Bug #32822757)

• In some cases, issues with the redo log while restoring a backup led to an unplanned shutdown of the
data node. To fix this, when the redo log file is not available for writes, we now include the correct wait
code and waiting log part in the CONTINUEB signal before sending it. (Bug #32733659)

52

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndbd.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndbd.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/privileges-provided.html#priv_ndb-stored-user
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbdict.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndbd.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndbmtd.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndbd.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndbmtd.html
https://dev.mysql.com/doc/ndb-internals/en/dump-command-11001.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndbd.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndbmtd.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-mgmd.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-mgmd.html#option_ndb_mgmd_config-file
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-mgmd.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-mgmd.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-mgmd.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-import.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-import.html#option_ndb_import_csvopt

MySQL NDB Cluster 8.0 Release Notes

References: See also: Bug #31585833.

• The binary logging thread sometimes attempted to start before all data nodes were ready, which led to
excess logging of unnecessary warnings and errors. (Bug #32019919)

• Instituted a number of value checks in the internal Ndb_table_guard::getTable() method. This
fixes a known issue in which an SQL node underwent an unplanned shutdown while executing ALTER
TABLE on an NDB table, and potentially additional issues. (Bug #30232826)

• Replaced a misleading error message and otherwise improved the behavior of ndb_mgmd when the
HostName could not be resolved. (Bug #28960182)

• A query used by MySQL Enterprise Monitor to monitor memory use in NDB Cluster became markedly
less performant as the number of NDB tables increased. We fix this as follows:

• Row counts for virtual ndbinfo tables have been made available to the MySQL optimizer

• Size estimates are now provided for all ndbinfo tables

• Primary keys have been added to most internal ndbinfo tables

Following these improvements, the performance of queries against ndbinfo tables should be
comparable to queries against equivalent MyISAM tables. (Bug #28658625)

• Following improvements in LDM performance made in NDB 8.0.23, an UPDATE_FRAG_DIST_KEY_ORD
signal was never sent when needed to a data node using node ID 1. When running the cluster with 3 or
4 replicas and another node in the same node group restarted, this could result in SQL statements being
rejected with error MySQL 1297 ER_GET_TEMPORARY_ERRMSG and, subsequently, SHOW WARNINGS
reporting error NDB error 1204.

Note

Prior to upgrading to this release, you can work around the issue by restarting
data node 1 whenever any other node in the same node group has been
restarted.

(Bug #105098, Bug #33460188)

• Following the rolling restart of a data node performed as part of an upgrade from NDB 7.6 to NDB 8.0,
the data node underwent a forced shutdown. We fix this by allowing LQHKEYREQ signals to be sent to
both the DBLQH and the DBSPJ kernel blocks. (Bug #105010, Bug #33387443)

• When the AutomaticThreadConfig parameter was enabled, NumCPUs was always shown as 0 in the
data node log. In addition, when this parameter is in use, thread CPU bindings are now made correctly,
and the data node log shows the actual CPU binding for each thread. (Bug #102503, Bug #32474961)

• ndb_blob_tool --help did not return the expected output. (Bug #98158, Bug #30733508)

• NDB did not close any pending schema transactions when returning an error from internal system table
creation and drop functions.

53

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/alter-table.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/alter-table.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-mgmd.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-mgm-definition.html#ndbparam-mgmd-hostname
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbinfo.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/myisam-storage-engine.html
https://docs.oracle.com/cd/E17952_01/mysql-errors-8.0-en/server-error-reference.html#error_er_get_temporary_errmsg
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/show-warnings.html
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-error-codes-node-recovery-error.html#ndberrno-1204
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dblqh.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbspj.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbmtd-automaticthreadconfig
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-blob-tool.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-blob-tool.html#option_ndb_blob_tool_help

MySQL NDB Cluster 8.0 Release Notes

Changes in MySQL NDB Cluster 8.0.27 (2021-10-19, General
Availability)

MySQL NDB Cluster 8.0.27 is a new release of NDB 8.0, based on MySQL Server 8.0 and including
features in version 8.0 of the NDB storage engine, as well as fixing recently discovered bugs in previous
NDB Cluster releases.

Obtaining NDB Cluster 8.0. NDB Cluster 8.0 source code and binaries can be obtained from https://
dev.mysql.com/downloads/cluster/.

For an overview of changes made in NDB Cluster 8.0, see What is New in MySQL NDB Cluster 8.0.

This release also incorporates all bug fixes and changes made in previous NDB Cluster releases, as well
as all bug fixes and feature changes which were added in mainline MySQL 8.0 through MySQL 8.0.27 (see
Changes in MySQL 8.0.27 (2021-10-19, General Availability)).

• Functionality Added or Changed

• Bugs Fixed

Functionality Added or Changed

• Important Change: The old MaxAllocate data node configuration parameter has no effect in any
current version of NDB. As of this release, it is deprecated and subject to removal in a future release.
(Bug #52980, Bug #11760559)

• NDB Cluster APIs: Conditions pushed as part of a pushed query can now refer to columns from
ancestor tables within the same pushed query.

For example, given a table created using CREATE TABLE t (x INT PRIMARY KEY, y INT)
ENGINE=NDB, the query such as that shown here can now employ condition pushdown:

SELECT * FROM t AS a
LEFT JOIN t AS b
ON a.x=0 AND b.y>5,

Pushed conditions may include any of the common comparison operators <, <=, >, >=, =, and <>.

Values being compared must be of the same type, including length, precision, and scale.

NULL handling is performed according to the comparison semantics specified by the ISO SQL standard;
any comparison with NULL returns NULL.

For more information, see Engine Condition Pushdown Optimization.

As part of this work, the following NdbInterpretedCode methods are implemented in the NDB API for
comparing column values with values of parameters:

• branch_col_eq_param()

• branch_col_ne_param()

• branch_col_lt_param()

• branch_col_le_param()

• branch_col_gt_param()

54

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster.html
https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/downloads/cluster/
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-what-is-new.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-relnotes-en/news-8-0-27.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-maxallocate
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/create-table.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/create-table.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/engine-condition-pushdown-optimization.html
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndbinterpretedcode.html
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndbinterpretedcode.html#ndb-ndbinterpretedcode-branch-col-eq-param
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndbinterpretedcode.html#ndb-ndbinterpretedcode-branch-col-ne-param
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndbinterpretedcode.html#ndb-ndbinterpretedcode-branch-col-lt-param
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndbinterpretedcode.html#ndb-ndbinterpretedcode-branch-col-le-param
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndbinterpretedcode.html#ndb-ndbinterpretedcode-branch-col-gt-param

MySQL NDB Cluster 8.0 Release Notes

• branch_col_ge_param()

In addition, a new NdbScanFilter::cmp_param() API method makes it possible to define
comparisons between column values and parameter values. (WL #14388)

• In environments that monitor and disconnect idle TCP connections, an idle cluster could suffer from
unnecessary data node failures, and the failure of more than one data node could lead to an unplanned
shutdown of the cluster.

To fix this problem, we introduce a new keep-alive signal (GSN_TRP_KEEP_ALIVE) that is sent on
all connections between data nodes on a regular basis, by default once every 6000 milliseconds
(one minute). The length of the interval between these signals can be adjusted by setting the
KeepAliveSendInterval data node parameter introduced in this release, which can be set to 0 to
disable keep-alive signals. You should be aware that NDB performs no checking that these signals are
received and performs no disconnects on their account (this remains the responsibility of the heartbeat
protocol). (Bug #32776593)

• A copying ALTER TABLE now checks the source table's fragment commit counts before and after
performing the copy. This allows the SQL node executing the ALTER TABLE to determine whether there
has been any concurrent write activity to the table being altered, and, if so, to terminate the operation,
which can help avoid silent loss or corruption of data. When this occurs, the ALTER TABLE statement
is now rejected with the error Detected change to data in source table during copying
ALTER TABLE. Alter aborted to avoid inconsistency. (Bug #24511580, Bug #25694856,
WL #10540)

• The creation and updating of NDB index statistics are now enabled by default. In addition, when restoring
metadata, ndb_restore now creates the index statistics tables if they do not already exist. (WL
#14355)

Bugs Fixed

• Important Change; NDB Cluster APIs: Since MySQL 8.0 uses the data dictionary to store table
metadata, the following NDB API Table methods relating to .FRM files are now deprecated:

• getFrmData()

• getFrmLength()

• setFrm()

NDB 8.0 uses getExtraMetadata() and setExtraMetadata() for reading and writing table
metadata stored in the MySQL data dictionary; you should expect the *Frm*() methods listed
previously to be removed in a future release of NDB Cluster. (Bug #28248575)

• Important Change: The default value for each of the two mysqld options --ndb-wait-connected
and --ndb-wait-setup has been increased from 30 to 120 seconds. (Bug #32850056)

• Microsoft Windows: A number of warnings generated when building NDB Cluster and the NDB utilities
with Visual Studio 16.9.5 were removed. (Bug #32881961)

• Microsoft Windows: On Windows, it was not possible to start data nodes successfully when the cluster
was configured to use more than 64 data nodes. (Bug #104682, Bug #33262452)

• NDB Cluster APIs: A number of MGM API functions, including
ndb_mgm_create_logevent_handle(), did not release memory properly. (Bug #32751506)

55

https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndbinterpretedcode.html#ndb-ndbinterpretedcode-branch-col-ge-param
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndbscanfilter.html#ndb-ndbscanfilter-cmp-param
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-keepalivesendinterval
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/alter-table.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-table.html
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-table.html#ndb-table-getfrmdata
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-table.html#ndb-table-getfrmlength
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-table.html#ndb-table-setfrm
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-table.html#ndb-table-getextrametadata
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-table.html#ndb-table-setextrametadata
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysqld.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#option_mysqld_ndb-wait-connected
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#option_mysqld_ndb-wait-setup
https://docs.oracle.com/cd/E17952_01/ndbapi-en/mgm-functions-log-events.html#mgm-ndb-mgm-create-logevent-handle

MySQL NDB Cluster 8.0 Release Notes

• NDB Cluster APIs: Trying to create an index using NdbDictionary with index statistics enabled and
the index statistics tables missing resulted in NDB error 723 No such table existed, the missing
table in this context being one of the statistics tables, which was not readily apparent to the user. Now in
such cases, NDB instead returns error 4714 Index stats system tables do not exist, which is
added in this release. (Bug #32739080)

• NDB Cluster APIs: The MySQL NoSQL Connector for JavaScript included with NDB Cluster is now built
using Node.js version 12.2.6.

• A buffer used in the SUMA kernel block did not always accommodate multiple signals. (Bug #33246047)

• In DbtupBuffer.cpp the priority level is adjusted to what is currently executing in one path, but it was
not used for short signals. This leads to the risk of TRANSID_AI signals, SCAN_FRAGCONF signals, or
both sorts of signals arriving out of order. (Bug #33206293)

• A query executed as a pushed join by the NDB storage engine returned fewer rows than expected, under
the following conditions:

• The query contained an IN or EXISTS subquery executed as a pushed join, using the firstMatch
algorithm.

• The subquery itself also contained an outer join using at least 2 tables, at least one of which used the
eq_ref access type.

(Bug #33181964)

• Part of the work done in NDB 8.0.23 to add query threads to the ThreadConfig parameter included the
addition of a TUX scan context, used to optimize scans, but in some cases this was not set up correctly
following the close of a scan. (Bug #33161080, Bug #32794719)

References: See also: Bug #33379702.

• An attribute not found error was returned on a pushed join in NDB when looking up a column to
add a linked value.

The issue was caused by use of the wrong lettercase for the name of the column, and is fixed by
insuring that we use the unmodified, original name of the column when performing lookups. (Bug
#33104337)

• It was possible in certain cases for an array index to exceed NO_OF_BUCKETS. (Bug #33019959)

• Changes in NDB 8.0 resulted in a permanent error (NDB Error 261) being returned when the resources
needed by a transaction's operations did not fit within those allocated for the transaction coordinator,
rather than a temporary one (Error 233) as in previous versions. This is significant in NDB Replication,
in which a temporary error is retried, but a permanent error is not; a permanent error is suitable when
the transaction itself is too large to fit in the transaction coordinator without reconfiguration, but when
the transaction cannot fit due to consumption of resources by other transactions, the error should be
temporary, as the transaction may be able to fit later, or in some other TC instance.

The temporary error returned in such cases (NDB error 233) now has a slightly different meaning; that
is, that there is insufficient pooled memory for allocating another operation. (Previously, this error meant
that the limit set by MaxNoOfConcurrentOperations had been reached.)

Rather than conflate these meanings (dynamic allocation and configured limit), we add a new temporary
error (Error 234) which is returned when the configured limit has been reached. See Temporary
Resource error, and Application error, for more information about these errors. (Bug #32997832)

References: See also: Bug #33092571.

56

https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndbdictionary.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-suma.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbtux.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbtc.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-maxnoofconcurrentoperations
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-error-codes-temporary-resource-error.html
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-error-codes-temporary-resource-error.html
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-error-codes-application-error.html

MySQL NDB Cluster 8.0 Release Notes

• Added an ndbrequire() in QMGR to check whether the node ID received from the CM_REGREF signal is
less than MAX_NDB_NODES. (Bug #32983311)

• A check was reported missing from the code for handling GET_TABLEID_REQ signals. To fix this issue,
all code relating to all GET_TABLEID_* signals has been removed from the NDB sources, since these
signals are no longer used or supported in NDB Cluster. (Bug #32983249)

• Added an ndbrequire() in QMGR to ensure that process reports from signal data use appropriate node
IDs. (Bug #32983240)

• It was possible in some cases to specify an invalid node type when working with the internal
management API. Now the API specifically disallows invalid node types, and defines an “unknown” node
type (NDB_MGM_NODE_TYPE_UNKNOWN) to cover such cases. (Bug #32957364)

• NdbReceiver did not always initialize storage for a MySQL BIT column correctly. (Bug #32920099)

• Receiving a spurious schema operation reply from a node not registered as a participant in the current
schema operation led to an unplanned shutdown of the SQL node.

Now in such cases we discard replies from any node not registered as a participant. (Bug #32891206)

References: See also: Bug #30930132, Bug #32509544.

• The values true and false for Boolean parameters such as AutomaticThreadConfig were not
handled correctly when set in a .cnf file. (This issue did not affect handling of such values in .ini
files.) (Bug #32871875)

• Removed unneeded copying of a temporary variable which caused a compiler truncation warning in
storage/ndb/src/common/util/version.cpp. (Bug #32763321)

• The maximum index size supported by the NDB index statistics implementation is 3056 bytes. Attempting
to create an index of a larger size when the table held enough data to trigger a statistics update caused
CREATE INDEX to be rejected with the error Got error 911 'Index stat scan requested on
index with unsupported key size' from NDBCLUSTER.

This error originated in the TUX kernel block during a scan which caused the schema transaction to fail.
This scan is triggered during index creation when the table contains a nonzero number of rows; this also
occurs during automatic updates of index statistics or execution of ANALYZE TABLE.

Creating the index as part of CREATE TABLE or when the table contained no rows returned no error. No
statistics were generated in such situations, while ANALYZE TABLE returned an error similar to the one
above.

We fix this by allowing the index to be created while returning an appropriate warning from a new check
introduced at the handler level. In addition, the TUX scan now handles this situation by suppressing the
error, and instead returns success, effectively treating the table as an empty fragment. Otherwise, the
behavior in such cases remains unchanged, with a warning returned to the client and no index statistics
generated, whether or not the table contains any rows. (Bug #32749829)

References: This issue is a regression of: Bug #28714864.

• A CREATE TABLE statement using ordered indexes returned an error when IndexStatAutoCreate
was set to 1 and all SQL nodes had been started with --ndb-index-stat-enable=OFF, due to the
fact that, when set to OFF, the option prevented the creation of the index statistics tables. Now these
tables are always created at mysqld startup regardless of the value of --ndb-index-stat-enable.
(Bug #32649528)

57

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-qmgr.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-qmgr.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/bit-type.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbmtd-automaticthreadconfig
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/create-index.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbtux.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/analyze-table.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/create-table.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/create-table.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-indexstatautocreate
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#sysvar_ndb_index_stat_enable
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysqld.html

MySQL NDB Cluster 8.0 Release Notes

• If an NDB schema operation was lost before the coordinator could process it, the client which logged the
operation waited indefinitely for the coordinator to complete or abort it. (Bug #32593352)

References: See also: Bug #32579148.

• ndb_mgmd now writes a descriptive error message to the cluster log when it is invoked with one or more
invalid options. (Bug #32554492)

• An IPv6 address used as part of an NDB connection string and which had only decimal digits following
the first colon was incorrectly parsed, and could not be used to connect to the management server. (Bug
#32532157)

• Simultaneously creating a user and then granting this user the NDB_STORED_USER privilege on different
MySQL servers sometimes caused these servers to hang.

This was due to the fact that, when the NDB storage engine is enabled, all SQL statements that
involve users and grants are evaluated to determine whether they effect any users having the
NDB_STORED_USER privilege, after which some statements are ignored, some are distributed to all
SQL nodes as statements, and some are distributed to all SQL nodes as requests to read and apply
a user privilege snapshot. These snapshots are stored in the mysql.ndb_sql_metadata table.
Unlike a statement update, which is limited to one SQL statement, a snapshot update can contain up to
seven SQL statements per user. Waiting for any lock in the NDB binary logging thread while managing
distributed users could easily lead to a deadlock, when the thread was waiting for an exclusive lock on
the local ACL cache.

We fix this problem by implementing explicit locking around NDB_STORED_USER snapshot
updates; snapshot distribution is now performed while holding a global read lock on one row of the
ndb_sql_metadata table. (Previously, both statement and snapshot distribution were performed
asynchronously, with no locking.) Now, when a thread does not obtain this lock on the first attempt, a
warning is raised, and the deadlock prevented.

For more information, see Privilege Synchronization and NDB_STORED_USER. (Bug #32424653)

References: See also: Bug #32832676.

• It was not possible to create or update index statistics when the cluster was in single user mode, due
to transactions being disallowed from any node other than the designated API node granted access,
regardless of type. This prevented the data node responsible for starting transactions relating to index
statistics from doing so.

We address this issue by relaxing the constraint in single user mode and allowing transactions
originating from data nodes (but not from other API nodes). (Bug #32407897)

• When starting multiple management nodes, the first such node waits for the others to start before
committing the configuration, but this was not explicitly communicated to users. In addition, when data
nodes were started without starting all management nodes, no indication was given to users that its
node ID was not allocated since no configuration had yet been committed. Now in such cases, the
management node prints a message advising the user that the cluster is configured to use multiple
management nodes, and to ensure that all such nodes have been started. (Bug #32339789)

• To handle cases in which a cluster is restarted while the MySQL Server (SQL node) is left running,
the index statistics thread is notified when an initial cluster start or restart occurs. The index statistics
thread forced the creation of a fresh Ndb object and checking of various system objects, which is

58

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-mgmd.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/privileges-provided.html#priv_ndb-stored-user
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-privilege-synchronization.html
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndb.html

MySQL NDB Cluster 8.0 Release Notes

unnecessary when the MySQL Server is started at the same time as the initial Cluster start which led to
the unnecessary re-creation of the Ndb object.

We fix this by restarting only the listener in such cases, rather than forcing the Ndb object to be re-
created. (Bug #29610555, Bug #33130864)

• Removed extraneous spaces that appeared in some entries written by errors in the node logs. (Bug
#29540486)

• ndb_restore raised a warning to use --disable-indexes when restoring data after the metadata
had already been restored with --disable-indexes.

When --disable-indexes is used to restore metadata before restoring data, the tables in the target
schema have no indexes. We now check when restoring data with this option to ensure that there are no
indexes on the target table, and print the warning only if the table already has indexes. (Bug #28749799)

• The NDB binlog injector thread now detects errors while handling data change events received from the
storage engine. If an error is detected, the thread logs error messages and restarts itself, and as part of
the restart an exceptional, incident, or LOST_EVENTS entry is written to the binary log. This special entry
indicates to a replication applier that the binary log is incomplete. (Bug #27150740)

• When restoring of metadata was done using --disable-indexes, there was no attempt to create
indexes or foreign keys dependent on these indexes, but when ndb_restore was used without the
option, indexes and foreign keys were created. When --disable-indexes was used later while
restoring data, NDB attempted to drop any indexes created in the previous step, but ignored the failure of
a drop index operation due to a dependency on the index of a foreign key which had not been dropped.
This led subsequently to problems while rebuilding indexes, when there was an attempt to create foreign
keys which already existed.

We fix ndb_restore as follows:

• When --disable-indexes is used, ndb_restore now drops any foreign keys restored from the
backup.

• ndb_restore now checks for the existence of indexes before attempting to drop them.

(Bug #26974491)

• The --ndb-nodegroup-map option for ndb_restore did not function as intended, and code
supporting it has been removed. The option now does nothing, and any value set for it is ignored. (Bug
#25449055)

• Event buffer status messages shown by the event logger have been improved. Percentages are now
displayed only when it makes to do so. In addition, if a maximum size is not defined, the printout shows
max=unlimited. (Bug #21276857)

• File handles and FileLogHandler objects created in MgmtSrvr::configure_eventlogger were
leaked due to an incomplete destructor for BufferedLogHandler. This meant that, each time the
cluster configuration changed in a running ndb_mgmd, the cluster log was reopened and a file handle
leaked, which could lead to issues with test programs and possibly to other problems. (Bug #18192573)

• When --configdir was specified as ., but with a current working directory other than DataDir, the
binary configuration was created in DataDir and not in the current directory. In addition, ndb_mgmd
would not start when there was an existing binary configuration in DataDir.

We fix this by having ndb_mgmd check the path and refusing to start when a relative path is specified for
--configdir. (Bug #11755867)

59

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_disable-indexes
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_disable-indexes
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_ndb-nodegroup-map
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-mgmd.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-mgmd.html#option_ndb_mgmd_configdir
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-mgm-definition.html#ndbparam-mgmd-datadir
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-mgmd.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-mgmd.html

MySQL NDB Cluster 8.0 Release Notes

• A memory leak occurred when NDBCLUSTER was unable to create a subscription for receiving cluster
events. Ownership of the provided event data is supposed to be taken over but actually happened only
when creation succeeded, in other cases the provided event data simply being lost. (Bug #102794, Bug
#32579459)

• ndb_mgmd ignores the --ndb-connectstring option if --config-file is also specified. Now a
warning to this effect is issued, if both options are used. (Bug #102738, Bug #32554759)

• The data node configuration parameters UndoDataBuffer and UndoIndexBuffer have no effect in
any currently supported version of NDB Cluster. Both parameters are now deprecated and the presence
of either in the cluster configuration file raises a warning; you should expect them to be removed in a
future release. (Bug #84184, Bug #26448357)

• Execution of a bulk UPDATE statement using a LIMIT clause led to a debug assertion when an error
was returned by NDB. We fix this by relaxing the assertion for NDB tables, since we expect in certain
scenarios for an error to be returned at this juncture.

Changes in MySQL NDB Cluster 8.0.26 (2021-07-20, General
Availability)

MySQL NDB Cluster 8.0.26 is a new release of NDB 8.0, based on MySQL Server 8.0 and including
features in version 8.0 of the NDB storage engine, as well as fixing recently discovered bugs in previous
NDB Cluster releases.

Obtaining NDB Cluster 8.0. NDB Cluster 8.0 source code and binaries can be obtained from https://
dev.mysql.com/downloads/cluster/.

For an overview of changes made in NDB Cluster 8.0, see What is New in MySQL NDB Cluster 8.0.

This release also incorporates all bug fixes and changes made in previous NDB Cluster releases, as well
as all bug fixes and feature changes which were added in mainline MySQL 8.0 through MySQL 8.0.26 (see
Changes in MySQL 8.0.26 (2021-07-20, General Availability)).

• Functionality Added or Changed

• Bugs Fixed

Functionality Added or Changed

• NDB Cluster APIs: The version of Node.js used by NDB has been upgraded to 12.22.1. (Bug
#32640847)

• NDB Cluster APIs: Added the NdbScanFilter::setSqlCmpSemantics() method to the NDB
API. Previously, NdbScanFilter has always treated NULL as equal to itself, so that NULL == NULL
evaluates as Boolean TRUE; this is not in accordance with the SQL standard, which requires that NULL
== NULL returns NULL. The new method makes it possible to override the traditional behavior, and
enforce SQL-compliant NULL comparisons instead, for the lifetime of a given NdbScanFilter instance.

For more information, see NdbScanFilter::setSqlCmpSemantics(), in the MySQL NDB Cluster API
Developer Guide. (WL #14476)

• ndb_restore now supports conversion between NULL and NOT NULL columns, as follows:

• To restore a NULL column as NOT NULL, use the --lossy-conversions option. The presence of
any NULL rows in the column causes ndb_restore to raise an and exit.

60

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-mgmd.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-mgmd.html#option_ndb_mgmd_ndb-connectstring
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-mgmd.html#option_ndb_mgmd_config-file
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-undodatabuffer
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-undoindexbuffer
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/update.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster.html
https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/downloads/cluster/
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-what-is-new.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-relnotes-en/news-8-0-26.html
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndbscanfilter.html#ndb-ndbscanfilter-setsqlcmpsemantics
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndbscanfilter.html
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndbscanfilter.html#ndb-ndbscanfilter-setsqlcmpsemantics
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_lossy-conversions
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html

MySQL NDB Cluster 8.0 Release Notes

• To restore a NOT NULL column as NULL, use the --promote-attributes option.

For more information, see the descriptions of the indicated ndb_restore options. (Bug #32702637)

• Added the PreferIPVersion configuration parameter, which controls the addressing preference of the
DNS resolver for IPv4 (4) or IPv6 (6), with 4 being the default. This parameter must be the same for all
TCP connections; for this reason, you should set it only in the [tcp default] section of the cluster
global configuration file. (Bug #32420615)

Bugs Fixed

• Packaging: The ndb-common man page was removed, and the information it contained moved to other
man pages. (Bug #32799519)

• Packaging: The mysqlbinlog utility was not included in the NDB Cluster Docker image. (Bug
#32795044)

• NDB Replication: Use of NDB_STORED_USER on an SQL node participating in NDB replication
sometimes led to the repeated revocation and restoration of grants. We fix this by ensuring that
log_slave_updates and the originating server_id are handled correctly when performing ACL
operations in such cases. (Bug #32832676)

• NDB Replication: When starting a cluster with 255 SQL nodes, some mysqld processes did not
properly initialize schema distribution. This caused binary log setup to fail, with the result that the SQL
node never became operational. This error occurred when subscribing to schema changes; setting up
the NdbEventOperation for the mysql.ndb_schema table failed. In addition, a MySQL Server also
needs to set up a subscription for the mysql.ndb_schema_result table so each MySQL Server
requires two resources.

To fix this problem, the effective default for the MaxNoOfSubscriptions configuration parameter
is now treated as 2 * MaxNoOfTables + 2 * [number of API nodes], rather than as 2 *
MaxNoOfTables. (Bug #32380993)

• NDB Cluster APIs: The Node.js adapter did not always handle character set and collation numbers
correctly. (Bug #32742521)

• NDB Cluster APIs: Added the NDB_LE_EventBufferStatus3 log event type to
Ndb_logevent_type in the MGM API. This is an extension of the NDB_LE_EventBufferStatus
type which handles total, maximum, and allocated bytes as 64-bit values.

As part of this fix, the maximum value of the ndb_eventbuffer_max_alloc server system variable is
increased to 9223372036854775807 (263 - 1).

For more information, see The Ndb_logevent_type Type. (Bug #32381666)

• Conditions which were pushable to the NDBCLUSTER engine were not pushed down to the table if it was
referred to as part of a view or a table subquery. (Bug #32924533)

• RPM builds of NDB for Docker which used dynamic linking did not complete due to the inclusion of the
ndbclient library by ndbxfrm. Now ndbxfrm uses the internal ndbgeneral and ndbportlib
libraries instead.

As part of this fix, ndb_restore also now links against ndbgeneral and ndbportlib. (Bug
#32886430)

• NDB now uses std::min() and std::max() in place of its own internal macros for determining the
minimum and maximum of two numbers. (Bug #32854692)

61

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_promote-attributes
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-tcp-definition.html#ndbparam-tcp-preferipversion
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysqlbinlog.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/privileges-provided.html#priv_ndb-stored-user
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/replication-options-binary-log.html#sysvar_log_slave_updates
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/replication-options.html#sysvar_server_id
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysqld.html
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndbeventoperation.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-maxnoofsubscriptions
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-maxnooftables
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#sysvar_ndb_eventbuffer_max_alloc
https://docs.oracle.com/cd/E17952_01/ndbapi-en/mgm-types.html#mgm-ndb-logevent-type
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndbxfrm.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndbxfrm.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html

MySQL NDB Cluster 8.0 Release Notes

• Some error messages printed by ndb_restore tried to access transactions that were already closed for
error information, resulting in an unplanned exit. (Bug #32815725)

• The error messages for NDB errors 418 (Out of transaction buffers in LQH...), 419 (Out of
signal memory...), and 805 (Out of attrinfo records in tuple manager...) all referred
to increasing LongSignalMemory, although there is no configuration parameter by that name. All three
of these error messages have been corrected to refer to the LongMessageBuffer parameter instead.
(Bug #32797240)

• An unsuccessful CREATE TABLE of an NDB table returns a generic error message (ERROR HY000:
Can't create table 'tbl'), with additional, more specific error messages often pushed as
warnings. To assist users who may not be aware of this and see only the generic message, we have
added reminder text regarding the SHOW WARNINGS statement to the generic error message, to prompt
the user to obtain additional information that might help resolve a given issue more quickly. (Bug
#32788231)

• An NDB error which is not mapped to a MySQL handler error code is typically presented to a MySQL
user as error 1296 or 1297, with a message indicating the underlying NDB error code; one exception to
this behavior is a COMMIT error (originating from ndbcluster_commit()), for which the usual NDB
error is 4350 Transaction already aborted. MySQL eventually passed this to strerror() in
the C library, where it was prefixed with Unknown error or similar, but the precise format of this prefix
varied with platform-specific differences with the version of libc being used.

We fix this by creating both a new handler error HA_ERR_TX_FAILED, and a new client error
ER_TRANSACTION_FAILED, associated with SQL State 25000 Invalid Transaction State. (Bug
#32763179)

References: See also: Bug #30264401.

• When started with the --print-full-config option, ndb_mgmd exited with the error Address
already in use. This is fixed by skipping free port validation when this option is specified. (Bug
#32759903)

• Removed unneeded printouts that were generated in the cluster log when executing queries against the
ndbinfo.cluster_locks table. (Bug #32747486)

• The DbUtil class did not call mysql_library_end() when a thread using the MySQL
client library had finished doing so, and did not release the thread's local resources by calling
mysql_thread_end(). (Bug #32730214)

• A memory leak took place in DbUtil when running a query for the second time using same DbUtil
instance; the connection check did not detect the existing MYSQL instance, and replaced it without
releasing it. (Bug #32730047)

• Returning an error while determining the number of partitions used by a NDB table caused the MySQL
server to write Incorrect information in table.frm file to its error log, despite the fact
that the indicated file did not exist. This also led to problems with flooding of the error log when users
attempted to open NDB tables while the MySQL server was not actually connected to NDB.

We fix this by changing the function that determines the number of partitions to use the value loaded
from the MySQL data dictionary without fetching it from NDB, which also saves one round trip when
opening a table. For the special case in which the table is opened for upgrade, we fall back to fetching
the value from NDB in the upgrade code path. (Bug #32713166)

• Using duplicate node IDs with CREATE NODEGROUP (for example, CREATE NODEGROUP 11, 11) could
lead to an unplanned shutdown of the cluster. Now when this command includes duplicate node IDs, it
raises an error. (Bug #32701583)

62

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-longmessagebuffer
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/create-table.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-mgmd.html#option_ndb_mgmd_print-full-config
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-mgmd.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbinfo-cluster-locks.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbutil.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbutil.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-mgm-client-commands.html#ndbclient-create-nodegroup

MySQL NDB Cluster 8.0 Release Notes

• Improved the performance of queries against the ndbinfo.cluster_locks table, which could in
some cases run quite slowly. (Bug #32655988)

• Fixed a number of issues found in ndb_print_backup_file relating to argument parsing, error
reporting, and opening of encrypted files using classes from ndbxfrm. (Bug #32583227)

• The directory unittest/ndb was generated by the build process even though it is not used. This
directory is no longer created when building NDB. (Bug #32553339)

• To ensure that the log records kept for the redo log in main memory are written to redo log file within
one second, a time supervisor in DBLQH acquires a lock on the redo log part prior to the write. A fix for
a previous issue caused a continueB signal (introduced as part of that fix) to be sent when the redo log
file was not yet opened and ready for the write, then to return without releasing the lock. Now such cases
we release the acquired lock before waiting for the redo log file to be open and ready for the write. (Bug
#32539348)

References: This issue is a regression of: Bug #31585833.

• Updating the Ndb object used for receiving events from NDB in the binary log injector thread with the
value for ndb_eventbuffer_max_alloc was performed both at the start of each epoch and after
having handled one event, when it is sufficient to update the value once per epoch.

We fix this by not updating from the global value during processing of each event, which reduces the
amount of work required during each event processing loop. (Bug #32494904)

• Failure to find all blob parts for a blob column while reading from the event stream was not handled
properly, which caused the data in the caller's copy-out buffer to be incomplete, with no error returned to
the caller.

When a user of the event API has been notified that data has been received for a table with blob column,
it creates a buffer large enough to hold the entire blob and then calls the function to read the blob column
from the event stream. Most blob types are stored as several small parts in NDB; to read the blob data
for a blob column from the event stream, the buffered event data must be traversed to find the blob parts
and to copy each part into the provided buffer. Each piece of buffered event data associated with the
blob column is examined to see whether it contains the data for the blob part desired. When a blob part
is found, it is copied into the buffer at the original offset provided by the caller.

The function which finds the blob parts can copy out one or more blob parts at a time. This function is
normally called several times while putting the blob parts together—first to find the first blob part, then
all the parts in the middle (several at a time), and then the remainder in the last part. When the function
does not find all requested blob parts in the buffered event data, this results in an inconsistency which
may occur due to any of several different cases—all parts may not have been sent, the received parts
may have been stored in the wrong place, there is a problem in the logic putting the blob parts together,
or possibly some other issue. The inconsistency is detected by comparing how many blob parts have
been found with how many were requested to be copied out this time.

This problem was noticed while investigating problem with an unplanned SQL node shutdown that could
occur while executing some ALTER TABLE operations, where a debug-compiled mysqld asserted
after having printed information about missing blob parts; manual code inspection shows that a release-
compiled binary would just return the incomplete buffer to the caller. This problem was also noticed in
addressing some previous similar issues.

We fix this problem by returning an error from NdbEventOperationImpl::readBlobParts()
whenever requested blob parts cannot be found. Since this is a serious inconsistency, we also extend
the printout provided when this problem is detected. A sample of the extended printout is shown here:

= print_blob_part_bufs =============================

63

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbinfo-cluster-locks.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-print-backup-file.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndbxfrm.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dblqh.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/alter-table.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysqld.html

MySQL NDB Cluster 8.0 Release Notes

part_start: 0, part_count: 15
table: { id: 13, version: 2, name: 't1' }
column: { attrid: 1, name: 'b' }
blob parts table: { id: 14, version: 2, name: 'NDB$BLOB_13_1' }
available buffers: {
[0]*: part_number: 1, size: 2000, offset: 2000
[1]*: part_number: 14, size: 2000, offset: 28000
[2]*: part_number: 7, size: 2000, offset: 14000
[3]*: part_number: 5, size: 2000, offset: 10000
[4]*: part_number: 3, size: 2000, offset: 6000
[5]*: part_number: 0, size: 2000, offset: 0
[6] : part_number: 15, size: 2000, offset: 30000
[7]*: part_number: 13, size: 2000, offset: 26000
[8]*: part_number: 12, size: 2000, offset: 24000
[9]*: part_number: 11, size: 2000, offset: 22000
[10]*: part_number: 10, size: 2000, offset: 20000
[11]*: part_number: 9, size: 2000, offset: 18000
[12]*: part_number: 8, size: 2000, offset: 16000
[13]*: part_number: 6, size: 2000, offset: 12000
[14]*: part_number: 4, size: 2000, offset: 8000
[15]*: part_number: 2, size: 2000, offset: 4000
}

(Bug #32469090)

References: See also: Bug #32405937, Bug #30509284.

• A node was permitted during a restart to participate in a backup before it had completed recovery,
instead of being made to wait until its recovery was finished. (Bug #32381165)

• Removed NDB_WIN32 from the NDB Cluster sources. This define was once intended to demarcate code
to be conditionally compiled only for Windows, but had long since been superseded for this purpose by
_WIN32. (Bug #32380725)

• Running out of disk space while performing an NDB backup could lead to an unplanned shutdown of the
cluster. (Bug #32367250)

• The index statistics thread relies on the binary log injector thread to inform it about initial system restarts.
The index statistics thread then (asynchronously) recycles its Ndb object and creates its system tables.
Depending on timing, it was possible for the index statistics thread not to be ready to serve requests for
a period of time during which NDB tables were writable. This also led to issues during the setup of stored
grants when the data node parameter IndexStatAutoCreate was set to 1.

We fix this in two ways:

• Make the sending of the signal to the index statistics thread part of binary log setup so that it is
detected in a timely fashion

• Forcing binary log setup to wait until index statistics functionality has been set up in such cases

(Bug #32355045)

• It was possible to start ndb_mgmd with NoOfReplicas set equal to 1 and with more than 72 data nodes
defined in the config.ini file. Now the management server checks for this condition, and refuses to
start if it is found. (Bug #32258207)

• It was possible to start ndb_mgmd with an invalid value set in config.ini for the NodeGroup
parameter; subsequently, data node processes using that value were unable to start. Now in such cases,
the management server refuses to start, and provides an appropriate error message. (Bug #32210176)

64

https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndb.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-indexstatautocreate
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-mgmd.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-noofreplicas
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-mgmd.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-nodegroup

MySQL NDB Cluster 8.0 Release Notes

• A statement such ALTER TABLE t1 ALGORITHM=INPLACE, RENAME COLUMN B to b that
performed an in-place rename of a column changing only the lettercase of its name was successful, but
the change was not reflected in the NDB dictionary (as shown, for example, in the output of ndb_desc).
We fix this issue by ensuring that the NDB dictionary always matches the lettercase specified in the SQL
statement, and that this matches the name as stored in the MySQL data dictionary. (Bug #31958327)

• Event buffer congestion could lead to unplanned shutdown of SQL nodes which were performing binary
logging. We fix this by updating the binary logging handler to use Ndb::pollEvents2() (rather
than the deprecated pollEvents() method) to catch and handle such errors properly, instead. (Bug
#31926584)

• The --resume option for ndb_import did not work correctly unless the --stats option was also
specified. (Bug #31107058)

• Reverted a previous change in the scope of the flags used by INSERT IGNORE and other similar
SQL statements to inform the handler that duplicate key errors during an insert or update do not stop
an ongoing transaction. Now these flags are cleared after every write row event, as before. (Bug
#27538524)

References: See also: Bug #22603412. This issue is a regression of: Bug #20017428.

• NDBCLUSTER uses bitmaps of type MY_BITMAP for keeping track of which columns are to be used
in various contexts. When used in short-lived performance-critical code, these are initialized with a
bit buffer whose (fixed) size is defined at compile time. The size of these buffers was calculated in
multiple ways, which could lead to copy-paste errors, uncertainty whether the buffer is large enough, and
possible allocation of excess space.

We fix this by implementing an internal Ndb_bitmap_buf class that takes the number of bits the buffer
should hold as a template argument, and changing all occurrences of static bitmap buffers to instances
of Ndb_bitmap_buf. This also saves several bytes in the condition pushdown code in which the buffers
were too large. (Bug #27150799)

• A DELETE statement whose WHERE clause referred to a BLOB column was not executed correctly. (Bug
#13881465)

• Analysis of data node and management node logs was sometimes hampered by the fact that not all
log messages included timestamps. This is fixed by replacing a number of different logging functions
(printf, fprintf, ndbout, ndbout_c, << overloading, and so on) with and standardizing on the
existing EventLogger mechanism which begins each log message with a timestamp in YYYY-MM-DD
HH:MM:SS format.

For more information about NDB Cluster event logs and the log message format, see Event Reports
Generated in NDB Cluster. (WL #14311)

References: See also: Bug #21441915, Bug #30455830.

Changes in MySQL NDB Cluster 8.0.25 (2021-05-11, General
Availability)

MySQL NDB Cluster 8.0.25 is a new release of NDB 8.0, based on MySQL Server 8.0 and including
features in version 8.0 of the NDB storage engine, as well as fixing recently discovered bugs in previous
NDB Cluster releases.

Obtaining NDB Cluster 8.0. NDB Cluster 8.0 source code and binaries can be obtained from https://
dev.mysql.com/downloads/cluster/.

65

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/alter-table.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-desc.html
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndb.html#ndb-ndb-pollevents2
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndb.html#ndb-ndb-pollevents
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-import.html#option_ndb_import_resume
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-import.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-import.html#option_ndb_import_stats
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/delete.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/blob.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-event-reports.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-event-reports.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster.html
https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/downloads/cluster/

MySQL NDB Cluster 8.0 Release Notes

For an overview of changes made in NDB Cluster 8.0, see What is New in MySQL NDB Cluster 8.0.

This release also incorporates all bug fixes and changes made in previous NDB Cluster releases, as well
as all bug fixes and feature changes which were added in mainline MySQL 8.0 through MySQL 8.0.25 (see
Changes in MySQL 8.0.25 (2021-05-11, General Availability)).

Packaging Notes

• Binary packages that include curl rather than linking to the system curl library have been upgraded to
use curl 7.76.0.

Changes in MySQL NDB Cluster 8.0.24 (2021-04-20, General
Availability)

MySQL NDB Cluster 8.0.24 is a new release of NDB 8.0, based on MySQL Server 8.0 and including
features in version 8.0 of the NDB storage engine, as well as fixing recently discovered bugs in previous
NDB Cluster releases.

Obtaining NDB Cluster 8.0. NDB Cluster 8.0 source code and binaries can be obtained from https://
dev.mysql.com/downloads/cluster/.

For an overview of changes made in NDB Cluster 8.0, see What is New in MySQL NDB Cluster 8.0.

This release also incorporates all bug fixes and changes made in previous NDB Cluster releases, as well
as all bug fixes and feature changes which were added in mainline MySQL 8.0 through MySQL 8.0.24 (see
Changes in MySQL 8.0.24 (2021-04-20, General Availability)).

• Functionality Added or Changed

• Bugs Fixed

Functionality Added or Changed

• NDB Cluster APIs: The version of Node.js used by NDB has been upgraded to 12.20.1. (Bug
#32356419)

• ndbinfo Information Database: Added the dict_obj_tree table to the ndbinfo information
database. This table provides information about NDB database objects similar to what is shown by
the dict_obj_info table, but presents it in a hierarchical or tree-like fashion that simplifies seeing
relationships between objects such as: tables and indexes; tablespaces and data files; log file groups
and undo log files.

An example of such a view of a table t1, having a primary key on column a and a unique key on column
b, is shown here:

mysql> SELECT indented_name FROM ndbinfo.dict_obj_tree
 -> WHERE root_name = 'test/def/t1';
+----------------------------+
| indented_name |
+----------------------------+
| test/def/t1 |
| -> sys/def/13/b |
| -> NDB$INDEX_15_CUSTOM |
| -> sys/def/13/b$unique |
| -> NDB$INDEX_16_UI |
| -> sys/def/13/PRIMARY |
| -> NDB$INDEX_14_CUSTOM |

66

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-what-is-new.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-relnotes-en/news-8-0-25.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster.html
https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/downloads/cluster/
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-what-is-new.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-relnotes-en/news-8-0-24.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbinfo-dict-obj-tree.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbinfo.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbinfo-dict-obj-info.html

MySQL NDB Cluster 8.0 Release Notes

+----------------------------+
7 rows in set (0.15 sec)

For additional information and examples, see The ndbinfo dict_obj_tree Table. (Bug #32198754)

• ndbinfo Information Database: Added the backup_id table to the ndbinfo information database.
This table contains a single column (id) and a single row, in which the column value is the backup ID of
the most recent backup of the cluster taken with the ndb_mgm client. If no NDB backups can be found,
the value is 0.

Selecting from this table replaces the process of obtaining this information by using the
ndb_select_all utility to dump the contents of the internal SYSTAB_0 table, which is error-prone and
can require an excessively long time to complete. (Bug #32073640)

• Added the status variable Ndb_config_generation, which shows the generation number of the
current configuration being used by the cluster. This can be used as an indicator to determine whether
the configuration of the cluster has changed. (Bug #32247424)

• NDB Cluster now uses the MySQL host_application_signal component service to perform
shutdown of SQL nodes. (Bug #30535835, Bug #32004109)

• NDB has implemented the following two improvements in calculation of index statistics:

• Previously, index statistics were collected from a single fragment only; this is changed such that
additional fragments are used for these.

• The algorithm used for very small tables, such as those having very few rows where results are
discarded, has been improved, so that estimates for such tables should be more accurate than
previously.

See NDB API Statistics Counters and Variables, for more information. (WL #13144)

• A number of NDB Cluster programs now support input of the password for encrypting or decrypting an
NDB backup from standard input. Changes relating to each program affected are listed here:

• For ndb_restore, the --backup-password-from-stdin option introduced in this release
enables input of the password in a secure fashion, similar to how it is done by the mysql client' --
password option. Use this option together with the --decrypt option.

• ndb_print_backup_file now also supports --backup-password-from-stdin as the long
form of the existing -P option.

• For ndb_mgm, --backup-password-from-stdin is supported together with --execute "START
BACKUP [options]" for starting an encrypted cluster backup from the system shell, and has the
same effect.

• Two options for ndbxfrm, --encrypt-password-from-stdin and --decrypt-password-
from-stdin, which are also introduced in this release, cause similar behavior when using this
program, respectively, to encrypt or to decrypt a backup file.

In addition, you can cause ndb_mgm to use encryption whenever it creates a backup by starting it with
--encrypt-backup. In this case, the user is prompted for a password when invoking START BACKUP
if none is supplied. This option can also be specified in the [ndb_mgm] section of the my.cnf file.

Also, the behavior and syntax of the ndb_mgm management client START BACKUP are changed slightly,
such that it is now possible to use the ENCRYPT option without also specifying PASSWORD. Now when the
user does this, the management client prompts the user for a password.

67

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbinfo-dict-obj-tree.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbinfo-backup-id.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbinfo.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-mgm.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-select-all.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#statvar_Ndb_config_generation
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndb-api-statistics.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_backup-password-from-stdin
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-command-options.html#option_mysql_password
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-command-options.html#option_mysql_password
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_decrypt
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-print-backup-file.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-print-backup-file.html#option_ndb_print_backup_file_backup-password-from-stdin
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-mgm.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-mgm.html#option_ndb_mgm_backup-password-from-stdin
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-mgm.html#option_ndb_mgm_execute
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-mgm.html#option_ndb_mgm_execute
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndbxfrm.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndbxfrm.html#option_ndbxfrm_encrypt-password-from-stdin
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndbxfrm.html#option_ndbxfrm_decrypt-password-from-stdin
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndbxfrm.html#option_ndbxfrm_decrypt-password-from-stdin
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-mgm.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-mgm.html#option_ndb_mgm_encrypt-backup
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-backup-using-management-client.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-mgm.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-backup-using-management-client.html

MySQL NDB Cluster 8.0 Release Notes

For more information, see the descriptions of the NDB Cluster programs and program options just
mentioned, as well as Online Backup of NDB Cluster. (WL #14259)

Bugs Fixed

• Packaging: The mysql-cluster-community-server-debug and mysql-cluster-
commercial-server-debug RPM packages were dependent on mysql-community-server and
mysql-commercial-server, respectively, instead of mysql-cluster-community-server
and mysql-cluster-commercial-server. (Bug #32683923)

• Packaging: RPM upgrades from NDB 7.6.15 to 8.0.22 did not succeed due to a file having been moved
from the server RPM to the client-plugins RPM. (Bug #32208337)

• Linux: On Linux systems, NDB interpreted memory sizes obtained from /proc/meminfo as being
supplied in bytes rather than kilobytes. (Bug #102505, Bug #32474829)

• Microsoft Windows: Removed several warnings which were generated when building NDB Cluster on
Windows using Microsoft Visual Studio 2019. (Bug #32107056)

• Microsoft Windows: NDB failed to start correctly on Windows when initializing the NDB library with
ndb_init(), with the error Failed to find CPU in CPU group.

This issue was due to how Windows works with regard to assigning processes to CPUs: when there
are more than 64 logical CPUs on a machine, Windows divides them into different processor groups
during boot. Each processor group can at most hold 64 CPUs; by default, a process can be assigned
to only one processor group. The function std::thread::hardware_concurrency() was used to
get the maximum number of logical CPUs on the machine, but on Windows, this function returns only
the maximum number of logical CPUs present in the processor group with which the current process is
affiliated. This value is used to allocate memory for an array that holds hardware information about each
CPU on the machine. Since the array held valid memory for CPUs from only one processor group, any
attempt to store and retrieve hardware information about a CPU in a different processor group led to
array bound read/write errors, leading to memory corruption and ultimately leads to process failures.

Fixed by using GetActiveProcessorCount() instead of the hardware_concurrency() function
referenced previously. (Bug #101347, Bug #32074703)

• Solaris: While preparing NDBFS for handling of encrypted backups, activation of O_DIRECT was
suspended until after initialization of files was completed. This caused initialization of redo log files to
require an excessive amount of time on systems using hard disk drives with ext3 file systems.

On Solaris, directio is used instead of O_DIRECT; activating directio prior to initialization of files
caused a notable increase in time required when using hard disk drives with UFS file systems.

Now we ensure that, on systems having O_DIRECT, this is activated before initialization of files, and that,
on Solaris, directio continues to be activated after initialization of files. (Bug #32187942)

• NDB Cluster APIs: Several NDB API coding examples included in the source did not release all
resources allocated. (Bug #31987735)

• NDB Cluster APIs: Some internal dictionary objects in NDB used an internal name format which
depends on the database name of the Ndb object. This dependency has been made more explicit where
necessary and otherwise removed.

Users of the NDB API should be aware that the fullyQualified argument to
Dictionary::listObjects() still works in such a way that specifying it as false causes the
objects in the list it returns to use fully qualified names. (Bug #31924949)

68

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-backup.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-ndbfs.html
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-dictionary.html#ndb-dictionary-listobjects

MySQL NDB Cluster 8.0 Release Notes

• ndbinfo Information Database: The system variables ndbinfo_database and
ndbinfo_table_prefix are intended to be read-only. It was found that it was possible to set mysqld
command-line options corresponding to either or both of these; doing so caused the ndbinfo database
to malfunction. This fix insures that it is no longer possible to set either of these variables in the mysql
client or from the command line. (Bug #23583256)

• In some cases, a query affecting a user with the NDB_STORED_USER privilege could be printed to the
MySQL server log without being rewritten. Now such queries are omitted or rewritten to remove any text
following the keyword IDENTIFIED. (Bug #32541096)

• The value set for the SpinMethod data node configuration parameter was ignored. (Bug #32478388)

• The compile-time debug flag DEBUG_FRAGMENT_LOCK was enabled by default. This caused increased
resource usage by DBLQH, even for release builds.

This is fixed by disabling DEBUG_FRAGMENT_LOCK by default. (Bug #32459625)

• ndb_mgmd now exits gracefully in the event of a SIGTERM just as it does following a management client
SHUTDOWN command. (Bug #32446105)

• When started on a port which was already in use, ndb_mgmd did not throw any errors since the use of
SO_REUSEADDR on Windows platforms allowed multiple sockets to bind to the same address and port.

To take care of this issue, we replace SO_REUSEADDRPORT with SO_EXCLUSIVEADDRUSE, which
prevents re-use of a port that is already in use. (Bug #32433002)

• Encountering an error in detection of an initial system restart of the cluster caused the SQL node to exit
prematurely. (Bug #32424580)

• The values reported for the to and from arguments in job buffer full issues were reversed. (Bug
#32413686)

• Under some situations, when trying to measure the time of a CPU pause, an elapsed time of zero could
result. In addition, computing the average for a very fast spin (for example, 100 loops taking less than
100ns) could zero nanoseconds. In both cases, this caused the spin calibration algorithm throw an
arithmetic exception due to division by zero.

We fix both issues by modifying the algorithm so that it ignores zero values when computing mean spin
time. (Bug #32413458)

References: See also: Bug #32497174.

• Table and database names were not formatted correctly in the messages written to the mysqld error log
when the internal method Ndb_rep_tab_reader::scan_candidates() found ambiguous matches
for a given database, table, or server ID in the ndb_replication table. (Bug #32393245)

• Some queries with nested pushed joins were not processed correctly. (Bug #32354817)

• When ndb_mgmd allocates a node ID, it reads through the configuration to find a suitable ID, causing a
mutex to be held while performing hostname lookups. Because network address resolution can require
large amounts of time, it is not considered good practice to hold such a mutex or lock while performing
network operations.

This issue is fixed by building a list of configured nodes while holding the mutex, then using the list to
perform hostname matching and other logic. (Bug #32294679)

69

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#sysvar_ndbinfo_database
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#sysvar_ndbinfo_table_prefix
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysqld.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbinfo.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/privileges-provided.html#priv_ndb-stored-user
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-spinmethod
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dblqh.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-mgmd.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-mgm-client-commands.html#ndbclient-shutdown
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-mgmd.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysqld.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-mgmd.html

MySQL NDB Cluster 8.0 Release Notes

• The schema distribution participant failed to start a global checkpoint after writing a reply to the
ndb_schema_result table, which caused an unnecessary delay before the coordinator received
events from the participant notifying it of the result. (Bug #32284873)

• The global DNS cache used in ndb_mgmd caused stale lookups when restarting a node on a new
machine with a new IP address, which meant that the node could not allocate a node ID.

This issue is addressed by the following changes:

• Node ID allocation no longer depends on LocalDnsCache

• DnsCache now uses local scope only

(Bug #32264914)

• ndb_restore generated a core file when started with unknown or invalid arguments. (Bug #32257374)

• Auto-synchronization detected the presence of mock foreign key tables in the NDB dictionary and
attempted to re-create them in the MySQL server's data dictionary, although these should remain
internal to the NDB Dictionary and not be exposed to the MySQL server. To fix this issue, we now
ensure that the NDB Cluster auto-synchronization mechanism ignores any such mock tables. (Bug
#32245636)

• Improved resource usage associated with handling of cluster configuration data. (Bug #32224672)

• Removed left-over debugging printouts from ndb_mgmd showing a client's version number upon
connection. (Bug #32210216)

References: This issue is a regression of: Bug #30599413.

• The backup abort protocol for handling of node failures did not function correctly for single-threaded data
nodes (ndbd). (Bug #32207193)

• While retrieving sorted results from a pushed-down join using ORDER BY with the index access method
(and without filesort), an SQL node sometimes unexpectedly terminated. (Bug #32203548)

• Logging of redo log initialization showed log part indexes rather than log part numbers. (Bug #32200635)

• Signal data was overwritten (and lost) due to use of extended signal memory as temporary storage. Now
in such cases, extended signal memory is not used in this fashion. (Bug #32195561)

• When ClassicFragmentation = 1, the default number of partitions per node (shown in ndb_desc
output as PartitionCount) is calculated using the lowest number of LDM threads employed by any
single live node, and was done only once, even after data nodes left or joined the cluster, possibly with
a new configuration changing the LDM thread count and thus the default partition count. Now in such
cases, we make sure the default number of partitions per node is recalculated each time data nodes join
or leave the cluster.

This is not an issue in NDB 8.0.23 and later, when ClassicFragmentation is set to 0. (Bug
#32183985)

• The internal function Ndb_ReloadHWInfo() is responsible for updating hardware information for all
the CPUs on the host. For the Linux ARM platform, which does not have Level 3 cache information,
this assigned a socket ID for the L3 cache ID but failed to record the value for the global variable
num_shared_l3_caches, which is needed when creating lists of CPUs connected to a shared L3
cache. (Bug #32180383)

• When trying to run two management nodes on the same host and using the same port number, it
was not always obvious to users why they did not start. Now in such cases, in addition to writing a

70

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-mgmd.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-mgmd.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndbd.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbmtd-classicfragmentation
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-desc.html

MySQL NDB Cluster 8.0 Release Notes

message to the error log, an error message Same port number is specified for management
nodes node_id1 and node_id2 (or) they both are using the default port number
on same host host_name is also written to the console, making the source of the issue more
immediately apparent. (Bug #32175157)

• Added a --cluster-config-suffix option for ndb_mgmd and ndb_config, for use in internal
testing to override a defaults group suffix. (Bug #32157276)

• The management server returned the wrong status for host name matching when some of the host
names in configuration did not resolve and client trying to allocate a node ID connected from the
host whose host name resolved to a loopback address with the error Could not alloc node id
at <host>:<port>: Connection with id X done from wrong host ip 127.0.0.1,
expected <unresolvable_host> (lookup failed).

This caused the connecting client to fail the node ID allocation.

This issue is fixed by rewriting the internal match_hostname() function so that it contains all logic for
how the requesting client address should match the configured hostnames, and so that it first checks
whether the configured host name can be resolved; if not, it now returns a special error so that the client
receives an error indicating that node ID allocation can be retried. The new error is Could not alloc
node id at <host>:<port>: No configured host found of node type <type> for
connection from ip 127.0.0.1. Some hostnames are currently unresolvable. Can
be retried. (Bug #32136993)

• The internal function ndb_socket_create_dual_stack() did not close a newly created socket when
a call to ndb_setsockopt() was unsuccessful. (Bug #32105957)

• The local checkpoint (LCP) mechanism was changed in NDB 7.6 such that it also detected idle
fragments—that is, fragments which had not changed since the last LCP and thus required no on-disk
metadata update. The LCP mechanism could then immediately proceed to handle the next fragment.
When there were a great many such idle fragments, the CPU consumption required merely to loop
through these became highly significant, causing latency spikes in user transactions.

A 1 ms delay was already inserted between each such idle fragment being handled. Testing later
showed this to be too short an interval, and that we are normally not in as great a hurry to complete
these idle fragments as we previously believed.

This fix extends the idle fragment delay time to 20 ms if there are no redo alerts indicating an urgent
need to complete the LCP. In case of a low redo alert state we wait 5 ms instead, and for a higher alert
state we fall back to the 1 ms delay. (Bug #32068551)

References: See also: Bug #31655158, Bug #31613158.

• When an NDB table was created, it was invalidated in the global dictionary cache, but this was
unnecessary. Furthermore, having a table which exists in the global dictionary cache is actually an
advantage for subsequent uses of the new table, since it can be found in the table cache without
performing a round trip to NDB. (Bug #32047456)

• No clear error message was provided when an ndb_mgmd process tried to start using the PortNumber
of a port that was already in use. (Bug #32045786)

71

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-mgmd.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-config.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-mgmd.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-mgm-definition.html#ndbparam-mgmd-portnumber

MySQL NDB Cluster 8.0 Release Notes

• Two problems occurred when NDB closed a table:

• NDB failed to detect when the close was done from FLUSH TABLES, which meant that the NDB table
definitions in the global dictionary cache were not invalidated.

• When the close was done by a thread which had not used NDB earlier—for example when FLUSH
TABLES or RESET MASTER closed instances of ha_ndbcluster held in the table definition cache—
a new Thd_ndb object was allocated, even though there is a fallback to the global Ndb object in case
the allocation fails, which never occurs in such cases, so it is less wasteful simply to use the global
object already provided.

(Bug #32018394, Bug #32357856)

• Removed a large number of compiler warnings relating to unused function arguments in
NdbDictionaryImpl. (Bug #31960757)

• Unnecessary casts were performed when checking internal error codes. (Bug #31930166)

• NDB continued to use file system paths for determining the names of tables to open or perform DDL
on, in spite of the fact that it longer actually uses files for these operations. This required unnecessary
translation between character sets, handling the MySQL-specific file system encoding, and parsing. In
addition, results of these operations were stored in buffers of fixed size, each instance of which used
several hundred bytes of memory unnecessarily. Since the database and table names to use are already
available to NDB through other means, this translation could be (and has been) removed in most cases.
(Bug #31846478)

• Generation of internal statistics relating to NDB object counts was found to lead to an increase in
transaction latency at very high rates of transactions per second, brought about by returning an
excessive number of freed NDB objects. (Bug #31790329)

• NDB behaved unpredictably in response an attempt to change permissions on a distributed user (that
is, a user having the NDB_STORED_USER privilege) during a binary log thread shutdown and restart.
We address this issue by ensuring that the user gets a clear warning Could not distribute ACL
change to other MySQL servers whenever distribution does not succeed. This fix also improves a
number of mysqld log messages. (Bug #31680765)

• ndb_restore encountered intermittent errors while replaying backup logs which deleted blob values;
this was due to deletion of blob parts when a main table row containing blob one or more values was
deleted. This is fixed by modifying ndb_restore to use the asynchronous API for blob deletes, which
does not trigger blob part deletes when a blob main table row is deleted (unlike the synchronous API), so
that a delete log event for the main table deletes only the row from the main table. (Bug #31546136)

• When a table creation schema transaction is prepared, the table is in TS_CREATING state, and is
changed to TS_ACTIVE state when the schema transaction commits on the DBDIH block. In the case
where the node acting as DBDIH coordinator fails while the schema transaction is committing, another
node starts taking over for the coordinator. The following actions are taken when handling this node
failure:

• DBDICT rolls the table creation schema transaction forward and commits, resulting in the table
involved changing to TS_ACTIVE state.

• DBDIH starts removing the failed node from tables by moving active table replicas on the failed node
from a list of stored fragment replicas to another list.

These actions are performed asynchronously many times, and when interleaving may cause a
race condition. As a result, the replica list in which the replica of a failed node resides becomes
nondeterministic and may differ between the recovering node (that is, the new coordinator) and other

72

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/flush.html#flush-tables
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/reset-master.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/privileges-provided.html#priv_ndb-stored-user
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysqld.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbdih.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbdict.html

MySQL NDB Cluster 8.0 Release Notes

DIH participant nodes. This difference violated a requirement for knowing which list the failed node's
replicas can be found during the recovery of the failed node recovery on the other participants.

To fix this, moving active table replicas now covers not only tables in TS_ACTIVE state, but those in
TS_CREATING (prepared) state as well, since the prepared schema transaction is always rolled forward.

In addition, the state of a table creation schema transaction which is being aborted is now changed from
TS_CREATING or TS_IDLE to TS_DROPPING, to avoid any race condition there. (Bug #30521812)

• START BACKUP SNAPSHOTSTART WAIT STARTED could return control to the user prior to the backup's
restore point from the user point of view; that is the Backup started notification was sent before
waiting for the synchronising global checkpoint (GCP) boundary. This meant that transactions committed
after receiving the notification might be included in the restored data.

To fix this problem, START BACKUP now sends a notification to the client that the backup has been
started only after the GCP has truly started. (Bug #29344262)

• Upgrading to NDB Cluster 8.0 from a prior release includes an upgrade in the schema distribution
mechanism, as part of which the ndb_schema table is dropped and recreated in a way which causes all
MySQL Servers connected to the cluster to restart their binary log injector threads, causing a gap event
to be written to the binary log. Since the thread restart happens at the same time on all MySQL Servers,
no binary log spans the time during which the schema distribution functionality upgrade was performed,
which breaks NDB Cluster Replication.

This issue is fixed by adding support for gracefully reconstituting the schema distribution tables while
allowing the injector thread to continue processing changes from the cluster. This is implemented
by handling the DDL event notification for DROP TABLE to turn off support for schema distribution
temporarily, and to start regular checks to re-create the tables. When the tables have been successfully
created again, the regular checks are turned off and support for schema distribution is turned back on.

NDB also now detects automatically when the ndb_apply_status table has been dropped and re-
creates it. The drop and re-creation leaves a gap event in the binary log, which in a replication setup
causes the replica MySQL Server to stop applying changes from the source until the replication channel
is restarted (see ndb_apply_status Table).

In addition, the minimum version required to perform the schema distribution upgrade is raised to 8.0.24,
which prevents automatic triggering of the schema distribution upgrade until all connected API nodes
support the new upgrade procedure.

For more information, see NDB Cluster Replication Schema and Tables. (Bug #27697409, Bug
#30877233)

References: See also: Bug #30876990.

• Fixed a number of issues uncovered when trying to build NDB with GCC 6. (Bug #25038373)

• Calculation of the redo alert state based on redo log usage was overly aggressive, and thus incorrect,
when using more than 1 log part per LDM.

Changes in MySQL NDB Cluster 8.0.23 (2021-01-18, General
Availability)

MySQL NDB Cluster 8.0.23 is a new release of NDB 8.0, based on MySQL Server 8.0 and including
features in version 8.0 of the NDB storage engine, as well as fixing recently discovered bugs in previous
NDB Cluster releases.

73

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-backup-using-management-client.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/drop-table.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-replication-schema.html#ndb-replication-ndb-apply-status
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-replication-schema.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster.html

MySQL NDB Cluster 8.0 Release Notes

Obtaining NDB Cluster 8.0. NDB Cluster 8.0 source code and binaries can be obtained from https://
dev.mysql.com/downloads/cluster/.

For an overview of changes made in NDB Cluster 8.0, see What is New in MySQL NDB Cluster 8.0.

This release also incorporates all bug fixes and changes made in previous NDB Cluster releases, as well
as all bug fixes and feature changes which were added in mainline MySQL 8.0 through MySQL 8.0.23 (see
Changes in MySQL 8.0.23 (2021-01-18, General Availability)).

• Deprecation and Removal Notes

• Functionality Added or Changed

• Bugs Fixed

Deprecation and Removal Notes

• Important Change: As part of the terminology changes begun in MySQL 8.0.21 and NDB 8.0.21,
the ndb_slave_conflict_role system variable is now deprecated, and is being replaced with
ndb_conflict_role.

In addition, a number of status variables have been deprecated and are being replaced, as shown in the
following table:

Table 1 Deprecated NDB status variables and their replacements

Deprecated variable Replacement

Ndb_api_adaptive_send_deferred_count_slaveNdb_api_adaptive_send_deferred_count_replica

Ndb_api_adaptive_send_forced_count_slaveNdb_api_adaptive_send_forced_count_replica

Ndb_api_adaptive_send_unforced_count_slaveNdb_api_adaptive_send_unforced_count_replica

Ndb_api_bytes_received_count_slave Ndb_api_bytes_received_count_replica

Ndb_api_bytes_sent_count_slave Ndb_api_bytes_sent_count_replica

Ndb_api_pk_op_count_slave Ndb_api_pk_op_count_replica

Ndb_api_pruned_scan_count_slave Ndb_api_pruned_scan_count_replica

Ndb_api_range_scan_count_slave Ndb_api_range_scan_count_replica

Ndb_api_read_row_count_slave Ndb_api_read_row_count_replica

Ndb_api_scan_batch_count_slave Ndb_api_scan_batch_count_replica

Ndb_api_table_scan_count_slave Ndb_api_table_scan_count_replica

Ndb_api_trans_abort_count_slave Ndb_api_trans_abort_count_replica

Ndb_api_trans_close_count_slave Ndb_api_trans_close_count_replica

Ndb_api_trans_commit_count_slave Ndb_api_trans_commit_count_replica

Ndb_api_trans_local_read_row_count_slaveNdb_api_trans_local_read_row_count_replica

Ndb_api_trans_start_count_slave Ndb_api_trans_start_count_replica

Ndb_api_uk_op_count_slave Ndb_api_uk_op_count_replica

Ndb_api_wait_exec_complete_count_slave Ndb_api_wait_exec_complete_count_replica

Ndb_api_wait_meta_request_count_slave Ndb_api_wait_meta_request_count_replica

Ndb_api_wait_nanos_count_slave Ndb_api_wait_nanos_count_replica

Ndb_api_wait_scan_result_count_slave Ndb_api_wait_scan_result_count_replica

74

https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/downloads/cluster/
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-what-is-new.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-relnotes-en/news-8-0-23.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#sysvar_ndb_slave_conflict_role
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#sysvar_ndb_conflict_role
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#statvar_Ndb_api_adaptive_send_deferred_count_slave
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#statvar_Ndb_api_adaptive_send_deferred_count_replica
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#statvar_Ndb_api_adaptive_send_forced_count_slave
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#statvar_Ndb_api_adaptive_send_forced_count_replica
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#statvar_Ndb_api_adaptive_send_unforced_count_slave
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#statvar_Ndb_api_adaptive_send_unforced_count_replica
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#statvar_Ndb_api_bytes_received_count_slave
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#statvar_Ndb_api_bytes_received_count_replica
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#statvar_Ndb_api_bytes_sent_count_slave
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#statvar_Ndb_api_bytes_sent_count_replica
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#statvar_Ndb_api_pk_op_count_slave
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#statvar_Ndb_api_pk_op_count_replica
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#statvar_Ndb_api_pruned_scan_count_slave
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#statvar_Ndb_api_pruned_scan_count_replica
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#statvar_Ndb_api_range_scan_count_slave
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#statvar_Ndb_api_range_scan_count_replica
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#statvar_Ndb_api_read_row_count_slave
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#statvar_Ndb_api_read_row_count_replica
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#statvar_Ndb_api_scan_batch_count_slave
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#statvar_Ndb_api_scan_batch_count_replica
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#statvar_Ndb_api_table_scan_count_slave
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#statvar_Ndb_api_table_scan_count_replica
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#statvar_Ndb_api_trans_abort_count_slave
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#statvar_Ndb_api_trans_abort_count_replica
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#statvar_Ndb_api_trans_close_count_slave
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#statvar_Ndb_api_trans_close_count_replica
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#statvar_Ndb_api_trans_commit_count_slave
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#statvar_Ndb_api_trans_commit_count_replica
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#statvar_Ndb_api_trans_local_read_row_count_slave
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#statvar_Ndb_api_trans_local_read_row_count_replica
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#statvar_Ndb_api_trans_start_count_slave
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#statvar_Ndb_api_trans_start_count_replica
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#statvar_Ndb_api_uk_op_count_slave
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#statvar_Ndb_api_uk_op_count_replica
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#statvar_Ndb_api_wait_exec_complete_count_slave
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#statvar_Ndb_api_wait_exec_complete_count_replica
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#statvar_Ndb_api_wait_meta_request_count_slave
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#statvar_Ndb_api_wait_meta_request_count_replica
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#statvar_Ndb_api_wait_nanos_count_slave
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#statvar_Ndb_api_wait_nanos_count_replica
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#statvar_Ndb_api_wait_scan_result_count_slave
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#statvar_Ndb_api_wait_scan_result_count_replica

MySQL NDB Cluster 8.0 Release Notes

Deprecated variable Replacement

Ndb_slave_max_replicated_epoch Ndb_replica_max_replicated_epoch

Also as part of this work, the ndbinfo.table_distribution_status table's tab_copy_status
column values ADD_TABLE_MASTER and ADD_TABLE_SLAVE are deprecated, and replaced by,
respectively, ADD_TABLE_COORDINATOR and ADD_TABLE_PARTICIPANT.

Finally, the --help output of some NDB utility programs such as ndb_restore has been updated.
(Bug #31571031)

• NDB Client Programs: Effective with this release, the MySQL NDB Cluster Auto-Installer
(ndb_setup.py) has been has been removed from the NDB Cluster binary and source distributions,
and is no longer supported. (Bug #32084831)

References: See also: Bug #31888835.

• ndbmemcache: ndbmemcache, which was deprecated in the previous release of NDB Cluster, has now
been removed from NDB Cluster, and is no longer supported. (Bug #32106576)

Functionality Added or Changed

• As part of work previously done in NDB 8.0, the metadata check performed as part of auto-
synchronization between the representation of an NDB table in the NDB dictionary and its counterpart
in the MySQL data dictionary has been extended to include, in addition to table-level properties, the
properties of columns, indexes, and foreign keys. (This check is also made by a debug MySQL server
when performing a CREATE TABLE statement, and when opening an NDB table.)

As part of this work, any mismatches found between an object's properties in the NDB dictionary and
the MySQL data dictionary are now written to the MySQL error log. The error log message includes the
name of the property, its value in the NDB dictionary, and its value in the MySQL data dictionary. If the
object is a column, index, or foreign key, the object's type is also indicated in the message. (WL #13412)

• The ThreadConfig parameter has been extended with two new thread types, query threads and
recovery threads, intended for scaleout of LDM threads. The number of query threads must be a multiple
of the number of LDM threads, up to a maximum of 3 times the number of LDM threads.

It is also now possible when setting ThreadConfig to combine the main and rep threads into a single
thread by setting either or both of these arguments to 0.

When one of these arguments is set to 0 but the other remains set to 1, the resulting combined thread
is named main_rep. When both are set to 0, they are combined with the recv thread (assuming that
recv to 1), and this combined thread is named main_rep_recv. These thread names are those shown
when checking the threads table in the ndbinfo information database.

In addition, the maximums for a number of existing thread types have been increased. The new
maximums are: LDM threads: 332; TC threads: 128; receive threads: 64; send threads: 64; main
threads: 2. (The maximums for query threads and recovery threads are 332 each.) Maximums for other
thread types remain unchanged from previous NDB Cluster releases.

Another change related to this work causes NDB to employ mutexes for protecting job buffers when
more than 32 block threads are in use. This may cause a slight decrease in performance (roughly 1 to 2
percent), but also results in a decrease in the amount of memory used by very large configurations. For
example, a setup with 64 threads which used 2 GB of job buffer memory previously should now require
only about 1 GB instead. In our testing this has resulted in an overall improvement (on the order of 5
percent) in the execution of very complex queries.

75

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#statvar_Ndb_slave_max_replicated_epoch
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#statvar_Ndb_replica_max_replicated_epoch
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbinfo-table-distribution-status.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/create-table.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbmtd-threadconfig
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbmtd-threadconfig
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbinfo-threads.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbinfo.html

MySQL NDB Cluster 8.0 Release Notes

For more information, see the descriptions of the arguments to the ThreadConfig parameter discussed
previously, and of the ndbinfo.threads table. (WL #12532, WL #13219, WL #13338)

• This release adds the possibility of configuring the threads for multithreaded data nodes (ndbmtd)
automatically by implementing a new data node configuration parameter AutomaticThreadConfig.
When set to 1, NDB sets up the thread assignments automatically, based on the number of processors
available to applications. If the system does not limit the number of processors, you can do this
by setting NumCPUs to the desired number. Automatic thread configuration makes it unnecessary
to set any values for ThreadConfig or MaxNoOfExecutionThreads in config.ini; if
AutomaticThreadConfig is enabled, settings for either of these parameters are not used.

As part of this work, a set of tables providing information about hardware and CPU availability and usage
by NDB data nodes have been added to the ndbinfo information database. These tables, along with a
brief description of the information provided by each, are listed here:

• cpudata: CPU usage during the past second

• cpudata_1sec: CPU usage per second over the past 20 seconds

• cpudata_20sec: CPU usage per 20-second interval over the past 400 seconds

• cpudata_50ms: CPU usage per 50-millisecond interval during the past second

• cpuinfo: The CPU on which the data node executes

• hwinfo: The hardware on the host where the data node resides

Not all of the tables listed are available on all platforms supported by NDB Cluster:

• The cpudata, cpudata_1sec, cpudata_20sec, and cpudata_50ms tables are available only on
Linux and Solaris operating systems.

• The cpuinfo table is not available on FreeBSD or macOS.

(WL #13980)

• Added statistical information in the DBLQH block which is employed to track the use of key lookups and
scans, as well as tracking queries from DBTC and DBSPJ. By detecting situations in which the load is
high, but in which there is not actually any need to decrease the number of rows scanned per realtime
break, rather than checking the size of job buffer queues to decide how many rows to scan, this makes
it possible to scan more rows when there is no CPU congestion. This helps improve performance and
realtime behaviour when handling high loads. (WL #14081)

• A new method for handling table partitions and fragments is introduced, such that the number of local
data managers (LDMs) for a given data node can determined independently of the number of redo log
parts, and that the number of LDMs can now be highly variable. NDB employs this method when the
ClassicFragmentation data node configuration parameter, implemented as part of this work, is set
to false. When this is done, the number of LDMs is no longer used to determine how many partitions
to create for a table per data node; instead, the PartitionsPerNode parameter, also introduced in

76

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbinfo-threads.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndbmtd.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbmtd-automaticthreadconfig
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbmtd-numcpus
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbmtd-threadconfig
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbmtd-maxnoofexecutionthreads
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbinfo.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbinfo-cpudata.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbinfo-cpudata-1sec.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbinfo-cpudata-20sec.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbinfo-cpudata-50ms.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbinfo-cpuinfo.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbinfo-hwinfo.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dblqh.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbtc.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbspj.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbmtd-classicfragmentation
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbmtd-partitionspernode

MySQL NDB Cluster 8.0 Release Notes

this release, now determines this number, which is now used for calculating how many fragments a table
should have.

When ClassicFragmentation has its default value true, then the traditional method of using the
number of LDMs is used to determine how many fragments a table should have.

For more information, see Multi-Threading Configuration Parameters (ndbmtd). (WL #13930, WL
#14107)

Bugs Fixed

• macOS: Removed a number of compiler warnings which occurred when building NDB for Mac OS X.
(Bug #31726693)

• Microsoft Windows: Removed a compiler warning C4146: unary minus operator applied to
unsigned type, result still unsigned from Visual Studio 2013 found in storage\ndb\src
\kernel\blocks\dbacc\dbaccmain.cpp. (Bug #23130016)

• Solaris: Due to a source-level error, atomic_swap_32() was supposed to be specified but was not
actually used for Solaris builds of NDB Cluster. (Bug #31765608)

• NDB Replication: After issuing RESET REPLICA ALL / RESET SLAVE ALL, NDB failed to detect that
the replica had restarted. (Bug #31515760)

• NDB Cluster APIs: Removed redundant usage of strlen() in the implementation of NdbDictionary
and related internal classes in the NDB API. (Bug #100936, Bug #31930362)

• MySQL NDB ClusterJ: When a DomainTypeHandler was instantiated by a SessionFactory,
it was stored locally in a static map, typeToHandlerMap. If multiple, distinct SessionFactories
for separate connections to the data nodes were obtained by a ClusterJ application, the static
typeToHandlerMap would be shared by all those factories. When one of the SessionFactories
was closed, the connections it created were closed and any tables opened by the connections were
cleared from the NDB API global cache. However, the typeToHandlerMap was not cleared, and
through it the other SessionFactories keep accessing the DomainTypeHandlers of tables that had
already been cleared. These obsolete DomainTypeHandlers contained invalid NdbTable references
and any ndbapi calls using those table references ended up with errors.

This patch fixes the issue by making the typeToHandlerMap and the related
proxyInterfacesToDomainClassMap maps local to a SessionFactory, so that they are cleared
when the SessionFactory is closed. (Bug #31710047)

• MySQL NDB ClusterJ: Setting com.mysql.clusterj.connection.pool.size=0
made connections to an NDB Cluster fail. With this fix, setting
com.mysql.clusterj.connection.pool.size=0 disables connection pooling as expected, so that
every request for a SessionFactory results in the creation of a new factory and separate connections
to the cluster can be created using the same connection string. (Bug #21370745, Bug #31721416)

• When calling disk_page_abort_prealloc(), the callback from this internal function is ignored, and
so removal of the operation record for the LQHKEYREQ signal proceeds without waiting. This left the table
subject to removal before the callback had completed, leading to a failure in PGMAN when the page was
retrieved from disk.

To avoid this, we add an extra usage count for the table especially for this page cache miss; this count
is decremented as soon as the page cache miss returns. This means that we guarantee that the table is
still present when returning from the disk read. (Bug #32146931)

77

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#mysql-cluster-ndbd-definition-ndbmtd-parameters
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/reset-replica.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster.html
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndbdictionary.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-pgman.html

MySQL NDB Cluster 8.0 Release Notes

• When a table was created, it was possible for a fragment of the table to be checkpointed too early during
the next local checkpoint. This meant that Prepare Phase LCP writes were still being performed when
the LCP completed, which could lead to problems with subsequent ALTER TABLE statements on the
table just created. Now we wait for any potential Prepare Phase LCP writes to finish before the LCP is
considered complete. (Bug #32130918)

• Using the maximum size of an index key supported by index statistics (3056 bytes) caused buffer issues
in data nodes. (Bug #32094904)

References: See also: Bug #25038373.

• NDB now prefers CLOCK_MONOTONIC which on Linux is adjusted by frequency changes but is not
updated during suspend. On macOS, NDB instead uses CLOCK_UPTIME_RAW which is the same, except
that it is not affected by any adjustments.

In addition, when intializing NdbCondition the monotonic clock to use is taken directly from NdbTick,
rather than re-executing the same preprocessor logic used by NdbTick. (Bug #32073826)

• ndb_restore terminated unexpectedly when run with the --decrypt option on big-endian systems.
(Bug #32068854)

• When the data node receive thread found that the job buffer was too full to receive, nothing was done
to ensure that, the next time it checked, it resumed receiving from the transporter at the same point at
which it stopped previously. (Bug #32046097)

• The metadata check failed during auto-synchronization of tables restored using the ndb_restore tool.
This was a timing issue relating to indexes, and was found in the following two scenarios encountered
when a table had been selected for auto-synchronization:

1. When the indexes had not yet been created in the NDB dictionary

2. When the indexes had been created, but were not yet usable

(Bug #32004637)

• Optimized sending of packed signals by registering the kernel blocks affected and the sending functions
which need to be called for each one in a data structure rather than looking up this information each
time. (Bug #31936941)

• When two data definition language statements—one on a database and another on a table in the same
schema—were run in parallel, it was possible for a deadlock to occur. The DDL statement affecting
the database acquired the global schema lock first, but before it could acquire a metadata lock on
the database, the statement affecting the table acquired an intention-exclusive metadata lock on the
schema. The table DDL statement was thus waiting for the global schema lock to upgrade its metadata
lock on the table to an exclusive lock, while the database DDL statement waited for an exclusive
metadata lock on the database, leading to a deadlock.

A similar type of deadlock involving tablespaces and tables was already known to occur; NDB already
detected and resolved that issue. The current fix extends that logic to handle databases and tables as
well, to resolve the problem. (Bug #31875229)

• Clang 8 raised a warning due to an uninitialized variable. (Bug #31864792)

• An empty page acquired for an insert did not receive a log sequence number. This is necessary in case
the page was used previously and thus required undo log execution before being used again. (Bug
#31859717)

78

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/alter-table.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_decrypt
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html

MySQL NDB Cluster 8.0 Release Notes

• No reason was provided when rejecting an attempt to perform an in-place ALTER TABLE ... ADD
PARTITION statement on a fully replicated table. (Bug #31809290)

• When the master node had recorded a more recent GCI than a node starting up which had performed
an unsuccessful restart, subsequent restarts of the latter could not be performed because it could not
restore the stated GCI. (Bug #31804713)

• When using 3 or 4 fragment replicas, it is possible to add more than one node at a time, which means
that DBLQH and DBDIH can have distribution keys based on numbers of fragment replicas that differ by
up to 3 (that is, MAX_REPLICAS - 1), rather than by only 1. (Bug #31784934)

• It was possible in DBLQH for an ABORT signal to arrive from DBTC before it received an LQHKEYREF
signal from the next local query handler. Now in such cases, the out-of-order ABORT signal is ignored.
(Bug #31782578)

• NDB did not handle correctly the case when an ALTER TABLE ... COMMENT="..." statement did not
specify ALGORITHM=COPY. (Bug #31776392)

• It was possible in some cases to miss the end point of undo logging for a fragment. (Bug #31774459)

• ndb_print_sys_file did not work correctly with version 2 of the sysfile format that was introduced
in NDB 8.0.18. (Bug #31726653)

References: See also: Bug #31828452.

• DBLQH could not handle the case in which identical operation records having the same transaction ID
came from different transaction coordinators. This led to locked rows persisting after a node failure,
which kept node recovery from completing. (Bug #31726568)

• It is possible for DBDIH to receive a local checkpoint having a given ID to restore while a later LCP is
actually used instead, but when performing a partial LCP in such cases, the DIH block was not fully
synchronized with the ID of the LCP used. (Bug #31726514)

• In most cases, when searching a hash index, the row is used to read the primary key, but when the row
has not yet been committed the primary key may be read from the copy row. If the row has been deleted,
it can no longer be used to read the primary key. Previously in such cases, the primary key was treated
as a NULL, but this could lead to making a comparison using uninitialised data.

Now when this occurs, the comparison is made only if the row has not been deleted; otherwise the row
is checked of among the operations in the serial queue. If no operation has the primary key, then any
comparison can be reported as not equal, since no entry in the parallel queue can reinsert the row. This
needs to be checked due to the fact that, if an entry in the serial queue is an insert then the primary key
from this operation must be identified as such to preclude inserting the same primary key twice. (Bug
#31688797)

• As with writing redo log records, when the file currently used for writing global checkpoint records
becomes full, writing switches to the next file. This switch is not supposed to occur until the new file is
actually ready to receive the records, but no check was made to ensure that this was the case. This
could lead to an unplanned data node shutdown restoring data from a backup using ndb_restore.
(Bug #31585833)

• Release of shared global memory when it is no longer required by the DBSPJ block now occurs more
quickly than previously. (Bug #31321518)

References: See also: Bug #31231286.

