
Oracle Berkeley DB, Java Edition

Java Collections Tutorial

12c Release 2
Library Version 12.2.7.5

Legal Notice

Copyright © 2002 - 2017 Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure
and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you
may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any
part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors,
please report them to us in writing.

Berkeley DB, Berkeley DB Java Edition and Sleepycat are trademarks or registered trademarks of Oracle. All rights to these marks
are reserved. No third-party use is permitted without the express prior written consent of Oracle.

Other names may be trademarks of their respective owners.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to
the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure,
modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the
hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or
intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you
use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective
owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and
are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are
trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products, and services from third
parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect
to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or
damages incurred due to your access to or use of third-party content, products, or services.

Published 31-Oct-2017

31-Oct-2017 JE Collections Page iii

Table of Contents
Preface ... v

Conventions Used in this Book .. v
For More Information ... vi

Contact Us ... vi
1. Introduction .. 1

Features ... 1
Developing a JE Collections Application ... 2
Tutorial Introduction .. 3

2. The Basic Program .. 6
Defining Serialized Key and Value Classes ... 6
Opening and Closing the Database Environment .. 11
Opening and Closing the Class Catalog ... 13
Opening and Closing Databases .. 15
Creating Bindings and Collections ... 16
Implementing the Main Program ... 19
Using Transactions ... 23
Adding Database Items .. 25
Retrieving Database Items .. 27
Handling Exceptions ... 30

3. Using Secondary Indices and Foreign keys ... 32
Opening Secondary Key Indices .. 32
Opening Foreign Key Indices ... 35
Creating Indexed Collections ... 39
Retrieving Items by Index Key ... 42

4. Using Entity Classes .. 46
Defining Entity Classes .. 46
Creating Entity Bindings .. 50
Creating Collections with Entity Bindings .. 53
Using Entities with Collections .. 54

5. Using Tuples ... 58
Using the Tuple Format ... 58
Using Tuples with Key Creators .. 59
Creating Tuple Key Bindings .. 61
Creating Tuple-Serial Entity Bindings ... 63
Using Sorted Collections .. 66

6. Using Serializable Entities .. 68
Using Transient Fields in an Entity Class ... 68
Using Transient Fields in an Entity Binding .. 72
Removing the Redundant Value Classes .. 74

7. Summary ... 76
A. API Notes and Details ... 77

Using Data Bindings .. 77
Selecting Binding Formats .. 78
Selecting Data Bindings ... 78
Implementing Bindings .. 79
Using Bindings .. 79

31-Oct-2017 JE Collections Page iv

Secondary Key Creators .. 80
Using the JE JE Collections API .. 80

Using Transactions ... 80
Transaction Rollback .. 81
Access Method Restrictions .. 82

Using Stored Collections .. 82
Stored Collection and Access Methods ... 82
Stored Collections Versus Standard Java Collections 83
Other Stored Collection Characteristics ... 84
Why Java Collections for Berkeley DB Java Edition 85

Serialized Object Storage ... 86

31-Oct-2017 JE Collections Page v

Preface
Welcome to the Berkeley DB Java Edition (JE) Collections API. This document provides a
tutorial that introduces the collections API. The goal of this document is to provide you with
an efficient mechanism with which you can quickly become efficient with this API. As such,
this document is intended for Java developers and senior software architects who are looking
for transactionally-protected backing of their Java collections. No prior experience with JE
technologies is expected or required.

Conventions Used in this Book

The following typographical conventions are used within in this manual:

Class names are represented in monospaced font, as are method names. For example: "The
Environment.openDatabase() method returns a Database class object."

Variable or non-literal text is presented in italics. For example: "Go to your JE_HOME
directory."

Program examples are displayed in a monospaced font on a shaded background. For example:

import com.sleepycat.je.Environment;
import com.sleepycat.je.EnvironmentConfig;
import java.io.File;

...

// Open the environment. Allow it to be created if it does not already
// exist.
Environment myDbEnvironment;

In situations in this book, programming examples are updated from one chapter to the next
in this book. When this occurs, the new code is presented in monospaced bold font. For
example:

import com.sleepycat.je.Environment;
import com.sleepycat.je.EnvironmentConfig;
import java.io.File;

...

// Open the environment. Allow it to be created if it does not already
// exist.
Environment myDbEnv;
EnvironmentConfig envConfig = new EnvironmentConfig();
envConfig.setAllowCreate(true);
myDbEnv = new Environment(new File("/export/dbEnv"), envConfig);

31-Oct-2017 JE Collections Page vi

For More Information

Beyond this manual, you may also find the following sources of information useful when
building a JE application:

• Getting Started with Berkeley DB, Java Edition

• Berkeley DB, Java Edition Getting Started with Transaction Processing

• Berkeley DB, Java Edition Getting Started with High Availability Applications

• Berkeley DB, Java Edition Javadoc

To download the latest Berkeley DB Java Edition documentation along with white papers
and other collateral, visit http://www.oracle.com/technetwork/indexes/documentation/
index.html.

For the latest version of the Oracle Berkeley DB Java Edition downloads, visit http://
www.oracle.com/technetwork/database/database-technologies/berkeleydb/downloads/
index.html.

Contact Us

You can post your comments and questions at the Oracle Technology (OTN) forum for Oracle
Berkeley DB Java Edition at: https://forums.oracle.com/forums/forum.jspa?forumID=273.

For sales or support information, email to: berkeleydb-info_us@oracle.com You can subscribe
to a low-volume email announcement list for the Berkeley DB product family by sending email
to: bdb-join@oss.oracle.com

http://docs.oracle.com/cd/E17277_02/html/GettingStartedGuide/BerkeleyDB-JE-GSG.pdf
http://docs.oracle.com/cd/E17277_02/html/TransactionGettingStarted/BerkeleyDB-JE-Txn.pdf
http://docs.oracle.com/cd/E17277_02/html/ReplicationGuide/BerkeleyDB-JE-Replicaton.pdf
http://docs.oracle.com/cd/E17277_02/html/java/index.html
http://www.oracle.com/technetwork/indexes/documentation/index.html
http://www.oracle.com/technetwork/indexes/documentation/index.html
http://www.oracle.com/technetwork/database/database-technologies/berkeleydb/downloads/index.html
http://www.oracle.com/technetwork/database/database-technologies/berkeleydb/downloads/index.html
http://www.oracle.com/technetwork/database/database-technologies/berkeleydb/downloads/index.html
https://forums.oracle.com/forums/forum.jspa?forumID=273
mailto:berkeleydb-info_us@oracle.com
mailto:bdb-join@oss.oracle.com

31-Oct-2017 JE Collections Page 1

Chapter 1. Introduction
The JE JE Collections API is a Java framework that extends the well known Java Collections
design pattern such that collections can now be stored, updated and queried in a
transactional manner. The JE JE Collections API is a layer on top of JE.

Together the JE JE Collections API and Berkeley DB Java Edition provide an embedded data
management solution with all the benefits of a full transactional storage and the simplicity
of a well known Java API. Java programmers who need fast, scalable, transactional data
management for their projects can quickly adopt and deploy the JE JE Collections API with
confidence.

This framework was first known as Greybird DB written by Mark Hayes. Mark collaborated with
us to permanently incorporate his excellent work into our distribution and to support it as an
ongoing part of Berkeley DB and Berkeley DB Java Edition. The repository of source code that
remains at SourceForge at version 0.9.0 is considered the last version before incorporation and
will remain intact but will not be updated to reflect changes made as part of Berkeley DB or
Berkeley DB Java Edition.

Features

JE provides a Java API that can be roughly described as a map and cursor interface, where the
keys and values are represented as byte arrays. The JE JE Collections API is a layer on top of
JE. It adds significant new functionality in several ways.

• An implementation of the Java Collections interfaces (Map, SortedMap, Set, SortedSet, and
Iterator) is provided.

• Transactions are supported using the conventional Java transaction-per-thread model,
where the current transaction is implicitly associated with the current thread.

• Transaction runner utilities are provided that automatically perform transaction retry and
exception handling.

• Keys and values are represented as Java objects rather than byte arrays. Bindings are used
to map between Java objects and the stored byte arrays.

• The tuple data format is provided as the simplest data representation, and is useful for keys
as well as simple compact values.

• The serial data format is provided for storing arbitrary Java objects without writing custom
binding code. Java serialization is extended to store the class descriptions separately,
making the data records much more compact than with standard Java serialization.

• Custom data formats and bindings can be easily added. XML data format and XML bindings
could easily be created using this feature, for example.

Note that the JE JE Collections API does not support caching of programming language
objects nor does it keep track of their stored status. This is in contrast to "persistent object"
approaches such as those defined by ODMG and JDO (JSR 12). Such approaches have benefits

http://download.oracle.com/javase/1.5.0/docs/guide/collections/
http://greybird-db.sourceforge.net/
http://www.odmg.org/odmg.html

Library Version 12.2.7.5 Introduction

31-Oct-2017 JE Collections Page 2

but also require sophisticated object caching. For simplicity the JE JE Collections API treats
data objects by value, not by reference, and does not perform object caching of any kind.
Since the JE JE Collections API is a thin layer, its reliability and performance characteristics
are roughly equivalent to those of Berkeley DB, and database tuning is accomplished in the
same way as for any Berkeley DB database.

Developing a JE Collections Application

There are several important choices to make when developing an application using the JE JE
Collections API.

1. Choose the Format for Keys and Values

For each database you may choose a binding format for the keys and values. For example,
the tuple format is useful for keys because it has a deterministic sort order. The serial
format is useful for values if you want to store arbitrary Java objects. In some cases a
custom format may be appropriate. For details on choosing a binding format see Using
Data Bindings (page 77).

2. Choose the Binding for Keys and Values

With the serial data format you do not have to create a binding for each Java class that
is stored since Java serialization is used. But for other formats a binding must be defined
that translates between stored byte arrays and Java objects. For details see Using Data
Bindings (page 77).

3. Choose Secondary Indices and Foreign Key Indices

Any database that has unique keys may have any number of secondary indices. A
secondary index has keys that are derived from data values in the primary database.
This allows lookup and iteration of objects in the database by its index keys. A foreign
key index is a special type of secondary index where the index keys are also the primary
keys of another primary database. For each index you must define how the index keys
are derived from the data values using a SecondaryKeyCreator. For details see the
SecondaryDatabase, SecondaryConfig and SecondaryKeyCreator classes.

4. Choose the Collection Interface for each Database

The standard Java Collection interfaces are used for accessing databases and secondary
indices. The Map and Set interfaces may be used for any type of database. The Iterator
interface is used through the Set interfaces. For more information on the collection
interfaces see Using Stored Collections (page 82).

Any number of bindings and collections may be created for the same database. This allows
multiple views of the same stored data. For example, a data store may be viewed as a Map
of keys to values, a Set of keys, or a Collection of values. String values, for example, may be
used with the built-in binding to the String class, or with a custom binding to another class
that represents the string values differently.

It is sometimes desirable to use a Java class that encapsulates both a data key and a data
value. For example, a Part object might contain both the part number (key) and the part

Library Version 12.2.7.5 Introduction

31-Oct-2017 JE Collections Page 3

name (value). Using the JE JE Collections API this type of object is called an "entity". An entity
binding is used to translate between the Java object and the stored data key and value. Entity
bindings may be used with all Collection types.

Please be aware that the provided JE JE Collections API collection classes do not conform
completely to the interface contracts defined in the java.util package. For example, all
iterators must be explicitly closed and the size() method is not available. The differences
between the JE JE Collections API collections and the standard Java collections are
documented in Stored Collections Versus Standard Java Collections (page 83).

Tutorial Introduction

Most of the remainder of this document illustrates the use of the JE JE Collections API by
presenting a tutorial that describes usage of the API. This tutorial builds a shipment database,
a familiar example from classic database texts.

The examples illustrate the following concepts of the JE JE Collections API:

• Object-to-data bindings

• The database environment

• Databases that contain key/value records

• Secondary index databases that contain index keys

• Java collections for accessing databases and indices

• Transactions used to commit or undo database changes

The examples build on each other, but at the same time the source code for each example
stands alone.

• The Basic Program (page 6)

• Using Secondary Indices and Foreign keys (page 32)

• Using Entity Classes (page 46)

• Using Tuples (page 58)

• Using Serializable Entities (page 68)

The shipment database consists of three database stores: the part store, the supplier store,
and the shipment store. Each store contains a number of records, and each record consists of
a key and a value.

Store Key Value

Part Part Number Name, Color, Weight, City

Supplier Supplier Number Name, Status, City

Library Version 12.2.7.5 Introduction

31-Oct-2017 JE Collections Page 4

Store Key Value

Shipment Part Number, Supplier Number Quantity

In the example programs, Java classes containing the fields above are defined for the key and
value of each store: PartKey, PartData, SupplierKey, SupplierData, ShipmentKey and
ShipmentData. In addition, because the Part's Weight field is itself composed of two fields
— the weight value and the unit of measure — it is represented by a separate Weight class.
These classes will be defined in the first example program.

In general the JE JE Collections API uses bindings to describe how Java objects are stored. A
binding defines the stored data syntax and the mapping between a Java object and the stored
data. The example programs show how to create different types of bindings, and explains the
characteristics of each type.

The following tables show the record values that are used in all the example programs in the
tutorial.

Number Name Color Weight City

P1 Nut Red 12.0 grams London

P2 Bolt Green 17.0 grams Paris

P3 Screw Blue 17.0 grams Rome

P4 Screw Red 14.0 grams London

P5 Cam Blue 12.0 grams Paris

P6 Cog Red 19.0 grams London

Number Name Status City

S1 Smith 20 London

S2 Jones 10 Paris

S3 Blake 30 Paris

S4 Clark 20 London

S5 Adams 30 Athens

Library Version 12.2.7.5 Introduction

31-Oct-2017 JE Collections Page 5

Part Number Supplier Number Quantity

P1 S1 300

P1 S2 300

P2 S1 200

P2 S2 400

P2 S3 200

P2 S4 200

P3 S1 400

P4 S1 200

P4 S4 300

P5 S1 100

P5 S4 400

P6 S1 100

31-Oct-2017 JE Collections Page 6

Chapter 2. The Basic Program
The Basic example is a minimal implementation of the shipment program. It writes and reads
the part, supplier and shipment databases.

The complete source of the final version of the example program is included in the Berkeley
DB distribution.

Defining Serialized Key and Value Classes

The key and value classes for each type of shipment record — Parts, Suppliers and Shipments
— are defined as ordinary Java classes. In this example the serialized form of the key and
value objects is stored directly in the database. Therefore these classes must implement the
standard Java java.io.Serializable interface. A compact form of Java serialization is used
that does not duplicate the class description in each record. Instead the class descriptions
are stored in the class catalog store, which is described in the next section. But in all other
respects, standard Java serialization is used.

An important point is that instances of these classes are passed and returned by value, not by
reference, when they are stored and retrieved from the database. This means that changing a
key or value object does not automatically change the database. The object must be explicitly
stored in the database after changing it. To emphasize this point the key and value classes
defined here have no field setter methods. Setter methods can be defined, but it is important
to remember that calling a setter method will not cause the change to be stored in the
database. How to store and retrieve objects in the database will be described later.

Each key and value class contains a toString method that is used to output the contents of
the object in the example program. This is meant for illustration only and is not required for
database objects in general.

Notice that the key and value classes defined below do not contain any references to
com.sleepycat packages. An important characteristic of these classes is that they are
independent of the database. Therefore, they may be easily used in other contexts and may
be defined in a way that is compatible with other tools and libraries.

The PartKey class contains only the Part's Number field.

Note that PartKey (as well as SupplierKey below) contain only a single String field. Instead
of defining a specific class for each type of key, the String class by itself could have been
used. Specific key classes were used to illustrate strong typing and for consistency in the
example. The use of a plain String as an index key is illustrated in the next example program.
It is up to the developer to use either primitive Java classes such as String and Integer, or
strongly typed classes. When there is the possibility that fields will be added later to a key or
value, a specific class should be used.