79

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/alter-table-partition-operations.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/alter-table-partition-operations.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dblqh.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbdih.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dblqh.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbtc.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/alter-table.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-print-sys-file.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dblqh.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbdih.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbspj.html

MySQL NDB Cluster 8.0 Release Notes

• Stopping 3 nodes out of 4 in a single node group using kill -9 caused an unplanned cluster
shutdown. To keep this from happening under such conditions, NDB now ensures that any node group
that has not had any node failures is viewed by arbitration checks as fully viable. (Bug #31245543)

• Multi-threaded index builds could sometimes attempt to use an internal function disallowed to them. (Bug
#30587462)

• While adding new data nodes to the cluster, and while the management node was restarting with an
updated configuration file, some data nodes terminated unexpectedly with the error virtual void
TCP_Transporter::resetBuffers(): Assertion `!isConnected()' failed. (Bug
#30088051)

• It was not possible to execute TRUNCATE TABLE or DROP TABLE for the parent table of a foreign key
with foreign_key_checks set to 0. (Bug #97501, Bug #30509759)

• Optimized the internal NdbReceiver::unpackNdbRecord() method, which is used to convert
rows retrieved from the data nodes from packed wire format to the NDB API row format. Prior to the
change, roughly 13% of CPU usage for executing a join occurred within this method; this was reduced to
approximately 8%. (Bug #95007, Bug #29640755)

Changes in MySQL NDB Cluster 8.0.22 (2020-10-19, General
Availability)

MySQL NDB Cluster 8.0.22 is a new release of NDB 8.0, based on MySQL Server 8.0 and including
features in version 8.0 of the NDB storage engine, as well as fixing recently discovered bugs in previous
NDB Cluster releases.

Obtaining NDB Cluster 8.0. NDB Cluster 8.0 source code and binaries can be obtained from https://
dev.mysql.com/downloads/cluster/.

For an overview of changes made in NDB Cluster 8.0, see What is New in MySQL NDB Cluster 8.0.

This release also incorporates all bug fixes and changes made in previous NDB Cluster releases, as well
as all bug fixes and feature changes which were added in mainline MySQL 8.0 through MySQL 8.0.22 (see
Changes in MySQL 8.0.22 (2020-10-19, General Availability)).

• Backup Notes

• Deprecation and Removal Notes

• Functionality Added or Changed

• Bugs Fixed

Backup Notes

• To provide protection against unauthorized recovery of data from backups, this release adds support
for NDB native encrypted backup using AES-256-CBC. Encrypted backup files are protected by a user-
supplied password. NDB does not save this password; this needs to be done by the user or application.
To create an encrypted backup, use ENCRYPT PASSWORD=password with the ndb_mgm client START
BACKUP command (in addition to any other options which may be required). You can also initiate an
encrypted backup in applications by calling the MGM API ndb_mgm_start_backup4() function.

To restore from an encrypted backup, use ndb_restore with both of the options --decrypt and --
backup-password=password. ndb_print_backup_file can also read encrypted files using the -P
option added in this release.

80

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/truncate-table.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/drop-table.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/server-system-variables.html#sysvar_foreign_key_checks
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster.html
https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/downloads/cluster/
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-what-is-new.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-relnotes-en/news-8-0-22.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-mgm.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-backup-using-management-client.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-backup-using-management-client.html
https://docs.oracle.com/cd/E17952_01/ndbapi-en/mgm-functions-backup.html#mgm-ndb-mgm-start-backup4
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_decrypt
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_backup-password
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_backup-password
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-print-backup-file.html

MySQL NDB Cluster 8.0 Release Notes

The encryption password used with this feature can be any string of up to 256 characters from the
range of printable ASCII characters other than !, ', ", $, %, \, and ^. When a password is supplied for
encryption or decryption, it must be quoted using either single or double quotation marks. It is possible to
specify an empty password using '' or "" but this is not recommended.

You can encrypt existing backup files using the ndbxfrm utility which is added to the NDB Cluster
distribution in this release; this program can also decrypt encrypted backup files. ndbxfrm also
compresses and decompresses NDB Cluster backup files. The compression method is the same as
used by NDB Cluster for creating compressed backups when CompressedBackup is enabled.

It is also possible to require encrypted backups using RequireEncryptedBackup. When this
parameter is enabled (by setting it equal to 1), the management client rejects any attempt to perform a
backup that is not encrypted.

For more information, see Using The NDB Cluster Management Client to Create a Backup, as well as
ndbxfrm — Compress, Decompress, Encrypt, and Decrypt Files Created by NDB Cluster. (WL #13474,
WL #13499, WL #13548)

Deprecation and Removal Notes

• NDB Client Programs: Effective with this release, the MySQL NDB Cluster Auto-Installer
(ndb_setup.py) has been deprecated and is subject to removal in a future version of NDB Cluster.
(Bug #31888835)

• ndbmemcache: ndbmemcache is deprecated in this release of NDB Cluster, and is scheduled for
removal in the next release. (Bug #31876970)

Functionality Added or Changed

• Important Change: The Ndb_metadata_blacklist_size status variable was renamed as
Ndb_metadata_excluded_count. (Bug #31465469)

• Packaging: Made the following improvements to the server-minimal RPM for NDB Cluster and the
NDB Cluster Docker image:

• Added ndb_import and other helpful utilities.

• Included NDB utilities are now linked dynamically.

• The NDB Cluster Auto-Installer is no longer included.

• ndbmemcache is no longer included.

(Bug #31838832)

• NDB Replication: Batching of updates to rows containing columns of MySQL type BLOB, MEDIUMBLOB,
LONGBLOB, TEXT, MEDIUMTEXT, and LONGTEXT (“Blob”) by NDB Cluster. This affects INSERT, UPDATE,
and DELETE statements of either of the following types:

• Statements which modify multiple blob columns in the same row

• Statements which modify multiple rows containing blob columns in the same statement

This is accomplished by greatly reducing the number of round trips required between an SQL or other
API node and the data nodes in the replica cluster, in some cases by a factor of 10 or more.

81

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndbxfrm.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndbxfrm.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-compressedbackup
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-requireencryptedbackup
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-backup-using-management-client.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndbxfrm.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#statvar_Ndb_metadata_excluded_count
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-import.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/blob.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/blob.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/blob.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/blob.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/blob.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/blob.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/insert.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/update.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/delete.html

MySQL NDB Cluster 8.0 Release Notes

Other SQL statements may also see performance benefits from these improvements. Such statements
include LOAD DATA INFILE and CREATE TABLE ... SELECT ... when acting on tables containing
one or more Blob columns. In addition, an ALTER TABLE ... ENGINE = NDB statement which
changes the storage engine of a table that previously used one other than NDB and that contains one or
more Blob columns may also execute more efficiently than before this enhancement was implemented.

The performance of some SQL statements which update Blob columns is not noticeably improved by this
enhancement, due to the fact that they require scans of table Blob columns, which breaks up batching.
Such statements include those of the types listed here:

• A SELECT which filters rows by matching on a primary key or unique key column which uses a Blob
type

• An UPDATE or DELETE using a WHERE condition which does not depend on a unique value

• A copying ALTER TABLE statement on a table which already used the NDB storage engine prior to
executing the statement

Statements modifying only columns of types TINYBLOB or TINYTEXT (or both) are not affected by this
enhancement.

To take maximum advantage of this improvement, you must enable slave_allow_batching. It is
also recommended that you increase the values used with the --ndb-batch-size and --ndb-blob-
write-batch-bytes MySQL server options to minimize the number of round trips required by the
replica cluster to apply epoch transactions. (Bug #27765184, WL #13043)

• Added the CMake option NDB_UTILS_LINK_DYNAMIC, to allow dynamic linking of NDB utilities with
ndbclient. (Bug #31668306)

• IPv6 addressing is now supported for connections to management and data nodes, including
connections between management and data nodes with SQL nodes. For IPv6 addressing to work, the
operating platform and network on which the cluster is deployed must support IPv6. Hostname resolution
to IPv6 addresses must be provided by the operating platform (this is the same as when using IPv4
addressing).

Mixing IPv4 and IPv6 addresses in the same cluster is not recommended, but this can be made to work
in either of the following cases, provided that --bind-address is not used with ndb_mgmd:

• Management node configured with IPv6, data nodes configured with IPv4: This works if the data
nodes are started with --ndb-connectstring set to the IPv4 address of the management nodes.

• Management node configured with IPv4, data nodes configured with IPv6: This works if the data
nodes are started with --ndb-connectstring set to the IPv6 address of the management node.

When upgrading from an NDB version that does not support IPv6 addressing to a version that does
so, it is necessary that the network already support both IPv4 and IPv6. The software upgrade must be
performed first; after this, you can update the IPv4 addresses used in the config.ini configuration file
with the desired IPv6 addresses. Finally, in order for the configuration changes to take effect, perform a
system restart of the cluster. (WL #12963)

Bugs Fixed

• Important Change; NDB Cluster APIs: The NDB Cluster adapter for Node.js was built against an
obsolete version of the runtime. Now it is built using Node.js 12.18.3, and only that version or a later
version of Node.js is supported by NDB. (Bug #31783049)

82

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/load-data.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/create-table-select.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/alter-table.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/select.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/blob.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/blob.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#sysvar_slave_allow_batching
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#option_mysqld_ndb-batch-size
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#option_mysqld_ndb-blob-write-batch-bytes
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#option_mysqld_ndb-blob-write-batch-bytes
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/source-configuration-options.html#option_cmake_ndb_utils_link_dynamic
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-mgmd.html#option_ndb_mgmd_bind-address
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-mgmd.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndbd.html#option_ndbd_ndb-connectstring
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndbd.html#option_ndbd_ndb-connectstring

MySQL NDB Cluster 8.0 Release Notes

• Important Change: In order to synchronize excluded metadata objects, it was necessary to correct the
underlying issue, if any, and then trigger the synchronization of the objects again. This could be achieved
though discovery of individual tables, which does not scale well with an increase in the number of tables
and SQL nodes. It could also be done by reconnecting the SQL node to the cluster, but doing so also
incurs extra overhead.

To fix this issue, the list of database objects excluded due to synchronization failure is cleared when
ndb_metadata_sync is enabled by the user. This makes all such objects eligible for synchronization in
the subsequent detection run, which simplifies retrying the synchronization of all excluded objects.

This fix also removes the validation of objects to be retried which formerly took take place at the
beginning of each detection run. Since these objects are of interest only while ndb_metadata_sync
is enabled, the list of objects to be retried is cleared when this variable is disabled, signalling that all
changes have been synchronized. (Bug #31569436)

• Packaging: The Dojo library included with NDB Cluster has been upgraded to version 1.15.4. (Bug
#31559518)

• NDB Disk Data: ndbmtd sometimes terminated unexpectedly when it could not complete a lookup for a
log file group during a restore operation. (Bug #31284086)

• NDB Disk Data: While upgrading a cluster having 3 or 4 replicas after creating sufficient disk data
objects to fill up the tablespace, and while performing inserts on the disk data tables, trying to stop some
data nodes caused others to exit improperly. (Bug #30922322)

• NDB Replication: On Unix-based operating systems, binary logs can be flushed by sending a SIGHUP
signal to the server, but NDBCLUSTER expected one of the SQL statements FLUSH, RESET, or SHOW
BINLOG EVENTS only. (Bug #31242689)

• NDB Cluster APIs: In certain cases, the Table::getColumn() method returned the wrong Column
object. This could happen when the full name of one table column was a prefix of the name of another,
or when the names of two columns had the same hash value. (Bug #31774685)

• NDB Cluster APIs: It was possible to make invalid sequences of NDB API method calls using blobs.
This was because some method calls implicitly cause transaction execution inline, to deal with blob parts
and other issues, which could cause user-defined operations not to be handled correctly due to the use
of a method executing operations relating to blobs while there still user-defined blob operations pending.
Now in such cases, NDB raises a new error 4558 Pending blob operations must be executed
before this call. (Bug #27772916)

• ndb_restore --remap-column did not handle columns containing NULL values correctly. Now any
offset specified by the mapping function used with this option is not applied to NULL, so that NULL is
preserved as expected. (Bug #31966676)

• The ndb_print_backup_file utility did not respect byte order for row data. This tool now performs
byte swapping on row page information to ensure the same results on both big-endian and little-endian
platforms. (Bug #31831438)

References: See also: Bug #32470157.

• In some cases following an upgrade from a version of NDB Cluster previous to 8.0.18 to a later one,
writing the sysfile (see NDB Cluster Data Node File System Directory) and reading back from it
did not work correctly. This could occur when explicit node group assignments to data nodes had
been made (using the NodeGroup parameter); it was possible for node group assignments to change
spontaneously, and even possible for node groups not referenced in the configuration file to be
added. This was due to issues with version 2 of the sysfile format introduced in NDB 8.0.18. (Bug
#31828452, Bug #31820201)

83

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#sysvar_ndb_metadata_sync
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndbmtd.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/flush.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/reset.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/show-binlog-events.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/show-binlog-events.html
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-table.html#ndb-table-getcolumn
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-column.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_remap-column
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-print-backup-file.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-ndbd-filesystemdir-files.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-nodegroup

MySQL NDB Cluster 8.0 Release Notes

References: See also: Bug #31726653.

• After encountering the data node in the configuration file which used NodeGroup=65536, the
management server stopped assigning data nodes lacking an explicit NodeGroup setting to node
groups. (Bug #31825181)

• Data nodes in certain cases experienced fatal memory corruption in the PGMAN kernel block due to an
invalid assumption that pages were 32KB aligned, when in fact they are normally aligned to the system
page size (4096 or 8192 bytes, depending on platform). (Bug #31768450, Bug #31773234)

• Fixed a misspelled define introduced in NDB 8.0.20 which made an internal function used to control
adaptive spinning non-operational. (Bug #31765660)

• When executing undo log records during undo log recovery it was possible when hitting a page cache
miss to use the previous undo log record multiple times. (Bug #31750627)

• When an SQL node or cluster shutdown occurred during schema distribution while the coordinator
was still waiting for the participants, the schema distribution was aborted halfway but any rows in
ndb_schema_result related to this schema operation were not cleared. This left open the possibility
that these rows might conflict with a future reply from a participant if a DDL operation having the same
schema operation ID originated from a client using the same node ID.

To keep this from happening, we now clear all such rows in ndb_schema_result during NDB binary
log setup. This assures that there are no DDL distributions in progress and any rows remaining in the
ndb_schema_result table are already obsolete. (Bug #31601674)

• Help output from the MySQL Cluster Auto-Installer displayed incorrect version information. (Bug
#31589404)

• In certain rare circumstances, NDB missed checking for completion of a local checkpoint, leaving it
uncompleted, which meant that subsequent local checkpoints could not be executed. (Bug #31577633)

• A data definition statement can sometimes involve reading or writing of multiple rows (or both) from
tables; NDBCLUSTER starts an NdbTransaction to perform these operations. When such a statement
was rolled back, NDBCLUSTER attempted to roll back the schema change before rolling back the
NdbTransaction and closing it; this led to the rollback hanging indefinitely while the cluster waited for
the NdbTransaction object to close before it was able to roll back the schema change.

Now in such cases, NDBCLUSTER rolls back the schema change only after rolling back and closing any
open NdbTransaction associated with the change. (Bug #31546868)

• Adding a new user was not always synchronized correctly to all SQL nodes when the
NDB_STORED_USER privilege was granted to the new user. (Bug #31486931)

• In some cases, QMGR returned conflicting NDB engine and MySQL server version information, which
could lead to unplanned management node shutdown. (Bug #31471959)

• SUMA on a node that is starting up should not send a DICT_UNLOCK_ORD signal to the DICT block on
the master node until both all SUMA_HANDOVER_REQ signals sent have had SUMA_HANDOVER_CONF
signals sent in response, and every switchover bucket set up on receiving a SUMA_HANDOVER_CONF has
completed switchover. In certain rare cases using NoOfReplicas > 2, and in which the delay between
global checkpoints was unusually short, it was possible for some switchover buckets to be ready for
handover before others, and for handover to proceed even though this was the case. (Bug #31459930)

• Attribute ID mapping needs to be performed when reading data from an NDB table using indexes or a
primary key whose column order is different than that of the table. For unique indexes, a cached attribute
ID map is created when the table is opened, and is then used for each subsequent read, but for primary

84

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-nodegroup
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-pgman.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster.html
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndbtransaction.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/privileges-provided.html#priv_ndb-stored-user
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-qmgr.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-suma.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbdict.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-noofreplicas
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster.html

MySQL NDB Cluster 8.0 Release Notes

key reads, the map was built for every read. This is changed so that an attribute ID map for primary key
is built and cached when opening the table, and used whenever required for any subsequent reads. (Bug
#31452597)

References: See also: Bug #24444899.

• During different phases of the restore process, ndb_restore used different numbers of retries
for temporary errors as well as different sleep times between retries. This is fixed by implementing
consistent retry counts and sleep times across all restore phases. (Bug #31372923)

• Removed warnings generated when compiling NDBCLUSTER with Clang 10. (Bug #31344788)

• The SPJ block contains a load throttling mechanism used when generating LQHKEYREQ signals. When
these were generated from parent rows from a scan, and this scan had a bushy topology with multiple
children performing key lookups, it was possible to overload the job queues with too many LQHKEYREQ
signals, causing node shutdowns due to full job buffers. This problem was originally fixed by Bug
#14709490. Further investigation of this issue showed that job buffer full errors could occur even
if the SPJ query was not bushy. Due to the increase in the internal batch size for SPJ workers in NDB
7.6.4 as part of work done to implement use of multiple fragments when sending SCAN_FRAGREQ signals
to the SPJ block, even a simple query could fill up the job buffers when a relatively small number of such
queries were run in parallel.

To fix this problem, we no longer send any further LQHKEYREQ signals once the number of outstanding
signals in a given request exceeds 256. Instead, the parent row from which the LQHKEYREQ is produced
is buffered, and the correlation ID of this row is stored in the collection of operations to be resumed later.
(Bug #31343524)

References: This issue is a regression of: Bug #14709490.

• MaxDiskWriteSpeedOwnRestart was not honored as an upper bound for local checkpoint writes
during a node restart. (Bug #31337487)

References: See also: Bug #29943227.

• Under certain rare circumstances, DROP TABLE of an NDB table triggered an assert. (Bug #31336431)

• During a node restart, the SUMA block of the node that is starting must get a copy of the subscriptions
(events with subscribers) and subscribers (NdbEventOperation instances which are executing) from
a node already running. Before the copy is complete, nodes which are still starting ignore any user-level
SUB_START or SUB_STOP requests; after the copy is done, they can participate in such requests. While
the copy operation is in progress, user-level SUB_START and SUB_STOP requests are blocked using a
DICT lock.

An issue was found whereby a starting node could participate in SUB_START and SUB_STOP requests
after the lock was requested, but before it is granted, which resulted in unsuccessful SUB_START and
SUB_STOP requests. This fix ensures that the nodes cannot participate in these requests until after the
DICT lock has actually been granted. (Bug #31302657)

• Backups errored out with FsErrInvalidParameters when the filesystem was running with O_DIRECT
and a data file write was not aligned with the 512-byte block size used by O_DIRECT writes. If the
total fragment size in the data file is not aligned with the O_DIRECT block size, NDB pads the last write
to the required size, but when there were no fragments to write, BACKUP wrote only the header and
footer to the data file. Since the header and footer are less than 512 bytes, leading to the issue with the
O_DIRECT write.

This is fixed by padding out the generic footer to 512 bytes if necessary, using an EMPTY_ENTRY, when
closing the data file. (Bug #31180508)

85

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbspj.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-maxdiskwritespeedownrestart
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/drop-table.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-suma.html
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndbeventoperation.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbdict.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbdict.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-backup.html

MySQL NDB Cluster 8.0 Release Notes

• When employing an execution strategy which requires it to buffer received key rows for later use, DBSPJ
now manages the buffer memory allocation tree node by tree node, resulting in a significant drop in CPU
usage by the DBSPJ block. (Bug #31174015)

• DBSPJ now uses linear memory instead of segmented memory for storing and handling TRANSID_AI
signals, which saves approximately 10% of the CPU previously consumed. Due to this change, it is now
possible for DBSPJ to accept TRANSID_AI signals in the short signal format; this is more efficient than
the long signal format which requires segmented memory. (Bug #31173582, Bug #31173766)

• Altering the table comment of a fully replicated table using ALGORITHM=INPLACE led to an assertion.
(Bug #31139313)

• A local data manager (LDM) has a mechanism for ensuring that a fragment scan does not continue
indefinitely when it finds too few rows to fill the available batch size in a reasonable amount of time
(such as when a ScanFilter evaluates to false for most of the scanned rows). When this time limit, set in
DBLQH as 10 ms, has expired, any rows found up to that point are returned, independent of whether the
specified batch size has been filled or not. This acts as a keep-alive mechanism between data and API
nodes, as well as to avoid keeping any locks held during the scan for too long.

A side effect of this is that returning result row batches to the DBSPJ block which are filled well below the
expected limit could cause performance issues. This was due not only to poor utilization of the space
reserved for batches, requiring more NEXTREQ round trips, but because it also caused DBSPJ internal
parallelism statistics to become unreliable.

Since the DBSPJ block never requests locks when performing scans, overly long locks are not a problem
for SPJ requests. Thus it is considered safe to let scans requested by DBSPJ to continue for longer
than the 10 ms allowed previously, and the limit set in DBLQH has been increased to 100 ms. (Bug
#31124065)

• For a pushed join, the output from EXPLAIN FORMAT=TREE did not indicate whether the table access
was an index range scan returning multiple rows, or a single-row lookup on a primary or unique key.

This fix provides also a minor optimization, such that the handler interface is not accessed more than
once in an attempt to return more than a single row if the access type is known to be Unique. (Bug
#31123930)

• A previous change (made in NDB 8.0.20) made it possible for a pushed join on tables allowing
READ_BACKUP to place two SPJ workers on the data node local to the DBTC block while placing no SPJ
workers on some other node; this sometime imbalance is intentional, as the SPJ workload (and possible
introduced imbalance) is normally quite low compared to the gains of enabling more local reads of the
backup fragments. As an unintended side effect of the same change, these two colocated SPJ workers
might scan the same subset of fragments in parallel; this broke an assumption in the DBSPJ block that
only a single SPJ worker is instantiated on each data node on which the logic for insuring that each SPJ
worker starts its scans from a different fragment depends.

To fix this problem, the starting fragment for each SPJ worker is now calculated based on the root
fragment ID from which the worker starts, which is unique among all SPJ workers even when some of
them reside on the same node. (Bug #31113005)

References: See also: Bug #30639165.

• When upgrading a cluster from NDB 8.0.17 or earlier to 8.0.18 or later, data nodes not yet upgraded
could shut down unexpectedly following upgrade of the management server (or management servers)
to the new software version. This occurred when a management client STOP command was sent to one
or more of the data nodes still running the old version and the new master node (also running the old
version of the NDB software) subsequently underwent an unplanned shutdown.

86

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbspj.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbspj.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dblqh.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbspj.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/explain.html#explain-execution-plan
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbtc.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbspj.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-mgm-client-commands.html#ndbclient-stop

MySQL NDB Cluster 8.0 Release Notes

It was found that this occurred due to setting the signal length and number of signal sections incorrectly
when sending a GSN_STOP_REQ—one of a number of signals whose length has been increased in NDB
8.0 as part of work done to support greater numbers of data nodes—to the new master. This happened
due to the use of stale data retained from sending a GSN_STOP_REQ to the previous master node. To
prevent this from happening, ndb_mgmd now sets the signal length and number of sections explicitly
each time, prior to sending a GSN_STOP_REQ signal. (Bug #31019990)

• In some cases, when failures occurred while replaying logs and restoring tuples, ndb_restore
terminated instead of returning an error. In addition, the number of retries to be attempted for some
operations was determined by hard-coded values. (Bug #30928114)

• During schema distribution, if the client was killed after a DDL operation was already logged in the
ndb_schema table, but before the participants could reply, the client simply marked all participants as
failed in the NDB_SCHEMA_OBJECT and returned. Since the distribution protocol was already in progress,
the coordinator continued to wait for the participants, received their ndb_schema_result insert and
processed them; meanwhile, the client was open to send another DDL operation; if one was executed
and distribution of it was begun before the coordinator could finish processing the previous schema
change, this triggered an assertion there should be only one distribution of a schema operation active at
any given time.

In addition, when the client returned having detected a thread being killed, it also released the global
schema lock (GSL); this could also lead to undefined issues since the participant could make the
changes under the assumption that the GSL was still being held by the coordinator.

In such cases, the client should not return after the DDL operation has been logged in the ndb_schema
table; from this point, the coordinator has control and the client should wait for it to make a decision. Now
the coordinator aborts the distribution only in the event of a server or cluster shutdown, and otherwise
waits for all participants either to reply, or to time out and mark the schema operation as completed. (Bug
#30684839)

• When, during a restart, a data node received a GCP_SAVEREQ signal prior to beginning start phase 9,
and thus needed to perform a global checkpoint index write to a local data manager's local checkpoint
control file, it did not record information from the DIH block originating with the node that sent the
signal as part of the data written. This meant that, later in start phase 9, when attempting to send a
GCP_SAVECONF signal in response to the GCP_SAVEREQ, this information was not available, which
meant the response could not be sent, resulting in an unplanned shutdown of the data node. (Bug
#30187949)

• Setting EnableRedoControl to false did not fully disable MaxDiskWriteSpeed,
MaxDiskWriteSpeedOtherNodeRestart, and MaxDiskWriteSpeedOwnRestart as expected.
(Bug #29943227)

References: See also: Bug #31337487.

• A BLOB value is stored by NDB in multiple parts; when reading such a value, one read operation is
executed per part. If a part is not found, the read fails with a row not found error, which indicates
a corrupted BLOB, since a BLOB should never have any missing parts. A problem can arise because this
error is reported as the overall result of the read operation, which means that mysqld sees no error and
reports zero rows returned.

This issue is fixed by adding a check specifically for the case in wich a blob part is not found. Now, when
this occurs, overwriting the row not found error with corrupted blob, which causes the originating
SELECT statement to fail as expected. Users of the NDB API should be aware that, despite this change,
the NdbBlob::getValue() method continues to report the error as row not found in such cases.
(Bug #28590428)

87

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-mgmd.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbdih.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-enableredocontrol
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-maxdiskwritespeed
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-maxdiskwritespeedothernoderestart
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-maxdiskwritespeedownrestart
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/select.html
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndbblob.html#ndb-ndbblob-getvalue

MySQL NDB Cluster 8.0 Release Notes

• Data nodes did not start when the RealtimeScheduler configuration parameter was set to 1. This was
due to the fact that index builds during startup are performed by temporarily diverting some I/O threads
for use as index building threads, and these threads inherited the realtime properties of the I/O threads.
This caused a conflict (treated as a fatal error) when index build thread specifications were checked to
ensure that they were not realtime threads. This is fixed by making sure that index build threads are
not treated as realtime threads regardless of any settings applying to their host I/O threads, which is as
actually intended in their design. (Bug #27533538)

• Using an in-place ALTER TABLE to drop an index could lead to the unplanned shutdown of an SQL
node. (Bug #24444899)

• As the final step when executing ALTER TABLE ... ALGORITHM=INPLACE, NDBCLUSTER performed
a read of the table metadata from the NDB dictionary, requiring an extra round trip between the SQL
nodes and data nodes, which unnecessarily both slowed down execution of the statement and provided
an avenue for errors which NDBCLUSTER was not prepared to handle correctly. This issue is fixed by
removing the read of NDB table metadata during the final phase of executing an in-place ALTER TABLE
statement. (Bug #99898, Bug #31497026)

• A memory leak could occur when preparing an NDB table for an in-place ALTER TABLE. (Bug #99739,
Bug #31419144)

• Added the AllowUnresolvedHostNames configuration parameter. When set to true, this parameter
overrides the fatal error normally raised when ndb_mgmd cannot connect to a given host name, allowing
startup to continue and generating only a warning instead. To be effective, the parameter must be set in
the cluster global configuration file's [tcp default] section. (WL #13860)

Changes in MySQL NDB Cluster 8.0.21 (2020-07-13, General
Availability)

MySQL NDB Cluster 8.0.21 is a new release of NDB 8.0, based on MySQL Server 8.0 and including
features in version 8.0 of the NDB storage engine, as well as fixing recently discovered bugs in previous
NDB Cluster releases.

Obtaining NDB Cluster 8.0. NDB Cluster 8.0 source code and binaries can be obtained from https://
dev.mysql.com/downloads/cluster/.

For an overview of changes made in NDB Cluster 8.0, see What is New in MySQL NDB Cluster 8.0.

This release also incorporates all bug fixes and changes made in previous NDB Cluster releases, as well
as all bug fixes and feature changes which were added in mainline MySQL 8.0 through MySQL 8.0.21 (see
Changes in MySQL 8.0.21 (2020-07-13, General Availability)).

• Packaging Notes

• Functionality Added or Changed

• Bugs Fixed

Packaging Notes

• For Windows, MSI installer packages for NDB Cluster now include a check for the required Visual
Studio redistributable package, and produce a message asking the user to install it if it is missing. (Bug
#30541398)

88

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-realtimescheduler
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/alter-table.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/alter-table.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/alter-table.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-tcp-definition.html#ndbparam-tcp-allowunresolvedhostnames
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-mgmd.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster.html
https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/downloads/cluster/
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-what-is-new.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-relnotes-en/news-8-0-21.html

MySQL NDB Cluster 8.0 Release Notes

Functionality Added or Changed

• NDB Disk Data: An initial restart of the cluster now causes the removal of all NDB tablespaces and log
file groups from the NDB dictionary and the MySQL data dictionary. This includes the removal of all data
files and undo log files associated with these objects. (Bug #30435378)

References: See also: Bug #29894166.

• The status variable Ndb_metadata_blacklist_size is now deprecated, and is replaced in NDB
8.0.22 by Ndb_metadata_excluded_count. (Bug #31465469)

• It now possible to consolidate data from separate instances of NDB Cluster into a single target NDB
Cluster when the original datasets all use the same schema. This is supported when using backups
created using START BACKUP in ndb_mgm and restoring them with ndb_restore, using the --remap-
column option implemented in this release (along with --restore-data and possibly other options).
--remap-column can be employed to handle cases of overlapping primary, unique, or both sorts of
key values between source clusters, and you need to make sure that they do not overlap in the target
cluster. This can also be done to preserve other relationships between tables.

When used together with --restore-data, the new option applies a function to the value of the
indicated column. The value set for this option is a string of the format db.tbl.col:fn:args, whose
components are listed here:

• db: Database name, after performing any renames.

• tbl: Table name.

• col: Name of the column to be updated. This column's type must be one of INT or BIGINT, and can
optionally be UNSIGNED.

• fn: Function name; currently, the only supported name is offset.

• args: The size of the offset to be added to the column value by offset. The range of the argument is
that of the signed variant of the column's type; thus, negative offsets are supported.

You can use --remap-column for updating multiple columns of the same table and different columns
of different tables, as well as combinations of multiple tables and columns. Different offset values can be
employed for different columns of the same table.

As part of this work, two new options are also added to ndb_desc in this release:

• --auto-inc (short form -a): Includes the next auto-increment value in the output, if the table has an
AUTO_INCREMENT column.

• --context (short form -x): Provides extra information about the table, including the schema,
database name, table name, and internal ID.

These options may be useful for obtaining information about NDB tables when planning a merge,
particularly in situations where the mysql client may not be readily available.

For more information, see the descriptions for --remap-column, --auto-inc, and --context. (Bug
#30383950, WL #11796)

89

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#statvar_Ndb_metadata_excluded_count
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-backup-using-management-client.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-mgm.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_remap-column
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_remap-column
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_restore-data
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_restore-data
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/integer-types.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/integer-types.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-desc.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-desc.html#option_ndb_desc_auto-inc
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-desc.html#option_ndb_desc_context
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_remap-column
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-desc.html#option_ndb_desc_auto-inc
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-desc.html#option_ndb_desc_context

MySQL NDB Cluster 8.0 Release Notes

• Detailed real-time information about the state of automatic metadata mismatch detection and
synchronization can now be obtained from tables in the MySQL Performance Schema. These two tables
are listed here:

• ndb_sync_pending_objects: Contains information about NDB database objects for which
mismatches have been detected between the NDB dictionary and the MySQL data dictionary. It does
not include objects which have been excluded from mismatch detection due to permanent errors
raised when attempting to synchronize them.

• ndb_sync_excluded_objects: Contains information about NDB database objects which have been
excluded because they cannot be synchronized between the NDB dictionary and the MySQL data
dictionary, and thus require manual intervention. These objects are no longer subject to mismatch
detection until such intervention has been performed.

In each of these tables, each row corresponds to a database object, and contains the database object's
parent schema (if any), the object's name, and the object's type. Types of objects include schemas,
tablespaces, log file groups, and tables. The ndb_sync_excluded_objects table shows in addition to
this information the reason for which the object has been excluded.

Performance Schema NDB Cluster Tables, provides further information about these Performance
Schema tables. (Bug #30107543, WL #13712)

• ndb_restore now supports different primary key definitions for source and target tables when restoring
from an NDB native backup, using the --allow-pk-changes option introduced in this release. Both
increasing and decreasing the number of columns making up the original primary key are supported.
This may be useful when it is necessary to accommodate schema version changes while restoring data,
or when doing so is more efficient or less time-consuming than performing ALTER TABLE statements
involving primary key changes on a great many tables following the restore operation.

When extending a primary key with additional columns, any columns added must not be nullable, and
any values stored in any such columns must not change while the backup is being taken. Changes in the
values of any such column while trying to add it to the table's primary key causes the restore operation to
fail. Due to the fact that some applications set the values of all columns when updating a row even if the
values of one or more of the columns does not change, it is possible to override this behavior by using
the --ignore-extended-pk-updates option which is also added in this release. If you do this, care
must be taken to insure that such column values do not actually change.

When removing columns from the table's primary key, it is not necessary that the columns dropped from
the primary key remain part of the table afterwards.

For more information, see the description of the --allow-pk-changes option in the documentation for
ndb_restore. (Bug #26435136, Bug #30383947, Bug #30634010, WL #10730)

• Added the --ndb-log-fail-terminate option for mysqld. When used, this causes the SQL node to
terminate if it is unable to log all row events. (Bug #21911930)

References: See also: Bug #30383919.

• When a scalar subquery has no outer references to the table to which the embedding condition
is attached, the subquery may be evaluated independent of that table; that is, the subquery is not
dependent. NDB now attempts to identify and evaluate such a subquery before trying to retrieve any rows
from the table to which it is attached, and to use the value thus obtained in a pushed condition, rather
than using the subquery which provided the value. (WL #13798)

• In MySQL 8.0.17 and later, the MySQL Optimizer transforms NOT EXISTS and NOT IN queries into
antijoins. NDB can now push these down to the data nodes.

90

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/performance-schema-ndb-sync-pending-objects-table.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/performance-schema-ndb-sync-excluded-objects-table.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/performance-schema-ndb-sync-excluded-objects-table.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/performance-schema-ndb-cluster-tables.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_allow-pk-changes
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/alter-table.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_ignore-extended-pk-updates
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_allow-pk-changes
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#option_mysqld_ndb-log-fail-terminate
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysqld.html

MySQL NDB Cluster 8.0 Release Notes

This can be done when there is no unpushed condition on the table, and the query fulfills any other
conditions which must be met for an outer join to be pushed down. (WL #13796, WL #13978)

Bugs Fixed

• Important Change; NDB Disk Data: An online change of tablespace is not supported for NDB tables.
Now, for an NDB table, the statement ALTER TABLE ndb_table ... ALGORITHM=INPLACE,
TABLESPACE=new_tablespace is specifically disallowed.

As part of this fix, the output of the ndb_desc utility is improved to include the tablespace name and ID
for an NDB table which is using one. (Bug #31180526)

• The wrong index was used in the array of indexes while dropping an index. For a table with 64 indexes
this caused uninitialized memory to be released. This problem also caused a memory leak when a new
index was created at any later time following the drop. (Bug #31408095)

• Removed an unnecessary dependency of ndb_restore on the NDBCLUSTER plugin. (Bug #31347684)

• Objects for which auto-synchronization fails due to temporary errors, such as failed acquisitions of
metadata locks, are simply removed from the list of detected objects, making such objects eligible for
detection in later cycles in which the synchronization is retried and hopefully succeeds. This best-effort
approach is suitable for the default auto-synchronization behaviour but is not ideal when the using
the ndb_metadata_sync system variable, which triggers synchronization of all metadata, and when
synchronization is complete, is automatically set to false to indicate that this has been done.

What happened, when a temporary error persisted for a sizable length of time, was that metadata
synchronization could take much longer than expected and, in extreme cases, could hang indefinitely,
pending user action. One such case occurred when using ndb_restore with the --disable-
indexes option to restore metadata, when the synchronization process entered a vicious cycle of
detection and failed synchronization attempts due to the missing indexes until the indexes were rebuilt
using ndb_restore --rebuild-indexes.

The fix for this issue is, whenever ndb_metadata_sync is set to true, to exclude an object after
synchronization of it fails 10 times with temporary errors by promoting these errors to a permanent error,
in order to prevent stalling. This is done by maintaining a list of such objects, this list including a count of
the number of times each such object has been retried. Validation of this list is performed during change
detection in a similar manner to validation of the exclusion list. (Bug #31341888)

• 32-bit platforms are not supported by NDB 8.0. Beginning with this release, the build process checks the
system architecture and aborts if it is not 64-bit. (Bug #31340969)

• Page-oriented allocations on the data nodes are divided into nine resource groups, some having pages
dedicated to themselves, and some having pages dedicated to shared global memory which can be
allocated by any resource group. To prevent the query memory resource group from depriving other,
more important resource groups such as transaction memory of resources, allocations for query memory
are performed with low priority and are not allowed to use the last 10% of shared global memory. This
change was introduced by poolification work done in NDB 8.0.15.

Subsequently, it was observed that the calculation for the number of pages of shared global memory
kept inaccessible to query memory was correct only when no pages were in use, which is the case when
the LateAlloc data node parameter is disabled (0).

This fix corrects that calculation as performed when LateAlloc is enabled. (Bug #31328947)

References: See also: Bug #31231286.

91

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/alter-table.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/alter-table.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-desc.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#sysvar_ndb_metadata_sync
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_disable-indexes
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_disable-indexes
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_rebuild-indexes
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#sysvar_ndb_metadata_sync
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-latealloc

MySQL NDB Cluster 8.0 Release Notes

• Multi-threaded restore is able to drive greater cluster load than the previous single-threaded restore,
especially while restoring of the data file. To avoid load-related issues, the insert operation parallelism
specified for an ndb_restore instance is divided equally among the part threads, so that a
multithreaded instance has a similar level of parallelism for transactions and operations to a single-
threaded instance.

An error in division caused some part threads to have lower insert operation parallelism than they should
have, leading to an slower restore than expected. This fix ensures all part threads in a multi-threaded
ndb_restore instance get an equal share for parallelism. (Bug #31256989)

• DUMP 1001 (DumpPageMemoryOnFail) now prints out information about the internal state of the
data node page memory manager when allocation of pages fails due to resource constraints. (Bug
#31231286)

• Statistics generated by NDB for use in tracking internal objects allocated and deciding when to release
them were not calculated correctly, with the result that the threshold for resource usage was 50%
higher than intended. This fix corrects the issue, and should allow for reduced memory usage. (Bug
#31127237)

• The Dojo toolkit included with NDB Cluster and used by the Auto-Installer was upgraded to version
1.15.3. (Bug #31029110)

• A packed version 1 configuration file returned by ndb_mgmd could contain duplicate entries following an
upgrade to NDB 8.0, which made the file incompatible with clients using version 1. This occurs due to
the fact that the code for handling backwards compatibility assumed that the entries in each section were
already sorted when merging it with the default section. To fix this, we now make sure that this sort is
performed prior to merging. (Bug #31020183)

• When executing any of the SHUTDOWN, ALL STOP, or ALL RESTART management commands, it is
possible for different nodes to attempt to stop on different global checkpoint index (CGI) boundaries. If
they succeed in doing so, then a subsequent system restart is slower than normal because any nodes
having an earlier stop GCI must undergo takeover as part of the process. When nodes failing on the
first GCI boundary cause surviving nodes to be nonviable, surviving nodes suffer an arbitration failure;
this has the positive effect of causing such nodes to halt at the correct GCI, but can give rise to spurious
errors or similar.

To avoid such issues, extra synchronization is now performed during a planned shutdown to reduce
the likelihood that different data nodes attempt to shut down at different GCIs as well as the use of
unnecessary node takeovers during system restarts. (Bug #31008713)

• During an upgrade, a client could connect to an NDB 8.0 data node without specifying a multiple
transporter instance ID, so that this ID defaulted to -1. Due to an assumption that this would occur
only in the Node starting state with a single transporter, the node could hang during the restart. (Bug
#30899046)

• When an NDB cluster was upgraded from a version that does not support the data dictionary to one that
does, any DDL executed on a newer SQL node was not properly distributed to older ones. In addition,
newer SDI generated during DDL execution was ignored by any data nodes that had not yet been
upgraded. These two issues led to schema states that were not consistent between nodes of different
NDB software versions.

We fix this problem by blocking any DDL affecting NDB data objects while an upgrade from a previous
NDB version to a version with data dictionary support is ongoing. (Bug #30877440)

References: See also: Bug #30184658.

92

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://dev.mysql.com/doc/ndb-internals/en/dump-command-1001.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-mgmd.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-mgm-client-commands.html#ndbclient-shutdown
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-mgm-client-commands.html#ndbclient-stop
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-mgm-client-commands.html#ndbclient-restart

MySQL NDB Cluster 8.0 Release Notes

• The mysql.ndb_schema table, used internally for schema distribution among SQL nodes, has been
modified in NDB 8.0. When a cluster is being upgraded from a older version of NDB, the first SQL node
to be upgraded updates the definition of this table to match that used by NDB 8.0 GA releases. (For
this purpose, NDB now uses 8.0.21 as the cutoff version.) This is done by dropping the existing table
and re-creating it using the newer definition. SQL nodes which have not yet been upgraded receive this
ndb_schema table drop event and enter read-only mode, becoming writable again only after they are
upgraded.

To keep SQL nodes running older versions of NDB from going into read-only mode, we change the
upgrade behavior of mysqld such that the ndb_schema table definition is updated only if all SQL
nodes connected to the cluster are running an 8.0 GA version of NDB and thus having the updated
ndb_schema table definition. This means that, during an upgrade to the current or any later version, no
MySQL Server that is being upgraded updates the ndb_schema table if there is at least one SQL node
with an older version connected to the cluster. Any SQL node running an older version of NDB remains
writable throughout the upgrade process. (Bug #30876990, Bug #31016905)

• ndb_import did not handle correctly the case where a CSV parser error occurred in a block of input
other than the final block. (Bug #30839144)

• When mysqld was upgraded to a version that used a new SDI version, all NDB tables become
inaccessible. This was because, during an upgrade, synchronization of NDB tables relies on deserializing
the SDI packed into the NDB Dictionary; if the SDI format was of an version older than that used prior
to the upgrade, deserialization could not take place if the format was not the same as that of the new
version, which made it impossible to create a table object in the MySQL data dictionary.

This is fixed by making it possible for NDB to bypass the SDI version check in the MySQL server when
necessary to perform deserialization as part of an upgrade. (Bug #30789293, Bug #30825260)

• When responding to a SCANTABREQ, an API node can provide a distribution key if it knows that the scan
should work on only one fragment, in which case the distribution key should be the fragment ID, but in
some cases a hash of the partition key was used instead, leading to failures in DBTC. (Bug #30774226)

• Several memory leaks found in ndb_import have been removed. (Bug #30756434, Bug #30727956)

• The master node in a backup shut down unexpectedly on receiving duplicate replies to a
DEFINE_BACKUP_REQ signal. These occurred when a data node other than the master
errored out during the backup, and the backup master handled the situation by sending itself a
DEFINE_BACKUP_REF signal on behalf of the missing node, which resulted in two replies being received
from the same node (a CONF signal from the problem node prior to shutting down and the REF signal
from the master on behalf of this node), even though the master expected only one reply per node. This
scenario was also encountered for START_BACKUP_REQ and STOP_BACKUP_REQ signals.

This is fixed in such cases by allowing duplicate replies when the error is the result of an unplanned
node shutdown. (Bug #30589827)

• When processing a CSV file, ndb_import did not accept trailing field terminators at the ends of lines
that were accepted by mysqlimport. (Bug #30434663)

• When updating NDB_TABLE comment options using ALTER TABLE, other options which has been set
to non-default values when the table was created but which were not specified in the ALTER TABLE
statement could be reset to their defaults.

See Setting NDB Comment Options, for more information. (Bug #30428829)

• Removed a memory leak found in the ndb_import utility. (Bug #29820879)

93

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysqld.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-import.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysqld.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbtc.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-import.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-import.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysqlimport.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/alter-table.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/create-table-ndb-comment-options.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-import.html

MySQL NDB Cluster 8.0 Release Notes

• Incorrect handling of operations on fragment replicas during node restarts could result in a forced
shutdown, or in content diverging between fragment replicas, when primary keys with nonbinary (case-
sensitive) equality conditions were used. (Bug #98526, Bug #30884622)

Changes in MySQL NDB Cluster 8.0.20 (2020-04-27, General
Availability)

MySQL NDB Cluster 8.0.20 is a new release of NDB 8.0, based on MySQL Server 8.0 and including
features in version 8.0 of the NDB storage engine, as well as fixing recently discovered bugs in previous
NDB Cluster releases.

Obtaining NDB Cluster 8.0. NDB Cluster 8.0 source code and binaries can be obtained from https://
dev.mysql.com/downloads/cluster/.

For an overview of changes made in NDB Cluster 8.0, see What is New in MySQL NDB Cluster 8.0.

This release also incorporates all bug fixes and changes made in previous NDB Cluster releases, as well
as all bug fixes and feature changes which were added in mainline MySQL 8.0 through MySQL 8.0.20 (see
Changes in MySQL 8.0.20 (2020-04-27, General Availability)).

• Functionality Added or Changed

• Bugs Fixed

Functionality Added or Changed

• Important Change: It is now possible to divide a backup into slices and to restore these in parallel
using two new options implemented for the ndb_restore utility, making it possible to employ multiple
instances of ndb_restore to restore subsets of roughly the same size of the backup in parallel, which
should help to reduce the length of time required to restore an NDB Cluster from backup.

The --num-slices options determines the number of slices into which the backup should be divided;
--slice-id provides the ID of the slice (0 to 1 less than the number of slices) to be restored by
ndb_restore.

Up to 1024 slices are supported.

For more information, see the descriptions of the --num-slices and --slice-id options. (Bug
#30383937, WL #10691)

• Important Change: To increase the rate at which update operations can be processed, NDB now
supports and by default makes use of multiple transporters per node group. By default, the number of
transporters used by each node group in the cluster is equal to the number of the number of local data
management (LDM) threads. While this number should be optimal for most use cases, it can be adjusted
by setting the value of the NodeGroupTransporters data node configuration parameter which is
introduced in this release. The maximum is the greater of the number of LDM threads or the number of
TC threads, up to an overall maximum of 32 transporters.

See Multiple Transporters, for additional information. (WL #12837)

• NDB Client Programs: Two options are added for the ndb_blob_tool utility, to enable it to detect
missing blob parts for which inline parts exist, and to replace these with placeholder blob parts
(consisting of space characters) of the correct length. To check whether there are missing blob parts,
use the ndb_blob_tool --check-missing option. To replace with placeholders any blob parts which
are missing, use the program's --add-missing option, also added in this release. (Bug #28583971)

94

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster.html
https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/downloads/cluster/
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-what-is-new.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-relnotes-en/news-8-0-20.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_num-slices
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_slice-id
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_num-slices
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_slice-id
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-nodegrouptransporters
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#mysql-cluster-multiple-transporters
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-blob-tool.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-blob-tool.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-blob-tool.html#option_ndb_blob_tool_check-missing
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-blob-tool.html#option_ndb_blob_tool_add-missing

MySQL NDB Cluster 8.0 Release Notes

• NDB Client Programs: Removed a dependency from the ndb_waiter and ndb_show_tables
utility programs on the NDBT library. This library, used in NDB development for testing, is not required
for normal use. The visible effect for users from this change is that these programs no longer print
NDBT_ProgramExit - status following completion of a run. Applications that depend upon this
behavior should be updated to reflect this change when upgrading to this release. (WL #13727, WL
#13728)

• MySQL NDB ClusterJ: The unused antlr3 plugin has been removed from the ClusterJ pom file. (Bug
#29931625)

• MySQL NDB ClusterJ: The minimum Java version ClusterJ supports for MySQL NDB Cluster 8.0 is
now Java 8. (Bug #29931625)

• MySQL NDB ClusterJ: A few Java APIs used by ClusterJ are now deprecated in recent Java versions.
These adjustments have been made to ClusterJ:

• Replaced all Class.newInstance() calls with
Class.getDeclaredConstructor().newInstance() calls. Also updated the exception handling
and the test cases wherever required.

• All the Number classes' constructors that instantiate an object from a String or a primitive type are
deprecated. Replaced all such deprecated instantiation calls with the corresponding valueOf()
method calls.

• The Proxy.getProxyClass() is now deprecated. The DomainTypeHandlerImpl class now
directly creates a new instance using the Proxy.newProxyInstance() method; all references
to the Proxy class and its constructors are removed from the DomainTypeHandlerImpl class.
SessionFactoryImpl class now uses the interfaces underlying the proxy object to identify the
domain class rather than using the Proxy class. Also updated DomainTypeHandlerFactoryTest.

• The finalize() method is now deprecated. This patch does not change the overriding finalize()
methods, but just suppresses the warnings on them. This deprecation will be handled separately in a
later patch.

• Updated the CMake configuration to treat deprecation warnings as errors when compiling ClusterJ.

(Bug #29931625)

• NDB now supports versioning for ndbinfo tables, and maintains the current definitions for its tables
internally. At startup, NDB compares its supported ndbinfo version with the version stored in the data
dictionary. If the versions differ, NDB drops any old ndbinfo tables and recreates them using the current
definitions. (WL #11563)

• Many outer joins and semijoins which previously could not be pushed down to the data nodes can now
pushed (see Engine Condition Pushdown Optimization).

Outer joins which can now be pushed include those which meet the following conditions:

• There are no unpushed conditions on this table

• There are no unpushed conditions on other tables in the same join nest, or in upper join nests on
which it depends

• All other tables in the same join nest, or in upper join nests on which it depends are also pushed

A semijoin using an index scan can now be pushed if it meets the the conditions just noted for a pushed
outer join, and it uses the firstMatch strategy. (WL #7636, WL #13576)

95

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-waiter.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-show-tables.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbinfo.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/engine-condition-pushdown-optimization.html

MySQL NDB Cluster 8.0 Release Notes

References: See also: Bug #28728603, Bug #28672214, Bug #29296615, Bug #29232744, Bug
#29161281, Bug #28728007.

• A new and simplified interface is implemented for enabling and configuring adaptive CPU spin. The
SpinMethod data node parameter, added in this release, provides the following four settings:

• StaticSpinning: Disables adaptive spinning; uses the static spinning employed in previous NDB
Cluster releases

• CostBasedSpinning: Enables adaptive spinning using a cost-based model

• LatencyOptimisedSpinning: Enables adaptive spinning optimized for latency

• DatabaseMachineSpinning: Enables adaptive spinning optimized for machines hosting databases,
where each thread has its own CPU

Each of these settings causes the data node to use a set of predetermined values, as needed, for one or
more of the spin parameters listed here:

• SchedulerSpinTimer: The data node configuration parameter of this name.

• EnableAdaptiveSpinning: Enables or disables adaptive spinning; cannot be set directly in the
cluster configuration file, but can be controlled directly using DUMP 104004

• SetAllowedSpinOverhead: CPU time to allow to gain latency; cannot be set directly in the
config.ini file, but possible to change directly, using DUMP 104002

The presets available from SpinMethod should cover most use cases, but you can fine-tune the
adaptive spin behavior using the SchedulerSpinTimer data node configuration parameter and the
DUMP commands just listed, as well as additional DUMP commands in the ndb_mgm cluster management
client; see the description of SchedulerSpinTimer for a complete listing.

NDB 8.0.20 also adds a new TCP configuration parameter TcpSpinTime which sets the time to spin
for a given TCP connection. This can be used to enable adaptive spinning for any such connections
between data nodes, management nodes, and SQL or API nodes.

The ndb_top tool is also enhanced to provide spin time information per thread; this is displayed in green
in the terminal window.

For more information, see the descriptions of the SpinMethod and TcpSpinTime configuration
parameters, the DUMP commands listed or indicated previously, and the documentation for ndb_top.
(WL #12554)

Bugs Fixed

• Important Change: When lower_case_table_names was set to 0, issuing a query in which the
lettercase of any foreign key names differed from the case with which they were created led to an
unplanned shutdown of the cluster. This was due to the fact that mysqld treats foreign key names as
case insensitive, even on case-sensitive file systems, whereas the manner in which the NDB dictionary
stored foreign key names depended on the value of lower_case_table_names, such that, when this
was set to 0, during lookup, NDB expected the lettercase of any foreign key names to match that with
which they were created. Foreign key names which differed in lettercase could then not be found in the
NDB dictionary, even though it could be found in the MySQL data dictionary, leading to the previously
described issue in NDBCLUSTER.

96

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-spinmethod
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-schedulerspintimer
https://dev.mysql.com/doc/ndb-internals/en/dump-command-104004.html
https://dev.mysql.com/doc/ndb-internals/en/dump-command-104002.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-schedulerspintimer
https://dev.mysql.com/doc/ndb-internals/en/dump-commands.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-mgm.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-schedulerspintimer
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-tcp-definition.html#ndbparam-tcp-tcpspintime
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-top.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-spinmethod
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-tcp-definition.html#ndbparam-tcp-tcpspintime
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-top.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/server-system-variables.html#sysvar_lower_case_table_names

MySQL NDB Cluster 8.0 Release Notes

This issue did not happen when lower_case_table_names was set to 1 or 2.

The problem is fixed by making foreign key names case insensitive and removing the dependency on
lower_case_table_names. This means that the following two items are now always true:

1. Foreign key names are now stored using the same lettercase with which they are created, without
regard to the value of lower_case_table_names.

2. Lookups for foreign key names by NDB are now always case insensitive.

(Bug #30512043)

• Packaging: Removed an unnecessary dependency on Perl from the mysql-cluster-community-
server-minimal RPM package. (Bug #30677589)

• Packaging: NDB did not compile successfully on Ubuntu 16.04 with GCC 5.4 due to the use of isnan()
rather than std::isnan(). (Bug #30396292)

References: This issue is a regression of: Bug #30338980.

• OS X: Removed the variable SCHEMA_UUID_VALUE_LENGTH which was used only once in the NDB
sources, and which caused compilation warnings when building on Mac OSX. The variable has been
replaced with UUID_LENGTH. (Bug #30622139)

• NDB Disk Data: Allocation of extents in tablespace data files is now performed in round-robin fashion
among all data files used by the tablespace. This should provide more even distribution of data in cases
where multiple storage devices are used for Disk Data storage. (Bug #30739018)

• NDB Disk Data: Under certain conditions, checkpointing of Disk Data tables could not be completed,
leading to an unplanned data node shutdown. (Bug #30728270)

• NDB Disk Data: An uninitialized variable led to issues when performing Disk Data DDL operations
following a restart of the cluster. (Bug #30592528)

• MySQL NDB ClusterJ: When a Date value was read from a NDB cluster, ClusterJ sometimes extracted
the wrong year value from the row. It was because the Utility class, when unpacking the Date value,
wrongly extracted some extra bits for the year. This patch makes ClusterJ only extract the required bits.
(Bug #30600320)

• MySQL NDB ClusterJ: When the cluster's NdbOperation::AbortOption type had the value of
AO_IgnoreOnError, when there was a read error, ClusterJ took that as the row was missing and
returned null instead of an exception. This was because with AO_IgnoreOnErro, the execute()
method always returns a success code after each transaction, and ClusterJ is supposed to check for
any errors in any of the individual operations; however, read operations were not checked by ClusterJ in
the case. With this patch, read operations are now checked for errors after query executions, so that a
reading error is reported as such. (Bug #30076276)

• The fix for a previous issue in the MySQL Optimizer adversely affected engine condition pushdown for
the NDB storage engine. (Bug #303756135)

References: This issue is a regression of: Bug #97552, Bug #30520749.

• When restoring signed auto-increment columns, ndb_restore incorrectly handled negative values
when determining the maximum value included in the data. (Bug #30928710)

97

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/server-system-variables.html#sysvar_lower_case_table_names
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndboperation.html#ndb-ndboperation-abortoption
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html

MySQL NDB Cluster 8.0 Release Notes

• On an SQL node which had been started with --ndbcluster, before any other nodes in the cluster
were started, table creation succeeded while creating the ndbinfo schema, but creation of views did
not, raising HA_ERR_NO_CONNECTION instead. (Bug #30846678)

• Formerly (prior to NDB 7.6.4) an SPJ worker instance was activated for each fragment of the root table
of the pushed join, but in NDB 7.6 and later, a single worker is activated for each data node and is
responsible for all fragments on that data node.

Before this change was made, it was sufficient for each such worker to scan a fragment with parallelism
equal to 1 for all SPJ workers to keep all local data manager threads busy. When the number of workers
was reduced as result of the change, the minimum parallelism should have been increased to equal the
number of fragments per worker to maintain the degree of parallelism.

This fix ensures that this is now done. (Bug #30639503)

• The ndb_metadata_sync system variable is set to true to trigger synchronization of metadata between
the MySQL data dictionary and the NDB dictionary; when synchronization is complete, the variable is
automatically reset to false to indicate that this has been done. One scenario involving the detection
of a schema not present in the MySQL data dictionary but in use by the NDB Dictionary sometimes
led to ndb_metadata_sync being reset before all tables belonging to this schema were successfully
synchronized. (Bug #30627292)

• When using shared user and grants, all ALTER USER statements were distributed as snapshots,
whether they contained plaintext passwords or not.

In addition, SHOW CREATE USER did not include resource limits (such as MAX_QUERIES_PER_HOUR)
that were set to zero, which meant that these were not distributed among SQL nodes. (Bug #30600321)

• Two buffers used for logging in QMGR were of insufficient size. (Bug #30598737)

References: See also: Bug #30593511.

• Removed extraneous debugging output relating to SPJ from the node out logs. (Bug #30572315)

• When performing an initial restart of an NDB Cluster, each MySQL Server attached to it as an SQL node
recognizes the restart, reinstalls the ndb_schema table from the data dictionary, and then clears all
NDB schema definitions created prior to the restart. Because the data dictionary was cleared only after
ndb_schema is reinstalled, installation sometimes failed due to ndb_schema having the same table ID
as one of the tables from before the restart was performed. This issue is fixed by ensuring that the data
dictionary is cleared before the ndb_schema table is reinstalled. (Bug #30488610)

• NDB sometimes made the assumption that the list of nodes containing index statistics was ordered, but
this list is not always ordered in the same way on all nodes. This meant that in some cases NDB ignored
a request to update index statistics, which could result in stale data in the index statistics tables. (Bug
#30444982)

• When the optimizer decides to presort a table into a temporary table, before later tables are joined, the
table to be sorted should not be part of a pushed join. Although logic was present in the abstract query
plan interface to detect such query plans, that this did not detect correctly all situations using filesort
into temporary table. This is changed to check whether a filesort descriptor has been set up; if
so, the table content is sorted into a temporary file as its first step of accessing the table, which greatly
simplifies interpretation of the structure of the join. We now also detect when the table to be sorted is a
part of a pushed join, which should prevent future regressions in this interface. (Bug #30338585)

• When a node ID allocation request failed with NotMaster temporary errors, the node ID allocation was
always retried immediately, without regard to the cause of the error. This caused a very high rate of

98

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#option_mysqld_ndbcluster
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbinfo.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbspj.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#sysvar_ndb_metadata_sync
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/alter-user.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/show-create-user.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-qmgr.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbspj.html

MySQL NDB Cluster 8.0 Release Notes

retries, whose effects could be observed as an excessive number of Alloc node id for node nnn
failed log messages (on the order of 15,000 messages per second). (Bug #30293495)

• For NDB tables having no explicit primary key, NdbReceiverBuffer could be allocated with too small a
size. This was due to the fact that the attribute bitmap sent to NDB from the data nodes always includes
the primary key. The extra space required for hidden primary keys is now taken into consideration in
such cases. (Bug #30183466)

• When translating an NDB table created using .frm files in a previous version of NDB Cluster and storing
it as a table object in the MySQL data dictionary, it was possible for the table object to be committed
even when a mismatch had been detected between the table indexes in the MySQL data dictionary and
those for the same table's representation the NDB dictionary. This issue did not occur for tables created
in NDB 8.0, where it is not necessary to upgrade the table metadata in this fashion.

This problem is fixed by making sure that all such comparisons are actually performed before the table
object is committed, regardless of whether the originating table was created with or without the use of
.frm files to store its metadata. (Bug #29783638)

• An error raised when obtaining cluster metadata caused a memory leak. (Bug #97737, Bug #30575163)

Changes in MySQL NDB Cluster 8.0.19 (2020-01-13, General
Availability)

MySQL NDB Cluster 8.0.19 is a new release of NDB 8.0, based on MySQL Server 8.0 and including
features in version 8.0 of the NDB storage engine, as well as fixing recently discovered bugs in previous
NDB Cluster releases.

Obtaining NDB Cluster 8.0. NDB Cluster 8.0 source code and binaries can be obtained from https://
dev.mysql.com/downloads/cluster/.

For an overview of changes made in NDB Cluster 8.0, see What is New in MySQL NDB Cluster 8.0.

This release also incorporates all bug fixes and changes made in previous NDB Cluster releases, as well
as all bug fixes and feature changes which were added in mainline MySQL 8.0 through MySQL 8.0.19 (see
Changes in MySQL 8.0.19 (2020-01-13, General Availability)).

• Functionality Added or Changed

• Bugs Fixed

Functionality Added or Changed

• Important Change: The default value for the ndb_autoincrement_prefetch_sz server system
variable has been increased to 512. (Bug #30316314)

• Important Change: NDB now supports more than 2 fragment replicas (up to a maximum of 4). Setting
NoOfReplicas=3 or NoOfReplicas=4 is now fully covered in our internal testing and thus supported
for use in production. (Bug #97479, Bug #97579, Bug #25261716, Bug #30501414, Bug #30528105, WL
#8426)

• Important Change: Added the TransactionMemory data node configuration parameter which
simplifies configuration of data node memory allocation for transaction operations. This is part of ongoing
work on pooling of transactional and Local Data Manager (LDM) memory.

The following parameters are incompatible with TransactionMemory and cannot be set in the
config.ini configuration file if this parameter has been set:

99

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster.html
https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/downloads/cluster/
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-what-is-new.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-relnotes-en/news-8-0-19.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#sysvar_ndb_autoincrement_prefetch_sz
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-noofreplicas
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-transactionmemory

MySQL NDB Cluster 8.0 Release Notes

• MaxNoOfConcurrentIndexOperations

• MaxNoOfFiredTriggers

• MaxNoOfLocalOperations

• MaxNoOfLocalScans

If you attempt to set any of these incompatible parameters concurrently with TransactionMemory, the
cluster management server cannot start.

For more information, see the description of the TransactionMemory parameter and Parameters
incompatible with TransactionMemory. See also Data Node Memory Management, for information about
how memory resources are allocated by NDB Cluster data nodes. (Bug #96995, Bug #30344471, WL
#12687)

• Important Change: The maximum or default values for several NDB Cluster data node configuration
parameters have been changed in this release. These changes are listed here:

• The maximum value for DataMemory is increased from 1 terabyte to 16 TB.

• The maximum value for DiskPageBufferMemory is also increased from 1 TB to 16 TB.

• The default value for StringMemory is decreased to 5 percent. Previously, this was 25 percent.

• The default value for LcpScanProgressTimeout is increased from 60 seconds to 180 seconds.

(WL #13382)

• Performance: Read from any fragment replica, which greatly improves the performance of table reads
at a very low cost to table write performance, is now enabled by default for all NDB tables. This means
both that the default value for the ndb_read_backup system variable is now ON, and that the value of
the NDB_TABLE comment option READ_BACKUP is 1 when creating a new NDB table. (Previously, the
default values were OFF and 0, respectively.)

For more information, see Setting NDB Comment Options, as well as the description of the
ndb_read_backup system variable. (WL #13383)

• NDB Disk Data: The latency of checkpoints for Disk Data files has been reduced when using
non-volatile memory devices such as solid-state drives (especially those using NVMe for data
transfer), separate physical drives for Disk Data files, or both. As part of this work, two new data node
configuration parameters, listed here, have been introduced:

• MaxDiskDataLatency sets a maximum on allowed latency for disk access, aborting transactions
exceeding this amount of time to complete

100

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-maxnoofconcurrentindexoperations
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-maxnooffiredtriggers
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-maxnooflocaloperations
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-maxnooflocalscans
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-transactionmemory
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#mysql-cluster-transactionmemory-incompatible
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#mysql-cluster-transactionmemory-incompatible
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-data-node-memory-management.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-datamemory
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-diskpagebuffermemory
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-stringmemory
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-lcpscanprogresstimeout
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#sysvar_ndb_read_backup
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/create-table-ndb-comment-options.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#sysvar_ndb_read_backup
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-maxdiskdatalatency

MySQL NDB Cluster 8.0 Release Notes

• DiskDataUsingSameDisk makes it possible to take advantage of keeping Disk Data files on
separate disks by increasing the rate at which Disk Data checkpoints can be made

This release also adds three new tables to the ndbinfo database. These tables, listed here, can assist
with performance monitoring of Disk Data checkpointing:

• diskstat provides information about Disk Data tablespace reads, writes, and page requests during
the previous 1 second

• diskstats_1sec provides information similar to that given by the diskstat table, but does so for
each of the last 20 seconds

• pgman_time_track_stats table reports on the latency of disk operations affecting Disk Data
tablespaces

For additional information, see Disk Data latency parameters. (WL #12924)

• Added the ndb_metadata_sync server system variable, which simplifies knowing when metadata
synchronization has completed successfully. Setting this variable to true triggers immediate
synchronization of all changes between the NDB dictionary and the MySQL data dictionary without
regard to any values set for ndb_metadata_check or ndb_metadata_check_interval. When
synchronization has completed, its value is automatically reset to false. (Bug #30406657)

• Added the DedicatedNode parameter for data nodes, API nodes, and management nodes. When
set to true, this parameter prevents the management server from handing out this node's node ID to
any node that does not request it specifically. Intended primarily for testing, this parameter may be
useful in cases in which multiple management servers are running on the same host, and using the host
name alone is not sufficient for distinguishing among processes of the same type. (Bug #91406, Bug
#28239197)

• A stack trace is now written to the data node log on abnormal termination of a data node. (WL #13166)

• Automatic synchronization of metadata from the MySQL data dictionary to NDB now includes databases
containing NDB tables. With this enhancement, if a table exists in NDB, and the table and the database it
belongs to do not exist on a given SQL node, it is no longer necessary to create the database manually.
Instead, the database, along with all NDB tables belonging to this database, should be created on the
SQL node automatically. (WL #13490)

Bugs Fixed

• Incompatible Change: ndb_restore no longer restores shared users and grants to the
mysql.ndb_sql_metadata table by default. A new command-line option --include-stored-
grants is added to override this behavior and enable restoring of shared user and grant data and
metadata.

As part of this fix, ndb_restore can now also correctly handle an ordered index on a system table.
(Bug #30237657)

References: See also: Bug #29534239, Bug #30459246.

• Incompatible Change: The minimum value for the RedoOverCommitCounter data node configuration
parameter has been increased from 0 to 1. The minimum value for the RedoOverCommitLimit data
node configuration parameter has also been increased from 0 to 1.

You should check the cluster global configuration file and make any necessary adjustments to values set
for these parameters before upgrading. (Bug #29752703)

101

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-diskdatausingsamedisk
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbinfo.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbinfo-diskstat.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbinfo-diskstats-1sec.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbinfo-pgman-time-track-stats.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#mysql-cluster-ndbd-definition-disk-data-latency-parameters
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#sysvar_ndb_metadata_sync
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#sysvar_ndb_metadata_check
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#sysvar_ndb_metadata_check_interval
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_include-stored-grants
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_include-stored-grants
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-redoovercommitcounter
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-redoovercommitlimit

MySQL NDB Cluster 8.0 Release Notes

• macOS: On macOS, SQL nodes sometimes shut down unexpectedly during the binary log setup phase
when starting the cluster. This occurred when there existed schemas whose names used uppercase
letters and lower_case_table_names was set to 2. This caused acquisition of metadata locks to
be attempted using keys having the incorrect lettercase, and, subsequently, these locks to fail. (Bug
#30192373)

• Microsoft Windows; NDB Disk Data: On Windows, restarting a data node other than the master when
using Disk Data tables led to a failure in TSMAN. (Bug #97436, Bug #30484272)

• Solaris: When debugging, ndbmtd consumed all available swap space on Solaris 11.4 SRU 12 and
later. (Bug #30446577)

• Solaris: The byte order used for numeric values stored in the mysql.ndb_sql_metadata table was
incorrect on Solaris/Sparc. This could be seen when using ndb_select_all or ndb_restore --
print. (Bug #30265016)

• NDB Disk Data: After dropping a disk data table on one SQL node, trying to execute a query against
INFORMATION_SCHEMA.FILES on a different SQL node stalled at Waiting for tablespace
metadata lock. (Bug #30152258)

References: See also: Bug #29871406.

• NDB Disk Data: ALTER TABLESPACE ... ADD DATAFILE could sometimes hang while trying to
acquire a metadata lock. (Bug #29871406)

• NDB Disk Data: Compatibility code for the Version 1 disk format used prior to the introduction of the
Version 2 format in NDB 7.6 turned out not to be necessary, and is no longer used.

• Work done in NDB 8.0.18 to allow more nodes introduced long signal variants of several signals taking
a bitmask as one of their arguments, and we started using these new long signal variants even if
the previous (still supported) short variants would have been sufficient. This introduced several new
opportunities for hitting out of LongMessageBuffer errors.

To avoid this, now in such cases we use the short signal variants wherever possible. Some of the
signals affected include CM_REGCONF, CM_REGREF, FAIL_REP, NODE_FAILREP, ISOLATE_ORD,
COPY_GCIREQ, START_RECREQ, NDB_STARTCONF, and START_LCP_REQ. (Bug #30708009)

References: See also: Bug #30707970.

• The fix made in NDB 8.0.18 for an issue in which a transaction was committed prematurely aborted the
transaction if the table definition had changed midway, but failed in testing to free memory allocated
by getExtraMetadata(). Now this memory is properly freed before aborting the transaction. (Bug
#30576983)

References: This issue is a regression of: Bug #29911440.

• Excessive allocation of attribute buffer when initializing data in DBTC led to preallocation of api
connection records failing due to unexpectedly running out of memory. (Bug #30570264)

• Improved error handling in the case where NDB attempted to update a local user having the
NDB_STORED_USER privilege but which could not be found in the ndb_sql_metadata table. (Bug
#30556487)

• Failure of a transaction during execution of an ALTER TABLE ... ALGORITHM=COPY statement
following the rename of the new table to the name of the original table but before dropping the original
table caused mysqld to exit prematurely. (Bug #30548209)

102

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/server-system-variables.html#sysvar_lower_case_table_names
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-tsman.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndbmtd.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-select-all.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_print
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_print
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/information-schema-files-table.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/alter-tablespace.html
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-table.html#ndb-table-getextrametadata
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbtc.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/privileges-provided.html#priv_ndb-stored-user
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/alter-table.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysqld.html

MySQL NDB Cluster 8.0 Release Notes

• Non-MSI builds on Windows using -DWITH_NDBCLUSTER did not succeed unless the WiX toolkit was
installed. (Bug #30536837)

• The allowed_values output from ndb_config --xml --configinfo for the Arbitration data
node configuration parameter in NDB 8.0.18 was not consistent with that obtained in previous releases.
(Bug #30529220)

References: See also: Bug #30505003.

• A faulty ndbrequire() introduced when implementing partial local checkpoints assumed that
m_participatingLQH must be clear when receiving START_LCP_REQ, which is not necessarily
true when a failure happens for the master after sending START_LCP_REQ and before handling any
START_LCP_CONF signals. (Bug #30523457)

• A local checkpoint sometimes hung when the master node failed while sending an LCP_COMPLETE_REP
signal and it was sent to some nodes, but not all of them. (Bug #30520818)

• Added the DUMP 9988 and DUMP 9989 commands. (Bug #30520103)

• The management server did not handle all cases of NODE_FAILREP correctly. (Bug #30520066)

• With SharedGlobalMemory set to 0, some resources did not meet required minimums. (Bug
#30411835)

• Execution of ndb_restore --rebuild-indexes together with the --rewrite-database and --
exclude-missing-tables options did not create indexes for any tables in the target database. (Bug
#30411122)

• When writing the schema operation into the ndb_schema table failed, the states in the NDB_SCHEMA
object were not cleared, which led to the SQL node shutting down when it tried to free the object. (Bug
#30402362)

References: See also: Bug #30371590.

• When synchronizing extent pages it was possible for the current local checkpoint (LCP) to stall
indefinitely if a CONTINUEB signal for handling the LCP was still outstanding when receiving the
FSWRITECONF signal for the last page written in the extent synchronization page. The LCP could also
be restarted if another page was written from the data pages. It was also possible that this issue caused
PREP_LCP pages to be written at times when they should not have been. (Bug #30397083)

• If a transaction was aborted while getting a page from the disk page buffer and the disk system was
overloaded, the transaction hung indefinitely. This could also cause restarts to hang and node failure
handling to fail. (Bug #30397083, Bug #30360681)

References: See also: Bug #30152258.

• Data node failures with the error Another node failed during system restart... occurred
during a partial restart. (Bug #30368622)

• Automatic synchronization could potentially trigger an increase in the number of locks being taken on a
particular metadata object at a given time, such as when a synchronization attempt coincided with a DDL
or DML statement involving the same metadata object; competing locks could lead to the NDB deadlock
detection logic penalizing the user action rather than the background synchronization. We fix this by
changing all exclusive metadata lock acquisition attempts during auto-synchronization so that they use a
timeout of 0 (rather than the 10 seconds previously allowed), which avoids deadlock detection and gives
priority to the user action. (Bug #30358470)

103

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/source-configuration-options.html#option_cmake_with_ndbcluster
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-config.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-config.html#option_ndb_config_xml
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-config.html#option_ndb_config_configinfo
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-arbitration
https://dev.mysql.com/doc/ndb-internals/en/dump-command-9988.html
https://dev.mysql.com/doc/ndb-internals/en/dump-command-9989.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-sharedglobalmemory
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_rebuild-indexes
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_rewrite-database
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_exclude-missing-tables
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_exclude-missing-tables

MySQL NDB Cluster 8.0 Release Notes

• If a SYNC_EXTENT_PAGES_REQ signal was received by PGMAN while dropping a log file group as part of
a partial local checkpoint, and thus dropping the page locked by this block for processing next, the LCP
terminated due to trying to access the page after it had already been dropped. (Bug #30305315)

• The wrong number of bytes was reported in the cluster log for a completed local checkpoint. (Bug
#30274618)

References: See also: Bug #29942998.

• Added the new ndb_mgm client debugging commands DUMP 2356 and DUMP 2357. (Bug #30265415)

• Executing ndb_drop_table using the --help option caused this program to terminate prematurely,
and without producing any help output. (Bug #30259264)

• A mysqld trying to connect to the cluster, and thus trying to acquire the global schema lock (GSL)
during setup, ignored the setting for ndb-wait-setup and hung indefinitely when the GSL had already
been acquired by another mysqld, such as when it was executing an ALTER TABLE statement. (Bug
#30242141)

• When a table containing self-referential foreign key (in other words, a foreign key referencing another
column of the same table) was altered using the COPY algorithm, the foreign key definition was removed.
(Bug #30233405)

• In MySQL 8.0, names of foreign keys explicitly provided by user are generated automatically in the SQL
layer and stored in the data dictionary. Such names are of the form [table_name]_ibfk_[#] which
align with the names generated by the InnoDB storage engine in MySQL 5.7. NDB 8.0.18 introduced
a change in behavior by NDB such that it also uses the generated names, but in some cases, such as
when tables were renamed, NDB still generated and used its own format for such names internally rather
than those generated by the SQL layer and stored in the data dictionary, which led to the following
issues:

• Discrepancies in SHOW CREATE TABLE output and the contents of
INFORMATION_SCHEMA.REFERENTIAL_CONSTRAINTS

• Improper metadata locking for foreign keys

• Confusing names for foreign keys in error messages

Now NDB also renames the foreign keys in such cases, using the names provided by the MySQL server,
to align fully with those used by InnoDB. (Bug #30210839)

References: See also: Bug #96508, Bug #30171959.

• When a table referenced by a foreign key was renamed, participating SQL nodes did not properly update
the foreign key definitions for the referencing table in their data dictionaries during schema distribution.
(Bug #30191068)

• Data node handling of failures of other data nodes could sometimes not be synchronized properly, such
that two or more data nodes could see different nodes as the master node. (Bug #30188414)

• Some scan operations failed due to the presence of an old assert in DbtupBuffer.cpp that checked
whether API nodes were using a version of the software previous to NDB 6.4. This was no longer
necessary or correct, and has been removed. (Bug #30188411)

• When executing a global schema lock (GSL), NDB used a single Ndb_table_guard object for
successive retires when attempting to obtain a table object reference; it was not possible for this to
succeed after failing on the first attempt, since Ndb_table_guard assumes that the underlying object

104

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-pgman.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-mgm.html
https://dev.mysql.com/doc/ndb-internals/en/dump-command-2356.html
https://dev.mysql.com/doc/ndb-internals/en/dump-command-2357.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-drop-table.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-drop-table.html#option_ndb_drop_table_help
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysqld.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#option_mysqld_ndb-wait-setup
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysqld.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/alter-table.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/innodb-storage-engine.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/show-create-table.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/information-schema-referential-constraints-table.html

MySQL NDB Cluster 8.0 Release Notes

pointer is determined once only—at initialisation—with the previously retrieved pointer being returned
from a cached reference thereafter.

This resulted in infinite waits to obtain the GSL, causing the binlog injector thread to hang so that
mysqld considered all NDB tables to be read-only. To avoid this problem, NDB now uses a fresh instance
of Ndb_table_guard for each such retry. (Bug #30120858)

References: This issue is a regression of: Bug #30086352.

• When upgrading an SQL node to NDB 8.0 from a previous release series, the .frm file whose contents
are read and then installed in the data dictionary does not contain any information about foreign keys.
This meant that foreign key information was not installed in the SQL node's data dictionary. This is fixed
by using the foreign key information available in the NDB data dictionary to update the local MySQL data
dictionary during table metadata upgrade. (Bug #30071043)

• Restoring tables with the --disable-indexes option resulted in the wrong table definition being
installed in the MySQL data dictionary. This is because the serialized dictionary information (SDI) packed
into the NDB dictionary's table definition is used to create the table object; the SDI definition is updated
only when the DDL change is done through the MySQL server. Installation of the wrong table definition
meant that the table could not be opened until the indexes were re-created in the NDB dictionary again
using --rebuild-indexes.

This is fixed by extending auto-synchronization such that it compares the SDI to the NDB dictionary
table information and fails in cases in which the column definitions do not match. Mismatches involving
indexes only are treated as temporary errors, with the table in question being detected again during the
next round of change detection. (Bug #30000202, Bug #30414514)

• Restoring tables for which MAX_ROWS was used to alter partitioning from a backup made from NDB
7.4 to a cluster running NDB 7.6 did not work correctly. This is fixed by ensuring that the upgrade
code handling PartitionBalance supplies a valid table specification to the NDB dictionary. (Bug
#29955656)

• The number of data bytes for the summary event written in the cluster log when a backup completed was
truncated to 32 bits, so that there was a significant mismatch between the number of log records and the
number of data records printed in the log for this event. (Bug #29942998)

• mysqld sometimes aborted during a long ALTER TABLE operation that timed out. (Bug #29894768)

References: See also: Bug #29192097.

• When an SQL node connected to NDB, it did not know whether it had previously connected to that
cluster, and thus could not determine whether its data dictionary information was merely out of date, or
completely invalid. This issue is solved by implementing a unique schema version identifier (schema
UUID) to the ndb_schema table in NDB as well as to the ndb_schema table object in the data dictionary.
Now, whenever a mysqld connects to a cluster as an SQL node, it can compare the schema UUID
stored in its data dictionary against that which is stored in the ndb_schema table, and so know whether
it is connecting for the first time. If so, the SQL node removes any entries that may be in its data
dictionary. (Bug #29894166)

References: See also: Bug #27543602.

• Improved log messages generated by table discovery and table metadata upgrades. (Bug #29894127)

• Using 2 LDM threads on a 2-node cluster with 10 threads per node could result in a partition imbalance,
such that one of the LDM threads on each node was the primary for zero fragments. Trying to restore a
multi-threaded backup from this cluster failed because the datafile for one LDM contained only the 12-

105

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysqld.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_disable-indexes
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_rebuild-indexes
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysqld.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/alter-table.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysqld.html

MySQL NDB Cluster 8.0 Release Notes

byte data file header, which ndb_restore was unable to read. The same problem could occur in other
cases, such as when taking a backup immediately after adding an empty node online.

It was found that this occurred when ODirect was enabled for an EOF backup data file write whose
size was less than 512 bytes and the backup was in the STOPPING state. This normally occurs only for
an aborted backup, but could also happen for a successful backup for which an LDM had no fragments.
We fix the issue by introducing an additional check to ensure that writes are skipped only if the backup
actually contains an error which should cause it to abort. (Bug #29892660)

References: See also: Bug #30371389.

• For NDB tables, ALTER TABLE ... ALTER INDEX did not work with ALGORITHM=INPLACE. (Bug
#29700197)

• ndb_restore failed in testing on 32-bit platforms. This issue is fixed by increasing the size of the thread
stack used by this tool from 64 KB to 128 KB. (Bug #29699887)

References: See also: Bug #30406046.

• An unplanned shutdown of the cluster occurred due to an error in DBTUP while deleting rows from a table
following an online upgrade. (Bug #29616383)

• In some cases the SignalSender class, used as part of the implementation of ndb_mgmd and
ndbinfo, buffered excessive numbers of unneeded SUB_GCP_COMPLETE_REP and API_REGCONF
signals, leading to unnecessary consumption of memory. (Bug #29520353)

References: See also: Bug #20075747, Bug #29474136.

• The setting for the BackupLogBufferSize configuration parameter was not honored. (Bug
#29415012)

• When mysqld was run with the --upgrade=FORCE option, it reported the following issues:

[Warning] Table 'mysql.ndb_apply_status' requires repair.
[ERROR] Table 'mysql.ndb_apply_status' repair failed.

This was because --upgrade=FORCE causes a bootstrap system thread to run CHECK TABLE FOR
UPGRADE, but ha_ndbcluster::open() refused to open the table before schema synchronization
had completed, which eventually led to the reported conditions. (Bug #29305977)

References: See also: Bug #29205142.

• When using explicit SHM connections, with ShmSize set to a value larger than the system's available
shared memory, mysqld hung indefinitely on startup and produced no useful error messages. (Bug
#28875553)

• The maximum global checkpoint (GCP) commit lag and GCP save timeout are recalculated whenever
a node shuts down, to take into account the change in number of data nodes. This could lead to the
unintentional shutdown of a viable node when the threshold decreased below the previous value. (Bug
#27664092)

References: See also: Bug #26364729.

106

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-odirect
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/alter-table.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbtup.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-mgmd.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbinfo.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-backuplogbuffersize
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysqld.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/server-options.html#option_mysqld_upgrade
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/check-table.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/check-table.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-shm-definition.html#ndbparam-shm-shmsize
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysqld.html

MySQL NDB Cluster 8.0 Release Notes

• A transaction which inserts a child row may run concurrently with a transaction which deletes the parent
row for that child. One of the transactions should be aborted in this case, lest an orphaned child row
result.

Before committing an insert on a child row, a read of the parent row is triggered to confirm that the
parent exists. Similarly, before committing a delete on a parent row, a read or scan is performed to
confirm that no child rows exist. When insert and delete transactions were run concurrently, their
prepare and commit operations could interact in such a way that both transactions committed.
This occurred because the triggered reads were performed using LM_CommittedRead locks (see
NdbOperation::LockMode), which are not strong enough to prevent such error scenarios.

This problem is fixed by using the stronger LM_SimpleRead lock mode for both triggered reads. The
use of LM_SimpleRead rather than LM_CommittedRead locks ensures that at least one transaction
aborts in every possible scenario involving transactions which concurrently insert into child rows and
delete from parent rows. (Bug #22180583)

• Concurrent SELECT and ALTER TABLE statements on the same SQL node could sometimes block one
another while waiting for locks to be released. (Bug #17812505, Bug #30383887)

• Failure handling in schema synchronization involves pushing warnings and errors to the binary logging
thread. Schema synchronization is also retried in case of certain failures which could lead to an
accumulation of warnings in the thread. Now such warnings and errors are cleared following each
attempt at schema synchronization. (Bug #2991036)

• An INCL_NODECONF signal from any local blocks should be ignored when a node has failed, except in
order to reset c_nodeStartSlave.nodeId. (Bug #96550, Bug #30187779)

• When returning Error 1022, NDB did not print the name of the affected table. (Bug #74218, Bug
#19763093)

References: See also: Bug #29700174.