Library Version 12.2.7.5 The Basic Program

31-Oct-2017 JE Collections Page 7

import java.io.Serializable;

public class PartKey implements Serializable
{
 private String number;

 public PartKey(String number) {
 this.number = number;
 }

 public final String getNumber() {
 return number;
 }

 public String toString() {
 return "[PartKey: number=" + number + ']';
 }
}

The PartData class contains the Part's Name, Color, Weight and City fields.

import java.io.Serializable;

public class PartData implements Serializable
{
 private String name;
 private String color;
 private Weight weight;
 private String city;

 public PartData(String name, String color, Weight weight, String city)
 {
 this.name = name;
 this.color = color;
 this.weight = weight;
 this.city = city;
 }

 public final String getName()
 {
 return name;
 }

 public final String getColor()
 {
 return color;
 }

 public final Weight getWeight()
 {

Library Version 12.2.7.5 The Basic Program

31-Oct-2017 JE Collections Page 8

 return weight;
 }

 public final String getCity()
 {
 return city;
 }

 public String toString()
 {
 return "[PartData: name=" + name +
 " color=" + color +
 " weight=" + weight +
 " city=" + city + ']';
 }
}

The Weight class is also defined here, and is used as the type of the Part's Weight field. Just
as in standard Java serialization, nothing special is needed to store nested objects as long as
they are all Serializable.

import java.io.Serializable;

public class Weight implements Serializable
{
 public final static String GRAMS = "grams";
 public final static String OUNCES = "ounces";

 private double amount;
 private String units;

 public Weight(double amount, String units)
 {
 this.amount = amount;
 this.units = units;
 }

 public final double getAmount()
 {
 return amount;
 }

 public final String getUnits()
 {
 return units;
 }

 public String toString()
 {
 return "[" + amount + ' ' + units + ']';

Library Version 12.2.7.5 The Basic Program

31-Oct-2017 JE Collections Page 9

 }
}

The SupplierKey class contains the Supplier's Number field.

import java.io.Serializable;

public class SupplierKey implements Serializable
{
 private String number;

 public SupplierKey(String number)
 {
 this.number = number;
 }

 public final String getNumber()
 {
 return number;
 }

 public String toString()
 {
 return "[SupplierKey: number=" + number + ']';
 }
}

The SupplierData class contains the Supplier's Name, Status and City fields.

import java.io.Serializable;

public class SupplierData implements Serializable
{
 private String name;
 private int status;
 private String city;

 public SupplierData(String name, int status, String city)
 {
 this.name = name;
 this.status = status;
 this.city = city;
 }

 public final String getName()
 {
 return name;
 }

 public final int getStatus()
 {

Library Version 12.2.7.5 The Basic Program

31-Oct-2017 JE Collections Page 10

 return status;
 }

 public final String getCity()
 {
 return city;
 }

 public String toString()
 {
 return "[SupplierData: name=" + name +
 " status=" + status +
 " city=" + city + ']';
 }
}

The ShipmentKey class contains the keys of both the Part and Supplier.

import java.io.Serializable;

public class ShipmentKey implements Serializable
{
 private String partNumber;
 private String supplierNumber;

 public ShipmentKey(String partNumber, String supplierNumber)
 {
 this.partNumber = partNumber;
 this.supplierNumber = supplierNumber;
 }

 public final String getPartNumber()
 {
 return partNumber;
 }

 public final String getSupplierNumber()
 {
 return supplierNumber;
 }

 public String toString()
 {
 return "[ShipmentKey: supplier=" + supplierNumber +
 " part=" + partNumber + ']';
 }
}

Library Version 12.2.7.5 The Basic Program

31-Oct-2017 JE Collections Page 11

The ShipmentData class contains only the Shipment's Quantity field. Like PartKey and
SupplierKey, ShipmentData contains only a single primitive field. Therefore the Integer
class could have been used instead of defining a specific value class.

import java.io.Serializable;

public class ShipmentData implements Serializable
{
 private int quantity;

 public ShipmentData(int quantity)
 {
 this.quantity = quantity;
 }

 public final int getQuantity()
 {
 return quantity;
 }

 public String toString()
 {
 return "[ShipmentData: quantity=" + quantity + ']';
 }
}

Opening and Closing the Database Environment

This section of the tutorial describes how to open and close the database environment. The
database environment manages resources (for example, memory, locks and transactions) for
any number of databases. A single environment instance is normally used for all databases.

The SampleDatabase class is used to open and close the environment. It will also be used in
following sections to open and close the class catalog and other databases. Its constructor is
used to open the environment and its close() method is used to close the environment. The
skeleton for the SampleDatabase class follows.

import com.sleepycat.je.DatabaseException;
import com.sleepycat.je.Environment;
import com.sleepycat.je.EnvironmentConfig;
import java.io.File;
import java.io.FileNotFoundException;

public class SampleDatabase
{
 private Environment env;

 public SampleDatabase(String homeDirectory)
 throws DatabaseException, FileNotFoundException
 {

Library Version 12.2.7.5 The Basic Program

31-Oct-2017 JE Collections Page 12

 }

 public void close()
 throws DatabaseException
 {
 }
}

The first thing to notice is that the Environment class is in the com.sleepycat.je package,
not the com.sleepycat.collections package. The com.sleepycat.je package contains all
core Berkeley DB functionality. The com.sleepycat.collections package contains extended
functionality that is based on the Java Collections API. The collections package is layered
on top of the com.sleepycat.je package. Both packages are needed to create a complete
application based on the JE JE Collections API.

The following statements create an Environment object.

public SampleDatabase(String homeDirectory)
 throws DatabaseException, FileNotFoundException
 {
 System.out.println("Opening environment in: " + homeDirectory);

 EnvironmentConfig envConfig = new EnvironmentConfig();
 envConfig.setTransactional(true);
 envConfig.setAllowCreate(true);

 env = new Environment(new File(homeDirectory), envConfig);
 }

The EnvironmentConfig class is used to specify environment configuration parameters.
The first configuration option specified — setTransactional() — is set to true to create an
environment where transactional (and non-transactional) databases may be opened. While
non-transactional environments can also be created, the examples in this tutorial use a
transactional environment.

setAllowCreate() is set to true to specify that the environment's files will be created if
they don't already exist. If this parameter is not specified, an exception will be thrown if the
environment does not already exist. A similar parameter will be used later to cause databases
to be created if they don't exist.

When an Environment object is constructed, a home directory and the environment
configuration object are specified. The home directory is the location of the environment's log
files that store all database information.

The following statement closes the environment. The environment must be closed when
database work is completed to free allocated resources and to avoid having to run recovery
later. It is recommended that databases are closed before closing the environment.

 public void close()
 throws DatabaseException
 {

Library Version 12.2.7.5 The Basic Program

31-Oct-2017 JE Collections Page 13

 env.close();
 }

The following getter method returns the environment for use by other classes in the example
program. The environment is used for opening databases and running transactions.

public class SampleDatabase
{
 ...
 public final Environment getEnvironment()
 {
 return env;
 }
 ...
}

Opening and Closing the Class Catalog

This section describes how to open and close the Java class catalog. The class catalog is a
specialized database store that contains the Java class descriptions of the serialized objects
that are stored in the database. The class descriptions are stored in the catalog rather than
storing them redundantly in each database record. A single class catalog per environment
must be opened whenever serialized objects will be stored in the database.

The SampleDatabase class is extended to open and close the class catalog. The following
additional imports and class members are needed.

import com.sleepycat.bind.serial.StoredClassCatalog;
import com.sleepycat.je.Database;
import com.sleepycat.je.DatabaseConfig;
import com.sleepycat.je.DatabaseException;
import com.sleepycat.je.Environment;
import com.sleepycat.je.EnvironmentConfig;
import java.io.File;
import java.io.FileNotFoundException;

...

public class SampleDatabase
{
 private Environment env;
 private static final String CLASS_CATALOG = "java_class_catalog";
 ...
 private StoredClassCatalog javaCatalog;
 ...
}

While the class catalog is itself a database, it contains metadata for other databases and
is therefore treated specially by the JE JE Collections API. The StoredClassCatalog class
encapsulates the catalog store and implements this special behavior.

Library Version 12.2.7.5 The Basic Program

31-Oct-2017 JE Collections Page 14

The following statements open the class catalog by creating a Database and a
StoredClassCatalog object. The catalog database is created if it does not already exist.

 public SampleDatabase(String homeDirectory)
 throws DatabaseException, FileNotFoundException
 {
 ...
 DatabaseConfig dbConfig = new DatabaseConfig();
 dbConfig.setTransactional(true);
 dbConfig.setAllowCreate(true);

 Database catalogDb = env.openDatabase(null, CLASS_CATALOG,
 dbConfig);

 javaCatalog = new StoredClassCatalog(catalogDb);
 ...
 }
 ...
 public final StoredClassCatalog getClassCatalog() {
 return javaCatalog;
 }

The DatabaseConfig class is used to specify configuration parameters when opening a
database. The first configuration option specified — setTransactional() — is set to true to
create a transactional database. While non-transactional databases can also be created, the
examples in this tutorial use transactional databases.

setAllowCreate() is set to true to specify that the database will be created if it does not
already exist. If this parameter is not specified, an exception will be thrown if the database
does not already exist.

The first parameter of the openDatabase() method is an optional transaction that is used for
creating a new database. If null is passed, auto-commit is used when creating a database.

The second parameter of openDatabase() specifies the database name and must not be a
null.

The last parameter of openDatabase() specifies the database configuration object.

Lastly, the StoredClassCatalog object is created to manage the information in the class
catalog database. The StoredClassCatalog object will be used in the sections following for
creating serial bindings.

The getClassCatalog method returns the catalog object for use by other classes in the
example program.

When the environment is closed, the class catalog is closed also.

 public void close()
 throws DatabaseException
 {

Library Version 12.2.7.5 The Basic Program

31-Oct-2017 JE Collections Page 15

 javaCatalog.close();
 env.close();
 }

The StoredClassCatalog.close() method simply closes the underlying class catalog
database and in fact the Database.close() method may be called instead, if desired. It is
recommended that you close the catalog database and all other databases, before closing the
environment.

Opening and Closing Databases

This section describes how to open and close the Part, Supplier and Shipment databases. A
database is a collection of records, each of which has a key and a value. The keys and values
are stored in a selected format, which defines the syntax of the stored data. Two examples of
formats are Java serialization format and tuple format. In a given database, all keys have the
same format and all values have the same format.

The SampleDatabase class is extended to open and close the three databases. The following
additional class members are needed.

public class SampleDatabase
{
 ...
 private static final String SUPPLIER_STORE = "supplier_store";
 private static final String PART_STORE = "part_store";
 private static final String SHIPMENT_STORE = "shipment_store";
 ...
 private Database supplierDb;
 private Database partDb;
 private Database shipmentDb;
 ...
}

For each database there is a database name constant and a Database object.

The following statements open the three databases by constructing a Database object.

 public SampleDatabase(String homeDirectory)
 throws DatabaseException, FileNotFoundException
 {
 ...
 DatabaseConfig dbConfig = new DatabaseConfig();
 dbConfig.setTransactional(true);
 dbConfig.setAllowCreate(true);
 ...
 partDb = env.openDatabase(null, PART_STORE, dbConfig);
 supplierDb = env.openDatabase(null, SUPPLIER_STORE, dbConfig);
 shipmentDb = env.openDatabase(null, SHIPMENT_STORE, dbConfig);
 ...
 }

Library Version 12.2.7.5 The Basic Program

31-Oct-2017 JE Collections Page 16

The database configuration object that was used previously for opening the catalog database
is reused for opening the three databases above. The databases are created if they don't
already exist. The parameters of the openDatabase() method were described earlier when
the class catalog database was opened.

The following statements close the three databases.

 public void close()
 throws DatabaseException
 {
 partDb.close();
 supplierDb.close();
 shipmentDb.close();
 javaCatalog.close();
 env.close();
 }

It is recommended that all databases, including the catalog database, is closed before closing
the environment.

The following getter methods return the databases for use by other classes in the example
program.

public class SampleDatabase
{
 ...
 public final Database getPartDatabase()
 {
 return partDb;
 }

 public final Database getSupplierDatabase()
 {
 return supplierDb;
 }

 public final Database getShipmentDatabase()
 {
 return shipmentDb;
 }
 ...
}

Creating Bindings and Collections

Bindings translate between stored records and Java objects. In this example, Java
serialization bindings are used. Serial bindings are the simplest type of bindings because no
mapping of fields or type conversion is needed. Tuple bindings — which are more difficult to
create than serial bindings but have some advantages — will be introduced later in the Tuple
example program.

Library Version 12.2.7.5 The Basic Program

31-Oct-2017 JE Collections Page 17

Standard Java collections are used to access records in a database. Stored collections use
bindings transparently to convert the records to objects when they are retrieved from the
collection, and to convert the objects to records when they are stored in the collection.

An important characteristic of stored collections is that they do not perform object caching.
Every time an object is accessed via a collection it will be added to or retrieved from the
database, and the bindings will be invoked to convert the data. Objects are therefore always
passed and returned by value, not by reference. Because Berkeley DB is an embedded
database, efficient caching of stored raw record data is performed by the database library.

The SampleViews class is used to create the bindings and collections. This class is separate
from the SampleDatabase class to illustrate the idea that a single set of stored data can be
accessed via multiple bindings and collections, or views. The skeleton for the SampleViews
class follows.

import com.sleepycat.bind.EntryBinding;
import com.sleepycat.bind.serial.ClassCatalog;
import com.sleepycat.bind.serial.SerialBinding;
import com.sleepycat.collections.StoredEntrySet;
import com.sleepycat.collections.StoredSortedMap;
...

public class SampleViews
{
 private StoredSortedMap partMap;
 private StoredSortedMap supplierMap;
 private StoredSortedMap shipmentMap;

 ...
 public SampleViews(SampleDatabase db)
 {
 }
}

A StoredSortedMap field is used for each database. The StoredSortedMap class implements
the standard Java Map interface, which has methods for obtaining a Set of keys, a
Collection of values, or a Set of Map.Entry key/value pairs. Because databases contain
key/value pairs, any Berkeley DB database may be represented as a Java map.

The following statements create the key and data bindings using the SerialBinding class.

 public SampleViews(SampleDatabase db)
 {
 ClassCatalog catalog = db.getClassCatalog();
 EntryBinding partKeyBinding =
 new SerialBinding(catalog, PartKey.class);
 EntryBinding partDataBinding =
 new SerialBinding(catalog, PartData.class);
 EntryBinding supplierKeyBinding =
 new SerialBinding(catalog, SupplierKey.class);
 EntryBinding supplierDataBinding =

Library Version 12.2.7.5 The Basic Program

31-Oct-2017 JE Collections Page 18

 new SerialBinding(catalog, SupplierData.class);
 EntryBinding shipmentKeyBinding =
 new SerialBinding(catalog, ShipmentKey.class);
 EntryBinding shipmentDataBinding =
 new SerialBinding(catalog, ShipmentData.class);
 ...
 }

The first parameter of the SerialBinding constructor is the class catalog, and is used to
store the class descriptions of the serialized objects.

The second parameter is the base class for the serialized objects and is used for type checking
of the stored objects. If null or Object.class is specified, then any Java class is allowed.
Otherwise, all objects stored in that format must be instances of the specified class or derived
from the specified class. In the example, specific classes are used to enable strong type
checking.

The following statements create standard Java maps using the StoredSortedMap class.

 public SampleViews(SampleDatabase db)
 {
 ...
 partMap =
 new StoredSortedMap(db.getPartDatabase(),
 partKeyBinding, partDataBinding, true);
 supplierMap =
 new StoredSortedMap(db.getSupplierDatabase(),
 supplierKeyBinding, partDataBinding, true);
 shipmentMap =
 new StoredSortedMap(db.getShipmentDatabase(),
 shipmentKeyBinding, partDataBinding, true);
 ...
 }

The first parameter of the StoredSortedMap constructor is the database. In a
StoredSortedMap, the database keys (the primary keys) are used as the map keys. The Index
example shows how to use secondary index keys as map keys.

The second and third parameters are the key and value bindings to use when storing and
retrieving objects via the map.

The fourth and last parameter specifies whether changes will be allowed via the collection. If
false is passed, the collection will be read-only.

The following getter methods return the stored maps for use by other classes in the example
program. Convenience methods for returning entry sets are also included.

public class SampleViews
{
 ...
 public final StoredSortedMap getPartMap()
 {

Library Version 12.2.7.5 The Basic Program

31-Oct-2017 JE Collections Page 19

 return partMap;
 }

 public final StoredSortedMap getSupplierMap()
 {
 return supplierMap;
 }

 public final StoredSortedMap getShipmentMap()
 {
 return shipmentMap;
 }

 public final StoredEntrySet getPartEntrySet()
 {
 return (StoredEntrySet) partMap.entrySet();
 }

 public final StoredEntrySet getSupplierEntrySet()
 {
 return (StoredEntrySet) supplierMap.entrySet();
 }

 public final StoredEntrySet getShipmentEntrySet()
 {
 return (StoredEntrySet) shipmentMap.entrySet();
 }
 ...
}

Note that StoredSortedMap and StoredEntrySet are returned rather than just returning Map
and Set. Since StoredSortedMap implements the Map interface and StoredEntrySet implements
the Set interface, you may ask why Map and Set were not returned directly.

StoredSortedMap, StoredEntrySet, and other stored collection classes have a small number
of extra methods beyond those in the Java collection interfaces. The stored collection types
are therefore returned to avoid casting when using the extended methods. Normally, however,
only a Map or Set is needed, and may be used as follows.

 SampleDatabase sd = new SampleDatabase(new String("/home"));
 SampleViews views = new SampleViews(sd);
 Map partMap = views.getPartMap();
 Set supplierEntries = views.getSupplierEntrySet();

Implementing the Main Program

The main program opens the environment and databases, stores and retrieves objects within
a transaction, and finally closes the environment databases. This section describes the
main program shell, and the next section describes how to run transactions for storing and
retrieving objects.

Library Version 12.2.7.5 The Basic Program

31-Oct-2017 JE Collections Page 20

The Sample class contains the main program. The skeleton for the Sample class follows.

import com.sleepycat.je.DatabaseException;
import java.io.FileNotFoundException;

public class Sample
{
 private SampleDatabase db;
 private SampleViews views;

 public static void main(String args)
 {
 }

 private Sample(String homeDir)
 throws DatabaseException, FileNotFoundException
 {
 }

 private void close()
 throws DatabaseException
 {
 }

 private void run()
 throws Exception
 {
 }
}

The main program uses the SampleDatabase and SampleViews classes that were described in
the preceding sections. The main method will create an instance of the Sample class, and call
its run() and close() methods.

Library Version 12.2.7.5 The Basic Program

31-Oct-2017 JE Collections Page 21

The following statements parse the program's command line arguments.

 public static void main(String[] args)
 {
 System.out.println("\nRunning sample: " + Sample.class);
 String homeDir = "./tmp";
 for (int i = 0; i < args.length; i += 1)
 {
 String arg = args[i];
 if (args[i].equals("-h") && i < args.length - 1)
 {
 i += 1;
 homeDir = args[i];
 }
 else
 {
 System.err.println("Usage:\n java " +
 Sample.class.getName() +
 "\n [-h <home-directory>]");
 System.exit(2);
 }
 }
 ...
 }

The usage command is:

java com.sleepycat.examples.bdb.shipment.basic.Sample
 [-h <home-directory>]

The -h command is used to set the homeDir variable, which will later be passed to the
SampleDatabase() constructor. Normally all Berkeley DB programs should provide a way to
configure their database environment home directory.

The default for the home directory is ./tmp — the tmp subdirectory of the current directory
where the sample is run. The home directory must exist before running the sample. To re-
create the sample database from scratch, delete all files in the home directory before running
the sample.

The home directory was described previously in Opening and Closing the Database
Environment (page 11).

Of course, the command line arguments shown are only examples and a real-life application
may use different techniques for configuring these options.

Library Version 12.2.7.5 The Basic Program

31-Oct-2017 JE Collections Page 22

The following statements create an instance of the Sample class and call its run() and
close() methods.

 public static void main(String args)
 {
 ...
 Sample sample = null;
 try
 {
 sample = new Sample(homeDir);
 sample.run();
 }
 catch (Exception e)
 {
 e.printStackTrace();
 }
 finally
 {
 if (sample != null)
 {
 try
 {
 sample.close();
 }
 catch (Exception e)
 {
 System.err.println("Exception during database close:");
 e.printStackTrace();
 }
 }
 }
 }

The Sample() constructor will open the environment and databases, and the run() method
will run transactions for storing and retrieving objects. If either of these throws an exception,
then the program was unable to run and should normally terminate. (Transaction retries are
handled at a lower level and will be described later.) The first catch statement handles such
exceptions.

The finally statement is used to call the close() method since an attempt should always be
made to close the environment and databases cleanly. If an exception is thrown during close
and a prior exception occurred above, then the exception during close is likely a side effect of
the prior exception.

The Sample() constructor creates the SampleDatabase and SampleViews objects.

 private Sample(String homeDir)
 throws DatabaseException, FileNotFoundException
 {
 db = new SampleDatabase(homeDir);
 views = new SampleViews(db);

Library Version 12.2.7.5 The Basic Program

31-Oct-2017 JE Collections Page 23

 }

Recall that creating the SampleDatabase object will open the environment and all databases.

To close the database the Sample.close() method simply calls SampleDatabase.close().

 private void close()
 throws DatabaseException
 {
 db.close();
 }

The run() method is described in the next section.

Using Transactions

JE transactional applications have standard transactional characteristics: recoverability,
atomicity and integrity (this is sometimes also referred to generically as ACID properties). The
JE JE Collections API provides these transactional capabilities using a transaction-per-thread
model. Once a transaction is begun, it is implicitly associated with the current thread until it
is committed or aborted. This model is used for the following reasons.

• The transaction-per-thread model is commonly used in other Java APIs such as J2EE.

• Since the Java collections API is used for data access, there is no way to pass a transaction
object to methods such as Map.put.

The JE JE Collections API provides two transaction APIs. The lower-level API is the
CurrentTransaction class. It provides a way to get the transaction for the current thread,
and to begin, commit and abort transactions. It also provides access to the Berkeley DB core
API Transaction object. With CurrentTransaction, just as in the com.sleepycat.je API,
the application is responsible for beginning, committing and aborting transactions, and for
handling deadlock exceptions and retrying operations. This API may be needed for some
applications, but it is not used in the example.

The example uses the higher-level TransactionRunner and TransactionWorker APIs, which
are build on top of CurrentTransaction. TransactionRunner.run() automatically begins a
transaction and then calls the TransactionWorker.doWork() method, which is implemented
by the application.

The TransactionRunner.run() method automatically detects deadlock exceptions and
performs retries by repeatedly calling the TransactionWorker.doWork() method until
the operation succeeds or the maximum retry count is reached. If the maximum retry
count is reached or if another exception (other than LockConflictException) is thrown
by TransactionWorker.doWork(), then the transaction will be automatically aborted.
Otherwise, the transaction will be automatically committed.

Using this high-level API, if TransactionRunner.run() throws an exception, the application
can assume that the operation failed and the transaction was aborted; otherwise, when
an exception is not thrown, the application can assume the operation succeeded and the
transaction was committed.

Library Version 12.2.7.5 The Basic Program

31-Oct-2017 JE Collections Page 24

The Sample.run() method creates a TransactionRunner object and calls its run() method.
import com.sleepycat.collections.TransactionRunner;
import com.sleepycat.collections.TransactionWorker;
...
public class Sample
{
 private SampleDatabase db;
 ...
 private void run()
 throws Exception
 {
 TransactionRunner runner =
 new TransactionRunner(db.getEnvironment());
 runner.run(new PopulateDatabase());
 runner.run(new PrintDatabase());
 }
 ...
 private class PopulateDatabase implements TransactionWorker
 {
 public void doWork()
 throws Exception
 {
 }
 }

 private class PrintDatabase implements TransactionWorker
 {
 public void doWork()
 throws Exception
 {
 }
 }
}

The run() method is called by main() and was outlined in the previous section. It first
creates a TransactionRunner, passing the database environment to its constructor.

It then calls TransactionRunner.run() to execute two transactions, passing instances of
the application-defined PopulateDatabase and PrintDatabase nested classes. These classes
implement the TransactionWorker.doWork() method and will be fully described in the next
two sections.

For each call to TransactionRunner.run(), a separate transaction will be performed.
The use of two transactions in the example — one for populating the database and another
for printing its contents — is arbitrary. A real-life application should be designed to create
transactions for each group of operations that should have ACID properties, while also taking
into account the impact of transactions on performance.

The advantage of using TransactionRunner is that deadlock retries and transaction begin,
commit and abort are handled automatically. However, a TransactionWorker class must be

Library Version 12.2.7.5 The Basic Program

31-Oct-2017 JE Collections Page 25

implemented for each type of transaction. If desired, anonymous inner classes can be used to
implement the TransactionWorker interface.

Adding Database Items

Adding (as well as updating, removing, and deleting) information in the database is
accomplished via the standard Java collections API. In the example, the Map.put method is
used to add objects. All standard Java methods for modifying a collection may be used with
the JE JE Collections API.

The PopulateDatabase.doWork() method calls private methods for adding objects to each
of the three database stores. It is called via the TransactionRunner class and was outlined in
the previous section.

import java.util.Map;
import com.sleepycat.collections.TransactionWorker;
...
public class Sample
{
 ...
 private SampleViews views;
 ...
 private class PopulateDatabase implements TransactionWorker
 {
 public void doWork()
 throws Exception
 {
 addSuppliers();
 addParts();
 addShipments();
 }
 }
 ...

 private void addSuppliers()
 {
 }

 private void addParts()
 {
 }

 private void addShipments()
 {
 }
}

The addSuppliers(), addParts() and addShipments() methods add objects to the
Suppliers, Parts and Shipments stores. The Map for each store is obtained from the
SampleViews object.

Library Version 12.2.7.5 The Basic Program

31-Oct-2017 JE Collections Page 26

 private void addSuppliers()
 {
 Map suppliers = views.getSupplierMap();
 if (suppliers.isEmpty())
 {
 System.out.println("Adding Suppliers");
 suppliers.put(new SupplierKey("S1"),
 new SupplierData("Smith", 20, "London"));
 suppliers.put(new SupplierKey("S2"),
 new SupplierData("Jones", 10, "Paris"));
 suppliers.put(new SupplierKey("S3"),
 new SupplierData("Blake", 30, "Paris"));
 suppliers.put(new SupplierKey("S4"),
 new SupplierData("Clark", 20, "London"));
 suppliers.put(new SupplierKey("S5"),
 new SupplierData("Adams", 30, "Athens"));
 }
 }

 private void addParts()
 {
 Map parts = views.getPartMap();
 if (parts.isEmpty())
 {
 System.out.println("Adding Parts");
 parts.put(new PartKey("P1"),
 new PartData("Nut", "Red",
 new Weight(12.0, Weight.GRAMS),
 "London"));
 parts.put(new PartKey("P2"),
 new PartData("Bolt", "Green",
 new Weight(17.0, Weight.GRAMS),
 "Paris"));
 parts.put(new PartKey("P3"),
 new PartData("Screw", "Blue",
 new Weight(17.0, Weight.GRAMS),
 "Rome"));
 parts.put(new PartKey("P4"),
 new PartData("Screw", "Red",
 new Weight(14.0, Weight.GRAMS),
 "London"));
 parts.put(new PartKey("P5"),
 new PartData("Cam", "Blue",
 new Weight(12.0, Weight.GRAMS),
 "Paris"));
 parts.put(new PartKey("P6"),
 new PartData("Cog", "Red",
 new Weight(19.0, Weight.GRAMS),
 "London"));

Library Version 12.2.7.5 The Basic Program

31-Oct-2017 JE Collections Page 27

 }
 }

 private void addShipments()
 {
 Map shipments = views.getShipmentMap();
 if (shipments.isEmpty())
 {
 System.out.println("Adding Shipments");
 shipments.put(new ShipmentKey("P1", "S1"),
 new ShipmentData(300));
 shipments.put(new ShipmentKey("P2", "S1"),
 new ShipmentData(200));
 shipments.put(new ShipmentKey("P3", "S1"),
 new ShipmentData(400));
 shipments.put(new ShipmentKey("P4", "S1"),
 new ShipmentData(200));
 shipments.put(new ShipmentKey("P5", "S1"),
 new ShipmentData(100));
 shipments.put(new ShipmentKey("P6", "S1"),
 new ShipmentData(100));
 shipments.put(new ShipmentKey("P1", "S2"),
 new ShipmentData(300));
 shipments.put(new ShipmentKey("P2", "S2"),
 new ShipmentData(400));
 shipments.put(new ShipmentKey("P2", "S3"),
 new ShipmentData(200));
 shipments.put(new ShipmentKey("P2", "S4"),
 new ShipmentData(200));
 shipments.put(new ShipmentKey("P4", "S4"),
 new ShipmentData(300));
 shipments.put(new ShipmentKey("P5", "S4"),
 new ShipmentData(400));
 }
 }
}

The key and value classes used above were defined in the Defining Serialized Key and Value
Classes (page 6).

In each method above, objects are added only if the map is not empty. This is a simple way
of allowing the example program to be run repeatedly. In real-life applications another
technique — checking the Map.containsKey method, for example — might be used.

Retrieving Database Items

Retrieving information from the database is accomplished via the standard Java collections
API. In the example, the Set.iterator method is used to iterate all Map.Entry objects for

Library Version 12.2.7.5 The Basic Program

31-Oct-2017 JE Collections Page 28

each store. All standard Java methods for retrieving objects from a collection may be used
with the JE JE Collections API.

The PrintDatabase.doWork() method calls printEntries() to print the map entries for
each database store. It is called via the TransactionRunner class and was outlined in the
previous section.

import java.util.Iterator;
...
public class Sample
{
 ...
 private SampleViews views;
 ...
 private class PrintDatabase implements TransactionWorker
 {
 public void doWork()
 throws Exception
 {
 printEntries("Parts",
 views.getPartEntrySet().iterator());
 printEntries("Suppliers",
 views.getSupplierEntrySet().iterator());
 printEntries("Shipments",
 views.getShipmentEntrySet().iterator());
 }
 }
 ...

 private void printEntries(String label, Iterator iterator)
 {
 }
 ...
}

The Set of Map.Entry objects for each store is obtained from the SampleViews object. This
set can also be obtained by calling the Map.entrySet method of a stored map.

The printEntries() prints the map entries for any stored map. The Object.toString
method of each key and value is called to obtain a printable representation of each object.

 private void printEntries(String label, Iterator iterator)
 {
 System.out.println("\n--- " + label + " ---");
 while (iterator.hasNext())
 {
 Map.Entry entry = (Map.Entry) iterator.next();
 System.out.println(entry.getKey().toString());
 System.out.println(entry.getValue().toString());
 }
 }

Library Version 12.2.7.5 The Basic Program

31-Oct-2017 JE Collections Page 29

This is one of a small number of behavioral differences between standard Java collections and
stored collections. For a complete list see Using Stored Collections (page 82).

The output of the example program is shown below.

Adding Suppliers
Adding Parts
Adding Shipments

--- Parts ---
PartKey: number=P1
PartData: name=Nut color=Red weight=[12.0 grams] city=London
PartKey: number=P2
PartData: name=Bolt color=Green weight=[17.0 grams] city=Paris
PartKey: number=P3
PartData: name=Screw color=Blue weight=[17.0 grams] city=Rome
PartKey: number=P4
PartData: name=Screw color=Red weight=[14.0 grams] city=London
PartKey: number=P5
PartData: name=Cam color=Blue weight=[12.0 grams] city=Paris
PartKey: number=P6
PartData: name=Cog color=Red weight=[19.0 grams] city=London

--- Suppliers ---
SupplierKey: number=S1
SupplierData: name=Smith status=20 city=London
SupplierKey: number=S2
SupplierData: name=Jones status=10 city=Paris
SupplierKey: number=S3
SupplierData: name=Blake status=30 city=Paris
SupplierKey: number=S4
SupplierData: name=Clark status=20 city=London
SupplierKey: number=S5
SupplierData: name=Adams status=30 city=Athens

--- Shipments ---
ShipmentKey: supplier=S1 part=P1
ShipmentData: quantity=300
ShipmentKey: supplier=S2 part=P1
ShipmentData: quantity=300
ShipmentKey: supplier=S1 part=P2
ShipmentData: quantity=200
ShipmentKey: supplier=S2 part=P2
ShipmentData: quantity=400
ShipmentKey: supplier=S3 part=P2
ShipmentData: quantity=200
ShipmentKey: supplier=S4 part=P2
ShipmentData: quantity=200
ShipmentKey: supplier=S1 part=P3
ShipmentData: quantity=400

Library Version 12.2.7.5 The Basic Program

31-Oct-2017 JE Collections Page 30

ShipmentKey: supplier=S1 part=P4
ShipmentData: quantity=200
ShipmentKey: supplier=S4 part=P4
ShipmentData: quantity=300
ShipmentKey: supplier=S1 part=P5
ShipmentData: quantity=100
ShipmentKey: supplier=S4 part=P5
ShipmentData: quantity=400
ShipmentKey: supplier=S1 part=P6
ShipmentData: quantity=100

Handling Exceptions

Exception handling was illustrated previously in Implementing the Main Program (page 19)
and Using Transactions (page 23) exception handling in a JE JE Collections API application
in more detail.

There are two exceptions that must be treated specially: RunRecoveryException and
LockConflictException.

RunRecoveryException is thrown when the only solution is to shut down the application and
run recovery. All applications must catch this exception and follow the recovery procedure.

When LockConflictException is thrown, the application should normally retry the
operation. If a deadlock continues to occur for some maximum number of retries, the
application should give up and try again later or take other corrective actions. The JE JE
Collections API provides two APIs for transaction execution.

• When using the CurrentTransaction class directly, the application must catch
LockConflictException and follow the procedure described previously.

• When using the TransactionRunner class, retries are performed automatically and the
application need only handle the case where the maximum number of retries has been
reached. In that case, TransactionRunner.run will throw LockConflictException.

When using the TransactionRunner class there are two other considerations.

• First, if the application-defined TransactionWorker.doWork method throws an exception
the transaction will automatically be aborted, and otherwise the transaction will
automatically be committed. Applications should design their transaction processing with
this in mind.

• Second, please be aware that TransactionRunner.run unwraps exceptions in order to
discover whether a nested exception is a LockConflictException. This is particularly
important since all Berkeley DB exceptions that occur while calling a stored collection
method are wrapped with a RuntimeExceptionWrapper. This wrapping is necessary
because Berkeley DB exceptions are checked exceptions, and the Java collections API does
not allow such exceptions to be thrown.

When calling TransactionRunner.run, the unwrapped (nested) exception will be unwrapped
and thrown automatically. If you are not using TransactionRunner or if you are handling

Library Version 12.2.7.5 The Basic Program

31-Oct-2017 JE Collections Page 31

exceptions directly for some other reason, use the ExceptionUnwrapper.unwrap method to
get the nested exception. For example, this can be used to discover that an exception is a
RunRecoveryException as shown below.

import com.sleepycat.je.RunRecoveryException;
import com.sleepycat.util.ExceptionUnwrapper;
...
 catch (Exception e)
 {
 e = ExceptionUnwrapper.unwrap(e);
 if (e instanceof RunRecoveryException)
 {
 // follow recovery procedure
 }
 }

31-Oct-2017 JE Collections Page 32

Chapter 3. Using Secondary Indices and Foreign
keys

In the Basic example, each store has a single primary key. The Index example extends the
Basic example to add the use of secondary keys and foreign keys.

The complete source of the final version of the example program is included in the Berkeley
DB distribution.

Opening Secondary Key Indices

Secondary indices or secondary databases are used to access a primary database by a key
other than the primary key. Recall that the Supplier Number field is the primary key of the
Supplier database. In this section, the Supplier City field will be used as a secondary lookup
key. Given a city value, we would like to be able to find the Suppliers in that city. Note that
more than one Supplier may be in the same city.

Both primary and secondary databases contain key-value records. The key of an index record
is the secondary key, and its value is the key of the associated record in the primary database.
When lookups by secondary key are performed, the associated record in the primary database
is transparently retrieved by its primary key and returned to the caller.

Secondary indices are maintained automatically when index key fields (the City field in this
case) are added, modified or removed in the records of the primary database. However, the
application must implement a SecondaryKeyCreator that extracts the index key from the
database record.

It is useful to contrast opening an secondary index with opening a primary database (as
described earlier in Opening and Closing Databases (page 15).

• A primary database may be associated with one or more secondary indices. A secondary
index is always associated with exactly one primary database.

• For a secondary index, a SecondaryKeyCreator must be implemented by the application to
extract the index key from the record of its associated primary database.

• A primary database is represented by a Database object and a secondary index is
represented by a SecondaryDatabase object. The SecondaryDatabase class extends the
Database class.