Changes in MySQL NDB Cluster 8.0.18 (2019-10-14, Release
Candidate)

MySQL NDB Cluster 8.0.18 is a new development release of NDB 8.0, based on MySQL Server 8.0 and
including features in version 8.0 of the NDB storage engine, as well as fixing recently discovered bugs in
previous NDB Cluster releases.

Obtaining NDB Cluster 8.0. NDB Cluster 8.0 source code and binaries can be obtained from https://
dev.mysql.com/downloads/cluster/.

For an overview of changes made in NDB Cluster 8.0, see What is New in MySQL NDB Cluster 8.0.

This release also incorporates all bug fixes and changes made in previous NDB Cluster releases, as well
as all bug fixes and feature changes which were added in mainline MySQL 8.0 through MySQL 8.0.18 (see
Changes in MySQL 8.0.18 (2019-10-14, General Availability)).

• Functionality Added or Changed

• Bugs Fixed

Functionality Added or Changed

• Important Change: The 63-byte limit on NDB database and table names has been removed. These
identifiers may now take up to 64 bytes, as when using other MySQL storage engines. For more

107

https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndboperation.html#ndb-ndboperation-lockmode
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/select.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/alter-table.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster.html
https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/downloads/cluster/
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-what-is-new.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-relnotes-en/news-8-0-18.html

MySQL NDB Cluster 8.0 Release Notes

information, see Previous NDB Cluster Issues Resolved in NDB Cluster 8.0. (Bug #44940, Bug
#11753491, Bug #27447958)

• Important Change: Implemented the NDB_STORED_USER privilege, which enables sharing of users,
roles, and privileges across all SQL nodes attached to a given NDB Cluster. This replaces the distributed
grant tables mechanism from NDB 7.6 and earlier versions of NDB Cluster, which was removed in NDB
8.0.16 due to its incompatibility with changes made to the MySQL privilege system in MySQL 8.0.

A user or role which has this privilege is propagated, along with its (other) privileges to a MySQL server
(SQL node) as soon as it connects to the cluster. Changes made to the privileges of the user or role are
synchronized immediately with all connected SQL nodes.

NDB_STORED_USER can be granted to users and roles other than reserved accounts such as
mysql.session@localhost or mysql.infoschema@localhost. A role can be shared, but
assigning a shared role to a user does not cause this user to be shared; the NDB_STORED_USER
privilege must be granted to the user explicitly in order for the user to be shared between NDB Cluster
SQL nodes.

The NDB_STORED_USER privilege is always global and must be granted using ON *.*. This privilege is
recognized only if the MySQL server enables support for the NDBCLUSTER storage engine.

For usage information, see the description of NDB_STORED_USER. Privilege Synchronization
and NDB_STORED_USER, has additional information on how NDB_STORED_USER and privilege
synchronization work. For information on how this change may affect upgrades to NDB 8.0 from previous
versions, see Upgrading and Downgrading NDB Cluster. (WL #12637)

References: See also: Bug #29862601, Bug #29996547.

• Important Change: The maximum row size for an NDB table is increased from 14000 to 30000 bytes.

As before, only the first 264 bytes of a BLOB or TEXT column count towards this total.

The maximum offset for a fixed-width column of an NDB table is 8188 bytes; this is also unchanged from
previous NDB Cluster releases.

For more information, see Limits Associated with Database Objects in NDB Cluster. (WL #13079, WL
#11160)

References: See also: Bug #29485977, Bug #29024275.

• Important Change: A new binary format has been implemented for the NDB management server's
cached configuration file, which is intended to support much larger numbers of nodes in a cluster than
previously. Prior to this release, the configuration file supported a maximum of 16381 sections; this
number is increased to 4G.

Upgrades to the new format should not require any manual intervention, as the management server
(and other cluster nodes) can still read the old format. For downgrades from this release or a later one
to NDB 8.0.17 or earlier, it is necessary to remove the binary configuration files prior to starting the old
management server binary, or start it using the --initial option.

For more information, see Upgrading and Downgrading NDB Cluster. (WL #12453)

108

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-limitations-resolved.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/privileges-provided.html#priv_ndb-stored-user
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/privileges-provided.html#priv_ndb-stored-user
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-privilege-synchronization.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-privilege-synchronization.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-upgrade-downgrade.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-limitations-database-objects.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-mgmd.html#option_ndb_mgmd_initial
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-upgrade-downgrade.html

MySQL NDB Cluster 8.0 Release Notes

• Important Change: The maximum number of data nodes supported in a single NDB cluster is raised in
this release from 48 to 144. The range of supported data node IDs is increased in conjunction with this
enhancement to 1-144, inclusive.

In previous releases, recommended node IDs for management nodes were 49 and 50. These values
are still supported, but, if used, limit the maximum number of data nodes to 142. For this reason, the
recommended node ID values for management servers are now 145 and 146.

The maximum total supported number of nodes of all types in a given cluster is 255. This total is
unchanged from previous releases.

For a cluster running more than 48 data nodes, it is not possible to downgrade directly to a previous
release that supports only 48 data nodes. In such cases, it is necessary to reduce the number of data
nodes to 48 or fewer, and to make sure that all data nodes use node IDs that are less than 49.

This change also introduces a new version (v2) of the format used for the data node sysfile, which
records information such as the last global checkpoint index, restart status, and node group membership
of each node (see NDB Cluster Data Node File System Directory). (WL #12680, WL #12564, WL
#12876)

• NDB Cluster APIs: An alternative constructor for NdbInterpretedCode is now provided, which
accepts an NdbRecord in place of a Table object. (Bug #29852377)

• NDB Cluster APIs: NdbScanFilter::cmp() and the following NdbInterpretedCode comparison
methods can be now used to compare table column values:

• branch_col_eq()

• branch_col_ge()

• branch_col_gt()

• branch_col_le()

• branch_col_lt()

• branch_col_ne()

When using any of these methods, the table column values to be compared must be of exactly the same
type, including with respect to length, precision, and scale. In addition, in all cases, NULL is always
considered by these methods to be less than any other value. You should also be aware that, when
used to compare table column values, NdbScanFilter::cmp() does not support all possible values of
BinaryCondition.

For more information, see the descriptions of the individual API methods. (WL #13120)

• NDB Client Programs: The dependency of the ndb_delete_all utility on the NDBT library has been
removed. This library, used in NDB development for testing, is not required for normal use. The visible
change for users is that ndb_delete_all no longer prints NDBT_ProgramExit - status following
completion of its run. Applications that depend upon this behavior should be updated to reflect this
change when upgrading to this release. (WL #13223)

• ndb_restore now reports the specific NDB error number and message when it is unable to load a table
descriptor from a backup .ctl file. This can happen when attempting to restore a backup taken from a
later version of the NDB Cluster software to a cluster running an earlier version—for example, when the
backup includes a table using a character set which is unknown to the version of ndb_restore being
used to restore it. (Bug #30184265)

109

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-ndbd-filesystemdir-files.html
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndbinterpretedcode.html
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndbrecord.html
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-table.html
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndbscanfilter.html#ndb-ndbscanfilter-cmp
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndbinterpretedcode.html
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndbinterpretedcode.html#ndb-ndbinterpretedcode-branch-col-eq
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndbinterpretedcode.html#ndb-ndbinterpretedcode-branch-col-ge
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndbinterpretedcode.html#ndb-ndbinterpretedcode-branch-col-gt
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndbinterpretedcode.html#ndb-ndbinterpretedcode-branch-col-le
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndbinterpretedcode.html#ndb-ndbinterpretedcode-branch-col-lt
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndbinterpretedcode.html#ndb-ndbinterpretedcode-branch-col-ne
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndbscanfilter.html#ndb-ndbscanfilter-binarycondition
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-delete-all.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-delete-all.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html

MySQL NDB Cluster 8.0 Release Notes

• The output from DUMP 1000 in the ndb_mgm client has been extended to provide information regarding
total data page usage. (Bug #29841454)

References: See also: Bug #29929996.

• NDB Cluster's condition pushdown functionality has been extended as follows:

• Expressions using any previously allowed comparisons are now supported.

• Comparisons between columns in the same table and of the same type are now supported. The
columns must be of exactly the same type.

Example: Suppose there are two tables t1 and t2 created as shown here:

CREATE TABLE t1 (a INT, b INT, c CHAR(10), d CHAR(5)) ENGINE=NDB;
CREATE TABLE t2 LIKE t1;

The following joins can now be pushed down to the data nodes:

SELECT * FROM t1 JOIN t2 ON t2.a < t1.a+10;
SELECT * FROM t1 JOIN t2 ON t2.a = t1.a+t1.b;
SELECT * FROM t1 JOIN t2 ON t2.a = t1.a+t1.b;
SELECT * FROM t1 JOIN t2 ON t2.d = SUBSTRING(t1.c,1,5);
SELECT * FROM t1 JOIN t2 ON t2.c = CONCAT('foo',t1.d,'ba');

Supported comparisons are <, <=, >, >=, =, and <>. (Bug #29685643, WL #12956, WL #13121)

• NDB Cluster now uses table_name_fk_N as the naming pattern for internally generated foreign keys,
which is similar to the table_name_ibfk_N pattern used by InnoDB. (Bug #96508, Bug #30171959)

References: See also: Bug #30210839.

• Added the ndb_schema_dist_lock_wait_timeout system variable to control how long to wait
for a schema lock to be released when trying to update the SQL node's local data dictionary for one or
more tables currently in use from the NDB data dictionary's metadata. If this synchronization has not
yet occurred by the end of this time, the SQL node returns a warning that schema distribution did not
succeed; the next time that the table for which distribution failed is accessed, NDB tries once again to
synchronize the table metadata. (WL #10164)

• NDB table objects submitted by the metadata change monitor thread are now automatically checked
for any mismatches and synchronized by the NDB binary logging thread. The status variable
Ndb_metadata_synced_count added in this release shows the number of objects synchronized
automatically; it is possible to see which objects have been synchronized by checking the cluster log. In
addition, the new status variable Ndb_metadata_blacklist_size indicates the number of objects for
which synchronization has failed. (WL #11914)

References: See also: Bug #30000202.

• It is now possible to build NDB for 64-bit ARM CPUs from the NDB Cluster sources. Currently, we do not
provide any precompiled binaries for this platform. (WL #12928)

110

https://dev.mysql.com/doc/ndb-internals/en/dump-command-1000.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-mgm.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#sysvar_ndb_schema_dist_lock_wait_timeout
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#statvar_Ndb_metadata_synced_count
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#statvar_Ndb_metadata_excluded_count

MySQL NDB Cluster 8.0 Release Notes

• Start times for the ndb_mgmd management node daemon have been significantly improved as follows:

• More efficient handling of properties from configuration data can decrease startup times for the
management server by a factor of 6 or more as compared with previous versions.

• Host names not present in the management server's hosts file no longer create a bottleneck during
startup, making ndb_mgmd start times up to 20 times shorter where these are used.

(WL #13143)

• Columns of NDB tables can now be renamed online, using ALGORITHM=INPLACE. (WL #11734)

References: See also: Bug #28609968.

Bugs Fixed

• Important Change: Because the current implementation for node failure handling cannot guarantee
that even a single transaction of size MaxNoOfConcurrentOperations is completed in each round,
this parameter is once again used to set a global limit on the total number of concurrent operations in all
transactions within a single transaction coordinator instance. (Bug #96617, Bug #30216204)

• Partitioning; NDB Disk Data: Creation of a partitioned disk data table was unsuccessful due to a
missing metadata lock on the tablespace specified in the CREATE TABLE statement. (Bug #28876892)

• NDB Disk Data: Tablespaces and data files are not tightly coupled in NDB, in the sense that they are
represented by independent NdbDictionary objects. Thus, when metadata is restored using the
ndb_restore tool, there was no guarantee that the tablespace and its associated datafile objects were
restored at the same time. This led to the possibility that the tablespace mismatch was detected and
automatically synchronized to the data dictionary before the datafile was restored to NDB. This issue also
applied to log file groups and undo files.

To fix this problem, the metadata change monitor now submits tablespaces and logfile groups only if
their corresponding datafiles and undofiles actually exist in NDB. (Bug #30090080)

• NDB Disk Data: When a data node failed following creation and population of an NDB table having
columns on disk, but prior to execution of a local checkpoint, it was possible to lose row data from the
tablespace. (Bug #29506869)

• NDB Cluster APIs: The NDB API examples ndbapi_array_simple.cpp (see NDB API Simple Array
Example) and ndbapi_array_using_adapter.cpp (see NDB API Simple Array Example Using
Adapter) made assignments directly to a std::vector array instead of using push_back() calls to do
so. (Bug #28956047)

• MySQL NDB ClusterJ: If ClusterJ was deployed as a separate module of a multi-module web
application, when the application tried to create a new instance of a domain object, the exception
java.lang.IllegalArgumentException: non-public interface is not defined by
the given loader was thrown. It was because ClusterJ always tries to create a proxy class from
which the domain object can be instantiated, and the proxy class is an implementation of the domain
interface and the protected DomainTypeHandlerImpl::Finalizable interface. The class loaders of
these two interfaces were different in the case, as they belonged to different modules running on the web
server, so that when ClusterJ tried to create the proxy class using the domain object interface's class
loader, the above-mentioned exception was thrown. This fix makes the Finalization interface public
so that the class loader of the web application would be able to access it even if it belongs to a different
module from that of the domain interface. (Bug #29895213)

111

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-mgmd.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-mgmd.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-maxnoofconcurrentoperations
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/create-table.html
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndbdictionary.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndbapi-examples-array-simple.html
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndbapi-examples-array-simple.html
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndbapi-examples-array-adapter.html
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndbapi-examples-array-adapter.html

MySQL NDB Cluster 8.0 Release Notes

• MySQL NDB ClusterJ: ClusterJ sometimes failed with a segmentation fault after reconnecting to an
NDB Cluster. This was due to ClusterJ reusing old database metadata objects from the old connection.
With the fix, those objects are discarded before a reconnection to the cluster. (Bug #29891983)

• Faulty calculation of microseconds caused the internal ndb_milli_sleep() function to sleep for too
short a time. (Bug #30211922)

• Once a data node is started, 95% of its configured DataMemory should be available for normal data,
with 5% to spare for use in critical situations. During the node startup process, all of its configured
DataMemory is usable for data, in order to minimize the risk that restoring the node data fails due to
running out of data memory due to some dynamic memory structure using more pages for the same data
than when the node was stopped. For example, a hash table grows differently during a restart than it did
previously, since the order of inserts to the table differs from the historical order.

The issue raised in this bug report occurred when a check that the data memory used plus the spare
data memory did not exceed the value set for DataMemory failed at the point where the spare memory
was reserved. This happened as the state of the data node transitioned from starting to started, when
reserving spare pages. After calculating the number of reserved pages to be used for spare memory,
and then the number of shared pages (that is, pages from shared global memory) to be used for this, the
number of reserved pages already allocated was not taken into consideration. (Bug #30205182)

References: See also: Bug #29616383.

• Removed a memory leak found in the ndb_import utility. (Bug #30192989)

• It was not possible to use ndb_restore and a backup taken from an NDB 8.0 cluster to restore to a
cluster running NDB 7.6. (Bug #30184658)

References: See also: Bug #30221717.

• When starting, a data node's local sysfile was not updated between the first completed local checkpoint
and start phase 50. (Bug #30086352)

• In the BACKUP block, the assumption was made that the first record in c_backups was the local
checkpoint record, which is not always the case. Now NDB loops through the records in c_backups to
find the (correct) LCP record instead. (Bug #30080194)

• During node takeover for the master it was possible to end in the state LCP_STATUS_IDLE while the
remaining data nodes were reporting their state as LCP_TAB_SAVED. This led to failure of the node
when attempting to handle reception of a LCP_COMPLETE_REP signal since this is not expected when
idle. Now in such cases local checkpoint handling is done in a manner that ensures that this node
finishes in the proper state (LCP_TAB_SAVED). (Bug #30032863)

• When a MySQL Server built with NDBCLUSTER support was run on Solaris/x86, it failed during schema
distribution. The root cause of the problem was an issue with the Developer Studio compiler used to
build binaries for this platform when optimization level -xO2 was used. This issue is fixed by using
optimization level -xO1 instead for NDBCLUSTER built for Solaris/x86. (Bug #30031130)

References: See also: Bug #28585914, Bug #30014295.

• NDB used free() directly to deallocate ndb_mgm_configuration objects instead of calling
ndb_mgm_destroy_configuration(), which correctly uses delete for deallocation. (Bug
#29998980)

• Default configuration sections did not have the configuration section types set when unpacked into
memory, which caused a memory leak since this meant that the section destructor would not destroy the
entries for these sections. (Bug #29965125)

112

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-datamemory
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-import.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-backup.html

MySQL NDB Cluster 8.0 Release Notes

• No error was propagated when NDB failed to discover a table due to the table format being old and no
longer supported, which could cause the NDB handler to retry the discovery operation endlessly and
thereby hang. (Bug #29949096, Bug #29934763)

• During upgrade of an NDB Cluster when half of the data nodes were running NDB 7.6 while the
remainder were running NDB 8.0, attempting to shut down those nodes which were running NDB 7.6 led
to failure of one node with the error CHECK FAILEDNODEPTR.P->DBLQHFAI. (Bug #29912988, Bug
#30141203)

• Altering a table in the middle of an ongoing transaction caused a table discovery operation which led to
the transaction being committed prematurely; in addition, no error was returned when performing further
updates as part of the same transaction.

Now in such cases, the table discovery operation fails, when a transaction is in progress. (Bug
#29911440)

• When performing a local checkpoint (LCP), a table's schema version was intermittently read as 0, which
caused NDB LCP handling to treat the table as though it were being dropped. This could effect rebuilding
of indexes offline by ndb_restore while the table was in the TABLE_READ_ONLY state. Now the
function reading the schema version (getCreateSchemaVersion()) no longer not changes it while
the table is read-only. (Bug #29910397)

• When an error occurs on an SQL node during schema distribution, information about this was written in
the error log, but no indication was provided by the mysql client that the DDL statement in question was
unsuccessful. Now in such cases, one or more generic warnings are displayed by the client to indicate
that a given schema distribution operation has not been successful, with further information available in
the error log of the originating SQL node. (Bug #29889869)

• Errors and warnings pushed to the execution thread during metadata synchronization and metadata
change detection were not properly logged and cleared. (Bug #29874313)

• Altering a normal column to a stored generated column was performed online even though this is not
supported. (Bug #29862463)

• A pushed join with ORDER BY did not always return the rows of the result in the specified order. This
could occur when the optimizer used an ordered index to provide the ordering and the index used a
column from the table that served as the root of the pushed join. (Bug #29860378)

• A number of issues in the Backup block for local checkpoints (LCPs) were found and fixed, including the
following:

• Bytes written to LCP part files were not always included in the LCP byte count.

• The maximum record size for the buffer used for all LCP part files was not updated in all cases in
which the table maximum record size had changed.

• LCP surfacing could occur for LCP scans at times other than when receiving SCAN_FRAGCONF
signals.

• It was possible in some cases for the table currently being scanned to be altered in the middle of a
scan request, which behavior is not supported.

(Bug #29843373)

References: See also: Bug #29485977.

• The requestInfo fields for the long and short forms of the LQHKEYREQ signal had different definitions;
bits used for the key length in the short version were reused for flags in the long version, since the

113

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql.html

MySQL NDB Cluster 8.0 Release Notes

key length is implicit in the section length of the long version of the signal but it was possible for long
LQHKEYREQ signals to contain a keylength in these same bits, which could be misinterpreted by the
receiving local query handler, potentially leading to errors. Checks have now been implemented to make
sure that this no longer happens. (Bug #29820838)

• The list of dropped shares could hold only one dropped NDB_SHARE instance for each key, which
prevented NDB_SHARE instances with same key from being dropped multiple times while handlers held
references to those NDB_SHARE instances. This interfered with keeping track of the memory allocated
and being able to release it if mysqld shut down without all handlers having released their references
to the shares. To resolve this issue, the dropped share list has been changed to use a list type which
allows more than one NDB_SHARE with the same key to exist at the same time. (Bug #29812659, Bug
#29812613)

• Removed an ndb_restore compile-time dependency on table names that was defined by the
ndbcluster plugin. (Bug #29801100)

• When creating a table in parallel on multiple SQL nodes, the result was a race condition between
checking that the table existed and opening the table, which caused CREATE TABLE IF NOT EXISTS
to fail with Error 1. This was the result of two issues, described with their fixes here:

1. Opening a table whose NDB_SHARE did not exist returned the non-descriptive error message ERROR
1296 (HY000): Got error 1 'Unknown error code' from NDBCLUSTER. This is fixed
with a warning describing the problem in more detail, along with a more sensible error code.

It was possible to open a table before schema synchronization was completed. This is fixed with a
warning better describing the problem, along with an error indicating that cluster is not yet ready.

In addition, this fixes a related issue in which creating indexes sometimes also failed with Error 1. (Bug
#29793534, Bug #29871321)

• Previously, for a pushed condition, every request sent to NDB for a given table caused the generation
of a new instance of NdbInterpretedCode. When joining tables, generation of multiple requests
for all tables following the first table in the query plan is very likely; if the pushed condition had no
dependencies on prior tables in the query plan, identical instances of NdbInterpretedCode were
generated for each request, at a significant cost in wasted CPU cycles. Now such pushed conditions are
identified and the required NdbInterpretedCode object is generated only once, and reused for every
request sent for this table without the need for generating new code each time.

This change also makes it possible for Scan Filter too large errors to be detected and set during
query optimization, which corrects cases where the query plan shown was inaccurate because the
indicated push of a condition later had to be undone during the execution phase. (Bug #29704575)

• Some instances of NdbScanFilter used in pushdown conditions were not generated properly due to
FLOAT values being represented internally as having zero length. This led to more than the expected
number of rows being returned from NDB, as shown by the value of Ndb_api_read_row_count. While
the condition was re-evaluated by mysqld when generation of scan filter failed, the end result was still
correct in such cases, but any performance gain expected from pushing the condition was lost. (Bug
#29699347)

• When creating a table, NDB did not always determine correctly whether it exceeded the maximum
allowed record size. (Bug #29698277)

• NDB index statistics are calculated based on the topology of one fragment of an ordered index; the
fragment chosen in any particular index is decided at index creation time, both when the index is
originally created, and when a node or system restart has recreated the index locally. This calculation is
based in part on the number of fragments in the index, which can change when a table is reorganized.

114

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysqld.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/create-table.html
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndbinterpretedcode.html
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndbscanfilter.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/floating-point-types.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#statvar_Ndb_api_read_row_count

MySQL NDB Cluster 8.0 Release Notes

This means that, the next time that the node is restarted, this node may choose a different fragment,
so that no fragments, one fragment, or two fragments are used to generate index statistics, resulting in
errors from ANALYZE TABLE.

This issue is solved by modifying the online table reorganization to recalculate the chosen fragment
immediately, so that all nodes are aligned before and after any subsequent restart. (Bug #29534647)

• As part of initializing schema distribution, each data node must maintain a subscriber bitmap providing
information about the API nodes that are currently subscribed to this data node. Previously, the size of
the bitmap was hard-coded to MAX_NODES (256), which meant that large amounts of memory might be
allocated but never used when the cluster had significantly fewer nodes than this value. Now the size of
the bitmap is determined by checking the maximum API node ID used in the cluster configuration file.
(Bug #29270539)

• The removal of the mysql_upgrade utility and its replacement by mysqld --initialize means that
the upgrade procedure is executed much earlier than previously, possibly before NDB is fully ready to
handle queries. This caused migration of the MySQL privilege tables from NDB to InnoDB to fail. (Bug
#29205142)

• During a restart when the data nodes had started but not yet elected a president, the management
server received a node ID already in use error, which resulted in excessive retries and logging.
This is fixed by introducing a new error 1705 Not ready for connection allocation yet for
this case.

During a restart when the data nodes had not yet completed node failure handling, a spurious Failed
to allocate nodeID error was returned. This is fixed by adding a check to detect an incomplete
node start and to return error 1703 Node failure handling not completed instead.

As part of this fix, the frequency of retries has been reduced for not ready to alloc nodeID errors,
an error insert has been added to simulate a slow restart for testing purposes, and log messages have
been reworded to indicate that the relevant node ID allocation errors are minor and only temporary. (Bug
#27484514)

• NDB on Windows and macOS platforms did not always treat table names using mixed case consistently
with lower_case_table_names = 2. (Bug #27307793)

• The process of selecting the transaction coordinator checked for “live” data nodes but not necessarily for
those that were actually available. (Bug #27160203)

• The automatic metadata synchronization mechanism requires the binary logging thread to
acquire the global schema lock before an object can be safely synchronized. When another
thread had acquired this lock at the same time, the binary logging thread waited for up to
TransactionDeadlockDetectionTimeout milliseconds and then returned failure if it was
unsuccessful in acquiring the lock, which was unnecessary and which negatively impacted performance.

This has been fixed by ensuring that the binary logging thread acquires the global schema lock, or else
returns with an error, immediately. As part of this work, a new OperationOptions flag OO_NOWAIT
has also been implemented in the NDB API. (WL #29740946)

Changes in MySQL NDB Cluster 8.0.17 (2019-07-22, Release
Candidate)

MySQL NDB Cluster 8.0.17 is a new development release of NDB 8.0, based on MySQL Server 8.0 and
including features in version 8.0 of the NDB storage engine, as well as fixing recently discovered bugs in
previous NDB Cluster releases.

115

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/analyze-table.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-upgrade.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysqld.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/server-options.html#option_mysqld_initialize
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/server-system-variables.html#sysvar_lower_case_table_names
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-transactiondeadlockdetectiontimeout
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndboperation.html#ndb-ndboperation-operationoptions
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster.html

MySQL NDB Cluster 8.0 Release Notes

Obtaining NDB Cluster 8.0. NDB Cluster 8.0 source code and binaries can be obtained from https://
dev.mysql.com/downloads/cluster/.

For an overview of changes made in NDB Cluster 8.0, see What is New in MySQL NDB Cluster 8.0.

This release also incorporates all bug fixes and changes made in previous NDB Cluster releases, as well
as all bug fixes and feature changes which were added in mainline MySQL 8.0 through MySQL 8.0.17 (see
Changes in MySQL 8.0.17 (2019-07-22, General Availability)).

• Functionality Added or Changed

• Bugs Fixed

Functionality Added or Changed

• Schema operation timeout detection has been moved from the schema distribution client to the schema
distribution coordinator, which now checks ongoing schema operations for timeout at regular intervals,
marks participants that have timed out, emits suitable warnings when a schema operation timeout
occurs, and prints a list of any ongoing schema operations at regular intervals.

As part of this work, a new option --ndb-schema-dist-timeout makes it possible to set the number
of seconds for a given SQL node to wait until a schema operation is marked as having timed out. (Bug
#29556148)

• Added the status variable Ndb_trans_hint_count_session, which shows the
number of transactions started in the current session that used hints. Compare this with
Ndb_api_trans_start_count_session to get the proportion of all NDB transactions in the current
session that have been able to use hinting. (Bug #29127040)

• When the cluster is in single user mode, the output of the ndb_mgm SHOW command now indicates which
API or SQL node has exclusive access while this mode is in effect. (Bug #16275500)

Bugs Fixed

• Important Change: Attempting to drop, using the mysql client, an NDB table that existed in the
MySQL data dictionary but not in NDB caused mysqld to fail with an error. This situation could occur
when an NDB table was dropped using the ndb_drop_table tool or in an NDB API application using
dropTable(). Now in such cases, mysqld drops the table from the MySQL data dictionary without
raising an error. (Bug #29125206)

• Important Change: The dependency of ndb_restore on the NDBT library, which is used
for internal testing only, has been removed. This means that the program no longer prints
NDBT_ProgramExit: ... when terminating. Applications that depend upon this behavior should be
updated to reflect this change when upgrading to this release. (WL #13117)

• Packaging: Added debug symbol packages to NDB distributions for .deb-based platforms which do not
generate these automatically. (Bug #29040024)

• NDB Disk Data: If, for some reason, a disk data table exists in the NDB data dictionary but not in that
of the MySQL server, the data dictionary is synchronized by installing the object. This can occur either
during the schema synchronization phase when a MySQL server connects to an NDB Cluster, or during
table discovery through a DML query or DDL statement.

For disk data tables which used a tablespace for storage, the tablespace ID is stored as part of the data
dictionary object, but this was not set during synchronization. (Bug #29597249)

• NDB Disk Data: Concurrent Disk Data table and tablespace DDL statements executed on the same
SQL node caused a metadata lock deadlock. A DDL statement requires that an exclusive lock be

116

https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/downloads/cluster/
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-what-is-new.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-relnotes-en/news-8-0-17.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#option_mysqld_ndb-schema-dist-timeout
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#statvar_Ndb_trans_hint_count_session
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#statvar_Ndb_api_trans_start_count_session
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-mgm.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-mgm-client-commands.html#ndbclient-show
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysqld.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-drop-table.html
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-dictionary.html#ndb-dictionary-droptable
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysqld.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html

MySQL NDB Cluster 8.0 Release Notes

taken on the object being modified and every such lock in turn requires that the global schema lock be
acquired in NDB.

To fix this issue, NDB now tracks when a global schema lock corresponding to an exclusive lock on a
tablespace is taken. If a different global schema lock request fails while the first lock, NDB assumes that
there is a deadlock. In this case, the deadlock is handled by having the new request release all locks it
previously acquired, then retrying them at a later point. (Bug #29394407)

References: See also: Bug #29175268.

• NDB Disk Data: Following execution of ALTER TABLESPACE, SQL statements on an existing table
using the affected tablespace failed with error 3508 Dictionary object id (id) does not
exist where the object ID shown refers to the tablespace. Schema distribution of ALTER TABLESPACE
involves dropping the old object from the data dictionary on a participating SQL node and creating a new
one with a different dictionary object id, but the table object in the SQL node's data dictionary still used
the old tablespace ID which rendered it unusable on the participants.

To correct this problem, tables using the tablespace are now retrieved and stored prior to the creation of
the new tablespace, and then Updated the new object ID of the tablespace after it has been created in
the data dictionary. (Bug #29389168)

• NDB Replication: Following the restart of an SQL node (mysqld process), the node's
ndb_apply_status table was re-created as expected, but was never updated again afterwards. (Bug
#30999967)

• NDB Replication: The ndb_apply_status table was created using the deprecated syntax
VARCHAR(255) BINARY. VARBINARY(255) is now used instead for creating this table. (Bug
#29807585)

• NDB Replication: Errors raised from replication settings by a CREATE TABLE statement were not
properly checked, leading the user to believe (incorrectly) that the table was valid for this purpose. (Bug
#29697052)

• NDB Replication: NDB did not handle binary logging of virtual generated columns of type BLOB
correctly. Now such columns are always regarded as having zero length.

• NDB Cluster APIs: The memcached sources included with the NDB distribution would not build with -
Werror=format-security. Now warnings are no longer treated as errors when compiling these files.
(Bug #29512411)

• NDB Cluster APIs: It was not possible to scan a table whose SingleUserMode property had been set
to SingleUserModeReadWrite or SingleUserModeReadOnly. (Bug #29493714)

• NDB Cluster APIs: The MGM API ndb_logevent_get_next2() function did not behave correctly on
Windows and 32-bit Linux platforms. (Bug #94917, Bug #29609070)

• The version of Python expected by ndb_setup.py was not specified clearly on some platforms. (Bug
#29818645)

• Lack of SharedGlobalMemory was incorrectly reported as lack of undo buffer memory, even though
the cluster used no disk data tables. (Bug #29806771)

References: This issue is a regression of: Bug #92125, Bug #28537319.

• Long TCKEYREQ signals did not always use the expected format when invoked from TCINDXREQ
processing. (Bug #29772731)

117

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/alter-tablespace.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysqld.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/char.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/binary-varbinary.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/create-table.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/blob.html
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-table.html#ndb-table-singleusermode
https://docs.oracle.com/cd/E17952_01/ndbapi-en/mgm-functions-log-events.html#mgm-ndb-logevent-get-next2
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-sharedglobalmemory

MySQL NDB Cluster 8.0 Release Notes

• It was possible for an internal NDB_SCHEMA_OBJECT to be released too early or not at all; in addition, it
was possible to create such an object that reused an existing key. (Bug #29759063)

• ndb_restore sometimes used exit() rather than exitHandler() to terminate the program, which
could lead to resources not being properly freed. (Bug #29744353)

• Improved error message printed when the maximum offset for a FIXED column is exceeded. (Bug
#29714670)

• Communication between the schema distribution client and the schema distribution coordinator is done
using NDB_SCHEMA_OBJECT as well as by writing rows to the ndb_schema table in NDB. This allowed
for the possibility of a number of different race conditions between when the registration of the schema
operation and when the coordinator was notified of it.

This fix addresses the following issues related to the situation just described:

• The coordinator failed to abort active schema operations when the binary logging thread was
restarted.

• Schema operations already registered were not aborted properly.

• The distribution client failed to detect correctly when schema distribution was not ready.

• The distribution client, when killed, exited without marking the current schema operation as failed.

• An operation in NDB_SHARE could be accessed without the proper locks being in place.

In addition, usage of the ndb_schema_share global pointer was removed, and replaced with detecting
whether the schema distribution is ready by checking whether an operation for mysql.ndb_schema has
been created in NDB_SHARE. (Bug #29639381)

• With DataMemory set to 200 GB, ndbmtd failed to start. (Bug #29630367)

• When a backup fails due to ABORT_BACKUP_ORD being received while waiting for buffer space, the
backup calls closeScan() and then sends a SCAN_FRAGREQ signal to the DBLQH block to close the
scan. As part of receiving SCAN_FRAGCONF in response, scanConf() is called on the operation object
for the file record which in turn calls updateWritePtr() on the file system buffer (FsBuffer). At this
point the length sent by updateWritePtr() should be 0, but in this case was not, which meant that the
buffer did not have enough space even though it did not, the problem being that the size is calculated as
scanStop - scanStart and these values were held over since the previous SCAN_FRAGCONF was
received, and were not reset due to being out of buffer space.

To avoid this problem, we now set scanStart = scanStop in confirmBufferData() (formerly
scanConfExtra()) which is called as part of processing the SCAN_FRAGCONF, indirectly by
scanConf() for the backup and first local checkpoint files, and directly for the LCP files which use only
the operation record for the data buffer. (Bug #29601253)

• The setting for MaxDMLOperationsPerTransaction was not validated in a timely fashion, leading
to data node failure rather than a management server error in the event that its value exceeded that of
MaxNoOfConcurrentOperations. (Bug #29549572)

• Data nodes could fail due to an assert in the DBTC block under certain circumstances in resource-
constrained environments. (Bug #29528188)

• An upgrade to NDB 7.6.9 or later from an earlier version could not be completed successfully if the redo
log was filled to more than 25% of capacity. (Bug #29506844)

118

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-datamemory
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndbmtd.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-maxdmloperationspertransaction
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-maxnoofconcurrentoperations

MySQL NDB Cluster 8.0 Release Notes

• When the DBSPJ block called the internal function lookup_resume() to schedule a previously
enqueued operation, it used a correlation ID which could have been produced from its immediate
ancestor in the execution order, and not its parent in the query tree as assumed. This could happen
during execution of a SELECT STRAIGHT_JOIN query.

Now NDB checks whether the execution ancestor is different from the query tree parent, and if not,
performs a lookup of the query tree parent, and the parent's correlation ID is enqueued to be executed
later. (Bug #29501263)

• When a new master took over, sending a MASTER_LCP_REQ signal and executing MASTER_LCPCONF
from participating nodes, it expected that they had not completed the current local checkpoint under the
previous master, which need not be true. (Bug #29487340, Bug #29601546)

• When restoring TINYBLOB columns, ndb_restore now treats them as having the BINARY character
set. (Bug #29486538)

• When selecting a sorted result set from a query that included a LIMIT clause on a single table, and
where the sort was executed as Using filesort and the ref access method was used on an
ordered index, it was possible for the result set to be missing one or more rows. (Bug #29474188)

• Restoration of epochs by ndb_restore failed due to temporary redo errors. Now ndb_restore retries
epoch updates when such errors occur. (Bug #29466089)

• ndb_restore tried to extract an 8-character substring of a table name when checking to determine
whether or not the table was a blob table, regardless of the length of the name. (Bug #29465794)

• When a pushed join was used in combination with the eq_ref access method it was possible to obtain
an incorrect join result due to the 1 row cache mechanism implemented in NDB 8.0.16 as part of the
work done in that version to extend NDB condition pushdown by allowing referring values from previous
tables. This issue is now fixed by turning off this caching mechanism and reading the row directly from
the handler instead, when there is a pushed condition defined on the table. (Bug #29460314)

• Improved and made more efficient the conversion of rows by the ha_ndbcluster handler from the
format used internally by NDB to that used by the MySQL server for columns that contain neither BLOB
nor BIT values, which is the most common case. (Bug #29435461)

• A failed DROP TABLE could be attempted an infinite number of times in the event of a temporary error.
Now in such cases, the number of retries is limited to 100. (Bug #29355155)

• ndb_restore --restore-epoch incorrectly reported the stop GCP as 1 less than the actual position.
(Bug #29343655)

• A SavedEvent object in the CMVMI kernel block is written into a circular buffer. Such an object is split
in two when wrapping at the end of the buffer; NDB looked beyond the end of the buffer instead of in the
wrapped data at the buffer's beginning. (Bug #29336793)

• NDB did not compile with -DWITH_SYSTEM_LIBS=ON due to an incorrectly configured dependency on
zlib. (Bug #29304517)

• Removed a memory leak found when running ndb_mgmd --config-file after compiling NDB with
Clang 7. (Bug #29284643)

• Removed clang compiler warnings caused by usage of extra ; characters outside functions; these are
incompatible with C++98. (Bug #29227925)

• Adding a column defined as TIMESTAMP DEFAULT CURRENT_TIMESTAMP to an NDB table is not
supported with ALGORITHM=INPLACE. Attempting to do so now causes an error. (Bug #28128849)

119

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/blob.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/explain-output.html#jointype_ref
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/explain-output.html#jointype_eq_ref
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/blob.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/bit-type.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/drop-table.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_restore-epoch
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/source-configuration-options.html#option_cmake_with_system_libs
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-mgmd.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-mgmd.html#option_ndb_mgmd_config-file
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/datetime.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster.html

MySQL NDB Cluster 8.0 Release Notes

• Added support which was missing in ndb_restore for conversions between the following sets of types:

• BLOB and BINARY or VARBINARY columns

• TEXT and BLOB columns

• BLOB columns with unequal lengths

• BINARY and VARBINARY columns with unequal lengths

(Bug #28074988)

• Restore points in backups created with the SNAPSHOTSTART option (see Using The NDB Cluster
Management Client to Create a Backup) were not always consistent with epoch boundaries. (Bug
#27566346)

References: See also: Bug #27497461.

• Neither the MAX_EXECUTION_TIME optimizer hint nor the max_execution_time system variable was
respected for DDL statements or queries against INFORMATION_SCHEMA tables while an NDB global
schema lock was in effect. (Bug #27538139)

• DDL operations were not always performed correctly on database objects including databases and
tables, when multi-byte character sets were used for the names of either or both of these. (Bug
#27150334)

• ndb_import did not always free up all resources used before exiting. (Bug #27130143)

• NDBCLUSTER subscription log printouts provided only 2 words of the bitmap (in most cases containing 8
words), which made it difficult to diagnose schema distribution issues. (Bug #22180480)

• For certain tables with very large rows and a very large primary key, START BACKUP SNAPSHOTEND
while performing inserts into one of these tables or START BACKUP SNAPSHOTSTART with concurrent
deletes could lead to data node errors.

As part of this fix, ndb_print_backup_file can now read backup files created in very old versions of
NDB Cluster (6.3 and earlier); in addition, this utility can now also read undo log files. (Bug #94654, Bug
#29485977)

• When one of multiple SQL nodes which were connected to the cluster was down and then rejoined the
cluster, or a new SQL node joined the cluster, this node did not use the data dictionary correctly, and
thus did not always add, alter, or drop databases properly when synchronizing with the existing SQL
nodes.

Now, during schema distribution at startup, the SQL node compares all databases on the data nodes
with those in its own data dictionary. If any database on the data nodes is found to be missing from the
SQL node's data dictionary, the SQL Node installs it locally using CREATE DATABASE; the database is
created using the default MySQL Server database properties currently in effect on this SQL node. (WL
#12731)

Changes in MySQL NDB Cluster 8.0.16 (2019-04-25, Development
Milestone)

MySQL NDB Cluster 8.0.16 is a new development release of NDB 8.0, based on MySQL Server 8.0 and
including features in version 8.0 of the NDB storage engine, as well as fixing recently discovered bugs in
previous NDB Cluster releases.

120

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/blob.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/binary-varbinary.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/binary-varbinary.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/blob.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-backup-using-management-client.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-backup-using-management-client.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/server-system-variables.html#sysvar_max_execution_time
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/information-schema.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-import.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-backup-using-management-client.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-print-backup-file.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/create-database.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster.html

MySQL NDB Cluster 8.0 Release Notes

Obtaining NDB Cluster 8.0. NDB Cluster 8.0 source code and binaries can be obtained from https://
dev.mysql.com/downloads/cluster/.

For an overview of changes made in NDB Cluster 8.0, see What is New in MySQL NDB Cluster 8.0.

This release also incorporates all bug fixes and changes made in previous NDB Cluster releases, as well
as all bug fixes and feature changes which were added in mainline MySQL 8.0 through MySQL 8.0.16 (see
Changes in MySQL 8.0.16 (2019-04-25, General Availability)).

• Deprecation and Removal Notes

• SQL Syntax Notes

• Functionality Added or Changed

• Bugs Fixed

Deprecation and Removal Notes

• Incompatible Change: Distribution of privileges amongst MySQL servers connected to NDB Cluster, as
implemented in NDB 7.6 and earlier, does not function in NDB 8.0, and most code supporting these has
now been removed. When a mysqld detects such tables in NDB, it creates shadow tables local to itself
using the InnoDB storage engine; these shadow tables are created on each MySQL server connected to
an NDB cluster. Privilege tables using the NDB storage engine are not employed for access control; once
all connected MySQL servers are upgraded, the privilege tables in NDB can be removed safely using
ndb_drop_table.

For compatibility reasons, ndb_restore --restore-privilege-tables can still be used to restore
distributed privilege tables present in a backup taken from a previous release of NDB Cluster to a cluster
running NDB 8.0. These tables are handled as described in the preceeding paragraph.

For additional information regarding upgrades from previous NDB Cluster release series to NDB 8.0, see
Upgrading and Downgrading NDB Cluster. (WL #12507, WL #12511)

SQL Syntax Notes

• Incompatible Change: For consistency with InnoDB, the NDB storage engine now uses a generated
constraint name if the CONSTRAINT symbol clause is not specified, or the CONSTRAINT keyword is
specified without a symbol. In previous NDB releases, NDB used the FOREIGN KEY index_name
value.

This change described above may introduce incompatibilities for applications that depend on the
previous foreign key constraint naming behavior. (Bug #29173134)

Functionality Added or Changed

• Packaging: A Docker image for this release can be obtained from https://hub.docker.com/r/mysql/mysql-
cluster/. (Bug #96084, Bug #30010921)

• Allocation of resources in the transaction corrdinator (see The DBTC Block) is now performed using
dynamic memory pools. This means that resource allocation determined by data node configuration
parameters such as those discussed in Transaction parameters and Transaction temporary storage is
now limited so as not to exceed the total resources available to the transaction coordinator.

As part of this work, several new data node parameters controlling transactional resources in DBTC,
listed here, have also been added. For more information about these new parameters, see Transaction
resource allocation parameters. (Bug #29164271, Bug #29194843, WL #9756, WL #12523)

121

https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/downloads/cluster/
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-what-is-new.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-relnotes-en/news-8-0-16.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysqld.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/innodb-storage-engine.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-drop-table.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_restore-privilege-tables
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-upgrade-downgrade.html
https://hub.docker.com/r/mysql/mysql-cluster/
https://hub.docker.com/r/mysql/mysql-cluster/
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbtc.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#mysql-cluster-transaction-parameters
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#mysql-cluster-transaction-temporary-storage
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#mysql-cluster-transaction-resource-allocation
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#mysql-cluster-transaction-resource-allocation

MySQL NDB Cluster 8.0 Release Notes

References: See also: Bug #29131828.

• NDB backups can now be performed in a parallel fashion on individual data nodes using multiple local
data managers (LDMs). (Previously, backups were done in parallel across data nodes, but were always
serial within data node processes.) No special syntax is required for the START BACKUP command in
the ndb_mgm client to enable this feature, but all data nodes must be using multiple LDMs. This means
that data nodes must be running ndbmtd and they must be configured to use multiple LDMs prior to
taking the backup (see Multi-Threading Configuration Parameters (ndbmtd)).

The EnableMultithreadedBackup data node parameter introduced in this release is enabled (set to
1) by default. You can disable multi-threaded backups and force the creation of single-threaded backups
by setting this parameter to 0 on all data nodes or in the [ndbd default] section of the cluster's
global configuration file (config.ini).

ndb_restore also now detects a multi-threaded backup and automatically attempts to restore it in
parallel. It is also possible to restore backups taken in parallel to a previous version of NDB Cluster by
slightly modifying the usual restore procedure.

For more information about taking and restoring NDB Cluster backups that were created using
parallelism on the data nodes, see Taking an NDB Backup with Parallel Data Nodes, and Restoring from
a backup taken in parallel. (Bug #28563639, Bug #28993400, WL #8517)

• The compile-cluster script included in the NDB source distribution no longer supports in-source
builds. (WL #12303)

• Building with CMake3 is now supported by the compile-cluster script included in the NDB source
distribution. (WL #12303)

• As part of its automatic synchronization mechanism, NDB now implements a metadata change monitor
thread for detecting changes made to metadata for data objects such as tables, tablespaces, and log file
groups with the MySQL data dictionary. This thread runs in the background, checking every 60 seconds
for inconsistencies between the NDB dictionary and the MySQL data dictionary.

The monitor polling interval can be adjusted by setting the value of the
ndb_metadata_check_interval system variable, and can be disabled altogether by setting
ndb_metadata_check to OFF. The number of times that inconsistencies have been detected since
mysqld was last started is shown as the status variable, Ndb_metadata_detected_count. (WL
#11913)

• Condition pushdown is no longer limited to predicate terms referring to column values from the same
table to which the condition was being pushed; column values from tables earlier in the query plan can
now also be referred to from pushed conditions. This lets the data nodes filter out more rows (in parallel),
leaving less work to be performed by a single mysqld process, which is expected to provide significant
improvements in query performance.

For more information, see Engine Condition Pushdown Optimization. (WL #12686)

Bugs Fixed

• Important Change; NDB Disk Data: mysqldump terminated unexpectedly when attempting to dump
NDB disk data tables. The underlying reason for this was that mysqldump expected to find information
relating to undo log buffers in the EXTRA column of the INFORMATION_SCHEMA.FILES table but this
information had been removed in NDB 8.0.13. This information is now restored to the EXTRA column.
(Bug #28800252)

122

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-backup-using-management-client.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-mgm.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndbmtd.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#mysql-cluster-ndbd-definition-ndbmtd-parameters
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbmtd-enablemultithreadedbackup
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-backup-parallel-data-nodes.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/ndb-restore-parallel-data-node-backup.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/ndb-restore-parallel-data-node-backup.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#sysvar_ndb_metadata_check_interval
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#sysvar_ndb_metadata_check
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysqld.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#statvar_Ndb_metadata_detected_count
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysqld.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/engine-condition-pushdown-optimization.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysqldump.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysqldump.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/information-schema-files-table.html

MySQL NDB Cluster 8.0 Release Notes

• Important Change: When restoring to a cluster using data node IDs different from those in the original
cluster, ndb_restore tried to open files corresponding to node ID 0. To keep this from happening, the
--nodeid and --backupid options—neither of which has a default value—are both now explicitly
required when invoking ndb_restore. (Bug #28813708)

• Important Change: Starting with this release, the default value of the ndb_log_bin system variable is
now FALSE. (Bug #27135706)

• Packaging; MySQL NDB ClusterJ: libndbclient was missing from builds on some platforms. (Bug
#28997603)

• NDB Disk Data: When a log file group had more than 18 undo logs, it was not possible to restart the
cluster. (Bug #251155785)

References: See also: Bug #28922609.

• NDB Disk Data: Concurrent CREATE TABLE statements using tablespaces caused deadlocks between
metadata locks. This occurred when Ndb_metadata_change_monitor acquired exclusive metadata
locks on tablespaces and logfile groups after detecting metadata changes, due to the fact that each
exclusive metadata lock in turn acquired a global schema lock. This fix attempts to solve that issue by
downgrading the locks taken by Ndb_metadata_change_monitor to MDL_SHARED_READ. (Bug
#29175268)

References: See also: Bug #29394407.

• NDB Disk Data: The error message returned when validation of MaxNoOfOpenFiles in relation to
InitialNoOfOpenFiles failed has been improved to make the nature of the problem clearer to users.
(Bug #28943749)

• NDB Disk Data: Schema distribution of ALTER TABLESPACE and ALTER LOGFILE GROUP statements
failed on a participant MySQL server if the referenced tablespace or log file group did not exist in its data
dictionary. Now in such cases, the effects of the statement are distributed successfully regardless of any
initial mismatch between MySQL servers. (Bug #28866336)

• NDB Disk Data: Repeated execution of ALTER TABLESPACE ... ADD DATAFILE against the same
tablespace caused data nodes to hang and left them, after being killed manually, unable to restart. (Bug
#22605467)

• NDB Replication: A DROP DATABASE operation involving certain very large tables could lead to an
unplanned shutdown of the cluster. (Bug #28855062)

• NDB Replication: When writes on the master—done in such a way that multiple changes affecting
BLOB column values belonging to the same primary key were part of the same epoch—were replicated
to the slave, Error 1022 occurred due to constraint violations in the NDB$BLOB_id_part table. (Bug
#28746560)

• NDB Cluster APIs: NDB now identifies short-lived transactions not needing the reduction of lock
contention provided by NdbBlob::close() and no longer invokes this method in cases (such as when
autocommit is enabled) in which unlocking merely causes extra work and round trips to be performed
prior to committing or aborting the transaction. (Bug #29305592)

References: See also: Bug #49190, Bug #11757181.

• NDB Cluster APIs: When the most recently failed operation was released, the pointer to it held by
NdbTransaction became invalid and when accessed led to failure of the NDB API application. (Bug
#29275244)

123

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_nodeid
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_backupid
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#sysvar_ndb_log_bin
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/create-table.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-maxnoofopenfiles
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-initialnoofopenfiles
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/alter-tablespace.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/alter-logfile-group.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/alter-tablespace.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/drop-database.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/blob.html
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndbblob.html#ndb-ndbblob-close
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndbtransaction.html

MySQL NDB Cluster 8.0 Release Notes

• NDB Cluster APIs: When the NDB kernel's SUMA block sends a TE_ALTER event, it does not keep track
of when all fragments of the event are sent. When NDB receives the event, it buffers the fragments, and
processes the event when all fragments have arrived. An issue could possibly arise for very large table
definitions, when the time between transmission and reception could span multiple epochs; during this
time, SUMA could send a SUB_GCP_COMPLETE_REP signal to indicate that it has sent all data for an
epoch, even though in this case that is not entirely true since there may be fragments of a TE_ALTER
event still waiting on the data node to be sent. Reception of the SUB_GCP_COMPLETE_REP leads to
closing the buffers for that epoch. Thus, when TE_ALTER finally arrives, NDB assumes that it is a
duplicate from an earlier epoch, and silently discards it.

We fix the problem by making sure that the SUMA kernel block never sends a SUB_GCP_COMPLETE_REP
for any epoch in which there are unsent fragments for a SUB_TABLE_DATA signal.

This issue could have an impact on NDB API applications making use of TE_ALTER events. (SQL nodes
do not make any use of TE_ALTER events and so they and applications using them were not affected.)
(Bug #28836474)

• When a pushed join executing in the DBSPJ block had to store correlation IDs during query execution,
memory for these was allocated for the lifetime of the entire query execution, even though these specific
correlation IDs are required only when producing the most recent batch in the result set. Subsequent
batches require additional correlation IDs to be stored and allocated; thus, if the query took sufficiently
long to complete, this led to exhaustion of query memory (error 20008). Now in such cases, memory
is allocated only for the lifetime of the current result batch, and is freed and made available for re-use
following completion of the batch. (Bug #29336777)

References: See also: Bug #26995027.

• When comparing or hashing a fixed-length string that used a NO_PAD collation, any trailing padding
characters (typically spaces) were sent to the hashing and comparison functions such that they became
significant, even though they were not supposed to be. Now any such trailing spaces are trimmed from a
fixed-length string whenever a NO_PAD collation is specified.

Note

Since NO_PAD collations were introduced as part of UCA-9.0 collations in MySQL
8.0, there should be no impact relating to this fix on upgrades to NDB 8.0 from
previous GA releases of NDB Cluster.

(Bug #29322313)

• When a NOT IN or NOT BETWEEN predicate was evaluated as a pushed condition, NULL values were
not eliminated by the condition as specified in the SQL standard. (Bug #29232744)

References: See also: Bug #28672214.

• Internally, NDB treats NULL as less than any other value, and predicates of the form column < value
or column <= value are checked for possible nulls. Predicates of the form value > column or
value >= column were not checked, which could lead to errors. Now in such cases, these predicates
are rewritten so that the column comes first, so that they are also checked for the presence of NULL.
(Bug #29231709)

References: See also: Bug #92407, Bug #28643463.

• After folding of constants was implemented in the MySQL Optimizer, a condition containing a DATE or
DATETIME literal could no longer be pushed down by NDB. (Bug #29161281)

124

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/datetime.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/datetime.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster.html

MySQL NDB Cluster 8.0 Release Notes

• When a join condition made a comparison between a column of a temporal data type such as
DATE or DATETIME and a constant of the same type, the predicate was pushed if the condition was
expressed in the form column operator constant, but not when in inverted order (as constant
inverse_operator column). (Bug #29058732)

• When processing a pushed condition, NDB did not detect errors or warnings thrown when a literal value
being compared was outside the range of the data type it was being compared with,and thus truncated.
This could lead to excess or missing rows in the result. (Bug #29054626)

• If an EQ_REF or REF key in the child of a pushed join referred to any columns of a table not a member
of the pushed join, this table was not an NDB table (because its format was of nonnative endianness),
and the data type of the column being joined on was stored in an endian-sensitive format, then the key
generated was generated, likely resulting in the return of an (invalid) empty join result.

Since only big endian platforms may store tables in nonnative (little endian) formats, this issue was
expected only on such platforms, most notably SPARC, and not on x86 platforms. (Bug #29010641)

• API and data nodes running NDB 7.6 and later could not use an existing parsed configuration from an
earlier release series due to being overly strict with regard to having values defined for configuration
parameters new to the later release, which placed a restriction on possible upgrade paths. Now NDB 7.6
and later are less strict about having all new parameters specified explicitly in the configuration which
they are served, and use hard-coded default values in such cases. (Bug #28993400)

• NDB 7.6 SQL nodes hung when trying to connect to an NDB 8.0 cluster. (Bug #28985685)

• The schema distribution data maintained in the NDB binary logging thread keeping track of the number
of subscribers to the NDB schema table always allocated some memory structures for 256 data nodes
regardless of the actual number of nodes. Now NDB allocates only as many of these structures as are
actually needed. (Bug #28949523)

• Added DUMP 406 (NdbfsDumpRequests) to provide NDB file system information to global checkpoint
and local checkpoint stall reports in the node logs. (Bug #28922609)

• When a joined table was eliminated early as not pushable, it could not be referred to in any subsequent
join conditions from other tables without eliminating those conditions from consideration even if those
conditions were otherwise pushable. (Bug #28898811)

• When starting or restarting an SQL node and connecting to a cluster where NDB was already started,
NDB reported Error 4009 Cluster Failure because it could not acquire a global schema lock. This
was because the MySQL Server as part of initialization acquires exclusive metadata locks in order to
modify internal data structures, and the ndbcluster plugin acquires the global schema lock. If the
connection to NDB was not yet properly set up during mysqld initialization, mysqld received a warning
from ndbcluster when the latter failed to acquire global schema lock, and printed it to the log file,
causing an unexpected error in the log. This is fixed by not pushing any warnings to background threads
when failure to acquire a global schema lock occurs and pushing the NDB error as a warning instead.
(Bug #28898544)

• A race condition between the DBACC and DBLQH kernel blocks occurred when different operations
in a transaction on the same row were concurrently being prepared and aborted. This could result in
DBTUP attempting to prepare an operation when a preceding operation had been aborted, which was
unexpected and could thus lead to undefined behavior including potential data node failures. To solve

125

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/datetime.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/datetime.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/explain-output.html#jointype_eq_ref
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/explain-output.html#jointype_ref
https://dev.mysql.com/doc/ndb-internals/en/dump-command-406.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysqld.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysqld.html

MySQL NDB Cluster 8.0 Release Notes

this issue, DBACC and DBLQH now check that all dependencies are still valid before attempting to prepare
an operation.

Note

This fix also supersedes a previous one made for a related issue which was
originally reported as Bug #28500861.

(Bug #28893633)

• Where a data node was restarted after a configuration change whose result was a decrease in the sum
of MaxNoOfTables, MaxNoOfOrderedIndexes, and MaxNoOfUniqueHashIndexes, it sometimes
failed with a misleading error message which suggested both a temporary error and a bug, neither of
which was the case.

The failure itself is expected, being due to the fact that there is at least one table object with an ID
greater than the (new) sum of the parameters just mentioned, and that this table cannot be restored
since the maximum value for the ID allowed is limited by that sum. The error message has been
changed to reflect this, and now indicates that this is a permanent error due to a problem configuration.
(Bug #28884880)

• The ndbinfo.cpustat table reported inaccurate information regarding send threads. (Bug
#28884157)

• Execution of an LCP_COMPLETE_REP signal from the master while the LCP status was IDLE led to an
assertion. (Bug #28871889)

• NDB now provides on-the-fly .frm file translation during discovery of tables created in versions of
the software that did not support the MySQL Data Dictionary. Previously, such translation of tables
that had old-style metadata was supported only during schema synchronization during MySQL server
startup, but not subsequently, which led to errors when NDB tables having old-style metadata, created
by ndb_restore and other such tools after mysqld had been started, were accessed using SHOW
CREATE TABLE or SELECT; these tables were usable only after restarting mysqld. With this fix, the
restart is no longer required. (Bug #28841009)

• An in-place upgrade to an NDB 8.0 release from an earlier relase did not remove .ndb files, even
though these are no longer used in NDB 8.0. (Bug #28832816)

• Removed storage/ndb/demos and the demonstration scripts and support files it contained from the
source tree. These were obsolete and unmaintained, and did not function with any current version of
NDB Cluster.

Also removed storage/ndb/include/newtonapi, which included files relating to an obsolete and
unmaintained API not supported in any release of NDB Cluster, as well as references elsewhere to these
files. (Bug #28808766)

• There was no version compatibility table for NDB 8.x; this meant that API nodes running NDB 8.0.13
or 7.6.x could not connect to data nodes running NDB 8.0.14. This issue manifested itself for NDB API
users as a failure in wait_until_ready(). (Bug #28776365)

References: See also: Bug #18886034, Bug #18874849.

• Issuing a STOP command in the ndb_mgm client caused ndbmtd processes which had recently been
added to the cluster to hang in Phase 4 during shutdown. (Bug #28772867)

• A fix for a previous issue disabled the usage of pushed conditions for lookup type (eq_ref) operations
in pushed joins. It was thought at the time that not pushing a lookup condition would not have any
measurable impact on performance, since only a single row could be eliminated if the condition failed.

126

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-maxnooftables
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-maxnooforderedindexes
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-maxnoofuniquehashindexes
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbinfo-cpustat.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysqld.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/show-create-table.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/show-create-table.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/select.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysqld.html
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndb-cluster-connection.html#ndb-ndb-cluster-connection-wait-until-ready
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-mgm-client-commands.html#ndbclient-stop
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-mgm.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndbmtd.html

MySQL NDB Cluster 8.0 Release Notes

The solution implemented at that time did not take into account the possibility that, in a pushed join, a
lookup operation could be a parent operation for other lookups, and even scan operations, which meant
that eliminating a single row could actually result in an entire branch being eliminated in error. (Bug
#28728603)

References: This issue is a regression of: Bug #27397802.

• When a local checkpoint (LCP) was complete on all data nodes except one, and this node failed, NDB did
not continue with the steps required to finish the LCP. This led to the following issues:

No new LCPs could be started.

Redo and Undo logs were not trimmed and so grew excessively large, causing an increase in times for
recovery from disk. This led to write service failure, which eventually led to cluster shutdown when the
head of the redo log met the tail. This placed a limit on cluster uptime.

Node restarts were no longer possible, due to the fact that a data node restart requires that the node's
state be made durable on disk before it can provide redundancy when joining the cluster. For a cluster
with two data nodes and two fragment replicas, this meant that a restart of the entire cluster (system
restart) was required to fix the issue (this was not necessary for a cluster with two fragment replicas and
four or more data nodes). (Bug #28728485, Bug #28698831)

References: See also: Bug #11757421.

• The pushability of a condition to NDB was limited in that all predicates joined by a logical AND within a
given condition had to be pushable to NDB in order for the entire condition to be pushed. In some cases
this severely restricted the pushability of conditions. This fix breaks up the condition into its components,
and evaluates the pushability of each predicate; if some of the predicates cannot be pushed, they are
returned as a remainder condition which can be evaluated by the MySQL server. (Bug #28728007)

• Running ANALYZE TABLE on an NDB table with an index having longer than the supported maximum
length caused data nodes to fail. (Bug #28714864)

• It was possible in certain cases for nodes to hang during an initial restart. (Bug #28698831)

References: See also: Bug #27622643.

• When a condition was pushed to a storage engine, it was re-evaluated by the server, in spite of the fact
that only rows matching the pushed condition should ever be returned to the server in such cases. (Bug
#28672214)

• In some cases, one and sometimes more data nodes underwent an unplanned shutdown while running
ndb_restore. This occurred most often, but was not always restircted to, when restoring to a cluster
having a different number of data nodes from the cluster on which the original backup had been taken.

The root cause of this issue was exhaustion of the pool of SafeCounter objects, used by the DBDICT
kernel block as part of executing schema transactions, and taken from a per-block-instance pool
shared with protocols used for NDB event setup and subscription processing. The concurrency of event
setup and subscription processing is such that the SafeCounter pool can be exhausted; event and
subscription processing can handle pool exhaustion, but schema transaction processing could not, which
could result in the node shutdown experienced during restoration.

This problem is solved by giving DBDICT schema transactions an isolated pool of reserved
SafeCounters which cannot be exhausted by concurrent NDB event activity. (Bug #28595915)

• When a backup aborted due to buffer exhaustion, synchronization of the signal queues prior to the
expected drop of triggers for insert, update, and delete operations resulted in abort signals being

127

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/analyze-table.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html

MySQL NDB Cluster 8.0 Release Notes

processed before the STOP_BACKUP phase could continue. The abort changed the backup status
to ABORT_BACKUP_ORD, which led to an unplanned shutdown of the data node since resuming
STOP_BACKUP requires that the state be STOP_BACKUP_REQ. Now the backup status is not set to
STOP_BACKUP_REQ (requesting the backup to continue) until after signal queue synchronization is
complete. (Bug #28563639)

• The output of ndb_config --configinfo --xml --query-all now shows that configuration
changes for the ThreadConfig and MaxNoOfExecutionThreads data node parameters require
system initial restarts (restart="system" initial="true"). (Bug #28494286)

• After a commit failed due to an error, mysqld shut down unexpectedly while trying to get the name of the
table involved. This was due to an issue in the internal function ndbcluster_print_error(). (Bug
#28435082)

• API nodes should observe that a node is moving through SL_STOPPING phases (graceful stop) and stop
using the node for new transactions, which minimizes potential disruption in the later phases of the node
shutdown process. API nodes were only informed of node state changes via periodic heartbeat signals,
and so might not be able to avoid interacting with the node shutting down. This generated unnecessary
failures when the heartbeat interval was long. Now when a data node is being gracefully stopped, all API
nodes are notified directly, allowing them to experience minimal disruption. (Bug #28380808)

• ndb_config --diff-default failed when trying to read a parameter whose default value was the
empty string (""). (Bug #27972537)

• ndb_restore did not restore autoincrement values correctly when one or more staging tables were
in use. As part of this fix, we also in such cases block applying of the SYSTAB_0 backup log, whose
content continued to be applied directly based on the table ID, which could ovewrite the autoincrement
values stored in SYSTAB_0 for unrelated tables. (Bug #27917769, Bug #27831990)

References: See also: Bug #27832033.

• ndb_restore employed a mechanism for restoring autoincrement values which was not atomic, and
thus could yield incorrect autoincrement values being restored when multiple instances of ndb_restore
were used in parallel. (Bug #27832033)

References: See also: Bug #27917769, Bug #27831990.

• Executing SELECT * FROM INFORMATION_SCHEMA.TABLES caused SQL nodes to restart in some
cases. (Bug #27613173)

• When tables with BLOB columns were dropped and then re-created with a different number of BLOB
columns the event definitions for monitoring table changes could become inconsistent in certain error
situations involving communication errors when the expected cleanup of the corresponding events was
not performed. In particular, when the new versions of the tables had more BLOB columns than the
original tables, some events could be missing. (Bug #27072756)

• When query memory was exhausted in the DBSPJ kernel block while storing correlation IDs for deferred
operations, the query was aborted with error status 20000 Query aborted due to out of query
memory. (Bug #26995027)

References: See also: Bug #86537.

• When running a cluster with 4 or more data nodes under very high loads, data nodes could sometimes
fail with Error 899 Rowid already allocated. (Bug #25960230)

• mysqld shut down unexpectedly when a purge of the binary log was requested before the server had
completely started, and it was thus not yet ready to delete rows from the ndb_binlog_index table.

128

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-config.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-config.html#option_ndb_config_configinfo
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-config.html#option_ndb_config_xml
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-config.html#option_ndb_config_query-all
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbmtd-threadconfig
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbmtd-maxnoofexecutionthreads
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysqld.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-config.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-config.html#option_ndb_config_diff-default
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/select.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/information-schema-tables-table.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysqld.html

MySQL NDB Cluster 8.0 Release Notes

Now when this occurs, requests for any needed purges of the ndb_binlog_index table are saved in a
queue and held for execution when the server has completely started. (Bug #25817834)

• MaxBufferedEpochs is used on data nodes to avoid excessive buffering of row changes due to
lagging NDB event API subscribers; when epoch acknowledgements from one or more subscribers lag
by this number of epochs, an asynchronous disconnection is triggered, allowing the data node to release
the buffer space used for subscriptions. Since this disconnection is asynchronous, it may be the case
that it has not completed before additional new epochs are completed on the data node, resulting in
new epochs not being able to seize GCP completion records, generating warnings such as those shown
here:

 [ndbd] ERROR -- c_gcp_list.seize() failed...

 ...

 [ndbd] WARNING -- ACK wo/ gcp record...

And leading to the following warning:

 Disconnecting node %u because it has exceeded MaxBufferedEpochs
 (100 > 100), epoch

This fix performs the following modifications:

• Modifies the size of the GCP completion record pool to ensure that there is always some extra
headroom to account for the asynchronous nature of the disconnect processing previously described,
thus avoiding c_gcp_list seize failures.

• Modifies the wording of the MaxBufferedEpochs warning to avoid the contradictory phrase “100 >
100”.

(Bug #20344149)

• Asynchronous disconnection of mysqld from the cluster caused any subsequent attempt to start
an NDB API transaction to fail. If this occurred during a bulk delete operation, the SQL layer called
HA::end_bulk_delete(), whose implementation by ha_ndbcluster assumed that a transaction
had been started, and could fail if this was not the case. This problem is fixed by checking that the
transaction pointer used by this method is set before referencing it. (Bug #20116393)

• Removed warnings raised when compiling NDB with Clang 6. (Bug #93634, Bug #29112560)

• When executing the redo log in debug mode it was possible for a data node to fail when deallocating a
row. (Bug #93273, Bug #28955797)

• An NDB table having both a foreign key on another NDB table using ON DELETE CASCADE and one or
more TEXT or BLOB columns leaked memory.

As part of this fix, ON DELETE CASCADE is no longer supported for foreign keys on NDB tables when the
child table contains a column that uses any of the BLOB or TEXT types. (Bug #89511, Bug #27484882)

Changes in MySQL NDB Cluster 8.0.15 (Not released)
MySQL NDB Cluster 8.0.15 was not released. NDB Cluster 8.0.14 is followed by NDB Cluster 8.0.16;
users of NDB 8.0.14 should upgrade to 8.0.16 when the latter version becomes available.

Obtaining NDB Cluster 8.0. NDB Cluster 8.0 source code and binaries can be obtained from https://
dev.mysql.com/downloads/cluster/.

For an overview of changes made in NDB Cluster 8.0, see What is New in MySQL NDB Cluster 8.0.

129

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-maxbufferedepochs
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysqld.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/blob.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/blob.html
https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/downloads/cluster/
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-what-is-new.html

MySQL NDB Cluster 8.0 Release Notes

Changes in MySQL NDB Cluster 8.0.14 (2019-01-21, Development
Milestone)

MySQL NDB Cluster 8.0.14 is a new development release of NDB 8.0, based on MySQL Server 8.0 and
including features in version 8.0 of the NDB storage engine, as well as fixing recently discovered bugs in
previous NDB Cluster releases.

Obtaining NDB Cluster 8.0. NDB Cluster 8.0 source code and binaries can be obtained from https://
dev.mysql.com/downloads/cluster/.

For an overview of changes made in NDB Cluster 8.0, see What is New in MySQL NDB Cluster 8.0.

This release also incorporates all bug fixes and changes made in previous NDB Cluster releases, as well
as all bug fixes and feature changes which were added in mainline MySQL 8.0 through MySQL 8.0.14 (see
Changes in MySQL 8.0.14 (2019-01-21, General Availability)).

• Functionality Added or Changed

• Bugs Fixed

Functionality Added or Changed

• Performance: This release introduces a number of significant improvements in the performance of
scans; these are listed here:

• Row checksums help detect hardware issues, but do so at the expense of performance. NDB now
offers the possibility of disabling these by setting the new ndb_row_checksum server system variable
to 0; doing this means that row checksums are not used for new or altered tables. This can have
a significant impact (5 to 10 percent, in some cases) on performance for all types of queries. This
variable is set to 1 by default, to provide compatibility with the previous behavior.

• A query consisting of a scan can execute for a longer time in the LDM threads when the queue is not
busy.

• Previously, columns were read before checking a pushed condition; now checking of a pushed
condition is done before reading any columns.

• Performance of pushed joins should see significant improvement when using range scans as part of
join execution.

(WL #11722)

• NDB Disk Data: NDB now implements schema distribution of disk data objects including tablespaces
and log file groups by SQL nodes when they connect to a cluster, just as it does for NDB databases and
in-memory tables. This eliminates a possible mismatch between the MySQL data dictionary and the NDB
dictionary following a native backup and restore that could arise when disk data tablespaces and undo
log file groups were restored to the NDB dictionary, but not to the MySQL Server's data dictionary. (WL
#12172)

• NDB Disk Data: NDB now makes use of the MySQL data dictionary to ensure correct distribution of
tablespaces and log file groups across all cluster SQL nodes when connecting to the cluster. (WL
#12333)

• The extra metadata property for NDB tables is now used to store information from the MySQL data
dictionary. Because this information is significantly larger than the binary representation previously

130

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster.html
https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/downloads/cluster/
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-what-is-new.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-relnotes-en/news-8-0-14.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#sysvar_ndb_row_checksum

MySQL NDB Cluster 8.0 Release Notes

stored here (a .frm file, no longer used), the hard-coded size limit for this extra metadata has been
increased.

This change can have an impact on downgrades: Trying to read NDB tables created in NDB 8.0.14 and
later may cause data nodes running NDB 8.0.13 or earlier to fail on startup with NDB error code 2355
Failure to restore schema: Permanent error, external action needed: Resource
configuration error. This can happen if the table's metadata exceeds 6K in size, which was the
old limit. Tables created in NDB 8.0.13 and earlier can be read by later versions without any issues.

For more information, see Changes in NDB table extra metadata, and See also MySQL Data Dictionary.
(Bug #27230681, WL #10665)

Bugs Fixed

• Packaging: Expected NDB header files were in the devel RPM package instead of libndbclient-
devel. (Bug #84580, Bug #26448330)

• ndbmemcache: libndbclient.so was not able to find and load libssl.so, which could cause
issues with ndbmemcache and Java-based programs using NDB. (Bug #26824659)

References: See also: Bug #27882088, Bug #28410275.

• MySQL NDB ClusterJ: The ndb.clusterj test for NDB 8.0.13 failed when being run more than once.
This was deal to a new, stricter rule with NDB 8.0.13 that did not allow temporary files being left behind
in the variable folder of mysql-test-run (mtr). With this fix, the temporary files are deleted before
the test is executed. (Bug #28279038)

• MySQL NDB ClusterJ: A NullPointerException was thrown when a full table scan was performed
with ClusterJ on tables containing either a BLOB or a TEXT field. It was because the proper object
initializations were omitted, and they have now been added by this fix. (Bug #28199372, Bug #91242)

• The version_comment system variable was not correctly configured in mysqld binaries and returned
a generic pattern instead of the proper value. This affected all NDB Cluster binary releases with the
exception of .deb packages. (Bug #29054235)

• Trying to build from source using -DWITH_NDBCLUSTER and -Werror failed with GCC 8. (Bug
#28707282)

• When copying deleted rows from a live node to a node just starting, it is possible for one or more of
these rows to have a global checkpoint index equal to zero. If this happened at the same time that a full
local checkpoint was started due to the undo log getting full, the LCP_SKIP bit was set for a row having
GCI = 0, leading to an unplanned shutdown of the data node. (Bug #28372628)

• ndbmtd sometimes experienced a hang when exiting due to log thread shutdown. (Bug #28027150)

• NDB has an upper limit of 128 characters for a fully qualified table name. Due to the fact that mysqld
names NDB tables using the format database_name/catalog_name/table_name, where
catalog_name is always def, it is possible for statements such as CREATE TABLE to fail in spite of the
fact that neither the table name nor the database name exceeds the 63-character limit imposed by NDB.
The error raised in such cases was misleading and has been replaced. (Bug #27769521)

References: See also: Bug #27769801.

• When the SUMA kernel block receives a SUB_STOP_REQ signal, it executes the signal then replies
with SUB_STOP_CONF. (After this response is relayed back to the API, the API is open to send more
SUB_STOP_REQ signals.) After sending the SUB_STOP_CONF, SUMA drops the subscription if no
subscribers are present, which involves sending multiple DROP_TRIG_IMPL_REQ messages to DBTUP.

131

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-what-is-new.html#mysql-cluster-what-is-new-8-0-extra-metadata
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/data-dictionary.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/server-system-variables.html#sysvar_version_comment
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysqld.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/source-configuration-options.html#option_cmake_with_ndbcluster
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndbmtd.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysqld.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/create-table.html

MySQL NDB Cluster 8.0 Release Notes

LocalProxy can handle up to 21 of these requests in parallel; any more than this are queued in the Short
Time Queue. When execution of a DROP_TRIG_IMPL_REQ was delayed, there was a chance for the
queue to become overloaded, leading to a data node shutdown with Error in short time queue.

This issue is fixed by delaying the execution of the SUB_STOP_REQ signal if DBTUP is already handling
DROP_TRIG_IMPL_REQ signals at full capacity, rather than queueing up the DROP_TRIG_IMPL_REQ
signals. (Bug #26574003)

• ndb_restore returned -1 instead of the expected exit code in the event of an index rebuild failure. (Bug
#25112726)

• When starting, a data node copies metadata, while a local checkpoint updates metadata. To avoid any
conflict, any ongoing LCP activity is paused while metadata is being copied. An issue arose when a
local checkpoint was paused on a given node, and another node that was also restarting checked for
a complete LCP on this node; the check actually caused the LCP to be completed before copying of
metadata was complete and so ended the pause prematurely. Now in such cases, the LCP completion
check waits to complete a paused LCP until copying of metadata is finished and the pause ends as
expected, within the LCP in which it began. (Bug #24827685)

• ndbout and ndberr became invalid after exiting from mgmd_run(), and redirecting to them before
the next call to mgmd_run() caused a segmentation fault, during an ndb_mgmd service restart. This fix
ensures that ndbout and ndberr remain valid at all times. (Bug #17732772, Bug #28536919)

• NdbScanFilter did not always handle NULL according to the SQL standard, which could result in
sending non-qualifying rows to be filtered (otherwise not necessary) by the MySQL server. (Bug #92407,
Bug #28643463)

References: See also: Bug #93977, Bug #29231709.

• The internal function ndb_my_error() was used in ndbcluster_get_tablespace_statistics()
and prepare_inplace_alter_table() to report errors when the function failed to interact with
NDB. The function was expected to push the NDB error as warning on the stack and then set an error by
translating the NDB error to a MySQL error and then finally call my_error() with the translated error.
When calling my_error(), the function extracts a format string that may contain placeholders and use
the format string in a function similar to sprintf(), which in this case could read arbitrary memory
leading to a segmentation fault, due to the fact that my_error() was called without any arguments.

The fix is always to push the NDB error as a warning and then set an error with a provided message.
A new helper function has been added to Thd_ndb to be used in place of ndb_my_error(). (Bug
#92244, Bug #28575934)

• Running out of undo log buffer memory was reported using error 921 Out of transaction
memory ... (increase SharedGlobalMemory).

This problem is fixed by introducing a new error code 923 Out of undo buffer memory
(increase UNDO_BUFFER_SIZE). (Bug #92125, Bug #28537319)

• When moving an OperationRec from the serial to the parallel queue, Dbacc::startNext() failed
to update the Operationrec::OP_ACC_LOCK_MODE flag which is required to reflect the accumulated
OP_LOCK_MODE of all previous operations in the parallel queue. This inconsistency in the ACC lock
queues caused the scan lock takeover mechanism to fail, as it incorrectly concluded that a lock to take
over was not held. The same failure caused an assert when aborting an operation that was a member of
such an inconsistent parallel lock queue. (Bug #92100, Bug #28530928)

• ndb_restore did not free all memory used after being called to restore a table that already existed.
(Bug #92085, Bug #28525898)

132

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-mgmd.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html

MySQL NDB Cluster 8.0 Release Notes

• A data node failed during startup due to the arrival of a SCAN_FRAGREQ signal during the restore phase.
This signal originated from a scan begun before the node had previously failed and which should have
been aborted due to the involvement of the failed node in it. (Bug #92059, Bug #28518448)

• DBTUP sent the error Tuple corruption detected when a read operation attempted to read the
value of a tuple inserted within the same transaction. (Bug #92009, Bug #28500861)

References: See also: Bug #28893633.

• False constraint violation errors could occur when executing updates on self-referential foreign keys.
(Bug #91965, Bug #28486390)

References: See also: Bug #90644, Bug #27930382.

• An NDB internal trigger definition could be dropped while pending instances of the trigger remained to
be executed, by attempting to look up the definition for a trigger which had already been released. This
caused unpredictable and thus unsafe behavior possibly leading to data node failure. The root cause
of the issue lay in an invalid assumption in the code relating to determining whether a given trigger
had been released; the issue is fixed by ensuring that the behavior of NDB, when a trigger definition
is determined to have been released, is consistent, and that it meets expectations. (Bug #91894, Bug
#28451957)

• In some cases, a workload that included a high number of concurrent inserts caused data node failures
when using debug builds. (Bug #91764, Bug #28387450, Bug #29055038)

• During an initial node restart with disk data tables present and TwoPassInitialNodeRestartCopy
enabled, DBTUP used an unsafe scan in disk order. Such scans are no longer employed in this case.
(Bug #91724, Bug #28378227)

• Checking for old LCP files tested the table version, but this was not always dependable. Now, instead of
relying on the table version, the check regards as invalid any LCP file having a maxGCI smaller than its
createGci. (Bug #91637, Bug #28346565)

• In certain cases, a cascade update trigger was fired repeatedly on the same record, which eventually
consumed all available concurrent operations, leading to Error 233 Out of operation records
in transaction coordinator (increase MaxNoOfConcurrentOperations). If
MaxNoOfConcurrentOperations was set to a value sufficiently high to avoid this, the issue
manifested as data nodes consuming very large amounts of CPU, very likely eventually leading to a
timeout. (Bug #91472, Bug #28262259)

Changes in MySQL NDB Cluster 8.0.13 (2018-10-23, Development
Milestone)

MySQL NDB Cluster 8.0.13 is a new development release of NDB 8.0, based on MySQL Server 8.0 and
including features in version 8.0 of the NDB storage engine, as well as fixing recently discovered bugs in
previous NDB Cluster releases.

Obtaining NDB Cluster 8.0. NDB Cluster 8.0 source code and binaries can be obtained from https://
dev.mysql.com/downloads/cluster/.

For an overview of changes made in NDB Cluster 8.0, see What is New in MySQL NDB Cluster 8.0.

This release also incorporates all bug fixes and changes made in previous NDB Cluster releases, as well
as all bug fixes and feature changes which were added in mainline MySQL 8.0 through MySQL 8.0.13 (see
Changes in MySQL 8.0.13 (2018-10-22, General Availability)).

• Functionality Added or Changed

133

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-twopassinitialnoderestartcopy
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-maxnoofconcurrentoperations
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster.html
https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/downloads/cluster/
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-what-is-new.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-relnotes-en/news-8-0-13.html

MySQL NDB Cluster 8.0 Release Notes

• Bugs Fixed

Functionality Added or Changed

• Important Change; NDB Disk Data: The following changes are made in the display of information
about Disk Data files in the INFORMATION_SCHEMA.FILES table:

• Tablespaces and log file groups are no longer represented in the FILES table. (These constructs are
not actually files.)

• Each data file is now represented by a single row in the FILES table. Each undo log file is also now
represented in this table by one row only. (Previously, a row was displayed for each copy of each of
these files on each data node.)

• For rows corresponding to data files or undo log files, node ID and undo log buffer information is no
longer displayed in the EXTRA column of the FILES table.

Important

The removal of undo log buffer information is reverted in NDB 8.0.15. (Bug
#92796, Bug #28800252)

(WL #11553)

• Important Change; NDB Client Programs: Removed the deprecated --ndb option for perror. Use
ndb_perror to obtain error message information from NDB error codes instead. (Bug #81705, Bug
#23523957)

References: See also: Bug #81704, Bug #23523926.

• Important Change: Beginning with this release, MySQL NDB Cluster is being developed in parallel with
the standard MySQL 8.0 server under a new unified release model with the following features:

• NDB 8.0 is developed in, built from, and released with the MySQL 8.0 source code tree.

• The numbering scheme for NDB Cluster 8.0 releases follows the scheme for MySQL 8.0, starting with
the current MySQL release (8.0.13).

• Building the source with NDB support appends -cluster to the version string returned by mysql -V,
as shown here:

shell≫ mysql -V
mysql Ver 8.0.13-cluster for Linux on x86_64 (Source distribution)

NDB binaries continue to display both the MySQL Server version and the NDB engine version, like
this:

shell> ndb_mgm -V
MySQL distrib mysql-8.0.13 ndb-8.0.13-dmr, for Linux (x86_64)

In MySQL Cluster NDB 8.0, these two version numbers are always the same.

To build the MySQL 8.0.13 (or later) source with NDB Cluster support, use the CMake option -
DWITH_NDBCLUSTER. (WL #11762)

• NDB Cluster APIs: Added the Table methods getExtraMetadata() and setExtraMetadata().
(WL #9865)

134

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/information-schema-files-table.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/perror.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-perror.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/source-configuration-options.html#option_cmake_with_ndbcluster
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/source-configuration-options.html#option_cmake_with_ndbcluster
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-table.html#ndb-table-getextrametadata
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-table.html#ndb-table-setextrametadata

MySQL NDB Cluster 8.0 Release Notes

• INFORMATION_SCHEMA tables now are populated with tablespace statistics for MySQL Cluster tables.
(Bug #27167728)

• It is now possible to specify a set of cores to be used for I/O threads performing offline multithreaded
builds of ordered indexes, as opposed to normal I/O duties such as file I/O， compression， or
decompression. “Offline” in this context refers to building of ordered indexes performed when the parent
table is not being written to; such building takes place when an NDB cluster performs a node or system
restart, or as part of restoring a cluster from backup using ndb_restore --rebuild-indexes.

In addition, the default behaviour for offline index build work is modified to use all cores available to
ndbmtd, rather limiting itself to the core reserved for the I/O thread. Doing so can improve restart and
restore times and performance, availability, and the user experience.

This enhancement is implemented as follows:

1. The default value for BuildIndexThreads is changed from 0 to 128. This means that offline
ordered index builds are now multithreaded by default.