• When a SecondaryDatabase is created it is associated with a primary Database object and
a SecondaryKeyCreator.

The SampleDatabase class is extended to open the Supplier-by-City secondary key index.

import com.sleepycat.bind.serial.SerialSerialKeyCreator;
import com.sleepycat.je.SecondaryConfig;
import com.sleepycat.je.SecondaryDatabase;
...

Library Version 12.2.7.5 Using Secondary Indices and Foreign keys

31-Oct-2017 JE Collections Page 33

public class SampleDatabase
{
 ...
 private static final String SUPPLIER_CITY_INDEX =
 "supplier_city_index";
 ...
 private SecondaryDatabase supplierByCityDb;
 ...
 public SampleDatabase(String homeDirectory)
 throws DatabaseException, FileNotFoundException
 {
 ...
 SecondaryConfig secConfig = new SecondaryConfig();
 secConfig.setTransactional(true);
 secConfig.setAllowCreate(true);
 secConfig.setSortedDuplicates(true);

 secConfig.setKeyCreator(
 new SupplierByCityKeyCreator(javaCatalog,
 SupplierKey.class,
 SupplierData.class,
 String.class));

 supplierByCityDb = env.openSecondaryDatabase(null,
 SUPPLIER_CITY_INDEX,
 supplierDb,
 secConfig);
 ...
 }
}

A SecondaryConfig object is used to configure the secondary database. The
SecondaryConfig class extends the DatabaseConfig class, and most steps for configuring a
secondary database are the same as for configuring a primary database. The main difference
in the example above is that the SecondaryConfig.setSortedDuplicates() method is
called to allow duplicate index keys. This is how more than one Supplier may be in the same
City. If this property is not specified, the default is that the index keys of all records must be
unique.

For a primary database, duplicate keys are not normally used since a primary database with
duplicate keys may not have any associated secondary indices. If primary database keys are
not unique, there is no way for a secondary key to reference a specific record in the primary
database.

Opening a secondary key index requires creating a SecondaryKeyCreator. The
SupplierByCityKeyCreator class implements the SecondaryKeyCreator interface and will
be defined below.

The SecondaryDatabase object is opened last. If you compare the
openSecondaryDatabase() and openDatabase() methods you'll notice only two differences:

Library Version 12.2.7.5 Using Secondary Indices and Foreign keys

31-Oct-2017 JE Collections Page 34

• openSecondaryDatabase() has an extra parameter for specifying the associated primary
database. The primary database is supplierDb in this case.

• The last parameter of openSecondaryDatabase() is a SecondaryConfig instead of a
DatabaseConfig.

How to use the secondary index to access records will be shown in a later section.

The application-defined SupplierByCityKeyCreator class is shown below. It was used above
to configure the secondary database.
public class SampleDatabase
{
...
 private static class SupplierByCityKeyCreator
 extends SerialSerialKeyCreator
 {
 private SupplierByCityKeyCreator(ClassCatalog catalog,
 Class primaryKeyClass,
 Class valueClass,
 Class indexKeyClass)
 {
 super(catalog, primaryKeyClass, valueClass, indexKeyClass);
 }

 public Object createSecondaryKey(Object primaryKeyInput,
 Object valueInput)
 {
 SupplierData supplierData = (SupplierData) valueInput;
 return supplierData.getCity();
 }
 }
...
}

In general, a key creator class must implement the SecondaryKeyCreator interface.
This interface has methods that operate on the record data as raw bytes. In practice, it is
easiest to use an abstract base class that performs the conversion of record data to and
from the format defined for the database's key and value. The base class implements the
SecondaryKeyCreator interface and has abstract methods that must be implemented in turn
by the application.

In this example the SerialSerialKeyCreator base class is used because the database record
uses the serial format for both its key and its value. The abstract methods of this class have
key and value parameters of type Object which are automatically converted to and from the
raw record data by the base class.

To perform the conversions properly, the key creator must be aware of all three formats
involved: the key format of the primary database record, the value format of the primary
database record, and the key format of the index record. The SerialSerialKeyCreator
constructor is given the base classes for these three formats as parameters.

Library Version 12.2.7.5 Using Secondary Indices and Foreign keys

31-Oct-2017 JE Collections Page 35

The SerialSerialKeyCreator.createSecondaryKey method is given the key and value of
the primary database record as parameters, and it returns the key of the index record. In this
example, the index key is a field in the primary database record value. Since the record value
is known to be a SupplierData object, it is cast to that class and the city field is returned.

Note that the primaryKeyInput parameter is not used in the example. This parameter is
needed only when an index key is derived from the key of the primary database record.
Normally an index key is derived only from the primary database record value, but it may be
derived from the key, value or both.

The following getter methods return the secondary database object for use by other classes
in the example program. The secondary database object is used to create Java collections for
accessing records via their secondary keys.
public class SampleDatabase
{
 ...
 public final SecondaryDatabase getSupplierByCityDatabase()
 {
 return supplierByCityDb;
 }
 ...
}

The following statement closes the secondary database.
public class SampleDatabase
{
 ...
 public void close()
 throws DatabaseException {

 supplierByCityDb.close();
 partDb.close();
 supplierDb.close();
 shipmentDb.close();
 javaCatalog.close();
 env.close();
 }
 ...
}

Secondary databases must be closed before closing their associated primary database.

Opening Foreign Key Indices

This section builds on the prior section describing secondary key indices to show how to open
foreign key indices. A foreign key index is a secondary key index that also provides integrity
constraints. When the primary key of a record in one database is embedded in the value of a
record in another database, integrity constraints ensure that the record in the first database
exists, i.e, that there are no "dangling pointers". In this example the Shipment's PartNumber
and SupplierNumber fields will be used as foreign keys.

Library Version 12.2.7.5 Using Secondary Indices and Foreign keys

31-Oct-2017 JE Collections Page 36

When a foreign key index is defined, an "delete action" parameter is specified. This parameter
determines what action is taken by the Berkeley DB Java Edition API when the record is
deleted to which a foreign key refers. For example, consider what happens to a Shipment
record when a Part or Supplier record that is referred to by that Shipment is deleted. There
are three possibilities.

• ForeignKeyDeleteAction.ABORT specifies that the transaction should be aborted by
throwing an exception. The effect is that deleting a Part or Supplier that is referred to by
one or more Shipments will not be possible. The Berkeley DB Java Edition will automatically
throw a DatabaseException, which should normally cause the transaction to be aborted
during exception processing. This is the default delete action if none is specified.

• ForeignKeyDeleteAction.NULLIFY specifies that the Part or Supplier Number field in the
Shipment record should be cleared, or set to a null or empty value. The effect is that the
deleted Part or Supplier will no longer be referenced by any Shipment record. This option
applies when the foreign key field is optional, i.e, when the application allows it to be
set to a null or empty value. When using this option, the application must implement the
nullifyForeignKey() method of the ForeignKeyNullifier interface.

• ForeignKeyDeleteAction.CASCADE specifies that the Shipment record should be deleted
also. The effect is that deleting a Part or Supplier will delete all Shipments for that Part or
Supplier. This option applies when the deleted record is considered the "parent" or "owner"
of the record containing the foreign key, and is used in this example. Since deleting the
Shipment record could cause other deletions if other records contain the foreign key of the
Shipment, and so on, the term "cascade" is used to describe the effect.

The SampleDatabase class is extended to open the Shipment-by-Part and Shipment-by-
Supplier secondary key indices.
import com.sleepycat.bind.serial.SerialSerialKeyCreator;
import com.sleepycat.je.ForeignKeyDeleteAction;
import com.sleepycat.je.SecondaryConfig;
import com.sleepycat.je.SecondaryDatabase;
...
public class SampleDatabase
{
 ...
 private static final String SHIPMENT_PART_INDEX =
 "shipment_part_index";
 private static final String SHIPMENT_SUPPLIER_INDEX =
 "shipment_supplier_index";
 ...
 private SecondaryDatabase shipmentByPartDb;
 private SecondaryDatabase shipmentBySupplierDb;
 ...
 public SampleDatabase(String homeDirectory)
 throws DatabaseException, FileNotFoundException
 {
 ...
 SecondaryConfig secConfig = new SecondaryConfig();
 secConfig.setTransactional(true);

Library Version 12.2.7.5 Using Secondary Indices and Foreign keys

31-Oct-2017 JE Collections Page 37

 secConfig.setAllowCreate(true);
 secConfig.setSortedDuplicates(true);
 ...
 secConfig.setForeignKeyDatabase(partDb);
 secConfig.setForeignKeyDeleteAction(
 ForeignKeyDeleteAction.CASCADE);
 secConfig.setKeyCreator(
 new ShipmentByPartKeyCreator(javaCatalog,
 ShipmentKey.class,
 ShipmentData.class,
 PartKey.class));
 shipmentByPartDb = env.openSecondaryDatabase(null,
 SHIPMENT_PART_INDEX,
 shipmentDb,
 secConfig);

 secConfig.setForeignKeyDatabase(supplierDb);
 secConfig.setForeignKeyDeleteAction(
 ForeignKeyDeleteAction.CASCADE);
 secConfig.setKeyCreator(
 new ShipmentBySupplierKeyCreator(javaCatalog,
 ShipmentKey.class,
 ShipmentData.class,
 SupplierKey.class));
 shipmentBySupplierDb = env.openSecondaryDatabase(null,
 SHIPMENT_SUPPLIER_INDEX,
 shipmentDb,
 secConfig);
 ...
 }
}

If you compare these statements for opening foreign key indices to the statements used in
the previous section for opening a secondary index, you'll notice that the only significant
difference is that the setForeignKeyDatabase() and setForeignKeyDeleteAction()
methods are called. setForeignKeyDatabase() specifies the foreign database that contains
the records to which the foreign keys refer; this configures the secondary database as a
foreign key index. setForeignKeyDeleteAction() specifies the delete action.

The application-defined ShipmentByPartKeyCreator and ShipmentBySupplierKeyCreator
classes are shown below. They were used above to configure the secondary database objects.

public class SampleDatabase
{
...
 private static class ShipmentByPartKeyCreator
 extends SerialSerialKeyCreator
 {
 private ShipmentByPartKeyCreator(ClassCatalog catalog,
 Class primaryKeyClass,

Library Version 12.2.7.5 Using Secondary Indices and Foreign keys

31-Oct-2017 JE Collections Page 38

 Class valueClass,
 Class indexKeyClass)
 {
 super(catalog, primaryKeyClass, valueClass, indexKeyClass);
 }

 public Object createSecondaryKey(Object primaryKeyInput,
 Object valueInput)
 {
 ShipmentKey shipmentKey = (ShipmentKey) primaryKeyInput;
 return new PartKey(shipmentKey.getPartNumber());
 }
 }

 private static class ShipmentBySupplierKeyCreator
 extends SerialSerialKeyCreator
 {
 private ShipmentBySupplierKeyCreator(ClassCatalog catalog,
 Class primaryKeyClass,
 Class valueClass,
 Class indexKeyClass)
 {
 super(catalog, primaryKeyClass, valueClass, indexKeyClass);
 }

 public Object createSecondaryKey(Object primaryKeyInput,
 Object valueInput)
 {
 ShipmentKey shipmentKey = (ShipmentKey) primaryKeyInput;
 return new SupplierKey(shipmentKey.getSupplierNumber());
 }
 }
 ...
}

The key creator classes above are almost identical to the one defined in the previous
section for use with a secondary index. The index key fields are different, of course, but the
interesting difference is that the index keys are extracted from the key, not the value, of the
Shipment record. This illustrates that an index key may be derived from the primary database
record key, value, or both.

Note that the SerialSerialKeyCreator.nullifyForeignKey method is not overridden
above. This is because ForeignKeyDeleteAction.NULLIFY was not used when creating
the SecondaryDatabase objects. If it were used, implementing the nullifyForeignKey()
methods would be needed to set the part number and supplier number to null in the
Shipment key. But record keys cannot be changed! And in fact, the primary key is not
passed to the SerialSerialKeyCreator.nullifyForeignKey() method, only the
primary value is passed. Therefore, if a foreign index key is derived from the primary key,
ForeignKeyDeleteAction.NULLIFY may not be used.

Library Version 12.2.7.5 Using Secondary Indices and Foreign keys

31-Oct-2017 JE Collections Page 39

The following getter methods return the secondary database objects for use by other classes
in the example program.

public class SampleDatabase
{
 ...
 public final SecondaryDatabase getShipmentByPartDatabase()
 {
 return shipmentByPartDb;
 }

 public final SecondaryDatabase getShipmentBySupplierDatabase()
 {
 return shipmentBySupplierDb;
 }
 ...
}

The following statements close the secondary databases.

public class SampleDatabase
{
 ...
 public void close()
 throws DatabaseException {

 supplierByCityDb.close();
 shipmentByPartDb.close();
 shipmentBySupplierDb.close();
 partDb.close();
 supplierDb.close();
 shipmentDb.close();
 javaCatalog.close();
 env.close();
 }
 ...
}

Secondary databases must be closed before closing their associated primary database.

Creating Indexed Collections

In the prior Basic example, bindings and Java collections were created for accessing databases
via their primary keys. In this example, bindings and collections are added for accessing the
same databases via their index keys. As in the prior example, serial bindings and the Java Map
class are used.

When a map is created from a SecondaryDatabase, the keys of the map will be the index
keys. However, the values of the map will be the values of the primary database associated
with the index. This is how index keys can be used to access the values in a primary database.

Library Version 12.2.7.5 Using Secondary Indices and Foreign keys

31-Oct-2017 JE Collections Page 40

For example, the Supplier's City field is an index key that can be used to access the Supplier
database. When a map is created using the supplierByCityDb() method, the key to the map
will be the City field, a String object. When Map.get is called passing the City as the key
parameter, a SupplierData object will be returned.

The SampleViews class is extended to create an index key binding for the Supplier's City field
and three Java maps based on the three indices created in the prior section.

import com.sleepycat.bind.EntryBinding;
import com.sleepycat.bind.serial.SerialBinding;
import com.sleepycat.collections.StoredEntrySet;
import com.sleepycat.collections.StoredSortedMap;
...

public class SampleViews
{
 ...
 private StoredSortedMap supplierByCityMap;
 private StoredSortedMap shipmentByPartMap;
 private StoredSortedMap shipmentBySupplierMap;
 ...

 public SampleViews(SampleDatabase db)
 {
 ClassCatalog catalog = db.getClassCatalog();
 ...
 EntryBinding cityKeyBinding =
 new SerialBinding(catalog, String.class);
 ...
 supplierByCityMap =
 new StoredSortedMap(db.getSupplierByCityDatabase(),
 cityKeyBinding, supplierDataBinding, true);
 shipmentByPartMap =
 new StoredSortedMap(db.getShipmentByPartDatabase(),
 partKeyBinding, supplierDataBinding, true);
 shipmentBySupplierMap =
 new StoredSortedMap(db.getShipmentBySupplierDatabase(),
 supplierKeyBinding, supplierDataBinding, true);
 ...
 }
}

In general, the indexed maps are created here in the same way as the unindexed maps were
created in the Basic example. The differences are:

• The first parameter of the StoredSortedMap constructor is a SecondaryDatabase rather
than a Database.

• The second parameter is the index key binding rather than the primary key binding.

Library Version 12.2.7.5 Using Secondary Indices and Foreign keys

31-Oct-2017 JE Collections Page 41

For the supplierByCityMap, the cityKeyBinding must first be created. This binding was not
created in the Basic example because the City field is not a primary key.

Like the bindings created earlier for keys and values, the cityKeyBinding is a
SerialBinding. Unlike the bindings created earlier, it is an example of creating a binding for
a built-in Java class, String, instead of an application-defined class. Any serializable class
may be used.

For the shipmentByPartMap and shipmentBySupplierMap, the partKeyBinding and
supplierKeyBinding are used. These were created in the Basic example and used as the
primary key bindings for the partMap and supplierMap.

The value bindings — supplierDataBinding and shipmentDataBinding — were also created
in the Basic example.

This illustrates that bindings and formats may and should be reused where appropriate for
creating maps and other collections.

The following getter methods return the stored maps for use by other classes in the example
program. Convenience methods for returning entry sets are also included.
public class SampleViews
{
 ...
 public final StoredSortedMap getShipmentByPartMap()
 {
 return shipmentByPartMap;
 }

 public final StoredSortedMap getShipmentBySupplierMap()
 {
 return shipmentBySupplierMap;
 }

 public final StoredSortedMap getSupplierByCityMap()
 {
 return supplierByCityMap;
 }

 public final StoredEntrySet getShipmentByPartEntrySet()
 {
 return (StoredEntrySet) shipmentByPartMap.entrySet();
 }

 public final StoredEntrySet getShipmentBySupplierEntrySet()
 {
 return (StoredEntrySet) shipmentBySupplierMap.entrySet();
 }

 public final StoredEntrySet getSupplierByCityEntrySet()
 {

Library Version 12.2.7.5 Using Secondary Indices and Foreign keys

31-Oct-2017 JE Collections Page 42

 return (StoredEntrySet) supplierByCityMap.entrySet();
 }
 ...
}

Retrieving Items by Index Key

Retrieving information via database index keys can be accomplished using the standard
Java collections API, using a collection created from a SecondaryDatabase rather than a
Database. However, the standard Java API does not support duplicate keys: more than one
element in a collection having the same key. All three indices created in the prior section have
duplicate keys because of the nature of the city, part number and supplier number index keys.
More than one supplier may be in the same city, and more than one shipment may have the
same part number or supplier number. This section describes how to use extended methods for
stored collections to return all values for a given key.

Using the standard Java collections API, the Map.get method for a stored collection with
duplicate keys will return only the first value for a given key. To obtain all values for a given
key, the StoredSortedMap.duplicates method may be called. This returns a Collection of
values for the given key. If duplicate keys are not allowed, the returned collection will have at
most one value. If the key is not present in the map, an empty collection is returned.

The Sample class is extended to retrieve duplicates for specific index keys that are present in
the database.

import java.util.Iterator;
...
public class Sample
{
 ...
 private SampleViews views;
 ...
 private class PrintDatabase implements TransactionWorker
 {
 public void doWork()
 throws Exception
 {
 printEntries("Parts",
 views.getPartEntrySet().iterator());
 printEntries("Suppliers",
 views.getSupplierEntrySet().iterator());
 printValues("Suppliers for City Paris",
 views.getSupplierByCityMap().duplicates(
 "Paris").iterator());
 printEntries("Shipments",
 views.getShipmentEntrySet().iterator());
 printValues("Shipments for Part P1",
 views.getShipmentByPartMap().duplicates(
 new PartKey("P1")).iterator());
 printValues("Shipments for Supplier S1",

Library Version 12.2.7.5 Using Secondary Indices and Foreign keys

31-Oct-2017 JE Collections Page 43

 views.getShipmentBySupplierMap().duplicates(
 new
 SupplierKey("S1")).iterator());
 }
 }

 private void printValues(String label, Iterator iterator)
 {
 System.out.println("\n--- " + label + " ---");
 while (iterator.hasNext())
 {
 System.out.println(iterator.next().toString());
 }
 }
 ...
}

The StoredSortedMap.duplicates method is called passing the desired key. The returned
value is a standard Java Collection containing the values for the specified key. A standard
Java Iterator is then obtained for this collection and all values returned by that iterator are
printed.

Another technique for retrieving duplicates is to use the collection returned by
Map.entrySet. When duplicate keys are present, a Map.Entry object will be present in this
collection for each duplicate. This collection can then be iterated or a subset can be created
from it, all using the standard Java collection API.

Note that we did not discuss how duplicates keys can be explicitly added or removed in a
collection. For index keys, the addition and deletion of duplicate keys happens automatically
when records containing the index key are added, updated, or removed.

While not shown in the example program, it is also possible to create a store
with duplicate keys in the same way as an index with duplicate keys — by calling
DatabaseConfig.setSortedDuplicates() method. In that case, calling Map.put will add
duplicate keys. To remove all duplicate keys, call Map.remove. To remove a specific duplicate
key, call StoredSortedMap.duplicates and then call Collection.remove using the returned
collection. Duplicate values may also be added to this collection using Collection.add.

The output of the example program is shown below.
Adding Suppliers
Adding Parts
Adding Shipments

--- Parts ---
PartKey: number=P1
PartData: name=Nut color=Red weight=[12.0 grams] city=London
PartKey: number=P2
PartData: name=Bolt color=Green weight=[17.0 grams] city=Paris
PartKey: number=P3
PartData: name=Screw color=Blue weight=[17.0 grams] city=Rome

Library Version 12.2.7.5 Using Secondary Indices and Foreign keys

31-Oct-2017 JE Collections Page 44

PartKey: number=P4
PartData: name=Screw color=Red weight=[14.0 grams] city=London
PartKey: number=P5
PartData: name=Cam color=Blue weight=[12.0 grams] city=Paris
PartKey: number=P6
PartData: name=Cog color=Red weight=[19.0 grams] city=London

--- Suppliers ---
SupplierKey: number=S1
SupplierData: name=Smith status=20 city=London
SupplierKey: number=S2
SupplierData: name=Jones status=10 city=Paris
SupplierKey: number=S3
SupplierData: name=Blake status=30 city=Paris
SupplierKey: number=S4
SupplierData: name=Clark status=20 city=London
SupplierKey: number=S5
SupplierData: name=Adams status=30 city=Athens

--- Suppliers for City Paris ---
SupplierData: name=Jones status=10 city=Paris
SupplierData: name=Blake status=30 city=Paris

--- Shipments ---
ShipmentKey: supplier=S1 part=P1
ShipmentData: quantity=300
ShipmentKey: supplier=S2 part=P1
ShipmentData: quantity=300
ShipmentKey: supplier=S1 part=P2
ShipmentData: quantity=200
ShipmentKey: supplier=S2 part=P2
ShipmentData: quantity=400
ShipmentKey: supplier=S3 part=P2
ShipmentData: quantity=200
ShipmentKey: supplier=S4 part=P2
ShipmentData: quantity=200
ShipmentKey: supplier=S1 part=P3
ShipmentData: quantity=400
ShipmentKey: supplier=S1 part=P4
ShipmentData: quantity=200
ShipmentKey: supplier=S4 part=P4
ShipmentData: quantity=300
ShipmentKey: supplier=S1 part=P5
ShipmentData: quantity=100
ShipmentKey: supplier=S4 part=P5
ShipmentData: quantity=400
ShipmentKey: supplier=S1 part=P6
ShipmentData: quantity=100

Library Version 12.2.7.5 Using Secondary Indices and Foreign keys

31-Oct-2017 JE Collections Page 45

--- Shipments for Part P1 ---
ShipmentData: quantity=300
ShipmentData: quantity=300

--- Shipments for Supplier S1 ---
ShipmentData: quantity=300
ShipmentData: quantity=200
ShipmentData: quantity=400
ShipmentData: quantity=200
ShipmentData: quantity=100
ShipmentData: quantity=100

31-Oct-2017 JE Collections Page 46

Chapter 4. Using Entity Classes
In the prior examples, the keys and values of each store were represented using separate
classes. For example, a PartKey and a PartData class were used. Many times it is desirable to
have a single class representing both the key and the value, for example, a Part class.

Such a combined key and value class is called an entity class and is used along with an entity
binding. Entity bindings combine a key and a value into an entity when reading a record
from a collection, and split an entity into a key and a value when writing a record to a
collection. Entity bindings are used in place of value bindings, and entity objects are used
with collections in place of value objects.

Some reasons for using entities are:

• When the key is a property of an entity object representing the record as a whole, the
object's identity and concept are often clearer than with key and value objects that are
disjoint.

• A single entity object per record is often more convenient to use than two objects.

Of course, instead of using an entity binding, you could simply create the entity yourself after
reading the key and value from a collection, and split the entity into a key and value yourself
before writing it to a collection. But this would detract from the convenience of the using
the Java collections API. It is convenient to obtain a Part object directly from Map.get and
to add a Part object using Set.add. Collections having entity bindings can be used naturally
without combining and splitting objects each time a collection method is called; however, an
entity binding class must be defined by the application.

In addition to showing how to use entity bindings, this example illustrates a key feature of all
bindings: Bindings are independent of database storage parameters and formats. Compare this
example to the prior Index example and you'll see that the Sample and SampleViews classes
have been changed to use entity bindings, but the SampleDatabase class was not changed at
all. In fact, the Entity program and the Index program can be used interchangeably to access
the same physical database files. This demonstrates that bindings are only a "view" onto the
physical stored data.

Warning: When using multiple bindings for the same database, it is the application's
responsibility to ensure that the same format is used for all bindings. For example, a serial
binding and a tuple binding cannot be used to access the same records.

The complete source of the final version of the example program is included in the Berkeley
DB distribution.

Defining Entity Classes

As described in the prior section, entity classes are combined key/value classes that are
managed by entity bindings. In this example the Part, Supplier and Shipment classes are
entity classes. These classes contain fields that are a union of the fields of the key and value
classes that were defined earlier for each store.

Library Version 12.2.7.5 Using Entity Classes

31-Oct-2017 JE Collections Page 47

In general, entity classes may be defined in any way desired by the application. The entity
binding, which is also defined by the application, is responsible for mapping between key/
value objects and entity objects.

The Part, Supplier and Shipment entity classes are defined below.

An important difference between the entity classes defined here and the key and value
classes defined earlier is that the entity classes are not serializable (do not implement the
Serializable interface). This is because the entity classes are not directly stored. The entity
binding decomposes an entity object into key and value objects, and only the key and value
objects are serialized for storage.

One advantage of using entities can already be seen in the toString() method of the classes
below. These return debugging output for the combined key and value, and will be used later
to create a listing of the database that is more readable than in the prior examples.
public class Part
{
 private String number;
 private String name;
 private String color;
 private Weight weight;
 private String city;

 public Part(String number, String name, String color, Weight weight,
 String city)
 {
 this.number = number;
 this.name = name;
 this.color = color;
 this.weight = weight;
 this.city = city;
 }

 public final String getNumber()
 {
 return number;
 }

 public final String getName()
 {
 return name;
 }

 public final String getColor()
 {
 return color;
 }

 public final Weight getWeight()
 {

Library Version 12.2.7.5 Using Entity Classes

31-Oct-2017 JE Collections Page 48

 return weight;
 }

 public final String getCity()
 {
 return city;
 }

 public String toString()
 {
 return "Part: number=" + number +
 " name=" + name +
 " color=" + color +
 " weight=" + weight +
 " city=" + city + '.';
 }
}
public class Supplier
{
 private String number;
 private String name;
 private int status;
 private String city;

 public Supplier(String number, String name, int status, String city)
 {
 this.number = number;
 this.name = name;
 this.status = status;
 this.city = city;
 }

 public final String getNumber()
 {
 return number;
 }

 public final String getName()
 {
 return name;
 }

 public final int getStatus()
 {
 return status;
 }

 public final String getCity()
 {

Library Version 12.2.7.5 Using Entity Classes

31-Oct-2017 JE Collections Page 49

 return city;
 }

 public String toString()
 {
 return "Supplier: number=" + number +
 " name=" + name +
 " status=" + status +
 " city=" + city + '.';
 }
}

public class Shipment
{
 private String partNumber;
 private String supplierNumber;
 private int quantity;

 public Shipment(String partNumber, String supplierNumber, int quantity)
 {
 this.partNumber = partNumber;
 this.supplierNumber = supplierNumber;
 this.quantity = quantity;
 }

 public final String getPartNumber()
 {
 return partNumber;
 }

 public final String getSupplierNumber()
 {
 return supplierNumber;
 }

 public final int getQuantity()
 {
 return quantity;
 }

 public String toString()
 {
 return "Shipment: part=" + partNumber +
 " supplier=" + supplierNumber +
 " quantity=" + quantity + '.';
 }
}

Library Version 12.2.7.5 Using Entity Classes

31-Oct-2017 JE Collections Page 50

Creating Entity Bindings

Entity bindings are similar to ordinary bindings in that they convert between Java objects and
the stored data format of keys and values. In addition, entity bindings map between key/value
pairs and entity objects. An ordinary binding is a one-to-one mapping, while an entity binding
is a two-to-one mapping.

The partDataBinding, supplierDataBinding and shipmentDataBinding bindings are
created below as entity bindings rather than (in the prior examples) serial bindings.

import com.sleepycat.bind.EntryBinding;
import com.sleepycat.bind.EntityBinding;
import com.sleepycat.bind.serial.SerialBinding;
import com.sleepycat.bind.serial.SerialSerialBinding;
...

public class SampleViews
{
 ...
 public SampleViews(SampleDatabase db)
 {
 ClassCatalog catalog = db.getClassCatalog();
 SerialBinding partKeyBinding =
 new SerialBinding(catalog, PartKey.class);
 EntityBinding partDataBinding =
 new PartBinding(catalog, PartKey.class, PartData.class);
 SerialBinding supplierKeyBinding =
 new SerialBinding(catalog, SupplierKey.class);
 EntityBinding supplierDataBinding =
 new SupplierBinding(catalog, SupplierKey.class,
 SupplierData.class);
 SerialBinding shipmentKeyBinding =
 new SerialBinding(catalog, ShipmentKey.class);
 EntityBinding shipmentDataBinding =
 new ShipmentBinding(catalog, ShipmentKey.class,
 ShipmentData.class);
 SerialBinding cityKeyBinding =
 new SerialBinding(catalog, String.class);
 ...
 }
}

The entity bindings will be used in the next section to construct stored map objects.

The PartBinding class is defined below.

public class SampleViews
{
 ...
 private static class PartBinding extends SerialSerialBinding {
 private PartBinding(ClassCatalog classCatalog,

Library Version 12.2.7.5 Using Entity Classes

31-Oct-2017 JE Collections Page 51

 Class keyClass,
 Class dataClass)
 {
 super(classCatalog, keyClass, dataClass);
 }

 public Object entryToObject(Object keyInput, Object dataInput)
 {
 PartKey key = (PartKey) keyInput;
 PartData data = (PartData) dataInput;
 return new Part(key.getNumber(), data.getName(),
 data.getColor(), data.getWeight(),
 data.getCity());
 }

 public Object objectToKey(Object object)
 {
 Part part = (Part) object;
 return new PartKey(part.getNumber());
 }

 public Object objectToData(Object object)
 {
 Part part = (Part) object;
 return new PartData(part.getName(), part.getColor(),
 part.getWeight(), part.getCity());
 }
 }
 ...
}

In general, an entity binding is any class that implements the EntityBinding interface, just
as an ordinary binding is any class that implements the EntryBinding interface. In the prior
examples the built-in SerialBinding class (which implements EntryBinding) was used and
no application-defined binding classes were needed.

In this example, application-defined binding classes are used that extend the
SerialSerialBinding abstract base class. This base class implements EntityBinding
and provides the conversions between key/value bytes and key/value objects, just as the
SerialBinding class does. The application-defined entity class implements the abstract
methods defined in the base class that map between key/value objects and entity objects.

Three abstract methods are implemented for each entity binding. The entryToObject()
method takes as input the key and data objects, which have been deserialized automatically
by the base class. As output, it returns the combined Part entity.

The objectToKey() and objectToData() methods take an entity object as input. As output
they return the part key or data object that is extracted from the entity object. The key or
data will then be serialized automatically by the base class.

Library Version 12.2.7.5 Using Entity Classes

31-Oct-2017 JE Collections Page 52

The SupplierBinding and ShipmentBinding classes are very similar to the PartBinding
class.
public class SampleViews
{
 ...
 private static class SupplierBinding extends SerialSerialBinding {
 private SupplierBinding(ClassCatalog classCatalog,
 Class keyClass,
 Class dataClass)
 {
 super(classCatalog, keyClass, dataClass);
 }

 public Object entryToObject(Object keyInput, Object dataInput)
 {
 SupplierKey key = (SupplierKey) keyInput;
 SupplierData data = (SupplierData) dataInput;
 return new Supplier(key.getNumber(), data.getName(),
 data.getStatus(), data.getCity());
 }

 public Object objectToKey(Object object)
 {
 Supplier supplier = (Supplier) object;
 return new SupplierKey(supplier.getNumber());
 }

 public Object objectToData(Object object)
 {
 Supplier supplier = (Supplier) object;
 return new SupplierData(supplier.getName(),
 supplier.getStatus(),
 supplier.getCity());
 }
 }

 private static class ShipmentBinding extends SerialSerialBinding {
 private ShipmentBinding(ClassCatalog classCatalog,
 Class keyClass,
 Class dataClass)
 {
 super(classCatalog, keyClass, dataClass);
 }

 public Object entryToObject(Object keyInput, Object dataInput)
 {
 ShipmentKey key = (ShipmentKey) keyInput;
 ShipmentData data = (ShipmentData) dataInput;
 return new Shipment(key.getPartNumber(),

Library Version 12.2.7.5 Using Entity Classes

31-Oct-2017 JE Collections Page 53

 key.getSupplierNumber(),
 data.getQuantity());
 }

 public Object objectToKey(Object object)
 {
 Shipment shipment = (Shipment) object;
 return new ShipmentKey(shipment.getPartNumber(),
 shipment.getSupplierNumber());
 }

 public Object objectToData(Object object)
 {
 Shipment shipment = (Shipment) object;
 return new ShipmentData(shipment.getQuantity());
 }
 }
 ...
}

Creating Collections with Entity Bindings

Stored map objects are created in this example in the same way as in prior examples, but
using entity bindings in place of value bindings. All value objects passed and returned to the
Java collections API are then actually entity objects (Part, Supplier and Shipment). The
application no longer deals directly with plain value objects (PartData, SupplierData and
ShipmentData).

Since the partDataBinding, supplierDataBinding and shipmentDataBinding were defined
as entity bindings in the prior section, there are no source code changes necessary for creating
the stored map objects.

public class SampleViews
{
 ...
 public SampleViews(SampleDatabase db)
 {
 ...
 partMap =
 new StoredSortedMap(db.getPartDatabase(),
 partKeyBinding, partDataBinding, true);
 supplierMap =
 new StoredSortedMap(db.getSupplierDatabase(),
 supplierKeyBinding, supplierDataBinding, true);
 shipmentMap =
 new StoredSortedMap(db.getShipmentDatabase(),
 shipmentKeyBinding, shipmentDataBinding, true);
 ...
 }

Library Version 12.2.7.5 Using Entity Classes

31-Oct-2017 JE Collections Page 54

Specifying an EntityBinding will select a different StoredSortedMap constructor, but the
syntax is the same. In general, an entity binding may be used anywhere that a value binding is
used.

The following getter methods are defined for use by other classes in the example program.
Instead of returning the map's entry set (Map.entrySet), the map's value set (Map.values) is
returned. The entry set was convenient in prior examples because it allowed enumerating all
key/value pairs in the collection. Since an entity contains the key and the value, enumerating
the value set can now be used more conveniently for the same purpose.
import com.sleepycat.collections.StoredValueSet;
...
public class SampleViews
{
 ...
 public StoredValueSet getPartSet()
 {
 return (StoredValueSet) partMap.values();
 }

 public StoredValueSet getSupplierSet()
 {
 return (StoredValueSet) supplierMap.values();
 }

 public StoredValueSet getShipmentSet()
 {
 return (StoredValueSet) shipmentMap.values();
 }
 ...
}

Notice that the collection returned by the StoredSortedMap.values method is actually a
StoredValueSet and not just a Collection as defined by the Map.values interface. As long
as duplicate keys are not allowed, this collection will behave as a true set and will disallow
the addition of duplicates, etc.