2. The default value for TwoPassInitialNodeRestartCopy is changed from false to true.
This means that an initial node restart first copies all data from a “live” node to one that is starting
—without creating any indexes—builds ordered indexes offline, and then again synchronizes its
data with the live node, that is, synchronizing twice and building indexes offline between the two
synchonizations. This causes an initial node restart to behave more like the normal restart of a node,
and reduces the time required for building indexes.

3. A new thread type (idxbld) is defined for the ThreadConfig configuration parameter, to allow
locking of offline index build threads to specific CPUs.

In addition, NDB now distinguishes the thread types that are accessible to “ThreadConfig” by the
following two criteria:

1. Whether the thread is an execution thread. Threads of types main, ldm, recv, rep, tc, and send
are execution threads; thread types io, watchdog, and idxbld are not.

2. Whether the allocation of the thread to a given task is permanent or temporary. Currently all thread
types except idxbld are permanent.

For additonal information, see the descriptions of the parameters in the Manual. (Bug #25835748, Bug
#26928111)

• When performing an NDB backup, the ndbinfo.logbuffers table now displays information regarding
buffer usage by the backup process on each data node. This is implemented as rows reflecting two
new log types in addition to REDO and DD-UNDO. One of these rows has the log type BACKUP-DATA,
which shows the amount of data buffer used during backup to copy fragments to backup files. The other
row has the log type BACKUP-LOG, which displays the amount of log buffer used during the backup to
record changes made after the backup has started. One each of these log_type rows is shown in the
logbuffers table for each data node in the cluster. Rows having these two log types are present in the
table only while an NDB backup is currently in progress. (Bug #25822988)

135

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_rebuild-indexes
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndbmtd.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-buildindexthreads
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-twopassinitialnoderestartcopy
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbmtd-threadconfig
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbinfo-logbuffers.html

MySQL NDB Cluster 8.0 Release Notes

• Added the ODirectSyncFlag configuration parameter for data nodes. When enabled, the data node
treats all completed filesystem writes to the redo log as though they had been performed using fsync.

Note

This parameter has no effect if at least one of the following conditions is true:

• ODirect is not enabled.

• InitFragmentLogFiles is set to SPARSE.

(Bug #25428560)

• Added the --logbuffer-size option for ndbd and ndbmtd, for use in debugging with a large number
of log messages. This controls the size of the data node log buffer; the default (32K) is intended for
normal operations. (Bug #89679, Bug #27550943)

• Prior to NDB 8.0, all string hashing was based on first transforming the string into a normalized form,
then MD5-hashing the resulting binary image. This could give rise to some performance problems, for
the following reasons:

• The normalized string is always space padded to its full length. For a VARCHAR, this often involved
adding more spaces than there were characters in the original string.

• The string libraries were not optimized for this space padding, and added considerable overhead in
some use cases.

• The padding semantics varied between character sets, some of which were not padded to their full
length.

• The transformed string could become quite large, even without space padding; some Unicode 9.0
collations can transform a single code point into 100 bytes of character data or more.

• Subsequent MD5 hashing consisted mainly of padding with spaces, and was not particularly efficient,
possibly causing additional performance penalties by flush significant portions of the L1 cache.

Collations provide their own hash functions, which hash the string directly without first creating a
normalized string. In addition, for Unicode 9.0 collations, the hashes are computed without padding. NDB
now takes advantage of this built-in function whenever hashing a string identified as using a Unicode 9.0
collation.

Since, for other collations there are existing databases which are hash partitioned on the transformed
string, NDB continues to employ the previous method for hashing strings that use these, to maintain
compatibility. (Bug #89609, Bug #27523758)

References: See also: Bug #89590, Bug #27515000, Bug #89604, Bug #27522732.

• A table created in NDB 7.6 and earlier contains metadata in the form of a compressed .frm file, which
is no longer supported in MySQL 8.0. To facilitate online upgrades to NDB 8.0, NDB performs on-the-
fly translation of this metadata and writes it into the MySQL Server's data dictionary, which enables the

136

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-odirectsyncflag
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-odirect
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndbd.html#option_ndbd_logbuffer-size
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndbd.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndbmtd.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/char.html

MySQL NDB Cluster 8.0 Release Notes

mysqld in NDB Cluster 8.0 to work with the table without preventing subsequent use of the table by a
previous version of the NDB software.

Important

Once a table's structure has been modified in NDB 8.0, its metadata is stored
using the Data Dictionary, and it can no longer be accessed by NDB 7.6 and
earlier.

This enhancement also makes it possible to restore an NDB backup made using an earlier version to a
cluster running NDB 8.0 (or later). (WL #10167)

Bugs Fixed

• Important Change; NDB Disk Data: It was possible to issue a CREATE TABLE statement that referred
to a nonexistent tablespace. Now such a statement fails with an error. (Bug #85859, Bug #25860404)

• Important Change; NDB Replication: Because the MySQL Server now executes RESET MASTER
with a global read lock, the behavior of this statement when used with NDB Cluster has changed in the
following two respects:

• It is no longer guaranteed to be synchronous; that is, it is now possible that a read coming immediately
before RESET MASTER is issued may not be logged until after the binary log has been rotated.

• It now behaves identically, regardless of whether the statement is issued on the same SQL node that
is writing the binary log, or on a different SQL node in the same cluster.

Note

SHOW BINLOG EVENTS, FLUSH LOGS, and most data definition statements
continue, as they did in previous NDB versions, to operate in a synchronous
fashion.

(Bug #89976, Bug #27665565)

• Important Change: NDB supports any of the following three values for the CREATE TABLE statement's
ROW_FORMAT option: DEFAULT, FIXED, and DYNAMIC. Formerly, any values other than these were
accepted but resulted in DYNAMIC being used. Now a CREATE TABLE statement that attempts to create
an NDB table fails with an error if ROW_FORMAT is used, and does not have one of the three values listed.
(Bug #88803, Bug #27230898)

• Microsoft Windows; ndbinfo Information Database: The process ID of the monitor process
used on Windows platforms by RESTART to spawn and restart a mysqld is now shown in the
ndbinfo.processes table as an angel_pid. (Bug #90235, Bug #27767237)

• NDB Cluster APIs: The example NDB API programs ndbapi_array_simple and
ndbapi_array_using_adapter did not perform cleanup following execution; in addition, the example
program ndbapi_simple_dual did not check to see whether the table used by this example already
existed. Due to these issues, none of these examples could be run more than once in succession.

The issues just described have been corrected in the example sources, and the relevant code listings in
the NDB API documentation have been updated to match. (Bug #27009386)

• NDB Cluster APIs: A previous fix for an issue, in which the failure of multiple data nodes during a partial
restart could cause API nodes to fail, did not properly check the validity of the associated NdbReceiver
object before proceeding. Now in such cases an invalid object triggers handling for invalid signals, rather
than a node failure. (Bug #25902137)

137

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysqld.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/create-table.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/reset-master.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/show-binlog-events.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/flush.html#flush-logs
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/create-table.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/restart.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysqld.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbinfo-processes.html

MySQL NDB Cluster 8.0 Release Notes

References: This issue is a regression of: Bug #25092498.

• NDB Cluster APIs: Incorrect results, usually an empty result set, were returned when setBound()
was used to specify a NULL bound. This issue appears to have been caused by a problem in gcc, limited
to cases using the old version of this method (which does not employ NdbRecord), and is fixed by
rewriting the problematic internal logic in the old implementation. (Bug #89468, Bug #27461752)

• NDB Cluster APIs: Released NDB API objects are kept in one or more Ndb_free_list structures
for later reuse. Each list also keeps track of all objects seized from it, and makes sure that these are
eventually released back to it. In the event that the internal function NdbScanOperation::init()
failed, it was possible for an NdbApiSignal already allocated by the NdbOperation to be leaked.
Now in such cases, NdbScanOperation::release() is called to release any objects allocated by the
failed NdbScanOperation before it is returned to the free list.

This fix also handles a similar issue with NdbOperation::init(), where a failed call could also leak a
signal. (Bug #89249, Bug #27389894)

• NDB Cluster APIs: Removed the unused TFSentinel implementation class, which raised compiler
warnings on 32-bit systems. (Bug #89005, Bug #27302881)

• NDB Cluster APIs: The success of thread creation by API calls was not always checked, which could
lead to timeouts in some cases. (Bug #88784, Bug #27225714)

• NDB Cluster APIs: The file storage/ndb/src/ndbapi/ndberror.c was renamed to
ndberror.cpp. (Bug #87725, Bug #26781567)

• ndbinfo Information Database: Counts of committed rows and committed operations per fragment
used by some tables in ndbinfo were taken from the DBACC block, but due to the fact that commit
signals can arrive out of order, transient counter values could be negative. This could happen if, for
example, a transaction contained several interleaved insert and delete operations on the same row; in
such cases, commit signals for delete operations could arrive before those for the corresponding insert
operations, leading to a failure in DBACC.

This issue is fixed by using the counts of committed rows which are kept in DBTUP, which do not have
this problem. (Bug #88087, Bug #26968613)

• NDB Client Programs: When passed an invalid connection string, the ndb_mgm client did not always
free up all memory used before exiting. (Bug #90179, Bug #27737906)

• NDB Client Programs: ndb_show_tables did not always free up all memory which it used. (Bug
#90152, Bug #27727544)

• NDB Client Programs: On Unix platforms, the Auto-Installer failed to stop the cluster when ndb_mgmd
was installed in a directory other than the default. (Bug #89624, Bug #27531186)

• NDB Client Programs: The Auto-Installer did not provide a mechanism for setting the ServerPort
parameter. (Bug #89623, Bug #27539823)

• MySQL NDB ClusterJ: When a table containing a BLOB or a TEXT field was being queried with ClusterJ
for a record that did not exist, an exception (“The method is not valid in current blob
state”) was thrown. (Bug #28536926)

• MySQL NDB ClusterJ: ClusterJ quit unexpectedly as there was no error handling in the scanIndex()
function of the ClusterTransactionImpl class for a null returned to it internally by the
scanIndex() method of the ndbTransaction class. (Bug #27297681, Bug #88989)

• Local checkpoints did not always handle DROP TABLE operations correctly. (Bug #27926532)

138

https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndbindexscanoperation.html#ndb-ndbindexscanoperation-setbound
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndbrecord.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbinfo.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-mgm.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-show-tables.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-mgmd.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-serverport
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/blob.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/blob.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/drop-table.html

MySQL NDB Cluster 8.0 Release Notes

References: This issue is a regression of: Bug #26908347, Bug #26968613.

• In some circumstances, when a transaction was aborted in the DBTC block, there remained links
to trigger records from operation records which were not yet reference-counted, but when such an
operation record was released the trigger reference count was still decremented. (Bug #27629680)

• An internal buffer being reused immediately after it had been freed could lead to an unplanned data node
shutdown. (Bug #27622643)

References: See also: Bug #28698831.

• An NDB online backup consists of data, which is fuzzy, and a redo and undo log. To restore to a
consistent state it is necessary to ensure that the log contains all of the changes spanning the capture of
the fuzzy data portion and beyond to a consistent snapshot point. This is achieved by waiting for a GCI
boundary to be passed after the capture of data is complete, but before stopping change logging and
recording the stop GCI in the backup's metadata.

At restore time, the log is replayed up to the stop GCI, restoring the system to the state it had at the
consistent stop GCI. A problem arose when, under load, it was possible to select a GCI boundary which
occurred too early and did not span all the data captured. This could lead to inconsistencies when
restoring the backup; these could be noticed as broken constraints or corrupted BLOB entries.

Now the stop GCI is chosen is so that it spans the entire duration of the fuzzy data capture process, so
that the backup log always contains all data within a given stop GCI. (Bug #27497461)

References: See also: Bug #27566346.

• For NDB tables, when a foreign key was added or dropped as a part of a DDL statement, the foreign key
metatdata for all parent tables referenced should be reloaded in the handler on all SQL nodes connected
to the cluster, but this was done only on the mysqld on which the statement was executed. Due to this,
any subsequent queries relying on foreign key metadata from the corresponding parent tables could
return inconsistent results. (Bug #27439587)

References: See also: Bug #82989, Bug #24666177.

• ANALYZE TABLE used excessive amounts of CPU on large, low-cardinality tables. (Bug #27438963)

• Queries using very large lists with IN were not handled correctly, which could lead to data node failures.
(Bug #27397802)

References: See also: Bug #28728603.

• A data node overload could in some situations lead to an unplanned shutdown of the data node, which
led to all data nodes disconnecting from the management and nodes.

This was due to a situation in which API_FAILREQ was not the last received signal prior to the node
failure.

As part of this fix, the transaction coordinator's handling of SCAN_TABREQ signals for an
ApiConnectRecord in an incorrect state was also improved. (Bug #27381901)

References: See also: Bug #47039, Bug #11755287.

• In a two-node cluster, when the node having the lowest ID was started using --nostart, API clients
could not connect, failing with Could not alloc node id at HOST port PORT_NO: No free
node id found for mysqld(API). (Bug #27225212)

139

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/blob.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysqld.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/analyze-table.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndbd.html#option_ndbd_nostart

MySQL NDB Cluster 8.0 Release Notes

• Changing MaxNoOfExecutionThreads without an initial system restart led to an unplanned data node
shutdown. (Bug #27169282)

References: This issue is a regression of: Bug #26908347, Bug #26968613.

• In most cases, and especially in error conditions, NDB command-line programs failed on exit to free
memory used by option handling, and failed to call ndb_end(). This is fixed by removing the internal
methods ndb_load_defaults() and ndb_free_defaults() from storage/ndb/include/
util/ndb_opts.h, and replacing these with an Ndb_opts class that automatically frees such
resources as part of its destructor. (Bug #26930148)

References: See also: Bug #87396, Bug #26617328.

• A query against the INFORMATION_SCHEMA.FILES table returned no results when it included an
ORDER BY clause. (Bug #26877788)

• ClusterJ failed to connect to a MySQL node that used utf8mb4_800_ci_ai as its default character set for
connection. Also, ClusterJ quit unexpectedly when handling a table with a character set number of 255
or larger. This fix corrected both issues. (Bug #26027722)

• During a restart, DBLQH loads redo log part metadata for each redo log part it manages, from one
or more redo log files. Since each file has a limited capacity for metadata, the number of files which
must be consulted depends on the size of the redo log part. These files are opened, read, and closed
sequentially, but the closing of one file occurs concurrently with the opening of the next.

In cases where closing of the file was slow, it was possible for more than 4 files per redo log part to be
open concurrently; since these files were opened using the OM_WRITE_BUFFER option, more than 4
chunks of write buffer were allocated per part in such cases. The write buffer pool is not unlimited; if all
redo log parts were in a similar state, the pool was exhausted, causing the data node to shut down.

This issue is resolved by avoiding the use of OM_WRITE_BUFFER during metadata reload, so that any
transient opening of more than 4 redo log files per log file part no longer leads to failure of the data node.
(Bug #25965370)

• Under certain conditions, data nodes restarted unnecessarily during execution of ALTER TABLE...
REORGANIZE PARTITION. (Bug #25675481)

References: See also: Bug #26735618, Bug #27191468.

• Race conditions sometimes occurred during asynchronous disconnection and reconnection of the
transporter while other threads concurrently inserted signal data into the send buffers, leading to an
unplanned shutdown of the cluster.

As part of the work fixing this issue, the internal templating function used by the Transporter Registry
when it prepares a send is refactored to use likely-or-unlikely logic to speed up execution, and to remove
a number of duplicate checks for NULL. (Bug #24444908, Bug #25128512)

References: See also: Bug #20112700.

• ndb_restore sometimes logged data file and log file progress values much greater than 100%. (Bug
#20989106)

• Removed unneeded debug printouts from the internal function
ha_ndbcluster::copy_fk_for_offline_alter(). (Bug #90991, Bug #28069711)

• The internal function BitmaskImpl::setRange() set one bit fewer than specified. (Bug #90648, Bug
#27931995)

140

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbmtd-maxnoofexecutionthreads
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/information-schema-files-table.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/alter-table-partition-operations.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/alter-table-partition-operations.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html

MySQL NDB Cluster 8.0 Release Notes

• Inserting a row into an NDB table having a self-referencing foreign key that referenced a unique index on
the table other than the primary key failed with ER_NO_REFERENCED_ROW_2. This was due to the fact
that NDB checked foreign key constraints before the unique index was updated, so that the constraint
check was unable to use the index for locating the row. Now, in such cases, NDB waits until all unique
index values have been updated before checking foreign key constraints on the inserted row. (Bug
#90644, Bug #27930382)

References: See also: Bug #91965, Bug #28486390.

• Removed all references to the C++ register storage class in the NDB Cluster sources; use of this
specifier, which was deprecated in C++11 and removed in C++17, raised warnings when building with
recent compilers. (Bug #90110, Bug #27705985)

• It was not possible to create an NDB table using PARTITION_BALANCE set to FOR_RA_BY_LDM_X_2,
FOR_RA_BY_LDM_X_3, or FOR_RA_BY_LDM_X_4. (Bug #89811, Bug #27602352)

References: This issue is a regression of: Bug #81759, Bug #23544301.

• Adding a [tcp] or [shm] section to the global configuration file for a cluster with multiple data nodes
caused default TCP connections to be lost to the node using the single section. (Bug #89627, Bug
#27532407)

• Removed a memory leak in the configuration file parser. (Bug #89392, Bug #27440614)

• Fixed a number of implicit-fallthrough warnings, warnings raised by uninitialized values, and other
warnings encountered when compiling NDB with GCC 7.2.0. (Bug #89254, Bug #89255, Bug #89258,
Bug #89259, Bug #89270, Bug #27390714, Bug #27390745, Bug #27390684, Bug #27390816, Bug
#27396662)

References: See also: Bug #88136, Bug #26990244.

• Node connection states were not always reported correctly by ClusterMgr immediately after reporting
a disconnection. (Bug #89121, Bug #27349285)

• As a result of the reuse of code intended for send threads when performing an assist send, all of the
local release send buffers were released to the global pool, which caused the intended level of the local
send buffer pool to be ignored. Now send threads and assisting worker threads follow their own policies
for maintaining their local buffer pools. (Bug #89119, Bug #27349118)

• When the PGMAN block seized a new Page_request record using seizeLast, its return value was not
checked, which could cause access to invalid memory. (Bug #89009, Bug #27303191)

• TCROLLBACKREP signals were not handled correctly by the DBTC kernel block. (Bug #89004, Bug
#27302734)

• When sending priority A signals, we now ensure that the number of pending signals is explicitly
initialized. (Bug #88986, Bug #27294856)

• The internal function ha_ndbcluster::unpack_record() did not perform proper error handling.
(Bug #88587, Bug #27150980)

• CHECKSUM is not supported for NDB tables, but this was not not reflected in the CHECKSUM column of the
INFORMATION_SCHEMA.TABLES table, which could potentially assume a random value in such cases.
Now the value of this column is always set to NULL for NDB tables, just as it is for InnoDB tables. (Bug
#88552, Bug #27143813)

• Removed a memory leak detected when running ndb_mgm -e "CLUSTERLOG ...". (Bug #88517,
Bug #27128846)

141

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster.html
https://docs.oracle.com/cd/E17952_01/mysql-errors-8.0-en/server-error-reference.html#error_er_no_referenced_row_2
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/information-schema-tables-table.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/innodb-storage-engine.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-mgm.html

MySQL NDB Cluster 8.0 Release Notes

• When terminating, ndb_config did not release all memory which it had used. (Bug #88515, Bug
#27128398)

• ndb_restore did not free memory properly before exiting. (Bug #88514, Bug #27128361)

• In certain circumstances where multiple Ndb objects were being used in parallel from an API node, the
block number extracted from a block reference in DBLQH was the same as that of a SUMA block even
though the request was coming from an API node. Due to this ambiguity, DBLQH mistook the request
from the API node for a request from a SUMA block and failed. This is fixed by checking node IDs before
checking block numbers. (Bug #88441, Bug #27130570)

• A join entirely within the materialized part of a semijoin was not pushed even if it could have been.
In addition, EXPLAIN provided no information about why the join was not pushed. (Bug #88224, Bug
#27022925)

References: See also: Bug #27067538.

• All known compiler warnings raised by -Werror when building the NDB source code have been fixed.
(Bug #88136, Bug #26990244)

• When the duplicate weedout algorithm was used for evaluating a semijoin, the result had missing rows.
(Bug #88117, Bug #26984919)

References: See also: Bug #87992, Bug #26926666.

• NDB did not compile with GCC 7. (Bug #88011, Bug #26933472)

• A table used in a loose scan could be used as a child in a pushed join query, leading to possibly
incorrect results. (Bug #87992, Bug #26926666)

• When representing a materialized semijoin in the query plan, the MySQL Optimizer inserted extra
QEP_TAB and JOIN_TAB objects to represent access to the materialized subquery result. The
join pushdown analyzer did not properly set up its internal data structures for these, leaving them
uninitialized instead. This meant that later usage of any item objects referencing the materialized
semijoin accessed an initialized tableno column when accessing a 64-bit tableno bitmask, possibly
referring to a point beyond its end, leading to an unplanned shutdown of the SQL node. (Bug #87971,
Bug #26919289)

• In some cases, a SCAN_FRAGCONF signal was received after a SCAN_FRAGREQ with a close flag had
already been sent, clearing the timer. When this occurred, the next SCAN_FRAGREF to arrive caused
time tracking to fail. Now in such cases, a check for a cleared timer is performed prior to processing the
SCAN_FRAGREF message. (Bug #87942, Bug #26908347)

• While deleting an element in Dbacc, or moving it during hash table expansion or reduction, the method
used (getLastAndRemove()) could return a reference to a removed element on a released page,
which could later be referenced from the functions calling it. This was due to a change brought about by
the implementation of dynamic index memory in NDB 7.6.2; previously, the page had always belonged to
a single Dbacc instance, so accessing it was safe. This was no longer the case following the change; a
page released in Dbacc could be placed directly into the global page pool where any other thread could
then allocate it.

Now we make sure that newly released pages in Dbacc are kept within the current Dbacc instance and
not given over directly to the global page pool. In addition, the reference to a released page has been
removed; the affected internal method now returns the last element by value, rather than by reference.
(Bug #87932, Bug #26906640)

References: See also: Bug #87987, Bug #26925595.

142

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-config.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/explain.html

MySQL NDB Cluster 8.0 Release Notes

• When creating a table with a nonexistent conflict detection function, NDB returned an improper error
message. (Bug #87628, Bug #26730019)

• ndb_top failed to build with the error "HAVE_NCURSESW_H" is not defined. (Bug #87035, Bug
#26429281)

• In a MySQL Cluster with one MySQL Server configured to write a binary log failure occurred when
creating and using an NDB table with non-stored generated columns. The problem arose only when the
product was built with debugging support. (Bug #86084, Bug #25957586)

• It was possible to create or alter a STORAGE MEMORY table using a nonexistent tablespace without any
error resulting. Such an operation now fails with Error 3510 ER_TABLESPACE_MISSING_WITH_NAME,
as intended. (Bug #82116, Bug #23744378)

• ndb_restore --print-data --hex did not print trailing 0s of LONGVARBINARY values. (Bug #65560,
Bug #14198580)

• When the internal function ha_ndbcluster::copy_fk_for_offline_alter() checked dependent
objects on a table from which it was supposed to drop a foreign key, it did not perform any filtering for
foreign keys, making it possible for it to attempt retrieval of an index or trigger instead, leading to a
spurious Error 723 (No such table).

Release Series Changelogs: MySQL NDB Cluster 8.0
This section contains unified changelog information for the NDB Cluster 8.0 release series.

For changelogs covering individual MySQL NDB Cluster 8.0 releases, see NDB Cluster Release Notes.

For general information about features added in MySQL NDB Cluster 8.0, see What is New in NDB Cluster
8.0.

For an overview of features added in MySQL 8.0 that are not specific to NDB Cluster, see What Is New
in MySQL 8.0. For a complete list of all bug fixes and feature changes made in MySQL 8.0 that are not
specific to NDB Cluster, see the MySQL 8.0 Release Notes.

Changes in MySQL NDB Cluster 8.0.36 (2024-01-16, General Availability)

• Compilation Notes

• Bugs Fixed

Compilation Notes

• NDB Cluster did not compile correctly on Ubuntu 23.10. (Bug #35847193)

• It is now possible to build NDB Cluster for the s390x platform.

Our thanks to Namrata Bhave for the contribution. (Bug #110807, Bug #35330936)

Bugs Fixed

• NDB Cluster APIs: An event buffer overflow in the NDB API could cause a timeout while waiting for
DROP TABLE. (Bug #35655162)

References: See also: Bug #35662083.

• When a node failure is detected, transaction coordinator (TC) instances check their own transactions
to determine whether they need handling to ensure completion, implemented by checking whether

143

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-top.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster.html
https://docs.oracle.com/cd/E17952_01/mysql-errors-8.0-en/server-error-reference.html#error_er_tablespace_missing_with_name
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_print-data
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_hex
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/blob.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-news.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-what-is-new.html#mysql-cluster-what-is-new-8-0
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-what-is-new.html#mysql-cluster-what-is-new-8-0
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-nutshell.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-nutshell.html
https://docs.oracle.com/cd/E17952_01/mysql-5.7-relnotes-en/
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/drop-table.html

MySQL NDB Cluster 8.0 Release Notes

each transaction involves the failed node, and if so, marking it for immediate timeout handling. This
causes the transaction to be either rolled forward (commit) or back (abort), depending on whether it
had started committing, using the serial commit protocol. When the TC was in the process of getting
permission to commit (CS_PREPARE_TO_COMMIT), sending commit requests (CS_COMMITTING), or
sending completion requests (CS_COMPLETING), timeout handling waited until the transaction was in a
stable state before commencing the serial commit protocol.

Prior to the fix for Bug#22602898, all timeouts during CS_COMPLETING or CS_COMMITTING resulted in
switching to the serial commit-complete protocol, so skipping the handling in any of the three states cited
previously did not stop the prompt handling of the node failure. It was found later that this fix removed
the blanket use of the serial commit-complete protocol for commit-complete timeouts, so that when
handling for these states was skipped, no node failure handling action was taken, with the result that
such transactions hung in a commit or complete phase, blocking checkpoints.

The fix for Bug#22602898 removed this stable state handling to avoid it accidentally triggering, but
this change also stopped it from triggering when needed in this case where node failure handling
found a transaction in a transient state. We solve this problem by modifying CS_COMMIT_SENT and
CS_COMPLETE_SENT stable state handling to perform node failure processing if a timeout has occurred
for a transaction with a failure number different from the current latest failure number, ensuring that all
transactions involving the failed node are in fact eventually handled. (Bug #36028828)

References: See also: Bug #22602898.

• Removed a possible race condition between start_clients_thread() and
update_connections(), due to both of these seeing the same transporter in the DISCONNECTING
state. Now we make sure that disconnection is in fact completed before we set indicating that that the
transporter has disconnected, so that update_connections() cannot close the NdbSocket before it
has been completely shut down. (Bug #36009860)

• When a transporter was overloaded, the send thread did not yield to the CPU as expected, instead
retrying the transporter repeatedly until reaching the hard-coded 200 microsecond timeout. (Bug
#36004838)

• The QMGR block's GSN_ISOLATE_ORD signal handling was modified by the fix for a previous issue to
handle the larger node bitmap size necessary for supporting up to 144 data nodes. It was observed
afterwards that it was possible that the original sender was already shut down when ISOLATE_ORD was
processed, in which case its node version might have been reset to zero, causing the inline bitmap path
to be taken, resulting in incorrect processing.

The signal handler now checks to decide whether the incoming signal uses a long section to represent
nodes to isolate, and to act accordingly. (Bug #36002814)

References: See also: Bug #30529132.

• A MySQL server disconnected from schema distribution was unable to set up event operations
because the table columns could not be found in the event. This could be made to happen by using
ndb_drop_table or another means to drop a table directly from NDB that had been created using the
MySQL server.

We fix this by making sure in such cases that we properly invalidate the NDB table definition from the
dictionary cache. (Bug #35948153)

• Messages like Metadata: Failed to submit table 'mysql.ndb_apply_status' for
synchronization were submitted to the error log each minute, which filled up the log unnecessarily,
since mysql.ndb_apply_status is a utility table managed by the binary logging thread, with no need
to be checked for changes. (Bug #35925503)

144

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-qmgr.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-drop-table.html

MySQL NDB Cluster 8.0 Release Notes

• The DBSPJ function releaseGlobal() is responsible for releasing excess pages maintained in
m_free_page_list; this function iterates over the list, releases the objects, and after 16 iterations
takes a realtime break. In parallel with the realtime break, DBSPJ spawned a new invocation of
releaseGlobal() by sending a CONTINUEB signal to itself with a delay, which could lead to an
overflow of the Long-Time Queue since there is no control over the number of signals being sent.

We fix this by not sending the extra delayed CONTINUEB signal when a realtime break is taken. (Bug
#35919302)

• API node failure handling during a data node restart left its subscriptions behind. (Bug #35899768)

• Removed the file storage/ndb/tools/restore/consumer_restorem.cpp, which was unused.
(Bug #35894084)

• Removed unnecessary output printed by ndb_print_backup_file. (Bug #35869988)

• Removed a possible accidental read or write on a reused file descriptor in the transporter code. (Bug
#35860854)

• When a timed read function such as read_socket(), readln_socket(), NdbSocket::read(), or
NdbSocket::readln() was called using an invalid socket it returned 0, indicating a timeout, rather
than the expected -1, indicating an unrecoverable failure. This was especially apparent when using the
poll() function, which, as a result of this issue, did not treat an invalid socket appropriately, but rather
simply never fired any event for that socket. (Bug #35860646)

• It was possible for the readln_socket() function in storage/ndb/src/common/util/
socket_io.cpp to read one character too many from the buffer passed to it as an argument. (Bug
#35857936)

• It was possible for ssl_write() to receive a smaller send buffer on retries than expected due to
consolidate() calculating how many full buffers could fit into it. Now we pre-pack these buffers prior
to consolidation. (Bug #35846435)

• During online table reorganization, rows that are moved to new fragments are tagged for later deletion
in the copy phase. This tagging involves setting the REORG_MOVED bit in the tuple header; this affects
the tuple header checksum which must therefore be recalculated after it is modified. In some cases
this is calculated before REORG_MOVED is set, which can result in later access to the same tuple failing
with a tuple header checksum mismatch. This issue was observed when executing ALTER TABLE
REORGANIZE PARTITION concurrently with a table insert of blob values, and appears to have been a
side effect of the introduction of configurable query threads in MySQL 8.0.23.

Now we make sure in such cases that REORG_MOVED is set before the checksum is calculated. (Bug
#35783683)

• Following a node connection failure, the transporter registry's error state was not cleared before initiating
a reconnect, which meant that the error causing the connection to be disconnected originally might still
be set; this was interpreted as a failure to reconnect. (Bug #35774109)

• When encountering an ENOMEM (end of memory) error, the TCP transporter continued trying to send
subsequent buffers which could result in corrupted data or checksum failures.

We fix this by removing the ENOMEM handling from the TCP transporter, and waiting for sufficient
memory to become available instead. (Bug #35700332)

• Setup of the binary log injector sometimes deadlocked with concurrent DDL. (Bug #35673915)

• The slow disconnection of a data node while a management server was unavailable could sometimes
interfere with the rolling restart process. This became especially apparent when the cluster was hosted

145

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbspj.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-print-backup-file.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/alter-table-partition-operations.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/alter-table-partition-operations.html

MySQL NDB Cluster 8.0 Release Notes

by NDB Operator, and the old mgmd pod did not recognize the IP address change of the restarted data
node pod; this was visible as discrepancies in the output of SHOW STATUS on different management
nodes.

We fix this by making sure to clear any cached address when connecting to a data node so that the data
node's new address (if any) is used instead. (Bug #35667611)

• The maximum permissible value for the oldest restorable global checkpoint ID is MAX_INT32
(4294967295). Such an ID greater than this value causes the data node to shut down, requiring a
backup and restore on a cluster started with --initial.

Now, approximately 90 days before this limit is reached under normal usage, an appropriate warning is
issued, allowing time to plan the required corrective action. (Bug #35641420)

References: See also: Bug #35749589.

• Transactions whose size exceeded binlog_cache_size caused duplicate warnings. (Bug #35441583)

• Table map entries for some tables were written in the binary log, even though log_replica_updates
was set to OFF. (Bug #35199996)

• The NDB source code is now formatted according to the rules used by clang-format, which it aligns it
in this regard with the rest of the MySQL sources. (Bug #33517923)

• During setup of utility tables, the schema event handler sometimes hung waiting for the global schema
lock (GSL) to become available. This could happen when the physical tables had been dropped from the
cluster, or when the connection was lost for some other reason. Now we use a try lock when attempting
to acquire the GSL in such cases, thus causing another setup check attempt to be made at a later time if
the global schema lock is not available. (Bug #32550019, Bug #35949017)

• Subscription reports were sent out too early by SUMA during a node restart, which could lead to schema
inconsistencies between cluster SQL nodes. In addition, an issue with the ndbinfo restart_info
table meant that restart phases for nodes that did not belong to any node group were not always
reported correctly. (Bug #30930132)

• Online table reorganization inserts rows from existing table fragments into new table fragments; then,
after committing the inserted rows, it deletes the original rows. It was found that the inserts caused SUMA
triggers to fire, and binary logging to occur, which led to the following issues:

• Inconsistent behavior, since DDL is generally logged as one or more statements, if at all, rather than
by row-level effect.

• It was incorrect, since only writes were logged, but not deletes.

• It was unsafe since tables with blobs did not receive associated the row changes required to form valid
binary log events.

• It used CPU and other resources needlessly.

For tables with no blob columns, this was primarily a performance issue; for tables having blob columns,
it was possible for this behavior to result in unplanned shutdowns of mysqld processes performing binary
logging and perhaps even data corruption downstream. (Bug #19912988)

References: See also: Bug #16028096, Bug #34843617.

• NDB API events are buffered to match the rates of production and consumption by user code. When
the maximum size set to avoid unbounded memory usage when the rate is mismatched for an extended
time was reached, event buffering stopped until the buffer usage dropped below a lower threshold; this

146

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/show-status.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndbd.html#option_ndbd_initial
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/replication-options-binary-log.html#sysvar_binlog_cache_size
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/replication-options-binary-log.html#sysvar_log_replica_updates
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-suma.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbinfo-restart-info.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-suma.html

MySQL NDB Cluster 8.0 Release Notes

manifested as an inability to find the container for latest epoch in when handling NODE_FAILREP events.
To fix this problem, we add a TE_OUT_OF_MEMORY event to the buffer to inform the consumer that there
may be missing events.

Changes in MySQL NDB Cluster 8.0.35 (2023-10-25, General Availability)

Bugs Fixed

• NDB Cluster APIs: The header files ndb_version.h and mgmapi.h required C++ to compile, even
though they should require C only. (Bug #35709497)

• NDB Cluster APIs: Ndb::pollEvents2() did not set NDB_FAILURE_GCI (~(Uint64)0) to indicate
cluster failure. (Bug #35671818)

References: See also: Bug #31926584. This issue is a regression of: Bug #18753887.

• NDB Cluster did not compile using Clang 15. (Bug #35763112)

• When a TransporterRegistry (TR) instance connects to a management server, it first uses the
MGM API, and then converts the connection to a Transporter connection for further communication.
The initial connection had an excessively long timeout (60 seconds) so that, in the case of a cluster
having two management servers where one was unavailable, clients were forced to wait until this
management server timed out before being able to connect to the available one.

We fix this by setting the MGM API connection timeout to 5000 milliseconds, which is equal to the
timeout used by the TR for getting and setting dynamic ports. (Bug #35714466)

• Values for causes of conflicts used in conflict resolution exceptions tables were misaligned such that the
order of ROW_ALREADY_EXISTS and ROW_DOES_NOT_EXIST was reversed. (Bug #35708719)

• When TLS is used over the TCP transporter, the ssl_writev() method may return
TLS_BUSY_TRY_AGAIN in cases where the underlying SSL_write() returned either
SSL_ERROR_WANT_READ or SSL_ERROR_WANT_WRITE, which is used to indicate to the upper layers
that it is necessary to try the write again later.

Since TCP_Transporter::doSend() may write in a loop in which multiple blocks of buffered
data are written using a sequence of writev() calls, we may have successfully written
some buffered data before encountering an SSL_ERROR_WANT_WRITE. In such cases the
handling of the TLS_BUSY_TRY_AGAIN was simply to return from the loop, without first calling
iovec_data_sent(sum_sent) in order to inform the buffering layer of what was sent.

This resulted in later tries to resend a chunk which had already been sent, calling writev() with both
duplicated data and an incorrect length argument. This resulted in a combination of checksum errors and
SSL writev() failing with bad length errors reported in the logs.

We fix this by breaking out of the send loop rather than just returning, so that execution falls through to
the point in the code where such status updates are supposed to take place. (Bug #35693207)

• When DUMP 9993 was used in an attempt to release a signal block from a data node where a block had
not been set previously using DUMP 9992, the data node shut down unexpectedly. (Bug #35619947)

• Backups using NOWAIT did not start following a restart of the data node. (Bug #35389533)

• The data node process printed a stack trace during program exit due to conditions other than software
errors, leading to possible confusion in some cases. (Bug #34836463)

References: See also: Bug #34629622.

147

https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndb.html#ndb-ndb-pollevents2
https://dev.mysql.com/doc/ndb-internals/en/dump-command-9993.html
https://dev.mysql.com/doc/ndb-internals/en/dump-command-9992.html

MySQL NDB Cluster 8.0 Release Notes

• When a data node process received a Unix signal (such as with kill -6), the signal handler function
showed a stack trace, then called ErrorReporter, which also showed a stack trace. Now in such
cases, ErrorReporter checks for this situation and does not print a stack trace of its own when called
from the signal handler. (Bug #34629622)

References: See also: Bug #34836463.

• In cases where the distributed global checkpoint (GCP) protocol stops making progress, this
is detected and optionally handled by the GCP monitor, with handling as determined by the
TimeBetweenEpochsTimeout and TimeBetweenGlobalCheckpointsTimeout data node
parameters.

The LCP protocol is mostly node-local, but depends on the progress of the GCP protocol at the end of
a local checkpoint (LCP); this means that, if the GCP protocol stalls, LCPs may also stall in this state. If
the LCP watchdog detects that the LCP is stalled in this end state, it should defer to the GCP monitor to
handle this situation, since the GCP Monitor is distribution-aware.

If no GCP monitor limit is set (TimeBetweenEpochsTimeout is equal 0), no handling of GCP stalls
is performed by the GCP monitor. In this case, the LCP watchdog was still taking action which could
eventually lead to cluster failure; this fix corrects this misbehavior so that the LCP watchdog no longer
takes any such action. (Bug #29885899)

• Previously, when a timeout was detected during transaction commit and completion, the transaction
coordinator (TC) switched to a serial commit-complete execution protocol, which slowed commit-
complete processing for large transactions, affecting GCP_COMMIT delays and epoch sizes. Instead of
switching in such cases, the TC now continues waiting for parallel commit-complete, periodically logging
a transaction summary, with states and nodes involved. (Bug #22602898)

References: See also: Bug #35260944.

• When an ALTER TABLE adds columns to a table, the maxRecordSize used by local checkpoints to
allocate buffer space for rows may change; this is set in a GET_TABINFOCONF signal and used again
later in BACKUP_FRAGMENT_REQ. If, during the gap between these two signals, an ALTER TABLE
changed the number of columns, the value of maxRecordSize used could be stale, thus be inaccurate,
and so lead to further issues.

Now we always update maxRecordSize (from DBTUP) on receipt of a BACKUP_FRAGMENT_REQ signal,
before attempting the allocation of the row buffer. (Bug #105895, Bug #33680100)

Changes in MySQL NDB Cluster 8.0.34 (2023-07-18, General Availability)

• IPv6 Support

• Functionality Added or Changed

• Bugs Fixed

IPv6 Support

• NDB did not start if IPv6 support was not enabled on the host, even when no nodes in the cluster used
any IPv6 addresses. (Bug #106485, Bug #33324817, Bug #33870642, WL #15661)

Functionality Added or Changed

• Important Change; NDB Cluster APIs: The NdbRecord interface allows equal changes of primary key
values; that is, you can update a primary key value to its current value, or to a value which compares as
equal according to the collation rules being used, without raising an error. NdbRecord does not itself try

148

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-timebetweenglobalcheckpointstimeout
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/alter-table.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbtup.html
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndbrecord.html

MySQL NDB Cluster 8.0 Release Notes

to prevent the update; instead, the data nodes check whether a primary key is updated to an unequal
value and in this case reject the update with Error 897: Update attempt of primary key via
ndbcluster internal api.

Previously, when using any other mechanism than NdbRecord in an attempt to update a primary key
value, the NDB API returned error 4202 Set value on tuple key attribute is not allowed,
even setting a value identical to the existing one. With this release, the check when performing updates
by other means is now passed off to the data nodes, as it is already by NdbRecord.

This change applies to performing primary key updates with NdbOperation::setValue(),
NdbInterpretedCode::write_attr(), and other methods of these two classes which set column
values (including NdbOperation methods incValue(), subValue(), NdbInterpretedCode
methods add_val(), sub_val(), and so on), as well as the OperationOptions::OO_SETVALUE
extension to the NdbOperation interface. (Bug #35106292)

Bugs Fixed

• NDB Cluster APIs: Printing of debug log messages was enabled by default for
Ndb_cluster_connection. (Bug #35416908)

References: See also: Bug #35927.

• NDB Cluster APIs: While setting up an NdbEventOperation, it is possible to pass a pointer to a
buffer provided by the application; when data is later received, it should be available in that specified
location.

The received data was properly placed in the provided buffer location, but the NDB API also allocated
internal buffers which, subsequently, were not actually needed, ultimately wasting resources. This
problem primarily manifested itself in applications subscribing to data changes from NDB using the
NdbEventOperation::getValue() and getPreValue() functions with the buffer provided by
application.

To remedy this issue, we no longer allocate internal buffers in such cases. (Bug #35292716)

• When dropping an NdbEventOperation after use, the ndbcluster plugin now first explicitly clears
the object's custom data area. (Bug #35424845)

• After a socket polled as readable in NdbSocket::readln(), it was possible for SSL_peek() to block
in the kernel when the TLS layer held no application data. We fix this by releasing the lock on the user
mutex during SSL_peek(), as well as when polling. (Bug #35407354)

• When handling the connection (or reconnection) of an API node, it was possible for data nodes to
inform the API node that it was permitted to send requests too quickly, which could result in requests not
being delivered and subsequently timing out on the API node with errors such as Error 4008 Receive
from Ndb failed or Error 4012 Request ndbd time-out, maybe due to high load or
communication problems. (Bug #35387076)

• Made the following improvements in warning output:

• Now, in addition to local checkpoint (LCP) elapsed time, the maximum time allowed without any
progress is also printed.

• Table IDs and fragment IDs are undefined and thus not relevant when an LCP has reached
WAIT_END_LCP state, and are no longer printed at that point.

• When the maximum limit was reached, the same information was shown twice, as both warning and
crash information.

149

https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndboperation.html#ndb-ndboperation-setvalue
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndbinterpretedcode.html#ndb-ndbinterpretedcode-write-attr
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndboperation.html#ndb-ndboperation-incvalue
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndboperation.html#ndb-ndboperation-subvalue
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndbinterpretedcode.html#ndb-ndbinterpretedcode-add-val
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndbinterpretedcode.html#ndb-ndbinterpretedcode-sub-val
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndboperation.html
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndb-cluster-connection.html
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndbeventoperation.html
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndbeventoperation.html#ndb-ndbeventoperation-getvalue
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndbeventoperation.html#ndb-ndbeventoperation-getprevalue
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndbeventoperation.html

MySQL NDB Cluster 8.0 Release Notes

(Bug #35376705)

• Memory consumption of long-lived threads running inside the ndbcluster plugin grew when accessing
the data dictionary. (Bug #35362906)

• A failure to connect could lead ndb_restore to exit with code 1, without reporting any error message.
Now we supply an appropriate error message in such cases. (Bug #35306351)

• When deferred triggers remained pending for an uncommitted transaction, a subsequent transaction
could waste resources performing unnecessary checks for deferred triggers; this could lead to an
unplanned shutdown of the data node if the latter transaction had no committable operations.

This was because, in some cases, the control state was not reinitialized for management objects used
by DBTC.

We fix this by making sure that state initialization is performed for any such object before it is used. (Bug
#35256375)

• A pushdown join between queries featuring very large and possibly overlapping IN() and NOT IN()
lists caused SQL nodes to exit unexpectedly. One or more of the IN() (or NOT IN()) operators
required in excess of 2500 arguments to trigger this issue. (Bug #35185670, Bug #35293781)

• The buffers allocated for a key of size MAX_KEY_SIZE were of insufficient size. (Bug #35155005)

• The fix for a previous issue added a check to ensure that fragmented signals are never sent to V_QUERY
blocks, but this check did not take into account that, when the receiving node is not a data node, the
block number is not applicable. (Bug #35154637)

References: This issue is a regression of: Bug #34776970.

• ndbcluster plugin log messages now use SYSTEM as the log level and NDB as the subsystem for
logging. This means that informational messages from the ndbcluster plugin are always printed; their
verbosity can be controlled by using --ndb_extra_logging. (Bug #35150213)

• We no longer print an informational message Validating excluded objects to the
SQL node's error log every ndb_metadata_check_interval seconds (default 60) when
log_error_verbosity is greater than or equal to 3 (INFO level). It was found that such messages
flooded the error log, making it difficult to examine and using excess disk space, while not providing any
additional benefit. (Bug #35103991)

• Some calls made by the ndbcluster handler to push_warning_printf() used severity level
ERROR, which caused an assertion in debug builds. This fix changes all such calls to use severity
WARNING instead. (Bug #35092279)

• When a connection between a data node and an API or management node was established but
communication was available only from the other node to the data node, the data node considered the
other node “live”, since it was receiving heartbeats, but the other node did not monitor heartbeats and
so reported no problems with the connection. This meant that the data node assumed wrongly that the
other node was (fully) connected.

We solve this issue by having the API or management node side begin to monitor data node liveness
even before receiving the first REGCONF signal from it; the other node sends a REGREQ signal every 100
milliseconds, and only if it receives no REGCONF from the data node in response within 60 seconds is the
node reported as disconnected. (Bug #35031303)

• The log contained a high volume of messages having the form DICT: index index number stats
auto-update requested, logged by the DBDICT block each time it received a report from DBTUX

150

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbtc.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/comparison-operators.html#operator_in
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#sysvar_ndb_extra_logging
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#sysvar_ndb_metadata_check_interval
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/server-system-variables.html#sysvar_log_error_verbosity
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbdict.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbtux.html

MySQL NDB Cluster 8.0 Release Notes

requesting an update. These requests often occur in quick succession during writes to the table, with
the additional possibility in this case that duplicate requests for updates to the same index were being
logged.

Now we log such messages just before DBDICT actually performs the calculation. This removes
duplicate messages and spaces out messages related to different indexes. Additional debug log
messages are also introduced by this fix, to improve visibility of the decisions taken and calculations
performed. (Bug #34760437)

• A comparison check in Dblqh::handle_nr_copy() for the case where two keys were not binary-
identical could still compare as equal by collation rules if the key had any character columns, but did
not actually check for the existence of the keys. This meant it was possible to call xfrm_key() with an
undefined key. (Bug #34734627)

References: See also: Bug #34681439. This issue is a regression of: Bug #30884622.

• Local checkpoints (LCPs) wait for a global checkpoint (GCP) to finish for a fixed time during the end
phase, so they were performed sometimes even before all nodes were started.

In addition, this bound, calculated by the GCP coordinator, was available only on the coordinator itself,
and only when the node had been started (start phase 101).

These two issues are fixed by calculating the bound earlier in start phase 4; GCP participants also
calculate the bound whenever a node joins or leaves the cluster. (Bug #32528899)

Changes in MySQL NDB Cluster 8.0.33 (2023-04-18, General Availability)

• Functionality Added or Changed

• Bugs Fixed

Functionality Added or Changed

• NDB Cluster APIs: The Node.js library used to build the MySQL NoSQL Connector for JavaScript has
been upgraded to version 18.12.1. (Bug #35095122)

• Beginning with this release, ndb_restore implements the --timestamp-printouts option, which
causes all error, info, and debug node log messages to be prefixed with timestamps. (Bug #34110068)

Bugs Fixed

• Microsoft Windows: Two memory leaks found by code inspection were removed from NDB process
handles on Windows platforms. (Bug #34872901)

• Microsoft Windows: On Windows platforms, the data node angel process did not detect whether a child
data node process exited normally. We fix this by keeping an open process handle to the child and using
this when probing for the child's exit. (Bug #34853213)

• NDB Cluster APIs; MySQL NDB ClusterJ: MySQL ClusterJ uses a scratch buffer for primary key
hash calculations which was limited to 10000 bytes, which proved too small in some cases. Now we
malloc() the buffer if its size is not sufficient.

This also fixes an issue with the Ndb object methods startTransaction() and computeHash() in
the NDB API: Previously, if either of these methods was passed a temporary buffer of insufficient size,
the method failed. Now in such cases a temporary buffer is allocated.

Our thanks to Mikael Ronström for this contribution. (Bug #103814, Bug #32959894)

151

https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-nodejs.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_timestamp-printouts
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndb.html
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndb.html#ndb-ndb-starttransaction
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndb.html#ndb-ndb-computehash

MySQL NDB Cluster 8.0 Release Notes

• NDB Cluster APIs: When dropping an event operation (NdbEventOperation) in the NDB API, it was
sometimes possible for the dropped event operation to remain visible to the application after instructing
the data nodes to stop sending events related to this event operation, but before all pending buffered
events were consumed and discarded. This could be observed in certain cases when performing an
online alter operation, such as ADD COLUMN or RENAME COLUMN, along with concurrent writes to the
affected table.

Further analysis showed that the dropped events were accessible when iterating through event
operations with Ndb::getGCIEventOperations(). Now, this method skips dropped events when
called iteratively. (Bug #34809944)

• NDB Cluster APIs: Event::getReport() always returned ER_UPDATED for an event opened from
NDB, instead of returning the flags actually used by the report object. (Bug #34667384)

• Before a new NDB table definition can be stored in the data dictionary, any existing definition
must be removed. Table definitions have two unique values, the table name and the NDB Cluster
se_private_id. During installation of a new table definition, we check whether there is any existing
definition with the same table name and, if so, remove it. Then we check whether the table removed and
the one being installed have the same se_private_id; if they do not, any definition that is occupying
this se_private_id is considered stale, and removed as well.

Problems arose when no existing definition was found by the search using the table's name, since
no definition was dropped even if one occupied se_private_id, leading to a duplicate key error
when attempting to store the new table. The internal store_table() function attempted to clear the
diagnostics area, remove the stale definition of se_private_id, and try to store it once again, but the
diagnostics area was not actually cleared, thus leaking the error is thus leaked and presenting it to the
user.

To fix this, we remove any stale table definition, regardless of any action taken (or not) by
store_table(). (Bug #35089015)

• Fixed the following two issues in the output of ndb_restore:

• The backup file format version was shown for both the backup file format version and the version of
the cluster which produced the backup.

• To reduce confusion between the version of the file format and the version of the cluster which
produced the backup, the backup file format version is now shown using hexadecimal notation.

(Bug #35079426)

References: This issue is a regression of: Bug #34110068.

• Removed a memory leak in the DBDICT kernel block caused when an internal foreign key definition
record was not released when no longer needed. This could be triggered by either of the following
events:

• Drop of a foreign key constraint on an NDB table

• Rejection of an attempt to create a foreign key constraint on an NDB table

Such records use the DISK_RECORDS memory resource; you can check this on a running
cluster by executing SELECT node_id, used FROM ndbinfo.resources WHERE
resource_name='DISK_RECORDS' in the mysql client. This resource uses SharedGlobalMemory,
exhaustion of which could lead not only to the rejection of attempts to create foreign keys, but of
queries making use of joins as well, since the DBSPJ block also uses shared global memory by way of
QUERY_MEMORY. (Bug #35064142)

152

https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndbeventoperation.html
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndb.html#ndb-ndb-getgcieventoperations
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-event.html#ndb-event-getreport
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbdict.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-sharedglobalmemory
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbspj.html

MySQL NDB Cluster 8.0 Release Notes

• When attempting a copying alter operation with --ndb-allow-copying-alter-table = OFF, the
reason for rejection of the statement was not always made clear to the user. (Bug #35059079)

• When a transaction coordinator is starting fragment scans with many fragments to scan, it may take
a realtime break (RTB) during the process to ensure fair CPU access for other requests. When the
requesting API disconnected and API failure handling for the scan state occurred before the RTB
continuation returned, continuation processing could not proceed because the scan state had been
removed.

We fix this by adding appropriate checks on the scan state as part of the continuation process. (Bug
#35037683)

• Sender and receiver signal IDs were printed in trace logs as signed values even though they are
actually unsigned 32-bit numbers. This could result in confusion when the top bit was set, as it cuased
such numbers to be shown as negatives, counting upwards from -MAX_32_BIT_SIGNED_INT. (Bug
#35037396)

• A fiber used by the DICT block monitors all indexes, and triggers index statistics calculations if requested
by DBTUX index fragment monitoring; these calculations are performed using a schema transaction.
When the DICT fiber attempts but fails to seize a transaction handle for requesting a schema transaction
to be started, fiber exited, so that no more automated index statistics updates could be performed
without a node failure. (Bug #34992370)

References: See also: Bug #34007422.

• Schema objects in NDB use composite versioning, comprising major and minor subversions. When a
schema object is first created, its major and minor versions are set; when an existing schema object is
altered in place, its minor subversion is incremented.

At restart time each data node checks schema objects as part of recovery; for foreign key objects, the
versions of referenced parent and child tables (and indexes, for foreign key references not to or from a
table's primary key) are checked for consistency. The table version of this check compares only major
subversions, allowing tables to evolve, but the index version also compares minor subversions; this
resulted in a failure at restart time when an index had been altered.

We fix this by comparing only major subversions for indexes in such cases. (Bug #34976028)

References: See also: Bug #21363253.

• ndb_import sometimes silently ignored hint failure for tables having large VARCHAR primary keys. For
hinting which transaction coordinator to use, ndb_import can use the row's partitioning key, using a
4092 byte buffer to compute the hash for the key.

This was problematic when the key included a VARCHAR column using UTF8, since the hash buffer may
require in bytes up to 24 times the number of maximum characters in the column, depending on the
column's collation; the hash computation failed but the calling code in ndb_import did not check for
this, and continued using an undefined hash value which yielded an undefined hint.

This did not lead to any functional problems, but was not optimal, and the user was not notified of it.

We fix this by ensuring that ndb_import always uses sufficient buffer for handling character columns
(regardless of their collations) in the key, and adding a check in ndb_import for any failures in hash
computation and reporting these to the user. (Bug #34917498)

• When the ndbcluster plugin creates the ndb_schema table, the plugin inserts a row containing
metadata, which is needed to keep track of this NDB Cluster instance, and which is stored as a set of
key-value pairs in a row in this table.

153

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#option_mysqld_ndb-allow-copying-alter-table
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbdict.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbtux.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-import.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/char.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-import.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-import.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-import.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-import.html

MySQL NDB Cluster 8.0 Release Notes

The ndb_schema table is hidden from MySQL and so not possible to query using SQL, but contains
a UUID generated by the same MySQL server that creates the ndb_schema table; the same UUID is
also stored as metadata in the data dictionary of each MySQL Server when the ndb_schema table is
installed on it.

When a mysqld connects (or reconnects) to NDB, it compares the UUID in its own data dictionary with
the UUID stored in NDB in order to detect whether it is reconnecting to the same cluster; if not, the entire
contents of the data dictionary are scrapped in order to make it faster and easier to install all tables fresh
from NDB.

One such case occurs when all NDB data nodes have been restarted with --initial, thus removing
all data and tables. Another happens when the ndb_schema table has been restored from a backup
without restoring any of its data, since this means that the row for the ndb_schema table would be
missing.

To deal with these types of situations, we now make sure that, when synchronization has completed,
there is always a row in the NDB dictionary with a UUID matching the UUID stored in the MySQL server
data dictionary. (Bug #34876468)

• When running an NDB Cluster with multiple management servers, termination of the ndb_mgmd
processes required an excessive amount of time when shutting down the cluster. (Bug #34872372)

• Schema distribution timeout was detected by the schema distribution coordinator after dropping and re-
creating the mysql.ndb_schema table when any nodes that were subscribed beforehand had not yet
resubscribed when the next schema operation began. This was due to a stale list of subscribers being
left behind in the schema distribution data; these subscribers were assumed by the coordinator to be
participants in subsequent schema operations.

We fix this issue by clearing the list of known subscribers whenever the mysql.ndb_schema table is
dropped. (Bug #34843412)

• When requesting a new global checkpoint (GCP) from the data nodes, such as by the NDB Cluster
handler in mysqld to speed up delivery of schema distribution events and responses, the request was
sent 100 times. While the DBDIH block attempted to merge these duplicate requests into one, it was
possible on occasion to trigger more than one immediate GCP. (Bug #34836471)

• When the DBSPJ block receives a query for execution, it sets up its own internal plan for how to do so.
This plan is based on the query plan provided by the optimizer, with adaptions made to provide the most
efficient execution of the query, both in terms of elapsed time and of total resources used.

Query plans received by DBSPJ often contain star joins, in which several child tables depend on a
common parent, as in the query shown here:

SELECT STRAIGHT_JOIN * FROM t AS t1
INNER JOIN t AS t2 ON t2.a = t1.k
INNER JOIN t AS t3 ON t3.k = t1.k;

In such cases DBSPJ could submit key-range lookups to t2 and t3 in parallel (but does not do so). An
inner join also has the property that each inner joined row requires a match from the other tables in the
same join nest, else the row is eliminated from the result set. Thus, by using the key-range lookups, we
may retrieve rows from one such lookup which have no matches in the other, which effort is ultimately
wasted. Instead, DBSPJ sets up a sequential plan for such a query.

It was found that this worked as intended for queries having only inner joins, but if any of the tables are
left-joined, we did not take complete advantage of the preceding inner joined tables before issuing the
outer joined tables. Suppose the previous query is modified to include a left join, like this:

154

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysqld.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndbd.html#option_ndbd_initial
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-mgmd.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysqld.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbdih.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbspj.html

MySQL NDB Cluster 8.0 Release Notes

SELECT STRAIGHT_JOIN * FROM t AS t1
INNER JOIN t AS t2 ON t2.a = t1.k
LEFT JOIN t AS t3 ON t3.k = t1.k;

Using the following query against the ndbinfo.counters table, it is possible to observe how many
rows are returned for each query before and after query execution:

SELECT counter_name, SUM(val)
FROM ndbinfo.counters
WHERE block_name="DBSPJ" AND counter_name = "SCAN_ROWS_RETURNED";

It was thus determined that requests on t2 and t3 were submitted in parallel. Now in such cases, we
wait for the inner join to complete before issuing the left join, so that unmatched rows from t1 can be
eliminated from the outer join on t1 and t3. This results in less work to be performed by the data nodes,
and reduces the volumne handled by the transporter as well. (Bug #34782276)

• SPJ handling of a sorted result was found to suffer a significant performance impact compared to the
same result set when not sorted. Further investigation showed that most of the additional performance
overhead for sorted results lay in the implementation for sorted result retrieval, which required an
excessive number of SCAN_NEXTREQ round trips between the client and DBSPJ on the data nodes. (Bug
#34768353)

• DBSPJ now implements the firstMatch optimization for semijoins and antijoins, such as those found
in EXISTS and NOT EXISTS subqueries. (Bug #34768191)

• When the DBSPJ block sends SCAN_FRAGREQ and SCAN_NEXTREQ signals to the data nodes, it tries
to determine the optimum number of fragments to scan in parallel without starting more parallel scans
than needed to fill the available batch buffers, thus avoiding any need to send additional SCAN_NEXTREQ
signals to complete the scan of each fragment.

The DBSPJ block's statistics module calculates and samples the parallelism which was optimal for
fragment scans just completed, for each completed SCAN_FRAGREQ, providing a mean and standard
deviation of the sampled parallelism. This makes it possible to calculate a lower 95th percentile of the
parallelism (and batch size) which makes it possible to complete a SCAN_FRAGREQ without needing
additional SCAN_NEXTREQ signals.

It was found that the parallelism statistics seemed unable to provide a stable parallelism estimate and
that the standard deviation was unexpectedly high. This often led to the parallelism estimate being a
negative number (always rounded up to 1).

The flaw in the statistics calculation was found to be an underlying assumption that each sampled
SCAN_FRAGREQ contained the same number of key ranges to be scanned, which is not necessarily
the case. Typically a full batch of rows for the first SCAN_FRAGREQ, and relatively few rows for the final
SCAN_NEXTREQ returning the remaining rows; this resulted in wide variation in parallelism samples
which made the statistics obtained from them unreliable.

We fix this by basing the statistics on the number of keys actually sent in the SCAN_FRAGREQ, and
counting the rows returned from this request. Based on this it is possible to obtain record-per-key
statistics to be calculated and sampled. This makes it possible to calculate the number of fragments
which can be scanned, without overflowing the batch buffers. (Bug #34768106)

• It was possible in certain cases that both the NDB binary logging thread and metadata synchronization
attempted to synchronize the ndb_apply_status table, which led to a race condition. We fix this by
making sure that the ndb_apply_status table is monitored and created (or re-created) by the binary
logging thread only. (Bug #34750992)

155

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbinfo-counters.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbspj.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbspj.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbspj.html

MySQL NDB Cluster 8.0 Release Notes

• While starting a schema operation, the client is responsible for detecting timeouts until the coordinator
has received the first schema event; from that point, any schema operation timeout should be detected
by the coordinator. A problem occurred while the client was checking the timeout; it mistakenly set the
state indicating that timeout had occurred, which caused the coordinator to ignore the first schema event
taking longer than approximately one second to receive (that is, to write the send event plus handle in
the binary logging thread). This had the effect that, in these cases, the coordinator was not involved in
the schema operation.

We fix this by change the schema distribution timeout checking to be atomic, and to let it be performed
by either the client or the coordinator. In addition, we remove the state variable used for keeping track of
events received by the coordinator, and rely on the list of participants instead. (Bug #34741743)

• An SQL node did not start up correctly after restoring data with ndb_restore, such that, when it
was otherwise ready to accept connections, the binary log injector thread never became ready. It
was found that, when a mysqld was started after a data node initial restore from which new table IDs
were generated, the utility table's (ndb_*) MySQL data dictionary definition might not match the NDB
dictionary definition.

The existing mysqld definition is dropped by name, thus removing the unique ndbcluster-ID key
in the MySQL data dictionary but the new table ID could also already be occupied by another (stale)
definition. The resulting mistmatch prevented setup of the binary log.

To fix this problem we now explicitly drop any ndbcluster-ID definitions that might clash in such
cases with the table being installed. (Bug #34733051)

• After receiving a SIGTERM signal, ndb_mgmd did not wait for all threads to shut down before exiting.
(Bug #33522783)

References: See also: Bug #32446105.

• When multiple operations are pending on a single row, it is not possible to commit an operation which is
run concurrently with an operation which is pending abort. This could lead to data node shutdown during
the commit operation in DBACC, which could manifest when a single transaction contained more than
MaxDMLOperationsPerTransaction DML operations.

In addition, a transaction containing insert operations is rolled back if a statement that uses a locking
scan on the prepared insert fails due to too many DML operations. This could lead to an unplanned data
node shutdown during tuple deallocation due to a missing reference to the expected DBLQH deallocation
operation.

We solve this issue by allowing commit of a scan operation in such cases, in order to release locks
previously acquired during the transaction. We also add a new special case for this scenario, so that the
deallocation is performed in a single phase, and DBACC tells DBLQH to deallocate immediately; in DBLQH,
execTUP_DEALLOCREQ() is now able to handle this immediate deallocation request. (Bug #32491105)

References: See also: Bug #28893633, Bug #32997832.

• Cluster nodes sometimes reported Failed to convert connection to transporter warnings
in logs, even when this was not really necessary. (Bug #14784707)

• When started with no connection string on the command line, ndb_waiter printed Connecting
to mgmsrv at (null). Now in such cases, it prints Connecting to management server at
nodeid=0,localhost:1186 if no other default host is specified.

The --help option and other ndb_waiter program output was also improved. (Bug #12380163)

156

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysqld.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysqld.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-mgmd.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbacc.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-maxdmloperationspertransaction
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dblqh.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-waiter.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-waiter.html#option_ndb_waiter_help
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-waiter.html

MySQL NDB Cluster 8.0 Release Notes

• NdbSpin_Init() calculated the wrong number of loops in NdbSpin, and contained logic errors. (Bug
#108448, Bug #32497174, Bug #32594825)

References: See also: Bug #31765660, Bug #32413458, Bug #102506, Bug #32478388.

Changes in MySQL NDB Cluster 8.0.32 (2023-01-17, General Availability)

• Functionality Added or Changed

• Bugs Fixed

Functionality Added or Changed

• Added the --config-binary-file option for ndb_config, which enables this program to read
configuration information from the management server's binary configuration cache. This can be useful,
for example, in determining whether or not the current version of the config.ini file has actually
been read by the management server and applied to the cluster. See the description of the option in the
MySQL NDB Cluster documentation, for more information and examples. (Bug #34773752)

Bugs Fixed

• Packaging: The man page for ndbxfrm was not present following installation. (Bug #34520046)

• In some contexts, a data node process may be sent SIGCHLD by other processes. Previously, the data
node process bound a signal handler treating this signal as an error, which could cause the process to
shut down unexpectedly when run in the foreground in a Kubernetes environment (and possibly under
other conditions as well). This occurred despite the fact that a data node process never starts child
processes itself, and thus there is no need to take action in such cases.

To fix this, the handler has been modified to use SIG_IGN, which should result in cleanup of any child
processes.

Note

mysqld and ndb_mgmd processes do not bind any handlers for SIGCHLD.

(Bug #34826194)

• The running node from a node group scans each fragment (CopyFrag) and sends the rows to the
starting peer in order to synchronize it. If a row from the fragment is locked exclusively by a user
transaction, it blocks the scan from reading the fragment, causing the copyFrag to stall.

If the starting node fails during the CopyFrag phase then normal node failure handling takes place. The
cordinator node's transaction coordinator (TC) performs TC takeover of the user transactions from the
TCs on the failed node. Since the scan that aids copying the fragment data over to the starting node is
considered internal only, it is not a candidate for takeover, thus the takeover TC marks the CopyFrag
scan as closed at the next opportunity, and waits until it is closed.

The current issue arose when the CopyFrag scan was in the waiting for row lock state, and
the closing of the marked scan was not performed. This led to TC takeover stalling while waiting for the
close, causing unfinished node failure handling, and eventually a GCP stall potentially affecting redo
logging, local checkpoints, and NDB Replication.

We fix this by closing the marked CopyFrag scan whenever a node failure occurs while the CopyFrag
is waiting for a row lock. (Bug #34823988)

References: See also: Bug #35037327.

157

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-config.html#option_ndb_config_config-binary-file
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-config.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndbxfrm.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysqld.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-mgmd.html

MySQL NDB Cluster 8.0 Release Notes

• In certain cases, invalid signal data was not handled correctly. (Bug #34787608)

• Sending of fragmented signals to virtual (V_QUERY) blocks is not supported, since the different
signal fragments may end up in different block instances. When DBTC or DBSPJ sends a
LQHKEYREQ or SCAN_FRAGREQ signal that may end up using V_QUERY, it checks whether the
signal is fragmented and in that case changes the receiver to an instance of DBLQH. The function
SimulatedBlock::sendBatchedFragmentedSignal() is intended to use the same check to
decide whether to fragment a given signal, but did not, with the result that signals were fragmented
which were not expected to be, sent using V_QUERY, and in that case likely to fail when received.

We fix this problem by making the size check in SimulatedBlock::sendFirstFragment(), used
by sendBatchedFragmentedSignal(), match the checks performed in DBTC and DBSPJ. (Bug
#34776970)

• When the DBSPJ block submits SCAN_FRAGREQ requests to the local data managers, it usually scans
only a subset of the fragments in parallel based on recsPrKeys statistics, if these are available, or just
make a guess if no statistics are available.

SPJ contains logic which may take advantage of the result collected from the first round of fragments
scanned; parallelism statistics are collected after SCAN_FRAGCONF replies are received, and first-match
elimination may eliminate keys needed to scan in subsequent rounds.

Scanning local fragments is expected to have less overhead than scanning remote fragments, so it is
preferable to err on the side of scan-parallelism for the local fragments. To take advantage of this, now
two rounds are made over the fragments, the first one allowing SCAN_FRAGREQ signals to be sent to
local fragments only, the second allowing such singals to be sent to any fragment expecting it. (Bug
#34768216)

References: See also: Bug #34768191.

• When pushing a join to the data nodes, the query request is distributed to the SPJ blocks of all data
nodes having local fragments for the first table (the SPJ root) in the pushed query. Each SPJ block
retrieves qualifying rows from the local fragments of this root table, then uses the retrieved rows to
generate a request to its joined child tables. If no qualifying rows are retrieved from the local fragments
of the root, SPJ has no further work to perform.

This implies that for a pushed join in which the root returns few rows, there are likely to be idling SPJ
workers not taking full advantage of the available parallelism. Now for such queries we do not include
very small tables in the pushed join, so that, if the next table in the join plan is larger, we start with that
one instead. (Bug #34723413)

• The safety check for a copying ALTER TABLE operation uses the sum of per-fragment commit count
values to determine whether any writes have been committed to a given table over a period of time.
Different replicas of the same fragment do not necessarily have the same commit count over time, since
a fragment replica's commit count is reset during node restart.

Read primary tables always route read requests to a table's primary fragment replicas. Read backup and
fully replicated tables optimize reads by allowing CommittedRead operations to be routed to backup
fragment replicas. This results in the set of commit counts read not always being stable for Read backup
and fully replicated tables, which can cause false positive failures for the copying ALTER TABLE safety
check.

This is solved by performing the copying ALTER TABLE safety check using a locking scan. Locked reads
are routed to the same set of primary (main) fragments every time, which causes these counts to be
stable. (Bug #34654470)

158

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbtc.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbspj.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dblqh.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbspj.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbspj.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/alter-table.html

MySQL NDB Cluster 8.0 Release Notes

• Following execution of DROP NODEGROUP in the management client, attempting to creating or altering an
NDB table specifying an explicit number of partitions or using MAX_ROWS was rejected with Got error
771 'Given NODEGROUP doesn't exist in this cluster' from NDB. (Bug #34649576)

• TYPE_NOTE_TRUNCATED and TYPE_NOTE_TIME_TRUNCATED were treated as errors instead of being
ignored, as was the case prior to NDB 8.0.27. This stopped building of interpreted code for pushed
conditions, with the condition being returned to the server.

We fix this by reverting the handling of these status types to ignoring them, as was done previously. (Bug
#34644930)

• When reorganizing a table with ALTER TABLE ... REORGANIZE PARTITION following
addition of new data nodes to the cluster, fragments were not redistributed properly when the
ClassicFragmentation configuration parameter was set to OFF. (Bug #34640773)

• Fixed an uninitialized padding variable in src/common/util/ndb_zlib.cpp. (Bug #34639073)

• When the NDB_STORED_USER privilege was granted to a user with an empty password, the user's
password on each of the other SQL nodes was expired. (Bug #34626727)

• In a cluster with multiple management nodes, when one management node connected and later
disconnected, any remaining management nodes were not aware of this node and were eventually
forced to shut down when stopped nodes reconnected; this happened whenever the cluster still had live
data nodes.

On investigation it was found that node disconnection handling was done in the NF_COMPLETEREP path
in ConfigManager but the expected NF_COMPLETEREP signal never actually arrived. We solve this by
handling disconnecting management nodes when the NODE_FAILREP signal arrives, rather than waiting
for NF_COMPLETEREP. (Bug #34582919)

• The --diff-default option and related options for ndb_config did not produce any usable output.
(Bug #34549189)

References: This issue is a regression of: Bug #32233543.

• Encrypted backups created on a system using one endian could not be restored on systems with the
other endian; for example, encrypted backups taken on an x86 system could not be restored on a
SPARC system, nor the reverse. (Bug #34446917)

• A query using a pushed join with an IN subquery did not return the expected result with
ndb_join_pushdown=ON and the BatchSize SQL node parameter set to a very small value such as
1. (Bug #34231718)

• When defining a binary log transaction, the transaction is kept in an in-memory binary log cache before it
is flushed to the binary log file. If a binary log transaction exceeds the size of the cache, it is written to a
temporary file which is set up early in the initialization of the binary log thread. This write introduces extra
disk I/O in the binary log injector path. The number of disk writes performed globally by the binary log
injector can be found by checking the value of the Binlog_cache_disk_use system status variable,
but otherwise, the NDB handler's binary log injector thread had no way to observe this.

Since Binlog_cache_disk_use is accessible by the binary log injector, it can be checked both before
and after the transaction is committed to see whether there were any changes to its value. If any cache
spills have taken place, this is reflected by the difference of the two values, and the binary log injector
thread can report it. (Bug #33960014)

• When closing a file using compressed or encrypted format after reading the entire file, verify its
checksum. (Bug #32550145)

159

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-mgm-client-commands.html#ndbclient-drop-nodegroup
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/alter-table-partition-operations.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbmtd-classicfragmentation
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-config.html#option_ndb_config_diff-default
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-config.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/comparison-operators.html#operator_in
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#sysvar_ndb_join_pushdown
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/server-status-variables.html#statvar_Binlog_cache_disk_use

MySQL NDB Cluster 8.0 Release Notes

• When reorganizing a table with ALTER TABLE ... REORGANIZE PARTITION following addition of
new data nodes to the cluster, unique hash indexes were not redistributed properly. (Bug #30049013)

• For a partial local checkpoint, each fragment LCP must be to be able to determine the precise state of
the fragment at the start of the LCP and the precise difference in the fragment between the start of the
current LCP and the start of the previous one. This is tracked using row header information and page
header information; in cases where physical pages are removed this is also tracked in logical page map
information.

A page included in the current LCP, before the LCP scan reaches it, is released due to the commit or
rollback of some operation on the fragment, also releasing the last used storage on the page.

Since the released page could not be found by the scan, the release itself set the LCP_SCANNED_BIT
of the page map entry it was mapped into, in order to indicate that the page was already handled from
the point of view of the current LCP, causing subsequent allocation and release of the pages mapped
to the entry during the LCP to be ignored. The state of the entry at the start of the LCP was also set as
allocated in the page map entry.

These settings are cleared only when the next LCP is prepared. Any page release associated with the
page map entry before the clearance would violate the requirement that the bit is not set; we resolve this
issue by removing the (incorrect) requirement. (Bug #23539857)

• A data node could hit an overly strict assertion when the thread liveness watchdog triggered while
the node was already shutting down. We fix the issue by relaxing this assertion in such cases. (Bug
#22159697)

• Removed a leak of long message buffer memory that occurred each time an index was scanned for
updating index statistics. (Bug #108043, Bug #34568135)

• Backup::get_total_memory(), used to calculate proposed disk write speeds for checkpoints,
wrongly considered DataMemory that may not have been used in the calculation of memory used by
LDMs.

We fix this by obtaining the total DataMemory used by the LDM threads instead. as reported by DBTUP.
(Bug #106907, Bug #34035805)

• Fixed an uninitialized variable in Suma.cpp. (Bug #106081, Bug #33764143)

Changes in MySQL NDB Cluster 8.0.31 (2022-10-11, General Availability)

• Transparent Data Encryption (TDE)

• RPM Notes

• Functionality Added or Changed

• Bugs Fixed

Transparent Data Encryption (TDE)

• This release implements Transparent Data Encryption (TDE), which provides protection by encryption
of NDB data at rest. This includes all NDB table data and log files which are persisted to disk, and is
intended to protect against recovering data subsequent to unauthorized access to NDB Cluster data files
such as tablespace files or logs.

To enforce encryption on files storing NDB table data, set EncryptedFileSystem to 1, which causes
all data to be encrypted and decrypted as necessary, as it is written to and read from these files. These
include LCP data files, redo log files, tablespace files, and undo log files.

160

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/alter-table-partition-operations.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-datamemory
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbtup.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-encryptedfilesystem

MySQL NDB Cluster 8.0 Release Notes

When using file system encryption with NDB, you must also perform the following tasks:

• Provide a password to each data node when starting or restarting it, using either one of the data node
options --filesystem-password or --filesystem-password-from-stdin. This password
uses the same format and is subject to the same constraints as the password used for an encrypted
NDB backup (see the description of the ndb_restore --backup-password option).

You can provide the encryption password on the command line, or in a my.cnf file. See NDB File
System Encryption Setup and Usage, for more information and examples.

Only tables using the NDB storage engine are subject to encryption by this feature; see NDB File System
Encryption Limitations. Other tables, such as those used for NDB schema distribution, replication, and
binary logging, typically use InnoDB; see InnoDB Data-at-Rest Encryption. For information about
encryption of binary log files, see Encrypting Binary Log Files and Relay Log Files.

Files generated or used by NDB processes, such as operating system logs, crash logs, and core dumps,
are not encrypted. Files used by NDB but not containing any user table data are also not encrypted;
these include LCP control files, schema files, and system files (see NDB Cluster Data Node File
System). The management server configuration cache is also not encrypted.

In addition, NDB 8.0.31 adds a new utility ndb_secretsfile_reader for extracting key information
from encrypted files.

This enhancement builds on work done in NDB 8.0.22 to implement encrypted NDB backups. For more
information, see the description of the RequireEncryptedBackup configuration parameter, as well as
Using The NDB Cluster Management Client to Create a Backup.

Note

Upgrading an encrypted filesystem to NDB 8.0.31 or later from a previous release
requires a rolling initial restart of the data nodes, due to improvements in key
handling.

(Bug #34417282, WL #14687, WL #15051, WL #15204)

RPM Notes

• ndbinfo Information Database: Upgrades of SQL nodes from NDB 7.5 or NDB 7.6 to NDB 8.0
using RPM files did not enable the ndbinfo plugin properly. This was due to the fact that, since the
ndbcluster plugin is disabled during an upgrade of mysqld, so is the ndbinfo plugin; this led to
.frm files associated with ndbinfo tables being left behind following the upgrade.

Now in such cases, any ndbinfo table .frm files from the earlier release are removed, and the plugin
enabled. (Bug #34432446)

Functionality Added or Changed

• Important Change: The ndbcluster plugin is now included in all MySQL server builds, with the
exception of builds for 32-bit platforms. As part of this work, we address a number of issues with cmake
options for NDB Cluster, making the plugin option for NDBCLUSTER behave as other plugin options, and
adding a new option WITH_NDB to control the build of NDB for MySQL Cluster.

This release makes the following changes in cmake options relating to MySQL Cluster:

• Adds the WITH_NDB option (default OFF). Enabling this option causes the MySQL Cluster binaries to
be built.

161

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndbd.html#option_ndbd_filesystem-password
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndbd.html#option_ndbd_filesystem-password-from-stdin
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_backup-password
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-tde-setup.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-tde-setup.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-tde-limitations.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-tde-limitations.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/innodb-storage-engine.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/innodb-data-encryption.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/replication-binlog-encryption.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-ndbd-filesystem.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-ndbd-filesystem.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-secretsfile-reader.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-requireencryptedbackup
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-backup-using-management-client.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysqld.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbinfo.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/source-configuration-options.html#option_cmake_with_ndb

MySQL NDB Cluster 8.0 Release Notes

• Deprecates the WITH_NDBCLUSTER option; use WITH_NDB instead.

• Removes the WITH_PLUGIN_NDBCLUSTER option. Use WITH_NDB, instead, to build MySQL Cluster.

• Changes the WITH_NDBCLUSTER_STORAGE_ENGINE option so that it now controls (only) whether
the ndbcluster plugin itself is built. This option is now automatically set to ON when WITH_NDB is
enabled for the build, so it should no longer be necessary to set it when compiling MySQL with NDB
Cluster support.

For more information, see CMake Options for Compiling NDB Cluster. (WL #14788, WL #15157)

• Added the --detailed-info option for ndbxfrm. This is similar to the --info option, but in addition
prints out the file's header and trailer. (Bug #34380739)

• This release makes it possible to enable and disable binary logging with compressed transactions
using ZSTD compression for NDB tables in a mysql or other client session while the MySQL
server is running. To enable the feature, set the ndb_log_transaction_compression system
variable introduced in this release to ON. The level of compression used can be controlled using the
ndb_log_transaction_compression_level_zstd system variable, which is also added in this
release; the default compression level is 3.

Note

Although changing the values of the binlog_transaction_compression
and binlog_transaction_compression_level_zstd system variables
from a client session has no effect on binary logging of NDB tables, setting
--binlog-transaction-compression=ON on the command line or in a
my.cnf file causes ndb_log_transaction_compression to be enabled,
regardless of any setting for --ndb-log-transaction-compression. In
this case, to disable binary log transaction compression for (only) NDB tables,
set ndb_log_transaction_compression=OFF in a MySQL client session
following startup of mysqld.

For more information, see Binary Log Transaction Compression. (Bug #32704705, Bug #32927582, WL
#15138, WL #15139)

Bugs Fixed

• When pushing a condition as part of a pushed join, it is a requirement that all table.column references
are to one of the following:

• The table to which the condition itself is pushed

• A table which is an ancestor of the root of the pushed join

• A table which is an ancestor of the table in the pushed query tree

In the last case, when finding possible ancestors, we did not fully identify all candidates for such tables,
in either or both of these two ways:

1. Any tables being required ancestors due to nest-level dependencies were not added as ancestors

2. Tables having all possible ancestors as either required ancestors or key parents are known to be
directly joined with our ancestor, and to provide these as ancestors themselves; thus, such tables
should be made available as ancestors as well.

162

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/source-configuration-options.html#option_cmake_with_ndbcluster
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/source-configuration-options.html#option_cmake_with_plugin_ndbcluster
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/source-configuration-options.html#option_cmake_with_ndbcluster_storage_engine
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/source-configuration-options.html#cmake-mysql-cluster-options
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndbxfrm.html#option_ndbxfrm_detailed-info
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndbxfrm.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndbxfrm.html#option_ndbxfrm_info
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#sysvar_ndb_log_transaction_compression
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#sysvar_ndb_log_transaction_compression_level_zstd
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/replication-options-binary-log.html#sysvar_binlog_transaction_compression
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/replication-options-binary-log.html#sysvar_binlog_transaction_compression_level_zstd
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/replication-options-binary-log.html#sysvar_binlog_transaction_compression
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysqld.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/binary-log-transaction-compression.html

MySQL NDB Cluster 8.0 Release Notes

This patch implements both cases 1 and 2. In the second case, we take a conservative approach and
add only those tables having a single row lookup access type, but not those using index scans.
(Bug #34508948)

• Execution of and EXPLAIN for some large join queries with ndb_join_pushdown enabled (the default)
were rejected with NDB error QRY_NEST_NOT_SUPPORTED FirstInner/Upper has to be an
ancestor or a sibling. (Bug #34486874)

• When the NDB join pushdown handler finds a table which cannot be pushed down it tries to produce
an explanatory message communicating the reason for the rejection, which includes the names of the
tables involved. In some cases the optimizer had already optimized away the table which meant that it
could no longer be accessed by the NDB handler, resulting in failure of the query.

We fix this by introducing a check for such cases and printing a more generic message which does not
include the table name if no table is found. (Bug #34482783)

• The EncryptedFilesystem parameter was not defined with CI_RESTART_INITIAL, and so was not
shown in the output of ndb_config as requiring --initial, even though the parameter does in fact
require an initial restart to take effect. (Bug #34456384)

• When finding tables possible to push down in a pushed join, the pushability of a table may depend on
whether later tables are pushed as well. In such cases we take an optimistic approach and assume
that later tables are also pushed. If this assumption fails, we might need to “unpush” a table and any
other tables depending on it. Such a cascading “unpush” may be due to either or both of the following
conditions:

• A key reference referred to a column from a table which later turned out to not be pushable.

• A pushed condition referred to a column from a table which later turn out to not be pushable.

We previously handled the first case, but handling of the second was omitted from work done in NDB
8.0.27 to enable pushing of conditions referring to columns from other tables that were part of the same
pushed join. (Bug #34379950)

• NdbScanOperation errors are returned asynchronously to the client, possibly while the client is
engaged in other processing. A successful call to NdbTransaction::execute() guarantees only that
the scan request has been assembled and sent to the transaction coordinator without any errors; it does
not wait for any sort of CONF or REF signal to be returned from the data nodes. In this particular case, the
expected TAB_SCANREF signal was returned asynchronously into the client space, possibly while the
client was still performing other operations.

We make this behavior more deterministic by not setting the NdbTransaction error code when a
TAB_SCANREF error is received. (Bug #34348706)

• When attempting to update a VARCHAR column that was part of an NDB table's primary key, the length
of the value read from the database supplied to the cmp_attr() method was reportedly incorrectly.
In addition to fixing this issue, we also remove an incorrect length check which required the binary byte
length of the arguments to this method to be the same, which is not true of attributes being compared
as characters, whose comparison semantics are defined by their character sets and collations. (Bug
#34312769)

• When compiling NDB Cluster on OEL7 and OEL8 using -Og for debug builds, gcc raised a null pointer
subtraction error. (Bug #34199675, Bug #34199732)

References: See also: Bug #33855533.

163

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/explain.html
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-error-codes-application-error.html#ndberrno-QRY_NEST_NOT_SUPPORTED
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-encryptedfilesystem
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-config.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndbd.html#option_ndbd_initial
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndbscanoperation.html
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndbtransaction.html#ndb-ndbtransaction-execute
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndbtransaction.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/char.html

MySQL NDB Cluster 8.0 Release Notes

• ndb_blob_tool did not perform proper handling of errors raised while reading data. (Bug #34194708)

• As part of setting up the signal execution strategy, we calculate a safe quota for the maximum numbers
signals to execute from each job buffer. As each executed signal is assumed to generate up to four
outward bound signals, we might need to limit the signal quota so that we do not overfill the out buffers.
Effectively, in each round of signal execution we cannot execute more signals than 1/4 of the signals that
can fit in the out buffers.

This calculation did not take into account work done in NDB 8.0.23 introducing the possibility of having
multiple writers, all using the same available free space in the same job buffer. Thus the signal quota
needed to be further divided among the workers writing to the same buffers.

Now the computation of the maximum numbers signals to execute takes into account the resulting
possibly greater number of writers to each queue. (Bug #34065930)

• When the NDB scheduler detects that job buffers are full, and starts to allocate from reserved buffers, it is
expected to yield the CPU while waiting for the consumer. Just before yielding, it performs a final check
for this condition, before sleeping. Problems arose when this check indicated that the job buffers were
not full, so that the scheduler was allowed to continue executing signals, even though the limit on how
many signals it was permitted to execute was still 0. This led to a round of executing no signals, followed
by another yield check, and so on, keeping the CPU occupied for no reason while waiting for something
to be consumed by the receiver threads.

The root cause of the problem was that different metrics were employed for calculating the limit on
signals to execute (which triggered the yield check when this limit was 0), and for the yield callback
which subsequently checked whether the job buffers were actually full.

Prior to the implementation of scalable job buffers in MySQL NDB Cluster 8.0.23, NDB waited for more
job buffer up to 10 times; this was inadvertently changed so that it gave up after waiting one time only,
despite log messages indicating that NDB had slept ten times. As part of this fix, we revert that change,
so that, as before, we wait up to ten times for more job buffer before giving up. As an additional part
of this work, we also remove extra (and unneeded) code previously added to detect spin waits. (Bug
#34038016)

References: See also: Bug #33869715, Bug #34025532.

• Job buffers act as the communication links between data node internal block threads. When the data
structures for these were initialized, a 32K page was allocated to each such link, even if these threads
never (by design) communicate with each other. This wasted memory resources, and had a small
performance impact since the job buffer pages were checked frequently for available signals, so that us
was necessary to load the unused job buffer pages into the translation lookaside buffer and L1, L2, and
L3 caches.

Now, instead, we set up an empty job buffer as a sentinel to which all the communication links refer
initially. Actual (used) job buffer pages are now allocated only when we actually write signals into them,
in the same way that new memory pages are allocated when a page gets full. (Bug #34032102)

• A data node could be forced to shut down due to a full job buffer, even when the local buffer was still
available. (Bug #34028364)

• Made checks of pending signals by the job scheduler more consistent and reliable. (Bug #34025532)

References: See also: Bug #33869715, Bug #34038016.

• The combination of batching with multiple in-flight operations per key, use of IgnoreError, and
transient errors occurring on non-primary replicas led in some cases to inconsistencies within DBTUP
resulting in replica misalignment and other issues. We now prevent this from happening by detecting

164

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-blob-tool.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbtup.html

MySQL NDB Cluster 8.0 Release Notes

when operations are failing on non-primary replicas, and forcing AbortOnError handling (rollback) in
such cases for the containing transaction. (Bug #34013385)

• Handling by ndb_restore of temporary errors raised by DDL operations has been improved and made
consistent. In all such cases, ndb_restore now retries the operation up to MAX_RETRIES (11) times
before giving up. (Bug #33982499)

• Removed the causes of many warnings raised when compiling NDB Cluster. (Bug #33797357, Bug
#33881953)

• When the rate of changes was high, event subscribers were slow to acknowledge receipt, or both, it was
possible for the SUMA block to run out of space for buffering events. (Bug #30467140)

• ALTER TABLE ... COMMENT="NDB_TABLE=READ_BACKUP=1" or ALTER
TABLE..COMMENT="NDB_TABLE=READ_BACKUP=0" performs a non-copying (online) ALTER operation
on a table to add or remove its READ_BACKUP property (see NDB_TABLE Options), which increments
the index version of all indexes on the table. Existing statistics, stored using the previous index version,
were orphaned and never deleted; this led to wasted memory and inefficient searches when collecting
index statistics.

We address these issues by cleaning up the index samples; we delete any samples whose sample
version is greater than or less than the current sample version. In addition, when no existing statistics
are found by index ID and version, and when indexes are dropped. In this last case, we relax the bounds
for the delete operation and remove all entries corresponding to the index ID in question, as opposed to
both index ID and index version.

This fix cleans up the sample table which stores the bulk of index statistics data. The head table, which
consists of index metadata rather than actual statistics, still contains orphaned rows, but since these
occupy an insignificant amount of memory, they do not adversely affect statistics search efficiency, and
stale entries are cleaned up when index IDs and versions are reused.

See also NDB API Statistics Counters and Variables. (Bug #29611297)

Changes in MySQL NDB Cluster 8.0.30 (2022-07-26, General Availability)

• Functionality Added or Changed

• Bugs Fixed

Functionality Added or Changed

• NDB Cluster APIs: Removed a number of potential memory leaks by using std::uniqe_ptr for
managing any Event returned by Dictionary::getEvent().

As part of this fix, we add a releaseEvent() method to Dictionary to clean up events created with
getEvent() after they are no longer needed. (Bug #33855045)

• NDB Cluster APIs: The Node.JS package included with NDB Cluster has been updated to version
16.5.0. (Bug #33770627)

• Empty lines in CSV files are now accepted as valid input by ndb_import. (Previously, empty lines in
such files were always rejected.) Now, if an empty value can be used as the value for a single imported
column, ndb_import uses it in the same manner as LOAD DATA. (Bug #34119833)

• NDB stores blob column values differently from other types; by default, only the first 256 bytes of the
value are stored in the table (“inline”), with any remainder kept in a separate blob parts table. This is
true for columns of MySQL type BLOB, MEDIUMBLOB, LONGBLOB, TEXT, MEDIUMTEXT, and LONGTEXT.

165

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-suma.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/alter-table.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/create-table-ndb-comment-options.html#create-table-ndb-comment-table-options
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndb-api-statistics.html
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-event.html
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-dictionary.html#ndb-dictionary-getevent
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-dictionary.html#ndb-dictionary-releaseevent
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-dictionary.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-import.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-import.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/load-data.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/blob.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/blob.html

MySQL NDB Cluster 8.0 Release Notes

(TINYBLOB and TINYTEXT are exceptions, since they are always inline-only.) NDB handles JSON
column values in a similar fashion, the only difference being that, for a JSON column, the first 4000 bytes
of the value are stored inline.

Previously, it was possible to control the inline size for blob columns of NDB tables only by using the
NDB API (Column::setInlineSize() method). This now can be done in the mysql client (or other
application supplying an SQL interface) using a column comment which consists of an NDB_COLUMN
string containing a BLOB_INLINE_SIZE specification, as part of a CREATE TABLE statement like this
one:

CREATE TABLE t (
 a BIGINT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 b BLOB COMMENT 'NDB_COLUMN=BLOB_INLINE_SIZE=3000'
) ENGINE NDBCLUSTER;

In table t created by the statement just shown, column b (emphasized text in the preceding example)
is a BLOB column whose first 3000 bytes are stored in t itself, rather than just the first 256 bytes. This
means that, if no value stored in b exceeds 3000 bytes in length, no extra work is required to read or
write any excess data from the NDB blob parts table when storing or retrieving the column value. This
can improve performance significantly when performing many operations on blob columns.

You can see the effects of this option by querying the ndbinfo.blobs table, or examining the output of
ndb_desc.

The maximum supported value for BLOB_INLINE_SIZE is 29980. Setting it to any value less than 1
causes the default inline size to be used for the column.

You can also alter a column as part of a copying ALTER TABLE; ALGORITHM=INPLACE is not supported
for such operations.

BLOB_INLINE_SIZE can be used alone, or together with MAX_BLOB_PART_SIZE in the same
NDB_COMMENT string. Unlike the case with MAX_BLOB_PART_SIZE, setting BLOB_INLINE_SIZE is
supported for JSON columns of NDB tables.

For more information, see NDB_COLUMN Options, as well as String Type Storage Requirements. (Bug
#33755627, WL #15044)

• A new --missing-ai-column option is added to ndb_import. This enables ndb_import to
accept a CSV file from which the data for an AUTO_INCREMENT column is missing and to supply these
values itself, much as LOAD DATA does. This can be done with one or more tables for which the CSV
representation contains no values for such a column.

This option works only when the CSV file contains no nonempty values for the AUTO_INCREMENT
column to be imported. (Bug #102730, Bug #32553029)

• This release adds Performance Schema instrumentation for transaction batch memory used by
NDBCLUSTER, making it possible to monitor memory used by transactions. For more information, see
Transaction Memory Usage. (WL #15073)

Bugs Fixed

• Important Change: When using the ThreadConfig multithreaded data node parameter to specify the
threads to be created on the data nodes, the receive thread (recv) in some cases was placed in the
same worker thread as block threads such as DBLQH(0) and DBTC(0). This represented a regression
from NDB 8.0.22 and earlier, where the receive thread is colocated only with THRMAN and TRPMAN, as
expected in such cases.

166

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/json.html
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-column.html#ndb-column-setinlinesize
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/create-table.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbinfo-blobs.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-desc.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/alter-table.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/create-table-ndb-comment-options.html#create-table-ndb-comment-column-options
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/storage-requirements.html#data-types-storage-reqs-strings
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-import.html#option_ndb_import_missing-ai-column
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-import.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-import.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/load-data.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ps-tables.html#mysql-cluster-trx-batch-memory
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbmtd-threadconfig

MySQL NDB Cluster 8.0 Release Notes

Now, when setting the value of ThreadConfig, you must include main, rep, recv, and ldm explicitly;
to avoid using one or more of the main, rep, or ldm thread types, you must set count=0 explicitly for
each applicable thread type.

In addition, a minimum value of 1 is now enforced for the recv count; setting the replication thread (rep)
count to 1 also requires setting count=1 for the main thread.

These changes can have serious implications for upgrades from previous NDB Cluster releases. For
more information, see Upgrading and Downgrading NDB Cluster, as well as the description of the
ThreadConfig parameter, in the MySQL Manual. (Bug #33869715)

References: See also: Bug #34038016, Bug #34025532.

• macOS: ndb_import could not be compiled on MacOS/ARM because the ndbgeneral library was not
explicitly included in LINK_LIBRARIES. (Bug #33931512)

• NDB Disk Data: The LGMAN kernel block did not initialize its local encrypted filesystem state, and did not
check EncryptedFileSystem for undo log files, so that their encryption status was never actually set.

This meant that, for release builds, it was possible for the undo log files to be encrypted on some
systems, even though they should not have been; in debug builds, undo log files were always encrypted.
This could lead to problems when using Disk Data tables and upgrading to or from NDB 8.0.29. (A
workaround is to perform initial restarts of the data nodes when doing so.)

This issue could also cause unexpected CPU load for I/O threads when there were a great many Disk
Data updates to write to the undo log, or at data node startup while reading the undo log.

Note

The EncryptedFileSystem parameter, introduced in NDB 8.0.29, is
considered experimental and is not supported in production.

(Bug #34185524)

• NDB Cluster APIs: The internal function NdbThread_SetThreadPrio() sets the thread priority
(thread_prio) for a given thread type when applying the setting of the ThreadConfig configuration
parameter. It was possible for this function in some cases to return an error when it had actually
succeeded, which could have a an unfavorable impact on the performance of some NDB API
applications. (Bug #34038630)

• NDB Cluster APIs: The following NdbInterpretedCode methods did not function correctly when a
nonzero value was employed for the label argument:

• branch_col_and_mask_eq_mask()

• branch_col_and_mask_eq_zero()

• branch_col_and_mask_ne_mask()

• branch_col_and_mask_ne_zero()

(Bug #33888962)

• Compilation of NDB Cluster on Debian 11 and Ubuntu 22.04 halted during the link time optimization
phase due to source code warnings being treated as errors. (Bug #34252425)

167

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-upgrade-downgrade.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbmtd-threadconfig
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-import.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-lgman.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-encryptedfilesystem
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbmtd-threadconfig
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndbinterpretedcode.html
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndbinterpretedcode.html#ndb-ndbinterpretedcode-branch-col-and-mask-eq-mask
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndbinterpretedcode.html#ndb-ndbinterpretedcode-branch-col-and-mask-eq-zero
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndbinterpretedcode.html#ndb-ndbinterpretedcode-branch-col-and-mask-ne-mask
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndbinterpretedcode.html#ndb-ndbinterpretedcode-branch-col-and-mask-ne-zero

MySQL NDB Cluster 8.0 Release Notes

• NDB does not support in-place changes of default values for columns; such changes can be made only
by using a copying ALTER TABLE. Changing of the default value in such cases was already detected,
but the additional or removal of default value was not.

We fix this issue by detecting when default value is added or removed during ALTER TABLE, and
refusing to perform the operation in place. (Bug #34224193)

• After creating a user on SQL node A and granting it the NDB_STORED_USER privilege, dropping this user
from SQL node B led to inconsistent results. In some cases, the drop was not distributed, so that after
the drop the user still existed on SQL node A.

The cause of this issue is that NDB maintains a cache of all local users with NDB_STORED_USER, but
when a user was created on SQL node B, this cache was not updated. Later, when executing DROP
USER, this led SQL node B to determine that the drop did not have to be distributed. We fix this by
ensuring that this cache is updated whenever a new distributed user is created. (Bug #34183149)

• When the internal ndbd_exit() function was invoked on a data node, information and error messages
sent to the event logger just prior to the ndbd_exit() call were not printed in the log as expected. (Bug
#34148712)

• NDB Cluster did not compile correctly on Ubuntu 22.04 due to changes in OpenSSL 3.0. (Bug
#34109171)

• NDB Cluster would not compile correctly using GCC 8.4 due to a change in Bison fallthrough handling.
(Bug #34098818)

• Compiling the ndbcluster plugin or the libndbclient library required a number of files kept under
directories specific to data nodes (src/kernel) and management servers (src/mgmsrv). These have
now been moved to more suitable locations. Files moved that may be of interest are listed here:

• ndbd_exit_codes.cpp is moved to storage/ndb/src/mgmapi

• ConfigInfo.cpp is moved to storage/ndb/src/common/mgmcommon

• mt_thr_config.cpp is moved to storage/ndb/src/common

• NdbinfoTables.cpp is moved to storage/ndb/src/common/debugger

(Bug #34045289)

• When an error occurred during the begin schema transaction phase, an attempt to update the index
statistics automatically was made without releasing the transaction handle, leading to a leak. (Bug
#34007422)

References: See also: Bug #34992370.

• Path lengths were not always calculated correctly by the data nodes. (Bug #33993607)

• When ndb_restore performed an NDB API operation with any concurrent NDB API events taking
place, contention could occur in the event of limited resources in DBUTIL. This led to temporary errors
in NDB. In such cases, ndb_restore now attempts to retry the NDB API operation which failed. (Bug
#33984717)

References: See also: Bug #33982499.

• Removed a duplicate check of a table pointer found in the internal method
Dbtc::execSCAN_TABREQ(). (Bug #33945967)

168

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/alter-table.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/privileges-provided.html#priv_ndb-stored-user
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/drop-user.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/drop-user.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbutil.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html

MySQL NDB Cluster 8.0 Release Notes

• The internal function NdbReceiver::unpackRecAttr(), which unpacks attribute values from a
buffer from a GSN_TRANSID_AI signal, did not check to ensure that attribute sizes fit within the buffer.
This could corrupt the buffer which could in turn lead to reading beyond the buffer and copying beyond
destination buffers. (Bug #33941167)

• Improved formatting of log messages such that the format string verification employed by some
compilers is no longer bypassed. (Bug #33930738)

• Some NDB internal signals were not always checked properly. (Bug #33896428)

• Fixed a number of issues in the source that raised -Wunused-parameter warnings when compiling
NDB Cluster with GCC 11.2. (Bug #33881953)

• When an SQL node was not yet connected to NDBCLUSTER, an excessive number of warnings were
written to the MySQL error log when the SQL node could not discover an NDB table. (Bug #33875273)

• The NDB API statistics variables Ndb_api_wait_nanos_count,
Ndb_api_wait_nanos_count_replica, and Ndb_api_wait_nanos_count_session are used
for determining CPU times and wait times for applications. These counters are intended to show the time
spent waiting for responses from data nodes, but they were not entirely accurate because time spent
waiting for key requests was not included.

For more information, see NDB API Statistics Counters and Variables. (Bug #33840016)

References: See also: Bug #33850590.

• It was possible in some cases for a duplicate engine-se_private_id entry to be installed in the
MySQL data dictionary for an NDB table, even when the previous table definition should have been
dropped.

When data nodes drop out of the cluster and need to rejoin, each SQL node starts to synchronize the
schema definitions in its own data dictionary. The se_private_id for an NDB table installed in the data
dictionary is the same as its NDB table ID. It is common for tables to be updated with different IDs, such
as when executing an ALTER TABLE, DROP TABLE, or CREATE TABLE statement. The previous table
definition, obtained by referencing the table in schema.table format, is usually sufficient for a drop
and thus for the new table to be installed with a new ID, since it is assumed that no other installed table
definition uses that ID. An exception to this could occur during synchronization, if a data node shutdown
allowed the previous table definition of a table having the same ID other than the one to be installed to
remain, then the old definition was not dropped.

To correct this issue, we now check whether the ID of the table to be installed in the data dictionary
differs from that of the previous one, in which case we also check whether an old table definition already
exists with that ID, and, if it does, we drop the old table before continuing. (Bug #33824058)

• After receiving a COPY_FRAGREQ signal, DBLQH sometimes places the signal in a queue by copying
the signal object into a stored object. Problems could arise when this signal object was used to send
another signal before the incoming COPY_FRAGREQ was stored; this led to saving a corrupt signal that,
when sent, prevented a system restart from completing. We fix this by using a static copy of the signal
for storage and retrieval, rather than the original signal object. (Bug #33581144)

• When the mysqld binary supplied with NDB Cluster was run without NDB support enabled, the ndbinfo
and ndb_transid_mysql_connection_map plugins were still enabled, and for example, still shown
with status ACTIVE in the output of SHOW PLUGINS. (Bug #33473346)

• Attempting to seize a redo log page could in theory fail due to a wrong bound error. (Bug #32959887)

169

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#statvar_Ndb_api_wait_nanos_count
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#statvar_Ndb_api_wait_nanos_count_replica
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#statvar_Ndb_api_wait_nanos_count_session
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndb-api-statistics.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/alter-table.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/drop-table.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/create-table.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dblqh.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysqld.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/show-plugins.html

MySQL NDB Cluster 8.0 Release Notes

• When a data node was started using the --foreground option, and with a node ID not configured to
connect from a valid host, the data node underwent a forced shutdown instead of reporting an error.
(Bug #106962, Bug #34052740)

• NDB tables were skipped in the MySQL Server upgrade phase and were instead migrated by the
ndbcluster plugin at a later stage. As a result, triggers associated with NDB tables were not created
during upgrades from 5.7 based versions.

This occurred because it is not possible to create such triggers when the NDB tables are migrated by the
ndbcluster plugin, since metadata about the triggers is lost in the upgrade finalization phase of the
MySQL Server upgrade in which all .TRG files are deleted.

To fix this issue, we make the following changes:

• Migration of NDB tables with triggers is no longer deferred during the Server upgrade phase.

• NDB tables with triggers are no longer removed from the data dictionary during setup even when initial
system starts are detected.

(Bug #106883, Bug #34058984)

• When initializing a file, NDBFS enabled autosync but never called do_sync_after_write() (then
called sync_on_write()), so that the file was never synchronized to disk until it was saved. This
meant that, for a system whose network disk was stalled for some time, the file could use up system
memory on buffered file data.

We fix this by calling do_sync_after_write() each time NDBFS writes to a file.

As part of this work, we increase the autosync size from 1 MB to 16 MB when initializing files.

Note

NDB supports O_SYNC on platforms that provide it, but does not implement
OM_SYNC for opening files.

(Bug #106697, Bug #33946801, Bug #34131456)

Changes in MySQL NDB Cluster 8.0.29 (2022-04-26, General Availability)

Important

This release is no longer available for download. It was removed due to a critical
issue that could cause data in InnoDB tables having added columns to be
interpreted incorrectly. Please upgrade to MySQL Cluster 8.0.30 instead.

• Compilation Notes

• ndbinfo Information Database

• Performance Schema Notes

• Functionality Added or Changed

• Bugs Fixed

Compilation Notes

• NDB could not be built using GCC 11 due to an array out of bounds error. (Bug #33459671)

170

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndbd.html#option_ndbd_foreground
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-ndbfs.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/innodb-storage-engine.html

MySQL NDB Cluster 8.0 Release Notes

• Removed a number of -Wstringop-truncation warnings raised when compiling NDB with GCC
9 as well as suppression of such warnings. Also removed unneeded includes from the header file
ndb_global.h. (Bug #32233543)

ndbinfo Information Database

• Eight new tables providing NDB dictionary information about database objects have been added to the
ndbinfo information database. This makes it possible to obtain a great deal of information of this type
by issuing queries in the mysql client, without the need to use ndb_desc, ndb_select_all, and
similar utilities. (It is still be necessary to use ndb_desc to obtain fragment distribution information.)
These tables are listed here, together with the NDB objects about which they provide information:

• blobs: Blob tables

• dictionary_columns: Table columns

• dictionary_tables: Tables

• events: Event subscriptions

• files: Files used by disk data tables

• foreign_keys: Foreign keys

• hash_maps: Hash maps

• index_columns: Table indexes

An additional change in ndbinfo is that only files and hash_maps are defined as views; the
remaining six tables listed previously are in fact base tables, even though they are not named using the
ndb$ prefix. As a result, these tables are not hidden as other ndbinfo base tables are.

For more information, see the descriptions of the tables in ndbinfo: The NDB Cluster Information
Database. (WL #11968)

Performance Schema Notes

• ndbcluster plugin threads can now be seen in the Performance Schema. The threads and
setup_threads tables show all three of these threads: the binary logging thread (ndb_binlog
thread), the index statistics thread (ndb_index_stat thread), and the metadata thread
(ndb_metadata thread).

This makes it possible to obtain the thread IDs and thread OS IDs of these threads for use in queries on
these and other Performance Schema tables.

For more information and examples, see ndbcluster Plugin Threads. (WL #15000)

Functionality Added or Changed

• NDB Cluster APIs: The NDB API now implements a List::clear() method which clears all data
from a list. This makes it simpler to reuse an existing list with the Dictionary methods listEvents(),
listIndexes(), and listObjects().

In addition, the List destructor has been modified such that it now calls clear() before attempting the
removal of any elements or attributes from the list being destroyed. (Bug #33676070)

171

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbinfo.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-desc.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-select-all.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-desc.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbinfo-blobs.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbinfo-dictionary-columns.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbinfo-dictionary-tables.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbinfo-events.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbinfo-files.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbinfo-foreign-keys.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbinfo-hash-maps.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbinfo-index-columns.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbinfo.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbinfo.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/performance-schema-threads-table.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/performance-schema-setup-threads-table.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ps-tables.html#mysql-cluster-plugin-threads
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-list.html#ndb-list-clear
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-dictionary.html#ndb-dictionary-listevents
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-dictionary.html#ndb-dictionary-listindexes
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-dictionary.html#ndb-dictionary-listobjects
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-list.html
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-list.html#ndb-list-clear

MySQL NDB Cluster 8.0 Release Notes

• The client receive thread was enabled only when under high load, where the criterion for determining
“high load” was that the number of clients waiting in the poll queue (the receive queue) was greater than
min_active_clients_recv_thread (default: 8).

This was a poor metric for determining high load, since a single client, such as the binary log injector
thread handling incoming replication events, could experience high load on its own as well. The same
was true of a pushed join query (in which very large batches of incoming TRANSID_AI signals are
received).

We change the receive thread such that it now sleeps in the poll queue rather than being deactivated
completely, so that it is now always available for handling incoming signals, even when the client is not
under high load. (Bug #33752914)

• It is now possible to restore the ndb_apply_status table from an NDB backup, using ndb_restore
with the --with-apply-status option added in this release. In some cases, this information can be
useful in new setting up new replication links.

--with-apply-status restores all rows of the ndb_apply_status table except for the row for
which the server_id value is 0; use --restore-epoch to restore this row.

To use the --with-apply-status option, you must also supply --restore-data when invoking
ndb_restore.

For more information, see the description of the --with-apply-status option in the Reference
Manual, as well as ndb_apply_status Table. (Bug #32604161, Bug #33594652)

• Previously, when a user query attempted to open an NDB table with a missing (or broken) index, the
MySQL server raised NDB error 4243 Index not found. Now when such an attempt is made, it is
handled as described here:

• If the query does not make use of the problematic index, the query succeeds with no errors or
warnings.

• If the query attempts to use the missing or broken index, the query is rejected with a warning from
NDB (Index idx is not available in NDB. Use "ALTER TABLE tbl ALTER INDEX
idx INVISIBLE" to prevent MySQL from attempting to access it, or use
"ndb_restore --rebuild-indexes" to rebuild it), and an error (ER_NOT_KEYFILE).

The rationale for this change is that constraint violations or missing data sometimes make it impossible
to restore an index on an NDB table, in which case, running ndb_restore with --disable-indexes
restores the data without the index. With this change, once the data is restored from backup, it is
possible to use SQL to fix any corrupt data and rebuild the index. (Bug #28584066, WL #14867)

Bugs Fixed

• Important Change: The maximum value supported for the --ndb-batch-size server option has been
increased from 31536000 to 2147483648 (2 GB). (Bug #21040523)

• Performance: When profiling multithreaded data nodes (ndbmtd) performing a transaction including a
large number of inserts, it was found that more than 50% of CPU time was spent in the internal method
Dblqh::findTransaction(). It was found that, when there were many operations belonging to
uncommitted transactions in the hash list searched by this method, the hash buckets overfilled, the result
being that an excessive number of CPU cycles were consumed searching through the hash buckets.

172

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_with-apply-status
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_restore-epoch
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_restore-data
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-replication-schema.html#ndb-replication-ndb-apply-status
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-error-codes-application-error.html#ndberrno-4243
https://docs.oracle.com/cd/E17952_01/mysql-errors-8.0-en/server-error-reference.html#error_er_not_keyfile
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_disable-indexes
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#option_mysqld_ndb-batch-size
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndbmtd.html

MySQL NDB Cluster 8.0 Release Notes

To address this problem, we fix the number of hash buckets at 4095, and scale the size of a hash bucket
relative to the maximum number of operations, so that only relatively few items should now be placed in
the same bucket. (Bug #33803541)

References: See also: Bug #33803487.

• Performance: When inserting a great many rows into an empty or small table in the same transaction,
the rate at which rows were inserted quickly declined to less than 50% of the initial rate; subsequently, it
was found that roughly 50% of all CPU time was spent in Dbacc::getElement(), and the root cause
identified to be the timing of resizing the structures used for storing elements by DBACC, growing with the
insertion of more rows in the same transaction, and shrinking following a commit.

We fix this issue by checking for a need to resize immediately following the insertion or deletion of an
element. This also handles the subsequent rejection of an insert. (Bug #33803487)

References: See also: Bug #33803541.

• Performance: A considerable amount of time was being spent searching the event buffer data hash
(using the internal method EventBufData_hash::search()), due to the following issues:

• The number of buckets proved to be too low under high load, when the hash bucket list could become
very large.

• The hash buckets were implemented using a linked list. Traversing a long linked list can be highly
inefficient.

We fix these problems by using a vector (std::vector) rather than a linked list, and by making the
array containing the set of hash buckets expandable. (Bug #33796754)

• Performance: The internal function computeXorChecksum() was implemented such that great
care was taken to aid the compiler in generating optimal code, but it was found that it consumed
excessive CPU resources, and did not perform as well as a simpler implementation. This function is
now reimplemented with a loop summing up XOR results over an array, which appears to result in better
optimization with both GCC and Clang compilers. (Bug #33757412)

• Microsoft Windows: The CompressedLCP data node configuration parameter had no effect on
Windows platforms.

Note

When upgrading to this release, Windows users should verify the setting for
CompressedLCP; if it was previously enabled, you may experience an increase
in CPU usage by I/O threads following the upgrade, when under load, when
restoring data as part of a node restart, or in both cases. If this behavior is not
desired, disable CompressedLCP.

(Bug #33727690)

• Microsoft Windows: The internal function Win32AsyncFile::rmrfReq() did not always check for
both ERROR_FILE_NOT_FOUND and ERROR_PATH_NOT_FOUND when either condition was likely. (Bug
#33727647)

• Microsoft Windows: Corrected several minor issues that occurred with file handling on Windows
platforms. (Bug #33727629)

• NDB Cluster APIs: Hash key generation using the internal API method
NdbBlob::getBlobKeyHash() ignored the most significant byte of the key. This unnecessarily

173

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbacc.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/logical-operators.html#operator_xor
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-compressedlcp

MySQL NDB Cluster 8.0 Release Notes

caused uneven distribution in the NDB API blob hash list, resulting in a increased need for comparing
key values, and thus more CPU usage. (Bug #33803583)

References: See also: Bug #33783274.

• NDB Cluster APIs: Removed an unnecessary assertion that could be hit when iterating through the list
returned by Dictionary::listEvents(). (Bug #33630835)

• Builds on Ubuntu 21.10 using GCC 11 stopped with -Werror=maybe-uninitialized. (Bug
#33976268)

• In certain cases, NDB did not handle node IDs of data nodes correctly. (Bug #33916404)

• In some cases, NDB did not validate all node IDs of data nodes correctly. (Bug #33896409)

• In some cases, array indexes were not handled correctly. (Bug #33896389, Bug #33896399, Bug
#33916134)

• In some cases, integers were not handled correctly. (Bug #33896356)

• As part of work done in NDB 8.0.23 to implement the AutomaticThreadConfig configuration
parameter, the maximum numbers of LQH and TC threads supported by ndbmtd were raised from 129
each to 332 and 160, respectively. This adversely affected the performance of execSEND_PACKED()
methods implemented by several NDB kernel blocks, which complete sending of packed signals when
the scheduler is about to suspend execution of the current block thread. This was due to continuing
simply to iterate over the arrays of such threads despite the arrays' increased size. We fix this by using a
bitmask to track the thread states alongside the full arrays. (Bug #33856371)

• When operating on blob columns, NDB must add extra operations to read and write the blob head column
and blob part rows. These operations are added to the tail of the transaction's operation list automatically
when the transaction is executed.

To insert a new operation prior to a given operation, it was necessary to traverse the operation list from
the beginning until the desired operation was found, with a cost proportional to the length L of the list of
preceding operations. This is approximately L2 / 2, increasing as more operations are added to the list;
when a large number of operations modifying blobs were defined in a batch, this traversal cost was paid
for each operation. This had a noticeable impact on performance when reading and writing blobs.

We fix this by using list splicing in NdbTransaction::execute() to eliminate unnecessary traversals
of this sort when defining blob operations. (Bug #33797931)

• The block thread scheduler makes frequent calls to update_sched_config() to update its scheduling
strategy. That involves checking the fill degree of the job buffer queues used to send signals between
the nodes' internal block threads. When these queues are about to fill up, the thread scheduler assigns
a smaller value to max_signals for the next round, in order to reduce the pressure on the job buffers.
When the minimum free threshold has been reached, the scheduler yields the CPU while waiting for the
consumer threads to free some job buffer slots.

The fix in NDB 8.0.18 for a previous issue introduced a mechanism whereby the main thread was
allowed to continue executing even when this lower threshold had been reached; in some cases the
main thread consumed all job buffers, including those held in reserve, leading to an unplanned shutdown
of the data node due to resource exhaustion. (Bug #33792362, Bug #33872577)

References: This issue is a regression of: Bug #29887068.

• Setting up a cluster with one LDM thread and one query thread using the ThreadConfig parameter (for
example, ThreadConfig=ldm={cpubind=1},query={cpubind=2}) led to unplanned shutdowns of
data nodes.

174

https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-dictionary.html#ndb-dictionary-listevents
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbmtd-automaticthreadconfig
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndbmtd.html
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndbtransaction.html#ndb-ndbtransaction-execute
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbmtd-threadconfig

MySQL NDB Cluster 8.0 Release Notes

This was due to internal thread variables being assigned the wrong values when there were no main or
request threads explicitly assigned. Now we make sure in such cases that these are assigned the thread
number of the first receive thread, as expected. (Bug #33791270)

• NdbEventBuffer hash key generation for non-character data reused the same 256 hash keys; in
addition, strings of zero length were ignored when calculating hash keys. (Bug #33783274)

• The collection of NDB API statistics based on the EventBytesRecvdCount event counter incurred
excessive overhead. Now this counter is updated using a value which is aggregated as the event buffer
is filled, rather than traversing all of the event buffer data in a separate function call.

For more information, see NDB API Statistics Counters and Variables. (Bug #33778923)

• The internal method THRConfig::reorganize_ldm_bindings() behaved unexpectedly, in some
cases changing thread bindings after AutomaticThreadConfig had already bound the threads to the
correct CPUs. We fix this by removing the method, no longer using it when parsing configuration data or
adding threads. (Bug #33764260)

• The receiver thread ID was hard-coded in the internal method
TransporterFacade::raise_thread_prio() such that it always acted to raise the priority of the
receiver thread, even when called from the send thread. (Bug #33752983)

• A fix in NDB 8.0.28 addressed an issue with the code used by various NDB components, including
Ndb_index_stat, that checked whether the data nodes were up and running. In clusters with multiple
SQL nodes, this resulted in an increase in the frequency of race conditions between index statistics
threads trying to create a table event on the ndb_index_stat_head table; that is, it was possible for
two SQL nodes to try to create the event at the same time, with the losing SQL node raising Error 746
Event name already exists. Due to this error, the binary logging thread ended up waiting for the
index statistics thread to signal that its own setup was complete, and so the second SQL node timed out
with Could not create index stat system tables after --ndb-wait-setup seconds. (Bug
#33728909)

References: This issue is a regression of: Bug #32019119.

• On a write error, the message printed by ndbxfrm referenced the source file rather than the destination
file. (Bug #33727551)

• A complex nested join was rejected with the error FirstInner/Upper has to be an ancestor
or a sibling, which is thrown by the internal NdbQueryOperation interface used to define a
pushed join in the SPJ API, indicating that the join-nest dependencies for the interface were not properly
defined.

The query showing the issue had the join nest structure t2, t1, (t3, (t5, t4)). Neither of the join
conditions on t5 or t4 had any references or explicit dependencies on table t3, but each had an implicit
dependency on t3 in virtue of being in a nest within the same nest as t3.

When preparing a pushed join, NDB tracks all required table dependencies between tables and join-nests
by adding them to the m_ancestor bitmask for each table. For nest level dependencies, they should all
be added to the first table in the relevant nest. When the relevant dependencies for a specific table are
calculated, they include the set of all tables being explicitly refered in the join condition, plus any implicit
dependencies due to the join nests the table is a member of, limited by the uppermost table referred to in
the join condition.

For this particular join query we did not properly take into account that there might not be any references
to tables in the closest upper nest (the nest starting with t3); in such cases we are dependent on all

175

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndb-api-statistics.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbmtd-automaticthreadconfig
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#option_mysqld_ndb-wait-setup
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndbxfrm.html

MySQL NDB Cluster 8.0 Release Notes

nests up to the nest containing the uppermost table referenced. We fix the issue by introducing a while-
loop in which we add ancestor nest dependencies until we reach this uppermost table. (Bug #33670002)

• When the transient memory pool (TransientPool) used internally by NDB grew above 256 MB,
subsequent attempts to shrink the pool caused an error which eventually led to an unplanned shutdown
of the data node. (Bug #33647601)

• Check that the connection to NDB has been set up before querying about statistics for partitions. (Bug
#33643512)

• When the ordered index PRIMARY was not created for the ndb_sql_metadata table, application of
stored grants could not proceed due to the missing index.

We fix this by protecting creation of utility tables (including ndb_sql_metadata) by wrapping the
associated CREATE TABLE statement with a schema transaction, thus handling rejection of the
statement by rollback. In addition, in the event the newly-created table is not created correctly, it is
dropped. These changes avoid leaving behind a table that is only partially created, so that the next
attempt to create the utility table starts from the beginning of the process. (Bug #33634453)

• Removed -Wmaybe-uninitialized warnings which occurred when compiling NDB Cluster with GCC
11.2. (Bug #33611915)

• NDB accepted an arbitrary (and invalid) string of characters following a numeric parameter value in the
config.ini global configuration. For example, it was possible to use either OverloadLimit=10
"M12L" or OverloadLimit=10 M (which contains a space) and have it interpreted as
OverloadLimit=10M.

It was also possible to use a bare letter suffix in place of an expected numeric value, such
as OverloadLimit=M, and have it interpreted as zero. This happened as well with an
arbitrary string whose first letter was one of the MySQL standard modifiers K, M, or G; thus,
OverloadLimit=MAX_UINT also had the effect of setting OverloadLimit to zero.

Now, only one of the suffixes K, M, or G is accepted with a numeric parameter value, and it must follow
the numeric value immediately, with no intervening whitespace characters or quotation marks. In other
words, to set OverloadLimit to 10 megabytes, you must use one of OverloadLimit=10000000,
OverloadLimit=10M, or OverloadLimit=10000K.

Note

To maintain availability, you should check your config.ini file for any
settings that do not conform to the rule enforced as a result of this change and
correct them prior to upgrading. Otherwise, the cluster may not be able to start
afterwards, until you rectify the issue.

(Bug #33589961)

• Enabling AutomaticThreadConfig with fewer than 8 CPUs available led to unplanned shutdowns of
data nodes. (Bug #33588734)

• Removed the unused source files buddy.cpp and buddy.hpp from storage/ndb/src/common/
transporter/. (Bug #33575155)

• The NDB stored grants mechanism now sets the session variable print_identified_with_as_hex
to true, so that password hashes stored in the ndb_sql_metadata table are formatted as
hexadecimal values rather than being formatted as strings. (Bug #33542052)

• Binary log thread event handling includes optional high-verbosity logging, which, when enabled and the
connection to NDB lost, produces an excess of log messages like these:

176

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/create-table.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbmtd-automaticthreadconfig
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/server-system-variables.html#sysvar_print_identified_with_as_hex

MySQL NDB Cluster 8.0 Release Notes

datetime 2 [Note] [MY-010866] [Server] NDB Binlog: cluster failure for epoch 55/0.
datetime 2 [Note] [MY-010866] [Server] NDB Binlog: cluster failure for epoch 55/0.

Such repeated log messages, not being of much help in diagnosing errors, have been removed. This
leaves a similar log message in such cases, from the handling of schema distribution event operation
teardown. (Bug #33492244)

• Historically, a number of different methods have been used to enforce compile-time checks of various
interdependencies and assumptions in the NDB codebase in a portable way. Since the standard
static_assert() function is now always available, the NDB_STATIC_ASSERT and STATIC_ASSERT
macros have been replaced with direct usage of static_assert(). (Bug #33466577)

• When the internal AbstractQueryPlan interface determined the access type to be used for a specific
table, it tried to work around an optimizer problem where the ref access type was specified for a table
and later turned out to be accessible by eq_ref. The workaround introduced a new issue by sometimes
determining eq_ref access for a table actually needing ref access; in addition, the prior fix did not take
into account UNIQUE USING HASH indexes, which need either eq_ref or full table scan access, even
when the MySQL Optimizer regards it as a ref access.

We fix this by first removing the workaround (which had been made obsolete by the proper fix for the
previous issue), and then by introducing the setting of eq_ref or full_table_scan access for hash
indexes. (Bug #33451256)

References: This issue is a regression of: Bug #28965762.

• When a pushed join is prepared but not executed, the Ndb_pushed_queries_dropped status variable
is incremented. Now, in addition to this, NDB now emits a warning Prepared pushed join could
not be executed... which is passed to ER_GET_ERRMSG. (Bug #33449000)

• The deprecated -r option for ndbd has been removed. In addition, this change also removes
extraneous text from the output of ndbd --help. (Bug #33362935)

References: See also: Bug #31565810.

• ndb_import sometimes could not parse correctly a .csv file containing Windows/DOS-style (\r\n)
linefeeds. (Bug #32006725)

• The ndb_import tool handled only the hidden primary key which is defined by NDB when a table does
not have an explicit primary key. This caused an error when inserting a row containing NULL for an auto-
increment primary key column, even though the same row was accepted by LOAD DATA INFILE.

We fix this by adding support for importing a table with one or more instances of NULL in an auto-
increment primary key column. This includes a check that a table has no more than one auto-increment
column; if this column is nullable, it is redefined by ndb_import as NOT NULL, and any occurrence of
NULL in this column is replaced by a generated auto-increment value before inserting the row into NDB.
(Bug #30799495)

• When a node failure is detected, surviving nodes in the same nodegroup as this node attempt to resend
any buffered change data to event subscribers. In cases in which there were no outstanding epoch
deliveries, that is, the list of unacknowledged GCIs was empty, the surviving nodes made the incorrect
assumption that this list would never be empty. (Bug #30509416)

• When executing a copying ALTER TABLE of the parent table for a foreign key and the SQL node
terminates prior to completion, there remained an extraneous temporary table with (additional,
temporary) foreign keys on all child tables. One consequence of this issue was that it was not possible to
restore a backup made using mysqldump --no-data.

177

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#statvar_Ndb_pushed_queries_dropped
https://docs.oracle.com/cd/E17952_01/mysql-errors-8.0-en/server-error-reference.html#error_er_get_errmsg
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndbd.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndbd.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndbd.html#option_ndbd_help
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-import.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-import.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/load-data.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-import.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/alter-table.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysqldump.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysqldump.html#option_mysqldump_no-data

MySQL NDB Cluster 8.0 Release Notes

To fix this, NDB now performs cleanup of temporary tables whenever a mysqld process connects (or
reconnects) to the cluster. (Bug #24935788, Bug #29892252)

• An unplanned data node shutdown occurred following a bus error on Mac OS X for ARM. We fix this by
moving the call to NdbCondition_Signal() (in AsyncIoThread.cpp) such that it executes prior to
NdbMutex_Unlock()—that is, into the mutex, so that the condition being signalled is not lost during
execution. (Bug #105522, Bug #33559219)

• In DblqhMain.cpp, a missing return in the internal execSCAN_FRAGREQ() function led to an
unplanned shutdown of the data node when inserting a nonfatal error. In addition, the condition !
seize_op_rec(tcConnectptr) present in the same function was never actually checked. (Bug
#105051, Bug #33401830, Bug #33671869)

• It was possible to set any of MaxNoOfFiredTriggers, MaxNoOfLocalScans, and
MaxNoOfLocalOperations concurrently with TransactionMemory, although this is not allowed.

In addition, it was not possible to set any of MaxNoOfConcurrentTransactions,
MaxNoOfConcurrentOperations, or MaxNoOfConcurrentScans concurrently with
TransactionMemory, although there is no reason to prevent this.

In both cases, the concurrent settings behavior now matches the documentation for the
TransactionMemory parameter. (Bug #102509, Bug #32474988)

• When a redo log part is unable to accept an operation's log entry immediately, the operation (a prepare,
commit, or abort) is queued, or (prepare only) optionally aborted. By default operations are queued.

This mechanism was modified in 8.0.23 as part of decoupling local data managers and redo log parts,
and introduced a regression whereby it was possible for queued operations to remain in the queued
state until all activity on the log part quiesced. When this occurred, operations could remain queued until
DBTC declared them timed out, and aborted them. (Bug #102502, Bug #32478380)

Changes in MySQL NDB Cluster 8.0.28 (2022-01-18, General Availability)

• Compilation Notes

• Functionality Added or Changed

• Bugs Fixed

Compilation Notes

• NDB did not compile using GCC 11 on Ubuntu 21.10. (Bug #33424843)

Functionality Added or Changed

• Added the ndbinfo index_stats table, which provides very basic information about NDB index
statistics. It is intended primarily for use in our internal testing, but may be helpful in conjunction with
ndb_index_stat and other tools. (Bug #32906654)

• Previously, ndb_import always tried to import data into a table whose name was derived from the
name of the CSV file being read. This release adds a --table option (short form: -t) for this program,
which overrides this behavior and specifies the name of the target table directly. (Bug #30832382)

Bugs Fixed

• Important Change: The deprecated data node option --connect-delay has been removed. This
option was a synonym for --connect-retry-delay, which was not honored in all cases; this issue

178

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysqld.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-maxnooffiredtriggers
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-maxnooflocalscans
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-maxnooflocaloperations
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-transactionmemory
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-maxnoofconcurrenttransactions
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-maxnoofconcurrentoperations
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-maxnoofconcurrentscans
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbtc.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbinfo-index-stats.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-index-stat.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-import.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-import.html#option_ndb_import_table
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndbd.html#option_ndbd_connect-delay
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndbd.html#option_ndbd_connect-retry-delay

MySQL NDB Cluster 8.0 Release Notes

has been fixed, and the option now works correctly. In addition, the short form -r for this option has
been deprecated, and you should expect it to be removed in a future release. (Bug #31565810)

References: See also: Bug #33362935.

• NDB Cluster APIs: Several new basic example C++ NDB API programs have been added to the
distribution, under storage/ndb/ndbapi-examples/ndbapi_basic/ in the source tree. These
are shorter and should be easier to understand for newcomers to the NDB API than the existing API
examples. They also follow recent C++ standards and practices. These examples have also been added
to the NDB API documentation; see Basic NDB API Examples, for more information. (Bug #33378579,
Bug #33517296)

• NDB Cluster APIs: It is no longer possible to use the DIVERIFYREQ signal asynchronously. (Bug
#33161562)

• Timing of wait for scans log output during online reorganization was not performed correctly.
As part of this fix, we change timing to generate one message every 10 seconds rather than scaling
indefinitely, so as to supply regular updates. (Bug #35523977)

• Added missing values checks in ndbd and ndbmtd. (Bug #33661024)

• Online table reorganization increases the number of fragments of a table, and moves rows between
them. This is done in the following steps:

1. Copy rows to new fragments

2. Update distribution information (hashmap count and total fragments)

3. Wait for scan activity using old distribution to stop

4. Delete rows which have moved out of existing partitions

5. Remove reference to old hashmap

6. Wait for scan activity started since step 2 to stop

Due to a counting error, it was possible for the reorganization to hang in step 6; the scan reference count
was not decremented, and thus never reached zero as expected. (Bug #33523991)

• A UNIQUE index created with USING HASH does not support ordered or range access operations, but
rather only those operations in which the full key is specified, returning at most a single row. Even so,
for such an index on an NDB table, range access was still used on the index. (Bug #33466554, Bug
#33474345)

• The same pushed join on NDB tables returned an incorrect result when the batched_key_access
optimizer switch was enabled.

This issue arose as follows: When the batch key access (BKA) algorithm is used to join two tables,
a set of batched keys is first collected from one of the tables; a multirange read (MRR) operation is
constructed against the other. A set of bounds (ranges) is specified on the MRR, using the batched keys
to construct each bound.

When result rows are returned it is necessary to identify which range each returned row comes from.
This is used to identify the outer table row to perform the BKA join with. When the MRR operation in
question was a root of a pushed join operation, SPJ was unable to retrieve this identifier (RANGE_NO).
We fix this by implementing the missing SPJ API functionality for returning such a RANGE_NO from a
pushed join query. (Bug #33416308)

179

https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-examples-basic.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndbd.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndbmtd.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/switchable-optimizations.html#optflag_batched-key-access
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbspj.html

MySQL NDB Cluster 8.0 Release Notes

• Each query against the ndinfo.index_stats table leaked an NdbRecord. We fix this by changing
the context so that it owns the NdbRecord object which it creates and then to release the NdbRecord
when going out of scope, and by supporting the creation of one and only one record per context. (Bug
#33408123)

• A problem with concurrency occurred when updating cached table statistics with changed rows, when
several threads updating same table the threads competed for the NDB_SHARE mutex in order to update
the cached row count.

We fix this by reimplementing the storage of changed rows using an atomic counter rather than trying to
take the mutex and update the actual shared value, which reduces the need to serialize the threads. In
addition, we now append the number of changed rows to the row count only when removing the statistics
from the cache and provide a separate mutex protecting only the cached statistics. (Bug #33384978)

References: See also: Bug #32169848.

• If the schema distribution client detected a timeout before freeing the schema object when the
coordinator received the schema event, the coordinator processed the stale schema event instead of
returning.

The coordinator did not know whether a schema distribution timeout was detected by the client, and
started processing the schema event as soon as the schema object was valid. To fix this, we indicate the
state of the schema object and change its state when the client detects the schema distribution timeout
and when the schema event is received by the coordinator, so that both the coordinator and the client
are aware of this, and remain synchronized. (Bug #33318201)

• The MySQL Optimizer uses two different methods, handler::read_cost() and
Cost_model::page_read_cost(), to estimate the cost for different access methods, but the cost
values returned by these were not always comparable; in some cases this led to the wrong index being
chosen and longer execution time for effected queries. To fix this for NDB, we override the optimizer's
page_read_cost() method with one specific to NDBCLUSTER. It was also found while working on this
issue that the NDB handler did not implement the read_time() method, used by read_cost(); this
method is now implemented by ha_ndbcluster, and thus the optimizer can now properly take into
account the cost difference for NDB when using a unique key as opposed to an ordered index (range
scan). (Bug #33317872)

• When opening NDB tables for queries, the index statistics are retrieved to help the optimizer select the
optimal query plan. Each client accessing the stats acquires the global index statistics mutex both before
and after accessing the statistics. This causes mutex contention affecting query performance, whether or
not there are queries are operating on the same tables, or on different ones.

We fix this by protecting the count of index statistics references with an atomic counter. The problem
was clearly visible when benchmarking with more than 32 clients, when throughput did not increase with
additional clients. With this fix, the throughput continues to scale with up to 64 clients. (Bug #33317320)

• In certain cases, an event's category was not properly detected. (Bug #33304814)

• It was not possible to add new data nodes running ndbd to an existing cluster with data nodes running
ndbd. (Bug #33193393)

• For a user granted the NDB_STORED_USER privilege, the password_last_changed column in the
mysql.user table was updated each time the SQL node was restarted. (Bug #33172887)

• DBDICT did not always perform table name checks correctly. (Bug #33161548)

• Added a number of missing ID and other values checks in ndbd and ndbmtd. (Bug #33161486, Bug
#33162047)

180

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbinfo-index-stats.html
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndbrecord.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndbd.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndbd.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/privileges-provided.html#priv_ndb-stored-user
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbdict.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndbd.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndbmtd.html

MySQL NDB Cluster 8.0 Release Notes

• Added a number of missing ID and other values checks in ndbd and ndbmtd. (Bug #33161259, Bug
#33161362)

• SET_LOGLEVELORD signals were not always handled correctly. (Bug #33161246)

• DUMP 11001 did not always handle all of its arguments correctly. (Bug #33157513)

• File names were not always verified correctly. (Bug #33157475)

• Added a number of missing checks in the data nodes. (Bug #32983723, Bug #33157488, Bug
#33161451, Bug #33161477, Bug #33162082)

• Added a number of missing ID and other values checks in ndbd and ndbmtd. (Bug #32983700, Bug
#32893708, Bug #32957478, Bug #32983256, Bug #32983339, Bug #32983489, Bug #32983517, Bug
#33157527, Bug #33157531, Bug #33161271, Bug #33161298, Bug #33161314, Bug #33161331, Bug
#33161372, Bug #33161462, Bug #33161511, Bug #33161519, Bug #33161537, Bug #33161570, Bug
#33162059, Bug #33162065, Bug #33162074, Bug #33162082, Bug #33162092, Bug #33162098, Bug
#33304819)

• The management server did not always handle events of the wrong size correctly. (Bug #32957547)

• When ndb_mgmd is started without the --config-file option, the user is expected to provide the
connection string for another management server in the same cluster, so that the management server
being started can obtain configuration information from the other. If the host address in the connection
string could not be resolved, then the ndb_mgmd being started hung indefinitely while trying to establish
a connection.

This issue occurred because a failure to connect was treated as a temporary error, which led to the
ndb_mgmd retrying the connection, which subsequently failed, and so on, repeatedly. We fix this by
treating a failure in host name resolution by ndb_mgmd as a permanent error, and immediately exiting.
(Bug #32901321)

• The order of parameters used in the argument to ndb_import --csvopt is now handled consistently,
with the rightmost parameter always taking precedence. This also applies to duplicate instances of a
parameter. (Bug #32822757)

• In some cases, issues with the redo log while restoring a backup led to an unplanned shutdown of the
data node. To fix this, when the redo log file is not available for writes, we now include the correct wait
code and waiting log part in the CONTINUEB signal before sending it. (Bug #32733659)

References: See also: Bug #31585833.

• The binary logging thread sometimes attempted to start before all data nodes were ready, which led to
excess logging of unnecessary warnings and errors. (Bug #32019919)

• Instituted a number of value checks in the internal Ndb_table_guard::getTable() method. This
fixes a known issue in which an SQL node underwent an unplanned shutdown while executing ALTER
TABLE on an NDB table, and potentially additional issues. (Bug #30232826)

• Replaced a misleading error message and otherwise improved the behavior of ndb_mgmd when the
HostName could not be resolved. (Bug #28960182)

• A query used by MySQL Enterprise Monitor to monitor memory use in NDB Cluster became markedly
less performant as the number of NDB tables increased. We fix this as follows:

• Row counts for virtual ndbinfo tables have been made available to the MySQL optimizer

• Size estimates are now provided for all ndbinfo tables

181

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndbd.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndbmtd.html
https://dev.mysql.com/doc/ndb-internals/en/dump-command-11001.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndbd.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndbmtd.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-mgmd.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-mgmd.html#option_ndb_mgmd_config-file
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-mgmd.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-mgmd.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-mgmd.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-import.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-import.html#option_ndb_import_csvopt
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/alter-table.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/alter-table.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-mgmd.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-mgm-definition.html#ndbparam-mgmd-hostname
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbinfo.html

MySQL NDB Cluster 8.0 Release Notes

• Primary keys have been added to most internal ndbinfo tables

Following these improvements, the performance of queries against ndbinfo tables should be
comparable to queries against equivalent MyISAM tables. (Bug #28658625)

• Following improvements in LDM performance made in NDB 8.0.23, an UPDATE_FRAG_DIST_KEY_ORD
signal was never sent when needed to a data node using node ID 1. When running the cluster with 3 or
4 replicas and another node in the same node group restarted, this could result in SQL statements being
rejected with error MySQL 1297 ER_GET_TEMPORARY_ERRMSG and, subsequently, SHOW WARNINGS
reporting error NDB error 1204.

Note

Prior to upgrading to this release, you can work around the issue by restarting
data node 1 whenever any other node in the same node group has been
restarted.

(Bug #105098, Bug #33460188)

• Following the rolling restart of a data node performed as part of an upgrade from NDB 7.6 to NDB 8.0,
the data node underwent a forced shutdown. We fix this by allowing LQHKEYREQ signals to be sent to
both the DBLQH and the DBSPJ kernel blocks. (Bug #105010, Bug #33387443)

• When the AutomaticThreadConfig parameter was enabled, NumCPUs was always shown as 0 in the
data node log. In addition, when this parameter is in use, thread CPU bindings are now made correctly,
and the data node log shows the actual CPU binding for each thread. (Bug #102503, Bug #32474961)

• ndb_blob_tool --help did not return the expected output. (Bug #98158, Bug #30733508)

• NDB did not close any pending schema transactions when returning an error from internal system table
creation and drop functions.

Changes in MySQL NDB Cluster 8.0.27 (2021-10-19, General Availability)

• Functionality Added or Changed

• Bugs Fixed

Functionality Added or Changed

• Important Change: The old MaxAllocate data node configuration parameter has no effect in any
current version of NDB. As of this release, it is deprecated and subject to removal in a future release.
(Bug #52980, Bug #11760559)

• NDB Cluster APIs: Conditions pushed as part of a pushed query can now refer to columns from
ancestor tables within the same pushed query.

For example, given a table created using CREATE TABLE t (x INT PRIMARY KEY, y INT)
ENGINE=NDB, the query such as that shown here can now employ condition pushdown:

SELECT * FROM t AS a
LEFT JOIN t AS b
ON a.x=0 AND b.y>5,

Pushed conditions may include any of the common comparison operators <, <=, >, >=, =, and <>.

Values being compared must be of the same type, including length, precision, and scale.

182

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/myisam-storage-engine.html
https://docs.oracle.com/cd/E17952_01/mysql-errors-8.0-en/server-error-reference.html#error_er_get_temporary_errmsg
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/show-warnings.html
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-error-codes-node-recovery-error.html#ndberrno-1204
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dblqh.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbspj.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbmtd-automaticthreadconfig
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-blob-tool.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-blob-tool.html#option_ndb_blob_tool_help
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-maxallocate
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/create-table.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/create-table.html

MySQL NDB Cluster 8.0 Release Notes

NULL handling is performed according to the comparison semantics specified by the ISO SQL standard;
any comparison with NULL returns NULL.

For more information, see Engine Condition Pushdown Optimization.

As part of this work, the following NdbInterpretedCode methods are implemented in the NDB API for
comparing column values with values of parameters:

• branch_col_eq_param()

• branch_col_ne_param()

• branch_col_lt_param()

• branch_col_le_param()

• branch_col_gt_param()

• branch_col_ge_param()

In addition, a new NdbScanFilter::cmp_param() API method makes it possible to define
comparisons between column values and parameter values. (WL #14388)

• In environments that monitor and disconnect idle TCP connections, an idle cluster could suffer from
unnecessary data node failures, and the failure of more than one data node could lead to an unplanned
shutdown of the cluster.

To fix this problem, we introduce a new keep-alive signal (GSN_TRP_KEEP_ALIVE) that is sent on
all connections between data nodes on a regular basis, by default once every 6000 milliseconds
(one minute). The length of the interval between these signals can be adjusted by setting the
KeepAliveSendInterval data node parameter introduced in this release, which can be set to 0 to
disable keep-alive signals. You should be aware that NDB performs no checking that these signals are
received and performs no disconnects on their account (this remains the responsibility of the heartbeat
protocol). (Bug #32776593)

• A copying ALTER TABLE now checks the source table's fragment commit counts before and after
performing the copy. This allows the SQL node executing the ALTER TABLE to determine whether there
has been any concurrent write activity to the table being altered, and, if so, to terminate the operation,
which can help avoid silent loss or corruption of data. When this occurs, the ALTER TABLE statement
is now rejected with the error Detected change to data in source table during copying
ALTER TABLE. Alter aborted to avoid inconsistency. (Bug #24511580, Bug #25694856,
WL #10540)

• The creation and updating of NDB index statistics are now enabled by default. In addition, when restoring
metadata, ndb_restore now creates the index statistics tables if they do not already exist. (WL
#14355)

Bugs Fixed

• Important Change; NDB Cluster APIs: Since MySQL 8.0 uses the data dictionary to store table
metadata, the following NDB API Table methods relating to .FRM files are now deprecated:

• getFrmData()

• getFrmLength()

183

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/engine-condition-pushdown-optimization.html
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndbinterpretedcode.html
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndbinterpretedcode.html#ndb-ndbinterpretedcode-branch-col-eq-param
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndbinterpretedcode.html#ndb-ndbinterpretedcode-branch-col-ne-param
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndbinterpretedcode.html#ndb-ndbinterpretedcode-branch-col-lt-param
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndbinterpretedcode.html#ndb-ndbinterpretedcode-branch-col-le-param
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndbinterpretedcode.html#ndb-ndbinterpretedcode-branch-col-gt-param
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndbinterpretedcode.html#ndb-ndbinterpretedcode-branch-col-ge-param
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndbscanfilter.html#ndb-ndbscanfilter-cmp-param
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-keepalivesendinterval
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/alter-table.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-table.html
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-table.html#ndb-table-getfrmdata
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-table.html#ndb-table-getfrmlength

MySQL NDB Cluster 8.0 Release Notes

• setFrm()

NDB 8.0 uses getExtraMetadata() and setExtraMetadata() for reading and writing table
metadata stored in the MySQL data dictionary; you should expect the *Frm*() methods listed
previously to be removed in a future release of NDB Cluster. (Bug #28248575)

• Important Change: The default value for each of the two mysqld options --ndb-wait-connected
and --ndb-wait-setup has been increased from 30 to 120 seconds. (Bug #32850056)

• Microsoft Windows: A number of warnings generated when building NDB Cluster and the NDB utilities
with Visual Studio 16.9.5 were removed. (Bug #32881961)

• Microsoft Windows: On Windows, it was not possible to start data nodes successfully when the cluster
was configured to use more than 64 data nodes. (Bug #104682, Bug #33262452)

• NDB Cluster APIs: A number of MGM API functions, including
ndb_mgm_create_logevent_handle(), did not release memory properly. (Bug #32751506)

• NDB Cluster APIs: Trying to create an index using NdbDictionary with index statistics enabled and
the index statistics tables missing resulted in NDB error 723 No such table existed, the missing
table in this context being one of the statistics tables, which was not readily apparent to the user. Now in
such cases, NDB instead returns error 4714 Index stats system tables do not exist, which is
added in this release. (Bug #32739080)

• NDB Cluster APIs: The MySQL NoSQL Connector for JavaScript included with NDB Cluster is now built
using Node.js version 12.2.6.

• A buffer used in the SUMA kernel block did not always accommodate multiple signals. (Bug #33246047)

• In DbtupBuffer.cpp the priority level is adjusted to what is currently executing in one path, but it was
not used for short signals. This leads to the risk of TRANSID_AI signals, SCAN_FRAGCONF signals, or
both sorts of signals arriving out of order. (Bug #33206293)

• A query executed as a pushed join by the NDB storage engine returned fewer rows than expected, under
the following conditions:

• The query contained an IN or EXISTS subquery executed as a pushed join, using the firstMatch
algorithm.

• The subquery itself also contained an outer join using at least 2 tables, at least one of which used the
eq_ref access type.

(Bug #33181964)

• Part of the work done in NDB 8.0.23 to add query threads to the ThreadConfig parameter included the
addition of a TUX scan context, used to optimize scans, but in some cases this was not set up correctly
following the close of a scan. (Bug #33161080, Bug #32794719)

References: See also: Bug #33379702.

• An attribute not found error was returned on a pushed join in NDB when looking up a column to
add a linked value.

The issue was caused by use of the wrong lettercase for the name of the column, and is fixed by
insuring that we use the unmodified, original name of the column when performing lookups. (Bug
#33104337)

184

https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-table.html#ndb-table-setfrm
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-table.html#ndb-table-getextrametadata
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-table.html#ndb-table-setextrametadata
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysqld.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#option_mysqld_ndb-wait-connected
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#option_mysqld_ndb-wait-setup
https://docs.oracle.com/cd/E17952_01/ndbapi-en/mgm-functions-log-events.html#mgm-ndb-mgm-create-logevent-handle
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndbdictionary.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-suma.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbtux.html

MySQL NDB Cluster 8.0 Release Notes

• Changes in NDB 8.0 resulted in a permanent error (NDB Error 261) being returned when the resources
needed by a transaction's operations did not fit within those allocated for the transaction coordinator,
rather than a temporary one (Error 233) as in previous versions. This is significant in NDB Replication,
in which a temporary error is retried, but a permanent error is not; a permanent error is suitable when
the transaction itself is too large to fit in the transaction coordinator without reconfiguration, but when
the transaction cannot fit due to consumption of resources by other transactions, the error should be
temporary, as the transaction may be able to fit later, or in some other TC instance.

The temporary error returned in such cases (NDB error 233) now has a slightly different meaning; that
is, that there is insufficient pooled memory for allocating another operation. (Previously, this error meant
that the limit set by MaxNoOfConcurrentOperations had been reached.)

Rather than conflate these meanings (dynamic allocation and configured limit), we add a new temporary
error (Error 234) which is returned when the configured limit has been reached. See Temporary
Resource error, and Application error, for more information about these errors. (Bug #32997832)

References: See also: Bug #33092571.

• Added an ndbrequire() in QMGR to check whether the node ID received from the CM_REGREF signal is
less than MAX_NDB_NODES. (Bug #32983311)

• A check was reported missing from the code for handling GET_TABLEID_REQ signals. To fix this issue,
all code relating to all GET_TABLEID_* signals has been removed from the NDB sources, since these
signals are no longer used or supported in NDB Cluster. (Bug #32983249)

• Added an ndbrequire() in QMGR to ensure that process reports from signal data use appropriate node
IDs. (Bug #32983240)

• It was possible in some cases to specify an invalid node type when working with the internal
management API. Now the API specifically disallows invalid node types, and defines an “unknown” node
type (NDB_MGM_NODE_TYPE_UNKNOWN) to cover such cases. (Bug #32957364)

• NdbReceiver did not always initialize storage for a MySQL BIT column correctly. (Bug #32920099)

• Receiving a spurious schema operation reply from a node not registered as a participant in the current
schema operation led to an unplanned shutdown of the SQL node.

Now in such cases we discard replies from any node not registered as a participant. (Bug #32891206)

References: See also: Bug #30930132, Bug #32509544.

• The values true and false for Boolean parameters such as AutomaticThreadConfig were not
handled correctly when set in a .cnf file. (This issue did not affect handling of such values in .ini
files.) (Bug #32871875)

• Removed unneeded copying of a temporary variable which caused a compiler truncation warning in
storage/ndb/src/common/util/version.cpp. (Bug #32763321)

• The maximum index size supported by the NDB index statistics implementation is 3056 bytes. Attempting
to create an index of a larger size when the table held enough data to trigger a statistics update caused

185

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbtc.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-maxnoofconcurrentoperations
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-error-codes-temporary-resource-error.html
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-error-codes-temporary-resource-error.html
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-error-codes-application-error.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-qmgr.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-qmgr.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/bit-type.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbmtd-automaticthreadconfig

MySQL NDB Cluster 8.0 Release Notes

CREATE INDEX to be rejected with the error Got error 911 'Index stat scan requested on
index with unsupported key size' from NDBCLUSTER.

This error originated in the TUX kernel block during a scan which caused the schema transaction to fail.
This scan is triggered during index creation when the table contains a nonzero number of rows; this also
occurs during automatic updates of index statistics or execution of ANALYZE TABLE.

Creating the index as part of CREATE TABLE or when the table contained no rows returned no error. No
statistics were generated in such situations, while ANALYZE TABLE returned an error similar to the one
above.

We fix this by allowing the index to be created while returning an appropriate warning from a new check
introduced at the handler level. In addition, the TUX scan now handles this situation by suppressing the
error, and instead returns success, effectively treating the table as an empty fragment. Otherwise, the
behavior in such cases remains unchanged, with a warning returned to the client and no index statistics
generated, whether or not the table contains any rows. (Bug #32749829)

References: This issue is a regression of: Bug #28714864.

• A CREATE TABLE statement using ordered indexes returned an error when IndexStatAutoCreate
was set to 1 and all SQL nodes had been started with --ndb-index-stat-enable=OFF, due to the
fact that, when set to OFF, the option prevented the creation of the index statistics tables. Now these
tables are always created at mysqld startup regardless of the value of --ndb-index-stat-enable.
(Bug #32649528)

• If an NDB schema operation was lost before the coordinator could process it, the client which logged the
operation waited indefinitely for the coordinator to complete or abort it. (Bug #32593352)

References: See also: Bug #32579148.

• ndb_mgmd now writes a descriptive error message to the cluster log when it is invoked with one or more
invalid options. (Bug #32554492)

• An IPv6 address used as part of an NDB connection string and which had only decimal digits following
the first colon was incorrectly parsed, and could not be used to connect to the management server. (Bug
#32532157)

• Simultaneously creating a user and then granting this user the NDB_STORED_USER privilege on different
MySQL servers sometimes caused these servers to hang.

This was due to the fact that, when the NDB storage engine is enabled, all SQL statements that
involve users and grants are evaluated to determine whether they effect any users having the
NDB_STORED_USER privilege, after which some statements are ignored, some are distributed to all
SQL nodes as statements, and some are distributed to all SQL nodes as requests to read and apply
a user privilege snapshot. These snapshots are stored in the mysql.ndb_sql_metadata table.
Unlike a statement update, which is limited to one SQL statement, a snapshot update can contain up to
seven SQL statements per user. Waiting for any lock in the NDB binary logging thread while managing
distributed users could easily lead to a deadlock, when the thread was waiting for an exclusive lock on
the local ACL cache.

We fix this problem by implementing explicit locking around NDB_STORED_USER snapshot
updates; snapshot distribution is now performed while holding a global read lock on one row of the
ndb_sql_metadata table. (Previously, both statement and snapshot distribution were performed
asynchronously, with no locking.) Now, when a thread does not obtain this lock on the first attempt, a
warning is raised, and the deadlock prevented.

For more information, see Privilege Synchronization and NDB_STORED_USER. (Bug #32424653)

186

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/create-index.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbtux.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/analyze-table.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/create-table.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/create-table.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-indexstatautocreate
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#sysvar_ndb_index_stat_enable
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysqld.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-mgmd.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/privileges-provided.html#priv_ndb-stored-user
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-privilege-synchronization.html

MySQL NDB Cluster 8.0 Release Notes

References: See also: Bug #32832676.

• It was not possible to create or update index statistics when the cluster was in single user mode, due
to transactions being disallowed from any node other than the designated API node granted access,
regardless of type. This prevented the data node responsible for starting transactions relating to index
statistics from doing so.

We address this issue by relaxing the constraint in single user mode and allowing transactions
originating from data nodes (but not from other API nodes). (Bug #32407897)

• When starting multiple management nodes, the first such node waits for the others to start before
committing the configuration, but this was not explicitly communicated to users. In addition, when data
nodes were started without starting all management nodes, no indication was given to users that its
node ID was not allocated since no configuration had yet been committed. Now in such cases, the
management node prints a message advising the user that the cluster is configured to use multiple
management nodes, and to ensure that all such nodes have been started. (Bug #32339789)

• To handle cases in which a cluster is restarted while the MySQL Server (SQL node) is left running,
the index statistics thread is notified when an initial cluster start or restart occurs. The index statistics
thread forced the creation of a fresh Ndb object and checking of various system objects, which is
unnecessary when the MySQL Server is started at the same time as the initial Cluster start which led to
the unnecessary re-creation of the Ndb object.

We fix this by restarting only the listener in such cases, rather than forcing the Ndb object to be re-
created. (Bug #29610555, Bug #33130864)

• Removed extraneous spaces that appeared in some entries written by errors in the node logs. (Bug
#29540486)

• ndb_restore raised a warning to use --disable-indexes when restoring data after the metadata
had already been restored with --disable-indexes.

When --disable-indexes is used to restore metadata before restoring data, the tables in the target
schema have no indexes. We now check when restoring data with this option to ensure that there are no
indexes on the target table, and print the warning only if the table already has indexes. (Bug #28749799)

• The NDB binlog injector thread now detects errors while handling data change events received from the
storage engine. If an error is detected, the thread logs error messages and restarts itself, and as part of
the restart an exceptional, incident, or LOST_EVENTS entry is written to the binary log. This special entry
indicates to a replication applier that the binary log is incomplete. (Bug #27150740)

• When restoring of metadata was done using --disable-indexes, there was no attempt to create
indexes or foreign keys dependent on these indexes, but when ndb_restore was used without the
option, indexes and foreign keys were created. When --disable-indexes was used later while
restoring data, NDB attempted to drop any indexes created in the previous step, but ignored the failure of
a drop index operation due to a dependency on the index of a foreign key which had not been dropped.
This led subsequently to problems while rebuilding indexes, when there was an attempt to create foreign
keys which already existed.

We fix ndb_restore as follows:

• When --disable-indexes is used, ndb_restore now drops any foreign keys restored from the
backup.

187

https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndb.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_disable-indexes
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_disable-indexes
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html

MySQL NDB Cluster 8.0 Release Notes

• ndb_restore now checks for the existence of indexes before attempting to drop them.

(Bug #26974491)

• The --ndb-nodegroup-map option for ndb_restore did not function as intended, and code
supporting it has been removed. The option now does nothing, and any value set for it is ignored. (Bug
#25449055)

• Event buffer status messages shown by the event logger have been improved. Percentages are now
displayed only when it makes to do so. In addition, if a maximum size is not defined, the printout shows
max=unlimited. (Bug #21276857)

• File handles and FileLogHandler objects created in MgmtSrvr::configure_eventlogger were
leaked due to an incomplete destructor for BufferedLogHandler. This meant that, each time the
cluster configuration changed in a running ndb_mgmd, the cluster log was reopened and a file handle
leaked, which could lead to issues with test programs and possibly to other problems. (Bug #18192573)

• When --configdir was specified as ., but with a current working directory other than DataDir, the
binary configuration was created in DataDir and not in the current directory. In addition, ndb_mgmd
would not start when there was an existing binary configuration in DataDir.

We fix this by having ndb_mgmd check the path and refusing to start when a relative path is specified for
--configdir. (Bug #11755867)

• A memory leak occurred when NDBCLUSTER was unable to create a subscription for receiving cluster
events. Ownership of the provided event data is supposed to be taken over but actually happened only
when creation succeeded, in other cases the provided event data simply being lost. (Bug #102794, Bug
#32579459)

• ndb_mgmd ignores the --ndb-connectstring option if --config-file is also specified. Now a
warning to this effect is issued, if both options are used. (Bug #102738, Bug #32554759)

• The data node configuration parameters UndoDataBuffer and UndoIndexBuffer have no effect in
any currently supported version of NDB Cluster. Both parameters are now deprecated and the presence
of either in the cluster configuration file raises a warning; you should expect them to be removed in a
future release. (Bug #84184, Bug #26448357)

• Execution of a bulk UPDATE statement using a LIMIT clause led to a debug assertion when an error
was returned by NDB. We fix this by relaxing the assertion for NDB tables, since we expect in certain
scenarios for an error to be returned at this juncture.

Changes in MySQL NDB Cluster 8.0.26 (2021-07-20, General Availability)

• Functionality Added or Changed

• Bugs Fixed

Functionality Added or Changed

• NDB Cluster APIs: The version of Node.js used by NDB has been upgraded to 12.22.1. (Bug
#32640847)

• NDB Cluster APIs: Added the NdbScanFilter::setSqlCmpSemantics() method to the NDB
API. Previously, NdbScanFilter has always treated NULL as equal to itself, so that NULL == NULL
evaluates as Boolean TRUE; this is not in accordance with the SQL standard, which requires that NULL
== NULL returns NULL. The new method makes it possible to override the traditional behavior, and
enforce SQL-compliant NULL comparisons instead, for the lifetime of a given NdbScanFilter instance.

188

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_ndb-nodegroup-map
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-mgmd.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-mgmd.html#option_ndb_mgmd_configdir
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-mgm-definition.html#ndbparam-mgmd-datadir
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-mgmd.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-mgmd.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-mgmd.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-mgmd.html#option_ndb_mgmd_ndb-connectstring
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-mgmd.html#option_ndb_mgmd_config-file
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-undodatabuffer
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-undoindexbuffer
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/update.html
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndbscanfilter.html#ndb-ndbscanfilter-setsqlcmpsemantics
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndbscanfilter.html

MySQL NDB Cluster 8.0 Release Notes

For more information, see NdbScanFilter::setSqlCmpSemantics(), in the MySQL NDB Cluster API
Developer Guide. (WL #14476)

• ndb_restore now supports conversion between NULL and NOT NULL columns, as follows:

• To restore a NULL column as NOT NULL, use the --lossy-conversions option. The presence of
any NULL rows in the column causes ndb_restore to raise an and exit.

• To restore a NOT NULL column as NULL, use the --promote-attributes option.

For more information, see the descriptions of the indicated ndb_restore options. (Bug #32702637)

• Added the PreferIPVersion configuration parameter, which controls the addressing preference of the
DNS resolver for IPv4 (4) or IPv6 (6), with 4 being the default. This parameter must be the same for all
TCP connections; for this reason, you should set it only in the [tcp default] section of the cluster
global configuration file. (Bug #32420615)

Bugs Fixed

• Packaging: The ndb-common man page was removed, and the information it contained moved to other
man pages. (Bug #32799519)

• Packaging: The mysqlbinlog utility was not included in the NDB Cluster Docker image. (Bug
#32795044)

• NDB Cluster APIs: The Node.js adapter did not always handle character set and collation numbers
correctly. (Bug #32742521)

• NDB Cluster APIs: Added the NDB_LE_EventBufferStatus3 log event type to
Ndb_logevent_type in the MGM API. This is an extension of the NDB_LE_EventBufferStatus
type which handles total, maximum, and allocated bytes as 64-bit values.

As part of this fix, the maximum value of the ndb_eventbuffer_max_alloc server system variable is
increased to 9223372036854775807 (263 - 1).

For more information, see The Ndb_logevent_type Type. (Bug #32381666)

• Conditions which were pushable to the NDBCLUSTER engine were not pushed down to the table if it was
referred to as part of a view or a table subquery. (Bug #32924533)

• RPM builds of NDB for Docker which used dynamic linking did not complete due to the inclusion of the
ndbclient library by ndbxfrm. Now ndbxfrm uses the internal ndbgeneral and ndbportlib
libraries instead.

As part of this fix, ndb_restore also now links against ndbgeneral and ndbportlib. (Bug
#32886430)

• NDB now uses std::min() and std::max() in place of its own internal macros for determining the
minimum and maximum of two numbers. (Bug #32854692)

• Some error messages printed by ndb_restore tried to access transactions that were already closed for
error information, resulting in an unplanned exit. (Bug #32815725)

• The error messages for NDB errors 418 (Out of transaction buffers in LQH...), 419 (Out of
signal memory...), and 805 (Out of attrinfo records in tuple manager...) all referred
to increasing LongSignalMemory, although there is no configuration parameter by that name. All three

189

https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndbscanfilter.html#ndb-ndbscanfilter-setsqlcmpsemantics
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_lossy-conversions
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_promote-attributes
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-tcp-definition.html#ndbparam-tcp-preferipversion
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysqlbinlog.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#sysvar_ndb_eventbuffer_max_alloc
https://docs.oracle.com/cd/E17952_01/ndbapi-en/mgm-types.html#mgm-ndb-logevent-type
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndbxfrm.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndbxfrm.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html

MySQL NDB Cluster 8.0 Release Notes

of these error messages have been corrected to refer to the LongMessageBuffer parameter instead.
(Bug #32797240)

• An unsuccessful CREATE TABLE of an NDB table returns a generic error message (ERROR HY000:
Can't create table 'tbl'), with additional, more specific error messages often pushed as
warnings. To assist users who may not be aware of this and see only the generic message, we have
added reminder text regarding the SHOW WARNINGS statement to the generic error message, to prompt
the user to obtain additional information that might help resolve a given issue more quickly. (Bug
#32788231)

• An NDB error which is not mapped to a MySQL handler error code is typically presented to a MySQL
user as error 1296 or 1297, with a message indicating the underlying NDB error code; one exception to
this behavior is a COMMIT error (originating from ndbcluster_commit()), for which the usual NDB
error is 4350 Transaction already aborted. MySQL eventually passed this to strerror() in
the C library, where it was prefixed with Unknown error or similar, but the precise format of this prefix
varied with platform-specific differences with the version of libc being used.

We fix this by creating both a new handler error HA_ERR_TX_FAILED, and a new client error
ER_TRANSACTION_FAILED, associated with SQL State 25000 Invalid Transaction State. (Bug
#32763179)

References: See also: Bug #30264401.

• When started with the --print-full-config option, ndb_mgmd exited with the error Address
already in use. This is fixed by skipping free port validation when this option is specified. (Bug
#32759903)

• Removed unneeded printouts that were generated in the cluster log when executing queries against the
ndbinfo.cluster_locks table. (Bug #32747486)

• The DbUtil class did not call mysql_library_end() when a thread using the MySQL
client library had finished doing so, and did not release the thread's local resources by calling
mysql_thread_end(). (Bug #32730214)

• A memory leak took place in DbUtil when running a query for the second time using same DbUtil
instance; the connection check did not detect the existing MYSQL instance, and replaced it without
releasing it. (Bug #32730047)

• Returning an error while determining the number of partitions used by a NDB table caused the MySQL
server to write Incorrect information in table.frm file to its error log, despite the fact
that the indicated file did not exist. This also led to problems with flooding of the error log when users
attempted to open NDB tables while the MySQL server was not actually connected to NDB.

We fix this by changing the function that determines the number of partitions to use the value loaded
from the MySQL data dictionary without fetching it from NDB, which also saves one round trip when
opening a table. For the special case in which the table is opened for upgrade, we fall back to fetching
the value from NDB in the upgrade code path. (Bug #32713166)

• Using duplicate node IDs with CREATE NODEGROUP (for example, CREATE NODEGROUP 11, 11) could
lead to an unplanned shutdown of the cluster. Now when this command includes duplicate node IDs, it
raises an error. (Bug #32701583)

• Improved the performance of queries against the ndbinfo.cluster_locks table, which could in
some cases run quite slowly. (Bug #32655988)

• Fixed a number of issues found in ndb_print_backup_file relating to argument parsing, error
reporting, and opening of encrypted files using classes from ndbxfrm. (Bug #32583227)

190

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-longmessagebuffer
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/create-table.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-mgmd.html#option_ndb_mgmd_print-full-config
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-mgmd.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbinfo-cluster-locks.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbutil.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbutil.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-mgm-client-commands.html#ndbclient-create-nodegroup
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbinfo-cluster-locks.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-print-backup-file.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndbxfrm.html

MySQL NDB Cluster 8.0 Release Notes

• The directory unittest/ndb was generated by the build process even though it is not used. This
directory is no longer created when building NDB. (Bug #32553339)

• To ensure that the log records kept for the redo log in main memory are written to redo log file within
one second, a time supervisor in DBLQH acquires a lock on the redo log part prior to the write. A fix for
a previous issue caused a continueB signal (introduced as part of that fix) to be sent when the redo log
file was not yet opened and ready for the write, then to return without releasing the lock. Now such cases
we release the acquired lock before waiting for the redo log file to be open and ready for the write. (Bug
#32539348)

References: This issue is a regression of: Bug #31585833.

• Updating the Ndb object used for receiving events from NDB in the binary log injector thread with the
value for ndb_eventbuffer_max_alloc was performed both at the start of each epoch and after
having handled one event, when it is sufficient to update the value once per epoch.

We fix this by not updating from the global value during processing of each event, which reduces the
amount of work required during each event processing loop. (Bug #32494904)

• Failure to find all blob parts for a blob column while reading from the event stream was not handled
properly, which caused the data in the caller's copy-out buffer to be incomplete, with no error returned to
the caller.

When a user of the event API has been notified that data has been received for a table with blob column,
it creates a buffer large enough to hold the entire blob and then calls the function to read the blob column
from the event stream. Most blob types are stored as several small parts in NDB; to read the blob data
for a blob column from the event stream, the buffered event data must be traversed to find the blob parts
and to copy each part into the provided buffer. Each piece of buffered event data associated with the
blob column is examined to see whether it contains the data for the blob part desired. When a blob part
is found, it is copied into the buffer at the original offset provided by the caller.

The function which finds the blob parts can copy out one or more blob parts at a time. This function is
normally called several times while putting the blob parts together—first to find the first blob part, then
all the parts in the middle (several at a time), and then the remainder in the last part. When the function
does not find all requested blob parts in the buffered event data, this results in an inconsistency which
may occur due to any of several different cases—all parts may not have been sent, the received parts
may have been stored in the wrong place, there is a problem in the logic putting the blob parts together,
or possibly some other issue. The inconsistency is detected by comparing how many blob parts have
been found with how many were requested to be copied out this time.

This problem was noticed while investigating problem with an unplanned SQL node shutdown that could
occur while executing some ALTER TABLE operations, where a debug-compiled mysqld asserted
after having printed information about missing blob parts; manual code inspection shows that a release-
compiled binary would just return the incomplete buffer to the caller. This problem was also noticed in
addressing some previous similar issues.

We fix this problem by returning an error from NdbEventOperationImpl::readBlobParts()
whenever requested blob parts cannot be found. Since this is a serious inconsistency, we also extend
the printout provided when this problem is detected. A sample of the extended printout is shown here:

= print_blob_part_bufs =============================
part_start: 0, part_count: 15
table: { id: 13, version: 2, name: 't1' }
column: { attrid: 1, name: 'b' }
blob parts table: { id: 14, version: 2, name: 'NDB$BLOB_13_1' }
available buffers: {
[0]*: part_number: 1, size: 2000, offset: 2000

191

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dblqh.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/alter-table.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysqld.html

MySQL NDB Cluster 8.0 Release Notes

[1]*: part_number: 14, size: 2000, offset: 28000
[2]*: part_number: 7, size: 2000, offset: 14000
[3]*: part_number: 5, size: 2000, offset: 10000
[4]*: part_number: 3, size: 2000, offset: 6000
[5]*: part_number: 0, size: 2000, offset: 0
[6] : part_number: 15, size: 2000, offset: 30000
[7]*: part_number: 13, size: 2000, offset: 26000
[8]*: part_number: 12, size: 2000, offset: 24000
[9]*: part_number: 11, size: 2000, offset: 22000
[10]*: part_number: 10, size: 2000, offset: 20000
[11]*: part_number: 9, size: 2000, offset: 18000
[12]*: part_number: 8, size: 2000, offset: 16000
[13]*: part_number: 6, size: 2000, offset: 12000
[14]*: part_number: 4, size: 2000, offset: 8000
[15]*: part_number: 2, size: 2000, offset: 4000
}

(Bug #32469090)

References: See also: Bug #32405937, Bug #30509284.