Using Entities with Collections

In this example entity objects, rather than key and value objects, are used for adding and
enumerating the records in a collection. Because fewer classes and objects are involved,
adding and enumerating is done more conveniently and more simply than in the prior
examples.

For adding and iterating entities, the collection of entities returned by Map.values is used. In
general, when using an entity binding, all Java collection methods that are passed or returned
a value object will be passed or returned an entity object instead.

The Sample class has been changed in this example to add objects using the Set.add method
rather than the Map.put method that was used in the prior examples. Entity objects are
constructed and passed to Set.add.

Library Version 12.2.7.5 Using Entity Classes

31-Oct-2017 JE Collections Page 55

import java.util.Set;
...
public class Sample
{
 ...
 private void addSuppliers()
 {
 Set suppliers = views.getSupplierSet();
 if (suppliers.isEmpty())
 {
 System.out.println("Adding Suppliers");
 suppliers.add(new Supplier("S1", "Smith", 20, "London"));
 suppliers.add(new Supplier("S2", "Jones", 10, "Paris"));
 suppliers.add(new Supplier("S3", "Blake", 30, "Paris"));
 suppliers.add(new Supplier("S4", "Clark", 20, "London"));
 suppliers.add(new Supplier("S5", "Adams", 30, "Athens"));
 }
 }

 private void addParts()
 {
 Set parts = views.getPartSet();
 if (parts.isEmpty())
 {
 System.out.println("Adding Parts");
 parts.add(new Part("P1", "Nut", "Red",
 new Weight(12.0, Weight.GRAMS), "London"));
 parts.add(new Part("P2", "Bolt", "Green",
 new Weight(17.0, Weight.GRAMS), "Paris"));
 parts.add(new Part("P3", "Screw", "Blue",
 new Weight(17.0, Weight.GRAMS), "Rome"));
 parts.add(new Part("P4", "Screw", "Red",
 new Weight(14.0, Weight.GRAMS), "London"));
 parts.add(new Part("P5", "Cam", "Blue",
 new Weight(12.0, Weight.GRAMS), "Paris"));
 parts.add(new Part("P6", "Cog", "Red",
 new Weight(19.0, Weight.GRAMS), "London"));
 }
 }

 private void addShipments()
 {
 Set shipments = views.getShipmentSet();
 if (shipments.isEmpty())
 {
 System.out.println("Adding Shipments");
 shipments.add(new Shipment("P1", "S1", 300));
 shipments.add(new Shipment("P2", "S1", 200));
 shipments.add(new Shipment("P3", "S1", 400));

Library Version 12.2.7.5 Using Entity Classes

31-Oct-2017 JE Collections Page 56

 shipments.add(new Shipment("P4", "S1", 200));
 shipments.add(new Shipment("P5", "S1", 100));
 shipments.add(new Shipment("P6", "S1", 100));
 shipments.add(new Shipment("P1", "S2", 300));
 shipments.add(new Shipment("P2", "S2", 400));
 shipments.add(new Shipment("P2", "S3", 200));
 shipments.add(new Shipment("P2", "S4", 200));
 shipments.add(new Shipment("P4", "S4", 300));
 shipments.add(new Shipment("P5", "S4", 400));
 }
 }

Instead of printing the key/value pairs by iterating over the Map.entrySet as done in the
prior example, this example iterates over the entities in the Map.values collection.

import java.util.Iterator;
import java.util.Set;
...
public class Sample
{
 ...
 private class PrintDatabase implements TransactionWorker
 {
 public void doWork()
 throws Exception
 {
 printValues("Parts",
 views.getPartSet().iterator());
 printValues("Suppliers",
 views.getSupplierSet().iterator());
 printValues("Suppliers for City Paris",
 views.getSupplierByCityMap().duplicates(
 "Paris").iterator());
 printValues("Shipments",
 views.getShipmentSet().iterator());
 printValues("Shipments for Part P1",
 views.getShipmentByPartMap().duplicates(
 new PartKey("P1")).iterator());
 printValues("Shipments for Supplier S1",
 views.getShipmentBySupplierMap().duplicates(
 new SupplierKey("S1")).iterator());
 }
 }
 ...
}

The output of the example program is shown below.

Adding Suppliers
Adding Parts
Adding Shipments

Library Version 12.2.7.5 Using Entity Classes

31-Oct-2017 JE Collections Page 57

--- Parts ---
Part: number=P1 name=Nut color=Red weight=[12.0 grams] city=London
Part: number=P2 name=Bolt color=Green weight=[17.0 grams] city=Paris
Part: number=P3 name=Screw color=Blue weight=[17.0 grams] city=Rome
Part: number=P4 name=Screw color=Red weight=[14.0 grams] city=London
Part: number=P5 name=Cam color=Blue weight=[12.0 grams] city=Paris
Part: number=P6 name=Cog color=Red weight=[19.0 grams] city=London

--- Suppliers ---
Supplier: number=S1 name=Smith status=20 city=London
Supplier: number=S2 name=Jones status=10 city=Paris
Supplier: number=S3 name=Blake status=30 city=Paris
Supplier: number=S4 name=Clark status=20 city=London
Supplier: number=S5 name=Adams status=30 city=Athens

--- Suppliers for City Paris ---
Supplier: number=S2 name=Jones status=10 city=Paris
Supplier: number=S3 name=Blake status=30 city=Paris

--- Shipments ---
Shipment: part=P1 supplier=S1 quantity=300
Shipment: part=P1 supplier=S2 quantity=300
Shipment: part=P2 supplier=S1 quantity=200
Shipment: part=P2 supplier=S2 quantity=400
Shipment: part=P2 supplier=S3 quantity=200
Shipment: part=P2 supplier=S4 quantity=200
Shipment: part=P3 supplier=S1 quantity=400
Shipment: part=P4 supplier=S1 quantity=200
Shipment: part=P4 supplier=S4 quantity=300
Shipment: part=P5 supplier=S1 quantity=100
Shipment: part=P5 supplier=S4 quantity=400
Shipment: part=P6 supplier=S1 quantity=100

--- Shipments for Part P1 ---
Shipment: part=P1 supplier=S1 quantity=300
Shipment: part=P1 supplier=S2 quantity=300

--- Shipments for Supplier S1 ---
Shipment: part=P1 supplier=S1 quantity=300
Shipment: part=P2 supplier=S1 quantity=200
Shipment: part=P3 supplier=S1 quantity=400
Shipment: part=P4 supplier=S1 quantity=200
Shipment: part=P5 supplier=S1 quantity=100
Shipment: part=P6 supplier=S1 quantity=100

31-Oct-2017 JE Collections Page 58

Chapter 5. Using Tuples
JE JE Collections API tuples are sequences of primitive Java data types, for example, integers
and strings. The tuple format is a binary format for tuples that can be used to store keys and/
or values.

Tuples are useful as keys because they have a meaningful sort order, while serialized objects
do not. This is because the binary data for a tuple is written in such a way that its raw byte
ordering provides a useful sort order. For example, strings in tuples are written with a null
terminator rather than with a leading length.

Tuples are useful as keys or values when reducing the record size to a minimum is important.
A tuple is significantly smaller than an equivalent serialized object. However, unlike serialized
objects, tuples cannot contain complex data types and are not easily extended except by
adding fields at the end of the tuple.

Whenever a tuple format is used, except when the key or value class is a Java primitive
wrapper class, a tuple binding class must be implemented to map between the Java object
and the tuple fields. Because of this extra requirement, and because tuples are not easily
extended, a useful technique shown in this example is to use tuples for keys and serialized
objects for values. This provides compact ordered keys but still allows arbitrary Java objects
as values, and avoids implementing a tuple binding for each value class.

Compare this example to the prior Entity example and you'll see that the Sample class has not
changed. When changing a database format, while new bindings are needed to map key and
value objects to the new format, the application using the objects often does not need to be
modified.

The complete source of the final version of the example program is included in the Berkeley
DB distribution.

Using the Tuple Format

Tuples are sequences of primitive Java values that can be written to, and read from, the
raw data bytes of a stored record. The primitive values are written or read one at a time in
sequence, using the JE JE Collections API TupleInput and TupleOutput classes. These classes
are very similar to the standard Java DataInput and DataOutput interfaces. The primary
difference is the binary format of the data, which is designed for sorting in the case of tuples.

For example, to read and write a tuple containing two string values, the following code
snippets could be used.
import com.sleepycat.bind.tuple.TupleInput;
import com.sleepycat.bind.tuple.TupleOutput;
...
TupleInput input;
TupleOutput output;
...
String partNumber = input.readString();
String supplierNumber = input.readString();
...

Library Version 12.2.7.5 Using Tuples

31-Oct-2017 JE Collections Page 59

output.writeString(partNumber);
output.writeString(supplierNumber);

Since a tuple is defined as an ordered sequence, reading and writing order must match. If
the wrong data type is read (an integer instead of string, for example), an exception may be
thrown or at minimum invalid data will be read.

When the tuple format is used, bindings and key creators must read and write tuples using the
tuple API as shown above. This will be illustrated in the next two sections.

Using Tuples with Key Creators
Key creators were used in prior examples to extract index keys from value objects. The
keys were returned as deserialized key objects, since the serial format was used for keys. In
this example, the tuple format is used for keys and the key creators return keys by writing
information to a tuple. The differences between this example and the prior example are:

• The TupleSerialKeyCreator base class is used instead of the SerialSerialKeyCreator
base class.

• For all key input and output parameters, the TupleInput and TupleOutput classes are used
instead of Object (representing a deserialized object).

• Instead of returning a key output object, these methods call tuple write methods such as
TupleOutput.writeString.

In addition to writing key tuples, the ShipmentByPartKeyCreator and
ShipmentBySupplierKeyCreator classes also read the key tuple of the primary key. This
is because they extract the index key from fields in the Shipment's primary key. Instead of
calling getter methods on the ShipmentKey object, as in prior examples, these methods call
TupleInput.readString. The ShipmentKey consists of two string fields that are read in
sequence.

The modified key creators are shown below: SupplierByCityKeyCreator,
ShipmentByPartKeyCreator and ShipmentBySupplierKeyCreator.
import com.sleepycat.bind.serial.TupleSerialKeyCreator;
import com.sleepycat.bind.tuple.TupleInput;
import com.sleepycat.bind.tuple.TupleOutput;
...
public class SampleDatabase
{
 ...
 private static class SupplierByCityKeyCreator
 extends TupleSerialKeyCreator
 {
 private SupplierByCityKeyCreator(ClassCatalog catalog,
 Class valueClass)
 {
 super(catalog, valueClass);
 }

Library Version 12.2.7.5 Using Tuples

31-Oct-2017 JE Collections Page 60

 public boolean createSecondaryKey(TupleInput primaryKeyInput,
 Object valueInput,
 TupleOutput indexKeyOutput)
 {
 SupplierData supplierData = (SupplierData) valueInput;
 String city = supplierData.getCity();
 if (city != null) {
 indexKeyOutput.writeString(supplierData.getCity());
 return true;
 } else {
 return false;
 }
 }
 }

 private static class ShipmentByPartKeyCreator
 extends TupleSerialKeyCreator
 {
 private ShipmentByPartKeyCreator(ClassCatalog catalog,
 Class valueClass)
 {
 super(catalog, valueClass);
 }

 public boolean createSecondaryKey(TupleInput primaryKeyInput,
 Object valueInput,
 TupleOutput indexKeyOutput)
 {
 String partNumber = primaryKeyInput.readString();
 // don't bother reading the supplierNumber
 indexKeyOutput.writeString(partNumber);
 return true;
 }
 }

 private static class ShipmentBySupplierKeyCreator
 extends TupleSerialKeyCreator
 {
 private ShipmentBySupplierKeyCreator(ClassCatalog catalog,
 Class valueClass)
 {
 super(catalog, valueClass);
 }

 public boolean createSecondaryKey(TupleInput primaryKeyInput,
 Object valueInput,
 TupleOutput indexKeyOutput)
 {
 primaryKeyInput.readString(); // skip the partNumber

Library Version 12.2.7.5 Using Tuples

31-Oct-2017 JE Collections Page 61

 String supplierNumber = primaryKeyInput.readString();
 indexKeyOutput.writeString(supplierNumber);
 return true;
 }
 }
 ...
}

Creating Tuple Key Bindings

Serial bindings were used in prior examples as key bindings, and keys were stored as serialized
objects. In this example, a tuple binding is used for each key since keys will be stored as
tuples. Because keys are no longer stored as serialized objects, the PartKey, SupplierKey
and ShipmentKey classes no longer implement the Serializable interface (this is the only
change to these classes and is not shown below).

For the Part key, Supplier key, and Shipment key, the SampleViews class was changed in
this example to create a custom TupleBinding instead of a SerialBinding. The custom
tuple key binding classes are defined further below.

import com.sleepycat.bind.tuple.TupleBinding;
...
public class SampleViews
{
 ...
 public SampleViews(SampleDatabase db)
 {
 ...
 ClassCatalog catalog = db.getClassCatalog();
 EntryBinding partKeyBinding =
 new PartKeyBinding();
 EntityBinding partDataBinding =
 new PartBinding(catalog, PartData.class);
 EntryBinding supplierKeyBinding =
 new SupplierKeyBinding();
 EntityBinding supplierDataBinding =
 new SupplierBinding(catalog, SupplierData.class);
 EntryBinding shipmentKeyBinding =
 new ShipmentKeyBinding();
 EntityBinding shipmentDataBinding =
 new ShipmentBinding(catalog, ShipmentData.class);
 EntryBinding cityKeyBinding =
 TupleBinding.getPrimitiveBinding(String.class);
 ...
 }
}

Library Version 12.2.7.5 Using Tuples

31-Oct-2017 JE Collections Page 62

For the City key, however, a custom binding class is not needed because the key class is a
primitive Java type, String. For any primitive Java type, a tuple binding may be created
using the TupleBinding.getPrimitiveBinding static method.

The custom key binding classes, PartKeyBinding, SupplierKeyBinding and
ShipmentKeyBinding, are defined by extending the TupleBinding class. The TupleBinding
abstract class implements the EntryBinding interface, and is used for one-to-one bindings
between tuples and objects. Each binding class implements two methods for converting
between tuples and objects. Tuple fields are read using the TupleInput parameter and
written using the TupleOutput parameter.
import com.sleepycat.bind.tuple.TupleBinding;
import com.sleepycat.bind.tuple.TupleInput;
import com.sleepycat.bind.tuple.TupleOutput;
...
public class SampleViews
{
...

 private static class PartKeyBinding extends TupleBinding
 {
 private PartKeyBinding()
 {
 }

 public Object entryToObject(TupleInput input)
 {
 String number = input.readString();
 return new PartKey(number);
 }

 public void objectToEntry(Object object, TupleOutput output)
 {
 PartKey key = (PartKey) object;
 output.writeString(key.getNumber());
 }
 }
 ...
 private static class SupplierKeyBinding extends TupleBinding
 {
 private SupplierKeyBinding()
 {
 }

 public Object entryToObject(TupleInput input)
 {
 String number = input.readString();
 return new SupplierKey(number);
 }

Library Version 12.2.7.5 Using Tuples

31-Oct-2017 JE Collections Page 63

 public void objectToEntry(Object object, TupleOutput output)
 {
 SupplierKey key = (SupplierKey) object;
 output.writeString(key.getNumber());
 }
 }
 ...
 private static class ShipmentKeyBinding extends TupleBinding
 {
 private ShipmentKeyBinding()
 {
 }

 public Object entryToObject(TupleInput input)
 {
 String partNumber = input.readString();
 String supplierNumber = input.readString();
 return new ShipmentKey(partNumber, supplierNumber);
 }
 public void objectToEntry(Object object, TupleOutput output)
 {
 ShipmentKey key = (ShipmentKey) object;
 output.writeString(key.getPartNumber());
 output.writeString(key.getSupplierNumber());
 }
 }
 ...
}

Creating Tuple-Serial Entity Bindings

In the prior example serial keys and serial values were used, and the SerialSerialBinding
base class was used for entity bindings. In this example, tuple keys and serial values are used
and therefore the TupleSerialBinding base class is used for entity bindings.

As with any entity binding, a key and value is converted to an entity in the
TupleSerialBinding.entryToObject method, and from an entity to a key and value in the
TupleSerialBinding.objectToKey and TupleSerialBinding.objectToData methods. But
since keys are stored as tuples, not as serialized objects, key fields are read and written using
the TupleInput and TupleOutput parameters.