• A node was permitted during a restart to participate in a backup before it had completed recovery,
instead of being made to wait until its recovery was finished. (Bug #32381165)

• Removed NDB_WIN32 from the NDB Cluster sources. This define was once intended to demarcate code
to be conditionally compiled only for Windows, but had long since been superseded for this purpose by
_WIN32. (Bug #32380725)

• Running out of disk space while performing an NDB backup could lead to an unplanned shutdown of the
cluster. (Bug #32367250)

• The index statistics thread relies on the binary log injector thread to inform it about initial system restarts.
The index statistics thread then (asynchronously) recycles its Ndb object and creates its system tables.
Depending on timing, it was possible for the index statistics thread not to be ready to serve requests for
a period of time during which NDB tables were writable. This also led to issues during the setup of stored
grants when the data node parameter IndexStatAutoCreate was set to 1.

We fix this in two ways:

• Make the sending of the signal to the index statistics thread part of binary log setup so that it is
detected in a timely fashion

• Forcing binary log setup to wait until index statistics functionality has been set up in such cases

(Bug #32355045)

• It was possible to start ndb_mgmd with NoOfReplicas set equal to 1 and with more than 72 data nodes
defined in the config.ini file. Now the management server checks for this condition, and refuses to
start if it is found. (Bug #32258207)

• It was possible to start ndb_mgmd with an invalid value set in config.ini for the NodeGroup
parameter; subsequently, data node processes using that value were unable to start. Now in such cases,
the management server refuses to start, and provides an appropriate error message. (Bug #32210176)

• A statement such ALTER TABLE t1 ALGORITHM=INPLACE, RENAME COLUMN B to b that
performed an in-place rename of a column changing only the lettercase of its name was successful, but
the change was not reflected in the NDB dictionary (as shown, for example, in the output of ndb_desc).
We fix this issue by ensuring that the NDB dictionary always matches the lettercase specified in the SQL
statement, and that this matches the name as stored in the MySQL data dictionary. (Bug #31958327)

192

https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndb.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-indexstatautocreate
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-mgmd.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-noofreplicas
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-mgmd.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-nodegroup
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/alter-table.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-desc.html

MySQL NDB Cluster 8.0 Release Notes

• Event buffer congestion could lead to unplanned shutdown of SQL nodes which were performing binary
logging. We fix this by updating the binary logging handler to use Ndb::pollEvents2() (rather
than the deprecated pollEvents() method) to catch and handle such errors properly, instead. (Bug
#31926584)

• The --resume option for ndb_import did not work correctly unless the --stats option was also
specified. (Bug #31107058)

• Reverted a previous change in the scope of the flags used by INSERT IGNORE and other similar
SQL statements to inform the handler that duplicate key errors during an insert or update do not stop
an ongoing transaction. Now these flags are cleared after every write row event, as before. (Bug
#27538524)

References: See also: Bug #22603412. This issue is a regression of: Bug #20017428.

• NDBCLUSTER uses bitmaps of type MY_BITMAP for keeping track of which columns are to be used
in various contexts. When used in short-lived performance-critical code, these are initialized with a
bit buffer whose (fixed) size is defined at compile time. The size of these buffers was calculated in
multiple ways, which could lead to copy-paste errors, uncertainty whether the buffer is large enough, and
possible allocation of excess space.

We fix this by implementing an internal Ndb_bitmap_buf class that takes the number of bits the buffer
should hold as a template argument, and changing all occurrences of static bitmap buffers to instances
of Ndb_bitmap_buf. This also saves several bytes in the condition pushdown code in which the buffers
were too large. (Bug #27150799)

• A DELETE statement whose WHERE clause referred to a BLOB column was not executed correctly. (Bug
#13881465)

• Analysis of data node and management node logs was sometimes hampered by the fact that not all
log messages included timestamps. This is fixed by replacing a number of different logging functions
(printf, fprintf, ndbout, ndbout_c, << overloading, and so on) with and standardizing on the
existing EventLogger mechanism which begins each log message with a timestamp in YYYY-MM-DD
HH:MM:SS format.

For more information about NDB Cluster event logs and the log message format, see Event Reports
Generated in NDB Cluster. (WL #14311)

References: See also: Bug #21441915, Bug #30455830.

Changes in MySQL NDB Cluster 8.0.24 (2021-04-20, General Availability)

• Functionality Added or Changed

• Bugs Fixed

Functionality Added or Changed

• NDB Cluster APIs: The version of Node.js used by NDB has been upgraded to 12.20.1. (Bug
#32356419)

• ndbinfo Information Database: Added the dict_obj_tree table to the ndbinfo information
database. This table provides information about NDB database objects similar to what is shown by
the dict_obj_info table, but presents it in a hierarchical or tree-like fashion that simplifies seeing
relationships between objects such as: tables and indexes; tablespaces and data files; log file groups
and undo log files.

193

https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndb.html#ndb-ndb-pollevents2
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndb.html#ndb-ndb-pollevents
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-import.html#option_ndb_import_resume
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-import.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-import.html#option_ndb_import_stats
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/delete.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/blob.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-event-reports.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-event-reports.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbinfo-dict-obj-tree.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbinfo.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbinfo-dict-obj-info.html

MySQL NDB Cluster 8.0 Release Notes

An example of such a view of a table t1, having a primary key on column a and a unique key on column
b, is shown here:

mysql> SELECT indented_name FROM ndbinfo.dict_obj_tree
 -> WHERE root_name = 'test/def/t1';
+----------------------------+
| indented_name |
+----------------------------+
| test/def/t1 |
| -> sys/def/13/b |
| -> NDB$INDEX_15_CUSTOM |
| -> sys/def/13/b$unique |
| -> NDB$INDEX_16_UI |
| -> sys/def/13/PRIMARY |
| -> NDB$INDEX_14_CUSTOM |
+----------------------------+
7 rows in set (0.15 sec)

For additional information and examples, see The ndbinfo dict_obj_tree Table. (Bug #32198754)

• Added the status variable Ndb_config_generation, which shows the generation number of the
current configuration being used by the cluster. This can be used as an indicator to determine whether
the configuration of the cluster has changed. (Bug #32247424)

• NDB Cluster now uses the MySQL host_application_signal component service to perform
shutdown of SQL nodes. (Bug #30535835, Bug #32004109)

• NDB has implemented the following two improvements in calculation of index statistics:

• Previously, index statistics were collected from a single fragment only; this is changed such that
additional fragments are used for these.

• The algorithm used for very small tables, such as those having very few rows where results are
discarded, has been improved, so that estimates for such tables should be more accurate than
previously.

See NDB API Statistics Counters and Variables, for more information. (WL #13144)

194

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbinfo-dict-obj-tree.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#statvar_Ndb_config_generation
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndb-api-statistics.html

MySQL NDB Cluster 8.0 Release Notes

• A number of NDB Cluster programs now support input of the password for encrypting or decrypting an
NDB backup from standard input. Changes relating to each program affected are listed here:

• For ndb_restore, the --backup-password-from-stdin option introduced in this release
enables input of the password in a secure fashion, similar to how it is done by the mysql client' --
password option. Use this option together with the --decrypt option.

• ndb_print_backup_file now also supports --backup-password-from-stdin as the long
form of the existing -P option.

• For ndb_mgm, --backup-password-from-stdin is supported together with --execute "START
BACKUP [options]" for starting an encrypted cluster backup from the system shell, and has the
same effect.

• Two options for ndbxfrm, --encrypt-password-from-stdin and --decrypt-password-
from-stdin, which are also introduced in this release, cause similar behavior when using this
program, respectively, to encrypt or to decrypt a backup file.

In addition, you can cause ndb_mgm to use encryption whenever it creates a backup by starting it with
--encrypt-backup. In this case, the user is prompted for a password when invoking START BACKUP
if none is supplied. This option can also be specified in the [ndb_mgm] section of the my.cnf file.

Also, the behavior and syntax of the ndb_mgm management client START BACKUP are changed slightly,
such that it is now possible to use the ENCRYPT option without also specifying PASSWORD. Now when the
user does this, the management client prompts the user for a password.

For more information, see the descriptions of the NDB Cluster programs and program options just
mentioned, as well as Online Backup of NDB Cluster. (WL #14259)

Bugs Fixed

• Packaging: The mysql-cluster-community-server-debug and mysql-cluster-
commercial-server-debug RPM packages were dependent on mysql-community-server and
mysql-commercial-server, respectively, instead of mysql-cluster-community-server
and mysql-cluster-commercial-server. (Bug #32683923)

• Packaging: RPM upgrades from NDB 7.6.15 to 8.0.22 did not succeed due to a file having been moved
from the server RPM to the client-plugins RPM. (Bug #32208337)

• Linux: On Linux systems, NDB interpreted memory sizes obtained from /proc/meminfo as being
supplied in bytes rather than kilobytes. (Bug #102505, Bug #32474829)

• Microsoft Windows: Removed several warnings which were generated when building NDB Cluster on
Windows using Microsoft Visual Studio 2019. (Bug #32107056)

• Microsoft Windows: NDB failed to start correctly on Windows when initializing the NDB library with
ndb_init(), with the error Failed to find CPU in CPU group.

This issue was due to how Windows works with regard to assigning processes to CPUs: when there
are more than 64 logical CPUs on a machine, Windows divides them into different processor groups
during boot. Each processor group can at most hold 64 CPUs; by default, a process can be assigned
to only one processor group. The function std::thread::hardware_concurrency() was used to
get the maximum number of logical CPUs on the machine, but on Windows, this function returns only
the maximum number of logical CPUs present in the processor group with which the current process is
affiliated. This value is used to allocate memory for an array that holds hardware information about each
CPU on the machine. Since the array held valid memory for CPUs from only one processor group, any

195

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_backup-password-from-stdin
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-command-options.html#option_mysql_password
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-command-options.html#option_mysql_password
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_decrypt
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-print-backup-file.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-print-backup-file.html#option_ndb_print_backup_file_backup-password-from-stdin
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-mgm.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-mgm.html#option_ndb_mgm_backup-password-from-stdin
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-mgm.html#option_ndb_mgm_execute
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-mgm.html#option_ndb_mgm_execute
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndbxfrm.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndbxfrm.html#option_ndbxfrm_encrypt-password-from-stdin
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndbxfrm.html#option_ndbxfrm_decrypt-password-from-stdin
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndbxfrm.html#option_ndbxfrm_decrypt-password-from-stdin
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-mgm.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-mgm.html#option_ndb_mgm_encrypt-backup
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-backup-using-management-client.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-mgm.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-backup-using-management-client.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-backup.html

MySQL NDB Cluster 8.0 Release Notes

attempt to store and retrieve hardware information about a CPU in a different processor group led to
array bound read/write errors, leading to memory corruption and ultimately leads to process failures.

Fixed by using GetActiveProcessorCount() instead of the hardware_concurrency() function
referenced previously. (Bug #101347, Bug #32074703)

• Solaris: While preparing NDBFS for handling of encrypted backups, activation of O_DIRECT was
suspended until after initialization of files was completed. This caused initialization of redo log files to
require an excessive amount of time on systems using hard disk drives with ext3 file systems.

On Solaris, directio is used instead of O_DIRECT; activating directio prior to initialization of files
caused a notable increase in time required when using hard disk drives with UFS file systems.

Now we ensure that, on systems having O_DIRECT, this is activated before initialization of files, and that,
on Solaris, directio continues to be activated after initialization of files. (Bug #32187942)

• NDB Cluster APIs: Several NDB API coding examples included in the source did not release all
resources allocated. (Bug #31987735)

• NDB Cluster APIs: Some internal dictionary objects in NDB used an internal name format which
depends on the database name of the Ndb object. This dependency has been made more explicit where
necessary and otherwise removed.

Users of the NDB API should be aware that the fullyQualified argument to
Dictionary::listObjects() still works in such a way that specifying it as false causes the
objects in the list it returns to use fully qualified names. (Bug #31924949)

• In some cases, a query affecting a user with the NDB_STORED_USER privilege could be printed to the
MySQL server log without being rewritten. Now such queries are omitted or rewritten to remove any text
following the keyword IDENTIFIED. (Bug #32541096)

• The value set for the SpinMethod data node configuration parameter was ignored. (Bug #32478388)

• The compile-time debug flag DEBUG_FRAGMENT_LOCK was enabled by default. This caused increased
resource usage by DBLQH, even for release builds.

This is fixed by disabling DEBUG_FRAGMENT_LOCK by default. (Bug #32459625)

• ndb_mgmd now exits gracefully in the event of a SIGTERM just as it does following a management client
SHUTDOWN command. (Bug #32446105)

• When started on a port which was already in use, ndb_mgmd did not throw any errors since the use of
SO_REUSEADDR on Windows platforms allowed multiple sockets to bind to the same address and port.

To take care of this issue, we replace SO_REUSEADDRPORT with SO_EXCLUSIVEADDRUSE, which
prevents re-use of a port that is already in use. (Bug #32433002)

• Encountering an error in detection of an initial system restart of the cluster caused the SQL node to exit
prematurely. (Bug #32424580)

• Under some situations, when trying to measure the time of a CPU pause, an elapsed time of zero could
result. In addition, computing the average for a very fast spin (for example, 100 loops taking less than
100ns) could zero nanoseconds. In both cases, this caused the spin calibration algorithm throw an
arithmetic exception due to division by zero.

We fix both issues by modifying the algorithm so that it ignores zero values when computing mean spin
time. (Bug #32413458)

196

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-ndbfs.html
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-dictionary.html#ndb-dictionary-listobjects
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/privileges-provided.html#priv_ndb-stored-user
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-spinmethod
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dblqh.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-mgmd.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-mgm-client-commands.html#ndbclient-shutdown
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-mgmd.html

MySQL NDB Cluster 8.0 Release Notes

References: See also: Bug #32497174.

• Table and database names were not formatted correctly in the messages written to the mysqld error log
when the internal method Ndb_rep_tab_reader::scan_candidates() found ambiguous matches
for a given database, table, or server ID in the ndb_replication table. (Bug #32393245)

• Some queries with nested pushed joins were not processed correctly. (Bug #32354817)

• When ndb_mgmd allocates a node ID, it reads through the configuration to find a suitable ID, causing a
mutex to be held while performing hostname lookups. Because network address resolution can require
large amounts of time, it is not considered good practice to hold such a mutex or lock while performing
network operations.

This issue is fixed by building a list of configured nodes while holding the mutex, then using the list to
perform hostname matching and other logic. (Bug #32294679)

• The schema distribution participant failed to start a global checkpoint after writing a reply to the
ndb_schema_result table, which caused an unnecessary delay before the coordinator received
events from the participant notifying it of the result. (Bug #32284873)

• The global DNS cache used in ndb_mgmd caused stale lookups when restarting a node on a new
machine with a new IP address, which meant that the node could not allocate a node ID.

This issue is addressed by the following changes:

• Node ID allocation no longer depends on LocalDnsCache

• DnsCache now uses local scope only

(Bug #32264914)

• ndb_restore generated a core file when started with unknown or invalid arguments. (Bug #32257374)

• Auto-synchronization detected the presence of mock foreign key tables in the NDB dictionary and
attempted to re-create them in the MySQL server's data dictionary, although these should remain
internal to the NDB Dictionary and not be exposed to the MySQL server. To fix this issue, we now
ensure that the NDB Cluster auto-synchronization mechanism ignores any such mock tables. (Bug
#32245636)

• Improved resource usage associated with handling of cluster configuration data. (Bug #32224672)

• Removed left-over debugging printouts from ndb_mgmd showing a client's version number upon
connection. (Bug #32210216)

References: This issue is a regression of: Bug #30599413.

• The backup abort protocol for handling of node failures did not function correctly for single-threaded data
nodes (ndbd). (Bug #32207193)

• While retrieving sorted results from a pushed-down join using ORDER BY with the index access method
(and without filesort), an SQL node sometimes unexpectedly terminated. (Bug #32203548)

• Logging of redo log initialization showed log part indexes rather than log part numbers. (Bug #32200635)

• Signal data was overwritten (and lost) due to use of extended signal memory as temporary storage. Now
in such cases, extended signal memory is not used in this fashion. (Bug #32195561)

197

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysqld.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-mgmd.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-mgmd.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-mgmd.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndbd.html

MySQL NDB Cluster 8.0 Release Notes

• When ClassicFragmentation = 1, the default number of partitions per node (shown in ndb_desc
output as PartitionCount) is calculated using the lowest number of LDM threads employed by any
single live node, and was done only once, even after data nodes left or joined the cluster, possibly with
a new configuration changing the LDM thread count and thus the default partition count. Now in such
cases, we make sure the default number of partitions per node is recalculated each time data nodes join
or leave the cluster.

This is not an issue in NDB 8.0.23 and later, when ClassicFragmentation is set to 0. (Bug
#32183985)

• The internal function Ndb_ReloadHWInfo() is responsible for updating hardware information for all
the CPUs on the host. For the Linux ARM platform, which does not have Level 3 cache information,
this assigned a socket ID for the L3 cache ID but failed to record the value for the global variable
num_shared_l3_caches, which is needed when creating lists of CPUs connected to a shared L3
cache. (Bug #32180383)

• When trying to run two management nodes on the same host and using the same port number, it
was not always obvious to users why they did not start. Now in such cases, in addition to writing a
message to the error log, an error message Same port number is specified for management
nodes node_id1 and node_id2 (or) they both are using the default port number
on same host host_name is also written to the console, making the source of the issue more
immediately apparent. (Bug #32175157)

• Added a --cluster-config-suffix option for ndb_mgmd and ndb_config, for use in internal
testing to override a defaults group suffix. (Bug #32157276)

• The management server returned the wrong status for host name matching when some of the host
names in configuration did not resolve and client trying to allocate a node ID connected from the
host whose host name resolved to a loopback address with the error Could not alloc node id
at <host>:<port>: Connection with id X done from wrong host ip 127.0.0.1,
expected <unresolvable_host> (lookup failed).

This caused the connecting client to fail the node ID allocation.

This issue is fixed by rewriting the internal match_hostname() function so that it contains all logic for
how the requesting client address should match the configured hostnames, and so that it first checks
whether the configured host name can be resolved; if not, it now returns a special error so that the client
receives an error indicating that node ID allocation can be retried. The new error is Could not alloc
node id at <host>:<port>: No configured host found of node type <type> for
connection from ip 127.0.0.1. Some hostnames are currently unresolvable. Can
be retried. (Bug #32136993)

• The internal function ndb_socket_create_dual_stack() did not close a newly created socket when
a call to ndb_setsockopt() was unsuccessful. (Bug #32105957)

• The local checkpoint (LCP) mechanism was changed in NDB 7.6 such that it also detected idle
fragments—that is, fragments which had not changed since the last LCP and thus required no on-disk
metadata update. The LCP mechanism could then immediately proceed to handle the next fragment.

198

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbmtd-classicfragmentation
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-desc.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-mgmd.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-config.html

MySQL NDB Cluster 8.0 Release Notes

When there were a great many such idle fragments, the CPU consumption required merely to loop
through these became highly significant, causing latency spikes in user transactions.

A 1 ms delay was already inserted between each such idle fragment being handled. Testing later
showed this to be too short an interval, and that we are normally not in as great a hurry to complete
these idle fragments as we previously believed.

This fix extends the idle fragment delay time to 20 ms if there are no redo alerts indicating an urgent
need to complete the LCP. In case of a low redo alert state we wait 5 ms instead, and for a higher alert
state we fall back to the 1 ms delay. (Bug #32068551)

References: See also: Bug #31655158, Bug #31613158.

• When an NDB table was created, it was invalidated in the global dictionary cache, but this was
unnecessary. Furthermore, having a table which exists in the global dictionary cache is actually an
advantage for subsequent uses of the new table, since it can be found in the table cache without
performing a round trip to NDB. (Bug #32047456)

• No clear error message was provided when an ndb_mgmd process tried to start using the PortNumber
of a port that was already in use. (Bug #32045786)

• Two problems occurred when NDB closed a table:

• NDB failed to detect when the close was done from FLUSH TABLES, which meant that the NDB table
definitions in the global dictionary cache were not invalidated.

• When the close was done by a thread which had not used NDB earlier—for example when FLUSH
TABLES or RESET MASTER closed instances of ha_ndbcluster held in the table definition cache—
a new Thd_ndb object was allocated, even though there is a fallback to the global Ndb object in case
the allocation fails, which never occurs in such cases, so it is less wasteful simply to use the global
object already provided.

(Bug #32018394, Bug #32357856)

• Removed a large number of compiler warnings relating to unused function arguments in
NdbDictionaryImpl. (Bug #31960757)

• Unnecessary casts were performed when checking internal error codes. (Bug #31930166)

• NDB continued to use file system paths for determining the names of tables to open or perform DDL
on, in spite of the fact that it longer actually uses files for these operations. This required unnecessary
translation between character sets, handling the MySQL-specific file system encoding, and parsing. In
addition, results of these operations were stored in buffers of fixed size, each instance of which used
several hundred bytes of memory unnecessarily. Since the database and table names to use are already
available to NDB through other means, this translation could be (and has been) removed in most cases.
(Bug #31846478)

• Generation of internal statistics relating to NDB object counts was found to lead to an increase in
transaction latency at very high rates of transactions per second, brought about by returning an
excessive number of freed NDB objects. (Bug #31790329)

• NDB behaved unpredictably in response an attempt to change permissions on a distributed user (that
is, a user having the NDB_STORED_USER privilege) during a binary log thread shutdown and restart.
We address this issue by ensuring that the user gets a clear warning Could not distribute ACL
change to other MySQL servers whenever distribution does not succeed. This fix also improves a
number of mysqld log messages. (Bug #31680765)

199

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-mgmd.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-mgm-definition.html#ndbparam-mgmd-portnumber
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/flush.html#flush-tables
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/reset-master.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/privileges-provided.html#priv_ndb-stored-user
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysqld.html

MySQL NDB Cluster 8.0 Release Notes

• ndb_restore encountered intermittent errors while replaying backup logs which deleted blob values;
this was due to deletion of blob parts when a main table row containing blob one or more values was
deleted. This is fixed by modifying ndb_restore to use the asynchronous API for blob deletes, which
does not trigger blob part deletes when a blob main table row is deleted (unlike the synchronous API), so
that a delete log event for the main table deletes only the row from the main table. (Bug #31546136)

• When a table creation schema transaction is prepared, the table is in TS_CREATING state, and is
changed to TS_ACTIVE state when the schema transaction commits on the DBDIH block. In the case
where the node acting as DBDIH coordinator fails while the schema transaction is committing, another
node starts taking over for the coordinator. The following actions are taken when handling this node
failure:

• DBDICT rolls the table creation schema transaction forward and commits, resulting in the table
involved changing to TS_ACTIVE state.

• DBDIH starts removing the failed node from tables by moving active table replicas on the failed node
from a list of stored fragment replicas to another list.

These actions are performed asynchronously many times, and when interleaving may cause a
race condition. As a result, the replica list in which the replica of a failed node resides becomes
nondeterministic and may differ between the recovering node (that is, the new coordinator) and other
DIH participant nodes. This difference violated a requirement for knowing which list the failed node's
replicas can be found during the recovery of the failed node recovery on the other participants.

To fix this, moving active table replicas now covers not only tables in TS_ACTIVE state, but those in
TS_CREATING (prepared) state as well, since the prepared schema transaction is always rolled forward.

In addition, the state of a table creation schema transaction which is being aborted is now changed from
TS_CREATING or TS_IDLE to TS_DROPPING, to avoid any race condition there. (Bug #30521812)

• START BACKUP SNAPSHOTSTART WAIT STARTED could return control to the user prior to the backup's
restore point from the user point of view; that is the Backup started notification was sent before
waiting for the synchronising global checkpoint (GCP) boundary. This meant that transactions committed
after receiving the notification might be included in the restored data.

To fix this problem, START BACKUP now sends a notification to the client that the backup has been
started only after the GCP has truly started. (Bug #29344262)

• Upgrading to NDB Cluster 8.0 from a prior release includes an upgrade in the schema distribution
mechanism, as part of which the ndb_schema table is dropped and recreated in a way which causes all
MySQL Servers connected to the cluster to restart their binary log injector threads, causing a gap event
to be written to the binary log. Since the thread restart happens at the same time on all MySQL Servers,
no binary log spans the time during which the schema distribution functionality upgrade was performed,
which breaks NDB Cluster Replication.

This issue is fixed by adding support for gracefully reconstituting the schema distribution tables while
allowing the injector thread to continue processing changes from the cluster. This is implemented
by handling the DDL event notification for DROP TABLE to turn off support for schema distribution
temporarily, and to start regular checks to re-create the tables. When the tables have been successfully
created again, the regular checks are turned off and support for schema distribution is turned back on.

NDB also now detects automatically when the ndb_apply_status table has been dropped and re-
creates it. The drop and re-creation leaves a gap event in the binary log, which in a replication setup

200

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbdih.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbdict.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-backup-using-management-client.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/drop-table.html

MySQL NDB Cluster 8.0 Release Notes

causes the replica MySQL Server to stop applying changes from the source until the replication channel
is restarted (see ndb_apply_status Table).

In addition, the minimum version required to perform the schema distribution upgrade is raised to 8.0.24,
which prevents automatic triggering of the schema distribution upgrade until all connected API nodes
support the new upgrade procedure.

For more information, see NDB Cluster Replication Schema and Tables. (Bug #27697409, Bug
#30877233)

References: See also: Bug #30876990.

• Fixed a number of issues uncovered when trying to build NDB with GCC 6. (Bug #25038373)

• Calculation of the redo alert state based on redo log usage was overly aggressive, and thus incorrect,
when using more than 1 log part per LDM.

Changes in MySQL NDB Cluster 8.0.23 (2021-01-18, General Availability)

• Deprecation and Removal Notes

• Functionality Added or Changed

• Bugs Fixed

Deprecation and Removal Notes

• Important Change: As part of the terminology changes begun in MySQL 8.0.21 and NDB 8.0.21,
the ndb_slave_conflict_role system variable is now deprecated, and is being replaced with
ndb_conflict_role.

In addition, a number of status variables have been deprecated and are being replaced, as shown in the
following table:

Table 2 Deprecated NDB status variables and their replacements

Deprecated variable Replacement

Ndb_api_adaptive_send_deferred_count_slaveNdb_api_adaptive_send_deferred_count_replica

Ndb_api_adaptive_send_forced_count_slaveNdb_api_adaptive_send_forced_count_replica

Ndb_api_adaptive_send_unforced_count_slaveNdb_api_adaptive_send_unforced_count_replica

Ndb_api_bytes_received_count_slave Ndb_api_bytes_received_count_replica

Ndb_api_bytes_sent_count_slave Ndb_api_bytes_sent_count_replica

Ndb_api_pk_op_count_slave Ndb_api_pk_op_count_replica

Ndb_api_pruned_scan_count_slave Ndb_api_pruned_scan_count_replica

Ndb_api_range_scan_count_slave Ndb_api_range_scan_count_replica

Ndb_api_read_row_count_slave Ndb_api_read_row_count_replica

Ndb_api_scan_batch_count_slave Ndb_api_scan_batch_count_replica

Ndb_api_table_scan_count_slave Ndb_api_table_scan_count_replica

Ndb_api_trans_abort_count_slave Ndb_api_trans_abort_count_replica

Ndb_api_trans_close_count_slave Ndb_api_trans_close_count_replica

Ndb_api_trans_commit_count_slave Ndb_api_trans_commit_count_replica

201

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-replication-schema.html#ndb-replication-ndb-apply-status
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-replication-schema.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#sysvar_ndb_slave_conflict_role
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#sysvar_ndb_conflict_role
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#statvar_Ndb_api_adaptive_send_deferred_count_slave
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#statvar_Ndb_api_adaptive_send_deferred_count_replica
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#statvar_Ndb_api_adaptive_send_forced_count_slave
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#statvar_Ndb_api_adaptive_send_forced_count_replica
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#statvar_Ndb_api_adaptive_send_unforced_count_slave
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#statvar_Ndb_api_adaptive_send_unforced_count_replica
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#statvar_Ndb_api_bytes_received_count_slave
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#statvar_Ndb_api_bytes_received_count_replica
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#statvar_Ndb_api_bytes_sent_count_slave
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#statvar_Ndb_api_bytes_sent_count_replica
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#statvar_Ndb_api_pk_op_count_slave
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#statvar_Ndb_api_pk_op_count_replica
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#statvar_Ndb_api_pruned_scan_count_slave
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#statvar_Ndb_api_pruned_scan_count_replica
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#statvar_Ndb_api_range_scan_count_slave
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#statvar_Ndb_api_range_scan_count_replica
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#statvar_Ndb_api_read_row_count_slave
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#statvar_Ndb_api_read_row_count_replica
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#statvar_Ndb_api_scan_batch_count_slave
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#statvar_Ndb_api_scan_batch_count_replica
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#statvar_Ndb_api_table_scan_count_slave
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#statvar_Ndb_api_table_scan_count_replica
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#statvar_Ndb_api_trans_abort_count_slave
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#statvar_Ndb_api_trans_abort_count_replica
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#statvar_Ndb_api_trans_close_count_slave
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#statvar_Ndb_api_trans_close_count_replica
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#statvar_Ndb_api_trans_commit_count_slave
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#statvar_Ndb_api_trans_commit_count_replica

MySQL NDB Cluster 8.0 Release Notes

Deprecated variable Replacement

Ndb_api_trans_local_read_row_count_slaveNdb_api_trans_local_read_row_count_replica

Ndb_api_trans_start_count_slave Ndb_api_trans_start_count_replica

Ndb_api_uk_op_count_slave Ndb_api_uk_op_count_replica

Ndb_api_wait_exec_complete_count_slave Ndb_api_wait_exec_complete_count_replica

Ndb_api_wait_meta_request_count_slave Ndb_api_wait_meta_request_count_replica

Ndb_api_wait_nanos_count_slave Ndb_api_wait_nanos_count_replica

Ndb_api_wait_scan_result_count_slave Ndb_api_wait_scan_result_count_replica

Ndb_slave_max_replicated_epoch Ndb_replica_max_replicated_epoch

Also as part of this work, the ndbinfo.table_distribution_status table's tab_copy_status
column values ADD_TABLE_MASTER and ADD_TABLE_SLAVE are deprecated, and replaced by,
respectively, ADD_TABLE_COORDINATOR and ADD_TABLE_PARTICIPANT.

Finally, the --help output of some NDB utility programs such as ndb_restore has been updated.
(Bug #31571031)

• NDB Client Programs: Effective with this release, the MySQL NDB Cluster Auto-Installer
(ndb_setup.py) has been has been removed from the NDB Cluster binary and source distributions,
and is no longer supported. (Bug #32084831)

References: See also: Bug #31888835.

Functionality Added or Changed

• As part of work previously done in NDB 8.0, the metadata check performed as part of auto-
synchronization between the representation of an NDB table in the NDB dictionary and its counterpart
in the MySQL data dictionary has been extended to include, in addition to table-level properties, the
properties of columns, indexes, and foreign keys. (This check is also made by a debug MySQL server
when performing a CREATE TABLE statement, and when opening an NDB table.)

As part of this work, any mismatches found between an object's properties in the NDB dictionary and
the MySQL data dictionary are now written to the MySQL error log. The error log message includes the
name of the property, its value in the NDB dictionary, and its value in the MySQL data dictionary. If the
object is a column, index, or foreign key, the object's type is also indicated in the message. (WL #13412)

• The ThreadConfig parameter has been extended with two new thread types, query threads and
recovery threads, intended for scaleout of LDM threads. The number of query threads must be a multiple
of the number of LDM threads, up to a maximum of 3 times the number of LDM threads.

It is also now possible when setting ThreadConfig to combine the main and rep threads into a single
thread by setting either or both of these arguments to 0.

When one of these arguments is set to 0 but the other remains set to 1, the resulting combined thread
is named main_rep. When both are set to 0, they are combined with the recv thread (assuming that
recv to 1), and this combined thread is named main_rep_recv. These thread names are those shown
when checking the threads table in the ndbinfo information database.

In addition, the maximums for a number of existing thread types have been increased. The new
maximums are: LDM threads: 332; TC threads: 128; receive threads: 64; send threads: 64; main
threads: 2. (The maximums for query threads and recovery threads are 332 each.) Maximums for other
thread types remain unchanged from previous NDB Cluster releases.

202

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#statvar_Ndb_api_trans_local_read_row_count_slave
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#statvar_Ndb_api_trans_local_read_row_count_replica
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#statvar_Ndb_api_trans_start_count_slave
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#statvar_Ndb_api_trans_start_count_replica
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#statvar_Ndb_api_uk_op_count_slave
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#statvar_Ndb_api_uk_op_count_replica
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#statvar_Ndb_api_wait_exec_complete_count_slave
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#statvar_Ndb_api_wait_exec_complete_count_replica
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#statvar_Ndb_api_wait_meta_request_count_slave
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#statvar_Ndb_api_wait_meta_request_count_replica
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#statvar_Ndb_api_wait_nanos_count_slave
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#statvar_Ndb_api_wait_nanos_count_replica
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#statvar_Ndb_api_wait_scan_result_count_slave
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#statvar_Ndb_api_wait_scan_result_count_replica
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#statvar_Ndb_slave_max_replicated_epoch
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#statvar_Ndb_replica_max_replicated_epoch
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbinfo-table-distribution-status.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/create-table.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbmtd-threadconfig
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbmtd-threadconfig
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbinfo-threads.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbinfo.html

MySQL NDB Cluster 8.0 Release Notes

Another change related to this work causes NDB to employ mutexes for protecting job buffers when
more than 32 block threads are in use. This may cause a slight decrease in performance (roughly 1 to 2
percent), but also results in a decrease in the amount of memory used by very large configurations. For
example, a setup with 64 threads which used 2 GB of job buffer memory previously should now require
only about 1 GB instead. In our testing this has resulted in an overall improvement (on the order of 5
percent) in the execution of very complex queries.

For more information, see the descriptions of the arguments to the ThreadConfig parameter discussed
previously, and of the ndbinfo.threads table. (WL #12532, WL #13219, WL #13338)

• This release adds the possibility of configuring the threads for multithreaded data nodes (ndbmtd)
automatically by implementing a new data node configuration parameter AutomaticThreadConfig.
When set to 1, NDB sets up the thread assignments automatically, based on the number of processors
available to applications. If the system does not limit the number of processors, you can do this
by setting NumCPUs to the desired number. Automatic thread configuration makes it unnecessary
to set any values for ThreadConfig or MaxNoOfExecutionThreads in config.ini; if
AutomaticThreadConfig is enabled, settings for either of these parameters are not used.

As part of this work, a set of tables providing information about hardware and CPU availability and usage
by NDB data nodes have been added to the ndbinfo information database. These tables, along with a
brief description of the information provided by each, are listed here:

• cpudata: CPU usage during the past second

• cpudata_1sec: CPU usage per second over the past 20 seconds

• cpudata_20sec: CPU usage per 20-second interval over the past 400 seconds

• cpudata_50ms: CPU usage per 50-millisecond interval during the past second

• cpuinfo: The CPU on which the data node executes

• hwinfo: The hardware on the host where the data node resides

Not all of the tables listed are available on all platforms supported by NDB Cluster:

• The cpudata, cpudata_1sec, cpudata_20sec, and cpudata_50ms tables are available only on
Linux and Solaris operating systems.

• The cpuinfo table is not available on FreeBSD or macOS.

(WL #13980)

• Added statistical information in the DBLQH block which is employed to track the use of key lookups and
scans, as well as tracking queries from DBTC and DBSPJ. By detecting situations in which the load is
high, but in which there is not actually any need to decrease the number of rows scanned per realtime
break, rather than checking the size of job buffer queues to decide how many rows to scan, this makes
it possible to scan more rows when there is no CPU congestion. This helps improve performance and
realtime behaviour when handling high loads. (WL #14081)

• A new method for handling table partitions and fragments is introduced, such that the number of local
data managers (LDMs) for a given data node can determined independently of the number of redo log
parts, and that the number of LDMs can now be highly variable. NDB employs this method when the
ClassicFragmentation data node configuration parameter, implemented as part of this work, is set
to false. When this is done, the number of LDMs is no longer used to determine how many partitions
to create for a table per data node; instead, the PartitionsPerNode parameter, also introduced in

203

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbinfo-threads.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndbmtd.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbmtd-automaticthreadconfig
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbmtd-numcpus
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbmtd-threadconfig
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbmtd-maxnoofexecutionthreads
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbinfo.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbinfo-cpudata.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbinfo-cpudata-1sec.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbinfo-cpudata-20sec.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbinfo-cpudata-50ms.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbinfo-cpuinfo.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbinfo-hwinfo.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dblqh.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbtc.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbspj.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbmtd-classicfragmentation
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbmtd-partitionspernode

MySQL NDB Cluster 8.0 Release Notes

this release, now determines this number, which is now used for calculating how many fragments a table
should have.

When ClassicFragmentation has its default value true, then the traditional method of using the
number of LDMs is used to determine how many fragments a table should have.

For more information, see Multi-Threading Configuration Parameters (ndbmtd). (WL #13930, WL
#14107)

Bugs Fixed

• macOS: Removed a number of compiler warnings which occurred when building NDB for Mac OS X.
(Bug #31726693)

• Microsoft Windows: Removed a compiler warning C4146: unary minus operator applied to
unsigned type, result still unsigned from Visual Studio 2013 found in storage\ndb\src
\kernel\blocks\dbacc\dbaccmain.cpp. (Bug #23130016)

• Solaris: Due to a source-level error, atomic_swap_32() was supposed to be specified but was not
actually used for Solaris builds of NDB Cluster. (Bug #31765608)

• NDB Cluster APIs: Removed redundant usage of strlen() in the implementation of NdbDictionary
and related internal classes in the NDB API. (Bug #100936, Bug #31930362)

• When calling disk_page_abort_prealloc(), the callback from this internal function is ignored, and
so removal of the operation record for the LQHKEYREQ signal proceeds without waiting. This left the table
subject to removal before the callback had completed, leading to a failure in PGMAN when the page was
retrieved from disk.

To avoid this, we add an extra usage count for the table especially for this page cache miss; this count
is decremented as soon as the page cache miss returns. This means that we guarantee that the table is
still present when returning from the disk read. (Bug #32146931)

• When a table was created, it was possible for a fragment of the table to be checkpointed too early during
the next local checkpoint. This meant that Prepare Phase LCP writes were still being performed when
the LCP completed, which could lead to problems with subsequent ALTER TABLE statements on the
table just created. Now we wait for any potential Prepare Phase LCP writes to finish before the LCP is
considered complete. (Bug #32130918)

• Using the maximum size of an index key supported by index statistics (3056 bytes) caused buffer issues
in data nodes. (Bug #32094904)

References: See also: Bug #25038373.

• NDB now prefers CLOCK_MONOTONIC which on Linux is adjusted by frequency changes but is not
updated during suspend. On macOS, NDB instead uses CLOCK_UPTIME_RAW which is the same, except
that it is not affected by any adjustments.

In addition, when intializing NdbCondition the monotonic clock to use is taken directly from NdbTick,
rather than re-executing the same preprocessor logic used by NdbTick. (Bug #32073826)

• ndb_restore terminated unexpectedly when run with the --decrypt option on big-endian systems.
(Bug #32068854)

• When the data node receive thread found that the job buffer was too full to receive, nothing was done
to ensure that, the next time it checked, it resumed receiving from the transporter at the same point at
which it stopped previously. (Bug #32046097)

204

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#mysql-cluster-ndbd-definition-ndbmtd-parameters
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster.html
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndbdictionary.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-pgman.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/alter-table.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_decrypt

MySQL NDB Cluster 8.0 Release Notes

• The metadata check failed during auto-synchronization of tables restored using the ndb_restore tool.
This was a timing issue relating to indexes, and was found in the following two scenarios encountered
when a table had been selected for auto-synchronization:

1. When the indexes had not yet been created in the NDB dictionary

2. When the indexes had been created, but were not yet usable

(Bug #32004637)

• Optimized sending of packed signals by registering the kernel blocks affected and the sending functions
which need to be called for each one in a data structure rather than looking up this information each
time. (Bug #31936941)

• When two data definition language statements—one on a database and another on a table in the same
schema—were run in parallel, it was possible for a deadlock to occur. The DDL statement affecting
the database acquired the global schema lock first, but before it could acquire a metadata lock on
the database, the statement affecting the table acquired an intention-exclusive metadata lock on the
schema. The table DDL statement was thus waiting for the global schema lock to upgrade its metadata
lock on the table to an exclusive lock, while the database DDL statement waited for an exclusive
metadata lock on the database, leading to a deadlock.

A similar type of deadlock involving tablespaces and tables was already known to occur; NDB already
detected and resolved that issue. The current fix extends that logic to handle databases and tables as
well, to resolve the problem. (Bug #31875229)

• Clang 8 raised a warning due to an uninitialized variable. (Bug #31864792)

• An empty page acquired for an insert did not receive a log sequence number. This is necessary in case
the page was used previously and thus required undo log execution before being used again. (Bug
#31859717)

• No reason was provided when rejecting an attempt to perform an in-place ALTER TABLE ... ADD
PARTITION statement on a fully replicated table. (Bug #31809290)

• When the master node had recorded a more recent GCI than a node starting up which had performed
an unsuccessful restart, subsequent restarts of the latter could not be performed because it could not
restore the stated GCI. (Bug #31804713)

• When using 3 or 4 fragment replicas, it is possible to add more than one node at a time, which means
that DBLQH and DBDIH can have distribution keys based on numbers of fragment replicas that differ by
up to 3 (that is, MAX_REPLICAS - 1), rather than by only 1. (Bug #31784934)

• It was possible in DBLQH for an ABORT signal to arrive from DBTC before it received an LQHKEYREF
signal from the next local query handler. Now in such cases, the out-of-order ABORT signal is ignored.
(Bug #31782578)

• NDB did not handle correctly the case when an ALTER TABLE ... COMMENT="..." statement did not
specify ALGORITHM=COPY. (Bug #31776392)

• It was possible in some cases to miss the end point of undo logging for a fragment. (Bug #31774459)

• ndb_print_sys_file did not work correctly with version 2 of the sysfile format that was introduced
in NDB 8.0.18. (Bug #31726653)

References: See also: Bug #31828452.

205

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/alter-table-partition-operations.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/alter-table-partition-operations.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dblqh.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbdih.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dblqh.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbtc.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/alter-table.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-print-sys-file.html

MySQL NDB Cluster 8.0 Release Notes

• DBLQH could not handle the case in which identical operation records having the same transaction ID
came from different transaction coordinators. This led to locked rows persisting after a node failure,
which kept node recovery from completing. (Bug #31726568)

• It is possible for DBDIH to receive a local checkpoint having a given ID to restore while a later LCP is
actually used instead, but when performing a partial LCP in such cases, the DIH block was not fully
synchronized with the ID of the LCP used. (Bug #31726514)

• In most cases, when searching a hash index, the row is used to read the primary key, but when the row
has not yet been committed the primary key may be read from the copy row. If the row has been deleted,
it can no longer be used to read the primary key. Previously in such cases, the primary key was treated
as a NULL, but this could lead to making a comparison using uninitialised data.

Now when this occurs, the comparison is made only if the row has not been deleted; otherwise the row
is checked of among the operations in the serial queue. If no operation has the primary key, then any
comparison can be reported as not equal, since no entry in the parallel queue can reinsert the row. This
needs to be checked due to the fact that, if an entry in the serial queue is an insert then the primary key
from this operation must be identified as such to preclude inserting the same primary key twice. (Bug
#31688797)

• As with writing redo log records, when the file currently used for writing global checkpoint records
becomes full, writing switches to the next file. This switch is not supposed to occur until the new file is
actually ready to receive the records, but no check was made to ensure that this was the case. This
could lead to an unplanned data node shutdown restoring data from a backup using ndb_restore.
(Bug #31585833)

• Release of shared global memory when it is no longer required by the DBSPJ block now occurs more
quickly than previously. (Bug #31321518)

References: See also: Bug #31231286.

• Stopping 3 nodes out of 4 in a single node group using kill -9 caused an unplanned cluster
shutdown. To keep this from happening under such conditions, NDB now ensures that any node group
that has not had any node failures is viewed by arbitration checks as fully viable. (Bug #31245543)

• Multi-threaded index builds could sometimes attempt to use an internal function disallowed to them. (Bug
#30587462)

• While adding new data nodes to the cluster, and while the management node was restarting with an
updated configuration file, some data nodes terminated unexpectedly with the error virtual void
TCP_Transporter::resetBuffers(): Assertion `!isConnected()' failed. (Bug
#30088051)

• It was not possible to execute TRUNCATE TABLE or DROP TABLE for the parent table of a foreign key
with foreign_key_checks set to 0. (Bug #97501, Bug #30509759)

• Optimized the internal NdbReceiver::unpackNdbRecord() method, which is used to convert
rows retrieved from the data nodes from packed wire format to the NDB API row format. Prior to the
change, roughly 13% of CPU usage for executing a join occurred within this method; this was reduced to
approximately 8%. (Bug #95007, Bug #29640755)

Changes in MySQL NDB Cluster 8.0.22 (2020-10-19, General Availability)

• Backup Notes

• Deprecation and Removal Notes

206

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dblqh.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbdih.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbspj.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/truncate-table.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/drop-table.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/server-system-variables.html#sysvar_foreign_key_checks

MySQL NDB Cluster 8.0 Release Notes

• Functionality Added or Changed

• Bugs Fixed

Backup Notes

• To provide protection against unauthorized recovery of data from backups, this release adds support
for NDB native encrypted backup using AES-256-CBC. Encrypted backup files are protected by a user-
supplied password. NDB does not save this password; this needs to be done by the user or application.
To create an encrypted backup, use ENCRYPT PASSWORD=password with the ndb_mgm client START
BACKUP command (in addition to any other options which may be required). You can also initiate an
encrypted backup in applications by calling the MGM API ndb_mgm_start_backup4() function.

To restore from an encrypted backup, use ndb_restore with both of the options --decrypt and --
backup-password=password. ndb_print_backup_file can also read encrypted files using the -P
option added in this release.

The encryption password used with this feature can be any string of up to 256 characters from the
range of printable ASCII characters other than !, ', ", $, %, \, and ^. When a password is supplied for
encryption or decryption, it must be quoted using either single or double quotation marks. It is possible to
specify an empty password using '' or "" but this is not recommended.

You can encrypt existing backup files using the ndbxfrm utility which is added to the NDB Cluster
distribution in this release; this program can also decrypt encrypted backup files. ndbxfrm also
compresses and decompresses NDB Cluster backup files. The compression method is the same as
used by NDB Cluster for creating compressed backups when CompressedBackup is enabled.

It is also possible to require encrypted backups using RequireEncryptedBackup. When this
parameter is enabled (by setting it equal to 1), the management client rejects any attempt to perform a
backup that is not encrypted.

For more information, see Using The NDB Cluster Management Client to Create a Backup, as well as
ndbxfrm — Compress, Decompress, Encrypt, and Decrypt Files Created by NDB Cluster. (WL #13474,
WL #13499, WL #13548)

Deprecation and Removal Notes

• NDB Client Programs: Effective with this release, the MySQL NDB Cluster Auto-Installer
(ndb_setup.py) has been deprecated and is subject to removal in a future version of NDB Cluster.
(Bug #31888835)

Functionality Added or Changed

• Important Change: The Ndb_metadata_blacklist_size status variable was renamed as
Ndb_metadata_excluded_count. (Bug #31465469)

• Packaging: Made the following improvements to the server-minimal RPM for NDB Cluster and the
NDB Cluster Docker image:

• Added ndb_import and other helpful utilities.

• Included NDB utilities are now linked dynamically.

• The NDB Cluster Auto-Installer is no longer included.

• ndbmemcache is no longer included.

207

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-mgm.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-backup-using-management-client.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-backup-using-management-client.html
https://docs.oracle.com/cd/E17952_01/ndbapi-en/mgm-functions-backup.html#mgm-ndb-mgm-start-backup4
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_decrypt
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_backup-password
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_backup-password
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-print-backup-file.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndbxfrm.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndbxfrm.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-compressedbackup
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-requireencryptedbackup
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-backup-using-management-client.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndbxfrm.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#statvar_Ndb_metadata_excluded_count
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-import.html

MySQL NDB Cluster 8.0 Release Notes

(Bug #31838832)

• Added the CMake option NDB_UTILS_LINK_DYNAMIC, to allow dynamic linking of NDB utilities with
ndbclient. (Bug #31668306)

• IPv6 addressing is now supported for connections to management and data nodes, including
connections between management and data nodes with SQL nodes. For IPv6 addressing to work, the
operating platform and network on which the cluster is deployed must support IPv6. Hostname resolution
to IPv6 addresses must be provided by the operating platform (this is the same as when using IPv4
addressing).

Mixing IPv4 and IPv6 addresses in the same cluster is not recommended, but this can be made to work
in either of the following cases, provided that --bind-address is not used with ndb_mgmd:

• Management node configured with IPv6, data nodes configured with IPv4: This works if the data
nodes are started with --ndb-connectstring set to the IPv4 address of the management nodes.

• Management node configured with IPv4, data nodes configured with IPv6: This works if the data
nodes are started with --ndb-connectstring set to the IPv6 address of the management node.

When upgrading from an NDB version that does not support IPv6 addressing to a version that does
so, it is necessary that the network already support both IPv4 and IPv6. The software upgrade must be
performed first; after this, you can update the IPv4 addresses used in the config.ini configuration file
with the desired IPv6 addresses. Finally, in order for the configuration changes to take effect, perform a
system restart of the cluster. (WL #12963)

Bugs Fixed

• Important Change; NDB Cluster APIs: The NDB Cluster adapter for Node.js was built against an
obsolete version of the runtime. Now it is built using Node.js 12.18.3, and only that version or a later
version of Node.js is supported by NDB. (Bug #31783049)

• Important Change: In order to synchronize excluded metadata objects, it was necessary to correct the
underlying issue, if any, and then trigger the synchronization of the objects again. This could be achieved
though discovery of individual tables, which does not scale well with an increase in the number of tables
and SQL nodes. It could also be done by reconnecting the SQL node to the cluster, but doing so also
incurs extra overhead.

To fix this issue, the list of database objects excluded due to synchronization failure is cleared when
ndb_metadata_sync is enabled by the user. This makes all such objects eligible for synchronization in
the subsequent detection run, which simplifies retrying the synchronization of all excluded objects.

This fix also removes the validation of objects to be retried which formerly took take place at the
beginning of each detection run. Since these objects are of interest only while ndb_metadata_sync
is enabled, the list of objects to be retried is cleared when this variable is disabled, signalling that all
changes have been synchronized. (Bug #31569436)

• Packaging: The Dojo library included with NDB Cluster has been upgraded to version 1.15.4. (Bug
#31559518)

• NDB Disk Data: ndbmtd sometimes terminated unexpectedly when it could not complete a lookup for a
log file group during a restore operation. (Bug #31284086)

• NDB Disk Data: While upgrading a cluster having 3 or 4 replicas after creating sufficient disk data
objects to fill up the tablespace, and while performing inserts on the disk data tables, trying to stop some
data nodes caused others to exit improperly. (Bug #30922322)

208

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/source-configuration-options.html#option_cmake_ndb_utils_link_dynamic
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-mgmd.html#option_ndb_mgmd_bind-address
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-mgmd.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndbd.html#option_ndbd_ndb-connectstring
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndbd.html#option_ndbd_ndb-connectstring
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#sysvar_ndb_metadata_sync
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndbmtd.html

MySQL NDB Cluster 8.0 Release Notes

• NDB Cluster APIs: In certain cases, the Table::getColumn() method returned the wrong Column
object. This could happen when the full name of one table column was a prefix of the name of another,
or when the names of two columns had the same hash value. (Bug #31774685)

• NDB Cluster APIs: It was possible to make invalid sequences of NDB API method calls using blobs.
This was because some method calls implicitly cause transaction execution inline, to deal with blob parts
and other issues, which could cause user-defined operations not to be handled correctly due to the use
of a method executing operations relating to blobs while there still user-defined blob operations pending.
Now in such cases, NDB raises a new error 4558 Pending blob operations must be executed
before this call. (Bug #27772916)

• ndb_restore --remap-column did not handle columns containing NULL values correctly. Now any
offset specified by the mapping function used with this option is not applied to NULL, so that NULL is
preserved as expected. (Bug #31966676)

• The ndb_print_backup_file utility did not respect byte order for row data. This tool now performs
byte swapping on row page information to ensure the same results on both big-endian and little-endian
platforms. (Bug #31831438)

References: See also: Bug #32470157.

• In some cases following an upgrade from a version of NDB Cluster previous to 8.0.18 to a later one,
writing the sysfile (see NDB Cluster Data Node File System Directory) and reading back from it
did not work correctly. This could occur when explicit node group assignments to data nodes had
been made (using the NodeGroup parameter); it was possible for node group assignments to change
spontaneously, and even possible for node groups not referenced in the configuration file to be
added. This was due to issues with version 2 of the sysfile format introduced in NDB 8.0.18. (Bug
#31828452, Bug #31820201)

References: See also: Bug #31726653.

• After encountering the data node in the configuration file which used NodeGroup=65536, the
management server stopped assigning data nodes lacking an explicit NodeGroup setting to node
groups. (Bug #31825181)

• Data nodes in certain cases experienced fatal memory corruption in the PGMAN kernel block due to an
invalid assumption that pages were 32KB aligned, when in fact they are normally aligned to the system
page size (4096 or 8192 bytes, depending on platform). (Bug #31768450, Bug #31773234)

• Fixed a misspelled define introduced in NDB 8.0.20 which made an internal function used to control
adaptive spinning non-operational. (Bug #31765660)

• When executing undo log records during undo log recovery it was possible when hitting a page cache
miss to use the previous undo log record multiple times. (Bug #31750627)

• When an SQL node or cluster shutdown occurred during schema distribution while the coordinator
was still waiting for the participants, the schema distribution was aborted halfway but any rows in
ndb_schema_result related to this schema operation were not cleared. This left open the possibility
that these rows might conflict with a future reply from a participant if a DDL operation having the same
schema operation ID originated from a client using the same node ID.

To keep this from happening, we now clear all such rows in ndb_schema_result during NDB binary
log setup. This assures that there are no DDL distributions in progress and any rows remaining in the
ndb_schema_result table are already obsolete. (Bug #31601674)

• Help output from the MySQL Cluster Auto-Installer displayed incorrect version information. (Bug
#31589404)

209

https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-table.html#ndb-table-getcolumn
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-column.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_remap-column
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-print-backup-file.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-ndbd-filesystemdir-files.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-nodegroup
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-nodegroup
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-pgman.html

MySQL NDB Cluster 8.0 Release Notes

• In certain rare circumstances, NDB missed checking for completion of a local checkpoint, leaving it
uncompleted, which meant that subsequent local checkpoints could not be executed. (Bug #31577633)

• A data definition statement can sometimes involve reading or writing of multiple rows (or both) from
tables; NDBCLUSTER starts an NdbTransaction to perform these operations. When such a statement
was rolled back, NDBCLUSTER attempted to roll back the schema change before rolling back the
NdbTransaction and closing it; this led to the rollback hanging indefinitely while the cluster waited for
the NdbTransaction object to close before it was able to roll back the schema change.

Now in such cases, NDBCLUSTER rolls back the schema change only after rolling back and closing any
open NdbTransaction associated with the change. (Bug #31546868)

• Adding a new user was not always synchronized correctly to all SQL nodes when the
NDB_STORED_USER privilege was granted to the new user. (Bug #31486931)

• In some cases, QMGR returned conflicting NDB engine and MySQL server version information, which
could lead to unplanned management node shutdown. (Bug #31471959)

• SUMA on a node that is starting up should not send a DICT_UNLOCK_ORD signal to the DICT block on
the master node until both all SUMA_HANDOVER_REQ signals sent have had SUMA_HANDOVER_CONF
signals sent in response, and every switchover bucket set up on receiving a SUMA_HANDOVER_CONF has
completed switchover. In certain rare cases using NoOfReplicas > 2, and in which the delay between
global checkpoints was unusually short, it was possible for some switchover buckets to be ready for
handover before others, and for handover to proceed even though this was the case. (Bug #31459930)

• Attribute ID mapping needs to be performed when reading data from an NDB table using indexes or a
primary key whose column order is different than that of the table. For unique indexes, a cached attribute
ID map is created when the table is opened, and is then used for each subsequent read, but for primary
key reads, the map was built for every read. This is changed so that an attribute ID map for primary key
is built and cached when opening the table, and used whenever required for any subsequent reads. (Bug
#31452597)

References: See also: Bug #24444899.

• During different phases of the restore process, ndb_restore used different numbers of retries
for temporary errors as well as different sleep times between retries. This is fixed by implementing
consistent retry counts and sleep times across all restore phases. (Bug #31372923)

• Removed warnings generated when compiling NDBCLUSTER with Clang 10. (Bug #31344788)

• The SPJ block contains a load throttling mechanism used when generating LQHKEYREQ signals. When
these were generated from parent rows from a scan, and this scan had a bushy topology with multiple
children performing key lookups, it was possible to overload the job queues with too many LQHKEYREQ
signals, causing node shutdowns due to full job buffers. This problem was originally fixed by Bug
#14709490. Further investigation of this issue showed that job buffer full errors could occur even
if the SPJ query was not bushy. Due to the increase in the internal batch size for SPJ workers in NDB
7.6.4 as part of work done to implement use of multiple fragments when sending SCAN_FRAGREQ signals
to the SPJ block, even a simple query could fill up the job buffers when a relatively small number of such
queries were run in parallel.

To fix this problem, we no longer send any further LQHKEYREQ signals once the number of outstanding
signals in a given request exceeds 256. Instead, the parent row from which the LQHKEYREQ is produced
is buffered, and the correlation ID of this row is stored in the collection of operations to be resumed later.
(Bug #31343524)

References: This issue is a regression of: Bug #14709490.

210

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster.html
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndbtransaction.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/privileges-provided.html#priv_ndb-stored-user
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-qmgr.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-suma.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbdict.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-noofreplicas
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbspj.html

MySQL NDB Cluster 8.0 Release Notes

• MaxDiskWriteSpeedOwnRestart was not honored as an upper bound for local checkpoint writes
during a node restart. (Bug #31337487)

References: See also: Bug #29943227.

• Under certain rare circumstances, DROP TABLE of an NDB table triggered an assert. (Bug #31336431)

• During a node restart, the SUMA block of the node that is starting must get a copy of the subscriptions
(events with subscribers) and subscribers (NdbEventOperation instances which are executing) from
a node already running. Before the copy is complete, nodes which are still starting ignore any user-level
SUB_START or SUB_STOP requests; after the copy is done, they can participate in such requests. While
the copy operation is in progress, user-level SUB_START and SUB_STOP requests are blocked using a
DICT lock.

An issue was found whereby a starting node could participate in SUB_START and SUB_STOP requests
after the lock was requested, but before it is granted, which resulted in unsuccessful SUB_START and
SUB_STOP requests. This fix ensures that the nodes cannot participate in these requests until after the
DICT lock has actually been granted. (Bug #31302657)

• Backups errored out with FsErrInvalidParameters when the filesystem was running with O_DIRECT
and a data file write was not aligned with the 512-byte block size used by O_DIRECT writes. If the
total fragment size in the data file is not aligned with the O_DIRECT block size, NDB pads the last write
to the required size, but when there were no fragments to write, BACKUP wrote only the header and
footer to the data file. Since the header and footer are less than 512 bytes, leading to the issue with the
O_DIRECT write.

This is fixed by padding out the generic footer to 512 bytes if necessary, using an EMPTY_ENTRY, when
closing the data file. (Bug #31180508)

• When employing an execution strategy which requires it to buffer received key rows for later use, DBSPJ
now manages the buffer memory allocation tree node by tree node, resulting in a significant drop in CPU
usage by the DBSPJ block. (Bug #31174015)

• DBSPJ now uses linear memory instead of segmented memory for storing and handling TRANSID_AI
signals, which saves approximately 10% of the CPU previously consumed. Due to this change, it is now
possible for DBSPJ to accept TRANSID_AI signals in the short signal format; this is more efficient than
the long signal format which requires segmented memory. (Bug #31173582, Bug #31173766)

• Altering the table comment of a fully replicated table using ALGORITHM=INPLACE led to an assertion.
(Bug #31139313)

• A local data manager (LDM) has a mechanism for ensuring that a fragment scan does not continue
indefinitely when it finds too few rows to fill the available batch size in a reasonable amount of time
(such as when a ScanFilter evaluates to false for most of the scanned rows). When this time limit, set in
DBLQH as 10 ms, has expired, any rows found up to that point are returned, independent of whether the
specified batch size has been filled or not. This acts as a keep-alive mechanism between data and API
nodes, as well as to avoid keeping any locks held during the scan for too long.

A side effect of this is that returning result row batches to the DBSPJ block which are filled well below the
expected limit could cause performance issues. This was due not only to poor utilization of the space
reserved for batches, requiring more NEXTREQ round trips, but because it also caused DBSPJ internal
parallelism statistics to become unreliable.

Since the DBSPJ block never requests locks when performing scans, overly long locks are not a problem
for SPJ requests. Thus it is considered safe to let scans requested by DBSPJ to continue for longer
than the 10 ms allowed previously, and the limit set in DBLQH has been increased to 100 ms. (Bug
#31124065)

211

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-maxdiskwritespeedownrestart
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/drop-table.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-suma.html
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndbeventoperation.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbdict.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbdict.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-backup.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbspj.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbspj.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dblqh.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbspj.html

MySQL NDB Cluster 8.0 Release Notes

• For a pushed join, the output from EXPLAIN FORMAT=TREE did not indicate whether the table access
was an index range scan returning multiple rows, or a single-row lookup on a primary or unique key.

This fix provides also a minor optimization, such that the handler interface is not accessed more than
once in an attempt to return more than a single row if the access type is known to be Unique. (Bug
#31123930)

• A previous change (made in NDB 8.0.20) made it possible for a pushed join on tables allowing
READ_BACKUP to place two SPJ workers on the data node local to the DBTC block while placing no SPJ
workers on some other node; this sometime imbalance is intentional, as the SPJ workload (and possible
introduced imbalance) is normally quite low compared to the gains of enabling more local reads of the
backup fragments. As an unintended side effect of the same change, these two colocated SPJ workers
might scan the same subset of fragments in parallel; this broke an assumption in the DBSPJ block that
only a single SPJ worker is instantiated on each data node on which the logic for insuring that each SPJ
worker starts its scans from a different fragment depends.

To fix this problem, the starting fragment for each SPJ worker is now calculated based on the root
fragment ID from which the worker starts, which is unique among all SPJ workers even when some of
them reside on the same node. (Bug #31113005)

References: See also: Bug #30639165.

• When upgrading a cluster from NDB 8.0.17 or earlier to 8.0.18 or later, data nodes not yet upgraded
could shut down unexpectedly following upgrade of the management server (or management servers)
to the new software version. This occurred when a management client STOP command was sent to one
or more of the data nodes still running the old version and the new master node (also running the old
version of the NDB software) subsequently underwent an unplanned shutdown.

It was found that this occurred due to setting the signal length and number of signal sections incorrectly
when sending a GSN_STOP_REQ—one of a number of signals whose length has been increased in NDB
8.0 as part of work done to support greater numbers of data nodes—to the new master. This happened
due to the use of stale data retained from sending a GSN_STOP_REQ to the previous master node. To
prevent this from happening, ndb_mgmd now sets the signal length and number of sections explicitly
each time, prior to sending a GSN_STOP_REQ signal. (Bug #31019990)

• In some cases, when failures occurred while replaying logs and restoring tuples, ndb_restore
terminated instead of returning an error. In addition, the number of retries to be attempted for some
operations was determined by hard-coded values. (Bug #30928114)

• During schema distribution, if the client was killed after a DDL operation was already logged in the
ndb_schema table, but before the participants could reply, the client simply marked all participants as
failed in the NDB_SCHEMA_OBJECT and returned. Since the distribution protocol was already in progress,
the coordinator continued to wait for the participants, received their ndb_schema_result insert and
processed them; meanwhile, the client was open to send another DDL operation; if one was executed
and distribution of it was begun before the coordinator could finish processing the previous schema
change, this triggered an assertion there should be only one distribution of a schema operation active at
any given time.

In addition, when the client returned having detected a thread being killed, it also released the global
schema lock (GSL); this could also lead to undefined issues since the participant could make the
changes under the assumption that the GSL was still being held by the coordinator.

In such cases, the client should not return after the DDL operation has been logged in the ndb_schema
table; from this point, the coordinator has control and the client should wait for it to make a decision. Now
the coordinator aborts the distribution only in the event of a server or cluster shutdown, and otherwise

212

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/explain.html#explain-execution-plan
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbtc.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbspj.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-mgm-client-commands.html#ndbclient-stop
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-mgmd.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html

MySQL NDB Cluster 8.0 Release Notes

waits for all participants either to reply, or to time out and mark the schema operation as completed. (Bug
#30684839)

• When, during a restart, a data node received a GCP_SAVEREQ signal prior to beginning start phase 9,
and thus needed to perform a global checkpoint index write to a local data manager's local checkpoint
control file, it did not record information from the DIH block originating with the node that sent the
signal as part of the data written. This meant that, later in start phase 9, when attempting to send a
GCP_SAVECONF signal in response to the GCP_SAVEREQ, this information was not available, which
meant the response could not be sent, resulting in an unplanned shutdown of the data node. (Bug
#30187949)

• Setting EnableRedoControl to false did not fully disable MaxDiskWriteSpeed,
MaxDiskWriteSpeedOtherNodeRestart, and MaxDiskWriteSpeedOwnRestart as expected.
(Bug #29943227)

References: See also: Bug #31337487.

• A BLOB value is stored by NDB in multiple parts; when reading such a value, one read operation is
executed per part. If a part is not found, the read fails with a row not found error, which indicates
a corrupted BLOB, since a BLOB should never have any missing parts. A problem can arise because this
error is reported as the overall result of the read operation, which means that mysqld sees no error and
reports zero rows returned.

This issue is fixed by adding a check specifically for the case in wich a blob part is not found. Now, when
this occurs, overwriting the row not found error with corrupted blob, which causes the originating
SELECT statement to fail as expected. Users of the NDB API should be aware that, despite this change,
the NdbBlob::getValue() method continues to report the error as row not found in such cases.
(Bug #28590428)

• Data nodes did not start when the RealtimeScheduler configuration parameter was set to 1. This was
due to the fact that index builds during startup are performed by temporarily diverting some I/O threads
for use as index building threads, and these threads inherited the realtime properties of the I/O threads.
This caused a conflict (treated as a fatal error) when index build thread specifications were checked to
ensure that they were not realtime threads. This is fixed by making sure that index build threads are
not treated as realtime threads regardless of any settings applying to their host I/O threads, which is as
actually intended in their design. (Bug #27533538)

• Using an in-place ALTER TABLE to drop an index could lead to the unplanned shutdown of an SQL
node. (Bug #24444899)

• As the final step when executing ALTER TABLE ... ALGORITHM=INPLACE, NDBCLUSTER performed
a read of the table metadata from the NDB dictionary, requiring an extra round trip between the SQL
nodes and data nodes, which unnecessarily both slowed down execution of the statement and provided
an avenue for errors which NDBCLUSTER was not prepared to handle correctly. This issue is fixed by
removing the read of NDB table metadata during the final phase of executing an in-place ALTER TABLE
statement. (Bug #99898, Bug #31497026)

• A memory leak could occur when preparing an NDB table for an in-place ALTER TABLE. (Bug #99739,
Bug #31419144)

• Added the AllowUnresolvedHostNames configuration parameter. When set to true, this parameter
overrides the fatal error normally raised when ndb_mgmd cannot connect to a given host name, allowing
startup to continue and generating only a warning instead. To be effective, the parameter must be set in
the cluster global configuration file's [tcp default] section. (WL #13860)

Changes in MySQL NDB Cluster 8.0.21 (2020-07-13, General Availability)

213

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbdih.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-enableredocontrol
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-maxdiskwritespeed
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-maxdiskwritespeedothernoderestart
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-maxdiskwritespeedownrestart
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/select.html
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndbblob.html#ndb-ndbblob-getvalue
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-realtimescheduler
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/alter-table.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/alter-table.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/alter-table.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-tcp-definition.html#ndbparam-tcp-allowunresolvedhostnames
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-mgmd.html

MySQL NDB Cluster 8.0 Release Notes

• Packaging Notes

• Functionality Added or Changed

• Bugs Fixed

Packaging Notes

• For Windows, MSI installer packages for NDB Cluster now include a check for the required Visual
Studio redistributable package, and produce a message asking the user to install it if it is missing. (Bug
#30541398)

Functionality Added or Changed

• NDB Disk Data: An initial restart of the cluster now causes the removal of all NDB tablespaces and log
file groups from the NDB dictionary and the MySQL data dictionary. This includes the removal of all data
files and undo log files associated with these objects. (Bug #30435378)

References: See also: Bug #29894166.

• The status variable Ndb_metadata_blacklist_size is now deprecated, and is replaced in NDB
8.0.22 by Ndb_metadata_excluded_count. (Bug #31465469)

• It now possible to consolidate data from separate instances of NDB Cluster into a single target NDB
Cluster when the original datasets all use the same schema. This is supported when using backups
created using START BACKUP in ndb_mgm and restoring them with ndb_restore, using the --remap-
column option implemented in this release (along with --restore-data and possibly other options).
--remap-column can be employed to handle cases of overlapping primary, unique, or both sorts of
key values between source clusters, and you need to make sure that they do not overlap in the target
cluster. This can also be done to preserve other relationships between tables.

When used together with --restore-data, the new option applies a function to the value of the
indicated column. The value set for this option is a string of the format db.tbl.col:fn:args, whose
components are listed here:

• db: Database name, after performing any renames.

• tbl: Table name.

• col: Name of the column to be updated. This column's type must be one of INT or BIGINT, and can
optionally be UNSIGNED.

• fn: Function name; currently, the only supported name is offset.

• args: The size of the offset to be added to the column value by offset. The range of the argument is
that of the signed variant of the column's type; thus, negative offsets are supported.

You can use --remap-column for updating multiple columns of the same table and different columns
of different tables, as well as combinations of multiple tables and columns. Different offset values can be
employed for different columns of the same table.

As part of this work, two new options are also added to ndb_desc in this release:

• --auto-inc (short form -a): Includes the next auto-increment value in the output, if the table has an
AUTO_INCREMENT column.

• --context (short form -x): Provides extra information about the table, including the schema,
database name, table name, and internal ID.

214

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#statvar_Ndb_metadata_excluded_count
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-backup-using-management-client.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-mgm.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_remap-column
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_remap-column
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_restore-data
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_restore-data
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/integer-types.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/integer-types.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-desc.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-desc.html#option_ndb_desc_auto-inc
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-desc.html#option_ndb_desc_context

MySQL NDB Cluster 8.0 Release Notes

These options may be useful for obtaining information about NDB tables when planning a merge,
particularly in situations where the mysql client may not be readily available.

For more information, see the descriptions for --remap-column, --auto-inc, and --context. (Bug
#30383950, WL #11796)

• Detailed real-time information about the state of automatic metadata mismatch detection and
synchronization can now be obtained from tables in the MySQL Performance Schema. These two tables
are listed here:

• ndb_sync_pending_objects: Contains information about NDB database objects for which
mismatches have been detected between the NDB dictionary and the MySQL data dictionary. It does
not include objects which have been excluded from mismatch detection due to permanent errors
raised when attempting to synchronize them.

• ndb_sync_excluded_objects: Contains information about NDB database objects which have been
excluded because they cannot be synchronized between the NDB dictionary and the MySQL data
dictionary, and thus require manual intervention. These objects are no longer subject to mismatch
detection until such intervention has been performed.

In each of these tables, each row corresponds to a database object, and contains the database object's
parent schema (if any), the object's name, and the object's type. Types of objects include schemas,
tablespaces, log file groups, and tables. The ndb_sync_excluded_objects table shows in addition to
this information the reason for which the object has been excluded.

Performance Schema NDB Cluster Tables, provides further information about these Performance
Schema tables. (Bug #30107543, WL #13712)

• ndb_restore now supports different primary key definitions for source and target tables when restoring
from an NDB native backup, using the --allow-pk-changes option introduced in this release. Both
increasing and decreasing the number of columns making up the original primary key are supported.
This may be useful when it is necessary to accommodate schema version changes while restoring data,
or when doing so is more efficient or less time-consuming than performing ALTER TABLE statements
involving primary key changes on a great many tables following the restore operation.

When extending a primary key with additional columns, any columns added must not be nullable, and
any values stored in any such columns must not change while the backup is being taken. Changes in the
values of any such column while trying to add it to the table's primary key causes the restore operation to
fail. Due to the fact that some applications set the values of all columns when updating a row even if the
values of one or more of the columns does not change, it is possible to override this behavior by using
the --ignore-extended-pk-updates option which is also added in this release. If you do this, care
must be taken to insure that such column values do not actually change.

When removing columns from the table's primary key, it is not necessary that the columns dropped from
the primary key remain part of the table afterwards.

For more information, see the description of the --allow-pk-changes option in the documentation for
ndb_restore. (Bug #26435136, Bug #30383947, Bug #30634010, WL #10730)

• Added the --ndb-log-fail-terminate option for mysqld. When used, this causes the SQL node to
terminate if it is unable to log all row events. (Bug #21911930)

References: See also: Bug #30383919.

• When a scalar subquery has no outer references to the table to which the embedding condition
is attached, the subquery may be evaluated independent of that table; that is, the subquery is not

215

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_remap-column
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-desc.html#option_ndb_desc_auto-inc
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-desc.html#option_ndb_desc_context
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/performance-schema-ndb-sync-pending-objects-table.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/performance-schema-ndb-sync-excluded-objects-table.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/performance-schema-ndb-sync-excluded-objects-table.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/performance-schema-ndb-cluster-tables.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_allow-pk-changes
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/alter-table.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_ignore-extended-pk-updates
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_allow-pk-changes
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#option_mysqld_ndb-log-fail-terminate
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysqld.html

MySQL NDB Cluster 8.0 Release Notes

dependent. NDB now attempts to identify and evaluate such a subquery before trying to retrieve any rows
from the table to which it is attached, and to use the value thus obtained in a pushed condition, rather
than using the subquery which provided the value. (WL #13798)

• In MySQL 8.0.17 and later, the MySQL Optimizer transforms NOT EXISTS and NOT IN queries into
antijoins. NDB can now push these down to the data nodes.

This can be done when there is no unpushed condition on the table, and the query fulfills any other
conditions which must be met for an outer join to be pushed down. (WL #13796, WL #13978)

Bugs Fixed

• Important Change; NDB Disk Data: An online change of tablespace is not supported for NDB tables.
Now, for an NDB table, the statement ALTER TABLE ndb_table ... ALGORITHM=INPLACE,
TABLESPACE=new_tablespace is specifically disallowed.

As part of this fix, the output of the ndb_desc utility is improved to include the tablespace name and ID
for an NDB table which is using one. (Bug #31180526)

• The wrong index was used in the array of indexes while dropping an index. For a table with 64 indexes
this caused uninitialized memory to be released. This problem also caused a memory leak when a new
index was created at any later time following the drop. (Bug #31408095)

• Removed an unnecessary dependency of ndb_restore on the NDBCLUSTER plugin. (Bug #31347684)

• Objects for which auto-synchronization fails due to temporary errors, such as failed acquisitions of
metadata locks, are simply removed from the list of detected objects, making such objects eligible for
detection in later cycles in which the synchronization is retried and hopefully succeeds. This best-effort
approach is suitable for the default auto-synchronization behaviour but is not ideal when the using
the ndb_metadata_sync system variable, which triggers synchronization of all metadata, and when
synchronization is complete, is automatically set to false to indicate that this has been done.

What happened, when a temporary error persisted for a sizable length of time, was that metadata
synchronization could take much longer than expected and, in extreme cases, could hang indefinitely,
pending user action. One such case occurred when using ndb_restore with the --disable-
indexes option to restore metadata, when the synchronization process entered a vicious cycle of
detection and failed synchronization attempts due to the missing indexes until the indexes were rebuilt
using ndb_restore --rebuild-indexes.

The fix for this issue is, whenever ndb_metadata_sync is set to true, to exclude an object after
synchronization of it fails 10 times with temporary errors by promoting these errors to a permanent error,
in order to prevent stalling. This is done by maintaining a list of such objects, this list including a count of
the number of times each such object has been retried. Validation of this list is performed during change
detection in a similar manner to validation of the exclusion list. (Bug #31341888)

• 32-bit platforms are not supported by NDB 8.0. Beginning with this release, the build process checks the
system architecture and aborts if it is not 64-bit. (Bug #31340969)

• Page-oriented allocations on the data nodes are divided into nine resource groups, some having pages
dedicated to themselves, and some having pages dedicated to shared global memory which can be
allocated by any resource group. To prevent the query memory resource group from depriving other,
more important resource groups such as transaction memory of resources, allocations for query memory
are performed with low priority and are not allowed to use the last 10% of shared global memory. This
change was introduced by poolification work done in NDB 8.0.15.

216

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/alter-table.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/alter-table.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-desc.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#sysvar_ndb_metadata_sync
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_disable-indexes
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_disable-indexes
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_rebuild-indexes
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#sysvar_ndb_metadata_sync

MySQL NDB Cluster 8.0 Release Notes

Subsequently, it was observed that the calculation for the number of pages of shared global memory
kept inaccessible to query memory was correct only when no pages were in use, which is the case when
the LateAlloc data node parameter is disabled (0).

This fix corrects that calculation as performed when LateAlloc is enabled. (Bug #31328947)

References: See also: Bug #31231286.

• Multi-threaded restore is able to drive greater cluster load than the previous single-threaded restore,
especially while restoring of the data file. To avoid load-related issues, the insert operation parallelism
specified for an ndb_restore instance is divided equally among the part threads, so that a
multithreaded instance has a similar level of parallelism for transactions and operations to a single-
threaded instance.

An error in division caused some part threads to have lower insert operation parallelism than they should
have, leading to an slower restore than expected. This fix ensures all part threads in a multi-threaded
ndb_restore instance get an equal share for parallelism. (Bug #31256989)

• DUMP 1001 (DumpPageMemoryOnFail) now prints out information about the internal state of the
data node page memory manager when allocation of pages fails due to resource constraints. (Bug
#31231286)

• Statistics generated by NDB for use in tracking internal objects allocated and deciding when to release
them were not calculated correctly, with the result that the threshold for resource usage was 50%
higher than intended. This fix corrects the issue, and should allow for reduced memory usage. (Bug
#31127237)

• The Dojo toolkit included with NDB Cluster and used by the Auto-Installer was upgraded to version
1.15.3. (Bug #31029110)

• A packed version 1 configuration file returned by ndb_mgmd could contain duplicate entries following an
upgrade to NDB 8.0, which made the file incompatible with clients using version 1. This occurs due to
the fact that the code for handling backwards compatibility assumed that the entries in each section were
already sorted when merging it with the default section. To fix this, we now make sure that this sort is
performed prior to merging. (Bug #31020183)

• When executing any of the SHUTDOWN, ALL STOP, or ALL RESTART management commands, it is
possible for different nodes to attempt to stop on different global checkpoint index (CGI) boundaries. If
they succeed in doing so, then a subsequent system restart is slower than normal because any nodes
having an earlier stop GCI must undergo takeover as part of the process. When nodes failing on the
first GCI boundary cause surviving nodes to be nonviable, surviving nodes suffer an arbitration failure;
this has the positive effect of causing such nodes to halt at the correct GCI, but can give rise to spurious
errors or similar.

To avoid such issues, extra synchronization is now performed during a planned shutdown to reduce
the likelihood that different data nodes attempt to shut down at different GCIs as well as the use of
unnecessary node takeovers during system restarts. (Bug #31008713)

• During an upgrade, a client could connect to an NDB 8.0 data node without specifying a multiple
transporter instance ID, so that this ID defaulted to -1. Due to an assumption that this would occur
only in the Node starting state with a single transporter, the node could hang during the restart. (Bug
#30899046)

• When an NDB cluster was upgraded from a version that does not support the data dictionary to one that
does, any DDL executed on a newer SQL node was not properly distributed to older ones. In addition,
newer SDI generated during DDL execution was ignored by any data nodes that had not yet been

217

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-latealloc
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://dev.mysql.com/doc/ndb-internals/en/dump-command-1001.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-mgmd.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-mgm-client-commands.html#ndbclient-shutdown
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-mgm-client-commands.html#ndbclient-stop
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-mgm-client-commands.html#ndbclient-restart

MySQL NDB Cluster 8.0 Release Notes

upgraded. These two issues led to schema states that were not consistent between nodes of different
NDB software versions.

We fix this problem by blocking any DDL affecting NDB data objects while an upgrade from a previous
NDB version to a version with data dictionary support is ongoing. (Bug #30877440)

References: See also: Bug #30184658.

• The mysql.ndb_schema table, used internally for schema distribution among SQL nodes, has been
modified in NDB 8.0. When a cluster is being upgraded from a older version of NDB, the first SQL node
to be upgraded updates the definition of this table to match that used by NDB 8.0 GA releases. (For
this purpose, NDB now uses 8.0.21 as the cutoff version.) This is done by dropping the existing table
and re-creating it using the newer definition. SQL nodes which have not yet been upgraded receive this
ndb_schema table drop event and enter read-only mode, becoming writable again only after they are
upgraded.

To keep SQL nodes running older versions of NDB from going into read-only mode, we change the
upgrade behavior of mysqld such that the ndb_schema table definition is updated only if all SQL
nodes connected to the cluster are running an 8.0 GA version of NDB and thus having the updated
ndb_schema table definition. This means that, during an upgrade to the current or any later version, no
MySQL Server that is being upgraded updates the ndb_schema table if there is at least one SQL node
with an older version connected to the cluster. Any SQL node running an older version of NDB remains
writable throughout the upgrade process. (Bug #30876990, Bug #31016905)

• ndb_import did not handle correctly the case where a CSV parser error occurred in a block of input
other than the final block. (Bug #30839144)

• When mysqld was upgraded to a version that used a new SDI version, all NDB tables become
inaccessible. This was because, during an upgrade, synchronization of NDB tables relies on deserializing
the SDI packed into the NDB Dictionary; if the SDI format was of an version older than that used prior
to the upgrade, deserialization could not take place if the format was not the same as that of the new
version, which made it impossible to create a table object in the MySQL data dictionary.

This is fixed by making it possible for NDB to bypass the SDI version check in the MySQL server when
necessary to perform deserialization as part of an upgrade. (Bug #30789293, Bug #30825260)

• When responding to a SCANTABREQ, an API node can provide a distribution key if it knows that the scan
should work on only one fragment, in which case the distribution key should be the fragment ID, but in
some cases a hash of the partition key was used instead, leading to failures in DBTC. (Bug #30774226)

• Several memory leaks found in ndb_import have been removed. (Bug #30756434, Bug #30727956)

• The master node in a backup shut down unexpectedly on receiving duplicate replies to a
DEFINE_BACKUP_REQ signal. These occurred when a data node other than the master
errored out during the backup, and the backup master handled the situation by sending itself a
DEFINE_BACKUP_REF signal on behalf of the missing node, which resulted in two replies being received
from the same node (a CONF signal from the problem node prior to shutting down and the REF signal
from the master on behalf of this node), even though the master expected only one reply per node. This
scenario was also encountered for START_BACKUP_REQ and STOP_BACKUP_REQ signals.

This is fixed in such cases by allowing duplicate replies when the error is the result of an unplanned
node shutdown. (Bug #30589827)

• When updating NDB_TABLE comment options using ALTER TABLE, other options which has been set
to non-default values when the table was created but which were not specified in the ALTER TABLE
statement could be reset to their defaults.

218

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysqld.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-import.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysqld.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbtc.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-import.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/alter-table.html

MySQL NDB Cluster 8.0 Release Notes

See Setting NDB Comment Options, for more information. (Bug #30428829)

• Removed a memory leak found in the ndb_import utility. (Bug #29820879)

• Incorrect handling of operations on fragment replicas during node restarts could result in a forced
shutdown, or in content diverging between fragment replicas, when primary keys with nonbinary (case-
sensitive) equality conditions were used. (Bug #98526, Bug #30884622)

Changes in MySQL NDB Cluster 8.0.20 (2020-04-27, General Availability)

• Functionality Added or Changed

• Bugs Fixed

Functionality Added or Changed

• Important Change: It is now possible to divide a backup into slices and to restore these in parallel
using two new options implemented for the ndb_restore utility, making it possible to employ multiple
instances of ndb_restore to restore subsets of roughly the same size of the backup in parallel, which
should help to reduce the length of time required to restore an NDB Cluster from backup.

The --num-slices options determines the number of slices into which the backup should be divided;
--slice-id provides the ID of the slice (0 to 1 less than the number of slices) to be restored by
ndb_restore.

Up to 1024 slices are supported.

For more information, see the descriptions of the --num-slices and --slice-id options. (Bug
#30383937, WL #10691)

• Important Change: To increase the rate at which update operations can be processed, NDB now
supports and by default makes use of multiple transporters per node group. By default, the number of
transporters used by each node group in the cluster is equal to the number of the number of local data
management (LDM) threads. While this number should be optimal for most use cases, it can be adjusted
by setting the value of the NodeGroupTransporters data node configuration parameter which is
introduced in this release. The maximum is the greater of the number of LDM threads or the number of
TC threads, up to an overall maximum of 32 transporters.

See Multiple Transporters, for additional information. (WL #12837)

• NDB now supports versioning for ndbinfo tables, and maintains the current definitions for its tables
internally. At startup, NDB compares its supported ndbinfo version with the version stored in the data
dictionary. If the versions differ, NDB drops any old ndbinfo tables and recreates them using the current
definitions. (WL #11563)

• Many outer joins and semijoins which previously could not be pushed down to the data nodes can now
pushed (see Engine Condition Pushdown Optimization).

Outer joins which can now be pushed include those which meet the following conditions:

• There are no unpushed conditions on this table

• There are no unpushed conditions on other tables in the same join nest, or in upper join nests on
which it depends

• All other tables in the same join nest, or in upper join nests on which it depends are also pushed

219

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/create-table-ndb-comment-options.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-import.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_num-slices
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_slice-id
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_num-slices
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_slice-id
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-nodegrouptransporters
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#mysql-cluster-multiple-transporters
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbinfo.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/engine-condition-pushdown-optimization.html

MySQL NDB Cluster 8.0 Release Notes

A semijoin using an index scan can now be pushed if it meets the the conditions just noted for a pushed
outer join, and it uses the firstMatch strategy. (WL #7636, WL #13576)

References: See also: Bug #28728603, Bug #28672214, Bug #29296615, Bug #29232744, Bug
#29161281, Bug #28728007.

• A new and simplified interface is implemented for enabling and configuring adaptive CPU spin. The
SpinMethod data node parameter, added in this release, provides the following four settings:

• StaticSpinning: Disables adaptive spinning; uses the static spinning employed in previous NDB
Cluster releases

• CostBasedSpinning: Enables adaptive spinning using a cost-based model

• LatencyOptimisedSpinning: Enables adaptive spinning optimized for latency

• DatabaseMachineSpinning: Enables adaptive spinning optimized for machines hosting databases,
where each thread has its own CPU

Each of these settings causes the data node to use a set of predetermined values, as needed, for one or
more of the spin parameters listed here:

• SchedulerSpinTimer: The data node configuration parameter of this name.

• EnableAdaptiveSpinning: Enables or disables adaptive spinning; cannot be set directly in the
cluster configuration file, but can be controlled directly using DUMP 104004

• SetAllowedSpinOverhead: CPU time to allow to gain latency; cannot be set directly in the
config.ini file, but possible to change directly, using DUMP 104002

The presets available from SpinMethod should cover most use cases, but you can fine-tune the
adaptive spin behavior using the SchedulerSpinTimer data node configuration parameter and the
DUMP commands just listed, as well as additional DUMP commands in the ndb_mgm cluster management
client; see the description of SchedulerSpinTimer for a complete listing.

NDB 8.0.20 also adds a new TCP configuration parameter TcpSpinTime which sets the time to spin
for a given TCP connection. This can be used to enable adaptive spinning for any such connections
between data nodes, management nodes, and SQL or API nodes.

The ndb_top tool is also enhanced to provide spin time information per thread; this is displayed in green
in the terminal window.

For more information, see the descriptions of the SpinMethod and TcpSpinTime configuration
parameters, the DUMP commands listed or indicated previously, and the documentation for ndb_top.
(WL #12554)

Bugs Fixed

• Important Change: When lower_case_table_names was set to 0, issuing a query in which the
lettercase of any foreign key names differed from the case with which they were created led to an
unplanned shutdown of the cluster. This was due to the fact that mysqld treats foreign key names as
case insensitive, even on case-sensitive file systems, whereas the manner in which the NDB dictionary
stored foreign key names depended on the value of lower_case_table_names, such that, when this
was set to 0, during lookup, NDB expected the lettercase of any foreign key names to match that with
which they were created. Foreign key names which differed in lettercase could then not be found in the

220

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-spinmethod
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-schedulerspintimer
https://dev.mysql.com/doc/ndb-internals/en/dump-command-104004.html
https://dev.mysql.com/doc/ndb-internals/en/dump-command-104002.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-schedulerspintimer
https://dev.mysql.com/doc/ndb-internals/en/dump-commands.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-mgm.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-schedulerspintimer
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-tcp-definition.html#ndbparam-tcp-tcpspintime
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-top.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-spinmethod
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-tcp-definition.html#ndbparam-tcp-tcpspintime
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-top.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/server-system-variables.html#sysvar_lower_case_table_names

MySQL NDB Cluster 8.0 Release Notes

NDB dictionary, even though it could be found in the MySQL data dictionary, leading to the previously
described issue in NDBCLUSTER.

This issue did not happen when lower_case_table_names was set to 1 or 2.

The problem is fixed by making foreign key names case insensitive and removing the dependency on
lower_case_table_names. This means that the following two items are now always true:

1. Foreign key names are now stored using the same lettercase with which they are created, without
regard to the value of lower_case_table_names.

2. Lookups for foreign key names by NDB are now always case insensitive.

(Bug #30512043)

• Packaging: Removed an unnecessary dependency on Perl from the mysql-cluster-community-
server-minimal RPM package. (Bug #30677589)

• Packaging: NDB did not compile successfully on Ubuntu 16.04 with GCC 5.4 due to the use of isnan()
rather than std::isnan(). (Bug #30396292)

References: This issue is a regression of: Bug #30338980.

• OS X: Removed the variable SCHEMA_UUID_VALUE_LENGTH which was used only once in the NDB
sources, and which caused compilation warnings when building on Mac OSX. The variable has been
replaced with UUID_LENGTH. (Bug #30622139)

• NDB Disk Data: Allocation of extents in tablespace data files is now performed in round-robin fashion
among all data files used by the tablespace. This should provide more even distribution of data in cases
where multiple storage devices are used for Disk Data storage. (Bug #30739018)

• NDB Disk Data: Under certain conditions, checkpointing of Disk Data tables could not be completed,
leading to an unplanned data node shutdown. (Bug #30728270)

• NDB Disk Data: An uninitialized variable led to issues when performing Disk Data DDL operations
following a restart of the cluster. (Bug #30592528)

• The fix for a previous issue in the MySQL Optimizer adversely affected engine condition pushdown for
the NDB storage engine. (Bug #303756135)

References: This issue is a regression of: Bug #97552, Bug #30520749.

• When restoring signed auto-increment columns, ndb_restore incorrectly handled negative values
when determining the maximum value included in the data. (Bug #30928710)

• On an SQL node which had been started with --ndbcluster, before any other nodes in the cluster
were started, table creation succeeded while creating the ndbinfo schema, but creation of views did
not, raising HA_ERR_NO_CONNECTION instead. (Bug #30846678)

• Formerly (prior to NDB 7.6.4) an SPJ worker instance was activated for each fragment of the root table
of the pushed join, but in NDB 7.6 and later, a single worker is activated for each data node and is
responsible for all fragments on that data node.

Before this change was made, it was sufficient for each such worker to scan a fragment with parallelism
equal to 1 for all SPJ workers to keep all local data manager threads busy. When the number of workers
was reduced as result of the change, the minimum parallelism should have been increased to equal the
number of fragments per worker to maintain the degree of parallelism.

221

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/server-system-variables.html#sysvar_lower_case_table_names
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#option_mysqld_ndbcluster
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbinfo.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbspj.html

MySQL NDB Cluster 8.0 Release Notes

This fix ensures that this is now done. (Bug #30639503)

• The ndb_metadata_sync system variable is set to true to trigger synchronization of metadata between
the MySQL data dictionary and the NDB dictionary; when synchronization is complete, the variable is
automatically reset to false to indicate that this has been done. One scenario involving the detection
of a schema not present in the MySQL data dictionary but in use by the NDB Dictionary sometimes
led to ndb_metadata_sync being reset before all tables belonging to this schema were successfully
synchronized. (Bug #30627292)

• When using shared user and grants, all ALTER USER statements were distributed as snapshots,
whether they contained plaintext passwords or not.

In addition, SHOW CREATE USER did not include resource limits (such as MAX_QUERIES_PER_HOUR)
that were set to zero, which meant that these were not distributed among SQL nodes. (Bug #30600321)

• Two buffers used for logging in QMGR were of insufficient size. (Bug #30598737)

References: See also: Bug #30593511.

• Removed extraneous debugging output relating to SPJ from the node out logs. (Bug #30572315)

• When performing an initial restart of an NDB Cluster, each MySQL Server attached to it as an SQL node
recognizes the restart, reinstalls the ndb_schema table from the data dictionary, and then clears all
NDB schema definitions created prior to the restart. Because the data dictionary was cleared only after
ndb_schema is reinstalled, installation sometimes failed due to ndb_schema having the same table ID
as one of the tables from before the restart was performed. This issue is fixed by ensuring that the data
dictionary is cleared before the ndb_schema table is reinstalled. (Bug #30488610)

• NDB sometimes made the assumption that the list of nodes containing index statistics was ordered, but
this list is not always ordered in the same way on all nodes. This meant that in some cases NDB ignored
a request to update index statistics, which could result in stale data in the index statistics tables. (Bug
#30444982)

• When the optimizer decides to presort a table into a temporary table, before later tables are joined, the
table to be sorted should not be part of a pushed join. Although logic was present in the abstract query
plan interface to detect such query plans, that this did not detect correctly all situations using filesort
into temporary table. This is changed to check whether a filesort descriptor has been set up; if
so, the table content is sorted into a temporary file as its first step of accessing the table, which greatly
simplifies interpretation of the structure of the join. We now also detect when the table to be sorted is a
part of a pushed join, which should prevent future regressions in this interface. (Bug #30338585)

• When a node ID allocation request failed with NotMaster temporary errors, the node ID allocation was
always retried immediately, without regard to the cause of the error. This caused a very high rate of
retries, whose effects could be observed as an excessive number of Alloc node id for node nnn
failed log messages (on the order of 15,000 messages per second). (Bug #30293495)

• For NDB tables having no explicit primary key, NdbReceiverBuffer could be allocated with too small a
size. This was due to the fact that the attribute bitmap sent to NDB from the data nodes always includes
the primary key. The extra space required for hidden primary keys is now taken into consideration in
such cases. (Bug #30183466)

• When translating an NDB table created using .frm files in a previous version of NDB Cluster and storing
it as a table object in the MySQL data dictionary, it was possible for the table object to be committed
even when a mismatch had been detected between the table indexes in the MySQL data dictionary and
those for the same table's representation the NDB dictionary. This issue did not occur for tables created
in NDB 8.0, where it is not necessary to upgrade the table metadata in this fashion.

222

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#sysvar_ndb_metadata_sync
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/alter-user.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/show-create-user.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-qmgr.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbspj.html

MySQL NDB Cluster 8.0 Release Notes

This problem is fixed by making sure that all such comparisons are actually performed before the table
object is committed, regardless of whether the originating table was created with or without the use of
.frm files to store its metadata. (Bug #29783638)

• An error raised when obtaining cluster metadata caused a memory leak. (Bug #97737, Bug #30575163)

Changes in MySQL NDB Cluster 8.0.19 (2020-01-13, General Availability)

• Functionality Added or Changed

• Bugs Fixed

Functionality Added or Changed

• Important Change: The default value for the ndb_autoincrement_prefetch_sz server system
variable has been increased to 512. (Bug #30316314)

• Important Change: NDB now supports more than 2 fragment replicas (up to a maximum of 4). Setting
NoOfReplicas=3 or NoOfReplicas=4 is now fully covered in our internal testing and thus supported
for use in production. (Bug #97479, Bug #97579, Bug #25261716, Bug #30501414, Bug #30528105, WL
#8426)

• Important Change: Added the TransactionMemory data node configuration parameter which
simplifies configuration of data node memory allocation for transaction operations. This is part of ongoing
work on pooling of transactional and Local Data Manager (LDM) memory.

The following parameters are incompatible with TransactionMemory and cannot be set in the
config.ini configuration file if this parameter has been set:

• MaxNoOfConcurrentIndexOperations

• MaxNoOfFiredTriggers

• MaxNoOfLocalOperations

• MaxNoOfLocalScans

If you attempt to set any of these incompatible parameters concurrently with TransactionMemory, the
cluster management server cannot start.

For more information, see the description of the TransactionMemory parameter and Parameters
incompatible with TransactionMemory. See also Data Node Memory Management, for information about
how memory resources are allocated by NDB Cluster data nodes. (Bug #96995, Bug #30344471, WL
#12687)

• Important Change: The maximum or default values for several NDB Cluster data node configuration
parameters have been changed in this release. These changes are listed here:

• The maximum value for DataMemory is increased from 1 terabyte to 16 TB.

• The maximum value for DiskPageBufferMemory is also increased from 1 TB to 16 TB.

• The default value for StringMemory is decreased to 5 percent. Previously, this was 25 percent.

• The default value for LcpScanProgressTimeout is increased from 60 seconds to 180 seconds.

(WL #13382)

223

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#sysvar_ndb_autoincrement_prefetch_sz
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-noofreplicas
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-transactionmemory
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-maxnoofconcurrentindexoperations
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-maxnooffiredtriggers
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-maxnooflocaloperations
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-maxnooflocalscans
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-transactionmemory
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#mysql-cluster-transactionmemory-incompatible
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#mysql-cluster-transactionmemory-incompatible
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-data-node-memory-management.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-datamemory
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-diskpagebuffermemory
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-stringmemory
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-lcpscanprogresstimeout

MySQL NDB Cluster 8.0 Release Notes

• Performance: Read from any fragment replica, which greatly improves the performance of table reads
at a very low cost to table write performance, is now enabled by default for all NDB tables. This means
both that the default value for the ndb_read_backup system variable is now ON, and that the value of
the NDB_TABLE comment option READ_BACKUP is 1 when creating a new NDB table. (Previously, the
default values were OFF and 0, respectively.)

For more information, see Setting NDB Comment Options, as well as the description of the
ndb_read_backup system variable. (WL #13383)

• NDB Disk Data: The latency of checkpoints for Disk Data files has been reduced when using
non-volatile memory devices such as solid-state drives (especially those using NVMe for data
transfer), separate physical drives for Disk Data files, or both. As part of this work, two new data node
configuration parameters, listed here, have been introduced:

• MaxDiskDataLatency sets a maximum on allowed latency for disk access, aborting transactions
exceeding this amount of time to complete

• DiskDataUsingSameDisk makes it possible to take advantage of keeping Disk Data files on
separate disks by increasing the rate at which Disk Data checkpoints can be made

This release also adds three new tables to the ndbinfo database. These tables, listed here, can assist
with performance monitoring of Disk Data checkpointing:

• diskstat provides information about Disk Data tablespace reads, writes, and page requests during
the previous 1 second

• diskstats_1sec provides information similar to that given by the diskstat table, but does so for
each of the last 20 seconds

• pgman_time_track_stats table reports on the latency of disk operations affecting Disk Data
tablespaces

For additional information, see Disk Data latency parameters. (WL #12924)

• Added the ndb_metadata_sync server system variable, which simplifies knowing when metadata
synchronization has completed successfully. Setting this variable to true triggers immediate
synchronization of all changes between the NDB dictionary and the MySQL data dictionary without
regard to any values set for ndb_metadata_check or ndb_metadata_check_interval. When
synchronization has completed, its value is automatically reset to false. (Bug #30406657)

• Added the DedicatedNode parameter for data nodes, API nodes, and management nodes. When
set to true, this parameter prevents the management server from handing out this node's node ID to
any node that does not request it specifically. Intended primarily for testing, this parameter may be
useful in cases in which multiple management servers are running on the same host, and using the host
name alone is not sufficient for distinguishing among processes of the same type. (Bug #91406, Bug
#28239197)

• A stack trace is now written to the data node log on abnormal termination of a data node. (WL #13166)

• Automatic synchronization of metadata from the MySQL data dictionary to NDB now includes databases
containing NDB tables. With this enhancement, if a table exists in NDB, and the table and the database it
belongs to do not exist on a given SQL node, it is no longer necessary to create the database manually.
Instead, the database, along with all NDB tables belonging to this database, should be created on the
SQL node automatically. (WL #13490)

224

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#sysvar_ndb_read_backup
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/create-table-ndb-comment-options.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#sysvar_ndb_read_backup
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-maxdiskdatalatency
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-diskdatausingsamedisk
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbinfo.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbinfo-diskstat.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbinfo-diskstats-1sec.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbinfo-pgman-time-track-stats.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#mysql-cluster-ndbd-definition-disk-data-latency-parameters
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#sysvar_ndb_metadata_sync
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#sysvar_ndb_metadata_check
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#sysvar_ndb_metadata_check_interval
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster.html

MySQL NDB Cluster 8.0 Release Notes

Bugs Fixed

• Incompatible Change: ndb_restore no longer restores shared users and grants to the
mysql.ndb_sql_metadata table by default. A new command-line option --include-stored-
grants is added to override this behavior and enable restoring of shared user and grant data and
metadata.

As part of this fix, ndb_restore can now also correctly handle an ordered index on a system table.
(Bug #30237657)

References: See also: Bug #29534239, Bug #30459246.

• Incompatible Change: The minimum value for the RedoOverCommitCounter data node configuration
parameter has been increased from 0 to 1. The minimum value for the RedoOverCommitLimit data
node configuration parameter has also been increased from 0 to 1.

You should check the cluster global configuration file and make any necessary adjustments to values set
for these parameters before upgrading. (Bug #29752703)

• macOS: On macOS, SQL nodes sometimes shut down unexpectedly during the binary log setup phase
when starting the cluster. This occurred when there existed schemas whose names used uppercase
letters and lower_case_table_names was set to 2. This caused acquisition of metadata locks to
be attempted using keys having the incorrect lettercase, and, subsequently, these locks to fail. (Bug
#30192373)

• Microsoft Windows; NDB Disk Data: On Windows, restarting a data node other than the master when
using Disk Data tables led to a failure in TSMAN. (Bug #97436, Bug #30484272)

• Solaris: When debugging, ndbmtd consumed all available swap space on Solaris 11.4 SRU 12 and
later. (Bug #30446577)

• Solaris: The byte order used for numeric values stored in the mysql.ndb_sql_metadata table was
incorrect on Solaris/Sparc. This could be seen when using ndb_select_all or ndb_restore --
print. (Bug #30265016)

• NDB Disk Data: After dropping a disk data table on one SQL node, trying to execute a query against
INFORMATION_SCHEMA.FILES on a different SQL node stalled at Waiting for tablespace
metadata lock. (Bug #30152258)

References: See also: Bug #29871406.

• NDB Disk Data: ALTER TABLESPACE ... ADD DATAFILE could sometimes hang while trying to
acquire a metadata lock. (Bug #29871406)

• NDB Disk Data: Compatibility code for the Version 1 disk format used prior to the introduction of the
Version 2 format in NDB 7.6 turned out not to be necessary, and is no longer used.

• Work done in NDB 8.0.18 to allow more nodes introduced long signal variants of several signals taking
a bitmask as one of their arguments, and we started using these new long signal variants even if
the previous (still supported) short variants would have been sufficient. This introduced several new
opportunities for hitting out of LongMessageBuffer errors.

To avoid this, now in such cases we use the short signal variants wherever possible. Some of the
signals affected include CM_REGCONF, CM_REGREF, FAIL_REP, NODE_FAILREP, ISOLATE_ORD,
COPY_GCIREQ, START_RECREQ, NDB_STARTCONF, and START_LCP_REQ. (Bug #30708009)

References: See also: Bug #30707970.

225

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_include-stored-grants
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_include-stored-grants
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-redoovercommitcounter
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-redoovercommitlimit
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/server-system-variables.html#sysvar_lower_case_table_names
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-tsman.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndbmtd.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-select-all.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_print
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_print
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/information-schema-files-table.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/alter-tablespace.html

MySQL NDB Cluster 8.0 Release Notes

• The fix made in NDB 8.0.18 for an issue in which a transaction was committed prematurely aborted the
transaction if the table definition had changed midway, but failed in testing to free memory allocated
by getExtraMetadata(). Now this memory is properly freed before aborting the transaction. (Bug
#30576983)

References: This issue is a regression of: Bug #29911440.

• Excessive allocation of attribute buffer when initializing data in DBTC led to preallocation of api
connection records failing due to unexpectedly running out of memory. (Bug #30570264)

• Improved error handling in the case where NDB attempted to update a local user having the
NDB_STORED_USER privilege but which could not be found in the ndb_sql_metadata table. (Bug
#30556487)

• Failure of a transaction during execution of an ALTER TABLE ... ALGORITHM=COPY statement
following the rename of the new table to the name of the original table but before dropping the original
table caused mysqld to exit prematurely. (Bug #30548209)

• Non-MSI builds on Windows using -DWITH_NDBCLUSTER did not succeed unless the WiX toolkit was
installed. (Bug #30536837)

• The allowed_values output from ndb_config --xml --configinfo for the Arbitration data
node configuration parameter in NDB 8.0.18 was not consistent with that obtained in previous releases.
(Bug #30529220)

References: See also: Bug #30505003.

• A faulty ndbrequire() introduced when implementing partial local checkpoints assumed that
m_participatingLQH must be clear when receiving START_LCP_REQ, which is not necessarily
true when a failure happens for the master after sending START_LCP_REQ and before handling any
START_LCP_CONF signals. (Bug #30523457)

• A local checkpoint sometimes hung when the master node failed while sending an LCP_COMPLETE_REP
signal and it was sent to some nodes, but not all of them. (Bug #30520818)

• Added the DUMP 9988 and DUMP 9989 commands. (Bug #30520103)

• The management server did not handle all cases of NODE_FAILREP correctly. (Bug #30520066)

• With SharedGlobalMemory set to 0, some resources did not meet required minimums. (Bug
#30411835)

• Execution of ndb_restore --rebuild-indexes together with the --rewrite-database and --
exclude-missing-tables options did not create indexes for any tables in the target database. (Bug
#30411122)

• When writing the schema operation into the ndb_schema table failed, the states in the NDB_SCHEMA
object were not cleared, which led to the SQL node shutting down when it tried to free the object. (Bug
#30402362)

References: See also: Bug #30371590.

• When synchronizing extent pages it was possible for the current local checkpoint (LCP) to stall
indefinitely if a CONTINUEB signal for handling the LCP was still outstanding when receiving the
FSWRITECONF signal for the last page written in the extent synchronization page. The LCP could also
be restarted if another page was written from the data pages. It was also possible that this issue caused
PREP_LCP pages to be written at times when they should not have been. (Bug #30397083)

226

https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-table.html#ndb-table-getextrametadata
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbtc.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/privileges-provided.html#priv_ndb-stored-user
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/alter-table.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysqld.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/source-configuration-options.html#option_cmake_with_ndbcluster
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-config.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-config.html#option_ndb_config_xml
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-config.html#option_ndb_config_configinfo
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-arbitration
https://dev.mysql.com/doc/ndb-internals/en/dump-command-9988.html
https://dev.mysql.com/doc/ndb-internals/en/dump-command-9989.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-sharedglobalmemory
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_rebuild-indexes
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_rewrite-database
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_exclude-missing-tables
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_exclude-missing-tables

MySQL NDB Cluster 8.0 Release Notes

• If a transaction was aborted while getting a page from the disk page buffer and the disk system was
overloaded, the transaction hung indefinitely. This could also cause restarts to hang and node failure
handling to fail. (Bug #30397083, Bug #30360681)

References: See also: Bug #30152258.

• Data node failures with the error Another node failed during system restart... occurred
during a partial restart. (Bug #30368622)

• Automatic synchronization could potentially trigger an increase in the number of locks being taken on a
particular metadata object at a given time, such as when a synchronization attempt coincided with a DDL
or DML statement involving the same metadata object; competing locks could lead to the NDB deadlock
detection logic penalizing the user action rather than the background synchronization. We fix this by
changing all exclusive metadata lock acquisition attempts during auto-synchronization so that they use a
timeout of 0 (rather than the 10 seconds previously allowed), which avoids deadlock detection and gives
priority to the user action. (Bug #30358470)

• If a SYNC_EXTENT_PAGES_REQ signal was received by PGMAN while dropping a log file group as part of
a partial local checkpoint, and thus dropping the page locked by this block for processing next, the LCP
terminated due to trying to access the page after it had already been dropped. (Bug #30305315)

• The wrong number of bytes was reported in the cluster log for a completed local checkpoint. (Bug
#30274618)

References: See also: Bug #29942998.

• Added the new ndb_mgm client debugging commands DUMP 2356 and DUMP 2357. (Bug #30265415)

• Executing ndb_drop_table using the --help option caused this program to terminate prematurely,
and without producing any help output. (Bug #30259264)

• A mysqld trying to connect to the cluster, and thus trying to acquire the global schema lock (GSL)
during setup, ignored the setting for ndb-wait-setup and hung indefinitely when the GSL had already
been acquired by another mysqld, such as when it was executing an ALTER TABLE statement. (Bug
#30242141)

• When a table containing self-referential foreign key (in other words, a foreign key referencing another
column of the same table) was altered using the COPY algorithm, the foreign key definition was removed.
(Bug #30233405)

• In MySQL 8.0, names of foreign keys explicitly provided by user are generated automatically in the SQL
layer and stored in the data dictionary. Such names are of the form [table_name]_ibfk_[#] which
align with the names generated by the InnoDB storage engine in MySQL 5.7. NDB 8.0.18 introduced
a change in behavior by NDB such that it also uses the generated names, but in some cases, such as
when tables were renamed, NDB still generated and used its own format for such names internally rather
than those generated by the SQL layer and stored in the data dictionary, which led to the following
issues:

• Discrepancies in SHOW CREATE TABLE output and the contents of
INFORMATION_SCHEMA.REFERENTIAL_CONSTRAINTS

• Improper metadata locking for foreign keys

• Confusing names for foreign keys in error messages

Now NDB also renames the foreign keys in such cases, using the names provided by the MySQL server,
to align fully with those used by InnoDB. (Bug #30210839)

227

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-pgman.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-mgm.html
https://dev.mysql.com/doc/ndb-internals/en/dump-command-2356.html
https://dev.mysql.com/doc/ndb-internals/en/dump-command-2357.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-drop-table.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-drop-table.html#option_ndb_drop_table_help
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysqld.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#option_mysqld_ndb-wait-setup
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysqld.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/alter-table.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/innodb-storage-engine.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/show-create-table.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/information-schema-referential-constraints-table.html

MySQL NDB Cluster 8.0 Release Notes

References: See also: Bug #96508, Bug #30171959.

• When a table referenced by a foreign key was renamed, participating SQL nodes did not properly update
the foreign key definitions for the referencing table in their data dictionaries during schema distribution.
(Bug #30191068)

• Data node handling of failures of other data nodes could sometimes not be synchronized properly, such
that two or more data nodes could see different nodes as the master node. (Bug #30188414)

• Some scan operations failed due to the presence of an old assert in DbtupBuffer.cpp that checked
whether API nodes were using a version of the software previous to NDB 6.4. This was no longer
necessary or correct, and has been removed. (Bug #30188411)

• When executing a global schema lock (GSL), NDB used a single Ndb_table_guard object for
successive retires when attempting to obtain a table object reference; it was not possible for this to
succeed after failing on the first attempt, since Ndb_table_guard assumes that the underlying object
pointer is determined once only—at initialisation—with the previously retrieved pointer being returned
from a cached reference thereafter.

This resulted in infinite waits to obtain the GSL, causing the binlog injector thread to hang so that
mysqld considered all NDB tables to be read-only. To avoid this problem, NDB now uses a fresh instance
of Ndb_table_guard for each such retry. (Bug #30120858)

References: This issue is a regression of: Bug #30086352.

• When upgrading an SQL node to NDB 8.0 from a previous release series, the .frm file whose contents
are read and then installed in the data dictionary does not contain any information about foreign keys.
This meant that foreign key information was not installed in the SQL node's data dictionary. This is fixed
by using the foreign key information available in the NDB data dictionary to update the local MySQL data
dictionary during table metadata upgrade. (Bug #30071043)

• Restoring tables with the --disable-indexes option resulted in the wrong table definition being
installed in the MySQL data dictionary. This is because the serialized dictionary information (SDI) packed
into the NDB dictionary's table definition is used to create the table object; the SDI definition is updated
only when the DDL change is done through the MySQL server. Installation of the wrong table definition
meant that the table could not be opened until the indexes were re-created in the NDB dictionary again
using --rebuild-indexes.

This is fixed by extending auto-synchronization such that it compares the SDI to the NDB dictionary
table information and fails in cases in which the column definitions do not match. Mismatches involving
indexes only are treated as temporary errors, with the table in question being detected again during the
next round of change detection. (Bug #30000202, Bug #30414514)

• Restoring tables for which MAX_ROWS was used to alter partitioning from a backup made from NDB
7.4 to a cluster running NDB 7.6 did not work correctly. This is fixed by ensuring that the upgrade
code handling PartitionBalance supplies a valid table specification to the NDB dictionary. (Bug
#29955656)

• The number of data bytes for the summary event written in the cluster log when a backup completed was
truncated to 32 bits, so that there was a significant mismatch between the number of log records and the
number of data records printed in the log for this event. (Bug #29942998)

• mysqld sometimes aborted during a long ALTER TABLE operation that timed out. (Bug #29894768)

References: See also: Bug #29192097.

228

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysqld.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_disable-indexes
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_rebuild-indexes
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysqld.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/alter-table.html

MySQL NDB Cluster 8.0 Release Notes

• When an SQL node connected to NDB, it did not know whether it had previously connected to that
cluster, and thus could not determine whether its data dictionary information was merely out of date, or
completely invalid. This issue is solved by implementing a unique schema version identifier (schema
UUID) to the ndb_schema table in NDB as well as to the ndb_schema table object in the data dictionary.
Now, whenever a mysqld connects to a cluster as an SQL node, it can compare the schema UUID
stored in its data dictionary against that which is stored in the ndb_schema table, and so know whether
it is connecting for the first time. If so, the SQL node removes any entries that may be in its data
dictionary. (Bug #29894166)

References: See also: Bug #27543602.

• Improved log messages generated by table discovery and table metadata upgrades. (Bug #29894127)

• Using 2 LDM threads on a 2-node cluster with 10 threads per node could result in a partition imbalance,
such that one of the LDM threads on each node was the primary for zero fragments. Trying to restore a
multi-threaded backup from this cluster failed because the datafile for one LDM contained only the 12-
byte data file header, which ndb_restore was unable to read. The same problem could occur in other
cases, such as when taking a backup immediately after adding an empty node online.

It was found that this occurred when ODirect was enabled for an EOF backup data file write whose
size was less than 512 bytes and the backup was in the STOPPING state. This normally occurs only for
an aborted backup, but could also happen for a successful backup for which an LDM had no fragments.
We fix the issue by introducing an additional check to ensure that writes are skipped only if the backup
actually contains an error which should cause it to abort. (Bug #29892660)

References: See also: Bug #30371389.

• For NDB tables, ALTER TABLE ... ALTER INDEX did not work with ALGORITHM=INPLACE. (Bug
#29700197)

• ndb_restore failed in testing on 32-bit platforms. This issue is fixed by increasing the size of the thread
stack used by this tool from 64 KB to 128 KB. (Bug #29699887)

References: See also: Bug #30406046.

• An unplanned shutdown of the cluster occurred due to an error in DBTUP while deleting rows from a table
following an online upgrade. (Bug #29616383)

• In some cases the SignalSender class, used as part of the implementation of ndb_mgmd and
ndbinfo, buffered excessive numbers of unneeded SUB_GCP_COMPLETE_REP and API_REGCONF
signals, leading to unnecessary consumption of memory. (Bug #29520353)

References: See also: Bug #20075747, Bug #29474136.

• The setting for the BackupLogBufferSize configuration parameter was not honored. (Bug
#29415012)

• When mysqld was run with the --upgrade=FORCE option, it reported the following issues:

[Warning] Table 'mysql.ndb_apply_status' requires repair.
[ERROR] Table 'mysql.ndb_apply_status' repair failed.

This was because --upgrade=FORCE causes a bootstrap system thread to run CHECK TABLE FOR
UPGRADE, but ha_ndbcluster::open() refused to open the table before schema synchronization
had completed, which eventually led to the reported conditions. (Bug #29305977)

References: See also: Bug #29205142.

229

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysqld.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-odirect
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/alter-table.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbtup.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-mgmd.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbinfo.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-backuplogbuffersize
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysqld.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/server-options.html#option_mysqld_upgrade
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/check-table.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/check-table.html

MySQL NDB Cluster 8.0 Release Notes

• When using explicit SHM connections, with ShmSize set to a value larger than the system's available
shared memory, mysqld hung indefinitely on startup and produced no useful error messages. (Bug
#28875553)

• The maximum global checkpoint (GCP) commit lag and GCP save timeout are recalculated whenever
a node shuts down, to take into account the change in number of data nodes. This could lead to the
unintentional shutdown of a viable node when the threshold decreased below the previous value. (Bug
#27664092)

References: See also: Bug #26364729.

• A transaction which inserts a child row may run concurrently with a transaction which deletes the parent
row for that child. One of the transactions should be aborted in this case, lest an orphaned child row
result.

Before committing an insert on a child row, a read of the parent row is triggered to confirm that the
parent exists. Similarly, before committing a delete on a parent row, a read or scan is performed to
confirm that no child rows exist. When insert and delete transactions were run concurrently, their
prepare and commit operations could interact in such a way that both transactions committed.
This occurred because the triggered reads were performed using LM_CommittedRead locks (see
NdbOperation::LockMode), which are not strong enough to prevent such error scenarios.

This problem is fixed by using the stronger LM_SimpleRead lock mode for both triggered reads. The
use of LM_SimpleRead rather than LM_CommittedRead locks ensures that at least one transaction
aborts in every possible scenario involving transactions which concurrently insert into child rows and
delete from parent rows. (Bug #22180583)

• Concurrent SELECT and ALTER TABLE statements on the same SQL node could sometimes block one
another while waiting for locks to be released. (Bug #17812505, Bug #30383887)

• Failure handling in schema synchronization involves pushing warnings and errors to the binary logging
thread. Schema synchronization is also retried in case of certain failures which could lead to an
accumulation of warnings in the thread. Now such warnings and errors are cleared following each
attempt at schema synchronization. (Bug #2991036)

• An INCL_NODECONF signal from any local blocks should be ignored when a node has failed, except in
order to reset c_nodeStartSlave.nodeId. (Bug #96550, Bug #30187779)

• When returning Error 1022, NDB did not print the name of the affected table. (Bug #74218, Bug
#19763093)

References: See also: Bug #29700174.

Changes in MySQL NDB Cluster 8.0.18 (2019-10-14, Release Candidate)

• Functionality Added or Changed

• Bugs Fixed

Functionality Added or Changed

• Important Change: The 63-byte limit on NDB database and table names has been removed. These
identifiers may now take up to 64 bytes, as when using other MySQL storage engines. For more
information, see Previous NDB Cluster Issues Resolved in NDB Cluster 8.0. (Bug #44940, Bug
#11753491, Bug #27447958)

• Important Change: Implemented the NDB_STORED_USER privilege, which enables sharing of users,
roles, and privileges across all SQL nodes attached to a given NDB Cluster. This replaces the distributed

230

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-shm-definition.html#ndbparam-shm-shmsize
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysqld.html
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndboperation.html#ndb-ndboperation-lockmode
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/select.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/alter-table.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-limitations-resolved.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/privileges-provided.html#priv_ndb-stored-user

MySQL NDB Cluster 8.0 Release Notes

grant tables mechanism from NDB 7.6 and earlier versions of NDB Cluster, which was removed in NDB
8.0.16 due to its incompatibility with changes made to the MySQL privilege system in MySQL 8.0.

A user or role which has this privilege is propagated, along with its (other) privileges to a MySQL server
(SQL node) as soon as it connects to the cluster. Changes made to the privileges of the user or role are
synchronized immediately with all connected SQL nodes.

NDB_STORED_USER can be granted to users and roles other than reserved accounts such as
mysql.session@localhost or mysql.infoschema@localhost. A role can be shared, but
assigning a shared role to a user does not cause this user to be shared; the NDB_STORED_USER
privilege must be granted to the user explicitly in order for the user to be shared between NDB Cluster
SQL nodes.

The NDB_STORED_USER privilege is always global and must be granted using ON *.*. This privilege is
recognized only if the MySQL server enables support for the NDBCLUSTER storage engine.

For usage information, see the description of NDB_STORED_USER. Privilege Synchronization
and NDB_STORED_USER, has additional information on how NDB_STORED_USER and privilege
synchronization work. For information on how this change may affect upgrades to NDB 8.0 from previous
versions, see Upgrading and Downgrading NDB Cluster. (WL #12637)

References: See also: Bug #29862601, Bug #29996547.

• Important Change: The maximum row size for an NDB table is increased from 14000 to 30000 bytes.

As before, only the first 264 bytes of a BLOB or TEXT column count towards this total.

The maximum offset for a fixed-width column of an NDB table is 8188 bytes; this is also unchanged from
previous NDB Cluster releases.

For more information, see Limits Associated with Database Objects in NDB Cluster. (WL #13079, WL
#11160)

References: See also: Bug #29485977, Bug #29024275.

• Important Change: A new binary format has been implemented for the NDB management server's
cached configuration file, which is intended to support much larger numbers of nodes in a cluster than
previously. Prior to this release, the configuration file supported a maximum of 16381 sections; this
number is increased to 4G.

Upgrades to the new format should not require any manual intervention, as the management server
(and other cluster nodes) can still read the old format. For downgrades from this release or a later one
to NDB 8.0.17 or earlier, it is necessary to remove the binary configuration files prior to starting the old
management server binary, or start it using the --initial option.

For more information, see Upgrading and Downgrading NDB Cluster. (WL #12453)

• Important Change: The maximum number of data nodes supported in a single NDB cluster is raised in
this release from 48 to 144. The range of supported data node IDs is increased in conjunction with this
enhancement to 1-144, inclusive.

In previous releases, recommended node IDs for management nodes were 49 and 50. These values
are still supported, but, if used, limit the maximum number of data nodes to 142. For this reason, the
recommended node ID values for management servers are now 145 and 146.

The maximum total supported number of nodes of all types in a given cluster is 255. This total is
unchanged from previous releases.

231

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/privileges-provided.html#priv_ndb-stored-user
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-privilege-synchronization.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-privilege-synchronization.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-upgrade-downgrade.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-limitations-database-objects.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-mgmd.html#option_ndb_mgmd_initial
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-upgrade-downgrade.html

MySQL NDB Cluster 8.0 Release Notes

For a cluster running more than 48 data nodes, it is not possible to downgrade directly to a previous
release that supports only 48 data nodes. In such cases, it is necessary to reduce the number of data
nodes to 48 or fewer, and to make sure that all data nodes use node IDs that are less than 49.

This change also introduces a new version (v2) of the format used for the data node sysfile, which
records information such as the last global checkpoint index, restart status, and node group membership
of each node (see NDB Cluster Data Node File System Directory). (WL #12680, WL #12564, WL
#12876)

• NDB Cluster APIs: An alternative constructor for NdbInterpretedCode is now provided, which
accepts an NdbRecord in place of a Table object. (Bug #29852377)

• NDB Cluster APIs: NdbScanFilter::cmp() and the following NdbInterpretedCode comparison
methods can be now used to compare table column values:

• branch_col_eq()

• branch_col_ge()

• branch_col_gt()

• branch_col_le()

• branch_col_lt()

• branch_col_ne()

When using any of these methods, the table column values to be compared must be of exactly the same
type, including with respect to length, precision, and scale. In addition, in all cases, NULL is always
considered by these methods to be less than any other value. You should also be aware that, when
used to compare table column values, NdbScanFilter::cmp() does not support all possible values of
BinaryCondition.

For more information, see the descriptions of the individual API methods. (WL #13120)

• NDB Client Programs: The dependency of the ndb_delete_all utility on the NDBT library has been
removed. This library, used in NDB development for testing, is not required for normal use. The visible
change for users is that ndb_delete_all no longer prints NDBT_ProgramExit - status following
completion of its run. Applications that depend upon this behavior should be updated to reflect this
change when upgrading to this release. (WL #13223)

• ndb_restore now reports the specific NDB error number and message when it is unable to load a table
descriptor from a backup .ctl file. This can happen when attempting to restore a backup taken from a
later version of the NDB Cluster software to a cluster running an earlier version—for example, when the
backup includes a table using a character set which is unknown to the version of ndb_restore being
used to restore it. (Bug #30184265)

• The output from DUMP 1000 in the ndb_mgm client has been extended to provide information regarding
total data page usage. (Bug #29841454)

References: See also: Bug #29929996.

232

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-ndbd-filesystemdir-files.html
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndbinterpretedcode.html
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndbrecord.html
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-table.html
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndbscanfilter.html#ndb-ndbscanfilter-cmp
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndbinterpretedcode.html
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndbinterpretedcode.html#ndb-ndbinterpretedcode-branch-col-eq
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndbinterpretedcode.html#ndb-ndbinterpretedcode-branch-col-ge
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndbinterpretedcode.html#ndb-ndbinterpretedcode-branch-col-gt
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndbinterpretedcode.html#ndb-ndbinterpretedcode-branch-col-le
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndbinterpretedcode.html#ndb-ndbinterpretedcode-branch-col-lt
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndbinterpretedcode.html#ndb-ndbinterpretedcode-branch-col-ne
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndbscanfilter.html#ndb-ndbscanfilter-binarycondition
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-delete-all.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-delete-all.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://dev.mysql.com/doc/ndb-internals/en/dump-command-1000.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-mgm.html

MySQL NDB Cluster 8.0 Release Notes

• NDB Cluster's condition pushdown functionality has been extended as follows:

• Expressions using any previously allowed comparisons are now supported.

• Comparisons between columns in the same table and of the same type are now supported. The
columns must be of exactly the same type.

Example: Suppose there are two tables t1 and t2 created as shown here:

CREATE TABLE t1 (a INT, b INT, c CHAR(10), d CHAR(5)) ENGINE=NDB;
CREATE TABLE t2 LIKE t1;

The following joins can now be pushed down to the data nodes:

SELECT * FROM t1 JOIN t2 ON t2.a < t1.a+10;
SELECT * FROM t1 JOIN t2 ON t2.a = t1.a+t1.b;
SELECT * FROM t1 JOIN t2 ON t2.a = t1.a+t1.b;
SELECT * FROM t1 JOIN t2 ON t2.d = SUBSTRING(t1.c,1,5);
SELECT * FROM t1 JOIN t2 ON t2.c = CONCAT('foo',t1.d,'ba');

Supported comparisons are <, <=, >, >=, =, and <>. (Bug #29685643, WL #12956, WL #13121)

• NDB Cluster now uses table_name_fk_N as the naming pattern for internally generated foreign keys,
which is similar to the table_name_ibfk_N pattern used by InnoDB. (Bug #96508, Bug #30171959)

References: See also: Bug #30210839.

• Added the ndb_schema_dist_lock_wait_timeout system variable to control how long to wait
for a schema lock to be released when trying to update the SQL node's local data dictionary for one or
more tables currently in use from the NDB data dictionary's metadata. If this synchronization has not
yet occurred by the end of this time, the SQL node returns a warning that schema distribution did not
succeed; the next time that the table for which distribution failed is accessed, NDB tries once again to
synchronize the table metadata. (WL #10164)

• NDB table objects submitted by the metadata change monitor thread are now automatically checked
for any mismatches and synchronized by the NDB binary logging thread. The status variable
Ndb_metadata_synced_count added in this release shows the number of objects synchronized
automatically; it is possible to see which objects have been synchronized by checking the cluster log. In
addition, the new status variable Ndb_metadata_blacklist_size indicates the number of objects for
which synchronization has failed. (WL #11914)

References: See also: Bug #30000202.

• It is now possible to build NDB for 64-bit ARM CPUs from the NDB Cluster sources. Currently, we do not
provide any precompiled binaries for this platform. (WL #12928)

• Start times for the ndb_mgmd management node daemon have been significantly improved as follows:

• More efficient handling of properties from configuration data can decrease startup times for the
management server by a factor of 6 or more as compared with previous versions.

• Host names not present in the management server's hosts file no longer create a bottleneck during
startup, making ndb_mgmd start times up to 20 times shorter where these are used.

(WL #13143)

• Columns of NDB tables can now be renamed online, using ALGORITHM=INPLACE. (WL #11734)

References: See also: Bug #28609968.

233

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#sysvar_ndb_schema_dist_lock_wait_timeout
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#statvar_Ndb_metadata_synced_count
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#statvar_Ndb_metadata_excluded_count
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-mgmd.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-mgmd.html

MySQL NDB Cluster 8.0 Release Notes

Bugs Fixed

• Important Change: Because the current implementation for node failure handling cannot guarantee
that even a single transaction of size MaxNoOfConcurrentOperations is completed in each round,
this parameter is once again used to set a global limit on the total number of concurrent operations in all
transactions within a single transaction coordinator instance. (Bug #96617, Bug #30216204)

• Partitioning; NDB Disk Data: Creation of a partitioned disk data table was unsuccessful due to a
missing metadata lock on the tablespace specified in the CREATE TABLE statement. (Bug #28876892)

• NDB Disk Data: Tablespaces and data files are not tightly coupled in NDB, in the sense that they are
represented by independent NdbDictionary objects. Thus, when metadata is restored using the
ndb_restore tool, there was no guarantee that the tablespace and its associated datafile objects were
restored at the same time. This led to the possibility that the tablespace mismatch was detected and
automatically synchronized to the data dictionary before the datafile was restored to NDB. This issue also
applied to log file groups and undo files.

To fix this problem, the metadata change monitor now submits tablespaces and logfile groups only if
their corresponding datafiles and undofiles actually exist in NDB. (Bug #30090080)

• NDB Disk Data: When a data node failed following creation and population of an NDB table having
columns on disk, but prior to execution of a local checkpoint, it was possible to lose row data from the
tablespace. (Bug #29506869)

• NDB Cluster APIs: The NDB API examples ndbapi_array_simple.cpp (see NDB API Simple Array
Example) and ndbapi_array_using_adapter.cpp (see NDB API Simple Array Example Using
Adapter) made assignments directly to a std::vector array instead of using push_back() calls to do
so. (Bug #28956047)

• Faulty calculation of microseconds caused the internal ndb_milli_sleep() function to sleep for too
short a time. (Bug #30211922)

• Once a data node is started, 95% of its configured DataMemory should be available for normal data,
with 5% to spare for use in critical situations. During the node startup process, all of its configured
DataMemory is usable for data, in order to minimize the risk that restoring the node data fails due to
running out of data memory due to some dynamic memory structure using more pages for the same data
than when the node was stopped. For example, a hash table grows differently during a restart than it did
previously, since the order of inserts to the table differs from the historical order.

The issue raised in this bug report occurred when a check that the data memory used plus the spare
data memory did not exceed the value set for DataMemory failed at the point where the spare memory
was reserved. This happened as the state of the data node transitioned from starting to started, when
reserving spare pages. After calculating the number of reserved pages to be used for spare memory,
and then the number of shared pages (that is, pages from shared global memory) to be used for this, the
number of reserved pages already allocated was not taken into consideration. (Bug #30205182)

References: See also: Bug #29616383.

• Removed a memory leak found in the ndb_import utility. (Bug #30192989)

• It was not possible to use ndb_restore and a backup taken from an NDB 8.0 cluster to restore to a
cluster running NDB 7.6. (Bug #30184658)

References: See also: Bug #30221717.

• When starting, a data node's local sysfile was not updated between the first completed local checkpoint
and start phase 50. (Bug #30086352)

234

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-maxnoofconcurrentoperations
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/create-table.html
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndbdictionary.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndbapi-examples-array-simple.html
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndbapi-examples-array-simple.html
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndbapi-examples-array-adapter.html
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndbapi-examples-array-adapter.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-datamemory
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-import.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html

MySQL NDB Cluster 8.0 Release Notes

• In the BACKUP block, the assumption was made that the first record in c_backups was the local
checkpoint record, which is not always the case. Now NDB loops through the records in c_backups to
find the (correct) LCP record instead. (Bug #30080194)

• During node takeover for the master it was possible to end in the state LCP_STATUS_IDLE while the
remaining data nodes were reporting their state as LCP_TAB_SAVED. This led to failure of the node
when attempting to handle reception of a LCP_COMPLETE_REP signal since this is not expected when
idle. Now in such cases local checkpoint handling is done in a manner that ensures that this node
finishes in the proper state (LCP_TAB_SAVED). (Bug #30032863)

• When a MySQL Server built with NDBCLUSTER support was run on Solaris/x86, it failed during schema
distribution. The root cause of the problem was an issue with the Developer Studio compiler used to
build binaries for this platform when optimization level -xO2 was used. This issue is fixed by using
optimization level -xO1 instead for NDBCLUSTER built for Solaris/x86. (Bug #30031130)

References: See also: Bug #28585914, Bug #30014295.

• NDB used free() directly to deallocate ndb_mgm_configuration objects instead of calling
ndb_mgm_destroy_configuration(), which correctly uses delete for deallocation. (Bug
#29998980)

• Default configuration sections did not have the configuration section types set when unpacked into
memory, which caused a memory leak since this meant that the section destructor would not destroy the
entries for these sections. (Bug #29965125)

• No error was propagated when NDB failed to discover a table due to the table format being old and no
longer supported, which could cause the NDB handler to retry the discovery operation endlessly and
thereby hang. (Bug #29949096, Bug #29934763)

• During upgrade of an NDB Cluster when half of the data nodes were running NDB 7.6 while the
remainder were running NDB 8.0, attempting to shut down those nodes which were running NDB 7.6 led
to failure of one node with the error CHECK FAILEDNODEPTR.P->DBLQHFAI. (Bug #29912988, Bug
#30141203)

• Altering a table in the middle of an ongoing transaction caused a table discovery operation which led to
the transaction being committed prematurely; in addition, no error was returned when performing further
updates as part of the same transaction.

Now in such cases, the table discovery operation fails, when a transaction is in progress. (Bug
#29911440)

• When performing a local checkpoint (LCP), a table's schema version was intermittently read as 0, which
caused NDB LCP handling to treat the table as though it were being dropped. This could effect rebuilding
of indexes offline by ndb_restore while the table was in the TABLE_READ_ONLY state. Now the
function reading the schema version (getCreateSchemaVersion()) no longer not changes it while
the table is read-only. (Bug #29910397)

• When an error occurs on an SQL node during schema distribution, information about this was written in
the error log, but no indication was provided by the mysql client that the DDL statement in question was
unsuccessful. Now in such cases, one or more generic warnings are displayed by the client to indicate
that a given schema distribution operation has not been successful, with further information available in
the error log of the originating SQL node. (Bug #29889869)

• Errors and warnings pushed to the execution thread during metadata synchronization and metadata
change detection were not properly logged and cleared. (Bug #29874313)

• Altering a normal column to a stored generated column was performed online even though this is not
supported. (Bug #29862463)

235

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-backup.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql.html

MySQL NDB Cluster 8.0 Release Notes

• A pushed join with ORDER BY did not always return the rows of the result in the specified order. This
could occur when the optimizer used an ordered index to provide the ordering and the index used a
column from the table that served as the root of the pushed join. (Bug #29860378)

• A number of issues in the Backup block for local checkpoints (LCPs) were found and fixed, including the
following:

• Bytes written to LCP part files were not always included in the LCP byte count.

• The maximum record size for the buffer used for all LCP part files was not updated in all cases in
which the table maximum record size had changed.

• LCP surfacing could occur for LCP scans at times other than when receiving SCAN_FRAGCONF
signals.

• It was possible in some cases for the table currently being scanned to be altered in the middle of a
scan request, which behavior is not supported.

(Bug #29843373)

References: See also: Bug #29485977.

• The requestInfo fields for the long and short forms of the LQHKEYREQ signal had different definitions;
bits used for the key length in the short version were reused for flags in the long version, since the
key length is implicit in the section length of the long version of the signal but it was possible for long
LQHKEYREQ signals to contain a keylength in these same bits, which could be misinterpreted by the
receiving local query handler, potentially leading to errors. Checks have now been implemented to make
sure that this no longer happens. (Bug #29820838)

• The list of dropped shares could hold only one dropped NDB_SHARE instance for each key, which
prevented NDB_SHARE instances with same key from being dropped multiple times while handlers held
references to those NDB_SHARE instances. This interfered with keeping track of the memory allocated
and being able to release it if mysqld shut down without all handlers having released their references
to the shares. To resolve this issue, the dropped share list has been changed to use a list type which
allows more than one NDB_SHARE with the same key to exist at the same time. (Bug #29812659, Bug
#29812613)

• Removed an ndb_restore compile-time dependency on table names that was defined by the
ndbcluster plugin. (Bug #29801100)

• When creating a table in parallel on multiple SQL nodes, the result was a race condition between
checking that the table existed and opening the table, which caused CREATE TABLE IF NOT EXISTS
to fail with Error 1. This was the result of two issues, described with their fixes here:

1. Opening a table whose NDB_SHARE did not exist returned the non-descriptive error message ERROR
1296 (HY000): Got error 1 'Unknown error code' from NDBCLUSTER. This is fixed
with a warning describing the problem in more detail, along with a more sensible error code.

It was possible to open a table before schema synchronization was completed. This is fixed with a
warning better describing the problem, along with an error indicating that cluster is not yet ready.

In addition, this fixes a related issue in which creating indexes sometimes also failed with Error 1. (Bug
#29793534, Bug #29871321)

• Previously, for a pushed condition, every request sent to NDB for a given table caused the generation
of a new instance of NdbInterpretedCode. When joining tables, generation of multiple requests
for all tables following the first table in the query plan is very likely; if the pushed condition had no

236

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysqld.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/create-table.html
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndbinterpretedcode.html

MySQL NDB Cluster 8.0 Release Notes

dependencies on prior tables in the query plan, identical instances of NdbInterpretedCode were
generated for each request, at a significant cost in wasted CPU cycles. Now such pushed conditions are
identified and the required NdbInterpretedCode object is generated only once, and reused for every
request sent for this table without the need for generating new code each time.

This change also makes it possible for Scan Filter too large errors to be detected and set during
query optimization, which corrects cases where the query plan shown was inaccurate because the
indicated push of a condition later had to be undone during the execution phase. (Bug #29704575)

• Some instances of NdbScanFilter used in pushdown conditions were not generated properly due to
FLOAT values being represented internally as having zero length. This led to more than the expected
number of rows being returned from NDB, as shown by the value of Ndb_api_read_row_count. While
the condition was re-evaluated by mysqld when generation of scan filter failed, the end result was still
correct in such cases, but any performance gain expected from pushing the condition was lost. (Bug
#29699347)

• When creating a table, NDB did not always determine correctly whether it exceeded the maximum
allowed record size. (Bug #29698277)

• NDB index statistics are calculated based on the topology of one fragment of an ordered index; the
fragment chosen in any particular index is decided at index creation time, both when the index is
originally created, and when a node or system restart has recreated the index locally. This calculation is
based in part on the number of fragments in the index, which can change when a table is reorganized.
This means that, the next time that the node is restarted, this node may choose a different fragment,
so that no fragments, one fragment, or two fragments are used to generate index statistics, resulting in
errors from ANALYZE TABLE.

This issue is solved by modifying the online table reorganization to recalculate the chosen fragment
immediately, so that all nodes are aligned before and after any subsequent restart. (Bug #29534647)

• As part of initializing schema distribution, each data node must maintain a subscriber bitmap providing
information about the API nodes that are currently subscribed to this data node. Previously, the size of
the bitmap was hard-coded to MAX_NODES (256), which meant that large amounts of memory might be
allocated but never used when the cluster had significantly fewer nodes than this value. Now the size of
the bitmap is determined by checking the maximum API node ID used in the cluster configuration file.
(Bug #29270539)

• The removal of the mysql_upgrade utility and its replacement by mysqld --initialize means that
the upgrade procedure is executed much earlier than previously, possibly before NDB is fully ready to
handle queries. This caused migration of the MySQL privilege tables from NDB to InnoDB to fail. (Bug
#29205142)

• During a restart when the data nodes had started but not yet elected a president, the management
server received a node ID already in use error, which resulted in excessive retries and logging.
This is fixed by introducing a new error 1705 Not ready for connection allocation yet for
this case.

During a restart when the data nodes had not yet completed node failure handling, a spurious Failed
to allocate nodeID error was returned. This is fixed by adding a check to detect an incomplete
node start and to return error 1703 Node failure handling not completed instead.

As part of this fix, the frequency of retries has been reduced for not ready to alloc nodeID errors,
an error insert has been added to simulate a slow restart for testing purposes, and log messages have
been reworded to indicate that the relevant node ID allocation errors are minor and only temporary. (Bug
#27484514)

237

https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndbscanfilter.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/floating-point-types.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#statvar_Ndb_api_read_row_count
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/analyze-table.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-upgrade.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysqld.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/server-options.html#option_mysqld_initialize

MySQL NDB Cluster 8.0 Release Notes

• NDB on Windows and macOS platforms did not always treat table names using mixed case consistently
with lower_case_table_names = 2. (Bug #27307793)

• The process of selecting the transaction coordinator checked for “live” data nodes but not necessarily for
those that were actually available. (Bug #27160203)

• The automatic metadata synchronization mechanism requires the binary logging thread to
acquire the global schema lock before an object can be safely synchronized. When another
thread had acquired this lock at the same time, the binary logging thread waited for up to
TransactionDeadlockDetectionTimeout milliseconds and then returned failure if it was
unsuccessful in acquiring the lock, which was unnecessary and which negatively impacted performance.

This has been fixed by ensuring that the binary logging thread acquires the global schema lock, or else
returns with an error, immediately. As part of this work, a new OperationOptions flag OO_NOWAIT
has also been implemented in the NDB API. (WL #29740946)

Changes in MySQL NDB Cluster 8.0.17 (2019-07-22, Release Candidate)

• Functionality Added or Changed

• Bugs Fixed

Functionality Added or Changed

• Schema operation timeout detection has been moved from the schema distribution client to the schema
distribution coordinator, which now checks ongoing schema operations for timeout at regular intervals,
marks participants that have timed out, emits suitable warnings when a schema operation timeout
occurs, and prints a list of any ongoing schema operations at regular intervals.

As part of this work, a new option --ndb-schema-dist-timeout makes it possible to set the number
of seconds for a given SQL node to wait until a schema operation is marked as having timed out. (Bug
#29556148)

• Added the status variable Ndb_trans_hint_count_session, which shows the
number of transactions started in the current session that used hints. Compare this with
Ndb_api_trans_start_count_session to get the proportion of all NDB transactions in the current
session that have been able to use hinting. (Bug #29127040)

• When the cluster is in single user mode, the output of the ndb_mgm SHOW command now indicates which
API or SQL node has exclusive access while this mode is in effect. (Bug #16275500)

Bugs Fixed

• Important Change: Attempting to drop, using the mysql client, an NDB table that existed in the
MySQL data dictionary but not in NDB caused mysqld to fail with an error. This situation could occur
when an NDB table was dropped using the ndb_drop_table tool or in an NDB API application using
dropTable(). Now in such cases, mysqld drops the table from the MySQL data dictionary without
raising an error. (Bug #29125206)

• Important Change: The dependency of ndb_restore on the NDBT library, which is used
for internal testing only, has been removed. This means that the program no longer prints
NDBT_ProgramExit: ... when terminating. Applications that depend upon this behavior should be
updated to reflect this change when upgrading to this release. (WL #13117)

• Packaging: Added debug symbol packages to NDB distributions for .deb-based platforms which do not
generate these automatically. (Bug #29040024)

238

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/server-system-variables.html#sysvar_lower_case_table_names
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-transactiondeadlockdetectiontimeout
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndboperation.html#ndb-ndboperation-operationoptions
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#option_mysqld_ndb-schema-dist-timeout
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#statvar_Ndb_trans_hint_count_session
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#statvar_Ndb_api_trans_start_count_session
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-mgm.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-mgm-client-commands.html#ndbclient-show
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysqld.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-drop-table.html
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-dictionary.html#ndb-dictionary-droptable
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysqld.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html

MySQL NDB Cluster 8.0 Release Notes

• NDB Disk Data: If, for some reason, a disk data table exists in the NDB data dictionary but not in that
of the MySQL server, the data dictionary is synchronized by installing the object. This can occur either
during the schema synchronization phase when a MySQL server connects to an NDB Cluster, or during
table discovery through a DML query or DDL statement.

For disk data tables which used a tablespace for storage, the tablespace ID is stored as part of the data
dictionary object, but this was not set during synchronization. (Bug #29597249)

• NDB Disk Data: Concurrent Disk Data table and tablespace DDL statements executed on the same
SQL node caused a metadata lock deadlock. A DDL statement requires that an exclusive lock be
taken on the object being modified and every such lock in turn requires that the global schema lock be
acquired in NDB.

To fix this issue, NDB now tracks when a global schema lock corresponding to an exclusive lock on a
tablespace is taken. If a different global schema lock request fails while the first lock, NDB assumes that
there is a deadlock. In this case, the deadlock is handled by having the new request release all locks it
previously acquired, then retrying them at a later point. (Bug #29394407)

References: See also: Bug #29175268.

• NDB Disk Data: Following execution of ALTER TABLESPACE, SQL statements on an existing table
using the affected tablespace failed with error 3508 Dictionary object id (id) does not
exist where the object ID shown refers to the tablespace. Schema distribution of ALTER TABLESPACE
involves dropping the old object from the data dictionary on a participating SQL node and creating a new
one with a different dictionary object id, but the table object in the SQL node's data dictionary still used
the old tablespace ID which rendered it unusable on the participants.

To correct this problem, tables using the tablespace are now retrieved and stored prior to the creation of
the new tablespace, and then Updated the new object ID of the tablespace after it has been created in
the data dictionary. (Bug #29389168)

• NDB Cluster APIs: The memcached sources included with the NDB distribution would not build with -
Werror=format-security. Now warnings are no longer treated as errors when compiling these files.
(Bug #29512411)

• NDB Cluster APIs: It was not possible to scan a table whose SingleUserMode property had been set
to SingleUserModeReadWrite or SingleUserModeReadOnly. (Bug #29493714)

• NDB Cluster APIs: The MGM API ndb_logevent_get_next2() function did not behave correctly on
Windows and 32-bit Linux platforms. (Bug #94917, Bug #29609070)

• The version of Python expected by ndb_setup.py was not specified clearly on some platforms. (Bug
#29818645)

• Lack of SharedGlobalMemory was incorrectly reported as lack of undo buffer memory, even though
the cluster used no disk data tables. (Bug #29806771)

References: This issue is a regression of: Bug #92125, Bug #28537319.

• Long TCKEYREQ signals did not always use the expected format when invoked from TCINDXREQ
processing. (Bug #29772731)

• It was possible for an internal NDB_SCHEMA_OBJECT to be released too early or not at all; in addition, it
was possible to create such an object that reused an existing key. (Bug #29759063)

• ndb_restore sometimes used exit() rather than exitHandler() to terminate the program, which
could lead to resources not being properly freed. (Bug #29744353)

239

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/alter-tablespace.html
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-table.html#ndb-table-singleusermode
https://docs.oracle.com/cd/E17952_01/ndbapi-en/mgm-functions-log-events.html#mgm-ndb-logevent-get-next2
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-sharedglobalmemory
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html

MySQL NDB Cluster 8.0 Release Notes

• Improved error message printed when the maximum offset for a FIXED column is exceeded. (Bug
#29714670)

• Communication between the schema distribution client and the schema distribution coordinator is done
using NDB_SCHEMA_OBJECT as well as by writing rows to the ndb_schema table in NDB. This allowed
for the possibility of a number of different race conditions between when the registration of the schema
operation and when the coordinator was notified of it.

This fix addresses the following issues related to the situation just described:

• The coordinator failed to abort active schema operations when the binary logging thread was
restarted.

• Schema operations already registered were not aborted properly.

• The distribution client failed to detect correctly when schema distribution was not ready.

• The distribution client, when killed, exited without marking the current schema operation as failed.

• An operation in NDB_SHARE could be accessed without the proper locks being in place.

In addition, usage of the ndb_schema_share global pointer was removed, and replaced with detecting
whether the schema distribution is ready by checking whether an operation for mysql.ndb_schema has
been created in NDB_SHARE. (Bug #29639381)

• With DataMemory set to 200 GB, ndbmtd failed to start. (Bug #29630367)

• When a backup fails due to ABORT_BACKUP_ORD being received while waiting for buffer space, the
backup calls closeScan() and then sends a SCAN_FRAGREQ signal to the DBLQH block to close the
scan. As part of receiving SCAN_FRAGCONF in response, scanConf() is called on the operation object
for the file record which in turn calls updateWritePtr() on the file system buffer (FsBuffer). At this
point the length sent by updateWritePtr() should be 0, but in this case was not, which meant that the
buffer did not have enough space even though it did not, the problem being that the size is calculated as
scanStop - scanStart and these values were held over since the previous SCAN_FRAGCONF was
received, and were not reset due to being out of buffer space.

To avoid this problem, we now set scanStart = scanStop in confirmBufferData() (formerly
scanConfExtra()) which is called as part of processing the SCAN_FRAGCONF, indirectly by
scanConf() for the backup and first local checkpoint files, and directly for the LCP files which use only
the operation record for the data buffer. (Bug #29601253)

• The setting for MaxDMLOperationsPerTransaction was not validated in a timely fashion, leading
to data node failure rather than a management server error in the event that its value exceeded that of
MaxNoOfConcurrentOperations. (Bug #29549572)

• Data nodes could fail due to an assert in the DBTC block under certain circumstances in resource-
constrained environments. (Bug #29528188)

• An upgrade to NDB 7.6.9 or later from an earlier version could not be completed successfully if the redo
log was filled to more than 25% of capacity. (Bug #29506844)

• When the DBSPJ block called the internal function lookup_resume() to schedule a previously
enqueued operation, it used a correlation ID which could have been produced from its immediate

240

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-datamemory
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndbmtd.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-maxdmloperationspertransaction
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-maxnoofconcurrentoperations

MySQL NDB Cluster 8.0 Release Notes

ancestor in the execution order, and not its parent in the query tree as assumed. This could happen
during execution of a SELECT STRAIGHT_JOIN query.

Now NDB checks whether the execution ancestor is different from the query tree parent, and if not,
performs a lookup of the query tree parent, and the parent's correlation ID is enqueued to be executed
later. (Bug #29501263)

• When a new master took over, sending a MASTER_LCP_REQ signal and executing MASTER_LCPCONF
from participating nodes, it expected that they had not completed the current local checkpoint under the
previous master, which need not be true. (Bug #29487340, Bug #29601546)

• When restoring TINYBLOB columns, ndb_restore now treats them as having the BINARY character
set. (Bug #29486538)

• When selecting a sorted result set from a query that included a LIMIT clause on a single table, and
where the sort was executed as Using filesort and the ref access method was used on an
ordered index, it was possible for the result set to be missing one or more rows. (Bug #29474188)

• Restoration of epochs by ndb_restore failed due to temporary redo errors. Now ndb_restore retries
epoch updates when such errors occur. (Bug #29466089)

• ndb_restore tried to extract an 8-character substring of a table name when checking to determine
whether or not the table was a blob table, regardless of the length of the name. (Bug #29465794)

• When a pushed join was used in combination with the eq_ref access method it was possible to obtain
an incorrect join result due to the 1 row cache mechanism implemented in NDB 8.0.16 as part of the
work done in that version to extend NDB condition pushdown by allowing referring values from previous
tables. This issue is now fixed by turning off this caching mechanism and reading the row directly from
the handler instead, when there is a pushed condition defined on the table. (Bug #29460314)

• Improved and made more efficient the conversion of rows by the ha_ndbcluster handler from the
format used internally by NDB to that used by the MySQL server for columns that contain neither BLOB
nor BIT values, which is the most common case. (Bug #29435461)

• A failed DROP TABLE could be attempted an infinite number of times in the event of a temporary error.
Now in such cases, the number of retries is limited to 100. (Bug #29355155)

• ndb_restore --restore-epoch incorrectly reported the stop GCP as 1 less than the actual position.
(Bug #29343655)

• A SavedEvent object in the CMVMI kernel block is written into a circular buffer. Such an object is split
in two when wrapping at the end of the buffer; NDB looked beyond the end of the buffer instead of in the
wrapped data at the buffer's beginning. (Bug #29336793)

• NDB did not compile with -DWITH_SYSTEM_LIBS=ON due to an incorrectly configured dependency on
zlib. (Bug #29304517)

• Removed a memory leak found when running ndb_mgmd --config-file after compiling NDB with
Clang 7. (Bug #29284643)

• Removed clang compiler warnings caused by usage of extra ; characters outside functions; these are
incompatible with C++98. (Bug #29227925)

• Adding a column defined as TIMESTAMP DEFAULT CURRENT_TIMESTAMP to an NDB table is not
supported with ALGORITHM=INPLACE. Attempting to do so now causes an error. (Bug #28128849)

• Added support which was missing in ndb_restore for conversions between the following sets of types:

• BLOB and BINARY or VARBINARY columns

241

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/blob.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/explain-output.html#jointype_ref
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/explain-output.html#jointype_eq_ref
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/blob.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/bit-type.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/drop-table.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_restore-epoch
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/source-configuration-options.html#option_cmake_with_system_libs
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-mgmd.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-mgmd.html#option_ndb_mgmd_config-file
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/datetime.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/blob.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/binary-varbinary.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/binary-varbinary.html

MySQL NDB Cluster 8.0 Release Notes

• TEXT and BLOB columns

• BLOB columns with unequal lengths

• BINARY and VARBINARY columns with unequal lengths

(Bug #28074988)

• Neither the MAX_EXECUTION_TIME optimizer hint nor the max_execution_time system variable was
respected for DDL statements or queries against INFORMATION_SCHEMA tables while an NDB global
schema lock was in effect. (Bug #27538139)

• DDL operations were not always performed correctly on database objects including databases and
tables, when multi-byte character sets were used for the names of either or both of these. (Bug
#27150334)

• ndb_import did not always free up all resources used before exiting. (Bug #27130143)

• NDBCLUSTER subscription log printouts provided only 2 words of the bitmap (in most cases containing 8
words), which made it difficult to diagnose schema distribution issues. (Bug #22180480)

• For certain tables with very large rows and a very large primary key, START BACKUP SNAPSHOTEND
while performing inserts into one of these tables or START BACKUP SNAPSHOTSTART with concurrent
deletes could lead to data node errors.

As part of this fix, ndb_print_backup_file can now read backup files created in very old versions of
NDB Cluster (6.3 and earlier); in addition, this utility can now also read undo log files. (Bug #94654, Bug
#29485977)

• When one of multiple SQL nodes which were connected to the cluster was down and then rejoined the
cluster, or a new SQL node joined the cluster, this node did not use the data dictionary correctly, and
thus did not always add, alter, or drop databases properly when synchronizing with the existing SQL
nodes.

Now, during schema distribution at startup, the SQL node compares all databases on the data nodes
with those in its own data dictionary. If any database on the data nodes is found to be missing from the
SQL node's data dictionary, the SQL Node installs it locally using CREATE DATABASE; the database is
created using the default MySQL Server database properties currently in effect on this SQL node. (WL
#12731)

Changes in MySQL NDB Cluster 8.0.16 (2019-04-25, Development Milestone)

• Deprecation and Removal Notes

• SQL Syntax Notes

• Functionality Added or Changed

• Bugs Fixed

Deprecation and Removal Notes

• Incompatible Change: Distribution of privileges amongst MySQL servers connected to NDB Cluster, as
implemented in NDB 7.6 and earlier, does not function in NDB 8.0, and most code supporting these has
now been removed. When a mysqld detects such tables in NDB, it creates shadow tables local to itself
using the InnoDB storage engine; these shadow tables are created on each MySQL server connected to
an NDB cluster. Privilege tables using the NDB storage engine are not employed for access control; once

242

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/blob.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/server-system-variables.html#sysvar_max_execution_time
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/information-schema.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-import.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-backup-using-management-client.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-print-backup-file.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/create-database.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysqld.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/innodb-storage-engine.html

MySQL NDB Cluster 8.0 Release Notes

all connected MySQL servers are upgraded, the privilege tables in NDB can be removed safely using
ndb_drop_table.

For compatibility reasons, ndb_restore --restore-privilege-tables can still be used to restore
distributed privilege tables present in a backup taken from a previous release of NDB Cluster to a cluster
running NDB 8.0. These tables are handled as described in the preceeding paragraph.

For additional information regarding upgrades from previous NDB Cluster release series to NDB 8.0, see
Upgrading and Downgrading NDB Cluster. (WL #12507, WL #12511)

SQL Syntax Notes

• Incompatible Change: For consistency with InnoDB, the NDB storage engine now uses a generated
constraint name if the CONSTRAINT symbol clause is not specified, or the CONSTRAINT keyword is
specified without a symbol. In previous NDB releases, NDB used the FOREIGN KEY index_name
value.

This change described above may introduce incompatibilities for applications that depend on the
previous foreign key constraint naming behavior. (Bug #29173134)

Functionality Added or Changed

• Packaging: A Docker image for this release can be obtained from https://hub.docker.com/r/mysql/mysql-
cluster/. (Bug #96084, Bug #30010921)

• Allocation of resources in the transaction corrdinator (see The DBTC Block) is now performed using
dynamic memory pools. This means that resource allocation determined by data node configuration
parameters such as those discussed in Transaction parameters and Transaction temporary storage is
now limited so as not to exceed the total resources available to the transaction coordinator.

As part of this work, several new data node parameters controlling transactional resources in DBTC,
listed here, have also been added. For more information about these new parameters, see Transaction
resource allocation parameters. (Bug #29164271, Bug #29194843, WL #9756, WL #12523)

References: See also: Bug #29131828.

• NDB backups can now be performed in a parallel fashion on individual data nodes using multiple local
data managers (LDMs). (Previously, backups were done in parallel across data nodes, but were always
serial within data node processes.) No special syntax is required for the START BACKUP command in
the ndb_mgm client to enable this feature, but all data nodes must be using multiple LDMs. This means
that data nodes must be running ndbmtd and they must be configured to use multiple LDMs prior to
taking the backup (see Multi-Threading Configuration Parameters (ndbmtd)).

The EnableMultithreadedBackup data node parameter introduced in this release is enabled (set to
1) by default. You can disable multi-threaded backups and force the creation of single-threaded backups
by setting this parameter to 0 on all data nodes or in the [ndbd default] section of the cluster's
global configuration file (config.ini).

ndb_restore also now detects a multi-threaded backup and automatically attempts to restore it in
parallel. It is also possible to restore backups taken in parallel to a previous version of NDB Cluster by
slightly modifying the usual restore procedure.

For more information about taking and restoring NDB Cluster backups that were created using
parallelism on the data nodes, see Taking an NDB Backup with Parallel Data Nodes, and Restoring from
a backup taken in parallel. (Bug #28563639, Bug #28993400, WL #8517)

243

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-drop-table.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_restore-privilege-tables
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-upgrade-downgrade.html
https://hub.docker.com/r/mysql/mysql-cluster/
https://hub.docker.com/r/mysql/mysql-cluster/
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbtc.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#mysql-cluster-transaction-parameters
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#mysql-cluster-transaction-temporary-storage
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#mysql-cluster-transaction-resource-allocation
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#mysql-cluster-transaction-resource-allocation
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-backup-using-management-client.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-mgm.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndbmtd.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#mysql-cluster-ndbd-definition-ndbmtd-parameters
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbmtd-enablemultithreadedbackup
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-backup-parallel-data-nodes.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/ndb-restore-parallel-data-node-backup.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/ndb-restore-parallel-data-node-backup.html

MySQL NDB Cluster 8.0 Release Notes

• The compile-cluster script included in the NDB source distribution no longer supports in-source
builds. (WL #12303)

• Building with CMake3 is now supported by the compile-cluster script included in the NDB source
distribution. (WL #12303)

• As part of its automatic synchronization mechanism, NDB now implements a metadata change monitor
thread for detecting changes made to metadata for data objects such as tables, tablespaces, and log file
groups with the MySQL data dictionary. This thread runs in the background, checking every 60 seconds
for inconsistencies between the NDB dictionary and the MySQL data dictionary.

The monitor polling interval can be adjusted by setting the value of the
ndb_metadata_check_interval system variable, and can be disabled altogether by setting
ndb_metadata_check to OFF. The number of times that inconsistencies have been detected since
mysqld was last started is shown as the status variable, Ndb_metadata_detected_count. (WL
#11913)

• Condition pushdown is no longer limited to predicate terms referring to column values from the same
table to which the condition was being pushed; column values from tables earlier in the query plan can
now also be referred to from pushed conditions. This lets the data nodes filter out more rows (in parallel),
leaving less work to be performed by a single mysqld process, which is expected to provide significant
improvements in query performance.

For more information, see Engine Condition Pushdown Optimization. (WL #12686)

Bugs Fixed

• Important Change; NDB Disk Data: mysqldump terminated unexpectedly when attempting to dump
NDB disk data tables. The underlying reason for this was that mysqldump expected to find information
relating to undo log buffers in the EXTRA column of the INFORMATION_SCHEMA.FILES table but this
information had been removed in NDB 8.0.13. This information is now restored to the EXTRA column.
(Bug #28800252)

• Important Change: When restoring to a cluster using data node IDs different from those in the original
cluster, ndb_restore tried to open files corresponding to node ID 0. To keep this from happening, the
--nodeid and --backupid options—neither of which has a default value—are both now explicitly
required when invoking ndb_restore. (Bug #28813708)

• Important Change: Starting with this release, the default value of the ndb_log_bin system variable is
now FALSE. (Bug #27135706)

• NDB Disk Data: When a log file group had more than 18 undo logs, it was not possible to restart the
cluster. (Bug #251155785)

References: See also: Bug #28922609.

• NDB Disk Data: Concurrent CREATE TABLE statements using tablespaces caused deadlocks between
metadata locks. This occurred when Ndb_metadata_change_monitor acquired exclusive metadata
locks on tablespaces and logfile groups after detecting metadata changes, due to the fact that each
exclusive metadata lock in turn acquired a global schema lock. This fix attempts to solve that issue by
downgrading the locks taken by Ndb_metadata_change_monitor to MDL_SHARED_READ. (Bug
#29175268)

References: See also: Bug #29394407.

244

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#sysvar_ndb_metadata_check_interval
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#sysvar_ndb_metadata_check
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysqld.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#statvar_Ndb_metadata_detected_count
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysqld.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/engine-condition-pushdown-optimization.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysqldump.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysqldump.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/information-schema-files-table.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_nodeid
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_backupid
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#sysvar_ndb_log_bin
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/create-table.html

MySQL NDB Cluster 8.0 Release Notes

• NDB Disk Data: The error message returned when validation of MaxNoOfOpenFiles in relation to
InitialNoOfOpenFiles failed has been improved to make the nature of the problem clearer to users.
(Bug #28943749)

• NDB Disk Data: Schema distribution of ALTER TABLESPACE and ALTER LOGFILE GROUP statements
failed on a participant MySQL server if the referenced tablespace or log file group did not exist in its data
dictionary. Now in such cases, the effects of the statement are distributed successfully regardless of any
initial mismatch between MySQL servers. (Bug #28866336)

• NDB Disk Data: Repeated execution of ALTER TABLESPACE ... ADD DATAFILE against the same
tablespace caused data nodes to hang and left them, after being killed manually, unable to restart. (Bug
#22605467)

• NDB Cluster APIs: NDB now identifies short-lived transactions not needing the reduction of lock
contention provided by NdbBlob::close() and no longer invokes this method in cases (such as when
autocommit is enabled) in which unlocking merely causes extra work and round trips to be performed
prior to committing or aborting the transaction. (Bug #29305592)

References: See also: Bug #49190, Bug #11757181.

• NDB Cluster APIs: When the most recently failed operation was released, the pointer to it held by
NdbTransaction became invalid and when accessed led to failure of the NDB API application. (Bug
#29275244)

• NDB Cluster APIs: When the NDB kernel's SUMA block sends a TE_ALTER event, it does not keep track
of when all fragments of the event are sent. When NDB receives the event, it buffers the fragments, and
processes the event when all fragments have arrived. An issue could possibly arise for very large table
definitions, when the time between transmission and reception could span multiple epochs; during this
time, SUMA could send a SUB_GCP_COMPLETE_REP signal to indicate that it has sent all data for an
epoch, even though in this case that is not entirely true since there may be fragments of a TE_ALTER
event still waiting on the data node to be sent. Reception of the SUB_GCP_COMPLETE_REP leads to
closing the buffers for that epoch. Thus, when TE_ALTER finally arrives, NDB assumes that it is a
duplicate from an earlier epoch, and silently discards it.

We fix the problem by making sure that the SUMA kernel block never sends a SUB_GCP_COMPLETE_REP
for any epoch in which there are unsent fragments for a SUB_TABLE_DATA signal.

This issue could have an impact on NDB API applications making use of TE_ALTER events. (SQL nodes
do not make any use of TE_ALTER events and so they and applications using them were not affected.)
(Bug #28836474)

• When a pushed join executing in the DBSPJ block had to store correlation IDs during query execution,
memory for these was allocated for the lifetime of the entire query execution, even though these specific
correlation IDs are required only when producing the most recent batch in the result set. Subsequent
batches require additional correlation IDs to be stored and allocated; thus, if the query took sufficiently
long to complete, this led to exhaustion of query memory (error 20008). Now in such cases, memory
is allocated only for the lifetime of the current result batch, and is freed and made available for re-use
following completion of the batch. (Bug #29336777)

References: See also: Bug #26995027.

• When comparing or hashing a fixed-length string that used a NO_PAD collation, any trailing padding
characters (typically spaces) were sent to the hashing and comparison functions such that they became

245

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-maxnoofopenfiles
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-initialnoofopenfiles
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/alter-tablespace.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/alter-logfile-group.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/alter-tablespace.html
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndbblob.html#ndb-ndbblob-close
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndbtransaction.html

MySQL NDB Cluster 8.0 Release Notes

significant, even though they were not supposed to be. Now any such trailing spaces are trimmed from a
fixed-length string whenever a NO_PAD collation is specified.

Note

Since NO_PAD collations were introduced as part of UCA-9.0 collations in MySQL
8.0, there should be no impact relating to this fix on upgrades to NDB 8.0 from
previous GA releases of NDB Cluster.

(Bug #29322313)

• When a NOT IN or NOT BETWEEN predicate was evaluated as a pushed condition, NULL values were
not eliminated by the condition as specified in the SQL standard. (Bug #29232744)

References: See also: Bug #28672214.

• Internally, NDB treats NULL as less than any other value, and predicates of the form column < value
or column <= value are checked for possible nulls. Predicates of the form value > column or
value >= column were not checked, which could lead to errors. Now in such cases, these predicates
are rewritten so that the column comes first, so that they are also checked for the presence of NULL.
(Bug #29231709)

References: See also: Bug #92407, Bug #28643463.

• After folding of constants was implemented in the MySQL Optimizer, a condition containing a DATE or
DATETIME literal could no longer be pushed down by NDB. (Bug #29161281)

• When a join condition made a comparison between a column of a temporal data type such as
DATE or DATETIME and a constant of the same type, the predicate was pushed if the condition was
expressed in the form column operator constant, but not when in inverted order (as constant
inverse_operator column). (Bug #29058732)

• When processing a pushed condition, NDB did not detect errors or warnings thrown when a literal value
being compared was outside the range of the data type it was being compared with,and thus truncated.
This could lead to excess or missing rows in the result. (Bug #29054626)

• If an EQ_REF or REF key in the child of a pushed join referred to any columns of a table not a member
of the pushed join, this table was not an NDB table (because its format was of nonnative endianness),
and the data type of the column being joined on was stored in an endian-sensitive format, then the key
generated was generated, likely resulting in the return of an (invalid) empty join result.