The SampleViews class contains the modified entity binding classes that were defined in the
prior example: PartBinding, SupplierBinding and ShipmentBinding.

import com.sleepycat.bind.serial.TupleSerialBinding;
import com.sleepycat.bind.tuple.TupleInput;
import com.sleepycat.bind.tuple.TupleOutput;
...
public class SampleViews
{

Library Version 12.2.7.5 Using Tuples

31-Oct-2017 JE Collections Page 64

 ...
 private static class PartBinding extends TupleSerialBinding
 {
 private PartBinding(ClassCatalog classCatalog, Class dataClass)
 {
 super(classCatalog, dataClass);
 }
 public Object entryToObject(TupleInput keyInput, Object dataInput)
 {
 String number = keyInput.readString();
 PartData data = (PartData) dataInput;
 return new Part(number, data.getName(), data.getColor(),
 data.getWeight(), data.getCity());
 }
 public void objectToKey(Object object, TupleOutput output)
 {
 Part part = (Part) object;
 output.writeString(part.getNumber());
 }
 public Object objectToData(Object object)
 {
 Part part = (Part) object;
 return new PartData(part.getName(), part.getColor(),
 part.getWeight(), part.getCity());
 }
 }
 ...
 private static class SupplierBinding extends TupleSerialBinding
 {
 private SupplierBinding(ClassCatalog classCatalog, Class dataClass)
 {
 super(classCatalog, dataClass);
 }
 public Object entryToObject(TupleInput keyInput, Object dataInput)
 {
 String number = keyInput.readString();
 SupplierData data = (SupplierData) dataInput;
 return new Supplier(number, data.getName(),
 data.getStatus(), data.getCity());
 }
 public void objectToKey(Object object, TupleOutput output)
 {
 Supplier supplier = (Supplier) object;
 output.writeString(supplier.getNumber());
 }
 public Object objectToData(Object object)
 {
 Supplier supplier = (Supplier) object;
 return new SupplierData(supplier.getName(),

Library Version 12.2.7.5 Using Tuples

31-Oct-2017 JE Collections Page 65

 supplier.getStatus(),
 supplier.getCity());
 }
 }
 ...
 private static class ShipmentBinding extends TupleSerialBinding
 {
 private ShipmentBinding(ClassCatalog classCatalog, Class dataClass)
 {
 super(classCatalog, dataClass);
 }
 public Object entryToObject(TupleInput keyInput, Object dataInput)
 {
 String partNumber = keyInput.readString();
 String supplierNumber = keyInput.readString();
 ShipmentData data = (ShipmentData) dataInput;
 return new Shipment(partNumber, supplierNumber,
 data.getQuantity());
 }
 public void objectToKey(Object object, TupleOutput output)
 {
 Shipment shipment = (Shipment) object;
 output.writeString(shipment.getPartNumber());
 output.writeString(shipment.getSupplierNumber());
 }
 public Object objectToData(Object object)
 {
 Shipment shipment = (Shipment) object;
 return new ShipmentData(shipment.getQuantity());
 }
 }
 ...
}

Library Version 12.2.7.5 Using Tuples

31-Oct-2017 JE Collections Page 66

Using Sorted Collections

In general, no changes to the prior example are necessary to use collections having tuple keys.
Iteration of elements in a stored collection will be ordered by the sort order of the tuples.

Although not shown in the example, all methods of the SortedMap and SortedSet interfaces
may be used with sorted collections. For example, submaps and subsets may be created.

The output of the example program shows that records are sorted by key value.

Adding Suppliers
Adding Parts
Adding Shipments

--- Parts ---
Part: number=P1 name=Nut color=Red weight=[12.0 grams] city=London
Part: number=P2 name=Bolt color=Green weight=[17.0 grams] city=Paris
Part: number=P3 name=Screw color=Blue weight=[17.0 grams] city=Rome
Part: number=P4 name=Screw color=Red weight=[14.0 grams] city=London
Part: number=P5 name=Cam color=Blue weight=[12.0 grams] city=Paris
Part: number=P6 name=Cog color=Red weight=[19.0 grams] city=London

--- Suppliers ---
Supplier: number=S1 name=Smith status=20 city=London
Supplier: number=S2 name=Jones status=10 city=Paris
Supplier: number=S3 name=Blake status=30 city=Paris
Supplier: number=S4 name=Clark status=20 city=London
Supplier: number=S5 name=Adams status=30 city=Athens

--- Suppliers for City Paris ---
Supplier: number=S2 name=Jones status=10 city=Paris
Supplier: number=S3 name=Blake status=30 city=Paris

--- Shipments ---
Shipment: part=P1 supplier=S1 quantity=300
Shipment: part=P1 supplier=S2 quantity=300
Shipment: part=P2 supplier=S1 quantity=200
Shipment: part=P2 supplier=S2 quantity=400
Shipment: part=P2 supplier=S3 quantity=200
Shipment: part=P2 supplier=S4 quantity=200
Shipment: part=P3 supplier=S1 quantity=400
Shipment: part=P4 supplier=S1 quantity=200
Shipment: part=P4 supplier=S4 quantity=300
Shipment: part=P5 supplier=S1 quantity=100
Shipment: part=P5 supplier=S4 quantity=400
Shipment: part=P6 supplier=S1 quantity=100

--- Shipments for Part P1 ---
Shipment: part=P1 supplier=S1 quantity=300
Shipment: part=P1 supplier=S2 quantity=300

Library Version 12.2.7.5 Using Tuples

31-Oct-2017 JE Collections Page 67

--- Shipments for Supplier S1 ---
Shipment: part=P1 supplier=S1 quantity=300
Shipment: part=P2 supplier=S1 quantity=200
Shipment: part=P3 supplier=S1 quantity=400
Shipment: part=P4 supplier=S1 quantity=200
Shipment: part=P5 supplier=S1 quantity=100
Shipment: part=P6 supplier=S1 quantity=100

31-Oct-2017 JE Collections Page 68

Chapter 6. Using Serializable Entities
In the prior examples that used entities (the Entity and Tuple examples) you may have noticed
the redundancy between the serializable value classes and the entity classes. An entity class
by definition contains all properties of the value class as well as all properties of the key
class.

When using serializable values it is possible to remove this redundancy by changing the entity
class in two ways:

• Make the entity class serializable, so it can be used in place of the value class.

• Make the key fields transient, so they are not redundantly stored in the record.

The modified entity class can then serve double-duty: It can be serialized and stored as the
record value, and it can be used as the entity class as usual along with the Java collections
API. The PartData, SupplierData and ShipmentData classes can then be removed.

Transient fields are defined in Java as fields that are not stored in the serialized form of
an object. Therefore, when an object is deserialized the transient fields must be explicitly
initialized. Since the entity binding is responsible for creating entity objects, it is the natural
place to initialize the transient key fields.

Note that it is not strictly necessary to make the key fields of a serializable entity class
transient. If this is not done, the key will simply be stored redundantly in the record's value.
This extra storage may or may not be acceptable to an application. But since we are using
tuple keys and an entity binding class must be implemented anyway to extract the key from
the entity, it is sensible to use transient key fields to reduce the record size. Of course there
may be a reason that transient fields are not desired; for example, if an application wants to
serialize the entity objects for other purposes, then using transient fields should be avoided.

The complete source of the final version of the example program is included in the Berkeley
DB distribution.

Using Transient Fields in an Entity Class
The entity classes in this example are redefined such that they can be used both as
serializable value classes and as entity classes. Compared to the prior example there are three
changes to the Part, Supplier and Shipment entity classes:

• Each class now implements the Serializable interface.

• The key fields in each class are declared as transient.

• A package-private setKey() method is added to each class for initializing the transient key
fields. This method will be called from the entity bindings.

import java.io.Serializable;
...
public class Part implements Serializable
{
 private transient String number;

Library Version 12.2.7.5 Using Serializable Entities

31-Oct-2017 JE Collections Page 69

 private String name;
 private String color;
 private Weight weight;
 private String city;

 public Part(String number, String name, String color, Weight weight,
 String city)
 {
 this.number = number;
 this.name = name;
 this.color = color;
 this.weight = weight;
 this.city = city;
 }

 final void setKey(String number)
 {
 this.number = number;
 }

 public final String getNumber()
 {
 return number;
 }

 public final String getName()
 {
 return name;
 }

 public final String getColor()
 {
 return color;
 }

 public final Weight getWeight()
 {
 return weight;
 }

 public final String getCity()
 {
 return city;
 }

 public String toString()
 {
 return "Part: number=" + number +
 " name=" + name +

Library Version 12.2.7.5 Using Serializable Entities

31-Oct-2017 JE Collections Page 70

 " color=" + color +
 " weight=" + weight +
 " city=" + city + '.';
 }
}
...
public class Supplier implements Serializable
{
 private transient String number;
 private String name;
 private int status;
 private String city;

 public Supplier(String number, String name, int status, String city)
 {
 this.number = number;
 this.name = name;
 this.status = status;
 this.city = city;
 }

 void setKey(String number)
 {
 this.number = number;
 }

 public final String getNumber()
 {
 return number;
 }

 public final String getName()
 {
 return name;
 }

 public final int getStatus()
 {
 return status;
 }

 public final String getCity()
 {
 return city;
 }

 public String toString()
 {
 return "Supplier: number=" + number +

Library Version 12.2.7.5 Using Serializable Entities

31-Oct-2017 JE Collections Page 71

 " name=" + name +
 " status=" + status +
 " city=" + city + '.';
 }
}
...
public class Shipment implements Serializable
{
 private transient String partNumber;
 private transient String supplierNumber;
 private int quantity;

 public Shipment(String partNumber, String supplierNumber, int quantity)
 {
 this.partNumber = partNumber;
 this.supplierNumber = supplierNumber;
 this.quantity = quantity;
 }

 void setKey(String partNumber, String supplierNumber)
 {
 this.partNumber = partNumber;
 this.supplierNumber = supplierNumber;
 }

 public final String getPartNumber()
 {
 return partNumber;
 }

 public final String getSupplierNumber()
 {
 return supplierNumber;
 }

 public final int getQuantity()
 {
 return quantity;
 }

 public String toString()
 {
 return "Shipment: part=" + partNumber +
 " supplier=" + supplierNumber +
 " quantity=" + quantity + '.';
 }
}

Library Version 12.2.7.5 Using Serializable Entities

31-Oct-2017 JE Collections Page 72

Using Transient Fields in an Entity Binding

The entity bindings from the prior example have been changed in this example to use the
entity object both as a value object and an entity object.

Before, the entryToObject() method combined the deserialized value object with the key
fields to create a new entity object. Now, this method uses the deserialized object directly as
an entity, and initializes its key using the fields read from the key tuple.

Before, the objectToData() method constructed a new value object using information in the
entity. Now it simply returns the entity. Nothing needs to be changed in the entity, since the
transient key fields won't be serialized.

import com.sleepycat.bind.serial.ClassCatalog;
...
public class SampleViews
{
 ...
 private static class PartBinding extends TupleSerialBinding
 {
 private PartBinding(ClassCatalog classCatalog, Class dataClass)
 {
 super(classCatalog, dataClass);
 }

 public Object entryToObject(TupleInput keyInput, Object dataInput)
 {
 String number = keyInput.readString();
 Part part = (Part) dataInput;
 part.setKey(number);
 return part;
 }

 public void objectToKey(Object object, TupleOutput output)
 {
 Supplier supplier = (Supplier) object;
 output.writeString(supplier.getNumber());
 }

 public Object objectToData(Object object)
 {
 return object;
 }
 }

 private static class SupplierBinding extends TupleSerialBinding
 {
 private SupplierBinding(ClassCatalog classCatalog, Class dataClass)
 {
 super(classCatalog, dataClass);

Library Version 12.2.7.5 Using Serializable Entities

31-Oct-2017 JE Collections Page 73

 }

 public Object entryToObject(TupleInput keyInput, Object dataInput)
 {
 String number = keyInput.readString();
 Supplier supplier = (Supplier) dataInput;
 supplier.setKey(number);
 return supplier;
 }

 public void objectToKey(Object object, TupleOutput output)
 {
 Supplier supplier = (Supplier) object;
 output.writeString(supplier.getNumber());
 }

 public Object objectToData(Object object)
 {
 return object;
 }
 }

 private static class ShipmentBinding extends TupleSerialBinding
 {
 private ShipmentBinding(ClassCatalog classCatalog, Class dataClass)
 {
 super(classCatalog, dataClass);
 }

 public Object entryToObject(TupleInput keyInput, Object dataInput)
 {
 String partNumber = keyInput.readString();
 String supplierNumber = keyInput.readString();
 Shipment shipment = (Shipment) dataInput;
 shipment.setKey(partNumber, supplierNumber);
 return shipment;
 }

 public void objectToKey(Object object, TupleOutput output)
 {
 Shipment shipment = (Shipment) object;
 output.writeString(shipment.getPartNumber());
 output.writeString(shipment.getSupplierNumber());
 }

 public Object objectToData(Object object)
 {
 return object;
 }

Library Version 12.2.7.5 Using Serializable Entities

31-Oct-2017 JE Collections Page 74

 }
}

Removing the Redundant Value Classes

The PartData, SupplierData and ShipmentData classes have been removed in this example,
and the Part, Supplier and Shipment entity classes are used in their place.

The serial formats are created with the entity classes.

public class SampleDatabase
{
 ...
 public SampleDatabase(String homeDirectory)
 throws DatabaseException, FileNotFoundException
 {
 ...
 secConfig.setKeyCreator(new SupplierByCityKeyCreator(javaCatalog,
 Supplier.class));
 ...
 secConfig.setKeyCreator(new ShipmentByPartKeyCreator(javaCatalog,
 Shipment.class));
 ...
 secConfig.setKeyCreator(new
 ShipmentBySupplierKeyCreator(javaCatalog,
 Shipment.class));
 ...
 }
}

The index key creator uses the entity class as well.

public class SampleDatabase
{
 ...

 private static class SupplierByCityKeyCreator
 extends TupleSerialKeyCreator
 {
 private SupplierByCityKeyCreator(ClassCatalog catalog,
 Class valueClass)
 {
 super(catalog, valueClass);
 }

 public boolean createSecondaryKey(TupleInput primaryKeyInput,
 Object valueInput,
 TupleOutput indexKeyOutput)
 {
 Supplier supplier = (Supplier) valueInput;
 String city = supplier.getCity();

Library Version 12.2.7.5 Using Serializable Entities

31-Oct-2017 JE Collections Page 75

 if (city != null) {
 indexKeyOutput.writeString(supplier.getCity());
 return true;
 } else {
 return false;
 }
 }
 }
}

31-Oct-2017 JE Collections Page 76

Chapter 7. Summary
In summary, the JE JE Collections API tutorial has demonstrated how to create different
types of bindings, as well as how to use the basic facilities of the JE JE Collections API: the
environment, databases, secondary indices, collections, and transactions. The final approach
illustrated by the last example program, Serializable Entity, uses tuple keys and serial entity
values. Hopefully it is clear that any type of object-to-data binding may be implemented by
an application and used along with standard Java collections.

The following table summarizes the differences between the examples in the tutorial.

Example Key Value Entity Comments

The Basic Program (page 6) Serial Serial No The shipment program

Using Secondary Indices and Foreign keys
 (page 32)

Serial Serial No Secondary indices and
foreign keys

Using Entity Classes (page 46) Serial Serial Yes Combining the key and
value in a single object

Using Tuples (page 58) Tuple Serial Yes Compact ordered keys

Using Serializable Entities (page 68) Tuple Serial Yes One serializable class
for entities and values

Having completed this tutorial, you may want to explore how other types of bindings can be
implemented. The bindings shown in this tutorial are all external bindings, meaning that the
data classes themselves contain none of the binding implementation. It is also possible to
implement internal bindings, where the data classes implement the binding.

Internal bindings are called marshalled bindings in the JE JE Collections API, and in this
model each data class implements a marshalling interface. A single external binding class
that understands the marshalling interface is used to call the internal bindings of each data
object, and therefore the overall model and API is unchanged. To learn about marshalled
bindings, see the marshal and factory examples that came with your JE distribution (you
can find them in <INSTALL_DIR>/examples/collections/ship where <INSTALL_DIR> is the
location where you unpacked your JE distribution). These examples continue building on the
example programs used in the tutorial. The Marshal program is the next program following the
Serializable Entity program, and the Factory program follows the Marshal program. The source
code comments in these examples explain their differences.

31-Oct-2017 JE Collections Page 77

Appendix A. API Notes and Details
This appendix contains information useful to the collections programmer that is too detailed
to easily fit into the format of a tutorial. Specifically, this appendix contains the following
information:

• Using Data Bindings (page 77)

• Using the JE JE Collections API (page 80)

• Using Stored Collections (page 82)

• Serialized Object Storage (page 86)

Using Data Bindings

Data bindings determine how keys and values are represented as stored data (byte arrays) in
the database, and how stored data is converted to and from Java objects.

The selection of data bindings is, in general, independent of the selection of collection views.
In other words, any binding can be used with any collection.

Note

In this document, bindings are described in the context of their use for stored data
in a database. However, bindings may also be used independently of a database to
operate on an arbitrary byte array. This allows using bindings when data is to be
written to a file or sent over a network, for example.

Library Version 12.2.7.5 API Notes and Details

31-Oct-2017 JE Collections Page 78

Selecting Binding Formats

For the key and value of each stored collection, you may select one of the following types of
bindings.

Binding Format Ordered Description

SerialBinding No The data is stored using a compact form of Java
serialization, where the class descriptions are
stored separately in a catalog database. Arbitrary
Java objects are supported.

TupleBinding Yes The data is stored using a series of fixed length
primitive values or zero terminated character
arrays (strings). Class/type evolution is not
supported.

Custom binding format User-defined The data storage format and ordering is
determined by the custom binding implementation.

As shown in the table above, the tuple format supports built-in ordering (without specifying
a custom comparator), while the serial format does not. This means that when a specific key
order is needed, tuples should be used instead of serial data. Alternatively, a custom Btree
comparator should be specified using DatabaseConfig.setBtreeComparator(). Note that
a custom Btree comparator will usually execute more slowly than the default byte-by-byte
comparison. This makes using tuples an attractive option, since they provide ordering along
with optimal performance.

The tuple binding uses less space and executes faster than the serial binding. But once a tuple
is written to a database, the order of fields in the tuple may not be changed and fields may
not be deleted. The only type evolution allowed is the addition of fields at the end of the
tuple, and this must be explicitly supported by the custom binding implementation.

The serial binding supports the full generality of Java serialization including type evolution.
But serialized data can only be accessed by Java applications, its size is larger, and its bindings
are slower to execute.

Selecting Data Bindings

There are two types of binding interfaces. Simple entry bindings implement the
EntryBinding interface and can be used for key or value objects. Entity bindings implement
the EntityBinding interface and are used for combined key and value objects called
entities.

Simple entry bindings map between the key or value data stored by Berkeley DB and a key or
value object. This is a simple one-to-one mapping.

Simple entry bindings are easy to implement and in some cases require no coding. For
example, a SerialBinding can be used for keys or values without writing any additional
code. A tuple binding for a single-item tuple can also be used without writing any code; see
the TupleBinding.getPrimitiveBinding() method.

Library Version 12.2.7.5 API Notes and Details

31-Oct-2017 JE Collections Page 79

Entity bindings must divide an entity object into its key and value data, and then combine the
key and value data to re-create the entity object. This is a two-to-one mapping.

Entity bindings are useful when a stored application object naturally has its primary key as
a property, which is very common. For example, an Employee object would naturally have
an EmployeeNumber property (its primary key) and an entity binding would then be needed.
Of course, entity bindings are more complex to implement, especially if their key and data
formats are different.

Note that even when an entity binding is used a key binding is also usually needed. For
example, a key binding is used to create key objects that are passed to the Map.get()
method. A key object is passed to this method even though it may return an entity that also
contains the key.

Implementing Bindings

There are two ways to implement bindings. The first way is to create a binding class that
implements one of the two binding interfaces, EntryBinding or EntityBinding. For tuple
bindings and serial bindings there are a number of abstract classes that make this easier. For
example, you can extend TupleBinding to implement a simple binding for a tuple key or
value. Abstract classes are also provided for entity bindings and are named after the format
names of the key and value. For example, you can extend TupleSerialBinding to implement
an entity binding with a tuple key and serial value.

Another way to implement bindings is with marshalling interfaces. These are interfaces which
perform the binding operations and are implemented by the key, value or entity classes
themselves. With marshalling you use a binding which calls the marshalling interface and
you implement the marshalling interface for each key, value or entity class. For example,
you can use TupleMarshalledBinding along with key or value classes that implement the
MarshalledTupleEntry interface.

Using Bindings

Bindings are specified whenever a stored collection is created. A key binding must be
specified for map, key set and entry set views. A value binding or entity binding must be
specified for map, value set and entry set views.

Any number of bindings may be created for the same stored data. This allows multiple views
over the same data. For example, a tuple might be bound to an array of values or to a class
with properties for each object.

It is important to be careful of bindings that only use a subset of the stored data. This can
be useful to simplify a view or to hide information that should not be accessible. However,
if you write records using these bindings you may create stored data that is invalid from the
application's point of view. It is up to the application to guard against this by creating a read-
only collection when such bindings are used.

Library Version 12.2.7.5 API Notes and Details

31-Oct-2017 JE Collections Page 80

Secondary Key Creators

Secondary Key Creators are needed whenever database indices are used. For each secondary
index (SecondaryDatabase) a key creator is used to derive index key data from key/value
data. Key creators are objects whose classes implement the SecondaryKeyCreator interface.

Like bindings, key creators may be implemented using a separate key creator class or using a
marshalling interface. Abstract key creator classes and marshalling interfaces are provided in
the com.sleepycat.bind.tuple and com.sleepycat.bind.serial packages.

Unlike bindings, key creators fundamentally operate on key and value data, not necessarily
on the objects derived from the data by bindings. In this sense key creators are a part of a
database definition, and may be independent of the various bindings that may be used to view
data in a database. However, key creators are not prohibited from using higher level objects
produced by bindings, and doing so may be convenient for some applications. For example,
marshalling interfaces, which are defined for objects produced by bindings, are a convenient
way to define key creators.

Using the JE JE Collections API

An Environment manages the resources for one or more data stores. A Database object
represents a single database and is created via a method on the environment object.
SecondaryDatabase objects represent an index associated with a primary database. Primary
and secondary databases are then used to create stored collection objects, as described in
Using Stored Collections (page 82).

Using Transactions

Once you have an environment, one or more databases, and one or more stored collections,
you are ready to access (read and write) stored data. For a transactional environment, a
transaction must be started before accessing data, and must be committed or aborted after
access is complete. The JE JE Collections API provides several ways of managing transactions.

The recommended technique is to use the TransactionRunner class along with your own
implementation of the TransactionWorker interface. TransactionRunner will call your
TransactionWorker implementation class to perform the data access or work of the
transaction. This technique has the following benefits:

• Transaction exceptions will be handled transparently and retries will be performed when
deadlocks are detected.

• The transaction will automatically be committed if your TransactionWorker.doWork()
method returns normally, or will be aborted if doWork() throws an exception.

• TransactionRunner can be used for non-transactional environments as well, allowing you
to write your application independently of the environment.

If you don't want to use TransactionRunner, the alternative is to use the
CurrentTransaction class.

Library Version 12.2.7.5 API Notes and Details

31-Oct-2017 JE Collections Page 81

1. Obtain a CurrentTransaction instance by calling the CurrentTransaction.getInstance
method. The instance returned can be used by all threads in a program.

2. Use CurrentTransaction.beginTransaction(),
CurrentTransaction.commitTransaction() and
CurrentTransaction.abortTransaction() to directly begin, commit and abort
transactions.

If you choose to use CurrentTransaction directly you must handle the
LockConflictException exception and perform retries yourself. Also note that
CurrentTransaction may only be used in a transactional environment.

The JE JE Collections API supports transaction auto-commit. If no transaction is active and a
write operation is requested for a transactional database, auto-commit is used automatically.

The JE JE Collections API also supports transaction dirty-read via the StoredCollections
class. When dirty-read is enabled for a collection, data will be read that has been modified
by another transaction but not committed. Using dirty-read can improve concurrency since
reading will not wait for other transactions to complete. For a non-transactional container,
dirty-read has no effect. See StoredCollections for how to create a dirty-read collection.

Transaction Rollback

When a transaction is aborted (or rolled back) the application is responsible for discarding
references to any data objects that were modified during the transaction. Since the JE JE
Collections API treats data by value, not by reference, neither the data objects nor the JE
JE Collections API objects contain status information indicating whether the data objects
are 1- in sync with the database, 2- dirty (contain changes that have not been written to the
database), 3- stale (were read previously but have become out of sync with changes made
to the database), or 4- contain changes that cannot be committed because of an aborted
transaction.

For example, a given data object will reflect the current state of the database after reading
it within a transaction. If the object is then modified it will be out of sync with the database.
When the modified object is written to the database it will then be in sync again. But if the
transaction is aborted the object will then be out of sync with the database. References to
objects for aborted transactions should no longer be used. When these objects are needed
later they should be read fresh from the database.

When an existing stored object is to be updated, special care should be taken to read the
data, then modify it, and then write it to the database, all within a single transaction. If
a stale data object (an object that was read previously but has since been changed in the
database) is modified and then written to the database, database changes may be overwritten
unintentionally.

When an application enforces rules about concurrent access to specific data objects or all
data objects, the rules described here can be relaxed. For example, if the application knows
that a certain object is only modified in one place, it may be able to reliably keep a current
copy of that object. In that case, it is not necessary to reread the object before updating it.
That said, if arbitrary concurrent access is to be supported, the safest approach is to always
read data before modifying it within a single transaction.

Library Version 12.2.7.5 API Notes and Details

31-Oct-2017 JE Collections Page 82

Similar concerns apply to using data that may have become stale. If the application depends
on current data, it should be read fresh from the database just before it is used.

Access Method Restrictions

The BTREE access method is always used for JE Databases. Sorted duplicates — more then one
record for a single key — are optional.

The restrictions imposed by the access method on the database model are:

• If duplicates are allowed then more than one value may be associated with the same key.
This means that the data store cannot be strictly considered a map — it is really a multi-
map. See Using Stored Collections (page 82) for implications on the use of the collection
interfaces.

• If duplicate keys are allowed for a data store then the data store may not have secondary
indices.

• With sorted duplicates, all values for the same key must be distinct.

See Using Stored Collections (page 82) for more information on how access methods
impact the use of stored collections.

Using Stored Collections

When a stored collection is created it is based on either a Database or a
SecondaryDatabase. When a database is used, the primary key of the database is used as
the collection key. When a secondary database is used, the index key is used as the collection
key. Indexed collections can be used for reading elements and removing elements but not for
adding or updating elements.

Stored Collection and Access Methods

The use of stored collections is constrained in certain respects as described below.

• All iterators for stored collections implement the ListIterator interface as well as the
Iterator interface. ListIterator.hasPrevious() and ListIterator.previous() work
in all cases.

• ListIterator.add() throws UnsupportedOperationException if duplicates are not
allowed.

• ListIterator.add() inserts a duplicate in sorted order if sorted duplicates are configured.

• ListIterator.set() throws UnsupportedOperationException if sorted duplicates are
configured, since updating with sorted duplicates would change the iterator position.

• ListIterator.nextIndex() and ListIterator.previousIndex() always throw
UnsupportedOperationException.

• Map.Entry.setValue() throws UnsupportedOperationException if duplicates are sorted.

Library Version 12.2.7.5 API Notes and Details

31-Oct-2017 JE Collections Page 83

• When duplicates are allowed the Collection interfaces are modified in several ways as
described in the next section.

Stored Collections Versus Standard Java Collections

Stored collections have the following differences with the standard Java collection interfaces.
Some of these are interface contract violations.

The Java collections interface does not support duplicate keys (multi-maps or multi-sets).
When the access method allows duplicate keys, the collection interfaces are defined as
follows.

• Map.entrySet() may contain multiple Map.Entry objects with the same key.

• Map.keySet() always contains unique keys, it does not contain duplicates.

• Map.values() contains all values including the values associated with duplicate keys.

• Map.put() appends a duplicate if the key already exists rather than replacing the existing
value, and always returns null.

• Map.remove() removes all duplicates for the specified key.

• Map.get() returns the first duplicate for the specified key.

• StoredSortedMap.duplicates() is an additional method for returning the values for a
given key as a Collection.

Other differences are:

• Collection.size() and Map.size() always throws UnsupportedOperationException. This is
because the number of records in a database cannot be determined reliably or cheaply.

• Because the size() method cannot be used, the bulk operation methods of
standard Java collections cannot be passed stored collections as parameters,
since the implementations rely on size(). However, the bulk operation methods
of stored collections can be passed standard Java collections as parameters.
storedCollection.addAll(standardCollection) is allowed while
standardCollection.addAll(storedCollection) is not allowed. This restriction
applies to the standard collection constructors that take a Collection parameter (copy
constructors), the Map.putAll() method, and the following Collection methods: addAll(),
containsAll(), removeAll() and retainAll().

• Comparator objects cannot be used and the SortedMap.comparator() and
SortedSet.comparator() methods always return null. The Comparable interface is not
supported. However, Comparators that operate on byte arrays may be specified using
DatabaseConfig.setBtreeComparator.

• The Object.equals() method is not used to determine whether a key or value is contained
in a collection, to locate a value by key, etc. Instead the byte array representation

Library Version 12.2.7.5 API Notes and Details

31-Oct-2017 JE Collections Page 84

of the keys and values are used. However, the equals() method is called for each key
and value when comparing two collections for equality. It is the responsibility of the
application to make sure that the equals() method returns true if and only if the byte array
representations of the two objects are equal. Normally this occurs naturally since the byte
array representation is derived from the object's fields.

Other Stored Collection Characteristics

The following characteristics of stored collections are extensions of the definitions in the
java.util package. These differences do not violate the Java collections interface contract.

• All stored collections are thread safe (can be used by multiple threads concurrently).
Locking is handled by the Berkeley DB Java Edition environment. To access a collection from
multiple threads, creation of synchronized collections using the Collections class is not
necessary. Iterators, however, should always be used only by a single thread.

• All stored collections may be read-only if desired by passing false for the writeAllowed
parameter of their constructor. Creation of immutable collections using the Collections
class is not necessary.

• A stored collection is partially read-only if a secondary index is used. Specifically,
values may be removed but may not be added or updated. The following methods will
throw UnsupportedOperationException when an index is used: Collection.add(),
ListIterator.set() and Map.Entry.setValue().

• SortedMap.entrySet() and SortedMap.keySet() return a SortedSet, not just a Set as
specified in Java collections interface. This allows using the SortedSet methods on the
returned collection.

• SortedMap.values() returns a SortedSet, not just a Collection, whenever the keys of
the map can be derived from the values using an entity binding. Note that the sorted set
returned is not really a set if duplicates are allowed, since it is technically a collection;
however, the SortedSet methods (for example, subSet()), can still be used.

• For SortedSet and SortedMap views, additional subSet() and subMap() methods are
provided that allow control over whether keys are treated as inclusive or exclusive values in
the key range.

• Keys and values are stored by value, not by reference. This is because objects that are
added to collections are converted to byte arrays (by bindings) and stored in the database.
When they are retrieved from the collection they are read from the database and converted
from byte arrays to objects. Therefore, the object reference added to a collection will not
be the same as the reference later retrieved from the collection.

• A runtime exception, RuntimeExceptionWrapper, is thrown whenever database exceptions
occur which are not runtime exceptions. The RuntimeExceptionWrapper.getCause()
method can be called to get the underlying exception.

• All iterators for stored collections implement the ListIterator interface as well as
the Iterator interface. This is to allow use of the ListIterator.hasPrevious() and

Library Version 12.2.7.5 API Notes and Details

31-Oct-2017 JE Collections Page 85

ListIterator.previous() methods, which work for all collections since Berkeley DB
provides bidirectional cursors.

• All stored collections have a StoredCollection.iterator(boolean) method
that allows creating a read-only iterator for a writable collection. For the standard
Collection.iterator() method, the iterator is read-only only when the collection is
read-only.

• Iterator stability for stored collections is greater than the iterator stability defined by
the Java collections interfaces. Stored iterator stability is the same as the cursor stability
defined by Berkeley DB.

• When an entity binding is used, updating (setting) a value is not allowed if the key
in the entity is not equal to the original key. For example, calling Map.put() is not
allowed when the key parameter is not equal to the key of the entity parameter.
Map.put(), ListIterator.set(), and Map.Entry.setValue() will throw
IllegalArgumentException in this situation.

• The StoredSortedMap.append(java.lang.Object) extension method allows adding a new
record with an automatically assigned key. An application-defined PrimaryKeyAssigner is
used to assign the key value.

Why Java Collections for Berkeley DB Java Edition

The Java collections interface was chosen as the best Java API for JE given these
requirements:

1. Provide the Java developer with an API that is as familiar and easy to use as possible.

2. Provide access to all, or a large majority, of the features of the underlying Berkeley DB
Java Edition storage system.

3. Compared to the JE API, provide a higher-level API that is oriented toward Java
developers.

4. For ease of use, support object-to-data bindings, per-thread transactions, and some
traditional database features such as foreign keys.

5. Provide a thin layer that can be thoroughly tested and which does not significantly impact
the reliability and performance of JE.

Admittedly there are several things about the Java Collections API that don't quite fit with
JE or with any transactional database, and therefore there are some new rules for applying
the Java Collections API. However, these disadvantages are considered to be smaller than the
disadvantages of the alternatives:

• A new API not based on the Java Collections API could have been designed that maps well
to JE but is higher-level. However, this would require designing an entirely new model. The
exceptions for using the Java Collections API are considered easier to learn than a whole
new model. A new model would also require a long design stabilization period before being
as complete and understandable as either the Java Collections API or the JE API.

Library Version 12.2.7.5 API Notes and Details

31-Oct-2017 JE Collections Page 86

• The ODMG API or another object persistence API could have been implemented on top of
JE. However, an object persistence implementation would add much code and require a
long stabilization period. And while it may work well for applications that require object
persistence, it would probably never perform well enough for many other applications.

Serialized Object Storage

Serialization of an object graph includes class information as well as instance information.
If more than one instance of the same class is serialized as separate serialization operations
then the class information exists more than once. To eliminate this inefficiency the
StoredClassCatalog class will store the class format for all database records stored using a
SerialBinding. Refer to the ship sample code for examples (the class SampleDatabase in
<INSTALL_DIR>/examples/collections/ship/basic/SampleDatabase.java is a good place
to start).

	Berkeley DB Java Edition Collections Tutorial
	Table of Contents
	Preface
	Conventions Used in this Book
	For More Information
	Contact Us

	Chapter 1. Introduction
	Features
	Developing a JE Collections Application
	Tutorial Introduction

	Chapter 2. The Basic Program
	Defining Serialized Key and Value Classes
	Opening and Closing the Database Environment
	Opening and Closing the Class Catalog
	Opening and Closing Databases
	Creating Bindings and Collections
	Implementing the Main Program
	Using Transactions
	Adding Database Items
	Retrieving Database Items
	Handling Exceptions

	Chapter 3. Using Secondary Indices and Foreign keys
	Opening Secondary Key Indices
	Opening Foreign Key Indices
	Creating Indexed Collections
	Retrieving Items by Index Key

	Chapter 4. Using Entity Classes
	Defining Entity Classes
	Creating Entity Bindings
	Creating Collections with Entity Bindings
	Using Entities with Collections

	Chapter 5. Using Tuples
	Using the Tuple Format
	Using Tuples with Key Creators
	Creating Tuple Key Bindings
	Creating Tuple-Serial Entity Bindings
	Using Sorted Collections

	Chapter 6. Using Serializable Entities
	Using Transient Fields in an Entity Class
	Using Transient Fields in an Entity Binding
	Removing the Redundant Value Classes

	Chapter 7. Summary
	Appendix A. API Notes and Details
	Using Data Bindings
	Selecting Binding Formats
	Selecting Data Bindings
	Implementing Bindings
	Using Bindings
	Secondary Key Creators

	Using the JE JE Collections API
	Using Transactions
	Transaction Rollback
	Access Method Restrictions

	Using Stored Collections
	Stored Collection and Access Methods
	Stored Collections Versus Standard Java Collections
	Other Stored Collection Characteristics
	Why Java Collections for Berkeley DB Java Edition

	Serialized Object Storage