Since only big endian platforms may store tables in nonnative (little endian) formats, this issue was
expected only on such platforms, most notably SPARC, and not on x86 platforms. (Bug #29010641)

• API and data nodes running NDB 7.6 and later could not use an existing parsed configuration from an
earlier release series due to being overly strict with regard to having values defined for configuration
parameters new to the later release, which placed a restriction on possible upgrade paths. Now NDB 7.6
and later are less strict about having all new parameters specified explicitly in the configuration which
they are served, and use hard-coded default values in such cases. (Bug #28993400)

• NDB 7.6 SQL nodes hung when trying to connect to an NDB 8.0 cluster. (Bug #28985685)

• The schema distribution data maintained in the NDB binary logging thread keeping track of the number
of subscribers to the NDB schema table always allocated some memory structures for 256 data nodes
regardless of the actual number of nodes. Now NDB allocates only as many of these structures as are
actually needed. (Bug #28949523)

246

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/datetime.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/datetime.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/datetime.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/datetime.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/explain-output.html#jointype_eq_ref
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/explain-output.html#jointype_ref

MySQL NDB Cluster 8.0 Release Notes

• Added DUMP 406 (NdbfsDumpRequests) to provide NDB file system information to global checkpoint
and local checkpoint stall reports in the node logs. (Bug #28922609)

• When a joined table was eliminated early as not pushable, it could not be referred to in any subsequent
join conditions from other tables without eliminating those conditions from consideration even if those
conditions were otherwise pushable. (Bug #28898811)

• When starting or restarting an SQL node and connecting to a cluster where NDB was already started,
NDB reported Error 4009 Cluster Failure because it could not acquire a global schema lock. This
was because the MySQL Server as part of initialization acquires exclusive metadata locks in order to
modify internal data structures, and the ndbcluster plugin acquires the global schema lock. If the
connection to NDB was not yet properly set up during mysqld initialization, mysqld received a warning
from ndbcluster when the latter failed to acquire global schema lock, and printed it to the log file,
causing an unexpected error in the log. This is fixed by not pushing any warnings to background threads
when failure to acquire a global schema lock occurs and pushing the NDB error as a warning instead.
(Bug #28898544)

• A race condition between the DBACC and DBLQH kernel blocks occurred when different operations
in a transaction on the same row were concurrently being prepared and aborted. This could result in
DBTUP attempting to prepare an operation when a preceding operation had been aborted, which was
unexpected and could thus lead to undefined behavior including potential data node failures. To solve
this issue, DBACC and DBLQH now check that all dependencies are still valid before attempting to prepare
an operation.

Note

This fix also supersedes a previous one made for a related issue which was
originally reported as Bug #28500861.

(Bug #28893633)

• Where a data node was restarted after a configuration change whose result was a decrease in the sum
of MaxNoOfTables, MaxNoOfOrderedIndexes, and MaxNoOfUniqueHashIndexes, it sometimes
failed with a misleading error message which suggested both a temporary error and a bug, neither of
which was the case.

The failure itself is expected, being due to the fact that there is at least one table object with an ID
greater than the (new) sum of the parameters just mentioned, and that this table cannot be restored
since the maximum value for the ID allowed is limited by that sum. The error message has been
changed to reflect this, and now indicates that this is a permanent error due to a problem configuration.
(Bug #28884880)

• The ndbinfo.cpustat table reported inaccurate information regarding send threads. (Bug
#28884157)

• Execution of an LCP_COMPLETE_REP signal from the master while the LCP status was IDLE led to an
assertion. (Bug #28871889)

• NDB now provides on-the-fly .frm file translation during discovery of tables created in versions of
the software that did not support the MySQL Data Dictionary. Previously, such translation of tables
that had old-style metadata was supported only during schema synchronization during MySQL server
startup, but not subsequently, which led to errors when NDB tables having old-style metadata, created
by ndb_restore and other such tools after mysqld had been started, were accessed using SHOW
CREATE TABLE or SELECT; these tables were usable only after restarting mysqld. With this fix, the
restart is no longer required. (Bug #28841009)

247

https://dev.mysql.com/doc/ndb-internals/en/dump-command-406.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysqld.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysqld.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-maxnooftables
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-maxnooforderedindexes
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-maxnoofuniquehashindexes
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbinfo-cpustat.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysqld.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/show-create-table.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/show-create-table.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/select.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysqld.html

MySQL NDB Cluster 8.0 Release Notes

• An in-place upgrade to an NDB 8.0 release from an earlier relase did not remove .ndb files, even
though these are no longer used in NDB 8.0. (Bug #28832816)

• Removed storage/ndb/demos and the demonstration scripts and support files it contained from the
source tree. These were obsolete and unmaintained, and did not function with any current version of
NDB Cluster.

Also removed storage/ndb/include/newtonapi, which included files relating to an obsolete and
unmaintained API not supported in any release of NDB Cluster, as well as references elsewhere to these
files. (Bug #28808766)

• There was no version compatibility table for NDB 8.x; this meant that API nodes running NDB 8.0.13
or 7.6.x could not connect to data nodes running NDB 8.0.14. This issue manifested itself for NDB API
users as a failure in wait_until_ready(). (Bug #28776365)

References: See also: Bug #18886034, Bug #18874849.

• Issuing a STOP command in the ndb_mgm client caused ndbmtd processes which had recently been
added to the cluster to hang in Phase 4 during shutdown. (Bug #28772867)

• A fix for a previous issue disabled the usage of pushed conditions for lookup type (eq_ref) operations
in pushed joins. It was thought at the time that not pushing a lookup condition would not have any
measurable impact on performance, since only a single row could be eliminated if the condition failed.
The solution implemented at that time did not take into account the possibility that, in a pushed join, a
lookup operation could be a parent operation for other lookups, and even scan operations, which meant
that eliminating a single row could actually result in an entire branch being eliminated in error. (Bug
#28728603)

References: This issue is a regression of: Bug #27397802.

• When a local checkpoint (LCP) was complete on all data nodes except one, and this node failed, NDB did
not continue with the steps required to finish the LCP. This led to the following issues:

No new LCPs could be started.

Redo and Undo logs were not trimmed and so grew excessively large, causing an increase in times for
recovery from disk. This led to write service failure, which eventually led to cluster shutdown when the
head of the redo log met the tail. This placed a limit on cluster uptime.

Node restarts were no longer possible, due to the fact that a data node restart requires that the node's
state be made durable on disk before it can provide redundancy when joining the cluster. For a cluster
with two data nodes and two fragment replicas, this meant that a restart of the entire cluster (system
restart) was required to fix the issue (this was not necessary for a cluster with two fragment replicas and
four or more data nodes). (Bug #28728485, Bug #28698831)

References: See also: Bug #11757421.

• The pushability of a condition to NDB was limited in that all predicates joined by a logical AND within a
given condition had to be pushable to NDB in order for the entire condition to be pushed. In some cases
this severely restricted the pushability of conditions. This fix breaks up the condition into its components,
and evaluates the pushability of each predicate; if some of the predicates cannot be pushed, they are
returned as a remainder condition which can be evaluated by the MySQL server. (Bug #28728007)

• Running ANALYZE TABLE on an NDB table with an index having longer than the supported maximum
length caused data nodes to fail. (Bug #28714864)

• It was possible in certain cases for nodes to hang during an initial restart. (Bug #28698831)

248

https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndb-cluster-connection.html#ndb-ndb-cluster-connection-wait-until-ready
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-mgm-client-commands.html#ndbclient-stop
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-mgm.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndbmtd.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/analyze-table.html

MySQL NDB Cluster 8.0 Release Notes

References: See also: Bug #27622643.

• When a condition was pushed to a storage engine, it was re-evaluated by the server, in spite of the fact
that only rows matching the pushed condition should ever be returned to the server in such cases. (Bug
#28672214)

• In some cases, one and sometimes more data nodes underwent an unplanned shutdown while running
ndb_restore. This occurred most often, but was not always restircted to, when restoring to a cluster
having a different number of data nodes from the cluster on which the original backup had been taken.

The root cause of this issue was exhaustion of the pool of SafeCounter objects, used by the DBDICT
kernel block as part of executing schema transactions, and taken from a per-block-instance pool
shared with protocols used for NDB event setup and subscription processing. The concurrency of event
setup and subscription processing is such that the SafeCounter pool can be exhausted; event and
subscription processing can handle pool exhaustion, but schema transaction processing could not, which
could result in the node shutdown experienced during restoration.

This problem is solved by giving DBDICT schema transactions an isolated pool of reserved
SafeCounters which cannot be exhausted by concurrent NDB event activity. (Bug #28595915)

• When a backup aborted due to buffer exhaustion, synchronization of the signal queues prior to the
expected drop of triggers for insert, update, and delete operations resulted in abort signals being
processed before the STOP_BACKUP phase could continue. The abort changed the backup status
to ABORT_BACKUP_ORD, which led to an unplanned shutdown of the data node since resuming
STOP_BACKUP requires that the state be STOP_BACKUP_REQ. Now the backup status is not set to
STOP_BACKUP_REQ (requesting the backup to continue) until after signal queue synchronization is
complete. (Bug #28563639)

• The output of ndb_config --configinfo --xml --query-all now shows that configuration
changes for the ThreadConfig and MaxNoOfExecutionThreads data node parameters require
system initial restarts (restart="system" initial="true"). (Bug #28494286)

• After a commit failed due to an error, mysqld shut down unexpectedly while trying to get the name of the
table involved. This was due to an issue in the internal function ndbcluster_print_error(). (Bug
#28435082)

• API nodes should observe that a node is moving through SL_STOPPING phases (graceful stop) and stop
using the node for new transactions, which minimizes potential disruption in the later phases of the node
shutdown process. API nodes were only informed of node state changes via periodic heartbeat signals,
and so might not be able to avoid interacting with the node shutting down. This generated unnecessary
failures when the heartbeat interval was long. Now when a data node is being gracefully stopped, all API
nodes are notified directly, allowing them to experience minimal disruption. (Bug #28380808)

• ndb_config --diff-default failed when trying to read a parameter whose default value was the
empty string (""). (Bug #27972537)

• ndb_restore did not restore autoincrement values correctly when one or more staging tables were
in use. As part of this fix, we also in such cases block applying of the SYSTAB_0 backup log, whose
content continued to be applied directly based on the table ID, which could ovewrite the autoincrement
values stored in SYSTAB_0 for unrelated tables. (Bug #27917769, Bug #27831990)

References: See also: Bug #27832033.

• ndb_restore employed a mechanism for restoring autoincrement values which was not atomic, and
thus could yield incorrect autoincrement values being restored when multiple instances of ndb_restore
were used in parallel. (Bug #27832033)

249

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-config.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-config.html#option_ndb_config_configinfo
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-config.html#option_ndb_config_xml
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-config.html#option_ndb_config_query-all
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbmtd-threadconfig
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbmtd-maxnoofexecutionthreads
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysqld.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-config.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-config.html#option_ndb_config_diff-default
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html

MySQL NDB Cluster 8.0 Release Notes

References: See also: Bug #27917769, Bug #27831990.

• Executing SELECT * FROM INFORMATION_SCHEMA.TABLES caused SQL nodes to restart in some
cases. (Bug #27613173)

• When tables with BLOB columns were dropped and then re-created with a different number of BLOB
columns the event definitions for monitoring table changes could become inconsistent in certain error
situations involving communication errors when the expected cleanup of the corresponding events was
not performed. In particular, when the new versions of the tables had more BLOB columns than the
original tables, some events could be missing. (Bug #27072756)

• When query memory was exhausted in the DBSPJ kernel block while storing correlation IDs for deferred
operations, the query was aborted with error status 20000 Query aborted due to out of query
memory. (Bug #26995027)

References: See also: Bug #86537.

• When running a cluster with 4 or more data nodes under very high loads, data nodes could sometimes
fail with Error 899 Rowid already allocated. (Bug #25960230)

• mysqld shut down unexpectedly when a purge of the binary log was requested before the server had
completely started, and it was thus not yet ready to delete rows from the ndb_binlog_index table.
Now when this occurs, requests for any needed purges of the ndb_binlog_index table are saved in a
queue and held for execution when the server has completely started. (Bug #25817834)

• MaxBufferedEpochs is used on data nodes to avoid excessive buffering of row changes due to
lagging NDB event API subscribers; when epoch acknowledgements from one or more subscribers lag
by this number of epochs, an asynchronous disconnection is triggered, allowing the data node to release
the buffer space used for subscriptions. Since this disconnection is asynchronous, it may be the case
that it has not completed before additional new epochs are completed on the data node, resulting in
new epochs not being able to seize GCP completion records, generating warnings such as those shown
here:

 [ndbd] ERROR -- c_gcp_list.seize() failed...

 ...

 [ndbd] WARNING -- ACK wo/ gcp record...

And leading to the following warning:

 Disconnecting node %u because it has exceeded MaxBufferedEpochs
 (100 > 100), epoch

This fix performs the following modifications:

• Modifies the size of the GCP completion record pool to ensure that there is always some extra
headroom to account for the asynchronous nature of the disconnect processing previously described,
thus avoiding c_gcp_list seize failures.

• Modifies the wording of the MaxBufferedEpochs warning to avoid the contradictory phrase “100 >
100”.

(Bug #20344149)

• Asynchronous disconnection of mysqld from the cluster caused any subsequent attempt to start
an NDB API transaction to fail. If this occurred during a bulk delete operation, the SQL layer called
HA::end_bulk_delete(), whose implementation by ha_ndbcluster assumed that a transaction

250

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/select.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/information-schema-tables-table.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysqld.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-maxbufferedepochs
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysqld.html

MySQL NDB Cluster 8.0 Release Notes

had been started, and could fail if this was not the case. This problem is fixed by checking that the
transaction pointer used by this method is set before referencing it. (Bug #20116393)

• Removed warnings raised when compiling NDB with Clang 6. (Bug #93634, Bug #29112560)

• When executing the redo log in debug mode it was possible for a data node to fail when deallocating a
row. (Bug #93273, Bug #28955797)

• An NDB table having both a foreign key on another NDB table using ON DELETE CASCADE and one or
more TEXT or BLOB columns leaked memory.

As part of this fix, ON DELETE CASCADE is no longer supported for foreign keys on NDB tables when the
child table contains a column that uses any of the BLOB or TEXT types. (Bug #89511, Bug #27484882)

Changes in MySQL NDB Cluster 8.0.14 (2019-01-21, Development Milestone)

• Functionality Added or Changed

• Bugs Fixed

Functionality Added or Changed

• Performance: This release introduces a number of significant improvements in the performance of
scans; these are listed here:

• Row checksums help detect hardware issues, but do so at the expense of performance. NDB now
offers the possibility of disabling these by setting the new ndb_row_checksum server system variable
to 0; doing this means that row checksums are not used for new or altered tables. This can have
a significant impact (5 to 10 percent, in some cases) on performance for all types of queries. This
variable is set to 1 by default, to provide compatibility with the previous behavior.

• A query consisting of a scan can execute for a longer time in the LDM threads when the queue is not
busy.

• Previously, columns were read before checking a pushed condition; now checking of a pushed
condition is done before reading any columns.

• Performance of pushed joins should see significant improvement when using range scans as part of
join execution.

(WL #11722)

• NDB Disk Data: NDB now implements schema distribution of disk data objects including tablespaces
and log file groups by SQL nodes when they connect to a cluster, just as it does for NDB databases and
in-memory tables. This eliminates a possible mismatch between the MySQL data dictionary and the NDB
dictionary following a native backup and restore that could arise when disk data tablespaces and undo
log file groups were restored to the NDB dictionary, but not to the MySQL Server's data dictionary. (WL
#12172)

• NDB Disk Data: NDB now makes use of the MySQL data dictionary to ensure correct distribution of
tablespaces and log file groups across all cluster SQL nodes when connecting to the cluster. (WL
#12333)

• The extra metadata property for NDB tables is now used to store information from the MySQL data
dictionary. Because this information is significantly larger than the binary representation previously
stored here (a .frm file, no longer used), the hard-coded size limit for this extra metadata has been
increased.

251

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/blob.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/blob.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-options-variables.html#sysvar_ndb_row_checksum

MySQL NDB Cluster 8.0 Release Notes

This change can have an impact on downgrades: Trying to read NDB tables created in NDB 8.0.14 and
later may cause data nodes running NDB 8.0.13 or earlier to fail on startup with NDB error code 2355
Failure to restore schema: Permanent error, external action needed: Resource
configuration error. This can happen if the table's metadata exceeds 6K in size, which was the
old limit. Tables created in NDB 8.0.13 and earlier can be read by later versions without any issues.

For more information, see Changes in NDB table extra metadata, and See also MySQL Data Dictionary.
(Bug #27230681, WL #10665)

Bugs Fixed

• Packaging: Expected NDB header files were in the devel RPM package instead of libndbclient-
devel. (Bug #84580, Bug #26448330)

• The version_comment system variable was not correctly configured in mysqld binaries and returned
a generic pattern instead of the proper value. This affected all NDB Cluster binary releases with the
exception of .deb packages. (Bug #29054235)

• Trying to build from source using -DWITH_NDBCLUSTER and -Werror failed with GCC 8. (Bug
#28707282)

• When copying deleted rows from a live node to a node just starting, it is possible for one or more of
these rows to have a global checkpoint index equal to zero. If this happened at the same time that a full
local checkpoint was started due to the undo log getting full, the LCP_SKIP bit was set for a row having
GCI = 0, leading to an unplanned shutdown of the data node. (Bug #28372628)

• ndbmtd sometimes experienced a hang when exiting due to log thread shutdown. (Bug #28027150)

• NDB has an upper limit of 128 characters for a fully qualified table name. Due to the fact that mysqld
names NDB tables using the format database_name/catalog_name/table_name, where
catalog_name is always def, it is possible for statements such as CREATE TABLE to fail in spite of the
fact that neither the table name nor the database name exceeds the 63-character limit imposed by NDB.
The error raised in such cases was misleading and has been replaced. (Bug #27769521)

References: See also: Bug #27769801.

• When the SUMA kernel block receives a SUB_STOP_REQ signal, it executes the signal then replies
with SUB_STOP_CONF. (After this response is relayed back to the API, the API is open to send more
SUB_STOP_REQ signals.) After sending the SUB_STOP_CONF, SUMA drops the subscription if no
subscribers are present, which involves sending multiple DROP_TRIG_IMPL_REQ messages to DBTUP.
LocalProxy can handle up to 21 of these requests in parallel; any more than this are queued in the Short
Time Queue. When execution of a DROP_TRIG_IMPL_REQ was delayed, there was a chance for the
queue to become overloaded, leading to a data node shutdown with Error in short time queue.

This issue is fixed by delaying the execution of the SUB_STOP_REQ signal if DBTUP is already handling
DROP_TRIG_IMPL_REQ signals at full capacity, rather than queueing up the DROP_TRIG_IMPL_REQ
signals. (Bug #26574003)

• ndb_restore returned -1 instead of the expected exit code in the event of an index rebuild failure. (Bug
#25112726)

• When starting, a data node copies metadata, while a local checkpoint updates metadata. To avoid any
conflict, any ongoing LCP activity is paused while metadata is being copied. An issue arose when a
local checkpoint was paused on a given node, and another node that was also restarting checked for
a complete LCP on this node; the check actually caused the LCP to be completed before copying of
metadata was complete and so ended the pause prematurely. Now in such cases, the LCP completion

252

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-what-is-new.html#mysql-cluster-what-is-new-8-0-extra-metadata
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/data-dictionary.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/server-system-variables.html#sysvar_version_comment
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysqld.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/source-configuration-options.html#option_cmake_with_ndbcluster
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndbmtd.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysqld.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/create-table.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html

MySQL NDB Cluster 8.0 Release Notes

check waits to complete a paused LCP until copying of metadata is finished and the pause ends as
expected, within the LCP in which it began. (Bug #24827685)

• ndbout and ndberr became invalid after exiting from mgmd_run(), and redirecting to them before
the next call to mgmd_run() caused a segmentation fault, during an ndb_mgmd service restart. This fix
ensures that ndbout and ndberr remain valid at all times. (Bug #17732772, Bug #28536919)

• NdbScanFilter did not always handle NULL according to the SQL standard, which could result in
sending non-qualifying rows to be filtered (otherwise not necessary) by the MySQL server. (Bug #92407,
Bug #28643463)

References: See also: Bug #93977, Bug #29231709.

• The internal function ndb_my_error() was used in ndbcluster_get_tablespace_statistics()
and prepare_inplace_alter_table() to report errors when the function failed to interact with
NDB. The function was expected to push the NDB error as warning on the stack and then set an error by
translating the NDB error to a MySQL error and then finally call my_error() with the translated error.
When calling my_error(), the function extracts a format string that may contain placeholders and use
the format string in a function similar to sprintf(), which in this case could read arbitrary memory
leading to a segmentation fault, due to the fact that my_error() was called without any arguments.

The fix is always to push the NDB error as a warning and then set an error with a provided message.
A new helper function has been added to Thd_ndb to be used in place of ndb_my_error(). (Bug
#92244, Bug #28575934)

• Running out of undo log buffer memory was reported using error 921 Out of transaction
memory ... (increase SharedGlobalMemory).

This problem is fixed by introducing a new error code 923 Out of undo buffer memory
(increase UNDO_BUFFER_SIZE). (Bug #92125, Bug #28537319)

• When moving an OperationRec from the serial to the parallel queue, Dbacc::startNext() failed
to update the Operationrec::OP_ACC_LOCK_MODE flag which is required to reflect the accumulated
OP_LOCK_MODE of all previous operations in the parallel queue. This inconsistency in the ACC lock
queues caused the scan lock takeover mechanism to fail, as it incorrectly concluded that a lock to take
over was not held. The same failure caused an assert when aborting an operation that was a member of
such an inconsistent parallel lock queue. (Bug #92100, Bug #28530928)

• ndb_restore did not free all memory used after being called to restore a table that already existed.
(Bug #92085, Bug #28525898)

• A data node failed during startup due to the arrival of a SCAN_FRAGREQ signal during the restore phase.
This signal originated from a scan begun before the node had previously failed and which should have
been aborted due to the involvement of the failed node in it. (Bug #92059, Bug #28518448)

• DBTUP sent the error Tuple corruption detected when a read operation attempted to read the
value of a tuple inserted within the same transaction. (Bug #92009, Bug #28500861)

References: See also: Bug #28893633.

• False constraint violation errors could occur when executing updates on self-referential foreign keys.
(Bug #91965, Bug #28486390)

References: See also: Bug #90644, Bug #27930382.

• An NDB internal trigger definition could be dropped while pending instances of the trigger remained to
be executed, by attempting to look up the definition for a trigger which had already been released. This

253

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-mgmd.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html

MySQL NDB Cluster 8.0 Release Notes

caused unpredictable and thus unsafe behavior possibly leading to data node failure. The root cause
of the issue lay in an invalid assumption in the code relating to determining whether a given trigger
had been released; the issue is fixed by ensuring that the behavior of NDB, when a trigger definition
is determined to have been released, is consistent, and that it meets expectations. (Bug #91894, Bug
#28451957)

• In some cases, a workload that included a high number of concurrent inserts caused data node failures
when using debug builds. (Bug #91764, Bug #28387450, Bug #29055038)

• During an initial node restart with disk data tables present and TwoPassInitialNodeRestartCopy
enabled, DBTUP used an unsafe scan in disk order. Such scans are no longer employed in this case.
(Bug #91724, Bug #28378227)

• Checking for old LCP files tested the table version, but this was not always dependable. Now, instead of
relying on the table version, the check regards as invalid any LCP file having a maxGCI smaller than its
createGci. (Bug #91637, Bug #28346565)

• In certain cases, a cascade update trigger was fired repeatedly on the same record, which eventually
consumed all available concurrent operations, leading to Error 233 Out of operation records
in transaction coordinator (increase MaxNoOfConcurrentOperations). If
MaxNoOfConcurrentOperations was set to a value sufficiently high to avoid this, the issue
manifested as data nodes consuming very large amounts of CPU, very likely eventually leading to a
timeout. (Bug #91472, Bug #28262259)

Changes in MySQL NDB Cluster 8.0.13 (2018-10-23, Development Milestone)

• Functionality Added or Changed

• Bugs Fixed

Functionality Added or Changed

• Important Change; NDB Disk Data: The following changes are made in the display of information
about Disk Data files in the INFORMATION_SCHEMA.FILES table:

• Tablespaces and log file groups are no longer represented in the FILES table. (These constructs are
not actually files.)

• Each data file is now represented by a single row in the FILES table. Each undo log file is also now
represented in this table by one row only. (Previously, a row was displayed for each copy of each of
these files on each data node.)

• For rows corresponding to data files or undo log files, node ID and undo log buffer information is no
longer displayed in the EXTRA column of the FILES table.

Important

The removal of undo log buffer information is reverted in NDB 8.0.15. (Bug
#92796, Bug #28800252)

(WL #11553)

• Important Change; NDB Client Programs: Removed the deprecated --ndb option for perror. Use
ndb_perror to obtain error message information from NDB error codes instead. (Bug #81705, Bug
#23523957)

References: See also: Bug #81704, Bug #23523926.

254

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-twopassinitialnoderestartcopy
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-maxnoofconcurrentoperations
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/information-schema-files-table.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/perror.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-perror.html

MySQL NDB Cluster 8.0 Release Notes

• Important Change: Beginning with this release, MySQL NDB Cluster is being developed in parallel with
the standard MySQL 8.0 server under a new unified release model with the following features:

• NDB 8.0 is developed in, built from, and released with the MySQL 8.0 source code tree.

• The numbering scheme for NDB Cluster 8.0 releases follows the scheme for MySQL 8.0, starting with
the current MySQL release (8.0.13).

• Building the source with NDB support appends -cluster to the version string returned by mysql -V,
as shown here:

shell≫ mysql -V
mysql Ver 8.0.13-cluster for Linux on x86_64 (Source distribution)

NDB binaries continue to display both the MySQL Server version and the NDB engine version, like
this:

shell> ndb_mgm -V
MySQL distrib mysql-8.0.13 ndb-8.0.13-dmr, for Linux (x86_64)

In MySQL Cluster NDB 8.0, these two version numbers are always the same.

To build the MySQL 8.0.13 (or later) source with NDB Cluster support, use the CMake option -
DWITH_NDBCLUSTER. (WL #11762)

• NDB Cluster APIs: Added the Table methods getExtraMetadata() and setExtraMetadata().
(WL #9865)

• INFORMATION_SCHEMA tables now are populated with tablespace statistics for MySQL Cluster tables.
(Bug #27167728)

• It is now possible to specify a set of cores to be used for I/O threads performing offline multithreaded
builds of ordered indexes, as opposed to normal I/O duties such as file I/O， compression， or
decompression. “Offline” in this context refers to building of ordered indexes performed when the parent
table is not being written to; such building takes place when an NDB cluster performs a node or system
restart, or as part of restoring a cluster from backup using ndb_restore --rebuild-indexes.

In addition, the default behaviour for offline index build work is modified to use all cores available to
ndbmtd, rather limiting itself to the core reserved for the I/O thread. Doing so can improve restart and
restore times and performance, availability, and the user experience.

This enhancement is implemented as follows:

1. The default value for BuildIndexThreads is changed from 0 to 128. This means that offline
ordered index builds are now multithreaded by default.

2. The default value for TwoPassInitialNodeRestartCopy is changed from false to true.
This means that an initial node restart first copies all data from a “live” node to one that is starting
—without creating any indexes—builds ordered indexes offline, and then again synchronizes its
data with the live node, that is, synchronizing twice and building indexes offline between the two
synchonizations. This causes an initial node restart to behave more like the normal restart of a node,
and reduces the time required for building indexes.

3. A new thread type (idxbld) is defined for the ThreadConfig configuration parameter, to allow
locking of offline index build threads to specific CPUs.

In addition, NDB now distinguishes the thread types that are accessible to “ThreadConfig” by the
following two criteria:

255

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/source-configuration-options.html#option_cmake_with_ndbcluster
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/source-configuration-options.html#option_cmake_with_ndbcluster
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-table.html#ndb-table-getextrametadata
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-table.html#ndb-table-setextrametadata
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_rebuild-indexes
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndbmtd.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-buildindexthreads
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-twopassinitialnoderestartcopy
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbmtd-threadconfig

MySQL NDB Cluster 8.0 Release Notes

1. Whether the thread is an execution thread. Threads of types main, ldm, recv, rep, tc, and send
are execution threads; thread types io, watchdog, and idxbld are not.

2. Whether the allocation of the thread to a given task is permanent or temporary. Currently all thread
types except idxbld are permanent.

For additonal information, see the descriptions of the parameters in the Manual. (Bug #25835748, Bug
#26928111)

• When performing an NDB backup, the ndbinfo.logbuffers table now displays information regarding
buffer usage by the backup process on each data node. This is implemented as rows reflecting two
new log types in addition to REDO and DD-UNDO. One of these rows has the log type BACKUP-DATA,
which shows the amount of data buffer used during backup to copy fragments to backup files. The other
row has the log type BACKUP-LOG, which displays the amount of log buffer used during the backup to
record changes made after the backup has started. One each of these log_type rows is shown in the
logbuffers table for each data node in the cluster. Rows having these two log types are present in the
table only while an NDB backup is currently in progress. (Bug #25822988)

• Added the ODirectSyncFlag configuration parameter for data nodes. When enabled, the data node
treats all completed filesystem writes to the redo log as though they had been performed using fsync.

Note

This parameter has no effect if at least one of the following conditions is true:

• ODirect is not enabled.

• InitFragmentLogFiles is set to SPARSE.

(Bug #25428560)

• Added the --logbuffer-size option for ndbd and ndbmtd, for use in debugging with a large number
of log messages. This controls the size of the data node log buffer; the default (32K) is intended for
normal operations. (Bug #89679, Bug #27550943)

• Prior to NDB 8.0, all string hashing was based on first transforming the string into a normalized form,
then MD5-hashing the resulting binary image. This could give rise to some performance problems, for
the following reasons:

• The normalized string is always space padded to its full length. For a VARCHAR, this often involved
adding more spaces than there were characters in the original string.

• The string libraries were not optimized for this space padding, and added considerable overhead in
some use cases.

• The padding semantics varied between character sets, some of which were not padded to their full
length.

• The transformed string could become quite large, even without space padding; some Unicode 9.0
collations can transform a single code point into 100 bytes of character data or more.

• Subsequent MD5 hashing consisted mainly of padding with spaces, and was not particularly efficient,
possibly causing additional performance penalties by flush significant portions of the L1 cache.

Collations provide their own hash functions, which hash the string directly without first creating a
normalized string. In addition, for Unicode 9.0 collations, the hashes are computed without padding. NDB

256

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbinfo-logbuffers.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-odirectsyncflag
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-odirect
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndbd.html#option_ndbd_logbuffer-size
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndbd.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndbmtd.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/char.html

MySQL NDB Cluster 8.0 Release Notes

now takes advantage of this built-in function whenever hashing a string identified as using a Unicode 9.0
collation.

Since, for other collations there are existing databases which are hash partitioned on the transformed
string, NDB continues to employ the previous method for hashing strings that use these, to maintain
compatibility. (Bug #89609, Bug #27523758)

References: See also: Bug #89590, Bug #27515000, Bug #89604, Bug #27522732.

• A table created in NDB 7.6 and earlier contains metadata in the form of a compressed .frm file, which
is no longer supported in MySQL 8.0. To facilitate online upgrades to NDB 8.0, NDB performs on-the-
fly translation of this metadata and writes it into the MySQL Server's data dictionary, which enables the
mysqld in NDB Cluster 8.0 to work with the table without preventing subsequent use of the table by a
previous version of the NDB software.

Important

Once a table's structure has been modified in NDB 8.0, its metadata is stored
using the Data Dictionary, and it can no longer be accessed by NDB 7.6 and
earlier.

This enhancement also makes it possible to restore an NDB backup made using an earlier version to a
cluster running NDB 8.0 (or later). (WL #10167)

Bugs Fixed

• Important Change; NDB Disk Data: It was possible to issue a CREATE TABLE statement that referred
to a nonexistent tablespace. Now such a statement fails with an error. (Bug #85859, Bug #25860404)

• Important Change: NDB supports any of the following three values for the CREATE TABLE statement's
ROW_FORMAT option: DEFAULT, FIXED, and DYNAMIC. Formerly, any values other than these were
accepted but resulted in DYNAMIC being used. Now a CREATE TABLE statement that attempts to create
an NDB table fails with an error if ROW_FORMAT is used, and does not have one of the three values listed.
(Bug #88803, Bug #27230898)

• Microsoft Windows; ndbinfo Information Database: The process ID of the monitor process
used on Windows platforms by RESTART to spawn and restart a mysqld is now shown in the
ndbinfo.processes table as an angel_pid. (Bug #90235, Bug #27767237)

• NDB Cluster APIs: The example NDB API programs ndbapi_array_simple and
ndbapi_array_using_adapter did not perform cleanup following execution; in addition, the example
program ndbapi_simple_dual did not check to see whether the table used by this example already
existed. Due to these issues, none of these examples could be run more than once in succession.

The issues just described have been corrected in the example sources, and the relevant code listings in
the NDB API documentation have been updated to match. (Bug #27009386)

• NDB Cluster APIs: A previous fix for an issue, in which the failure of multiple data nodes during a partial
restart could cause API nodes to fail, did not properly check the validity of the associated NdbReceiver
object before proceeding. Now in such cases an invalid object triggers handling for invalid signals, rather
than a node failure. (Bug #25902137)

References: This issue is a regression of: Bug #25092498.

• NDB Cluster APIs: Incorrect results, usually an empty result set, were returned when setBound()
was used to specify a NULL bound. This issue appears to have been caused by a problem in gcc, limited

257

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysqld.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/create-table.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/create-table.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/restart.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysqld.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbinfo-processes.html
https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndbindexscanoperation.html#ndb-ndbindexscanoperation-setbound

MySQL NDB Cluster 8.0 Release Notes

to cases using the old version of this method (which does not employ NdbRecord), and is fixed by
rewriting the problematic internal logic in the old implementation. (Bug #89468, Bug #27461752)

• NDB Cluster APIs: Released NDB API objects are kept in one or more Ndb_free_list structures
for later reuse. Each list also keeps track of all objects seized from it, and makes sure that these are
eventually released back to it. In the event that the internal function NdbScanOperation::init()
failed, it was possible for an NdbApiSignal already allocated by the NdbOperation to be leaked.
Now in such cases, NdbScanOperation::release() is called to release any objects allocated by the
failed NdbScanOperation before it is returned to the free list.

This fix also handles a similar issue with NdbOperation::init(), where a failed call could also leak a
signal. (Bug #89249, Bug #27389894)

• NDB Cluster APIs: Removed the unused TFSentinel implementation class, which raised compiler
warnings on 32-bit systems. (Bug #89005, Bug #27302881)

• NDB Cluster APIs: The success of thread creation by API calls was not always checked, which could
lead to timeouts in some cases. (Bug #88784, Bug #27225714)

• NDB Cluster APIs: The file storage/ndb/src/ndbapi/ndberror.c was renamed to
ndberror.cpp. (Bug #87725, Bug #26781567)

• NDB Client Programs: When passed an invalid connection string, the ndb_mgm client did not always
free up all memory used before exiting. (Bug #90179, Bug #27737906)

• NDB Client Programs: ndb_show_tables did not always free up all memory which it used. (Bug
#90152, Bug #27727544)

• Local checkpoints did not always handle DROP TABLE operations correctly. (Bug #27926532)

References: This issue is a regression of: Bug #26908347, Bug #26968613.

• In some circumstances, when a transaction was aborted in the DBTC block, there remained links
to trigger records from operation records which were not yet reference-counted, but when such an
operation record was released the trigger reference count was still decremented. (Bug #27629680)

• An internal buffer being reused immediately after it had been freed could lead to an unplanned data node
shutdown. (Bug #27622643)

References: See also: Bug #28698831.

• An NDB online backup consists of data, which is fuzzy, and a redo and undo log. To restore to a
consistent state it is necessary to ensure that the log contains all of the changes spanning the capture of
the fuzzy data portion and beyond to a consistent snapshot point. This is achieved by waiting for a GCI
boundary to be passed after the capture of data is complete, but before stopping change logging and
recording the stop GCI in the backup's metadata.

At restore time, the log is replayed up to the stop GCI, restoring the system to the state it had at the
consistent stop GCI. A problem arose when, under load, it was possible to select a GCI boundary which
occurred too early and did not span all the data captured. This could lead to inconsistencies when
restoring the backup; these could be noticed as broken constraints or corrupted BLOB entries.

Now the stop GCI is chosen is so that it spans the entire duration of the fuzzy data capture process, so
that the backup log always contains all data within a given stop GCI. (Bug #27497461)

References: See also: Bug #27566346.

258

https://docs.oracle.com/cd/E17952_01/ndbapi-en/ndb-ndbrecord.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-mgm.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-show-tables.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/drop-table.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/blob.html

MySQL NDB Cluster 8.0 Release Notes

• For NDB tables, when a foreign key was added or dropped as a part of a DDL statement, the foreign key
metatdata for all parent tables referenced should be reloaded in the handler on all SQL nodes connected
to the cluster, but this was done only on the mysqld on which the statement was executed. Due to this,
any subsequent queries relying on foreign key metadata from the corresponding parent tables could
return inconsistent results. (Bug #27439587)

References: See also: Bug #82989, Bug #24666177.

• ANALYZE TABLE used excessive amounts of CPU on large, low-cardinality tables. (Bug #27438963)

• Queries using very large lists with IN were not handled correctly, which could lead to data node failures.
(Bug #27397802)

References: See also: Bug #28728603.

• A data node overload could in some situations lead to an unplanned shutdown of the data node, which
led to all data nodes disconnecting from the management and nodes.

This was due to a situation in which API_FAILREQ was not the last received signal prior to the node
failure.

As part of this fix, the transaction coordinator's handling of SCAN_TABREQ signals for an
ApiConnectRecord in an incorrect state was also improved. (Bug #27381901)

References: See also: Bug #47039, Bug #11755287.

• In a two-node cluster, when the node having the lowest ID was started using --nostart, API clients
could not connect, failing with Could not alloc node id at HOST port PORT_NO: No free
node id found for mysqld(API). (Bug #27225212)

• Changing MaxNoOfExecutionThreads without an initial system restart led to an unplanned data node
shutdown. (Bug #27169282)

References: This issue is a regression of: Bug #26908347, Bug #26968613.

• In most cases, and especially in error conditions, NDB command-line programs failed on exit to free
memory used by option handling, and failed to call ndb_end(). This is fixed by removing the internal
methods ndb_load_defaults() and ndb_free_defaults() from storage/ndb/include/
util/ndb_opts.h, and replacing these with an Ndb_opts class that automatically frees such
resources as part of its destructor. (Bug #26930148)

References: See also: Bug #87396, Bug #26617328.

• A query against the INFORMATION_SCHEMA.FILES table returned no results when it included an
ORDER BY clause. (Bug #26877788)

• During a restart, DBLQH loads redo log part metadata for each redo log part it manages, from one
or more redo log files. Since each file has a limited capacity for metadata, the number of files which
must be consulted depends on the size of the redo log part. These files are opened, read, and closed
sequentially, but the closing of one file occurs concurrently with the opening of the next.

In cases where closing of the file was slow, it was possible for more than 4 files per redo log part to be
open concurrently; since these files were opened using the OM_WRITE_BUFFER option, more than 4

259

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysqld.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/analyze-table.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndbd.html#option_ndbd_nostart
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-ndbd-definition.html#ndbparam-ndbmtd-maxnoofexecutionthreads
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/information-schema-files-table.html

MySQL NDB Cluster 8.0 Release Notes

chunks of write buffer were allocated per part in such cases. The write buffer pool is not unlimited; if all
redo log parts were in a similar state, the pool was exhausted, causing the data node to shut down.

This issue is resolved by avoiding the use of OM_WRITE_BUFFER during metadata reload, so that any
transient opening of more than 4 redo log files per log file part no longer leads to failure of the data node.
(Bug #25965370)

• Under certain conditions, data nodes restarted unnecessarily during execution of ALTER TABLE...
REORGANIZE PARTITION. (Bug #25675481)

References: See also: Bug #26735618, Bug #27191468.

• Race conditions sometimes occurred during asynchronous disconnection and reconnection of the
transporter while other threads concurrently inserted signal data into the send buffers, leading to an
unplanned shutdown of the cluster.

As part of the work fixing this issue, the internal templating function used by the Transporter Registry
when it prepares a send is refactored to use likely-or-unlikely logic to speed up execution, and to remove
a number of duplicate checks for NULL. (Bug #24444908, Bug #25128512)

References: See also: Bug #20112700.

• ndb_restore sometimes logged data file and log file progress values much greater than 100%. (Bug
#20989106)

• Removed unneeded debug printouts from the internal function
ha_ndbcluster::copy_fk_for_offline_alter(). (Bug #90991, Bug #28069711)

• The internal function BitmaskImpl::setRange() set one bit fewer than specified. (Bug #90648, Bug
#27931995)

• Inserting a row into an NDB table having a self-referencing foreign key that referenced a unique index on
the table other than the primary key failed with ER_NO_REFERENCED_ROW_2. This was due to the fact
that NDB checked foreign key constraints before the unique index was updated, so that the constraint
check was unable to use the index for locating the row. Now, in such cases, NDB waits until all unique
index values have been updated before checking foreign key constraints on the inserted row. (Bug
#90644, Bug #27930382)

References: See also: Bug #91965, Bug #28486390.

• Removed all references to the C++ register storage class in the NDB Cluster sources; use of this
specifier, which was deprecated in C++11 and removed in C++17, raised warnings when building with
recent compilers. (Bug #90110, Bug #27705985)

• It was not possible to create an NDB table using PARTITION_BALANCE set to FOR_RA_BY_LDM_X_2,
FOR_RA_BY_LDM_X_3, or FOR_RA_BY_LDM_X_4. (Bug #89811, Bug #27602352)

References: This issue is a regression of: Bug #81759, Bug #23544301.

• Adding a [tcp] or [shm] section to the global configuration file for a cluster with multiple data nodes
caused default TCP connections to be lost to the node using the single section. (Bug #89627, Bug
#27532407)

• Removed a memory leak in the configuration file parser. (Bug #89392, Bug #27440614)

• Fixed a number of implicit-fallthrough warnings, warnings raised by uninitialized values, and other
warnings encountered when compiling NDB with GCC 7.2.0. (Bug #89254, Bug #89255, Bug #89258,

260

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/alter-table-partition-operations.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/alter-table-partition-operations.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster.html
https://docs.oracle.com/cd/E17952_01/mysql-errors-8.0-en/server-error-reference.html#error_er_no_referenced_row_2
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster.html

MySQL NDB Cluster 8.0 Release Notes

Bug #89259, Bug #89270, Bug #27390714, Bug #27390745, Bug #27390684, Bug #27390816, Bug
#27396662)

References: See also: Bug #88136, Bug #26990244.

• Node connection states were not always reported correctly by ClusterMgr immediately after reporting
a disconnection. (Bug #89121, Bug #27349285)

• As a result of the reuse of code intended for send threads when performing an assist send, all of the
local release send buffers were released to the global pool, which caused the intended level of the local
send buffer pool to be ignored. Now send threads and assisting worker threads follow their own policies
for maintaining their local buffer pools. (Bug #89119, Bug #27349118)

• When the PGMAN block seized a new Page_request record using seizeLast, its return value was not
checked, which could cause access to invalid memory. (Bug #89009, Bug #27303191)

• TCROLLBACKREP signals were not handled correctly by the DBTC kernel block. (Bug #89004, Bug
#27302734)

• When sending priority A signals, we now ensure that the number of pending signals is explicitly
initialized. (Bug #88986, Bug #27294856)

• The internal function ha_ndbcluster::unpack_record() did not perform proper error handling.
(Bug #88587, Bug #27150980)

• CHECKSUM is not supported for NDB tables, but this was not not reflected in the CHECKSUM column of the
INFORMATION_SCHEMA.TABLES table, which could potentially assume a random value in such cases.
Now the value of this column is always set to NULL for NDB tables, just as it is for InnoDB tables. (Bug
#88552, Bug #27143813)

• Removed a memory leak detected when running ndb_mgm -e "CLUSTERLOG ...". (Bug #88517,
Bug #27128846)

• When terminating, ndb_config did not release all memory which it had used. (Bug #88515, Bug
#27128398)

• ndb_restore did not free memory properly before exiting. (Bug #88514, Bug #27128361)

• In certain circumstances where multiple Ndb objects were being used in parallel from an API node, the
block number extracted from a block reference in DBLQH was the same as that of a SUMA block even
though the request was coming from an API node. Due to this ambiguity, DBLQH mistook the request
from the API node for a request from a SUMA block and failed. This is fixed by checking node IDs before
checking block numbers. (Bug #88441, Bug #27130570)

• A join entirely within the materialized part of a semijoin was not pushed even if it could have been.
In addition, EXPLAIN provided no information about why the join was not pushed. (Bug #88224, Bug
#27022925)

References: See also: Bug #27067538.

• All known compiler warnings raised by -Werror when building the NDB source code have been fixed.
(Bug #88136, Bug #26990244)

• When the duplicate weedout algorithm was used for evaluating a semijoin, the result had missing rows.
(Bug #88117, Bug #26984919)

References: See also: Bug #87992, Bug #26926666.

• NDB did not compile with GCC 7. (Bug #88011, Bug #26933472)

261

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/information-schema-tables-table.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/innodb-storage-engine.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-mgm.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-config.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/explain.html

MySQL NDB Cluster 8.0 Release Notes

• A table used in a loose scan could be used as a child in a pushed join query, leading to possibly
incorrect results. (Bug #87992, Bug #26926666)

• When representing a materialized semijoin in the query plan, the MySQL Optimizer inserted extra
QEP_TAB and JOIN_TAB objects to represent access to the materialized subquery result. The
join pushdown analyzer did not properly set up its internal data structures for these, leaving them
uninitialized instead. This meant that later usage of any item objects referencing the materialized
semijoin accessed an initialized tableno column when accessing a 64-bit tableno bitmask, possibly
referring to a point beyond its end, leading to an unplanned shutdown of the SQL node. (Bug #87971,
Bug #26919289)

• In some cases, a SCAN_FRAGCONF signal was received after a SCAN_FRAGREQ with a close flag had
already been sent, clearing the timer. When this occurred, the next SCAN_FRAGREF to arrive caused
time tracking to fail. Now in such cases, a check for a cleared timer is performed prior to processing the
SCAN_FRAGREF message. (Bug #87942, Bug #26908347)

• While deleting an element in Dbacc, or moving it during hash table expansion or reduction, the method
used (getLastAndRemove()) could return a reference to a removed element on a released page,
which could later be referenced from the functions calling it. This was due to a change brought about by
the implementation of dynamic index memory in NDB 7.6.2; previously, the page had always belonged to
a single Dbacc instance, so accessing it was safe. This was no longer the case following the change; a
page released in Dbacc could be placed directly into the global page pool where any other thread could
then allocate it.

Now we make sure that newly released pages in Dbacc are kept within the current Dbacc instance and
not given over directly to the global page pool. In addition, the reference to a released page has been
removed; the affected internal method now returns the last element by value, rather than by reference.
(Bug #87932, Bug #26906640)

References: See also: Bug #87987, Bug #26925595.

• When creating a table with a nonexistent conflict detection function, NDB returned an improper error
message. (Bug #87628, Bug #26730019)

• ndb_top failed to build with the error "HAVE_NCURSESW_H" is not defined. (Bug #87035, Bug
#26429281)

• In a MySQL Cluster with one MySQL Server configured to write a binary log failure occurred when
creating and using an NDB table with non-stored generated columns. The problem arose only when the
product was built with debugging support. (Bug #86084, Bug #25957586)

• It was possible to create or alter a STORAGE MEMORY table using a nonexistent tablespace without any
error resulting. Such an operation now fails with Error 3510 ER_TABLESPACE_MISSING_WITH_NAME,
as intended. (Bug #82116, Bug #23744378)

• ndb_restore --print-data --hex did not print trailing 0s of LONGVARBINARY values. (Bug #65560,
Bug #14198580)

• When the internal function ha_ndbcluster::copy_fk_for_offline_alter() checked dependent
objects on a table from which it was supposed to drop a foreign key, it did not perform any filtering for
foreign keys, making it possible for it to attempt retrieval of an index or trigger instead, leading to a
spurious Error 723 (No such table).

262

https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-top.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster.html
https://docs.oracle.com/cd/E17952_01/mysql-errors-8.0-en/server-error-reference.html#error_er_tablespace_missing_with_name
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_print-data
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_hex
https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/blob.html

MySQL NDB Cluster 8.0 Release Notes

Index

Symbols
--allow-pk-changes, 88, 213
--backup-password-from-stdin, 66, 193
--config-binary-file, 24, 157
--config-file, 54, 182
--configdir, 54, 182
--decrypt, 74, 201
--decrypt-password-from-stdin, 66, 193
--diff-default, 24, 121, 157, 242
--disable-indexes, 54, 99, 182, 223
--encrypt-backup, 66, 193
--encrypt-password-from-stdin, 66, 193
--help, 99, 223
--ignore-extended-pk-changes, 88, 213
--include-stored-grants, 99, 223
--initial, 121, 242
--ndb-index-stat-enable, 54, 182
--ndb-log-fail-terminate, 88, 213
--ndb-nodegroup-map, 54, 182
--ndb-schema-dist-timeout, 116, 238
--nostart, 133, 254
--rebuild-indexes, 99, 223
--remap-column, 88, 213
--restore-epoch, 116, 238
--upgrade=force, 99, 223
.ctl files, 107, 230
.deb, 116, 238
.frm, 121, 242
.frm files, 94, 219

A
aborted transactions, 133, 254
AbortOption, 94
ABORT_BACKUP_ORD, 116, 238
AbstractQueryPlan, 40, 170
adaptive spin, 17, 151
ADD DATAFILE, 121, 242
add nodes, 49, 74, 178, 201
ALGORITHM=COPY, 99, 223
AllowUnresolvedHostNames, 80, 206
ALTER, 99, 223
ALTER LOGFILE GROUP, 121, 242
ALTER TABLE, 11, 34, 40, 49, 54, 60, 74, 80, 88, 99, 107, 147, 165, 170,
178, 182, 188, 201, 206, 213, 223, 230
ALTER TABLE INPLACE, 80, 206
ALTER TABLESPACE, 99, 116, 121, 223, 238, 242
ANALYZE TABLE, 121, 242
antijoins, 88, 213
ANTLR, 94
API nodes, 7, 14, 143, 148

263

MySQL NDB Cluster 8.0 Release Notes

Apple Silicon support, 34
Arbitration, 99, 223
ARM, 107, 230
arrays, 40, 170
auto-synchronization, 74, 88, 94, 201, 213, 219
autoincrement, 121, 242
automatic synchronization, 99, 223
AutomaticThreadConfig, 40, 49, 74, 170, 178, 201

B
backports, 7
backup, 60, 66, 88, 99, 116, 121, 133, 188, 193, 213, 223, 242, 254
BACKUP, 107, 230
Backup block, 107, 230
backup ID, 66
BackupLogBufferSize, 99, 223
backups, 24, 121, 157, 242
batched_key_access, 49, 178
batching, 80
BINARY, 116
binary log, 49, 54, 60, 133, 178, 182, 188, 254
binary log injector, 7, 60, 143, 188
binary logging, 7, 80, 143
bind address, 7
Binlog_cache_disk_use, 24, 157
binlog_cache_size, 7, 143
BIT, 7, 54, 182
bitmaps, 60, 188
BitmaskImpl::setRange(), 133, 254
BLOB, 60, 80, 116, 121, 130, 133, 188, 206, 242
Blob, 80
blob operations, 40, 170
blobs, 40, 60, 80, 170, 188, 206
BLOB_INLINE_SIZE, 34, 165
block thread scheduler, 40, 170
blocking, 14, 148
BuildIndexThreads, 133, 254
bus errors, 40, 170

C
case sensitivity, 88, 213
changes

NDB Cluster, 143
character sets, 107, 230
checkpoints, 14, 133, 148, 254
CHECKSUM, 133, 254
Clang, 11, 74, 147, 201
clang, 121, 242
ClassicFragmentation, 74, 201
CLOCK_MONOTONIC, 74, 201
close(), 121, 242
closing tables, 66, 193
ClusterTransactionImpl, 133

264

MySQL NDB Cluster 8.0 Release Notes

CMake3, 121, 242
CMVMI, 116, 238
CM_REGREF, 54, 182
collations, 133, 254
COLUMN_FORMAT, 116, 238
comparison methods, 107, 230
comparisons, 14, 148
compilation, 107, 230
compiling, 7, 11, 28, 34, 40, 54, 60, 66, 74, 80, 88, 107, 116, 121, 133,
143, 147, 160, 165, 170, 182, 188, 193, 201, 206, 213, 230, 238, 242, 254
CompressedLCP, 40, 170
compression, 24, 157
computeXorChecksum(), 40, 170
concurrent operations, 121, 242
condition pushdown, 28, 54, 60, 66, 94, 107, 121, 160, 182, 188, 193, 219, 230, 242
config.ini, 40, 133, 170, 254
configuration, 66, 99, 107, 121, 193, 223, 230, 242
configuration handling, 107, 230
conflict resolution, 11, 147
connection timeouts, 11, 147
connections, 14, 148
CONTINUEB signal, 49, 178
CopyFrag, 24, 157
COPY_FRAGREQ, 34, 165
correlation IDs, 121, 242
CPU spin, 66, 193
cpustat, 121, 242
CREATE INDEX, 54, 182
CREATE NODEGROUP, 60, 188
CREATE TABLE, 40, 54, 60, 74, 107, 116, 121, 130, 133, 170, 182, 188, 201, 230,
242, 251, 254
CSV, 34, 88, 165
curl, 66

D
data dictionary, 14, 17, 34, 99, 116, 121, 130, 133, 148, 151, 165, 223, 238, 242,
251, 254
data files, 94, 107, 219, 230
data node, 130, 251
data node shutdown, 133, 254
data nodes, 11, 17, 24, 28, 34, 99, 107, 133, 147, 151, 157, 160, 165, 223, 230,
254
data pages, 107, 230
database object names, 66, 193
DataMemory, 24, 107, 157, 230
Date, 94
DATETIME, 121, 242
DBACC, 133
Dbacc::getLastAndRemove(), 133, 254
Dbacc::startNext(), 130, 251
DBDICT, 17, 49, 151, 178
DBDIH, 66, 74, 193, 201
DBLQH, 74, 80, 201, 206

265

MySQL NDB Cluster 8.0 Release Notes

Dblqh::sendKeyinfo20(), 133, 254
DBSPJ, 7, 17, 80, 94, 116, 121, 143, 151, 206, 219, 238, 242
DBTC, 7, 14, 34, 116, 121, 133, 143, 148, 165, 238, 242, 254
Dbtc::initData(), 99, 223
DBTUP, 28, 99, 130, 133, 160, 223, 251
DbtupBuffer.cpp, 99, 223
DbUtil, 60, 188
DDL, 74, 80, 116, 121, 201, 206, 238, 242
DedicatedNode, 99, 223
DELETE, 60, 188
demos, 121, 242
deprecation, 54, 182
detailed-info, 28, 160
Dictionary::getEvent(), 34, 165
Dictionary::releaseEvent(), 34, 165
dictionary_columns, 40, 170
dictionary_tables, 40, 170
dict_obj_tree, 66, 193
directio, 66, 193
disable-indexes, 4
disconnection, 121, 242
disk format, 99, 223
DiskDataUsingSameDisk, 99, 223
diskstat, 99, 223
diskstats_1sec, 99, 223
DISK_RECORDS, 17, 151
distributed privileges, 107, 121, 230, 242
distribution, 133, 254
DIVERIFYREQ, 49, 178
DNS cache, 66, 193
Docker, 60, 188
dojo, 80, 88, 206, 213
DomainTypeHandler, 74
DROP DATABASE, 121
DROP NODEGROUP, 24, 157
DROP TABLE, 80, 116, 121, 133, 206, 238, 242, 254
DROP_TRIG_IMPL_REQ, 130, 251
DUMP, 99, 107, 223, 230
DUMP 11001, 49, 178
DUMP 9988, 99, 223
DUMP 9989, 99, 223
DUMP commands, 11, 147
DumpPageMemoryOnFail, 88, 213
duplicate weedout, 133, 254
dynamic index memory, 133, 254

E
element deletion, 133, 254
EnableRedoControl, 80, 206
encrypted backup, 66, 193
EncryptedFilesystem, 28, 160
EncryptedFileSystem, 34, 165
encryption, 24, 28, 157, 160

266

MySQL NDB Cluster 8.0 Release Notes

endianness, 121, 242
ENOMEM, 7, 143
epochs, 116, 238
eq_ref, 116, 121, 238, 242
error 1297, 49, 178
error codes, 130, 251
error handling, 4, 34, 60, 107, 165, 188, 230
error log, 60, 66, 188, 193
error messages, 99, 107, 223, 230
error reporting, 54, 182
errors, 7, 11, 14, 28, 66, 99, 107, 116, 130, 133, 143, 147, 148, 160, 193, 223,
230, 238, 251, 254
ERROR_FILE_NOT_FOUND, 40, 170
ERROR_PATH_NOT_FOUND, 40, 170
ER_NO_REFERENCED_ROW_2, 133, 254
ER_TABLESPACE_MISSING_WITH_NAME, 133, 254
ER_TRANSACTION_FAILED, 60, 188
Event, 17, 151
event buffer, 7, 60, 143, 188
event data buffer, 40, 170
event subscriptions, 54, 182
EventBuffer, 4
EventBytesRecvdCount, 40, 170
events, 7, 40, 143, 170
examples, 49, 66, 107, 178, 193, 230
examples (NDB API), 133, 254
execSCAN_FRAGREQ(), 40, 170
exit(), 116, 238
EXPLAIN, 28, 80, 133, 160, 206, 254

F
files, 40, 49, 170, 178
FILES, 133, 254
FILES table, 99, 223
filesort, 94, 219
FIXED, 116, 238
foreign key constraint, 121, 242
foreign keys, 17, 94, 99, 107, 130, 133, 151, 219, 223, 230, 251, 254
foreign_keys, 40, 170
foreign_key_checks, 74, 201
free memory, 4
frm files, 133, 254
FULLY REPLICATED, 80, 206

G
gcc, 133, 254
GCC 8, 130, 251
GCI, 7, 88, 130, 143, 213, 251
GCI boundary, 133, 254
GCP, 11, 66, 99, 147, 193, 223
GCP stall, 24, 157
GCP stalls, 11, 147
GCP_SAVEREQ, 80, 206

267

MySQL NDB Cluster 8.0 Release Notes

generated columns, 107, 230
getBlobHashKey(), 40, 170
getCreateSchemaVersion(), 107, 230
getExtraMetadata(), 133, 254
getGCIEventOperations(), 17, 151
GET_TABLEID_REQ, 54, 182
global checkpoints, 17, 74, 151, 201
global schema lock, 7, 99, 107, 121, 143, 223, 230, 242
grants, 7
GSN_STOP_REQ, 80, 206
GSN_TRANSID_AI, 34, 165

H
hash scan, 7
hashindexes, 74, 201
hashing, 133, 254
hash_maps, 40, 170
HA_ERR_TX_FAILED, 60, 188
ha_ndbcluster, 116, 238
ha_ndbcluster::copy_fk_for_offline_alter(), 133, 254
ha_ndbcluster::unpack_record(), 133, 254
heartbeats, 4
help text, 4
host names, 107, 230
HostName, 49, 178

I
ID allocation, 99, 223
identifiers, 107, 230
idxbld, 133, 254
Important Change, 4, 14, 28, 34, 40, 49, 54, 74, 80, 88, 94, 99, 107, 116,
121, 133, 148, 160, 165, 170, 178, 182, 201, 206, 213, 219, 223, 230, 238, 242, 254
IN, 133, 254
IN(), 14, 148
INCL_NODECONF, 99, 223
Incompatible Change, 99, 121, 223, 242
index length, 121, 242
index statistics, 17, 24, 28, 34, 49, 54, 60, 66, 94, 107, 151, 157, 160, 165,
178, 182, 188, 193, 219, 230
indexes, 40, 88, 170, 213
index_columns, 40, 170
INFORMATION_SCHEMA, 133, 254
INFORMATION_SCHEMA.FILES, 121, 133, 242, 254
INFORMATION_SCHEMA.TABLES, 121, 242
InitFragmentLogFiles, 133, 254
initial start, 88, 213
InitialNoOfOpenFiles, 121, 242
INPLACE, 60, 80, 99, 116, 188, 206, 223, 238
INSERT IGNORE, 60, 188
insert operations, 130, 251
InstallDirectory, 133
integer, 40, 170
invisible indexes, 99, 223

268

MySQL NDB Cluster 8.0 Release Notes

IPv6, 54, 60, 80, 182, 188, 206
IPv6 support, 14, 148
isnan(), 94, 219

J
jam(), 74, 201
Java 11 deprecation warnings, 94
Java versions, 94
job buffers, 28, 74, 160, 201
job scheduler, 28, 160
join pushdown, 66, 193
joins, 14, 28, 94, 107, 148, 160, 219, 230
JOIN_TAB, 133, 254

K
KeepAliveSendInterval, 54, 182
kill -9, 74, 201

L
LateAlloc, 88, 213
LCP, 66, 80, 94, 99, 107, 121, 193, 206, 219, 223, 230, 242
LCP pause, 130, 251
LCPs, 74, 201
LCP_COMPLETE_REP, 99, 121, 223, 242
LCP_SCANNED_BIT, 24, 157
LCP_STATUS_IDLE, 121, 242
LCP_TAB_SAVED, 107, 230
LDM, 99, 223
LEFT JOIN, 17, 151
less than, 121, 242
libndbclient-devel, 130, 251
libndbclient.so, 130
libssl.so, 130
LIMIT, 54, 116, 182, 238
Linux, 66, 193
List::clear(), 40, 170
listEvents(), 40, 170
listObjects(), 66, 193
lock contention, 121, 242
locking, 99, 107, 223, 230
locks, 60, 74, 99, 116, 121, 188, 201, 223, 238, 242
log buffer, 133, 254
log file groups, 130, 251
log sequence number, 74, 201
logbuffers, 133, 254
LOGFILE GROUP, 121, 242
logging, 7, 14, 34, 40, 49, 60, 66, 74, 94, 99, 143, 148, 165, 170, 178,
188, 193, 201, 219, 223
logs, 4
log_replica_updates, 7, 143
long signals, 99, 116, 223, 238
LongMessageBuffer, 60, 188
LONGVARBINARY, 133, 254

269

MySQL NDB Cluster 8.0 Release Notes

LooseScan, 133, 254
lower_case_table_names, 94, 99, 107, 219, 223, 230
LQHKEYREQ, 80, 107, 206, 230

M
macOS, 34, 74, 99, 107, 165, 201, 223, 230
master node, 99, 223
MASTER_LCPCONF, 116, 238
MASTER_LCP_REQ, 116, 238
materialized semijoin, 133, 254
MaxAllocate, 54, 182
MaxBufferedEpochs, 121, 242
MaxDiskDataLatency, 99, 223
MaxDiskWriteSpeedOwnRestart, 80, 206
MaxDMLOperationsPerTransaction, 17, 116, 151, 238
MaxNoOfConcurrentOperations, 40, 107, 116, 170, 230, 238
MaxNoOfExecutionThreads, 121, 133, 242, 254
MaxNoOfOpenFiles, 121, 242
MaxNoOfOrderedIndexes, 121, 242
MaxNoOfSubscriptions, 60
MaxNoOfTables, 121, 242
MaxNoOfUniqueHashIndexes, 121, 242
maxRecordSize, 11, 147
MAX_BLOB_PART_SIZE, 34, 165
MAX_EXECUTION_TIME, 116, 238
MAX_NODES, 107, 230
MAX_REPLICAS, 74, 201
MAX_ROWS, 99, 223
memcache, 116, 238
meminfo, 66, 193
memory allocation, 99, 223
memory usage, 88, 121, 213, 242
metadata, 74, 107, 121, 130, 133, 201, 230, 242, 251, 254
metadata lock, 7
metadata locks, 99, 223
metadata synchronization, 107, 230
mgmd, 66, 193
Microsoft Windows, 17, 40, 49, 54, 66, 74, 99, 133, 151, 170, 182, 193, 201, 223,
254
monitor process, 133, 254
multi-byte, 116, 238
my.cnf, 54, 182
MySQL Enterprise Monitor, 49, 178
MySQL NDB ClusterJ, 17, 24, 34, 74, 94, 107, 121, 130, 133, 151
mysqlbinlog, 60, 188
mysqld, 4, 34, 60, 116, 121, 165, 188, 238, 242
mysqldump, 121, 242

N
NDB Client Programs, 4, 7, 11, 24, 28, 74, 80, 94, 107, 133, 201, 206, 230,
254

270

MySQL NDB Cluster 8.0 Release Notes

NDB Cluster, 4, 7, 11, 14, 17, 24, 28, 34, 40, 49, 54, 60, 66, 74, 80,
88, 94, 99, 107, 116, 121, 130, 133, 143, 147, 148, 151, 157, 160, 165, 170, 178,
182, 188, 193, 201, 206, 213, 219, 223, 230, 238, 242, 251, 254
NDB Cluster APIs, 7, 11, 14, 17, 34, 40, 49, 54, 60, 66, 74, 80, 107, 116,
121, 133, 143, 147, 148, 151, 165, 170, 178, 182, 188, 193, 201, 206, 230, 238, 242,
254
NDB Disk Data, 34, 80, 88, 94, 99, 107, 116, 121, 130, 133, 165, 206, 213, 219,
223, 230, 238, 242, 251, 254
NDB Operator, 7, 143
NDB programs, 133, 254
NDB Replication, 7, 11, 17, 34, 40, 49, 60, 74, 80, 116, 121, 133
NDB$BLOB, 121
NDB$MAX_DEL_WIN_INS(), 34
NDB$MAX_INS(), 34
ndb-applier-allow-skip-epoch, 49
ndb-batch-size, 40, 170
ndb-common, 60, 188
ndb-log-transaction-dependency, 17
ndb-wait-connected, 54, 182
ndb-wait-setup, 4, 54, 182
ndb.apply_status table, 17
Ndb::pollEvents2(), 11, 147
ndbapi_array_simple, 133, 254
ndbapi_array_using_adapter, 133, 254
ndbapi_simple_dual, 133, 254
ndbcluster_print_error(), 121, 242
ndbd, 40, 49, 66, 170, 178, 193
NdbDictionary, 54, 182
ndbd_exit(), 34, 165
ndberr, 130, 251
NdbEventBuffer, 40, 170
NdbEventOperation, 14, 148
NDBFS, 11, 34, 165
NdbfsDumpRequests, 121, 242
ndbimport, 88
NdbIndexScanOperation::setBound(), 133, 254
ndbinfo, 49, 74, 94, 178, 201, 219
ndbinfo Information Database, 4, 7, 28, 66, 133, 160, 193, 254
ndbinfo.cluster_locks, 60, 188
ndbinfo.index_stats, 49, 178
ndbinfo.restart_info, 7, 143
ndbinfo.threads, 74, 201
NdbInterpretedCode, 14, 34, 54, 107, 148, 165, 182, 230
ndbmemcache, 74, 80, 130
ndbmtd, 40, 74, 80, 121, 130, 170, 201, 206, 242, 251
NdbOperation, 14, 148
ndbout, 130, 251
NdbReceiver, 133, 254
NdbReceiver::unpackNdbRecord(), 74, 201
NdbReceiverBuffer, 94, 219
NdbScanFilter, 54, 107, 130, 182, 230, 251
NdbScanFilter::setSqlCmpSemantics(), 60, 188
NdbScanOperation, 133, 254
NdbSpin, 17, 151

271

MySQL NDB Cluster 8.0 Release Notes

NDBT, 107, 116, 230, 238
NdbThread_SetThreadPrio, 34, 165
NdbTransaction, 80, 121, 206, 242
ndbxfrm, 24, 28, 40, 60, 157, 160, 170, 188
Ndb_api_read_row_count, 107, 230
Ndb_api_wait_nanos_count, 34, 165
ndb_apply_status, 17, 49, 116, 151
ndb_autoincrement_prefetch_sz, 99, 223
ndb_binlog_index, 121, 242
ndb_blob_tool, 28, 49, 94, 160, 178
Ndb_cluster_connection, 14, 148
NDB_COLUMN, 34, 165
ndb_config, 24, 66, 99, 121, 133, 157, 193, 223, 242, 254
Ndb_config_generation, 66, 193
ndb_delete_all, 107, 230
ndb_desc, 66, 88, 193, 213
ndb_drop_table, 99, 116, 223, 238
ndb_import, 17, 34, 40, 49, 60, 88, 107, 116, 151, 165, 170, 178, 188, 213, 230,
238
Ndb_index_stat, 40, 170
ndb_join_pushdown, 24, 157
NDB_LE_EventBufferStatus, 60, 188
ndb_logevent_get_next2(), 116, 238
Ndb_logevent_type, 60, 188
ndb_log_bin, 121, 242
ndb_log_transaction_compression, 28, 160
ndb_log_transaction_compression_level_zstd, 28, 160
ndb_log_update_as_write, 11
ndb_log_update_minimal, 11
Ndb_metadata_blacklist_size, 80, 88, 107, 206, 213, 230
Ndb_metadata_change_monitor, 121, 242
ndb_metadata_check, 99, 121, 223, 242
ndb_metadata_check_interval, 14, 121, 148, 242
Ndb_metadata_detected_count, 121, 242
Ndb_metadata_excluded_count, 80, 206
ndb_metadata_sync, 80, 94, 99, 206, 219, 223
Ndb_metadata_synced_count, 107, 230
ndb_mgm, 116, 133, 238, 254
ndb_mgmd, 4, 17, 24, 49, 54, 60, 66, 80, 107, 116, 130, 133, 151, 157, 178,
182, 188, 193, 206, 230, 238, 251
ndb_mgm_create_logevent_handle(), 54, 182
NDB_MGM_NODE_TYPE_UNKNOWN, 54, 182
ndb_milli_sleep(), 107, 230
ndb_my_error(), 130, 251
Ndb_opts, 133, 254
ndb_print_backup_file, 7, 60, 80, 143, 188, 206
ndb_print_sys_file, 74, 201
ndb_read_backup, 99, 223
ndb_redo_log_reader, 4
Ndb_ReloadHWInfo(), 66, 193
ndb_replica_batch_size, 34
ndb_replica_blob_write_batch_bytes, 34

272

MySQL NDB Cluster 8.0 Release Notes

ndb_restore, 11, 14, 17, 28, 34, 40, 54, 60, 66, 74, 80, 88, 94, 99, 107,
116, 121, 130, 133, 148, 151, 160, 165, 170, 182, 188, 193, 201, 206, 213, 219, 223,
230, 238, 242, 251, 254
ndb_row_checksum, 130, 251
ndb_schema, 17, 94, 99, 151, 219, 223
ndb_schema_dist_lock_wait_timeout, 107, 230
NDB_SCHEMA_OBJECT, 116, 238
ndb_schema_share, 116, 238
ndb_secretsfile_reader, 28, 160
ndb_select_all, 11
ndb_setup.py, 74, 80, 116, 201, 206, 238
NDB_SHARE, 107, 230
ndb_show_tables, 94, 133, 254
ndb_sql_metadata, 40, 170
NDB_STORED_USER, 7, 24, 49, 54, 60, 66, 80, 99, 107, 157, 178, 182, 193,
206, 223, 230
ndb_sync_excluded_objects, 88, 213
ndb_sync_pending_objects, 88, 213
NDB_TABLE, 88, 213
ndb_top, 24, 133, 254
Ndb_trans_hint_count_session, 116, 238
ndb_waiter, 4, 17, 94, 151
ndb_wait_setup, 99, 223
NDB_WIN32, 60, 188
ndinfo.index_stats, 49, 178
neighbor nodes, 4
newtonapi, 121, 242
NO PAD collations, 121, 242
node failure handling, 40, 66, 170, 193
node ID allocation, 66, 107, 193, 230
node IDs, 40, 107, 170, 230
node logs, 54, 182
node recovery, 74, 201
node restarts, 49, 80, 88, 178, 206, 213
node shutdown, 24, 66, 157, 193
node takeover, 107, 230
Node.JS, 17, 151
Node.js, 34, 54, 60, 66, 80, 165, 182, 188, 193, 206
NodeGroup, 60, 80, 188, 206
NodeGroupTransporters, 94, 219
NODE_FAILREP, 99, 223
NoOfReplicas, 60, 80, 99, 188, 206, 223
NOT BETWEEN, 121, 242
NOT IN, 121, 242
NOWAIT, 11, 147
NO_OF_BUCKETS, 54
NULL, 40, 121, 130, 133, 170, 242, 251, 254
NULL comparison, 60, 188
num-slices, 94, 219
NumCPUs, 74, 201

O
ODirect, 133, 254

273

MySQL NDB Cluster 8.0 Release Notes

ODirectSyncFlag, 133, 254
OM_WRITE_BUFFER, 133, 254
ON DELETE CASCADE, 121, 242
online alter, 17, 151
online DDL, 107, 230
online operations, 4
online table reorganization, 7, 143
online upgrades, 133, 254
OO_NOWAIT, 107, 230
optimizer, 116, 238
option handling, 133, 254
ORDER BY, 107, 133, 230, 254
OS X, 94, 219
O_DIRECT, 66, 80, 99, 193, 206, 223

P
Packaging, 4, 24, 60, 66, 80, 94, 116, 121, 130, 157, 188, 193, 206, 219, 238,
242, 251
packaging, 7, 49, 88, 213
packed send, 74, 201
parallelism, 17, 94, 121, 151, 219, 242
partial LCP, 74, 99, 201, 223
partial restarts, 99, 223
PartionCount, 66, 193
Partitioning, 107, 230
PartitionsPerNode, 74, 201
PARTITION_BALANCE, 133, 254
Performance, 40, 99, 130, 170, 223, 251
performance, 116, 238
Performance Schema, 34, 165
PGMAN, 74, 80, 99, 133, 201, 206, 223, 254
pgman_time_track_stats, 99, 223
PK reads, 80, 206
plugin threads, 40, 170
PortNumber, 66, 193
PreferIPVersion, 60, 188
primary key updates, 11
primary keys, 11, 14, 148
privileges, 34, 165
processes, 17, 151
processes table, 133, 254
pushdown, 116, 121, 238, 242
pushdown joins, 88, 213
pushed conditions, 121, 242
pushed joins, 40, 54, 107, 121, 170, 182, 230, 242

Q
QEP_TAB, 133, 254
QMGR, 7, 94, 143, 219
query memory, 121, 242

R
race, 133, 254

274

MySQL NDB Cluster 8.0 Release Notes

race condition, 121, 242
race conditions, 116, 238
range checks, 49, 178
range scans, 49, 178
readln_socket(), 7, 143
READ_BACKUP, 28, 99, 160, 223
read_cost(), 49, 178
read_only, 7
realtime break, 17, 151
RealtimeScheduler, 80, 206
receive thread, 40, 74, 170, 201
redo log, 34, 60, 66, 121, 133, 165, 188, 193, 242, 254
redo log part metadata, 133, 254
redo logs, 40, 170
RedoOverCommitCounter, 99, 223
RedoOverCommitLimit, 99, 223
ref, 116, 238
REGCONF, 14, 148
register, 133, 254
REGREQ, 14, 148
releaseGlobal(), 7, 143
REORGANIZE PARTITION, 24, 133, 157, 254
REORG_MOVED, 7, 143
replica_allow_batching, 34
replica_parallel_workers, 17
RESET MASTER, 133
RESET REPLICA, 74
RESET SLAVE, 74
resource allocation, 107, 121, 230, 242
resource usage, 133, 254
RESTART, 121, 242
restarts, 54, 66, 74, 107, 133, 182, 193, 201, 230, 254
restore, 40, 170
rollback, 80, 206
rolling restart, 7, 143
row buffers, 80, 206
row ID, 121, 242
ROW_FORMAT, 133, 254
RPMs, 60, 188

S
SafeCounter, 121, 242
SavedEvent, 116, 238
scanIndex(), 133
scans, 116, 130, 238, 251
SCANTABREQ, 88, 213
SCAN_FRAGCONF, 133, 254
SCAN_FRAGREF, 133, 254
SCAN_FRAGREQ, 130, 133, 251, 254
schema distribution, 7, 49, 66, 80, 107, 116, 143, 178, 193, 206, 230, 238
schema operations, 17, 54, 151, 182
schema synchronization, 99, 130, 223, 251
schema UUID, 99, 223

275

MySQL NDB Cluster 8.0 Release Notes

SCHEMA_UUID_VALUE_LENGTH, 94, 219
scratch buffer, 17, 151
SDI, 88, 213
SELECT, 99, 121, 223, 242
semijoin, 133, 254
send buffer, 133, 254
send buffers, 133, 254
send threads, 7, 143
ServerPort, 133
setExtraMetadata(), 133, 254
SET_LOGLEVELORD, 49, 178
shared users, 94, 219
SharedGlobalMemory, 99, 116, 223, 238
SHM, 133, 254
ShmSize, 99, 223
SHOW, 116, 238
signal data, 54, 182
signal fragments, 24, 157
signal memory, 66, 193
signals, 24, 34, 133, 157, 165, 254
SignalSender, 99, 223
SIGTERM, 17, 66, 151, 193
SimulatedBlock, 24, 157
singal IDs, 17, 151
single user mode, 54, 182
SINGLE USER MODE, 116, 238
SingleUserMode, 116, 238
slave-skip-errors, 49
slice-id, 94, 219
SNAPSHOTEND, 116, 238
SNAPSHOTSTART, 116, 238
sockets, 7, 143
Solaris, 24, 66, 74, 99, 193, 201, 223
Solaris/x86, 107, 230
source code, 7, 143
SpinMethod, 66, 94, 193, 219
SPJ, 24, 40, 49, 74, 94, 133, 157, 170, 178, 201, 219, 254
SQL node, 121, 242
SQL nodes, 40, 60, 170, 188
SSL, 4
ssl_write(), 7, 143
START_LCP_REQ, 99, 223
static_assert(), 40, 170
statistics, 40, 66, 170, 193
std::max(), 60, 188
std::min(), 60, 188
STOP, 4, 121, 242
stop GCI, 133, 254
STORAGE MEMORY, 133, 254
stored grants, 40, 60, 170, 188
store_table(), 17, 151
STRAIGHT_JOIN, 116, 238
strlen(), 74, 201
subscription logs, 116, 238

276

MySQL NDB Cluster 8.0 Release Notes

SUB_GCP_COMPLETE_REP, 121, 242
SUB_STOP_REQ, 130, 251
SUMA, 24, 28, 54, 80, 130, 133, 157, 160, 182, 206, 251, 254
swap, 99, 223
synchronization, 66, 107, 116, 193, 230, 238
sysfile, 80, 206
sysfiles, 107, 230
SYSTAB_0, 121, 242
system tables, 49, 178

T
table creation, 66, 193
table discovery, 107, 121, 230, 242
table reorganization, 49, 107, 178, 230
table statistics, 49, 178
Table::getColumn(), 80, 206
Table::getExtraMetadata(), 99, 223
tableno, 133, 254
TABLESPACE, 88, 213
tablespaces, 107, 116, 130, 230, 238, 251
TABLE_READ_ONLY, 107, 230
TAB_SCANREF, 28, 160
takeover, 116, 238
TC, 11, 147
TCKEYREQ, 116, 238
TcpSpinTime, 94, 219
TCROLLBACKREP, 133, 254
temporal data types, 121, 242
temporary errors, 116, 238
testing, 130
TEXT, 121, 130, 133, 242
TE_ALTER, 121, 242
TFSentinel, 133, 254
thread creation, 133, 254
thread priority, 40, 170
ThreadConfig, 34, 40, 74, 121, 133, 165, 170, 201, 242, 254
timeouts, 80, 206
TIMESTAMP, 116, 238
timestamps, 60, 188
TINYBLOB, 116, 238
TLS, 11, 147
trace logs, 17, 151
transaction coordinator, 107, 230
transaction memory, 34, 165
TransactionMemory, 99, 223
transactions, 4, 17, 40, 99, 107, 121, 151, 170, 223, 230, 242
TRANSID_AI, 80, 206
TransientPool, 40, 170
TransporterRegistry, 11, 147
TransporterRegistry::prepareSendTemplate(), 133, 254
transporters, 4, 7, 17, 143, 151
transporter_details, 4
triggers (NDB), 130, 251

277

MySQL NDB Cluster 8.0 Release Notes

TRPMAN, 4
truncation, 121, 242
tuple corruption, 130, 251
TUX scans, 54, 182
TwoPassInitialNodeRestartCopy, 130, 133, 251, 254
type conversion, 116, 238
TYPE_NOTE_TIME_TRUNCATED, 24, 157
TYPE_NOTE_TRUNCATED, 24, 157

U
Ubuntu, 7, 94, 143, 219
UCA-9.0, 121, 242
undo files, 121, 242
undo log, 74, 80, 201, 206
undo log file groups, 130, 251
UndoDataBuffer, 54, 182
UndoIndexBuffer, 54, 182
UNIQUE, 49, 178
UPDATE, 54, 182
updates, 94, 219
upgrade, 80, 206
upgrades, 7, 28, 34, 49, 66, 80, 88, 99, 107, 116, 121, 130, 160, 165, 178,
193, 206, 213, 223, 230, 238, 242, 251
upgrades and downgrades, 107, 230
using filesort, 116, 238
USING HASH, 49, 178
UTF8, 17, 151

V
VARCHAR, 28, 160
version_comment, 130, 251
VIRTUAL, 116
V_QUERY, 14, 148

W
wait_until_ready(), 121, 242
warnings, 4, 14, 133, 148, 254
Windows, 107, 230
WiX, 99, 223
WRITESET, 17

278

	MySQL NDB Cluster 8.0 Release Notes
	Table of Contents
	Preface and Legal Notices
	Changes in MySQL NDB Cluster 8.0.37 (2024-04-30, General Availability)
	Changes in MySQL NDB Cluster 8.0.36 (2024-01-16, General Availability)
	Changes in MySQL NDB Cluster 8.0.35 (2023-10-25, General Availability)
	Changes in MySQL NDB Cluster 8.0.34 (2023-07-18, General Availability)
	Changes in MySQL NDB Cluster 8.0.33 (2023-04-18, General Availability)
	Changes in MySQL NDB Cluster 8.0.32 (2023-01-17, General Availability)
	Changes in MySQL NDB Cluster 8.0.31 (2022-10-11, General Availability)
	Changes in MySQL NDB Cluster 8.0.30 (2022-07-26, General Availability)
	Changes in MySQL NDB Cluster 8.0.29 (2022-04-26, General Availability)
	Changes in MySQL NDB Cluster 8.0.28 (2022-01-18, General Availability)
	Changes in MySQL NDB Cluster 8.0.27 (2021-10-19, General Availability)
	Changes in MySQL NDB Cluster 8.0.26 (2021-07-20, General Availability)
	Changes in MySQL NDB Cluster 8.0.25 (2021-05-11, General Availability)
	Changes in MySQL NDB Cluster 8.0.24 (2021-04-20, General Availability)
	Changes in MySQL NDB Cluster 8.0.23 (2021-01-18, General Availability)
	Changes in MySQL NDB Cluster 8.0.22 (2020-10-19, General Availability)
	Changes in MySQL NDB Cluster 8.0.21 (2020-07-13, General Availability)
	Changes in MySQL NDB Cluster 8.0.20 (2020-04-27, General Availability)
	Changes in MySQL NDB Cluster 8.0.19 (2020-01-13, General Availability)
	Changes in MySQL NDB Cluster 8.0.18 (2019-10-14, Release Candidate)
	Changes in MySQL NDB Cluster 8.0.17 (2019-07-22, Release Candidate)
	Changes in MySQL NDB Cluster 8.0.16 (2019-04-25, Development Milestone)
	Changes in MySQL NDB Cluster 8.0.15 (Not released)
	Changes in MySQL NDB Cluster 8.0.14 (2019-01-21, Development Milestone)
	Changes in MySQL NDB Cluster 8.0.13 (2018-10-23, Development Milestone)
	Release Series Changelogs: MySQL NDB Cluster 8.0
	Changes in MySQL NDB Cluster 8.0.36 (2024-01-16, General Availability)
	Changes in MySQL NDB Cluster 8.0.35 (2023-10-25, General Availability)
	Changes in MySQL NDB Cluster 8.0.34 (2023-07-18, General Availability)
	Changes in MySQL NDB Cluster 8.0.33 (2023-04-18, General Availability)
	Changes in MySQL NDB Cluster 8.0.32 (2023-01-17, General Availability)
	Changes in MySQL NDB Cluster 8.0.31 (2022-10-11, General Availability)
	Changes in MySQL NDB Cluster 8.0.30 (2022-07-26, General Availability)
	Changes in MySQL NDB Cluster 8.0.29 (2022-04-26, General Availability)
	Changes in MySQL NDB Cluster 8.0.28 (2022-01-18, General Availability)
	Changes in MySQL NDB Cluster 8.0.27 (2021-10-19, General Availability)
	Changes in MySQL NDB Cluster 8.0.26 (2021-07-20, General Availability)
	Changes in MySQL NDB Cluster 8.0.24 (2021-04-20, General Availability)
	Changes in MySQL NDB Cluster 8.0.23 (2021-01-18, General Availability)
	Changes in MySQL NDB Cluster 8.0.22 (2020-10-19, General Availability)
	Changes in MySQL NDB Cluster 8.0.21 (2020-07-13, General Availability)
	Changes in MySQL NDB Cluster 8.0.20 (2020-04-27, General Availability)
	Changes in MySQL NDB Cluster 8.0.19 (2020-01-13, General Availability)
	Changes in MySQL NDB Cluster 8.0.18 (2019-10-14, Release Candidate)
	Changes in MySQL NDB Cluster 8.0.17 (2019-07-22, Release Candidate)
	Changes in MySQL NDB Cluster 8.0.16 (2019-04-25, Development Milestone)
	Changes in MySQL NDB Cluster 8.0.14 (2019-01-21, Development Milestone)
	Changes in MySQL NDB Cluster 8.0.13 (2018-10-23, Development Milestone)

	Index

